Waste Isolation Pilot Plant

Compliance Certification Application

Reference 605

Scenario Development
FEP Audit List Preparation:
Methodology and Presentation

Michael Stenhouse
Neil Chapman
Trevor Sumerling

April 1993
This report concerns a study which has been conducted for the Swedish Nuclear Power Inspectorate (SKI). The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the SKI.
PREFACE

This report concerns a study which is part of the SKI performance assessment project SITE-94. SITE-94 is a performance assessment of a hypothetical repository at a real site. The main objective of the project is to determine how site specific data should be assimilated into the performance assessment process and to evaluate how uncertainties inherent in site characterization will influence performance assessment results. Other important elements of SITE-94 are the development of a practical and defensible methodology for defining, constructing and analyzing scenarios, the development of approaches for treatment of uncertainties, evaluation of canister integrity, and the development and application of an appropriate Quality Assurance plan for Performance Assessments.

Johan Andersson
Project Manager
SITE 94
SCENARIO DEVELOPMENT
FEP Audit List Preparation:
Methodology and Presentation

Michael J. Stenhouse
Neil A. Chapman
Trevor J. Sumerling

April, 1993

Intera Information Technologies
47, Burton Street, Melton Mowbray, Leicestershire LE13 1AF, UK
Tel (0664) 411445 Fax (0664) 411482

INTERA
Environmental Division
Contents

1 Introduction 1

2 Description of Methodology 1

2.1 Task 1: Compile raw FEP list 3

2.2 Task 2: Categorise and add screening criteria 4

2.3 Task 3: Consolidation coding of screened lists 5

2.4 Task 4: Perform FEP audit 7

References 10

Appendix 1: Raw FEPs List

Appendix 2: Screening Arguments Applied to FEPs

Appendix 3: FEP Lists by Category

Appendix 4: Screened-Out FEP Lists

Appendix 5: Screened FEP Lists

Appendix 6: Final List of FEPs
1 Introduction

A preliminary but essential stage of the SITE 94 scenario development process is the identification of all features, events, and processes (FEPs) which are considered important to the long-term isolation of radioactive waste. These FEPs may be of natural or of human origins, and should be relevant to both the disposal site under investigation, and the timescales under consideration. Before combining FEPs into scenarios, an audit of the FEP list is desirable. Thus, the objective of this summary report is to document the specifications and methodology by which an independent FEP list was generated for audit purposes. The intention of the audit is to ensure that all relevant natural and human-induced FEPs are identified at this early stage of scenario development.

The SITE 94 Project considers disposal of spent nuclear fuel according to the KBS3 concept, at a site with characteristics based on the Åspö Hard Rock Laboratory site.

2 Description of Methodology

The methodology adopted for producing such a FEP audit list involved the following tasks:

- Task 1: Compile raw FEP list
- Task 2: Categorise and add screening criteria
- Task 3: Consolidation coding of screened lists
- Task 4: Perform FEP audit

The overall process in developing the FEP audit list is shown schematically in Figure 1. Each of the above tasks is discussed in detail in the subsequent sections.
Figure 1. Schematic diagram of FEP audit list generation stages

- Compile
- Individual National FEP lists

 * Appendix 1
 Categorise and Add Screening Arguments

 8 FEP Lists by category

 * Appendix 3

 8 Lists of Screened FEPs

 * Appendix 5
 Add Consolidation code

 8 Lists of Screened FEPs, each with consolidation code and reduced list of new FEPs

 8 Lists of Screened-out FEPs sorted according to category and screening argument

 * Appendix 4

 CONSOLIDATE

 Final FEP Audit List
2.1 Task 1: Compile raw FEP list

Identification of FEPs has been performed previously for a variety of national radioactive waste management programmes, and resultant FEP lists apply to a number of disposal concepts and cover a range of disposal sites. As a starting point for the FEP audit list, therefore, the FEP lists from these national exercises were compiled as an electronic spreadsheet/database.

The database was compiled from the following published FEP lists:

- U.K. Department of Environment Dry Run 3; 305 entries: Thorne (1992)
- Nagra, Switzerland: Project Gewähr: high level waste (HLW); 44 entries; Project Gewähr (1985)
- Sandia National Laboratory, U.S.A.: HLW; 29 entries; Cranwell et al. (1982)
- U.K. Nirex: L/ILW; 131 entries; Hodgkinson and Sumerling (1989)
- Nuclear Energy Agency (NEA): Systematic Approaches to Scenario Development; 122 entries; NEA (1992)

Although Nagra is conducting a scenario development process for Kristallin-1, the FEP list was incomplete at the time of compilation. For this reason, this source of FEPs was not used. In addition, the Kemakta FEP list for the SFR assessment done for SKB was not included, as it was felt that Kemakta, who are responsible for developing the original FEP list, would be influenced by this work.

The final compilation comprises over 1200 entries and is listed in Appendix 1. The level of FEP detail for each national list is highly variable,
as indicated by the respective values for number of entries, and reflects differing degrees of generalisation. However, no screening or additional reductions were performed during this task. For some entries, text was added, but only to provide additional description to FEPs, the meaning of which would otherwise be too vague for subsequent screening.

2.2 Task 2: Categorise and add screening criteria

The list in Appendix 1 contains numerous entries which are neither relevant to the Swedish disposal concept nor to the disposal site. In addition, duplications abound in the raw list. Thus, to make the subsequent screening process easier, the first stage of this task was to separate entries into arbitrary categories. Eight categories were selected in total, viz.:

- Waste [W]
- Container [C]
- Buffer/Backfill [B]
- Repository [R]
- Far-field [F]
- Biosphere [L]
- Human actions [H]
- Geological/climatic evolution [G]

The letters in parentheses were used to code individual entries, and an attempt was made to classify FEPs according to where the FEP occurs (W; C; B; R; F; L) or which category is the responsible agent (G; H). Occasionally, it was difficult to categorise FEPs in this way, in which case the coding applies more to the category which is affected by the FEP. In addition, more than one code letter was applied to a FEP if it was considered to apply to one or more of the categories designated. It should be emphasised that assigning FEPs to the above categories was performed as a matter of convenience, and that this separation process is relatively arbitrary, given the different origins of the original FEP list (Appendix 1).

Screening criteria were then added to identify and to subsequently remove only those FEPs which are irrelevant to the Swedish disposal concept and disposal site. The criteria which were used are based on those applied by Nagra and presented in Sumerling et al. (1993). The preliminary “criteria” – referred to as screening arguments, are presented in Appendix 2. Included in Appendix 2 are NOTES: specific modifications to certain screening arguments, based on consultation with SKI (Johan Andersson, personal communication). An additional code was provided for those FEPs which were either too vague or all-encompassing to be useful. It should be stressed, however, that no FEP entries were destroyed as a result of the screening process – only removed to a separate appendix.
The modified screening arguments are summarised in Table 1, each argument having a corresponding code (for convenience, the subsection number of appropriate text in Appendix 2). The FEP lists, sorted by category, and with screening code added, are shown in Appendix 3. Finally, the screening process was performed on the eight category lists of FEPs to separate entries with screening codes from those without. As mentioned previously, no FEPs were removed permanently, screened-out FEPs being compiled in Appendix 4.

2.3 Task 3: Consolidation coding of screened lists

Eight lists of screened FEPs were produced from the screening process performed in Task 2 (in addition to the 8 lists of screened-out FEPs in Appendix 4). In order to consolidate these 8 lists of screened FEPs, an additional consolidation code was added, as shown in Appendix 5 (CON. CODE). The purpose of this consolidation code was to create a reduced set of ‘processes’ which included all screened FEPs, but which had a sufficiently small number to be manageable. Reduced sets in the range 10-15 ‘processes’ were considered an acceptable compromise – small enough to be manageable, but large enough to retain specific characteristics of the individual FEPs. i.e. not too general.

Accordingly, Appendix 5 contains the 8 lists of screened FEPs, each category list prefaced by the set of consolidated ‘processes’. For ease of review, individual, screened FEPs are grouped according to consolidation code.
Table 1: Summary of FEP Screening Arguments

<table>
<thead>
<tr>
<th>Code</th>
<th>Screening Argument</th>
<th>Specifically Excluded Phenomena relating to:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Site and Disposal Concept</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Waste form and packaging</td>
<td>L/ILW, organic wastes; vitrified waste</td>
</tr>
<tr>
<td>2.2</td>
<td>Emplacement and repository</td>
<td>cementitious backfill;</td>
</tr>
<tr>
<td>2.3</td>
<td>Host geology</td>
<td>salt deposits: clays;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>near-surface disposal phenomena</td>
</tr>
<tr>
<td>2.4</td>
<td>Local and regional</td>
<td>thick soil/sediment sequences;</td>
</tr>
<tr>
<td></td>
<td>surface environment</td>
<td>large topographic influences;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oceanic processes</td>
</tr>
<tr>
<td>2.5</td>
<td>Geo-climatic development</td>
<td>arid climate;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>coastal, fluvial erosion</td>
</tr>
<tr>
<td></td>
<td>Assessment Basis</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Repository design/closure</td>
<td>operational phase; retrievability;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>major design changes</td>
</tr>
<tr>
<td>3.2</td>
<td>Global/regional disasters</td>
<td>meteorites</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TREATED SEPARATELY*</td>
</tr>
<tr>
<td>3.3</td>
<td>Acts of war/sabotage</td>
<td>nuclear war; terrorism</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TREATED SEPARATELY*</td>
</tr>
<tr>
<td>3.4</td>
<td>Deliberate intrusion</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Future human society and technology</td>
<td>futuristic assumptions about human behaviour and technology</td>
</tr>
<tr>
<td>3.6</td>
<td>Post-closure radiological assessment</td>
<td>chemical toxicity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>impacts to flora/fauna</td>
</tr>
<tr>
<td>3.7</td>
<td>Future life evolution</td>
<td>radiation sensitivity;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>metabolism changes</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>General issues</td>
<td>too vague, general; incomprehensible; philosophical</td>
</tr>
</tbody>
</table>

*: Arguments 3.2 and 3.3 were assigned screening code 'D'
2.4 Task 4: Perform FEP audit

The FEP lists contained in Appendix 5 were used to perform an audit of the Kemakta FEP list (in Stockholm, April 21st, 1993). Participants in the audit were Neil Chapman and Michael Stenhouse of Intera, and Kristina Skagius and Marie Wiborg of Kemakta (primarily responsible for developing the Kemakta system). The objective of this exercise was to ensure that all relevant features, events and processes had either been incorporated in the influence diagrams already generated by Kemakta (principally of the waste and the engineered systems), or were available for construction of influence diagrams of other parts of the Process System.

During the audit, each FEP in the Intera lists was examined within each category. A tick mark was added if it had been included in the Kemakta list, either as a FEP or as a 'LINK' between two FEPs. Duplicates in the Intera list were eliminated at this stage, and external FEPs were identified as 'EFEP'. For each FEP which was identified for inclusion in the Kemakta system, either as a new FEP or new LINK, a note was made of the addition, together with its cause and effect.

At the time of the audit, the near-field FEPs had been identified and fully documented, and the Intera categories which were used for comparison were WASTE, CANISTER, BUFFER/BACKFILL and REPOSITORY. Similar treatments for the far field and biosphere systems were incomplete, although the format of the influence diagram was expected to be similar to that of the near field. As a result, all Intera FEP categories except BIOSPHERE were examined in detail. For the biosphere, duplicates were identified and eliminated. Occasionally, where two slightly different FEPs overlapped in terms of description, they were combined, thereby reducing the overall number.

The end product of the audit was a final list of all FEPs, still retained under the 8 categories, which have to be considered in the scenario development for the Swedish waste disposal concept. This list is shown in Appendix 6, and the main headings for these FEPs are included in Table 2.
Table 2. Final FEP List Headings

<table>
<thead>
<tr>
<th>Category</th>
<th>Headings</th>
</tr>
</thead>
</table>
| 1. WASTE CATEGORY | Waste characteristics: initial (SYSTEM DESCRIPTION)
Radionuclide decay and growth
Radiological/radiation effects
Gas generation and effects
Heat generation
Thermo-mechanical effects
Thermo-chemical effects
Electro-chemical effects
Waste degradation/corrosion/dissolution
Geochemical reactions/regime
Radionuclide chemistry
Specific factors |
| 2. CANISTER CATEGORY | Canister materials/construction (SYSTEM DESCRIPTION)
Corrosion/degradation processes
Gas production and effects
Microbiological effects/microbial activity
Thermo-mechanical effects
Electro-chemical effects
Stress/mechanical effects
Geochemical reactions/regime
Radionuclide transport through containers
Specific factors |
| 3. BUFFER/BACKFILL CATEGORY | Buffer/backfill characteristics (SYSTEM DESCRIPTION)
Resaturation/desaturation
Mechanical effects
Thermal effects
Electro-chemical effects
Gas effects
Microbiological effects/microbial activity
Backfill degradation
Geochemical regime
Radionuclide transport processes
Radionuclide chemistry
Specific factors |
| 4. REPOSITORY/NEAR-FIELD ROCK CATEGORY | Near-field rock; repository elements/materials (SYSTEM)
Repository degradation
Hydraulic effects/groundwater flow
Mechanical effects
Thermal effects
Gas effects and transport
Microbiological/biological activity
Geochemical regime
Radionuclide chemistry
Radionuclide transport processes
Specific factors |
<table>
<thead>
<tr>
<th>Table 2. Final FEP List Headings</th>
</tr>
</thead>
</table>

FEP NAME: HEADER

5. FAR FIELD CATEGORY
- Rock properties (SYSTEM DESCRIPTION)
- Hydrogeological effects
- Physical/mechanical effects
- Thermal effects
- Gas effects and transport
- Microbiological/biological activity
- Geochemical regime
- Radionuclide chemistry
- Radionuclide transport processes
- Specific factors

6. BIOSPHERE CATEGORY
- Human considerations
- Ecological factors
- Soil/sediment effects
- Surface/near-surface water processes
- Coastal water/ocean processes
- Gas effects
- Microbiological/biological activity
- Geochemical regime (general)
- Radionuclide chemistry
- Radionuclide transport processes
- Radiological factors
- Specific factors

7. GEOLOGY/CLIMATE CATEGORY
- Seismic events/major land movement
- Rock deformation
- Metamorphic processes
- Erosion/weathering (surface)
- Groundwater flow and effects
- Surface water flow and effects
- Sea-level effects
- Magnetic effects
- Glaciation/glacial effects
- Climate effects (natural)
- Specific factors

8. HUMAN INFLUENCES CATEGORY
- Inadvertent intrusion into repository
- Surface activities
- Subsurface activities
- Water use
- Agricultural and fisheries practices
- Specific factors
References

APPENDIX 1

Raw FEPs List
Appendix 1. Raw FEPs List

The composite list presented in the following pages (19) contains all FEPs from the following national exercises, listed in order of appearance (the initial letter coding, e.g. AECL, identifies the respective exercises):

- AECL: Canada
- DOE: Dry Run 3, U.K. Department of Environment
- IAEA: Safety Series
- PGA: Nagra, Switzerland
- SKI: SKI/SKB: Sweden
- SNL: Sandia, U.S.
- UKN: U.K. Nirex L/ILW
- HMIP: Sellafield Assessment, U.K. Department of Environment
- NEA: Safety Assessment

NOTE

References for the above lists are given in the main text (page 3). In the ‘DOE’ list, FEPs often exist at the quaternary level (W.X.Y.Z) and, in such cases, the corresponding tertiary heading (W.X.Y) has been incorporated in each FEP as additional description. As a result, these tertiary entries (shaded) become redundant and are excluded from subsequent edited lists. In the same way, AECL primary (X.), and HMIP primary (W.) and secondary (W.X), headers have been retained for clarity, but are excluded from the reduced lists.
<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECL1, VAULT FACTORS</td>
<td></td>
</tr>
<tr>
<td>AECL1.1</td>
<td>Backfill characteristics</td>
</tr>
<tr>
<td>AECL1.2</td>
<td>Backfill evolution</td>
</tr>
<tr>
<td>AECL1.3</td>
<td>Biological activity</td>
</tr>
<tr>
<td>AECL1.4</td>
<td>Boundary conditions</td>
</tr>
<tr>
<td>AECL1.5</td>
<td>Buffer additives</td>
</tr>
<tr>
<td>AECL1.6</td>
<td>Buffer characteristics</td>
</tr>
<tr>
<td>AECL1.7</td>
<td>Buffer evolution</td>
</tr>
<tr>
<td>AECL1.8</td>
<td>Core loss</td>
</tr>
<tr>
<td>AECL1.9</td>
<td>Chemical gradients</td>
</tr>
<tr>
<td>AECL1.10</td>
<td>Chemical interactions (expected)</td>
</tr>
<tr>
<td>AECL1.11</td>
<td>Chemical interactions (long-term)</td>
</tr>
<tr>
<td>AECL1.12</td>
<td>Chemical interactions (other)</td>
</tr>
<tr>
<td>AECL1.13</td>
<td>Chemical kinetics</td>
</tr>
<tr>
<td>AECL1.14</td>
<td>Climate change</td>
</tr>
<tr>
<td>AECL1.15</td>
<td>Colloids</td>
</tr>
<tr>
<td>AECL1.16</td>
<td>Complexation by organics</td>
</tr>
<tr>
<td>AECL1.17</td>
<td>Concrete</td>
</tr>
<tr>
<td>AECL1.18</td>
<td>Container corrosion products</td>
</tr>
<tr>
<td>AECL1.19</td>
<td>Container failure (early)</td>
</tr>
<tr>
<td>AECL1.20</td>
<td>Container failure (long-term)</td>
</tr>
<tr>
<td>AECL1.21</td>
<td>Container failure (other long-term processes)</td>
</tr>
<tr>
<td>AECL1.22</td>
<td>Container heating</td>
</tr>
<tr>
<td>AECL1.23</td>
<td>Containers - partial corrosion</td>
</tr>
<tr>
<td>AECL1.24</td>
<td>Convective</td>
</tr>
<tr>
<td>AECL1.25</td>
<td>Correlation</td>
</tr>
<tr>
<td>AECL1.26</td>
<td>Corrosion</td>
</tr>
<tr>
<td>AECL1.27</td>
<td>Coupled processes</td>
</tr>
<tr>
<td>AECL1.28</td>
<td>Criticality</td>
</tr>
<tr>
<td>AECL1.29</td>
<td>Diffusion</td>
</tr>
<tr>
<td>AECL1.30</td>
<td>Dispersion</td>
</tr>
<tr>
<td>AECL1.31</td>
<td>Earthquakes</td>
</tr>
<tr>
<td>AECL1.32</td>
<td>Electrochemical gradients</td>
</tr>
<tr>
<td>AECL1.33</td>
<td>Evolution of buffer</td>
</tr>
<tr>
<td>AECL1.34</td>
<td>Excessive hydrostatic pressures</td>
</tr>
<tr>
<td>AECL1.35</td>
<td>Explosions</td>
</tr>
<tr>
<td>AECL1.36</td>
<td>Faulty buffer emplacement</td>
</tr>
<tr>
<td>AECL1.37</td>
<td>Formation of cracks</td>
</tr>
<tr>
<td>AECL1.38</td>
<td>Formation of gases</td>
</tr>
<tr>
<td>AECL1.39</td>
<td>Galvanic coupling</td>
</tr>
<tr>
<td>AECL1.40</td>
<td>Geochronal pump</td>
</tr>
<tr>
<td>AECL1.41</td>
<td>Glaciation</td>
</tr>
<tr>
<td>AECL1.42</td>
<td>Global effects</td>
</tr>
<tr>
<td>AECL1.43</td>
<td>Hydraulic conductivity</td>
</tr>
<tr>
<td>AECL1.44</td>
<td>Hydraulic head</td>
</tr>
<tr>
<td>AECL1.45</td>
<td>Hydrolytic cracking</td>
</tr>
<tr>
<td>AECL1.46</td>
<td>Hydrothermally altered rock</td>
</tr>
<tr>
<td>AECL1.47</td>
<td>Improper operation</td>
</tr>
<tr>
<td>AECL1.48</td>
<td>Incomplete closure</td>
</tr>
<tr>
<td>AECL1.49</td>
<td>Incomplete filling of containers</td>
</tr>
<tr>
<td>AECL1.50</td>
<td>Interfaces (boundary conditions)</td>
</tr>
<tr>
<td>AECL1.51</td>
<td>Intrusion (animal)</td>
</tr>
<tr>
<td>AECL1.52</td>
<td>Intrusion (human)</td>
</tr>
<tr>
<td>AECL1.53</td>
<td>Inventory</td>
</tr>
<tr>
<td>AECL1.54</td>
<td>Other wastes (other than vitrified HLW)</td>
</tr>
<tr>
<td>AECL1.55</td>
<td>Long-term physical stability</td>
</tr>
<tr>
<td>AECL1.56</td>
<td>Long-term transients</td>
</tr>
<tr>
<td>AECL1.57</td>
<td>Methane</td>
</tr>
<tr>
<td>AECL1.58</td>
<td>Microbes</td>
</tr>
<tr>
<td>AECL1.59</td>
<td>Microorganisms</td>
</tr>
<tr>
<td>AECL1.60</td>
<td>Monitoring and remedial activities</td>
</tr>
<tr>
<td>AECL1.61</td>
<td>Mutation</td>
</tr>
<tr>
<td>AECL1.62</td>
<td>Percolation in shafts</td>
</tr>
<tr>
<td>AECL1.63</td>
<td>Pitting</td>
</tr>
<tr>
<td>AECL1.64</td>
<td>Preclosure events</td>
</tr>
<tr>
<td>AECL1.65</td>
<td>Precipitation and dissolution</td>
</tr>
<tr>
<td>AECL1.66</td>
<td>Pseudo-colloids</td>
</tr>
<tr>
<td>AECL1.67</td>
<td>Radiation damage</td>
</tr>
<tr>
<td>AECL1.68</td>
<td>Radioactive decay</td>
</tr>
<tr>
<td>AECL1.69</td>
<td>Radiolysis</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>AECL1.70</td>
<td>Recharge groundwater</td>
</tr>
<tr>
<td>AECL1.71</td>
<td>Reflooding</td>
</tr>
<tr>
<td>AECL1.72</td>
<td>Retrievalability</td>
</tr>
<tr>
<td>AECL1.73</td>
<td>Sabotage and improper operation</td>
</tr>
<tr>
<td>AECL1.74</td>
<td>Seal evolution</td>
</tr>
<tr>
<td>AECL1.75</td>
<td>Seal failure</td>
</tr>
<tr>
<td>AECL1.76</td>
<td>Sorption</td>
</tr>
<tr>
<td>AECL1.77</td>
<td>Sorption: non-linear</td>
</tr>
<tr>
<td>AECL1.78</td>
<td>Source terms (expected)</td>
</tr>
<tr>
<td>AECL1.79</td>
<td>Source terms (other)</td>
</tr>
<tr>
<td>AECL1.80</td>
<td>Speciation</td>
</tr>
<tr>
<td>AECL1.81</td>
<td>Stability</td>
</tr>
<tr>
<td>AECL1.82</td>
<td>Stability of glass</td>
</tr>
<tr>
<td>AECL1.83</td>
<td>Swelling pressure</td>
</tr>
<tr>
<td>AECL1.84</td>
<td>Temperature rises (unexpected effects)</td>
</tr>
<tr>
<td>AECL1.85</td>
<td>Time dependence</td>
</tr>
<tr>
<td>AECL1.86</td>
<td>Transport in gases or of gases</td>
</tr>
<tr>
<td>AECL1.87</td>
<td>Uncertainties</td>
</tr>
<tr>
<td>AECL1.88</td>
<td>Uniform corrosion</td>
</tr>
<tr>
<td>AECL1.89</td>
<td>Unmodelled design features</td>
</tr>
<tr>
<td>AECL1.90</td>
<td>Unsaturated transport</td>
</tr>
<tr>
<td>AECL1.91</td>
<td>Vault geometry</td>
</tr>
<tr>
<td>AECL2.1</td>
<td>Blasting and vibration</td>
</tr>
<tr>
<td>AECL2.2</td>
<td>Borehole blast</td>
</tr>
<tr>
<td>AECL2.3</td>
<td>Borehole seal failure/open boreholes</td>
</tr>
<tr>
<td>AECL2.4</td>
<td>Boreholes - exploration</td>
</tr>
<tr>
<td>AECL2.5</td>
<td>Boreholes - unsealed</td>
</tr>
<tr>
<td>AECL2.6</td>
<td>Borehole seal failure/open boreholes</td>
</tr>
<tr>
<td>AECL2.7</td>
<td>Cavitation</td>
</tr>
<tr>
<td>AECL2.8</td>
<td>Climate change</td>
</tr>
<tr>
<td>AECL2.9</td>
<td>Colloidal formation</td>
</tr>
<tr>
<td>AECL2.10</td>
<td>Complexation by organics</td>
</tr>
<tr>
<td>AECL2.11</td>
<td>Conceptual model - hydrology</td>
</tr>
<tr>
<td>AECL2.12</td>
<td>Correlation</td>
</tr>
<tr>
<td>AECL2.13</td>
<td>Dams</td>
</tr>
<tr>
<td>AECL2.14</td>
<td>Dewatering</td>
</tr>
<tr>
<td>AECL2.15</td>
<td>Diffusion</td>
</tr>
<tr>
<td>AECL2.16</td>
<td>Drainage zones</td>
</tr>
<tr>
<td>AECL2.17</td>
<td>Dispersion</td>
</tr>
<tr>
<td>AECL2.18</td>
<td>Drought</td>
</tr>
<tr>
<td>AECL2.19</td>
<td>Earthmoving</td>
</tr>
<tr>
<td>AECL2.20</td>
<td>Earthquakes</td>
</tr>
<tr>
<td>AECL2.21</td>
<td>Erosion</td>
</tr>
<tr>
<td>AECL2.22</td>
<td>Evaporation</td>
</tr>
<tr>
<td>AECL2.23</td>
<td>Faulting</td>
</tr>
<tr>
<td>AECL2.24</td>
<td>Flood</td>
</tr>
<tr>
<td>AECL2.25</td>
<td>Fulvic acid</td>
</tr>
<tr>
<td>AECL2.26</td>
<td>Gases and gas transport</td>
</tr>
<tr>
<td>AECL2.27</td>
<td>Geothermal gradient effects</td>
</tr>
<tr>
<td>AECL2.28</td>
<td>Glaciation</td>
</tr>
<tr>
<td>AECL2.29</td>
<td>Greenhouse effect</td>
</tr>
<tr>
<td>AECL2.30</td>
<td>Groundwater - evaporation</td>
</tr>
<tr>
<td>AECL2.31</td>
<td>Groundwater composition change</td>
</tr>
<tr>
<td>AECL2.32</td>
<td>Humic acid</td>
</tr>
<tr>
<td>AECL2.33</td>
<td>Hydraulic properties - evaporation</td>
</tr>
<tr>
<td>AECL2.34</td>
<td>Intrusion (magmatic)</td>
</tr>
<tr>
<td>AECL2.35</td>
<td>Intrusion (intra-</td>
</tr>
<tr>
<td>AECL2.36</td>
<td>Isostatic rebound</td>
</tr>
<tr>
<td>AECL2.37</td>
<td>Magnetic activity</td>
</tr>
<tr>
<td>AECL2.38</td>
<td>Magnetic poles</td>
</tr>
<tr>
<td>AECL2.39</td>
<td>Matrix diffusion</td>
</tr>
<tr>
<td>AECL2.40</td>
<td>Metamorphic activity</td>
</tr>
<tr>
<td>AECL2.41</td>
<td>Meteorite</td>
</tr>
<tr>
<td>AECL2.42</td>
<td>Methane</td>
</tr>
<tr>
<td>AECL2.43</td>
<td>Microbes</td>
</tr>
<tr>
<td>AECL2.44</td>
<td>Mines</td>
</tr>
<tr>
<td>AECL2.45</td>
<td>Ozone layer</td>
</tr>
<tr>
<td>AECL2.46</td>
<td>Precipitation - dissolution</td>
</tr>
<tr>
<td>AECL2.47</td>
<td>Pseudo-colloids</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>AEC2.24</td>
<td>Radioactive decay</td>
</tr>
<tr>
<td>AEC2.49</td>
<td>Radiolysis, radiation damage</td>
</tr>
<tr>
<td>AEC2.50</td>
<td>Recharge groundwater</td>
</tr>
<tr>
<td>AEC2.51</td>
<td>Rock properties</td>
</tr>
<tr>
<td>AEC2.52</td>
<td>Rock properties - unreacted features</td>
</tr>
<tr>
<td>AEC2.53</td>
<td>Saborage</td>
</tr>
<tr>
<td>AEC2.54</td>
<td>Salinity effects on flow</td>
</tr>
<tr>
<td>AEC2.55</td>
<td>Saturation</td>
</tr>
<tr>
<td>AEC2.56</td>
<td>Shaft seal failure</td>
</tr>
<tr>
<td>AEC2.57</td>
<td>Solution mining</td>
</tr>
<tr>
<td>AEC2.58</td>
<td>Sorption</td>
</tr>
<tr>
<td>AEC2.59</td>
<td>Sorption - non-linear</td>
</tr>
<tr>
<td>AEC2.60</td>
<td>Spectation</td>
</tr>
<tr>
<td>AEC2.61</td>
<td>Topography - current</td>
</tr>
<tr>
<td>AEC2.62</td>
<td>Topography - future</td>
</tr>
<tr>
<td>AEC2.63</td>
<td>Turbulence</td>
</tr>
<tr>
<td>AEC2.64</td>
<td>Uncertainties</td>
</tr>
<tr>
<td>AEC2.65</td>
<td>Unsaturated rock</td>
</tr>
<tr>
<td>AEC2.66</td>
<td>Vault closure (incomplete)</td>
</tr>
<tr>
<td>AEC2.67</td>
<td>Vault effects</td>
</tr>
<tr>
<td>AEC2.68</td>
<td>Volcanism</td>
</tr>
<tr>
<td>AEC2.69</td>
<td>Wells</td>
</tr>
<tr>
<td>AEC2.70</td>
<td>Wells (high demand)</td>
</tr>
<tr>
<td>AEC2.71</td>
<td>And rain</td>
</tr>
<tr>
<td>AEC2.72</td>
<td>Alkaline flag</td>
</tr>
<tr>
<td>AEC2.73</td>
<td>Animal grooming and fighting</td>
</tr>
<tr>
<td>AEC2.74</td>
<td>Animal soil ingestion</td>
</tr>
<tr>
<td>AEC2.75</td>
<td>Animals' diets</td>
</tr>
<tr>
<td>AEC2.76</td>
<td>Artificial lake working</td>
</tr>
<tr>
<td>AEC2.77</td>
<td>Ashes and sewage sludge</td>
</tr>
<tr>
<td>AEC2.78</td>
<td>Bacteria and microorganisms (soil)</td>
</tr>
<tr>
<td>AEC2.79</td>
<td>Biocenosis</td>
</tr>
<tr>
<td>AEC2.80</td>
<td>Biogas production</td>
</tr>
<tr>
<td>AEC2.81</td>
<td>Biological evaporation</td>
</tr>
<tr>
<td>AEC2.82</td>
<td>Biototoxicity</td>
</tr>
<tr>
<td>AEC2.83</td>
<td>Biodegradation of soils and sediments</td>
</tr>
<tr>
<td>AEC2.84</td>
<td>Building materials</td>
</tr>
<tr>
<td>AEC2.85</td>
<td>Burrowing animals</td>
</tr>
<tr>
<td>AEC2.86</td>
<td>Cadaver rise in soil</td>
</tr>
<tr>
<td>AEC2.87</td>
<td>Carcasses</td>
</tr>
<tr>
<td>AEC2.88</td>
<td>Carcinogenic contaminants</td>
</tr>
<tr>
<td>AEC2.89</td>
<td>Carcinogenic contaminants</td>
</tr>
<tr>
<td>AEC2.90</td>
<td>Convection, turbulence and diffusion (atmospheric)</td>
</tr>
<tr>
<td>AEC2.91</td>
<td>Convection</td>
</tr>
<tr>
<td>AEC2.92</td>
<td>Correlation</td>
</tr>
<tr>
<td>AEC2.93</td>
<td>Critical group - agricultural labour</td>
</tr>
<tr>
<td>AEC2.94</td>
<td>Critical group - clothing and home furnishings</td>
</tr>
<tr>
<td>AEC2.95</td>
<td>Critical group - evolution</td>
</tr>
<tr>
<td>AEC2.96</td>
<td>Critical group - house location</td>
</tr>
<tr>
<td>AEC2.97</td>
<td>Critical group - individuality</td>
</tr>
<tr>
<td>AEC2.98</td>
<td>Critical group - leisure pursuits</td>
</tr>
<tr>
<td>AEC2.99</td>
<td>Critical group - pets</td>
</tr>
<tr>
<td>AEC3.00</td>
<td>Crop fertilization</td>
</tr>
<tr>
<td>AEC3.01</td>
<td>Crop storage</td>
</tr>
<tr>
<td>AEC3.02</td>
<td>Cure for cancer</td>
</tr>
<tr>
<td>AEC3.03</td>
<td>Deposition (wet and dry)</td>
</tr>
<tr>
<td>AEC3.04</td>
<td>Dermal sorption - nuclides other than tritium</td>
</tr>
<tr>
<td>AEC3.05</td>
<td>Dermal sorption - tritium</td>
</tr>
<tr>
<td>AEC3.06</td>
<td>Dispersion</td>
</tr>
<tr>
<td>AEC3.07</td>
<td>Dust storms and desertification (massive)</td>
</tr>
<tr>
<td>AEC3.08</td>
<td>Earthmoving projects (major)</td>
</tr>
<tr>
<td>AEC3.09</td>
<td>Earthquakes</td>
</tr>
<tr>
<td>AEC3.10</td>
<td>Erosion - lateral transport</td>
</tr>
<tr>
<td>AEC3.11</td>
<td>Erosion - wind</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>AEC1.47</td>
<td>Fires (agricultural)</td>
</tr>
<tr>
<td>AEC1.48</td>
<td>Fires (forest and grass)</td>
</tr>
<tr>
<td>AEC1.49</td>
<td>Fish farming</td>
</tr>
<tr>
<td>AEC1.50</td>
<td>Flooding of earth’s magnetic poles</td>
</tr>
<tr>
<td>AEC1.51</td>
<td>Flood (short-term)</td>
</tr>
<tr>
<td>AEC1.52</td>
<td>Flashing of water bodies</td>
</tr>
<tr>
<td>AEC1.53</td>
<td>Food preparation</td>
</tr>
<tr>
<td>AEC1.54</td>
<td>Game ranching</td>
</tr>
<tr>
<td>AEC1.55</td>
<td>Gas leakage into underground living space</td>
</tr>
<tr>
<td>AEC1.56</td>
<td>Glaciation</td>
</tr>
<tr>
<td>AEC1.57</td>
<td>Greenhouse (food production)</td>
</tr>
<tr>
<td>AEC1.58</td>
<td>Greenhouse effect</td>
</tr>
<tr>
<td>AEC1.59</td>
<td>Groundwater, tree bearing</td>
</tr>
<tr>
<td>AEC1.60</td>
<td>Heat storage in lakes or underground</td>
</tr>
<tr>
<td>AEC1.61</td>
<td>Herbicides, pesticides, fungicides</td>
</tr>
<tr>
<td>AEC1.62</td>
<td>Household dust and fumes</td>
</tr>
<tr>
<td>AEC1.63</td>
<td>Houseplants</td>
</tr>
<tr>
<td>AEC1.64</td>
<td>Human die</td>
</tr>
<tr>
<td>AEC1.65</td>
<td>Human soil ingestion</td>
</tr>
<tr>
<td>AEC1.66</td>
<td>Hydroponics</td>
</tr>
<tr>
<td>AEC1.67</td>
<td>Industrial use of water</td>
</tr>
<tr>
<td>AEC1.68</td>
<td>Injecting/inhaling locally produced drugs</td>
</tr>
<tr>
<td>AEC1.69</td>
<td>Intoxication (deliberate)</td>
</tr>
<tr>
<td>AEC1.70</td>
<td>Intoxication (inadvertent)</td>
</tr>
<tr>
<td>AEC1.71</td>
<td>Ionic exchange in soil</td>
</tr>
<tr>
<td>AEC1.72</td>
<td>Irrigation</td>
</tr>
<tr>
<td>AEC1.73</td>
<td>Lake filling</td>
</tr>
<tr>
<td>AEC1.74</td>
<td>Mutagenic contaminants</td>
</tr>
<tr>
<td>AEC1.75</td>
<td>Outdoor spraying of water</td>
</tr>
<tr>
<td>AEC1.76</td>
<td>Ozone layer failure</td>
</tr>
<tr>
<td>AEC1.77</td>
<td>Pest and leaf litter harvesting</td>
</tr>
<tr>
<td>AEC1.78</td>
<td>Plant root systems</td>
</tr>
<tr>
<td>AEC1.79</td>
<td>Precipitation (meteoric)</td>
</tr>
<tr>
<td>AEC1.80</td>
<td>Radioactive decay</td>
</tr>
<tr>
<td>AEC1.81</td>
<td>Radioactive contaminants</td>
</tr>
<tr>
<td>AEC1.82</td>
<td>Radon emission</td>
</tr>
<tr>
<td>AEC1.83</td>
<td>Rivercourse meander</td>
</tr>
<tr>
<td>AEC1.84</td>
<td>Runoff</td>
</tr>
<tr>
<td>AEC1.85</td>
<td>Saltation</td>
</tr>
<tr>
<td>AEC1.86</td>
<td>Scavengers and predators</td>
</tr>
<tr>
<td>AEC1.87</td>
<td>Sedimentation</td>
</tr>
<tr>
<td>AEC1.88</td>
<td>Sedimentation in water bodies</td>
</tr>
<tr>
<td>AEC1.89</td>
<td>Sedimentation in water bodies</td>
</tr>
<tr>
<td>AEC1.90</td>
<td>Sensitization to radiation</td>
</tr>
<tr>
<td>AEC1.91</td>
<td>Showers and humidifiers</td>
</tr>
<tr>
<td>AEC1.92</td>
<td>Smoking</td>
</tr>
<tr>
<td>AEC1.93</td>
<td>Soil</td>
</tr>
<tr>
<td>AEC1.94</td>
<td>Soil depth</td>
</tr>
<tr>
<td>AEC1.95</td>
<td>Soil leaching</td>
</tr>
<tr>
<td>AEC1.96</td>
<td>Soil ph</td>
</tr>
<tr>
<td>AEC1.97</td>
<td>Soil sorption</td>
</tr>
<tr>
<td>AEC1.98</td>
<td>Soil type</td>
</tr>
<tr>
<td>AEC1.99</td>
<td>Space heating</td>
</tr>
<tr>
<td>AEC1.100</td>
<td>Surface water bodies</td>
</tr>
<tr>
<td>AEC1.101</td>
<td>Surface water pH</td>
</tr>
<tr>
<td>AEC1.102</td>
<td>Suspension in air</td>
</tr>
<tr>
<td>AEC1.103</td>
<td>Technological advances in food production</td>
</tr>
<tr>
<td>AEC1.104</td>
<td>Toxic thanogenic contaminants</td>
</tr>
<tr>
<td>AEC1.105</td>
<td>Terrestrial surface</td>
</tr>
<tr>
<td>AEC1.106</td>
<td>Toxicity of mineral rock</td>
</tr>
<tr>
<td>AEC1.107</td>
<td>Tree sap</td>
</tr>
<tr>
<td>AEC1.108</td>
<td>Uncertainties</td>
</tr>
<tr>
<td>AEC1.109</td>
<td>Urbanization on the discharge site</td>
</tr>
<tr>
<td>AEC1.110</td>
<td>Water intake into underground living space</td>
</tr>
<tr>
<td>AEC1.111</td>
<td>Water management projects (major)</td>
</tr>
<tr>
<td>AEC1.112</td>
<td>Water source</td>
</tr>
<tr>
<td>AEC1.113</td>
<td>Wetlands</td>
</tr>
<tr>
<td>AEC1.114</td>
<td>Wind</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>DOE1.1.1</td>
<td>Structural container metal corrosion</td>
</tr>
<tr>
<td>DOE1.1.1.1</td>
<td>Structural container metal corrosion: Localised</td>
</tr>
<tr>
<td>DOE1.1.1.2</td>
<td>Structural container metal corrosion: Bulk</td>
</tr>
<tr>
<td>DOE1.1.1.3</td>
<td>Structural container metal corrosion: Crevice</td>
</tr>
<tr>
<td>DOE1.1.1.4</td>
<td>Structural container metal corrosion: Stress corrosion cracking</td>
</tr>
<tr>
<td>DOE1.1.2</td>
<td>Physical degradation of concrete</td>
</tr>
<tr>
<td>DOE1.1.2.1</td>
<td>Cracking: concrete</td>
</tr>
<tr>
<td>DOE1.1.2.2</td>
<td>Sealing of cracks: concrete</td>
</tr>
<tr>
<td>DOE1.1.2.3</td>
<td>Pore blockage: concrete</td>
</tr>
<tr>
<td>DOE1.1.2.4</td>
<td>Alkali-aggregate reaction: concrete</td>
</tr>
<tr>
<td>DOE1.1.2.5</td>
<td>Cement-settling reaction: concrete</td>
</tr>
<tr>
<td>DOE1.1.3</td>
<td>Chemical degradation of concrete</td>
</tr>
<tr>
<td>DOE1.1.3.1</td>
<td>Changes in pore water composition: pH, Eh: concrete</td>
</tr>
<tr>
<td>DOE1.1.3.2</td>
<td>Exhaust capacity exceeded: concrete</td>
</tr>
<tr>
<td>DOE1.1.3.3</td>
<td>Alkali-aggregate reaction: concrete</td>
</tr>
<tr>
<td>DOE1.1.3.4</td>
<td>Cement-settling reaction: concrete</td>
</tr>
<tr>
<td>DOE1.1.4</td>
<td>Degradation of wastes</td>
</tr>
<tr>
<td>DOE1.1.4.1</td>
<td>Metal corrosion: wastes</td>
</tr>
<tr>
<td>DOE1.1.4.2</td>
<td>Leaching: wastes</td>
</tr>
<tr>
<td>DOE1.1.4.3</td>
<td>Complex formation: wastes</td>
</tr>
<tr>
<td>DOE1.1.4.4</td>
<td>Colloid formation: wastes</td>
</tr>
<tr>
<td>DOE1.1.4.5</td>
<td>Microbial degradation of organic wastes: wastes</td>
</tr>
<tr>
<td>DOE1.1.4.6</td>
<td>Microbial corrosion: wastes</td>
</tr>
<tr>
<td>DOE1.1.4.7</td>
<td>Radioysis: wastes</td>
</tr>
<tr>
<td>DOE1.1.2.1</td>
<td>Hydrogen by metal corrosion</td>
</tr>
<tr>
<td>DOE1.1.2.2</td>
<td>Hydrogen: corrosion of structural steel</td>
</tr>
<tr>
<td>DOE1.1.2.3</td>
<td>Hydrogen: corrosion of container steel</td>
</tr>
<tr>
<td>DOE1.1.2.4</td>
<td>Hydrogen: corrosion of waste steel</td>
</tr>
<tr>
<td>DOE1.1.2.5</td>
<td>Hydrogen: corrosion of waste Magnox</td>
</tr>
<tr>
<td>DOE1.1.2.6</td>
<td>Hydrogen: corrosion of waste aluminium</td>
</tr>
<tr>
<td>DOE1.1.2.7</td>
<td>Hydrogen: corrosion of waste Zirconal</td>
</tr>
<tr>
<td>DOE1.1.2.8</td>
<td>Hydrogen: corrosion of other waste metals</td>
</tr>
<tr>
<td>DOE1.1.2.9</td>
<td>Hydrogen: effects of microbial growth on concrete</td>
</tr>
<tr>
<td>DOE1.1.2.10</td>
<td>Methane and carbon dioxide production: microbial degradation</td>
</tr>
<tr>
<td>DOE1.1.2.21</td>
<td>Methane+CO2: degradation of Cellulosics</td>
</tr>
<tr>
<td>DOE1.1.2.22</td>
<td>Methane+CO2: degradation of Other susceptible organic materials</td>
</tr>
<tr>
<td>DOE1.1.2.23</td>
<td>Methane+CO2 production: Aerobic degradation</td>
</tr>
<tr>
<td>DOE1.1.2.24</td>
<td>Methane+CO2 production: Anaerobic degradation</td>
</tr>
<tr>
<td>DOE1.1.2.25</td>
<td>Methane+CO2 production: Effects of temperature</td>
</tr>
<tr>
<td>DOE1.1.2.26</td>
<td>Methane+CO2 production: Effects of lithostatic pressure</td>
</tr>
<tr>
<td>DOE1.1.2.27</td>
<td>Methane+CO2 production: Effects of microbial growth on properties of concrete</td>
</tr>
<tr>
<td>DOE1.1.2.28</td>
<td>Methane+CO2 production: Effects of biolms</td>
</tr>
<tr>
<td>DOE1.1.2.29</td>
<td>Methane+CO2 production: Effects of hydrogen from metal corrosion</td>
</tr>
<tr>
<td>DOE1.1.2.30</td>
<td>Methane+CO2 production: Inhibition due to the pressure of toxic materials</td>
</tr>
<tr>
<td>DOE1.1.2.41</td>
<td>Methane+CO2 production: Carbonate/bicarbonate exchange with concrete</td>
</tr>
<tr>
<td>DOE1.1.2.42</td>
<td>Methane+CO2 production: Energy and nutrients control of metabolism</td>
</tr>
<tr>
<td>DOE1.1.2.43</td>
<td>Methane+CO2 production: Effects of radiation on microbial populations</td>
</tr>
<tr>
<td>DOE1.1.3</td>
<td>Gas generation from concrete</td>
</tr>
<tr>
<td>DOE1.1.4</td>
<td>Active gases</td>
</tr>
<tr>
<td>DOE1.1.4.1</td>
<td>Tritiated hydrogen</td>
</tr>
<tr>
<td>DOE1.1.4.2</td>
<td>Active methane and carbon dioxide</td>
</tr>
<tr>
<td>DOE1.1.4.3</td>
<td>Other active gases</td>
</tr>
<tr>
<td>DOE1.1.4.5</td>
<td>Toxic gases</td>
</tr>
<tr>
<td>DOE1.2.6</td>
<td>Gas transport</td>
</tr>
<tr>
<td>DOE1.2.6.1</td>
<td>Gas transport: in the waste container</td>
</tr>
<tr>
<td>DOE1.2.6.2</td>
<td>Gas transport: in the vaults between containers</td>
</tr>
<tr>
<td>DOE1.2.6.3</td>
<td>Gas transport: Between vaults</td>
</tr>
<tr>
<td>DOE1.2.6.4</td>
<td>Gas transport: in the near-field, including up and around access shafts and arks</td>
</tr>
<tr>
<td>DOE1.2.6.5</td>
<td>Gas transport: into and through the far-field</td>
</tr>
<tr>
<td>DOE1.2.7</td>
<td>Flammability</td>
</tr>
<tr>
<td>DOE1.2.7.1</td>
<td>Fires</td>
</tr>
<tr>
<td>DOE1.2.7.2</td>
<td>Explosions</td>
</tr>
<tr>
<td>DOE1.3</td>
<td>Radioactive decay and ingrowth</td>
</tr>
<tr>
<td>DOE1.3.2</td>
<td>Nuclear critically</td>
</tr>
<tr>
<td>DOE1.4</td>
<td>Canister or container movement</td>
</tr>
<tr>
<td>DOE1.4.2</td>
<td>Changes in the stress field</td>
</tr>
<tr>
<td>DOE1.4.3</td>
<td>Embrittlement</td>
</tr>
<tr>
<td>DOE1.4.4</td>
<td>Subsidence/collapse</td>
</tr>
<tr>
<td>DOE1.4.4.1</td>
<td>Reposition induced subsidence</td>
</tr>
<tr>
<td>DOE1.4.4.2</td>
<td>Natural subsidence</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>DOE1.4.5</td>
<td>Rock creep</td>
</tr>
<tr>
<td>DOE1.4.6</td>
<td>Fracturing</td>
</tr>
<tr>
<td>DOE1.5.1</td>
<td>Changes in moisture content</td>
</tr>
<tr>
<td>DOE1.5.1.1</td>
<td>Changes in moisture content due to dewetting</td>
</tr>
<tr>
<td>DOE1.5.1.2</td>
<td>Changes in moisture content due to stress relief</td>
</tr>
<tr>
<td>DOE1.5.2</td>
<td>Groundwater flow (unsaturated conditions)</td>
</tr>
<tr>
<td>DOE1.5.2.1</td>
<td>Groundwater flow: initial conditions</td>
</tr>
<tr>
<td>DOE1.5.2.2</td>
<td>Groundwater flow due to gas production</td>
</tr>
<tr>
<td>DOE1.5.3</td>
<td>Groundwater flow (saturated conditions)</td>
</tr>
<tr>
<td>DOE1.5.4</td>
<td>Transport of chemically active substances into the near-field</td>
</tr>
<tr>
<td>DOE1.5.4.1</td>
<td>Transport of inorganic ions into the near-field</td>
</tr>
<tr>
<td>DOE1.5.4.2</td>
<td>Transport of organic acids into the near-field</td>
</tr>
<tr>
<td>DOE1.5.4.3</td>
<td>Transport of microbes into the near-field</td>
</tr>
<tr>
<td>DOE1.5.4.4</td>
<td>Transport of organic complexes into the near-field</td>
</tr>
<tr>
<td>DOE1.5.4.5</td>
<td>Transport of colloids into the near-field</td>
</tr>
<tr>
<td>DOE1.6.1</td>
<td>Differential elastic response</td>
</tr>
<tr>
<td>DOE1.6.2</td>
<td>Non-elastic response</td>
</tr>
<tr>
<td>DOE1.6.3</td>
<td>Fracture changes</td>
</tr>
<tr>
<td>DOE1.6.3.1</td>
<td>Fracture changes: aperture</td>
</tr>
<tr>
<td>DOE1.6.3.2</td>
<td>Fracture changes: length</td>
</tr>
<tr>
<td>DOE1.6.4</td>
<td>Hydrological changes</td>
</tr>
<tr>
<td>DOE1.6.4.1</td>
<td>Hydrological changes: fluid pressure</td>
</tr>
<tr>
<td>DOE1.6.4.2</td>
<td>Hydrological changes: density</td>
</tr>
<tr>
<td>DOE1.6.4.3</td>
<td>Hydrological changes: viscosity</td>
</tr>
<tr>
<td>DOE1.6.5</td>
<td>Chemical changes</td>
</tr>
<tr>
<td>DOE1.6.5.1</td>
<td>Chemical changes due to metal corrosion</td>
</tr>
<tr>
<td>DOE1.6.5.2</td>
<td>Chemical changes due to concrete degradation</td>
</tr>
<tr>
<td>DOE1.6.5.3</td>
<td>Chemical changes due to waste degradation</td>
</tr>
<tr>
<td>DOE1.6.5.4</td>
<td>Chemical changes due to gas production</td>
</tr>
<tr>
<td>DOE1.6.5.5</td>
<td>Chemical changes due to complex formation</td>
</tr>
<tr>
<td>DOE1.6.5.6</td>
<td>Chemical changes due to colloid production</td>
</tr>
<tr>
<td>DOE1.6.5.7</td>
<td>Chemical changes due to solubility</td>
</tr>
<tr>
<td>DOE1.6.5.8</td>
<td>Chemical changes due to sorption</td>
</tr>
<tr>
<td>DOE1.6.5.9</td>
<td>Chemical changes due to species equilibrium</td>
</tr>
<tr>
<td>DOE1.6.6</td>
<td>Microbiological effects</td>
</tr>
<tr>
<td>DOE1.6.6.1</td>
<td>Microbiological effects due to cellulose degradation</td>
</tr>
<tr>
<td>DOE1.6.6.2</td>
<td>Microbiological effects due to microbial activity</td>
</tr>
<tr>
<td>DOE1.6.6.3</td>
<td>Microbiological effects due to microbial product reactions</td>
</tr>
<tr>
<td>DOE2.1.1</td>
<td>Meteoric impact</td>
</tr>
<tr>
<td>DOE2.2.1</td>
<td>Regional tectonic</td>
</tr>
<tr>
<td>DOE2.2.1.1</td>
<td>Uplift</td>
</tr>
<tr>
<td>DOE2.2.1.2</td>
<td>Subsidence</td>
</tr>
<tr>
<td>DOE2.2.1.3</td>
<td>Lateral and/or vertical flexure</td>
</tr>
<tr>
<td>DOE2.2.2.1</td>
<td>Magmatic: intrusive</td>
</tr>
<tr>
<td>DOE2.2.2.2</td>
<td>Magmatic: extrusive</td>
</tr>
<tr>
<td>DOE2.2.2.3</td>
<td>Magmatic: hydrothermal</td>
</tr>
<tr>
<td>DOE2.2.2.4</td>
<td>Metamorphism</td>
</tr>
<tr>
<td>DOE2.2.2.4.1</td>
<td>Contact metamorphism</td>
</tr>
<tr>
<td>DOE2.2.2.4.2</td>
<td>Regional metamorphism</td>
</tr>
<tr>
<td>DOE2.2.2.4.3</td>
<td>Dislocation metamorphism</td>
</tr>
<tr>
<td>DOE2.2.4</td>
<td>Diagenesis</td>
</tr>
<tr>
<td>DOE2.2.5</td>
<td>Diapirs</td>
</tr>
<tr>
<td>DOE2.2.6</td>
<td>Seismic</td>
</tr>
<tr>
<td>DOE2.2.6.1</td>
<td>Repository-induced seismicity</td>
</tr>
<tr>
<td>DOE2.2.6.2</td>
<td>Externally-induced seismicity</td>
</tr>
<tr>
<td>DOE2.2.6.3</td>
<td>Natural seismicity</td>
</tr>
<tr>
<td>DOE2.2.6.4</td>
<td>Faulting/faulting: activation</td>
</tr>
<tr>
<td>DOE2.2.7.1</td>
<td>Faulting/faulting: generation</td>
</tr>
<tr>
<td>DOE2.2.7.2</td>
<td>Faulting/faulting: change of properties</td>
</tr>
<tr>
<td>DOE2.2.8</td>
<td>Major incision</td>
</tr>
<tr>
<td>DOE2.2.9</td>
<td>Weathering</td>
</tr>
<tr>
<td>DOE2.2.10</td>
<td>Effects of natural gases</td>
</tr>
<tr>
<td>DOE2.2.11</td>
<td>Geothermal effects</td>
</tr>
<tr>
<td>DOE2.3.1</td>
<td>Variation in groundwater recharge</td>
</tr>
<tr>
<td>DOE2.3.2</td>
<td>Groundwater losses (direct evapotranspiration, spring flow)</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>DOE2.3.3.1</td>
<td>Rock property changes: Porosity</td>
</tr>
<tr>
<td>DOE2.3.3.2</td>
<td>Rock property changes: Permeability</td>
</tr>
<tr>
<td>DOE2.3.3.3</td>
<td>Rock property changes: Microbial pore blocking</td>
</tr>
<tr>
<td>DOE2.3.3.4</td>
<td>Rock property changes: Channel formation/closure</td>
</tr>
<tr>
<td>DOE2.3.4.1</td>
<td>Groundwater flow: Darcy</td>
</tr>
<tr>
<td>DOE2.3.4.2</td>
<td>Groundwater flow: Non-Darcy</td>
</tr>
<tr>
<td>DOE2.3.4.3</td>
<td>Groundwater flow: Intergranular (matrix)</td>
</tr>
<tr>
<td>DOE2.3.4.4</td>
<td>Groundwater flow: Fracture</td>
</tr>
<tr>
<td>DOE2.3.4.5</td>
<td>Groundwater flow: Effects of solution channels</td>
</tr>
<tr>
<td>DOE2.3.4.6</td>
<td>Inorganic colloid transport: Porous media</td>
</tr>
<tr>
<td>DOE2.3.5.1</td>
<td>Inorganic colloid transport: Fractured media</td>
</tr>
<tr>
<td>DOE2.3.5.2</td>
<td>Inorganic colloid transport: Effects of pH and Eh</td>
</tr>
<tr>
<td>DOE2.3.5.3</td>
<td>Salinity: implications of evaporite deposits/minerals</td>
</tr>
<tr>
<td>DOE2.3.6.1</td>
<td>Variations in groundwater temperature</td>
</tr>
<tr>
<td>DOE2.4.1.1</td>
<td>Advection</td>
</tr>
<tr>
<td>DOE2.4.2.1</td>
<td>Diffusion</td>
</tr>
<tr>
<td>DOE2.4.2.2</td>
<td>Matrix diffusion</td>
</tr>
<tr>
<td>DOE2.4.2.3</td>
<td>Surface diffusion</td>
</tr>
<tr>
<td>DOE2.4.3.1</td>
<td>Hydrodynamic dispersion</td>
</tr>
<tr>
<td>DOE2.4.4.1</td>
<td>Solubility: effects of pH and Eh</td>
</tr>
<tr>
<td>DOE2.4.4.2</td>
<td>Solubility: effects of ionic strength</td>
</tr>
<tr>
<td>DOE2.4.4.3</td>
<td>Solubility: effects of naturally-occurring complexing agents</td>
</tr>
<tr>
<td>DOE2.4.4.4</td>
<td>Solubility: effects of complexing agents formed in the near-field</td>
</tr>
<tr>
<td>DOE2.4.4.5</td>
<td>Solubility: effects of naturally-occurring colloids</td>
</tr>
<tr>
<td>DOE2.4.4.6</td>
<td>Solubility: effects of colloids formed in the near-field</td>
</tr>
<tr>
<td>DOE2.4.4.7</td>
<td>Solubility: effects of major ions migrating from the near-field</td>
</tr>
<tr>
<td>DOE2.4.4.8</td>
<td>Solubility: effects of microbial activity</td>
</tr>
<tr>
<td>DOE2.4.5.1</td>
<td>Linear sorption</td>
</tr>
<tr>
<td>DOE2.4.5.2</td>
<td>Non-linear sorption</td>
</tr>
<tr>
<td>DOE2.4.5.3</td>
<td>Reversible sorption</td>
</tr>
<tr>
<td>DOE2.4.5.4</td>
<td>Irreversible sorption</td>
</tr>
<tr>
<td>DOE2.4.5.5</td>
<td>Sorption: Effects of pH and Eh</td>
</tr>
<tr>
<td>DOE2.4.5.6</td>
<td>Sorption: Effects of ionic strength</td>
</tr>
<tr>
<td>DOE2.4.5.7</td>
<td>Sorption: Effects of naturally-occurring organic complexing agents</td>
</tr>
<tr>
<td>DOE2.4.5.8</td>
<td>Sorption: Effects of complexing agents formed in the near-field</td>
</tr>
<tr>
<td>DOE2.4.5.9</td>
<td>Sorption: Effects of naturally-occurring colloids</td>
</tr>
<tr>
<td>DOE2.4.5.10</td>
<td>Sorption: Effects of colloids formed in the near-field</td>
</tr>
<tr>
<td>DOE2.4.5.11</td>
<td>Sorption: Effects of major ions migrating from the near-field</td>
</tr>
<tr>
<td>DOE2.4.5.12</td>
<td>Sorption: Effects of microbial activity</td>
</tr>
<tr>
<td>DOE2.4.6.1</td>
<td>Fracture mineralisation</td>
</tr>
<tr>
<td>DOE2.4.7.1</td>
<td>Organic colloid transport: Porous media</td>
</tr>
<tr>
<td>DOE2.4.7.2</td>
<td>Organic colloid transport in Fractured media</td>
</tr>
<tr>
<td>DOE2.4.7.3</td>
<td>Organic colloid transport: Effects of pH and Eh</td>
</tr>
<tr>
<td>DOE2.4.7.4</td>
<td>Organic colloid transport: Effects of ionic strength</td>
</tr>
<tr>
<td>DOE2.4.8.1</td>
<td>Inorganic colloid transport: Porous media</td>
</tr>
<tr>
<td>DOE2.4.8.2</td>
<td>Inorganic colloid transport: Fractured media</td>
</tr>
<tr>
<td>DOE2.4.8.3</td>
<td>Inorganic colloid transport: Effects of pH and Eh</td>
</tr>
<tr>
<td>DOE2.4.8.4</td>
<td>Inorganic colloid transport: Effects of ionic strength</td>
</tr>
<tr>
<td>DOE2.4.9.1</td>
<td>Transport of radionuclides bound to microbes</td>
</tr>
<tr>
<td>DOE2.4.9.2</td>
<td>Inorganic colloids from ground: solution</td>
</tr>
<tr>
<td>DOE2.4.9.3</td>
<td>Gas transport: gas phase</td>
</tr>
<tr>
<td>DOE2.4.9.4</td>
<td>Gas transport: gas phase</td>
</tr>
<tr>
<td>DOE2.4.9.5</td>
<td>Gas transport: gas phase</td>
</tr>
<tr>
<td>DOE2.4.10</td>
<td>Isotopic dilution</td>
</tr>
<tr>
<td>DOE2.4.11</td>
<td>Isotopic dilution</td>
</tr>
<tr>
<td>DOE2.4.11.1</td>
<td>Isotopic dilution</td>
</tr>
<tr>
<td>DOE2.4.11.2</td>
<td>Isotopic dilution</td>
</tr>
<tr>
<td>DOE2.4.12</td>
<td>Thermally-induced groundwater transport</td>
</tr>
<tr>
<td>DOE2.4.13</td>
<td>Thermally-induced groundwater transport</td>
</tr>
<tr>
<td>DOE2.4.13.1</td>
<td>Thermally-induced groundwater transport</td>
</tr>
<tr>
<td>DOE2.4.13.2</td>
<td>Thermally-induced groundwater transport</td>
</tr>
<tr>
<td>DOE2.4.14</td>
<td>Thermally-induced groundwater transport</td>
</tr>
</tbody>
</table>

PAGE 7
<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE3.1.1.1</td>
<td>Transient greenhouse gas induced warming</td>
</tr>
<tr>
<td>DOE3.1.1.2</td>
<td>Greenhouse-induced Precipitation</td>
</tr>
<tr>
<td>DOE3.1.1.3</td>
<td>Greenhouse-induced Temperature</td>
</tr>
<tr>
<td>DOE3.1.1.4</td>
<td>Greenhouse-induced Sea level rise</td>
</tr>
<tr>
<td>DOE3.1.1.5</td>
<td>Greenhouse-induced Snow cover</td>
</tr>
<tr>
<td>DOE3.1.1.6</td>
<td>Greenhouse-induced Potential evaporation</td>
</tr>
<tr>
<td>DOE3.1.2</td>
<td>Glacial/interglacial cycling</td>
</tr>
<tr>
<td>DOE3.1.2.1</td>
<td>Glacial/interglacial cycling: Precipitation</td>
</tr>
<tr>
<td>DOE3.1.2.2</td>
<td>Glacial/interglacial cycling: Temperature</td>
</tr>
<tr>
<td>DOE3.1.2.3</td>
<td>Glacial/interglacial cycling: Sea level changes (tidefall)</td>
</tr>
<tr>
<td>DOE3.1.2.4</td>
<td>Glacial/interglacial cycling: Storm surges</td>
</tr>
<tr>
<td>DOE3.1.2.5</td>
<td>Glacial/interglacial cycling: Ecological effects</td>
</tr>
<tr>
<td>DOE3.1.2.6</td>
<td>Glacial/interglacial cycling: Seasonally frozen ground</td>
</tr>
<tr>
<td>DOE3.1.2.7</td>
<td>Glacial/interglacial cycling: Permanently frozen ground</td>
</tr>
<tr>
<td>DOE3.1.2.8</td>
<td>Glacial/interglacial cycling: Glaciation</td>
</tr>
<tr>
<td>DOE3.1.2.9</td>
<td>Glacial/interglacial cycling: Deglaciation</td>
</tr>
<tr>
<td>DOE3.1.2.10</td>
<td>Glacial/interglacial cycling: Potential evaporation</td>
</tr>
<tr>
<td>DOE3.1.3.1</td>
<td>Glacial/interglacial exit: greenhouse gas induced</td>
</tr>
<tr>
<td>DOE3.1.3.2</td>
<td>Effects of sea level change</td>
</tr>
<tr>
<td>DOE3.2.1</td>
<td>Generalised denudation</td>
</tr>
<tr>
<td>DOE3.2.1.1</td>
<td>Generalised denudation: Fluvial</td>
</tr>
<tr>
<td>DOE3.2.1.2</td>
<td>Generalised denudation: Aeolian</td>
</tr>
<tr>
<td>DOE3.2.1.3</td>
<td>Generalised denudation: Glacial</td>
</tr>
<tr>
<td>DOE3.2.2</td>
<td>Localised denudation</td>
</tr>
<tr>
<td>DOE3.2.2.1</td>
<td>Localised denudation: Fluvial (valley incision)</td>
</tr>
<tr>
<td>DOE3.2.2.2</td>
<td>Localised denudation: Fluvial (weathering/mass movements)</td>
</tr>
<tr>
<td>DOE3.2.2.3</td>
<td>Localised denudation: Glacial</td>
</tr>
<tr>
<td>DOE3.2.2.4</td>
<td>Localised denudation: Coastal</td>
</tr>
<tr>
<td>DOE3.2.3</td>
<td>Sediment redistribution</td>
</tr>
<tr>
<td>DOE3.2.3.1</td>
<td>Sediment redistribution: Fluvial</td>
</tr>
<tr>
<td>DOE3.2.3.2</td>
<td>Sediment redistribution: Aeolian</td>
</tr>
<tr>
<td>DOE3.2.3.3</td>
<td>Sediment redistribution: Glacial</td>
</tr>
<tr>
<td>DOE3.2.4</td>
<td>Effects of sea level change</td>
</tr>
<tr>
<td>DOE3.2.4.1</td>
<td>River incision/sedimentation due to sea-level change</td>
</tr>
<tr>
<td>DOE3.2.4.2</td>
<td>Coastal erosion due to sea-level change</td>
</tr>
<tr>
<td>DOE3.3.1</td>
<td>Near-surface runoff processes: Overland flow</td>
</tr>
<tr>
<td>DOE3.3.2</td>
<td>Near-surface runoff processes: Interflow</td>
</tr>
<tr>
<td>DOE3.3.2.2</td>
<td>Near-surface runoff processes: Infiltration</td>
</tr>
<tr>
<td>DOE3.3.2.3</td>
<td>Near-surface runoff processes: Percolation</td>
</tr>
<tr>
<td>DOE3.3.2.4</td>
<td>Near-surface runoff processes: Macropore flow</td>
</tr>
<tr>
<td>DOE3.3.2.5</td>
<td>Near-surface runoff processes: Variable source area response</td>
</tr>
<tr>
<td>DOE3.3.3</td>
<td>Groundwater exchange</td>
</tr>
<tr>
<td>DOE3.3.4</td>
<td>Surface flow characteristics (freshwater): Sediment transport</td>
</tr>
<tr>
<td>DOE3.3.4.1</td>
<td>Surface flow characteristics (freshwater): Streamflow</td>
</tr>
<tr>
<td>DOE3.3.4.2</td>
<td>Surface flow characteristics (freshwater): Sediment transport</td>
</tr>
<tr>
<td>DOE3.3.4.3</td>
<td>Surface flow characteristics (freshwater): Meanwer migration or other fluvial response</td>
</tr>
<tr>
<td>DOE3.3.4.4</td>
<td>Surface flow characteristics (freshwater): Lake formation/sedimentation</td>
</tr>
<tr>
<td>DOE3.3.4.5</td>
<td>Surface flow characteristics (freshwater): Effects of sea level change</td>
</tr>
<tr>
<td>DOE3.3.5</td>
<td>Surface flow characteristics (estuarine): Tidal mixing</td>
</tr>
<tr>
<td>DOE3.3.5.1</td>
<td>Surface flow characteristics (estuarine): Tidal mixing</td>
</tr>
<tr>
<td>DOE3.3.5.2</td>
<td>Surface flow characteristics (estuarine): Sediment transport</td>
</tr>
<tr>
<td>DOE3.3.5.3</td>
<td>Surface flow characteristics (estuarine): Successional development</td>
</tr>
<tr>
<td>DOE3.3.5.4</td>
<td>Surface flow characteristics (estuarine): Effects of sea level change</td>
</tr>
<tr>
<td>DOE3.3.6</td>
<td>Coastal waters: Tidal mixing</td>
</tr>
<tr>
<td>DOE3.3.6.1</td>
<td>Coastal waters: Tidal mixing</td>
</tr>
<tr>
<td>DOE3.3.6.2</td>
<td>Coastal waters: Residual current mixing</td>
</tr>
<tr>
<td>DOE3.3.6.3</td>
<td>Coastal waters: Effects of sea level change</td>
</tr>
<tr>
<td>DOE3.3.7</td>
<td>Ocean waters: Water exchange</td>
</tr>
<tr>
<td>DOE3.3.7.1</td>
<td>Ocean waters: Water exchange</td>
</tr>
<tr>
<td>DOE3.3.7.2</td>
<td>Ocean waters: Effects of sea level change</td>
</tr>
<tr>
<td>DOE3.4.1</td>
<td>Terrestrial ecological development: Agricultural systems</td>
</tr>
<tr>
<td>DOE3.4.1.1</td>
<td>Terrestrial ecological development: Agricultural systems</td>
</tr>
<tr>
<td>DOE3.4.1.2</td>
<td>Terrestrial ecological development: Semi-natural systems</td>
</tr>
<tr>
<td>DOE3.4.1.3</td>
<td>Terrestrial ecological development: Natural systems</td>
</tr>
<tr>
<td>DOE3.4.1.4</td>
<td>Terrestrial ecological development: Effects of succession</td>
</tr>
<tr>
<td>DOE3.4.2</td>
<td>Terrestrial ecological development: Estuarine</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>DOE3.4.3</td>
<td>Coastal waters</td>
</tr>
<tr>
<td>DOE3.4.4</td>
<td>Oceans</td>
</tr>
<tr>
<td>DOE3.5.1</td>
<td>Erosion</td>
</tr>
<tr>
<td>DOE3.5.1.1</td>
<td>Erosion: Fluvial</td>
</tr>
<tr>
<td>DOE3.5.1.2</td>
<td>Erosion: Aeolian</td>
</tr>
<tr>
<td>DOE3.5.1.3</td>
<td>Erosion: Glacial</td>
</tr>
<tr>
<td>DOE3.5.1.4</td>
<td>Erosion: Coastal</td>
</tr>
<tr>
<td>DOE3.5.2</td>
<td>Groundwater discharge to soils</td>
</tr>
<tr>
<td>DOE3.5.2.1</td>
<td>Groundwater discharge to soils: Advection</td>
</tr>
<tr>
<td>DOE3.5.2.2</td>
<td>Groundwater discharge to soils: Diffusive</td>
</tr>
<tr>
<td>DOE3.5.2.3</td>
<td>Groundwater discharge to soils: Biotic</td>
</tr>
<tr>
<td>DOE3.5.2.4</td>
<td>Groundwater discharge to soils: Volatilisation</td>
</tr>
<tr>
<td>DOE3.5.3</td>
<td>Groundwater discharge to wells or springs</td>
</tr>
<tr>
<td>DOE3.5.4</td>
<td>Groundwater discharge to freshwaters</td>
</tr>
<tr>
<td>DOE3.5.5</td>
<td>Groundwater discharge to estuaries</td>
</tr>
<tr>
<td>DOE3.5.6</td>
<td>Groundwater discharge to coastal waters</td>
</tr>
<tr>
<td>DOE3.5.7</td>
<td>Surface water bodies: Water flow</td>
</tr>
<tr>
<td>DOE3.5.7.1</td>
<td>Surface water bodies: Water flow</td>
</tr>
<tr>
<td>DOE3.5.7.2</td>
<td>Surface water bodies: Suspended sediments</td>
</tr>
<tr>
<td>DOE3.5.7.3</td>
<td>Surface water bodies: Bottom sediments</td>
</tr>
<tr>
<td>DOE3.5.7.4</td>
<td>Surface water bodies: Effects on vegetation</td>
</tr>
<tr>
<td>DOE3.5.7.5</td>
<td>Surface water bodies: Effects of fluvial system development</td>
</tr>
<tr>
<td>DOE3.5.8</td>
<td>Estuaries</td>
</tr>
<tr>
<td>DOE3.5.8.1</td>
<td>Estuaries: Water flow</td>
</tr>
<tr>
<td>DOE3.5.8.2</td>
<td>Estuaries: Suspended sediments</td>
</tr>
<tr>
<td>DOE3.5.8.3</td>
<td>Estuaries: Bottom sediments</td>
</tr>
<tr>
<td>DOE3.5.8.4</td>
<td>Estuaries: Effects of salinity variation</td>
</tr>
<tr>
<td>DOE3.5.8.5</td>
<td>Estuaries: Effects on vegetation</td>
</tr>
<tr>
<td>DOE3.5.8.6</td>
<td>Estuaries: Effects of estuarine development</td>
</tr>
<tr>
<td>DOE3.5.8.7</td>
<td>Estuaries: Effects of sea-level change</td>
</tr>
<tr>
<td>DOE3.5.9</td>
<td>Coastal waters</td>
</tr>
<tr>
<td>DOE3.5.9.1</td>
<td>Coastal waters: Water transport</td>
</tr>
<tr>
<td>DOE3.5.9.2</td>
<td>Coastal waters: Suspended sediment transport</td>
</tr>
<tr>
<td>DOE3.5.9.3</td>
<td>Coastal waters: Bottom sediment transport</td>
</tr>
<tr>
<td>DOE3.5.9.4</td>
<td>Coastal waters: Effects of sea level change</td>
</tr>
<tr>
<td>DOE3.5.9.5</td>
<td>Coastal waters: Effects of estuarine development</td>
</tr>
<tr>
<td>DOE3.5.9.6</td>
<td>Coastal waters: Effects of coastal erosion</td>
</tr>
<tr>
<td>DOE3.5.9.7</td>
<td>Coastal waters: Effects of sea-level change</td>
</tr>
<tr>
<td>DOE3.5.10</td>
<td>Plants</td>
</tr>
<tr>
<td>DOE3.5.10.1</td>
<td>Plants: Root uptake</td>
</tr>
<tr>
<td>DOE3.5.10.2</td>
<td>Plants: Deposition on surfaces</td>
</tr>
<tr>
<td>DOE3.5.10.3</td>
<td>Plants: Vapor uptake</td>
</tr>
<tr>
<td>DOE3.5.10.4</td>
<td>Plants: Internal translocation and retention</td>
</tr>
<tr>
<td>DOE3.5.10.5</td>
<td>Plants: Washoff and leaching by rainfall</td>
</tr>
<tr>
<td>DOE3.5.10.6</td>
<td>Plants: Leaf fall and senescence</td>
</tr>
<tr>
<td>DOE3.5.10.7</td>
<td>Plants: Cycling processes</td>
</tr>
<tr>
<td>DOE3.5.11</td>
<td>Animals</td>
</tr>
<tr>
<td>DOE3.5.11.1</td>
<td>Animals: Uptake by ingestion</td>
</tr>
<tr>
<td>DOE3.5.11.2</td>
<td>Animals: Uptake by inhalation</td>
</tr>
<tr>
<td>DOE3.5.11.3</td>
<td>Animals: Intestinal translocation and retention</td>
</tr>
<tr>
<td>DOE3.5.11.4</td>
<td>Animals: Cycling processes</td>
</tr>
<tr>
<td>DOE3.5.11.5</td>
<td>Animals: Effects of relocation and migration</td>
</tr>
<tr>
<td>DOE3.6.1</td>
<td>External exposure</td>
</tr>
<tr>
<td>DOE3.6.1.1</td>
<td>External exposure: Land</td>
</tr>
<tr>
<td>DOE3.6.1.2</td>
<td>External exposure: Sediments</td>
</tr>
<tr>
<td>DOE3.6.1.3</td>
<td>External exposure: Water bodies</td>
</tr>
<tr>
<td>DOE3.6.2</td>
<td>Ingestion</td>
</tr>
<tr>
<td>DOE3.6.2.1</td>
<td>Ingestion and Drinking water</td>
</tr>
<tr>
<td>DOE3.6.2.2</td>
<td>Ingestion and Agricultural crops</td>
</tr>
<tr>
<td>DOE3.6.2.3</td>
<td>Ingestion and Domestic animal products</td>
</tr>
<tr>
<td>DOE3.6.2.4</td>
<td>Ingestion and Wild plants</td>
</tr>
<tr>
<td>DOE3.6.2.5</td>
<td>Ingestion and Wild animals</td>
</tr>
<tr>
<td>DOE3.6.2.6</td>
<td>Ingestion and Soils and sediments</td>
</tr>
<tr>
<td>DOE3.6.3</td>
<td>Inhalation</td>
</tr>
<tr>
<td>DOE3.6.3.1</td>
<td>Inhalation and Soils and sediments</td>
</tr>
<tr>
<td>DOE3.6.3.2</td>
<td>Inhalation and Gases and vapours (indoor)</td>
</tr>
<tr>
<td>DOE3.6.3.3</td>
<td>Inhalation and Gases and vapours (outdoor)</td>
</tr>
<tr>
<td>DOE3.6.3.4</td>
<td>Inhalation and Biotic material</td>
</tr>
<tr>
<td>DOE3.6.3.5</td>
<td>Inhalation and Salt particles</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>DOE4.1.1</td>
<td>Investigation borehole seal</td>
</tr>
<tr>
<td>DOE4.1.1.1</td>
<td>Borehole seal failure</td>
</tr>
<tr>
<td>DOE4.1.1.2</td>
<td>Borehole seal degradation</td>
</tr>
<tr>
<td>DOE4.1.2.1</td>
<td>Shaft or access tunnel seal</td>
</tr>
<tr>
<td>DOE4.1.2.2</td>
<td>Shaft/tunnel seal degradation</td>
</tr>
<tr>
<td>DOE4.1.2</td>
<td>Subsidence</td>
</tr>
<tr>
<td>DOE4.1.3.1</td>
<td>Subsidence and fault/fracture induction</td>
</tr>
<tr>
<td>DOE4.2.1.1</td>
<td>Deliberate recovery of wastes or associated materials</td>
</tr>
<tr>
<td>DOE4.2.2</td>
<td>Malicious intrusion</td>
</tr>
<tr>
<td>DOE4.2.3</td>
<td>Explosive drilling</td>
</tr>
<tr>
<td>DOE4.2.4</td>
<td>Explosive drilling</td>
</tr>
<tr>
<td>DOE4.2.5</td>
<td>Geothermal energy production</td>
</tr>
<tr>
<td>DOE4.2.6</td>
<td>Resource mining</td>
</tr>
<tr>
<td>DOE4.2.7</td>
<td>Tunnelling</td>
</tr>
<tr>
<td>DOE4.2.8</td>
<td>Construction of underground storage/disposal facilities</td>
</tr>
<tr>
<td>DOE4.2.9</td>
<td>Construction of underground dwellings/shelters</td>
</tr>
<tr>
<td>DOE4.2.10</td>
<td>Archaeological investigations</td>
</tr>
<tr>
<td>DOE4.2.11</td>
<td>Injection of liquid wastes</td>
</tr>
<tr>
<td>DOE4.2.12</td>
<td>Groundwater abstraction</td>
</tr>
<tr>
<td>DOE4.2.13</td>
<td>Underground weapons testing</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>IAEA1.1</td>
<td>Climatic change</td>
</tr>
<tr>
<td>IAEA1.2</td>
<td>Hydrological change</td>
</tr>
<tr>
<td>IAEA1.3</td>
<td>Sea level change</td>
</tr>
<tr>
<td>IAEA1.4</td>
<td>Denudation</td>
</tr>
<tr>
<td>IAEA1.5</td>
<td>Stream erosion</td>
</tr>
<tr>
<td>IAEA1.6</td>
<td>Glacial erosion</td>
</tr>
<tr>
<td>IAEA1.7</td>
<td>Flooding</td>
</tr>
<tr>
<td>IAEA1.8</td>
<td>Sedimentation</td>
</tr>
<tr>
<td>IAEA1.9</td>
<td>Diagenesis</td>
</tr>
<tr>
<td>IAEA1.10</td>
<td>Diapirism</td>
</tr>
<tr>
<td>IAEA1.11</td>
<td>Faulting/seismicity</td>
</tr>
<tr>
<td>IAEA1.12</td>
<td>Geochronal change</td>
</tr>
<tr>
<td>IAEA1.13.1</td>
<td>Fluid interactions: Groundwater flow</td>
</tr>
<tr>
<td>IAEA1.13.2</td>
<td>Fluid interactions: Dissolution</td>
</tr>
<tr>
<td>IAEA1.13.3</td>
<td>Fluid interactions: Brine pockets</td>
</tr>
<tr>
<td>IAEA1.14.1</td>
<td>Uplift/Subsidence: Orogenic</td>
</tr>
<tr>
<td>IAEA1.14.2</td>
<td>Uplift/Subsidence: Epigenetic</td>
</tr>
<tr>
<td>IAEA1.14.3</td>
<td>Uplift/Subsidence: Isostatic</td>
</tr>
<tr>
<td>IAEA1.15.1</td>
<td>Undetected features: Faults, shear zones</td>
</tr>
<tr>
<td>IAEA1.15.2</td>
<td>Undetected features: Breccia pipes</td>
</tr>
<tr>
<td>IAEA1.15.3</td>
<td>Undetected features: Lava tubes</td>
</tr>
<tr>
<td>IAEA1.15.4</td>
<td>Undetected features: Intrusive dykes</td>
</tr>
<tr>
<td>IAEA1.15.5</td>
<td>Undetected features: Gas or brine pockets</td>
</tr>
<tr>
<td>IAEA1.16.1</td>
<td>Magmatic activity: Extrusive</td>
</tr>
<tr>
<td>IAEA1.17</td>
<td>Meteorite impact</td>
</tr>
<tr>
<td>IAEA2.1.1</td>
<td>Undetected past intrusion: Boreholes</td>
</tr>
<tr>
<td>IAEA2.1.2</td>
<td>Undetected past intrusion: Mine shafts</td>
</tr>
<tr>
<td>IAEA2.2.1</td>
<td>Inadequate design: Shaft seal failure</td>
</tr>
<tr>
<td>IAEA2.2.2</td>
<td>Inadequate design: Exploration borehole seal failure</td>
</tr>
<tr>
<td>IAEA2.3</td>
<td>Improper operation: Improper waste emplacement</td>
</tr>
<tr>
<td>IAEA2.4.1</td>
<td>Transport agent introduction: Irrigation</td>
</tr>
<tr>
<td>IAEA2.4.2</td>
<td>Transport agent introduction: Reservoirs</td>
</tr>
<tr>
<td>IAEA2.4.3</td>
<td>Transport agent introduction: Intentional artificial groundwater recharge or withdrawal</td>
</tr>
<tr>
<td>IAEA2.4.4</td>
<td>Transport agent introduction: Chemical liquid waste disposal</td>
</tr>
<tr>
<td>IAEA2.5</td>
<td>Climatic change (including climatic control)</td>
</tr>
<tr>
<td>IAEA2.6</td>
<td>Large-scale hydrological change</td>
</tr>
<tr>
<td>IAEA2.7.1</td>
<td>Intentional intrusion: War</td>
</tr>
<tr>
<td>IAEA2.7.2</td>
<td>Intentional intrusion: Sabotage</td>
</tr>
<tr>
<td>IAEA2.7.3</td>
<td>Intentional intrusion: Waste recovery</td>
</tr>
<tr>
<td>IAEA2.8.1</td>
<td>Inadvertent future intrusion: Exploratory drilling</td>
</tr>
<tr>
<td>IAEA2.8.2</td>
<td>Inadvertent future intrusion: Archaeological exhumation</td>
</tr>
<tr>
<td>IAEA2.8.3</td>
<td>Inadvertent future intrusion: Resource mining (mineral, water, hydrocarbon, geothermal, salt, etc.)</td>
</tr>
<tr>
<td>IAEA3.1.1</td>
<td>Thermal effects: Differential elastic response</td>
</tr>
<tr>
<td>IAEA3.1.2</td>
<td>Thermal effects: Non-elastic response</td>
</tr>
<tr>
<td>IAEA3.1.3</td>
<td>Thermal effects: Fluid pressure, density, viscosity changes</td>
</tr>
<tr>
<td>IAEA3.1.4</td>
<td>Thermal effects: Fluid migration</td>
</tr>
<tr>
<td>IAEA3.2.1</td>
<td>Chemical effects: Corrosion</td>
</tr>
<tr>
<td>IAEA3.2.2</td>
<td>Chemical effects: Interactions of waste package and rock</td>
</tr>
<tr>
<td>IAEA3.2.3</td>
<td>Chemical effects: Gas generation</td>
</tr>
<tr>
<td>IAEA3.2.4</td>
<td>Chemical effects: Geothermal change</td>
</tr>
<tr>
<td>IAEA3.3.1</td>
<td>Mechanical effects: Canister movement</td>
</tr>
<tr>
<td>IAEA3.3.2</td>
<td>Mechanical effects: Local fracturing</td>
</tr>
<tr>
<td>IAEA3.4.1</td>
<td>Radiological effects: Material property changes</td>
</tr>
<tr>
<td>IAEA3.4.2</td>
<td>Radiological effects: radioysis</td>
</tr>
<tr>
<td>IAEA3.4.3</td>
<td>Radiological effects: Decay product gas generation</td>
</tr>
<tr>
<td>IAEA3.4.4</td>
<td>Radiological effects: Nuclear criticality</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>PGA1.1</td>
<td>Climate changes</td>
</tr>
<tr>
<td>PGA1.2</td>
<td>Sea-level changes</td>
</tr>
<tr>
<td>PGA1.3</td>
<td>Erosion (fluvial and glacial)</td>
</tr>
<tr>
<td>PGA1.4</td>
<td>Sedimentation</td>
</tr>
<tr>
<td>PGA1.5</td>
<td>Tectonic crustal movements</td>
</tr>
<tr>
<td>PGA1.6</td>
<td>Magma intrusion</td>
</tr>
<tr>
<td>PGA1.7</td>
<td>Volcanism</td>
</tr>
<tr>
<td>PGA1.8</td>
<td>Diapirism</td>
</tr>
<tr>
<td>PGA1.9</td>
<td>Diagenesis</td>
</tr>
<tr>
<td>PGA1.10</td>
<td>Metamorphism</td>
</tr>
<tr>
<td>PGA1.11</td>
<td>Weathering, mineralisation</td>
</tr>
<tr>
<td>PGA1.12</td>
<td>Groundwater changes</td>
</tr>
<tr>
<td>PGA2.1</td>
<td>Earthquakes</td>
</tr>
<tr>
<td>PGA2.2</td>
<td>Volcanic eruption</td>
</tr>
<tr>
<td>PGA2.3</td>
<td>Meteor impact</td>
</tr>
<tr>
<td>PGA2.4</td>
<td>Flooding with extreme erosion</td>
</tr>
<tr>
<td>PGA2.5</td>
<td>Hurricane, storms</td>
</tr>
<tr>
<td>PGA2.6</td>
<td>Movements at faults</td>
</tr>
<tr>
<td>PGA2.7</td>
<td>Formation of new faults</td>
</tr>
<tr>
<td>PGA3.1</td>
<td>Radiation damage of the matrix</td>
</tr>
<tr>
<td>PGA3.2</td>
<td>Radionics</td>
</tr>
<tr>
<td>PGA3.3</td>
<td>Nuclear criticality</td>
</tr>
<tr>
<td>PGA3.4</td>
<td>Canister movement in backfill</td>
</tr>
<tr>
<td>PGA3.5</td>
<td>Decompressed zones from mining</td>
</tr>
<tr>
<td>PGA3.6</td>
<td>Mechanical canister damage</td>
</tr>
<tr>
<td>PGA3.7.1</td>
<td>Differing thermal expansion of glass matrix and canister</td>
</tr>
<tr>
<td>PGA3.7.2</td>
<td>Differing thermal expansion of canister and backfill</td>
</tr>
<tr>
<td>PGA3.7.3</td>
<td>Differing thermal expansion of backfill and host rock</td>
</tr>
<tr>
<td>PGA3.7.4</td>
<td>Differing thermal expansion of host rock zones</td>
</tr>
<tr>
<td>PGA3.8</td>
<td>Thermal convection</td>
</tr>
<tr>
<td>PGA3.9</td>
<td>Thermally induced chemical changes</td>
</tr>
<tr>
<td>PGA3.10</td>
<td>Chemical changes due to corrosion</td>
</tr>
<tr>
<td>PGA3.11</td>
<td>Drying out and re-saturation</td>
</tr>
<tr>
<td>PGA3.12.1</td>
<td>Geochemical changes in backfill</td>
</tr>
<tr>
<td>PGA3.12.2</td>
<td>Geochemical changes in host rock</td>
</tr>
<tr>
<td>PGA3.13</td>
<td>Physico-chemical phenomena/effects (e.g. colloid formation)</td>
</tr>
<tr>
<td>PGA3.14</td>
<td>Microbiological phenomena/effects</td>
</tr>
<tr>
<td>PGA3.15</td>
<td>Gas production</td>
</tr>
<tr>
<td>PGA3.16</td>
<td>Failure of shaft sealing</td>
</tr>
<tr>
<td>PGA4.1</td>
<td>Direct alterations in hydrogeology</td>
</tr>
<tr>
<td>PGA4.2</td>
<td>Injection of liquid waste</td>
</tr>
<tr>
<td>PGA4.3.1</td>
<td>Drilling: in sediments</td>
</tr>
<tr>
<td>PGA4.3.2</td>
<td>Drilling: in host rock</td>
</tr>
<tr>
<td>PGA4.4</td>
<td>Geothermal energy production in crystalline rock</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>SK1.1.1</td>
<td>Criticality</td>
</tr>
<tr>
<td>SK1.1.2</td>
<td>Radioactive decay, heat</td>
</tr>
<tr>
<td>SK1.1.3</td>
<td>Recoil of alpha-decay</td>
</tr>
<tr>
<td>SK1.1.4</td>
<td>Gas generation, He production</td>
</tr>
<tr>
<td>SKH.2.1</td>
<td>Radiolysis</td>
</tr>
<tr>
<td>SKH.2.2</td>
<td>H2/O2 explosions</td>
</tr>
<tr>
<td>SKH.2.3</td>
<td>Pb-1 reactions</td>
</tr>
<tr>
<td>SKH.2.4</td>
<td>Gas generation</td>
</tr>
<tr>
<td>SKH.2.5</td>
<td>Co-migration to glass surface</td>
</tr>
<tr>
<td>SKH.2.6</td>
<td>Solubility within fuel matrix</td>
</tr>
<tr>
<td>SKH.2.7</td>
<td>Recrystallization</td>
</tr>
<tr>
<td>SKH.2.8</td>
<td>Redox potential</td>
</tr>
<tr>
<td>SKH.2.9</td>
<td>Dissolution chemistry</td>
</tr>
<tr>
<td>SK1.3</td>
<td>Damaged or deviating fuel</td>
</tr>
<tr>
<td>SK1.4</td>
<td>Sudden energy release</td>
</tr>
<tr>
<td>SK1.5</td>
<td>Release of radionuclides from the failed canister</td>
</tr>
<tr>
<td>SK2.1.1</td>
<td>Chemical reactions (copper corrosion)</td>
</tr>
<tr>
<td>SK2.1.2</td>
<td>Coupled effects (electrophoresis)</td>
</tr>
<tr>
<td>SK2.1.3</td>
<td>Internal corrosion due to waste</td>
</tr>
<tr>
<td>SK2.1.4</td>
<td>Role of the eventual channeling within the canister</td>
</tr>
<tr>
<td>SK2.1.5</td>
<td>Role of chlorides in copper corrosion</td>
</tr>
<tr>
<td>SK2.1.6.1</td>
<td>Repository induced Pd/Cu electrochemical reactions</td>
</tr>
<tr>
<td>SK2.1.6.2</td>
<td>Natural telluric electrochemical reactions</td>
</tr>
<tr>
<td>SK2.1.7</td>
<td>Pitting</td>
</tr>
<tr>
<td>SK2.1.8</td>
<td>Corrosive agents, Sulphides, oxygen etc</td>
</tr>
<tr>
<td>SK2.1.9</td>
<td>Backfill effects on Cu corrosion</td>
</tr>
<tr>
<td>SK2.1.10</td>
<td>Microbes</td>
</tr>
<tr>
<td>SK2.2</td>
<td>Creeping of copper</td>
</tr>
<tr>
<td>SK2.3.1</td>
<td>Thermal cracking</td>
</tr>
<tr>
<td>SK2.3.2</td>
<td>Electro-chemical cracking</td>
</tr>
<tr>
<td>SK2.3.3</td>
<td>Stress corrosion cracking</td>
</tr>
<tr>
<td>SK2.3.4</td>
<td>Loss of ductility</td>
</tr>
<tr>
<td>SK2.3.5</td>
<td>Radiation effects on canister</td>
</tr>
<tr>
<td>SK2.3.6</td>
<td>Cracking along welds</td>
</tr>
<tr>
<td>SK2.3.7.1</td>
<td>External stress</td>
</tr>
<tr>
<td>SK2.3.7.2</td>
<td>Hydrostatic pressure on canister</td>
</tr>
<tr>
<td>SK2.3.8</td>
<td>Internal pressure</td>
</tr>
<tr>
<td>SK2.4</td>
<td>Voids in the lead filling</td>
</tr>
<tr>
<td>SK2.5.1</td>
<td>Random canister defects - quality control</td>
</tr>
<tr>
<td>SK2.5.2</td>
<td>Common cause canister defects - quality control</td>
</tr>
<tr>
<td>SK3.1.1</td>
<td>Degradation of the bentonite by chemical reactions</td>
</tr>
<tr>
<td>SK3.1.2</td>
<td>Saturation of sorption sites</td>
</tr>
<tr>
<td>SK3.1.3</td>
<td>Effects of bentonite on groundwater chemistry</td>
</tr>
<tr>
<td>SK3.1.4</td>
<td>Colloid generation - source</td>
</tr>
<tr>
<td>SK3.1.5</td>
<td>Coagulation of bentonite</td>
</tr>
<tr>
<td>SK3.1.6</td>
<td>Sedimentation of bentonite</td>
</tr>
<tr>
<td>SK3.1.7</td>
<td>Reactions with cement pore water</td>
</tr>
<tr>
<td>SK3.1.8</td>
<td>Near field buffer chemistry</td>
</tr>
<tr>
<td>SK3.1.9</td>
<td>Radiolysis</td>
</tr>
<tr>
<td>SK3.1.10</td>
<td>Interactions with corrosion products and waste</td>
</tr>
<tr>
<td>SK3.1.11</td>
<td>Redox front</td>
</tr>
<tr>
<td>SK3.1.12</td>
<td>Perturbed buffer material chemistry</td>
</tr>
<tr>
<td>SK3.1.13</td>
<td>Radiation effects on bentonite</td>
</tr>
<tr>
<td>SK3.2.1</td>
<td>[NO ENTRY]</td>
</tr>
<tr>
<td>SK3.2.1.1</td>
<td>Swelling of bentonite into tunnels and cracks</td>
</tr>
<tr>
<td>SK3.2.1.2</td>
<td>Uneven swelling of bentonite</td>
</tr>
<tr>
<td>SK3.2.2</td>
<td>Movement of canister in buffer/backfill</td>
</tr>
<tr>
<td>SK3.2.3</td>
<td>Thermal failure of buffer/backfill</td>
</tr>
<tr>
<td>SK3.2.4</td>
<td>Erosion of buffer/backfill</td>
</tr>
<tr>
<td>SK3.2.5</td>
<td>Thermal effects on the buffer material</td>
</tr>
<tr>
<td>SK3.2.6</td>
<td>Diffusion - surface diffusion</td>
</tr>
<tr>
<td>SK3.2.7</td>
<td>Swelling of corrosion products</td>
</tr>
<tr>
<td>SK3.2.8</td>
<td>Preferential pathways in the buffer/backfill</td>
</tr>
<tr>
<td>SK3.2.9</td>
<td>Flow through buffer/backfill</td>
</tr>
<tr>
<td>SK3.2.10</td>
<td>Soret effect</td>
</tr>
<tr>
<td>SK3.2.11</td>
<td>Backfill material deficiencies</td>
</tr>
<tr>
<td>SK3.2.12</td>
<td>Gas transport in bentonite</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>SK4.1.1</td>
<td>Cooling conditions</td>
</tr>
<tr>
<td>SK4.1.2</td>
<td>pH-deviations</td>
</tr>
<tr>
<td>SK4.1.3</td>
<td>Colloids, complexing agents</td>
</tr>
<tr>
<td>SK4.1.4</td>
<td>Sorption</td>
</tr>
<tr>
<td>SK4.1.5</td>
<td>Matrix diffusion</td>
</tr>
<tr>
<td>SK4.1.6</td>
<td>Recompression</td>
</tr>
<tr>
<td>SK4.1.7</td>
<td>Thermochemical changes</td>
</tr>
<tr>
<td>SK4.1.8</td>
<td>Change of groundwater chemistry in nearby rock</td>
</tr>
<tr>
<td>SK4.1.9</td>
<td>Complexing agents</td>
</tr>
<tr>
<td>SK4.2.1</td>
<td>Mechanical failure of repository</td>
</tr>
<tr>
<td>SK4.2.2</td>
<td>[ENTRY]</td>
</tr>
<tr>
<td>SK4.2.2.1</td>
<td>Excavation/backfilling effects on nearby rock</td>
</tr>
<tr>
<td>SK4.2.2.2</td>
<td>Hydraulic conductivity change - Excavation/backfilling effect</td>
</tr>
<tr>
<td>SK4.2.2.3</td>
<td>Mechanical effects - Excavation/backfilling effects</td>
</tr>
<tr>
<td>SK4.2.3</td>
<td>Extreme channel flow of oxides and nuclides</td>
</tr>
<tr>
<td>SK4.2.4</td>
<td>Thermal buoyancy</td>
</tr>
<tr>
<td>SK4.2.5</td>
<td>Changes of groundwater flow</td>
</tr>
<tr>
<td>SK4.2.6</td>
<td>Faulting</td>
</tr>
<tr>
<td>SK4.2.7</td>
<td>Thermo-hydro-mechanical effects</td>
</tr>
<tr>
<td>SK4.2.8</td>
<td>Enhanced rock fracturing</td>
</tr>
<tr>
<td>SK4.2.9</td>
<td>Creeping of rock mass</td>
</tr>
<tr>
<td>SK4.2.10</td>
<td>Chemical effects of rock reinforcement</td>
</tr>
<tr>
<td>SK5.1</td>
<td>Saline or fresh groundwater intrusion</td>
</tr>
<tr>
<td>SK5.2</td>
<td>Near-sealed repository</td>
</tr>
<tr>
<td>SK5.3</td>
<td>Stray materials left</td>
</tr>
<tr>
<td>SK5.4</td>
<td>Decontamination materials left</td>
</tr>
<tr>
<td>SK5.5</td>
<td>Chemical sabotage</td>
</tr>
<tr>
<td>SK5.6</td>
<td>Co-storage of other waste</td>
</tr>
<tr>
<td>SK5.7</td>
<td>Poorly designed repository</td>
</tr>
<tr>
<td>SK5.8</td>
<td>Poorly constructed repository</td>
</tr>
<tr>
<td>SK5.9</td>
<td>Unsealed boreholes and/or shafts</td>
</tr>
<tr>
<td>SK5.10</td>
<td>Accidents during operation</td>
</tr>
<tr>
<td>SK5.11</td>
<td>Degradation of hole- and shaft seals</td>
</tr>
<tr>
<td>SK5.12</td>
<td>Near storage of other waste</td>
</tr>
<tr>
<td>SK5.13</td>
<td>Volcanism</td>
</tr>
<tr>
<td>SK5.14</td>
<td>Saturation</td>
</tr>
<tr>
<td>SK5.15</td>
<td>Earthquakes</td>
</tr>
<tr>
<td>SK5.16</td>
<td>Uplift and subsidence</td>
</tr>
<tr>
<td>SK5.17</td>
<td>Permafrost</td>
</tr>
<tr>
<td>SK5.18</td>
<td>Artficial groundwater flow</td>
</tr>
<tr>
<td>SK5.19</td>
<td>Effect of plate movements</td>
</tr>
<tr>
<td>SK5.20</td>
<td>Changes of the magnetic field</td>
</tr>
<tr>
<td>SK5.21</td>
<td>Future boreholes and undetected past boreholes</td>
</tr>
<tr>
<td>SK5.22</td>
<td>Accumulation of gases under permafrost</td>
</tr>
<tr>
<td>SK5.23</td>
<td>Changed hydrostatic pressure on eartheart</td>
</tr>
<tr>
<td>SK5.24</td>
<td>Stress changes of conductivity</td>
</tr>
<tr>
<td>SK5.25</td>
<td>Dissolution of fracture fillings/precipitations</td>
</tr>
<tr>
<td>SK5.26</td>
<td>Erosion on surface/sediments</td>
</tr>
<tr>
<td>SK5.27</td>
<td>Human induced actions on groundwater recharge</td>
</tr>
<tr>
<td>SK5.28</td>
<td>Underground dwellings</td>
</tr>
<tr>
<td>SK5.29</td>
<td>Meteorite</td>
</tr>
<tr>
<td>SK5.30</td>
<td>Underground test of nuclear devices</td>
</tr>
<tr>
<td>SK5.31</td>
<td>Change in sea level</td>
</tr>
<tr>
<td>SK5.32</td>
<td>Desert and desertification</td>
</tr>
<tr>
<td>SK5.33</td>
<td>Waste removal, mining</td>
</tr>
<tr>
<td>SK5.34</td>
<td>Geothermal energy production</td>
</tr>
<tr>
<td>SK5.35</td>
<td>Other future uses of crystalline rock</td>
</tr>
<tr>
<td>SK5.36</td>
<td>Reuse of boreholes</td>
</tr>
<tr>
<td>SK5.37</td>
<td>Archaeological intrusion</td>
</tr>
<tr>
<td>SK5.38</td>
<td>Explosions</td>
</tr>
<tr>
<td>SK5.39</td>
<td>Postclosure monitoring</td>
</tr>
<tr>
<td>SK5.40</td>
<td>Unsuccessful attempt of site improvement</td>
</tr>
<tr>
<td>SK5.41</td>
<td>Water producing wells</td>
</tr>
<tr>
<td>SK5.42</td>
<td>Glaciation</td>
</tr>
<tr>
<td>SK5.43</td>
<td>Methane intrusion</td>
</tr>
<tr>
<td>SK5.44</td>
<td>Solubility and precipitation</td>
</tr>
<tr>
<td>SK5.45</td>
<td>Colloid generation and transport</td>
</tr>
<tr>
<td>SK5.46</td>
<td>Groundwater recharge/discharge</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>SK06.1</td>
<td>Undetected fracture zones</td>
</tr>
<tr>
<td>SK06.2</td>
<td>Gas transport</td>
</tr>
<tr>
<td>SK06.3</td>
<td>Far field hydrochemistry - acids, oxidants, nitrate</td>
</tr>
<tr>
<td>SK06.4</td>
<td>Dispersion</td>
</tr>
<tr>
<td>SK06.5</td>
<td>Dilution</td>
</tr>
<tr>
<td>SK06.6</td>
<td>Weathering of low paths</td>
</tr>
<tr>
<td>SK06.7</td>
<td>Nuclear war</td>
</tr>
<tr>
<td>SK06.8</td>
<td>Human induced climate change</td>
</tr>
<tr>
<td>SK06.9</td>
<td>River meandering</td>
</tr>
<tr>
<td>SK06.10</td>
<td>No ice age</td>
</tr>
<tr>
<td>SK06.11</td>
<td>Intruding dykes</td>
</tr>
<tr>
<td>SK06.12</td>
<td>Undetected discontinuities</td>
</tr>
<tr>
<td>SK06.13</td>
<td>Geothermally induced flow</td>
</tr>
<tr>
<td>SK06.14</td>
<td>Tectonic activity - large scale</td>
</tr>
<tr>
<td>SK07.1</td>
<td>Accumulation in sediments</td>
</tr>
<tr>
<td>SK07.2</td>
<td>Accumulation in peat</td>
</tr>
<tr>
<td>SK07.3</td>
<td>Intrusion in accumulation zone in the biosphere</td>
</tr>
<tr>
<td>SK07.4</td>
<td>Chemical toxicity of wastes</td>
</tr>
<tr>
<td>SK07.5</td>
<td>Isotopic dilution</td>
</tr>
<tr>
<td>SK07.6</td>
<td>[NO ENTRY]</td>
</tr>
<tr>
<td>SK07.7</td>
<td>Human induced changes in surface hydrology</td>
</tr>
<tr>
<td>SK07.8</td>
<td>Altered surface water chemistry by humans</td>
</tr>
<tr>
<td>SK07.9</td>
<td>Loss of records</td>
</tr>
<tr>
<td>SK07.10</td>
<td>Diagenesis</td>
</tr>
<tr>
<td>SK07.11</td>
<td>City on the site</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>SNL1.1</td>
<td>Meteorite Impact</td>
</tr>
<tr>
<td>SNL2.1</td>
<td>Erosion/Sedimentation</td>
</tr>
<tr>
<td>SNL2.2</td>
<td>Glaciation</td>
</tr>
<tr>
<td>SNL2.3</td>
<td>Pliovial Periods</td>
</tr>
<tr>
<td>SNL2.4</td>
<td>Sea-Level Variations</td>
</tr>
<tr>
<td>SNL2.5</td>
<td>Hurricanes</td>
</tr>
<tr>
<td>SNL2.6</td>
<td>Seiches</td>
</tr>
<tr>
<td>SNL2.7</td>
<td>Tsunamis</td>
</tr>
<tr>
<td>SNL2.8</td>
<td>Regional Subsidence or Uplift (also applies to subsurface)</td>
</tr>
<tr>
<td>SNL2.9</td>
<td>Mass Wasting</td>
</tr>
<tr>
<td>SNL2.10</td>
<td>Flooding</td>
</tr>
<tr>
<td>SNL3.1</td>
<td>Diapirs</td>
</tr>
<tr>
<td>SNL3.2</td>
<td>Seismic Activity</td>
</tr>
<tr>
<td>SNL3.3</td>
<td>Volcanic Activity</td>
</tr>
<tr>
<td>SNL3.4</td>
<td>Magmatic Activity</td>
</tr>
<tr>
<td>SNL3.5</td>
<td>Formation of Desolation Canyons</td>
</tr>
<tr>
<td>SNL3.6</td>
<td>Formation of Interconnected Fracture Systems</td>
</tr>
<tr>
<td>SNL3.7</td>
<td>Faulting</td>
</tr>
<tr>
<td>SNL4.1</td>
<td>Inadvertent Intrusions: Explosions</td>
</tr>
<tr>
<td>SNL4.2</td>
<td>Inadvertent Intrusions: Drilling</td>
</tr>
<tr>
<td>SNL4.3</td>
<td>Inadvertent Intrusions: Mining</td>
</tr>
<tr>
<td>SNL4.4</td>
<td>Inadvertent Intrusions: Injection Wells</td>
</tr>
<tr>
<td>SNL4.5</td>
<td>Inadvertent Intrusions: Withdrawal Wells</td>
</tr>
<tr>
<td>SNL5.1</td>
<td>Hydrologic Stresses: Irrigation</td>
</tr>
<tr>
<td>SNL5.2</td>
<td>Hydrologic Stresses: Dewatering of Streams or Rivers</td>
</tr>
<tr>
<td>SNL5.3</td>
<td>Subsidence and Caving</td>
</tr>
<tr>
<td>SNL5.4</td>
<td>Shaft and Borehole Seal Degradation</td>
</tr>
<tr>
<td>SNL5.5</td>
<td>Thermally Induced Stress/Fracturing in Heat Rock</td>
</tr>
<tr>
<td>SNL5.6</td>
<td>Excavation-Induced Stress/Fracturing in Heat Rock</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>UKN1.1.1</td>
<td>Meteorite impact</td>
</tr>
<tr>
<td>UKN1.1.2</td>
<td>Solar insolation</td>
</tr>
<tr>
<td>UKN1.2.1</td>
<td>Plate movement/tectonic change</td>
</tr>
<tr>
<td>UKN1.2.2</td>
<td>Changes in the Earth's magnetic field</td>
</tr>
<tr>
<td>UKN1.2.3</td>
<td>Magmatic activity (intrusive, extrusive)</td>
</tr>
<tr>
<td>UKN1.2.4</td>
<td>Metamorphic activity</td>
</tr>
<tr>
<td>UKN1.2.5</td>
<td>Diagenesis</td>
</tr>
<tr>
<td>UKN1.2.6</td>
<td>Uplift and subsidence (e.g., orogenic, isostatic)</td>
</tr>
<tr>
<td>UKN1.2.7</td>
<td>Diapirism</td>
</tr>
<tr>
<td>UKN1.2.8</td>
<td>Seismicity</td>
</tr>
<tr>
<td>UKN1.2.9</td>
<td>Fault activation</td>
</tr>
<tr>
<td>UKN1.2.10</td>
<td>Fault generation</td>
</tr>
<tr>
<td>UKN1.2.11</td>
<td>Rock heterogeneity (e.g., permeability, mineralogy)</td>
</tr>
<tr>
<td>UKN1.2.12</td>
<td>Undetected features (e.g., faults, fracture networks,</td>
</tr>
<tr>
<td>UKN1.2.13</td>
<td>Natural gas invasion</td>
</tr>
<tr>
<td>UKN1.3.1</td>
<td>Precipitation, temperature and soil water balance</td>
</tr>
<tr>
<td>UKN1.3.2</td>
<td>Extremes of precipitation, snow melt and associated</td>
</tr>
<tr>
<td>UKN1.3.3</td>
<td>Coastal surge, storms and hurricanes</td>
</tr>
<tr>
<td>UKN1.3.4</td>
<td>Sea-level rise/fall</td>
</tr>
<tr>
<td>UKN1.3.5</td>
<td>Periglacial effects (e.g., permafrost, high seasonality)</td>
</tr>
<tr>
<td>UKN1.3.6</td>
<td>Glaciation (erosion/deposition, glacial loading,</td>
</tr>
<tr>
<td>UKN1.3.7</td>
<td>No ice age</td>
</tr>
<tr>
<td>UKN1.4.1</td>
<td>Landslide</td>
</tr>
<tr>
<td>UKN1.4.2</td>
<td>Denudation (aeolian and fluvial)</td>
</tr>
<tr>
<td>UKN1.4.3</td>
<td>River, stream, channel erosion (downcutting)</td>
</tr>
<tr>
<td>UKN1.4.4</td>
<td>River meander</td>
</tr>
<tr>
<td>UKN1.4.5</td>
<td>Freshwater sediment transport and deposition</td>
</tr>
<tr>
<td>UKN1.4.6</td>
<td>Coastal erosion and estuarine development</td>
</tr>
<tr>
<td>UKN1.4.7</td>
<td>Marine sediment transport and deposition</td>
</tr>
<tr>
<td>UKN1.4.8</td>
<td>Frost weathering and sublimation</td>
</tr>
<tr>
<td>UKN1.4.9</td>
<td>Chemical denudation and weathering</td>
</tr>
<tr>
<td>UKN1.4.10</td>
<td>Frost weathering</td>
</tr>
<tr>
<td>UKN1.5.1</td>
<td>River flow and lake level changes</td>
</tr>
<tr>
<td>UKN1.5.2</td>
<td>Sea flooding</td>
</tr>
<tr>
<td>UKN1.5.3</td>
<td>Recharge to groundwater</td>
</tr>
<tr>
<td>UKN1.5.4</td>
<td>Groundwater discharge (to surface water, to springs,</td>
</tr>
<tr>
<td>UKN1.5.5</td>
<td>Groundwater flow (Darcy, non-Darcy, intergranular</td>
</tr>
<tr>
<td>UKN1.5.6</td>
<td>Groundwater conditions (saturated/unsaturated)</td>
</tr>
<tr>
<td>UKN1.5.7</td>
<td>Saline or freshwater intrusion</td>
</tr>
<tr>
<td>UKN1.5.8</td>
<td>Effects at saline-freshwater interface</td>
</tr>
<tr>
<td>UKN1.5.9</td>
<td>Natural thermal effects</td>
</tr>
<tr>
<td>UKN1.6.1</td>
<td>Advection and dispersion</td>
</tr>
<tr>
<td>UKN1.6.2</td>
<td>Diffusion</td>
</tr>
<tr>
<td>UKN1.6.3</td>
<td>Matrix diffusion</td>
</tr>
<tr>
<td>UKN1.6.4</td>
<td>Gas mediated transport</td>
</tr>
<tr>
<td>UKN1.6.5</td>
<td>Multiphase flow and gas driven flow</td>
</tr>
<tr>
<td>UKN1.6.6</td>
<td>Solubility front</td>
</tr>
<tr>
<td>UKN1.6.7</td>
<td>Sorption (linear/non-linear, reversible/irreversible)</td>
</tr>
<tr>
<td>UKN1.6.8</td>
<td>Dissolution, precipitation and crystallisation</td>
</tr>
<tr>
<td>UKN1.6.9</td>
<td>Colloid formation, dissolution and transport</td>
</tr>
<tr>
<td>UKN1.6.10</td>
<td>Complexing agents</td>
</tr>
<tr>
<td>UKN1.6.11</td>
<td>Fracture mineralisation and weathering</td>
</tr>
<tr>
<td>UKN1.6.12</td>
<td>Accumulation in soils and organic debris</td>
</tr>
<tr>
<td>UKN1.6.13</td>
<td>Mass, isotopic and species dilution</td>
</tr>
<tr>
<td>UKN1.6.14</td>
<td>Chemical gradients (electrochemical effects and osmosis)</td>
</tr>
<tr>
<td>UKN1.7.1</td>
<td>Plant uptake</td>
</tr>
<tr>
<td>UKN1.7.2</td>
<td>Animal uptake</td>
</tr>
<tr>
<td>UKN1.7.3</td>
<td>Uptake by deep rooting species</td>
</tr>
<tr>
<td>UKN1.7.4</td>
<td>Soil and sediment bioturbation</td>
</tr>
<tr>
<td>UKN1.7.5</td>
<td>Pedogenesis</td>
</tr>
<tr>
<td>UKN1.7.6</td>
<td>Chemical transformations</td>
</tr>
<tr>
<td>UKN1.7.7</td>
<td>Microbial interactions</td>
</tr>
<tr>
<td>UKN1.7.8</td>
<td>Ecological change, e.g., forest fire cycles</td>
</tr>
<tr>
<td>UKN1.7.9</td>
<td>Ecological response to climate, e.g., desert formation</td>
</tr>
<tr>
<td>UKN1.7.10</td>
<td>Plant and animal evolution</td>
</tr>
<tr>
<td>UKN2.1.1</td>
<td>Undetected past intrusions, e.g., boreholes, mining</td>
</tr>
<tr>
<td>UKN2.1.2</td>
<td>Investigation borehole seal failure and degradation</td>
</tr>
<tr>
<td>UKN2.1.3</td>
<td>Shaft or access tunnel seal failure and degradation</td>
</tr>
<tr>
<td>UKN2.1.4</td>
<td>Stress field changes, setting, subsidence or caving</td>
</tr>
<tr>
<td>UKN2.1.5</td>
<td>De-watering of host rock</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>UKN2.1.6</td>
<td>Material defects, e.g. early canister failure</td>
</tr>
<tr>
<td>UKN2.1.7</td>
<td>Common cause failures</td>
</tr>
<tr>
<td>UKN2.1.8</td>
<td>Poor quality construction</td>
</tr>
<tr>
<td>UKN2.1.9</td>
<td>Design modification</td>
</tr>
<tr>
<td>UKN2.1.10</td>
<td>Thermal effects (e.g. concrete hydration)</td>
</tr>
<tr>
<td>UKN2.2.1</td>
<td>Radioactive waste disposal error</td>
</tr>
<tr>
<td>UKN2.2.2</td>
<td>Inadequate backfill or compaction, voidage</td>
</tr>
<tr>
<td>UKN2.2.3</td>
<td>Co-disposal of radioactive wastes (deliberate)</td>
</tr>
<tr>
<td>UKN2.2.4</td>
<td>Inadvertent disposal of undesirable materials</td>
</tr>
<tr>
<td>UKN2.2.5</td>
<td>Heterogeneity of waste forms (chemical, physical)</td>
</tr>
<tr>
<td>UKN2.2.6</td>
<td>Accidents during operation</td>
</tr>
<tr>
<td>UKN2.2.7</td>
<td>Sabotage</td>
</tr>
<tr>
<td>UKN2.2.8</td>
<td>Repository flooding during operation</td>
</tr>
<tr>
<td>UKN2.2.9</td>
<td>Abandonment of assumed repository</td>
</tr>
<tr>
<td>UKN2.2.10</td>
<td>Poor closure</td>
</tr>
<tr>
<td>UKN2.2.11</td>
<td>Post-closure monitoring</td>
</tr>
<tr>
<td>UKN2.2.12</td>
<td>Effects of phased operation</td>
</tr>
<tr>
<td>UKN2.3.1</td>
<td>Recovery of repository materials</td>
</tr>
<tr>
<td>UKN2.3.2</td>
<td>Man-made deviation, e.g. sabotage, acts of war</td>
</tr>
<tr>
<td>UKN2.3.3</td>
<td>Exploration drilling</td>
</tr>
<tr>
<td>UKN2.3.4</td>
<td>Exploitation drilling</td>
</tr>
<tr>
<td>UKN2.3.5</td>
<td>Geothermal energy production</td>
</tr>
<tr>
<td>UKN2.3.6</td>
<td>Resource mining</td>
</tr>
<tr>
<td>UKN2.3.7</td>
<td>Tunnelling</td>
</tr>
<tr>
<td>UKN2.3.8</td>
<td>Underground construction</td>
</tr>
<tr>
<td>UKN2.3.9</td>
<td>Archaeological investigations</td>
</tr>
<tr>
<td>UKN2.3.10</td>
<td>Injection of liquid wastes</td>
</tr>
<tr>
<td>UKN2.3.11</td>
<td>Groundwater abstraction</td>
</tr>
<tr>
<td>UKN2.3.12</td>
<td>Underground nuclear testing</td>
</tr>
<tr>
<td>UKN2.4.1</td>
<td>Loss of records</td>
</tr>
<tr>
<td>UKN2.4.2</td>
<td>Dams and reservoirs, built/drainage</td>
</tr>
<tr>
<td>UKN2.4.3</td>
<td>River rechannelled</td>
</tr>
<tr>
<td>UKN2.4.4</td>
<td>Irrigation</td>
</tr>
<tr>
<td>UKN2.4.5</td>
<td>Altered soil or surface water chemistry</td>
</tr>
<tr>
<td>UKN2.4.6</td>
<td>Land use changes</td>
</tr>
<tr>
<td>UKN2.4.7</td>
<td>Agricultural and fisheries practice changes</td>
</tr>
<tr>
<td>UKN2.4.8</td>
<td>Demographic change, urban development</td>
</tr>
<tr>
<td>UKN2.4.9</td>
<td>Anthropogenic climate change (greenhouse effect)</td>
</tr>
<tr>
<td>UKN2.4.10</td>
<td>Quarrying, peat extraction</td>
</tr>
<tr>
<td>UKN3.1.1</td>
<td>Differential elastic response</td>
</tr>
<tr>
<td>UKN3.1.2</td>
<td>Non-elastic response</td>
</tr>
<tr>
<td>UKN3.1.3</td>
<td>Host rock fracture aperture changes</td>
</tr>
<tr>
<td>UKN3.1.4</td>
<td>Induced hydrological changes (fluid pressure, density convection, viscosity)</td>
</tr>
<tr>
<td>UKN3.1.5</td>
<td>Induced chemical changes (solubility, sorption, species equilibrium, mineralisation)</td>
</tr>
<tr>
<td>UKN3.2.1</td>
<td>Metallic corrosion (pitting/intercrystalline, internal and external agents, gas generation e.g. H2)</td>
</tr>
<tr>
<td>UKN3.2.2</td>
<td>Interactions of host materials and groundwater with repository material (e.g. concrete carbonation)</td>
</tr>
<tr>
<td>UKN3.2.3</td>
<td>Interactions of waste and repository materials with host materials (e.g. electrochemical, corrosive attack)</td>
</tr>
<tr>
<td>UKN3.2.4</td>
<td>Non-radioactive solute plume in geosphere (effect on redox, effect on pH, sorption)</td>
</tr>
<tr>
<td>UKN3.2.5</td>
<td>Cellulose degradation</td>
</tr>
<tr>
<td>UKN3.2.6</td>
<td>Introduced competing agents and celluloses</td>
</tr>
<tr>
<td>UKN3.3.1</td>
<td>Canister or container movements</td>
</tr>
<tr>
<td>UKN3.3.2</td>
<td>Changes in in-situ stress field</td>
</tr>
<tr>
<td>UKN3.3.3</td>
<td>Embrittlement and cracking</td>
</tr>
<tr>
<td>UKN3.3.4</td>
<td>Subsidence/collapse</td>
</tr>
<tr>
<td>UKN3.3.5</td>
<td>Fracturing</td>
</tr>
<tr>
<td>UKN3.3.6</td>
<td>Gas effects (pressurisation, disruption, explosion, fire)</td>
</tr>
<tr>
<td>UKN3.4.1</td>
<td>Radioisotopes</td>
</tr>
<tr>
<td>UKN3.4.2</td>
<td>Material property changes</td>
</tr>
<tr>
<td>UKN3.4.3</td>
<td>Nuclear criticality</td>
</tr>
<tr>
<td>UKN3.4.4</td>
<td>Radioactive decay and ingrowth (chain decay)</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>HMP1: NEAR-FIELD</td>
<td>Chemical/physical degradation</td>
</tr>
<tr>
<td>HMP1.1.1</td>
<td>Contaminant transport</td>
</tr>
<tr>
<td>HMP1.1.2</td>
<td>Physico-chemical degradation of concrete</td>
</tr>
<tr>
<td>HMP1.1.3</td>
<td>Physico-chemical degradation of wastes and transport to the far-field</td>
</tr>
<tr>
<td>HMP1.1.4</td>
<td>Natural phenomena</td>
</tr>
<tr>
<td>HMP1.2</td>
<td>Gas production, transport and flammability</td>
</tr>
<tr>
<td>HMP1.2.1</td>
<td>Methane and carbon dioxide by microbial degradation</td>
</tr>
<tr>
<td>HMP1.2.2</td>
<td>Gas generation from concrete</td>
</tr>
<tr>
<td>HMP1.2.3</td>
<td>Radioactive gases</td>
</tr>
<tr>
<td>HMP1.2.4</td>
<td>Chloroform/phenol/ethanol</td>
</tr>
<tr>
<td>HMP1.2.5</td>
<td>Gas transport</td>
</tr>
<tr>
<td>HMP1.2.6</td>
<td>Flammability</td>
</tr>
<tr>
<td>HMP1.2.7</td>
<td>Toxic gases</td>
</tr>
<tr>
<td>HMP1.2.8</td>
<td>Thermo-chemical effects</td>
</tr>
<tr>
<td>HMP1.3</td>
<td>Radiation phenomena</td>
</tr>
<tr>
<td>HMP1.3.1</td>
<td>Radioactive decay and ingrowth</td>
</tr>
<tr>
<td>HMP1.3.2</td>
<td>Nuclear criticality</td>
</tr>
<tr>
<td>HMP1.4</td>
<td>Structural integrity</td>
</tr>
<tr>
<td>HMP1.4.1</td>
<td>Waste-land and backfill consolidation</td>
</tr>
<tr>
<td>HMP1.4.2</td>
<td>Vault collapse</td>
</tr>
<tr>
<td>HMP1.5</td>
<td>Hydrogeological effects</td>
</tr>
<tr>
<td>HMP1.5.1</td>
<td>Desaturation (pumping) effects</td>
</tr>
<tr>
<td>HMP1.5.2</td>
<td>Disturbed zone (hydromechanical) effects</td>
</tr>
<tr>
<td>HMP1.5.3</td>
<td>Gas production (unsaturated flow)</td>
</tr>
<tr>
<td>HMP1.5.4</td>
<td>Saturated groundwater flow</td>
</tr>
<tr>
<td>HMP1.5.5</td>
<td>Transport of chemically active substances into the near-field</td>
</tr>
<tr>
<td>HMP1.6.1</td>
<td>Thermal Effects</td>
</tr>
<tr>
<td>HMP1.6.2</td>
<td>Thermal effects and Rock-mass changes</td>
</tr>
<tr>
<td>HMP1.6.3</td>
<td>Thermal effects and Hydrogeological changes</td>
</tr>
<tr>
<td>HMP1.6.4</td>
<td>Thermal effects and Chemical changes</td>
</tr>
<tr>
<td>HMP1.6.4</td>
<td>Thermal effects and Transport (diffusion) effects</td>
</tr>
<tr>
<td>HMP2: FAR-FIELD</td>
<td>End-member study</td>
</tr>
<tr>
<td>HMP2.1</td>
<td>Geology</td>
</tr>
<tr>
<td>HMP2.1.1</td>
<td>Regional tectonic</td>
</tr>
<tr>
<td>HMP2.1.2</td>
<td>Magmatic activity</td>
</tr>
<tr>
<td>HMP2.1.3</td>
<td>Metamorphism</td>
</tr>
<tr>
<td>HMP2.1.4</td>
<td>Degeneration</td>
</tr>
<tr>
<td>HMP2.1.5</td>
<td>Dispersal</td>
</tr>
<tr>
<td>HMP2.1.6</td>
<td>Sedimentary</td>
</tr>
<tr>
<td>HMP2.1.7</td>
<td>Faulting/training</td>
</tr>
<tr>
<td>HMP2.1.8</td>
<td>Major basin</td>
</tr>
<tr>
<td>HMP2.1.9</td>
<td>Effects of natural gases</td>
</tr>
<tr>
<td>HMP2.2</td>
<td>Hydrogeological</td>
</tr>
<tr>
<td>HMP2.2.1</td>
<td>Changes in geometry and driving forces of the flow system</td>
</tr>
<tr>
<td>HMP2.2.2</td>
<td>Rock property changes</td>
</tr>
<tr>
<td>HMP2.2.3</td>
<td>Groundwater flow</td>
</tr>
<tr>
<td>HMP2.2.4</td>
<td>Transport and geochemical</td>
</tr>
<tr>
<td>HMP2.3.1</td>
<td>Advection</td>
</tr>
<tr>
<td>HMP2.3.2</td>
<td>Diffusion</td>
</tr>
<tr>
<td>HMP2.3.3</td>
<td>Hydrodynamic dispersion</td>
</tr>
<tr>
<td>HMP2.3.4</td>
<td>Solubility constraints</td>
</tr>
<tr>
<td>HMP2.3.5</td>
<td>Sorption including ion-exchange</td>
</tr>
<tr>
<td>HMP2.3.6</td>
<td>Changes in sorptive surfaces</td>
</tr>
<tr>
<td>HMP2.3.7</td>
<td>Changes in groundwater chemistry and flow direction</td>
</tr>
<tr>
<td>HMP2.3.8</td>
<td>Colloid transport</td>
</tr>
<tr>
<td>HMP2.3.9</td>
<td>Transport of radionuclides bound to microbes</td>
</tr>
<tr>
<td>HMP2.3.10</td>
<td>Transport of actinide gases</td>
</tr>
<tr>
<td>HMP2.3.11</td>
<td>Gas induced ground water transport</td>
</tr>
<tr>
<td>HMP2.3.12</td>
<td>Thermal effects on hydrochemistry</td>
</tr>
<tr>
<td>HMP2.3.13</td>
<td>Biogeochemical changes</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>HMP2.4.1</td>
<td>Geomorphology</td>
</tr>
<tr>
<td>HMP2.4.2</td>
<td>Generalised denudation</td>
</tr>
<tr>
<td>HMP2.4.3</td>
<td>Localised denudation</td>
</tr>
<tr>
<td>HMP2.5</td>
<td>CLIMATOLOGY</td>
</tr>
<tr>
<td>HMP3.1.1</td>
<td>Human induced climate change</td>
</tr>
<tr>
<td>HMP3.1.2</td>
<td>Natural climate change</td>
</tr>
<tr>
<td>HMP3.1.3</td>
<td>Exit from glacial/interglacial cycle</td>
</tr>
<tr>
<td>HMP3.1.4</td>
<td>Intensification of natural climate change</td>
</tr>
<tr>
<td>HMP4.1.1</td>
<td>Radioactive entry points to the biosphere</td>
</tr>
<tr>
<td>HMP4.1.2</td>
<td>Groundwater discharge to soils and surface waters</td>
</tr>
<tr>
<td>HMP4.1.3</td>
<td>Solid discharge via erosional processes</td>
</tr>
<tr>
<td>HMP4.1.4</td>
<td>Gas discharge</td>
</tr>
<tr>
<td>HMP4.2.1</td>
<td>Transfer (concentration/dilution) mechanisms</td>
</tr>
<tr>
<td>HMP4.2.2</td>
<td>Soil moisture and evaporation</td>
</tr>
<tr>
<td>HMP4.2.3</td>
<td>Surface water mixing</td>
</tr>
<tr>
<td>HMP4.2.4</td>
<td>Sediment transport including bioturbation</td>
</tr>
<tr>
<td>HMP4.2.5</td>
<td>Sediment/water/gas interaction with the atmosphere</td>
</tr>
<tr>
<td>HMP4.2.6</td>
<td>Biogeochemical processes</td>
</tr>
<tr>
<td>HMP4.3.1</td>
<td>Land and surface water use</td>
</tr>
<tr>
<td>HMP4.3.2</td>
<td>Terrestrial water use</td>
</tr>
<tr>
<td>HMP4.3.3</td>
<td>Estuarine water use</td>
</tr>
<tr>
<td>HMP4.3.4</td>
<td>Coastal waters and water use</td>
</tr>
<tr>
<td>HMP4.4.1</td>
<td>Human exposure</td>
</tr>
<tr>
<td>HMP4.4.2</td>
<td>External exposure</td>
</tr>
<tr>
<td>HMP4.4.3</td>
<td>Ingestion</td>
</tr>
<tr>
<td>HMP4.4.4</td>
<td>Inhalation</td>
</tr>
<tr>
<td>HMP4.5.1</td>
<td>Short circuit pathways</td>
</tr>
<tr>
<td>HMP4.5.2.1</td>
<td>Related to repository construction</td>
</tr>
<tr>
<td>HMP4.5.2.2</td>
<td>Loss of integrity of borehole seals</td>
</tr>
<tr>
<td>HMP4.5.2.3</td>
<td>Loss of integrity of shaft or access tunnel seals</td>
</tr>
<tr>
<td>HMP4.5.3.1</td>
<td>Malicious intrusion</td>
</tr>
<tr>
<td>HMP4.5.3.4</td>
<td>Accidental intrusion</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>NEA1. NATURAL PHENOMENA</td>
<td></td>
</tr>
<tr>
<td>NEA1.1.1</td>
<td>Meteorite impact</td>
</tr>
<tr>
<td>NEA1.1.2</td>
<td>Solar insolation</td>
</tr>
<tr>
<td>NEA1.1.3</td>
<td>Extraterrestrial</td>
</tr>
<tr>
<td>NEA1.1.4</td>
<td>Extraterrestrial impact</td>
</tr>
<tr>
<td>NEA1.2.1</td>
<td>Plate movement/tectonic change</td>
</tr>
<tr>
<td>NEA1.2.2</td>
<td>Changes in the Earth's magnetic field</td>
</tr>
<tr>
<td>NEA1.2.3</td>
<td>Weathering (intrusive, extrusive)</td>
</tr>
<tr>
<td>NEA1.2.4</td>
<td>Tectonic activity</td>
</tr>
<tr>
<td>NEA1.2.5</td>
<td>Magmatic activity</td>
</tr>
<tr>
<td>NEA1.2.6</td>
<td>Volcanic activity</td>
</tr>
<tr>
<td>NEA1.2.7</td>
<td>Faults, fracture networks, shear zones, breakable, gas pockets</td>
</tr>
<tr>
<td>NEA1.2.8</td>
<td>Natural gas intrusion</td>
</tr>
<tr>
<td>NEA1.3.1</td>
<td>Precipitation, temperature, and soil water balance</td>
</tr>
<tr>
<td>NEA1.3.2</td>
<td>Extremes of precipitation, snow melt and associated flooding</td>
</tr>
<tr>
<td>NEA1.3.3</td>
<td>Coastal surge, storms, and hurricanes</td>
</tr>
<tr>
<td>NEA1.3.4</td>
<td>Sea-level rise/fall</td>
</tr>
<tr>
<td>NEA1.3.5</td>
<td>Periglacial effects (permafrost, high seasonality)</td>
</tr>
<tr>
<td>NEA1.3.6</td>
<td>Glaciation (erosion/deposition, glacial loading, hydrogeological change)</td>
</tr>
<tr>
<td>NEA1.3.7</td>
<td>No ice age</td>
</tr>
<tr>
<td>NEA1.4.1</td>
<td>Land slide</td>
</tr>
<tr>
<td>NEA1.4.2</td>
<td>Erosion (aeolian and fluvial)</td>
</tr>
<tr>
<td>NEA1.4.3</td>
<td>River, stream, channel erosion (downcutting)</td>
</tr>
<tr>
<td>NEA1.4.4</td>
<td>River meander</td>
</tr>
<tr>
<td>NEA1.4.5</td>
<td>Freshwater sediment transport and deposition</td>
</tr>
<tr>
<td>NEA1.4.6</td>
<td>Marine sediment transport and deposition</td>
</tr>
<tr>
<td>NEA1.4.7</td>
<td>River meander (REPEAT! -- SEE 1.4.4)</td>
</tr>
<tr>
<td>NEA1.4.8</td>
<td>Chemical denudation and weathering</td>
</tr>
<tr>
<td>NEA1.4.9</td>
<td>Frost weathering</td>
</tr>
<tr>
<td>NEA1.5.1</td>
<td>River flow and lake level changes</td>
</tr>
<tr>
<td>NEA1.5.2</td>
<td>Site flooding</td>
</tr>
<tr>
<td>NEA1.5.3</td>
<td>Recharge to groundwater</td>
</tr>
<tr>
<td>NEA1.5.4</td>
<td>Groundwater discharge (to surface water, springs, soils, wells, and marine)</td>
</tr>
<tr>
<td>NEA1.5.5</td>
<td>Groundwater flow (Darcy, non-Darcy, intergranular fracture, channeling and preferential pathways)</td>
</tr>
<tr>
<td>NEA1.5.6</td>
<td>Groundwater conditions (saturated/unsaturated)</td>
</tr>
<tr>
<td>NEA1.5.7</td>
<td>Saline or freshwater intrusion</td>
</tr>
<tr>
<td>NEA1.5.8</td>
<td>Effects at saline-freshwater interface</td>
</tr>
<tr>
<td>NEA1.5.9</td>
<td>Natural thermal effects</td>
</tr>
<tr>
<td>NEA1.6.1</td>
<td>Solubility limit</td>
</tr>
<tr>
<td>NEA1.6.2</td>
<td>Sorption (linear/non-linear, reversible/reversible)</td>
</tr>
<tr>
<td>NEA1.6.3</td>
<td>Dissolution, precipitation, and crystallization</td>
</tr>
<tr>
<td>NEA1.6.4</td>
<td>Colloid formation, dissolution, and transport</td>
</tr>
<tr>
<td>NEA1.6.5</td>
<td>Complexing agents</td>
</tr>
<tr>
<td>NEA1.6.6</td>
<td>Fracture mineralization</td>
</tr>
<tr>
<td>NEA1.6.7</td>
<td>Accumulation in soils and organic debris</td>
</tr>
<tr>
<td>NEA1.6.8</td>
<td>Mass, isotopic and species dilution</td>
</tr>
<tr>
<td>NEA1.6.9</td>
<td>Chemical gradients (electrochemical effects and osmosis)</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>NEA1.7.1</td>
<td>Plant uptake</td>
</tr>
<tr>
<td>NEA1.7.2</td>
<td>Animal uptake</td>
</tr>
<tr>
<td>NEA1.7.3</td>
<td>Uptake by deep rooting species</td>
</tr>
<tr>
<td>NEA1.7.4</td>
<td>Soil and sediment bioturbation</td>
</tr>
<tr>
<td>NEA1.7.5</td>
<td>Pedogenesis</td>
</tr>
<tr>
<td>NEA1.7.6</td>
<td>Chemical transformations</td>
</tr>
<tr>
<td>NEA1.7.7</td>
<td>Microbial interactions</td>
</tr>
<tr>
<td>NEA1.7.8</td>
<td>Ecological change (e.g. forest fire cycles)</td>
</tr>
<tr>
<td>NEA1.7.9</td>
<td>Ecological response to climate (e.g. desert formation)</td>
</tr>
<tr>
<td>NEA1.7.10</td>
<td>Plant and animal evolution</td>
</tr>
<tr>
<td>NEA2.1.1</td>
<td>Undetected past intrusions (boreholes, mining)</td>
</tr>
<tr>
<td>NEA2.1.2</td>
<td>Investigation borehole seal failure and degradation</td>
</tr>
<tr>
<td>NEA2.1.3</td>
<td>Shaft or access tunnel seal failure and degradation</td>
</tr>
<tr>
<td>NEA2.1.4</td>
<td>Stress field changes, settling, subsidence or caving</td>
</tr>
<tr>
<td>NEA2.1.5</td>
<td>Dewatering of host rock</td>
</tr>
<tr>
<td>NEA2.1.6</td>
<td>Material defects (e.g. early canister failure)</td>
</tr>
<tr>
<td>NEA2.1.7</td>
<td>Common cause failures</td>
</tr>
<tr>
<td>NEA2.1.8</td>
<td>Poor quality construction</td>
</tr>
<tr>
<td>NEA2.1.9</td>
<td>Design modification</td>
</tr>
<tr>
<td>NEA2.1.10</td>
<td>Thermal effects</td>
</tr>
<tr>
<td>NEA2.2.1</td>
<td>Radioactive waste disposal error</td>
</tr>
<tr>
<td>NEA2.2.2</td>
<td>Inadequate backfill or compaction voidage</td>
</tr>
<tr>
<td>NEA2.2.3</td>
<td>Co-disposal of reactive wastes (deliberate)</td>
</tr>
<tr>
<td>NEA2.2.4</td>
<td>Inadvertent inclusion of undesirable materials</td>
</tr>
<tr>
<td>NEA2.2.5</td>
<td>Heterogeneity of waste forms (chemical, physical)</td>
</tr>
<tr>
<td>NEA2.2.6</td>
<td>Accidents during operation</td>
</tr>
<tr>
<td>NEA2.2.7</td>
<td>Sabotage</td>
</tr>
<tr>
<td>NEA2.2.8</td>
<td>Repository flooding during operation</td>
</tr>
<tr>
<td>NEA2.2.9</td>
<td>Abandonment of unsealed repository</td>
</tr>
<tr>
<td>NEA2.2.10</td>
<td>Poor closure</td>
</tr>
<tr>
<td>NEA2.2.11</td>
<td>Post-closure monitoring</td>
</tr>
<tr>
<td>NEA2.2.12</td>
<td>Effects of phased operation</td>
</tr>
<tr>
<td>NEA2.3.1</td>
<td>Recovery of repository materials</td>
</tr>
<tr>
<td>NEA2.3.2</td>
<td>Malicious intrusion (sabotage, act of war)</td>
</tr>
<tr>
<td>NEA2.3.3</td>
<td>Exploitation drilling</td>
</tr>
<tr>
<td>NEA2.3.4</td>
<td>Exploitation drilling</td>
</tr>
<tr>
<td>NEA2.3.5</td>
<td>Geothermal energy production</td>
</tr>
<tr>
<td>NEA2.3.6</td>
<td>Resource mining</td>
</tr>
<tr>
<td>NEA2.3.7</td>
<td>Tunneling</td>
</tr>
<tr>
<td>NEA2.3.8</td>
<td>Underground construction</td>
</tr>
<tr>
<td>NEA2.3.9</td>
<td>Archaeological investigation</td>
</tr>
<tr>
<td>NEA2.3.10</td>
<td>Injection of liquid wastes</td>
</tr>
<tr>
<td>NEA2.3.11</td>
<td>Groundwater abstraction</td>
</tr>
<tr>
<td>NEA2.3.12</td>
<td>Underground nuclear testing</td>
</tr>
<tr>
<td>NEA2.4.1</td>
<td>Loss of records</td>
</tr>
<tr>
<td>NEA2.4.2</td>
<td>Dams and reservoirs, built/drainage</td>
</tr>
<tr>
<td>NEA2.4.3</td>
<td>Rivers rechanneled</td>
</tr>
<tr>
<td>NEA2.4.4</td>
<td>Irrigation</td>
</tr>
<tr>
<td>NEA2.4.5</td>
<td>Altered soil or surface water chemistry</td>
</tr>
<tr>
<td>NEA2.4.6</td>
<td>Land use changes</td>
</tr>
<tr>
<td>NEA2.4.7</td>
<td>Agricultural and fisheries practice changes</td>
</tr>
<tr>
<td>NEA2.4.8</td>
<td>Demographic change, urban development</td>
</tr>
<tr>
<td>NEA2.4.9</td>
<td>Anthropogenic climate change (greenhouse effect)</td>
</tr>
<tr>
<td>NEA2.4.10</td>
<td>Quarrying, near surface extraction</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>NEA3.1.1</td>
<td>Differential elastic response</td>
</tr>
<tr>
<td>NEA3.1.2</td>
<td>Non-elastic response</td>
</tr>
<tr>
<td>NEA3.1.3</td>
<td>Host rock fracture aperture changes</td>
</tr>
<tr>
<td>NEA3.1.4</td>
<td>Induced hydrological changes (fluid pressure, density convection, viscosity)</td>
</tr>
<tr>
<td>NEA3.1.5</td>
<td>Induced chemical changes (solubility, sorption, species equilibrium, mineralization)</td>
</tr>
<tr>
<td>NEA3.12.1</td>
<td>Metallic corrosion (pitting/intergranular, internal and external agents, gas generation e.g. H2)</td>
</tr>
<tr>
<td>NEA3.2.2</td>
<td>Interactions of host materials and groundwater with repository material (e.g. concrete carbonation)</td>
</tr>
<tr>
<td>NEA3.2.3</td>
<td>Interactions of waste and repository materials with host materials (electrochemical, corrosive agents)</td>
</tr>
<tr>
<td>NEA3.2.4</td>
<td>Non-radioactive solute plume in geosphere (effect of redox, pH, and sorption)</td>
</tr>
<tr>
<td>NEA3.2.5</td>
<td>Cellulosic degradation</td>
</tr>
<tr>
<td>NEA3.2.6</td>
<td>Introduced complexing agents and catalysis</td>
</tr>
<tr>
<td>NEA3.2.7</td>
<td>Microbiological effects on corrosion/degradation, solubility/complexation, gas generation, e.g. CH4</td>
</tr>
<tr>
<td>NEA3.3.1</td>
<td>Cansetter or container movement</td>
</tr>
<tr>
<td>NEA3.3.2</td>
<td>Changes in in-situ stress field</td>
</tr>
<tr>
<td>NEA3.3.3</td>
<td>Embrittlement and cracking</td>
</tr>
<tr>
<td>NEA3.3.4</td>
<td>Subsidence/collapse</td>
</tr>
<tr>
<td>NEA3.3.5</td>
<td>Fracturing</td>
</tr>
<tr>
<td>NEA3.3.6</td>
<td>Gas effects (pressure, disruption, explosion, fire)</td>
</tr>
<tr>
<td>NEA3.4.1</td>
<td>Radiolysis</td>
</tr>
<tr>
<td>NEA3.4.2</td>
<td>Material property changes</td>
</tr>
<tr>
<td>NEA3.4.3</td>
<td>Nuclear criticality</td>
</tr>
<tr>
<td>NEA3.4.4</td>
<td>Radioactive decay and ingrowth (chain decay)</td>
</tr>
</tbody>
</table>
APPENDIX 2

Screening Arguments Applied to FEPs
Screening Arguments for SITE 94 Scenario Development

1. INTRODUCTION

This Letter Report presents proposed screening arguments for use in the SKI SITE 94 scenario development project. These will be used to screen cut features, events and processes (FEPs) from a comprehensive catalogue compiled from a number of published and available lists and catalogues.

Screening arguments developed for Nagra for use in safety assessments for the Kristallin-1 project (Sumerling et al. 1993) have been taken as a starting point. This project considers disposal of vitrified high-level waste from nuclear fuel reprocessing in crystalline basement rock in northern Switzerland. The arguments have been adapted to be appropriate to the SITE 94 project, which considers disposal of spent nuclear fuel according to the KBS3 concept at a site with characteristics based on the Åspö Hard Rock Laboratory site, and also to take account of the assessment scope for SITE 94 which differs from the Kristallin-1 project.

Two groups of screening arguments are defined.

1. Site and Disposal Concept – These allow phenomena that are physically impossible or irrelevant for the given site and disposal concept to be screened out.

2. Assessment Basis – These define the scope of the safety assessment and allow phenomena outside that scope to be screened out.

Note that the term argument is preferred to criterion because the conditions for screening are arguments taking account of knowledge of the site and disposal concept, and the desired scope of the assessment. They are not strict ‘yes/no’ or quantitative criteria that can be rigidly applied rather they are guidance for the scenario development and screening of FEPs. The screening arguments are presented in the following sections.
2. SITE AND DISPOSAL CONCEPT

2.1 Waste Form and Packaging

The waste is spent nuclear fuel rods from BWR and PWR reactors. The fuel rods consist of cylindrical pellets of uranium dioxide in zirconium alloy (zircaloy) cladding tubes. These are bound together in fuel assemblies designed to be handled as a unit from supply to the reactor to final disposal. For disposal 6 to 9 fuel assemblies (depending on fuel type and respecting thermal loading limits) are contained in a steel canister with copper overpack of external dimensions 4.5m x 0.8m diameter. Voids within the canister are filled with copper powder or lead. The wastes will be heat generating.

Phenomena related specifically to other wastes types, eg. L/ILW, organic wastes and vitrified wastes, can be screened out or modified (if possible) to apply to the above concept.

[NOTE ADDED:
Consideration should be given to the possibility of voids within the canister.]

2.2 Emplacement and Repository

The copper-steel canisters (containing the wastes) are emplaced individually in vertical deposition holes (7.5m depth x 1.5m diameter) drilled in the floor of self-supporting horizontal tunnels (3.3m width x 4.5m height). The space between waste canister and deposition hole walls (~0.5m) and the upper part of the deposition hole is filled with blocks of highly-compacted sodium bentonite. The horizontal tunnels are backfilled with a sand-bentonite mix. There will be an axial decompressed/damaged zone around the horizontal tunnels which may be excavated by blasting. The disposal tunnels will be arranged in several panels each consisting of tunnels on a more or less parallel grid but avoiding significant water bearing features. Tunnels and shafts will be sealed with highly compacted bentonite and/or concrete and concrete shotcrete and steel rockbolts may be used to improve stability of the tunnels during the operational period.

Phenomena related specifically to cementitious backfill can be screened out (or modified) but cement-bentonite reactions may be relevant. Phenomena related to interaction between canisters/waste packages can be screened out.

[NOTE ADDED:
Although phenomena related specifically to cementitious backfill should be screened out, interactions between structural concrete in the repository and bentonite should be considered.]
2.3 Host Geology

The repository will be sited in crystalline (granitic) basement rock at a depth of about 500 metres below ground. The basement rock includes regional fracture zones with a spacing of one to a few kilometres, ranging from metres to tens of metres in width, plus connected 2nd order fracture zones at spacings of typically 500m. A 'respect zone' of 100 m is assumed between disposal tunnels and any such feature. Groundwater at depth includes both saline and freshwater zones.

Phenomena related specifically to other host rocks, eg. salt deposits, clays etc., can be screened out. Phenomena related to near-surface disposal, eg. hurricanes, burrowing animals etc., can be screened out.

2.4 Local and Regional Surface Environment

The Åspö site is located below a small island within a sea area enclosed by other small islands on the Baltic coast of Sweden. The region is low topography glaciated basement rock with thin discontinuous soil cover supporting mainly coniferous woodland. Under present-day conditions, possible leakage from the repository is most likely to occur to the marine environments with associated dose pathways. Doses through other pathways are also possible, eg. via a local well.

Phenomena related to large topographic influences, thick soil/sediment sequences, perched water tables, [high yield wells] and oceanic processes can be screened out.

[NOTE ADDED: Remove high-yield wells from the previous paragraph.]

2.5 Geo-climatic Development

The Scandinavian shield is rising at the present time due to isostatic rebound following the last glaciation. This will result in a relative sea-level fall so that the region will become terrestrial with numerous shallow freshwater lakes in the order of one to a few thousand years in the future. Assuming a continuation of the glacial-interglacial climate cycling observed in the last 0.8 My, the site is expected to be periodically covered by ice in the future, up to a depth of a few kilometres. The basement rock will resist significant erosion and soil/sediment covers (where present) will be thin and transient.

Phenomena related to warm climates can be screened out. Phenomena related to coastal and fluvial erosion can be screened out.

[NOTE ADDED: Although arid climates can be excluded, the possibility of a greenhouse-induced warmer, wetter climate should be considered.]
3. Assessment Basis or “Ground-rules”

3.1 Repository Design and Closure

It is assumed that the repository is constructed and operated, as planned, as a final disposal facility for spent nuclear fuel. No other wastes will be disposed in the facility. Some local variation in quality and minor deviations are expected. No repository monitoring or remedial activities are expected.

Phenomena related to operational accidents (which should be dealt with in an assessment of the operational phase), major design changes and disposal of other wastes in the repository can be screened out. However, long-term effects due to the expected operation of the repository should be considered. Retrievability of the wastes is not a consideration. The consequences of possible non-closure or improper closure of the repository should be considered.

[NOTE ADDED:
Failure of repository due to poor quality assurance should be considered.]

3.2 Global and Regional Disasters

It is not reasonable to make assessments of the radiological impacts from a repository for conditions which are associated with some global or regional catastrophe or serious accident that has immediate impacts that are orders of magnitude more serious, eg. in terms of loss of human life. All human endeavours are at risk from extreme natural and human induced events that are not usually accounted for in safety assessments of industrial developments.

Phenomena such as nuclear war, massive sea level rise due to global ice-cap melting and large meteorite strike on the site can be screened out.

[NOTE ADDED:
FEPs in this category will not be coupled to the Process System, and can be separated out for direct treatment. This applies also to 3.3]

3.3 Acts of War and Sabotage

Acts of war, should be excluded from the assessment. Malicious human acts, eg. terrorist acts, aimed at damaging the repository should be considered. However, in the pre-closure period, security measures will be in force to minimise the risk of successful attack; risks in this period might be considered in the assessment of operational plans and impacts; in the post-closure period, a closed repository will be an extraordinarily hard target to damage and a considerably less attractive target than surface industrial installations or civilian targets.
3.3 Acts of War and Sabotage (continued)

Phenomena related to acts of war should be screened out.

[NOTE ADDED: See previous note (3.3).]

3.4 Deliberate Intrusion

Future deliberate intrusive actions, taken with full knowledge of the nature and content of the repository, eg. to retrieve valuable materials, are excluded from the assessment. It is assumed that any such action would be undertaken after due consideration of safety aspects and with regard to the economic and environmental values of the time.

Phenomena related specifically to deliberate intrusion can be screened out, phenomena related to inadvertent intrusion are retained.

3.5 Future Human Society and Technology

Over the timescales considered in post-closure radiological assessment it is recognised that human civilisation and technology is likely to change considerably, but it is not possible to estimate other than in very general terms what changes may occur. Considering that a general tenet of post-closure radiological assessment is to afford future generations and individuals the same level of protection as that specified for current generations and individuals, it is appropriate to assume future human behaviours similar to that observed in the World today. Impacts to hypothetical critical groups dwelling in the future and with habits and technologies broadly similar to some group at some location in the World today can then be regarded as indicators of safety.

The possibility of cure for cancer is not relevant since the aim is to ensure environmental and human protection (good public health management should be based on prevention not cure).

Phenomena related to extreme futuristic assumptions about human behaviour and technology can be screened out.
3.6 Post-Closure Radiological Assessment

The scenario analysis is aimed at providing a framework for calculations of radiological impact (only) to human individuals and populations represented by a critical group. It is assumed that protection of human individuals ensures protection of the environment, see IAEA 1992.

Consideration of radiological impacts to flora and fauna should be screened out. Chemical toxicity effects of the disposed wastes may be addressed as a separate issue and can be screened out of the radiological assessment.

[NOTE ADDED:
FEPs in this category will not be considered in the SITE 94 scenario development process, and can be screened out as a separate item.]

3.7 Future Life Evolution

Humans and plant and animal species may evolve. Especially evolution of food plant and domesticated animals is to be expected. Hence metabolism, radionuclide uptake and radiation sensitivity may change. These changes cannot be anticipated and should not be accounted for in quantitative assessments (see also 2.5).

Assessments should be carried out assuming metabolic and physiological characteristics and radiosensitivity of humans, animals and plants similar to that observed today.

4. REFERENCES

APPENDIX 3

FEP Lists by Category

including screening arguments
Appendix 3. FEP Lists by Category

The 8 FEP lists in the following pages have been sorted according to the categories identified in section 2.2. The additional coding “XXXX” which occasionally appears under the “ARGUMENT” column is used to screen out those FEPs which, after additional examination, do not belong to the assigned category, or which are obvious duplicates within the same national FEP list. In such cases, the duplicate is identified under the “COMMENTS” column.
<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>ARGUMENT</th>
<th>FEP NAME</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECI.1.3</td>
<td>WCR</td>
<td></td>
<td>Biological activity</td>
<td></td>
</tr>
<tr>
<td>AECI.1.4</td>
<td>WCR</td>
<td>4</td>
<td>Boundary conditions</td>
<td></td>
</tr>
<tr>
<td>AECI.1.5</td>
<td>WB</td>
<td>2.1</td>
<td>Butane additives</td>
<td></td>
</tr>
<tr>
<td>AECI.1.9</td>
<td>WB</td>
<td></td>
<td>Chemical gradients</td>
<td></td>
</tr>
<tr>
<td>AECI.1.10</td>
<td>WCR</td>
<td>4</td>
<td>Chemical interactions (expected)</td>
<td></td>
</tr>
<tr>
<td>AECI.1.11</td>
<td>WB</td>
<td>4</td>
<td>Chemical interactions (long-term)</td>
<td></td>
</tr>
<tr>
<td>AECI.1.12</td>
<td>WCR</td>
<td>4</td>
<td>Chemical interactions (other)</td>
<td></td>
</tr>
<tr>
<td>AECI.1.13</td>
<td>WCR</td>
<td>4</td>
<td>Chemical kinetics</td>
<td></td>
</tr>
<tr>
<td>AECI.1.25</td>
<td>WCR</td>
<td>4</td>
<td>Correlation</td>
<td>Incomprehensible</td>
</tr>
<tr>
<td>AECI.1.27</td>
<td>WB</td>
<td></td>
<td>Coupled processes</td>
<td></td>
</tr>
<tr>
<td>AECI.1.28</td>
<td>W</td>
<td>3.1</td>
<td>Criticality</td>
<td></td>
</tr>
<tr>
<td>AECI.1.32</td>
<td>WCR</td>
<td></td>
<td>Electrochemical gradients</td>
<td></td>
</tr>
<tr>
<td>AECI.1.38</td>
<td>W</td>
<td></td>
<td>Formation of gases</td>
<td></td>
</tr>
<tr>
<td>AECI.39</td>
<td>WC</td>
<td>2.1</td>
<td>Galvanic coupling</td>
<td></td>
</tr>
<tr>
<td>AECI.40</td>
<td>WER</td>
<td></td>
<td>Geochronal pump</td>
<td>SEE AECI.1.9</td>
</tr>
<tr>
<td>AECI.50</td>
<td>WCR</td>
<td>4</td>
<td>Interfaces (boundary conditions)</td>
<td>SEE AECI.1.4</td>
</tr>
<tr>
<td>AECI.53</td>
<td>WCR</td>
<td></td>
<td>Inventory</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>AECI.54</td>
<td>W</td>
<td>3.1</td>
<td>Other wastes (other than vitrified HLW)</td>
<td></td>
</tr>
<tr>
<td>AECI.55</td>
<td>WCR</td>
<td></td>
<td>Long-term transients</td>
<td></td>
</tr>
<tr>
<td>AECI.56</td>
<td>WCR</td>
<td></td>
<td>Precipitation and dissolution</td>
<td></td>
</tr>
<tr>
<td>AECI.65</td>
<td>WCR</td>
<td></td>
<td>Radiation damage</td>
<td></td>
</tr>
<tr>
<td>AECI.76</td>
<td>WCR</td>
<td>4</td>
<td>Radioactive decay</td>
<td></td>
</tr>
<tr>
<td>AECI.78</td>
<td>W</td>
<td></td>
<td>Radionuclides</td>
<td></td>
</tr>
<tr>
<td>AECI.79</td>
<td>W</td>
<td>2.1</td>
<td>Source terms (expected)</td>
<td></td>
</tr>
<tr>
<td>AECI.80</td>
<td>WCR</td>
<td>2.1</td>
<td>Source terms (other)</td>
<td></td>
</tr>
<tr>
<td>AECI.81</td>
<td>W</td>
<td></td>
<td>Speciation</td>
<td></td>
</tr>
<tr>
<td>AECI.82</td>
<td>W</td>
<td>2.1</td>
<td>Stability of glass</td>
<td>UC21</td>
</tr>
<tr>
<td>AECI.84</td>
<td>WCR</td>
<td></td>
<td>Temperature rises (unexpected effects)</td>
<td></td>
</tr>
<tr>
<td>AECI.95</td>
<td>WCR</td>
<td>4</td>
<td>Time dependence</td>
<td></td>
</tr>
<tr>
<td>AECI.104</td>
<td>W</td>
<td>3.6</td>
<td>Teratogenic contaminants</td>
<td></td>
</tr>
<tr>
<td>DOE1.1.4.1</td>
<td>W</td>
<td></td>
<td>Metal corrosion: wastes</td>
<td></td>
</tr>
<tr>
<td>DOE1.1.4.2</td>
<td>W</td>
<td></td>
<td>Leaching: wastes</td>
<td></td>
</tr>
<tr>
<td>DOE1.1.4.3</td>
<td>W</td>
<td></td>
<td>Complex formation: wastes</td>
<td></td>
</tr>
<tr>
<td>DOE1.1.4.4</td>
<td>W</td>
<td></td>
<td>Colloid formation: wastes</td>
<td></td>
</tr>
<tr>
<td>DOE1.1.5</td>
<td>W</td>
<td>2.1</td>
<td>Microbial degradation of organic wastes: wastes</td>
<td></td>
</tr>
<tr>
<td>DOE1.1.6</td>
<td>W</td>
<td>2.1</td>
<td>Microbial corrosion: wastes</td>
<td></td>
</tr>
<tr>
<td>DOE1.1.7</td>
<td>W</td>
<td></td>
<td>Radioysis: wastes</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.1</td>
<td>W</td>
<td>2.1</td>
<td>Hydrogen: corrosion of waste steel</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.1.4</td>
<td>W</td>
<td>2.1</td>
<td>Hydrogen: corrosion of waste Magnox</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.1.5</td>
<td>W</td>
<td>2.1</td>
<td>Hydrogen: corrosion of waste aluminium</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.1.6</td>
<td>W</td>
<td></td>
<td>Hydrogen: corrosion of waste Zircaloy</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.1.7</td>
<td>W</td>
<td>2.1</td>
<td>Hydrogen: corrosion of other waste metals</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.1.8</td>
<td>WB</td>
<td>2.1</td>
<td>Hydrogen: effects of microbial growth on concrete</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.2</td>
<td>WB</td>
<td>2.1</td>
<td>Methane/CO2 degradation of Cellulose</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.2.2</td>
<td>WB</td>
<td>2.1</td>
<td>Methane/CO2 degradation of Other susceptible organic materials</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.2.3</td>
<td>WB</td>
<td>2.1</td>
<td>Methane/CO2 production: Aerobic degradation</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.2.4</td>
<td>WB</td>
<td>2.1</td>
<td>Methane/CO2 production: Anaerobic degradation</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.2.5</td>
<td>WB</td>
<td>2.1</td>
<td>Methane/CO2 production: Effects of temperature</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.2.6</td>
<td>WB</td>
<td>2.1</td>
<td>Methane/CO2 production: Effects of lithostatic pressure</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.2.8</td>
<td>WB</td>
<td>2.2</td>
<td>Methane/CO2 production: Effects of biow availis</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.2.10</td>
<td>W</td>
<td>2.17</td>
<td>Methane/CO2 production: Inhibition due to the pressure of toxic materials</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.2.11</td>
<td>WB</td>
<td>2.2</td>
<td>Methane/CO2 production: Carbonate/bicarbonate exchange with concrete</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.2.12</td>
<td>WB</td>
<td>2.1</td>
<td>Methane/CO2 production: Energy and nutrient control of metabolism</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.2.13</td>
<td>WB</td>
<td>2.1</td>
<td>Methane/CO2 production: Effects of radiation on microbial populations</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.3</td>
<td>WB</td>
<td>2.2</td>
<td>Gas generation from concrete</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.4.1</td>
<td>W</td>
<td>2.1</td>
<td>Tritiated hydrogen</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.4.2</td>
<td>W</td>
<td>2.1</td>
<td>Methane and carbon dioxide</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.4.3</td>
<td>W</td>
<td></td>
<td>Other active gases</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.5</td>
<td>W</td>
<td>2.1</td>
<td>Toxic gases</td>
<td></td>
</tr>
<tr>
<td>DOE1.3.1</td>
<td>W</td>
<td></td>
<td>Radioactive decay and ingrowth</td>
<td></td>
</tr>
<tr>
<td>DOE1.3.2</td>
<td>W</td>
<td>3.17</td>
<td>Nuclear critically</td>
<td></td>
</tr>
<tr>
<td>DOE1.4.3</td>
<td>WC</td>
<td></td>
<td>Embrittlement</td>
<td></td>
</tr>
<tr>
<td>DOE1.5.5.1</td>
<td>WCR</td>
<td></td>
<td>Chemical changes due to Metal corrosion</td>
<td></td>
</tr>
<tr>
<td>DOE1.5.5.3</td>
<td>WER</td>
<td></td>
<td>Chemical changes due to Waste degradation</td>
<td></td>
</tr>
<tr>
<td>DOE1.5.5.4</td>
<td>WER</td>
<td></td>
<td>Chemical changes due to Gas production</td>
<td></td>
</tr>
<tr>
<td>DOE1.6.1</td>
<td>W</td>
<td>2.1</td>
<td>Microbially effects due to Cellulose degradation</td>
<td></td>
</tr>
<tr>
<td>WASTE CATEGORY</td>
<td>IAEA 3.1.2</td>
<td>DOE 1.6.2.3</td>
<td>SEG 12.2.1</td>
<td>(\text{RH})</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Electrical effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 1.6.3</td>
<td>WHE</td>
<td>Microbiological activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 1.6.3</td>
<td>WRF</td>
<td>Microbiological effects due to microbial product reactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAEA 3.4.2</td>
<td>WC</td>
<td>Chemical effects: Corrosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAEA 3.2.2</td>
<td>WCR</td>
<td>Chemical effects: Interactions of waste package and rock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAEA 3.2.3</td>
<td>WB</td>
<td>Chemical effects: Gas generation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAEA 3.2.4</td>
<td>WR</td>
<td>Chemical effects: Geochemical change</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAEA 3.4.1</td>
<td>W</td>
<td>Radiological effects: Material property changes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAEA 3.4.2</td>
<td>W</td>
<td>Radiological effects: Radioisotopes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAEA 3.4.3</td>
<td>W</td>
<td>Radiological effects: Decay product gas generation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAEA 3.3.2</td>
<td>W</td>
<td>(\text{C})</td>
<td>(\text{X})</td>
<td>(\text{Y})</td>
</tr>
<tr>
<td>DOE 3.1.2</td>
<td>W</td>
<td>Radiation damage of the matrix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 3.2</td>
<td>W</td>
<td>Radioisotopes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 3.3</td>
<td>W</td>
<td>3.1? Nuclear criticality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 3.7.1</td>
<td>WC</td>
<td>2.1 Differing thermal expansion of glass matrix and canister</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 3.9</td>
<td>WB</td>
<td>Thermally induced chemical changes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 3.10</td>
<td>WCO</td>
<td>Chemical changes due to corrosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 3.15</td>
<td>W</td>
<td>Gas production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK1.1</td>
<td>W</td>
<td>3.1? Criticality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK1.2</td>
<td>W</td>
<td>Radioactive decay, heat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK1.3</td>
<td>W</td>
<td>Recall of alpha-decay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK1.4</td>
<td>W</td>
<td>Gas generation: He production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK1.2.1</td>
<td>W</td>
<td>Radioisotopes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK1.2.2</td>
<td>WR</td>
<td>2.2 H2/O2 explosions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK1.2.3</td>
<td>WC</td>
<td>Pb-I reactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK1.2.4</td>
<td>W</td>
<td>Gas generation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK1.2.5</td>
<td>W</td>
<td>1. Co-migration to glass surface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK1.2.6</td>
<td>W</td>
<td>Solubility within fuel matrix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK1.2.7</td>
<td>W</td>
<td>Recrystallization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK1.2.8</td>
<td>W</td>
<td>Redox potential</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK1.2.9</td>
<td>W</td>
<td>Dissolution chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK1.3</td>
<td>W</td>
<td>Damaged or deviating fuel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK1.4</td>
<td>W</td>
<td>Sudden energy release</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK1.3.1</td>
<td>W</td>
<td>Internal corrosion due to waste</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK2.1.4</td>
<td>WC</td>
<td>Rate of the eventual channeling within the canister</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK2.3.1</td>
<td>WC</td>
<td>Thermal cracking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.1.9</td>
<td>WB</td>
<td>XXXX</td>
<td>Radioisotopes</td>
<td></td>
</tr>
<tr>
<td>SK3.1.10</td>
<td>WB</td>
<td>Interactions with corrosion products and waste</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK5.6</td>
<td>W</td>
<td>3.1 Co-storage of other waste</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK5.44</td>
<td>W</td>
<td>Solubility and precipitation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK5.1.4</td>
<td>W</td>
<td>3.6 Chemical toxicity of wastes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN9.6.14</td>
<td>WCBF</td>
<td>Chemical gradients (electrochemical effects and osmosis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN1.7.6</td>
<td>WBRF</td>
<td>Chemical transformations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN1.7.7</td>
<td>WBRF</td>
<td>Microbial interactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN2.2.3</td>
<td>WH</td>
<td>3.1 Co-disposal of reactive wastes (deliberate)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN2.2.4</td>
<td>WH</td>
<td>Inadvertent inclusion of undesirable materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN2.2.5</td>
<td>W</td>
<td>Heterogeneity of waste forms (chemical, physical)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN3.1.3</td>
<td>WB</td>
<td>Induced chemical changes (solubility, sorption, species equilibrium, mineralisation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN3.4.1</td>
<td>W</td>
<td>Metallic corrosion (plating/uniform, internal and external agents, gas generation eg. H2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN3.2.2</td>
<td>WCBF</td>
<td>Interactions of host materials and groundwater with repository material (eg. concrete carbon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN3.2.3</td>
<td>WCBF</td>
<td>Interactions of waste and repository materials with host materials (eg. electrochemical, corrosion)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN3.2.5</td>
<td>W</td>
<td>2.1 Cellulosic degradation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN3.2.6</td>
<td>W</td>
<td>2.1 Introduced complexing agents and celluloses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN3.2.7</td>
<td>WC</td>
<td>Microbiological effects (on corrosion/degradation, on solubility/complexation, gas generation, etc.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN3.3.6</td>
<td>WC</td>
<td>2.1 Gas effects (pressure, disruption, explosion, fire)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN4.1</td>
<td>W</td>
<td>Radiolysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN5.4.2</td>
<td>W</td>
<td>Material property changes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN5.4.3</td>
<td>W</td>
<td>3.1 Nuclear criticality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN5.4.4</td>
<td>W</td>
<td>Radioactive decay and ingrowth (chain decay)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP1.1.3</td>
<td>WC</td>
<td>Electrical effects of metal corrosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP1.2.1</td>
<td>WC</td>
<td>Hydrogen by metal corrosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP1.2.2</td>
<td>W</td>
<td>2.1 Methane and carbon dioxide by microbial degradation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP1.2.3</td>
<td>WB</td>
<td>2.1 Gas generation from concrete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP1.2.4</td>
<td>W</td>
<td>Radioactive gases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP1.2.5</td>
<td>W</td>
<td>Chemotoxic gases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP1.2.7</td>
<td>W</td>
<td>2.1 Flammability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP1.2.8</td>
<td>WBA</td>
<td>Thermo-chemical effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP1.3.1</td>
<td>W</td>
<td>Radioactive decay and ingrowth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP1.3.2</td>
<td>W</td>
<td>3.1 Nuclear criticality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP1.4.1</td>
<td>WCB</td>
<td>Waste-form and backfill consolidation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEG1.2.3</td>
<td>WR</td>
<td>3.1 Co-disposal of reactive wastes (deliberate)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA CODE</td>
<td>DESCRIPTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA2.2.4</td>
<td>Inadvertent inclusion of undesirable materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA2.2.5</td>
<td>Heterogeneity of waste forms (chemical, physical)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA2.5</td>
<td>Cellulosic degradation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA3.2.6</td>
<td>Introduced complexing agents and celluloses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA3.2.7</td>
<td>Microbiological (effects on corrosion/degradation, solubility/complexation, gas generation, etc)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA3.3.5</td>
<td>Fracturing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA3.4.1</td>
<td>Radiolysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA3.4.2</td>
<td>Material property changes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA3.4.3</td>
<td>Nuclear criticality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA3.4.4</td>
<td>Radioactive decay and ingrowth (chain decay)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>ARGUMENT</td>
<td>FEP NAME</td>
<td>COMMENT</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>AEC1.1.3</td>
<td>WCB</td>
<td>C</td>
<td>Biological activity</td>
<td></td>
</tr>
<tr>
<td>AEC1.1.4</td>
<td>WCB</td>
<td>C</td>
<td>Boundary conditions</td>
<td></td>
</tr>
<tr>
<td>AEC1.1.9</td>
<td>WCB</td>
<td>C</td>
<td>Chemical interaction</td>
<td></td>
</tr>
<tr>
<td>AEC1.1.11</td>
<td>WCB</td>
<td>C</td>
<td>Chemical interaction (long-term)</td>
<td></td>
</tr>
<tr>
<td>AEC1.1.12</td>
<td>WCB</td>
<td>C</td>
<td>Chemical interaction (other)</td>
<td></td>
</tr>
<tr>
<td>AEC1.1.13</td>
<td>WCB</td>
<td>C</td>
<td>Container corrosion products</td>
<td></td>
</tr>
<tr>
<td>AEC1.1.19</td>
<td>C</td>
<td>C</td>
<td>Container failure (early)</td>
<td></td>
</tr>
<tr>
<td>AEC1.2.10</td>
<td>C</td>
<td>C</td>
<td>Container failure (long-term)</td>
<td></td>
</tr>
<tr>
<td>AEC1.2.11</td>
<td>C</td>
<td>C</td>
<td>Container failure (other long-term processes)</td>
<td></td>
</tr>
<tr>
<td>AEC1.2.20</td>
<td>C</td>
<td>C</td>
<td>Container healing</td>
<td></td>
</tr>
<tr>
<td>AEC1.2.23</td>
<td>C</td>
<td>C</td>
<td>Containers - partial corrosion</td>
<td></td>
</tr>
<tr>
<td>AEC1.2.26</td>
<td>WCB</td>
<td>C</td>
<td>Corrosion</td>
<td></td>
</tr>
<tr>
<td>AEC1.2.30</td>
<td>WCB</td>
<td>C</td>
<td>Electrochemical gradients</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.39</td>
<td>WC</td>
<td>C</td>
<td>Galvanic coupling</td>
<td></td>
</tr>
<tr>
<td>AEC1.4.45</td>
<td>C</td>
<td>C</td>
<td>Hydride cracking</td>
<td></td>
</tr>
<tr>
<td>AEC1.4.49</td>
<td>C</td>
<td>C</td>
<td>Incomplete filling of containers</td>
<td></td>
</tr>
<tr>
<td>AEC1.5.30</td>
<td>WCB</td>
<td>C</td>
<td>Interface (boundary conditions)</td>
<td></td>
</tr>
<tr>
<td>AEC1.5.53</td>
<td>WCB</td>
<td>C</td>
<td>Inventory</td>
<td></td>
</tr>
<tr>
<td>AEC1.6.54</td>
<td>WCB</td>
<td>C</td>
<td>Long-term physical stability</td>
<td></td>
</tr>
<tr>
<td>AEC1.8.58</td>
<td>C</td>
<td>C</td>
<td>Microbes</td>
<td></td>
</tr>
<tr>
<td>AEC1.8.59</td>
<td>C</td>
<td>C</td>
<td>Micronutrients</td>
<td></td>
</tr>
<tr>
<td>AEC1.8.63</td>
<td>C</td>
<td>C</td>
<td>Fitting</td>
<td></td>
</tr>
<tr>
<td>AEC1.9.65</td>
<td>WCB</td>
<td>C</td>
<td>Precipitation and dissolution</td>
<td></td>
</tr>
<tr>
<td>AEC1.9.67</td>
<td>WC</td>
<td>C</td>
<td>Radiation damage</td>
<td></td>
</tr>
<tr>
<td>AEG1.3.90</td>
<td>WCB</td>
<td>C</td>
<td>Speculation</td>
<td></td>
</tr>
<tr>
<td>AEC1.4.20</td>
<td>C</td>
<td>C</td>
<td>Stability</td>
<td></td>
</tr>
<tr>
<td>AEC1.8.44</td>
<td>WCB</td>
<td>C</td>
<td>Temperature rise (unexpected effects)</td>
<td></td>
</tr>
<tr>
<td>AEC1.9.85</td>
<td>WCB</td>
<td>C</td>
<td>Time dependence</td>
<td></td>
</tr>
<tr>
<td>AEC1.8.88</td>
<td>C</td>
<td>C</td>
<td>Uniform corrosion</td>
<td></td>
</tr>
<tr>
<td>DOE1.1.1.1</td>
<td>C</td>
<td>C</td>
<td>Structural container metal corrosion: Localised</td>
<td></td>
</tr>
<tr>
<td>DOE1.1.1.2</td>
<td>C</td>
<td>C</td>
<td>Structural container metal corrosion: Bulk</td>
<td></td>
</tr>
<tr>
<td>DOE1.1.1.3</td>
<td>C</td>
<td>C</td>
<td>Structural container metal corrosion: Crevice</td>
<td></td>
</tr>
<tr>
<td>DOE1.1.1.4</td>
<td>C</td>
<td>C</td>
<td>Structural container metal corrosion: Stress corrosion cracking</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.1.2</td>
<td>C</td>
<td>C</td>
<td>Hydrogen corrosion of container steel</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.6.1</td>
<td>C</td>
<td>C</td>
<td>Gas transport to the waste container</td>
<td></td>
</tr>
<tr>
<td>DOE1.4.1</td>
<td>C</td>
<td>C</td>
<td>Canister or container movement</td>
<td></td>
</tr>
<tr>
<td>DOE1.4.2</td>
<td>WC</td>
<td>C</td>
<td>Embrittlement</td>
<td></td>
</tr>
<tr>
<td>DOE1.6.5.1</td>
<td>WCB</td>
<td>C</td>
<td>Chemical changes due to metal corrosion</td>
<td></td>
</tr>
<tr>
<td>AEA3.2.1</td>
<td>WC</td>
<td>C</td>
<td>Chemical effects: Corrosion</td>
<td></td>
</tr>
<tr>
<td>AEA3.2.2</td>
<td>WCB</td>
<td>C</td>
<td>Chemical effects: Interactions of waste package and rock</td>
<td></td>
</tr>
<tr>
<td>AEA3.3.1</td>
<td>GB</td>
<td>C</td>
<td>Mechanical effects: Canister movement</td>
<td></td>
</tr>
<tr>
<td>PGA3.4</td>
<td>CB</td>
<td>C</td>
<td>Canister movement in backfill</td>
<td></td>
</tr>
<tr>
<td>PGA3.6</td>
<td>C</td>
<td>C</td>
<td>Mechanical canister damage</td>
<td></td>
</tr>
<tr>
<td>PGA3.7.1</td>
<td>WC</td>
<td>C</td>
<td>Differing thermal expansion of glass matrix and canister</td>
<td></td>
</tr>
<tr>
<td>PGA3.7.2</td>
<td>GB</td>
<td>C</td>
<td>Differing thermal expansion of canister and backfill</td>
<td></td>
</tr>
<tr>
<td>PGA3.7.1</td>
<td>WC</td>
<td>C</td>
<td>Differing thermal expansion of canister and backfill</td>
<td></td>
</tr>
<tr>
<td>PGA3.10</td>
<td>WCB</td>
<td>C</td>
<td>Chemical changes due to corrosion</td>
<td></td>
</tr>
<tr>
<td>SKI1.2.2</td>
<td>WC</td>
<td>C</td>
<td>Pb-I reactions</td>
<td></td>
</tr>
<tr>
<td>SKI1.5</td>
<td>C</td>
<td>C</td>
<td>Release of radionuclides from the tailoured canister</td>
<td></td>
</tr>
<tr>
<td>KSK2.1.11</td>
<td>C</td>
<td>C</td>
<td>Chemical reactions (copper corrosion)</td>
<td></td>
</tr>
<tr>
<td>SKI2.1.2</td>
<td>C</td>
<td>C</td>
<td>Coupled effects (electrochemical)</td>
<td></td>
</tr>
<tr>
<td>SKI2.1.4</td>
<td>WC</td>
<td>C</td>
<td>Role of the solution channeling within the canister</td>
<td></td>
</tr>
<tr>
<td>SKI2.1.5</td>
<td>C</td>
<td>C</td>
<td>Role of chloride in copper corrosion</td>
<td></td>
</tr>
<tr>
<td>SKI2.1.6.1</td>
<td>C</td>
<td>C</td>
<td>Repository induced Pb/Cu electrochemical reactions</td>
<td></td>
</tr>
<tr>
<td>SKI2.1.6.2</td>
<td>C</td>
<td>C</td>
<td>Natural telluric electrochemical reactions</td>
<td></td>
</tr>
<tr>
<td>SKI2.1.7</td>
<td>C</td>
<td>C</td>
<td>Pitting</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Category</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK2.1</td>
<td>C</td>
<td>Corrosive agents, Sulphides, cryptos, etc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK2.19</td>
<td>BD</td>
<td>Backfill effects on Cu corrosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK2.11</td>
<td>C</td>
<td>Microbes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK2.2</td>
<td>C</td>
<td>Creeping of copper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK2.3.1</td>
<td>WC</td>
<td>Thermal cracking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK2.3.2</td>
<td>C</td>
<td>XXXX Electro-chemical cracking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK2.3.3</td>
<td>C</td>
<td>Stress corrosion cracking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK2.3.4</td>
<td>C</td>
<td>Loss of ductility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK2.3.5</td>
<td>C</td>
<td>Radiation effects on canister</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK2.3.6</td>
<td>C</td>
<td>Cracking along welds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK2.3.7.1</td>
<td>C</td>
<td>External stress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK2.3.7.2</td>
<td>C</td>
<td>Hydrostatic pressure on canister</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK2.3.8</td>
<td>C</td>
<td>Internal pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK2.4</td>
<td>C</td>
<td>Voids in the lead filling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK2.5.1</td>
<td>C</td>
<td>Random canister defects - quality control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK2.5.2</td>
<td>C</td>
<td>Common cause canister defects - quality control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.2.2</td>
<td>GB</td>
<td>Movement of canister in buffer/backfill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.2.7</td>
<td>GB</td>
<td>Swelling of corrosion products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK2.23</td>
<td>C</td>
<td>Changed hydrostatic pressure on canister</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WCF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN1.6.14</td>
<td>WC</td>
<td>Chemical gradients (electrochemical effects and osmosis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN2.1.5</td>
<td>C</td>
<td>Material defects, e.g. early canister failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN3.2.1</td>
<td>WC</td>
<td>Metallic corrosion (pitting/intergranular, internal and external agents, gas generation e.g. H2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN3.2.2</td>
<td>WC</td>
<td>Interactions of host materials and groundwater with repository material (e.g. concrete carbon)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN3.2.3</td>
<td>WC</td>
<td>Interactions of waste and repository materials with host materials (e.g. electrochemical, corrosion)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN3.2.7</td>
<td>WC</td>
<td>Microbiological effects (corrosion/degredation, on solubility/complexation, gas generation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN3.3.1</td>
<td>C</td>
<td>Canister or container movement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN3.3.3</td>
<td>C</td>
<td>Embrittlement and cracking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN3.3.4</td>
<td>C</td>
<td>Subsidence/collapse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN3.3.5</td>
<td>C</td>
<td>Fracturing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN3.3.6</td>
<td>WC</td>
<td>Gas effects (pressurisation, disruption, explosion, fire)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMI 1.1.1</td>
<td>C</td>
<td>Container metal corrosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMI 1.4.1</td>
<td>WC</td>
<td>Electrical effects of metal corrosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMI 1.4.1</td>
<td>WC</td>
<td>Hydrogen by metal corrosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMI 1.4.1</td>
<td>WC</td>
<td>Waste-form and backfill consolidation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA2.1.5</td>
<td>C</td>
<td>Material defects (e.g. early canister failure)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA3.2.1</td>
<td>C</td>
<td>Metallic corrosion (pitting/intergranular, internal and external agents, gas generation e.g. H2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA3.3.1</td>
<td>C</td>
<td>Canister or container movement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA3.3.2</td>
<td>C</td>
<td>Changes in in-situ stress field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA3.3.3</td>
<td>C</td>
<td>Embrittlement and cracking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA3.3.4</td>
<td>C</td>
<td>Subsidence/collapse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA3.3.5</td>
<td>WC</td>
<td>Fracturing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA3.3.6</td>
<td>C</td>
<td>Gas effects (pressurisation, disruption, explosion, fire)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>ARGUMENT</td>
<td>FEP NAME</td>
<td>COMMENT</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>AEC1.1</td>
<td>B</td>
<td></td>
<td>Backfill characteristics</td>
<td></td>
</tr>
<tr>
<td>AEC1.2</td>
<td>B</td>
<td></td>
<td>Backfill evolution</td>
<td></td>
</tr>
<tr>
<td>AEC1.3</td>
<td>WCBR</td>
<td></td>
<td>Biological activity</td>
<td></td>
</tr>
<tr>
<td>AEC1.4</td>
<td>WCBR</td>
<td>4</td>
<td>Boundary conditions</td>
<td></td>
</tr>
<tr>
<td>AEC1.5</td>
<td>WB</td>
<td>2.1</td>
<td>Effer additives</td>
<td></td>
</tr>
<tr>
<td>AEC1.6</td>
<td>B</td>
<td></td>
<td>Buffer characteristics</td>
<td></td>
</tr>
<tr>
<td>AEC1.7</td>
<td>B</td>
<td></td>
<td>Buffer evolution</td>
<td></td>
</tr>
<tr>
<td>AEC1.9</td>
<td>WB</td>
<td></td>
<td>Chemical gradients</td>
<td></td>
</tr>
<tr>
<td>AEC1.10</td>
<td>WCBR</td>
<td>4</td>
<td>Chemical interactions (expected)</td>
<td></td>
</tr>
<tr>
<td>AEC1.11</td>
<td>WCBR</td>
<td>4</td>
<td>Chemical interactions (long-term)</td>
<td></td>
</tr>
<tr>
<td>AEC1.12</td>
<td>WCBR</td>
<td>4</td>
<td>Chemical interactions (other)</td>
<td></td>
</tr>
<tr>
<td>AEC1.13</td>
<td>WCBR</td>
<td></td>
<td>Chemical kinetics</td>
<td></td>
</tr>
<tr>
<td>AEC1.17</td>
<td>B</td>
<td>2.2</td>
<td>Concrete</td>
<td></td>
</tr>
<tr>
<td>AEC1.24</td>
<td>BR</td>
<td></td>
<td>Convection</td>
<td></td>
</tr>
<tr>
<td>AEC1.25</td>
<td>WCBR</td>
<td>4</td>
<td>Correlation</td>
<td></td>
</tr>
<tr>
<td>AEC1.27</td>
<td>WB</td>
<td></td>
<td>Coupled processes</td>
<td></td>
</tr>
<tr>
<td>AEC1.28</td>
<td>WB</td>
<td></td>
<td>Criticality</td>
<td></td>
</tr>
<tr>
<td>AEC1.29</td>
<td>BR</td>
<td></td>
<td>Diffusion</td>
<td></td>
</tr>
<tr>
<td>AEC1.30</td>
<td>BR</td>
<td></td>
<td>Dispersion</td>
<td></td>
</tr>
<tr>
<td>AEC1.32</td>
<td>WCB</td>
<td></td>
<td>Electrochemical gradients</td>
<td></td>
</tr>
<tr>
<td>AEC1.33</td>
<td>B</td>
<td>XXXXX</td>
<td>Evolution of buffer</td>
<td>SEE AEC1.7</td>
</tr>
<tr>
<td>AEC1.36</td>
<td>B</td>
<td></td>
<td>Faulty buffer emplacement</td>
<td></td>
</tr>
<tr>
<td>AEC1.37</td>
<td>BR</td>
<td></td>
<td>Formation of cracks</td>
<td></td>
</tr>
<tr>
<td>AEC1.40</td>
<td>WBR</td>
<td></td>
<td>Geochanical pump</td>
<td>SEE AEC1.5</td>
</tr>
<tr>
<td>AEC1.43</td>
<td>BR</td>
<td></td>
<td>Hydraulic conductivity</td>
<td></td>
</tr>
<tr>
<td>AEC1.46</td>
<td>BR</td>
<td></td>
<td>Hydrothermal alteration</td>
<td></td>
</tr>
<tr>
<td>AEC1.50</td>
<td>WCBR</td>
<td>4</td>
<td>Interfaces (boundary conditions)</td>
<td>SEE AEC1.4</td>
</tr>
<tr>
<td>AEC1.55</td>
<td>WCB</td>
<td></td>
<td>Long-term physical stability</td>
<td></td>
</tr>
<tr>
<td>AEC1.58</td>
<td>CB</td>
<td></td>
<td>Microbes</td>
<td>SEE AEC1.3</td>
</tr>
<tr>
<td>AEC1.59</td>
<td>CB</td>
<td></td>
<td>Microorganisms</td>
<td></td>
</tr>
<tr>
<td>AEC1.65</td>
<td>WCBR</td>
<td></td>
<td>Precipitation and dissolution</td>
<td></td>
</tr>
<tr>
<td>AEC1.76</td>
<td>BR</td>
<td></td>
<td>Sorption</td>
<td></td>
</tr>
<tr>
<td>AEC1.77</td>
<td>BR</td>
<td></td>
<td>Sorption; non-linear</td>
<td></td>
</tr>
<tr>
<td>AEC1.80</td>
<td>WCBR</td>
<td></td>
<td>Speciation</td>
<td></td>
</tr>
<tr>
<td>AEC1.81</td>
<td>BOMR</td>
<td></td>
<td>Stability</td>
<td></td>
</tr>
<tr>
<td>AEC1.83</td>
<td>B</td>
<td></td>
<td>Swelling pressure</td>
<td></td>
</tr>
<tr>
<td>AEC1.84</td>
<td>WCBR</td>
<td></td>
<td>Temperature rises (unexpected effects)</td>
<td></td>
</tr>
<tr>
<td>AEC1.85</td>
<td>WCBR</td>
<td>4</td>
<td>Time dependence</td>
<td></td>
</tr>
<tr>
<td>AEC1.86</td>
<td>BR</td>
<td></td>
<td>Transport in gases or of gases</td>
<td></td>
</tr>
<tr>
<td>AEC1.90</td>
<td>BR</td>
<td></td>
<td>Unsatuarated transport</td>
<td></td>
</tr>
<tr>
<td>DEE1.1.2.1</td>
<td>B</td>
<td>2.2</td>
<td>Cracking: concrete</td>
<td></td>
</tr>
<tr>
<td>DEE1.1.2.2</td>
<td>B</td>
<td>2.2</td>
<td>Sealing of cracks: concrete</td>
<td></td>
</tr>
<tr>
<td>DEE1.1.2.4</td>
<td>B</td>
<td>2.2</td>
<td>Alkali-aggregate reaction: concrete</td>
<td></td>
</tr>
<tr>
<td>DEE1.1.3.2</td>
<td>B</td>
<td>2.2</td>
<td>Exchange capacity exceeded: concrete</td>
<td></td>
</tr>
<tr>
<td>DEE1.1.3.3</td>
<td>B</td>
<td>2.2</td>
<td>Alkali-aggregate reaction: concrete</td>
<td></td>
</tr>
<tr>
<td>DEE1.1.3.4</td>
<td>S</td>
<td>2.2</td>
<td>Carrons-sulphate reaction: concrete</td>
<td></td>
</tr>
<tr>
<td>DEE1.2.1.5</td>
<td>WB</td>
<td>2.1</td>
<td>Hydrogen: effects of microbial growth on concrete</td>
<td></td>
</tr>
<tr>
<td>DEE1.2.2.5</td>
<td>WB</td>
<td>2.2</td>
<td>Methane/CO2 production: Effects of biofilms</td>
<td></td>
</tr>
<tr>
<td>DEE1.2.2.9</td>
<td>BR</td>
<td>2.1</td>
<td>Methane/CO2 production: Effects of hydrogen from metal corrosion</td>
<td></td>
</tr>
<tr>
<td>DEE1.2.2.11</td>
<td>WB</td>
<td>2.2</td>
<td>Methane/CO2 production: Carbonate/bicarbonate exchange with concrete</td>
<td></td>
</tr>
<tr>
<td>FEPs List: BUFFER/BACKFILL CATEGORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE1.2.3</td>
<td>WB</td>
<td>2.2</td>
<td>Gas generation from concrete</td>
<td></td>
</tr>
<tr>
<td>DOE1.5.2.1</td>
<td>BR</td>
<td>2.3</td>
<td>Groundwater flow: initial conditions</td>
<td></td>
</tr>
<tr>
<td>DOE1.5.2.2</td>
<td>BR</td>
<td>2.3</td>
<td>Groundwater flow due to gas production</td>
<td></td>
</tr>
<tr>
<td>DOE1.5.3</td>
<td>BBF</td>
<td>2.3</td>
<td>Groundwater flow (saturated conditions)</td>
<td></td>
</tr>
<tr>
<td>DOE1.5.3.5</td>
<td>WB</td>
<td>2.4</td>
<td>Chemical changes due to Waste degradation</td>
<td></td>
</tr>
<tr>
<td>DOE1.5.5</td>
<td>WB</td>
<td>2.5</td>
<td>Chemical changes due to Gas production</td>
<td></td>
</tr>
<tr>
<td>DOE1.6</td>
<td>WB</td>
<td>2.6</td>
<td>Chemical changes due to Gas production</td>
<td></td>
</tr>
<tr>
<td>DOE1.6.1.5</td>
<td>BBF</td>
<td>2.7</td>
<td>Chemical changes due to Complex formation</td>
<td></td>
</tr>
<tr>
<td>DOE1.6.1.8</td>
<td>BBF</td>
<td>2.8</td>
<td>Chemical changes due to Colloid production</td>
<td></td>
</tr>
<tr>
<td>DOE1.6.5.7</td>
<td>BBF</td>
<td>2.9</td>
<td>Chemical changes due to Solubility</td>
<td></td>
</tr>
<tr>
<td>DOE1.6.5.8</td>
<td>BBF</td>
<td>2.10</td>
<td>Chemical changes due to Species equilibrium</td>
<td></td>
</tr>
<tr>
<td>DOE1.6.6.2</td>
<td>WB</td>
<td>2.11</td>
<td>Microbial activity</td>
<td></td>
</tr>
<tr>
<td>DOE1.6.6.3</td>
<td>WFB</td>
<td>2.12</td>
<td>Microbiological effects due to Microbial product reactions</td>
<td></td>
</tr>
<tr>
<td>DOE2.3.4.4</td>
<td>BBF</td>
<td>2.13</td>
<td>Groundwater flow: Fracture</td>
<td></td>
</tr>
<tr>
<td>DOE2.4</td>
<td>BBF</td>
<td>2.14</td>
<td>Groundwater flow: Effects of solution channels</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.5</td>
<td>BBF</td>
<td>2.15</td>
<td>Hydrodynamic dispersion</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.4.1</td>
<td>BR</td>
<td>2.16</td>
<td>Solubility: effects of pH and Eh</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.4.2</td>
<td>BBF</td>
<td>2.17</td>
<td>Solubility: effects of ionic strength</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.4.3</td>
<td>BBF</td>
<td>2.18</td>
<td>Solubility: effects of naturally-occurring complexing agents</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.4.4</td>
<td>BR</td>
<td>2.19</td>
<td>Solubility: effects of complexing agents formed in the near-field</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.4.5</td>
<td>BBF</td>
<td>2.20</td>
<td>Solubility: effects of naturally-occurring colloids</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.4.6</td>
<td>BR</td>
<td>2.21</td>
<td>Solubility: effects of colloids formed in the near-field</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.4.7</td>
<td>BBF</td>
<td>2.22</td>
<td>Solubility: Effects of microbial activity</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.5.1</td>
<td>BR</td>
<td>2.23</td>
<td>Linear sorption</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.5.2</td>
<td>BBF</td>
<td>2.24</td>
<td>Non-linear sorption</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.5.3</td>
<td>BBF</td>
<td>2.25</td>
<td>Reversible sorption</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.5.4</td>
<td>BBF</td>
<td>2.26</td>
<td>Irreversible sorption</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.5.5</td>
<td>BBF</td>
<td>2.27</td>
<td>Sorption: Effects of pH and Eh</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.5.6</td>
<td>BBF</td>
<td>2.28</td>
<td>Sorption: Effects of ionic strength</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.5.7</td>
<td>BBF</td>
<td>2.29</td>
<td>Sorption: Effects of naturally-occurring complexing agents</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.5.8</td>
<td>BBF</td>
<td>2.30</td>
<td>Sorption: Effects of naturally-occurring colloids</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.5.9</td>
<td>BR</td>
<td>2.31</td>
<td>Sorption: Effects of complexing agents formed in the near-field</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.5.10</td>
<td>BBF</td>
<td>2.32</td>
<td>Sorption: effects of naturally-occurring colloids</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.5.11</td>
<td>BR</td>
<td>2.33</td>
<td>Sorption: effects of colloids formed in the near-field</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.5.13</td>
<td>BBF</td>
<td>2.34</td>
<td>Sorption: effects of microbial activity</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.7.1</td>
<td>BR</td>
<td>2.35</td>
<td>Organic colloid transport in Porous media</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.7.2</td>
<td>BR</td>
<td>2.36</td>
<td>Organic colloid transport in Fractured media</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.7.3</td>
<td>BR</td>
<td>2.37</td>
<td>Organic colloid transport: Effects of pH and Eh</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.7.4</td>
<td>BR</td>
<td>2.38</td>
<td>Organic colloid transport: Effects of ionic strength</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.8.1</td>
<td>BR</td>
<td>2.39</td>
<td>Inorganic colloid transport: Porous media</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.8.2</td>
<td>BR</td>
<td>2.40</td>
<td>Inorganic colloid transport: Fractured media</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.8.3</td>
<td>BR</td>
<td>2.41</td>
<td>Inorganic colloid transport: Effects of pH and Eh</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.8.4</td>
<td>BR</td>
<td>2.42</td>
<td>Inorganic colloid transport: Effects of ionic strength</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.8.5</td>
<td>BR</td>
<td>2.43</td>
<td>Transport of radionuclides bound to microbes</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.10</td>
<td>BR</td>
<td>2.44</td>
<td>Transport of dissolved species</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.11.1</td>
<td>BBF</td>
<td>2.45</td>
<td>Gas transport: solution</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.11.2</td>
<td>BBF</td>
<td>2.46</td>
<td>Gas transport: gas phase</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.12</td>
<td>BBF</td>
<td>2.47</td>
<td>Gas-induced groundwater transport</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.13.1</td>
<td>BR</td>
<td>2.48</td>
<td>Repository thermally-induced groundwater transport</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.13.2</td>
<td>BBF</td>
<td>2.49</td>
<td>Naturally thermally-induced groundwater transport</td>
<td></td>
</tr>
<tr>
<td>IAEA1.3.1</td>
<td>BBF</td>
<td>2.50</td>
<td>Fluid interactions: Groundwater flow</td>
<td></td>
</tr>
<tr>
<td>IAEA1.3.2</td>
<td>BBF</td>
<td>2.51</td>
<td>Fluid interactions: Dissolution</td>
<td></td>
</tr>
<tr>
<td>IAEA1.3.3</td>
<td>BBF</td>
<td>2.52</td>
<td>Fluid interactions: Erosion pockets</td>
<td></td>
</tr>
<tr>
<td>IAEA2.1.3</td>
<td>BBF</td>
<td>2.53</td>
<td>Thermal effects: Fluid pressure, density, viscosity changes</td>
<td></td>
</tr>
<tr>
<td>IAEA2.1.4</td>
<td>BBF</td>
<td>2.54</td>
<td>Thermal effects: Fluid migration</td>
<td></td>
</tr>
<tr>
<td>IAEA2.3.2</td>
<td>BBF</td>
<td>2.55</td>
<td>Chemical effects: Gas generation</td>
<td></td>
</tr>
<tr>
<td>IAEA2.4.2</td>
<td>WB</td>
<td>2.56</td>
<td>Chemical effects: Geochemical change</td>
<td></td>
</tr>
<tr>
<td>IAEA3.3.1</td>
<td>BR</td>
<td>2.57</td>
<td>Mechanical effects: Canister movement</td>
<td></td>
</tr>
<tr>
<td>IAEA3.3.2</td>
<td>BR</td>
<td>2.58</td>
<td>Mechanical effects: Local fracturing</td>
<td></td>
</tr>
<tr>
<td>FEPs LIST: BUFFER/BACKFILL CATEGORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGA3.4</td>
<td>CB</td>
<td>Canister movement in backfill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGA3.7.2</td>
<td>CB</td>
<td>Differing thermal expansion of canister and backfill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGA3.7.3</td>
<td>BR</td>
<td>Differing thermal expansion of backfill and host rock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGA3.9</td>
<td>WCB</td>
<td>Thermally induced chemical changes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGA3.10</td>
<td>WCB</td>
<td>Chemical changes due to corrosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGA3.12.1</td>
<td>B</td>
<td>Geochemical changes in backfill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGA3.13</td>
<td>BRPL</td>
<td>Physico-chemical phenomena/effects (eg. colloid formation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGA3.14</td>
<td>BRPL</td>
<td>Microbiological phenomena/effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKF2.1.6.2</td>
<td>CB</td>
<td>Natural tailings electrochemical reactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKF3.1.9</td>
<td>BC</td>
<td>Backfill effects on Cu corrosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.1.11</td>
<td>B</td>
<td>Degradation of the bentonite by chemical reactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.1.12</td>
<td>B</td>
<td>Saturation of sorption sites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.1.13</td>
<td>B</td>
<td>Effects of bentonite on groundwater chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.1.14</td>
<td>B</td>
<td>Colloid generation - source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.1.15</td>
<td>B</td>
<td>Compaction of bentonite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.1.16</td>
<td>B</td>
<td>Sedimentation of bentonite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.1.17</td>
<td>B</td>
<td>Reactions with cement pore water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.1.18</td>
<td>B</td>
<td>Near field buffer chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.1.19</td>
<td>WCB</td>
<td>XXXX</td>
<td>Radioactivity</td>
<td></td>
</tr>
<tr>
<td>SK3.1.10</td>
<td>WCB</td>
<td>Interactions with corrosion products and waste</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.1.11</td>
<td>B</td>
<td>Redox fronts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.1.12</td>
<td>B</td>
<td>XXXX</td>
<td>Perturbed buffer material chemistry</td>
<td></td>
</tr>
<tr>
<td>SK3.1.13</td>
<td>B</td>
<td>Radiation effects on bentonite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.2.1.1</td>
<td>BR</td>
<td>Swelling of bentonite into tunnels and cracks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.2.1.2</td>
<td>BR</td>
<td>Uneven swelling of bentonite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.2.1.2</td>
<td>CB</td>
<td>Movement of canister in buffer/backfill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.2.2</td>
<td>B</td>
<td>Mechanical failure of buffer/backfill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.2.4</td>
<td>B</td>
<td>Erosion of buffer/backfill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.2.5</td>
<td>B</td>
<td>Thermal effects on the buffer material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.2.6</td>
<td>B</td>
<td>Diffusion - surface diffusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.2.7</td>
<td>CB</td>
<td>Swelling of corrosion products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.2.8</td>
<td>B</td>
<td>Preferential pathways in the buffer/backfill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.2.9</td>
<td>B</td>
<td>Flow through buffer/backfill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.2.10</td>
<td>B</td>
<td>Sorbent effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.2.11</td>
<td>BR</td>
<td>3.1</td>
<td>Backfill material deficiencies</td>
<td></td>
</tr>
<tr>
<td>SK3.2.12</td>
<td>B</td>
<td>Gas transport in bentonite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.1.1</td>
<td>BRPL</td>
<td>Oxidizing conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.1.2</td>
<td>BRPL</td>
<td>pH-deviations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.1.3</td>
<td>BRPL</td>
<td>XXXX</td>
<td>Colloids, complexing agents</td>
<td></td>
</tr>
<tr>
<td>SK4.1.4</td>
<td>BRPL</td>
<td>Sorption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.1.6</td>
<td>BRPL</td>
<td>Reconcentration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.1.7</td>
<td>BR</td>
<td>Thermochemical changes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.1.9</td>
<td>BRPL</td>
<td>Complexing agents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.2.3</td>
<td>BR</td>
<td>Extreme channel flow of oxidants and nuclides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.2.4</td>
<td>BR</td>
<td>Extreme buoyancy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.2.5</td>
<td>BR</td>
<td>Changes of groundwater flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.2.10</td>
<td>BR</td>
<td>Chemical effects of rock reinforcement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK5.1</td>
<td>BR</td>
<td>Saline (or fresh) groundwater intrusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK5.14</td>
<td>BR</td>
<td>Resaturation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK5.18</td>
<td>BR</td>
<td>XXXX</td>
<td>Enhanced groundwater flow</td>
<td></td>
</tr>
<tr>
<td>SK6.1</td>
<td>BR</td>
<td>Gas transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK5.4</td>
<td>BRPL</td>
<td>Dispersion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK5.5</td>
<td>BRPL</td>
<td>Dilution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK5.6.1</td>
<td>BR</td>
<td>Subsidence and Caving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKH1.5.7</td>
<td>BFR</td>
<td>Saline or freshwater intrusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKH1.5.8</td>
<td>BFR</td>
<td>Effects at saline-freshwater interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKH1.5.9</td>
<td>BFR</td>
<td>Natural thermal effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKH1.6.1</td>
<td>BFR</td>
<td>Advection and dispersion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKH1.6.2</td>
<td>BFR</td>
<td>Diffusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKH1.6.3</td>
<td>BFR</td>
<td>Matrix diffusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKH1.6.4</td>
<td>BFR</td>
<td>Gas-mediated transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKH1.6.5</td>
<td>BFR</td>
<td>Multiphase flow and gas-driven flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKH1.6.6</td>
<td>BFR</td>
<td>Solubility limit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKH1.6.7</td>
<td>BFR</td>
<td>Sorption (linear/non-linear, reversible/irreversible)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKH1.6.8</td>
<td>BFR</td>
<td>Dissolution, precipitation, and crystallisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKH1.6.9</td>
<td>BFR</td>
<td>Colloid formation, dissolution, and transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKH1.6.10</td>
<td>BFR</td>
<td>Complexing agents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKH1.6.11</td>
<td>BFR</td>
<td>Mass isotopic and species dilution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKH1.6.12</td>
<td>BFR</td>
<td>Chemical gradients (electrochemical effects and osmosis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKH1.7.6</td>
<td>WFR</td>
<td>Chemical transformations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKH1.7.7</td>
<td>WFR</td>
<td>Microbial interactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKH2.1.10</td>
<td>BR</td>
<td>Thermal effects (e.g., concrete hydration)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKH2.2.2</td>
<td>HS</td>
<td>Inadequate backfill or compaction, voidage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKH3.1.5</td>
<td>WR</td>
<td>Induced chemical changes (solubility, sorption, species equilibrium, mineralisation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKH3.2.2</td>
<td>WC</td>
<td>Interactions of host materials and groundwater with repository material (e.g., concrete carbonation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKH3.2.3</td>
<td>WC</td>
<td>Interactions of waste and repository materials with host materials (e.g., electrochemical, corrosion)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP1.2.3</td>
<td>WE</td>
<td>2.1 Gas generation from concrete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP1.2.6</td>
<td>BFR</td>
<td>Gas transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP1.2.8</td>
<td>WE</td>
<td>Thermo-chemical effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP1.4.1</td>
<td>WC</td>
<td>Waste-form and backfill consolidation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP1.5.3</td>
<td>BR</td>
<td>Gas production (unsaturated flow)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP1.5.4</td>
<td>BFR</td>
<td>Saturated groundwater flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP1.5.5</td>
<td>BR</td>
<td>Transport of chemically active substances into the near-field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP1.6.1</td>
<td>BR</td>
<td>Thermal effects and Rock-mass changes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP1.6.2</td>
<td>BR</td>
<td>Thermal effects and Hydrogeological changes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP1.6.3</td>
<td>BR</td>
<td>Thermal effects and Chemical changes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP1.6.4</td>
<td>BR</td>
<td>Thermal effects and Transport (diffusion) effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP2.3.1</td>
<td>BFR</td>
<td>Advection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP2.3.2</td>
<td>BFR</td>
<td>Diffusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP2.3.3</td>
<td>BFR</td>
<td>Hydrodynamic dispersion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP2.3.4</td>
<td>BFR</td>
<td>Solubility constraints</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP2.3.5</td>
<td>BFR</td>
<td>Sorption including ion-exchange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP2.3.6</td>
<td>BFR</td>
<td>Changes in sorptive surfaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP2.3.7</td>
<td>BFR</td>
<td>Changes in groundwater chemistry and flow direction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP2.3.8</td>
<td>BFR</td>
<td>Colloid transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP2.3.9</td>
<td>BFR</td>
<td>Transport of radionuclides bound to microbes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP2.3.10</td>
<td>BFR</td>
<td>Transport of active gases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP2.3.11</td>
<td>BFR</td>
<td>Gas induced groundwater transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP2.3.12</td>
<td>BFR</td>
<td>Thermal effects on hydrochemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMP2.3.13</td>
<td>BFR</td>
<td>Biogeochemical changes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA1.6.1</td>
<td>BFR</td>
<td>Advection and dispersion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA1.6.2</td>
<td>BFR</td>
<td>Diffusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA1.6.3</td>
<td>BFR</td>
<td>Matrix diffusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA1.6.4</td>
<td>BFR</td>
<td>Gas-mediated transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA1.6.5</td>
<td>BFR</td>
<td>Multiphase flow and gas-driven flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA1.6.6</td>
<td>BFR</td>
<td>Solubility limit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA1.6.7</td>
<td>BFR</td>
<td>Sorption (linear/non-linear, reversible/irreversible)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA1.6.8</td>
<td>BFR</td>
<td>Dissolution, precipitation, and crystallisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA1.6.9</td>
<td>BFR</td>
<td>Colloid formation, dissolution, and transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA1.6.10</td>
<td>BFR</td>
<td>Complexing agents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA1.6.13</td>
<td>BFR</td>
<td>Mass isotopic and species dilution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA1.6.14</td>
<td>BFR</td>
<td>Chemical gradients (electrochemical effects and osmosis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA2.2.2</td>
<td>BR</td>
<td>Inadequate backfill or compaction voidage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA3.1.1</td>
<td>BR</td>
<td>Differential elastic response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA3.1.2</td>
<td>BR</td>
<td>Non-elastic response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA3.1.4</td>
<td>BFR</td>
<td>Induced hydrological changes (fluid pressure, density convection, viscosity)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA3.1.5</td>
<td>BR</td>
<td>Induced chemical changes (solubility, sorption, species equilibrium, mineralisation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>ARGUMENT</td>
<td>PEP NAME</td>
<td>COMMENT</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>AECL1.1.3</td>
<td>WCGR</td>
<td></td>
<td>Biological activity</td>
<td></td>
</tr>
<tr>
<td>AECL1.4</td>
<td>WCGR</td>
<td>4</td>
<td>Boundary conditions</td>
<td></td>
</tr>
<tr>
<td>AECL1.8</td>
<td>R</td>
<td></td>
<td>Cave ins</td>
<td></td>
</tr>
<tr>
<td>AECL1.9</td>
<td>WR</td>
<td></td>
<td>Chemical gradients</td>
<td></td>
</tr>
<tr>
<td>AECL1.10</td>
<td>WCGR</td>
<td>4</td>
<td>Chemical interactions (expected)</td>
<td></td>
</tr>
<tr>
<td>AECL1.11</td>
<td>WCGR</td>
<td>4</td>
<td>Chemical interactions (long-term)</td>
<td></td>
</tr>
<tr>
<td>AECL1.12</td>
<td>WCGR</td>
<td>4</td>
<td>Chemical interactions (other)</td>
<td></td>
</tr>
<tr>
<td>AECL1.13</td>
<td>WCGR</td>
<td></td>
<td>Chemical kinetics</td>
<td></td>
</tr>
<tr>
<td>AECL1.15</td>
<td>R</td>
<td></td>
<td>Collaps</td>
<td></td>
</tr>
<tr>
<td>AECL1.16</td>
<td>R</td>
<td>2.17</td>
<td>Compaction by organics</td>
<td></td>
</tr>
<tr>
<td>AECL1.24</td>
<td>ER</td>
<td></td>
<td>Convection</td>
<td></td>
</tr>
<tr>
<td>AECL1.25</td>
<td>WCGR</td>
<td>4</td>
<td>Correlation</td>
<td>Incomprehensi</td>
</tr>
<tr>
<td>AECL1.29</td>
<td>ER</td>
<td></td>
<td>Diffusion</td>
<td></td>
</tr>
<tr>
<td>AECL1.30</td>
<td>ER</td>
<td></td>
<td>Dispersion</td>
<td></td>
</tr>
<tr>
<td>AECL1.34</td>
<td>R</td>
<td></td>
<td>Excessive hydrostatic pressures</td>
<td></td>
</tr>
<tr>
<td>AECL1.35</td>
<td>R</td>
<td>3.1</td>
<td>Explosions</td>
<td>H</td>
</tr>
<tr>
<td>AECL1.37</td>
<td>BR</td>
<td></td>
<td>Formation of cracks</td>
<td></td>
</tr>
<tr>
<td>AECL1.40</td>
<td>WR</td>
<td></td>
<td>Geochemical pump</td>
<td>SEE AECL1.9</td>
</tr>
<tr>
<td>AECL1.42</td>
<td>BR</td>
<td></td>
<td>Hydraulic conductivity</td>
<td></td>
</tr>
<tr>
<td>AECL1.44</td>
<td>R</td>
<td></td>
<td>Hydraulic head</td>
<td></td>
</tr>
<tr>
<td>AECL1.46</td>
<td>BR</td>
<td></td>
<td>Hydrothermal alteration</td>
<td></td>
</tr>
<tr>
<td>AECL1.47</td>
<td>R</td>
<td>3.1</td>
<td>Improper operation</td>
<td>H</td>
</tr>
<tr>
<td>AECL1.48</td>
<td>R</td>
<td></td>
<td>Incomplete closure</td>
<td></td>
</tr>
<tr>
<td>AECL1.50</td>
<td>WCGR</td>
<td>4</td>
<td>Interfaces (boundary conditions)</td>
<td>SEE AECL1.4</td>
</tr>
<tr>
<td>AECL1.53</td>
<td>WCGR</td>
<td></td>
<td>Inventory</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>AECL1.56</td>
<td>WR</td>
<td>4</td>
<td>Long-term transients</td>
<td></td>
</tr>
<tr>
<td>AECL1.57</td>
<td>R</td>
<td>2.1</td>
<td>Methylation</td>
<td>SEE AECL1.16</td>
</tr>
<tr>
<td>AECL1.58</td>
<td>CER</td>
<td></td>
<td>Microbes</td>
<td>SEE AECL1.3</td>
</tr>
<tr>
<td>AECL1.59</td>
<td>CER</td>
<td></td>
<td>Microorganisms</td>
<td>SEE AECL1.3</td>
</tr>
<tr>
<td>AECL1.60</td>
<td>R</td>
<td>3.1</td>
<td>Monitoring and remedial activities</td>
<td></td>
</tr>
<tr>
<td>AECL1.61</td>
<td>R</td>
<td>3.7</td>
<td>Mutation</td>
<td></td>
</tr>
<tr>
<td>AECL1.62</td>
<td>R</td>
<td></td>
<td>Percolation in shafts</td>
<td></td>
</tr>
<tr>
<td>AECL1.64</td>
<td>R</td>
<td>3.1</td>
<td>Precursory events</td>
<td></td>
</tr>
<tr>
<td>AECL1.65</td>
<td>WCGR</td>
<td></td>
<td>Precipitation and dissolution</td>
<td></td>
</tr>
<tr>
<td>AECL1.66</td>
<td>R</td>
<td></td>
<td>Pseudo-collod</td>
<td>SEE AECL1.15</td>
</tr>
<tr>
<td>AECL1.70</td>
<td>R</td>
<td></td>
<td>Recrystallize groundwater</td>
<td></td>
</tr>
<tr>
<td>AECL1.71</td>
<td>R</td>
<td></td>
<td>Retrievability</td>
<td></td>
</tr>
<tr>
<td>AECL1.72</td>
<td>R</td>
<td>3.1</td>
<td>Retrieval</td>
<td></td>
</tr>
<tr>
<td>AECL1.74</td>
<td>R</td>
<td></td>
<td>Sealing</td>
<td></td>
</tr>
<tr>
<td>AECL1.75</td>
<td>R</td>
<td></td>
<td>Seal failure</td>
<td></td>
</tr>
<tr>
<td>AECL1.76</td>
<td>BR</td>
<td></td>
<td>Sorption</td>
<td></td>
</tr>
<tr>
<td>AECL1.77</td>
<td>BR</td>
<td></td>
<td>Sorption: non-linear</td>
<td></td>
</tr>
<tr>
<td>AECL1.80</td>
<td>WCGR</td>
<td></td>
<td>Speciation</td>
<td></td>
</tr>
<tr>
<td>AECL1.81</td>
<td>R</td>
<td></td>
<td>Stability</td>
<td></td>
</tr>
<tr>
<td>AECL1.84</td>
<td>WCGR</td>
<td></td>
<td>Temperature rises (unexpected effects)</td>
<td></td>
</tr>
<tr>
<td>AECL1.85</td>
<td>WCGR</td>
<td>4</td>
<td>Time dependence</td>
<td></td>
</tr>
<tr>
<td>AECL1.86</td>
<td>BR</td>
<td></td>
<td>Transport in gases or of gases</td>
<td></td>
</tr>
<tr>
<td>AECL1.89</td>
<td>R</td>
<td></td>
<td>Unmodelled design features</td>
<td></td>
</tr>
<tr>
<td>AECL1.90</td>
<td>BR</td>
<td></td>
<td>Unsealed transport</td>
<td></td>
</tr>
<tr>
<td>AECL1.91</td>
<td>R</td>
<td></td>
<td>Vault geometry</td>
<td></td>
</tr>
<tr>
<td>AECL1.97</td>
<td>HR</td>
<td>3.1</td>
<td>Blasting and vibration</td>
<td></td>
</tr>
<tr>
<td>AECL1.98</td>
<td>FF</td>
<td></td>
<td>Borehole seal failure/open boreholes</td>
<td></td>
</tr>
<tr>
<td>AECL1.99</td>
<td>FF</td>
<td>2.3</td>
<td>Cavitation</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.3</td>
<td>R</td>
<td></td>
<td>Porosity: concrete</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.5</td>
<td>R</td>
<td></td>
<td>Cement-sulfate reaction: concrete</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.6</td>
<td>R</td>
<td></td>
<td>Changes in pore water composition: pH, etc. concrete</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.11</td>
<td>R</td>
<td></td>
<td>Hydrogen: corrosion of structural steel</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.26</td>
<td>WR</td>
<td>2.1</td>
<td>Methane/CO2 production: Effects of lithostatic pressure</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.27</td>
<td>R</td>
<td></td>
<td>Methane/CO2 production: Effects of microbial growth on properties of concrete</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.29</td>
<td>BR</td>
<td>2.1</td>
<td>Methane/CO2 production: Effects of hydrogen from metal corrosion</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.12</td>
<td>WR</td>
<td>2.1</td>
<td>Methane/CO2 production: Energy and nutrient control of metabolism</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.13</td>
<td>WR</td>
<td>2.1</td>
<td>Methane/CO2 production: Effects of radiation on microbial populations</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.62</td>
<td>R</td>
<td></td>
<td>Gas transport in the vaults between containers</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.63</td>
<td>R</td>
<td></td>
<td>Gas transport between vaults</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.64</td>
<td>R</td>
<td></td>
<td>Gas transport in the near-field, including up and around access shafts and adits</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.71</td>
<td>R</td>
<td>3.1</td>
<td>Fires</td>
<td></td>
</tr>
<tr>
<td>DOE1.2.72</td>
<td>R</td>
<td>3.1</td>
<td>Explosions</td>
<td></td>
</tr>
<tr>
<td>DOE1.4.2</td>
<td>R</td>
<td></td>
<td>Changes in in-situ stress field</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Type</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE1.4.41</td>
<td>R</td>
<td>Repository-induced subsidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE1.4.5</td>
<td>R</td>
<td>Rock creep</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE1.5.11</td>
<td>R</td>
<td>Changes in moisture content due to dewatering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE1.5.12</td>
<td>R</td>
<td>Changes in moisture content due to stress relief</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE1.5.21</td>
<td>BR</td>
<td>Groundwater flow, initial conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE1.5.22</td>
<td>BR</td>
<td>Groundwater flow due to gas production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE1.5.3</td>
<td>BR</td>
<td>Groundwater flow (saturated conditions)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE1.5.41</td>
<td>R</td>
<td>Transport of inorganic ions into the near-field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE1.5.42</td>
<td>R</td>
<td>Transport of Humic and fulvic acids into the near-field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE1.5.43</td>
<td>R</td>
<td>Transport of Microbes into the near-field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE1.5.44</td>
<td>R</td>
<td>Transport of Organic complexes into the near-field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE1.5.45</td>
<td>R</td>
<td>Transport of Colloids into the near-field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE1.6.1</td>
<td>R</td>
<td>Differential elastic response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE1.6.2</td>
<td>R</td>
<td>Non-linear response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE1.6.3</td>
<td>R</td>
<td>Non-linear response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE1.6.4</td>
<td>R</td>
<td>Chemical changes due to Metal corrosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE1.6.5</td>
<td>R</td>
<td>Chemical changes due to Concrete degradation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE1.6.6</td>
<td>R</td>
<td>Chemical changes due to Waste degradation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE1.6.7</td>
<td>R</td>
<td>Chemical changes due to Gas production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE1.6.8</td>
<td>R</td>
<td>Chemical changes due to Complex formation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE1.6.9</td>
<td>R</td>
<td>Chemical changes due to Sediment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE1.6.10</td>
<td>R</td>
<td>Chemical changes due to Sorption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE1.6.11</td>
<td>R</td>
<td>Chemical changes due to Sorption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE1.6.12</td>
<td>R</td>
<td>Microbial activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE1.6.13</td>
<td>R</td>
<td>Microbiological effects due to Microbial product reactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE2.2.5</td>
<td>R</td>
<td>Repository-induced seismicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE2.2.52</td>
<td>R</td>
<td>Externally-induced seismicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE2.3.3</td>
<td>R</td>
<td>Rock property changes: Porosity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE2.3.32</td>
<td>R</td>
<td>Rock property changes: Permeability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE2.3.33</td>
<td>R</td>
<td>Rock property changes: Microbial pore blocking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE2.3.34</td>
<td>R</td>
<td>Rock property changes: Channel formation/closure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE2.3.41</td>
<td>R</td>
<td>Groundwater flow: Darcy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE2.3.42</td>
<td>R</td>
<td>Groundwater flow: Non-Darcy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE2.3.43</td>
<td>R</td>
<td>Groundwater flow: Intergranular (matrix)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE2.3.44</td>
<td>R</td>
<td>Groundwater flow: Fracture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE2.3.45</td>
<td>R</td>
<td>Groundwater flow: Effects of solution channels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE2.3.46</td>
<td>R</td>
<td>Inorganic colloidal transport: Porous media</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE2.3.47</td>
<td>BR</td>
<td>Solubility: effects of natural occurring complexes formed in the near-field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE2.3.48</td>
<td>BR</td>
<td>Solubility: effects of naturally-occurring colloids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE2.3.49</td>
<td>BR</td>
<td>Solubility: effects of major ions migrating from the near-field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE2.3.5</td>
<td>BR</td>
<td>Solubility: Effects of microbial activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE2.3.51</td>
<td>BR</td>
<td>Linear sorption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE2.3.52</td>
<td>BR</td>
<td>Non-linear sorption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE2.3.53</td>
<td>BR</td>
<td>Reversible sorption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE2.3.54</td>
<td>BR</td>
<td>Irreversible sorption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE2.3.55</td>
<td>BR</td>
<td>Sorption: Effects of pH and Eh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE2.3.56</td>
<td>BR</td>
<td>Sorption: Effects of ionic strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE2.3.57</td>
<td>BR</td>
<td>Sorption: Effects of naturally-occurring organic complexes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE2.3.58</td>
<td>BR</td>
<td>Sorption: Effects of naturally-occurring inorganic complexes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE2.3.59</td>
<td>BR</td>
<td>Sorption: effects of colloids formed in the near-field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE2.3.60</td>
<td>BR</td>
<td>Sorption: effects of major ions migrating from the near-field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE2.3.61</td>
<td>BR</td>
<td>Sorption: effects of microbial activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEPs List: Repository Category</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 2.4.7.1 BFRL</td>
<td>Organic colloidal transport in Porous media</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 2.4.7.2 BFRL</td>
<td>Organic colloidal transport in Fractured media</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 2.4.7.3 BFRL</td>
<td>Organic colloidal transport: Effects of pH and Eh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 2.4.7.4 BFRL</td>
<td>Organic colloidal transport: Effects of ionic strength</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 2.4.8.1 BFRL</td>
<td>Inorganic colloidal transport: Porous media</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 2.4.8.2 BFRL</td>
<td>Inorganic colloidal transport: Fractured media</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 2.4.8.3 BFRL</td>
<td>Inorganic colloidal transport: Effects of pH and Eh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 2.4.8.4 BFRL</td>
<td>Inorganic colloidal transport: Effects of ionic strength</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 2.4.9 BFRL</td>
<td>Transport of radionuclides bound to microbes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 2.4.10 BFRL</td>
<td>Isotopic dilution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 2.4.11.1 BFRL</td>
<td>Gas transport: Solution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 2.4.11.2 BFRL</td>
<td>Gas transport: Gas phase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 2.4.12 BFRL</td>
<td>Gas-induced groundwater transport</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 2.4.13.1 BFRL</td>
<td>Repository thermally-induced groundwater transport</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 2.4.13.2 BFRL</td>
<td>Naturally thermally-induced groundwater transport</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 2.4.14 BFRL</td>
<td>Geochemical changes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 4.1.1.1 RRL</td>
<td>Borehole seal failure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 4.1.1.2 RRL</td>
<td>Borehole seal degradation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 4.1.2.1 R</td>
<td>Shaft/tunnel seal failure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE 4.1.2.2 R</td>
<td>Shaft/tunnel seal degradation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAEA 1.3.1 BF</td>
<td>Thermal effects: Non-elastic response</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAEA 1.3.2 BF</td>
<td>Thermal effects: Fluid pressure, density, viscosity changes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAEA 1.4 BF</td>
<td>Thermal effects: Fluid migration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAEA 2.2 WR</td>
<td>Chemical effects: Interactions of waste package and rock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAEA 3.2.4 WR</td>
<td>Chemical effects: Geochemical change</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAEA 3.3.2 BR</td>
<td>Mechanical effects: Local fracturing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGA 3.5 R</td>
<td>Decompressed zones from mining</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGA 3.7.3 R</td>
<td>Differential thermal expansion of backfill and host rock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGA 3.7.4 R</td>
<td>Differential thermal expansion of host rock zones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGA 3.8 R</td>
<td>Thermal convection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGA 3.12.2 R</td>
<td>Geochemical changes in host rock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGA 3.13 BFRL</td>
<td>Physico-chemical phenomena/effects (e.g., collo id formation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGA 3.14 BFRL</td>
<td>Microbiological phenomena/effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGA 3.16 P</td>
<td>Failure of shaft sealing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGA 4.1 BF</td>
<td>Direct alteration in hydrogeology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGA 4.2 R</td>
<td>Injection of liquid waste</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK1.2.2 WR</td>
<td>XCO2 emissions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.2.1.1 BR</td>
<td>Swelling of bentonite into tunnels and cracks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK3.2.1.2 BR</td>
<td>Uneven swelling of bentonite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.1.1 BFRL</td>
<td>Oxidizing conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.1.2 BFRL</td>
<td>pH-deviations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.1.3 BFRL</td>
<td>Colloids, opaques, agents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.1.4 BFRL</td>
<td>Sorption</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.1.5 BFRL</td>
<td>Matrix diffusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.1.6 BFRL</td>
<td>Recrystallization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.1.7 BR</td>
<td>Thermochemical changes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.1.8 BR</td>
<td>Change of groundwater chemistry in nearby rock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.1.9 BFRL</td>
<td>Compacting agents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.2.1 R</td>
<td>Mechanical failure of repository</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.2.2.1 R</td>
<td>Excavation/backfilling effects on nearby rock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.2.2.2 R</td>
<td>Hydraulic conductivity change - Excavation/backfilling effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.2.2.3 BR</td>
<td>Mechanical effects - Excavation/backfilling effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.2.3 BFRL</td>
<td>Extreme channel flow of oxidants and radionuclides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.2.4 BR</td>
<td>Thermal buoyancy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.2.5 BF</td>
<td>Changes of groundwater flow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.2.7 R</td>
<td>Thermo-hydro-mechanical effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.2.8 R</td>
<td>Enhanced rock fracturing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.2.9 R</td>
<td>Creep of rock masses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK4.2.10 BR</td>
<td>Chemical effects of rock reinforcement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>FEP</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK5.1</td>
<td>BF</td>
<td>Saline (or fresh) groundwater intrusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK5.11</td>
<td>FF</td>
<td>Degradation of hole and shaft seals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK5.14</td>
<td>BR</td>
<td>Resaturation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK5.18</td>
<td>BF</td>
<td>Enhanced groundwater flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK5.22</td>
<td>GR</td>
<td>Accumulation of gases under permafrost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK5.24</td>
<td>R</td>
<td>Stress changes of conductivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK5.43</td>
<td>GR</td>
<td>Methane intrusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK5.44</td>
<td>WR</td>
<td>Solubility and precipitation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK5.45</td>
<td>FF</td>
<td>Colloid generation and transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK6.2</td>
<td>BF</td>
<td>Gas transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK6.4</td>
<td>BF</td>
<td>Dispersion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK6.5</td>
<td>BF</td>
<td>Dilution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK6.13</td>
<td>BF</td>
<td>Geothermally induced flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK7.5</td>
<td>BF</td>
<td>Isotopic dilution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNL5.1</td>
<td>BF</td>
<td>Subsidence and Caving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNL5.2</td>
<td>BF</td>
<td>Shaft and Borehole Seal failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNL5.3</td>
<td>BF</td>
<td>Thermally Induced Stress/Fracturing in Host Rock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNL5.4</td>
<td>BF</td>
<td>Excavation-Induced Stress/Fracturing in Host Rock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN1.2</td>
<td>R</td>
<td>Natural gas intrusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN1.5</td>
<td></td>
<td>Site flooding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN1.57</td>
<td>BF</td>
<td>Saline or freshwater intrusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN1.5.8</td>
<td>BF</td>
<td>Effects at saline-freshwater interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN1.5.9</td>
<td>BF</td>
<td>Natural thermal effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN1.6</td>
<td>BF</td>
<td>Advection and dispersion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN1.6.1</td>
<td>BF</td>
<td>Fracture mineral migration and weathering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN1.6.2</td>
<td>BF</td>
<td>Matrix diffusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN1.6.3</td>
<td>BF</td>
<td>Gas mediated transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN1.6.4</td>
<td>BF</td>
<td>Multiphase flow and gas driven flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN1.6.5</td>
<td>BF</td>
<td>Solubility limit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN1.6.6</td>
<td>BF</td>
<td>Mass, isotopic and species dilution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN1.6.7</td>
<td>BF</td>
<td>Adsorption (linear/non-linear, reversible/reversible)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN1.6.8</td>
<td>BF</td>
<td>Dissolution, precipitation and crystallisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN1.6.9</td>
<td>BF</td>
<td>Colloid formation, dissolution and transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN1.6.10</td>
<td>BF</td>
<td>Complexing agents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN1.6.11</td>
<td>BF</td>
<td>Dissolution, precipitation and crystallisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN1.6.12</td>
<td>BF</td>
<td>Mass, isotopic and species dilution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN1.6.13</td>
<td>BF</td>
<td>Chemical gradients (electrochemical effects and osmosis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN1.6.14</td>
<td>BF</td>
<td>Chemical transformations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN1.6.16</td>
<td>BF</td>
<td>Pore quality construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN1.6.18</td>
<td>BF</td>
<td>Design modification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN1.6.19</td>
<td>BF</td>
<td>Investigation borehole seal failure and degradation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN1.6.20</td>
<td>BF</td>
<td>Shaft or access tunnel seal failure and degradation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKN1.6.21</td>
<td>BF</td>
<td>Stress field changes, settlement, subsidence or caving</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| UKN1.6.22 | BF | Significant interactions of host materials and groundwater with repository material (e.g., concrete carbon)
| UKN1.6.23 | BF | Significant interactions of waste and repository materials with host materials (e.g., electrochemical, corrosion)
| UKN1.6.24 | BF | Non-radioactive solute volume in geosphere (effect on redox, effect on pH, sorption) |
| UKN1.6.25 | BF | Changes in in-situ stress field |

PAGE 4
<table>
<thead>
<tr>
<th>FEP1.x.x</th>
<th>BR</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMIP1.1.2</td>
<td>R</td>
<td>Physico-chemical degradation of concrete</td>
</tr>
<tr>
<td>HMIP1.2.6</td>
<td>BR</td>
<td>Gas transport</td>
</tr>
<tr>
<td>HMIP1.2.8</td>
<td>WR</td>
<td>Thermo-chemical effects</td>
</tr>
<tr>
<td>HMIP1.4.2</td>
<td>R</td>
<td>Vault collapse</td>
</tr>
<tr>
<td>HMIP1.5.1</td>
<td>R</td>
<td>Desaturation (pumping) effects</td>
</tr>
<tr>
<td>HMIP1.5.5</td>
<td>BR</td>
<td>Transport of chemically active substances into the near-field</td>
</tr>
<tr>
<td>HMIP1.6.1</td>
<td>BR</td>
<td>Thermal effects and Rock-mass changes</td>
</tr>
<tr>
<td>HMIP1.6.2</td>
<td>BR</td>
<td>Thermal effects and Hydrogeological changes</td>
</tr>
<tr>
<td>HMIP1.6.3</td>
<td>BR</td>
<td>Thermal effects and Chemical changes</td>
</tr>
<tr>
<td>HMIP1.6.4</td>
<td>BR</td>
<td>Thermal effects and Transport (diffusion) effects</td>
</tr>
<tr>
<td>HMIP1.6.5</td>
<td>BR</td>
<td>Advection</td>
</tr>
<tr>
<td>HMIP2.3.2</td>
<td>BR</td>
<td>Diffusion</td>
</tr>
<tr>
<td>HMIP2.3.3</td>
<td>BR</td>
<td>Hydrodynamic dispersion</td>
</tr>
<tr>
<td>HMIP2.3.4</td>
<td>BR</td>
<td>Solubility constraints</td>
</tr>
<tr>
<td>HMIP2.3.5</td>
<td>BR</td>
<td>Sorption including ion-exchange</td>
</tr>
<tr>
<td>HMIP2.3.6</td>
<td>BR</td>
<td>Changes in sorptive surfaces</td>
</tr>
<tr>
<td>HMIP2.3.7</td>
<td>BR</td>
<td>Changes in groundwater chemistry and flow direction</td>
</tr>
<tr>
<td>HMIP2.3.8</td>
<td>BR</td>
<td>Colloid transport</td>
</tr>
<tr>
<td>HMIP2.3.9</td>
<td>BR</td>
<td>Transport of radionuclides bound to microbes</td>
</tr>
<tr>
<td>HMIP2.3.10</td>
<td>BR</td>
<td>Transport of active gases</td>
</tr>
<tr>
<td>HMIP2.3.11</td>
<td>BR</td>
<td>Gas induced groundwater transport</td>
</tr>
<tr>
<td>HMIP2.3.12</td>
<td>BR</td>
<td>Thermal effects on hydrochemistry</td>
</tr>
<tr>
<td>HMIP2.3.13</td>
<td>BR</td>
<td>Biogeochemical changes</td>
</tr>
<tr>
<td>HMIP5.1.1</td>
<td>R</td>
<td>Loss of integrity of borehole seals</td>
</tr>
<tr>
<td>HMIP5.1.2</td>
<td>R</td>
<td>Loss of integrity of shaft or access tunnel seals</td>
</tr>
<tr>
<td>HMIP5.1.3</td>
<td>R</td>
<td>Incomplete near-tunnel chemical conditioning</td>
</tr>
<tr>
<td>NEA1.5.1</td>
<td>RF</td>
<td>Natural gas intrusion</td>
</tr>
<tr>
<td>NEA1.6.1</td>
<td>BR</td>
<td>Advection and dispersion</td>
</tr>
<tr>
<td>NEA1.6.2</td>
<td>BR</td>
<td>Diffusion</td>
</tr>
<tr>
<td>NEA1.6.3</td>
<td>BR</td>
<td>Matrix dissolution</td>
</tr>
<tr>
<td>NEA1.6.4</td>
<td>BR</td>
<td>Gas mediated transport</td>
</tr>
<tr>
<td>NEA1.6.5</td>
<td>BR</td>
<td>Multiphase flow and gas-driven flow</td>
</tr>
<tr>
<td>NEA1.6.6</td>
<td>BR</td>
<td>Solubility limit</td>
</tr>
<tr>
<td>NEA1.6.7</td>
<td>BR</td>
<td>Sorption (linear-non-linear, reversible/irreversible)</td>
</tr>
<tr>
<td>NEA1.6.8</td>
<td>BR</td>
<td>Dissolution, precipitation, and crystallisation</td>
</tr>
<tr>
<td>NEA1.6.9</td>
<td>BR</td>
<td>Colloid formation, dissolution, and transport</td>
</tr>
<tr>
<td>NEA1.6.10</td>
<td>BR</td>
<td>Complexing agents</td>
</tr>
<tr>
<td>NEA1.6.11</td>
<td>RF</td>
<td>Fracture mineralisation</td>
</tr>
<tr>
<td>NEA1.6.13</td>
<td>BR</td>
<td>Mass, isotopic and species dilution</td>
</tr>
<tr>
<td>NEA1.6.14</td>
<td>BR</td>
<td>Chemical gradients (electrochemical effects and convection)</td>
</tr>
<tr>
<td>NEA1.7.12</td>
<td>FR</td>
<td>Investigation borehole seal failure and degradation</td>
</tr>
<tr>
<td>NEA2.1.3</td>
<td>HR</td>
<td>Shaft or access tunnel seal failure and degradation</td>
</tr>
<tr>
<td>NEA2.1.4</td>
<td>HR</td>
<td>Stress field changes, setting, subsidence or caving</td>
</tr>
<tr>
<td>NEA2.1.5</td>
<td>HR</td>
<td>Dewatering of host rock</td>
</tr>
<tr>
<td>NEA2.1.6</td>
<td>GR</td>
<td>Material defects (e.g. early concrete failure)</td>
</tr>
<tr>
<td>NEA2.1.7</td>
<td>FR</td>
<td>Cathodic cause failures</td>
</tr>
<tr>
<td>NEA2.1.8</td>
<td>HR</td>
<td>Poor quality construction</td>
</tr>
<tr>
<td>NEA2.1.9</td>
<td>R</td>
<td>Thermal effects</td>
</tr>
<tr>
<td>NEA2.2.1</td>
<td>R</td>
<td>Radioactive waste disposal error</td>
</tr>
<tr>
<td>NEA2.2.2</td>
<td>BR</td>
<td>Inadequate backfill or compaction voidage</td>
</tr>
<tr>
<td>NEA2.2.3</td>
<td>WR</td>
<td>3.1</td>
</tr>
<tr>
<td>NEA2.2.4</td>
<td>WR</td>
<td>3.1</td>
</tr>
<tr>
<td>NEA2.2.6</td>
<td>R</td>
<td>3.1</td>
</tr>
<tr>
<td>NEA2.2.9</td>
<td>R</td>
<td>3.1</td>
</tr>
<tr>
<td>NEA2.2.10</td>
<td>R</td>
<td>3.1</td>
</tr>
<tr>
<td>NEA2.2.12</td>
<td>R</td>
<td>3.1</td>
</tr>
<tr>
<td>NEA2.2.13</td>
<td>R</td>
<td>3.1</td>
</tr>
<tr>
<td>NEA2.2.14</td>
<td>R</td>
<td>3.1</td>
</tr>
<tr>
<td>NEA2.2.15</td>
<td>R</td>
<td>3.1</td>
</tr>
<tr>
<td>NEA2.2.16</td>
<td>R</td>
<td>3.1</td>
</tr>
<tr>
<td>NEA2.2.17</td>
<td>R</td>
<td>3.1</td>
</tr>
<tr>
<td>NEA2.2.18</td>
<td>R</td>
<td>3.1</td>
</tr>
<tr>
<td>NEA2.2.19</td>
<td>R</td>
<td>3.1</td>
</tr>
<tr>
<td>NEA2.2.20</td>
<td>R</td>
<td>3.1</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>ARGUMENT</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>AECL2.2</td>
<td>F</td>
<td>2.4</td>
</tr>
<tr>
<td>AECL2.24</td>
<td>F</td>
<td>Borehole seal failure/open boreholes</td>
</tr>
<tr>
<td>AECL2.25</td>
<td>F</td>
<td>Storehouses - unsealed</td>
</tr>
<tr>
<td>AECL2.27</td>
<td>F</td>
<td>2.3</td>
</tr>
<tr>
<td>AECL2.29</td>
<td>F</td>
<td>Colloid formation</td>
</tr>
<tr>
<td>AECL2.10</td>
<td>F</td>
<td>Complexation by organics</td>
</tr>
<tr>
<td>AECL2.22</td>
<td>Rh</td>
<td>P</td>
</tr>
<tr>
<td>AECL2.29</td>
<td>F</td>
<td>Hydric properties - evolution</td>
</tr>
<tr>
<td>AECL2.39</td>
<td>F</td>
<td>Methane</td>
</tr>
<tr>
<td>AECL2.42</td>
<td>F</td>
<td>Precipitation - dissolution</td>
</tr>
<tr>
<td>AECL2.47</td>
<td>F</td>
<td>Pseudo-collodis</td>
</tr>
<tr>
<td>AECL2.48</td>
<td>F</td>
<td>XXX</td>
</tr>
<tr>
<td>AECL2.49</td>
<td>F</td>
<td>2.2</td>
</tr>
<tr>
<td>AECL2.50</td>
<td>F</td>
<td>Recharge groundwater</td>
</tr>
<tr>
<td>AECL2.51</td>
<td>F</td>
<td>Rock properties</td>
</tr>
<tr>
<td>AECL2.52</td>
<td>F</td>
<td>Rock properties - undetected features</td>
</tr>
<tr>
<td>AECL2.54</td>
<td>F</td>
<td>Saltiness effects on flow</td>
</tr>
<tr>
<td>AECL2.55</td>
<td>F</td>
<td>Saturation</td>
</tr>
<tr>
<td>AECL2.56</td>
<td>F</td>
<td>Shaft seal failure</td>
</tr>
<tr>
<td>AECL2.58</td>
<td>F</td>
<td>Sopion</td>
</tr>
<tr>
<td>AECL2.59</td>
<td>F</td>
<td>Sopion - non-linear</td>
</tr>
<tr>
<td>AECL2.60</td>
<td>F</td>
<td>Speciation</td>
</tr>
<tr>
<td>AECL2.63</td>
<td>F</td>
<td>Turbulence</td>
</tr>
<tr>
<td>AECL2.65</td>
<td>F</td>
<td>Unsaturated rock</td>
</tr>
<tr>
<td>AECL2.67</td>
<td>H</td>
<td>Vault closure (incomplete)</td>
</tr>
<tr>
<td>AECL2.67</td>
<td>F</td>
<td>Vault heating effects</td>
</tr>
<tr>
<td>DOE1.2.5</td>
<td>F</td>
<td>Gas transport into and through the far-field</td>
</tr>
<tr>
<td>DOE1.4.5</td>
<td>F</td>
<td>2.3</td>
</tr>
<tr>
<td>DOE1.5.1.1</td>
<td>F</td>
<td>Changes in moisture content due to dewatering</td>
</tr>
<tr>
<td>DOE1.5.1.2</td>
<td>F</td>
<td>Changes in moisture content due to stress relief</td>
</tr>
<tr>
<td>DOE1.5.3</td>
<td>RFF</td>
<td>Groundwater flow (saturated conditions)</td>
</tr>
<tr>
<td>DOE1.6.1</td>
<td>F</td>
<td>Differential elastic response</td>
</tr>
<tr>
<td>DOE1.6.2</td>
<td>F</td>
<td>Non-elastic response</td>
</tr>
<tr>
<td>DOE1.6.3.1</td>
<td>F</td>
<td>Fracture changes: aperture</td>
</tr>
<tr>
<td>DOE1.6.3.2</td>
<td>F</td>
<td>Fracture changes: length</td>
</tr>
<tr>
<td>DOE1.6.4.1</td>
<td>F</td>
<td>Hydrological changes: Fluid pressure</td>
</tr>
<tr>
<td>DOE1.6.4.2</td>
<td>F</td>
<td>Hydrological changes: Density</td>
</tr>
<tr>
<td>DOE1.6.4.3</td>
<td>F</td>
<td>Hydrological changes: Visosity</td>
</tr>
<tr>
<td>DOE1.6.5.5</td>
<td>BF</td>
<td>Chemical changes due to Complex formation</td>
</tr>
<tr>
<td>DOE1.6.5.6</td>
<td>BF</td>
<td>Chemical changes due to Colloid production</td>
</tr>
<tr>
<td>DOE1.6.5.7</td>
<td>BF</td>
<td>Chemical changes due to Solubility</td>
</tr>
<tr>
<td>DOE1.6.5.8</td>
<td>BF</td>
<td>Chemical changes due to Sorption</td>
</tr>
<tr>
<td>DOE1.6.5.9</td>
<td>BF</td>
<td>Chemical changes due to Species equilibrium</td>
</tr>
<tr>
<td>DOE1.6.5.12</td>
<td>BF</td>
<td>Microbial activity</td>
</tr>
<tr>
<td>DOE1.6.5.13</td>
<td>BF</td>
<td>Microbiological effects due to Microbial product reactions</td>
</tr>
<tr>
<td>Code</td>
<td>Category</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>DOE2.2.6.1</td>
<td>BF</td>
<td>Repository-induced seismicity</td>
</tr>
<tr>
<td>DOE2.2.6.2</td>
<td>FG</td>
<td>Externally-induced seismicity</td>
</tr>
<tr>
<td>DOE2.2.6.3</td>
<td>RG</td>
<td>Natural seismicity</td>
</tr>
<tr>
<td>DOE2.3.3.1</td>
<td>FG</td>
<td>Rock property changes: Porosity</td>
</tr>
<tr>
<td>DOE2.3.3.2</td>
<td>FG</td>
<td>Rock property changes: Permeability</td>
</tr>
<tr>
<td>DOE2.3.3.3</td>
<td>FG</td>
<td>Rock property changes: Microbial pore blocking</td>
</tr>
<tr>
<td>DOE2.3.3.4</td>
<td>FG</td>
<td>Rock property changes: Channel formation/closure</td>
</tr>
<tr>
<td>DOE2.3.4.1</td>
<td>FG</td>
<td>Groundwater flow: Darcy</td>
</tr>
<tr>
<td>DOE2.3.4.2</td>
<td>BF</td>
<td>Groundwater flow: Non-Darcy</td>
</tr>
<tr>
<td>DOE2.3.4.3</td>
<td>FF</td>
<td>Groundwater flow: Intergranular (matrix)</td>
</tr>
<tr>
<td>DOE2.3.4.4</td>
<td>BF</td>
<td>Groundwater flow: Fracture</td>
</tr>
<tr>
<td>DOE2.3.4.5</td>
<td>BF</td>
<td>Groundwater flow: Effects of solution channels</td>
</tr>
<tr>
<td>DOE2.3.4.6</td>
<td>FG</td>
<td>Inorganic colloid transport: Porous media</td>
</tr>
<tr>
<td>DOE2.3.5.1</td>
<td>BG</td>
<td>Inorganic colloid transport: Effects of pH and Eh</td>
</tr>
<tr>
<td>DOE2.3.5.2</td>
<td>BG</td>
<td>Inorganic colloid transport: Effects of ionic strength</td>
</tr>
<tr>
<td>DOE2.3.5.3</td>
<td>F</td>
<td>Salinity: Implications of evaporite deposits/minerals</td>
</tr>
<tr>
<td>DOE2.3.6</td>
<td>BF</td>
<td>Vapour diffusion in groundwater temperature</td>
</tr>
<tr>
<td>DOE2.4.1</td>
<td>BF</td>
<td>Advection</td>
</tr>
<tr>
<td>DOE2.4.2.1</td>
<td>BF</td>
<td>Bulk diffusion</td>
</tr>
<tr>
<td>DOE2.4.2.2</td>
<td>BF</td>
<td>Matrix diffusion</td>
</tr>
<tr>
<td>DOE2.4.3</td>
<td>BR</td>
<td>Hydrodynamic dispersion</td>
</tr>
<tr>
<td>DOE2.4.4.1</td>
<td>BRRL</td>
<td>Solubility: effects of pH and Eh</td>
</tr>
<tr>
<td>DOE2.4.4.2</td>
<td>BRRL</td>
<td>Solubility: effects of ionic strength</td>
</tr>
<tr>
<td>DOE2.4.4.3</td>
<td>BRRL</td>
<td>Solubility: effects of naturally-occurring complexing agents</td>
</tr>
<tr>
<td>DOE2.4.4.5</td>
<td>BRRL</td>
<td>Solubility: effects of naturally-occurring colloids</td>
</tr>
<tr>
<td>DOE2.4.4.7</td>
<td>FF</td>
<td>Solubility: effects of major ions migrating from the near-field</td>
</tr>
<tr>
<td>DOE2.4.4.8</td>
<td>BRRL</td>
<td>Solubility: Effects of microbial activity</td>
</tr>
<tr>
<td>DOE2.4.5.1</td>
<td>BR</td>
<td>Linear sorption</td>
</tr>
<tr>
<td>DOE2.4.5.2</td>
<td>BR</td>
<td>Non-linear sorption</td>
</tr>
<tr>
<td>DOE2.4.5.3</td>
<td>BR</td>
<td>Reversable sorption</td>
</tr>
<tr>
<td>DOE2.4.5.4</td>
<td>BR</td>
<td>Irreversible sorption</td>
</tr>
<tr>
<td>DOE2.4.5.5</td>
<td>BRRL</td>
<td>Sorption: Effects of pH and Eh</td>
</tr>
<tr>
<td>DOE2.4.5.6</td>
<td>BRRL</td>
<td>Sorption: Effects of ionic strength</td>
</tr>
<tr>
<td>DOE2.4.5.7</td>
<td>BRRL</td>
<td>Sorption: Effects of naturally-occurring organic complexing agents</td>
</tr>
<tr>
<td>DOE2.4.5.8</td>
<td>BRRL</td>
<td>Sorption: Effects of naturally-occurring inorganic complexing agents</td>
</tr>
<tr>
<td>DOE2.4.5.10</td>
<td>BRRL</td>
<td>Sorption: Effects of naturally-occurring colloids</td>
</tr>
<tr>
<td>DOE2.4.5.12</td>
<td>FF</td>
<td>Sorption: Effects of major ions migrating from the near-field</td>
</tr>
<tr>
<td>DOE2.4.5.13</td>
<td>BRRL</td>
<td>Sorption: Effects of microbial activity</td>
</tr>
<tr>
<td>DOE2.4.6</td>
<td>BF</td>
<td>Fracture mineralisation</td>
</tr>
<tr>
<td>DOE2.4.7.1</td>
<td>BRRL</td>
<td>Organic colloid transport in Porous media</td>
</tr>
<tr>
<td>DOE2.4.7.2</td>
<td>BRRL</td>
<td>Organic colloid transport in Fractured media</td>
</tr>
<tr>
<td>DOE2.4.7.3</td>
<td>BR</td>
<td>Organic colloid transport: Effects of pH and Eh</td>
</tr>
<tr>
<td>DOE2.4.7.4</td>
<td>BRRL</td>
<td>Organic colloid transport: Effects of ionic strength</td>
</tr>
<tr>
<td>DOE2.4.8.1</td>
<td>BRRL</td>
<td>Inorganic colloid transport: Porous media</td>
</tr>
<tr>
<td>DOE2.4.8.2</td>
<td>BRRL</td>
<td>Inorganic colloid transport: Fractured media</td>
</tr>
<tr>
<td>DOE2.4.9.1</td>
<td>BRRL</td>
<td>Inorganic colloid transport: Effects of pH and Eh</td>
</tr>
<tr>
<td>DOE2.4.9.4</td>
<td>BRRL</td>
<td>Inorganic colloid transport: Effects of ionic strength</td>
</tr>
<tr>
<td>DOE2.4.9</td>
<td>BRRL</td>
<td>Transport of radionuclides bound to colloids</td>
</tr>
<tr>
<td>DOE2.4.10</td>
<td>BRRL</td>
<td>Isotopic dilution</td>
</tr>
<tr>
<td>DOE2.4.11.1</td>
<td>BRRL</td>
<td>Gas transport: air invasion</td>
</tr>
<tr>
<td>DOE2.4.11.2</td>
<td>BRRL</td>
<td>Gas transport: gas phase</td>
</tr>
<tr>
<td>DOE2.4.12</td>
<td>BR</td>
<td>Gas-induced groundwater transport</td>
</tr>
<tr>
<td>DOE2.4.13.2</td>
<td>BR</td>
<td>Naturally thermally-induced groundwater transport</td>
</tr>
<tr>
<td>DOE2.4.14</td>
<td>RL</td>
<td>Biogeochemical changes</td>
</tr>
<tr>
<td>DOE3.2.4</td>
<td>RL</td>
<td>Near-surface runoff processes: Macropore flow</td>
</tr>
<tr>
<td>DOE3.2.5</td>
<td>RL</td>
<td>Near-surface runoff processes: Variable source area response</td>
</tr>
<tr>
<td>DOE3.3</td>
<td>F</td>
<td>Groundwater recharge</td>
</tr>
<tr>
<td>DOE4.1.1.1</td>
<td>RL</td>
<td>Borehole seal failure</td>
</tr>
<tr>
<td>DOE4.1.1.2</td>
<td>RL</td>
<td>Borehole seal degradation</td>
</tr>
<tr>
<td>Code</td>
<td>FEP/Category</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>IAEA1.13.1</td>
<td>BF</td>
<td>Fluid interactions; Groundwater flow</td>
</tr>
<tr>
<td>IAEA1.13.2</td>
<td>BRPL</td>
<td>Fluid interactions; Dissolution</td>
</tr>
<tr>
<td>IAEA1.13.3</td>
<td>BF</td>
<td>Fluid interactions; Brine pockets</td>
</tr>
<tr>
<td>IAEA2.2.1</td>
<td>V1</td>
<td>Inadequate design; Shaft seal failure</td>
</tr>
<tr>
<td>IAEA2.2.2</td>
<td>V1</td>
<td>Inadequate design; Exploration borehole seal failure</td>
</tr>
<tr>
<td>IAEA3.1.1</td>
<td>AF</td>
<td>Thermal effects; Differential elastic response</td>
</tr>
<tr>
<td>IAEA3.1.2</td>
<td>AF</td>
<td>Thermal effects; Non-elastic response</td>
</tr>
<tr>
<td>IAEA3.1.3</td>
<td>AF</td>
<td>Thermal effects; Fluid pressure, density, velocity changes</td>
</tr>
<tr>
<td>IAEA3.1.4</td>
<td>AF</td>
<td>Thermal effects; Fluid migration</td>
</tr>
<tr>
<td>IAEA3.3.1</td>
<td>AF</td>
<td>Groundwater changes</td>
</tr>
<tr>
<td>IAEA3.3.2</td>
<td>AF</td>
<td>Dissolution</td>
</tr>
<tr>
<td>IAEA3.3.3</td>
<td>AF</td>
<td>Thermal effects; Fluid pressure, density, velocity changes</td>
</tr>
<tr>
<td>PGA2.1</td>
<td>AF</td>
<td>Geochemical changes in host rock</td>
</tr>
<tr>
<td>PGA3.1</td>
<td>AF</td>
<td>Physico-chemical phenomena/effects (eg. colloid formation)</td>
</tr>
<tr>
<td>PGA3.4</td>
<td>AF</td>
<td>Microbiological phenomena/effects</td>
</tr>
<tr>
<td>PGA4.1</td>
<td>AF</td>
<td>Direct alterations in hydrogeology</td>
</tr>
<tr>
<td>SKA1.1</td>
<td>BF</td>
<td>Oxidizing conditions</td>
</tr>
<tr>
<td>SKA1.2</td>
<td>BF</td>
<td>pH deviations</td>
</tr>
<tr>
<td>SKA1.3</td>
<td>BF</td>
<td>Colloids, complexing agents</td>
</tr>
<tr>
<td>SKA1.4</td>
<td>BF</td>
<td>Sorption</td>
</tr>
<tr>
<td>SKA1.5</td>
<td>BF</td>
<td>Matrix diffusion</td>
</tr>
<tr>
<td>SKA1.6</td>
<td>BF</td>
<td>Reconcentration</td>
</tr>
<tr>
<td>SKA1.7</td>
<td>BF</td>
<td>Complexing agents</td>
</tr>
<tr>
<td>SKA2.3</td>
<td>BF</td>
<td>Extreme channel flow of oxidants and nuclides</td>
</tr>
<tr>
<td>SKA2.5</td>
<td>BF</td>
<td>Changes of groundwater flow</td>
</tr>
<tr>
<td>SKD1.1</td>
<td>BF</td>
<td>Saline (or fresh) groundwater intrusion</td>
</tr>
<tr>
<td>SKD1.2</td>
<td>BF</td>
<td>Degradation of hole- and shaft seals</td>
</tr>
<tr>
<td>SKD1.3</td>
<td>BF</td>
<td>Enhanced groundwater flow</td>
</tr>
<tr>
<td>SKD1.4</td>
<td>BF</td>
<td>Dissolution of fracture fillings/precipitations</td>
</tr>
<tr>
<td>SKD1.5</td>
<td>BF</td>
<td>Colloid generation and transport</td>
</tr>
<tr>
<td>SKD1.6</td>
<td>BF</td>
<td>Undetected discontinuities</td>
</tr>
<tr>
<td>SKD1.7</td>
<td>BF</td>
<td>Geothermally induced flow</td>
</tr>
<tr>
<td>SKD1.8</td>
<td>BF</td>
<td>Isothermal dilution</td>
</tr>
<tr>
<td>SKD1.9</td>
<td>BF</td>
<td>Shallowing of flow paths</td>
</tr>
<tr>
<td>SKD1.10</td>
<td>BF</td>
<td>Undetected fractures (eg. faults, fracture networks, shear zones, brecciation, gas pockets)</td>
</tr>
<tr>
<td>SNL2.1</td>
<td>BF</td>
<td>Recharge to groundwater</td>
</tr>
<tr>
<td>SNL2.2</td>
<td>BF</td>
<td>Groundwater discharge (to surface water, to springs, to soils, to wells, to marine)</td>
</tr>
<tr>
<td>SNL2.3</td>
<td>BF</td>
<td>Groundwater flow (Darcy, non-Darcy, integrandular fracture, channeling and preferential path)</td>
</tr>
<tr>
<td>UKN1.2.9</td>
<td>GF</td>
<td>Fault activation</td>
</tr>
<tr>
<td>UKN1.2.12</td>
<td>RG</td>
<td>Undetected features (e.g. faults, fracture networks, shear zones, brecciation, gas pockets)</td>
</tr>
<tr>
<td>UKN1.3.3</td>
<td>GF</td>
<td>Recharge to groundwater</td>
</tr>
<tr>
<td>UKN1.5.5</td>
<td>GF</td>
<td>Groundwater flow (Darcy, non-Darcy, integrandular fracture, channeling and preferential path)</td>
</tr>
<tr>
<td>UKN1.5.6</td>
<td>GF</td>
<td>Groundwater conditions (saturated/unsaturated)</td>
</tr>
<tr>
<td>UKN1.5.7</td>
<td>BF</td>
<td>Saline or freshwater intrusion</td>
</tr>
<tr>
<td>UKN1.5.8</td>
<td>BF</td>
<td>Effects at saline-freshwater interface</td>
</tr>
<tr>
<td>UKN1.5.9</td>
<td>BF</td>
<td>Natural thermal effects</td>
</tr>
<tr>
<td>UKN1.6.1</td>
<td>BF</td>
<td>Advection and dispersion</td>
</tr>
<tr>
<td>UKN1.6.2</td>
<td>BF</td>
<td>Diffusion</td>
</tr>
<tr>
<td>UKN1.6.3</td>
<td>BF</td>
<td>Matrix diffusion</td>
</tr>
<tr>
<td>UKN1.6.4</td>
<td>BF</td>
<td>Gas mediated transport</td>
</tr>
<tr>
<td>UKN1.6.5</td>
<td>BF</td>
<td>Multiphase flow and gas driven flow</td>
</tr>
<tr>
<td>UKN1.6.6</td>
<td>BF</td>
<td>Solubility limit</td>
</tr>
<tr>
<td>UKN1.6.7</td>
<td>BF</td>
<td>Sorption (linear/non-linear, reversible/inversible)</td>
</tr>
<tr>
<td>UKN1.6.8</td>
<td>BF</td>
<td>Fluid interactions; Brine pockets</td>
</tr>
<tr>
<td>Code</td>
<td>Topic</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>UKN1.6.9</td>
<td>Colloid formation, dissolution and transport</td>
<td></td>
</tr>
<tr>
<td>UKN1.6.10</td>
<td>Complexing agents</td>
<td></td>
</tr>
<tr>
<td>UKN1.6.11</td>
<td>Fracture mineralisation and weathering</td>
<td></td>
</tr>
<tr>
<td>UKN1.6.13</td>
<td>Mass, isotopic and species dilution</td>
<td></td>
</tr>
<tr>
<td>UKN1.6.14</td>
<td>Chemical gradients (electrochemical effects and osmosis)</td>
<td></td>
</tr>
<tr>
<td>UKN1.7.5</td>
<td>Chemical transformations</td>
<td></td>
</tr>
<tr>
<td>UKN1.7.7</td>
<td>Microbial interactions</td>
<td></td>
</tr>
<tr>
<td>UKN2.1.2</td>
<td>Investigation borehole seal failure and degradation</td>
<td></td>
</tr>
<tr>
<td>UKN2.1.3</td>
<td>Shaft or access tunnel seal failure and degradation</td>
<td></td>
</tr>
<tr>
<td>UKN2.1.5</td>
<td>Dewatering of host rock</td>
<td></td>
</tr>
<tr>
<td>UKN3.1.1</td>
<td>Differential elastic response</td>
<td></td>
</tr>
<tr>
<td>UKN3.1.2</td>
<td>Non-elastic response</td>
<td></td>
</tr>
<tr>
<td>UKN3.1.3</td>
<td>Host rock fracture aperture changes</td>
<td></td>
</tr>
<tr>
<td>UKN3.1.4</td>
<td>Induced hydrological changes (fluid pressure, density conversion, viscosity)</td>
<td></td>
</tr>
<tr>
<td>UKN3.2.4</td>
<td>Non-radioactive solute plume in geosphere (effect on redox, effect on pH, sorption)</td>
<td></td>
</tr>
<tr>
<td>HMP1.2.6</td>
<td>Gas transport</td>
<td></td>
</tr>
<tr>
<td>HMP1.5.4</td>
<td>Saturated groundwater flow</td>
<td></td>
</tr>
<tr>
<td>HMP2.1.9</td>
<td>Effects of natural gases</td>
<td></td>
</tr>
<tr>
<td>HMP2.2.1</td>
<td>Changes in geometry and driving forces of the flow system</td>
<td></td>
</tr>
<tr>
<td>HMP2.2.2</td>
<td>Rock property changes</td>
<td></td>
</tr>
<tr>
<td>HMP2.2.3</td>
<td>Groundwater flow</td>
<td></td>
</tr>
<tr>
<td>HMP2.3.1</td>
<td>Advection</td>
<td></td>
</tr>
<tr>
<td>HMP2.3.2</td>
<td>Diffusion</td>
<td></td>
</tr>
<tr>
<td>HMP2.3.3</td>
<td>Hydrodynamic dispersion</td>
<td></td>
</tr>
<tr>
<td>HMP2.3.4</td>
<td>Solubility constraints</td>
<td></td>
</tr>
<tr>
<td>HMP2.3.5</td>
<td>Sorption including ion-exchange</td>
<td></td>
</tr>
<tr>
<td>HMP2.3.6</td>
<td>Changes in sorptive surfaces</td>
<td></td>
</tr>
<tr>
<td>HMP2.3.7</td>
<td>Changes in groundwater chemistry and flow direction</td>
<td></td>
</tr>
<tr>
<td>HMP2.3.8</td>
<td>Colloid transport</td>
<td></td>
</tr>
<tr>
<td>HMP2.3.9</td>
<td>Transport of radionuclides bound to microbes</td>
<td></td>
</tr>
<tr>
<td>HMP2.3.10</td>
<td>Transport of active gases</td>
<td></td>
</tr>
<tr>
<td>HMP2.3.11</td>
<td>Gas induced groundwater transport</td>
<td></td>
</tr>
<tr>
<td>HMP2.3.12</td>
<td>Thermal effects on hydrochemistry</td>
<td></td>
</tr>
<tr>
<td>HMP2.3.13</td>
<td>Biogeochemical changes</td>
<td></td>
</tr>
<tr>
<td>HMP3.1.1</td>
<td>Loss of integrity of borehole seals</td>
<td></td>
</tr>
<tr>
<td>NEA1.2.13</td>
<td>Natural gas intrusion</td>
<td></td>
</tr>
<tr>
<td>NEA1.5.3</td>
<td>Recharge to groundwater</td>
<td></td>
</tr>
<tr>
<td>NEA1.5.5</td>
<td>Groundwater flow (Darcy, non-Darcy, intergranular fracture, channeling and preferential path)</td>
<td></td>
</tr>
<tr>
<td>NEA1.5.6</td>
<td>Groundwater conditions (saturated/unsaturated)</td>
<td></td>
</tr>
<tr>
<td>NEA1.5.7</td>
<td>Saline or freshwater intrusion</td>
<td></td>
</tr>
<tr>
<td>NEA1.5.8</td>
<td>Effects at saline-freshwater interface</td>
<td></td>
</tr>
<tr>
<td>NEA1.5.9</td>
<td>Natural thermal effects</td>
<td></td>
</tr>
<tr>
<td>NEA1.5.10</td>
<td>Advection and dispersion</td>
<td></td>
</tr>
<tr>
<td>NEA1.6.2</td>
<td>Diffusion</td>
<td></td>
</tr>
<tr>
<td>NEA1.6.3</td>
<td>Matrix diffusion</td>
<td></td>
</tr>
<tr>
<td>NEA1.6.4</td>
<td>Gas mediated transport</td>
<td></td>
</tr>
<tr>
<td>NEA1.6.5</td>
<td>Multiphase flow and gas-driven flow</td>
<td></td>
</tr>
<tr>
<td>NEA1.6.6</td>
<td>Solubility limit</td>
<td></td>
</tr>
<tr>
<td>NEA1.6.7</td>
<td>Sorption (linear/non-linear, reversible/irreversible)</td>
<td></td>
</tr>
<tr>
<td>NEA1.6.8</td>
<td>Dissolution, precipitation, and crystallisation</td>
<td></td>
</tr>
<tr>
<td>NEA1.6.9</td>
<td>Colloid formation, dissolution, and transport</td>
<td></td>
</tr>
<tr>
<td>NEA1.6.10</td>
<td>Complexing agents</td>
<td></td>
</tr>
<tr>
<td>NEA1.6.11</td>
<td>Fracture mineralisation</td>
<td></td>
</tr>
<tr>
<td>NEA1.6.13</td>
<td>Mass, isotopic and species dilution</td>
<td></td>
</tr>
<tr>
<td>NEA1.6.14</td>
<td>Chemical gradients (electrochemical effects and osmosis)</td>
<td></td>
</tr>
<tr>
<td>NEA1.6.15</td>
<td>Induced hydrological changes (fluid pressure, density conversion, viscosity)</td>
<td></td>
</tr>
<tr>
<td>NEA2.2.3</td>
<td>Interactions of waste and repository materials with host materials (electrochemical, corrosive)</td>
<td></td>
</tr>
<tr>
<td>NEA2.2.1</td>
<td>Non-radioactive solute plume in geosphere (effect of redox, pH, and sorption)</td>
<td></td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>ARGUMENT</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>AEC1.1.51</td>
<td>C</td>
<td>2.3</td>
</tr>
<tr>
<td>AEC1.1.13</td>
<td>H</td>
<td>2.4</td>
</tr>
<tr>
<td>AEC1.1.16</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.1</td>
<td>L</td>
<td>D</td>
</tr>
<tr>
<td>AEC1.3.2</td>
<td>G</td>
<td>2.4</td>
</tr>
<tr>
<td>AEC1.3.3</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.4</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.5</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.6</td>
<td>H</td>
<td>2.3?</td>
</tr>
<tr>
<td>AEC1.3.8</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.9</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.11</td>
<td>L</td>
<td>3.7</td>
</tr>
<tr>
<td>AEC1.3.12</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.13</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.14</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.15</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.16</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.17</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.18</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.19</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.20</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.21</td>
<td>L</td>
<td>3.5</td>
</tr>
<tr>
<td>AEC1.3.25</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.26</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.27</td>
<td>L</td>
<td>4</td>
</tr>
<tr>
<td>AEC1.3.28</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.29</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.30</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.31</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.32</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.33</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.34</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.35</td>
<td>H</td>
<td>2.3?</td>
</tr>
<tr>
<td>AEC1.3.36</td>
<td>H</td>
<td>2.3?</td>
</tr>
<tr>
<td>AEC1.3.38</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.39</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.40</td>
<td>L</td>
<td>2.1</td>
</tr>
<tr>
<td>AEC1.3.41</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.42</td>
<td>G</td>
<td>2.5</td>
</tr>
<tr>
<td>AEC1.3.44</td>
<td>L</td>
<td>2.3?</td>
</tr>
<tr>
<td>AEC1.3.45</td>
<td>L</td>
<td>2.3?</td>
</tr>
<tr>
<td>AEC1.3.49</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.51</td>
<td>G</td>
<td>2.3?</td>
</tr>
<tr>
<td>AEC1.3.52</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.53</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.55</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.56</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.57</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.59</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.61</td>
<td>H</td>
<td>2.3?</td>
</tr>
<tr>
<td>AEC1.3.62</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.63</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.64</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.65</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.66</td>
<td>H</td>
<td>3.5</td>
</tr>
<tr>
<td>AEC1.3.67</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.68</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AEC1.3.69</td>
<td>H</td>
<td>2.4?</td>
</tr>
<tr>
<td>AEC1.3.71</td>
<td>L</td>
<td>3.6</td>
</tr>
<tr>
<td>AEC1.3.72</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>AECL3.76</td>
<td>GL</td>
<td>0.0</td>
</tr>
<tr>
<td>AECL3.77</td>
<td>H</td>
<td>2.37</td>
</tr>
<tr>
<td>AECL3.78</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.79</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.80</td>
<td>WM.</td>
<td>2.4</td>
</tr>
<tr>
<td>AECL3.81</td>
<td>WM.</td>
<td></td>
</tr>
<tr>
<td>AECL3.82</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.83</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.84</td>
<td>L</td>
<td>3.5</td>
</tr>
<tr>
<td>AECL3.85</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.86</td>
<td>L</td>
<td>2.3</td>
</tr>
<tr>
<td>AECL3.87</td>
<td>L</td>
<td>4</td>
</tr>
<tr>
<td>AECL3.88</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.89</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.90</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.91</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.92</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.93</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.94</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.95</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AECL3.96</td>
<td>L</td>
<td>4</td>
</tr>
<tr>
<td>AECL3.97</td>
<td>L</td>
<td>2.47</td>
</tr>
<tr>
<td>AECL3.98</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.99</td>
<td>L</td>
<td>4</td>
</tr>
<tr>
<td>AECL3.100</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.101</td>
<td>L</td>
<td>2.3</td>
</tr>
<tr>
<td>AECL3.102</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.103</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.104</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.105</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.106</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.107</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.108</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.109</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.110</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.111</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.112</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.113</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.114</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.115</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.116</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.117</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.118</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.119</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.120</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.121</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.122</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>AECL3.123</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Process Description</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.10</td>
<td>Bioremediation</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.11.1</td>
<td>Isotopic dilution</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.11.2</td>
<td>Gas transport: solution</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.11.3</td>
<td>Gas transport: gas phase</td>
<td></td>
</tr>
<tr>
<td>DOE2.4.14</td>
<td>Biogeochemical changes</td>
<td></td>
</tr>
<tr>
<td>DOE3.1.1.5</td>
<td>Greenhouse-induced Ecological effects</td>
<td></td>
</tr>
<tr>
<td>DOE3.1.2.5</td>
<td>Glacial-interglacial cycling Ecological effects</td>
<td></td>
</tr>
<tr>
<td>DOE3.2.1</td>
<td>Near-surface runoff processes: Overland flow</td>
<td></td>
</tr>
<tr>
<td>DOE3.2.2.2</td>
<td>Near-surface runoff processes: Interflow</td>
<td></td>
</tr>
<tr>
<td>DOE3.2.2.3</td>
<td>Near-surface runoff processes: Return flow</td>
<td></td>
</tr>
<tr>
<td>DOE3.2.4.1</td>
<td>Near-surface runoff processes: Macro pore flow</td>
<td></td>
</tr>
<tr>
<td>DOE3.3.2.5</td>
<td>Near-surface runoff processes: Variable source area response</td>
<td></td>
</tr>
<tr>
<td>DOE3.3.4.1</td>
<td>Surface flow characteristics (freshwater): Stream/river flow</td>
<td></td>
</tr>
<tr>
<td>DOE3.3.4.2</td>
<td>Surface flow characteristics (freshwater): Sediment transport</td>
<td></td>
</tr>
<tr>
<td>DOE3.3.4.3</td>
<td>Surface flow characteristics (freshwater): Meander migration or other fluvial res</td>
<td></td>
</tr>
<tr>
<td>DOE3.3.4.4</td>
<td>Surface flow characteristics (freshwater): Lake formation/sedimentation</td>
<td></td>
</tr>
<tr>
<td>DOE3.3.4.5</td>
<td>Surface flow characteristics (freshwater): Effects of sea level change</td>
<td></td>
</tr>
<tr>
<td>DOE3.3.5.1</td>
<td>Surface flow characteristics (estuarine): Tidal cycling</td>
<td></td>
</tr>
<tr>
<td>DOE3.3.5.2</td>
<td>Surface flow characteristics (estuarine): Sediment transport</td>
<td></td>
</tr>
<tr>
<td>DOE3.3.5.3</td>
<td>Surface flow characteristics (estuarine): Successional development</td>
<td></td>
</tr>
<tr>
<td>DOE3.3.5.4</td>
<td>Surface flow characteristics (estuarine): Effects of sea level change</td>
<td></td>
</tr>
<tr>
<td>DOE3.3.6.1</td>
<td>Coastal waters: Tidal mixing</td>
<td></td>
</tr>
<tr>
<td>DOE3.3.6.2</td>
<td>Coastal waters: Residual current mixing</td>
<td></td>
</tr>
<tr>
<td>DOE3.3.6.3</td>
<td>Coastal waters: Effects of sea level change</td>
<td></td>
</tr>
<tr>
<td>DOE3.3.7.1</td>
<td>Ocean waters: Water exchange</td>
<td></td>
</tr>
<tr>
<td>DOE3.3.7.2</td>
<td>Ocean waters: Effects of sea level change</td>
<td></td>
</tr>
<tr>
<td>DOE3.4.1.1</td>
<td>Terrestrial ecological development: Agricultural systems</td>
<td></td>
</tr>
<tr>
<td>DOE3.4.1.2</td>
<td>Terrestrial ecological development: Semi-natural systems</td>
<td></td>
</tr>
<tr>
<td>DOE3.4.1.3</td>
<td>Terrestrial ecological development: Natural systems</td>
<td></td>
</tr>
<tr>
<td>DOE3.4.1.4</td>
<td>Terrestrial ecological development: Effects of succession</td>
<td></td>
</tr>
<tr>
<td>DOE3.4.2</td>
<td>Terrestrial ecological development: Estuarine</td>
<td></td>
</tr>
<tr>
<td>DOE3.4.3</td>
<td>Terrestrial ecological development: Coastal waters</td>
<td></td>
</tr>
<tr>
<td>DOE3.4.4</td>
<td>Coastal waters: Ocean waters</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.2.1</td>
<td>Groundwater discharge to soils: Advection</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.2.2</td>
<td>Groundwater discharge to soils: Diffusion</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.2.3</td>
<td>Groundwater discharge to soils: Bioactive</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.2.4</td>
<td>Groundwater discharge to soils: Volatilisation</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.3</td>
<td>Groundwater discharge to wells or springs</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.4</td>
<td>Groundwater discharge to freshwaters</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.5</td>
<td>Groundwater discharge to estuaries</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.6</td>
<td>Groundwater discharge to coastal waters</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.7.1</td>
<td>Surface water bodies: Water flow</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.7.2</td>
<td>Surface water bodies: Suspended sediments</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.7.3</td>
<td>Surface water bodies: Bottom sediments</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.7.4</td>
<td>Surface water bodies: Effects on vegetation</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.7.5</td>
<td>Surface water bodies: Effects of river systems development</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.8.1</td>
<td>Estuaries: Water flow</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.8.2</td>
<td>Estuaries: Suspended sediments</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.8.3</td>
<td>Estuaries: Bottom sediments</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.8.4</td>
<td>Estuaries: Effects of salinity variation</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.8.5</td>
<td>Estuaries: Effects on vegetation</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.8.6</td>
<td>Estuaries: Effects of estuarine development</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.8.7</td>
<td>Estuaries: Effects of sea-level change</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.9.1</td>
<td>Coastal waters: Water transport</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.9.2</td>
<td>Coastal waters: Suspended sediment transport</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.9.3</td>
<td>Coastal waters: Bottom sediment transport</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.9.4</td>
<td>Coastal waters: Effects of sea-level change</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.9.5</td>
<td>Coastal waters: Effects of estuarine development</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.9.6</td>
<td>Coastal waters: Effects of coastal erosion</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.9.7</td>
<td>Coastal waters: Effects of sea-level change</td>
<td></td>
</tr>
<tr>
<td>DOE3.5.10.1</td>
<td>Plants: Root uptake</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Category</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>DOE3.5.10.2</td>
<td>L</td>
<td>Plants: Deposition on surfaces</td>
</tr>
<tr>
<td>DOE3.5.10.3</td>
<td>L</td>
<td>Plants: Vapour uptake</td>
</tr>
<tr>
<td>DOE3.5.10.4</td>
<td>L</td>
<td>Plants: Internal translocation and retention</td>
</tr>
<tr>
<td>DOE3.5.10.5</td>
<td>L</td>
<td>Plants: Washoff and leaching by rainfall</td>
</tr>
<tr>
<td>DOE3.5.10.6</td>
<td>L</td>
<td>Plants: Leaf-fall and senescence</td>
</tr>
<tr>
<td>DOE3.5.10.7</td>
<td>L</td>
<td>Plants: Cycling processes</td>
</tr>
<tr>
<td>DOE3.5.11.1</td>
<td>L</td>
<td>Animals: Uptake by ingestion</td>
</tr>
<tr>
<td>DOE3.5.11.2</td>
<td>L</td>
<td>Animals: Uptake by inhalation</td>
</tr>
<tr>
<td>DOE3.5.11.3</td>
<td>L</td>
<td>Animals: Internal translocation and retention</td>
</tr>
<tr>
<td>DOE3.5.11.4</td>
<td>L</td>
<td>Animals: Cycling processes</td>
</tr>
<tr>
<td>DOE3.5.11.5</td>
<td>L</td>
<td>Animals: Effects of relocation and migration</td>
</tr>
<tr>
<td>DOE3.6.1.1</td>
<td>L</td>
<td>External exposure: Land</td>
</tr>
<tr>
<td>DOE3.6.1.2</td>
<td>L</td>
<td>External exposure: Sediments</td>
</tr>
<tr>
<td>DOE3.6.1.3</td>
<td>L</td>
<td>External exposure: Water bodies</td>
</tr>
<tr>
<td>DOE3.6.2.1</td>
<td>L</td>
<td>Ingestion and Drinking water</td>
</tr>
<tr>
<td>DOE3.6.2.2</td>
<td>L</td>
<td>Ingestion and Agricultural crops</td>
</tr>
<tr>
<td>DOE3.6.2.3</td>
<td>L</td>
<td>Ingestion and Domestic animal products</td>
</tr>
<tr>
<td>DOE3.6.2.4</td>
<td>L</td>
<td>Ingestion and Wild plants</td>
</tr>
<tr>
<td>DOE3.6.2.5</td>
<td>L</td>
<td>Ingestion and Wild animals</td>
</tr>
<tr>
<td>DOE3.6.2.6</td>
<td>L</td>
<td>Ingestion and Soils and sediments</td>
</tr>
<tr>
<td>DOE3.6.3.1</td>
<td>L</td>
<td>Inhalation and Soils and sediments</td>
</tr>
<tr>
<td>DOE3.6.3.2</td>
<td>L</td>
<td>Inhalation and Gases and vapours (indoor)</td>
</tr>
<tr>
<td>DOE3.6.3.3</td>
<td>L</td>
<td>Inhalation and Gases and vapours (outdoor)</td>
</tr>
<tr>
<td>DOE3.6.3.4</td>
<td>L</td>
<td>Inhalation and Biotic material</td>
</tr>
<tr>
<td>DOE3.6.3.5</td>
<td>L</td>
<td>Inhalation and Salt particles</td>
</tr>
<tr>
<td>DOE4.1.1.1</td>
<td>BRL</td>
<td>Borehole seal failure</td>
</tr>
<tr>
<td>DOE4.1.1.2</td>
<td>BRL</td>
<td>Borehole seal degradation</td>
</tr>
<tr>
<td>SK4.1.3</td>
<td>BRL</td>
<td>Fluid interactions: Desorption</td>
</tr>
<tr>
<td>LAE4.2.2</td>
<td>BRL</td>
<td>TRADEMARK DESIGN: EXPLORATION BOREHOLE SEAL FAILURE</td>
</tr>
<tr>
<td>PGA1.11</td>
<td>RPL</td>
<td>Weathering, mineralisation</td>
</tr>
<tr>
<td>PGA3.13</td>
<td>BRL</td>
<td>Physico-chemical phenomena/effects, colloid formation</td>
</tr>
<tr>
<td>PGA3.14</td>
<td>BRL</td>
<td>Microbiological phenomena/effects</td>
</tr>
<tr>
<td>SK4.1.1</td>
<td>BRL</td>
<td>Oxidizing conditions</td>
</tr>
<tr>
<td>SK4.1.2</td>
<td>BRL</td>
<td>pH-deviations</td>
</tr>
<tr>
<td>SK4.1.3</td>
<td>BRL</td>
<td>Colloids, complexing agents</td>
</tr>
<tr>
<td>SK4.1.4</td>
<td>BRL</td>
<td>Sorption</td>
</tr>
<tr>
<td>SK4.1.5</td>
<td>BRL</td>
<td>Recondition</td>
</tr>
<tr>
<td>SK4.1.6</td>
<td>BRL</td>
<td>Complexing agents</td>
</tr>
<tr>
<td>SK5.41</td>
<td>HRL</td>
<td>Water producing well</td>
</tr>
<tr>
<td>SK5.4.4</td>
<td>BRL</td>
<td>Dispersion</td>
</tr>
<tr>
<td>SK5.6.5</td>
<td>BRL</td>
<td>Dilution</td>
</tr>
<tr>
<td>SK6.9</td>
<td>L</td>
<td>River meandering</td>
</tr>
<tr>
<td>SK7.1</td>
<td>L</td>
<td>Accumulation in sediments</td>
</tr>
<tr>
<td>SK7.2</td>
<td>L</td>
<td>Accumulation in peat</td>
</tr>
<tr>
<td>SK7.3</td>
<td>L</td>
<td>Intrusion in accumulation zone in the biosphere</td>
</tr>
<tr>
<td>SK7.5</td>
<td>RPL</td>
<td>Isotopic dilution</td>
</tr>
<tr>
<td>SNL6.2</td>
<td>RPL</td>
<td>Shale and Borehole Seal Degradation</td>
</tr>
<tr>
<td>UKN1.3.1</td>
<td>CL</td>
<td>Precipitation, temperature and soil water balance</td>
</tr>
<tr>
<td>UKN1.5.4</td>
<td>R</td>
<td>Groundwater discharge (to surface water, to springs, to soils, to wells, to marine)</td>
</tr>
<tr>
<td>UKN1.6.1</td>
<td>BRL</td>
<td>Advection and dispersion</td>
</tr>
<tr>
<td>UKN1.6.2</td>
<td>BRL</td>
<td>Diffusion</td>
</tr>
<tr>
<td>UKN1.6.3</td>
<td>BRL</td>
<td>Matrix diffusion</td>
</tr>
<tr>
<td>UKN1.6.4</td>
<td>BRL</td>
<td>Gas mediated transport</td>
</tr>
<tr>
<td>UKN1.6.5</td>
<td>BRL</td>
<td>Multiphase flow and gas driven flow</td>
</tr>
<tr>
<td>UKN1.6.6</td>
<td>BRL</td>
<td>Solubility limit</td>
</tr>
<tr>
<td>UKN1.6.7</td>
<td>BRL</td>
<td>Sorption (linear/non-linear, reversible/reversible)</td>
</tr>
<tr>
<td>UKN1.6.8</td>
<td>BRL</td>
<td>Dissolution, precipitation and crystallisation</td>
</tr>
<tr>
<td>UKN1.6.9</td>
<td>BRL</td>
<td>Colloid formation, dissolution and transport</td>
</tr>
<tr>
<td>UKN1.6.10</td>
<td>BRL</td>
<td>Complexing agents</td>
</tr>
<tr>
<td>UKN1.6.11</td>
<td>BRL</td>
<td>Accumulation in soils and organic debris</td>
</tr>
<tr>
<td>UKN1.6.12</td>
<td>BRL</td>
<td>Mass, isotopic and species dilution</td>
</tr>
<tr>
<td>UKN1.7.1</td>
<td>L</td>
<td>Plant uptake</td>
</tr>
<tr>
<td>UKN1.7.2</td>
<td>L</td>
<td>Animal uptake</td>
</tr>
<tr>
<td>UKN1.7.3</td>
<td>L</td>
<td>Uptake by deep rooting species</td>
</tr>
<tr>
<td>UKN1.7.4</td>
<td>L</td>
<td>Soil and sediment bioturbation</td>
</tr>
<tr>
<td>UKN1.7.5</td>
<td>L</td>
<td>Pedogenesis</td>
</tr>
<tr>
<td>UKN1.7.6</td>
<td>WSRPL</td>
<td>Chemical transformations</td>
</tr>
<tr>
<td>UKN1.7.7</td>
<td>WSRPL</td>
<td>Microbial interactions</td>
</tr>
<tr>
<td>UKN1.7.8</td>
<td>L</td>
<td>2.37 Ecological change, eg. forest fire cycles</td>
</tr>
<tr>
<td>UKN1.7.9</td>
<td>L</td>
<td>2.5 Ecological response to climate, eg. desert formation</td>
</tr>
<tr>
<td>Code</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>LKN1.7.10</td>
<td>L</td>
<td>3.7 Plant and animal evolution</td>
</tr>
<tr>
<td>UAS2.1.2</td>
<td>RL</td>
<td>Investigation borehole seal failure and degradation</td>
</tr>
<tr>
<td>UAS2.4.5</td>
<td>L</td>
<td>Altered soil or surface water chemistry</td>
</tr>
<tr>
<td>HMIP2.3.1</td>
<td>BRL</td>
<td>Advection</td>
</tr>
<tr>
<td>HMIP2.3.2</td>
<td>BRL</td>
<td>Diffusion</td>
</tr>
<tr>
<td>HMIP2.3.3</td>
<td>BRL</td>
<td>Hydrodynamic dispersion</td>
</tr>
<tr>
<td>HMIP2.3.4</td>
<td>BRL</td>
<td>Solubility constraints</td>
</tr>
<tr>
<td>HMIP2.3.5</td>
<td>BRL</td>
<td>Sorption including ion-exchange</td>
</tr>
<tr>
<td>HMIP2.3.6</td>
<td>BRL</td>
<td>Changes in sorptive surfaces</td>
</tr>
<tr>
<td>HMIP2.3.7</td>
<td>BRL</td>
<td>Changes in groundwater chemistry and flow direction</td>
</tr>
<tr>
<td>HMIP2.3.8</td>
<td>BRL</td>
<td>Colloid transport</td>
</tr>
<tr>
<td>HMIP2.3.9</td>
<td>BRL</td>
<td>Transport of radionuclides bound to microbes</td>
</tr>
<tr>
<td>HMIP2.3.10</td>
<td>BRL</td>
<td>Transport of active gases</td>
</tr>
<tr>
<td>HMIP2.3.11</td>
<td>BRL</td>
<td>Gas induced groundwater transport</td>
</tr>
<tr>
<td>HMIP2.3.12</td>
<td>BRL</td>
<td>Thermal effects on hydrochemistry</td>
</tr>
<tr>
<td>HMIP2.3.13</td>
<td>BRL</td>
<td>Biogeochemical changes</td>
</tr>
<tr>
<td>HMIP4.1.1</td>
<td>L</td>
<td>Groundwater discharge to soils and surface waters</td>
</tr>
<tr>
<td>HMIP4.1.2</td>
<td>L</td>
<td>Solid discharge via erosional processes</td>
</tr>
<tr>
<td>HMIP4.1.3</td>
<td>L</td>
<td>Gas discharge</td>
</tr>
<tr>
<td>HMIP4.2.1</td>
<td>L</td>
<td>Soil moisture and evaporation</td>
</tr>
<tr>
<td>HMIP4.2.2</td>
<td>L</td>
<td>Surface water mixing</td>
</tr>
<tr>
<td>HMIP4.2.3</td>
<td>L</td>
<td>Sediment transport including bioturbation</td>
</tr>
<tr>
<td>HMIP4.2.4</td>
<td>L</td>
<td>Sediment/water/gas interaction with the atmosphere</td>
</tr>
<tr>
<td>HMIP4.2.5</td>
<td>L</td>
<td>Bioaccumulation and translocation</td>
</tr>
<tr>
<td>HMIP4.2.6</td>
<td>L</td>
<td>Biogeochemical processes</td>
</tr>
<tr>
<td>HMIP4.3.1</td>
<td>L</td>
<td>Terrestrial water use</td>
</tr>
<tr>
<td>HMIP4.3.2</td>
<td>L</td>
<td>Estuarine water use</td>
</tr>
<tr>
<td>HMIP4.3.3</td>
<td>L</td>
<td>Coastal waters and water use</td>
</tr>
<tr>
<td>HMIP4.3.4</td>
<td>L</td>
<td>Seas and water use</td>
</tr>
<tr>
<td>HMIP4.4.1</td>
<td>L</td>
<td>External exposure</td>
</tr>
<tr>
<td>HMIP4.4.2</td>
<td>L</td>
<td>Ingestion</td>
</tr>
<tr>
<td>HMIP4.4.3</td>
<td>L</td>
<td>Infiltration</td>
</tr>
<tr>
<td>HMIP5.1.1</td>
<td>RL</td>
<td>Loss of integrity of borehole seals</td>
</tr>
<tr>
<td>NEA1.5.1</td>
<td>L</td>
<td>River flow and lake level changes</td>
</tr>
<tr>
<td>NEA1.5.4</td>
<td>L</td>
<td>Groundwater discharge (to surface water, springs, soils, wells, and marine)</td>
</tr>
<tr>
<td>NEA1.6.1</td>
<td>BRL</td>
<td>Advection and dispersion</td>
</tr>
<tr>
<td>NEA1.6.2</td>
<td>BRL</td>
<td>Diffusion</td>
</tr>
<tr>
<td>NEA1.6.3</td>
<td>BRL</td>
<td>Matrix diffusion</td>
</tr>
<tr>
<td>NEA1.6.4</td>
<td>BRL</td>
<td>Gas mediated transport</td>
</tr>
<tr>
<td>NEA1.6.5</td>
<td>BRL</td>
<td>Multiple flow and gas-driven flow</td>
</tr>
<tr>
<td>NEA1.6.6</td>
<td>BRL</td>
<td>Solubility limit</td>
</tr>
<tr>
<td>NEA1.6.7</td>
<td>BRL</td>
<td>Sorption (linear/non-linear, reversible/irreversible)</td>
</tr>
<tr>
<td>NEA1.6.8</td>
<td>BRL</td>
<td>Dissolution, precipitation, and crystallization</td>
</tr>
<tr>
<td>NEA1.6.9</td>
<td>BRL</td>
<td>Colloid formation, dissolution, and transport</td>
</tr>
<tr>
<td>NEA1.6.10</td>
<td>BRL</td>
<td>Complexing agents</td>
</tr>
<tr>
<td>NEA1.6.12</td>
<td>L</td>
<td>Accumulation in soils and organic debris</td>
</tr>
<tr>
<td>NEA1.6.13</td>
<td>BRL</td>
<td>Mass, isotopic and species dilution</td>
</tr>
<tr>
<td>NEA1.6.14</td>
<td>BRL</td>
<td>Chemical gradients (electrochemical effects and osmosis)</td>
</tr>
<tr>
<td>NEA1.7.1</td>
<td>L</td>
<td>Plant uptake</td>
</tr>
<tr>
<td>NEA1.7.2</td>
<td>L</td>
<td>Animal uptake</td>
</tr>
<tr>
<td>NEA1.7.3</td>
<td>L</td>
<td>Uptake by deep rooting species</td>
</tr>
<tr>
<td>NEA1.7.4</td>
<td>L</td>
<td>Soil and sediment bioturbation</td>
</tr>
<tr>
<td>NEA1.7.5</td>
<td>L</td>
<td>Pedogenesis</td>
</tr>
<tr>
<td>NEA1.7.6</td>
<td>L</td>
<td>Chemical transformations</td>
</tr>
<tr>
<td>NEA1.7.7</td>
<td>L</td>
<td>Microbial interactions</td>
</tr>
<tr>
<td>NEA1.7.8</td>
<td>L</td>
<td>Ecological change (e.g. forest fire cycles)</td>
</tr>
<tr>
<td>NEA1.7.9</td>
<td>L</td>
<td>Ecological response to climate (e.g. desert formation)</td>
</tr>
<tr>
<td>NEA1.7.10</td>
<td>L</td>
<td>Plant and animal evolution</td>
</tr>
<tr>
<td>NEA2.4.5</td>
<td>H</td>
<td>Altered soil or surface water chemistry</td>
</tr>
<tr>
<td>NEA2.4.6</td>
<td>H</td>
<td>Land use changes</td>
</tr>
<tr>
<td>NEA2.4.7</td>
<td>H</td>
<td>Agricultural and fisheries practice changes</td>
</tr>
<tr>
<td>NEA2.4.8</td>
<td>H</td>
<td>Demographic change, urban development</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>ARGUMENT</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>AECL1.14</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>AECL1.31</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>AECL1.41</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>AECL1.42</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>AECL1.28</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>AECL2.18</td>
<td>G</td>
<td>2.5</td>
</tr>
<tr>
<td>AECL2.20</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>AECL2.21</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>AECL2.23</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>AECL2.24</td>
<td>G</td>
<td>2.5</td>
</tr>
<tr>
<td>AECL2.28</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>AECL2.29</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>AECL2.34</td>
<td>G</td>
<td>2.5</td>
</tr>
<tr>
<td>AECL2.36</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>AECL2.37</td>
<td>G</td>
<td>2.5</td>
</tr>
<tr>
<td>AECL2.38</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>AECL2.40</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>AECL2.41</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>AECL2.45</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>AECL2.46</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>AECL2.47</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>AECL2.52</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>AECL2.54</td>
<td>Q</td>
<td>2.4</td>
</tr>
<tr>
<td>AECL2.58</td>
<td>G</td>
<td>2.5</td>
</tr>
<tr>
<td>AECL1.1</td>
<td>HCL</td>
<td>D</td>
</tr>
<tr>
<td>AECL1.2</td>
<td>GL</td>
<td>2.4</td>
</tr>
<tr>
<td>AECL1.46</td>
<td>GL</td>
<td>2.5</td>
</tr>
<tr>
<td>AECL1.50</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>AECL1.55</td>
<td>GL</td>
<td>2.3</td>
</tr>
<tr>
<td>AECL1.56</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>AECL1.57</td>
<td>GL</td>
<td>D</td>
</tr>
<tr>
<td>AECL1.58</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>AECL1.59</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>AECL1.76</td>
<td>QL</td>
<td>D</td>
</tr>
<tr>
<td>AECL1.83</td>
<td>QL</td>
<td>2.4</td>
</tr>
<tr>
<td>AECL1.95</td>
<td>QL</td>
<td>4</td>
</tr>
<tr>
<td>AECL1.114</td>
<td>QL</td>
<td></td>
</tr>
<tr>
<td>DOE1.4.2</td>
<td>G</td>
<td>2.3</td>
</tr>
<tr>
<td>DOE1.4.6</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>DOE2.1.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>DOE2.1.2</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>DOE2.1.3</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>DOE2.2.1</td>
<td>G</td>
<td>2.5</td>
</tr>
<tr>
<td>DOE2.2.2</td>
<td>G</td>
<td>2.5</td>
</tr>
<tr>
<td>DOE2.2.3</td>
<td>G</td>
<td>2.5</td>
</tr>
<tr>
<td>DOE2.3.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>DOE2.3.2</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>DOE2.3.3</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>DOE2.4</td>
<td>G</td>
<td>2.37</td>
</tr>
<tr>
<td>DOE2.5</td>
<td>G</td>
<td>2.3</td>
</tr>
<tr>
<td>DOE2.6.2</td>
<td>FG</td>
<td></td>
</tr>
<tr>
<td>DOE2.6.3</td>
<td>FG</td>
<td></td>
</tr>
<tr>
<td>DOE2.7.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>DOE2.7.3</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>DOE2.7.3.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>DOE2.8</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>DOE2.9</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>DOE2.10</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>DOE2.11</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>DOE2.12</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>DOE2.13</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>DOE3.1.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>DOE3.1.3</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>DOE3.1.3.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>IAEA1.1</td>
<td>Climatic change</td>
<td></td>
</tr>
<tr>
<td>IAEA1.2</td>
<td>Hydrological change</td>
<td></td>
</tr>
<tr>
<td>IAEA1.3</td>
<td>Sea level change</td>
<td></td>
</tr>
<tr>
<td>IAEA1.4</td>
<td>Denudation</td>
<td></td>
</tr>
<tr>
<td>IAEA1.5</td>
<td>Stream erosion</td>
<td></td>
</tr>
<tr>
<td>IAEA1.6</td>
<td>Glacial erosion</td>
<td></td>
</tr>
<tr>
<td>IAEA1.7</td>
<td>Flooding</td>
<td></td>
</tr>
<tr>
<td>IAEA1.8</td>
<td>Sedimentation</td>
<td></td>
</tr>
<tr>
<td>IAEA1.9</td>
<td>Diagenesis</td>
<td></td>
</tr>
<tr>
<td>IAEA1.10</td>
<td>Dupnism</td>
<td></td>
</tr>
<tr>
<td>IAEA1.11</td>
<td>Faulting/seismicity</td>
<td></td>
</tr>
<tr>
<td>IAEA1.12</td>
<td>Geochemical change</td>
<td></td>
</tr>
<tr>
<td>IAEA1.13</td>
<td>Uplift/Subsidence: Orogenic</td>
<td></td>
</tr>
<tr>
<td>IAEA1.14</td>
<td>Uplift/Subsidence: Epeirogenic</td>
<td></td>
</tr>
<tr>
<td>IAEA1.15</td>
<td>Undetected features: Faults, shear zones</td>
<td></td>
</tr>
<tr>
<td>IAEA1.16</td>
<td>Undetected features: Breccia pipes</td>
<td></td>
</tr>
<tr>
<td>IAEA1.17</td>
<td>Undetected features: Lava tubes</td>
<td></td>
</tr>
<tr>
<td>IAEA1.18</td>
<td>Undetected features: Intrusive dykes</td>
<td></td>
</tr>
<tr>
<td>IAEA1.19</td>
<td>Undetected features: Gas or brine pockets</td>
<td></td>
</tr>
<tr>
<td>IAEA1.20</td>
<td>Magmatic activity: Extrusive</td>
<td></td>
</tr>
<tr>
<td>IAEA1.21</td>
<td>Meteorite impact</td>
<td></td>
</tr>
<tr>
<td>IAEA1.22</td>
<td>Climatic change (including climate control)</td>
<td></td>
</tr>
<tr>
<td>IAEA1.23</td>
<td>Large-scale hydrological change</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Category</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>PGA1.1</td>
<td>G</td>
<td>Climate changes</td>
</tr>
<tr>
<td>PGA1.2</td>
<td>G</td>
<td>Sea-level changes</td>
</tr>
<tr>
<td>PGA1.3</td>
<td>G</td>
<td>Erosion (fluvial and glacial)</td>
</tr>
<tr>
<td>PGA1.4</td>
<td>G</td>
<td>Sedimentation</td>
</tr>
<tr>
<td>PGA1.5</td>
<td>G</td>
<td>Tectonic activity (large scale)</td>
</tr>
<tr>
<td>PGA1.6</td>
<td>G</td>
<td>Erosion (fluvial and glacial)</td>
</tr>
<tr>
<td>PGA1.7</td>
<td>G</td>
<td>Volcanism</td>
</tr>
<tr>
<td>PGA1.8</td>
<td>G</td>
<td>Diagenesis</td>
</tr>
<tr>
<td>PGA1.9</td>
<td>G</td>
<td>Geologic history (large scale)</td>
</tr>
<tr>
<td>PGA1.10</td>
<td>G</td>
<td>Metamorphism</td>
</tr>
<tr>
<td>PGA1.11</td>
<td>G</td>
<td>Faulting</td>
</tr>
<tr>
<td>PGA1.12</td>
<td>G</td>
<td>Intrusion of dykes</td>
</tr>
<tr>
<td>PGA1.13</td>
<td>G</td>
<td>Tectonic activity (large scale)</td>
</tr>
<tr>
<td>PGA1.14</td>
<td>G</td>
<td>Diagenesis</td>
</tr>
<tr>
<td>PGA1.15</td>
<td>G</td>
<td>Meteorite impact</td>
</tr>
<tr>
<td>PGA1.16</td>
<td>G</td>
<td>Effect of plate movements</td>
</tr>
<tr>
<td>PGA1.17</td>
<td>G</td>
<td>Changes of the magnetic field</td>
</tr>
<tr>
<td>PGA1.18</td>
<td>G</td>
<td>Accumulation of gases under permafrost</td>
</tr>
<tr>
<td>PGA1.19</td>
<td>G</td>
<td>Erosion on surface sediments</td>
</tr>
<tr>
<td>PGA1.20</td>
<td>G</td>
<td>Meteorite impact</td>
</tr>
<tr>
<td>PGA1.21</td>
<td>G</td>
<td>Change in sea level</td>
</tr>
<tr>
<td>PGA1.22</td>
<td>G</td>
<td>Desert and subsurface sedimentation</td>
</tr>
<tr>
<td>PGA1.23</td>
<td>G</td>
<td>Glacieration</td>
</tr>
<tr>
<td>SKL1.24</td>
<td>G</td>
<td>Methane invasion</td>
</tr>
<tr>
<td>SKL1.25</td>
<td>G</td>
<td>No ice age</td>
</tr>
<tr>
<td>SKL1.26</td>
<td>G</td>
<td>Intruding dykes</td>
</tr>
<tr>
<td>SKL1.27</td>
<td>G</td>
<td>Tectonic activity (large scale)</td>
</tr>
<tr>
<td>SKL1.28</td>
<td>G</td>
<td>Diagenesis</td>
</tr>
<tr>
<td>SKL1.29</td>
<td>G</td>
<td>Meteorite impact</td>
</tr>
<tr>
<td>SKL1.30</td>
<td>G</td>
<td>Glacialiation</td>
</tr>
<tr>
<td>SKL1.31</td>
<td>G</td>
<td>Erosion/Sedimentation</td>
</tr>
<tr>
<td>SKL1.32</td>
<td>G</td>
<td>Glaciation</td>
</tr>
<tr>
<td>SKL1.33</td>
<td>G</td>
<td>Phaneritic Periods</td>
</tr>
<tr>
<td>SKL1.34</td>
<td>G</td>
<td>Sea-Level Variations</td>
</tr>
<tr>
<td>SKL1.35</td>
<td>G</td>
<td>Volcanic Activity</td>
</tr>
<tr>
<td>SKL1.36</td>
<td>G</td>
<td>Magnetic Activity</td>
</tr>
<tr>
<td>SKL1.37</td>
<td>G</td>
<td>Formation of Dissolution Cavities</td>
</tr>
<tr>
<td>SKL1.38</td>
<td>G</td>
<td>Formation of Interconnected Fracture Systems</td>
</tr>
<tr>
<td>SKL1.39</td>
<td>G</td>
<td>Faulting</td>
</tr>
<tr>
<td>SKL1.40</td>
<td>G</td>
<td>Meteorite impact</td>
</tr>
<tr>
<td>SKL1.41</td>
<td>G</td>
<td>Solar insolation</td>
</tr>
<tr>
<td>SKL1.42</td>
<td>G</td>
<td>Plate movements/tectonic change</td>
</tr>
<tr>
<td>SKL1.43</td>
<td>G</td>
<td>Changes in the Earth's magnetic field</td>
</tr>
<tr>
<td>SKL1.44</td>
<td>G</td>
<td>Magnetic activity (intrusive, extrusive)</td>
</tr>
<tr>
<td>SKL1.45</td>
<td>G</td>
<td>Metamorphic activity</td>
</tr>
<tr>
<td>SKL1.46</td>
<td>G</td>
<td>Diagenesis</td>
</tr>
<tr>
<td>SKL1.47</td>
<td>G</td>
<td>Uplift and subsidence (e.g., orogenic, isostatic)</td>
</tr>
<tr>
<td>SKL1.48</td>
<td>G</td>
<td>Displuviation</td>
</tr>
<tr>
<td>SKL1.49</td>
<td>G</td>
<td>Seismicity</td>
</tr>
<tr>
<td>Category</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>UKN1.2.9</td>
<td>Fault activation</td>
<td></td>
</tr>
<tr>
<td>UKN1.2.10</td>
<td>Fault generation</td>
<td></td>
</tr>
<tr>
<td>UKN1.2.11</td>
<td>Rock heterogeneity (e.g. permeability, mineralogy) affecting water and gas flow</td>
<td></td>
</tr>
<tr>
<td>UKN1.2.12</td>
<td>Undetected features (e.g. faults, fractures, networks, shear zones, precipitation, gas pockets)</td>
<td></td>
</tr>
<tr>
<td>UKN1.3.1</td>
<td>Precipitation, temperature and soil water balance</td>
<td></td>
</tr>
<tr>
<td>UKN1.3.2</td>
<td>Extremes of precipitation, snow melt and associated flooding</td>
<td></td>
</tr>
<tr>
<td>UKN1.3.3</td>
<td>Coastal surge, storms and hurricanes</td>
<td></td>
</tr>
<tr>
<td>UKN1.3.4</td>
<td>Sea-level rise/fall</td>
<td></td>
</tr>
<tr>
<td>UKN1.3.5</td>
<td>Periglacial effects (e.g. permafrost, high seasonality)</td>
<td></td>
</tr>
<tr>
<td>UKN1.3.6</td>
<td>Glaciation (erosion/deposition, glacial loading, hydrogeological change)</td>
<td></td>
</tr>
<tr>
<td>UKN1.3.7</td>
<td>No ice age</td>
<td></td>
</tr>
<tr>
<td>UKN1.4.1</td>
<td>Landslide</td>
<td></td>
</tr>
<tr>
<td>UKN1.4.2</td>
<td>Denudation (aeolian and fluvial)</td>
<td></td>
</tr>
<tr>
<td>UKN1.4.3</td>
<td>River, stream, channel erosion (downcutting)</td>
<td></td>
</tr>
<tr>
<td>UKN1.4.4</td>
<td>River meander</td>
<td></td>
</tr>
<tr>
<td>UKN1.4.5</td>
<td>Freshwater sediment transport and deposition</td>
<td></td>
</tr>
<tr>
<td>UKN1.4.6</td>
<td>Coastal erosion and estuarine development</td>
<td></td>
</tr>
<tr>
<td>UKN1.4.7</td>
<td>Marine sediment transport and deposition</td>
<td></td>
</tr>
<tr>
<td>UKN1.4.8</td>
<td>Frost weathering and solifluction</td>
<td></td>
</tr>
<tr>
<td>UKN1.4.9</td>
<td>Chemical denudation and weathering</td>
<td></td>
</tr>
<tr>
<td>UKN1.4.10</td>
<td>Frost weathering</td>
<td></td>
</tr>
<tr>
<td>UKN1.5.1</td>
<td>River flow and lake level changes</td>
<td></td>
</tr>
<tr>
<td>UKN2.4.9</td>
<td>Anthropogenic climate change (greenhouse effect)</td>
<td></td>
</tr>
<tr>
<td>HMP1.1.1</td>
<td>Regional tectonic</td>
<td></td>
</tr>
<tr>
<td>HMP1.2.1</td>
<td>Magnaic activity</td>
<td></td>
</tr>
<tr>
<td>HMP1.3.1</td>
<td>Metamorphism</td>
<td></td>
</tr>
<tr>
<td>HMP1.4.1</td>
<td>Protracted natural change</td>
<td></td>
</tr>
<tr>
<td>HMP1.5.1</td>
<td>Diagenesis</td>
<td></td>
</tr>
<tr>
<td>HMP1.5.2</td>
<td>Diapirism</td>
<td></td>
</tr>
<tr>
<td>HMP1.5.3</td>
<td>Metamorphic activity</td>
<td></td>
</tr>
<tr>
<td>NEA1.1.1</td>
<td>Meteorite impact</td>
<td></td>
</tr>
<tr>
<td>NEA1.2.1</td>
<td>Melting ice</td>
<td></td>
</tr>
<tr>
<td>NEA1.2.2</td>
<td>Space weathering</td>
<td></td>
</tr>
<tr>
<td>NEA1.2.3</td>
<td>Plate movement</td>
<td></td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>ARGUMENT</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>AEC1, S2</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AEC1, 73</td>
<td>H</td>
<td>D</td>
</tr>
<tr>
<td>AEC2, 1</td>
<td>H</td>
<td>3.1</td>
</tr>
<tr>
<td>AEC2, 2</td>
<td>H</td>
<td>D</td>
</tr>
<tr>
<td>AEC2, 3</td>
<td>H</td>
<td>2.4</td>
</tr>
<tr>
<td>AEC2, 5</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AEC2, 6</td>
<td>HFF</td>
<td></td>
</tr>
<tr>
<td>AEC2, 13</td>
<td>H</td>
<td>2.4</td>
</tr>
<tr>
<td>AEC2, 14</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AEC2, 19</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AEC2, 22</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AEC2, 35</td>
<td>H</td>
<td>2.3</td>
</tr>
<tr>
<td>AEC2, 44</td>
<td>H</td>
<td>2.3</td>
</tr>
<tr>
<td>AEC2, 53</td>
<td>H</td>
<td>D</td>
</tr>
<tr>
<td>AEC2, 57</td>
<td>H</td>
<td>2.3</td>
</tr>
<tr>
<td>AEC2, 66</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AEC2, 69</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AEC2, 70</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AEC3, 1</td>
<td>H</td>
<td>D</td>
</tr>
<tr>
<td>AEC3, 6</td>
<td>H</td>
<td>2.3?</td>
</tr>
<tr>
<td>AEC3, 7</td>
<td>H</td>
<td>2.3?</td>
</tr>
<tr>
<td>AEC3, 10</td>
<td>H</td>
<td>2.4?</td>
</tr>
<tr>
<td>AEC3, 19</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AEC3, 24</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AEC3, 37</td>
<td>H</td>
<td>2.3?</td>
</tr>
<tr>
<td>AEC3, 36</td>
<td>H</td>
<td>2.3?</td>
</tr>
<tr>
<td>AEC3, 37</td>
<td>H</td>
<td>3.7</td>
</tr>
<tr>
<td>AEC3, 43</td>
<td>H</td>
<td>2.4?</td>
</tr>
<tr>
<td>AEC3, 49</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AEC3, 53</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AEC3, 54</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AEC3, 60</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AEC3, 61</td>
<td>H</td>
<td>2.3?</td>
</tr>
<tr>
<td>AEC3, 68</td>
<td>H</td>
<td>3.5</td>
</tr>
<tr>
<td>AEC3, 67</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AEC3, 68</td>
<td>H</td>
<td>2.3?</td>
</tr>
<tr>
<td>AEC3, 69</td>
<td>H</td>
<td>3.4</td>
</tr>
<tr>
<td>AEC3, 70</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AEC3, 73</td>
<td>H</td>
<td>2.4?</td>
</tr>
<tr>
<td>AEC3, 75</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AEC3, 77</td>
<td>H</td>
<td>2.3?</td>
</tr>
<tr>
<td>AEC3, 91</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AEC3, 92</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AEC3, 99</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AEC3, 103</td>
<td>H</td>
<td>3.5</td>
</tr>
<tr>
<td>AEC3, 109</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>AEC3, 111</td>
<td>H</td>
<td>2.4</td>
</tr>
<tr>
<td>AEC3, 112</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>DOE 4, 2, 1</td>
<td>H</td>
<td>3.4</td>
</tr>
<tr>
<td>DOE 4, 2, 2</td>
<td>H</td>
<td>3.4</td>
</tr>
<tr>
<td>DOE 4, 2, 3</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>DOE 4, 2, 4</td>
<td>H</td>
<td>2.3?</td>
</tr>
<tr>
<td>DOE 4, 2, 5</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>DOE 4, 2, 6</td>
<td>H</td>
<td>2.3?</td>
</tr>
<tr>
<td>DOE 4, 2, 7</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>DOE 4, 2, 8</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>DOE 4, 2, 9</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>DOE 4, 2, 10</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>DOE 4, 2, 11</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>DOE 4, 2, 12</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>DOE 4, 2, 13</td>
<td>H</td>
<td>2.4</td>
</tr>
<tr>
<td>IDENTITY</td>
<td>CATEGORY</td>
<td>ARGUMENT</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>IAEA2.1.1</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>IAEA2.1.2</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>IAEA2.1.3</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>IAEA2.1.4</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>IAEA2.1.5</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>IAEA2.1.6</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>IAEA2.1.7</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>IAEA2.1.8</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>IAEA2.1.9</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>IAEA2.2.1</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>IAEA2.2.2</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>IAEA2.2.3</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>PGA4.1</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>PGA4.2</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>PGA4.3</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>PGA4.4</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK1.1</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>SK9.1</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK9.2</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK9.3</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK9.4</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK9.5</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK9.6</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK9.7</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK9.8</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK10.1</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK10.2</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK11.1</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK11.2</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK11.3</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK11.4</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK11.5</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK11.6</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK11.7</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK11.8</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK11.9</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK11.10</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK11.11</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK11.12</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK11.13</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK11.14</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK11.15</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK11.16</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK11.17</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK11.18</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK11.19</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK11.20</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK11.21</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK11.22</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK11.23</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK11.24</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK11.25</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SK11.26</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>ARGUMENT</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>UKNZ-2.1.1</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.1.6</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.1.9</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.2.1</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.2.2</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.2.3</td>
<td>WH</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.2.4</td>
<td>WH</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.2.5</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.2.7</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.2.9</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.2.10</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.2.11</td>
<td>HD</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.2.12</td>
<td>HD</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.3.1</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.3.2</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.3.3</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.3.4</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.3.5</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.3.6</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.3.7</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.3.8</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.3.9</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.3.10</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.3.11</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.3.12</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.4.1</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.4.2</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.4.3</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.4.4</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.4.6</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.4.7</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.4.8</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.4.9</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>UKNZ-2.4.10</td>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>

ARGUMENT: UNDERGROUND CONSTRUCTION

COMMENT: FEPs LIST: HUMAN FACTORS CATEGORY

PAGE 3
APPENDIX 4

Screened-out FEP Lists
<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>ARGUMENT</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECI1.15</td>
<td>WB</td>
<td>2.1</td>
<td>Buffer adderines</td>
</tr>
<tr>
<td>AECI1.39</td>
<td>WC</td>
<td>2.1</td>
<td>Galvanic coupling</td>
</tr>
<tr>
<td>AECL1.82</td>
<td>W</td>
<td>2.1</td>
<td>Stability of glass</td>
</tr>
<tr>
<td>DOE1.1.4.5</td>
<td>W</td>
<td>2.1</td>
<td>Microbial degradation of organic wastes: wastes</td>
</tr>
<tr>
<td>DOE1.2.1.3</td>
<td>W</td>
<td>2.1</td>
<td>Hydrogen: corrosion of waste steel</td>
</tr>
<tr>
<td>DOE1.2.1.4</td>
<td>W</td>
<td>2.1</td>
<td>Hydrogen: corrosion of waste Magnox</td>
</tr>
<tr>
<td>DOE1.2.1.5</td>
<td>W</td>
<td>2.1</td>
<td>Hydrogen: corrosion of waste aluminium</td>
</tr>
<tr>
<td>DOE1.2.1.7</td>
<td>W</td>
<td>2.1</td>
<td>Hydrogen: corrosion of other waste metals</td>
</tr>
<tr>
<td>DOE1.2.1.8</td>
<td>WB</td>
<td>2.1</td>
<td>Hydrogen: effects of microbial growth on concrete</td>
</tr>
<tr>
<td>DOE1.2.2.1</td>
<td>W</td>
<td>2.1</td>
<td>Methane/CO2 degradation of Cellulosics</td>
</tr>
<tr>
<td>DOE1.2.2.2</td>
<td>W</td>
<td>2.1</td>
<td>Methane/CO2 degradation of Other susceptible organic materials</td>
</tr>
<tr>
<td>DOE1.2.2.3</td>
<td>W</td>
<td>2.1</td>
<td>Methane/CO2 production: Aerobic degradation</td>
</tr>
<tr>
<td>DOE1.2.2.5</td>
<td>W</td>
<td>2.1</td>
<td>Methane/CO2 production: Effects of temperature</td>
</tr>
<tr>
<td>DOE1.2.2.6</td>
<td>WR</td>
<td>2.1</td>
<td>Methane/CO2 production: Effects of lithostatic pressure</td>
</tr>
<tr>
<td>DOE1.2.2.12</td>
<td>WR</td>
<td>2.1</td>
<td>Methane/CO2 production: Energy and nutrient control of metabolism</td>
</tr>
<tr>
<td>DOE1.2.2.13</td>
<td>WR</td>
<td>2.1</td>
<td>Methane/CO2 production: Effects of radiation on microbial populations</td>
</tr>
<tr>
<td>DOE1.2.4.1</td>
<td>W</td>
<td>2.1</td>
<td>Trimethylated hydrogen</td>
</tr>
<tr>
<td>DOEl.2.5</td>
<td>W</td>
<td>2.1</td>
<td>Toxic gases</td>
</tr>
<tr>
<td>DOEl.5.6.1</td>
<td>W</td>
<td>2.1</td>
<td>Microbiological effects due to Cellulose degradation</td>
</tr>
<tr>
<td>PGA3.7.1</td>
<td>WC</td>
<td>2.1</td>
<td>Differing thermal expansion of glass matrix and cement</td>
</tr>
<tr>
<td>UKNS.2.5</td>
<td>W</td>
<td>2.1</td>
<td>Cellulosic degradation</td>
</tr>
<tr>
<td>UKNS.2.6.5</td>
<td>W</td>
<td>2.1</td>
<td>Introduced competing agents and cellulosics</td>
</tr>
<tr>
<td>UKNS.3.6</td>
<td>WC</td>
<td>2.1</td>
<td>Gas effects (predisposing, disruption, explosion, fire)</td>
</tr>
<tr>
<td>HMP1.15.5</td>
<td>WR</td>
<td>2.1</td>
<td>Methane and carbon dioxide by microbial degradation</td>
</tr>
<tr>
<td>HMP1.2.3</td>
<td>WB</td>
<td>2.1</td>
<td>Gas generation from concrete</td>
</tr>
<tr>
<td>HMP1.2.7</td>
<td>W</td>
<td>2.1</td>
<td>Flammability</td>
</tr>
<tr>
<td>NEA3.2.5</td>
<td>W</td>
<td>2.1</td>
<td>Cellulosic degradation</td>
</tr>
<tr>
<td>NEA3.2.6</td>
<td>W</td>
<td>2.1</td>
<td>Introduced competing agents and cellulosics</td>
</tr>
<tr>
<td>DOE1.2.2.4</td>
<td>W</td>
<td>2.1</td>
<td>Methane/CO2 production: Anaerobic degradation</td>
</tr>
<tr>
<td>DOE1.2.2.11</td>
<td>WB</td>
<td>2.2</td>
<td>Methane/CO2 production: Carbonate/bicarbonate exchange with concrete</td>
</tr>
<tr>
<td>DOE1.2.11</td>
<td>WB</td>
<td>2.2</td>
<td>Gas generation from concrete</td>
</tr>
<tr>
<td>SK1.2.2</td>
<td>WR</td>
<td>2.2</td>
<td>H_2/O_2 explosions</td>
</tr>
<tr>
<td>AECI1.54</td>
<td>W</td>
<td>3.1</td>
<td>Other wastes (other than vitrified HLW)</td>
</tr>
<tr>
<td>SQR1.2</td>
<td>W</td>
<td>3.1</td>
<td>Co-storage of other waste</td>
</tr>
<tr>
<td>UKNS2.2.3</td>
<td>WH</td>
<td>3.1</td>
<td>Co-disposal of reactive wastes (deliberate)</td>
</tr>
<tr>
<td>UKNS3.4.3</td>
<td>W</td>
<td>3.1</td>
<td>Nuclear criticality</td>
</tr>
<tr>
<td>HMP1.3.2</td>
<td>W</td>
<td>3.1</td>
<td>Nuclear criticality</td>
</tr>
<tr>
<td>NEA2.3.1</td>
<td>WR</td>
<td>3.1</td>
<td>Co-disposal of reactive wastes (deliberate)</td>
</tr>
<tr>
<td>NEA3.4.3</td>
<td>W</td>
<td>3.1</td>
<td>Nuclear criticality</td>
</tr>
<tr>
<td>AECI1.28</td>
<td>W</td>
<td>3.1</td>
<td>Criticality</td>
</tr>
<tr>
<td>DOE1.3.2</td>
<td>W</td>
<td>3.1</td>
<td>Nuclear criticality</td>
</tr>
<tr>
<td>IAEA3.4.4</td>
<td>W</td>
<td>3.1</td>
<td>Radiological effects: Nuclear criticality</td>
</tr>
<tr>
<td>PQA3.3</td>
<td>W</td>
<td>3.1</td>
<td>Nuclear criticality</td>
</tr>
<tr>
<td>SK1.1.1.1</td>
<td>W</td>
<td>3.15</td>
<td>Criticality</td>
</tr>
<tr>
<td>AECI3.104</td>
<td>W</td>
<td>3.6</td>
<td>Teratogenic contaminants</td>
</tr>
<tr>
<td>SK1.4</td>
<td>W</td>
<td>3.6</td>
<td>Chemical toxicity of wastes</td>
</tr>
<tr>
<td>AECI1.4</td>
<td>W4</td>
<td>4</td>
<td>Boundary conditions</td>
</tr>
<tr>
<td>AECI1.10</td>
<td>W4</td>
<td>4</td>
<td>Chemical interactions (expected)</td>
</tr>
<tr>
<td>AECI1.11</td>
<td>W4</td>
<td>4</td>
<td>Chemical interactions (long-term)</td>
</tr>
<tr>
<td>AECI1.12</td>
<td>W4</td>
<td>4</td>
<td>Chemical interactions (other)</td>
</tr>
<tr>
<td>AECI1.25</td>
<td>W4</td>
<td>4</td>
<td>Corrosion</td>
</tr>
<tr>
<td>AECI1.50</td>
<td>W4</td>
<td>4</td>
<td>Interfaces (boundary conditions)</td>
</tr>
<tr>
<td>AECI1.56</td>
<td>W4</td>
<td>4</td>
<td>Long-term transients</td>
</tr>
<tr>
<td>AECI1.85</td>
<td>W4</td>
<td>4</td>
<td>Time dependence</td>
</tr>
<tr>
<td>AECI3.80</td>
<td>WA</td>
<td>1000</td>
<td>Radioactive decay</td>
</tr>
<tr>
<td>SK1.3.9</td>
<td>WB</td>
<td>1000</td>
<td>Radioactivity</td>
</tr>
<tr>
<td>SKI1.4</td>
<td>WH</td>
<td>2</td>
<td>Sudden energy release</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>ARGUMENT</td>
<td>FEF NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>AECL1.39</td>
<td>WC</td>
<td>2.1</td>
<td>Galvanic coupling</td>
</tr>
<tr>
<td>PGA3.7.1</td>
<td>WC</td>
<td>2.1</td>
<td>Differing thermal expansion of glass matrix and canister</td>
</tr>
<tr>
<td>UKZN3.3.6</td>
<td>WC</td>
<td>2.1</td>
<td>Gas effects (pressurisation, disruption, explosion, fire)</td>
</tr>
<tr>
<td>NEA3.3.6</td>
<td>C</td>
<td>2.1</td>
<td>Gas effects (pressurisation, disruption, explosion, fire)</td>
</tr>
<tr>
<td>AECL1.445</td>
<td>C</td>
<td>2.17</td>
<td>Hydride cracking</td>
</tr>
<tr>
<td>AECL1.49</td>
<td>C</td>
<td>3.1</td>
<td>Incomplete filling of containers</td>
</tr>
<tr>
<td>AECL1.4</td>
<td>WCGR</td>
<td>4</td>
<td>Boundary conditions</td>
</tr>
<tr>
<td>AECL1.10</td>
<td>WCGR</td>
<td>4</td>
<td>Chemical interactions (expected)</td>
</tr>
<tr>
<td>AECL1.11</td>
<td>WCGR</td>
<td>4</td>
<td>Chemical interactions (long-term)</td>
</tr>
<tr>
<td>AECL1.12</td>
<td>WCGR</td>
<td>4</td>
<td>Chemical interactions (other)</td>
</tr>
<tr>
<td>AECL1.25</td>
<td>WCGR</td>
<td>4</td>
<td>Corrosion</td>
</tr>
<tr>
<td>AECL1.50</td>
<td>WCGR</td>
<td>4</td>
<td>Interfaces (boundary conditions)</td>
</tr>
<tr>
<td>AECL1.85</td>
<td>WCGR</td>
<td>4</td>
<td>Time dependence</td>
</tr>
<tr>
<td>SK12.3.2</td>
<td>C</td>
<td>XXX</td>
<td>Electro-chemical cracking</td>
</tr>
<tr>
<td>SK15.23</td>
<td>C</td>
<td>XXX</td>
<td>Changed hydrostatic pressure on canister</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>ARGUMENT</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>AECL1.5</td>
<td>WB</td>
<td>2.1</td>
<td>Buffer additions</td>
</tr>
<tr>
<td>DOE1.2.1.8</td>
<td>WB</td>
<td>2.1</td>
<td>Hydrogen: effects of microbial growth on concrete</td>
</tr>
<tr>
<td>DOE1.2.2.9</td>
<td>BR</td>
<td>2.1</td>
<td>Methane/CO₂ production: Effects of hydrogen from metal corrosion</td>
</tr>
<tr>
<td>HMPT1.2.3</td>
<td>WB</td>
<td>2.1</td>
<td>Gas generation from concrete</td>
</tr>
<tr>
<td>AECL1.17</td>
<td>B</td>
<td>2.2</td>
<td>Concrete</td>
</tr>
<tr>
<td>DOE1.1.2.1</td>
<td>B</td>
<td>2.2</td>
<td>Cracking: concrete</td>
</tr>
<tr>
<td>DOE1.1.2.2</td>
<td>B</td>
<td>2.2</td>
<td>Sealing of cracks: concrete</td>
</tr>
<tr>
<td>DOE1.1.2.4</td>
<td>B</td>
<td>2.2</td>
<td>Alkali-aggregate reaction: concrete</td>
</tr>
<tr>
<td>DOE1.1.3.2</td>
<td>B</td>
<td>2.2</td>
<td>Exchange capacity exceeded: concrete</td>
</tr>
<tr>
<td>DOE1.1.3.3</td>
<td>B</td>
<td>2.2</td>
<td>Alkali-aggregate reaction: concrete</td>
</tr>
<tr>
<td>DOE1.1.3.4</td>
<td>B</td>
<td>2.2</td>
<td>Cement-sulphate reaction: concrete</td>
</tr>
<tr>
<td>DOE1.2.2.8</td>
<td>WB</td>
<td>2.2</td>
<td>Methane/CO₂ production: Effects of biofilms</td>
</tr>
<tr>
<td>DOE1.2.2.11</td>
<td>WB</td>
<td>2.2</td>
<td>Methane/CO₂ production: Carbonate/bicarbonate exchange with concrete</td>
</tr>
<tr>
<td>DOE1.2.2.3</td>
<td>WB</td>
<td>2.2</td>
<td>Gas generation from concrete</td>
</tr>
<tr>
<td>DOE1.3.2.1</td>
<td>BR</td>
<td>2.3</td>
<td>Groundwater flow: Initial conditions</td>
</tr>
<tr>
<td>SK3.2.11</td>
<td>BH</td>
<td>3.1</td>
<td>Backfill material deficiencies</td>
</tr>
<tr>
<td>AECL1.1.4</td>
<td>WCBR</td>
<td>4</td>
<td>Boundary conditions</td>
</tr>
<tr>
<td>AECL1.1.10</td>
<td>WCBR</td>
<td>4</td>
<td>Chemical interactions (expected)</td>
</tr>
<tr>
<td>AECL1.1.11</td>
<td>WCBR</td>
<td>4</td>
<td>Chemical interactions (long-term)</td>
</tr>
<tr>
<td>AECL1.1.12</td>
<td>WCBR</td>
<td>4</td>
<td>Chemical interactions (other)</td>
</tr>
<tr>
<td>AECL1.1.25</td>
<td>WCBR</td>
<td>4</td>
<td>Correlation</td>
</tr>
<tr>
<td>AECL1.3.5</td>
<td>WCBR</td>
<td>4</td>
<td>Interfaces (boundary conditions)</td>
</tr>
<tr>
<td>AECL1.8.5</td>
<td>WCBR</td>
<td>4</td>
<td>Time dependence</td>
</tr>
<tr>
<td>SK1.3.1.8</td>
<td>G</td>
<td>4</td>
<td>Near field buffer chemistry</td>
</tr>
<tr>
<td>AECL1.3.3</td>
<td>B</td>
<td>XXXX</td>
<td>Evolution of buffer</td>
</tr>
<tr>
<td>SK3.1.9</td>
<td>WB</td>
<td>XXXX</td>
<td>Radionuclides</td>
</tr>
<tr>
<td>SK3.1.12</td>
<td>B</td>
<td>XXXX</td>
<td>Perturbed buffer material chemistry</td>
</tr>
<tr>
<td>SK4.1.3</td>
<td>BRFL</td>
<td>XXXX</td>
<td>Colloids, complexing agents</td>
</tr>
<tr>
<td>SK5.18</td>
<td>BF</td>
<td>XXXX</td>
<td>Enhanced groundwater flow</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>ARGUMENT</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>AECL1.57</td>
<td>R</td>
<td>2.1</td>
<td>Methylation</td>
</tr>
<tr>
<td>DOE1.2.2.6</td>
<td>WR</td>
<td>2.1</td>
<td>Methane/CO₂ production: Effects of lithostatic pressure</td>
</tr>
<tr>
<td>DOE1.2.2.9</td>
<td>BR</td>
<td>2.1</td>
<td>Methane/CO₂ production: Effects of hydrogen from metal corrosion</td>
</tr>
<tr>
<td>DOE1.2.2.12</td>
<td>WR</td>
<td>2.1</td>
<td>Methane/CO₂ production: Energy and nutrient control of metabolism</td>
</tr>
<tr>
<td>DOE1.2.2.13</td>
<td>WR</td>
<td>2.1</td>
<td>Methane/CO₂ production: Effects of radiation on microbial populations</td>
</tr>
<tr>
<td>AECL1.16</td>
<td>R</td>
<td>2.1?</td>
<td>Complexation by organics</td>
</tr>
<tr>
<td>SK11.2.2</td>
<td>WR</td>
<td>2.2</td>
<td>H₂/Ο₂ explosions</td>
</tr>
<tr>
<td>AECL2.7</td>
<td>PF</td>
<td>2.3</td>
<td>Cavitation</td>
</tr>
<tr>
<td>DOE1.5.2.1</td>
<td>BR</td>
<td>2.3</td>
<td>Groundwater flow: initial conditions</td>
</tr>
<tr>
<td>DOE1.4.5</td>
<td>PF</td>
<td>2.3?</td>
<td>Rock creep</td>
</tr>
<tr>
<td>UKN1.5.2</td>
<td>R</td>
<td>2.3?</td>
<td>Site flooding</td>
</tr>
<tr>
<td>AECL1.35</td>
<td>R</td>
<td>3.1</td>
<td>Explosions</td>
</tr>
<tr>
<td>AECL1.47</td>
<td>R</td>
<td>3.1</td>
<td>Improper operation</td>
</tr>
<tr>
<td>AECL1.50</td>
<td>R</td>
<td>3.1</td>
<td>Monitoring and remedial activities</td>
</tr>
<tr>
<td>AECL1.56</td>
<td>R</td>
<td>3.1</td>
<td>Preclosure events</td>
</tr>
<tr>
<td>AECL1.72</td>
<td>R</td>
<td>3.1</td>
<td>Retrievability</td>
</tr>
<tr>
<td>AECL2.1</td>
<td>HR</td>
<td>3.1</td>
<td>Blasting and vibration</td>
</tr>
<tr>
<td>DOE1.2.7.1</td>
<td>R</td>
<td>3.1</td>
<td>Fires</td>
</tr>
<tr>
<td>DOE1.2.7.2</td>
<td>R</td>
<td>3.1</td>
<td>Explosions</td>
</tr>
<tr>
<td>IAEA2.3</td>
<td>R</td>
<td>3.1</td>
<td>Improper operation: Improper waste emplacement</td>
</tr>
<tr>
<td>UKO2.1.8</td>
<td>HR</td>
<td>3.1</td>
<td>Poor quality construction</td>
</tr>
<tr>
<td>UKN2.1.9</td>
<td>HR</td>
<td>3.1</td>
<td>Design modification</td>
</tr>
<tr>
<td>UKN2.2.8</td>
<td>R</td>
<td>3.1</td>
<td>Repository flooding during operation</td>
</tr>
<tr>
<td>NEA2.2.3</td>
<td>WR</td>
<td>3.1</td>
<td>Co-disposal of reactive wastes (deliberate)</td>
</tr>
<tr>
<td>NEA2.2.6</td>
<td>R</td>
<td>3.1</td>
<td>Accidents during operation</td>
</tr>
<tr>
<td>NEA2.2.8</td>
<td>R</td>
<td>3.1</td>
<td>Repository flooding during operation</td>
</tr>
<tr>
<td>AECL1.35</td>
<td>R</td>
<td>3.1</td>
<td>Post-closure monitoring</td>
</tr>
<tr>
<td>AECL1.61</td>
<td>R</td>
<td>3.7</td>
<td>Mutation</td>
</tr>
<tr>
<td>AECL1.4</td>
<td>WCBR</td>
<td>4</td>
<td>Boundary conditions</td>
</tr>
<tr>
<td>AECL1.10</td>
<td>WCBR</td>
<td>4</td>
<td>Chemical interactions (expected)</td>
</tr>
<tr>
<td>AECL1.11</td>
<td>WCBR</td>
<td>4</td>
<td>Chemical interactions (long-term)</td>
</tr>
<tr>
<td>AECL1.12</td>
<td>WCBR</td>
<td>4</td>
<td>Chemical interactions (other)</td>
</tr>
<tr>
<td>AECL1.25</td>
<td>WCBR</td>
<td>4</td>
<td>Correlation</td>
</tr>
<tr>
<td>AECL1.50</td>
<td>WCBR</td>
<td>4</td>
<td>Interfaces (boundary conditions)</td>
</tr>
<tr>
<td>AECL1.56</td>
<td>WR</td>
<td>4</td>
<td>Long-term transients</td>
</tr>
<tr>
<td>AECL1.85</td>
<td>WCBR</td>
<td>4</td>
<td>Time dependence</td>
</tr>
<tr>
<td>SK14.1.3</td>
<td>BFR</td>
<td>XXX</td>
<td>Colloids, complexing agents</td>
</tr>
<tr>
<td>SK14.2.2.2</td>
<td>R</td>
<td>XXX</td>
<td>Hydraulic conductivity change - Excavation/backfilling effect</td>
</tr>
<tr>
<td>SK14.2.2.3</td>
<td>R</td>
<td>XXX</td>
<td>Mechanical effects - Excavation/backfilling effects</td>
</tr>
<tr>
<td>SK15.18</td>
<td>BFR</td>
<td>XXX</td>
<td>Enhanced groundwater flow</td>
</tr>
<tr>
<td>SK15.24</td>
<td>R</td>
<td>XXX</td>
<td>Stress changes of conductivity</td>
</tr>
<tr>
<td>NEA2.2.7</td>
<td>R</td>
<td>D</td>
<td>Sabotage</td>
</tr>
</tbody>
</table>
FAR-FIELD CATEGORY:
SCREENED OUT FEPs

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>ARGUMENT</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECL2.49</td>
<td>F</td>
<td>2.2</td>
<td>Radiolysis, radiation damage</td>
</tr>
<tr>
<td>NEA3.2.4</td>
<td>F</td>
<td>2.2</td>
<td>Non-radioactive source plume in gaseousphere (effect of redox, pH, and sorption)</td>
</tr>
<tr>
<td>AECL2.7</td>
<td>F</td>
<td>2.3</td>
<td>Cavitation</td>
</tr>
<tr>
<td>DOE2.3.5.3</td>
<td>F</td>
<td>2.3</td>
<td>Salinity: implications of evaporite deposits/minerals</td>
</tr>
<tr>
<td>DOE1.4.5</td>
<td>F</td>
<td>2.3?</td>
<td>Rock creep</td>
</tr>
<tr>
<td>AECL2.3</td>
<td>F</td>
<td>2.4</td>
<td>Borehole - well</td>
</tr>
<tr>
<td>AECL2.12</td>
<td>F</td>
<td>4</td>
<td>Correlation</td>
</tr>
<tr>
<td>AECL2.48</td>
<td>F</td>
<td>XXXX</td>
<td>Radioactive decay</td>
</tr>
<tr>
<td>SK14.1.3</td>
<td>BRF</td>
<td>XXXX</td>
<td>Colloids, complexing agents</td>
</tr>
<tr>
<td>SK15.18</td>
<td>BRF</td>
<td>XXXX</td>
<td>Enhanced groundwater flow</td>
</tr>
<tr>
<td>AECL2.22</td>
<td>F</td>
<td>D</td>
<td>Explosion</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>ARGUMENT</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>AECL3.40</td>
<td>L</td>
<td>2.1</td>
<td>Dermal sorption - tritium</td>
</tr>
<tr>
<td>AECL3.6</td>
<td>H1</td>
<td>2.3?</td>
<td>Artificial lake mixing</td>
</tr>
<tr>
<td>AECL3.35</td>
<td>H1</td>
<td>2.3?</td>
<td>Crop sterilization</td>
</tr>
<tr>
<td>AECL3.36</td>
<td>H1</td>
<td>2.3?</td>
<td>Crop storage</td>
</tr>
<tr>
<td>AECL3.47</td>
<td>L</td>
<td>2.3?</td>
<td>Fires (agricultural)</td>
</tr>
<tr>
<td>AECL3.48</td>
<td>L</td>
<td>2.3?</td>
<td>Fires (forest and grass)</td>
</tr>
<tr>
<td>AECL3.61</td>
<td>H1</td>
<td>2.3?</td>
<td>Herbicides, pesticides, fungicides</td>
</tr>
<tr>
<td>AECL3.77</td>
<td>H1</td>
<td>2.3?</td>
<td>Past and leaf litter harvesting</td>
</tr>
<tr>
<td>AECL3.85</td>
<td>L</td>
<td>2.3?</td>
<td>Saltation</td>
</tr>
<tr>
<td>UKN1.7.8</td>
<td>L</td>
<td>2.3?</td>
<td>Ecological change, eg. forest fire cycles</td>
</tr>
<tr>
<td>AECL2.13</td>
<td>L</td>
<td>2.4</td>
<td>Dams</td>
</tr>
<tr>
<td>AECL3.2</td>
<td>GL</td>
<td>2.4</td>
<td>Alkaline flats</td>
</tr>
<tr>
<td>AECL3.33</td>
<td>GL</td>
<td>2.4</td>
<td>River course meander</td>
</tr>
<tr>
<td>SK6.9</td>
<td>L</td>
<td>2.4</td>
<td>River meandering</td>
</tr>
<tr>
<td>AECL3.73</td>
<td>H1</td>
<td>2.4?</td>
<td>Lake infilling</td>
</tr>
<tr>
<td>AECL3.106</td>
<td>L</td>
<td>2.4?</td>
<td>Toxicity of mined rock</td>
</tr>
<tr>
<td>AECL3.113</td>
<td>L</td>
<td>2.4?</td>
<td>Wetlands</td>
</tr>
<tr>
<td>AECL3.46</td>
<td>GL</td>
<td>2.5</td>
<td>Erosion - wind</td>
</tr>
<tr>
<td>UKN1.7.9</td>
<td>L</td>
<td>2.5</td>
<td>Ecological response to climate, eg. desert formation</td>
</tr>
<tr>
<td>AECL3.66</td>
<td>H1</td>
<td>3.5</td>
<td>Hydroponics</td>
</tr>
<tr>
<td>AECL3.90</td>
<td>L</td>
<td>3.5</td>
<td>Sensitization to radiation</td>
</tr>
<tr>
<td>AECL3.21</td>
<td>L</td>
<td>3.6</td>
<td>Chemical toxicity</td>
</tr>
<tr>
<td>AECL3.74</td>
<td>L</td>
<td>3.6</td>
<td>Mutagenic contaminants</td>
</tr>
<tr>
<td>AECL3.11</td>
<td>L</td>
<td>3.7</td>
<td>Biological evolution</td>
</tr>
<tr>
<td>UKN1.7.10</td>
<td>L</td>
<td>3.7</td>
<td>Plant and animal evolution</td>
</tr>
<tr>
<td>AECL3.27</td>
<td>L</td>
<td>4</td>
<td>Correlation</td>
</tr>
<tr>
<td>AECL3.87</td>
<td>L</td>
<td>4</td>
<td>Seasons</td>
</tr>
<tr>
<td>AECL3.105</td>
<td>GL</td>
<td>4</td>
<td>Terrestrial surface</td>
</tr>
<tr>
<td>AECL3.106</td>
<td>L</td>
<td>4</td>
<td>Uncertainties</td>
</tr>
<tr>
<td>AECL3.1</td>
<td>HGL</td>
<td>D</td>
<td>Acid rain</td>
</tr>
<tr>
<td>AECL3.76</td>
<td>GL</td>
<td>D</td>
<td>Ozone layer failure</td>
</tr>
<tr>
<td>AECL3.80</td>
<td>WL?</td>
<td>XXXX</td>
<td>Radioactive decay</td>
</tr>
<tr>
<td>SK4.1.3</td>
<td>E综合</td>
<td>XXXX</td>
<td>Colloids, complexing agents</td>
</tr>
<tr>
<td>AECL1.51</td>
<td>L</td>
<td>2.3</td>
<td>Intrusion (animal)</td>
</tr>
<tr>
<td>AECL3.51</td>
<td>GL</td>
<td>2.3</td>
<td>Flood (short-term)</td>
</tr>
<tr>
<td>AECL3.110</td>
<td>L</td>
<td>2.3</td>
<td>Water leak into underground living space</td>
</tr>
<tr>
<td>HMIP4.1.2</td>
<td>L</td>
<td>2.3</td>
<td>Solid discharge via erosional processes</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>ARGUMENT</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>AECL3.51</td>
<td>GL</td>
<td>2.3</td>
<td>Flood (short-term)</td>
</tr>
<tr>
<td>DOE1.4.4.2</td>
<td>G</td>
<td>2.3</td>
<td>Natural subsidence</td>
</tr>
<tr>
<td>DOE2.2.5</td>
<td>G</td>
<td>2.3</td>
<td>Diapirism</td>
</tr>
<tr>
<td>IAEA1.10</td>
<td>G</td>
<td>2.3</td>
<td>Diapirism</td>
</tr>
<tr>
<td>PGA1.8</td>
<td>G</td>
<td>2.3</td>
<td>Diapirism</td>
</tr>
<tr>
<td>PGA2.5</td>
<td>G</td>
<td>2.3</td>
<td>Hurricane, storms</td>
</tr>
<tr>
<td>SNL2.5</td>
<td>G</td>
<td>2.3</td>
<td>Hurricanes</td>
</tr>
<tr>
<td>SNL3.1</td>
<td>G</td>
<td>2.3</td>
<td>Diapirism</td>
</tr>
<tr>
<td>SNL3.5</td>
<td>G</td>
<td>2.3</td>
<td>Formation of Dissolution Cavities</td>
</tr>
<tr>
<td>UKN1.2.7</td>
<td>G</td>
<td>2.3</td>
<td>Diapirism</td>
</tr>
<tr>
<td>UKN1.3.3</td>
<td>G</td>
<td>2.3</td>
<td>Coastal surge, storms and hurricanes</td>
</tr>
<tr>
<td>HMIP2.1.5</td>
<td>G</td>
<td>2.3</td>
<td>Diapirism</td>
</tr>
<tr>
<td>NEA1.2.5</td>
<td>G</td>
<td>2.3</td>
<td>Diagenesis</td>
</tr>
<tr>
<td>NEA1.2.7</td>
<td>G</td>
<td>2.3</td>
<td>Diapirism</td>
</tr>
<tr>
<td>NEA1.3.3</td>
<td>G</td>
<td>2.3</td>
<td>Coastal surge, storms, and hurricanes</td>
</tr>
<tr>
<td>DOE2.2.4</td>
<td>G</td>
<td>2.3?</td>
<td>Diagenesis</td>
</tr>
<tr>
<td>IAEA1.9</td>
<td>G</td>
<td>2.3?</td>
<td>Diagenesis</td>
</tr>
<tr>
<td>PGA1.9</td>
<td>G</td>
<td>2.37</td>
<td>Diagenesis</td>
</tr>
<tr>
<td>SK17.10</td>
<td>G</td>
<td>2.37</td>
<td>Diagenesis</td>
</tr>
<tr>
<td>SNL2.9</td>
<td>G</td>
<td>2.37</td>
<td>Mass Wasting</td>
</tr>
<tr>
<td>SNL2.10</td>
<td>G</td>
<td>2.37</td>
<td>Flooding</td>
</tr>
<tr>
<td>UKN1.2.5</td>
<td>G</td>
<td>2.37</td>
<td>Diagenesis</td>
</tr>
<tr>
<td>HMIP2.1.4</td>
<td>G</td>
<td>2.37</td>
<td>Diagenesis</td>
</tr>
<tr>
<td>AECL3.32</td>
<td>GL</td>
<td>2.4</td>
<td>Alkaline flats</td>
</tr>
<tr>
<td>AECL3.83</td>
<td>GL</td>
<td>2.4</td>
<td>Rivercourse meander</td>
</tr>
<tr>
<td>DOE3.12.4</td>
<td>G</td>
<td>2.4</td>
<td>Glacial/interglacial cycling: Storm surges</td>
</tr>
<tr>
<td>DOE3.24.1</td>
<td>G</td>
<td>2.4</td>
<td>River incision/sedimentation due to sea-level change</td>
</tr>
<tr>
<td>PGA2.4</td>
<td>G</td>
<td>2.4</td>
<td>Flooding with extreme erosion</td>
</tr>
<tr>
<td>UKN1.4.2</td>
<td>G</td>
<td>2.4</td>
<td>Denudation (aeolian and fluvial)</td>
</tr>
<tr>
<td>UKN1.4.3</td>
<td>G</td>
<td>2.4</td>
<td>River, stream, channel erosion (downcutting)</td>
</tr>
<tr>
<td>UKN1.4.4</td>
<td>G</td>
<td>2.4</td>
<td>River meander</td>
</tr>
<tr>
<td>HMIP2.1.2</td>
<td>G</td>
<td>2.4</td>
<td>Magmatic activity</td>
</tr>
<tr>
<td>NEA1.4.2</td>
<td>G</td>
<td>2.4</td>
<td>Denudation (aeolian and fluvial)</td>
</tr>
<tr>
<td>NEA1.4.3</td>
<td>G</td>
<td>2.4</td>
<td>River, stream, channel erosion (downcutting)</td>
</tr>
<tr>
<td>NEA1.4.4</td>
<td>G</td>
<td>2.4</td>
<td>River meander</td>
</tr>
<tr>
<td>DOE3.11.4</td>
<td>G</td>
<td>2.4?</td>
<td>Greenhouse-induced Storm surges</td>
</tr>
<tr>
<td>NEA1.4.6</td>
<td>G</td>
<td>2.4?</td>
<td>Freshwater sediment transport and deposition</td>
</tr>
<tr>
<td>NEA1.4.7</td>
<td>G</td>
<td>2.4?</td>
<td>Marine sediment transport and deposition</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>ARGUMENT</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>AECI2.18</td>
<td>G</td>
<td>2.5</td>
<td>Drought</td>
</tr>
<tr>
<td>AECI2.24</td>
<td>G</td>
<td>2.5</td>
<td>Flood</td>
</tr>
<tr>
<td>AECI2.34</td>
<td>G</td>
<td>2.5</td>
<td>Intrusion (magmatic)</td>
</tr>
<tr>
<td>AECI2.37</td>
<td>G</td>
<td>2.5</td>
<td>Magmatic activity</td>
</tr>
<tr>
<td>AECI2.68</td>
<td>G</td>
<td>2.5</td>
<td>Volcanism</td>
</tr>
<tr>
<td>AECI3.42</td>
<td>G</td>
<td>2.5</td>
<td>Dust storms and desertification (massive)</td>
</tr>
<tr>
<td>AECI3.46</td>
<td>G</td>
<td>2.5</td>
<td>Erosion - wind</td>
</tr>
<tr>
<td>DOE2.2.2.1</td>
<td>G</td>
<td>2.5</td>
<td>Magmatic Intrusive</td>
</tr>
<tr>
<td>DOE2.2.2.2</td>
<td>G</td>
<td>2.5</td>
<td>Magmatic Extrusive</td>
</tr>
<tr>
<td>DOE2.2.2.3</td>
<td>G</td>
<td>2.5</td>
<td>Magmatic Hydrothermal</td>
</tr>
<tr>
<td>DOE3.1.1</td>
<td>G</td>
<td>2.5</td>
<td>Generalised denudation: Fluvial</td>
</tr>
<tr>
<td>DOE3.1.2</td>
<td>G</td>
<td>2.5</td>
<td>Generalised denudation: Aeolian</td>
</tr>
<tr>
<td>DOE3.2.1</td>
<td>G</td>
<td>2.5</td>
<td>Localised denudation: Fluvial (valley incision)</td>
</tr>
<tr>
<td>DOE3.2.2</td>
<td>G</td>
<td>2.5</td>
<td>Localised denudation: Fluvial (weathering/mass movement)</td>
</tr>
<tr>
<td>DOE3.2.2.4</td>
<td>G</td>
<td>2.5</td>
<td>Localised denudation: Coastal</td>
</tr>
<tr>
<td>DOE3.2.3.1</td>
<td>G</td>
<td>2.5</td>
<td>Sediment redistribution: Fluvial</td>
</tr>
<tr>
<td>DOE3.2.3.2</td>
<td>G</td>
<td>2.5</td>
<td>Sediment redistribution: Aeolian</td>
</tr>
<tr>
<td>DOE3.2.1.1</td>
<td>G</td>
<td>2.5</td>
<td>Erosion: Fluvial</td>
</tr>
<tr>
<td>DOE3.2.1.2</td>
<td>G</td>
<td>2.5</td>
<td>Erosion: Aeolian</td>
</tr>
<tr>
<td>DOE3.2.1.4</td>
<td>G</td>
<td>2.5</td>
<td>Erosion: Coastal</td>
</tr>
<tr>
<td>IAEA1.15</td>
<td>G</td>
<td>2.5</td>
<td>Magmatic activity: Extrusive</td>
</tr>
<tr>
<td>PGA1.5</td>
<td>G</td>
<td>2.5</td>
<td>Tectonic crustal movements</td>
</tr>
<tr>
<td>PGA1.6</td>
<td>G</td>
<td>2.5</td>
<td>Magma intrusion</td>
</tr>
<tr>
<td>PGA1.7</td>
<td>G</td>
<td>2.5</td>
<td>Volcanism</td>
</tr>
<tr>
<td>PGA2.2</td>
<td>G</td>
<td>2.5</td>
<td>Volcanic eruption</td>
</tr>
<tr>
<td>SK5.13</td>
<td>G</td>
<td>2.5</td>
<td>Volcanism</td>
</tr>
<tr>
<td>SK5.19</td>
<td>G</td>
<td>2.5</td>
<td>Effect of plate movements</td>
</tr>
<tr>
<td>SK5.32</td>
<td>G</td>
<td>2.5</td>
<td>Desert and unsaturation</td>
</tr>
<tr>
<td>SK5.11</td>
<td>G</td>
<td>2.5</td>
<td>Intruding dykes</td>
</tr>
<tr>
<td>SK5.14</td>
<td>G</td>
<td>2.5</td>
<td>Tectonic activity: large scale</td>
</tr>
<tr>
<td>SNL3.3</td>
<td>G</td>
<td>2.5</td>
<td>Volcanic Activity</td>
</tr>
<tr>
<td>SNL3.4</td>
<td>G</td>
<td>2.5</td>
<td>Magmatic Activity</td>
</tr>
<tr>
<td>UKN1.2.1</td>
<td>G</td>
<td>2.5</td>
<td>Plate movement/tectonic change</td>
</tr>
<tr>
<td>UKN1.2.3</td>
<td>G</td>
<td>2.5</td>
<td>Magmatic activity (intrusive, extrusive)</td>
</tr>
<tr>
<td>HMP2.1.1</td>
<td>G</td>
<td>2.5</td>
<td>Regional tectonic</td>
</tr>
<tr>
<td>NEA1.2.1</td>
<td>G</td>
<td>2.5</td>
<td>Plate movement/tectonic change</td>
</tr>
<tr>
<td>NEA1.2.3</td>
<td>G</td>
<td>2.5</td>
<td>Magmatic activity (intrusive, extrusive)</td>
</tr>
<tr>
<td>NEA1.5.2</td>
<td>G</td>
<td>3.1</td>
<td>Site flooding</td>
</tr>
<tr>
<td>AECI1.42</td>
<td>G</td>
<td>4</td>
<td>Global effects</td>
</tr>
<tr>
<td>AECI3.105</td>
<td>G</td>
<td>4</td>
<td>Terrestrial surface</td>
</tr>
<tr>
<td>AECI2.41</td>
<td>G</td>
<td>D</td>
<td>Meteorite</td>
</tr>
<tr>
<td>AECI2.45</td>
<td>G</td>
<td>D</td>
<td>Ozone layer</td>
</tr>
<tr>
<td>AECI3.1</td>
<td>H3L</td>
<td>D</td>
<td>Acid rain</td>
</tr>
<tr>
<td>AECI3.24</td>
<td>H</td>
<td>D</td>
<td>Collisions, explosions, impacts</td>
</tr>
<tr>
<td>AECI3.76</td>
<td>GL</td>
<td>D</td>
<td>Ozone layer failure</td>
</tr>
<tr>
<td>DOE2.1.1</td>
<td>G</td>
<td>D</td>
<td>Meteorite impact</td>
</tr>
<tr>
<td>IAEA1.17</td>
<td>G</td>
<td>D</td>
<td>Meteorite impact</td>
</tr>
<tr>
<td>PGA2.3</td>
<td>G</td>
<td>D</td>
<td>Meteor impact</td>
</tr>
<tr>
<td>SK5.28</td>
<td>G</td>
<td>D</td>
<td>Meteorite</td>
</tr>
<tr>
<td>SNL1.1</td>
<td>G</td>
<td>D</td>
<td>Meteorite impact</td>
</tr>
<tr>
<td>UKN1.1.1</td>
<td>G</td>
<td>D</td>
<td>Meteorite impact</td>
</tr>
<tr>
<td>HMP5.2.1</td>
<td>G</td>
<td>D</td>
<td>Meteorite impact</td>
</tr>
<tr>
<td>NEA1.1.1</td>
<td>G</td>
<td>D</td>
<td>Meteorite impact</td>
</tr>
<tr>
<td>NEA1.4.3</td>
<td>G</td>
<td>XXXX</td>
<td>River meander (REPEAT! - SEE 1.4.4)</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>ARGUMENT</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>AECL2.35</td>
<td>H</td>
<td>2.3</td>
<td>Intrusion (mines)</td>
</tr>
<tr>
<td>AECL2.44</td>
<td>H</td>
<td>2.3</td>
<td>Mines</td>
</tr>
<tr>
<td>AECL2.57</td>
<td>H</td>
<td>2.3</td>
<td>Solution mining</td>
</tr>
<tr>
<td>SBEL4.3</td>
<td>H</td>
<td>2.3</td>
<td>Inadvertent Intrusions: Mining</td>
</tr>
<tr>
<td>UKN2.1.4</td>
<td>H</td>
<td>2.3</td>
<td>Exploitation drilling</td>
</tr>
<tr>
<td>UKN2.3.6</td>
<td>H</td>
<td>2.3</td>
<td>Resource mining</td>
</tr>
<tr>
<td>UKN2.4.10</td>
<td>H</td>
<td>2.3</td>
<td>Quarrying, peat extraction</td>
</tr>
<tr>
<td>NEA2.4.10</td>
<td>H</td>
<td>2.3</td>
<td>Quarrying, near surface extraction</td>
</tr>
<tr>
<td>AECL3.5</td>
<td>HL</td>
<td>2.3?</td>
<td>Artificial lake mixing</td>
</tr>
<tr>
<td>AECL3.7</td>
<td>H</td>
<td>2.3?</td>
<td>Ashes and sewage sludge</td>
</tr>
<tr>
<td>AECL3.35</td>
<td>HL</td>
<td>2.3?</td>
<td>Crop fertilization</td>
</tr>
<tr>
<td>AECL3.36</td>
<td>HL</td>
<td>2.3?</td>
<td>Crop storage</td>
</tr>
<tr>
<td>AECL3.61</td>
<td>HL</td>
<td>2.3?</td>
<td>Herbicides, pesticides, fungicides</td>
</tr>
<tr>
<td>AECL3.68</td>
<td>H</td>
<td>2.3?</td>
<td>Injection/insoluble locally produced drugs</td>
</tr>
<tr>
<td>AECL3.77</td>
<td>HL</td>
<td>2.3?</td>
<td>Peat and leaf litter harvesting</td>
</tr>
<tr>
<td>DOE4.2.4</td>
<td>H</td>
<td>2.3?</td>
<td>Exploitation drilling</td>
</tr>
<tr>
<td>DOE4.2.6</td>
<td>H</td>
<td>2.3?</td>
<td>Resource mining</td>
</tr>
<tr>
<td>AECL2.3</td>
<td>HF</td>
<td>2.4</td>
<td>Borehole - well</td>
</tr>
<tr>
<td>AECL2.13</td>
<td>HL</td>
<td>2.4</td>
<td>Dams</td>
</tr>
<tr>
<td>AECL3.10</td>
<td>H</td>
<td>2.4</td>
<td>Biogas production</td>
</tr>
<tr>
<td>AECL3.111</td>
<td>H</td>
<td>2.4</td>
<td>Water management projects (major)</td>
</tr>
<tr>
<td>PG4.3.1</td>
<td>H</td>
<td>2.4</td>
<td>Drilling in sediments</td>
</tr>
<tr>
<td>UKN2.4.2</td>
<td>H</td>
<td>2.4</td>
<td>Dams and reservoirs, built/drained</td>
</tr>
<tr>
<td>UKN2.4.3</td>
<td>H</td>
<td>2.4</td>
<td>River rechanneled</td>
</tr>
<tr>
<td>NEA2.3.4</td>
<td>H</td>
<td>2.4</td>
<td>Exploitation drilling</td>
</tr>
<tr>
<td>NEA2.3.5</td>
<td>H</td>
<td>2.4</td>
<td>Resource mining</td>
</tr>
<tr>
<td>NEA2.4.2</td>
<td>H</td>
<td>2.4</td>
<td>Dams and reservoirs, built/drained</td>
</tr>
<tr>
<td>NEA2.4.3</td>
<td>H</td>
<td>2.4</td>
<td>Rivers rechanneled</td>
</tr>
<tr>
<td>AECL3.43</td>
<td>H</td>
<td>2.4?</td>
<td>Earthmoving projects (major)</td>
</tr>
<tr>
<td>AECL3.73</td>
<td>HL</td>
<td>2.4?</td>
<td>Lake infilling</td>
</tr>
<tr>
<td>AECL2.1</td>
<td>HR</td>
<td>3.1</td>
<td>Blasting and vibration</td>
</tr>
<tr>
<td>SKI5.2.11</td>
<td>BM</td>
<td>3.1</td>
<td>Backfill material deficiencies</td>
</tr>
<tr>
<td>SKI5.10</td>
<td>H</td>
<td>3.1</td>
<td>Accidents during operation</td>
</tr>
<tr>
<td>SKI5.12</td>
<td>H</td>
<td>3.1</td>
<td>Near storage of other waste</td>
</tr>
<tr>
<td>SKI5.39</td>
<td>H</td>
<td>3.1</td>
<td>Postclosure monitoring</td>
</tr>
<tr>
<td>SKI5.40</td>
<td>H</td>
<td>3.1</td>
<td>Unsuccessful attempt of site improvement</td>
</tr>
<tr>
<td>UKN2.1.8</td>
<td>HR</td>
<td>3.1</td>
<td>Poor quality construction</td>
</tr>
<tr>
<td>UKN2.1.9</td>
<td>HR</td>
<td>3.1</td>
<td>Design modification</td>
</tr>
<tr>
<td>UKN2.2.3</td>
<td>HM</td>
<td>3.1</td>
<td>Co-disposal of reactive wastes (deliberate)</td>
</tr>
<tr>
<td>UKN2.2.6</td>
<td>H</td>
<td>3.1</td>
<td>Accidents during operation</td>
</tr>
<tr>
<td>UKN2.2.11</td>
<td>HD</td>
<td>3.1</td>
<td>Post-closure monitoring</td>
</tr>
<tr>
<td>NEA2.1.9</td>
<td>H</td>
<td>3.1</td>
<td>Design modification</td>
</tr>
<tr>
<td>NEA2.3.1</td>
<td>H</td>
<td>3.1?</td>
<td>Recovery of repository materials</td>
</tr>
<tr>
<td>SKI5.7</td>
<td>H</td>
<td>3.1?</td>
<td>Poorly designed repository</td>
</tr>
<tr>
<td>SKI5.8</td>
<td>H</td>
<td>3.1?</td>
<td>Poorly constructed repository</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>ARGUMENT</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>AECL3.39</td>
<td>H</td>
<td>3.4</td>
<td>Intrusion (deliberate)</td>
</tr>
<tr>
<td>DOE4.2.1</td>
<td>H</td>
<td>3.4</td>
<td>Deliberate recovery of wastes or associated materials</td>
</tr>
<tr>
<td>DOE4.2.2</td>
<td>H</td>
<td>3.4</td>
<td>Malicious intrusion</td>
</tr>
<tr>
<td>UKN2.3.1</td>
<td>H</td>
<td>3.4</td>
<td>Recovery of repository materials</td>
</tr>
<tr>
<td>HMIP5.2.2</td>
<td>H</td>
<td>3.4</td>
<td>Deliberate intrusion</td>
</tr>
<tr>
<td>HMIP5.2.3</td>
<td>H</td>
<td>3.4</td>
<td>Malicious intrusion</td>
</tr>
<tr>
<td>NEA2.3.2</td>
<td>H</td>
<td>3.4</td>
<td>Malicious intrusion (sabotage, act of war)</td>
</tr>
<tr>
<td>SK15.33</td>
<td>H</td>
<td>3.47</td>
<td>Waste retrieval, mining</td>
</tr>
<tr>
<td>AECL3.66</td>
<td>H</td>
<td>3.5</td>
<td>Hydroponics</td>
</tr>
<tr>
<td>AECL3.103</td>
<td>H</td>
<td>3.5</td>
<td>Technological advances in food production</td>
</tr>
<tr>
<td>SK15.38</td>
<td>H</td>
<td>3.5</td>
<td>Other future uses of crystalline rock</td>
</tr>
<tr>
<td>AECL3.37</td>
<td>H</td>
<td>3.7</td>
<td>Cure for cancer</td>
</tr>
<tr>
<td>AECL1.73</td>
<td>H</td>
<td>D</td>
<td>Sabotage and improper operation</td>
</tr>
<tr>
<td>AECL2.2</td>
<td>H</td>
<td>D</td>
<td>Bomb blast</td>
</tr>
<tr>
<td>AECL2.22</td>
<td>RH</td>
<td>D</td>
<td>Explosion</td>
</tr>
<tr>
<td>AECL2.53</td>
<td>H</td>
<td>D</td>
<td>Sabotage</td>
</tr>
<tr>
<td>AECL3.1</td>
<td>H</td>
<td>D</td>
<td>Acid rain</td>
</tr>
<tr>
<td>AECL3.24</td>
<td>HG</td>
<td>D</td>
<td>Collisions, explosions, impacts</td>
</tr>
<tr>
<td>DOE4.2.13</td>
<td>H</td>
<td>D</td>
<td>Underground weapons testing</td>
</tr>
<tr>
<td>IAEA2.7.1</td>
<td>H</td>
<td>D</td>
<td>Intentional intrusion: War</td>
</tr>
<tr>
<td>IAEA2.7.2</td>
<td>H</td>
<td>D</td>
<td>Intentional intrusion: Sabotage</td>
</tr>
<tr>
<td>IAEA2.7.3</td>
<td>H</td>
<td>D</td>
<td>Intentional intrusion: Waste recovery</td>
</tr>
<tr>
<td>SK15.5</td>
<td>H</td>
<td>D</td>
<td>Sudden energy release</td>
</tr>
<tr>
<td>SK15.30</td>
<td>H</td>
<td>D</td>
<td>Underground test of nuclear devices</td>
</tr>
<tr>
<td>SK15.38</td>
<td>H</td>
<td>D</td>
<td>Explosions</td>
</tr>
<tr>
<td>SK16.7</td>
<td>H</td>
<td>D</td>
<td>Nuclear war</td>
</tr>
<tr>
<td>UKN2.2.7</td>
<td>H</td>
<td>D</td>
<td>Sabotage</td>
</tr>
<tr>
<td>UKN2.3.2</td>
<td>H</td>
<td>D</td>
<td>Malicious intrusion, e.g. sabotage, act of war</td>
</tr>
<tr>
<td>UKN2.3.12</td>
<td>H</td>
<td>D</td>
<td>Underground nuclear testing</td>
</tr>
<tr>
<td>NEA2.3.12</td>
<td>H</td>
<td>D</td>
<td>Underground nuclear testing</td>
</tr>
</tbody>
</table>
APPENDIX 5

Screened FEP Lists

sorted according to consolidation code
<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>FEP NAME</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Waste characteristics</td>
<td>fuel stability, heterogeneity</td>
</tr>
<tr>
<td>1.2</td>
<td>Radionuclide inventory</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Radionuclide decay and growth</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>Radiological/radiation effects</td>
<td>radiation damage, radiolysis, embrittlement, He</td>
</tr>
<tr>
<td>1.5</td>
<td>Gas generation and effects</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>Heat generation</td>
<td>chemical changes, radioactive gas, pressurisation</td>
</tr>
<tr>
<td>1.7</td>
<td>Thermo-mechanical effects</td>
<td>thermal pulse</td>
</tr>
<tr>
<td>1.8</td>
<td>Thermo-chemical effects</td>
<td>material property changes</td>
</tr>
<tr>
<td>1.9</td>
<td>Electro-chemical effects</td>
<td>gradients, galvanic coupling</td>
</tr>
<tr>
<td>1.10</td>
<td>Waste degradation/corrosion/dissolution</td>
<td>metal corrosion, leaching, zircaley</td>
</tr>
<tr>
<td>1.11</td>
<td>Geochemical reactions/regime</td>
<td>chemical gradients & kinetics, geochemical pump, redox potential, recryst.</td>
</tr>
<tr>
<td>1.12</td>
<td>Radionuclide chemistry</td>
<td>solubility, speciation, complex formation, colloid formation</td>
</tr>
<tr>
<td>1.13</td>
<td>Specific factors</td>
<td>Pb-I reactions, Cs migration, damaged/deviating fuel, channeling</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>CON_CODE</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>AEC11.53</td>
<td>WC</td>
<td>1.1</td>
</tr>
<tr>
<td>AEC11.55</td>
<td>WCB</td>
<td>1.1</td>
</tr>
<tr>
<td>AEC11.81</td>
<td>BMRA</td>
<td>1.1</td>
</tr>
<tr>
<td>UKNES.2.5</td>
<td>W</td>
<td>1.1</td>
</tr>
<tr>
<td>NEA22.5</td>
<td>W</td>
<td>1.1</td>
</tr>
</tbody>
</table>

1.3 Radioactive decay and growth

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CON_CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC11.68</td>
<td>WC</td>
<td>1.3</td>
<td>Radioactive decay</td>
</tr>
<tr>
<td>DOE1.3.1</td>
<td>W</td>
<td>1.3</td>
<td>Radioactive decay and ingrowth</td>
</tr>
<tr>
<td>UKNES.4.4</td>
<td>W</td>
<td>1.3</td>
<td>Radioactive decay and ingrowth (chain decay)</td>
</tr>
<tr>
<td>HMI12.3</td>
<td>W</td>
<td>1.3</td>
<td>Radioactive decay and ingrowth</td>
</tr>
<tr>
<td>NEA34.4</td>
<td>W</td>
<td>1.3</td>
<td>Radioactive decay and ingrowth (chain decay)</td>
</tr>
</tbody>
</table>

1.4 Radiological/Radiation effects

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CON_CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC11.67</td>
<td>WC</td>
<td>1.4</td>
<td>Radiation damage</td>
</tr>
<tr>
<td>DOE1.4.7</td>
<td>WC</td>
<td>1.4</td>
<td>Radiation & waste materials</td>
</tr>
<tr>
<td>DOE1.4.3</td>
<td>WC</td>
<td>1.4</td>
<td>Embrittlement</td>
</tr>
<tr>
<td>IAEA34.1</td>
<td>W</td>
<td>1.4</td>
<td>Radiological effects: Material property changes</td>
</tr>
<tr>
<td>IAEA34.2</td>
<td>W</td>
<td>1.4</td>
<td>Radiological effects: Radiolysis</td>
</tr>
<tr>
<td>IAEA34.3</td>
<td>W</td>
<td>1.4</td>
<td>Radiological effects: Decay product gas generation</td>
</tr>
<tr>
<td>PGA3.1</td>
<td>W</td>
<td>1.4</td>
<td>Radiation damage of the matrix</td>
</tr>
<tr>
<td>PGA3.2</td>
<td>W</td>
<td>1.4</td>
<td>Radiolysis</td>
</tr>
<tr>
<td>SKI11.3</td>
<td>W</td>
<td>1.4</td>
<td>Recoil of alpha-decay</td>
</tr>
<tr>
<td>SKI11.4</td>
<td>W</td>
<td>1.4</td>
<td>Gas production: He production</td>
</tr>
<tr>
<td>SKI12.1</td>
<td>W</td>
<td>1.4</td>
<td>Radiolysis</td>
</tr>
<tr>
<td>UKNES.4.1</td>
<td>W</td>
<td>1.4</td>
<td>Radiolysis</td>
</tr>
<tr>
<td>UKNES.4.2</td>
<td>W</td>
<td>1.4</td>
<td>Material property changes</td>
</tr>
<tr>
<td>HMI12.1.4</td>
<td>WC</td>
<td>1.4</td>
<td>Radiolysis</td>
</tr>
</tbody>
</table>

1.5 Gas generation and effects

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CON_CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC11.27</td>
<td>WC</td>
<td>1.5</td>
<td>Coupled processes</td>
</tr>
<tr>
<td>DOE1.2.1.6</td>
<td>W</td>
<td>1.5</td>
<td>Formation of gases</td>
</tr>
<tr>
<td>DOE1.2.4.2</td>
<td>W</td>
<td>1.5</td>
<td>Hydrogen: corrosion of waste Zircaloy</td>
</tr>
<tr>
<td>DOE1.2.4.3</td>
<td>W</td>
<td>1.5</td>
<td>Active methane and carbon dioxide</td>
</tr>
<tr>
<td>DOE1.2.4.6</td>
<td>W</td>
<td>1.5</td>
<td>Other active gases</td>
</tr>
<tr>
<td>DOE1.2.3</td>
<td>WB</td>
<td>1.5</td>
<td>Chemical changes due to Gas production</td>
</tr>
<tr>
<td>DOE1.2.4.3</td>
<td>W</td>
<td>1.5</td>
<td>Chemical effects. Gas generation</td>
</tr>
<tr>
<td>DOE1.2.4.3</td>
<td>W</td>
<td>1.5</td>
<td>Other active gases</td>
</tr>
<tr>
<td>IAEA34.1</td>
<td>WB</td>
<td>1.5</td>
<td>Gas production</td>
</tr>
<tr>
<td>SKI12.1.3</td>
<td>W</td>
<td>1.5</td>
<td>Gas generation</td>
</tr>
<tr>
<td>HMI12.1.4</td>
<td>WC</td>
<td>1.5</td>
<td>Hydrogen by metal corrosion</td>
</tr>
</tbody>
</table>

1.6 Heat generation

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CON_CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC11.84</td>
<td>WC</td>
<td>1.6</td>
<td>Temperature rises (unexpected effects)</td>
</tr>
<tr>
<td>SKI12.1.2</td>
<td>W</td>
<td>1.6</td>
<td>Radioactive decay; heat</td>
</tr>
</tbody>
</table>

1.7 Thermo-mechanical effects

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CON_CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC11.27</td>
<td>WC</td>
<td>1.7</td>
<td>Coupled processes</td>
</tr>
<tr>
<td>SKI2.1.2</td>
<td>WC</td>
<td>1.7</td>
<td>Thermal cracking</td>
</tr>
<tr>
<td>UKNES.2.3</td>
<td>WC</td>
<td>1.7</td>
<td>Interactions of waste and repository materials with host materials (e.g. cement)</td>
</tr>
<tr>
<td>UKNES.4.2</td>
<td>WC</td>
<td>1.7</td>
<td>Material property changes</td>
</tr>
<tr>
<td>HMI12.6</td>
<td>WC</td>
<td>1.7</td>
<td>Temporal-chemical effects</td>
</tr>
<tr>
<td>NEA34.2</td>
<td>WC</td>
<td>1.7</td>
<td>Material property changes</td>
</tr>
</tbody>
</table>

1.8 Thermo-chemical effects

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CON_CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC11.27</td>
<td>WC</td>
<td>1.8</td>
<td>Coupled processes</td>
</tr>
<tr>
<td>PGA3.3</td>
<td>WC</td>
<td>1.8</td>
<td>Thermally induced chemical changes</td>
</tr>
<tr>
<td>UKNES.2.3</td>
<td>WC</td>
<td>1.8</td>
<td>Interactions of waste and repository materials with host materials (e.g. cement)</td>
</tr>
<tr>
<td>UKNES.4.2</td>
<td>WC</td>
<td>1.8</td>
<td>Material property changes</td>
</tr>
<tr>
<td>HMI12.6</td>
<td>WC</td>
<td>1.8</td>
<td>Thermo-chemical effects</td>
</tr>
<tr>
<td>NEA34.2</td>
<td>WC</td>
<td>1.8</td>
<td>Material property changes</td>
</tr>
</tbody>
</table>

1.9 Electro-chemical effects

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CON_CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC11.27</td>
<td>WC</td>
<td>1.9</td>
<td>Coupled processes</td>
</tr>
<tr>
<td>AEC11.3</td>
<td>WC</td>
<td>1.9</td>
<td>Electrochemical gradients</td>
</tr>
<tr>
<td>UKNES.2.3</td>
<td>WC</td>
<td>1.9</td>
<td>Interactions of waste and repository materials with host materials (e.g. cement)</td>
</tr>
<tr>
<td>HMI12.6</td>
<td>WC</td>
<td>1.9</td>
<td>Electrochemical effects</td>
</tr>
</tbody>
</table>

PAGE 1
<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CON CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECL1.65</td>
<td>WCBR</td>
<td>WCBR</td>
<td>Precipitation and dissolution</td>
</tr>
<tr>
<td>AECL1.78</td>
<td>W</td>
<td>W1.10.1.11.1.12</td>
<td>Source terms (expected)</td>
</tr>
<tr>
<td>AECL1.79</td>
<td>W</td>
<td>W1.10.1.11.1.12</td>
<td>Source terms (other)</td>
</tr>
<tr>
<td>DOE1.1.4.1</td>
<td>W</td>
<td>W1.10.1.11</td>
<td>Metal corrosion: wastes</td>
</tr>
<tr>
<td>DOE1.1.4.2</td>
<td>W</td>
<td>W1.10</td>
<td>Leaching: wastes</td>
</tr>
<tr>
<td>DOE1.5.5.1</td>
<td>WCB</td>
<td>WCB1.10.1.11</td>
<td>Chemical changes due to Metal corrosion</td>
</tr>
<tr>
<td>DOE1.5.5.3</td>
<td>W</td>
<td>W1.10.1.11</td>
<td>Chemical changes due to Waste degradation</td>
</tr>
<tr>
<td>IAEA3.2.1</td>
<td>WC</td>
<td>W1.10.1.11</td>
<td>Chemical effects: Corrosion</td>
</tr>
<tr>
<td>SK12.1.3</td>
<td>W</td>
<td>W1.10</td>
<td>Internal corrosion due to waste</td>
</tr>
<tr>
<td>SK13.1.10</td>
<td>WB</td>
<td>WB1.10.1.11</td>
<td>Interactions with corrosion products and waste</td>
</tr>
<tr>
<td>UKN3.2.1</td>
<td>WC</td>
<td>WC1.10</td>
<td>Metallic corrosion (pitting/uniform, internal and external agents, gas generation)</td>
</tr>
<tr>
<td>HKM1.4.1</td>
<td>WCB</td>
<td>WCB1.10</td>
<td>Physico-chemical degradation of wastes and transport to the far-field</td>
</tr>
<tr>
<td>NEA3.3.5</td>
<td>WC</td>
<td>WC1.10</td>
<td>Fracturing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.11 Geothermal reactions/ regime</td>
</tr>
<tr>
<td>AECL1.9</td>
<td>WBR</td>
<td>WBR1.11</td>
<td>Chemical gradients</td>
</tr>
<tr>
<td>AECL1.13</td>
<td>WCBR</td>
<td>WCBR1.11</td>
<td>Chemical kinetics</td>
</tr>
<tr>
<td>AECL1.60</td>
<td>WBR</td>
<td>WBR1.11</td>
<td>Geothermal pump</td>
</tr>
<tr>
<td>AECL1.78</td>
<td>W</td>
<td>W1.10.1.11.1.12</td>
<td>Source terms (expected)</td>
</tr>
<tr>
<td>AECL1.79</td>
<td>W</td>
<td>W1.10.1.11.1.12</td>
<td>Source terms (other)</td>
</tr>
<tr>
<td>DOE1.1.4.1</td>
<td>W</td>
<td>W1.10.1.11</td>
<td>Metal corrosion: wastes</td>
</tr>
<tr>
<td>DOE1.5.5.1</td>
<td>WCB</td>
<td>WCB1.11.12</td>
<td>Complex formation: wastes</td>
</tr>
<tr>
<td>DOE1.6.5.1</td>
<td>WCB</td>
<td>WCB1.10.1.11</td>
<td>Chemical changes due to Metal corrosion</td>
</tr>
<tr>
<td>DOE1.6.5.3</td>
<td>WCB</td>
<td>WCB1.10.1.11</td>
<td>Chemical changes due to Waste degradation</td>
</tr>
<tr>
<td>DOE1.6.5.4</td>
<td>WCB</td>
<td>WCB1.15.11</td>
<td>Chemical changes due to Gas production</td>
</tr>
<tr>
<td>IAEA3.2.1</td>
<td>WC</td>
<td>WC1.10.1.11</td>
<td>Chemical effects: Corrosion</td>
</tr>
<tr>
<td>IAEA3.2.3</td>
<td>WB</td>
<td>WB1.5.1.11</td>
<td>Chemical effects: Gas generation</td>
</tr>
<tr>
<td>IAEA3.2.4</td>
<td>WBR</td>
<td>WBR1.11</td>
<td>Chemical effects: Geochemical change</td>
</tr>
<tr>
<td>IGAS1.10</td>
<td>WCB</td>
<td>WCB1.11</td>
<td>Chemical changes due to corrosion</td>
</tr>
<tr>
<td>SK11.2.6</td>
<td>W</td>
<td>W1.11.1.12</td>
<td>Solubility within fuel matrix</td>
</tr>
<tr>
<td>SK11.2.7</td>
<td>W</td>
<td>W1.11.1.12</td>
<td>Recrystallization</td>
</tr>
<tr>
<td>SK11.2.8</td>
<td>W</td>
<td>W1.11</td>
<td>Redox potential</td>
</tr>
<tr>
<td>SK11.2.9</td>
<td>W</td>
<td>W1.11</td>
<td>Dissolution chemistry</td>
</tr>
<tr>
<td>SK3.3.10</td>
<td>WB</td>
<td>WB1.10.1.11</td>
<td>Interactions with corrosion products and waste</td>
</tr>
<tr>
<td>UKN1.5.14</td>
<td>WC3RF</td>
<td>WC3RF1.11</td>
<td>Chemical gradients (electrochemical effects and osmosis)</td>
</tr>
<tr>
<td>HKM1.7.6</td>
<td>WC3RF</td>
<td>WC3RF1.11</td>
<td>Chemical transformations</td>
</tr>
<tr>
<td>HKM1.4.1</td>
<td>WCB</td>
<td>WCB1.11</td>
<td>Waste-form and backfill consolidation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.12 Radiouclide chemistry</td>
</tr>
<tr>
<td>AECL1.78</td>
<td>W</td>
<td>W1.10.1.11.1.12</td>
<td>Source terms (expected)</td>
</tr>
<tr>
<td>AECL1.79</td>
<td>W</td>
<td>W1.10.1.11.1.12</td>
<td>Source terms (other)</td>
</tr>
<tr>
<td>AECL1.80</td>
<td>WCBR</td>
<td>WCBR1.12</td>
<td>Speciation</td>
</tr>
<tr>
<td>DOE1.1.4.3</td>
<td>W</td>
<td>W1.11.1.12</td>
<td>Complex formation: wastes</td>
</tr>
<tr>
<td>SKII.2.6</td>
<td>W</td>
<td>W1.11.1.12</td>
<td>Solubility within fuel matrix</td>
</tr>
<tr>
<td>SKII.2.7</td>
<td>W</td>
<td>W1.11.1.12</td>
<td>Recrystallization</td>
</tr>
<tr>
<td>SKII.4.4</td>
<td>W</td>
<td>W1.12</td>
<td>Solubility and precipitation</td>
</tr>
<tr>
<td>UKN3.1.5</td>
<td>WB</td>
<td>WB1.12</td>
<td>Induced chemical changes (solubility, sorption, species equilbrium, mineralization)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.13 Specific factors</td>
</tr>
<tr>
<td>DOE1.1.4.4</td>
<td>W</td>
<td>W1.13</td>
<td>Colloid formation: wastes</td>
</tr>
<tr>
<td>SKII.2.3</td>
<td>WC</td>
<td>WC1.13</td>
<td>Pb-I reactions</td>
</tr>
<tr>
<td>SKII.2.5</td>
<td>W</td>
<td>W1.13</td>
<td>Co-migration to glass surface</td>
</tr>
<tr>
<td>SKII.2.6</td>
<td>W</td>
<td>W1.13</td>
<td>Damaged or leaking fuel</td>
</tr>
<tr>
<td>SKII.2.7</td>
<td>WC</td>
<td>WC1.13</td>
<td>Role of the eventual channeling within the canister</td>
</tr>
<tr>
<td>UKN2.2.1</td>
<td>WH</td>
<td>WH1.13</td>
<td>Inadvertent inclusion of undesirable materials</td>
</tr>
<tr>
<td>NEA2.2.4</td>
<td>W</td>
<td>W1.13</td>
<td>Inadvertent inclusion of undesirable materials</td>
</tr>
<tr>
<td>AECL1.3</td>
<td>WCBR</td>
<td>WCBRXOXO</td>
<td>Biological activity</td>
</tr>
<tr>
<td>AECL3.81</td>
<td>WC3RF</td>
<td>WC3RFXOXO</td>
<td>Radioactive contaminants</td>
</tr>
<tr>
<td>DOE1.1.4.5</td>
<td>W</td>
<td>WXOXO</td>
<td>Microbial corrosion: wastes</td>
</tr>
<tr>
<td>DOE1.5.6.2</td>
<td>WB3RF</td>
<td>WB3RFXOXO</td>
<td>Microbiological effects due to microbial product reactions</td>
</tr>
<tr>
<td>DOE1.6.6.3</td>
<td>WB3RF</td>
<td>WB3RFXOXO</td>
<td>Microbiological effects due to microbial product reactions</td>
</tr>
<tr>
<td>IAEA3.2.2</td>
<td>WC</td>
<td>WXOXO</td>
<td>Chemical effects: Interactions of waste package and rock</td>
</tr>
<tr>
<td>HKM1.7.7</td>
<td>WB3RF</td>
<td>WB3RFXOXO</td>
<td>Microbial interactions</td>
</tr>
<tr>
<td>UKN3.2.2</td>
<td>WC</td>
<td>WXOXO</td>
<td>Interactions of host materials and groundwater with repository material (eg. adsorption)</td>
</tr>
<tr>
<td>UKN3.2.7</td>
<td>WC</td>
<td>WXOXO</td>
<td>Microbiological effects on corrosion/degradation, on solubility/complexation, etc.</td>
</tr>
<tr>
<td>HKM1.2.5</td>
<td>W</td>
<td>WXOXO</td>
<td>Chemical dissolusions</td>
</tr>
</tbody>
</table>
| NEA3.2.7 | W | WXOXO | Microbiological effects on corrosion/degradation, solubility/complexation, gas
<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>FEP NAME</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Canister material/construction</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Corrosion/degradation processes</td>
<td>metal corrosion, leaching, pitting</td>
</tr>
<tr>
<td>2.3</td>
<td>Gas production and effects</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Microbiological effects</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>Thermo-mechanical effects</td>
<td>thermal pulse</td>
</tr>
<tr>
<td>2.6</td>
<td>Electro-chemical effects</td>
<td>gradients, galvanic coupling</td>
</tr>
<tr>
<td>2.7</td>
<td>Stress/mechanical effects</td>
<td>material property changes</td>
</tr>
<tr>
<td>2.8</td>
<td>Geochemical reactions/regime</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>Radionuclide transport through containers</td>
<td></td>
</tr>
<tr>
<td>2.10</td>
<td>Specific factors</td>
<td>colloids</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>CON.CODE</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>AECL1.53</td>
<td>C</td>
<td>2.1</td>
</tr>
<tr>
<td>SK12.3</td>
<td>WC</td>
<td>2.1</td>
</tr>
<tr>
<td>SK12.4</td>
<td>C</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AECL1.19</td>
<td>C</td>
<td>2.2.2.7</td>
</tr>
<tr>
<td>AECL1.20</td>
<td>C</td>
<td>2.2.2.7</td>
</tr>
<tr>
<td>AECL1.22</td>
<td>C</td>
<td>2.2</td>
</tr>
<tr>
<td>AECL1.23</td>
<td>C</td>
<td>2.2</td>
</tr>
<tr>
<td>AECL1.26</td>
<td>C</td>
<td>2.2</td>
</tr>
<tr>
<td>AECL1.58</td>
<td>C</td>
<td>2.2</td>
</tr>
<tr>
<td>AECL1.63</td>
<td>C</td>
<td>2.2</td>
</tr>
<tr>
<td>AECL1.65</td>
<td>WCR</td>
<td>2.2.2.8</td>
</tr>
<tr>
<td>AECL1.67</td>
<td>WC</td>
<td>2.2</td>
</tr>
<tr>
<td>AECL1.88</td>
<td>C</td>
<td>2.2</td>
</tr>
<tr>
<td>DOEl.1.1.1</td>
<td>C</td>
<td>2.2</td>
</tr>
<tr>
<td>DOEl.1.1.2</td>
<td>C</td>
<td>2.2</td>
</tr>
<tr>
<td>DOEl.1.1.3</td>
<td>C</td>
<td>2.2</td>
</tr>
<tr>
<td>DOEl.1.1.4</td>
<td>C</td>
<td>2.2</td>
</tr>
<tr>
<td>DOEl.4.3</td>
<td>WC</td>
<td>2.2.2.7</td>
</tr>
<tr>
<td>DOEl.6.5.1</td>
<td>WCR</td>
<td>2.2</td>
</tr>
<tr>
<td>IAEA3.2.1</td>
<td>WC</td>
<td>2.2.2.8</td>
</tr>
<tr>
<td>SK12.1.5</td>
<td>C</td>
<td>2.2</td>
</tr>
<tr>
<td>SK12.1.7</td>
<td>C</td>
<td>2.2</td>
</tr>
<tr>
<td>SK12.1.8</td>
<td>C</td>
<td>2.2</td>
</tr>
<tr>
<td>SK12.1.9</td>
<td>BC</td>
<td>2.2</td>
</tr>
<tr>
<td>SK15.1.7</td>
<td>GB</td>
<td>2.2.2.7</td>
</tr>
<tr>
<td>UNN3.2.1</td>
<td>WC</td>
<td>2.2</td>
</tr>
<tr>
<td>UNN3.3.3</td>
<td>C</td>
<td>2.2.2.7</td>
</tr>
<tr>
<td>HMIP1.1.1</td>
<td>C</td>
<td>2.2</td>
</tr>
<tr>
<td>HMIP1.2.1</td>
<td>WC</td>
<td>2.2.2.3</td>
</tr>
<tr>
<td>NEA3.2.1</td>
<td>C</td>
<td>2.2</td>
</tr>
<tr>
<td>NEA3.3.3</td>
<td>C</td>
<td>2.2.2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE1.2.12</td>
<td>C</td>
<td>2.3</td>
</tr>
<tr>
<td>DOE1.2.5.1</td>
<td>WC</td>
<td>2.3</td>
</tr>
<tr>
<td>HMIP1.2.1</td>
<td>WC</td>
<td>2.2.2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AECL1.3</td>
<td>WCR</td>
<td>2.4</td>
</tr>
<tr>
<td>AECL1.59</td>
<td>CB</td>
<td>2.4</td>
</tr>
<tr>
<td>SK12.1.10</td>
<td>C</td>
<td>2.4</td>
</tr>
<tr>
<td>UNN3.2.7</td>
<td>WC</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AECL1.27</td>
<td>WCR</td>
<td>2.5.2.6.2.7</td>
</tr>
<tr>
<td>PG3.7.2</td>
<td>OB</td>
<td>2.5</td>
</tr>
<tr>
<td>SK12.3.1</td>
<td>WC</td>
<td>2.5</td>
</tr>
<tr>
<td>SK12.1.2</td>
<td>C</td>
<td>2.6</td>
</tr>
<tr>
<td>SK12.1.6.1</td>
<td>C</td>
<td>2.6</td>
</tr>
<tr>
<td>SK12.1.6.2</td>
<td>OB</td>
<td>2.6</td>
</tr>
<tr>
<td>HMIP1.1.4</td>
<td>WC</td>
<td>2.5</td>
</tr>
</tbody>
</table>
2.7 Stress/mechanical effects

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEG ORY</th>
<th>CON. CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECL1.19</td>
<td>C</td>
<td>2,2,2.7</td>
<td>Container failure (early)</td>
</tr>
<tr>
<td>AECL1.20</td>
<td>C</td>
<td>2,2,2.7</td>
<td>Container failure (long-term)</td>
</tr>
<tr>
<td>AECL1.27</td>
<td>WB</td>
<td>2,5,2.5,2.7</td>
<td>Coupled processes</td>
</tr>
<tr>
<td>AECL1.55</td>
<td>WCB</td>
<td>2.7</td>
<td>Long-term physical stability</td>
</tr>
<tr>
<td>DOE1.41</td>
<td>C</td>
<td>2.7</td>
<td>Canister or container movement</td>
</tr>
<tr>
<td>DOE1.43</td>
<td>NC</td>
<td>2.2,2.7</td>
<td>Embrittlement</td>
</tr>
<tr>
<td>IAEAS.3.2.1</td>
<td>GB</td>
<td>2.7</td>
<td>Mechanical effects: Canister movement</td>
</tr>
<tr>
<td>P3A3.4</td>
<td>Gs</td>
<td>2.7</td>
<td>Canister movement in backfill</td>
</tr>
<tr>
<td>PGA3.6</td>
<td>C</td>
<td>2.7</td>
<td>Mechanical canister damage</td>
</tr>
<tr>
<td>SKR2.2</td>
<td>C</td>
<td>2.7</td>
<td>Creep/cracking</td>
</tr>
<tr>
<td>SKR2.3.3</td>
<td>C</td>
<td>2.7</td>
<td>Stress corrosion cracking</td>
</tr>
<tr>
<td>SKR2.3.4</td>
<td>C</td>
<td>2.7</td>
<td>Loss of ductility</td>
</tr>
<tr>
<td>SKR2.3.6</td>
<td>C</td>
<td>2.7</td>
<td>Cracking along welds</td>
</tr>
<tr>
<td>SKR2.3.7.1</td>
<td>C</td>
<td>2.7</td>
<td>External stresses</td>
</tr>
<tr>
<td>SKR2.3.7.2</td>
<td>C</td>
<td>2.7</td>
<td>Hydrostatic pressure on canister</td>
</tr>
<tr>
<td>SKR2.3.8</td>
<td>C</td>
<td>2.7</td>
<td>Internal pressure</td>
</tr>
<tr>
<td>SKR2.2.2</td>
<td>GB</td>
<td>2.7</td>
<td>Movement of canister in buffer/backfill</td>
</tr>
<tr>
<td>SKR2.2.7</td>
<td>GB</td>
<td>2.2,2.7</td>
<td>Swelling of corrosion products</td>
</tr>
<tr>
<td>UKM3.3.1</td>
<td>C</td>
<td>2.7</td>
<td>Canister or container movement</td>
</tr>
<tr>
<td>UKM3.3.3</td>
<td>C</td>
<td>2.2,2.7</td>
<td>Embrittlement and cracking</td>
</tr>
<tr>
<td>UKM3.3.4</td>
<td>C</td>
<td>2.7</td>
<td>Subsidence/collapse</td>
</tr>
<tr>
<td>UKM3.3.5</td>
<td>C</td>
<td>2.7</td>
<td>Fracturing</td>
</tr>
<tr>
<td>NEA3.3.1</td>
<td>C</td>
<td>2.7</td>
<td>Canister or container movement</td>
</tr>
<tr>
<td>NEA3.3.2</td>
<td>C</td>
<td>2.7</td>
<td>Changes in in-situ stress field</td>
</tr>
<tr>
<td>NEA3.3.3</td>
<td>C</td>
<td>2.2,2.7</td>
<td>Embrittlement and cracking</td>
</tr>
<tr>
<td>NEA3.3.4</td>
<td>C</td>
<td>2.7</td>
<td>Subsidence/collapse</td>
</tr>
<tr>
<td>NEA3.3.5</td>
<td>NC</td>
<td>2.7</td>
<td>Fracturing</td>
</tr>
</tbody>
</table>

2.8 Geochemical reactions/regime

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEG ORY</th>
<th>CON. CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECL1.15</td>
<td>WCB</td>
<td>2.8</td>
<td>Chemical leaching</td>
</tr>
<tr>
<td>AECL1.18</td>
<td>C</td>
<td>2.8</td>
<td>Container corrosion products</td>
</tr>
<tr>
<td>AECL1.65</td>
<td>WCB</td>
<td>2.2,2.8</td>
<td>Precipitation and dissolution</td>
</tr>
<tr>
<td>AECL1.80</td>
<td>WCB</td>
<td>2.8</td>
<td>Precipitation</td>
</tr>
<tr>
<td>IAEAS.3.2.1</td>
<td>WC</td>
<td>2.2,2.8</td>
<td>Chemical effects: Corrosion</td>
</tr>
<tr>
<td>IAEAS.3.2.2</td>
<td>WC</td>
<td>2.8</td>
<td>Chemical effects: Fractures of waste packaging and rock</td>
</tr>
<tr>
<td>PGA3.10</td>
<td>WCB</td>
<td>2.8</td>
<td>Chemical changes due to corrosion</td>
</tr>
<tr>
<td>UKM1.6.14</td>
<td>WCB/F</td>
<td>2.8</td>
<td>Chemical gradients (electrochemical effects and ozonate)</td>
</tr>
<tr>
<td>UKM3.2.3</td>
<td>WCB</td>
<td>2.8</td>
<td>Interactions of waste and repository materials with host materials (eg. electrochemical processes)</td>
</tr>
<tr>
<td>HMP1.4.1</td>
<td>WCB</td>
<td>2.8</td>
<td>Waste-form and backfill consolidation</td>
</tr>
</tbody>
</table>

2.9 Radionuclide transport through containers

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEG ORY</th>
<th>CON. CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKR1.5</td>
<td>C</td>
<td>2.9</td>
<td>Release of radionuclides from the failed canister</td>
</tr>
</tbody>
</table>

2.10 Specific factors

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEG ORY</th>
<th>CON. CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECL1.84</td>
<td>WCB</td>
<td>2.10</td>
<td>Temperature rise (unexpected effects)</td>
</tr>
<tr>
<td>SKR2.1.4</td>
<td>WC</td>
<td>2.10</td>
<td>Release of the eventual channeling within the canister</td>
</tr>
<tr>
<td>SKR2.3.5</td>
<td>C</td>
<td>2.10</td>
<td>Radiation effects on canister</td>
</tr>
<tr>
<td>SKR2.5.1</td>
<td>C</td>
<td>2.10</td>
<td>Random canister defects - Quality control</td>
</tr>
<tr>
<td>SKR2.5.2</td>
<td>C</td>
<td>2.10</td>
<td>Common cause canister defects - Quality control</td>
</tr>
<tr>
<td>UKM2.1.5</td>
<td>C</td>
<td>2.10</td>
<td>Material defects, e.g. early canister failure</td>
</tr>
<tr>
<td>NEA2.1.5</td>
<td>OR</td>
<td>2.10</td>
<td>Material defects (e.g. early canister failure)</td>
</tr>
<tr>
<td>AECL1.21</td>
<td>C</td>
<td>XXXX</td>
<td>Container failure (other long-term processes)</td>
</tr>
<tr>
<td>AECL1.81</td>
<td>WCB</td>
<td>XXXX</td>
<td>Stability</td>
</tr>
<tr>
<td>UKM2.2.2</td>
<td>WCB</td>
<td>XXXX</td>
<td>Interactions of host materials and groundwater with repository materials (eg. cryochemical processes)</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>FEP NAME</td>
<td>COMMENT</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------</td>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Buffer/backfill characteristics</td>
<td>hydraulic properties</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Resaturation/desaturation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Mechanical effects</td>
<td>swelling</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Thermal effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Electro-chemical effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Gas effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>Microbiological/biological effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>Backfill degradation</td>
<td>chemical/physical changes</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>Geochemical regime</td>
<td>chemical gradients & kinetics, redox potential</td>
<td></td>
</tr>
<tr>
<td>3.10</td>
<td>Radionuclide transport processes</td>
<td>advection, dispersion, diffusion</td>
<td></td>
</tr>
<tr>
<td>3.11</td>
<td>Radionuclide chemistry</td>
<td>solubility, sorption, speciation, complex/colloid formation</td>
<td></td>
</tr>
<tr>
<td>3.12</td>
<td>Specific factors</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BUFFERBACKFILL CATEGORY

SCREENED FEPs

(sorted)

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CON. CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AECL1.1</td>
<td>B</td>
<td>3.1</td>
<td>Backfill characteristics</td>
</tr>
<tr>
<td>AECL1.6</td>
<td>B</td>
<td>3.1</td>
<td>Buffer characteristics</td>
</tr>
<tr>
<td>AECL1.81</td>
<td>BN</td>
<td>3.1.3.8</td>
<td>Stability</td>
</tr>
<tr>
<td>SKL2.18</td>
<td>B</td>
<td>3.1.3.10</td>
<td>Preferential pathways in the buffer/backfill</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AECL1.2</td>
<td>B</td>
<td>3.2.3.3.8</td>
<td>Backfill evolution</td>
</tr>
<tr>
<td>AECL1.7</td>
<td>B</td>
<td>3.2.3.3.8</td>
<td>Buffer evolution</td>
</tr>
<tr>
<td>AECL1.43</td>
<td>BN</td>
<td>3.2</td>
<td>Hydrometric conductivity</td>
</tr>
<tr>
<td>SKL3.14</td>
<td>B</td>
<td>3.2</td>
<td>Desaturation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AECL1.2</td>
<td>B</td>
<td>3.2.3.3.8</td>
<td>Backfill evolution</td>
</tr>
<tr>
<td>AECL1.7</td>
<td>B</td>
<td>3.2.3.3.8</td>
<td>Buffer evolution</td>
</tr>
<tr>
<td>AECL1.83</td>
<td>B</td>
<td>3.3</td>
<td>Swelling pressure</td>
</tr>
<tr>
<td>IAEA3.3.1</td>
<td>Q</td>
<td>3.3</td>
<td>Mechanical effects: Canser movement</td>
</tr>
<tr>
<td>IAEA3.3.2</td>
<td>RF</td>
<td>3.3</td>
<td>Mechanical effects: Local fracturing</td>
</tr>
<tr>
<td>PGA3.4</td>
<td>Q</td>
<td>3.3</td>
<td>Canser movement in backfill</td>
</tr>
<tr>
<td>SKL2.1.2</td>
<td>B</td>
<td>3.3</td>
<td>Deform movement of bentonite</td>
</tr>
<tr>
<td>SKL2.2.2</td>
<td>Q</td>
<td>3.3</td>
<td>Movement of canister in buffer/backfill</td>
</tr>
<tr>
<td>SKL2.2.3</td>
<td>B</td>
<td>3.3</td>
<td>Mechanical failure of buffer/backfill</td>
</tr>
<tr>
<td>SKL2.7</td>
<td>Q</td>
<td>3.3</td>
<td>Sweating of corrosion products</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AECL1.24</td>
<td>B</td>
<td>3.4</td>
<td>Convection</td>
</tr>
<tr>
<td>AECL1.27</td>
<td>WCB</td>
<td>3.4.3.9</td>
<td>Coupled processes</td>
</tr>
<tr>
<td>AECL1.46</td>
<td>B</td>
<td>3.4</td>
<td>Hydrothermal alteration</td>
</tr>
<tr>
<td>AECL1.84</td>
<td>WGR</td>
<td>3.4</td>
<td>Temperature rise (unexpected effects)</td>
</tr>
<tr>
<td>DOC6.3.6</td>
<td>BF</td>
<td>3.4</td>
<td>Variations in groundwater temperature</td>
</tr>
<tr>
<td>DOC7.4.13.1</td>
<td>BF</td>
<td>3.4</td>
<td>Releasory thermally-induced groundwater transport</td>
</tr>
<tr>
<td>DOE2.4.13.2</td>
<td>EBF</td>
<td>3.4</td>
<td>Naturally thermally-induced groundwater transport</td>
</tr>
<tr>
<td>IAEA3.1.3</td>
<td>EBF</td>
<td>3.4</td>
<td>Thermal effects: Fluid pressure, density, viscosity changes</td>
</tr>
<tr>
<td>IAEA3.1.4</td>
<td>EBF</td>
<td>3.4</td>
<td>Thermal effects: Fluid migration</td>
</tr>
<tr>
<td>PGA3.7.2</td>
<td>Q</td>
<td>3.4</td>
<td>Differing thermal expansion of canister and backfill</td>
</tr>
<tr>
<td>PGA3.7.3</td>
<td>BR</td>
<td>3.4</td>
<td>Differing thermal expansion of backfill and host rock</td>
</tr>
<tr>
<td>PGA3.9</td>
<td>BS</td>
<td>3.4</td>
<td>Thermally induced chemical changes</td>
</tr>
<tr>
<td>SKL2.5</td>
<td>B</td>
<td>3.4</td>
<td>Thermal effects on the buffer material</td>
</tr>
<tr>
<td>SKL2.7.10</td>
<td>B</td>
<td>3.4.3.10</td>
<td>Sorption effect</td>
</tr>
<tr>
<td>SKH2.2.4</td>
<td>BR</td>
<td>3.4.3.10</td>
<td>Thermal buoyancy</td>
</tr>
<tr>
<td>UKN1.5.3</td>
<td>EBF</td>
<td>3.4</td>
<td>Natural thermal effects</td>
</tr>
<tr>
<td>UKN2.1.10</td>
<td>BR</td>
<td>3.4</td>
<td>Thermal effects (e.g., concrete hydration)</td>
</tr>
<tr>
<td>HMP1.2.8</td>
<td>WSR</td>
<td>3.4</td>
<td>Thermo-chemical effects</td>
</tr>
<tr>
<td>HMP1.6.1</td>
<td>BR</td>
<td>3.4</td>
<td>Thermal effects and Rock-mass changes</td>
</tr>
<tr>
<td>HMP1.5.3</td>
<td>BR</td>
<td>3.4</td>
<td>Thermal effects and Chemical changes</td>
</tr>
<tr>
<td>HMP2.1.12</td>
<td>BRF</td>
<td>3.4</td>
<td>Thermal effects and Transport (diffusion) effects</td>
</tr>
<tr>
<td>HMP2.3.12</td>
<td>BRF</td>
<td>3.4</td>
<td>Thermal effects on hydrochemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AECL1.32</td>
<td>WCB</td>
<td>3.5</td>
<td>Electrochemical gradients</td>
</tr>
<tr>
<td>SKG1.6.2.2</td>
<td>Q</td>
<td>3.5</td>
<td>Natural habitat electrochemical reactions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AECL1.86</td>
<td>BR</td>
<td>3.6.3.10</td>
<td>Transport in gases or of gases</td>
</tr>
<tr>
<td>DOC1.5.2</td>
<td>BR</td>
<td>3.6</td>
<td>Groundwater flow due to gas production</td>
</tr>
<tr>
<td>DOE2.4.11.1</td>
<td>BFR</td>
<td>3.6</td>
<td>Gas transport solution</td>
</tr>
<tr>
<td>DOE3.4.11.2</td>
<td>BFR</td>
<td>3.6</td>
<td>Gas transport gas phase</td>
</tr>
<tr>
<td>DOE2.4.12</td>
<td>BF</td>
<td>3.6</td>
<td>Gas-induced groundwater transport</td>
</tr>
<tr>
<td>IAEA3.2.3</td>
<td>WS</td>
<td>3.6</td>
<td>Chemical effects: Gas generation</td>
</tr>
<tr>
<td>SKL2.2.12</td>
<td>B</td>
<td>3.6.3.10</td>
<td>Gas transport in bentonite</td>
</tr>
<tr>
<td>SKL2.2.2</td>
<td>BR</td>
<td>3.6</td>
<td>Gas transport</td>
</tr>
<tr>
<td>UKN1.6.4</td>
<td>BFR</td>
<td>3.6.3.10</td>
<td>Gas mediated transport</td>
</tr>
<tr>
<td>UKN1.6.5</td>
<td>BFR</td>
<td>3.6.3.10</td>
<td>Multiphase flow and gas driven flow</td>
</tr>
<tr>
<td>HMP1.2.6</td>
<td>BF</td>
<td>3.6.3.10</td>
<td>Gas transport</td>
</tr>
<tr>
<td>HMP1.5.3</td>
<td>BR</td>
<td>3.6</td>
<td>Gas production (unsaturated flow)</td>
</tr>
<tr>
<td>HMP2.3.10</td>
<td>BFR</td>
<td>3.6.3.11</td>
<td>Transport of active gases</td>
</tr>
<tr>
<td>HMP2.3.11</td>
<td>BFR</td>
<td>3.6.3.11</td>
<td>Gas induced groundwater transport</td>
</tr>
<tr>
<td>NEA1.6.4</td>
<td>BFR</td>
<td>3.6.3.11</td>
<td>Gas mediated transport</td>
</tr>
<tr>
<td>NEA1.6.5</td>
<td>BFR</td>
<td>3.6.3.11</td>
<td>Multiphase flow and gas-driven flow</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>CON.L CODE</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>AECL1.3</td>
<td>WCGF</td>
<td>3.7</td>
<td>Biological activity</td>
</tr>
<tr>
<td>AECL1.57</td>
<td>WBF</td>
<td>3.8</td>
<td>Formation of cracks</td>
</tr>
<tr>
<td>AECL1.65</td>
<td>WGH</td>
<td>3.9</td>
<td>Geochemical pump</td>
</tr>
<tr>
<td>DOE1.6.6.2</td>
<td>WBNF</td>
<td>3.9</td>
<td>Precipitation and dissolution</td>
</tr>
<tr>
<td>DOE1.6.6.4</td>
<td>WDR</td>
<td>3.9</td>
<td>Chemical changes due to waste degradation</td>
</tr>
<tr>
<td>SKK1.1.3</td>
<td>B</td>
<td>3.9</td>
<td>Redox iron: oxidizing conditions</td>
</tr>
<tr>
<td>SKK1.1.3</td>
<td>B</td>
<td>3.9</td>
<td>Redox iron: reducing conditions</td>
</tr>
<tr>
<td>UKN1.7.7</td>
<td>WBF</td>
<td>3.9</td>
<td>Changes in groundwater chemistry and flow direction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BUFFER/BACKFILL CATEGORY</th>
<th>SCREENED FEPs (sorted)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>3.7 Microbiological/biological effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECL1.3 WCGF 3.7 Biological activity</td>
</tr>
<tr>
<td>AECL1.57 WBF 3.8 Formation of cracks</td>
</tr>
<tr>
<td>AECL1.65 WGH 3.9 Geochemical pump</td>
</tr>
<tr>
<td>DOE1.6.6.2 WBNF 3.9 Precipitation and dissolution</td>
</tr>
<tr>
<td>DOE1.6.6.4 WDR 3.9 Chemical changes due to waste degradation</td>
</tr>
<tr>
<td>SKK1.1.3 B 3.9 Redox iron: oxidizing conditions</td>
</tr>
<tr>
<td>SKK1.1.3 B 3.9 Redox iron: reducing conditions</td>
</tr>
<tr>
<td>UKN1.7.7 WBF 3.9 Changes in groundwater chemistry and flow direction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.8 Backfill degradation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECL1.2 B 3.2.3.3.8 Backfill evolution</td>
</tr>
<tr>
<td>AECL1.7 B 3.2.3.3.8 Buffer evolution</td>
</tr>
<tr>
<td>AECL1.65 WGH 3.9 Geochemical pump</td>
</tr>
<tr>
<td>DOE1.6.6.2 WBNF 3.9 Precipitation and dissolution</td>
</tr>
<tr>
<td>DOE1.6.6.4 WDR 3.9 Chemical changes due to waste degradation</td>
</tr>
<tr>
<td>SKK1.1.3 B 3.9 Redox iron: oxidizing conditions</td>
</tr>
<tr>
<td>SKK1.1.3 B 3.9 Redox iron: reducing conditions</td>
</tr>
<tr>
<td>UKN1.7.7 WBF 3.9 Changes in groundwater chemistry and flow direction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.9 Geochemical regime</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECL1.9 WBNF 3.9 Chemical changes due to corrosion</td>
</tr>
<tr>
<td>AECL1.13 WCGF 3.9 Chemical kinetics</td>
</tr>
<tr>
<td>AECL1.27 WCR 3.4.3.9 Coupled processes</td>
</tr>
<tr>
<td>AECL1.44 WBF 3.9 Geochemical pump</td>
</tr>
<tr>
<td>DOE1.6.6.2 WBNF 3.9 Precipitation and dissolution</td>
</tr>
<tr>
<td>DOE1.6.6.4 WDR 3.9 Chemical changes due to waste degradation</td>
</tr>
<tr>
<td>SKK1.1.3 B 3.9 Redox iron: oxidizing conditions</td>
</tr>
<tr>
<td>SKK1.1.3 B 3.9 Redox iron: reducing conditions</td>
</tr>
<tr>
<td>UKN1.7.7 WBF 3.9 Changes in groundwater chemistry and flow direction</td>
</tr>
</tbody>
</table>

<p>| PAGE 2 |</p>
<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.10</td>
<td>Radionuclides transport processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AECI1.129</td>
<td>BR</td>
<td>3.10</td>
<td>Diffusion</td>
</tr>
<tr>
<td>AECI1.30</td>
<td>BR</td>
<td>3.10</td>
<td>Dispersion</td>
</tr>
<tr>
<td>AECI1.16</td>
<td>BR</td>
<td>3.6,3.10</td>
<td>Transport in gases or of gases</td>
</tr>
<tr>
<td>AECI1.18</td>
<td>BR</td>
<td>3.10</td>
<td>Uncertainties transport</td>
</tr>
<tr>
<td>DOE1.5.3</td>
<td>BFF</td>
<td>3.10</td>
<td>Groundwater flow (estimated conditions)</td>
</tr>
<tr>
<td>DOE2.3.4.4</td>
<td>BFF</td>
<td>3.10</td>
<td>Groundwater flow: Fracture</td>
</tr>
<tr>
<td>DOE2.3.4.5</td>
<td>BFF</td>
<td>3.10</td>
<td>Groundwater flow: Effects of solution chemistry</td>
</tr>
<tr>
<td>DOE2.4.1</td>
<td>BFF</td>
<td>3.10</td>
<td>Advection</td>
</tr>
<tr>
<td>DOE2.4.2.1</td>
<td>BFF</td>
<td>3.10</td>
<td>Bulk diffusion</td>
</tr>
<tr>
<td>DOE2.4.2.2</td>
<td>BFF</td>
<td>3.10</td>
<td>Mass diffusion</td>
</tr>
<tr>
<td>DOE2.4.2.3</td>
<td>B</td>
<td>3.10</td>
<td>Surface diffusion</td>
</tr>
<tr>
<td>DOE2.4.3</td>
<td>BFF</td>
<td>3.10</td>
<td>Hydrodynamic dispersion</td>
</tr>
<tr>
<td>IAEA1.13</td>
<td>BF</td>
<td>3.10</td>
<td>Fluid interactions: Groundwater flow</td>
</tr>
<tr>
<td>SK12.2.8</td>
<td>B</td>
<td>3.10</td>
<td>Diffusion - surface diffusion</td>
</tr>
<tr>
<td>SK13.2.8</td>
<td>B</td>
<td>3.10</td>
<td>Flow through buffer/backfill</td>
</tr>
<tr>
<td>SK13.2.9</td>
<td>B</td>
<td>3.10</td>
<td>Sorption</td>
</tr>
<tr>
<td>SK2.1.3</td>
<td>B</td>
<td>3.4,3.10</td>
<td>Soret effect</td>
</tr>
<tr>
<td>SK2.2.2</td>
<td>B</td>
<td>3.6,3.10</td>
<td>Gas transport in terrestrial</td>
</tr>
<tr>
<td>SK12.4.2</td>
<td>B</td>
<td>3.4,3.10</td>
<td>Thermal buoyancy</td>
</tr>
<tr>
<td>SK2.4.4</td>
<td>BFF</td>
<td>3.10</td>
<td>Changes of groundwater flow</td>
</tr>
<tr>
<td>SK3.4</td>
<td>BRL</td>
<td>3.10</td>
<td>Dispersion</td>
</tr>
<tr>
<td>SK5.6</td>
<td>BRL</td>
<td>3.10</td>
<td>Diffusion</td>
</tr>
<tr>
<td>UKN1.6.1</td>
<td>BRL</td>
<td>3.10</td>
<td>Advection and dispersion</td>
</tr>
<tr>
<td>UKN1.6.2</td>
<td>BRL</td>
<td>3.10</td>
<td>Diffusion</td>
</tr>
<tr>
<td>UKN1.6.3</td>
<td>BRL</td>
<td>3.10</td>
<td>Matrix diffusion</td>
</tr>
<tr>
<td>UKN1.6.4</td>
<td>BRL</td>
<td>3.6,3.10</td>
<td>Gas mediated transport</td>
</tr>
<tr>
<td>UKN1.6.5</td>
<td>BRL</td>
<td>3.6,3.10</td>
<td>Multi-phase flow and gas driven flow</td>
</tr>
<tr>
<td>HMP2.2.6</td>
<td>BF</td>
<td>3.6,3.10</td>
<td>Gas transport</td>
</tr>
<tr>
<td>HMP2.3.6</td>
<td>B</td>
<td>3.10</td>
<td>Saturated groundwater flow</td>
</tr>
<tr>
<td>HMP3.5.5</td>
<td>B</td>
<td>3.10</td>
<td>Transport of chemically active substances into the near-field</td>
</tr>
<tr>
<td>HMP2.3.1</td>
<td>BRL</td>
<td>3.10</td>
<td>Advection</td>
</tr>
<tr>
<td>HMP2.3.2</td>
<td>BRL</td>
<td>3.10</td>
<td>Diffusion</td>
</tr>
<tr>
<td>HMP2.3.3</td>
<td>BRL</td>
<td>3.10</td>
<td>Hydrodynamic dispersion</td>
</tr>
<tr>
<td>NEA1.6.1</td>
<td>BRL</td>
<td>3.10</td>
<td>Advection and dispersion</td>
</tr>
<tr>
<td>NEA1.6.2</td>
<td>BRL</td>
<td>3.10</td>
<td>Diffusion</td>
</tr>
<tr>
<td>NEA1.6.3</td>
<td>BRL</td>
<td>3.10</td>
<td>Matrix diffusion</td>
</tr>
</tbody>
</table>

3.11 Radionuclide chemistry

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECL1.65</td>
<td>W2R</td>
<td>3.9,3.11</td>
<td>Precipitation and dissolution</td>
</tr>
<tr>
<td>AECL1.76</td>
<td>B</td>
<td>3.11</td>
<td>Sorption</td>
</tr>
<tr>
<td>AECL1.77</td>
<td>B</td>
<td>3.11</td>
<td>Sorption: non-linear</td>
</tr>
<tr>
<td>AECL1.80</td>
<td>W2R</td>
<td>3.11</td>
<td>Speciation</td>
</tr>
<tr>
<td>DOE2.4.4.1</td>
<td>BRL</td>
<td>3.11</td>
<td>Solubility: effects of pH and Eh</td>
</tr>
<tr>
<td>DOE2.4.4.2</td>
<td>BRL</td>
<td>3.11</td>
<td>Solubility: effects of ionic strength</td>
</tr>
<tr>
<td>DOE2.4.4.3</td>
<td>BRL</td>
<td>3.11</td>
<td>Solubility: effects of naturally-occurring complexing agents</td>
</tr>
<tr>
<td>DOE2.4.4.4</td>
<td>B</td>
<td>3.11</td>
<td>Solubility: effects of complexing agents formed in the near-field</td>
</tr>
<tr>
<td>DOE2.4.4.5</td>
<td>BRL</td>
<td>3.11</td>
<td>Solubility, effects of naturally-occurring colloids</td>
</tr>
<tr>
<td>DOE2.4.4.6</td>
<td>BR</td>
<td>3.11</td>
<td>Solubility: effects of colloids formed in the near-field</td>
</tr>
<tr>
<td>DOE2.4.5.1</td>
<td>BRL</td>
<td>3.11</td>
<td>Linear sorption</td>
</tr>
<tr>
<td>DOE2.4.5.2</td>
<td>BRL</td>
<td>3.11</td>
<td>Non-linear sorption</td>
</tr>
<tr>
<td>DOE2.4.5.3</td>
<td>BRL</td>
<td>3.11</td>
<td>Reversible sorption</td>
</tr>
<tr>
<td>DOE2.4.5.4</td>
<td>BRL</td>
<td>3.11</td>
<td>Irreversible sorption</td>
</tr>
<tr>
<td>DOE2.4.5.5</td>
<td>BRL</td>
<td>3.11</td>
<td>Sorption: Effects of pH and Eh</td>
</tr>
<tr>
<td>DOE2.4.5.6</td>
<td>BRL</td>
<td>3.11</td>
<td>Sorption: Effects of ionic strength</td>
</tr>
<tr>
<td>DOE2.4.5.7</td>
<td>B</td>
<td>3.11</td>
<td>Sorption: Effects of naturally-occurring organic complexing agents</td>
</tr>
<tr>
<td>DOE2.4.5.8</td>
<td>BRL</td>
<td>3.11</td>
<td>Sorption: Effects of naturally-occurring inorganic complexing agents</td>
</tr>
<tr>
<td>DOE2.4.5.9</td>
<td>B</td>
<td>3.11</td>
<td>Sorption: Effects of complexing agents formed in the near-field</td>
</tr>
<tr>
<td>DOE2.4.6.10</td>
<td>BRL</td>
<td>3.11</td>
<td>Sorption: Effects of naturally-occurring colloids</td>
</tr>
<tr>
<td>DOE2.4.6.11</td>
<td>B</td>
<td>3.11</td>
<td>Sorption: effects of colloids formed in the near-field</td>
</tr>
<tr>
<td>DOE2.4.6.12</td>
<td>BRL</td>
<td>3.11</td>
<td>Sorption: effects of microbial activity</td>
</tr>
<tr>
<td>IAEA1.13.2</td>
<td>BRL</td>
<td>3.11</td>
<td>Fluid interactions; Dissolution</td>
</tr>
<tr>
<td>SK13.1.2</td>
<td>B</td>
<td>3.9,3.11</td>
<td>Saturation of sorption sites</td>
</tr>
<tr>
<td>SK14.1.4</td>
<td>BRL</td>
<td>3.11</td>
<td>Sorption</td>
</tr>
<tr>
<td>SK14.1.5</td>
<td>BRL</td>
<td>3.11</td>
<td>Reconcentration</td>
</tr>
<tr>
<td>SK14.1.6</td>
<td>BRL</td>
<td>3.11</td>
<td>Complexing agents</td>
</tr>
<tr>
<td>UKN1.6.6</td>
<td>BRL</td>
<td>3.11</td>
<td>Sorption limit</td>
</tr>
<tr>
<td>UKN1.6.7</td>
<td>BRL</td>
<td>3.11</td>
<td>Sorption (linear/non-linear, reversible/reversible)</td>
</tr>
<tr>
<td>UKN1.6.8</td>
<td>BRL</td>
<td>3.11</td>
<td>Dissolution, precipitation and crystallization</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>CON. CODE</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>UKN1.6.10</td>
<td>BfR</td>
<td>3.11</td>
<td>Complexing agents</td>
</tr>
<tr>
<td>HMP2.3.4</td>
<td>BfR</td>
<td>3.11</td>
<td>Solubility constraints</td>
</tr>
<tr>
<td>HMP2.3.5</td>
<td>BfR</td>
<td>3.11</td>
<td>Sorption including ion-exchange</td>
</tr>
<tr>
<td>HMP2.3.6</td>
<td>BfR</td>
<td>3.11</td>
<td>Changes in sensitive surfaces</td>
</tr>
<tr>
<td>HMP2.3.7</td>
<td>BfR</td>
<td>3.3.3.11</td>
<td>Changes in groundwater chemistry and flow direction</td>
</tr>
<tr>
<td>HMP2.3.9</td>
<td>BfR</td>
<td>3.11</td>
<td>Transport of radionuclides bound to microbes</td>
</tr>
<tr>
<td>HMP2.3.10</td>
<td>BfR</td>
<td>3.6.3.11</td>
<td>Transport of active gases</td>
</tr>
<tr>
<td>HMP2.3.11</td>
<td>BfR</td>
<td>3.6.3.11</td>
<td>Gas induced groundwater transport</td>
</tr>
<tr>
<td>NEA1.6.4</td>
<td>BfR</td>
<td>3.6.3.11</td>
<td>Gas mediated transport</td>
</tr>
<tr>
<td>NEA1.6.5</td>
<td>BfR</td>
<td>3.6.3.11</td>
<td>Multi-phase flow and gas-driven flow</td>
</tr>
<tr>
<td>NEA1.6.6</td>
<td>BfR</td>
<td>3.6.3.11</td>
<td>Solubility limit</td>
</tr>
<tr>
<td>NEA1.6.7</td>
<td>BfR</td>
<td>3.6.3.11</td>
<td>Scoping (linear/non-linear, reversible/reversible)</td>
</tr>
<tr>
<td>NEA1.6.8</td>
<td>BfR</td>
<td>3.11</td>
<td>Dissolution, precipitation, and crystallisation</td>
</tr>
<tr>
<td>3.12 Specific factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AECL1.96</td>
<td>BfR</td>
<td>3.12</td>
<td>Faulty buffer emplacement</td>
</tr>
<tr>
<td>DOE2.3.3.1</td>
<td>BfR</td>
<td>3.12</td>
<td>Inorganic colloid transport: Effects of pH and Eh</td>
</tr>
<tr>
<td>DOE2.3.5.2</td>
<td>BfR</td>
<td>3.12</td>
<td>Inorganic colloid transport: Effects of ionic strength</td>
</tr>
<tr>
<td>DOE2.4.7.1</td>
<td>BfR</td>
<td>3.12</td>
<td>Organic colloid transport in porous media</td>
</tr>
<tr>
<td>DOE2.4.7.2</td>
<td>BfR</td>
<td>3.12</td>
<td>Organic colloid transport in fractured media</td>
</tr>
<tr>
<td>DOE2.4.7.3</td>
<td>BfR</td>
<td>3.12</td>
<td>Organic colloid transport: Effects of pH and Eh</td>
</tr>
<tr>
<td>DOE2.4.7.4</td>
<td>BfR</td>
<td>3.12</td>
<td>Organic colloid transport: Effects of ion strength</td>
</tr>
<tr>
<td>DOE2.4.8.1</td>
<td>BfR</td>
<td>3.12</td>
<td>Inorganic colloidal transport: Porous media</td>
</tr>
<tr>
<td>DOE2.4.8.2</td>
<td>BfR</td>
<td>3.12</td>
<td>Inorganic colloid transport: Fractured media</td>
</tr>
<tr>
<td>DOE2.4.8.3</td>
<td>BfR</td>
<td>3.12</td>
<td>Inorganic colloid transport: Effects of pH and Eh</td>
</tr>
<tr>
<td>DOE2.4.8.4</td>
<td>BfR</td>
<td>3.12</td>
<td>Inorganic colloidal transport: Effects of ionic strength</td>
</tr>
<tr>
<td>DOE2.4.9</td>
<td>BfR</td>
<td>3.12</td>
<td>Transport of radionuclides bound to microbes</td>
</tr>
<tr>
<td>PGA3.13</td>
<td>BfR</td>
<td>3.12</td>
<td>Physical-chemical phenomena/indicators (e.g. colloid formation)</td>
</tr>
<tr>
<td>SKI3.1.4</td>
<td>BfR</td>
<td>3.12</td>
<td>Colloid generation - source</td>
</tr>
<tr>
<td>SKI4.2.3</td>
<td>BfR</td>
<td>3.12</td>
<td>Extreme channel flow of oxidants and nuclides</td>
</tr>
<tr>
<td>UKN1.5.9</td>
<td>BfR</td>
<td>3.12</td>
<td>Colloid formation, dissolution and transport</td>
</tr>
<tr>
<td>UKN2.2.2</td>
<td>BfR</td>
<td>3.12</td>
<td>Inadequate backfill or compaction, voidage</td>
</tr>
<tr>
<td>HMP2.3.8</td>
<td>BfR</td>
<td>3.12</td>
<td>Colloid transport</td>
</tr>
<tr>
<td>NEA1.5.9</td>
<td>BfR</td>
<td>3.12</td>
<td>Colloid formation, dissolution, and transport</td>
</tr>
<tr>
<td>NEA1.6.10</td>
<td>BfR</td>
<td>3.12</td>
<td>Complexing agents</td>
</tr>
<tr>
<td>NEA2.2.2</td>
<td>BfR</td>
<td>3.12</td>
<td>Inadequate backfill or compaction voidage</td>
</tr>
<tr>
<td>SKS1.6</td>
<td>BfR</td>
<td>3.12</td>
<td>Sedimentation of bentonite</td>
</tr>
<tr>
<td>SKT2.1.1</td>
<td>BfR</td>
<td>3.12</td>
<td>Swelling of bentonite into tunnels and cracks</td>
</tr>
<tr>
<td>SKT4.2.10</td>
<td>BfR</td>
<td>3.12</td>
<td>Chemical effects of rock reinforcement</td>
</tr>
<tr>
<td>SNL6.1</td>
<td>BfR</td>
<td>3.12</td>
<td>Subsidence and caveing</td>
</tr>
<tr>
<td>UKN3.2.3</td>
<td>BfR</td>
<td>3.12</td>
<td>Interactions of waste and repository materials with host materials (e.g. electrochemical)</td>
</tr>
<tr>
<td>HMP1.6.2</td>
<td>BfR</td>
<td>3.12</td>
<td>Thermal effects and hydrological changes</td>
</tr>
<tr>
<td>NEA3.1.4</td>
<td>BfR</td>
<td>3.12</td>
<td>Differential elastic response</td>
</tr>
<tr>
<td>NEA3.1.2</td>
<td>BfR</td>
<td>3.12</td>
<td>Non-elastic response</td>
</tr>
<tr>
<td>NEA3.1.4</td>
<td>BfR</td>
<td>3.12</td>
<td>Induced geotechnical changes (fluid pressure, density convection, viscosity)</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>FEP NAME</td>
<td>COMMENT</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Repository elements/materials</td>
<td>inventory</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Repository degradation</td>
<td>including shafts, seals, normal evolution</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Hydraulic effects/groundwater</td>
<td>resaturation, dewatering</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Mechanical effects</td>
<td>swelling</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Thermal effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Gas effects and transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Mic-robiological/biological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>Geothermal regime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>Radionuclide chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>Radionuclide transport processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>Specific factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>colloids, poor QA, material defects, undetected features</td>
<td></td>
</tr>
</tbody>
</table>
REPOSITORY CATEGORY:
SCREENED FEPs
(sorted)

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>COL. CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC1L.53</td>
<td>WCR</td>
<td>4.1</td>
<td>Inventory</td>
</tr>
<tr>
<td>AEC1L.91</td>
<td>VGC</td>
<td>4.1</td>
<td>Vault geometry</td>
</tr>
</tbody>
</table>

4.1 Repository elements/materials

AEC1L.8	R	4.2	Core ins
AEC1L.74	R	4.2	Seal evolution
AEC1L.75	R	4.2	Seal failure
DOE2.3.3.1	FF	4.2	Rock property changes: Porosity
DOE2.3.3.2	FF	4.2,4.3	Rock property changes: Permeability
DOE2.3.3.3	FF	4.2,4,3.4.7	Rock property changes: Microbial pore plugging
DOE2.3.3.4	FF	4.2,4.4	Rock property changes: Channel termocrystallisation
DOE4.1.1.1	RRL	4.2	Borehole seal failure
DOE4.1.1.2	RRL	4.2	Borehole seal degradation
DOE4.1.2.1	R	4.2	Shaft/tunnel seal failure
DOE4.1.2.2	R	4.2	Shaft/tunnel seal degradation
PGA3.16	R	4.2,4.11	Failure of shaft seating
SKK4.2.9	R	4.2	Creeping of rock mass
SKK5.11	FF	4.2	Degradation of hole- and shaft seals
SNS.1	BR	4.2	Subsidence and Caving
SNL.2	RRL	4.2	Shaft and Borehole Seal Degradation
UKN2.1.2	RH	4.2	Investigation borehole seal failure and degradation
UKN2.1.3	RH	4.2	Shaft or access tunnel seal failure and degradation
UKN2.1.4	R	4.2,4.4.4.8	Stress field changes, settling, subsidence or caving
HMIP.1.1	R	4.2	Seismic-chemical degradation of concrete
HMIP.1.2	R	4.2	Vault collapse
HMIP.1.11	RRL	4.2	Loss of integrity of borehole seals
HMIP.1.12	R	4.2	Loss of integrity of shaft or access tunnel seals
NEA2.1.1	HR	4.2	Investigation borehole seal failure and degradation
NEA2.1.3	HR	4.2	Shaft or access tunnel seal failure and degradation
NEA2.1.4	HR	4.2,4.4.4.8	Stress field changes, settling, subsidence or caving
NEA2.1.7	HR	4.2	Common cause failures

4.2 Repository degradation

<p>| AEC1L.34 | R | 4.3 | Excessive hydrostatic pressures |
| AEC1L.40 | R | 4.3 | Hydraulic conductivity |
| AEC1L.44 | R | 4.3 | Hydraulic head |
| AEC1L.70 | R | 4.3,4.10 | Recharge groundwater |
| AEC1L.71 | R | 4.3 | Reflooding |
| AEC1L.90 | BR | 4.3,4.10 | Unsaturated transport |
| DOE1.5.1.1 | FF | 4.3 | Changes in moisture content due to dewatering |
| DOE1.5.1.2 | FF | 4.3,4.4.4 | Changes in moisture content due to stress level |
| DOE1.5.2.2 | BR | 4.3 | Groundwater flow due to gas production |
| DOE1.5.3.3 | BR | 4.3 | Groundwater flow (saturated conditions) |
| DOE1.6.3.1 | FF | 4.3 | Fracture changes: aperture |
| DOE1.6.3.2 | FF | 4.3 | Fracture changes: length |
| DOE3.3.3 | FF | 4.2,4.2.3 | Rock property changes: Permeability |
| DOE3.3.33 | FF | 4.2,4.2.3.4.7 | Rock property changes: Microbial pore plugging |
| DOE3.3.4.1 | FF | 4.3 | Groundwater flow: Darcy |
| DOE3.3.4.2 | FF | 4.3 | Groundwater flow: Non-Darcy |
| DOE3.3.4.3 | FF | 4.3 | Groundwater flow: Intergranular (matrix) |
| DOE3.3.4.4 | EFF | 4.3 | Groundwater flow: Fracture |
| DOE3.3.4.5 | EFF | 4.3 | Groundwater flow: Effects of solution channels |
| DOE3.4.1.7 | EFF | 4.5,4.3 | Gas-induced groundwater transport |
| DOE3.4.13.3 | BR | 4.5,4.4.13.2 | Repository thermally-induced groundwater transport |
| DOE3.4.13.2 | EFF | 4.5,4.4.13.2 | Naturally thermally-induced groundwater transport |
| IAEA1.13.4 | EFF | 4.3 | Fluid interactions: Groundwater flow |
| IAEA1.14 | EFF | 4.5 | Thermal effects: Fluid migration |
| PGA4.1 | FF | 4.3 | Direct alterations in hydrogeology |
| SKK4.2.5 | FF | 4.3 | Changes of groundwater flow |
| SKK4.2.7 | R | 4.3,4.4.4.4 | Thermodynamic-mechanical effects |
| SKK4.3.1 | BR | 4.3 | Redistribution |
| SKK4.3.4 | FF | 4.3,4.4.5 | Geothermally induced flow |
| UKN2.1.5 | R | 4.3 | Dewatering of host rock |
| UKN3.1.4 | R | 4.3 | Induced hydrological changes (fluid pressure, density convection, viscosity) |
| HMIP.1.1 | R | 4.3 | Degradation (sapping) effects |
| HMIP.1.5 | R | 4.3 | Disturbed zone (hydromechanical) effects |
| HMIP.1.6 | EFF | 4.3 | Saturated groundwater flow |
| HMIP.1.7 | R | 4.5,4.3 | Thermal effects and Hydrogeological changes |
| HMIP.1.3.7 | EFF | 4.8,4.3 | Changes in groundwater chemistry and flow direction |
| NEA1.1.5 | HR | 4.3 | Dewatering of host rock |
| NEA1.2.4 | R | 4.3 | Induced hydrological changes (fluid pressure, density convection, viscosity) |</p>
<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CODE</th>
<th>REPS NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC1.37</td>
<td>BR</td>
<td>4.4</td>
<td>Formation of cracks</td>
</tr>
<tr>
<td>AEC1.81</td>
<td>BR</td>
<td>4.4</td>
<td>Stability</td>
</tr>
<tr>
<td>DOE1.4.2</td>
<td>R</td>
<td>4.4</td>
<td>Changes in in-situ stress field</td>
</tr>
<tr>
<td>DOE1.4.4</td>
<td>R</td>
<td>4.4</td>
<td>Repository-induced subsidence</td>
</tr>
<tr>
<td>DOE1.5.12</td>
<td>R</td>
<td>4.3</td>
<td>Changes in moisture content due to stress relief</td>
</tr>
<tr>
<td>DOE1.6.1</td>
<td>R</td>
<td>4.4</td>
<td>Differential elastic response</td>
</tr>
<tr>
<td>DOE1.6.2</td>
<td>R</td>
<td>4.4</td>
<td>Non-elastic response</td>
</tr>
<tr>
<td>DOE2.5.1</td>
<td>R</td>
<td>4.4</td>
<td>Repository-induced seismology</td>
</tr>
<tr>
<td>DOE2.7.2</td>
<td>R</td>
<td>4.4</td>
<td>External induced seismicity</td>
</tr>
<tr>
<td>DOE3.4.2</td>
<td>R</td>
<td>4.2</td>
<td>Rock property changes: Graphite formation/closure</td>
</tr>
<tr>
<td>IAEA3.1.1</td>
<td>R</td>
<td>4.4</td>
<td>Thermal effects: Differential elastic response</td>
</tr>
<tr>
<td>IAEA3.1.2</td>
<td>R</td>
<td>4.4</td>
<td>Thermal effects: Non-elastic response</td>
</tr>
<tr>
<td>IAEA5.3.1</td>
<td>R</td>
<td>4.4</td>
<td>Mechanical effects: Local fracturing</td>
</tr>
<tr>
<td>SK1.5.2</td>
<td>R</td>
<td>4.4</td>
<td>Decomposed zones from mining</td>
</tr>
<tr>
<td>SKA3.3.1</td>
<td>R</td>
<td>4.4</td>
<td>Enhanced rock fracturing</td>
</tr>
<tr>
<td>SNI.4.3</td>
<td>R</td>
<td>4.4</td>
<td>Thermal effects: Fluid pressure, density, viscosity changes</td>
</tr>
<tr>
<td>SKL1.5.1</td>
<td>R</td>
<td>4.4</td>
<td>Thermal effects: Fluid pressure, density, viscosity changes</td>
</tr>
<tr>
<td>SKL1.5.2</td>
<td>R</td>
<td>4.4</td>
<td>Unwelded welding of bennite</td>
</tr>
<tr>
<td>SNI.6.1</td>
<td>R</td>
<td>4.4</td>
<td>Mechanical failure of repository</td>
</tr>
<tr>
<td>SKU.5.2</td>
<td>R</td>
<td>4.4</td>
<td>Stress field changes, settling, subsidence or caving</td>
</tr>
<tr>
<td>UKN1.3.1</td>
<td>R</td>
<td>4.4</td>
<td>Thermal effects: Fluid pressure, density, viscosity changes</td>
</tr>
<tr>
<td>UKN1.3.2</td>
<td>R</td>
<td>4.4</td>
<td>Thermal effects: Fluid pressure, density, viscosity changes</td>
</tr>
<tr>
<td>UKN2.3.2</td>
<td>R</td>
<td>4.4</td>
<td>Changes in in-situ stress field</td>
</tr>
<tr>
<td>UMP1.5.2</td>
<td>R</td>
<td>4.3</td>
<td>Thermal effects and Rock-mass changes</td>
</tr>
<tr>
<td>NEA1.4.1</td>
<td>R</td>
<td>4.4</td>
<td>Stress field changes, settling, subsidence or caving</td>
</tr>
<tr>
<td>NEA1.4.2</td>
<td>R</td>
<td>4.4</td>
<td>Thermal effects: Differential elastic response</td>
</tr>
<tr>
<td>NEA1.4.3</td>
<td>R</td>
<td>4.4</td>
<td>Thermal effects: Non-elastic response</td>
</tr>
<tr>
<td>NEA1.4.4</td>
<td>R</td>
<td>4.4</td>
<td>Host rock fracture aperture changes</td>
</tr>
</tbody>
</table>

4.4 Thermal effects

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CODE</th>
<th>REPS NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC1.24</td>
<td>BR</td>
<td>4.5</td>
<td>Convection</td>
</tr>
<tr>
<td>AEC1.46</td>
<td>BR</td>
<td>4.5</td>
<td>Hydrothermal alteration</td>
</tr>
<tr>
<td>AEC1.84</td>
<td>WCR</td>
<td>4.5</td>
<td>Temperature rises (unexpected effects)</td>
</tr>
<tr>
<td>AEC1.87</td>
<td>WCR</td>
<td>4.5</td>
<td>Viscous heating</td>
</tr>
<tr>
<td>DOE2.5.2</td>
<td>R</td>
<td>4.5</td>
<td>Variations in groundwater temperature</td>
</tr>
<tr>
<td>DOE2.13.1</td>
<td>R</td>
<td>4.5</td>
<td>Repository thermally-induced groundwater transport</td>
</tr>
<tr>
<td>DOE2.13.2</td>
<td>R</td>
<td>4.5</td>
<td>Naturally thermally-induced groundwater transport</td>
</tr>
<tr>
<td>IAE3.1.1</td>
<td>R</td>
<td>4.4</td>
<td>Thermal effects: Differential elastic response</td>
</tr>
<tr>
<td>IAE3.1.2</td>
<td>R</td>
<td>4.4</td>
<td>Thermal effects: Non-elastic response</td>
</tr>
<tr>
<td>IAE3.1.3</td>
<td>R</td>
<td>4.4</td>
<td>Thermal effects: Fluid pressure, density, viscosity changes</td>
</tr>
<tr>
<td>IAE3.1.4</td>
<td>R</td>
<td>4.4</td>
<td>Thermal effects: Fluid pressure, density, viscosity changes</td>
</tr>
<tr>
<td>PGJ3.3.1</td>
<td>BR</td>
<td>4.4</td>
<td>Differential thermal expansion of bedrock and host rock</td>
</tr>
<tr>
<td>PGJ3.4.1</td>
<td>R</td>
<td>4.4</td>
<td>Thermal effects: Fluid pressure, density, viscosity changes</td>
</tr>
<tr>
<td>SKA3.2.1</td>
<td>R</td>
<td>4.5</td>
<td>Thermal convection</td>
</tr>
<tr>
<td>SKA3.4.1</td>
<td>R</td>
<td>4.5</td>
<td>Thermal buoyancy</td>
</tr>
<tr>
<td>SKC1.3.1</td>
<td>R</td>
<td>4.3</td>
<td>Thermal effects: Fluid pressure, density, viscosity changes</td>
</tr>
<tr>
<td>SKC1.5.1</td>
<td>R</td>
<td>4.3</td>
<td>Geothermally-induced flow</td>
</tr>
<tr>
<td>SNI.4.3</td>
<td>R</td>
<td>4.4</td>
<td>Naturally induced Stress/Fracturing in Host Rock</td>
</tr>
<tr>
<td>UKN1.5.9</td>
<td>BR</td>
<td>4.5</td>
<td>Natural thermal effects</td>
</tr>
<tr>
<td>UKP1.1.10</td>
<td>BR</td>
<td>4.5</td>
<td>Thermal effects (eg, concrete hydration)</td>
</tr>
<tr>
<td>HMP1.5.1</td>
<td>R</td>
<td>4.5</td>
<td>Thermal effects and Rock-mass changes</td>
</tr>
<tr>
<td>HMP1.5.2</td>
<td>R</td>
<td>4.5</td>
<td>Thermal effects and Hydrogeological changes</td>
</tr>
<tr>
<td>HMP1.5.3</td>
<td>R</td>
<td>4.5</td>
<td>Thermal effects and Chemical changes</td>
</tr>
<tr>
<td>HMP1.5.4</td>
<td>R</td>
<td>4.5</td>
<td>Thermal effects and Transport (diffusion) effects</td>
</tr>
<tr>
<td>HMP1.5.12</td>
<td>R</td>
<td>4.5</td>
<td>Thermal effects on hydromechanical</td>
</tr>
<tr>
<td>NEA1.10</td>
<td>R</td>
<td>4.5</td>
<td>Thermal effects</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>COL_CODE</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>AEC1.1.86</td>
<td></td>
<td>BR</td>
<td>4.6.4.10</td>
</tr>
<tr>
<td>DOE1.1.2.1</td>
<td></td>
<td>R</td>
<td>4.6</td>
</tr>
<tr>
<td>DOE1.2.2.7</td>
<td></td>
<td>R</td>
<td>4.6</td>
</tr>
<tr>
<td>DOE1.2.5.2</td>
<td></td>
<td>R</td>
<td>4.6</td>
</tr>
<tr>
<td>DOE1.2.6.3</td>
<td></td>
<td>R</td>
<td>4.6</td>
</tr>
<tr>
<td>DOE1.2.6.4</td>
<td></td>
<td>R</td>
<td>4.6</td>
</tr>
<tr>
<td>DOE2.4.11.1</td>
<td></td>
<td>BFRL</td>
<td>4.6.4.10</td>
</tr>
<tr>
<td>DOE2.4.11.2</td>
<td></td>
<td>BFRL</td>
<td>4.6</td>
</tr>
<tr>
<td>DOE2.4.12</td>
<td></td>
<td>BFRL</td>
<td>4.6.4.3</td>
</tr>
<tr>
<td>SKIS.22</td>
<td></td>
<td>GR</td>
<td>4.6</td>
</tr>
<tr>
<td>SKIS.43</td>
<td></td>
<td>GR</td>
<td>4.6</td>
</tr>
<tr>
<td>SKIS.2.2</td>
<td></td>
<td>BFRL</td>
<td>4.6</td>
</tr>
<tr>
<td>UXK1.2.13</td>
<td></td>
<td>R</td>
<td>4.6</td>
</tr>
<tr>
<td>UXK1.5.4</td>
<td></td>
<td>BFRL</td>
<td>4.6.4.10</td>
</tr>
<tr>
<td>UXK1.6.5</td>
<td></td>
<td>BFRL</td>
<td>4.6.4.10</td>
</tr>
<tr>
<td>HMP1.2.6</td>
<td></td>
<td>BFRL</td>
<td>4.6</td>
</tr>
<tr>
<td>HMP1.5.3</td>
<td></td>
<td>BFRL</td>
<td>4.6</td>
</tr>
<tr>
<td>HMP2.3.10</td>
<td></td>
<td>BFRL</td>
<td>4.6.4.10</td>
</tr>
<tr>
<td>HMP2.3.11</td>
<td></td>
<td>BFRL</td>
<td>4.6.4.10</td>
</tr>
<tr>
<td>NEA1.2.13</td>
<td></td>
<td>R</td>
<td>4.6</td>
</tr>
<tr>
<td>NEA1.6.4</td>
<td></td>
<td>BFRL</td>
<td>4.6.4.10</td>
</tr>
<tr>
<td>NEA1.6.5</td>
<td></td>
<td>BFRL</td>
<td>4.6.4.10</td>
</tr>
<tr>
<td>AEC1.1.3</td>
<td></td>
<td>WCR</td>
<td>4.7</td>
</tr>
<tr>
<td>AEC1.1.56</td>
<td></td>
<td>CPS</td>
<td>4.7</td>
</tr>
<tr>
<td>AEC1.1.59</td>
<td></td>
<td>CBS</td>
<td>4.7</td>
</tr>
<tr>
<td>DOE1.5.4.3</td>
<td></td>
<td>R</td>
<td>4.7.4.8</td>
</tr>
<tr>
<td>DOE1.6.6.5</td>
<td></td>
<td>WMFP</td>
<td>4.7</td>
</tr>
<tr>
<td>DOE1.6.6.7</td>
<td></td>
<td>WMFP</td>
<td>4.7</td>
</tr>
<tr>
<td>DOE1.6.7.1</td>
<td></td>
<td>WGR</td>
<td>4.8</td>
</tr>
<tr>
<td>DOE1.6.7.2</td>
<td></td>
<td>WGR</td>
<td>4.8</td>
</tr>
<tr>
<td>DOE1.6.5.4</td>
<td></td>
<td>WGR</td>
<td>4.8</td>
</tr>
<tr>
<td>DOE1.6.5.5</td>
<td></td>
<td>WGR</td>
<td>4.8</td>
</tr>
<tr>
<td>DOE1.6.5.6</td>
<td></td>
<td>WGR</td>
<td>4.8</td>
</tr>
<tr>
<td>DOE1.6.5.7</td>
<td></td>
<td>WGR</td>
<td>4.8</td>
</tr>
<tr>
<td>DOE1.6.5.8</td>
<td></td>
<td>WGR</td>
<td>4.8</td>
</tr>
<tr>
<td>DOE1.6.5.9</td>
<td></td>
<td>WGR</td>
<td>4.8</td>
</tr>
<tr>
<td>DOE2.4.4</td>
<td></td>
<td>BFRL</td>
<td>4.7.4.8</td>
</tr>
<tr>
<td>DOE2.4.14</td>
<td></td>
<td>BFRL</td>
<td>4.8</td>
</tr>
<tr>
<td>IAEA1.13.2</td>
<td></td>
<td>BFRL</td>
<td>4.8</td>
</tr>
<tr>
<td>IAEA1.13.3</td>
<td></td>
<td>BFRL</td>
<td>4.8</td>
</tr>
<tr>
<td>IAE2.3.2.1</td>
<td></td>
<td>BFRL</td>
<td>4.8</td>
</tr>
<tr>
<td>IAE2.5.2.4</td>
<td></td>
<td>BFRL</td>
<td>4.8</td>
</tr>
<tr>
<td>PGA3.12.2</td>
<td></td>
<td>BFRL</td>
<td>4.8</td>
</tr>
<tr>
<td>PGA3.13</td>
<td></td>
<td>BFRL</td>
<td>4.8</td>
</tr>
<tr>
<td>SKI4.1.1</td>
<td></td>
<td>BFRL</td>
<td>4.8</td>
</tr>
<tr>
<td>SKI4.1.2</td>
<td></td>
<td>BFRL</td>
<td>4.8</td>
</tr>
<tr>
<td>SKI4.1.6</td>
<td></td>
<td>BFRL</td>
<td>4.8.5.9</td>
</tr>
<tr>
<td>SKI4.1.7</td>
<td></td>
<td>BFRL</td>
<td>4.8</td>
</tr>
<tr>
<td>SKI4.1.8</td>
<td></td>
<td>BFRL</td>
<td>4.8</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>COM. CODE</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>SK1.1.9</td>
<td>BFL</td>
<td>4.8.4.9</td>
<td>Complexing agents</td>
</tr>
<tr>
<td>SK1.10</td>
<td>BFR</td>
<td>4.8</td>
<td>Chemical effects of rock reinforcement</td>
</tr>
<tr>
<td>SK1.5</td>
<td>BRF</td>
<td>4.8</td>
<td>Saline or fresh-water intrusion</td>
</tr>
<tr>
<td>UKN1.5.7</td>
<td>BF</td>
<td>4.8</td>
<td>Fracture rehydration and weathering</td>
</tr>
<tr>
<td>UKN1.6.11</td>
<td>BF</td>
<td>4.8</td>
<td>Complex gradients (electrochemical effects and osmosis)</td>
</tr>
<tr>
<td>UKN1.6.14</td>
<td>WBF</td>
<td>4.8</td>
<td>Complex transformations</td>
</tr>
<tr>
<td>UKN3.2.2</td>
<td>WCB</td>
<td>4.8</td>
<td>Interactions of host materials and groundwater with repository material/gas phase</td>
</tr>
<tr>
<td>UKN3.2.3</td>
<td>WCB</td>
<td>4.8</td>
<td>Interactions of waste and repository materials with host materials (e.g., electrochemical effects)</td>
</tr>
<tr>
<td>UKN3.2.4</td>
<td>H</td>
<td>4.8</td>
<td>Non-radioactive waste impoundment in geosphere (effect of redox, effect on pH, sorption)</td>
</tr>
<tr>
<td>HMP1.2.6</td>
<td>BFL</td>
<td>4.2.4.8</td>
<td>Physico-chemical degradation of concrete</td>
</tr>
<tr>
<td>HMP1.5.5</td>
<td>BFR</td>
<td>4.8</td>
<td>Transport of chemically active substances into the near-field</td>
</tr>
<tr>
<td>HMP1.6.3</td>
<td>BFR</td>
<td>4.5.4.8</td>
<td>Thermal effects and Chemical changes</td>
</tr>
<tr>
<td>HMP2.3.7</td>
<td>BFL</td>
<td>4.8.4.3</td>
<td>Changes in groundwater chemistry and flow direction</td>
</tr>
<tr>
<td>HMP2.3.12</td>
<td>BFR</td>
<td>4.5.4.8</td>
<td>Thermal effects on hydrochemistry</td>
</tr>
<tr>
<td>NEA1.6.11</td>
<td>BFR</td>
<td>4.8</td>
<td>Fracture rehydration</td>
</tr>
<tr>
<td>NEA1.6.14</td>
<td>BFR</td>
<td>4.8</td>
<td>Chemical gradients (electrochemical effects and osmosis)</td>
</tr>
<tr>
<td>NEA3.1.5</td>
<td>BFR</td>
<td>4.8</td>
<td>Induced chemical changes (solubility, sorption, species equilibrium, mineralization)</td>
</tr>
<tr>
<td>NEA3.2.2</td>
<td>H</td>
<td>4.8</td>
<td>Interactions of host materials and groundwater with repository material (e.g., pH)</td>
</tr>
<tr>
<td>NEA3.2.3</td>
<td>H</td>
<td>4.8</td>
<td>Interactions of waste and repository materials with host materials (electrochemical effects)</td>
</tr>
<tr>
<td>AEC1.6.5</td>
<td>WCB</td>
<td>4.9</td>
<td>Precipitation and dissolution</td>
</tr>
<tr>
<td>AEC1.7.6</td>
<td>BFR</td>
<td>4.9</td>
<td>Sorption</td>
</tr>
<tr>
<td>AEC1.7.7</td>
<td>BFR</td>
<td>4.9</td>
<td>Sorption: non-linear</td>
</tr>
<tr>
<td>AEC1.8.0</td>
<td>WCB</td>
<td>4.9</td>
<td>Speciation</td>
</tr>
<tr>
<td>DOE2.4.4.1</td>
<td>BFL</td>
<td>4.9</td>
<td>Solubility: effects of pH and Eh</td>
</tr>
<tr>
<td>DOE2.4.4.2</td>
<td>BFL</td>
<td>4.9</td>
<td>Solubility: effects of ionic strength</td>
</tr>
<tr>
<td>DOE2.4.4.3</td>
<td>BFL</td>
<td>4.9</td>
<td>Solubility: effects of naturally-occurring complexing agents</td>
</tr>
<tr>
<td>DOE2.4.4.4</td>
<td>BFR</td>
<td>4.9</td>
<td>Solubility: effects of complexing agents formed in the near-field</td>
</tr>
<tr>
<td>DOE2.4.4.5</td>
<td>BFR</td>
<td>4.9</td>
<td>Solubility: effects of naturally-occurring colloids</td>
</tr>
<tr>
<td>DOE2.4.4.6</td>
<td>BFR</td>
<td>4.9</td>
<td>Solubility: effects of colloids formed in the near-field</td>
</tr>
<tr>
<td>DOE2.4.4.7</td>
<td>BFR</td>
<td>4.9</td>
<td>Solubility: effects of major ions migrating from the near-field</td>
</tr>
<tr>
<td>DOE2.4.4.8</td>
<td>BFR</td>
<td>4.9</td>
<td>Solubility: Effects of microbial activity</td>
</tr>
<tr>
<td>DOE2.4.5.1</td>
<td>BFR</td>
<td>4.9</td>
<td>Linear sorption</td>
</tr>
<tr>
<td>DOE2.4.5.2</td>
<td>BFR</td>
<td>4.9</td>
<td>Non-linear sorption</td>
</tr>
<tr>
<td>DOE2.4.5.3</td>
<td>BFR</td>
<td>4.9</td>
<td>Reversible sorption</td>
</tr>
<tr>
<td>DOE2.4.5.4</td>
<td>BFR</td>
<td>4.9</td>
<td>Irreversible sorption</td>
</tr>
<tr>
<td>DOE2.4.5.5</td>
<td>BF</td>
<td>4.9</td>
<td>Sorption: Effects of pH and Eh</td>
</tr>
<tr>
<td>DOE2.4.5.6</td>
<td>BF</td>
<td>4.9</td>
<td>Sorption: Effects of ionic strength</td>
</tr>
<tr>
<td>DOE2.4.5.7</td>
<td>BF</td>
<td>4.9</td>
<td>Sorption: Effects of naturally-occurring complexing agents</td>
</tr>
<tr>
<td>DOE2.4.5.8</td>
<td>BF</td>
<td>4.9</td>
<td>Sorption: Effects of naturally-occurring inorganic complexing agents</td>
</tr>
<tr>
<td>DOE2.4.5.9</td>
<td>BF</td>
<td>4.9</td>
<td>Sorption: Effects of complexing agents formed in the near-field</td>
</tr>
<tr>
<td>DOE2.4.6.10</td>
<td>BFR</td>
<td>4.9.4.11</td>
<td>Sorption: effects of naturally-occurring colloids</td>
</tr>
<tr>
<td>DOE2.4.6.11</td>
<td>BF</td>
<td>4.9</td>
<td>Sorption: effects of colloids formed in the near-field</td>
</tr>
<tr>
<td>DOE2.4.6.12</td>
<td>BF</td>
<td>4.9</td>
<td>Sorption: effects of major ions migrating from the near-field</td>
</tr>
<tr>
<td>DOE2.4.6.13</td>
<td>BF</td>
<td>4.9</td>
<td>Sorption: effects of microbial activity</td>
</tr>
<tr>
<td>DOE2.4.10</td>
<td>BFR</td>
<td>4.9</td>
<td>Isotopic dilution</td>
</tr>
<tr>
<td>SK1.4.6</td>
<td>BF</td>
<td>4.9</td>
<td>Sorption</td>
</tr>
<tr>
<td>SK1.5.5</td>
<td>BF</td>
<td>4.9</td>
<td>Maturation diffusion</td>
</tr>
<tr>
<td>SK1.6.3</td>
<td>BF</td>
<td>4.8.4.2</td>
<td>Reconciliation</td>
</tr>
<tr>
<td>SK1.6.9</td>
<td>BF</td>
<td>4.8.4.9</td>
<td>Complexing agents</td>
</tr>
<tr>
<td>SK2.4.0</td>
<td>BF</td>
<td>4.9</td>
<td>Solubility constraints</td>
</tr>
<tr>
<td>HMP1.3.5</td>
<td>BF</td>
<td>4.9</td>
<td>Sorption including ion-exchange</td>
</tr>
<tr>
<td>HMP1.3.6</td>
<td>BF</td>
<td>4.9</td>
<td>Changes in sorptive surfaces</td>
</tr>
<tr>
<td>NEA1.6.1</td>
<td>BF</td>
<td>4.9</td>
<td>Solubility limit</td>
</tr>
<tr>
<td>NEA1.6.7</td>
<td>BF</td>
<td>4.9</td>
<td>Sorption (near-linear, reversible/irreversible)</td>
</tr>
<tr>
<td>NEA1.6.8</td>
<td>BF</td>
<td>4.9</td>
<td>Dissolution, precipitation, and crystallization</td>
</tr>
<tr>
<td>NEA1.6.10</td>
<td>BF</td>
<td>4.9</td>
<td>Complexing agents</td>
</tr>
<tr>
<td>NEA1.6.13</td>
<td>BF</td>
<td>4.9</td>
<td>Mass, isotopic and species dilution</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>C0N.CODE</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>AECL1.29</td>
<td>BR</td>
<td>4.10</td>
<td>Diffusion</td>
</tr>
<tr>
<td>AECL1.30</td>
<td>BR</td>
<td>4.10</td>
<td>Dispersion</td>
</tr>
<tr>
<td>AECL1.46</td>
<td>R</td>
<td>4.5,4.10</td>
<td>Hydrothermal alteration</td>
</tr>
<tr>
<td>AECL1.70</td>
<td>R</td>
<td>4.3,4.10</td>
<td>Recharge groundwater</td>
</tr>
<tr>
<td>AECL1.86</td>
<td>R</td>
<td>4.5,4.10</td>
<td>Transport in gases or of gases</td>
</tr>
<tr>
<td>AECL1.90</td>
<td>R</td>
<td>4.3,4.10</td>
<td>Unsataturated transport</td>
</tr>
<tr>
<td>DOE1.5.4.1</td>
<td>R</td>
<td>4.8.4.10</td>
<td>Transport of inorganic ions into the near-field</td>
</tr>
<tr>
<td>DOE1.5.4.2</td>
<td>R</td>
<td>4.8.4.10</td>
<td>Transport of organic complexes into the near-field</td>
</tr>
<tr>
<td>DOE2.4.1</td>
<td>BF</td>
<td>4.10</td>
<td>Advection</td>
</tr>
<tr>
<td>DOE2.4.2.1</td>
<td>BF</td>
<td>4.10</td>
<td>Bulk diffusion</td>
</tr>
<tr>
<td>DOE2.4.2.2</td>
<td>BF</td>
<td>4.10</td>
<td>Matrix diffusion</td>
</tr>
<tr>
<td>DOE2.4.3</td>
<td>BF</td>
<td>4.10</td>
<td>Hydrodynamic dispersion</td>
</tr>
<tr>
<td>DOE2.4.11.1</td>
<td>BF</td>
<td>4.6,4.10</td>
<td>Gas transport solution</td>
</tr>
<tr>
<td>SKNL.4</td>
<td>BF</td>
<td>4.10</td>
<td>Dispersion</td>
</tr>
<tr>
<td>SKNL.5</td>
<td>BF</td>
<td>4.10</td>
<td>Diffusion</td>
</tr>
<tr>
<td>UKN1.6.1</td>
<td>BF</td>
<td>4.10</td>
<td>Advection and dispersion</td>
</tr>
<tr>
<td>UKN1.6.2</td>
<td>BF</td>
<td>4.10</td>
<td>Diffusion</td>
</tr>
<tr>
<td>UKN1.6.3</td>
<td>BF</td>
<td>4.10</td>
<td>Matrix diffusion</td>
</tr>
<tr>
<td>UKN1.6.4</td>
<td>BF</td>
<td>4.6,4.10</td>
<td>Gas mediated transport</td>
</tr>
<tr>
<td>UKN1.6.5</td>
<td>BF</td>
<td>4.6,4.10</td>
<td>Multi-phase flow and gas driven flow</td>
</tr>
<tr>
<td>HMIP2.3.4</td>
<td>BF</td>
<td>4.5,4.10</td>
<td>Thermal effects and Transport (diffusion) effects</td>
</tr>
<tr>
<td>HMIP2.3.5</td>
<td>BF</td>
<td>4.10</td>
<td>Diffusion</td>
</tr>
<tr>
<td>HMIP2.3.6</td>
<td>BF</td>
<td>4.10</td>
<td>Diffusion</td>
</tr>
<tr>
<td>HMIP2.3.7</td>
<td>BF</td>
<td>4.10</td>
<td>Hydrodynamic dispersion</td>
</tr>
<tr>
<td>HMIP2.3.8</td>
<td>BF</td>
<td>4.7,4.10</td>
<td>Transport of radionuclides bound to microbes</td>
</tr>
<tr>
<td>HMIP2.3.10</td>
<td>BF</td>
<td>4.6,4.10</td>
<td>Transport of active gases</td>
</tr>
<tr>
<td>HMIP2.3.11</td>
<td>BF</td>
<td>4.6,4.10</td>
<td>Gas induced ground-water transport</td>
</tr>
<tr>
<td>NEA1.6.1</td>
<td>BF</td>
<td>4.10</td>
<td>Advection and dispersion</td>
</tr>
<tr>
<td>NEA1.6.2</td>
<td>BF</td>
<td>4.10</td>
<td>Diffusion</td>
</tr>
<tr>
<td>NEA1.6.3</td>
<td>BF</td>
<td>4.10</td>
<td>Matrix diffusion</td>
</tr>
<tr>
<td>NEA1.6.4</td>
<td>BF</td>
<td>4.6,4.10</td>
<td>Gas mediated transport</td>
</tr>
<tr>
<td>NEA1.6.5</td>
<td>BF</td>
<td>4.6,4.10</td>
<td>Multi-phase flow and gas driven flow</td>
</tr>
</tbody>
</table>

Specific factors

<p>| AECL1.29 | R | 4.11 | Colloids |
| AECL1.46 | R | 4.11 | Incomplete closure |
| AECL1.62 | R | 4.11 | Percolation in shafts |
| AECL1.66 | R | 4.11 | Pseudo-colloids |
| AECL1.89 | R | 4.11 | Unmodelled design features |
| AECL2.4 | BF | 4.11 | Borehole seal failures/open boreholes |
| AECL2.6 | BF | 4.11 | Boreholes - unsualsed |
| DOE1.5.4.5 | R | 4.11 | Transport of colloids into the near-field |
| DOE2.3.4.6 | BF | 4.11 | Inorganic colloid transport: Porous media |
| DOE2.3.5.1 | BF | 4.11 | Inorganic colloid transport: Effects of pH and Eh |
| DOE2.3.6.2 | BF | 4.11 | Inorganic colloid transport: Effects of ionic strength |
| DOE2.3.7 | BF | 4.11 | Inorganic colloid transport: Porous media |
| DOE2.4.8.2 | BF | 4.11 | Inorganic colloid transport: Fractured media |
| DOE2.4.8.3 | BF | 4.11 | Inorganic colloid transport: Effects of pH and Eh |
| DOE2.4.8.4 | BF | 4.11 | Inorganic colloid transport: Effects of ionic strength |
| IAE2.2.1 | RF | 4.11 | Inadequate design: Shaft seal failure |
| IAE2.2.2 | RF | 4.11 | Inadequate design: Exploration borehole seal failure |
| PGA3.16 | R | 4.2,4.11 | Failure of shaft sealing |
| SKK4.23 | BF | 4.11 | Extreme channel flow of oxidants and nuclides |
| SKK5.45 | BF | 4.11 | Colloid generation and transport |
| UKN1.6.9 | BF | 4.11 | Colloid formation, dissolution and transport |
| UKN2.2.10 | RF | 4.11 | Poor closure |
| HMIP2.3.8 | BF | 4.11 | Colloid transport |
| HMIP2.1.3 | R | 4.11 | Incomplete near-field chemical conditioning |
| NEA1.6.9 | BF | 4.11 | Colloid formation, dissolution, and transport |
| NEA2.1.6 | R | 4.11 | Material defects (e.g. early canister failure) |
| NEA2.1.8 | R | 4.11 | Poor quality construction |
| NEA2.2.1 | R | 4.11 | Radioactive waste disposal error |
| NEA2.2.2 | R | 4.11 | Inadequate backfill or compaction voidage |
| NEA2.2.4 | WR | 4.11 | Inadequate inclusion of undesirable materials |
| NEA2.2.10 | R | 4.11 | Abandonment of unsialsed repository |
| NEA2.2.12 | R | 4.11 | Effects of phased operation |
| PGA4.2 | R | 4.11 | Injection of liquid waste |</p>
<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>FEP NAME</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Rock property effects</td>
<td>porosity, permeability, fracture changes</td>
</tr>
<tr>
<td>5.2</td>
<td>Hydrogeological effects</td>
<td>hydraulic effects, groundwater flow</td>
</tr>
<tr>
<td>5.3</td>
<td>Physical/mechanical effects</td>
<td>seismicity, fault activation</td>
</tr>
<tr>
<td>5.4</td>
<td>Thermal effects</td>
<td>elastic, non-elastic response</td>
</tr>
<tr>
<td>5.5</td>
<td>Gas effects and transport</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>Microbiological/biological activity</td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td>Geochemical regime</td>
<td>chemical gradients & kinetics, redox potential, thermochemical</td>
</tr>
<tr>
<td>5.8</td>
<td>Radionuclide chemistry</td>
<td>solubility, speciation, sorption, complex formation</td>
</tr>
<tr>
<td>5.9</td>
<td>Radionuclide transport processes</td>
<td>advection, dispersion, diffusion</td>
</tr>
<tr>
<td>5.10</td>
<td>Specific factors</td>
<td>colloids, poor QA & design, borehole seal failure, undetected features</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>COIL CODE</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>5.1</td>
<td>Rock property effects</td>
<td></td>
</tr>
<tr>
<td>AEG2.14</td>
<td>HF</td>
<td>5.1.5.2</td>
</tr>
<tr>
<td>AEG2.51</td>
<td>F</td>
<td>5.1</td>
</tr>
<tr>
<td>DOE1.6.3.1</td>
<td>RF</td>
<td>5.1</td>
</tr>
<tr>
<td>DOE1.6.3.2</td>
<td>RF</td>
<td>5.1</td>
</tr>
<tr>
<td>DOE2.3.3.1</td>
<td>RF</td>
<td>5.1</td>
</tr>
<tr>
<td>DOE2.3.3.2</td>
<td>RF</td>
<td>5.1</td>
</tr>
<tr>
<td>DOE2.3.3.3</td>
<td>RF</td>
<td>5.1</td>
</tr>
<tr>
<td>DOE2.3.3.4</td>
<td>RF</td>
<td>5.1</td>
</tr>
<tr>
<td>DOE2.4.6</td>
<td>RF</td>
<td>5.7.5.1</td>
</tr>
<tr>
<td>UKN1.6.11</td>
<td>RF</td>
<td>5.7.5.1</td>
</tr>
<tr>
<td>UKN2.1.5</td>
<td>RF</td>
<td>5.1.5.2</td>
</tr>
<tr>
<td>AMP2.2.2</td>
<td>F</td>
<td>5.1</td>
</tr>
</tbody>
</table>

5.2 Hydrogeological effects

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>COIL CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEG2.11</td>
<td>F</td>
<td>5.2</td>
<td>Conceptual model - hydrology</td>
</tr>
<tr>
<td>AEG2.14</td>
<td>HF</td>
<td>5.1.5.2</td>
<td>Dewatering</td>
</tr>
<tr>
<td>AEG2.16</td>
<td>FL</td>
<td>5.2</td>
<td>Discharge zones</td>
</tr>
<tr>
<td>AEG2.27</td>
<td>F</td>
<td>5.4.5.2</td>
<td>Geothermal gradient effects</td>
</tr>
<tr>
<td>AEG2.30</td>
<td>F</td>
<td>5.2</td>
<td>Groundwater - evolution</td>
</tr>
<tr>
<td>AEG2.33</td>
<td>F</td>
<td>5.2</td>
<td>Hydraulic properties - evolution</td>
</tr>
<tr>
<td>AEG2.50</td>
<td>F</td>
<td>5.2</td>
<td>Recharge groundwater</td>
</tr>
<tr>
<td>AEG2.54</td>
<td>F</td>
<td>5.2</td>
<td>Salinity effects on flow</td>
</tr>
<tr>
<td>AEG2.55</td>
<td>F</td>
<td>5.2</td>
<td>Saturation</td>
</tr>
<tr>
<td>AEG2.63</td>
<td>F</td>
<td>5.2</td>
<td>Turbulence</td>
</tr>
<tr>
<td>AEG2.65</td>
<td>F</td>
<td>5.2</td>
<td>Unsaturated rock</td>
</tr>
<tr>
<td>DOE1.5.1.1</td>
<td>RF</td>
<td>5.2</td>
<td>Changes in moisture content due to dewatering</td>
</tr>
<tr>
<td>DOE1.5.1.2</td>
<td>RF</td>
<td>5.2.5.3</td>
<td>Changes in moisture content due to stress relief</td>
</tr>
<tr>
<td>DOE1.5.3</td>
<td>BF</td>
<td>5.2</td>
<td>Groundwater flow (saturated conditions)</td>
</tr>
<tr>
<td>DOE1.6.4.1</td>
<td>F</td>
<td>5.2</td>
<td>Hydrological changes: Fluid pressure</td>
</tr>
<tr>
<td>DOE1.6.4.2</td>
<td>F</td>
<td>5.2</td>
<td>Hydrological changes: Density</td>
</tr>
<tr>
<td>DOE1.6.4.3</td>
<td>F</td>
<td>5.2</td>
<td>Hydrological changes: Viscosity</td>
</tr>
<tr>
<td>DOE2.3.4.1</td>
<td>RF</td>
<td>5.2</td>
<td>Groundwater flow: Darcy</td>
</tr>
<tr>
<td>DOE2.3.4.2</td>
<td>RF</td>
<td>5.2</td>
<td>Groundwater flow: Non-Darcy</td>
</tr>
<tr>
<td>DOE2.3.4.3</td>
<td>RF</td>
<td>5.2</td>
<td>Groundwater flow: Intergranular (matrix)</td>
</tr>
<tr>
<td>DOE2.3.4.4</td>
<td>RF</td>
<td>5.2</td>
<td>Groundwater flow: Fracture</td>
</tr>
<tr>
<td>DOE2.3.4.5</td>
<td>BF</td>
<td>5.2</td>
<td>Groundwater flow: Effects of solution channels</td>
</tr>
<tr>
<td>DOE2.3.6</td>
<td>BF</td>
<td>5.4.5.2</td>
<td>Variations in groundwater temperature</td>
</tr>
<tr>
<td>DOE2.4.12</td>
<td>BF</td>
<td>5.4.5.2</td>
<td>Gas-induced groundwater transport</td>
</tr>
<tr>
<td>DOE2.4.13.2</td>
<td>BF</td>
<td>5.4.5.2</td>
<td>Naturally thermally-induced groundwater transport</td>
</tr>
<tr>
<td>DOE3.3.2.4</td>
<td>FL</td>
<td>5.2</td>
<td>Near-surface runoff processes: Micropore flow</td>
</tr>
<tr>
<td>DOE3.3.2.5</td>
<td>FL</td>
<td>5.2</td>
<td>Near-surface runoff processes: Variable source area response</td>
</tr>
<tr>
<td>DOE3.3.3</td>
<td>F</td>
<td>5.2</td>
<td>Groundwater recharge</td>
</tr>
<tr>
<td>IAEA1.13.1</td>
<td>BF</td>
<td>5.2</td>
<td>Fluid interactions: Groundwater flow</td>
</tr>
<tr>
<td>IAEA1.13.2</td>
<td>BF</td>
<td>5.2</td>
<td>Fluid interactions: Dissolution</td>
</tr>
<tr>
<td>IAEA1.13.3</td>
<td>BF</td>
<td>5.2</td>
<td>Fluid interactions: Brine pockets</td>
</tr>
<tr>
<td>IAEA3.1.3</td>
<td>BF</td>
<td>5.4.5.2</td>
<td>Thermal effects: Fluid pressure, density, viscosity changes</td>
</tr>
<tr>
<td>IAEA3.1.4</td>
<td>BF</td>
<td>5.4.5.2</td>
<td>Thermal effects: Fluid migration</td>
</tr>
<tr>
<td>PGA4.1</td>
<td>F</td>
<td>5.2</td>
<td>Direct alterations in hydrogeology</td>
</tr>
<tr>
<td>SKR2.3</td>
<td>BF</td>
<td>5.2.5.10</td>
<td>Extreme channel flow of oxidants and nuclides</td>
</tr>
<tr>
<td>SKR2.5</td>
<td>BF</td>
<td>5.2</td>
<td>Changes of groundwater flow</td>
</tr>
<tr>
<td>SKR3.1</td>
<td>BF</td>
<td>5.2</td>
<td>Saline (or fresh) groundwater intrusion</td>
</tr>
<tr>
<td>SKR4.6</td>
<td>F</td>
<td>5.2</td>
<td>Groundwater recharge/discharge</td>
</tr>
<tr>
<td>SKR6.13</td>
<td>BF</td>
<td>5.4.5.2</td>
<td>Geothermally induced flow</td>
</tr>
<tr>
<td>UKN1.5.3</td>
<td>F</td>
<td>5.2</td>
<td>Recharge to groundwater</td>
</tr>
<tr>
<td>UKN1.5.4</td>
<td>FL</td>
<td>5.2</td>
<td>Groundwater discharge (surface water, to springs, to soils, to wells, to marine)</td>
</tr>
<tr>
<td>UKN1.5.5</td>
<td>F</td>
<td>5.2</td>
<td>Groundwater flow (Darcy, non-Darcy, intergranular fracture, channeling and percolation)</td>
</tr>
<tr>
<td>UKN1.5.6</td>
<td>F</td>
<td>5.2</td>
<td>Groundwater conditions (saturated/unsaturated)</td>
</tr>
<tr>
<td>UKN2.1.5</td>
<td>RF</td>
<td>5.1.5.2</td>
<td>Dewatering of host rock</td>
</tr>
<tr>
<td>UKN2.1.6</td>
<td>RF</td>
<td>5.2</td>
<td>Induced hydrological changes (fluid pressure, density convection, viscosity)</td>
</tr>
<tr>
<td>HMP1.5.4</td>
<td>BF</td>
<td>5.2</td>
<td>Saturated groundwater flow</td>
</tr>
<tr>
<td>HMP2.2.1</td>
<td>F</td>
<td>5.2</td>
<td>Changes in geometry and driving forces of the flow system</td>
</tr>
<tr>
<td>HMP2.2.2</td>
<td>F</td>
<td>5.2</td>
<td>Groundwater flow</td>
</tr>
<tr>
<td>HMP2.3.7</td>
<td>BF</td>
<td>5.7.5.2</td>
<td>Changes in groundwater chemistry and flow direction</td>
</tr>
<tr>
<td>HMP2.3.11</td>
<td>BF</td>
<td>5.5.5.2</td>
<td>Gas induced groundwater transport</td>
</tr>
<tr>
<td>NEA1.5.3</td>
<td>F</td>
<td>5.2</td>
<td>Recharge to groundwater</td>
</tr>
<tr>
<td>NEA1.5.5</td>
<td>F</td>
<td>5.2</td>
<td>Groundwater flow (Darcy, non-Darcy, intergranular fracture, channeling and percolation)</td>
</tr>
<tr>
<td>NEA1.5.6</td>
<td>F</td>
<td>5.2</td>
<td>Groundwater conditions (saturated/unsaturated)</td>
</tr>
<tr>
<td>NEA2.7.4</td>
<td>BF</td>
<td>5.2</td>
<td>Induced hydrological changes (fluid pressure, density convection, viscosity)</td>
</tr>
</tbody>
</table>
5.3 Physical/mechanical effects

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CON. CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE1.5.1.2</td>
<td>RF</td>
<td>5.2,5.3</td>
<td>Changes in moisture content due to stress relief</td>
</tr>
<tr>
<td>DOE2.2.5.1</td>
<td>RF</td>
<td>5.3</td>
<td>Repository-induced seismicity</td>
</tr>
<tr>
<td>DOE2.2.6.2</td>
<td>RF</td>
<td>5.3</td>
<td>Externally-induced seismicity</td>
</tr>
<tr>
<td>DOE2.2.6.3</td>
<td>RG</td>
<td>5.3</td>
<td>Natural seismicity</td>
</tr>
<tr>
<td>SNI6.3</td>
<td>RF</td>
<td>5.4.5.3</td>
<td>Thermally Induced Stress/Fracturing in Host Rock</td>
</tr>
<tr>
<td>SNI6.4</td>
<td>AF</td>
<td>5.3</td>
<td>Excavation-Induced Stress/Fracturing in Host Rock</td>
</tr>
<tr>
<td>UKN1.2.9</td>
<td>GF</td>
<td>5.3</td>
<td>Fault activation</td>
</tr>
<tr>
<td>UKN3.1.1</td>
<td>RF</td>
<td>5.3</td>
<td>Differential elastic response</td>
</tr>
<tr>
<td>UKN3.1.2</td>
<td>RF</td>
<td>5.3</td>
<td>Non-elastic response</td>
</tr>
<tr>
<td>UKN3.1.5</td>
<td>RF</td>
<td>5.3</td>
<td>Host rock fracture aperture changes</td>
</tr>
</tbody>
</table>

5.4 Thermal effects

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CON. CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECL2.27</td>
<td>F</td>
<td>5.4,5.2</td>
<td>Geothermal gradient effects</td>
</tr>
<tr>
<td>DOE1.4.1.1</td>
<td>RF</td>
<td>5.4</td>
<td>Differential elastic response</td>
</tr>
<tr>
<td>DOE1.4.2.3</td>
<td>RF</td>
<td>5.4</td>
<td>Non-elastic response</td>
</tr>
<tr>
<td>DOE3.3.6</td>
<td>RF</td>
<td>5.4,5.2</td>
<td>Variations in groundwater temperature</td>
</tr>
<tr>
<td>DOE2.4.13.2</td>
<td>RF</td>
<td>5.4,5.2</td>
<td>Naturally thermally-induced groundwater transport</td>
</tr>
<tr>
<td>IAEA3.1.1</td>
<td>RF</td>
<td>5.4</td>
<td>Thermal effects: Differential elastic response</td>
</tr>
<tr>
<td>IAEA3.1.2</td>
<td>RF</td>
<td>5.4</td>
<td>Thermal effects: Non-elastic response</td>
</tr>
<tr>
<td>IAEA3.1.3</td>
<td>RF</td>
<td>5.4,5.2</td>
<td>Thermal effects: Fluid pressure, density, viscosity changes</td>
</tr>
<tr>
<td>IAEA3.1.4</td>
<td>RF</td>
<td>5.4,5.2</td>
<td>Thermal effects: Fluid migration</td>
</tr>
<tr>
<td>PAG3.7.4</td>
<td>RF</td>
<td>5.4</td>
<td>Lowering thermal expansion of host rock zones</td>
</tr>
<tr>
<td>PAG3.8</td>
<td>RF</td>
<td>5.4</td>
<td>Thermal convection</td>
</tr>
<tr>
<td>SK6.13</td>
<td>RF</td>
<td>5.4,5.2</td>
<td>Geothermally induced flow</td>
</tr>
<tr>
<td>SNI6.3</td>
<td>RF</td>
<td>5.4,5.3</td>
<td>Thermally Induced Stress/Fracturing in Host Rock</td>
</tr>
<tr>
<td>UKN1.5.9</td>
<td>RF</td>
<td>5.4</td>
<td>Natural thermal effects</td>
</tr>
<tr>
<td>HMIP2.3.12</td>
<td>BRFL</td>
<td>5.4</td>
<td>Thermal effects on hydrochemistry</td>
</tr>
<tr>
<td>NEA1.5.9</td>
<td>RF</td>
<td>5.4</td>
<td>Natural thermal effects</td>
</tr>
</tbody>
</table>

5.5 Gas effects and transport

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CON. CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECL2.26</td>
<td>F</td>
<td>5.5</td>
<td>Gases and gas transport</td>
</tr>
<tr>
<td>AECL2.42</td>
<td>F</td>
<td>5.5</td>
<td>Methane</td>
</tr>
<tr>
<td>DOE1.2.6.5</td>
<td>F</td>
<td>5.5</td>
<td>Gas transport into and through the far-field</td>
</tr>
<tr>
<td>SNI6.2</td>
<td>RF</td>
<td>5.5,5.9</td>
<td>Gas transport</td>
</tr>
<tr>
<td>UKN1.6.4</td>
<td>BRFL</td>
<td>5.5,5.9</td>
<td>Gas mediated transport</td>
</tr>
<tr>
<td>UKN1.6.5</td>
<td>BRFL</td>
<td>5.5,5.9</td>
<td>Multiple phase flow and gas driven flow</td>
</tr>
<tr>
<td>HMIP1.2.6</td>
<td>BRFL</td>
<td>5.5,5.9</td>
<td>Gas transport</td>
</tr>
<tr>
<td>HMIP2.1.9</td>
<td>F</td>
<td>5.5</td>
<td>Effects of natural gases</td>
</tr>
<tr>
<td>HMIP2.3.10</td>
<td>BRFL</td>
<td>5.5,5.9</td>
<td>Transport of active gases</td>
</tr>
<tr>
<td>HMIP2.3.11</td>
<td>BRFL</td>
<td>5.5,5.9</td>
<td>Gas induced groundwater transport</td>
</tr>
<tr>
<td>NEA1.2.13</td>
<td>RF</td>
<td>5.5</td>
<td>Natural gas injection</td>
</tr>
<tr>
<td>NEA1.6.4</td>
<td>BRFL</td>
<td>5.5,5.9</td>
<td>Gas mediated transport</td>
</tr>
<tr>
<td>NEA1.8.5</td>
<td>BRFL</td>
<td>5.5,5.9</td>
<td>Multiple phase flow and gas-driven flow</td>
</tr>
</tbody>
</table>

5.6 Microbiological/biological activity

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CON. CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECL2.43</td>
<td>F</td>
<td>5.6</td>
<td>Microbes</td>
</tr>
<tr>
<td>DOE1.6.6.2</td>
<td>WRF</td>
<td>5.6</td>
<td>Microbial activity</td>
</tr>
<tr>
<td>DOE1.6.6.3</td>
<td>WRF</td>
<td>5.6</td>
<td>Microbiological effects due to Microbial product reactions</td>
</tr>
<tr>
<td>DOE2.4.9</td>
<td>BRFL</td>
<td>5.6,5.9</td>
<td>Transport of radionuclides bound to microbes</td>
</tr>
<tr>
<td>DOE2.4.11.1</td>
<td>BRFL</td>
<td>5.6,5.9</td>
<td>Gas transport: solution</td>
</tr>
<tr>
<td>DOE2.4.11.2</td>
<td>BRFL</td>
<td>5.6,5.9</td>
<td>Gas transport: gas phase</td>
</tr>
<tr>
<td>DOE2.4.12</td>
<td>BRFL</td>
<td>5.6,5.2</td>
<td>Gas-induced groundwater transport</td>
</tr>
<tr>
<td>PAG3.14</td>
<td>BRFL</td>
<td>5.6</td>
<td>Microbiological phenomena/effects</td>
</tr>
<tr>
<td>UKN1.7.7</td>
<td>WRF</td>
<td>5.6</td>
<td>Microbial interactions</td>
</tr>
<tr>
<td>HMIP2.3.9</td>
<td>BRFL</td>
<td>5.6,5.9</td>
<td>Transport of radionuclides bound to microbes</td>
</tr>
<tr>
<td>HMIP2.3.13</td>
<td>BRFL</td>
<td>5.6,5.7</td>
<td>Biogeochemical changes</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>CODE</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>AEC1.5.7</td>
<td>F</td>
<td>5.7</td>
<td>Groundwater composition changes</td>
</tr>
<tr>
<td>DOE1.6.5.5</td>
<td>BRF</td>
<td>5.7</td>
<td>Chemical changes due to Complex formation</td>
</tr>
<tr>
<td>DOE1.6.5.6</td>
<td>BRF</td>
<td>5.7</td>
<td>Chemical changes due to Colloid production</td>
</tr>
<tr>
<td>DOE1.6.5.7</td>
<td>BRF</td>
<td>5.7</td>
<td>Chemical changes due to Solubility</td>
</tr>
<tr>
<td>DOE1.6.5.8</td>
<td>BRF</td>
<td>5.7</td>
<td>Chemical changes due to Sorption</td>
</tr>
<tr>
<td>DOE1.5.5.3</td>
<td>BRF</td>
<td>5.7</td>
<td>Chemical changes due to Species equilibrium</td>
</tr>
<tr>
<td>DOE2.4.6</td>
<td>RF</td>
<td>5.7</td>
<td>Fracture mineralisation</td>
</tr>
<tr>
<td>DOE2.4.14</td>
<td>RF</td>
<td>5.7</td>
<td>Biogeochemical changes</td>
</tr>
<tr>
<td>IAEA1.7.3</td>
<td>BRF</td>
<td>5.2</td>
<td>Fluid interactions: brine pockets</td>
</tr>
<tr>
<td>PGA1.11</td>
<td>FL</td>
<td>5.7</td>
<td>Weathering, mineralisation</td>
</tr>
<tr>
<td>PGA1.12</td>
<td>F</td>
<td>5.7</td>
<td>Groundwater changes</td>
</tr>
<tr>
<td>PGA3.12.2</td>
<td>F</td>
<td>5.7</td>
<td>Geochemical changes in host rock</td>
</tr>
<tr>
<td>PGA3.15</td>
<td>BFRL</td>
<td>5.7</td>
<td>Physico-chemical phenomena/feedbacks (eg. colloid formation)</td>
</tr>
<tr>
<td>SKA1.1</td>
<td>BFRL</td>
<td>5.7</td>
<td>Oxidation conditions</td>
</tr>
<tr>
<td>SKA1.2</td>
<td>BFRL</td>
<td>5.7</td>
<td>pH-deviations</td>
</tr>
<tr>
<td>SKG25</td>
<td>F</td>
<td>5.7</td>
<td>Dissolution of fracture fillings/precipitations</td>
</tr>
<tr>
<td>SKG3</td>
<td>F</td>
<td>5.7</td>
<td>Far field hydrochemistry - acids, oxidants, nitrate</td>
</tr>
<tr>
<td>SKG4.6</td>
<td>F</td>
<td>5.7</td>
<td>Weathering of flow paths</td>
</tr>
<tr>
<td>UKN2.5.7</td>
<td>BRF</td>
<td>5.7</td>
<td>Saline or freshwater intrusion</td>
</tr>
<tr>
<td>UKN1.5.8</td>
<td>BFRL</td>
<td>5.7</td>
<td>Effects at saline-freshwater interface</td>
</tr>
<tr>
<td>UKN1.6.11</td>
<td>RF</td>
<td>5.7</td>
<td>Fracture mineralisation and weathering</td>
</tr>
<tr>
<td>UKN1.6.14</td>
<td>WBFRL</td>
<td>5.7</td>
<td>Chemical gradients (electrochemical effects and osmosis)</td>
</tr>
<tr>
<td>UKN2.7.6</td>
<td>WBFRL</td>
<td>5.7</td>
<td>Chemical transformations</td>
</tr>
<tr>
<td>UKN2.2.4</td>
<td>RF</td>
<td>5.7</td>
<td>Non-radioactive solute plume in geosphere (effect on redox, effect on pH, soil water ratio)</td>
</tr>
<tr>
<td>HIP2.3.7</td>
<td>BFRL</td>
<td>5.7</td>
<td>Changes in groundwater chemistry and flow direction</td>
</tr>
<tr>
<td>HIP2.3.13</td>
<td>BFRL</td>
<td>5.7</td>
<td>Biogeochemical changes</td>
</tr>
<tr>
<td>NEA1.5.7</td>
<td>BFRL</td>
<td>5.7</td>
<td>Saline or freshwater intrusion</td>
</tr>
<tr>
<td>NEA1.5.8</td>
<td>BFRL</td>
<td>5.7</td>
<td>Effects at saline-freshwater interface</td>
</tr>
<tr>
<td>NEA1.6.11</td>
<td>BFRL</td>
<td>5.7</td>
<td>Fracture mineralisation</td>
</tr>
<tr>
<td>NEA1.6.14</td>
<td>BFRL</td>
<td>5.7</td>
<td>Chemical gradients (electrochemical effects and osmosis)</td>
</tr>
<tr>
<td>NEA3.2.3</td>
<td>BF</td>
<td>5.7</td>
<td>Interactions of waste and repository materials with host materials (electrochemical effects and osmosis)</td>
</tr>
</tbody>
</table>

5.8 Radioactive chemistry

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC1.2.10</td>
<td>F</td>
<td>5.8</td>
<td>Complexation by organics</td>
</tr>
<tr>
<td>AEC1.2.25</td>
<td>F</td>
<td>5.8</td>
<td>Fulvic acid</td>
</tr>
<tr>
<td>AEC1.2.32</td>
<td>F</td>
<td>5.8</td>
<td>Humic acid</td>
</tr>
<tr>
<td>AEC1.2.46</td>
<td>F</td>
<td>5.8</td>
<td>Precipitation - dissolution</td>
</tr>
<tr>
<td>AEC1.2.58</td>
<td>F</td>
<td>5.8</td>
<td>Sorption</td>
</tr>
<tr>
<td>AEC1.2.59</td>
<td>F</td>
<td>5.8</td>
<td>Sorption - non-linear</td>
</tr>
<tr>
<td>AEC1.6.5.5</td>
<td>BRF</td>
<td>5.7</td>
<td>Chemical changes due to Complex formation</td>
</tr>
<tr>
<td>DOE1.6.5.6</td>
<td>BRF</td>
<td>5.7</td>
<td>Chemical changes due to Colloid production</td>
</tr>
<tr>
<td>DOE1.6.5.7</td>
<td>BRF</td>
<td>5.7</td>
<td>Chemical changes due to Solubility</td>
</tr>
<tr>
<td>DOE1.6.5.8</td>
<td>BRF</td>
<td>5.7</td>
<td>Chemical changes due to Sorption</td>
</tr>
<tr>
<td>DOE1.5.5.9</td>
<td>BRF</td>
<td>5.7</td>
<td>Chemical changes due to Species equilibrium</td>
</tr>
<tr>
<td>DOE2.4.11</td>
<td>BFRL</td>
<td>5.8</td>
<td>Solubility: effects of pH and Eh</td>
</tr>
<tr>
<td>DOE2.4.4.2</td>
<td>BFRL</td>
<td>5.8</td>
<td>Sorption: effects of ionic strength</td>
</tr>
<tr>
<td>DOE2.4.4.3</td>
<td>BFRL</td>
<td>5.8</td>
<td>Solubility: effects of naturally-occurring complexing agents</td>
</tr>
<tr>
<td>DOE2.4.4.5</td>
<td>BFRL</td>
<td>5.8</td>
<td>Solubility: effects of naturally-occurring colloids</td>
</tr>
<tr>
<td>DOE2.4.5.7</td>
<td>BFRL</td>
<td>5.8</td>
<td>Sorption: effects of major ions migrating from the near-field</td>
</tr>
<tr>
<td>DOE2.4.4.8</td>
<td>BFRL</td>
<td>5.8</td>
<td>Solubility: Effects of microbial activity</td>
</tr>
<tr>
<td>DOE2.4.5.1</td>
<td>BFRL</td>
<td>5.8</td>
<td>Linear sorption</td>
</tr>
<tr>
<td>DOE2.4.5.2</td>
<td>BFRL</td>
<td>5.8</td>
<td>Non-linear sorption</td>
</tr>
<tr>
<td>DOE2.4.5.3</td>
<td>BFRL</td>
<td>5.8</td>
<td>Reversable sorption</td>
</tr>
<tr>
<td>DOE2.4.5.4</td>
<td>BFRL</td>
<td>5.8</td>
<td>Reversable sorption</td>
</tr>
<tr>
<td>DOE2.4.5.5</td>
<td>BFRL</td>
<td>5.8</td>
<td>Sorption: Effects of pH and Eh</td>
</tr>
<tr>
<td>DOE2.4.5.6</td>
<td>BFRL</td>
<td>5.8</td>
<td>Sorption: Effects of ionic strength</td>
</tr>
<tr>
<td>DOE2.4.5.7</td>
<td>BFRL</td>
<td>5.8</td>
<td>Sorption: Effects of naturally-occurring organic complexing agents</td>
</tr>
<tr>
<td>DOE2.4.5.8</td>
<td>BFRL</td>
<td>5.8</td>
<td>Sorption: Effects of naturally-occurring morganic complexing agents</td>
</tr>
<tr>
<td>DOE2.4.5.10</td>
<td>BFRL</td>
<td>5.8</td>
<td>Sorption: Effects of naturally-occurring colloids</td>
</tr>
</tbody>
</table>
5.8 Radionuclide chemistry (continued)

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CODE</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE2.4.5.12</td>
<td>BF</td>
<td>5.8</td>
<td>Sorption: effects of major ions migrating from the near-field</td>
</tr>
<tr>
<td>DOE2.4.5.13</td>
<td>BF</td>
<td>5.8</td>
<td>Sorption: effects of microbial activity</td>
</tr>
<tr>
<td>DOE2.4.10</td>
<td>BF</td>
<td>5.8</td>
<td>Isotopic dilution</td>
</tr>
<tr>
<td>IAEA1.3.2</td>
<td>BF</td>
<td>5.2</td>
<td>Fluid interactions: Dissolution</td>
</tr>
<tr>
<td>SKK4.1.4</td>
<td>BF</td>
<td>5.8</td>
<td>Sorption</td>
</tr>
<tr>
<td>SKK4.1.5</td>
<td>BF</td>
<td>5.8</td>
<td>Reconversion</td>
</tr>
<tr>
<td>SKK4.1.9</td>
<td>BF</td>
<td>5.8</td>
<td>Complexing agents</td>
</tr>
<tr>
<td>SKK5.2</td>
<td>BF</td>
<td>5.8</td>
<td>Dilution</td>
</tr>
<tr>
<td>SKK7.5</td>
<td>BF</td>
<td>5.8</td>
<td>Isotopic dilution</td>
</tr>
<tr>
<td>UKN1.6.6</td>
<td>BF</td>
<td>5.8</td>
<td>Solubility limit</td>
</tr>
<tr>
<td>UKN1.6.7</td>
<td>BF</td>
<td>5.8</td>
<td>Sorption (linear/non-linear, reversible/reversible)</td>
</tr>
<tr>
<td>UKN1.6.8</td>
<td>BF</td>
<td>5.8</td>
<td>Dissolution, precipitation and crystallisation</td>
</tr>
<tr>
<td>UKN1.6.10</td>
<td>BF</td>
<td>5.8</td>
<td>Complexing agents</td>
</tr>
<tr>
<td>UKN1.6.13</td>
<td>BF</td>
<td>5.8</td>
<td>Mass, isotopic and species dilution</td>
</tr>
<tr>
<td>HMIP2.3.4</td>
<td>BF</td>
<td>5.8</td>
<td>Solubility constraints</td>
</tr>
<tr>
<td>HMIP2.3.5</td>
<td>BF</td>
<td>5.8</td>
<td>Sorption including ion-exchange</td>
</tr>
<tr>
<td>HMIP2.3.6</td>
<td>BF</td>
<td>5.8</td>
<td>Changes in sorptive surfaces</td>
</tr>
<tr>
<td>NEA1.6.6</td>
<td>BF</td>
<td>5.8</td>
<td>Solubility limit</td>
</tr>
<tr>
<td>NEA1.6.7</td>
<td>BF</td>
<td>5.8</td>
<td>Sorption (linear/non-linear, reversible/reversible)</td>
</tr>
<tr>
<td>NEA1.6.8</td>
<td>BF</td>
<td>5.8</td>
<td>Dissolution, precipitation, and crystallisation</td>
</tr>
<tr>
<td>NEA1.6.10</td>
<td>BF</td>
<td>5.8</td>
<td>Complexing agents</td>
</tr>
<tr>
<td>NEA1.6.13</td>
<td>BF</td>
<td>5.8</td>
<td>Mass, isotopic and species dilution</td>
</tr>
</tbody>
</table>

5.9 Radionuclide transport processes

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CODE</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC2.1.8</td>
<td>BF</td>
<td>5.9</td>
<td>Diffusion</td>
</tr>
<tr>
<td>AEC2.1.7</td>
<td>BF</td>
<td>5.9</td>
<td>Dispersion</td>
</tr>
<tr>
<td>AEC2.3.9</td>
<td>BF</td>
<td>5.9</td>
<td>Matrix diffusion</td>
</tr>
<tr>
<td>DOE2.4.1</td>
<td>BF</td>
<td>5.9</td>
<td>Advection</td>
</tr>
<tr>
<td>DOE2.4.2.1</td>
<td>BF</td>
<td>5.9</td>
<td>Bulk diffusion</td>
</tr>
<tr>
<td>DOE2.4.2.2</td>
<td>BF</td>
<td>5.9</td>
<td>Matrix diffusion</td>
</tr>
<tr>
<td>DOE2.4.3</td>
<td>BF</td>
<td>5.9</td>
<td>Hydrodynamic dispersion</td>
</tr>
<tr>
<td>DOE2.4.9</td>
<td>BF</td>
<td>5.6.5.9</td>
<td>Transport of radionuclides bound to microbes</td>
</tr>
<tr>
<td>DOE2.4.11.1</td>
<td>BF</td>
<td>5.6.5.9</td>
<td>Gas transport: solution</td>
</tr>
<tr>
<td>DOE2.4.11.2</td>
<td>BF</td>
<td>5.6.5.9</td>
<td>Gas transport: gas phase</td>
</tr>
<tr>
<td>SKK4.1.5</td>
<td>BF</td>
<td>5.9</td>
<td>Matrix diffusion</td>
</tr>
<tr>
<td>SKK8.2</td>
<td>BF</td>
<td>5.5.5.9</td>
<td>Gas transport</td>
</tr>
<tr>
<td>SKK8.4</td>
<td>BF</td>
<td>5.9</td>
<td>Dispersion</td>
</tr>
<tr>
<td>UKN1.6.1</td>
<td>BF</td>
<td>5.9</td>
<td>Advection and dispersion</td>
</tr>
<tr>
<td>UKN1.6.2</td>
<td>BF</td>
<td>5.9</td>
<td>Diffusion</td>
</tr>
<tr>
<td>UKN1.6.3</td>
<td>BF</td>
<td>5.9</td>
<td>Matrix diffusion</td>
</tr>
<tr>
<td>UKN1.6.4</td>
<td>BF</td>
<td>5.5.5.9</td>
<td>Gas mediated transport</td>
</tr>
<tr>
<td>UKN1.6.5</td>
<td>BF</td>
<td>5.5.5.9</td>
<td>Multiphase flow and gas driven flow</td>
</tr>
<tr>
<td>HMIP2.3.5</td>
<td>BF</td>
<td>5.5.5.9</td>
<td>Gas transport</td>
</tr>
<tr>
<td>HMIP2.3.8.1</td>
<td>BF</td>
<td>5.9</td>
<td>Advection</td>
</tr>
<tr>
<td>HMIP2.3.8.2</td>
<td>BF</td>
<td>5.9</td>
<td>Diffusion</td>
</tr>
<tr>
<td>HMIP2.3.3</td>
<td>BF</td>
<td>5.9</td>
<td>Hydrodynamic dispersion</td>
</tr>
<tr>
<td>HMIP2.3.9</td>
<td>BF</td>
<td>5.6.5.9</td>
<td>Transport of radionuclides bound to microbes</td>
</tr>
<tr>
<td>HMIP2.3.10</td>
<td>BF</td>
<td>5.5.5.9</td>
<td>Transport of active gases</td>
</tr>
<tr>
<td>NEA1.6.1</td>
<td>BF</td>
<td>5.9</td>
<td>Advection and dispersion</td>
</tr>
<tr>
<td>NEA1.6.2</td>
<td>BF</td>
<td>5.9</td>
<td>Diffusion</td>
</tr>
<tr>
<td>NEA1.6.3</td>
<td>BF</td>
<td>5.9</td>
<td>Matrix diffusion</td>
</tr>
<tr>
<td>NEA1.6.4</td>
<td>BF</td>
<td>5.5.5.9</td>
<td>Gas mediated transport</td>
</tr>
<tr>
<td>NEA1.6.5</td>
<td>BF</td>
<td>5.5.5.9</td>
<td>Multiphase flow and gas-driven flow</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>CODE</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>IAEA2.4</td>
<td>RF</td>
<td>5.10</td>
<td>Borehole seal failure/open boresholes</td>
</tr>
<tr>
<td>IAEA2.6</td>
<td>RF</td>
<td>5.10</td>
<td>Boreholes - unsealed</td>
</tr>
<tr>
<td>IAEA2.8</td>
<td>F</td>
<td>5.10</td>
<td>Collated formation</td>
</tr>
<tr>
<td>IAEA2.47</td>
<td>F</td>
<td>5.10</td>
<td>Pseudo-coloids</td>
</tr>
<tr>
<td>IAEA2.52</td>
<td>F</td>
<td>5.10</td>
<td>Rock properties - undetected features</td>
</tr>
<tr>
<td>IAEA2.56</td>
<td>F</td>
<td>5.10</td>
<td>Shaft seal failure</td>
</tr>
<tr>
<td>IAEA2.66</td>
<td>HF</td>
<td>5.10</td>
<td>Vault closure (imperfect)</td>
</tr>
<tr>
<td>IAEA2.67</td>
<td>RP</td>
<td>5.10</td>
<td>Vault heating effects</td>
</tr>
<tr>
<td>DOE2.3.4.6</td>
<td>RF</td>
<td>5.10</td>
<td>Inorganic colloid transport: Porous media</td>
</tr>
<tr>
<td>DOE2.3.5.1</td>
<td>BF</td>
<td>5.10</td>
<td>Inorganic colloid transport: Effects of pH and Eh</td>
</tr>
<tr>
<td>DOE2.3.5.2</td>
<td>BF</td>
<td>5.10</td>
<td>Inorganic colloid transport: Effects of ionic strength</td>
</tr>
<tr>
<td>DOE2.4.7.1</td>
<td>BFRL</td>
<td>5.10</td>
<td>Organic colloid transport in Porous media</td>
</tr>
<tr>
<td>DOE2.4.7.2</td>
<td>BFRL</td>
<td>5.10</td>
<td>Organic colloid transport in Fractured media</td>
</tr>
<tr>
<td>DOE2.4.7.3</td>
<td>BFRL</td>
<td>5.10</td>
<td>Organic colloid transport: Effects of pH and Eh</td>
</tr>
<tr>
<td>DOE2.4.7.4</td>
<td>BFRL</td>
<td>5.10</td>
<td>Organic colloid transport: Effects of ionic strength</td>
</tr>
<tr>
<td>DOE2.4.8.1</td>
<td>BFRL</td>
<td>5.10</td>
<td>Inorganic colloid transport: Porous media</td>
</tr>
<tr>
<td>DOE2.4.8.2</td>
<td>BFRL</td>
<td>5.10</td>
<td>Inorganic colloid transport: Fractured media</td>
</tr>
<tr>
<td>DOE2.4.8.3</td>
<td>BFRL</td>
<td>5.10</td>
<td>Inorganic colloid transport: Effects of pH and Eh</td>
</tr>
<tr>
<td>DOE2.4.8.4</td>
<td>BFRL</td>
<td>5.10</td>
<td>Inorganic colloid transport: Effects of ionic strength</td>
</tr>
<tr>
<td>DOE2.4.1.11</td>
<td>RF</td>
<td>5.10</td>
<td>Borehole seal failure</td>
</tr>
<tr>
<td>DOE2.4.1.12</td>
<td>RF</td>
<td>5.10</td>
<td>Borehole seal degradation</td>
</tr>
<tr>
<td>IAEA2.2.2</td>
<td>RF</td>
<td>5.10</td>
<td>Inadequate design: Shaft seal failure</td>
</tr>
<tr>
<td>IAEA2.2.2</td>
<td>RF</td>
<td>5.10</td>
<td>Inadequate design: Exploration borehole seal failure</td>
</tr>
<tr>
<td>SKL2.2.3</td>
<td>BF</td>
<td>5.2.5.10</td>
<td>Extreme channel flow of contaminants and nuclides</td>
</tr>
<tr>
<td>SKL1.11</td>
<td>F</td>
<td>5.10</td>
<td>Degradation of hole- and shaft seals</td>
</tr>
<tr>
<td>SKL45.5</td>
<td>F</td>
<td>5.10</td>
<td>Collated generation and transport</td>
</tr>
<tr>
<td>SKL6.1</td>
<td>F</td>
<td>5.10</td>
<td>Undetected fracture zones</td>
</tr>
<tr>
<td>SKL6.12</td>
<td>F</td>
<td>5.10</td>
<td>Undetected discontinuities</td>
</tr>
<tr>
<td>SNL2.2</td>
<td>RF</td>
<td>5.10</td>
<td>Shaft and borehole seal degradation</td>
</tr>
<tr>
<td>UKN1.2.12</td>
<td>FG</td>
<td>5.10</td>
<td>Undetected features (e.g. faults, fracture networks, shear zones, brecciation)</td>
</tr>
<tr>
<td>UKN1.6.9</td>
<td>BFRL</td>
<td>5.10</td>
<td>Collated formation, dissolution, and transport</td>
</tr>
<tr>
<td>UKN1.1.2</td>
<td>RF</td>
<td>5.10</td>
<td>Investigation borehole seal failure and degradation</td>
</tr>
<tr>
<td>UKN1.1.3</td>
<td>RF</td>
<td>5.10</td>
<td>Shaft or access tunnel seal failure and degradation</td>
</tr>
<tr>
<td>HMIP2.3.8</td>
<td>BF</td>
<td>5.10</td>
<td>Collated transport</td>
</tr>
<tr>
<td>HMIP2.1.1</td>
<td>RF</td>
<td>5.10</td>
<td>Loss of integrity of borehole seals</td>
</tr>
<tr>
<td>NEA1.6.9</td>
<td>BF</td>
<td>5.10</td>
<td>Collated formation, dissolution, and transport</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>FEP NAME</td>
<td>COMMENT</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Human considerations</td>
<td>living conditions (space heating), land use</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Ecological factors</td>
<td>plants, animals</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>Soil/sediment effects</td>
<td>terrestrial sediment, including organic component, peat</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>Surface/near-surface water processes</td>
<td>groundwater discharge</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>Coastal water/ocean processes</td>
<td>including deep ocean sediment</td>
<td></td>
</tr>
<tr>
<td>6.6</td>
<td>Gas effects</td>
<td>biological activity, bioturbation</td>
<td></td>
</tr>
<tr>
<td>6.7</td>
<td>Geochemical regime (general)</td>
<td>chemical gradients & kinetics, redox potential, thermochemical</td>
<td></td>
</tr>
<tr>
<td>6.8</td>
<td>Radionuclide chemistry</td>
<td>solubility, speciation, sorption, complex formation</td>
<td></td>
</tr>
<tr>
<td>6.9</td>
<td>Radionuclide transport processes</td>
<td>advective, dispersion, diffusion</td>
<td></td>
</tr>
<tr>
<td>6.10</td>
<td>Specific factors</td>
<td>critical group, wind, air suspension, irrigation</td>
<td></td>
</tr>
<tr>
<td>6.11</td>
<td>Radionuclide chemistry</td>
<td>smoking, shaft/borehole seal failure, undetected features</td>
<td></td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>CODE</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>AECL3.19</td>
<td></td>
<td>6.1</td>
<td>Charcoal production</td>
</tr>
<tr>
<td>AECL3.49</td>
<td></td>
<td>6.1</td>
<td>Fish farming</td>
</tr>
<tr>
<td>AECL3.54</td>
<td></td>
<td>6.1,6.2</td>
<td>Game ranching</td>
</tr>
<tr>
<td>AECL3.60</td>
<td></td>
<td>6.1</td>
<td>Heat storage in lakes or underground</td>
</tr>
<tr>
<td>AECL3.99</td>
<td></td>
<td>6.1,6.11</td>
<td>Space heating</td>
</tr>
<tr>
<td>AECL3.109</td>
<td></td>
<td>6.1</td>
<td>Urbanization of the drainage system</td>
</tr>
<tr>
<td>DOE3.1.1.5</td>
<td>L, G</td>
<td>6.1,6.2</td>
<td>Greenhouse-induced Ecological effects</td>
</tr>
<tr>
<td>SK17.3</td>
<td></td>
<td>6.1,6.2,5,6.12</td>
<td>Intrusion in accumulation zone in the biosphere</td>
</tr>
<tr>
<td>NEA2.4.6</td>
<td></td>
<td>6.1</td>
<td>Land use changes</td>
</tr>
<tr>
<td>NEA2.4.7</td>
<td></td>
<td>6.1</td>
<td>Agricultural and fisheries practice changes</td>
</tr>
<tr>
<td>NEA2.4.8</td>
<td></td>
<td>6.1,6.12</td>
<td>Demographic changes, urban development</td>
</tr>
</tbody>
</table>

6.2 Ecological factors

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECL3.3</td>
<td>L</td>
<td>6.2</td>
<td>Animal grooming and feeding</td>
</tr>
<tr>
<td>AECL3.4</td>
<td>L</td>
<td>6.2</td>
<td>Animal soil ingestion</td>
</tr>
<tr>
<td>AECL3.5</td>
<td>L</td>
<td>6.2</td>
<td>Animals' diets</td>
</tr>
<tr>
<td>AECL3.54</td>
<td>L</td>
<td>6.1,6.2</td>
<td>Game ranching</td>
</tr>
<tr>
<td>AEC1.63</td>
<td>L</td>
<td>6.2</td>
<td>House cats</td>
</tr>
<tr>
<td>AEC1.78</td>
<td>L</td>
<td>6.2</td>
<td>Plant root systems</td>
</tr>
<tr>
<td>AECL3.86</td>
<td>L</td>
<td>6.2</td>
<td>Scavengers and predators</td>
</tr>
<tr>
<td>AECL3.107</td>
<td>L</td>
<td>6.2,6.11</td>
<td>Tree sap</td>
</tr>
<tr>
<td>DOE3.1.1.5</td>
<td>L, G</td>
<td>6.1,6.2</td>
<td>Greenhouse-induced Ecological effects</td>
</tr>
<tr>
<td>DOE3.1.2.5</td>
<td>L, G</td>
<td>6.2</td>
<td>Glacial-interglacial cycling: Ecological effects</td>
</tr>
<tr>
<td>DOE3.4.1.1</td>
<td>L</td>
<td>6.2</td>
<td>Terrestrial ecological development: Agricultural systems</td>
</tr>
<tr>
<td>DOE3.4.1.2</td>
<td>L</td>
<td>6.2</td>
<td>Terrestrial ecological development: Seminatural systems</td>
</tr>
<tr>
<td>DOE3.4.1.3</td>
<td>L</td>
<td>6.2</td>
<td>Terrestrial ecological development: Natural systems</td>
</tr>
<tr>
<td>DOE3.4.1.4</td>
<td>L</td>
<td>6.2</td>
<td>Terrestrial ecological development: Effects of succession</td>
</tr>
<tr>
<td>DOE3.4.2</td>
<td>L</td>
<td>6.2</td>
<td>Terrestrial ecological development: Estuarine</td>
</tr>
<tr>
<td>DOE3.5.1.0</td>
<td>L</td>
<td>6.2</td>
<td>Plants: Root uptake</td>
</tr>
<tr>
<td>DOE3.5.1.0</td>
<td>L</td>
<td>6.2</td>
<td>Plants: Deposition on surfaces</td>
</tr>
<tr>
<td>DOE3.5.1.0</td>
<td>L</td>
<td>6.2</td>
<td>Plants: Vapour uptake</td>
</tr>
<tr>
<td>DOE3.5.1.0</td>
<td>L</td>
<td>6.2</td>
<td>Plants: Internal translocation and retention</td>
</tr>
<tr>
<td>DOE3.5.1.0</td>
<td>L</td>
<td>6.2</td>
<td>Plants: Washoff and leaching by rainfall</td>
</tr>
<tr>
<td>DOE3.5.1.0</td>
<td>L</td>
<td>6.2</td>
<td>Plants: Leaf-fall and senescence</td>
</tr>
<tr>
<td>DOE3.5.1.0</td>
<td>L</td>
<td>6.2</td>
<td>Plants: Cycling processes</td>
</tr>
<tr>
<td>DOE3.5.1.1</td>
<td>L</td>
<td>6.2</td>
<td>Animals: Uptake by ingestion</td>
</tr>
<tr>
<td>DOE3.5.1.1</td>
<td>L</td>
<td>6.2</td>
<td>Animals: Uptake by inhalation</td>
</tr>
<tr>
<td>DOE3.5.1.2</td>
<td>L</td>
<td>6.2</td>
<td>Animals: Internal translocation and retention</td>
</tr>
<tr>
<td>DOE3.5.1.4</td>
<td>L</td>
<td>6.2</td>
<td>Animals: Cycling processes</td>
</tr>
<tr>
<td>DOE3.5.1.5</td>
<td>L</td>
<td>6.2</td>
<td>Animals: Effects of relocation and migration</td>
</tr>
<tr>
<td>SK17.3</td>
<td>H</td>
<td>6.1,6.2,5,6.12</td>
<td>Intrusion in accumulation zone in the biosphere</td>
</tr>
<tr>
<td>UK1.3.1</td>
<td>Q</td>
<td>6.2,6.8,4</td>
<td>Precipitation, temperature and soil water balance</td>
</tr>
<tr>
<td>UK1.7.1</td>
<td>L</td>
<td>6.2</td>
<td>Plant uptake</td>
</tr>
<tr>
<td>UK1.7.2</td>
<td>L</td>
<td>6.2</td>
<td>Animal uptake</td>
</tr>
<tr>
<td>UK1.7.3</td>
<td>L</td>
<td>6.2</td>
<td>Uptake by deep rooting species</td>
</tr>
<tr>
<td>NEA1.7.1</td>
<td>L</td>
<td>6.2</td>
<td>Plant uptake</td>
</tr>
<tr>
<td>NEA1.7.2</td>
<td>L</td>
<td>6.2</td>
<td>Animal uptake</td>
</tr>
<tr>
<td>NEA1.7.3</td>
<td>L</td>
<td>6.2</td>
<td>Uptake by deep rooting species</td>
</tr>
<tr>
<td>NEA1.7.8</td>
<td>L</td>
<td>6.2</td>
<td>Ecological change (e.g. forest fire cycles)</td>
</tr>
<tr>
<td>NEA1.7.9</td>
<td>L</td>
<td>6.2</td>
<td>Ecological response to climate (e.g. desert formation)</td>
</tr>
<tr>
<td>NEA1.7.10</td>
<td>L</td>
<td>6.2</td>
<td>Plant and animal evolution</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>CODE</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>AECL3.16</td>
<td>6.3</td>
<td>L</td>
<td>Capillary rise in soil</td>
</tr>
<tr>
<td>AECL3.65</td>
<td>6.3</td>
<td>L</td>
<td>Human soil ingestion</td>
</tr>
<tr>
<td>AECL3.71</td>
<td>6.3</td>
<td>L</td>
<td>Ionic exchange in soil</td>
</tr>
<tr>
<td>AECL3.72</td>
<td>6.3</td>
<td>L</td>
<td>Irrigation</td>
</tr>
<tr>
<td>AECL3.75</td>
<td>6.3.6.4</td>
<td>L</td>
<td>Outdoor spraying of water</td>
</tr>
<tr>
<td>AECL3.88</td>
<td>6.3.6.4</td>
<td>L</td>
<td>Sediment resuspension in water bodies</td>
</tr>
<tr>
<td>AECL3.89</td>
<td>6.3</td>
<td>L</td>
<td>Sedimentation in water bodies</td>
</tr>
<tr>
<td>AECL3.93</td>
<td>6.3</td>
<td>L</td>
<td>Soil</td>
</tr>
<tr>
<td>AECL3.94</td>
<td>6.3</td>
<td>L</td>
<td>Soil depth</td>
</tr>
<tr>
<td>AECL3.95</td>
<td>6.3</td>
<td>L</td>
<td>Soil leaching</td>
</tr>
<tr>
<td>AECL3.96</td>
<td>6.3.6.8</td>
<td>L</td>
<td>Soil porewater pH</td>
</tr>
<tr>
<td>AECL3.97</td>
<td>6.3.6.9</td>
<td>L</td>
<td>Soil sorption</td>
</tr>
<tr>
<td>AECL3.98</td>
<td>6.3</td>
<td>L</td>
<td>Soil type</td>
</tr>
<tr>
<td>DOE3.5.2.1</td>
<td>6.3.6.4</td>
<td>L</td>
<td>Groundwater discharge to soils: Adverse</td>
</tr>
<tr>
<td>DOE3.5.2.2</td>
<td>6.3.6.4</td>
<td>L</td>
<td>Groundwater discharge to soils: Diffusive</td>
</tr>
<tr>
<td>DOE3.5.2.3</td>
<td>6.3.6.4</td>
<td>L</td>
<td>Groundwater discharge to soils: Biotic</td>
</tr>
<tr>
<td>DOE3.5.2.4</td>
<td>6.3.6.4</td>
<td>L</td>
<td>Groundwater discharge to soils: Volatilisation</td>
</tr>
<tr>
<td>DOE3.5.3</td>
<td>6.3.6.4</td>
<td>L</td>
<td>Groundwater discharge to wells or springs</td>
</tr>
<tr>
<td>DOE3.5.4</td>
<td>6.3.6.4</td>
<td>L</td>
<td>Groundwater discharge to freshwaters</td>
</tr>
<tr>
<td>SKT7.1</td>
<td>6.3</td>
<td>L</td>
<td>Accumulation in sediments</td>
</tr>
<tr>
<td>SKT7.2</td>
<td>6.3</td>
<td>L</td>
<td>Accumulation in peat</td>
</tr>
<tr>
<td>UKN1.6.12</td>
<td>6.3</td>
<td>L</td>
<td>Accumulation in soils and organic debris</td>
</tr>
<tr>
<td>UKN1.7.4</td>
<td>6.3</td>
<td>L</td>
<td>Soil and sediment bioturbation</td>
</tr>
<tr>
<td>UKN1.7.5</td>
<td>6.3</td>
<td>L</td>
<td>Pedogenesis</td>
</tr>
<tr>
<td>UKN2.4.5</td>
<td>6.3.6.8</td>
<td>L</td>
<td>Altered soil or surface water chemistry</td>
</tr>
<tr>
<td>HMIP4.1.1</td>
<td>6.3.6.4</td>
<td>L</td>
<td>Groundwater discharge to soils and surface waters</td>
</tr>
<tr>
<td>HMIP4.2.1</td>
<td>6.3</td>
<td>L</td>
<td>Soil moisture and vaporization</td>
</tr>
<tr>
<td>HMIP4.2.3</td>
<td>6.3.6.7</td>
<td>L</td>
<td>Sediment transport including bioturbation</td>
</tr>
<tr>
<td>HMIP4.2.4</td>
<td>6.3.6.4.6.11</td>
<td>L</td>
<td>Sediment/water/gas interaction with the atmosphere</td>
</tr>
<tr>
<td>NEA1.6.12</td>
<td>6.3</td>
<td>L</td>
<td>Accumulation in soils and organic debris</td>
</tr>
<tr>
<td>NEA1.7.4</td>
<td>6.3</td>
<td>L</td>
<td>Soil and sediment bioturbation</td>
</tr>
<tr>
<td>NEA1.7.5</td>
<td>6.3</td>
<td>L</td>
<td>Pedogenesis</td>
</tr>
<tr>
<td>NEA2.4.5</td>
<td>6.3</td>
<td>L</td>
<td>Altered soil or surface water chemistry</td>
</tr>
</tbody>
</table>

6.4 Surface/near-surface water processes:

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECL2.16</td>
<td>6.4.6.5</td>
<td>L</td>
<td>Discharge zones</td>
</tr>
<tr>
<td>AECL3.52</td>
<td>6.4</td>
<td>L</td>
<td>Flushing of water bodies</td>
</tr>
<tr>
<td>AECL3.75</td>
<td>6.3.6.4</td>
<td>L</td>
<td>Outdoor spraying of water</td>
</tr>
<tr>
<td>AECL3.84</td>
<td>6.4</td>
<td>L</td>
<td>Runoff</td>
</tr>
<tr>
<td>AECL3.88</td>
<td>6.3.6.4</td>
<td>L</td>
<td>Sediment resuspension in water bodies</td>
</tr>
<tr>
<td>AECL3.100</td>
<td>6.4</td>
<td>L</td>
<td>Surface water bodies</td>
</tr>
<tr>
<td>AECL3.101</td>
<td>6.4</td>
<td>L</td>
<td>Surface water pH</td>
</tr>
<tr>
<td>AECL3.112</td>
<td>6.4.6.6</td>
<td>L</td>
<td>Water source</td>
</tr>
<tr>
<td>DOE3.3.2.1</td>
<td>6.4</td>
<td>L</td>
<td>Near-surface runoff processes: Overland flow</td>
</tr>
<tr>
<td>DOE3.3.2.2</td>
<td>6.4</td>
<td>L</td>
<td>Near-surface runoff processes: Interflow</td>
</tr>
<tr>
<td>DOE3.3.2.3</td>
<td>6.4</td>
<td>L</td>
<td>Near-surface runoff processes: Return flow</td>
</tr>
<tr>
<td>DOE3.3.2.4</td>
<td>6.4</td>
<td>L</td>
<td>Near-surface runoff processes: Macropore flow</td>
</tr>
<tr>
<td>DOE3.3.2.5</td>
<td>6.4</td>
<td>L</td>
<td>Near-surface runoff processes: Variable source area response</td>
</tr>
<tr>
<td>DOE3.3.4.1</td>
<td>6.4</td>
<td>L</td>
<td>Surface flow characteristics (freshwater, Stream-vanishing flow)</td>
</tr>
<tr>
<td>DOE3.3.4.2</td>
<td>6.4</td>
<td>L</td>
<td>Surface flow characteristics (freshwater): Sediment transport</td>
</tr>
<tr>
<td>DOE3.3.4.3</td>
<td>6.4</td>
<td>L</td>
<td>Surface flow characteristics (freshwater): Meander migration and other channel movement</td>
</tr>
<tr>
<td>DOE3.3.4.4</td>
<td>6.4</td>
<td>L</td>
<td>Surface flow characteristics (freshwater): Lake formation/sedimentation</td>
</tr>
<tr>
<td>DOE3.3.4.5</td>
<td>6.4</td>
<td>L</td>
<td>Surface flow characteristics (freshwater): Effects of sea level change</td>
</tr>
<tr>
<td>DOE3.3.5.1</td>
<td>6.4</td>
<td>L</td>
<td>Surface flow characteristics (estuarine): Total cycling</td>
</tr>
<tr>
<td>DOE3.3.5.2</td>
<td>6.4</td>
<td>L</td>
<td>Surface flow characteristics (estuarine): Sediment transport</td>
</tr>
<tr>
<td>DOE3.3.5.3</td>
<td>6.4</td>
<td>L</td>
<td>Surface flow characteristics (estuarine): Successional development</td>
</tr>
<tr>
<td>DOE3.3.5.4</td>
<td>6.4</td>
<td>L</td>
<td>Surface flow characteristics (estuarine): Effects of sea level change</td>
</tr>
<tr>
<td>DOE3.5.2.1</td>
<td>6.3.6.4</td>
<td>L</td>
<td>Groundwater discharge to soils: Adverse</td>
</tr>
<tr>
<td>DOE3.5.2.2</td>
<td>6.3.6.4</td>
<td>L</td>
<td>Groundwater discharge to soils: Diffusive</td>
</tr>
<tr>
<td>DOE3.5.2.3</td>
<td>6.3.6.4</td>
<td>L</td>
<td>Groundwater discharge to soils: Biotic</td>
</tr>
</tbody>
</table>
BIOSPHERE CATEGORY:

SCENED FEPs LIST

(screened)

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Surface/near-surface water processes (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOI3.5.2.4</td>
<td>L</td>
<td>6.3.6.4</td>
<td>Groundwater discharge to soil: Volatilization</td>
</tr>
<tr>
<td>DOI3.5.3</td>
<td>L</td>
<td>6.3.6.4</td>
<td>Groundwater discharge to wells or springs</td>
</tr>
<tr>
<td>DOI3.5.4</td>
<td>L</td>
<td>6.3.6.4</td>
<td>Groundwater recharge to freshwaters</td>
</tr>
<tr>
<td>DOI3.5.7.1</td>
<td>L</td>
<td>6.4</td>
<td>Surface water bodies: Water flow</td>
</tr>
<tr>
<td>DOI3.5.7.2</td>
<td>L</td>
<td>6.4</td>
<td>Surface water bodies: Suspended sediments</td>
</tr>
<tr>
<td>DOI3.5.7.3</td>
<td>L</td>
<td>6.4</td>
<td>Surface water bodies: BOTTOM sediments</td>
</tr>
<tr>
<td>DOI3.5.7.4</td>
<td>L</td>
<td>6.4</td>
<td>Surface water bodies: Effects on vegetation</td>
</tr>
<tr>
<td>DOI3.5.7.5</td>
<td>L</td>
<td>6.4</td>
<td>Surface water bodies: Effects of temporal system development</td>
</tr>
<tr>
<td>SK15.41</td>
<td>H.L</td>
<td>6.4,6.11</td>
<td>Water producing well</td>
</tr>
<tr>
<td>UKN1.3.1</td>
<td>G.L</td>
<td>6.2.6.4</td>
<td>Precipitation, temperature and soil water balance</td>
</tr>
<tr>
<td>UKN1.3.4</td>
<td>F.L</td>
<td>6.4</td>
<td>Groundwater discharge to surface water, to springs, to soils, to wells, to marine waters</td>
</tr>
<tr>
<td>HMIP4.2.1</td>
<td>L</td>
<td>6.3.6.4</td>
<td>Groundwater discharge to soils and surface waters</td>
</tr>
<tr>
<td>HMIP4.2.2</td>
<td>L</td>
<td>6.4</td>
<td>Surface water mixing</td>
</tr>
<tr>
<td>HMIP4.2.4</td>
<td>L</td>
<td>6.3.8.4,6.11</td>
<td>Sediment/water/gas interaction with the atmosphere</td>
</tr>
<tr>
<td>HMIP4.3.1</td>
<td>L</td>
<td>6.4</td>
<td>Temporary water use</td>
</tr>
<tr>
<td>NEA1.5.1</td>
<td>G.L</td>
<td>6.4</td>
<td>River flow and lake level changes</td>
</tr>
<tr>
<td>NEA1.5.4</td>
<td>F.L</td>
<td>6.4</td>
<td>Groundwater discharge (to surface water, springs, soils, wells, and marine waters)</td>
</tr>
<tr>
<td>6.5</td>
<td>Coastal water/ocean processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AECL2.16</td>
<td>F.L</td>
<td>8.4.6.5</td>
<td>Discharge zones</td>
</tr>
<tr>
<td>AECL3.112</td>
<td>H.L</td>
<td>5.4,6.5</td>
<td>Water source</td>
</tr>
<tr>
<td>DOI3.5.8.1</td>
<td>L</td>
<td>6.5</td>
<td>Coastal waters: Tidal mixing</td>
</tr>
<tr>
<td>DOI3.5.8.2</td>
<td>L</td>
<td>6.5</td>
<td>Coastal waters: Residual current mixing</td>
</tr>
<tr>
<td>DOI3.5.8.3</td>
<td>L</td>
<td>6.5</td>
<td>Coastal waters: Effects of sea level change</td>
</tr>
<tr>
<td>DOI3.5.8.4</td>
<td>L</td>
<td>6.5</td>
<td>Ocean waters: Water exchange</td>
</tr>
<tr>
<td>DOI3.5.8.5</td>
<td>L</td>
<td>6.5</td>
<td>Ocean waters: Effects of sea level change</td>
</tr>
<tr>
<td>DOI3.5.8.6</td>
<td>L</td>
<td>6.5</td>
<td>Estuaries: Effects on vegetation</td>
</tr>
<tr>
<td>DOI3.5.8.7</td>
<td>L</td>
<td>6.5</td>
<td>Estuaries: Effects of estuarine development</td>
</tr>
<tr>
<td>DOI3.5.8.8</td>
<td>L</td>
<td>6.5</td>
<td>Estuaries: Effects of sea-level change</td>
</tr>
<tr>
<td>DOI3.5.9.1</td>
<td>L</td>
<td>6.5</td>
<td>Coastal waters: Water transport</td>
</tr>
<tr>
<td>DOI3.5.9.2</td>
<td>L</td>
<td>6.5</td>
<td>Coastal waters: Suspended sediment transport</td>
</tr>
<tr>
<td>DOI3.5.9.3</td>
<td>L</td>
<td>6.5</td>
<td>Coastal waters: Bottom sediment transport</td>
</tr>
<tr>
<td>DOI3.5.9.4</td>
<td>L</td>
<td>6.5</td>
<td>Coastal waters: Effects of sea level change</td>
</tr>
<tr>
<td>DOI3.5.9.5</td>
<td>L</td>
<td>6.5</td>
<td>Coastal waters: Effects of estuarine development</td>
</tr>
<tr>
<td>DOI3.5.9.6</td>
<td>L</td>
<td>6.5</td>
<td>Coastal waters: Effects of coastal erosion</td>
</tr>
<tr>
<td>DOI3.5.9.7</td>
<td>L</td>
<td>6.5</td>
<td>Coastal waters: Effects of sea-level change</td>
</tr>
<tr>
<td>HMIP4.3.2</td>
<td>L</td>
<td>6.5</td>
<td>Estuarine water use</td>
</tr>
<tr>
<td>HMIP4.3.3</td>
<td>L</td>
<td>6.5</td>
<td>Coastal waters and water use</td>
</tr>
<tr>
<td>HMIP4.3.4</td>
<td>L</td>
<td>6.5</td>
<td>Estuarine water use</td>
</tr>
<tr>
<td>6.6</td>
<td>Gas effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AECL3.55</td>
<td>L</td>
<td>8.6</td>
<td>Gas leakage into underground living space</td>
</tr>
<tr>
<td>AECL3.82</td>
<td>L</td>
<td>6.6</td>
<td>Radon emission</td>
</tr>
<tr>
<td>DOI2.4.11.1</td>
<td>B.R.L</td>
<td>6.6</td>
<td>Gas transport: soil gas</td>
</tr>
<tr>
<td>DOI2.4.11.2</td>
<td>B.R.L</td>
<td>6.6</td>
<td>Gas transport: gas phase</td>
</tr>
<tr>
<td>UKN1.6.4</td>
<td>B.R.L</td>
<td>6.5,6.10</td>
<td>Gas mediated transport</td>
</tr>
<tr>
<td>UKN1.6.5</td>
<td>B.R.L</td>
<td>5.6,6.10</td>
<td>Multiple phase flow and gas driven flow</td>
</tr>
<tr>
<td>HMIP2.3.11</td>
<td>B.R.L</td>
<td>6.5,6.10</td>
<td>Transport of active gases</td>
</tr>
<tr>
<td>HMIP3.1.1</td>
<td>B.R.L</td>
<td>6.6,6.10</td>
<td>Gas induced groundwater transport</td>
</tr>
<tr>
<td>HMIP4.1.3</td>
<td>L</td>
<td>6.6</td>
<td>Gas discharge</td>
</tr>
<tr>
<td>NEA1.6.4</td>
<td>B.R.L</td>
<td>5.6,6.10</td>
<td>Gas mediated transport</td>
</tr>
<tr>
<td>NEA1.6.5</td>
<td>B.R.L</td>
<td>6.6,6.10</td>
<td>Multiple phase flow and gas driven flow</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>CODE</td>
<td>FEPE NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>6.7</td>
<td>Microbiological/biological activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AECII3.8</td>
<td>L</td>
<td>6.7</td>
<td>Bacteria and microbes (soil)</td>
</tr>
<tr>
<td>AECII3.9</td>
<td>L</td>
<td>6.7</td>
<td>Biocenochiation</td>
</tr>
<tr>
<td>AECII3.12</td>
<td>L</td>
<td>6.7</td>
<td>Biotoxicity</td>
</tr>
<tr>
<td>AECII3.13</td>
<td>L</td>
<td>6.7</td>
<td>Bioturbation of soils and sediments</td>
</tr>
<tr>
<td>AECII3.15</td>
<td>L</td>
<td>6.7</td>
<td>Burrowing animals</td>
</tr>
<tr>
<td>DOE2.4.9</td>
<td>BFL</td>
<td>6.7</td>
<td>Transport of radionuclides bound to microbes</td>
</tr>
<tr>
<td>DOE2.4.14</td>
<td>BFL</td>
<td>6.7</td>
<td>Biogeochemical changes</td>
</tr>
<tr>
<td>PGAS.14</td>
<td>BFL</td>
<td>6.7</td>
<td>Microbiological phenomena/effects</td>
</tr>
<tr>
<td>UKN1.7.7</td>
<td>WAPF</td>
<td>6.7</td>
<td>Microbial interactions</td>
</tr>
<tr>
<td>HMIP2.3.9</td>
<td>BFL</td>
<td>6.7</td>
<td>Transport of radionuclides bound to microbes</td>
</tr>
<tr>
<td>HMIP2.3.13</td>
<td>BFL</td>
<td>6.7</td>
<td>Biogeochemical changes</td>
</tr>
<tr>
<td>HMIP4.2.3</td>
<td>BFL</td>
<td>6.7</td>
<td>Sediment transport including bioturbation</td>
</tr>
<tr>
<td>HMIP4.2.5</td>
<td>BFL</td>
<td>6.7</td>
<td>Bioreaccumulation and translocation</td>
</tr>
<tr>
<td>HMIP4.2.6</td>
<td>L</td>
<td>6.7</td>
<td>Biogeochemical processes</td>
</tr>
<tr>
<td>NEAI.7.7</td>
<td>L</td>
<td>6.7</td>
<td>Microbial interactions</td>
</tr>
<tr>
<td>6.8</td>
<td>Geochemical regime (general)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AECII3.20</td>
<td>L</td>
<td>6.8</td>
<td>Chemical precipitation</td>
</tr>
<tr>
<td>AECII3.26</td>
<td>L</td>
<td>6.3</td>
<td>Soil porewater pH</td>
</tr>
<tr>
<td>DOE2.4.14</td>
<td>BFL</td>
<td>6.7</td>
<td>Biogeochemical changes</td>
</tr>
<tr>
<td>IAEA1.15.2</td>
<td>BFL</td>
<td>6.8</td>
<td>Fluid interactions: Dissolution</td>
</tr>
<tr>
<td>PHL4.11</td>
<td>FL</td>
<td>6.8</td>
<td>Weathering, mineralization</td>
</tr>
<tr>
<td>PGAS.13</td>
<td>BFL</td>
<td>6.8</td>
<td>Physico-chemical phenomena/ effects (eg, colloid formation)</td>
</tr>
<tr>
<td>SKI4.1.1</td>
<td>BFL</td>
<td>6.8</td>
<td>Oxidizing conditions</td>
</tr>
<tr>
<td>SKI4.1.2</td>
<td>BFL</td>
<td>6.8</td>
<td>pH-derivations</td>
</tr>
<tr>
<td>UKN1.7.6</td>
<td>WAPF</td>
<td>6.8</td>
<td>Chemical transformations</td>
</tr>
<tr>
<td>UKN2.4.5</td>
<td>L</td>
<td>6.3</td>
<td>Altered soil or surface water chemistry</td>
</tr>
<tr>
<td>HMIP2.3.7</td>
<td>BFL</td>
<td>6.8</td>
<td>Thermal effects on hydrochemistry</td>
</tr>
<tr>
<td>HMIP2.3.13</td>
<td>BFL</td>
<td>6.7</td>
<td>Biogeochemical changes</td>
</tr>
<tr>
<td>HMIP4.2.6</td>
<td>L</td>
<td>6.7</td>
<td>Biogeochemical processes</td>
</tr>
<tr>
<td>NEAI.6.14</td>
<td>BFL</td>
<td>6.8</td>
<td>Chemical gradients (electrochemical effects and osmosis)</td>
</tr>
<tr>
<td>NEAI.7.6</td>
<td>L</td>
<td>6.8</td>
<td>Chemical transformations</td>
</tr>
<tr>
<td>6.9</td>
<td>Radionuclide chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AECII3.97</td>
<td>L</td>
<td>6.3</td>
<td>Soil sorption</td>
</tr>
<tr>
<td>DOE2.4.4.1</td>
<td>BFL</td>
<td>6.9</td>
<td>Solubility: effects of pH and Eh</td>
</tr>
<tr>
<td>DOE2.4.4.2</td>
<td>BFL</td>
<td>6.9</td>
<td>Solubility: effects of ionic strength</td>
</tr>
<tr>
<td>DOE2.4.4.3</td>
<td>BFL</td>
<td>6.9</td>
<td>Solubility: effects of naturally-occurring complexes</td>
</tr>
<tr>
<td>DOE2.4.4.5</td>
<td>BFL</td>
<td>6.9</td>
<td>Solubility: effects of naturally-occurring complexes</td>
</tr>
<tr>
<td>DOE2.4.4.8</td>
<td>BFL</td>
<td>6.9</td>
<td>Solubility: effects of microbial activity</td>
</tr>
<tr>
<td>DOE2.4.5.1</td>
<td>BFL</td>
<td>6.9</td>
<td>Linear sorption</td>
</tr>
<tr>
<td>DOE2.4.5.2</td>
<td>BFL</td>
<td>6.9</td>
<td>Non-linear sorption</td>
</tr>
<tr>
<td>DOE2.4.5.3</td>
<td>BFL</td>
<td>6.9</td>
<td>Reversible sorption</td>
</tr>
<tr>
<td>DOE2.4.5.4</td>
<td>BFL</td>
<td>6.9</td>
<td>Irreversible sorption</td>
</tr>
<tr>
<td>DOE2.4.5.5</td>
<td>BFL</td>
<td>6.9</td>
<td>Sorption: Effects of pH and Eh</td>
</tr>
<tr>
<td>DOE2.4.5.6</td>
<td>BFL</td>
<td>6.9</td>
<td>Sorption: Effects of ionic strength</td>
</tr>
<tr>
<td>DOE2.4.5.7</td>
<td>BFL</td>
<td>6.9</td>
<td>Sorption: Effects of naturally-occurring complexes</td>
</tr>
<tr>
<td>DOE2.4.5.8</td>
<td>BFL</td>
<td>6.9</td>
<td>Sorption: Effects of naturally-occurring complexes</td>
</tr>
<tr>
<td>DOE2.4.5.9</td>
<td>BFL</td>
<td>6.9</td>
<td>Sorption: Effects of naturally-occurring complexes</td>
</tr>
<tr>
<td>DOE2.4.5.10</td>
<td>BFL</td>
<td>6.9</td>
<td>Sorption: Effects of naturally-occurring complexes</td>
</tr>
<tr>
<td>DOE2.4.5.13</td>
<td>BFL</td>
<td>6.9</td>
<td>Sorption: Effects of microbial activity</td>
</tr>
<tr>
<td>DOE2.4.19</td>
<td>BFL</td>
<td>6.9</td>
<td>Isotopic dilution</td>
</tr>
<tr>
<td>SKI4.1.1</td>
<td>BFL</td>
<td>6.9</td>
<td>Sorption</td>
</tr>
<tr>
<td>SKI4.1.8</td>
<td>BFL</td>
<td>6.9</td>
<td>Reconnection</td>
</tr>
<tr>
<td>SKI4.1.9</td>
<td>BFL</td>
<td>6.9</td>
<td>Complexing agents</td>
</tr>
<tr>
<td>SKI4.5.5</td>
<td>BFL</td>
<td>6.9</td>
<td>Dilution</td>
</tr>
<tr>
<td>SKI7.5</td>
<td>BFL</td>
<td>6.9</td>
<td>Isotopic dilution</td>
</tr>
<tr>
<td>UKN1.5.6</td>
<td>BFL</td>
<td>6.9</td>
<td>Solubility limit</td>
</tr>
<tr>
<td>UKN1.5.7</td>
<td>BFL</td>
<td>6.9</td>
<td>Sorption (linear/non-linear, reversible/irreversible)</td>
</tr>
<tr>
<td>UKN1.6.8</td>
<td>BFL</td>
<td>6.9</td>
<td>Dissolution, precipitation and crystallization</td>
</tr>
<tr>
<td>UKN1.6.10</td>
<td>BFL</td>
<td>6.9</td>
<td>Complexing agents</td>
</tr>
<tr>
<td>UKN1.6.13</td>
<td>BFL</td>
<td>6.9</td>
<td>Mass, isotopic and species dilution</td>
</tr>
<tr>
<td>HMIP2.3.4</td>
<td>BFL</td>
<td>6.9</td>
<td>Sorption constraints</td>
</tr>
<tr>
<td>HMIP2.3.5</td>
<td>BFL</td>
<td>6.9</td>
<td>Sorption including non-exchange</td>
</tr>
<tr>
<td>HMIP2.3.6</td>
<td>BFL</td>
<td>6.9</td>
<td>Changes in sorbing surfaces</td>
</tr>
<tr>
<td>NEAI.6.6</td>
<td>BFL</td>
<td>6.9</td>
<td>Solubility limit</td>
</tr>
<tr>
<td>NEAI.6.7</td>
<td>BFL</td>
<td>6.9</td>
<td>Sorption (linear/non-linear, reversible/irreversible)</td>
</tr>
<tr>
<td>NEAI.6.8</td>
<td>BFL</td>
<td>6.9</td>
<td>Dissolution, precipitation, and crystallization</td>
</tr>
<tr>
<td>NEAI.6.10</td>
<td>BFL</td>
<td>6.9</td>
<td>Complexing agents</td>
</tr>
<tr>
<td>NEAI.6.13</td>
<td>BFL</td>
<td>6.9</td>
<td>Mass, isotopic and species dilution</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>CODE</td>
<td>TEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>6.10</td>
<td></td>
<td></td>
<td>Radionuclide transport processes</td>
</tr>
<tr>
<td>AECL3.38</td>
<td>L</td>
<td>6.10</td>
<td>Deposition (wet and dry)</td>
</tr>
<tr>
<td>AECL3.41</td>
<td>L</td>
<td>6.10</td>
<td>Dispersion</td>
</tr>
<tr>
<td>SKI6.4</td>
<td>BRR</td>
<td>6.10</td>
<td>Diffusion</td>
</tr>
<tr>
<td>UKN1.6.1</td>
<td>BRR</td>
<td>6.10</td>
<td>Advection and dispersion</td>
</tr>
<tr>
<td>UKN1.6.2</td>
<td>BRR</td>
<td>6.10</td>
<td>Diffusion</td>
</tr>
<tr>
<td>UKN1.6.3</td>
<td>BRR</td>
<td>6.10</td>
<td>Matrix diffusion</td>
</tr>
<tr>
<td>UKN1.6.4</td>
<td>BRR</td>
<td>6.5,6.10</td>
<td>Gas mediated transport</td>
</tr>
<tr>
<td>UKN1.6.5</td>
<td>BRR</td>
<td>6.6.6.10</td>
<td>Multiphase flow and gas driven flow</td>
</tr>
<tr>
<td>HMIP2.3.1</td>
<td>BRR</td>
<td>6.10</td>
<td>Advection</td>
</tr>
<tr>
<td>HMIP2.3.2</td>
<td>BRR</td>
<td>6.10</td>
<td>Diffusion</td>
</tr>
<tr>
<td>HMIP2.3.3</td>
<td>BRR</td>
<td>6.10</td>
<td>Hydrodynamic dispersion</td>
</tr>
<tr>
<td>HMIP2.3.4</td>
<td>BRR</td>
<td>6.7,6.10</td>
<td>Transport of radionuclides bound to microbes</td>
</tr>
<tr>
<td>HMIP2.3.10</td>
<td>BRR</td>
<td>6.5,6.10</td>
<td>Transport of active gases</td>
</tr>
<tr>
<td>HMIP2.3.11</td>
<td>BRR</td>
<td>6.5,6.10</td>
<td>Gas induced groundwater transport</td>
</tr>
<tr>
<td>NEA1.6.1</td>
<td>BRR</td>
<td>6.10</td>
<td>Advection and dispersion</td>
</tr>
<tr>
<td>NEA1.6.2</td>
<td>BRR</td>
<td>6.10</td>
<td>Diffusion</td>
</tr>
<tr>
<td>NEA1.6.3</td>
<td>BRR</td>
<td>6.10</td>
<td>Matrix diffusion</td>
</tr>
<tr>
<td>NEA1.6.4</td>
<td>BRR</td>
<td>6.5,6.10</td>
<td>Gas mediated transport</td>
</tr>
<tr>
<td>NEA1.6.5</td>
<td>BRR</td>
<td>6.5,6.10</td>
<td>Multiphase flow and gas-driven flow</td>
</tr>
</tbody>
</table>

6.11 Radiological factors

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CODE</th>
<th>TEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECL3.14</td>
<td>L</td>
<td>6.11</td>
<td>Building materials</td>
</tr>
<tr>
<td>AECL3.17</td>
<td>L</td>
<td>6.11</td>
<td>Carnasses</td>
</tr>
<tr>
<td>AECL3.18</td>
<td>L</td>
<td>6.11</td>
<td>Carcinogenic contaminants</td>
</tr>
<tr>
<td>AECL3.26</td>
<td>L</td>
<td>6.11</td>
<td>Convection, turbulence and diffusion (atmospheric)</td>
</tr>
<tr>
<td>AECL3.28</td>
<td>L</td>
<td>6.11</td>
<td>Critical group - agricultural labour</td>
</tr>
<tr>
<td>AECL3.29</td>
<td>L</td>
<td>6.11</td>
<td>Critical group - clothing and home furnishings</td>
</tr>
<tr>
<td>AECL3.30</td>
<td>L</td>
<td>6.11</td>
<td>Critical group - evolution</td>
</tr>
<tr>
<td>AECL3.31</td>
<td>L</td>
<td>6.11</td>
<td>Critical group - house location</td>
</tr>
<tr>
<td>AECL3.32</td>
<td>L</td>
<td>6.11</td>
<td>Critical group - individuality</td>
</tr>
<tr>
<td>AECL3.33</td>
<td>L</td>
<td>6.11</td>
<td>Critical group - leisure pursuits</td>
</tr>
<tr>
<td>AECL3.34</td>
<td>L</td>
<td>6.11</td>
<td>Critical group - pets</td>
</tr>
<tr>
<td>AECL3.35</td>
<td>L</td>
<td>6.11</td>
<td>Dermal sorption - nuclides other than tritium</td>
</tr>
<tr>
<td>AECL3.36</td>
<td>L</td>
<td>6.11</td>
<td>Household dust and times</td>
</tr>
<tr>
<td>AECL3.37</td>
<td>L</td>
<td>6.11</td>
<td>Human diet</td>
</tr>
<tr>
<td>AECL3.55</td>
<td>L</td>
<td>6.3,6.11</td>
<td>Human soil ingestion</td>
</tr>
<tr>
<td>AECL3.79</td>
<td>L</td>
<td>6.11</td>
<td>Precipitation (meteoric)</td>
</tr>
<tr>
<td>AECL3.81</td>
<td>WL?</td>
<td>6.11</td>
<td>Radiotoxic contaminants</td>
</tr>
<tr>
<td>AECL3.91</td>
<td>HL</td>
<td>6.11</td>
<td>Showers and humidifiers</td>
</tr>
<tr>
<td>AECL3.99</td>
<td>HL</td>
<td>6.1,6.11</td>
<td>Space heating</td>
</tr>
<tr>
<td>AECL3.102</td>
<td>L</td>
<td>6.11</td>
<td>Suspension in air</td>
</tr>
<tr>
<td>AECL3.107</td>
<td>L</td>
<td>6.2,6.11</td>
<td>Tree sap</td>
</tr>
<tr>
<td>AECL3.114</td>
<td>CL</td>
<td>5.11</td>
<td>Wind</td>
</tr>
<tr>
<td>DOE3.6.1.1</td>
<td>L</td>
<td>6.11</td>
<td>External exposure: Land</td>
</tr>
<tr>
<td>DOE3.6.1.2</td>
<td>L</td>
<td>6.11</td>
<td>External exposure: Sediments</td>
</tr>
<tr>
<td>DOE3.6.1.3</td>
<td>L</td>
<td>6.11</td>
<td>External exposure: Water bodies</td>
</tr>
<tr>
<td>DOE3.6.2.1</td>
<td>L</td>
<td>6.11</td>
<td>Inhalation and Drinking water</td>
</tr>
<tr>
<td>DOE3.6.2.2</td>
<td>L</td>
<td>6.11</td>
<td>Inhalation and Agricultural crops</td>
</tr>
<tr>
<td>DOE3.6.2.3</td>
<td>L</td>
<td>6.11</td>
<td>Inhalation and Domestic animal products</td>
</tr>
<tr>
<td>DOE3.6.2.4</td>
<td>L</td>
<td>6.11</td>
<td>Inhalation and Wild plants</td>
</tr>
<tr>
<td>DOE3.6.2.5</td>
<td>L</td>
<td>6.11</td>
<td>Inhalation and Wild animals</td>
</tr>
<tr>
<td>DOE3.6.2.6</td>
<td>L</td>
<td>6.11</td>
<td>Inhalation and Soils and sediments</td>
</tr>
<tr>
<td>DOE3.6.3.1</td>
<td>L</td>
<td>5.11</td>
<td>Inhalation and Soils and sediments</td>
</tr>
<tr>
<td>DOE3.6.3.2</td>
<td>L</td>
<td>6.11</td>
<td>Inhalation and Gases and vapours (indoors)</td>
</tr>
<tr>
<td>DOE3.6.3.3</td>
<td>L</td>
<td>5.11</td>
<td>Inhalation and Gases and vapours (outdoors)</td>
</tr>
<tr>
<td>DOE3.6.3.4</td>
<td>L</td>
<td>6.11</td>
<td>Inhalation and Bacteria</td>
</tr>
<tr>
<td>DOE3.6.3.5</td>
<td>L</td>
<td>6.11</td>
<td>Inhalation and Salt particles</td>
</tr>
<tr>
<td>SK15.41</td>
<td>HIL</td>
<td>6.4.6.11</td>
<td>Water producing well</td>
</tr>
<tr>
<td>HMIP4.2.4</td>
<td>L</td>
<td>6.3,6.4,6.11</td>
<td>Sediment/water/gas interaction with the atmosphere</td>
</tr>
<tr>
<td>HMIP4.4.1</td>
<td>L</td>
<td>6.11</td>
<td>External exposure</td>
</tr>
<tr>
<td>HMIP4.4.2</td>
<td>L</td>
<td>6.11</td>
<td>Inhalation</td>
</tr>
<tr>
<td>HMIP4.4.3</td>
<td>L</td>
<td>6.11</td>
<td>Inhalation</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>CON. CODE</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>AECL3.25</td>
<td>L</td>
<td>6.12</td>
<td>Colloids</td>
</tr>
<tr>
<td>AECL3.57</td>
<td>GL</td>
<td>6.12</td>
<td>Greenhouse (food production)</td>
</tr>
<tr>
<td>AECL3.92</td>
<td>HL</td>
<td>6.12</td>
<td>Smoking</td>
</tr>
<tr>
<td>DOE2.4.7.1</td>
<td>BFRL</td>
<td>6.12</td>
<td>Organic colloid transport in Porous media</td>
</tr>
<tr>
<td>DOE2.4.7.2</td>
<td>BFRL</td>
<td>6.12</td>
<td>Organic colloid transport in Fractured media</td>
</tr>
<tr>
<td>DOE2.4.7.3</td>
<td>BFRL</td>
<td>6.12</td>
<td>Organic colloid transport: Effects of pH and Eh</td>
</tr>
<tr>
<td>DOE2.4.7.4</td>
<td>BFRL</td>
<td>6.12</td>
<td>Organic colloid transport: Effects of ionic strength</td>
</tr>
<tr>
<td>DOE2.4.8.1</td>
<td>BFRL</td>
<td>6.12</td>
<td>Inorganic colloid transport: Porous media</td>
</tr>
<tr>
<td>DOE2.4.8.2</td>
<td>BFRL</td>
<td>6.12</td>
<td>Inorganic colloid transport: Fractured media</td>
</tr>
<tr>
<td>DOE2.4.8.3</td>
<td>BFRL</td>
<td>6.12</td>
<td>Inorganic colloid transport: Effects of pH and Eh</td>
</tr>
<tr>
<td>DOE2.4.8.4</td>
<td>BFRL</td>
<td>6.12</td>
<td>Inorganic colloid transport: Effects of ionic strength</td>
</tr>
<tr>
<td>DOE4.1.1.1</td>
<td>FL</td>
<td>6.12</td>
<td>Borehole seal failure</td>
</tr>
<tr>
<td>DOE4.1.1.2</td>
<td>FL</td>
<td>6.12</td>
<td>Borehole seal degradation</td>
</tr>
<tr>
<td>IAEA2.2.2</td>
<td>FL</td>
<td>6.12</td>
<td>Inadequate design: Exploration borehole seal failure</td>
</tr>
<tr>
<td>PGA3.13</td>
<td>BFRL</td>
<td>6.8, 6.12</td>
<td>Physico-chemical phenomena/effects (eg. colloid formation)</td>
</tr>
<tr>
<td>SKT7.3</td>
<td>HL</td>
<td>6.1, 6.2, 6.12</td>
<td>Invasion in accumulation zone in the biosphere</td>
</tr>
<tr>
<td>SNL6.2</td>
<td>FL</td>
<td>6.12</td>
<td>Shale and borehole seal degradation</td>
</tr>
<tr>
<td>UKN1.6.9</td>
<td>BFRL</td>
<td>6.12</td>
<td>Colloid formation, dissolution and transport</td>
</tr>
<tr>
<td>UKN2.1.2</td>
<td>FL</td>
<td>6.12</td>
<td>Investigation borehole seal failure and degradation</td>
</tr>
<tr>
<td>HMIP2.3.8</td>
<td>BFRL</td>
<td>6.12</td>
<td>Colloid transport</td>
</tr>
<tr>
<td>HMIP5.1.1</td>
<td>FL</td>
<td>6.12</td>
<td>Loss of integrity of borehole seals</td>
</tr>
<tr>
<td>NEA1.6.9</td>
<td>BFRL</td>
<td>6.12</td>
<td>Colloid formation, dissolution, and transport</td>
</tr>
<tr>
<td>NEA2.4.8</td>
<td>HL</td>
<td>5.1, 6.12</td>
<td>Demographic change, urban development</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>FEP NAME</td>
<td>COMMENT</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Seismic events/major land movement</td>
<td>including uplift, subsidence</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>Rock deformation</td>
<td>Faults, fractures</td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>Metamorphic processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td>Erosion/weathering (surface)</td>
<td>including denudation and topography effects, land slide</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>Groundwater flow and effects</td>
<td>including denudation and topography effects, land slide</td>
<td></td>
</tr>
<tr>
<td>7.6</td>
<td>Surface water flow and effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.7</td>
<td>Sea-level effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.8</td>
<td>Magnetic effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.9</td>
<td>Glaciation/glacial effects</td>
<td>including permafrost</td>
<td></td>
</tr>
<tr>
<td>7.10</td>
<td>Climate effects (natural)</td>
<td>general effects, including extremes</td>
<td></td>
</tr>
</tbody>
</table>
| 7.11 | Specific factors | greenhouse-induced climate effects, undetected features, gas effects, ge}
<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CON. CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC1.3.1</td>
<td>7.1</td>
<td>Geology</td>
<td>Seismic events/major land movement</td>
</tr>
<tr>
<td>DOE2.2.1.1</td>
<td>7.1</td>
<td>Geology</td>
<td>Uplift</td>
</tr>
<tr>
<td>DOE2.2.1.2</td>
<td>7.1</td>
<td>Geology</td>
<td>Subsidence</td>
</tr>
<tr>
<td>DOE2.2.6.2</td>
<td>7.1</td>
<td>Geology</td>
<td>Tsunamis</td>
</tr>
<tr>
<td>DOE2.2.6.3</td>
<td>7.1</td>
<td>Geology</td>
<td>Subsidence and fault/fracture induction</td>
</tr>
<tr>
<td>IAEA1.1</td>
<td>7.10</td>
<td>Geology</td>
<td>Climatic change</td>
</tr>
<tr>
<td>IAEA1.14.3</td>
<td>7.1</td>
<td>Geology</td>
<td>Uplift/Subsidence: Isostatic</td>
</tr>
<tr>
<td>PGA2.1</td>
<td>7.1</td>
<td>Geology</td>
<td>Earthquakes</td>
</tr>
<tr>
<td>SK15.15</td>
<td>7.1</td>
<td>Geology</td>
<td>Earthquakes</td>
</tr>
<tr>
<td>SNL2.7</td>
<td>7.1, 7.12</td>
<td>Geology</td>
<td>Regional Subsidence or Uplift (also applies to subsurface)</td>
</tr>
<tr>
<td>SNL2.8</td>
<td>7.1</td>
<td>Geology</td>
<td>Subsidence and fault/fracture induction</td>
</tr>
<tr>
<td>UKN1.1.5</td>
<td>7.1</td>
<td>Geology</td>
<td>Earthquakes</td>
</tr>
<tr>
<td>UKN1.2.6</td>
<td>7.1</td>
<td>Geology</td>
<td>Earthquakes</td>
</tr>
<tr>
<td>HMP1.2.1.6</td>
<td>7.1</td>
<td>Geology</td>
<td>Earthquakes</td>
</tr>
<tr>
<td>HMP2.3.1.2</td>
<td>7.1</td>
<td>Geology</td>
<td>Earthquakes</td>
</tr>
<tr>
<td>NEA1.2.5</td>
<td>7.1</td>
<td>Geology</td>
<td>Earthquakes</td>
</tr>
<tr>
<td>NEA1.2.8</td>
<td>7.1</td>
<td>Geology</td>
<td>Earthquakes</td>
</tr>
</tbody>
</table>

7.2 Rock deformation

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CON. CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC1.2.2</td>
<td>7.1</td>
<td>Geology</td>
<td>Seismic events/major land movement</td>
</tr>
<tr>
<td>DOE2.2.2.1</td>
<td>7.1</td>
<td>Geology</td>
<td>Uplift</td>
</tr>
<tr>
<td>DOE2.2.2.6</td>
<td>7.1</td>
<td>Geology</td>
<td>Subsidence</td>
</tr>
<tr>
<td>SNI5.16</td>
<td>7.1</td>
<td>Geology</td>
<td>Earthquakes</td>
</tr>
<tr>
<td>SNL2.2.7</td>
<td>7.1</td>
<td>Geology</td>
<td>Subsidence and fault/fracture induction</td>
</tr>
<tr>
<td>SNL2.3</td>
<td>7.1</td>
<td>Geology</td>
<td>Earthquakes</td>
</tr>
<tr>
<td>UKN1.2.9</td>
<td>7.1</td>
<td>Geology</td>
<td>Earthquakes</td>
</tr>
<tr>
<td>HMP1.2.1.7</td>
<td>7.1</td>
<td>Geology</td>
<td>Earthquakes</td>
</tr>
<tr>
<td>NEA1.2.9</td>
<td>7.1</td>
<td>Geology</td>
<td>Earthquakes</td>
</tr>
<tr>
<td>NEA1.2.10</td>
<td>7.1</td>
<td>Geology</td>
<td>Earthquakes</td>
</tr>
</tbody>
</table>

7.3 Metamorphic processes

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CON. CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC1.2.40</td>
<td>7.3</td>
<td>Geology</td>
<td>Contact metamorphism</td>
</tr>
<tr>
<td>DOE2.2.3.1</td>
<td>7.3</td>
<td>Geology</td>
<td>Regional metamorphism</td>
</tr>
<tr>
<td>DOE2.2.3.2</td>
<td>7.3</td>
<td>Geology</td>
<td>Regional metamorphism</td>
</tr>
<tr>
<td>DOE2.2.3.3</td>
<td>7.3</td>
<td>Geology</td>
<td>Regional metamorphism</td>
</tr>
<tr>
<td>PGA1.2.3</td>
<td>7.3</td>
<td>Geology</td>
<td>Contact metamorphism</td>
</tr>
<tr>
<td>UKN1.1.3</td>
<td>7.3</td>
<td>Geology</td>
<td>Contact metamorphism</td>
</tr>
<tr>
<td>HMP2.1.3</td>
<td>7.3</td>
<td>Geology</td>
<td>Contact metamorphism</td>
</tr>
<tr>
<td>NEA1.2.4</td>
<td>7.3</td>
<td>Geology</td>
<td>Contact metamorphism</td>
</tr>
</tbody>
</table>
GEOLOGY/CLIMATE CATEGORY:
SCREENED FEPs LIST

(sorted)

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CODE_CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>Erosion/weathering (surface)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AECL2.21</td>
<td>G</td>
<td>7.4</td>
<td>Erosion</td>
</tr>
<tr>
<td>AECL2.61</td>
<td>G</td>
<td>7.4</td>
<td>Topography - current</td>
</tr>
<tr>
<td>AECL2.62</td>
<td>G</td>
<td>7.4</td>
<td>Topography - future</td>
</tr>
<tr>
<td>AECL3.45</td>
<td>G</td>
<td>7.4</td>
<td>Erosion - lateral transport</td>
</tr>
<tr>
<td>DOE2.2.9</td>
<td>G</td>
<td>7.4</td>
<td>Weathering</td>
</tr>
<tr>
<td>DOE2.1.3</td>
<td>G</td>
<td>7.4</td>
<td>Generalised denudation: Glacial</td>
</tr>
<tr>
<td>DOE3.2.3</td>
<td>G</td>
<td>7.4</td>
<td>Localised denudation: Glacial</td>
</tr>
<tr>
<td>DOE3.2.4.2</td>
<td>G</td>
<td>7.4, 7.7</td>
<td>Coastal erosion due to sea-level change</td>
</tr>
<tr>
<td>DOE3.5.1.3</td>
<td>G</td>
<td>7.4, 7.9</td>
<td>Erosion: Glacial</td>
</tr>
<tr>
<td>IAEA1.4</td>
<td>G</td>
<td>7.4</td>
<td>Denudation</td>
</tr>
<tr>
<td>IAEA1.5</td>
<td>G</td>
<td>7.4, 7.6</td>
<td>Stream erosion</td>
</tr>
<tr>
<td>IAEA1.6</td>
<td>G</td>
<td>7.4, 7.9</td>
<td>Glacial erosion</td>
</tr>
<tr>
<td>DOE15.4</td>
<td>G</td>
<td>7.4</td>
<td>Sedimentation</td>
</tr>
<tr>
<td>IAEA1.8</td>
<td>G</td>
<td>7.4</td>
<td>Erosion (fluvial and glacial)</td>
</tr>
<tr>
<td>DOE16.4</td>
<td>G</td>
<td>7.4</td>
<td>Sedimentation</td>
</tr>
<tr>
<td>SKS2.6</td>
<td>G</td>
<td>7.4</td>
<td>Erosion on surface/sediments</td>
</tr>
<tr>
<td>SLN2.1</td>
<td>G</td>
<td>7.4</td>
<td>Erosion/Sedimentation</td>
</tr>
<tr>
<td>UKN1.4.1</td>
<td>G</td>
<td>7.4</td>
<td>Landslide</td>
</tr>
<tr>
<td>UKN1.4.5</td>
<td>G</td>
<td>7.4</td>
<td>Freshwater sediment transport and deposition</td>
</tr>
<tr>
<td>UKN1.4.6</td>
<td>G</td>
<td>7.4</td>
<td>Coastal erosion and estuarine development</td>
</tr>
<tr>
<td>UKN1.4.7</td>
<td>G</td>
<td>7.4</td>
<td>Marine sediment transport and deposition</td>
</tr>
<tr>
<td>UKN1.4.8</td>
<td>G</td>
<td>7.4</td>
<td>Frost weathering and solifluction</td>
</tr>
<tr>
<td>UKN1.4.9</td>
<td>G</td>
<td>7.4</td>
<td>Chemical denudation and weathering</td>
</tr>
<tr>
<td>UKN1.4.10</td>
<td>G</td>
<td>7.4</td>
<td>Frost weathering</td>
</tr>
<tr>
<td>HMP24.1</td>
<td>G</td>
<td>7.4</td>
<td>Generalised denudation</td>
</tr>
<tr>
<td>HMP24.2</td>
<td>G</td>
<td>7.4</td>
<td>Localised denudation</td>
</tr>
<tr>
<td>NEA1.4.1</td>
<td>G</td>
<td>7.4</td>
<td>Landslide</td>
</tr>
<tr>
<td>NEA1.4.9</td>
<td>G</td>
<td>7.4</td>
<td>Chemical denudation and weathering</td>
</tr>
<tr>
<td>NEA1.4.10</td>
<td>G</td>
<td>7.4</td>
<td>Frost weathering</td>
</tr>
</tbody>
</table>

7.5 Groundwater flow and effects

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CODE_CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE2.3.1</td>
<td>G</td>
<td>7.5</td>
<td>Variation in groundwater recharge</td>
</tr>
<tr>
<td>DOE2.3.2</td>
<td>G</td>
<td>7.5</td>
<td>Groundwater losses (direct evaporation, springflow)</td>
</tr>
<tr>
<td>IAEA1.2</td>
<td>G</td>
<td>7.5, 7.6</td>
<td>Hydrological change</td>
</tr>
<tr>
<td>IAEA2.6</td>
<td>G</td>
<td>7.5, 7.6</td>
<td>Large-scale hydrological change</td>
</tr>
</tbody>
</table>

7.6 Surface water flow and effects

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CODE_CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAEA1.2</td>
<td>G</td>
<td>7.5, 7.5</td>
<td>Hydrological change</td>
</tr>
<tr>
<td>IAEA1.5</td>
<td>G</td>
<td>7.4, 7.6</td>
<td>Stream erosion</td>
</tr>
<tr>
<td>IAEA1.7</td>
<td>G</td>
<td>7.6, 7.10</td>
<td>Flooding</td>
</tr>
<tr>
<td>IAEA2.6</td>
<td>G</td>
<td>7.5, 7.6</td>
<td>Large-scale hydrological change</td>
</tr>
<tr>
<td>UKN1.3.1</td>
<td>Q</td>
<td>7.6, 7.10</td>
<td>Precipitation, temperature and soil water balance</td>
</tr>
<tr>
<td>UKN1.3.2</td>
<td>G</td>
<td>7.6, 7.10</td>
<td>Extremes of precipitation, snow melt and associated flooding</td>
</tr>
<tr>
<td>UKN1.5.1</td>
<td>G</td>
<td>7.6</td>
<td>River flow and lake level changes</td>
</tr>
<tr>
<td>NEA1.3.1</td>
<td>G</td>
<td>7.6, 7.10</td>
<td>Precipitation, temperature, and soil water balance</td>
</tr>
<tr>
<td>NEA1.5.1</td>
<td>Q</td>
<td>7.6</td>
<td>River flow and lake level changes</td>
</tr>
</tbody>
</table>

7.7 Sea-level effects

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CODE_CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE3.1.1.3</td>
<td>G</td>
<td>7.7, 7.11</td>
<td>Greenhouse-induced Sea level rise</td>
</tr>
<tr>
<td>DOE3.1.2.3</td>
<td>G</td>
<td>7.7, 7.9</td>
<td>Glacial-interglacial cycling: Sea level changes (rise/fall)</td>
</tr>
<tr>
<td>DOE3.2.4.2</td>
<td>G</td>
<td>7.4, 7.7</td>
<td>Coastal erosion due to sea-level change</td>
</tr>
<tr>
<td>DOE3.3.1</td>
<td>G</td>
<td>7.7</td>
<td>Soil moisture and evaporation due to sea-level change</td>
</tr>
<tr>
<td>IAEA1.3</td>
<td>G</td>
<td>7.7</td>
<td>Sea level change</td>
</tr>
<tr>
<td>SK2.6</td>
<td>G</td>
<td>7.7</td>
<td>Sea-level changes</td>
</tr>
<tr>
<td>SKS2.1</td>
<td>G</td>
<td>7.7</td>
<td>Change in sea level</td>
</tr>
<tr>
<td>SLN2.4</td>
<td>G</td>
<td>7.7</td>
<td>Sea-Level Variations</td>
</tr>
<tr>
<td>UKN1.3.4</td>
<td>G</td>
<td>7.7</td>
<td>Sea-level rise/fall</td>
</tr>
<tr>
<td>NEA1.3.4</td>
<td>G</td>
<td>7.7</td>
<td>Sea-level rise/fall</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>CON. CODE</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>AECL2.39</td>
<td>G</td>
<td>7.8</td>
<td>Magnetic poles</td>
</tr>
<tr>
<td>AECL2.50</td>
<td>G</td>
<td>7.8</td>
<td>Flipping of earth’s magnetic poles</td>
</tr>
<tr>
<td>SK15.20</td>
<td>G</td>
<td>7.8</td>
<td>Changes of the magnetic field</td>
</tr>
<tr>
<td>LK11.22</td>
<td>G</td>
<td>7.8</td>
<td>Changes in the Earth’s magnetic field</td>
</tr>
<tr>
<td>NEA1.22</td>
<td>G</td>
<td>7.8</td>
<td>Changes in the Earth’s magnetic field</td>
</tr>
</tbody>
</table>

7.9 Oscillation/glacial effects

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CON. CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECL1.41</td>
<td>G</td>
<td>7.9</td>
<td>Glaciation</td>
</tr>
<tr>
<td>AECL2.28</td>
<td>G</td>
<td>7.9</td>
<td>Glaciation</td>
</tr>
<tr>
<td>AECL3.65</td>
<td>G</td>
<td>7.9</td>
<td>Glaciation</td>
</tr>
<tr>
<td>DOE3.1.2.1</td>
<td>G</td>
<td>7.9</td>
<td>Glacial-interglacial cycling: Precipitation</td>
</tr>
<tr>
<td>DOE3.1.2.2</td>
<td>G</td>
<td>7.9</td>
<td>Glacial-interglacial cycling: Temperature</td>
</tr>
<tr>
<td>DOE3.1.2.3</td>
<td>G</td>
<td>7.7.7.9</td>
<td>Glacial-interglacial cycling: Sea level changes (rise/tail)</td>
</tr>
<tr>
<td>DOE3.1.2.5</td>
<td>LG</td>
<td>7.9</td>
<td>Glacial-interglacial cycling: Ecological effects</td>
</tr>
<tr>
<td>DOE3.1.2.6</td>
<td>G</td>
<td>7.9</td>
<td>Glacial-interglacial cycling: Seasonally frozen ground</td>
</tr>
<tr>
<td>DOE3.1.2.7</td>
<td>G</td>
<td>7.9</td>
<td>Glacial-interglacial cycling: Permanently frozen ground</td>
</tr>
<tr>
<td>DOE3.1.2.8</td>
<td>G</td>
<td>7.9</td>
<td>Glacial-interglacial cycling: Glaciation</td>
</tr>
<tr>
<td>DOE3.1.2.9</td>
<td>G</td>
<td>7.9</td>
<td>Glacial-interglacial cycling: Displacement</td>
</tr>
<tr>
<td>DOE3.1.3.1</td>
<td>G</td>
<td>7.9</td>
<td>Glacial-interglacial: Energy exchange, greenhouse gas induced</td>
</tr>
<tr>
<td>DOE3.1.3.2</td>
<td>G</td>
<td>7.9</td>
<td>Glacial-interglacial end due to other causes</td>
</tr>
<tr>
<td>DOE3.1.2.3</td>
<td>G</td>
<td>7.4.7.9</td>
<td>Localised sedimentation, Glacial</td>
</tr>
<tr>
<td>DOE3.2.3.3</td>
<td>G</td>
<td>7.9</td>
<td>Sediment redistribution: Glacial</td>
</tr>
<tr>
<td>DOE3.5.1.3</td>
<td>G</td>
<td>7.4.7.9</td>
<td>Erosion: Glacial</td>
</tr>
<tr>
<td>UKE1.4.1</td>
<td>G</td>
<td>7.9.7.10</td>
<td>No ice age</td>
</tr>
<tr>
<td>SK15.22</td>
<td>G</td>
<td>7.8</td>
<td>Permafrost</td>
</tr>
<tr>
<td>SK15.22</td>
<td>GR</td>
<td>7.9.7.11</td>
<td>Accumulation of gases under permafrost</td>
</tr>
<tr>
<td>SK15.32</td>
<td>G</td>
<td>7.9</td>
<td>Glaciation</td>
</tr>
<tr>
<td>SK15.60</td>
<td>G</td>
<td>7.9.7.10</td>
<td>No ice age</td>
</tr>
<tr>
<td>SNL12.2</td>
<td>G</td>
<td>7.9</td>
<td>Glaciation</td>
</tr>
<tr>
<td>UKN1.3.5</td>
<td>G</td>
<td>7.9</td>
<td>Periglacial effects (eg. permafrost, high seasonality)</td>
</tr>
<tr>
<td>UKN1.3.6</td>
<td>G</td>
<td>7.9</td>
<td>Glaciation (erosion/deposition, glacial loading, hydrogeological change)</td>
</tr>
<tr>
<td>HMP1.2.3</td>
<td>G</td>
<td>7.9.7.10</td>
<td>Erosion: Glacial-interglacial cycling</td>
</tr>
<tr>
<td>NEA1.3.5</td>
<td>G</td>
<td>7.9</td>
<td>Periglacial effects (permafrost, high seasonality)</td>
</tr>
<tr>
<td>NEA1.3.6</td>
<td>G</td>
<td>7.9</td>
<td>Glaciation (erosion/deposition, glacial loading, hydrogeological change)</td>
</tr>
<tr>
<td>NEA1.3.7</td>
<td>G</td>
<td>7.9.7.10</td>
<td>No ice age</td>
</tr>
</tbody>
</table>

7.10 Climate effects (natural)

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CON. CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECL1.14</td>
<td>G</td>
<td>7.10</td>
<td>Climate change</td>
</tr>
<tr>
<td>AECL2.8</td>
<td>G</td>
<td>7.10</td>
<td>Climate change</td>
</tr>
<tr>
<td>AECL3.22</td>
<td>G</td>
<td>7.10</td>
<td>Climate</td>
</tr>
<tr>
<td>AECL3.23</td>
<td>G</td>
<td>7.10</td>
<td>Climate - evolution</td>
</tr>
<tr>
<td>IAE1.1</td>
<td>G</td>
<td>7.10</td>
<td>Climate change</td>
</tr>
<tr>
<td>IAE1.7</td>
<td>G</td>
<td>7.5.7.10</td>
<td>Flooding</td>
</tr>
<tr>
<td>IAE2.5</td>
<td>G</td>
<td>7.10</td>
<td>Climate change (including climate control)</td>
</tr>
<tr>
<td>PGA1.1</td>
<td>G</td>
<td>7.10</td>
<td>Climate change</td>
</tr>
<tr>
<td>SK15.10</td>
<td>G</td>
<td>7.9.7.10</td>
<td>No ice age</td>
</tr>
<tr>
<td>SNL15.3</td>
<td>G</td>
<td>7.10</td>
<td>Glacial periods</td>
</tr>
<tr>
<td>UKN1.3.1</td>
<td>G</td>
<td>7.10</td>
<td>Solar insolation</td>
</tr>
<tr>
<td>UKN1.3.2</td>
<td>G</td>
<td>7.5.7.10</td>
<td>Precipitation, temperature and soil water balance</td>
</tr>
<tr>
<td>UKN1.3.2</td>
<td>G</td>
<td>7.6.7.10</td>
<td>Extremes of precipitation, snow melt and associated flooding in natural science</td>
</tr>
<tr>
<td>UKN1.3.7</td>
<td>G</td>
<td>7.10</td>
<td>No ice age</td>
</tr>
<tr>
<td>HMP3.1.2</td>
<td>G</td>
<td>7.10</td>
<td>Natural climate change</td>
</tr>
<tr>
<td>HMP3.1.3</td>
<td>G</td>
<td>7.9.7.10</td>
<td>Ext from glacial-interglacial cycling</td>
</tr>
<tr>
<td>HMP3.1.4</td>
<td>G</td>
<td>7.10</td>
<td>Interception of natural climate change</td>
</tr>
<tr>
<td>NEA1.3.2</td>
<td>G</td>
<td>7.10</td>
<td>Solar insolation</td>
</tr>
<tr>
<td>NEA1.3.2</td>
<td>G</td>
<td>7.5.7.10</td>
<td>Precipitation, temperature, and soil water balance</td>
</tr>
<tr>
<td>NEA1.3.2</td>
<td>G</td>
<td>7.10</td>
<td>Extremes of precipitation, snow melt and associated flooding</td>
</tr>
<tr>
<td>NEA1.3.7</td>
<td>G</td>
<td>7.9.7.10</td>
<td>No ice age</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>CON. CODE</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>7.11</td>
<td>Specific factors</td>
<td>7.11</td>
<td>Overall screening criteria</td>
</tr>
<tr>
<td>AECL2.29</td>
<td>G</td>
<td>7.11</td>
<td>Greenhouse effect</td>
</tr>
<tr>
<td>AECL3.57</td>
<td>G</td>
<td>7.11</td>
<td>Greenhouse (food production)</td>
</tr>
<tr>
<td>AECL3.58</td>
<td>G</td>
<td>7.11</td>
<td>Greenhouse effect</td>
</tr>
<tr>
<td>AECL3.59</td>
<td>G</td>
<td>7.11</td>
<td>Groundshine, treeshine</td>
</tr>
<tr>
<td>AECL3.114</td>
<td>G</td>
<td>7.11</td>
<td>Wind</td>
</tr>
<tr>
<td>DOE2.10</td>
<td>G</td>
<td>7.11</td>
<td>Effects of natural gases</td>
</tr>
<tr>
<td>DOE2.2.11</td>
<td>G</td>
<td>7.11</td>
<td>Geothermal effects</td>
</tr>
<tr>
<td>DOE2.1.1.1</td>
<td>G</td>
<td>7.11</td>
<td>Greenhouse-induced Precipitation</td>
</tr>
<tr>
<td>DOE2.1.1.2</td>
<td>G</td>
<td>7.11</td>
<td>Greenhouse-induced Temperature</td>
</tr>
<tr>
<td>DOE2.1.1.3</td>
<td>G</td>
<td>7.7.7.11</td>
<td>Greenhouse-induced Sea level rise</td>
</tr>
<tr>
<td>DOE2.1.1.5</td>
<td>LG</td>
<td>7.11</td>
<td>Greenhouse-induced Ecological effects</td>
</tr>
<tr>
<td>DOE3.1.1.6</td>
<td>G</td>
<td>7.11</td>
<td>Greenhouse-induced Potential evaporation</td>
</tr>
<tr>
<td>DOE3.1.3.1</td>
<td>G</td>
<td>7.9.7.11</td>
<td>Glacial/interglacial ext: greenhouse gas induced</td>
</tr>
<tr>
<td>IAEA1.12</td>
<td>G</td>
<td>7.11</td>
<td>Geochemical change</td>
</tr>
<tr>
<td>IAEA1.15.1</td>
<td>G</td>
<td>7.11</td>
<td>Undetected features: Faults, shear zones</td>
</tr>
<tr>
<td>IAEA1.15.2</td>
<td>G</td>
<td>7.11</td>
<td>Undetected features: Breccia pipes</td>
</tr>
<tr>
<td>IAEA1.15.3</td>
<td>G</td>
<td>7.11</td>
<td>Undetected features: Lava tubes</td>
</tr>
<tr>
<td>IAEA1.15.4</td>
<td>G</td>
<td>7.11</td>
<td>Undetected features: Intrusive dikes</td>
</tr>
<tr>
<td>IAEA1.15.5</td>
<td>G</td>
<td>7.11</td>
<td>Undetected features: Gas or brine pockets</td>
</tr>
<tr>
<td>SKIS.22</td>
<td>GR</td>
<td>7.9.7.11</td>
<td>Accumulation of gases under permafrost</td>
</tr>
<tr>
<td>SKIS.43</td>
<td>GR</td>
<td>7.11</td>
<td>Methane intrusion</td>
</tr>
<tr>
<td>SNL2.7</td>
<td>G</td>
<td>7.1.7.11</td>
<td>Tsunamis</td>
</tr>
<tr>
<td>UKN1.2.11</td>
<td>G</td>
<td>7.11</td>
<td>Rock heterogeneity (e.g., permeability, mineralogy) affecting water and gas flow</td>
</tr>
<tr>
<td>UKN1.2.12</td>
<td>KS</td>
<td>7.11</td>
<td>Undetected features (e.g., faults, fracture networks, shear zones, brecciation)</td>
</tr>
<tr>
<td>UKN2.4.9</td>
<td>HG</td>
<td>7.11</td>
<td>Anthropogenic climate change (greenhouse effect)</td>
</tr>
<tr>
<td>HMIP3.1.1</td>
<td>HG</td>
<td>7.11</td>
<td>Human induced climate change</td>
</tr>
<tr>
<td>NEA1.2.11</td>
<td>G</td>
<td>7.11</td>
<td>Rock heterogeneity (permeability, mineralogy), affecting water and gas flow</td>
</tr>
<tr>
<td>NEA1.2.12</td>
<td>G</td>
<td>7.11</td>
<td>Undetected features (faults, fracture networks, shear zones, brecciation, gas)</td>
</tr>
<tr>
<td>NEA2.4.9</td>
<td>HG</td>
<td>7.11</td>
<td>Anthropogenic climate change (greenhouse effect)</td>
</tr>
</tbody>
</table>

Footnotes:

- Additional details and notes are provided in the table entries where applicable.

Abbreviations:
- **G**: General
- **LG**: Local Geology
- **GR**: Geophysical Risk
- **KS**: Karst Setting
- **HG**: Hydrogeological Setting
- **HMIP**: Human-Made Interventions
- **NEA**: Natural Environmental Anomalies

Notes:
- The table includes specific categories and their corresponding codes related to geological and environmental factors.
- Each entry provides a detailed description of the impact or effect associated with the given category or factor.
<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>FEP NAME</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Inadvertent intrusion</td>
<td>drilling (boreholes), archaeological investigations</td>
</tr>
<tr>
<td>8.2</td>
<td>Surface activities</td>
<td>land/earth moving, land use practices (non-agricultural)</td>
</tr>
<tr>
<td>8.3</td>
<td>Subsurface activities</td>
<td>tunneling, underground construction, injection of liquid wastes</td>
</tr>
<tr>
<td>8.4</td>
<td>Water use</td>
<td>groundwater abstraction (wells), industrial, geothermal</td>
</tr>
<tr>
<td>8.5</td>
<td>Agricultural and fisheries practices</td>
<td>charcoal production, farming</td>
</tr>
<tr>
<td>8.6</td>
<td>Radiological factors</td>
<td>smoking, transport agents,</td>
</tr>
<tr>
<td>8.7</td>
<td>Specific factors</td>
<td>shaft/borehole seal failure, undetected features, urbanisation, loss of records</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>CODE</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>AEC1.52</td>
<td>Inadvertent intrusion</td>
<td>8.1</td>
</tr>
<tr>
<td>AEC1.25</td>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td>AEC1.70</td>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td>DOE4.2.3</td>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td>DOE4.2.10</td>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td>IAEA2.8.1</td>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td>IAEA2.3.2</td>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td>IAEA2.8.3</td>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td>PGA4.3.2</td>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td>SK5.21</td>
<td></td>
<td>8.1, 8.7</td>
</tr>
<tr>
<td>SK5.36</td>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td>SK5.37</td>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td>SK7.3</td>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td>SNL4.1</td>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td>SNL4.2</td>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td>SNL4.4</td>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td>SNL4.5</td>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td>UKN2.3.3</td>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td>UKN2.3.9</td>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td>HMIP5.2.4</td>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td>NEA2.3.3</td>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td>NEA2.3.9</td>
<td></td>
<td>8.1</td>
</tr>
</tbody>
</table>

8.2 Surface activities

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC1.19</td>
<td></td>
<td>8.2</td>
<td>Earthmoving</td>
</tr>
<tr>
<td>SK7.7</td>
<td></td>
<td>8.2</td>
<td>Human induced changes in surface hydrology</td>
</tr>
<tr>
<td>SK7.8</td>
<td></td>
<td>8.2, 8.4</td>
<td>Altered surface water chemistry by humans</td>
</tr>
<tr>
<td>SNL5.1</td>
<td></td>
<td>8.2, 8.4</td>
<td>Hydrologic Stresses: Irrigation</td>
</tr>
<tr>
<td>SNL5.2</td>
<td></td>
<td>8.2</td>
<td>Hydrologic Stresses: Damming of Streams or Rivers</td>
</tr>
<tr>
<td>UKN2.4.6</td>
<td></td>
<td>8.2</td>
<td>Land use changes</td>
</tr>
<tr>
<td>NEA2.4.5</td>
<td></td>
<td>8.2, 8.4</td>
<td>Altered soil or surface water chemistry</td>
</tr>
<tr>
<td>NEA2.4.6</td>
<td></td>
<td>8.2</td>
<td>Land use changes</td>
</tr>
</tbody>
</table>

8.3 Subsurface activities

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC1.2.14</td>
<td></td>
<td>8.3</td>
<td>Dewatering</td>
</tr>
<tr>
<td>AEC1.2.69</td>
<td></td>
<td>8.3</td>
<td>Wells</td>
</tr>
<tr>
<td>AEC1.70</td>
<td></td>
<td>8.3</td>
<td>Wells (high demand)</td>
</tr>
<tr>
<td>AEC1.60</td>
<td></td>
<td>8.3, 8.4</td>
<td>Heat storage in lakes or underground</td>
</tr>
<tr>
<td>DOE4.2.5</td>
<td></td>
<td>8.3</td>
<td>Geothermal energy production</td>
</tr>
<tr>
<td>DOE4.2.7</td>
<td></td>
<td>8.3</td>
<td>Tunnelling</td>
</tr>
<tr>
<td>DOE4.2.8</td>
<td></td>
<td>8.3</td>
<td>Construction of underground storage/disposal facilities</td>
</tr>
<tr>
<td>DOE4.2.9</td>
<td></td>
<td>8.3</td>
<td>Construction of underground dwellings/shelters</td>
</tr>
<tr>
<td>DOE4.2.11</td>
<td></td>
<td>8.3</td>
<td>Injection of liquid wastes</td>
</tr>
<tr>
<td>PGE1.4.2</td>
<td></td>
<td>8.3</td>
<td>Injection of liquid waste</td>
</tr>
<tr>
<td>PGE1.4.4</td>
<td></td>
<td>8.3</td>
<td>Geothermal energy production in crystalline rock</td>
</tr>
<tr>
<td>SK7.28</td>
<td></td>
<td>8.3</td>
<td>Underground dwellings</td>
</tr>
<tr>
<td>SK7.34</td>
<td></td>
<td>8.3</td>
<td>Geothermal energy production</td>
</tr>
<tr>
<td>UKN2.3.5</td>
<td></td>
<td>8.3</td>
<td>Geothermal energy production</td>
</tr>
<tr>
<td>UKN2.3.7</td>
<td></td>
<td>8.3</td>
<td>Tunnelling</td>
</tr>
<tr>
<td>UKN2.3.8</td>
<td></td>
<td>8.3</td>
<td>Underground construction</td>
</tr>
<tr>
<td>UKN2.3.10</td>
<td></td>
<td>8.3</td>
<td>Injection of liquid wastes</td>
</tr>
<tr>
<td>NEA2.3.5</td>
<td></td>
<td>8.3</td>
<td>Geothermal energy production</td>
</tr>
<tr>
<td>NEA2.3.7</td>
<td></td>
<td>8.3</td>
<td>Tunnelling</td>
</tr>
<tr>
<td>NEA2.3.8</td>
<td></td>
<td>8.3</td>
<td>Underground construction</td>
</tr>
<tr>
<td>NEA2.3.10</td>
<td></td>
<td>8.3</td>
<td>Injection of liquid wastes</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY</td>
<td>CODE</td>
<td>NAME</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>AEC3.30</td>
<td>H</td>
<td>8.3.8.4</td>
<td>Heat storage in lakes or underground</td>
</tr>
<tr>
<td>AEC3.67</td>
<td>H</td>
<td>8.4.4</td>
<td>Industrial use of water</td>
</tr>
<tr>
<td>AEC3.75</td>
<td>H</td>
<td>8.4.8.6</td>
<td>Outdoor spraying of water</td>
</tr>
<tr>
<td>AEC3.112</td>
<td>H</td>
<td>8.4.1</td>
<td>Water source</td>
</tr>
<tr>
<td>DCE4.12</td>
<td>H</td>
<td>8.4.6.1</td>
<td>Groundwater abstraction</td>
</tr>
<tr>
<td>SKS5.27</td>
<td>H</td>
<td>8.4.8.5</td>
<td>Human induced actions on groundwater recharge</td>
</tr>
<tr>
<td>SKS5.41</td>
<td>H</td>
<td>8.4.8.6</td>
<td>Water-producing well</td>
</tr>
<tr>
<td>SKS7.5</td>
<td>H</td>
<td>8.2.8.4</td>
<td>Altered surface water chemistry by humans</td>
</tr>
<tr>
<td>SNL5.1</td>
<td>H</td>
<td>8.2.8.4</td>
<td>Hydrologic Stresses: Irrigation</td>
</tr>
<tr>
<td>UKN2.3.11</td>
<td>H</td>
<td>8.4.8.6</td>
<td>Groundwater abstraction</td>
</tr>
<tr>
<td>UKN2.4.4</td>
<td>H</td>
<td>8.4.8.5</td>
<td>Irrigation</td>
</tr>
<tr>
<td>NEA2.3.11</td>
<td>H</td>
<td>8.4.8.5</td>
<td>Groundwater abstraction</td>
</tr>
<tr>
<td>NEA2.4.4</td>
<td>H</td>
<td>8.4.8.5</td>
<td>Irrigation</td>
</tr>
<tr>
<td>NEA2.4.5</td>
<td>H</td>
<td>8.2.8.4</td>
<td>Altered soil or surface water chemistry</td>
</tr>
</tbody>
</table>

8.5 Agricultural and Fisheries Practices

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CODE</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC3.19</td>
<td>H</td>
<td>8.5.6</td>
<td>Charcoal production</td>
</tr>
<tr>
<td>AEC3.48</td>
<td>H</td>
<td>8.5.8</td>
<td>Fish farming</td>
</tr>
<tr>
<td>AEC3.54</td>
<td>H</td>
<td>8.5.6</td>
<td>Game raising</td>
</tr>
<tr>
<td>UKN2.4.4</td>
<td>H</td>
<td>8.4.8.5</td>
<td>Irrigation</td>
</tr>
<tr>
<td>NEA2.4.7</td>
<td>H</td>
<td>8.4.8.5</td>
<td>Irrigation</td>
</tr>
<tr>
<td>NEA2.4.7</td>
<td>H</td>
<td>8.4.8.5</td>
<td>Irrigation</td>
</tr>
</tbody>
</table>

8.6 Radiological Factors

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CODE</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC3.53</td>
<td>H</td>
<td>8.6.6</td>
<td>Food preparation</td>
</tr>
<tr>
<td>AEC3.75</td>
<td>H</td>
<td>8.4.8.6</td>
<td>Outdoor spraying of water</td>
</tr>
<tr>
<td>AEC3.91</td>
<td>H</td>
<td>8.6.6</td>
<td>Showers and humidifiers</td>
</tr>
<tr>
<td>AEC3.92</td>
<td>H</td>
<td>8.6.6</td>
<td>Smoking</td>
</tr>
<tr>
<td>AEC3.99</td>
<td>H</td>
<td>8.6.6</td>
<td>Space heating</td>
</tr>
<tr>
<td>IAE2.4.1</td>
<td>H</td>
<td>8.6.6</td>
<td>Transport agent introduction: Irrigation</td>
</tr>
<tr>
<td>IAE2.4.2</td>
<td>H</td>
<td>8.6.6</td>
<td>Transport agent introduction: Reservoir</td>
</tr>
</tbody>
</table>

8.7 Specific Factors

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>CATEGORY</th>
<th>CODE</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC2.66</td>
<td>H</td>
<td>8.7.7</td>
<td>Vault closure (incomplete)</td>
</tr>
<tr>
<td>AEC3.109</td>
<td>H</td>
<td>8.7.7</td>
<td>Urbanization on the discharge site</td>
</tr>
<tr>
<td>IAE2.1.11</td>
<td>H</td>
<td>8.7.7</td>
<td>Undetected past intrusion: Boreholes</td>
</tr>
<tr>
<td>IAE2.1.12</td>
<td>H</td>
<td>8.7.7</td>
<td>Undetected past intrusion: Mine shafts</td>
</tr>
<tr>
<td>SKS5.2</td>
<td>H</td>
<td>8.7.7</td>
<td>Non-sealed repository</td>
</tr>
<tr>
<td>SKS5.3</td>
<td>H</td>
<td>8.7.7</td>
<td>Stray materials left</td>
</tr>
<tr>
<td>SKS5.4</td>
<td>H</td>
<td>8.7.7</td>
<td>Decontamination materials left</td>
</tr>
<tr>
<td>SKS5.9</td>
<td>H</td>
<td>8.7.7</td>
<td>Unsealed boreholes and/or shafts</td>
</tr>
<tr>
<td>SKS5.21</td>
<td>H</td>
<td>8.1.8.7</td>
<td>Future boreholes and undetected past boreholes</td>
</tr>
<tr>
<td>SK6.8</td>
<td>H</td>
<td>8.7.7</td>
<td>Human induced climate change</td>
</tr>
<tr>
<td>SK7.9</td>
<td>H</td>
<td>8.7.7</td>
<td>Loss of records</td>
</tr>
<tr>
<td>SK7.11</td>
<td>H</td>
<td>8.7.7</td>
<td>City on the site</td>
</tr>
<tr>
<td>UKN2.1.1</td>
<td>H</td>
<td>8.7.7</td>
<td>Undetected past intrusions, (e.g., boreholes, mining)</td>
</tr>
<tr>
<td>UKN2.2.1</td>
<td>H</td>
<td>8.7.7</td>
<td>Radioactive waste disposal error</td>
</tr>
<tr>
<td>UKN2.2.9</td>
<td>H</td>
<td>8.7.7</td>
<td>Inadequate backfill or compaction, voidage</td>
</tr>
<tr>
<td>UKN2.2.9</td>
<td>H</td>
<td>8.7.7</td>
<td>Inadvertent inclusion of undesirable materials</td>
</tr>
<tr>
<td>UKN2.2.9</td>
<td>H</td>
<td>8.7.7</td>
<td>Abandonment of unsealed repository</td>
</tr>
<tr>
<td>UKN2.2.10</td>
<td>H</td>
<td>8.7.7</td>
<td>Poor closure</td>
</tr>
<tr>
<td>UKN2.2.12</td>
<td>H</td>
<td>8.7.7</td>
<td>Effects of phased operation</td>
</tr>
<tr>
<td>UKN2.4.1</td>
<td>H</td>
<td>8.7.7</td>
<td>Loss of records</td>
</tr>
<tr>
<td>UKN2.4.8</td>
<td>H</td>
<td>8.7.7</td>
<td>Demographic change, urban development</td>
</tr>
<tr>
<td>UKN2.4.8</td>
<td>H</td>
<td>8.7.7</td>
<td>Anthropogenic climate change (greenhouse effect)</td>
</tr>
<tr>
<td>IAE2.4.1</td>
<td>H</td>
<td>8.7.7</td>
<td>Human induced climate change</td>
</tr>
<tr>
<td>NEA2.1.1</td>
<td>H</td>
<td>8.7.7</td>
<td>Undetected past intrusions (boreholes, mining)</td>
</tr>
<tr>
<td>NEA2.1.7</td>
<td>H</td>
<td>8.7.7</td>
<td>Common cause failures</td>
</tr>
<tr>
<td>NEA2.1.8</td>
<td>H</td>
<td>8.7.7</td>
<td>Poor quality construction</td>
</tr>
<tr>
<td>NEA2.4.1</td>
<td>H</td>
<td>8.7.7</td>
<td>Loss of records</td>
</tr>
<tr>
<td>NEA2.4.8</td>
<td>H</td>
<td>8.7.7</td>
<td>Demographic change, urban development</td>
</tr>
<tr>
<td>NEA2.4.8</td>
<td>H</td>
<td>8.7.7</td>
<td>Anthropogenic climate change (greenhouse effect)</td>
</tr>
<tr>
<td>IDENTIFIER</td>
<td>CATEGORY : CODE</td>
<td>FEPR NAME</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>NEA2.1.2</td>
<td>HR</td>
<td>XXXX Investigation borehole seal failure and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>degradation</td>
<td></td>
</tr>
<tr>
<td>NEA2.1.3</td>
<td>HR</td>
<td>XXXX Shaft or access tunnel seal failure and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>degradation</td>
<td></td>
</tr>
<tr>
<td>NEA2.1.4</td>
<td>HR</td>
<td>XXXX Stress field changes, settling, subsidence</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>or caving</td>
<td></td>
</tr>
<tr>
<td>NEA2.1.5</td>
<td>HR</td>
<td>XXXX Dewatering of host rock</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX 6

Final List of FEPs
Appendix 6. Final List of FEPs

The following pages (13) contain the final list of FEPs generated as a result of the audit held at Kemakta on April 21st, 1993. Additions to FEP descriptions, based on discussions during the audit, have been added in parentheses, mainly in UPPER CASE.

The key to the coding (letters) added to the left-hand column of the tables (AUDIT CODE) is given below.

<table>
<thead>
<tr>
<th>EFEP</th>
<th>A feature, event or process (FEP) which is external to the Process System.</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>new FEP</td>
</tr>
<tr>
<td>L</td>
<td>new link in the influence diagram</td>
</tr>
<tr>
<td>L*</td>
<td>new link to other parts of the Process System (e.g. far-field, biosphere)</td>
</tr>
</tbody>
</table>

The eight categories have been retained for FEP descriptions. For the biosphere, several FEP descriptions may be combined. Rather than reduce these FEPs to one entry, however, the original descriptions have been retained and 'group' has been added to one of the first two columns. Shading has also been added, where appropriate, to help identify individual groups.
<table>
<thead>
<tr>
<th>CODEx</th>
<th>FEP NAME</th>
<th>SYSTEM DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Waste characteristics (initial):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Long-term physical stability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heterogeneity of waste forms (chemical, physical)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waste: radiological/chemical effects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waste: radiological/radiation effects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waste: radionuclide decay and growth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Radiolysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waste: gas generation and effects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Formation of gases</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waste: heat generation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Radioactive decay: heat</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waste: thermo-mechanical effects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thermal cracking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Material property changes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waste: thermo-chemical effects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thermally induced chemical changes (water chemistry)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waste: electro-chemical effects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electrochemical gradients</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waste: degradation/corrosion/dissolution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Precipitation and dissolution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Source terms (expected)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Source terms (other)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical changes due to gas production</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal corrosion due to gas production</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical changes due to metal corrosion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leaching: wastes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical changes due to metal corrosion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical changes due to gas production</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical effects: geochemical change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interactions with corrosion products and waste</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waste: chemical reactions/geochemical change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thermal cracking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Redox potential</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dissolution chemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solubility within fuel matrix</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Complex formation: wastes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recrystallization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Complex formation: wastes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical changes due to metal corrosion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical changes due to gas production</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical effects: geochemical change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interactions with corrosion products and waste</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waste: chemical reactions/geochemical change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thermal cracking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Redox potential</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dissolution chemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical changes due to gas production</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical effects: geochemical change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interactions with corrosion products and waste</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waste: chemical reactions/geochemical change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thermal cracking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Redox potential</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dissolution chemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical changes due to gas production</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical effects: geochemical change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interactions with corrosion products and waste</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waste: chemical reactions/geochemical change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thermal cracking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Redox potential</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dissolution chemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical changes due to gas production</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical effects: geochemical change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interactions with corrosion products and waste</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waste: chemical reactions/geochemical change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thermal cracking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Redox potential</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dissolution chemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical changes due to gas production</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical effects: geochemical change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interactions with corrosion products and waste</td>
</tr>
<tr>
<td>CODE</td>
<td>FEP NAME</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>FEP</td>
<td>Canister materials/construction: SYSTEM DESCRIPTION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canister: corrosion/degradation processes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inventory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canister failure (early)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corrosion (including partial corrosion)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pitting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Precipitation and dissolution</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Radiation damage to container (embrittlement)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uniform corrosion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structural container metal corrosion: localized</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structural container metal corrosion: bulk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structural container metal corrosion: crevice</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structural container metal corrosion: stress corrosion cracking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical changes due to metal corrosion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical reactions (copper corrosion)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Role of chlorides in copper corrosion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corrosive agents, Sulphides, oxygen etc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Backfill effects on Cu corrosion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Swelling of corrosion products</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canister: gas production and effects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydrogen: corrosion of container steel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gas transport in the waste container</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canister: microbiological effects/microbial activity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canister: thermo-mechanical effects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diffusing thermal expansion of canister and backfill</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Thermal cracking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canister: electro-chemical effects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electrochemical gradients</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coupled effects (electrophoresis)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Natural telling electrochemical reactions (INCLUDE in FEP description)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canister: stress/mechanical effects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Container failure (early)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canister movement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mechanical canister damage (failure)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creeping of copper</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stress corrosion cracking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loss of ductility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cracking along welds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>External stress</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydrostatic pressure on canister</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internal pressure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Swelling of corrosion products</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canister: geochemical reactions/regime</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical kinetics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Container corrosion products</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Precipitation and dissolution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Speciation of corrosion products (INCLUDE in water chemistry)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical effects: Interactions of waste package and rock</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical gradients (electrochemical effects and osmosis)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canister: radionuclide transport through containers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Release of radionuclides from the failed canister</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canister: specific factors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Role of the eventual channeling within the canister (PREFERENTIAL PATHWAYS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radiation effects on canister</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Common cause canister defects - quality control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Material defects, e.g. early canister failure</td>
<td></td>
</tr>
</tbody>
</table>

PAGE 2
<table>
<thead>
<tr>
<th>CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>System Description</td>
</tr>
<tr>
<td></td>
<td>Buffer/backfill characteristics:</td>
</tr>
<tr>
<td></td>
<td>Backfill characteristics</td>
</tr>
<tr>
<td></td>
<td>Hydraulic conductivity</td>
</tr>
<tr>
<td></td>
<td>Long-term physical stability</td>
</tr>
<tr>
<td>F</td>
<td>Buffer/backfill: desaturation/desaturation</td>
</tr>
<tr>
<td>F</td>
<td>Buffer/backfill: mechanical effects</td>
</tr>
<tr>
<td></td>
<td>Preferential pathways in the buffer/backfill</td>
</tr>
<tr>
<td></td>
<td>Mechanical effects: local fractures/cracks (PREFERENTIAL PATHWAYS)</td>
</tr>
<tr>
<td></td>
<td>Mechanical failure of buffer/backfill (PREFERENTIAL PATHWAYS)</td>
</tr>
<tr>
<td></td>
<td>Swelling pressure</td>
</tr>
<tr>
<td></td>
<td>Movement of canister in buffer/backfill</td>
</tr>
<tr>
<td></td>
<td>Uneven swelling of bentonite</td>
</tr>
<tr>
<td></td>
<td>Swelling of corrosion products</td>
</tr>
<tr>
<td></td>
<td>Buffer/backfill: thermal effects</td>
</tr>
<tr>
<td></td>
<td>Convective (contaminant transport)</td>
</tr>
<tr>
<td></td>
<td>Hydrothermal alteration</td>
</tr>
<tr>
<td></td>
<td>Variations in groundwater temperature</td>
</tr>
<tr>
<td></td>
<td>Differing thermal expansion (canister-backfill: buffer-host rock)</td>
</tr>
<tr>
<td></td>
<td>Thermal effects on the buffer material</td>
</tr>
<tr>
<td></td>
<td>Soret effect</td>
</tr>
<tr>
<td>L*</td>
<td>Natural thermal effects (temperature LINK to FAR FIELD)</td>
</tr>
<tr>
<td>L*</td>
<td>Thermal effects (eg., concrete hydration; LINK to FAR FIELD)</td>
</tr>
<tr>
<td></td>
<td>Thermo-chemical effects</td>
</tr>
<tr>
<td></td>
<td>Thermal effects and transport (diffusion) effects</td>
</tr>
<tr>
<td></td>
<td>Buffer/backfill: electro-chemical effects</td>
</tr>
<tr>
<td></td>
<td>Natural telluric electrochemical reactions</td>
</tr>
<tr>
<td></td>
<td>Buffer/backfill: gas effects</td>
</tr>
<tr>
<td></td>
<td>Groundwater flow due to gas production</td>
</tr>
<tr>
<td></td>
<td>Gas transport: gas phase and in solution</td>
</tr>
<tr>
<td></td>
<td>Chemical effects: gas generation</td>
</tr>
<tr>
<td>L</td>
<td>Transport of active gases</td>
</tr>
<tr>
<td></td>
<td>Buffer/backfill: microbiological effects/microbial activity</td>
</tr>
<tr>
<td></td>
<td>Degradation of the bentonite by chemical reactions</td>
</tr>
<tr>
<td></td>
<td>Coagulation of bentonite</td>
</tr>
<tr>
<td></td>
<td>Radiation effects on bentonite</td>
</tr>
<tr>
<td></td>
<td>Erosion of buffer/backfill</td>
</tr>
<tr>
<td>CODE</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>Buffer/backfill: geochemical regime</td>
</tr>
<tr>
<td></td>
<td>Chemical gradients (INCLUDE in FEP description: water chemistry)</td>
</tr>
<tr>
<td></td>
<td>Chemical kinetics (INCLUDE in FEP description: water chemistry)</td>
</tr>
<tr>
<td></td>
<td>Precipitation and dissolution</td>
</tr>
<tr>
<td></td>
<td>Chemical changes due to waste degradation (CHEMICAL CHANGES)</td>
</tr>
<tr>
<td>L</td>
<td>Chemical changes due to gas production (CHEMICAL CHANGES)</td>
</tr>
<tr>
<td></td>
<td>Chemical changes due to complex formation (CHEMICAL CHANGES)</td>
</tr>
<tr>
<td></td>
<td>Chemical changes due to colloid production (CHEMICAL CHANGES)</td>
</tr>
<tr>
<td></td>
<td>Chemical changes due to sorption (CHEMICAL CHANGES)</td>
</tr>
<tr>
<td></td>
<td>Chemical changes due to speciation (CHEMICAL CHANGES)</td>
</tr>
<tr>
<td>F</td>
<td>Isotopic dilution</td>
</tr>
<tr>
<td></td>
<td>Chemical changes due to corrosion</td>
</tr>
<tr>
<td></td>
<td>Saturation of sorption sites</td>
</tr>
<tr>
<td></td>
<td>Effects of bentonite on groundwater chemistry</td>
</tr>
<tr>
<td></td>
<td>Reactions with cement pore water (INCLUDE in chemical degradation)</td>
</tr>
<tr>
<td></td>
<td>Redox front</td>
</tr>
<tr>
<td></td>
<td>Thermochemical changes</td>
</tr>
<tr>
<td></td>
<td>Saline (or fresh) groundwater intrusion</td>
</tr>
<tr>
<td></td>
<td>Effects at saline-freshwater interface</td>
</tr>
<tr>
<td></td>
<td>Changes in groundwater flow direction (INCLUDE in FEP description)</td>
</tr>
<tr>
<td>L</td>
<td>Biogeochemical changes</td>
</tr>
<tr>
<td></td>
<td>Buffer/backfill: radionuclide transport processes</td>
</tr>
<tr>
<td></td>
<td>Groundwater flow: advection/dispersion (saturated conditions)</td>
</tr>
<tr>
<td>L</td>
<td>Diffusion (bulk, matrix, surface)</td>
</tr>
<tr>
<td>FL</td>
<td>Unsaturated transport</td>
</tr>
<tr>
<td></td>
<td>Groundwater flow: fracture</td>
</tr>
<tr>
<td>L</td>
<td>Groundwater flow: effects of solution channels (PREFERENTIAL PATHWAYS)</td>
</tr>
<tr>
<td></td>
<td>Soret effect</td>
</tr>
<tr>
<td>EBP</td>
<td>Transport of chemically active substances into the near-field</td>
</tr>
<tr>
<td></td>
<td>Buffer/backfill: radionuclide chemistry</td>
</tr>
<tr>
<td></td>
<td>Precipitation, dissolution, recrystallisation, reconcentration</td>
</tr>
<tr>
<td></td>
<td>Sorption (linear, non-linear, irreversible)</td>
</tr>
<tr>
<td></td>
<td>Speciation</td>
</tr>
<tr>
<td></td>
<td>Solubility effects (pH and Eh; ionic strength, complexing agents, colloids)</td>
</tr>
<tr>
<td></td>
<td>Sorption effects (pH and Eh; ionic strength, complexing agents, colloids)</td>
</tr>
<tr>
<td></td>
<td>Changes in sorptive surfaces</td>
</tr>
<tr>
<td></td>
<td>Transport of radionuclides bound to microbes</td>
</tr>
<tr>
<td>Buffer/backfill: specific factors</td>
<td></td>
</tr>
<tr>
<td>EBP</td>
<td>Faulty buffer emplacement</td>
</tr>
<tr>
<td></td>
<td>Colloid transport (inorganic and organic; porous and fractured media)</td>
</tr>
<tr>
<td></td>
<td>Extreme channel flow of oxidants and nuclides (PREFERENTIAL PATHWAYS)</td>
</tr>
<tr>
<td>EBP</td>
<td>Inadequate backfill or compaction, voidage</td>
</tr>
<tr>
<td></td>
<td>Anion exchange</td>
</tr>
</tbody>
</table>
Near-field rock: elements/materials

SYSTEM DESCRIPTION

- **Inventorystock geometry**
- **Rock properties (porosity, permeability, hydraulic head, conductivity)**

Near-field rock: degradation
- Rock property changes (fractures, pore blocking, channel formation/closure)
- Borehole seal failure (including investigation boreholes and shaft/tunnel)
- Borehole seal degradation (including investigation boreholes and shaft/tunnel)
- Creeping of rock mass
- Subsidence and caving
- Physico-chemical degradation of concrete

Near-field rock: hydraulic effects/groundwater flow

F, L, L
- Unsaturated transport
 - Groundwater flow due to gas production
 - Groundwater flow (saturated conditions; including fracture flow)
- L
 - Groundwater flow: effects of solution channels (PREFERENTIAL PATHWAYS)
- L
 - Repository thermally-induced groundwater transport
- L
 - Naturally thermally-induced groundwater transport
- Thermo-hydro-mechanical effects
- Resaturation
- Disturbed zone (hydromechanical) effects
- Saturated groundwater flow
- Changes in groundwater chemistry and flow direction

Near-field rock: mechanical effects

- Formation of cracks
- Changes in in-situ stress field
- Changes in moisture content due to stress relief

F
- Differential elastic response

L
- Non-elastic response

BEP
- Repository-induced seismicity
- Externally-induced seismicity
- Differing thermal expansion of host rock zones
- *Uneven swelling of bentonite*
- Thermally-induced stress/fracturing in host rock
- Excavation-induced stress/fracturing in host rock

Near-field rock: thermal effects

<table>
<thead>
<tr>
<th>Convection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variations in groundwater temperature</td>
</tr>
<tr>
<td>Thermal effects (e.g. concrete hydration)</td>
</tr>
<tr>
<td>Thermal effects and transport (diffusion) properties</td>
</tr>
<tr>
<td>Thermal effects on hydrochemistry</td>
</tr>
</tbody>
</table>

L
- Thermal differential elastic response

L
- Thermal non-elastic response

Near-field rock: gas effects and transport

- Transport in gases or of gases
- Hydrogen: corrosion of structural steel
- Methane/CO2 production: effects of microbial growth on properties of concrete
- Gas transport in the near field, as gas phase and in solution
- Accumulation of gases under permafrost

BEP
- Methane intrusion
- Transport of active gases
<table>
<thead>
<tr>
<th>CODE</th>
<th>FEP NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near-field rock: microbiological/biological activity</td>
<td></td>
</tr>
<tr>
<td>Transport of microbes into the near-field</td>
<td></td>
</tr>
<tr>
<td>Rock property changes: microbial pore blocking</td>
<td></td>
</tr>
<tr>
<td>Biogeochemical changes</td>
<td></td>
</tr>
<tr>
<td>Near-field rock: geochemical regime</td>
<td></td>
</tr>
<tr>
<td>Chemical gradients (INCLUDE in FEP description: water chemistry)</td>
<td></td>
</tr>
<tr>
<td>Chemical kinetics (INCLUDE in FEP description: water chemistry)</td>
<td></td>
</tr>
<tr>
<td>Pore blockage: concrete</td>
<td></td>
</tr>
<tr>
<td>Cement-sulfate reaction: concrete</td>
<td></td>
</tr>
<tr>
<td>Changes in pore water composition, pH, Eh: concrete</td>
<td></td>
</tr>
<tr>
<td>Chemical changes due to waste degradation (CHEMICAL CHANGES)</td>
<td></td>
</tr>
<tr>
<td>Chemical changes due to gas production (CHEMICAL CHANGES)</td>
<td></td>
</tr>
<tr>
<td>Chemical changes due to complex formation (CHEMICAL CHANGES)</td>
<td></td>
</tr>
<tr>
<td>Chemical changes due to colloid production (CHEMICAL CHANGES)</td>
<td></td>
</tr>
<tr>
<td>Chemical changes due to sorption (CHEMICAL CHANGES)</td>
<td></td>
</tr>
<tr>
<td>Chemical changes due to precipitation (CHEMICAL CHANGES)</td>
<td></td>
</tr>
<tr>
<td>Fracture mineralisation</td>
<td></td>
</tr>
<tr>
<td>Fluid interactions: dissolution</td>
<td></td>
</tr>
<tr>
<td>Chemical effects: interactions of waste package and rock</td>
<td></td>
</tr>
<tr>
<td>Physico-chemical phenomena/effects (e.g. colloid formation)</td>
<td></td>
</tr>
<tr>
<td>Reconcentration</td>
<td></td>
</tr>
<tr>
<td>Thermochemical changes</td>
<td></td>
</tr>
<tr>
<td>Chemical effects of rock reinforcement</td>
<td></td>
</tr>
<tr>
<td>Saline (or fresh) groundwater intrusion</td>
<td></td>
</tr>
<tr>
<td>Effects at saline-freshwater interface</td>
<td></td>
</tr>
<tr>
<td>Non-radioactive solute plume in geosphere (effect on redox, effect on pH, sorption)</td>
<td></td>
</tr>
<tr>
<td>Physico-chemical degradation of concrete</td>
<td></td>
</tr>
<tr>
<td>Changes in groundwater flow direction</td>
<td></td>
</tr>
<tr>
<td>Near-field rock: radionuclide chemistry</td>
<td></td>
</tr>
<tr>
<td>Precipitation, dissolution, recrystallisation, reconcentration</td>
<td></td>
</tr>
<tr>
<td>Sorption (linear, non-linear, irreversible)</td>
<td></td>
</tr>
<tr>
<td>Speciation</td>
<td></td>
</tr>
<tr>
<td>Solubility effects (pH and Eh; ionic strength, complexing agents, colloids)</td>
<td></td>
</tr>
<tr>
<td>Sorption effects (pH and Eh; ionic strength, complexing agents, colloids)</td>
<td></td>
</tr>
<tr>
<td>Changes in sorptive surfaces</td>
<td></td>
</tr>
<tr>
<td>Dilution (mass, isotopic, species)</td>
<td></td>
</tr>
<tr>
<td>Near-field rock: radionuclide transport processes</td>
<td></td>
</tr>
<tr>
<td>Groundwater flow: advection/dispersion (saturated conditions)</td>
<td></td>
</tr>
<tr>
<td>Diffusion (bulk, matrix, surface)</td>
<td></td>
</tr>
<tr>
<td>Sorptio effect</td>
<td></td>
</tr>
<tr>
<td>Transport of radionuclides bound to microbes</td>
<td></td>
</tr>
<tr>
<td>Near-field rock: specific factors</td>
<td></td>
</tr>
<tr>
<td>Colloids</td>
<td></td>
</tr>
<tr>
<td>Incomplete vault or borehole closure</td>
<td></td>
</tr>
<tr>
<td>Unmodelled design features</td>
<td></td>
</tr>
<tr>
<td>Inadequate design: shaft seal and exploration borehole seal failure</td>
<td></td>
</tr>
<tr>
<td>Open boreholes</td>
<td></td>
</tr>
<tr>
<td>Extreme channel flow of oxidants and nuclides (PREFERENTIAL PATHWAYS)</td>
<td></td>
</tr>
<tr>
<td>Poor quality construction</td>
<td></td>
</tr>
<tr>
<td>Material defects (e.g. early canister failure)</td>
<td></td>
</tr>
<tr>
<td>Abandonment of unsealed repository</td>
<td></td>
</tr>
<tr>
<td>Effects of phased operations</td>
<td></td>
</tr>
<tr>
<td>AUDIT</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>Rock properties: SYSTEM DESCRIPTION</td>
</tr>
<tr>
<td></td>
<td>Rock properties (porosity, permeability, discharge zones, fractures)</td>
</tr>
<tr>
<td></td>
<td>Hydrogeological effects</td>
</tr>
<tr>
<td></td>
<td>Rock property changes (porosity, permeability, fractures, pore blocking)</td>
</tr>
<tr>
<td></td>
<td>Dewatering</td>
</tr>
<tr>
<td></td>
<td>Geothermal effects</td>
</tr>
<tr>
<td></td>
<td>Salinity effects on flow</td>
</tr>
<tr>
<td></td>
<td>Saturated groundwater flow</td>
</tr>
<tr>
<td></td>
<td>Variations in groundwater temperature</td>
</tr>
<tr>
<td></td>
<td>Gas-induced groundwater transport</td>
</tr>
<tr>
<td></td>
<td>Naturally thermally-induced groundwater transport</td>
</tr>
<tr>
<td></td>
<td>Groundwater recharge</td>
</tr>
<tr>
<td></td>
<td>Thermal effects: fluid pressure, density, viscosity changes</td>
</tr>
<tr>
<td></td>
<td>Thermal effects: fluid migration</td>
</tr>
<tr>
<td></td>
<td>EEP</td>
</tr>
<tr>
<td></td>
<td>Saline (or fresh) groundwater intrusion</td>
</tr>
<tr>
<td></td>
<td>Groundwater conditions (saturated/unsaturated)</td>
</tr>
<tr>
<td></td>
<td>Changes in geometry and driving forces of the flow system</td>
</tr>
<tr>
<td></td>
<td>Changes in groundwater flow direction</td>
</tr>
<tr>
<td></td>
<td>Physical/mechanical effects</td>
</tr>
<tr>
<td></td>
<td>SHR: Repository-induced seismicity</td>
</tr>
<tr>
<td></td>
<td>SHR: Externally-induced seismicity</td>
</tr>
<tr>
<td></td>
<td>Fault activation</td>
</tr>
<tr>
<td></td>
<td>F: Differential elastic response</td>
</tr>
<tr>
<td></td>
<td>F: Non-elastic response</td>
</tr>
<tr>
<td></td>
<td>Thermal effects</td>
</tr>
<tr>
<td></td>
<td>Geothermal gradient effects</td>
</tr>
<tr>
<td>L: Thermal differential elastic response</td>
<td></td>
</tr>
<tr>
<td>L: Thermal non-elastic response</td>
<td></td>
</tr>
<tr>
<td>Gas effects and transport</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gas transport into and through the far-field (gas phase and in solution)</td>
</tr>
<tr>
<td></td>
<td>Multiphase flow and gas driven flow</td>
</tr>
<tr>
<td></td>
<td>Effects of natural gases</td>
</tr>
<tr>
<td></td>
<td>Transport of active gases</td>
</tr>
<tr>
<td>Microbiological/biological activity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microbial activity</td>
</tr>
<tr>
<td></td>
<td>Transport of radionuclides bound to microbes</td>
</tr>
<tr>
<td>L: Biogeochemical changes</td>
<td></td>
</tr>
<tr>
<td>CODE</td>
<td>FEP NAME</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>L</td>
<td>Far field hydrochemistry - acids, oxidants, nitrate</td>
</tr>
<tr>
<td>L*</td>
<td>Non-radioactive solute plume in geosphere (effect on redox, effect on pH, sorption)</td>
</tr>
<tr>
<td></td>
<td>(LINK to NEAR FIELD)</td>
</tr>
<tr>
<td>FEP</td>
<td>Saline or freshwater intrusion</td>
</tr>
<tr>
<td>FEP*</td>
<td>Effects at saline-freshwater interface</td>
</tr>
<tr>
<td></td>
<td>Chemical gradients (electrochemical effects and osmosis)</td>
</tr>
<tr>
<td></td>
<td>Non-radioactive solute plume in geosphere (effect on redox, effect on pH, sorption)</td>
</tr>
</tbody>
</table>

Geochemical regime
- Groundwater composition changes (pH, Eh, chemical composition)
- Fracture mineralisation
- Weathering, mineralisation
- Dissolution of fracture fillings/precipitations

<table>
<thead>
<tr>
<th>CODE</th>
<th>FEP NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9</td>
<td>Radiounclide chemistry</td>
<td>Dilution (mass, isotopic, species)</td>
</tr>
</tbody>
</table>

Radionuclide chemistry
- Complexation by organics (including humic and fulvic acids)
- Precipitation, dissolution, recrystallisation, reorganisation
- Sorption (linear, non-linear, irreversible)
- Speciation
- Chemical changes due to sorption, complex formation, speciation, gas, solubility
- Solubility effects (pH and Eh; ionic strength, complexing agents, colloids)
- Sorption effects (pH and Eh; ionic strength, complexing agents, colloids)
- Changes in sorbent surfaces
- Transport of radionuclides bound to colloids

<table>
<thead>
<tr>
<th>CODE</th>
<th>FEP NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Groundwater flow: advection/dispersion (saturated conditions)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diffusion (bulk, matrix, surface)</td>
<td></td>
</tr>
<tr>
<td>F.L.L</td>
<td>Unsaturated transport</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Groundwater flow: effects of solution channels (PREFERENTIAL PATHWAYS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sorot effect</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transport of radionuclides bound to colloids</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gas-mediated transport</td>
<td></td>
</tr>
</tbody>
</table>

Specific factors
- Boreholes - unsealed
- Colloids: formation & effects (including inorganic and organic colloid transport)
- Incomplete vault closure
- Rock properties - undetected features
- Inadequate design: shaft seal or exploration borehole seal failure
- Extreme channel flow of oxidants and nuclides
- Undetected features (e.g., faults, fracture networks, shear zones, discontinuities, gas
- Shaft and borehole seal degradation
FINAL FEPs: BIOSPHERE

<table>
<thead>
<tr>
<th>EEP</th>
<th>Land use changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td></td>
</tr>
<tr>
<td>Charcoal production</td>
<td></td>
</tr>
<tr>
<td>Space heating</td>
<td></td>
</tr>
<tr>
<td>EHP</td>
<td>Land use changes</td>
</tr>
<tr>
<td>Ecological factors</td>
<td></td>
</tr>
<tr>
<td>Animal habits (grooming and fighting, soil ingestion, diet: scavengers/predators)</td>
<td></td>
</tr>
<tr>
<td>Horseplants</td>
<td></td>
</tr>
<tr>
<td>Tree sap</td>
<td></td>
</tr>
<tr>
<td>Terrestrial ecological development: natural and agricultural systems</td>
<td></td>
</tr>
<tr>
<td>Terrestrial ecological development: Effects of succession</td>
<td></td>
</tr>
<tr>
<td>Terrestrial ecological development: Estuarine</td>
<td></td>
</tr>
<tr>
<td>Plants: Root uptake, including deep-rooting species (PLANTS)</td>
<td></td>
</tr>
<tr>
<td>Plants: Deposition on surfaces (PLANTS)</td>
<td></td>
</tr>
<tr>
<td>Plants: Vapour uptake (PLANTS)</td>
<td></td>
</tr>
<tr>
<td>Plants: Internal translocation and retention (PLANTS)</td>
<td></td>
</tr>
<tr>
<td>Plants: Washout and leaching by rainfall (PLANTS)</td>
<td></td>
</tr>
<tr>
<td>Plants: Leaf-fall and senescence (PLANTS)</td>
<td></td>
</tr>
<tr>
<td>Plants: Cycling processes (PLANTS)</td>
<td></td>
</tr>
<tr>
<td>Animals: Uptake by ingestion (ANIMALS)</td>
<td></td>
</tr>
<tr>
<td>Animals: Uptake by inhalation (ANIMALS)</td>
<td></td>
</tr>
<tr>
<td>Animals: Internal translocation and retention (ANIMALS)</td>
<td></td>
</tr>
<tr>
<td>Animals: Cycling processes (ANIMALS)</td>
<td></td>
</tr>
<tr>
<td>Animals: Effects of relocation and migration (ANIMALS)</td>
<td></td>
</tr>
<tr>
<td>Precipitation, temperature and soil water balance</td>
<td></td>
</tr>
<tr>
<td>Ecological change (e.g. forest fire cycles)</td>
<td></td>
</tr>
<tr>
<td>Ecological response to climate, including glacial/interglacial cycling (e.g. desert formation)</td>
<td></td>
</tr>
<tr>
<td>(LINK to CLIMATE)</td>
<td></td>
</tr>
</tbody>
</table>

Soil/sediment effects
- Capillary rise in soil
- Soil properties (type, depth, porewater pH, moisture, sorption)
- Soil leaching
- Toxic exchange in soil
- Sediment resuspension in water bodies
- Sedimentation in water bodies
- Groundwater discharge to soils; advective, diffusive, biotic, volatilization
- Accumulation in sediments
- Accumulation in soils and organic debris, including peat
- Pedogenesis
- Evaporation of soil moisture
- Sediment/water/gas interaction with the atmosphere
- Terrestrial water use (including wild)
- River flow and lake level changes

Near-surface runoff processes: Variable source area response
- Group: Surface flow characteristics (freshwater): Sediment transport
- Group: Surface flow characteristics (freshwater): Lake formation/sedimentation
- Group: Near-surface runoff processes; Variable source area response

Near-surface runoff processes: Water flow
- Group: Surface water bodies: Water flow
- Group: Surface water bodies: Suspended sediments
- Group: Surface water bodies: Bottom sediments
- Group: Surface water bodies: Effects of fluvial system development
- Group: Surface water mixing
<table>
<thead>
<tr>
<th>FEP NAME</th>
<th>AUDIT</th>
<th>CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal water/ocean processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>Coastal waters: Tidal mixing</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>Coastal waters: Residual current mixing</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>Coastal waters: Effects of sea level change</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>Ocean waters: Water exchange</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>Ocean waters: Effects of sea level change</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Groundwater discharge to estuaries</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Groundwater discharge to marine waters including coastal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estuaries: Water flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estuaries: Suspended sediments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estuaries: Bottom sediments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estuaries: Effects of salinity variation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estuaries: Effects on vegetation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estuaries: Effects of estuarine development</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estuaries: Effects of sea-level change</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>Coastal waters: Water transport</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coastal waters: Suspended sediment transport</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coastal waters: Bottom sediment transport</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coastal waters: Effects of sea level change</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coastal waters: Effects of estuarine development</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coastal waters: Effects of coastal erosion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coastal waters: Effects of sea-level change</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estuarine water use</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coastal water use</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sea water use</td>
<td></td>
</tr>
<tr>
<td>Gas effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gas leakage into underground living space</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radon emission</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gas transport: gas phase and in solution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gas discharge</td>
<td></td>
</tr>
<tr>
<td>Microbiological/biological activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microbial activity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bio-accumulation and translocation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biotoxicity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soil and sediment transport including bioturbation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Burrowing animals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transport of radionuclides bound to microbes</td>
<td></td>
</tr>
<tr>
<td>Geochemical changes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical gradients (electrochemical effects and osmosis)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geochemical regime (general)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soil and surface water chemistry (pH, Eh)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluid interactions: dissolution, precipitation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weathering, mineralisation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physico-chemical phenomena/effects (e.g. colloid formation)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Altered soil or surface water chemistry (pH, Eh)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermal effects on hydrochemistry</td>
<td></td>
</tr>
<tr>
<td>Radionuclide chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compliation by organics (including humic and fulvic acids)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Precipitation, dissolution, recrystallisation, recombination</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sorption (linear, non-linear, irreversible)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Speciation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical changes due to sorption, complex formation, speciation, gas, solubility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solubility effects (pH and Eh; ionic strength, complexing agents, colloids)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sorption effects (pH and Eh; ionic strength, complexing agents, colloids)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Changes in sorptive surfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dilution (mass, isotopic, species)</td>
<td></td>
</tr>
<tr>
<td>CODE</td>
<td>FEP NAME</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radionuclide transport processes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water flow advection and dispersion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diffusion (bulk, matrix, surface)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gas mediated transport</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transport of active gases: gas phase and in solution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transport of radionuclides bound to microbes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radiological factors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Building materials</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carcasses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corrosive, gaseous contaminants</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Convection, turbulence and diffusion (atmospheric)</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>Critical group: agricultural labour</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>Critical group: clothing and home furnishings</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>Critical group: education</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>Critical group: home location</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>Critical group: individual use</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>Critical group: leisure pursuits</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>Critical group: pets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dermal absorption - radionuclides other than tritium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Household dust and fumes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Human det</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Food preparation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Human soil ingestion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Precipitation (meteo)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deposition (wet and dry)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radiocan contaminants</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Showers and humidifiers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suspension in air</td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td></td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>External exposure: Land</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>External exposure: Sediments</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>External exposure: Water bodies</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>Ingestion and Drinking water</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>Ingestion and Agricultural crops</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>Ingestion and Domestic animal products</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>Ingestion and Wild plants</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>Ingestion and Wild animals</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>Ingestion and Soil and sediments</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>Inhalation and Soil and sediments</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>Inhalation and Gases and vapours (indoor)</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>Inhalation and Gases and vapours (outdoor)</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>Inhalation and Inhaled material</td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>Inhalation and Salt particles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sediment/meteor/gas interaction with the atmosphere</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specific factors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Colloids: formation and effects (including inorganic and organic colloid transport)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Greenhouse-induced ecological effects (including food production)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smoking</td>
<td></td>
</tr>
<tr>
<td>EPF</td>
<td>Boreholes: unsealed</td>
<td></td>
</tr>
<tr>
<td>EPF</td>
<td>Loss of integrity of borehole seal failure or degradation</td>
<td></td>
</tr>
<tr>
<td>EPF</td>
<td>Inadequate design: Exploration borehole seal failure</td>
<td></td>
</tr>
<tr>
<td>EPF</td>
<td>Intrusion in accumulation zone in the biosphere (animals)</td>
<td></td>
</tr>
<tr>
<td>EPF</td>
<td>Demographic change, urban development</td>
<td></td>
</tr>
<tr>
<td>CODE</td>
<td>FEP NAME</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seismic events/major land movement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Earthquakes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regional uplift and subsidence (e.g. orogenic, isostatic)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Externally-induced seismicity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Natural seismicity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock deformation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Faulting/fracturing: activation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Faulting/fracturing: generation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Faulting/fracturing: change of properties</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Major erosion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Movements at faults</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Formation of new faults</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Formation of interconnected fracture systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metamorphic processes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erosion/weathering (surface)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erosion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Changes in topography</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weathering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extreme erosion and denudation: glacial-induced (e.g. coastal/stream erosion)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coastal erosion due to sea-level change</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erosion: Glacial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stream erosion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sedimentation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Land slide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Freshwater sediment transport and deposition (LINK to BIOSPHERE)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marine sediment transport and deposition (LINK to BIOSPHERE)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solifluction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Groundwater flow and effects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variation in groundwater recharge (LINK to BIOSPHERE)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surface water flow and effects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydrological change</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flooding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Precipitation, temperature and soil water balance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Snow melt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>River flow and lake level changes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sea-level effects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sea level change</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Magnetic effects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Changes in the Earth's magnetic field</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glaciation/glacial effects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glaciation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glacial/glaciofluvial cycling effects (including sea level changes)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Permafrost</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accumulation of gases under permafrost</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No ice age</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Climate effects (natural)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Climate change</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pluvial periods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isotolation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specific factors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anthropogenic climate change (greenhouse effect)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Greenhouse-induced effects (e.g. sea level change, precipitation, temp.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wind</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tsunamis</td>
<td></td>
</tr>
</tbody>
</table>

PAGE 12
<table>
<thead>
<tr>
<th>Code</th>
<th>FEP Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEP</td>
<td>Inadvertent intrusion into repository</td>
</tr>
<tr>
<td>BEP</td>
<td>Archaeological investigations</td>
</tr>
<tr>
<td>BEP</td>
<td>Future intrusion: exploratory boreholes</td>
</tr>
<tr>
<td>BEP</td>
<td>Future intrusion: resource mining (e.g., water, hydrocarbon, geothermal)</td>
</tr>
<tr>
<td>BEP</td>
<td>Reuse of boreholes</td>
</tr>
<tr>
<td>BEP</td>
<td>Intrusion in accumulation zone in the biosphere</td>
</tr>
<tr>
<td>BEP</td>
<td>Blasting</td>
</tr>
<tr>
<td>BEP</td>
<td>Injection wells</td>
</tr>
<tr>
<td>BEP</td>
<td>Withdrawal wells</td>
</tr>
</tbody>
</table>

Surface activities

<table>
<thead>
<tr>
<th>BEP</th>
<th>Earthmoving</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Altered soil or surface water chemistry by human activities (LINK to BIOSPHERE)</td>
</tr>
<tr>
<td>BEP</td>
<td>Human induced changes in surface hydrology</td>
</tr>
<tr>
<td>BEP</td>
<td>Heat storage in lakes</td>
</tr>
<tr>
<td>BEP</td>
<td>Hydrologic Stresses: irrigation</td>
</tr>
<tr>
<td>BEP</td>
<td>Hydrologic Stresses: damming of streams or rivers</td>
</tr>
</tbody>
</table>

Subsurface activities

<table>
<thead>
<tr>
<th>BEP</th>
<th>Dewatering</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wells</td>
</tr>
<tr>
<td></td>
<td>Wells (high demand)</td>
</tr>
<tr>
<td>BEP</td>
<td>Heat storage underground</td>
</tr>
<tr>
<td>BEP</td>
<td>Geothermal energy production</td>
</tr>
<tr>
<td>BEP</td>
<td>Tunneling</td>
</tr>
<tr>
<td>BEP</td>
<td>Construction of underground storage/disposal facilities</td>
</tr>
<tr>
<td>BEP</td>
<td>Construction of underground dwellings/shelters</td>
</tr>
<tr>
<td>BEP</td>
<td>Injection of liquid wastes</td>
</tr>
</tbody>
</table>

Water use

<table>
<thead>
<tr>
<th>BEP</th>
<th>Industrial use of water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Outdoor spraying of water</td>
</tr>
<tr>
<td></td>
<td>Groundwater abstraction</td>
</tr>
<tr>
<td>BEP</td>
<td>Human induced actions on groundwater recharge</td>
</tr>
<tr>
<td>BEP</td>
<td>Irrigation</td>
</tr>
<tr>
<td>BEP</td>
<td>Reservoirs</td>
</tr>
<tr>
<td>BEP</td>
<td>Intentional artificial groundwater recharge or withdrawal</td>
</tr>
</tbody>
</table>

Agricultural and fisheries practices

<table>
<thead>
<tr>
<th>BEP</th>
<th>Fish farming</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Game ranching</td>
</tr>
<tr>
<td>BEP</td>
<td>Agricultural and fisheries practice changes</td>
</tr>
</tbody>
</table>

Specific factors

<table>
<thead>
<tr>
<th>BEP</th>
<th>Demographic change, urban development</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEP</td>
<td>Undetected past intrusions (boreholes, mining)</td>
</tr>
<tr>
<td>BEP</td>
<td>Stray materials left</td>
</tr>
<tr>
<td>BEP</td>
<td>Decontamination materials left</td>
</tr>
<tr>
<td>BEP</td>
<td>Loss of records</td>
</tr>
<tr>
<td>BEP</td>
<td>Radioactive waste disposal error</td>
</tr>
<tr>
<td>BEP</td>
<td>Inadvertent inclusion of undesirable materials</td>
</tr>
<tr>
<td>Postal address</td>
<td>Office</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>Box 27106</td>
<td>Sahlstedsgatan 11</td>
</tr>
</tbody>
</table>