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1 INTRODUCTION

The U.S. EPA provided the following request (Cotsworth, 2004, Enclosure 1,
Comment C-23-16):

“DOE used the differences between modeled and measured
actinide solubilities to estimate the uncertainties associated with
actinide solubilities for the PA. Based on the figure presented in
the CRA[-2004] [Compliance Recertification Application}
(Figure SOTERM-1), it appears DOE wused the solubilities
calculated for the CCA rather than for the CRA. However, DOE
indicates that solubilities calculated for the CRA[-2004] were
different than the CCA (Table SOTERM-2).”

“DOE must re-evaluate the uncertainties associated with actinide
solubilities using solubilities calculated for the CRA, and use this
information in the CRA[-2004] PA.”

This analysis responds to the EPA’s request that the “DOE must re-evaluate the -
uncertainties associated with actinide solubilities using solubilities calculated for the
CRA[-2004], and use this information in the CRA[-2004] PA.” It uses both previous (pre-CCA)
and new (post-CCA) measurements of actinide solubilities and uses the latest (post-CCA)
actinide-solubility data developed for the WIPP Project, as well as for non-WIPP-related
applications. Then it derives a frequency distribution for differences between measured
solubilities and those calculated (predicted) for the same conditions. The frequency distribution
is used to represent the expected solubility uncertainty distribution.

This work was carried out under the Analysis Plan for CRA Response Activities (Kirkes
and Wagner, 2004).
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2 BACKGROUND

Novak et al. (1996) used Fracture Matrix Transport (FMT) to predict the solubilities of
the +III, +IV, and +V actinides (An(IIT), An(IV), and An(V)) in the WIPP brines SPC and
Energy Research and Development Administration [Well]-6 (ERDA-6) for
the 1996 WIPP Compliance Certification Application (CCA) (U.S. DOE, 1996). FMT is
a thermodynamic speciation and solubility code developed for the WIPP Project by Babb and
Novak (1995). SPC is a synthetic brine similar to Brine A, which was used to simulate
intergranular (grain-boundary) fluids from the Salado Formation (Fm.) at or near the
stratigraphic horizon of the repository (Molecke, 1983). ERDA-6 is a synihetic brine typical of
brines in the Castile Fm. (Popiclak, et al., 1983). The An(Ill), An(IV), and An(V)
thermodynamic speciation and solubility models implemented in FMT at the time of
the CCA PA are described in detail by U.S. DOE (1996, Appendix SOTERM).

The DOE did not develop a thermodynamic speciation-and-solubility model for U(VI) in
brines for the CCA PA, and has not developed one since the CCA. Instead, it used estimates by
Hobart and Moore (1996) for the CCA PA, the 1997 PAVT, and the CRA-2004 PA.

Bynum (1996a, 1996b, 1996¢) carried out an analysis to estimate the uncertainties in the
An(III), An(IV), and An(V) solubility models implemented in FMT at the time of the CCA PA.
These uncertainties were estimated mainly by comparing solubilities measured to develop these
models and curves fitted to the data by the code NONLIN (Babb, 1996) to parameterize
the Pitzer database. A few comparisons were also made between solubilities reported in the
literature and FMT predictions for the conditions used in the experiments. A frequency
distribution was generated for the differences between logarithms (base 10) of measured
solubilities and logarithms of the values predicted for comparable conditions. Those differences
quantified the ratios of measured to predicted values. The distribution was used to represent the
expected uncertainty distribution for the solubilities predicted by FMT for the CCA PA,
the 1997 PAVT, and the CRA-2004 PA.

Since the CCA, Babb and Novak (1997 and addenda) and Wang (1998) modified FMT.
The FMT thermodynamic database has also been modified. Novak (1997) revised the database
used for the CCA PA; his new database was used for the EPA’s 1997 Performance Assessment
Verification Test (PAVT). Giambalvo (2002a, 2002b, 2002¢, 2002d, 2002e, 2003) modified the
PAVT database and issued FMT_021120.CHEMDAT, the database used for the CRA-2004 PA.
After the FMT calculations for the CRA-2004 PA (U.S. DOE, Appendix PA, Attachment
SOTERM), Xiong (2004a) modified FMT 021120.CHEMDAT and Xiong (2004b) released
FMT 040628.CHEMDAT. Xiong (2004a) corrected the molecular weight of oxalate in
FMT_021120.CHEMDAT, and added solid calcium oxalate to this database.

This is the first uncertainty analysis of FMT predictions of actinide solubilities since that
of Bynum (19962, 1996b, 1996¢).

4 of 33



3 RESPONSE

This section describes the methods used to address EPA Comment C-23-16. It discusses
an updated actinide solubility uncertainty analysis comparing both previous (pre-CCA)
measurements of actinide solubilities - inciuding data used by Bynum (1996a, 1996b, 1996¢) in
the analysis for the CCA PA - and new (post-CCA) measurements of actinide solubilities, and
predictions made with the latest (post-CCA) version of FMT (Babb and Novak, 1997 and
addenda; Wang, 1998) and the current FMT thermodynamic database (Xiong, 2004a, 2004b).
The analysis produced a probability distribution for FMT solubility predictions in the form of
a distribution of differences between logarithms (base 10} of measured and predicted solubilities.

Separate comparisons were made between measured solubilities by the author or
coauthors of each study included in this analysis, and FMT predictions for the actinide oxidation
state (An(III), An(IV), or An(V)) and the conditions used in that study. The results were then
combined for each oxidation state. Finally, the results for each oxidation state were combined to
produce an overall comparison for all three oxidation states.

This analysis included the first comparisons for An(IV), because Bynum (1996a, 1996b,
1996¢) did not include any comparisons for this oxidation state.

None of the experiments that produced the measured solubilities compared in
this analysis included any organic ligands. Therefore, the results obtained from this analysis
apply only to the inorganic components of the An(IIl), An(IV), and An(V) thermodynamic
speciation and solubility models implemented in the FMT.

Finally, this analysis does not include any comparisons for An(VI), because the DOE has
not developed a thermodynamic speciation and solubility model for this oxidation sate. (It used
estimates by Hobart and Moore (1996) for the CCA PA, the 1997 PAVT, and
the CRA-2004 PA.)

3.1 Measured Actinide Solubilities

Measured actinide solubilities were taken from documented sources that include both
previous (pre-CCA) and new (post-CCA) studies. These studies are summarized in Table 1 with
values of major dissolved constituents, ionic strength, pH, solubility-controlling solid phases,
and citations. Included are solubilities measured in complex WIPP-related brine solutions such
as ERDA-6, G-Seep, and SPC brines. Citations of studies that were included in the uncertainty
analysis for the CCA PA (Bynum, 1996a; 1996b; 1996¢) are identified with asterisks in the table.
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3.2 Frequency Distribution of Differences between Measured and Predicted
Solubilities

Frequency distributions of differences (D) between logarithms (base 10) of measured
(Sm) and predicted (Sp) actinide solubilites were generated and displayed in tabular and
histogram forms in Microsoft Excel spreadsheets using the “histogram™ data analysis tool in
this commercial spreadsheet software. Negative values of D indicate that the thermodynamic
speciation and solubility model implemented in FMT predicted a solubility greater than
the corresponding measured value (overprediction of solubility by the model). File “WIPP
Solubility Uncertainty Values Revl 12-1-04.x1s” contains spreadsheets with measured and
predicted solubility values (or logarithms thereof) frequency distributions, and histograms.
Bin numbers (N) in the histograms were defined as follows:

Bin N contains the count of values of D from greater than (N - 0.15) up to and
including N, where D = LOG10(Sm) — LOG10(Sp).

Examples of the definitions of bins follow:

Bin -0.3 contains the count of values of D from > -0.45 to and including -0.3;
Bin -0.15 contains the count of values of D from > -0.30 to and including -0.15;
Bin 0 contains the count of values of D from > -0.15 to and including 0; and
Bin 0.15 contains the count of values of D from > 0 to and including 0.15.

Results of this analysis are presented in the following subsections for each actinide
oxidation state separately (An(II), An(IV), and An(V)) and for all three oxidation states
combined. The results are presented as histograms of the frequency distribution and as
cumulative distribution functions (CDFs)

3.2.1 Updated FMT Database Used for This Analysis

The FMT thermodynamic database used for this analysis is FMT_040628.CHEMDAT.
Xiong (2004a, 2004b) modified FMT _021120.CHEMDAT, the database developed by
Giambalvo (2002a, 2002b, 2992¢, 29002d, 2002e, 2003) for use in the CRA-2004 PA, by
correcting the molecular weight of oxalate in FMT 021120.CHEMDAT and adding solid
calcium oxalate to this database. Because this analysis did not include any comparisons of
measured and predicted solubilities for systems with organic ligands, use of
FMT_040628.CHEMDAT gave results identical to those that would have been obtained with
FMT_021120.CHEMDAT.

The FMT code and databases are stored on the server named “CCR.” Typing “libfmt”
accesses the FMT library. The code and databases are stored at the address “PACMS:
[CMS_WIPP_NONPA.FMT].” The database used for the CRA-2004 PA calculations is
“FMT_021120.CHEMDAT.” The updated database used for this uncertainty analysis is
“FMT_040628.CHEMDAT.” The calculations used for this analysis are in the CMS library at
“LIB CRA1V_FMT” in class “CRA_RESP.”
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3.2.2 An(lll) Frequency Distributions and CDF

A histogram of the frequency distribution of Bin N for all An(II) comparisons is shown
in Figure 1. A total of 243 measured solubilities were compared with the corresponding
predictions. The distribution is relatively broad and peaks at Bin 0 (N = 0) with
a frequency of 22,

Table 2 gives values of the corresponding CDF for Bin N for the An(IIl) comparisons.
Figure 2 shows the plotted CDF.

These results show that the An(Ill) thermodynamic speciation and solubility model
implemented in the speciation and solubility code FMT overpredicted the measured An(III)
solubilities slightly.

3.2.3 An(lV) Frequency Distributions and CDF

A histogram of the frequency distribution of Bin N for all An(IV) comparisons is shown
in Figure 3. A total of 159 measured and predicted solubilities were compared. The distribution
is relatively broad and peaks at Bin 1.05 (N = 1.05) with a frequency of 15. There is one
occurrence of D in Bin N = -4.95 that was erroneous and should be neglected. (The log of the
measured value of this solubility was -8.15 and the log of the predicted value was -8.80, so the
difference is 0.65. Therefore, this comparison should have appeared in Bin 0.65, not Bin -4.95.)

Table 3 gives values of the corresponding cumulative distribution function (CDF) for
Bin N for AnIV). Figure 4 shows the plotted CDF.

These results show that the An(IV) mode! in FMT underpredicted the measured An(IV)

solubilities. Figure 4 shows that the median value of all An(IV) comparisons is underprediction
of the measured solubilities by about 0.5 to 1 log unit.

3.2.4 An(V) Frequency Distributions and CDF
A histogram of the frequency distribution of Bin N for all An(V) comparisons is shown
in Figure 5. A total of 136 measured and predicted values were compared. The distribution is

relatively narrow and peaks at Bin 0 (N = 0) with a frequency of 44.

Table 4 gives values of the corresponding cumulative distribution function (CDF) for
Bin N for An(V). Figure 6 shows the plotted CDF.

These results show that the An(V) model in FMT overpredicted the measured An(III)
solubilities slightly.
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3.2.5 Combined (An(lll, IV, V)) Frequency Distributions and CDF

A histogram of the frequency distribution of Bin N for all combined (An(III, IV, V))

comparisons is shown in Figure 7. A total of 538 measure

d and predicted values were compared.

The distribution is relatively broad and peaks at Bin 0 (N + 0) with a frequency of 71.

Table 5 gives values of the corresponding CD
comparisons. Figure 8 shows the plotted CDF.

These composite results show that the An(ILI),

F for Bin N for all An(IIl, IV, V)

An(IV), and An(V) models in FMT

underpredicted the measured An(I1l), An(IV), and An(V) solubilities.
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4 CONCLUSIONS

This actinide solubility uncertainty analysis is the first uncertainty analysis carried out to
compare measured solubilities and predictions made with FMT since that of Bynum (1996a,
1996b, 1996c¢).

This updated analysis used both previous (pre-CCA) measurements of actinide
solubilities - including values used by Bynum (1996a, 1996b, 1996¢) in the analysis for the CCA
PA - and new (post-CCA) measurements of actinide solubilities, and predictions made with
the latest (post-CCA) version of FMT (Babb and Novak, 1997 and addenda; Wang, 1998) and
the most recent FMT thermodynamic database (Xiong, 2004a, 2004b). This analysis included
243 An(IIf) comparisons, 159 An (IV) comparisons, and 136 An(V) comparisons, for a total of
538 comparisons for all three oxidation states. This analysis provided individual probability
distributions for An(ITT), An(IV), and An(V), and combined results for all three oxidation states.

This analysis included the first comparisons for An(IV), but did not include any
comparisons with organic ligands or any An(VI) comparisons.

The results of this analysis are: (1) the An(III) thermodynamic speciation and solubility
model implemented in the speciation and solubility code FMT overpredicted the measured
An(III) solubilities slightly, (2) the An{(IV) model in FMT underpredicted the measured
An(IV) solubilities, (3) the An(V) model in FMT overpredicted the measured An(V) solubilities
slightly, and (4) overall, the An(Ill), An(IV), and An(V) models in FMT underpredicted
the measured An(III), An(IV), and An(V) solubilities.
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Figure 1. Histogram of frequency distribution of Bin N for all An(1ll} comparisons. A total of 243 measured and predicted
solubilities were compared.
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Figure 3. Histogram of Frequency Distribution of Bin N for all An(IV) Comparisons. A total of 159 measured and predicted
solubilities were compared.
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7 TABLES

Table 1. Sources of Measured Actinide Solubilities.

Oxidation

State Solution

Tonic
Strength,
(M) pH

Solubility-Controlling
Solid

Reference,

Type of Data Source

+III NaCl-KCl and
MgCl; brine
{similar to
Brine A)

+I11 0 M NaCl,
0.1-1.1m
NaHCQ;, or
0.1-2m
Na2C03

+III 2 M NaCl,
0.1-0.5m
Na.HC03, or
0.1-2m
N32C03

7.8 6.4-
8.4*

Nd(OH);(am)

NaNd(CO;),-6H,0

NaNd(C03)2-6H20

Khalili et al. (1994)

*Rao et al. (1999)

*Rao et al. (1999)

Remarks

Measured from published
plots

Measured from published
plots.

Bynum (1996a&b) used 25
meas. points(Na;CO;, and
20 meas. points (NaHCQO3).

Measured from published
plots.

Bynum (1996a&b) used 11
meas. points (Na2CQO3, and
8 meas. points (NaHCO3)

A, pcH.
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Table 1. Sources of Measured Actinide Solubilities {cont.).

Page 23 0f 33

Ionic
Oxidation Strength, Solubility-Controlling Reference,
State Solution (M) pH Solid Type of Data Source Remarks

+II1 4 M Na(Cl, - - NaNd(CO3):-6H,0 *Rao et al. (1999) Measured from published
0.1-2m plots. (Bynum (1996a, b)

Na;CO; used 11 meas. points.)
+I1I ERDA-6 6.7 6.38- NaNd(CO3),-6H,0 *Rao et al. (1999) Measured from published
10.62* plots. (Bynum (1996a, b)
nsed 21 measured points.)
+I1I G-Seep 7.3 5.81- NaNd(CO3):-6H,O *Rao et al. (1999} Measured from published
7.77% plots. (Bynum (1996a, b)

used 7 measured points.)
+111 5.0 M NaCl or 5.0 6.57- Am(OH)s(cr) or *Runde and Kim Measured from published
5.0 m NaCl 1247 NaAm(CO;)sxH;0(cr)  (1995) plots.
under 10 atm Bynum (1996a&b) used 35
CO, meas. points
+I11 0.1 M NaClO, 0.1 7.05- Am(OH)s(cr) Silva (1982) Taken from published
9.43 tables.
+II1 0.1 M NaClO4 0.1 5.67- Nd(OH);(cr) Silva (1982) Taken from published
9.52 tables.
A. pcH.



Table 1. Sources of Measured Actinide Solubilities (cont.).

Oxidation

State Solution

+IV Nirex

+IV 0.6 M NaCl,
1.2 M NaCl,

3.0 M NaCl, or

0.6 MKCI

+IV 0.5 M NaCl

+IV 0.5 M NaClQ,

lonic
Strength, Solubility-Controlling Reference,
(M) pH Sohd Type of Data Source
0.02 10-12 ThO»(am) Baston et al. (1996}
- ThO, Felmy et al. (1991)
0.5 6.006- Th(OH)s(am) Neck et al. (2002)
11.73
0.5 8.21- ThO:>(micro cr) Osthlos et al. (1994)
10.45

Remarks

Taken from published tables

Taken from published tables

Taken from published tables

Taken from published tables
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Table 1. Sources of Measured Actinide Solubilities (cont.).

lonic
Ozxidation Strength, Solubility-Controlling Reference,
State Solution (M) pH Sohd Type of Data Source
+V KCI+KxCOy  0.0064-  10.50- KNpO,COs(cr) * Al Mahamid et al.
3.19 10.86 (1998)
+V KCl1+K,CO; 3.71-3.94 11.77- KsNpO»(COs) Al Mahamid et al.
11.80 (1998)
+V NaCl+KCl+ 4.58-4.60 9.79- KNpO,COs(cr) Al Mahamid et al.
Na;CO; 10.36 (1998)
+V NaCl+KCl+ 4.60-7.08 10.47- NasNpO»(COs)a(cr) Al Mahamid et al.
NayCOs 11.61 (1998)
+V WIPP AISinR 0.85 7.67 KNpO>COs(cr) Novak et al. (1996)
brine
+V WIPP H 17 2.82 7.65 KNpO,COs(cr) Novak et al. (1996}
brine

Remarks

Taken from published
tables. (Bynum (19964, b)
used 2 points @ 0.0032 M
KCL, 3 points @ 0.032 M
KCl, 3 points @ 0.32 M
KCl, and 3 points @ 3.2 M
KCL)

Taken from published tables

Taken from published tables

Taken from published tables

Taken from published tables

Taken from published tables
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Table 1. Sources of Measured Actinide Solubilities (cont.).

lonic
Oxidation Strength, Solubility-Controlling Reference,
State Solution (M) pH Solid Type of Data Source
+V WIPP SPC 7.08 8.56 KNpQ,COs(cr) Novak et al. (1996)
brine
+V 0.011 Mto 0.033- 11.02- KNpO;COs(cr) Novak et al. (1997)
0.401 M K,COs 0.69 11.48
+V 0.249 M to 0.747-  11.50- KsNpO(COs), Novak et al. (1997)
4.83 M K»CO; 14.43 13.26
+V 1 M Na(l 1.0-5.0 6.19- NaNpO;CO;xH,O(cr)  Runde and Kim
under 107 atm 8.78 (1995)
CO,, or
5 M NaCil 5.65-
under 107 atm 8.51
CO;

Remarks

Taken from published tables

Taken from published tables

Taken from published tables

Taken from published tables
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Table 2. Values of the CDF for All An(III) Solubility Predictions.

Bin, N CDF for All +III
-3.15 0
-3.00 0
-2.85 0.004115226
-2.70 0.004115226
-2.55 0.004115226
-2.40 0.004115226
-2.25 0.004115226
-2.10 0.004115226
-1.95 0.004115226
-1.80 (.008230453
-1.65 0.024691358
-1.50 0.028806584
-1.35 0.053497942
-1.20 0.086419753
-1.05 0.1193415064
-0.90 0.139917695
-0.75 0.185185185
-0.60 0.234567901
-0.45 (.267489712
-0.30 0.345679012
-0.15 0.427983539
0.00 0.518518519
0.15 0.58436214
0.30 0.650205761
0.45 0.728395062
0.60 0.75308642
0.75 0.794238683
0.90 0.827160494
1.05 0.855967078
1.20 0.884773663
1.35 0.925925926
1.50 0.950617284
1.65 0.958847737
1.80 0.962962963
1.95 0.979423868
2.10 0.979423868
2.25 0.983539095
2.40 0.987654321

Note: Table 2 continued on next page.
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Table 2. Values of the CDF for All An(IIl) Solubility Predictions (cont.).

Bin, N CDF for All +III
2.55 0.995884774
2.70 0.995884774
2.85 1
3.00 1
3.15 1
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Table 3. Values of the CDF for All An(IV) Solubility Predictions.

Bin, N CDF for All 41V
-5.10 0
-4,95 0.006289
-4.80 0.006289
-4.65 0.006289
-4.50 0.006289
-4.35 0.006289
-4.20 0.006289
-4.05 0.006289
-3.90 0.006289
-3.75 0.006289
-3.60 0.006289
-3.45 0.006289
-3.30 0.006289
-3.15 0.006289
-3.00 0.006289
-2.85 0.012579
-2.70 0.012579
-2.55 (0.018868
-2.40 0.018868
-2.25 0.018868
-2.10 0.056604
-1.95 0.069182
-1.80 0.069182
-1.65 0.081761
-1.50 0.081761
-1.35 0.08805
-1.20 0.08805
-1.05 0.100629
-0.90 0.113208
-0.75 0.125786
-0.60 0.144654
-0.45 0.207547
-0.30 0.213836
-0.15 0.232704
0.00 0.264151
0.15 0.308176
0.3 0.36478
0.45 0.389937

Note: Table 3 continued on next page.
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Table 3. Values of the CDF for All An(IV) Solubility Predictions (cont.).

Bin, N CDF for All +1V
0.6 0.446541
0.75 0.528302
0.9 0.616352
1.05 0.710692
1.2 0.748428
1.35 0.798742
1.5 0.830189
1.65 0.836478
1.8 0.867925
1.95 0.893082
2.1 0.924528
2.25 0.930818
24 0.955975
2.55 0.974343
2.7 0.987421
2.85 0.993711
3 0.993711
3.15 0.993711
33 1
3.45 1
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Table 4. Values of the CDF for Aill An(V) Solubility Predictions.

Bin, N CDF for all +v
-2.25 0
-2.10 0
-1.95 0
-1.80 0.022059
-1.65 0.029412
-1.50 0.036765
-1.35 0.051471
-1.20 0.051471
-1.05 0.051471
-0.90 0.051471
-0.75 0.058824
-0.60 0.102941
-0.45 0.117647
-0.30 0.169118
-0.15 0.242647
0.00 0.566176
0.15 0.823529
0.30 0.860294
0.45 0911765
0.60 0.926471
.75 0.941176
0.90 0.955882
1.05 0.963235
1.20 0.970588
1.35 0.985294
1.50 0.985294
1.65 0.992647
1.80 0.992647
1.95 1
2.10 1
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Table 5. Values of the CDF for Combined An(II1, IV, V) Solubility Predictions.

CDF for all three
Bin, N oxidation states (An(LIL, IV, V))

-5.10 0
-4.95 0.001859
-4.80 0.001859
-4.65 0.001859
-4.50 0.001859
-4.35 0.001859
-4.20 0.001859
-4.05 0.001859
-3.90 0.001859
-3.75 0.001859
-3.60 0.001859
-3.45 0.001859
-3.30 0.001839
-3.15 0.001859
-3.00 0.001859
-2.85 0.005576
-2.70 0.005576
-2.55 0.007435
-2.40 0.007435
-2.25 0.007435
-2.10 0.018587
-1.95 0.022305
-1.80 0.02974
-1.65 0.042751
-1.50 0.046468
-1.35 0.063197
-1.20 0.078067
-1.05 0.096654
-0.90 0.109665
-0.75 0.135688
-0.60 0.174721
-0.45 0.211896
-0.30 0.262082
-0.15 0.32342
0.00 0.45539
0.15 0.563197
0.30 0.618959

Note: Table 5 continued on next page.
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Table 5. Values of the CDF for Combined An(III, IV, V) Solubility Predictions cont.).

CDF for all three
Bin, N oxidation states (An(IlI, TV, V))

0.45 0.674721
0.60 0.70632
0.75 0.752788
0.90 0.797398
1.05 0.840149
1.20 0.866171
1.35 0.903346
1.50 0.923792
1.65 0.931227
1.80 0.942379
1.95 0.959108
2.10 0.968401
2.25 0.972119
2.40 0.981413
2.55 0.990706
2.70 0.994424
2.85 0.998141
3.00 0.998141
3.15 0.998141
3.30 1

3.45 1
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Brush, Laurence H L\ H @M/A/A _ ‘

From: jimnowak [imnowak@ixpn.com)
Sent: Thursday, December 16, 2004 6:33 PM
To: Brush, Laurence H

Larry,

Below is a statement authorizing you to sign for me on the report:
ek sk kR

I authorize Laurence H. (Larry) Brush, one of my co-authors, to sign for me as co-author on "Updated
Uncertainty Analysis of Actinide Solubilities for the Response to EPA Comment C-23-16."

Edwin J. Nowak

AN HR A K
Have fun at the final signing.

We're getting very enjoyable rest here.

Jim

12/17/2004



