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CONSTRUCTION ENHANCEMENTS

The remaining panel closure enhancements relate primarily
to the resulting strength of the concrete in the panel closure
bulkheads, over the minimum operational period of 35 years. The
strength of the concrete is critical to the strength of the
panel closure bulkheads.

The proposal to allow the mass concrete to utilize any rock
salt in the mix depends on the ability to consistently meet the
strength specification. The unconfined compressive strength of
the 16 Permian evaporite beds tabulated in Appendix F ranges
from 2300 psi to 5880 psi and the cohesion from 540 to 1580 psi.
The unconfined compressive strength of the evaporite beds
tabulated in Appendix G, including the Permian beds in Appendix
F, ranges from 2260 psi to 7510 psi and the cohesion from 540 to
1790 psi. The random selection of the salt from any tested salt
bed should be capable of providing equivalent strength
properties. In addition, the strength variation across a single
evaporite bed in the Salado formation is significant. The
unconfined compressive strength of the Mississippi Potash
Company's Cycle 7 bed (> 85% salt) ranged from 1610 psi to 4950
psi, as shown on Figure 17. The important factor would appear
that the salt component of the mix be consistent, i. e. well
mixed from one source.

Aggregate strength is a minor concrete strength factor
which can be compensated for, if necessary, by increasing the
cement in the mix and verified by testing. In addition,
carbonate aggregate concrete probably has a lower coefficient of
thermal expansion that quartz aggregate. Figure 8 indicates
that concrete with quartz aggregate has a higher coefficient of
expansion (approximately 6.6 millionths per °F) than either
limestone aggregate concrete (approximately 3.8 millionths per
°F) or dolomite aggregate concrete (approximately 5.3 millionths
per °F). It should be possible to use either the Pennsylvanian
Atoka limestone or the Permian, Guadalupian, Bell Canyon
limestone river rock for concrete aggregate. Rounded river rock
should facilitate slick line pumping and form filling.

Surface or underground mixing of the concrete is of no
significance. Sunnyside Cold Corp. has constructed five water
impoundment bulkheads using underground mixing and pumping
stations, four using supersacks, surface mixing and pumping and
one with surface mixing and transporting by rail in Moran cars.
The critical factor is limiting the time between mixing and
placement in the form. Troxell, et. al. (1968) state:
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Figure 17. Strength of Mississippi Potash Co.'s Cycle 7 bed
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Current specifications for ready-mixed concrete require
that the concrete be discharged from the truck within
1-1/2 hr or before the drum has had 300 revolutions
(whichever comes first) after the water is added to the
batch, or the cement to the moist aggregate. Under
specially favorable conditions, periods up to 2 and 3
hr may be allowed. Conversely, under unfavorable
conditions where air temperatures are unusually high,
or the ingredients of the concrete are such that an
unusually quick time of set or loss of plasticity may
occur, it may be necessary to substitute a shorter
period.

If the water is added to the bulkhead concrete on the surface,
it will be difficult to meet the time limitation. Transporting
supersacks underground and adding the water and mixing close to
the bulkhead sites would appear to be the most reasonable
method.

Replacing freshwater grout with salt-based grout should be
done in order to minimize salt dissolution in the adjacent rock
salt and in the salt-based concrete. Salt dissolution could
weaken the contact zone and potentially provide a leakage path
for brine, methane explosion pressure and closure compressed gas
pressure behind the panel closure bulkheads.

It should be expected that the best contractor bid will
result from the least restrictive specification. There is no
apparent reason to require panel closure construction within six
months rather than one year.

_29_



Panel Closure Enhancements Page 30 July 18, 2001

CONCLUSIONS AND RECOMMENDATIONS

The most important of the specific enhancements proposed,
allowing flexibility in the bulkhead forming practices is
troubling because the planned bulkhead design contains multiple
potential leakage paths within cells, between cells and through
the panel closure bulkheads. It is recommended that the panel
bulkhead specifications:

1) provide an incentive for the contractor to minimize
the number of cells (preferably to one}),

2) require that each cell be filled as a continuous
monolithic concrete pour,

3) require the contractor support the fluid concrete in
all cells with external structures,

4) require the contractor to remove the support
structures and forms between internal cells,

5) provide for a rough form surface between internal
cell walls, (possibly with a layer of burlap),

6) assure that some grout points are located at the
roof concrete/rock salt contact and

7) prevent the use of all internal form spacer
supports.

If built as recommended, the panel closure bulkheads should be
capable of providing more than the required 35 years of
protection from brine migration, 480 psi of methane explosion
pressure and 100 psi of panel closure pressure.

The planned 12-ft thick explosion-isolation masonry walls
should not be built. The methane concentration will take more
than 17 years to rise to the 5% lower explosive limit after
stopping panel ventilation. If built, the planned 12-ft thick
explosion-isolation masonry walls would probably be incapable of
resisting the design 480 psi methane explosion pressure.

The 4-ft thick construction-isolation wall is recommended
to isolate the panel closure construction areas. The 4-ft thick
construction-isolation walls are more than adequate to support
the potential roof fall overpressure.

Generic salt-based concrete should be equally as effective
as Salado-based concrete.

It should be possible to use local limestone or dolomite
river rock for concrete aggregate. Limestone aggregate concrete
should have a lower coefficient of thermal expansion than
crushed quartz aggregate concrete. River rock should pump more
readily than crusher product.
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The contractor should be allowed to use either surface or
underground mixing of the concrete. However, underground mixing
of supersacks is recommended to assure sufficient time for
placing the concrete in the forms.

Salt-based grout is recommended to eliminate the
possibility of weakening the salt-based concrete along the rock
salt/concrete contact by dissolution. Grouting across the roof
contact is essential to assure that voids are filled.

There does not appear to be a time imperative requiring a
180-day construction period rather than a one year period.
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APPENDIX A. INTAKE DRIFT BULKHEAD DESIGN CALCULATIONS

Notation:

C = compressive bending force (Ib) ¢ = centroidal distance (in)

D = dead load (&) F = fluid load ()

FS = factor of safety f, = concrete comp strength (4,000 psi)
‘/Fc = square root of f, f, = concrete tensile strength (5:;5[(: psi)
£, = concrete shear strength (2,/f, = 126 psi) [5(0.65) /4000 = 206 psi]

H = depth below surface (2150 ft) h = Intake Drift height (13 ft)

I = moment of inertia (in®) L = live, dynamic, load (%)

{ = Intake Drift width (20 ft) M = bending moment (ft-1b)

M, = nominal beam moment (fi-1b) M, = factored beam moment (fi+Ib)

S = section modulus (in?) T = overall bulkhead thickness (36 ft)
T, = effective bulkhead thickness (28 ft) U = required strength (%

V. = concrete shear strength (Ib) V. = nominal shear force (Ib)

V. = factored shear force (Ib) Vs = shear stress (psi)

W = bulkhead load (Ib) @ = uniform bulkhead load (%)

pa = allowable pressure head (psi) pa = dynamic pressure head (240 psi)
p. = pressure gradient (%;1 y. = concrete density (151PCF)

y .= water density (62.4PCF) ys = salt density (140 PCF)

¢= plain concrete strength reduction factors o= flexure stress (psi)

0.65 plain concrete flexure, compression
shear and bearing

Load factors (ACI 318-95, Sec 9.2.1)
Static fluid load factor (F) = 1.4,
Live (dynamic) load factor (L) = 1.7

Load factor (DOE, 1996, Appendix PCS: 2.2.3.1)
Live (dynamic) load factor (L) =2

Allowable pressure gradient:

Low pressure grouting of concrete-rock salt contact but not rock salt, gradient allowable
=41 psi/ft (Garrett & Campbell-Pitt, 1958, Chekan, 1985, p11), with factor of safety of 4

Intake Drift bulkhead, design dynamic pressure head = Lpy = 2(240) = 480 psi

Required bulkhead thickness with low pressure grouting on concrete/rock salt bulkhead
contact:
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Appendix A. Intake Drift bulkhead design calculations (Continued)
Pressure gradient along minimum effective bulkhead thickness T.= 28 ft
Pg =35 =33 = 17.1 psi/ft

Factor of Safety against leakage of explosion gasses along concrete/rock salt contact
around 28-ft effective bulkhead thickness is:

FS =71 =240
Allowable concrete shear on Intake Drift perimeter:

fi=2/f, =2/4000 =126 psi  (ACI 318-95, Sec 11.3.1.1)

— _Pabl
T= 2ot
_ 2T(fy _ 2(36X(13+20)126 _ 299400 _ :
a=T Ty = 13(20) =50 — 1152 psi

W = pghl = 480(13)20(144) = 17,970,000 Ib

w 17970000 . 17970000 _ 525 pSl

Vs = R@nIT(40) = [2(13+20)136(144) — 342100

!

Factor of Safety against concrete shear failure = 5—3 = ;;—f;= 2.40
Allowable rock salt shear force along concrete/rock salt contact, Intake Drift bulkhead:
Rock salt cohesion (C,s)approximately 1070 psi (See appendix F.)
Length of minimum shear path in rock salt (L) adjacent to concrete/rock salt contact:
Lis= /82 +82+0.5+9.75 + 9.75 = 31.3 ft¥/ft of perimeter
Minimum rock salt perimeter = 2(13+20) = 66 ft
Total effective bulkhead shear area = 2,066 ft*

Maximum rock salt shear resistance = 2066(1070)144 = 318, 300, 000 1b
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Appendix A. Intake Drift bulkhead design calculations (Continued)

Maximum shear force on panel side bulkhead face and outward inclined panel side concrete/rock
salt contact potentially opened by explosion gas pressure:

Face area = 13(20) = 260 ft2
Vertical component of sloping area = 2(13+20)8 + L'f—z =528 + 50 = 578 f?
Design maximum thrust = (578+260)(480)144 = 57,920,000 1b

. . 318,300,000 _
Factor of Safety against rock salt shear failure = 7555565 = 5.50

Plain concrete deep beam bending stress design, Intake Drift (ACI 318-95, Sec 9.3.5, Sec 10.5;
ACI318.1-89, Sec 6.2.1)

for 480 psi design dynamic pressure head:
w = U =2py(144) = 2(240)144 = 69,120 (&)
Bulkhead deep beam griped at rock salt ribs by creep pressure (worst-case)

2
M, = 4 = 2222 = 1,152,000 fi-1b

c="T = 2 =
= Ni2) 6

fl - 206 =g Muc My 1772000 23_8_3_0

- 1 T S T awurz - 712

T= B30~ /3584 = 18.9 fi thick plain concrete bulkhead is required for worst-case
rib to rib fixed bulkhead.

_Me My 1772000 _ 1772000 _ .
Os="5 = Jar? = ia0sn = 31000 — 27-0psi
6 6

Therefore, a 36-ft thick plain-concrete bulkhead worst-case griped at both ribs of the 20-ft
wide Intake Drift, is acceptable as a panel closure bulkhead.
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Appendix A. Intake Drift bulkhead design calculations (Continued)

Bulkhead deep beam griped at Intake Drift rock salt roof and floor (best-case)
M, = 22 - S12003) . 486,700 fi-Ib

_ M. _ 486700 _
= oot = 486700 — 748 800 fi-Ib

b1 (13)(12%)
g=1_1= _ 7] __ 14412

T = 1) T 6
2 2

f,=5¢./f. =5(0.65),/4000 = 206 psi

£ =906=g=Me _ M _ 748800 _ 31200
o= =0= Tz

T= -3—;;2)%0— = /151.5 = 12.3-1t thick plain concrete bulkhead is required for best-case
roof to floor fixed bulkhead.

Mu _ _Ma_ _ 748800 _ 748800 _ .
Os="5 = ez = wash = 31100 — 24-1 psi
6 6

o

FS =5 = 2% =855

Q

Therefore, a 36-ft thick plain-concrete bulkhead, best-case griped at roof and floor of the
13-ft high Intake Drift, is acceptable as a panel closure bulkhead.
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APPENDIX B. EXHAUST DRIFT BULKHEAD DESIGN CALCULATIONS

Notation:

C = compressive bending force (Ib)
D = dead load (2

FS = factor of safety

Jf. = square root of £,

f, = concrete shear strength (ZJE =126 psi)

H = depth below surface (2150 ft)

I = moment of inertia (in*)

0 = Exhaust Drift width (14 ft)

M, = nominal beam moment (fi-1b)

S = section modulus (in?)

T. = effective bulkhead thickness (18 ft)

V. = concrete shear strength (Ib)

V. = factored shear force (Ib)

W = bulkhead load (1b)

pa = allowable pressure head (psi)

p, = pressure gradient (%)

y..= water density (62.4PCF)

¢= plain concrete strength reduction factors
0.65 plain concrete flexure, compression

shear and bearing

Load factors (ACI 318-95, Sec 9.2.1)
Static fluid load factor (F) = 1.4;
Live (dynamic) load factor (L) = 1.7

Load factor (DOE, 1996, Appendix PCS: 2.2.3.1)

Live (dynamic) load factor (L) =2

Allowable pressure gradient:

¢ = centroidal distance (in)

F = fluid load (§)

f, = concrete comp strength (4,000 psi)

f, = concrete tensile strength (5(15‘/?c psi)

(5(0.65)/4000 = 206 psi]
h = Exhaust Drift height (12 ft)
L = live, dynamic, load (%
M = bending moment (ft-Ib)
M, = factored beam moment (ft-1b)
T = overall bulkhead thickness (26 ft)
U = required strength (%
V.= nominal shear force (Ib)
Vv = shear stress (psi)
= uniform bulkhead load (%
pq = dynamic pressure head (240 psi)
. = concrete density (151PCF)
ys = salt density (140 PCF)
o = flexure stress (psi)

Low pressure grouting of concrete-rock salt contact but not rock salt, gradient allowable
= 41 psi/ft (Garrett & Campbell-Pitt, 1958, Chekan, 1985, p11), with factor of safety of 4

Exhaust Drift bulkhead, design dynamic pressure head = Lpy = 2(240) = 480 psi

Required bulkhead length with low pressure grouting on concrete/rock salt bulkhead
contact:
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Appendix B. Exhaust Drift bulkhead design calculations (Continued)
Pressure gradient along minimum effective bulkhead thickness T = 18 ft
pe = T =20 =26.7 psi/ft

Factor of Safety against leakage of explosion gasses along concrete/rock salt contact
around 18-ft effective bulkhead thickness is:

FS = - =154

Allowable concrete shear on Exhaust Drift perimeter:

fi=2/f =2/4000 =126 psi  (ACI 318-95, Sec 11.3.1.1)

— pahl

T 2(h+0)f
2T(h+Dfs  2(36X12+14)126 _ 235900 _ .
Pa=""w =" pas = e _ 1404 psi

W = pghl = 480(12)14(144) = 11,610,000 Ib

_ w _ ___ 11610000 _ 11610000 _ .
Vi = R0IT(44) = R202+14)136(1a4) — 269600 43.1 psi

/

Factor of Safety against concrete shear failure = vi’s = -ﬁ—?= 2.92
Allowable rock salt shear force along concrete/rock salt contact, Exhaust Drift bulkhead:
Rock salt cohesion (C,s)approximately 1070 psi (See appendix F.)
Length of minimum shear path in rock salt (L) adjacent to concrete/rock salt contact:
Lis = /82 +82+0.5 +4.75 + 4.75 = 21.3 ft/ft of perimeter
Minimum rock salt perimeter = 2(12+14) =52 ft
Total effective bulkhead shear area = 1,108 ft2

Maximum rock salt shear resistance = 1108(1070)144 = 170, 700, 000 Ib
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Appendix B. Exhaust Drift bulkhead design calculations (Continued)

Maximum shear force on panel side bulkhead face and outward inclined panel side concrete/rock
salt contact potentially opened by explosion gas pressure:

Face area = 12(14) = 168 ft?
Vertical component of sloping area = 2(12+14)8 + 1‘;81 =416 + 50 = 466 fi*
Design maximum thrust = (466+168)(1070)144 = 97,690,000 Ib

Factor of Safety against rock salt shear failure = 1—977(;77?”0%%—0 =1.75

Plain concrete deep beam bending stress design, Exhaust Drift (ACI 318-95, Sec 9.3.5, Sec 10.5;
ACI318.1-89, Sec 6.2.1)
for 480 psi design dynamic pressure head:
o =U =2py(144) = 2(240)144 = 69,120 (&)
Bulkhead deep beam griped at rock salt ribs by creep pressure (worst-case)
w2 69120(14%) _

M, =5 =—5,— = 564,500 ft-1b

M _
M, = g = 280 — 868,500 fi-Ib

b13 1(3)(12%)
1 I 2 144T
S -— '6 - = —_

T= /%@ = J/175.7=13.3 fi thick plain concrete bulkhead is required for worst-case
rib to rib fixed bulkhead.

Gs="g = Jarz = 144057) = "16220
6

My My __ 868500 _ 868500 _ 53.5 pSl

!/

FS = =26 =385

Therefore, a 26-ft thick plain-concrete bulkhead, worst-case griped at both ribsides of the
14-ft wide Exhaust Drift, is acceptable as a panel closure bulkhead.
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Appendix B. Exhaust Drift bulkhead design calculations (Continued)

Bulkhead deep beam griped at Exhaust Drift rock salt roof and floor (best-case)

M, = 9 — S22 — 414,700 fi-Ib

M, —
o= o = B0 = 638,000 fi-Ib

13 i(r%)(12%)

iz 2 __ 14412
M2 - 6
2

f,, =5¢ Jf, =5(0.65),/4000 = 206 psi

f.=190=¢ Muc My 638000 26580

T= /%% = /129.0 = 11.4-ft thick plain concrete bulkhead is required for best-case

roof'to floor fixed bulkhead.
_ My _ M. _ 638000 _ 638000 _ .
Os="5 = Tl = 1mad = 16220 — 39-3 psi
6 6

Therefore, a 26-ft thick plain-concrete bulkhead, best-case griped at roof and floor of the
12-ft high Exhaust Drift, is acceptable as a panel closure bulkhead.
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APPENDIX C. INTAKE DRIFT EXPLOSION-ISOLATION MASONRY WALL DESIGN
CALCULATIONS

Notation:

C = compressive bending force (Ib) ¢ = centroidal distance (in)

D = dead load (&2 F = fluid load (&)

FS = factor of safety f, = masonry comp strength (2,500 psi)
\/E = square root of f, fy = masonry tensile strength (5¢\/E psi)
f, = masonry shear strength (2,/f, = 100 psi) [5(0.65)/2500 = 162 psi]

H = depth below surface (2150 ft) h = Intake Drift height (13 ft)

I = moment of inertia (in*) L = live, dynamic, load (%)

¢ = Intake Drift width (20 ft) M = bending moment (fi+1b)

M, = nominal beam moment (ft-1b) M, = factored beam moment (fi-1b)

S = section modulus (in*) T = overall bulkhead thickness (12 ft)
U = required strength (-'1% V. = masonry shear strength (Ib)

V. = nominal shear force (Ib) V. = factored shear force (Ib)

Vs = shear stress (psi) W = bulkhead load (Ib)

= uniform bulkhead load (%’) p = design pressure head (480 psi)

p.= allowable pressure head (psi) pa = dynamic pressure head (240 psi)
P, = pressure gradient (2;—') y. = masonry density (151PCF)

y,,= water density (62.4PCF) ys = salt density (140 PCF)

¢= plain masonry strength reduction factors o= flexure stress (psi)

0.65 plain concrete flexure, compression
shear and bearing

Load factors (ACI 318-95, Sec 9.2.1)
Static fluid load factor (F) = 1.4;
Live (dynamic) load factor (L) = 1.7

Load factor (DOE, 1996, Appendix PCS: 2.2.3.1)
Live (dynamic) load factor (L) =2

Allowable pressure gradient:

Low pressure grouting of masonry/rock salt contact but not rock salt, gradient allowable
= 4] psi/ft (Garrett & Campbell-Pitt, 1958, Chekan, 1985, p11), with factor of safety of 4

Intake Drift bulkhead, design dynamic pressure head = Lpy = 2(240) = 480 psi
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Appendix C. Intake Drift explosion-isolation masonry wall design calculations (Continued)

Required bulkhead thickness with low pressure grouting on masonry/rock salt bulkhead
contact:

Pressure gradient along bulkhead thickness T = 12 ft
Pg= 2’;8 = 4T820‘ = 40.0 pSl/ﬁ

Factor of Safety against leakage of explosion gasses along masonry/rock salt contact
around 12-ft effective bulkhead thickness is:

FS==1.03
Allowable masonry shear on Intake Drift perimeter:

fi=2,/f, =2,/2500 =100psi  (ACI 318-95, Sec 11.3.1.1)

_ paho
T= 2(h+0)f,
2T(h+0)f 2(12X13+20)100 79200 __ :
Pa="m = 13(20) =360 — 304.6 psi

W = pghl = 480(13)20(144) = 17,970,000 Ib

_ W _ 17970000 _ 17970000 _ .
V. = GEoITa) = Bazenn2aa) = 11000 — 157.6 psi

!
.3

Factor of Safety against masonry shear failure = 7+ = —115%= 0.63

Required masonry wall thickness to resist design methane explosion pressure

— _phl  480(13)20 _ 124800 _
T= 2h+0f, — 2[13+201100 ~ 6600 189 fi

Allowable rock salt shear force along masonry/rock salt contact, Intake Drift explosion-isolation
bulkhead:

Rock salt cohesion (C,s)approximately 1070 psi (See appendix F.)
Length of minimum shear path in rock salt (L) adjacent to masonry/rock salt contact:

L = 12 fi%ft of perimeter
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Appendix C. Intake Drift explosion-isolation masonry wall design calculations (Continued)

Minimum rock salt perimeter = 2(14+21) = 70 ft
based on perimeter hitched 6-in into roof;, ribs and floor of Intake Drift

Total effective bulkhead shear area = 840 fi’
Maximum rock salt shear resistance = 840(1070)144 = 129, 400, 000 1b
Maximum shear force on masonry/rock salt contact potentially opened by explosion gas pressure:
Face area = 14(21) = 294 ft?
Design maximum thrust = (294)(480)144 = 20,320,000 Ib

: . 129,400,000 _
Factor of Safety against rock salt shear failure = 53555755 = 6.37

Masonry explosion-isolation beam bending stress design, Intake Drift (ACI 318-95, Sec 9.3.5,
Sec 10.5; ACI318.1-89, Sec 6.2.1) for 480 psi design dynamic pressure head:

@ =U =2p4(144) = 2(240)144 = 69,120 (%)
Bulkhead deep beam griped at rock salt ribs by creep pressure (worst-case)
— o _ 69120(20%) _
=l - S0 — 1 152,000 fi-Ib

M, = g5 = 1320 = 1,772,000 fi-1b

bT3 1(r3)(12%)
g=L1_12 _ ip) __ 14412
CTTI T Iy Ts
2

T= /332 = /4543 =21.3 ft thick masonry bulkhead is required for worst-case rib to
rib fixed explosion-isolation bulkhead

My My _ 1772000 __ 1772000 __ .
O.S = S T auar? T 144122) T 3456 512.7 pSl
6 6

i
w2
I
Sem-
I

12— 03
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Appendix C. Intake Drift explosion-isolation masonry wall design calculations (Continued)

Therefore, 12-ft thick cement-mortared masonry block bulkhead, worst-case griped at
both ribsides of the 20-ft wide Intake Drift, is NOT acceptable as an explosion-isolation bulkhead.

Masonry bulkhead deep beam griped at Intake Drift rock salt roof and floor (best-case)
_ ol?  69120013%) _
M, = 2 = 2200 — 486,700 fi-1b

My _
M, = 3% = B0 — 748 800 fi-Ib

b1? I(T32£123)

2
S=%=——‘%§~= T =14‘;T
£, =5¢ /T =5(0.65)4/2500 = 162.5 psi
fl,=162.5 =g =Me - Mu _ 748800 _ 31200
{=162.5=

= 1 T S T 12 — T2
14412

T= /329 = /192.0 = 13.8-ft thick concrete block masonry bulkhead is required for
best-case roof to floor fixed bulkhead.

My _ _Mu_ _ 748800 _ 748800 _ .
Os = "5 = Tt = ) = 345 — 216.7 psi
6 6

Therefore, 12-ft thick cement-mortared masonry block bulkhead, best-case griped at roof
and floor of the 13-ft high Intake Drift, is NOT acceptable as an explosion-isolation bulkhead.
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APPENDIX D. EXHAUST DRIFT EXPLOSION-ISOLATION MASONRY WALL DESIGN

CALCULATIONS
Notation:
C = compressive bending force (Ib) ¢ = centroidal distance (in)
D = dead load (2) F = fluid load (%)
FS = factor of safety f, = masonry comp strength (2,500 psi)
‘/Fc = square root of f, f4 = masonry tensile strength (5¢ﬁc— psi)
f, = masonry shear strength (2,/f, =100 psi) [5(0.65)2500 = 162 psi]
H = depth below surface (2150 ft) h = Exhaust Drift height (12 ft)
I = moment of inertia (in®) L = live, dynamic, load (%2
{ = Exhaust Drift width (14 ft) M = bending moment (ft+Ib)
M, = nominal beam moment (ft-Ib) M, = factored beam moment (fi1b)
S = section modulus (in?) T = overall bulkhead thickness (12 ft)
U =required strength (% V. = masonry shear strength (lb)
V.= nominal shear force (Ib) V., = factored shear force (Ib)
Vs = shear stress (psi) W = bulkhead load (Ib)
o = uniform bulkhead load (—'3 p = design pressure head (480 psi)
p»= allowable pressure head (psi) paq = dynamic pressure head (240 psi)
p, = pressure gradient (%) . = masonry density (151PCF)
y .= water density (62.4PCF) ys = salt density (140 PCF)
¢= plain masonry strength reduction factors o s = flexure stress (psi)

0.65 plain concrete flexure, compression
shear and bearing

Load factors (ACI 318-95, Sec 9.2.1)
Static fluid load factor (F) = 1.4;
Live (dynamic) load factor (L) = 1.7

Load factor (DOE, 1996, Appendix PCS: 2.2.3.1)
Live (dynamic) load factor (L) = 2

Allowable pressure gradient:

Low pressure grouting of masonry/rock salt contact but not rock salt, gradient allowable
=41 psi/ft (Garrett & Campbell-Pitt, 1958, Chekan, 1985, p11), with factor of safety of 4

Exhaust Drift bulkhead, design dynamic pressure head = Lpg = 2(240) = 480 psi
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Appendix D. Exhaust Drift explosion-isolation wall design calculations (Continued)

Required bulkhead length with low pressure grouting on masonry/rock salt bulkhead
contact:

Pressure gradient along bulkhead thickness T = 12 ft
Pe= —122- = 41L20 =40.0 pSl/ﬁ

Factor of Safety against leakage of explosion gasses along masonry/rock salt contact
around 12-ft effective bulkhead thickness is:

FS =2~ =1.03
Allowable masonry shear on Exhaust Drift perimeter:

f,=2,/f, =2,/2500 =100 psi (ACI 318-95, Sec 11.3.1.1)
S

— pahl
T 2(h+)fs

_ 2T(+0fy _ 2(12X12+14)100 _ 62400 _ :
Pa="p == 12014) = 1o = 371.4 psi

W = pght = 480(12)14(144) = 11,610,000 Ib

_ w _ __ 11610000  _ 11610000 _ .
Vs = R)IT(144) = 2(12+14)12(144) — 89860 129.2 psi

!
S

Factor of Safety against masonry shear failure = 7 = —112%%= 0.77

Required masonry wall thickness to resist design methane explosion pressure

— . pht  480(12)14 _ 81640 _
T= 2+0E, . 2[13+201100 6600 122 f

Allowable rock salt shear force along masonry/rock salt contact, Exhaust Drift explosion-isolation
bulkhead:

Rock salt cohesion (C 5 )approximately 1070 psi (See appendix F.)
Length of minimum shear path in rock salt (L) adjacent to masonry/rock salt contact:

L. = 12 f%/ft of perimeter
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Appendix D. Exhaust Drift explosion-isolation wall design calculations (Continued)

Minimum rock salt perimeter = 2(13+15) = 56 ft
based on perimeter hitched 6-in into roof;, ribs and floor of Exhaust Drift

Total effective bulkhead shear area = 672 ft?
Maximum rock salt shear resistance = 672(1070)144 = 103, 500, 000 Ib

Maximum shear force on panel side bulkhead face and outward inclined panel side masonry/rock
salt contact potentially opened by explosion gas pressure:

Face area = 13(15) = 195 ft?
Design maximum thrust = (195)(480)144 = 13,480,000 Ib
103,500,000

Factor of Safety against rock salt shear failure = 3735500 = 768

Masonry explosion-isolation beam bending stress design, Exhaust Drift (ACI 318-95, Sec 9.3.5,
Sec 10.5; ACI318.1-89, Sec 6.2.1) for 480 psi design dynamic pressure head:

w =U =2p4(144) = 2(240)144 = 69,120 ()

Bulkhead deep beam griped at rock salt ribs by creep pressure (worst-case)

g=41_.1Z _ = 1u1?
LA % - M2 T 6

£, =5¢/f. =5(0.65)./2500 = 162.5 psi

_ .~ _ Muc _ Mu _ 868500 _ 36190
fu=150=0=""=F =07 = T2

T= 316712?59 = /222.7= 149 ft thick masonry bulkhead is required for worst-case rib to
rib fixed explosion-isolation bulkhead.

My Mu _ 868500 _ 868500 _ .
14T T M44(122) T 3456 =251.3 ps1
6 6

823 =0.65

rrq
w2
1
Sl
[
N |—
(.1
w‘
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Appendix D. Exhaust Drift explosion-isolation wall design calculations (Continued)

Therefore, 12-ft thick cement mortared masonry block wall, worst-case griped at both
ribsides of the 14-ft wide Exhaust Drift, is NOT acceptable as an explosion-isolation bulkhead.

Masonry bulkhead deep beam griped at Exhaust Drift rock salt roof and floor (best-case)
_ ol _ 69120(122)
M, = 25 = 22052 = 414,700 fi-lb

= 2 = AUT0 — 638 000 ft-Ib

bT3 l(T3)(123)
g=1_1Z _ T 13 14472
€T I T my T
2

T= 3% 177.2 = 13.3-1t thick concrete block masonry bulkhead is required for
best-case roof to floor fixed beam bulkhead.

_ Ma My _ 638000 _ 638000 __ .
Os =g = Tei = ) = 3136 = 184.6 psi
6 6

Therefore, 12-ft thick cement mortared masonry block wall, best-case griped at roof and
floor of the 12-ft high, Exhaust Drift is NOT acceptable as an explosion-isolation bulkhead.
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APPENDIX E. INTAKE DRIFT CONSTRUCTION-ISOLATION WALL DESIGN
CALCULATIONS (ROOF FALL PRESSURE)

Notation:

C = compressive bending force (Ib) ¢ = centroidal distance (in)

D = dead load () F = fluid load (£

FS = factor of safety f, = masonry comp strength (2,500 psi)
‘/—ff = square root of f, fq = masonry tensile strength (5¢‘/}J: psi)
f. = masonry shear strength (2,/?c =100 psi) [5(0.65)4/2500 =162 psi]

H = depth below surface (2150 ft) h = Intake Drift height (13 ft)

I = moment of inertia (in*) L = live, dynamic, load ('%l

{ = Intake Drift width (20 ft) M = bending moment (ft-Ib)

M, = nominal beam moment (ft-1b) M, = factored beam moment (ft-1b)

S = section modulus (in*) T = overall bulkhead thickness (4 ft)

U = required strength (% V. = concrete shear strength (Ib)

V, = nominal shear force (Ib) V, = factored shear force (Ib)

Vs = shear stress (psi) W = bulkhead load (Ib)

o = uniform bulkhead load (% p = design pressure head (0.070 psi)
pa= dynamic pressure head (0.035 psi) P, = pressure gradient (%)

y. = masonry density (151PCF) .= water density (62.4PCF)

ys = salt density (140 PCF) o= flexure stress (psi)

¢= plain concrete strength reduction factors
0.65 plain concrete flexure, compression
shear and bearing

Load factors (ACI 318-95, Sec 9.2.1)
Static fluid load factor (F) = 1.4;
Live (dynamic) load factor (L) = 1.7

Load factor (DOE, 1996, Appendix PCS: 2.2.3.1)
Live (dynamic) load factor (L) = 2

Allowable pressure gradient:

Low pressure grouting of masonry/rock salt contact but not rock salt, gradient allowable
= 4] psi/ft (Garrett & Campbell-Pitt, 1958, Chekan, 1985, p11), with factor of safety of 4

Intake Drift bulkhead, 10 psf design dynamic pressure head = Lpg = 2(0.035) = 0.070 psi
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Appendix E. Intake Drift construction-isolation wall design calculations (Continued)

Required bulkhead thickness with low pressure grouting on masonry/rock salt bulkhead
contact:

P =T =4 =0.0175 psi/ft

Factor of Safety against leakage of explosion gasses along masonry/rock salt contact
around 28-ft effective bulkhead thickness is:

ES = G317 = >2300
Allowable masonry shear on Intake Drift perimeter:

f=2/f, =2/2500 =100psi  (ACI 318-95, Sec 11.3.1.1)

__ pahd
T= 2(b+0)f}
2T(h+0)fs  2(4X13+20)100 _ 26400 . :
Pa= H = 13(20) = %360 101.5 pst

W = p4hl = 0.070(13)20(144) = 2621 Ib

_ w _ 2621 _ 2621 _ .
Ve = oIt = Rass20)kGaa) = 38020 — 0-0689 psi

!

Factor of Safety against masonry shear failure = < = hass=>1450

Allowable rock salt shear force along masonry/rock salt contact, Intake Drift
constructon-isolation bulkhead:

Rock salt cohesion (Cs )approximately 1070 psi (See appendix F.)
Length of minimum shear path in rock salt (L) adjacent to masonry/rock salt contact:
L. = 4 fi*/ft of perimeter

Minimum rock salt perimeter = 2(14+21) =70 f
(6-in inset in roof, walls and floor)

Total effective bulkhead shear area = 280 ft*

-51-



Panel Closure Enhancements Page 52 July 18, 2001

Appendix E. Intake Drift construction-isolation wall design calculations (Continued)

Maximum rock salt shear resistance = 2(14 +21)12(1070)144 = 129,400 1b
based on perimeter hitched 6-in into roof, ribs and floor of Intake Drift

Maximum shear force on masonry/rock salt contact potentially opened by roof fall overpressure:
Face area = 14(21) = 294 f?

Design maximum thrust = (294)(0.070)144 = 2,964 Ib

. . 129,400 _
Factor of Safety against rock salt shear failure = <55~ = 43.7

Masonry construction-isolation beam bending stress design, Intake Drift (ACI 318-95, Sec 9.3.3,
Sec 10.5; ACI318.1-89, Sec 6.2.1)

for 0.070 psi design dynamic roof fall pressure head:
w=U=2p4(144) = 2(0.035)144 = 10.1 (&)

Simply supported 4-ft thick bulkhead beam supported at rock salt ribs by contact grout
pressure (worst-case)

M, = <& - 10180 _ 556 8 fi.1b

M, = g& = e = 856.6 fi-lb

o3 1(13)(123)
g=1_12 _ 12 _ 14at?

¢c— I - T(12) - 6
Z

fl, =5¢ Jf. =5(0.65),/2500 =162.5 psi

fl—"-150=’0’=_I—'=—s—=~:4—i'—2=—,I:—2

T= -%56% = 0.220 = 0.47 ft thick masonry concrete bulkhead is required for
worst-case rib to rib simply-supported construction-isolation bulkhead

_ Mu _ _Mu__ 8566 _ 8566 _ .
Gs =75 = Jaurl = ) = 3340 — 2-23 psi
6 6
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Appendix E. Intake Drift construction-isolation wall design calculations (Continued)

Therefore, 4-ft thick cement-mortared concrete block masonry bulkhead, worst-case,
simply-supported at both ribsides of the hitched in 21-ft wide Intake Drift, is acceptable as a
construction-isolation bulkhead.

Simply supported 4-ft thick bulkhead beam supported at roof and floor by contact grout
pressure (best-case)

o=l 10D _ 9134 8.b

M, =2 = 234 — 378 3 f.]b

b3 13)(123)
g=1_1z 2 _ 14472

Cc="1T TTwm T 6
2 -5

fl, =5¢ /f. =5(0.65),/2500 = 162.5 psi

_ _ __ Mic My _ 3283 1368
ﬂl—162.5—0— I —_— S -_— l44T2 -_— T2

T= /122 = /0.0842 = 0.29 ft thick masonry bulkhead is required for best-case rib to
rib simply-supported construction-isolation bulkhead

_ My Mu 3283 3283 _ .
gs= S T 1412 T 14a42) T 3840 0.855 pSl
6 6

Therefore, 4-ft thick cement-mortared concrete block masonry bulkhead, best-case
simply-supported at roof and floor of the hitched 13-ft high Intake Drift, is acceptable as a
construction-isolation bulkhead.
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