Record of FEP Screening Work

FEP ID # DR-2 Capillary Action (Wicking) Within the Waste
FEP ID # DR-3 Dynamic Consolidation of the North End and Hallways
FEP ID # DR-6 Brine Puddling in the Repository Due to Heterogeneities
FEP ID # DR-7 Permeability Varying with the Consolidation in Closure Regions
FEP ID # S-6 Dynamic Alterations of the Disturbed Rock Zone/Transition Zone

The following package contains:

- Screening Argument for the above FEP(s)
- Technical Review Form (follows this cover page)
- 1 Completed Comment Forms for DR-2 (p. 41)
 (If no comments received fill in N/A)
- 1 Completed Comment Forms for DR-3 (p. 42)
 (If no comments received fill in N/A)
- 1 Completed Comment Forms for DR-6 (p. 43)
 (If no comments received fill in N/A)
- 1 Completed Comment Forms for DR-7 (p. 44)
 (If no comments received fill in N/A)
- 2 Completed Comment Forms for S-6 (p. 45a, 46, 47)
 (If no comments received fill in N/A)
- Response to Comments (follows Technical Review Form)

In total 6 pages of response(s) to comments are included in this records package.

This document represents implementation of:

- Technical comments presented during WIPP Project Management Review Sessions held September 8, 28, 29 and open managerial review session.

Signed:
D.R. Anderson D. R. Anderson
(6749 Department Management Approval) Signature Dated 12/12/95

Lead Staff D. R. Anderson
(6749) Division Number

Signature Dated 12/12/95

Division Number

SWCF-A: 1.1.6.3:PA:QA:TSK: [DR & S]
DR-2, DR-3, DR-6, DR-7, S6
FEP Title: **CAPILLARY ACTION (WICKING)**

FEP ID: **DR-2**

Reviewer Instructions

Check "Yes" for each item reviewed and found acceptable.
Check "No" for each item reviewed and found not acceptable.

1. Are the calculations applicable, correct, and adequate?
 - **Yes**
 - **No**
 - Comments (attach pages as needed)

2. Are the screening arguments derived from the calculations or arguments applicable, correct, and adequate?
 - **Yes**
 - **No**
 - Comments (attach pages as needed)

3. Is the record package documenting the screening effort, complete? Use Criteria found in Appendix D of the FEP Plan Version 5.1.
 - **Yes**
 - **No**
 - Comments (attach pages as needed)

Does the record packages contain sufficient information for an independent person with equivalent technical background to understand the work, evaluate the technical quality of the work, continue unfinished work, and/or reproduce the work and its primary results.

- **Yes**
- **No**
- Comments (attach pages as needed)

Report your assessment along with deficiencies if any and, if appropriate, make recommendations for addressing the deficiencies (attach pages as needed).

Technical Reviewer(s) (attach pages as needed)

Name (Print)	Signature	Date
M. S. Marotta | | 10/15/95

Name (Print)	Signature	Date
P. Vaughn | | 10/17/95

Lead Staff

Name (Print)	Signature	Date
P. Vaughn | | 10/17/95

Management Concurrence

Name (Print)	Signature	Date
Margaret Chu | | 10/17/95
FEP Title: **Dynamic Closure of the North End and Hallways**

Reviewer Instructions
Check "Yes" for each item reviewed and found acceptable.
Check "No" for each item reviewed and found not acceptable.

1. Are the calculations applicable, correct, and adequate?
 - **YES**
 - **NO**
 - NA (for reasoned argument FEP's)

2. Are the screening arguments derived from the calculations or arguments applicable, correct, and adequate?
 - **YES**
 - **NO**

3. Is the record package documenting the screening effort, complete? Use Criteria found in Appendix D of the FEP Plan Version 5.1.
 - **YES**
 - **NO**

Does the record packages contain sufficient information for an independent person with equivalent technical background to understand the work, evaluate the technical quality of the work, continue unfinished work, and/or reproduce the work and its primary results.

- **YES**
- **NO**

Report your assessment along with deficiencies if any and, if appropriate, make recommendations for addressing the deficiencies (attach pages as needed).

Signature of technical reviewer(s) and lead staff member indicates that the package reviewed was complete, accurate, and acceptable.

Technical Reviewer(s) (attach pages as needed)

Name (Print) **M.G. Marietta**
Signature **M.Y. Marietta**
Date 10/15/95

Name (Print)
Signature
Date

Lead Staff
P. Vaughn
Name (Print)
Signature
Date 10/17/95

Management Concurrence

Name (Print) **Margaret Chu**
Signature **Margaret Chu**
Date 10/17/95

SCWF-A.1.16.3: PACITYTSK: DE-3 (FEPI-D)
FEP Title: Brine Puddling in the Repository

Reviewer Instructions
Check "Yes" for each item reviewed and found acceptable.
Check "No" for each item reviewed and found not acceptable.

1. Are the calculations applicable, correct, and adequate?
 YES NO NA (for reasoned argument FEP's)
 Comments (attach pages as needed)

2. Are the screening arguments derived from the calculations or arguments applicable, correct, and adequate?
 YES NO
 Comments (attach pages as needed)

3. Is the record package documenting the screening effort complete? Use Criteria found in Appendix D of the FEP Plan Version 5.1.
 YES NO
 Comments (attach pages as needed)

Does the record packages contain sufficient information for an independent person with equivalent technical background to understand the work, evaluate the technical quality of the work, continue unfinished work, and/or reproduce the work and its primary results.
YES NO
Comments (attach pages as needed)

Report your assessment along with deficiencies if any and, if appropriate, make recommendations for addressing the deficiencies (attach pages as needed).

Signature of technical reviewer(s) and lead staff member indicates that the package reviewed was complete, accurate, and acceptable.

Technical Reviewer(s) (attach pages as needed)
Name (Print) Signature Date
M.G. MARIETTA M. Y. Murata 10/15/95
Name (Print) Signature Date

Lead Staff
Name (Print) Signature Date
P. Vaughn Vaughn 10/17/95

Management Concurrency
Name (Print) Signature Date
Margaret Chu 10/17/95

SCWF-A.1.6.3:PA# TSK: DR-6 (FEP-ID)
FEP Title: **PERMEABILITY VARYING WITH POROSITY IN CLOSURE REGIONS**

FEP ID: **DR-7**

Reviewer Instructions

Check "Yes" for each item reviewed and found acceptable.
Check "No" for each item reviewed and found not acceptable.

1. Are the calculations applicable, correct, and adequate?
 - **YES**
 - **NO**
 - **NA** (for reasoned argument FEP's)
 - Comments (attach pages as needed)

2. Are the screening arguments derived from the calculations or arguments applicable, correct, and adequate?
 - **YES**
 - **NO**
 - Comments (attach pages as needed)

3. Is the record package documenting the screening effort, complete? Use Criteria found in Appendix D of the FEP Plan Version 5.1.
 - **YES**
 - **NO**
 - Comments (attach pages as needed)

- Does the record packages contain sufficient information for an independent person with equivalent technical background to understand the work, evaluate the technical quality of the work, continue unfinished work, and/or reproduce the work and its primary results?
 - **YES**
 - **NO**
 - Comments (attach pages as needed)

Report your assessment along with deficiencies if any and, if appropriate, make recommendations for addressing the deficiencies (attach pages as needed).

Signature of technical reviewer(s) and lead staff member indicates that the package reviewed was complete, accurate, and acceptable.

Technical Reviewer(s) (attach pages as needed)

<table>
<thead>
<tr>
<th>Name (Print)</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. E. MARIETTA</td>
<td>M. Y. MARIETTA</td>
<td>10/15/95</td>
</tr>
</tbody>
</table>

Lead Staff

<table>
<thead>
<tr>
<th>Name (Print)</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zander VAUGHN</td>
<td>Zander VAUGHN</td>
<td>10/17/95</td>
</tr>
</tbody>
</table>

Management Concurrence

<table>
<thead>
<tr>
<th>Name (Print)</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARGARET CHU</td>
<td>MARGARET CHU</td>
<td>10/17/95</td>
</tr>
</tbody>
</table>

SCWF-A:1.1.6.3:PAH:TSK:DR-7 (FEP ID)
FEP Title: **Dynamic Alteration of the D2/Transition Zone**

FEP ID: **S-6**

Reviewer Instructions

Check "Yes" for each item reviewed and found acceptable.

Check "No" for each item reviewed and found not acceptable.

1. Are the calculations applicable, correct, and adequate?
 - **Yes**
 - **No**
 - **NA** (for reasoned argument FEP’s)
 - **Comments** (attach pages as needed)

2. Are the screening arguments derived from the calculations or arguments applicable, correct, and adequate?
 - **Yes**
 - **No**
 - **Comments** (attach pages as needed)

3. Is the record package documenting the screening effort, complete? Use Criteria found in Appendix D of the FEP Plan Version 5.1.
 - **Yes**
 - **No**
 - **Comments** (attach pages as needed)

Does the record packages contain sufficient information for an independent person with equivalent technical background to understand the work, evaluate the technical quality of the work, continue unfinished work, and/or reproduce the work and its primary results.

- **Yes**
- **No**
- **Comments** (attach pages as needed)

Report your assessment along with deficiencies if any and, if appropriate, make recommendations for addressing the deficiencies (attach pages as needed).

Signature of technical reviewer(s) and lead staff member indicates that the package reviewed was complete, accurate, and acceptable.

Technical Reviewer(s) (attach pages as needed)

Name (Print)

- **M. G. Marietta**

Signature

- **M. Y. Magde**

Date

- **10/15/95**

Lead Staff

Name (Print)

- **Michael Cord**

Signature

- **Michael Cord**

Date

- **10/17/95**

Management Concurrency

Name (Print)

- **Palmer Vaughn**

Signature

- **Palmer Vaughn**

Date

- **10/17/95**

Name (Print)

- **Margaret Chu**

Signature

- **Margaret Chu**

Date

- **10/17/95**

SCWF-A1.1.6.3:PA NTSK: S-6 (FEP ID)
RESPONSE TO COMMENT(s) FOR FEP DR2

Comment from Stephen Webb
(Commentor's name)

Response to Comment (1)

I disagree with the conjecture in ¶ 1 and 2. As far as the comments in ¶ 3, the commentor is mistaken in that: 1) a horizontal Salado is not modeled (Dip of Salado and Repository is simulated), 2) the so-called brine and gas bucket approach is not used, 3) it is perfectly reasonable to use conditional CCDF of release to Culebra and lateral boundaries as metrics (If Culebra flow and transport had been included, they would have only diluted any sensitivity to DR2 which is not a Culebra issue), and 4) uncertainty is captured by LHS sampling and Monte Carlo using sample size 20 and considering undisturbed as well as two human intrusion scenarios.

Signature
[Signature]

Date
9/29/95

SWCF-A:1.1.6.3:PA:QA:TSK: DR2 (FEP ID#)
RESPONSE TO COMMENT(s) FOR FEP DR3

Comment from Stephen Webb
(Commentor's name)

Response to Comment (1)

Reviewer has same comment as DR2. I disagree with the conjecture in ¶ 1 and 2. As far as the comments in ¶ 3, the commentor is mistaken in that: 1) a horizontal Salado is not modeled (Dip of Salado and Repository is simulated), 2) the so-called brine and gas bucket approach is not used, 3) it is perfectly reasonable to use conditional CCDF of release to Culebra and lateral boundaries as metrics (If Culebra flow and transport had been included, they would have only diluted any sensitivity to DR2 which is not a Culebra issue), and 4) uncertainty is captured by LHS sampling and Monte Carlo using sample size 20 and considering undisturbed as well as two human intrusion scenarios.

Signature

Date 9/29/95

SWCF-A:1.1.6.3:PA:QA:TSK: DR3 (FEP ID#)
RESPONSE TO COMMENT(s) FOR FEP DR6

Comment from Stephen Webb
(Commentor’s name)

Response to Comment (1)

Reviewer has same comment as DR2. I disagree with the conjecture in § 1 and 2. As far as the comments in § 3, the commentor is mistaken in that: 1) a horizontal Salado is not modeled (Dip of Salado and Repository is simulated), 2) the so-called brine and gas bucket approach is not used, 3) it is perfectly reasonable to use conditional CCDF of release to Culebra and lateral boundaries as metrics (If Culebra flow and transport had been included, they would have only diluted any sensitivity to DR2 which is not a Culebra issue), and 4) uncertainty is captured by LHS sampling and Monte Carlo using sample size 20 and considering undisturbed as well as two human intrusion scenarios.

Signature

Date

SWCF-A:1.1.6.3:PA:QA:TSK:___DR6___(FEP ID#)
RESPONSE TO COMMENT(s) FOR FEP DR7

Comment from Stephen Webb
(Commentor's name)

Response to Comment (1)

Reviewer has same comment as DR2. I disagree with the conjecture in ¶ 1 and 2. As far as the comments in ¶ 3, the commentor is mistaken in that: 1) a horizontal Salado is not modeled (Dip of Salado and Repository is simulated), 2) the so-called brine and gas bucket approach is not used, 3) it is perfectly reasonable to use conditional CCDF of release to Culebra and lateral boundaries as metrics (If Culebra flow and transport had been included, they would have only diluted any sensitivity to DR2 which is not a Culebra issue), and 4) uncertainty is captured by LHS sampling and Monte Carlo using sample size 20 and considering undisturbed as well as two human intrusion scenarios.

Signature

Date
7/29/95
RESPONSE TO COMMENT(s) FOR FEP S-6

Comment from Stephen Webb (Commentor's name)

Response to Comment (1)

Reviewer has same comment as DR2. I disagree with the conjecture in ¶ 1 and 2. As far as the comments in ¶ 3, the commentor is mistaken in that: 1) a horizontal Salado is not modeled (Dip of Salado and Repository is simulated), 2) the so-called brine and gas bucket approach is not used, 3) it is perfectly reasonable to use conditional CCDF of release to Culebra and lateral boundaries as metrics (If Culebra flow and transport had been included, they would have only diluted any sensitivity to DR2 which is not a Culebra issue), and 4) uncertainty is captured by LHS sampling and Monte Carlo using sample size 20 and considering undisturbed as well as two human intrusion scenarios.

Comment from Al Lappin (Commentor's name)

Response to Comment (2)

The commentor is expanding the scope of S-6 beyond the original scope by including the DRZ surrounding the shaft system. His concerns are best addressed in the shaft seal system design. My understanding is that time-dependent DRZ characteristics are being considered as part of the shaft seal design and will be incorporated in the NWVP and CCA PA calculations.

The commentor's alternative screening decision is included, but I would add "and bounding" to the end of the last bullet.

Signature

Date

7/29/95

SWCF-A:1.1.6.3:PA:QA:TSK: ___ S-6 ___ (FEP ID#)
FEPs Screening Analyses

DR2: Capillary Action (Wicking) Within the Waste
DR3: Dynamic Consolidation of the North End and Hallways
DR6: Brine Puddling in the Repository Due to Heterogeneities
DR7: Permeability Varying with Consolidation in Closure Regions
S6: Dynamic Alteration of the Disturbed Rock Zone (DRZ)/Transition Zone

WBS No. 1.1.6.3

Lead Staff Member: Palmer Vaughn
Sandia National Laboratories
Organization 6749

Contributors:

James Bean, New Mexico Engineering Research Institute
James Garner, Piru Associates, Inc.
Michael Lord, Sandia National Laboratories, Org. 6749
Robert MacKinnon, Ecodynamics Research Associates
David McArthur, Sandia National Laboratories, Org. 6514
James Schreiber, Science Applications International Corporation
Ali Shinta, Applied Physics, Inc.
Table of Contents (Cont’d)

Diagram of data flow between computer codes .. 14
***Description of scenarios .. 13
***Performance measures .. 15
***Model Geometry ... 15
***Boundary and initial conditions .. 15
***Description of calculations ... 16
List of input and output files and files of plots, tables, and figures that data files
generated during the analysis. ... 17
List of files must include:
- Name and extension of WIPP archive file
- Hard copy of input and output files (optional) which are identified by name
- and extension of archive file
- Plots, tables, and figures synthesizing results
- Documentation of deviations from analysis plan, including rationale for deviations
- Statement indicating if calculation was or was not successfully completed
 (if not, give reason why)

Documentation of Deviations from Analysis Plan ... 23

SUMMARY MEMO OF RECORD (DR-2) ... 24
Statement of recommended screening decision .. 24
Statement of screening issue(s) .. 24
Approach (as performed, not planned) ... 25
Results and discussion ... 25
Basis for recommended screening decision .. 26

SUMMARY MEMO OF RECORD (DR-3) ... 27
Statement of recommended screening decision .. 27
Statement of screening issue(s) .. 27
Approach (as performed, not planned) ... 27
Results and discussion ... 28
Basis for recommended screening decision .. 29

SUMMARY MEMO OF RECORD (DR-6) ... 30
Statement of recommended screening decision .. 30
Statement of screening issue(s) .. 30
Approach (as performed, not planned) ... 30
Results and discussion ... 31
Basis for recommended screening decision .. 32

SUMMARY MEMO OF RECORD (DR-7) ... 33
Statement of recommended screening decision .. 33
Statement of screening issue(s) .. 33
Approach (as performed, not planned) ... 33
Results and discussion ... 34
Basis for recommended screening decision .. 35

SUMMARY MEMO OF RECORD (S-6) ... 36
Statement of recommended screening decision .. 36
Statement of screening issue(s) .. 36
Approach (as performed, not planned) ... 36
Results and discussion ... 38
Basis for recommended screening decision .. 39

SWCF-A: 1.1.6.3: PA: QA: TSK: DR2, DR3, DR6, DR7, S6
Table of Contents (Cont'd)

CERTIFICATION AND TRAINING .. 40
 List of individuals responsible for significant steps of the FEP screening process,
 including the names of Technical Reviewer(s) and Lead Staff Members 40
 Statement that copies of certification of personnel qualifications are on file in the SWCF 40
 Documentation indicating that personnel were trained on QAPs prior to screening effort 40
CORRESPONDENCE .. 40
 Any additional records of correspondence or interactions that provide further
 evidence of how the analysis was conducted and the quality of the results 40
 None
REFERENCES .. 40
 List of references cited in the records package documentation 40
VERIFICATIONS AND ASSESSMENTS 40
COMMENTS ... 41

APPENDIX 1: Figures and Tabulated Results 48
APPENDIX 2: Descriptions of FEP Models 67
APPENDIX 3: Directories and Files Used in the FEP's Screening Analysis 71
PLAN OF WORK

A set of screening analyses have been performed to evaluate the sensitivity of the WIPP repository performance to the following FEPs:

1. FEP Screening Issue DR2: Capillary Action (Wicking) Within the Waste
2. FEP Screening Issue DR3: Dynamic Consolidation of the North End and Hallways
3. FEP Screening Issue DR6: Brine Puddling in the Repository Due to Heterogeneities
4. FEP Screening Issue DR7: Permeability Varying with Consolidation in Closure Regions
5. FEP Screening Issue S6: Dynamic Alteration of the Disturbed Rock Zone (DRZ) and Transition Zone

This document describes the process for conducting sidebar calculations. This work was planned, conducted, and documented in accordance with the FEP Management Plan title “Features, Events, and Processes (FEP) and Assumption Screening: Procedural Aspects, Documentation QA” Revision 5.1, effective 5/11/1995.

Approved Planning Memos of Record

The approved Planning Memos of Record for each FEP are provided in the following pages. All software codes mentioned herein were used for all of the FEPs covered by this records package.
STATEMENT OF SCREENING ISSUE

Wicking is the ability of a material to carry a fluid by capillary action above the level it would normally seek in response to gravity. Since the present gas generation model defines drastically different rates depending upon whether the waste is in direct contact with liquid or surrounded by water vapor, the physical extent of these regions of contact could be important. Present assumptions are that capillary action in cellulosics is not likely to be important because it applies to only a small portion of the waste, which aside from its containers is not likely to contain much metal. Similarly, a capillarity in metal waste is also not likely because the sizes of the metal waste fragments are much larger than the 'pore' size needed to sustain capillarity. While 'pore' size of the sludges is probably small enough for capillary forces to be important, aside from the containers, the sludge is assumed to contain no free water because liquid sorbing materials such as dry portland cement are intentionally added to the sludge. Finally, while capillarity in the backfill is possible, it would be important only in regard to backfill that is in direct contact with metal (note there is no backfill in the current repository design).

While representation of wicking is implied by the use of two-phase Darcy flow, this physical process has been considered in the past to represent a level of detail that is beyond the available data for defining the effect of capillarity in past calculations. Nevertheless, the effect of capillary action on gas generation and their importance on releases to the environment are at present unknown and need evaluation.

APPROACH

Calculation Design

A two-phased computational procedure is proposed. The first phase is intended to be a 'shake-out' phase designed to raise confidence that 1) capillary action is implemented properly, 2) that no numerical instabilities occur, and 3) that non-physical behavior is absent. Some preliminary sensitivity analysis and screening may occur during the first phase. All other FEP conceptual models will be disabled with the exception of repository dip. The evaluation will cover the parameter uncertainty space resulting from a Latin hypercube sampling (LHS) of 20 realizations for the E1, E1/E2, and Undisturbed scenarios.

The second phase is intended to be the sensitivity analysis used as a basis for possible screening, assuming that screening has not been previously justified as a result of the phase one analysis. The relative importance of capillary action will be evaluated simultaneously with other FEP issues (including repository dip) to incorporate the possible influence of synergism on the sensitivity analysis, which is absent in the 'ceritus paribus' study of phase one. The phase two analysis will use results generated from a large LHS that includes the uncertainties of multiple FEP issues, as well as parameter uncertainty. The E1, E1/E2, and Undisturbed scenarios will be evaluated.
DATE: June 12, 1995

TO: D. R. Anderson

FROM: P. Vaughn

SUBJECT: FEP Screening Issue DR-3

STATEMENT OF SCREENING ISSUE

In past calculations, the dynamic effect of halite creep and room consolidation on room porosity was only modeled in the waste disposal regions. Both permeability and porosity were held constant within the experimental regions and the hallways, as described below. Formal evaluation of these assumptions and their implications has not been made.

Other portions of the repository such as the experimental region in the north end and the hallways were modeled assuming fixed (invariant with time) properties. In these regions the permeability was held at a fixed high value representative of nearly unconsolidated material or modestly consolidated. The porosity in these regions was maintained at relatively low values associated with highly consolidated material. It was assumed that this combination of low porosity and high permeability would conservatively overestimate flow through these regions and minimize the capacity of this material to store fluids, thereby providing a conservative worst-case estimate of releases to the environment.

Dynamic closure of the north-end and hallways reflects additional realism; it has now been included into the Performance Assessment model for brine and gas flow (BRAGFLO), and the sensitivity of repository behavior to these dynamics can be evaluated.

APPROACH
Calculation Design

A two-phased computational procedure is proposed. The first phase is intended to be a 'shake-out' phase designed to raise confidence that 1) dynamic closure of the north end and hallways is implemented properly, 2) that no numerical instabilities occur, and 3) that non-physical behavior is absent. Some preliminary sensitivity analysis and screening may occur during the first phase. All other FEP conceptual models will be disabled with the exception of repository dip. The evaluation will cover the parameter uncertainty space resulting from a Latin hypercube sampling (LHS) of 20 realizations for the E1, E1/E2, and Undisturbed scenarios.

The second phase will be the sensitivity analysis used as a basis for possible screening, assuming that screening has not been previously justified as a result of the phase one analysis. The relative importance of the dynamic closure of the north end and hallways will be evaluated simultaneously with other FEP issues (including repository dip) to incorporate the possible influence of synergism on the sensitivity analysis, which is absent in the 'cerius paribus' study of the first phase. The phase two analysis will use results generated from a large LHS that includes the uncertainties of multiple FEP issues, as well as parameter uncertainty. The E1, E1/E2, and Undisturbed scenarios will be evaluated.
DR-6: BRINE PUDDLING IN THE REPOSITORY
Planning Memo of Record

DATE: June 12, 1995

TO: D. R. Anderson

FROM: P. Vaughn

SUBJECT: FEP Screening Issue DR-6

STATEMENT OF SCREENING ISSUE

The flow model within a disposal room, and within the repository as a whole, determines how fast fluids flow within and out of the waste. The present (and accepted) model is based on the assumption of two-phase Darcy flow. Fluid flow modeling within a disposal room has three important considerations: 1) fluid distribution in the waste and flow within the room and repository, 2) fluid flow to and from the Salado Formation, and 3) flow up a human intrusion borehole. The first aspect may affect the rate and amount of gas generation. The second and third aspects may affect how much brine remains in the room, how much brine leaves the room, and the potential radionuclide release to the environment. For example, when the repository pressure is sufficient to drive gas out of the room, it may drive out brine as well, altering the total amount of brine available for gas generation.

The previous modeling of flow within the repository has been based on homogenizing the room contents into large computational volumes. However, heterogeneity of room contents may influence the gas and brine behavior in the room. To address room heterogeneity issues, an additional parameter has been added to specify the active brine flow fraction. Above this limit the 'normal' descriptions of two-phase flow apply (i.e., either the Brooks/Corey or VanGenuchten/Parker models). Below this minimum, the brine is immobile although it may still be consumed during the gas generation reactions.

Justification for the saturation limit assumption is based on the presumed heterogeneity of the waste and the fact that the repository dips slightly. One of the factors that could cause this effect would be gas flow among channels or preferential paths in the waste, bypassing entire regions. Isolated regions would exist because 1) they would be isolated by low-permeability waste barriers, 2) connectivity with the interbeds occurs only at particular locations within the repository, or 3) the repository dip itself promotes preferential gas flow in the upper regions of the waste.

Because the heterogeneity of the waste has now been incorporated into the Performance Assessment model for brine and gas flow (BRAGFLO), the sensitivity of repository behavior to brine puddling in the waste disposal regions can be evaluated.

APPROACH

Calculation Design

A two-phased computational procedure is proposed. The first phase is intended to be a 'shake-out' phase designed to raise confidence that 1) brine puddling is implemented properly, 2) that no numerical instabilities occur, and 3) that non-physical behavior is absent. Some preliminary sensitivity analysis and screening may occur in the first phase. All other FEP conceptual models will be disabled with the exception of repository dip. The evaluation will cover the parameter uncertainty space resulting from a Latin hypercube sampling (LHS) of 20 realizations for the E1, E1/E2, and Undisturbed scenarios.
The second phase is intended to be the sensitivity analysis used as a basis for possible screening, assuming that screening has not been previously justified as a result of the phase one analysis. The relative importance of brine puddling in the waste disposal regions will be evaluated simultaneously with other FEP issues (including repository dip) to incorporate the possible influence of synergism on the sensitivity analysis, which is absent in the 'ceritus paribus' study of phase one. The phase two analysis will use results generated from a large LHS that includes the uncertainties of multiple FEP issues, as well as parameter uncertainty. The E1, E1/E2, and Undisturbed scenarios will be evaluated.
DR-7: PERMEABILITY VARYING WITH POROSITY IN CLOSURE REGIONS
Planning Memo of Record

DATE: June 12, 1995
TO: D. R. Anderson
FROM: P. Vaughn

SUBJECT: FEP Screening Issue DR-7

STATEMENT OF SCREENING ISSUE

In past calculations, the dynamic effects of halite creep and room consolidation on room porosity were only modeled in the waste disposal regions. Permeability was held constant in the flow field, and both permeability and porosity were held constant within the experimental regions and the hallways, as described below. Formal evaluation of these assumptions and their implications has not been made.

During past flow field calculations, the permeability of the waste disposal regions was uniformly fixed at a high value so as not to impede flow. The porosity varied dynamically with time and repository pressure. Direct releases to the surface via cuttings and spallings depend in part on the permeability of the waste at the time of intrusion. These direct releases were calculated conditioned on a permeability that was consistent with the porosity and degree of consolidation at the time of intrusion. The determination of this permeability was done outside of the flow field calculations and was not the same value of permeability used to estimate the flow fields.

Other portions of the repository, such as the experimental region in the north end and the hallways, were modeled assuming fixed (invariant with time) values for both porosity and permeability. In these regions the permeability was held at a fixed high value representative of nearly unconsolidated or modestly consolidated material. The porosity in these regions was maintained at relatively low values associated with highly consolidated material. It was assumed that this combination of low porosity and high permeability would conservatively overestimate flow through these regions and minimize the capacity of these regions to store fluids, thus providing a maximized release to the environment.

This dynamic varying of permeability with porosity and consolidation in the repository reflects additional realism; it has now been included into the Performance Assessment model for brine and gas flow (BRAGFLO), and the sensitivity of repository behavior to these dynamics can be evaluated.

APPROACH

Calculation Design

A two-phased computational procedure is proposed. The first phase is intended to be a "shake-out" phase designed to raise confidence that 1) the dynamics of varying permeability with porosity and consolidation in the repository are implemented properly, 2) that no numerical instabilities occur, and 3) that non-physical behavior is absent. Some preliminary sensitivity analysis and screening may occur in the first phase. All other FEP conceptual models will be disabled with the exception of repository dip. The evaluation will cover the parameter uncertainty space resulting from a Latin hypercube sampling (LHS) of 20 realizations for the E1, E1/E2, and Undisturbed scenarios.
The second phase is intended to be the sensitivity analysis used as a basis for possible screening, assuming that screening has not been previously justified as a result of the phase one analysis. The relative importance of varying the permeability with porosity during repository consolidation will be evaluated simultaneously with other FEP issues (including repository dip) to incorporate the possible influence of synergism on the sensitivity analysis, which is absent in the 'cerius paribus' study of phase one. The phase two analysis will use results generated from a large LHS that includes the uncertainties of multiple FEP issues, as well as parameter uncertainty. The E1, E1/E2, and Undisturbed scenarios will be evaluated.
STATEMENT OF SCREENING ISSUE

The capability for treating the alteration of formation properties within the disturbed rock zone (DRZ) and transition zone can be evaluated. The technique for altering the properties within these regions will use the current formation-alteration capability imposed within the marker beds. The parameter values used in the formulation describing the formation alteration will differ between the interbeds and the DRZ/transition zone. This is now included in the Performance Assessment model for brine and gas flow (BRAGFLO) and the effect on behavior of the DRZ and transition zone alteration can be evaluated. The formation porosity and permeability will be dependent on brine pressure with the effect of increasing porosity and permeability with increasing pressure. There will be a dual effect from the formation alterations. With pressure build-up due to gas generation and creep closure within the waste, the increased porosity within the DRZ and transition zone will offer more fluid storage with resulting lower pressures. The increase in formation permeability will enhance the flow of fluid away from the DRZ and transition zone. Parameter values are selected that will greatly increase permeability while modestly increasing porosity.

The current scenario is conservative in estimating releases to the accessible environment. The effects under consideration may influence (retard) the transport of brine and gas to the marker beds, to the shaft and to any existing borehole.

APPROACH

Calculation Design

A two-phased computational procedure is proposed. Initial computations are intended to 1) demonstrate that the formation alteration is properly implemented, 2) investigate any numerical problems associated with the formation alteration of the DRZ and transition zone, 3) justify the physical reality of the formation alterations. Some preliminary sensitivity analysis and screening may occur during the first phase. The results that include formation alteration will be compared to the results without formation alteration; all other FEP conceptual models will be disabled with the exception of repository dip.

The second phase is intended to be the sensitivity analysis used as a basis for possible screening, assuming that screening has not been previously justified as a result of the phase one analysis. In phase two the relative importance of formation alteration will be evaluated simultaneously with other FEP issues. This will be done to evaluate the possible coupling of the effect of solution gas to other FEP conceptual models. The phase two analysis will use results generated from a large Latin hypercube sampling (LHS) that includes the uncertainties of multiple FEP issues (including repository dip) as well as parameter uncertainty. The E1, E1/E2 and Undisturbed scenarios will be evaluated.
SOFTWARE

The computer programs used in the FEPs screening analyses, along with their software abstracts, are listed below. These computer programs are classified as follows.

Pre-processors: GENMESH, MATSET, PRELHS, LHS, ICSET, PREBRAG, GENNET

Analysis codes: BRAGFLO, NUTS, PANEL

Post-processors: POSTLHS, ALGEBRACBD, POSTBRAG, SUMMARIZE, CCDFCALC, CCDFPLOT, BLOTCDB, SPLAT

A copy of the Grade X code is available in the Records Center. Other codes have been archived by Department 6351, Computational Support, on the following tapes: F95074, F95080, F95654, F95714, F95738, and F95081.

Complete software abstracts are on file in the WIPP Records Center.

GENMESH: (Version 6.00Z0, Version Date: 01/27/1992)

This program constructs BRAGFLO's Cartesian, rectangular two-dimensional finite-difference grid. In addition to establishing mesh connectivity and node coordinates, the program sets material regions, geometry flags for node or element boundary conditions, and element attributes associated with the cell size (e.g., elevations of elements).

MATSET: (Version 8.07Z0, Version Date: 02/01/1994)

MATSET sets material names to specified regions in BRAGFLO's finite-difference grid (e.g., defined by GENMESH), sets material property values, and sets attribute values into computational data base files. Property and attribute values are obtained from the property Secondary Data Base (median values read from PROP.SDB).

PRELHS: (Version 2.02Z0, Version Date: 02/01/1995)

The PRELHS translator is used to extract parameter distribution data from the secondary data base file, PROP.SDB, and sets up the Latin Hypercube Sampler (LHS) program input file.

LHS: (Version 2.31Z0, Version Date: 08/13/1993)

The purpose of the LHS program is to sample distributions of input parameters using Latin Hypercube Sampling. LHS permits correlations (restricted pairings) between parameters.

POSTLHS: (Version 4.05Z0, Version Date: 02/16/94)

The POSTLHS translator replicates PRECAMDAT Nv times where Nv is number of sample vectors generated by LHS and inserts one distinct sample vector of the varied parameters from the output of LHS into each replication of CAMDAT. Identical parameters previously inserted into PRECAMDAT by MATSET are overwritten by POSTLHS.
ICSET: (Version: 2.11Z0, Version Date: 07/07/1994)

Sets analysis array variables: history, global, nodal, and element variable values, at the first time step (NSTEP=1) in a cdb file. A cdb file was generated for each vector. Analysis array names and values are obtained from a user supplied input file.

ALGEBRACDB: (Version 2.31Z0, Version Date: 11/15/1994)

ALGEBRACDB generates additional data (or removes unnecessary data) in CAMDAT by manipulating data already stored. With ALGEBRACDB, an analyst can generate pertinent data external to a program module by combining data already stored in the CAMDAT rather than modifying the program module and, thereby, invoking a new quality assessment of the module.

PREBRAG: (Version 4.00Z0, Version Date: 01/16/1995)

PREBRAG creates an input file for the BRAGFLO code by translating data from CAMDAT.

BRAGFLO: (Version 4.00Z0, Version Date: 09/08/1995)

BRAGFLO is the two-phase (brine and gas) finite-difference program used to examine fluid flow within the Waste Isolation Pilot Plant (WIPP) repository site and surrounding formations.

POSTBRAG: (Version 3.03Z0, Version Date: 06/22/1994)

POSTBRAG places BRAGFLO output into CAMDAT. BRAGFLO output includes global mass balances (global variables) and any of 48 user-specified element variable distributions, including fluid pressures, phase saturations, Darcy velocities of each fluid phase in each (x,y,z) direction, interblock fluid flow rates of each fluid phase in each direction, reactant concentrations, physical properties (e.g., porosity and viscosity of each phase), and phase mass balances.

SUMMARIZE: (Version 2.00Z0, Version Date: 02/08/1995)

SUMMARIZE is used to read specified variable values from multiple CAMDAT data bases (one for each vector). The data may be read from a single time or multiple times. Some simple processing (such as interpolation or integration) of the data may be done. The data is then written to an output file in a format that is specified.

NUTS: (Version 1.02Z0, Version Date: 08/27/1995)

NUTS is finite-difference program that calculates the movement of radionuclides within the Waste Isolation Pilot Plant (WIPP) repository site. NUTS can be used to simulate the decay of multiple radioactive components during transport in three dimensions through fracture and matrix continua. Single-porosity, dual porosity, and dual-permeability simulations can be performed.

POSTNUTS: (Version 1.00Z0, Version Date: 02/09/1995)

POSTNUTS formats NUTS output for CAMDAT. This postprocessor outputs radionuclide concentrations, radionuclide fluxes, and associated input variables which include flow velocities, fluid saturations, and porosities.
GENNET: (Version 2.03ZO, Version Date: 02/01/1994)

GENNET constructs simple one-, two-, or three-dimensional networks using two-node elements from a user input file. In addition to establishing the mesh connectivity and node coordinates, the program sets: material regions, geometry flags for node or element boundary conditions, and cross-sectional areas of elements. All information is then stored in a computational data base file, "CDB file".

PANEL: (Version 3.50ZO, Version Date: 06/12/1995)

PANEL reads input properties from a CAMDAT file and computes the distribution of the nuclides in the panel (i.e., in original waste form, in colloidal form, or in solution). Then, when the panel is breached and brine flow starts, it outputs the cumulative mass released of the nuclides and the cumulative flow of the brine.

CCDFCALC: (Version 4.27ZO, Version Date: 02/30/1995)

CCDFCALC is used to calculate integrated release from CAMDAT files to be plotted by CCDFPLOT. For each sample set and scenario, CCDFCALC accesses the appropriate CAMDAT file and integrates to find cumulative releases for each radionuclide. The cumulative releases are written to a transfer file used by CCDFPLOT.

CCDFPLOT plots a complementary cumulative distribution function of total integrated releases.

Source Listings

Not applicable

PLATFORM

The FEP screening calculations were performed on a Digital Equipment Corporation (DEC) ALPHA 2100/4 (named Beatie), which is a member machine of the WIPP ALPHA Cluster. The operating system is Open VMS Version 1.5.

INPUT DATA SET

All material properties were obtained from the baseline database prop.sdb. The database file is in directory \[dataexec.database]. The baseline data is the same data described in chapter 6 of the Draft 40 CFR 191 Compliance Certification Application (DCCA). Input data sets for the screening calculations were generated in step-wise fashion using GENMESH, MATSET, PRELHS, LHS, POSTLHS, ICSET, ALGEBRACDB, and PREBRAG. These codes are described in the foregoing SOFTWARE section. Corresponding input and output files are listed in a subsequent Input and Output section.

All data sets used in the FEPs calculations were based on the baseline data set. Differences between each FEP data set and the baseline data set were comprised only of those data required to invoke the particular FEP in the calculations.
CALCULATIONS

List of Parameters Required, Including Units

See Table 1 in Appendix 1 for this information.

Rationale for Selection of Models used in Calculations

There are two primary reasons why the computer models BRAGFLO, NUTS, and PANEL are used in the screening analyses presented herein. First, these models are the only ones available with the capabilities to evaluate the complex processes (borehole intrusion, two-phase flow, contaminant transport, interbed alteration, waste room consolidation, gas generation due to microbial degradation and corrosion, and multiple material maps) associated with each FEP issue, in a probabilistic framework. Second, these models are the models to be used in the Performance Assessment of the Waste Isolation Pilot Plant. Note that the overall objective of the screening analyses is to determine which FEPs need to be included in these models for the final compliance calculations.

Assumptions

The conceptualization of the repository/Salado/shaft is the same as that described in chapter 6 of the Draft CFR 191 Compliance Certification Application (DCCA).

Names of Analysts

The following analysts contributed to the analysis of FEPs DR2, DR3, DR6, DR7, and S6:

Dates Analysis Conducted

Calculations and analysis of results were conducted between June 21 and August 31, 1995.

Instructions from Lead Staff Member

Screening analyses are to be performed in accordance with the Planning Memos of Record for FEPs DR2, DR3, DR6, DR7, and S6.
Diagram of Data Flow Between Computer Codes

A listing of programs used in the FEP’s screening analysis, the order they were implemented, and the data they receive and produce is provided in the subsequent section “List of Input and Output Files”.

Description of Scenarios

Two basic scenarios were considered in the screening analysis, undisturbed performance and disturbed performance. Both scenarios included a 1.0 degree formation dip downward to the south. Intrusion event E1 is considered in the disturbed scenario and consists of a borehole that penetrates the repository and pressurized brine in the underlying Castille Formation. Two variations of intrusion event E1 are examined, E1 Up-Dip and E1 Down-Dip. In the E1 Up-Dip event the intruded panel region is located on the up-dip (north) end of the repository, whereas in the E1 Down-Dip event the intruded panel region is located on the down-dip (south) end of the repository. These two E1 events permit evaluation of the possibility of increased brine flow into the panel region due to higher brine saturations down-dip and the potential for subsequent impacts on contaminant migration.

An important objective of the screening analyses presented herein is to determine if any of the FEPs listed above have the potential to enhance contaminant migration to the accessible environment. The potential pathways of concern for groundwater flow and radionuclide transport in the undisturbed and disturbed systems are summarized below.

Potential contaminant migration pathways in the undisturbed system are:

• Head gradients between the waste-disposal panels and overlying strata may cause brine and radionuclide migration from the waste-disposal panels to the base of the shaft and upwards through the shaft to the Culebra and ground surface. Migration to the base of the shaft may occur directly through the panel seals and access drifts or through the DRZ and anhydrite interbeds (M3139, M3138, and interbeds A+B). Migration up the shaft occurs through the shaft-seal system. Radionuclide transport to the accessible environment may occur via lateral migration through the Culebra.

• Migration from the waste-disposal panels laterally through the anhydrite interbeds towards the accessible environment.

Flow along these pathways are driven by elevated gas pressures in the waste resulting from gas generation in the waste-disposal panels and by elevated (above hydrostatic) in-situ fluid pressures resulting from consolidation of the excavation and surrounding rock.

Potential migration pathways in the disturbed scenario are:

• Radionuclides may be brought to the ground surface during drilling as particulate material dissolved or entrained in drilling fluid due to cavings, cuttings, spallings, and blowout.

• Radionuclides that are dissolved in brine may reach the accessible environment following long-term groundwater transport up the borehole and shaft to the ground surface or laterally down a potentiometric gradient in the Culebra.
Contaminants transported as VOCs in the brine and gas phase are also an important consideration in the undisturbed scenario. The project position on gas-phase RCRA concerns is currently being evaluated. The assumption made in the present set of screening analyses is that the VOC source term has an insignificant impact on fluid flow and can be excluded from detailed consideration in the FEP's screening process. In addition, bounding calculations show that the VOC source term concentrations, when converted to soil concentrations, will not exceed RCRA soil-based limits for VOCs. If the project determines at a later time that an elevated gas-phase VOC source term is potentially important, the FEPs discussed herein may need to be reevaluated to assess their impact on gas-phase VOC transport. The assumption used for modeling heavy metal constituents is that their migration behavior is analogous to that of the long-lived radionuclides and therefore can be examined by direct comparison to the radionuclide results.

Performance Measures

Several key performance measures were used to evaluate the sensitivity of the primary migration pathways outlined above to each FEP. These measures include:

- Conditional complementary cumulative distribution functions (CCDFs) of normalized contaminated brine releases to the Culebra via human intrusion and shaft system as well as releases within the marker beds to the subsurface boundary of the accessible environment.
- Blowout related performance measures including volume averaged pressures and brine saturations in the waste disposal area at times 100, 1000, and 10000 years.

Model Geometry

Two geometries are used in the BRAGFLO screening calculations with three different sets of material properties, one set for undisturbed conditions and two sets for disturbed conditions. The geometries and material sets represent a three-dimensional system in a two-dimensional plane that cuts vertically through the repository. Side views of the geometry for the undisturbed, E1 Up-Dip, and E0 Down-Dip configurations and their respective material sets are given in Figures 1 - 3 in Appendix A. The E1 Down-Dip geometry and material set is similar to the E1 Up-Dip configuration, except that the intruding borehole and waste panel locations are rotated 180 degrees about the centerline of the repository so that the intruded panel is on the down-dip side of the repository (to the left, south). Additional details on the model geometries are provided in the Draft Compliance Certification Application (DCCA), July Update, July 21, 1995.

Boundary and Initial Conditions

Boundary and initial conditions in the undisturbed and disturbed scenarios are identical. Boundary conditions included no flow in the normal directions across all far-field boundaries except at the lateral boundaries of the Culebra and Magenta units, and at the ground surface. At the lateral boundaries of the Culebra an initial pressure of 0.852 MPa and a water saturation of 1.0 was held constant throughout the simulations. Similarly, the pressures and water saturations at the lateral boundaries of the Magenta were held fixed at 0.9 MPa and 1.0, respectively. At the ground surface, pressure was maintained at an atmospheric pressure of 1.01325 MPa. The water table was located at a depth of 59 meters below the ground surface.
As in the DCCA calculations, an initial simulation period and set of initial conditions were specified which account for the impact that the time period between excavation and sealing of the panels will have on fluid saturations and pressures in the formations surrounding the repository. This time period is modeled explicitly and is assumed to last 5 years beginning at time -5 years (the time of initial excavation). The initial conditions during this period are as follows.

- Except for the waste and excavated regions, the formations above the Salado, and the Castile formation, the pressure distribution at 5 yr before time zero is hydrostatic relative to the pore pressure of MB139. The brine pressure in MB139 is treated as an uncertain variable and is sampled from a range of 12 to 13 MPa.
- Pressure in the waste and excavated regions is set to atmospheric pressure at 5 yr before time zero.
- Except for the Culebra and Magenta units and the region above the water table, the pressure distribution in the Rustler formation at 5 yr before time zero is hydrostatic relative to the ground-water table.
- Water pressure in the Culebra at 5 yr before time zero is 0.852 MPa, and the far-field pressure is held at that value over the 10000 yr calculation.
- Water pressure in the Magenta at 5 yr before time zero is 0.90 MPa, and the far-field pressure is held at that value over the 10000 yr calculation.
- Water pressure in the region above the water table (upper 59 meter) is set to atmospheric pressure at 5 yr before time zero.
- Pressure in the Castile brine reservoir at 5 yr before time zero is 12.7 MPa.
- The initial brine saturation is 1.0 everywhere except in the waste and excavated regions (where brine saturation is 0.0), and in the region above the water table (where brine saturation is at residual equal to 0.20).
- Initial brine saturations within the disposal room, shaft, and experimental area are 0.028, 0.25, and 0.0.

Description of Calculations:

During the initial conditions calculation, the permeability of the units overlying the Salado is set to zero to prevent water from flowing down the shaft during the waste emplacement period. In addition, the permeability of excavated regions is set to a high value (1.0 x 10^{-10} m^2) to represent cavities. Performance calculations begin at time zero (5 years after the initial calculation). At time zero, the pressure in the waste region is reset from its calculated value to atmospheric pressure. Brine saturations are reset within the disposal room, shaft, and experimental area to 0.028, 0.25, and 0.0, respectively. Initial brine saturation in the waste is treated as an uncertain variable and is reset to its sampled value, which ranges from 0.006 to 0.051. In all other excavated regions, the gas saturation is set to 1.0, and the pressure is reset to atmospheric pressure. Panel seals, backfill, and lower and upper shaft seals are also emplaced at time zero and these regions take on their corresponding permeabilities and porosities. Panel seals are assigned a high permeability of 1.0 x 10^{-12} m^2 to

SWCF-A: 1.1.6.3:PA:QA:TSK: DR2, DR3, DR6, DR7, and S6
minimize their effectiveness. For the first 100 yrs, the upper shaft seal permeability is sampled from the seals permeability distribution curve and permeability of the lower seal is assumed to be 1.0×10^{-13} m2. Calculations continue to time 100 yr, at which time the permeabilities of the lower and upper shaft seals are reset so that the lower seal permeability is assigned sampled values from the upper shaft permeability distribution and the upper shaft permeability is set to 1.0×10^{-13} m2. This treatment of seal permeabilities reflects that the short term component (upper seal) permeability increases with time and that the long-term component (lower seal) permeability decreases with time. In the undisturbed scenario, performance calculations continue unchanged to 10000 yr. In the human intrusion events, E1 Up-Dip and E1 Down-Dip, a borehole penetrates the repository and an underlying brine pocket at 1000 yr. Further details on property values of the various components can be found in Draft Compliance Certification Application, July Update, July 21, 1995.

BRAGFLO calculates the brine and gas flow fields in the disposal system. These flow fields are used in the computer code NUTS to estimate radionuclide releases to the accessible environment. NUTS uses the same model geometry as BRAGFLO and calculations are performed as follows. A tracer element is assumed to have an infinite inventory in each computational waste cell and a solubility of 1 Kg/m3. Tracer concentrations throughout the problem domain, exclusive of the waste region, are initially zero. Far-field boundary fluxes are maintained at zero. Decay and sorption processes are neglected. Using the brine flow velocities reported from BRAGFLO, NUTS calculates the transport of the tracer to the Culebra and subsurface boundary of the accessible environment. Since the tracer element has solubility of 1 Kg/m3, each Kg of contaminated brine reaching these locations is equivalent to 1 m3 of repository brine.

The volumes of contaminated brine calculated by NUTS are used directly by the computer code PANEL to estimate the amounts of the various radionuclides (dissolved and colloidal) that are released to the Culebra and subsurface boundary. These estimates are based on the conservative assumption that the volumes of contaminated brine passing these locations flows directly through the disposal room and is transported instantaneously to the Culebra and subsurface boundary. Radionuclide decay and inventory solubility limits are accounted for in PANEL.

Table 1 in Appendix 1 summarizes the uncertain variables that were sampled in the screening calculations. The range and median values of the actual sampling are listed. A Latin hypercube sample of size of 20 was used to incorporate the effects of uncertainty. This sample size was selected as the best compromise between providing sufficient data for screening purposes versus schedule and resource constraints.

List of Input and Output Files

The following directories and files have been archived on tape numbers F95881, F95882, F95883, F95884, F95885, F95886, F95074, F95080, F95054, F95714, F95738, F95081.

The programs used in the FEP's screening analysis are listed below in the order they were implemented. The input files listed under each program name are the files provided for program execution and the output files represent the resulting files. The directories where the various files reside are also noted.

The following symbolic notation is used to denote FEP files.

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRZ:</td>
<td>Screening Issue S6</td>
</tr>
<tr>
<td>WICK:</td>
<td>Screening Issue DR-2</td>
</tr>
<tr>
<td>VPC:</td>
<td>Screening Issue DR-7</td>
</tr>
<tr>
<td>MCS:</td>
<td>Screening Issue DR-3</td>
</tr>
<tr>
<td>PUD:</td>
<td>Screening Issue DR-6</td>
</tr>
<tr>
<td>Base:</td>
<td>Baseline Model</td>
</tr>
</tbody>
</table>

GENMESH: Version 6.00Z0, Version Date 01/27/1992

SWCF-A: 1.1.6.3:PA:QA:TSK: DR2, DR3, DR6, DR7, and S6
Directory: F2:[FEP.JEBEAN.BASELINE.GENMESH]
Input file: GENMESH.INP
Output files: GENMESH_1.CDB (UNDISTURBED AND E01_UP scenarios)
GENMESH_2.CDB (E01_DOWN scenario)

MATSET:
Version 8.0720, Version Date 02/01/1994
Directory: F2:[FEP.JEBEAN.BASELINE.MATSET]
Input files: MATSET.NEW.INP
GENMESH_1.CDB (UNDISTURBED AND E01_UP scenarios)
GENMESH_2.CDB (E01_DOWN scenario)
Output files: MATSET.CDB
MATSET_DOWN.CDB

PRELHS:
Version 2.02ZO, Version Date 02/01/1995
Directory: F2:[FEP.JEBEAN.BASELINE.LHS]
Input file: PRELHS_FEPS_BASELINE.INP
Output file: LHS_FEPS_BASELINE.INP

LHS:
Version 2.31ZO, Version Date 08/13/1993
Directory: F2:[FEP.JEBEAN.BASELINE.LHS]
Input files: LHS_FEPS_BASELINE.INP
Output file: SMPLHS_FEPS_BASELINE.OUT (UNDISTURBED AND E01_UP scenarios)
SMPLHS_FEPS_BASELINE_DOWN.OUT (E01_DOWN scenario)

POSTLHS:
Version 4.05ZO, Version Date 02/16/1994
Directory: F2:[FEP.JEBEAN.BASELINE.LHS]
Input files: POSTLHS.INP
Output files: MATSET.CDB (UNDISTURBED AND E01_UP scenarios)
MATSET_DOWN.CDB (E01_DOWN scenario)
SMPLHS_FEPS_BASELINE.OUT (UNDISTURBED AND E01_UP scenarios)
SMPLHS_FEPS_BASELINE_DOWN.OUT (E01_DOWN scenario)

range from 01 to 20

SWCF-A: 1.1.6.3:PA:QA:TSK: DR2, DR3, DR6, DR7, and S6
ICSET:
Version 2.11Z0, Version Date 07/07/1994
Directory: F2:[FEP.JEBEAN.BASELINE.ICSET]
Input file:
ICSET.INP (UNDISTURBED AND E01_UP scenarios)
ICSET_DOWN.INP (E01_DOWN scenario)
POSTLHS_FEPS.BASELINE.RO##.CDB
POSTLHS_FEPS.BASELINE_DOWN.RO##.CDB
Output files:
ICSET.RO##.CDB
ICSET_DOWN.RO##.CDB

range from 01 to 20

ALGEBRACDB:
Version 2.31Z0, Version Date 11/15/1994
Directory: F2:[FEP.JEBEAN.BASELINE.ALGEBRA]
Input files:
ALGEBRA.NEW.INP
ICSET.RO##.CDB
ICSET_DOWN.RO##.CDB
Output files:
ALGEBRA.RO##.CDB
ALGEBRA_DOWN.RO##.CDB

range from 01 to 20

PREBRAG:
Version 4.00Z0, Version Date 01/16/1995
Directory:
F2:[FEP.JEBEAN.BASELINE.PREBRAG]
Input files:
PREBRAG_UND.INP (UNDISTURBED scenario)
PREBRAG_E01.INP (E01_UP scenario)
PREBRAG_E01_DOWN.INP (E01_DOWN scenario)
Directories and
Output files:
F2:[FEP.JEBEAN,%%BRAGFLO]B_FEP_&_%%$$_RO##.INP

The symbols denote:
%%% = BASELINE, DRZ, VPC, MCS, PUD, WICK
& & = BASE, DRZ, VPC, MCS, PUD, WICK
$$ = UNDIST, E01_UP, E01_DOWN
= 01, 02, ..., 20

BRAGFLO:
File Name B1.EXE;56, see directory F2:[fep.dataexec.bragex]
Executable:
U1:[JDSCHRE.BRAGFLO.FEP]B1.EXE
Input file:
F2:[FEP.JEBEAN,%%]B_FEP_&_%%$$_RO##.INP
Output file:
F2:[FEP,%%.$$]B_FEP_&_%%$$_RO##.BIN

The symbols denote:
%%% = BASELINE, DRZ, VPC, MCS, PUD, WICK
& & = BASE, DRZ, VPC, MCS, PUD, WICK
$$ = UNDIST, E01_UP, E01_DOWN
= 01, 02, ..., 20
POSTBRAG: Version 3.03Z0, Version Date 06/22/1994

Directories and Input files:
- F2:[FEP.JEBEAN.BASELINE.ALGEBRA]ALGEBRA_RO##.CDB
- F2:[FEP.JEBEAN.BASELINE.ALGEBRA]ALGEBRA_DOWN_R0##.CDB
- F2:[FEP.%%.$$]B_FEP_&&_$$_RO##.BIN

Directories and Output files:
- F2:[FEP.%%.$$]B_FEP_&&_$$_R0##.CDB

The symbols denote:
- %% = BASELINE, DRZ, VPC, MCS, PUD, WICK
- && = BASE, DRZ, VPC, MCS, PUD, WICK
- $$ = UNDIST, E01_UP, E01_DOWN
- ## = 01, 02, ..., 20

ALGEBRACDB: Version 2.31Z0, Version Date 11/15/1994

Directories and Input files:
- F1:[FEP.%%.$$]POST_ALG_$$.INP
- F2:[FEP.%%.$$]B_FEP0J_&&_$$.CDB

Directories and Output files:
- F1:[FEP.%%.$$]B_FEP0J_&&_$$.CDB

The symbols denote:
- %% = BASELINE, DRZ, VPC, MCS, PUD, WICK
- && = BASE, DRZ, VPC, MCS, PUD, WICK
- $$ = UNDIST, E01_UP, E01_DOWN
- J = 1 (BASELINE), 2 (DRZ), 3 (MCS), 4 (PUD), 6 (VPC), 7 (WICK)
- ## = 01, 02, ..., 20

SUMMARIZE: Version 2.00Z0, Version Date 02/08/1995

Directories and Input files:
- F1:[FEP.%%.$$]B_FEP0J_&&_$$.RO##.CDB
- F1:[FEP.%%.$$]B_FEP0J_&&_$$.CDB
- F1:[FEP.%%.$$]FEP0J_&&_$$.SMZ

Directories and Output files:
- F1:[FEP.POSTPROC.$$]FEP0J_&&_VAR.TBL

The symbols denote:
- %% = BASELINE, DRZ, VPC, MCS, PUD, WICK
- && = BASE, DRZ, VPC, MCS, PUD, WICK
- $$ = UNDIST, E01_UP, E01_DOWN
- J = 1 (BASELINE), 2 (DRZ), 3 (MCS), 4 (PUD), 6 (VPC), 7 (WICK)
- ## = 01, 02, ..., 20
NUTS: Version: 1.02Z0, Version Date: 08/27/1995

Directory: F1:[FEP.AASHINT.SP.SIDEBAR.&$.]
Input Files: F2:[FEP.%%.$$] B_FEP_&$. R0#.BIN
 F2:[FEP.%%.$$] B_FEP_&$. R0#.INP
 E01SIDE.IN
 UNDSIDE.IN
Output Files: NUTS_FEP_&$. R0#.BIN

The symbols denote:

%% = BASELINE, DRZ, VPC, MCS, PUD, WICK
&$ = BASE, DRZ, VPC, MCS, PUD, WICK
$$ = UND, E01_UP, E01_DOWN
= 01, 02,, 20

POSTNUTS: Version 1.00Z0, Version Date 02/09/1995

Directory: F1:[FEP.AASHINT.SP.SIDEBAR.&$.]
Input Files: F2:[FEP.%%.$$] NUTS_FEP_&$. R0#.BIN
 ALGEBRA_NEW_R0#$.CDB
 ALGEBRA_DOWN_R0#$.CDB
 ALGEBRA_R0#$.CDB
 E01SIDE.IN
 UNDSIDE.IN
Output Files: NUTS_FEP_&$. R0#.CDB

The symbols denote:

%% = BASELINE, DRZ, VPC, MCS, PUD, WICK
&$ = BASE, DRZ, VPC, MCS, PUD, WICK
$$ = UND, E01_UP, E01_DOWN
= 01, 02,, 20

GENNET: Version 2.03Z0, Version Date 02/01/1994

Directory: F2:[FEP.GARNER]
Input file: GENNET_S00.INP
Output file: GENNET_S00.CDB

MATSET: Version 8.07Z0, Version Date 02/01/1994

Directory: F2:[FEP.GARNER]
Input file: MATSET_S00.INP
 GENNET_S00.CDB
Output file: MATSET_S00.CDB
POSTLHS: Version 4.05Z0, Version Date 02/16/1994

Directory: F2:[FEP.GARNER]
Input files: POSTLHS_S00.INP
 MATSET_S00.INP
 SMPLHS_FEPS_BASELINE.OUT
Output: LHS_S00_SRO##.CDB

range from 01 to 20

PANEL: Version 3.50Z0, Version Date 06/12/1995

Directory: F2:[FEP.GARNER.&&.$$
Input files: F2:[FEP.GARNER.LHS_S00_SRO##.CDB
 F2:[FEP.GARNER.&&.BRAGFLO] NUTS_S00_01_020.CDB
 F2:[FEP.GARNER.&&.BRAGFLO] NUTS_S00_01_020.CDB
 F2:[FEP.GARNER.&&.BRAGFLO] NUTS_S00_01_020.CDB
Output Files: PANEL_S00_S_R0##.CDB
 PANEL_S01_S_R0##.CDB
 PANEL_S01D_S_R0##.CDB

&& = Base, DRZ, MCS, PUD, VPC, WICK
$$ = PANEL_CUL, PANEL_MB, Bragflo
range from 01 to 20

CCDFCALC: Version 4.27Z0, Version Date 02/30/1995

Directory: F2:[FEP.GARNER.&&..$$.CCDF]
Input files: CCDFCALC_E0.INP;
 CCDFCALC_E1.INP;
 CCDFCALC_EID.INP;
Output files: PANOUT_E0.OUT
 PANOUT_E1.OUT
 PANOUT_EID.OUT
 PANOUT_E0.TRN
 PANOUT_E1.TRN
 PANOUT_EID.TRN

&& = DRZ, MCS, PUD, VPC, WICK
$$ = BRAGFLO, PANEL_CUL, PANEL_MB
CCDFPLOT: Version 4.19Z0, Version Date 02/23/1995

Directory: F2:[FEP.GARNER]
Input files: CCDFPLOT_E1D.INP;
CCDFPLOT_E1.INP;
CCDFPLOT_E0.INP;
CCDFPLOT_MBE1D.INP;
CCDFPLOT_MBE1.INP;
CCDFPLOT_MBE0.INP;
Output files: *.PST and renamed PLOT.##

The listing of directories and files used in the FEP screening analyses are given in Appendix 3. Plots, tables, and figure documenting results are presented in Appendix 1.

Documentation of Deviations from Analysis Plan

All calculations undertaken in the screening analyses were successfully completed. Deviations from the analysis plan did not occur. The screening analyses of FEPs DR2, DR3, DR6, DR7, and S6 show that each of the FEPs have insignificant impact on releases to the accessible environment. Therefore, the influence of synergism or interactions between multiple FEP issues on the sensitivity analysis will be small. For this reason, simulations examining multiple FEP issues were not performed.
DR-2: CAPILLARY ACTION (WICKING) WITHIN THE WASTE MATERIALS

Date: September 28, 1995

To: D.R. Anderson

From: P. Vaughn, M. Lord, R. MacKinnon

Subject: FEP Screening Issue DR-2

STATEMENT OF SCREENING DECISION

FEP Screening Issue DR-2 will be included in future system-level performance assessment calculations. See comment on page 23.

STATEMENT OF SCREENING ISSUE

This screening effort evaluates the need for including wicking in future system-level performance assessment calculations. Capillary action (wicking) is the ability of a material to carry a fluid by capillary forces above the level it would normally seek in response to gravity. Since the present gas generation model computes substantially different gas generation rates depending upon whether the waste is in direct contact with liquid or whether the waste is surrounded by water vapor in the gas phase, the physical extent of these regions of contact could be important. Present assumptions are that capillary action in cellulosics is not likely to be important because it applies to only a small portion of the total waste, which aside from its containers, is not likely to contain much metal. Similarly, capillarity in metal waste is also not likely because the sizes of the metal waste fragments are much larger than the 'pore' size needed to sustain capillarity. While 'pore' size of the sludges is probably small enough for capillary forces to be important, aside from the containers, the sludge is assumed to contain no free water because liquid sorbing materials such as dry portland cement are intentionally added to the sludge. Finally, while capillarity in the backfill is possible, it would be important only in regard to backfill that is in direct contact with metal (note there is no backfill in the current repository design).

Although the representation of wicking is implied by the use of two-phase Darcy flow, wicking in waste materials has been considered in the past to represent a level of detail that is beyond the available data for defining the effect of wicking on gas generation. Nevertheless, the effect of wicking on gas generation and releases to the environment may be important and needs evaluation. An associated screening issue is uncontrolled fluid flow to the surface (blowout) during an intrusion into the repository. The volume of uncontrolled releases to the surface due to cuttings, spalling, and blowout during drilling is influenced by the prevailing pressure, permeability, and saturation conditions in the disposal room at the time of intrusion.
APPROACH

The baseline gas generation model in BRAGFLO accounts for corrosion of iron and microbial degradation of cellulosics. The net reaction rate of these processes is directly dependent on brine saturation: an increase in brine saturation will increase the net reaction rate by weighting the inundated portion more heavily, while less weighting is applied to the slower humid portion. To simulate the effect of wicking on the net reaction rate, an effective brine saturation, which includes a wicking saturation contribution, is used to calculate reaction rates rather than the brine saturation. The wicking model is described in Appendix 2 of the records package entitled “FEPs Screening Analysis for FEPs DR2, DR3, DR6, DR7, and S6”.

A series of BRAGFLO simulations were performed to determine if wicking has the potential to enhance contaminant migration to the accessible environment. Effects of all other FEP issues were turned off in the simulations. Two basic scenarios were considered in the screening analysis, undisturbed performance and disturbed performance. Both scenarios included a 1.0 degree formation dip downward to the south. Intrusion event E1 is considered in the disturbed scenario and consists of a borehole that penetrates the repository and pressurized brine in the underlying Castille Formation. Two variations of intrusion event E1 are examined, E1 Up-Dip and E1 Down-Dip. In the E1 Up-Dip event the intruded panel region is located on the up-dip (north) end of the repository, whereas in the E1 Down-Dip event the intruded panel region is located on the down-dip (south) end of the repository. These two E1 events permit evaluation of the possibility of increased brine flow into the panel region due to higher brine saturations down-dip of the borehole and the potential for subsequent impacts on contaminant migration. To incorporate the effects of uncertainty in each case (E1 Up-Dip, E1 Down-Dip, and undisturbed), a Latin hypercube sample size of 20 was used resulting in a total of sixty simulations. To assess the sensitivity of system performance on wicking in the waste materials, conditional supplementary cumulative distribution functions (CCDFs) of normalized contaminated brine releases to the Culebra via human intrusion and shaft system, as well as releases to the subsurface boundary of the accessible environment, were constructed and compared to the corresponding baseline model CCDFs. In the baseline model calculations, the effects of all FEP issues are turned off. These comparisons provide direct information about how the inclusion of wicking may influence repository performance. In addition, blowout, cuttings, and spalling performance measures are examined. Drivers for potential releases to the surface by these mechanisms are brine pressures, brine saturations, and permeability in the waste disposal area.

RESULTS AND DISCUSSION

CCDFs for releases to the Culebra and lateral land withdrawal boundary for E1 Up-Dip, E1 Down-Dip, and undisturbed cases are provided in Figure 4 of Appendix 1. Each figure compares CCDFs of normalized releases predicted by the baseline model and normalized releases predicted with capillary action. Note that releases to the Culebra via the shaft and intrusion borehole are shown on the left side of the figure whereas releases to the subsurface boundary of the accessible environment are presented on the right side of the figure. In all three cases (E1 Up-Dip, E1 Down-Dip, and undisturbed), the capillary action curves for releases to the Culebra via borehole and shaft are very close to the baseline curves for most of their lengths, with capillary action CCDFs slightly and to the right of the baseline CCDFs in the disturbed scenarios. In the E1 Up-Dip and E1 Down-Dip cases, CCDFs for releases to the subsurface boundary via the marker beds show that the capillary action CCDFs are above the baseline CCDF for only small and insignificant releases. Undisturbed releases to the subsurface boundary of the accessible environment via the marker beds are consistently higher for the baseline model with the baseline CCDF above and to the right of the capillary action CCDF. In summary, the differences in releases between the baseline and wicking results are minor and occurring primarily in the low release regions of the CCDFs.
Blowout, spalling, and cuttings metrics including maximum, mean, median, and minimum values of volume averaged brine pressures, brine saturations, porosity, and permeability in the waste region for undisturbed conditions at 100, 1000, and 10000 years are given in Table 3 of Appendix I. Comparison of these table values with the baseline values given in Table 2 indicate that wicking produces slightly higher maximum, minimum, and median pressures at 100 years and a higher median pressure at 1000 years. Note that these pressures are relatively low. In addition, all brine saturations, with the exception of the maximum value at 1000 years, are consistently lower than the brine saturation value (0.6) required for uncontrolled brine releases during blowout (see Summary Memo of Record for FEP Screening Issue DR-4). Finally, the maximum brine saturation at 1000 years (this value is higher than the corresponding baseline values) exceeds the saturation value above which uncontrolled brine releases decrease with increasing saturation (see Summary Memo of Record for FEP Screening Issue DR-4). At high brine saturations, uncontrolled releases decrease because gas volumes are too small to sustain the necessary gas drive. CCDFs for releases due to blowout at 100, 500, 1000, and 10,000 years are presented in Figure 10 of Appendix I. Note that the abscissa axis scale varies between plots at all times with the exception of 1000 years, the baseline model is conservative with respect to blowout. At 1000 years, the capillary action CCDF is above and to the right of the baseline CCDF. Based on this CCDF, capillary action will be included in future PA calculations. CCDFs comparing baseline and capillary action cuttings releases for the different intrusion times are presented in Figure 11. In all cases, baseline and capillary action CCDFs are identical. Therefore, capillary action does not impact cuttings releases.

BASIS FOR RECOMMENDED SCREENING DECISION

Results indicate that wicking is a relatively minor factor in the performance of the repository and it does not significantly impact releases to the accessible environment. In addition, wicking has an inconsequential effect on waste room conditions that impact releases due to blowout, spalling, and cuttings. Therefore, wicking need not be included in system-level PA calculations.

COMMENT ON SCREENING DECISION

FEP screening issue DR-2 will be included in future system-level performance assessment calculations. This decision is based on estimates of direct releases to the surface via a borehole intrusion into the repository (blowout). It should be emphasized that the blowout model used to calculate these potential releases is based on several simplifying and conservative assumptions. It is recommended that this screening decision be reevaluated the future using a more realistic analysis.
DR-3: DYNAMIC CLOSURE OF THE NORTH-END AND HALLWAYS
Summary Memo of Record

Date: September 28, 1995

To: D.R. Anderson

From: P. Vaughn, M. Lord, R. MacKinnon

Subject: FEP Screening Issue DR-3

STATEMENT OF SCREENING DECISION

FEP Screening Issue DR-3 need not be included in future system-level performance assessment calculations.

STATEMENT OF SCREENING ISSUE

This screening effort evaluates the need for including dynamic closure of the north-end and hallways in future system-level performance assessment calculations. In past calculations, the dynamic effect of halite creep and room consolidation on room porosity was modeled only in the waste disposal regions. Other portions of the repository, such as the experimental region in the north end and the hallways, were modeled assuming fixed (invariant with time) properties. In these regions, the permeability was held at a fixed high value representative of nearly unconsolidated or modestly consolidated material. The porosity in these regions was maintained at relatively low values associated with highly consolidated material. It was assumed that this combination of low porosity and high permeability would conservatively overestimate flow through these regions and minimize the capacity of this material to store fluids. An associated screening issue is uncontrolled fluid flow to the surface (blowout) during an intrusion into the repository. The volume of uncontrolled releases to the surface due to cuttings, spalling, and blowout during drilling is influenced by the prevailing pressure, permeability, and saturation conditions in the disposal room at the time of intrusion.

APPROACH

Consolidation of the north-end and hallways was implemented in BRAGFLO by relating pressure and time to porosity via a "porosity surface" method. The porosity surface is a look-up table within BRAGFLO that relates cavity closure (void volume) to time and pressure for different gas generation histories (see Butcher et al. 1991). The porosity surface for the north-end and hallways is different than the one used for consolidation of the disposal room and is based on an empty excavation; it is described in detail in a memo from Stone and Arquello to Butcher entitled ‘Porosity Surface Generation for a Disposal Room Without Crushed Salt Backfill’ and dated 2/2/95.

A series of BRAGFLO simulations were performed to determine if dynamic consolidation of the north-end and hallways has the potential to enhance contaminant migration to the accessible environment. Effects of all other FEP issues were turned off in the simulations. Two basic scenarios were considered in the screening analysis, undisturbed performance and disturbed performance. Both scenarios included a 1.0 degree formation dip downward to the south. Intrusion event E1 is considered in the disturbed scenario and consists of a borehole that penetrates the repository and pressurized brine in the underlying Castile Formation. Two
variations of intrusion event E1 are examined, E1 Up-Dip and E1 Down-Dip. In the E1 Up-Dip event the intruded panel region is located on the up-dip (north) end of the repository, whereas in the E1 Down-Dip event the intruded panel region is located on the down-dip (south) end of the repository. These two E1 events permit evaluation of the possibility of increased brine flow into the panel region due to higher brine saturations down-dip of the borehole and the potential for subsequent impacts on contaminant migration. To incorporate the effects of uncertainty in each case (E1 Up-Dip, E1 Down-Dip, and undisturbed), a Latin hypercube sample size of 20 was used resulting in a total of sixty simulations. To assess the sensitivity of system performance to north-end and hallway consolidation, conditional complementary cumulative distribution functions (CCDFs) of normalized contaminated brine releases to the Culebra via human intrusion and shaft system, as well as releases to the subsurface boundary of the accessible environment, were constructed and compared to the corresponding baseline model CCDFs. In the baseline model calculations, the effects of all FEP issues are turned off. These comparisons provide direct information about how the inclusion of north-end and hallway consolidation may influence repository performance. In addition, blowout, cuttings, and spalling performance measures are examined. Drivers for potential releases to the surface by these mechanisms are brine pressures, brine saturations, and permeability in the waste disposal area.

RESULTS AND DISCUSSION

CCDFs for releases to the Culebra and lateral land withdrawal boundary for E1 Up-Dip, E1 Down-Dip, and undisturbed cases are provided in Figure 5 of Appendix 1 in the records package entitled “FEPs Screening Analysis for FEPs DR2, DR3, DR6, DR7, and S6”. Each figure compares CCDFs of normalized releases predicted by the baseline model and normalized releases predicted with north-end and hallway consolidation. Note that releases to the Culebra via the shaft and intrusion borehole are shown on the left side of the figure whereas releases to the lateral land withdrawal boundary are presented on the right side of the figure. In the E01 Down and E01-Up cases, the dynamic consolidation curves for releases to the Culebra via shaft and borehole are very close to the baseline curves for most of their lengths. In the undisturbed case, the dynamic consolidation CCDF is above the baseline curve for only very small releases via the shaft to the Culebra. However, CCDFs for releases to the subsurface boundary of the accessible environment via the marker beds show only minor differences between the dynamic closure and baseline results with the baseline curve consistently above and to the right of the dynamic consolidation CCDF. These results can be explained in part by the fact that time-varying porosities of the north-end and hallways exceed the conservative cavity porosity (0.075) used in the baseline model for most of the 10000 yrs. The time-varying porosities are initially set to 1.0 and during the course of simulation they gradually decrease. For a short duration (500 to 1000 yrs), starting at around 500 yrs, cavity porosities drop slightly below 0.075 and then experience a gradual increase to values well above the value of 0.075.

Blowout, spalling, and cuttings metrics including maximum, mean, medium, and minimum values of volume averaged brine pressures, brine saturations, porosity, and permeability in the waste region for undisturbed conditions at 100, 1000, and 10000 years are given in Table 4 of Appendix 1. Comparison of these table values with the baseline values given in Table 2 indicate that brine pressures tend to be higher in the baseline case. Also, the maximum, median, and mean brine saturations for dynamic closure at 100 yrs are slightly higher than the corresponding baseline values, however, the actual volumes of brine (the product of porosity and saturation) are nearly equal in the two cases. It is also important to note that these slightly higher saturations fall below the minimum saturation (approximately 0.6) needed for uncontrolled releases due to blowout (see Summary Memo of Record for FEP Issue DR-4). In summary, dynamic closure of the north-end and hallways has a negligible effect on waste room conditions relevant to releases due to blowout, cuttings, and spalling.
BASIS FOR RECOMMENDED SCREENING DECISION

Based on the CCDFs, the inclusion of consolidation of the north-end and hallways in BRAGFLO results in overall lower computed releases to the accessible environment than the baseline case. In addition, dynamic consolidation has an insignificant effect on waste room conditions relevant to blowout, spallings, and cuttings. As a result, the baseline model is conservative in its treatment of closure and consolidation of the north-end and can be eliminated from consideration in the baseline PA model.
DR-6: BRINE PUDDLING IN THE REPOSITORY DUE TO HETEROGENEITIES
Summary Memo of Record

Date: September 28, 1995
To: D.R. Anderson
From: P. Vaughn, M. Lord, R. MacKinnon
Subject: FEP Screening Issue DR-6

STATEMENT OF SCREENING DECISION

FEP Screening Issue DR-6 need not be included in future system-level performance assessment calculations.

STATEMENT OF SCREENING ISSUE

This screening effort evaluates the need for including heterogeneity of disposal room contents in future system-level performance assessment calculations. Previous modeling of flow within the repository is based on homogenizing the room contents into large computational volumes. However, heterogeneity of room contents may influence gas and brine behavior in the room by causing fluid flow among channels or preferential paths in the waste, bypassing entire regions. Isolated regions could exist because (1) they may be isolated by low permeability waste barriers, 2) because connectivity with the interbeds may occur only at particular locations within the repository, or 3) the repository dip may promote preferential gas flow in the upper regions of the waste. An associated screening issue is uncontrolled fluid flow to the surface (blowout) during an intrusion into the repository. The volume of uncontrolled releases to the surface due to cuttings, spalling, and blowout during drilling is influenced by the prevailing pressure, permeability, and saturation conditions in the disposal room at the time of intrusion.

APPROACH

To address room heterogeneity issues, an additional parameter has been implemented in BRAGFLO to specify the minimum active (mobile) brine flow saturation (pseudo-residual brine saturation). Above this saturation, the normal descriptions of two-phase flow apply (i.e., either the Brooks/Corey or Van Genuchten/Parker relative permeability models). Below this minimum, brine is immobile, although it is available for reaction and it may still be consumed during the gas generation reactions. Justification for the saturation limit assumption is based on the presumed heterogeneity of the waste and the fact that the repository dips slightly. Implementation of the puddling parameter is described in Appendix 2 of the records package entitled “FEPs Screening Analysis for FEPs DR2, DR3, DR6, DR7, and S6”.

A series of BRAGFLO simulations were performed to determine if puddling has the potential to enhance contaminant migration to the accessible environment. Effects of all other FEP issues were turned off in the simulations. Two basic scenarios were considered in the screening analysis, undisturbed performance...
RESULTS AND DISCUSSION

CCDFs for releases to the Culebra and subsurface boundary of the accessible environment for El Up-Dip, El Down-Dip, and undisturbed cases are provided in Figure 6 of Appendix 1. Each figure compares CCDFs of normalized releases predicted by the baseline model and normalized releases predicted with puddling. Note that releases to the Culebra via the shaft and intrusion borehole are shown on the left side of the figure whereas releases to the subsurface boundary of the accessible environment are presented on the right side of the figure. In all three cases (El Up-Dip, El Down-Dip, and undisturbed), the puddling curves for releases to the Culebra via the shaft and borehole are very close to the baseline curves for most of their lengths. In addition, CCDFs for releases to the subsurface boundary via the marker beds show that the baseline CCDF is consistently above and to the right of the puddling CCDF. In summary, differences in releases between the baseline and puddling results are minor with the baseline model predicting consistently higher releases.

Blowout, spalling, and cuttings metrics including maximum, mean, medium, and minimum values of volume averaged brine pressures, brine saturations, porosity, and permeability in the waste region for undisturbed conditions at 100, 1000, and 10000 years are given in Table 2 of Appendix 1. Comparison of these values with the baseline values given in Table 2 indicate that puddling produces slightly larger maximum, mean, and median brine saturations at 100, 1000, and 10000 years. All other drivers are nearly equal between the baseline and puddling cases. The higher brine saturations, however, with the exception of the maximum values at 10000 and 10000 years, are consistently lower than the brine saturation value (0.6) required for uncontrolled brine releases during blowout (see Summary Memo of Record for FEP Screening Issue DR-4). Finally, the maximum saturation at 10000 and 10000 years (these values are higher than the corresponding baseline values) exceed the saturation value above which uncontrolled brine releases decrease with increasing saturation (see Summary Memo of Record for FEP Screening Issue DR-4). At high brine saturations, uncontrolled releases decrease because gas volumes are too small to sustain the necessary gas drive. As a consequence, the corresponding maximum baseline saturations are less conservative with respect to uncontrolled releases due to blowout. In summary, the baseline case is sufficiently conservative with respect to releases due to blowout, spalling, and cuttings.
BASIS FOR RECOMMENDED SCREENING DECISION

Based on the CCDFs, the inclusion of puddling in BRAGFLO results in overall lower computed releases to the accessible environment than the baseline case. In addition, puddling has an insignificant effect on waste room conditions relevant to releases due to blowout, cuttings, and spalling. As a result, the baseline model is conservative in its approach to homogenizing waste panel contents into large computational volumes and puddling can be eliminated from consideration in system-level PA calculations.
DR-7: PERMEABILITY VARYING WITH POROSITY IN CLOSURE REGIONS
Summary Memo of Record

Date: September 28, 1995
To: D.R. Anderson
From: P. Vaughn, M. Lord, R. MacKinnon
Subject: FEP Screening Issue DR-7

STATEMENT OF SCREENING DECISION

FEP Screening Issue DR-7 need not be included in future system-level performance assessment calculations.

STATEMENT OF SCREENING ISSUE

This screening effort determines if dynamic variations in permeability with porosity and consolidation should be included in future system-level performance assessment calculations. In past calculations, the dynamic effects of halite creep and room consolidation on room porosity were only modeled in the waste disposal region. In addition, the permeability of the waste disposal region was uniformly fixed at a high value so that fluid flow would not be impeded. Direct releases to the surface via cuttings and spallings depend in part on the permeability of the waste region at the time of intrusion. These direct releases were calculated conditioned on a permeability that was consistent with the porosity and degree of consolidation at the time of intrusion. The determination of this permeability was done outside of the flow field calculations and was not the same value of permeability used to estimate the flow fields.

Other portions of the repository, such as the experimental region in the north end and the hallways, have been modeled assuming fixed (invariant with time) values for both porosity and permeability. In these regions the permeability was held at a fixed high value representative of nearly unconsolidated or modestly consolidated material. The porosity in these regions was maintained at relatively low values associated with highly consolidated material. It was assumed that this combination of low porosity and high permeability would conservatively overestimate flow through these regions and minimize the capacity of these regions to store fluids, thus providing a maximized release to the environment. An associated screening issue is uncontrolled fluid flow to the surface (blowout) during an intrusion into the repository. The volume of uncontrolled releases to the surface due to cuttings, spalling, and blowout during drilling is influenced by the prevailing pressure, permeability, and saturation conditions in the disposal room at the time of intrusion.

APPROACH

A model for estimating the change in permeability with porosity in the closure regions (waste disposal region, north end, and hallways) was implemented in BRAGFLO. This model is described in Appendix 2 of the records package entitled "FEPs Screening Analysis for FEPs DR2, DR3, DR6, DR7, and S6". A series of BRAGFLO simulations were then performed to determine if permeability varying with...
porosity in closure regions had the potential to enhance contaminant migration to the accessible environment. Effects of all other FEP issues were turned off in the simulations. Two basic scenarios were considered in the screening analysis, undisturbed performance and disturbed performance. Both scenarios included a 1.0 degree formation dip downward to the south. Intrusion event E1 is considered in the disturbed scenario and consists of a borehole that penetrates the repository and pressurized brine in the underlying Castile Formation. Two variations of intrusion event E1 are examined, E1 Up-Dip and E1 Down-Dip. In the E1 Up-Dip event the intruded panel region is located on the up-dip (north) end of the repository, whereas in the E1 Down-Dip event the intruded panel region is located on the down-dip (south) end of the repository. These two E1 events permit evaluation of the possibility of increased brine flow into the panel region due to higher brine saturations down-dip of the borehole and the potential for subsequent impacts on contaminant migration. To incorporate the effects of uncertainty in each case (E1 Up-Dip, E1 Down-Dip, and undisturbed), a Latin hypercube sample size of 20 was used resulting in a total of sixty simulations. To assess the sensitivity of system performance on dynamic permeability in the closure regions, conditional complementary cumulative distribution functions (CCDFs) of normalized contaminated brine releases to the Culebra via human intrusion and shaft system, as well as releases to the subsurface boundary of the accessible environment, were constructed and compared to the corresponding baseline model CCDFs. In the baseline model calculations, the effects of all FEP issues are turned off. These comparisons provide direct information about how the inclusion dynamic permeability in the closure regions may influence repository performance. In addition, blowout, cuttings, and spalling performance measures are examined. Drivers for potential releases to the surface by these mechanisms are brine pressures, brine saturations, and permeability in the waste disposal area.

RESULTS AND DISCUSSION

CCDFs for releases to the Culebra and lateral land withdrawal boundary for E1 Up-Dip, E1 Down-Dip, and undisturbed cases are provided in Figure 7 of Appendix 1. Each figure compares CCDFs of normalized releases predicted by the baseline model and normalized releases predicted with dynamic permeability. Note that releases to the Culebra via the shaft and intrusion borehole are shown on the left side of the figure whereas releases to the lateral land withdrawal boundary are presented on the right side of the figure. In all three cases (E1 Up-Dip, E1 Down-Dip, undisturbed), the varying permeability curves for releases to the Culebra via shaft and borehole are very close to the baseline curves for most of their lengths. The CCDFs for releases to the subsurface boundary of the accessible environment via the marker beds show only minor differences between the varying permeability and baseline results with releases with baseline CCDFs consistently above and to the right of the varying permeability CCDFs. These results are similar to those obtained in the analysis of dynamic consolidation of the north-end and hallways and can be explained in part by the fact that time-varying porosities of the north-end and hallways exceed the conservative cavity porosity (0.075) used in the baseline model for most of the 10000 yrs. The time-varying porosities are initially set to 1.0 and during the course of simulation they gradually decrease. For a short duration (500 to 1000 yrs), starting at around 500 yrs, cavity porosities drop slightly below 0.075 (and permeability) and then experience a gradual increase to values well above the value of 0.075. In summary, the reduction in permeability accompanying closure in the waste region and north-end and hallways has little effect on releases to the accessible environment.

Blowout, spalling, and cuttings metrics including maximum, mean, medium, and minimum values of volume averaged brine pressures, brine saturations, porosity, and permeability in the waste region for undisturbed conditions at 100, 1000, and 10000 years are given in Table 6 of Appendix 1. Comparison of these table values with the baseline values given in Table 2 indicate that brine pressures tend to be higher in
the baseline case. Also, the maximum, median, and mean brine saturations for varying permeability at 100 yrs are slightly higher than the corresponding baseline values, however, the actual volumes of brine (the product of porosity and saturation) are nearly equal in the two cases. It is also important to note that these slightly higher saturations fall below the minimum saturation (approximately 0.6) needed for uncontrolled releases due to blowout (see Summary Memo of Record for FEP Issue DR-4). In summary, permeability varying with closure has a negligible effect on waste room conditions relevant to releases due to blowout, cuttings, and spalling.

BASIS FOR RECOMMENDED SCREENING DECISION

Based on the CCDFs, the inclusion of dynamic permeability with closure of the waste region, north-end, and hallways in BRAGFLO results in computed releases to the accessible environment that are essentially equivalent to the baseline case. In addition, dynamic permeability has an insignificant effect on waste room conditions relevant to releases due to blowout, cuttings, and spalling. As a result, the baseline model is conservative in its treatment of closure and dynamic permeability can be eliminated from consideration in the baseline PA model.
S-6: DYNAMIC ALTERATION OF THE DRZ/TRANSITION ZONE
Summary Memo of Record

Date: September 28, 1995
To: D.R. Anderson
From: P. Vaughn, M. Lord, R. MacKinnon
Subject: FEP Screening Issue S-6

STATEMENT OF SCREENING DECISION

FEP Screening Issue S-6 need not be included in future system-level performance assessment calculations.

STATEMENT OF SCREENING ISSUE

This screening effort evaluates the need for including dynamic alteration of the disturbed rock zone (DRZ) and transition zone (TZ) in future system-level performance assessment calculations. The DRZ and TZ will have dynamic (time-varying) porosity and permeability properties due to room consolidation, possible room expansion, and fracturing caused by high pressures. Previous performance assessment calculations modeled the DRZ and TZ with a constant porosity equal to those of the intact halite units and a constant high formation permeability. However, the DRZ and TZ may fracture in response to high, time-dependent gas generated pressures. There will be a dual effect from the formation alterations. With pressure build-up due to gas generation and creep closure within the waste, the increased porosity within the DRZ and transition zone may offer more fluid storage and resulting lower pressures. The increase in formation permeability may enhance the flow of fluid away from the DRZ and TZ. As a consequence, the constant properties used for the DRZ and TZ may not be conservative with respect to gas and brine outflow. An associated screening issue is uncontrolled fluid flow to the surface (blowout) during an intrusion into the repository. The volume of uncontrolled releases to the surface due to cuttings, spalling, and blowout during drilling is influenced by the prevailing pressure, permeability, and saturation conditions in the disposal room at the time of intrusion.

APPROACH

The DRZ and TZ will have dynamic (time-varying) porosity and permeability properties due to three processes: (1) room consolidation, (2) possible room expansion, and (3) fracturing caused by high pressures. The first two processes are addressed using reasoned arguments, while the third process is addressed using a sensitivity analysis. These approaches are summarized in this section.

Time-Dependent Properties of the DRZ/TZ During Room Closure

Observations to date indicate that the development of a dilational DRZ around room openings is time-dependent, i.e., both the geometric extent and amount of dilation within the DRZ increase with time, up to some limit. To the extent that dilation is significant, it would tend to allow increased brine storage.
between the boundary of the far-field domain and room wall. That is, it would tend to decrease observed brine inflow into the room itself. At long times, however, the DRZ (with the probable exception of the anhydrites) will largely heal and its porosity (of the halites) will return to approximately the initial porosity under lithostatic loading. Therefore, assuming that fluid pressures within the repository are relatively low at the time of final structural closure, the process of structural healing of any halite DRZ could potentially release “additional” brine into the waste disposal room.

The present model implementation assigns increased permeabilities and fixed porosities (equal to the far-field porosity values) to the DRZ and TZ. Therefore, no “additional” brine storage in the DRZ is allowed. This approach of combining elevated permeabilities with no additional brine storage has the following impacts: a) brine volumes estimated to enter the room directly are essentially those crossing the DRZ/far-field boundary as a function of time (since enhanced DRZ storage is not allowed); b) prior to the time of effective structural closure, brine inflow volumes should be overestimated (since enhanced DRZ storage is not allowed); c) the amount of additional brine that flows into the repository during the DRZ healing period is bounded and included in the brine inflow calculations. (This is because enhanced DRZ storage is not allowed and brine which would actually be retained in the DRZ is discharged directly into the repository. As long as DRZ healing does not result in porosities less than intact levels, the current treatment bounds brine inflow.); and d) after the time of structural closure, estimated brine inflow volumes should be realistically estimated or slightly overestimated (because an elevated permeability of the DRZ is retained).

Effective room closure is expected to occur (on average) within approximately 100-400 years, i.e., very early in the 10,000 year time frame of regulatory interest. Since: a) any impact of a time-dependent DRZ on fluid inflow is expected to occur very early in the regulatory timeframe; b) brine inflow volumes up to and through the time of room closure should be realistically captured by the present modeling implementation; and c) since no meaningful impact of any short-term increase in brine inflow rate during the process of final room closure can be identified, it can be concluded that it is not necessary to include numerical modeling of a time dependent DRZ at the repository horizon in long-term system-scale calculations during the room closure process.

Time-Dependent Properties of the DRZ/TZ During Room Expansion (Prior to Formation/Propagation of New Fractures)

Assuming that “final” room closure occurs while fluid pressures within the waste-emplacement rooms are still below lithostatic, and that far-field formation-propagation of fractures occurs only at pressures near the lithostatic load, there is the possibility of time-dependent DRZ/TZ properties at fluid pressures ranging from sub-lithostatic pressures to that required for the initiation of fracturing. Any dilational behavior within the DRZ/TZ over this pressure interval would be expressed in terms of increased permeability and local increases in porosity. The present modeling approach assumes steady-state maintenance of increased permeability, but does not include increases in porosity. The available limited experimental data base indicates approximately a four-fold increase in permeability of anhydrite interbeds at pressures below lithostatic, with extremely small increases in porosity. Due to its ability to creep structurally at rates exceeding the rate of volumetric response to internal pressurization, halite dilation over this pressure interval would not occur.

Therefore, the baseline modeling approach, which assigns increased permeability to the DRZ at all times, is conservative (overestimate fluid flow) regarding fluid flow through the DRZ over this pressure interval. Since time-dependent increases in porosity occur only in the anhydrite over this pressure interval, the baseline model is also conservative (underestimates storage) regarding potential brine and/or gas storage within the DRZ. Therefore, it can be concluded that inclusion of a time-dependent DRZ in system-scale performance calculations is not warranted for this time/pressure interval.
Time-Dependent Properties of the DRZ/TZ During Potential Far-Field Fracturing

A model for treating fracturing within the DRZ and TZ was implemented in BRAGFLO. Except for parameter values, this model is identical to the existing anhydrite interbed alteration model employed for the interbeds. In this model, formation porosity and permeability are dependent on brine pressure as described in Appendix 2 of the records package entitled "FEPs Screening Analysis for FEPs DR2, DR3, DR6, DR7, and S6". This treatment permits the representation of two important formation alteration effects. First, pressure build-up due to gas generation and creep closure within the waste will slightly increase porosity within the DRZ and TZ and offer additional fluid storage with resulting lower pressures. Second, the accompanying increase in formation permeability will enhance the flow of fluid away from the DRZ and TZ. Since an increase in porosity has a tendency to reduce outflow into the far field, parameter values are selected so that the DRZ/TZ alteration model greatly increases permeability while only modestly increasing porosity.

A series of BRAGFLO simulations were performed to determine if dynamic formation alteration of the DRZ and TZ have the potential to enhance contaminant migration to the accessible environment. Effects of all other FEP issues were turned off in the simulations. Two basic scenarios were considered in the screening analysis, undisturbed performance and disturbed performance. Both scenarios included a 1.0 degree formation dip downward to the south. Intrusion event E1 is considered in the disturbed scenario and consists of a borehole that penetrates the repository and pressurized brine in the underlying Castille Formation. Two variations of intrusion event E1 are examined, E1 Up-Dip and E1 Down-Dip. In the E1 Up-Dip event the intruded panel region is located on the up-dip (north) end of the repository, whereas in the E1 Down-Dip event the intruded panel region is located on the down-dip (south) end of the repository. These two E1 events permit evaluation of the possibility of increased brine flow into the panel region due to higher brine saturations down-dip of the borehole and the potential for subsequent impacts on contaminant migration. To incorporate the effects of uncertainty in each case (E1 Up-Dip, E1 Down-Dip, and undisturbed), a Latin hypercube sample size of 20 was used resulting in a total of sixty simulations. To assess the sensitivity of system performance on formation alteration of the DRZ and TZ, conditional complementary cumulative distribution functions (CCDFs) of normalized contaminant brine releases to the Culebra via human intrusion and shaft system, as well as releases to the subsurface boundary of the accessible environment, were constructed and compared to the corresponding baseline model CCDFs. In the baseline model calculations, the effects of all FEP issues are turned off. These comparisons provide direct information about how the inclusion of formation alteration in the DRZ and TZ may influence repository performance. In addition, blowout, cuttings, and spalling performance measures are examined. Drivers for potential releases to the surface by these mechanisms are brine pressures, brine saturations, and permeability in the waste disposal area.

RESULTS AND DISCUSSION

The DRZ and TZ are located near the repository as illustrated in Figure 1 of Appendix 1. These zones provide enhanced permeability regions that tend to increase fluid mobility near the repository and potentially enhance flow between the disposal room, borehole, shaft, and marker beds. This increase in fluid mobility may result in increased releases to the accessible environment.

CCDFs for releases to the Culebra and subsurface boundary of the accessible environment for E1 Up-Dip, E1 Down-Dip, and undisturbed cases are provided in Figure 8 of Appendix 1. Each figure compares CCDFs of normalized releases predicted by the baseline model and normalized releases predicted with
formation alteration. Note that releases to the Culebra via the shaft and intrusion borehole are shown on the left side of the figure, whereas releases to the subsurface boundary of the accessible environment are presented on the right side of the figure. In each case, the curves are almost identical for most of their lengths. Note that any differences in releases are minor with the baseline CCDFs consistently above the dynamic alteration CCDFs. These results indicate that the DRZ and TZ are modeled adequately in the baseline model with a constant porosity equal to that of intact halite and a constant high permeability.

Blowout, spalling, and cuttings metrics including maximum, mean, medium, and minimum values of volume averaged brine pressures, brine saturations, porosity, and permeability in the waste region for undisturbed conditions at 100, 1000, and 10000 years are given in Table 7 of Appendix I. Comparison of these table values with the baseline values given in Table 2 indicate that all metrics (drivers) are essentially equivalent between the two cases. Therefore, dynamic alteration of the DRZ/TZ has a negligible effect on waste room conditions relevant to releases due to blowout, cuttings, and spalling.

BASIS FOR RECOMMENDED SCREENING DECISION

Based on the CCDFs, the inclusion of dynamic alteration of the DRZ/TZ in BRAGFLO results in computed releases to the accessible environment that are essentially equivalent to the baseline case. In addition, dynamic alteration of the DRZ/TZ has an insignificant effect on waste room conditions relevant to blowout, cuttings, and spalling releases. Therefore, dynamic alteration of the DRZ and TZ need not be included in system level PA calculations.
CERTIFICATION AND TRAINING

The analysis team was identical on each FEP issue. The following individuals were responsible for performing analyses:

Technical reviewers were identical on each FEP and included:

Mel G. Marietta (6821) and Wendell Weart (6000).

Copies of certification of personnel qualifications for the above staff are on file in the SWCF. All staff were trained on QAPs.

CORRESPONDENCE

None.

REFERENCES

VERIFICATIONS AND ASSESSMENTS

No formal independent assessments were conducted; therefore, no Corrective Action Reports were generated.

The attached signature pages at the front of this document indicate the technical and lead staff signatures and dates of review for completeness and accuracy.

Comments follow.

Management, technical, editorial, and QA reviews of this records package were performed and comments were addressed to complete the records package as indicated by the signatures on the attached pages at the front of this document.
I. Comment on Recommended Screening Decision for FEP DR-2.

After detailed review of the Summary Memo of Record and the associated records package, I believe that the performance measures used to evaluate the FEP are too limited and that the use of FEP DR-4 is not appropriate. In addition, the VOC source term assumption that the VOC concentration at the boundary is below RCRA soil-based limits is very important and must be included in the Summary Memo of Record. The supporting figures and tables referred to in the memo should also be included in the Summary Memo of Record.

With regard to the performance measures, the current evaluation is only based on CCDFs and some numerical value comparisons of waste disposal area parameters for brine blowout (FEP DR-4). Additional physical performance measures such as gas and contaminated brine migration distances, waste disposal area pressure, and brine mass in the waste disposal area (plot) should be provided to give a physical basis to support the FEP conclusions. Numerical value comparisons to FEP DR-4 values are not appropriate for the following reasons. The conclusion that "the maximum brine saturation at 1000 years (these values are higher than the corresponding baseline values) exceeds the saturation value above which uncontrolled brine releases decrease with increasing saturation" may or may not be valid. The information presented in FEP DR-4 is not detailed enough (i.e., does not contain any data points between brine saturations of 0.8 and 1.0) that support the suggested trend argument (releases decrease with increasing saturation). FEP DR-4 is only a screening or scoping study - it is not a comprehensive evaluation with detailed evaluation of the parameter input values including probabilistic evaluation. The argument that higher (not lower) brine blowout releases will occur with wicking (FEP DR-2) due to the higher brine saturation (0.9) can easily be made and not refuted by the information in the same FEP DR-4 plot.

The assumption portion of the calculations for FEPs DR-2, DR-3, DR-6, DR-7, and S-6 all refer to the DCCA for the conceptualization. To my understanding, the DCCA model including the geometry is the same as SPM-2 and includes a horizontal Salado and non-Salado model in BRAGFLO, use of the brine/gas outflow (brine/gas bucket) model to calculate brine and gas flow in the marker beds, and use of the cuttings model. THIS ENTIRE SUITE OF MODELS AND CODES SHOULD BE USED IN THE FEPs EVALUATION IF CCDF COMPARISONS ARE MADE. In other words, some of the potentially important processes in SPM-2 and DCCA have been neglected in the FEP calculations which may potentially affect the FEP results. Certain changes, such as dip including the two human intrusion representations, may be included but the FEP on dip should be reevaluated again (if it completed). Cuttings should be included in the releases. The CCDFs should encompass all consequences and processes in the DCCA so the values can be compared to the regulations and to DCCA figures.

This discussion brings up a difficult point - if a FEP indicates that a process should be included (i.e., dip, or brine blowout), shouldn't all the FEPs be reevaluated again with the final comprehensive model? The FEPs models are only for screening the FEP - any final model (such as FEP DR-4) will provide a more comprehensive screening tool. An alternative to comprehensive re-screening would be reasoned arguments based on physical performance measures such as mentioned earlier.

II. Alternative Recommended FEP Screening Decision

(not to be more than a few sentences)

N/A pending resolution of comments in Section 1.

III. Rebuttal Arguments that Support Alternative FEP Screening Decision

N/A
I. Comment on Recommended Screening Decision for FEP DR-3.

The comments made for FEP DR-2 also apply to this FEP and are not repeated here.

II. Alternative Recommended FEP Screening Decision

N/A pending resolution of comments in Section I.

III. Rebuttal Arguments that Support Alternative FEP Screening Decision

N/A

I. Comment on Recommended Screening Decision for FEP DR-2.

After detailed review of the Summary Memo of Record and the associated records package, I believe that the performance measures used to evaluate the FEP are too limited and that the use of FEP DR-4 is not appropriate. In addition, the VOC source term assumption that the VOC concentration at the boundary is below RCRA soil-based limits is very important and must be included in the Summary Memo of Record. The supporting figures and tables referred to in the memo should also be included in the Summary Memo of Record.

With regard to the performance measures, the current evaluation is only based on CCDFs and some numerical value comparisons of waste disposal area parameters for brine blowout (FEP DR-4). Additional physical performance measures such as gas and contaminated brine migration distances, waste disposal area pressure (plot), and brine mass in the waste disposal area (plot) should be provided to give a physical basis to support the FEP conclusions. Numerical value comparisons to FEP DR-4 values are not appropriate for the following reasons. The conclusion that "the maximum brine saturation at 1000 years (these values are higher than the corresponding baseline values) exceeds the saturation value above which uncontrolled brine releases decrease with increasing saturation" may or may not be valid. The information presented in FEP DR-4 is not detailed enough (i.e., does not contain any data points between brine saturations of 0.8 and 1.0) that support the suggested trend argument (releases decrease with increasing saturation). FEP DR-4 is only a screening or scoping study - it is not a comprehensive evaluation with detailed evaluation of the parameter input values including probabilistic evaluation. The argument that higher (not lower) brine blowout releases will occur with wicking (FEP DR-2) due to the higher brine saturation (0.9) can easily be made and not refuted by the information in the same FEP DR-4 plot.

The assumption portion of the calculations for FEPs DR-2, DR-3, DR-6, DR-7, and 5-6 all refer to the DCCA for the conceptualization. To my understanding, the DCCA model includes the geometry is the same as SPM-2 and includes a horizontal Salado and non-Salado model in BRAGFLO; use of the brine/gas outflow (brine/gas bucket) model to calculate brine and gas flow in the marker beds, and use of the cuttings model. THIS COMPLETE SUITE OF MODELS AND CODES SHOULD BE USED IN THE FEP'S EVALUATION IF CCDF COMPARISONS ARE MADE. In other words, some of the potentially important processes in SPM-2 and DCCA have been neglected in the FEP calculations which may potentially affect the FEP results. Certain changes, such as dip including the two human intrusion representations, may be included but the FEP on dip should be referenced (is it completed?). Cuttings should be included in the releases. The CCDFs should encompass all consequences and processes in the DCCA so the values can be compared to the regulations and to DCCA figures.

This discussion brings up a difficult point - if a FEP indicates that a process should be included (i.e., dip, or brine blowout), shouldn't all the FEPs be reevaluated again with the final comprehensive model? The FEPs models are only for screening the FEP - any final model (such as FEP DR-4) will provide a more comprehensive screening tool. An alternative to comprehensive re-screening would be reasoned arguments based on physical performance measures such as mentioned earlier.

II. Alternative Recommended FEP Screening Decision

N/A pending resolution of comments in Section I.

III. Rebuttal Arguments that Support Alternative FEP Screening Decision

N/A
I. Comment on Recommended Screening Decision for FEP DR-6.

The comments made for FEP DR-2 also apply to this FEP and are not repeated here.

II. Alternative Recommended FEP Screening Decision

(not to be more than a few sentences)

N/A pending resolution of comments in Section I.

III. Rebuttal Arguments that Support Alternative FEP Screening Decision

N/A
I. Comment on Recommended Screening Decision for FEP DR-7.

The comments made for FEP DR-2 also apply to this FEP and are not repeated here.

II. Alternative Recommended FEP Screening Decision
(not to be more than a few sentences)

N/A pending resolution of comments in Section I.

III. Rebuttal Arguments that Support Alternative FEP Screening Decision

N/A

I. Comment on Recommended Screening Decision for FEP DR-2.

After detailed review of the Summary Memo of Record and the associated records package, I believe that the performance measures used to evaluate the FEP are too limited and that the use of FEP DR-4 is not appropriate. In addition, the VOC source term assumption that the VOC concentration at the boundary is below RCRA soil-based limits is very important and must be included in the Summary Memo of Record. The supporting figures and tables referred to in the memo should also be in the Summary Memo of Record.

With regard to the performance measures, the current evaluation is only based on CCDFs and some numerical value comparisons of waste disposal area parameters for brine blowout (FEP DR-4). Additional physical performance measures such as gas and contaminated brine migration distances, waste disposal area pressure (plot), and brine mass in the waste disposal area (plot) should be provided to give a physical basis to support the FEP conclusions. Numerical value comparisons to FEP DR-4 values are not appropriate for the following reasons.

The conclusion that “the maximum brine saturation is 1000 years (these values are higher than the corresponding baseline values) exceeds the saturation value above which uncontrolled brine releases decrease with increasing saturation” may or may not be valid. The information presented in FEP DR-4 is not detailed enough (i.e., does not contain any data points between brine saturations of 0.8 and 1.0) to support the suggested trend argument (releases decrease with increasing saturation). FEP DR-4 is only a screening or scoping study - it is not a comprehensive evaluation with detailed evaluation of the parameter input values including probabilistic evaluation. The argument that higher (not lower) brine blowout releases will occur with wicking (FEP DR-2) due to the higher brine saturation (0.9) can easily be made and not refuted by the information in the same FEP DR-4 plot.

The assumption portion of the calculations for FEPs DR-2, DR-3, DR-6, DR-7, and S-6 all refer to the DCCA for the conceptualization. To my understanding, the DCCA model including the geometry is the same as SPM-2 and includes a horizontal Salado and non-Salado model in BRAQFLO, use of the brine/gas outflow (brine/gas bucket) model to calculate brine and gas flow in the marker beds, and use of the cuttings model. THIS ENTIRE SUITE OF MODELS AND CODES SHOULD BE USED IN THE FEP EVALUATION IF CCDF COMPARISONS ARE MADE. In either case, some of the potentially important processes in SPM-2 and DCCA have been neglected in the FEP calculations which may potentially affect the FEP results. Certain changes, such as dip including the two human intrusion representations, may be included but the FEP on dip should be referenced (is it completed?). Cuttings should be included in the releases. The CCDFs should encompass all consequences and processes in the DCCA so the values can be compared to the regulations and to DCCA figures.

This discussion brings up one difficult point - if a FEP indicates that a process should be included (i.e., dip or brine blowout), shouldn’t all the FEPs be reevaluated again with the final comprehensive model? The FEP models are only for screening the FEP, any final model (such as FEP DR-4) will provide a more comprehensive screening tool. An alternative to comprehensive re-screening would be reasoned arguments based on physical performance measures such as mentioned earlier.

II. Alternative Recommended FEP Screening Decision
(not to be more than a few sentences)

N/A pending resolution of comments in Section I.

III. Rebuttal Arguments that Support Alternative FEP Screening Decision

N/A
I. Comment on Recommended Screening Decision for FEP S-6.

The comments made for FEP DR-2 also apply to this FEP and are not repeated here.

II. Alternative Recommended FEP Screening Decision

(not to be more than a few sentences)

N/A pending resolution of comments in Section I.

III. Rebuttal Arguments that Support Alternative FEP Screening Decision

N/A

I. Comment on Recommended Screening Decision for FEP DR-2.

After detailed review of the Summary Memo of Record and the associated records package, I believe that the performance measures used to evaluate the FEP are too limited and that the use of FEP DR-4 is not appropriate. In addition, the VOC source term assumption that the VOC concentration at the boundary is below RCRRA soil-based limits is very important and must be included in the Summary Memo of Record. The supporting figures and tables referred to in the memo should also be included in the Summary Memo of Record.

With regard to the performance measures, the current evaluation is only based on CCDFs and some numerical value comparisons of waste disposal area parameters for brine blowout (FEP DR-4). Additional physical performance measures such as gas and contaminated brine migration distances, waste disposal area pressure (plat), and brine mass in the waste disposal area (plat) should be provided to give a physical basis to support the FEP conclusions. Numerical value comparisons to FEP DR-4 values are not appropriate for the following reasons. The conclusion that "the maximum brine saturation at 1000 years (these values are higher than the corresponding baseline values) exceeds the saturation value above which uncontrolled brine releases decrease with increasing saturation" may or may not be valid. The information presented in FEP DR-4 is not detailed enough (i.e., does not contain any data points between brine saturations of 0.8 and 1.0) that support the suggested trend argument (releases decrease with increasing saturation). FEP DR-4 is only a screening or scoping study - it is not a comprehensive evaluation with detailed evaluation of the parameter input values including probabilistic evaluation. The argument that higher (not lower) brine blowout releases will occur with wicking (FEP DR-2) due to the higher brine saturation (0.9) can easily be made and not refuted by the information in the same FEP DR-4 plot.

The assumption portion of the calculations for FEPs DR-2, DR-3, DR-6, DR-7, and S-6 all refer to the OCCA for the conceptualization. To my understanding, the OCCA model including the geometry is the same as SPM-2 and includes a horizontal Salado and non-Salado model in BRAGFLO, use of the brine/gas outflow (brine/gas bucket) model to calculate brine and gas flow in the marker beds, and use of the cuttings model. THIS ENTIRE SUITE OF MODELS AND CODES SHOULD BE USED IN THE FEPs EVALUATION IF CCDF COMPARISONS ARE MADE. In other words, some of the potentially important processes in SPM-2 and OCCA have been neglected in the FEP calculations which may potentially affect the FEP results. Certain changes, such as dip including the two human intrusion representations, may be included but the FEP on dip should be referenced (is it completed?). Cuttings should be included in the releases. The CCDFs should encompass all consequences and processes in the OCCA so the values can be compared to the regulations and to OCCA figures.

This discussion brings up a difficult point - if a FEP indicates that a process should be included (i.e., dip, or brine blowout), shouldn't all the FEPs be reevaluated again with the final comprehensive model? The FEPs are only for screening the FEP - any final model (such as FEP DR-4) will provide a more comprehensive screening tool. An alternative to comprehensive re-screening would be reasoned arguments based on physical performance measures such as mentioned earlier.

II. Alternative Recommended FEP Screening Decision

(not to be more than a few sentences)

N/A pending resolution of comments in Section I.

III. Rebuttal Arguments that Support Alternative FEP Screening Decision

N/A
I. Comment on Recommended Screening Decision for FEP S-6

I believe that the FEP, as defined in this documentation, only addresses one-third of the issues involved in consideration of the time-dependent properties of the DRZ. I believe that the three issues of legitimate concern are: a) effects of a time-dependent DRZ on attempts to seal the repository (shafts and repository horizon); b) possible effects of a time-dependent DRZ on fluid inflow to the repository; and c) possible effects of a time-dependent DRZ on fluid flow out of the repository. Only the third of these three issues is addressed here. Therefore, since only one-third of the issues are addressed by the narrowly defined FEP, I believe that a screening decision can only be made regarding 1/3 of the issues.

II. Alternative Recommended FEP Screening Decision

(not to be more than a few sentences)

• We conclude that inclusion of a time-dependent DRZ is not necessary in estimations of brine and gas flow out of the repository. At high pressures, a time-dependent DRZ (other than the process of simple fracturing) would involve formation of additional porosity above that assumed. We believe that not including this porosity is conservative as regards estimated brine and gas migration distances and volumes outside the repository.

• Detailed evaluation of the potential impact of time-dependent DRZ properties on the behavior of both panel and shaft seals has not been conducted. In this absence, we will continue to assume that any impacts can be dealt with by degrading the overall estimated permeability of the emplaced seal member.

• Detailed evaluation of the potential impact of time-dependent DRZ properties on fluid inflow to the waste during later stages of room compaction/closure has not been completed. In this absence, we will continue to assume that calculated brine-inflow volumes not accounting for temporary storage in a time-dependent DRZ are adequately realistic.
III. Rebuttal Arguments that Support Alternative FEP Screening Decision

If you have not included an issue or sub-issue in a screening argument/evaluation, you cannot claim that it doesn’t matter. I know that this wasn’t your intent. It is, however, an effect of the way that the FEP was defined. Somehow, in this entire process, a way needs to be found to recognize/accept the limitations to the FEP definitions which have actually ended up being considered. Given all of the panic and confusion this summer, I recognize that this is the first time I have looked at this defined FEP in any detail. I suspect, however, that the same or similar problem will crop up in other areas; i.e. I suspect that it will turn out that several of the final FEP calculations and conclusions only partially cover the range of issues which “people” thought were being addressed. Oh well.
APPENDIX 1

Figures and Tabulated Results
Figure 1. North-south vertical cross-section of model domain for the undisturbed scenario.
Figure 2. North-south vertical cross-section of model domain for the E01-Up intrusion scenario
Figure 3. North-south vertical cross-section of model domain for the E01-Down intrusion scenario
Figure 4. Mean CCDFs for releases to the Culebra and subsurface boundary of the accessible environment (E0 Down: Baseline vs Capillary Action).
Figure 5. Mean CCDFs for releases to the Culebra and subsurface boundary of the accessible environment (Baseline vs Dynamic Consolidation of North End and Hallways).
Figure 6. Mean CCDFs for releases to the Culebra and subsurface boundary of the accessible environment (Baseline vs Brine Puddling).
Figure 7. Mean CCDFs for releases to the Culebra and subsurface boundary of the accessible environment (EB-Down: Baseline vs Permeability varying with Consolidation).

SWCF/1.1.6.3: PA: NS: TSK: DR2, DR3, DR6, DR7 and S6
Figure 8. Mean CCDFs for releases to the Culebra and subsurface boundary of the accessible environment (Baseline vs Dynamic Alteration of DRZ/TZ).
Figure 9. Mean CCDFs for releases to the Culebra and subsurface boundary of the accessible environment (E94-Down Baseline vs Radiolysis).
Figure 10. CCDFs for releases due to Blowout (Baseline vs Capillary Action).
Figure 11. CCDFs for cuttings releases (Baseline vs Wicking).
Table 1. Sampled Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Material</th>
<th>Distribution</th>
<th>Actual Range</th>
<th>Actual Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log of x-direction permeability</td>
<td>Halite</td>
<td>Constructed</td>
<td>3.799883</td>
<td>-21.09494</td>
</tr>
<tr>
<td>(PERMX_LOG) (log(m^2))</td>
<td>MB139</td>
<td>Constructed</td>
<td>5.529356</td>
<td>-18.78408</td>
</tr>
<tr>
<td>Porosity</td>
<td>Halite</td>
<td>Constructed</td>
<td>0.027027</td>
<td>0.010380</td>
</tr>
<tr>
<td>(POROSITY) (Dimensionless)</td>
<td>MB139</td>
<td>Constructed</td>
<td>0.069465</td>
<td>0.018577</td>
</tr>
<tr>
<td>Log of specific storage</td>
<td>Halite</td>
<td>Constructed</td>
<td>1.823131</td>
<td>-6.034230</td>
</tr>
<tr>
<td>(SP_S_LOG) (log(m-1))</td>
<td>MB139</td>
<td>Constructed</td>
<td>1.890774</td>
<td>-5.992161</td>
</tr>
<tr>
<td>Relative Permeability Model</td>
<td>Halite</td>
<td>Constructed</td>
<td>3.000000</td>
<td>4.000000</td>
</tr>
<tr>
<td>(RELP_MOD) (Dimensionless)</td>
<td>Waste Area</td>
<td>Constructed</td>
<td>3.000000</td>
<td>4.000000</td>
</tr>
<tr>
<td>Residual Brine Saturation</td>
<td>Halite</td>
<td>Uniform</td>
<td>0.574155</td>
<td>0.302751</td>
</tr>
<tr>
<td>(SAT_RBRN) (Dimensionless)</td>
<td>MB139</td>
<td>Constructed</td>
<td>0.499165</td>
<td>0.194686</td>
</tr>
<tr>
<td>Residual Gas Saturation</td>
<td>Halite</td>
<td>Uniform</td>
<td>0.383115</td>
<td>0.199356</td>
</tr>
<tr>
<td>(SAT_RGAS) (Dimensionless)</td>
<td>MB139</td>
<td>Constructed</td>
<td>0.319945</td>
<td>0.164978</td>
</tr>
<tr>
<td>Pore size distribution parameter</td>
<td>Halite</td>
<td>Constructed</td>
<td>9.767002</td>
<td>0.726102</td>
</tr>
<tr>
<td>(PORE_DIS) (Dimensionless)</td>
<td>MB139</td>
<td>Constructed</td>
<td>9.180162</td>
<td>0.922575</td>
</tr>
<tr>
<td>Threshold Pressure</td>
<td>Halite</td>
<td>Constructed</td>
<td>9.095209</td>
<td>0.769556</td>
</tr>
<tr>
<td>(PTHRESH) (MPa)</td>
<td>MB139</td>
<td>Constructed</td>
<td>9.036895</td>
<td>-7.926188</td>
</tr>
<tr>
<td>Pressure</td>
<td>MB139</td>
<td>Uniform</td>
<td>981014.0</td>
<td>0.1248E+8</td>
</tr>
<tr>
<td>Puddling Saturation</td>
<td>Waste Area</td>
<td>Uniform</td>
<td>0.664240</td>
<td>0.439542</td>
</tr>
<tr>
<td>(SAT_PUD) (Dimensionless)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wicking Saturation</td>
<td>Waste Area</td>
<td>Uniform</td>
<td>0.928796</td>
<td>0.495629</td>
</tr>
</tbody>
</table>
Table 1 Cont’d

<table>
<thead>
<tr>
<th>Description</th>
<th>Waste Area</th>
<th>Uniform</th>
<th>Constructed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbial Stoichiometry (STOIMIC) (Dimensionless)</td>
<td>1.529712</td>
<td>0.843751</td>
<td></td>
</tr>
<tr>
<td>Corrosion Stoichiometry (STOICOR) (Dimensionless)</td>
<td>0.9517006</td>
<td>0.493922</td>
<td></td>
</tr>
<tr>
<td>Humid Corrosion Gas Generation Rate (GRATCORH) (mol/m²-s)</td>
<td>0.30988E-9</td>
<td>0.95958E-11</td>
<td></td>
</tr>
<tr>
<td>Inundated Corrosion Gas Generation Rate (GRATCORI) (mol/m²-s)</td>
<td>0.591798E-6</td>
<td>0.119664E-7</td>
<td></td>
</tr>
<tr>
<td>Humid Microbial Gas Generation Rate (GRATMICH) (mol/kg-s)</td>
<td>0.302275E-8</td>
<td>0.339431E-9</td>
<td></td>
</tr>
<tr>
<td>Inundated Microbial Gas Generation Rate (GRATMICI) (mol/kg-s)</td>
<td>0.154756E-7</td>
<td>0.369955E-8</td>
<td></td>
</tr>
<tr>
<td>Initial Brine Saturation (SAT_IBRN)</td>
<td>0.454750E-1</td>
<td>0.279499E-1</td>
<td></td>
</tr>
<tr>
<td>Fracture Pressure (FRAC_PR)</td>
<td>0.9603366</td>
<td>0.4893045</td>
<td></td>
</tr>
<tr>
<td>Passivation Switch (PASSIDX) (Dimensionless)</td>
<td>1.0000000</td>
<td>0.5000000</td>
<td></td>
</tr>
<tr>
<td>Log (Solubility of Aqueous Radionuclides in Oxidation State III) (OXYSTAT3) (log (mol/L))</td>
<td>8.477690</td>
<td>-6.582510</td>
<td></td>
</tr>
<tr>
<td>Log (Solubility of Aqueous Radionuclides in Oxidation State IV) (OXYSTAT4) (log (mol/L))</td>
<td>4.731806</td>
<td>-6.976091</td>
<td></td>
</tr>
<tr>
<td>Parameter Description</td>
<td>Waste Area</td>
<td>Constructed</td>
<td>Value 1</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>Log (Solubility of Aqueous Radionuclides in Oxidation State V)</td>
<td></td>
<td>Constructed</td>
<td>8.866982</td>
</tr>
<tr>
<td>(OXYSTAT5) (log (mol/L))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log (Solubility of Aqueous Radionuclides in Oxidation State VI)</td>
<td></td>
<td>Constructed</td>
<td>9.587173</td>
</tr>
<tr>
<td>(OXYSTAT6) (log (mol/L))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxidation State Distribution Parameter (SOL1IDX) (DIMENSIONLESS)</td>
<td>Waste Area</td>
<td>Random</td>
<td>0.9747659</td>
</tr>
<tr>
<td>Oxidation State Distribution Parameter (SOL2IDX) (DIMENSIONLESS)</td>
<td>Waste Area</td>
<td>Random</td>
<td>0.9202215</td>
</tr>
<tr>
<td>Oxidation State Distribution Parameter (SOL3IDX) (DIMENSIONLESS)</td>
<td>Waste Area</td>
<td>Random</td>
<td>0.9844602</td>
</tr>
<tr>
<td>Oxidation State Distribution Parameter (SOL4IDX) (DIMENSIONLESS)</td>
<td>Waste Area</td>
<td>Random</td>
<td>0.9417638</td>
</tr>
</tbody>
</table>

NOTE: Actual parameter values are listed in the following file: [FEP.JE DANE.BAS ELINE.LHS] SMPLHS_FE PS_Baseline.Out;2
Table 2. Performance Measures for Blowout, Spalling, and Cuttings (Baseline Model Results)

<table>
<thead>
<tr>
<th>TIME = 0.100000E+03 years</th>
<th>BRINE PRESSURE (Mpa)</th>
<th>BRINE SATURATION</th>
<th>POROSITY</th>
<th>PERMEABILITY (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>0.646341E+06</td>
<td>0.164512E-00</td>
<td>0.129134E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MAX</td>
<td>0.781343E+07</td>
<td>0.328766E+00</td>
<td>0.300751E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MEAN</td>
<td>0.261626E+07</td>
<td>0.159652E+00</td>
<td>0.182226E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MED</td>
<td>0.197089E+07</td>
<td>0.175252E+00</td>
<td>0.163546E+00</td>
<td>0.558470E-11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME = 0.100000E+04 years</th>
<th>BRINE PRESSURE (Mpa)</th>
<th>BRINE SATURATION</th>
<th>POROSITY</th>
<th>PERMEABILITY (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>0.405960E+07</td>
<td>0.144595E-03</td>
<td>0.753411E-01</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MAX</td>
<td>0.213275E+08</td>
<td>0.829489E+00</td>
<td>0.260317E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MEAN</td>
<td>0.993771E+07</td>
<td>0.223267E+00</td>
<td>0.114298E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MED</td>
<td>0.841570E+07</td>
<td>0.185228E+00</td>
<td>0.986526E-01</td>
<td>0.558470E-11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME = 0.100000E+05 years</th>
<th>BRINE PRESSURE (Mpa)</th>
<th>BRINE SATURATION</th>
<th>POROSITY</th>
<th>PERMEABILITY (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>0.596549E+07</td>
<td>0.162282E-03</td>
<td>0.831857E-01</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MAX</td>
<td>0.177650E+08</td>
<td>0.891300E+00</td>
<td>0.259204E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MEAN</td>
<td>0.904791E+07</td>
<td>0.295925E+00</td>
<td>0.115752E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MED</td>
<td>0.686144E+07</td>
<td>0.224458E+00</td>
<td>0.106594E+00</td>
<td>0.558470E-11</td>
</tr>
</tbody>
</table>
Table 3. Performance Measures for Blowout, Spalling, and Cuttings (Capillary Action)

<table>
<thead>
<tr>
<th>TIME = 0.100000E+03 years</th>
<th>BRINE PRESSURE (Mpa)</th>
<th>BRINE SATURATION</th>
<th>POROSITY</th>
<th>PERMEABILITY (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>0.674278E+06</td>
<td>0.158943E-06</td>
<td>0.129719E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MAX</td>
<td>0.948818E+07</td>
<td>0.281991E+00</td>
<td>0.300846E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MEAN</td>
<td>0.379715E+07</td>
<td>0.129274E+00</td>
<td>0.212469E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MED</td>
<td>0.342243E+07</td>
<td>0.120585E+00</td>
<td>0.206797E+00</td>
<td>0.558470E-11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME = 0.100000E+04 years</th>
<th>BRINE PRESSURE (Mpa)</th>
<th>BRINE SATURATION</th>
<th>POROSITY</th>
<th>PERMEABILITY (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>0.426707E+07</td>
<td>0.625236E-07</td>
<td>0.760762E-01</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MAX</td>
<td>0.205834E+08</td>
<td>0.891288E+00</td>
<td>0.302533E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MEAN</td>
<td>0.101380E+08</td>
<td>0.214197E+00</td>
<td>0.134522E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MED</td>
<td>0.925910E+07</td>
<td>0.130116E+00</td>
<td>0.106835E+00</td>
<td>0.558470E-11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME = 0.100000E+05 years</th>
<th>BRINE PRESSURE (Mpa)</th>
<th>BRINE SATURATION</th>
<th>POROSITY</th>
<th>PERMEABILITY (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>0.597301E+07</td>
<td>0.211665E-05</td>
<td>0.832214E-01</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MAX</td>
<td>0.174631E+08</td>
<td>0.891327E+00</td>
<td>0.301399E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MEAN</td>
<td>0.888775E+07</td>
<td>0.282265E+00</td>
<td>0.133485E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MED</td>
<td>0.684748E+07</td>
<td>0.208696E+00</td>
<td>0.106219E+00</td>
<td>0.558470E-11</td>
</tr>
</tbody>
</table>
Table 4. Performance Measures for Blowout, Spalling, and Cuttings (Dynamic Closure)

<table>
<thead>
<tr>
<th>Time</th>
<th>BRINE PRESSURE (Mpa)</th>
<th>BRINE SATURATION</th>
<th>POROSITY</th>
<th>PERMEABILITY (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME = 0.100000E+03 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN</td>
<td>0.483148E+06</td>
<td>0.142370E-01</td>
<td>0.125514E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MAX</td>
<td>0.593746E+07</td>
<td>0.370424E+00</td>
<td>0.285701E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MEAN</td>
<td>0.191471E+07</td>
<td>0.171554E+00</td>
<td>0.164694E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MED</td>
<td>0.128225E+07</td>
<td>0.195315E+00</td>
<td>0.144612E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>TIME = 0.100000E+04 YEARS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN</td>
<td>0.410419E+07</td>
<td>0.266397E-05</td>
<td>0.755763E-01</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MAX</td>
<td>0.205698E+08</td>
<td>0.824618E+00</td>
<td>0.237285E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MEAN</td>
<td>0.932229E+07</td>
<td>0.216348E+00</td>
<td>0.108083E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MED</td>
<td>0.770680E+07</td>
<td>0.183058E+00</td>
<td>0.987513E-01</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>TIME = 0.100000E+05 YEARS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN</td>
<td>0.600993E+07</td>
<td>0.472386E-04</td>
<td>0.833964E-01</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MAX</td>
<td>0.178090E+08</td>
<td>0.823706E+00</td>
<td>0.236498E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MEAN</td>
<td>0.891833E+07</td>
<td>0.271736E+00</td>
<td>0.109159E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MED</td>
<td>0.681811E+07</td>
<td>0.224979E+00</td>
<td>0.933492E-01</td>
<td>0.558470E-11</td>
</tr>
</tbody>
</table>

SWCF 1.1.6.3:PA:NG:TSK: DR2, DR3, DR6, DR7, and S6
Table 5. Performance Measures for Blowout, Spalling, and Cuttings (Puddling)

<table>
<thead>
<tr>
<th>TIME = 0.100000E+03 years</th>
<th>BRINE PRESSURE (MPa)</th>
<th>BRINE SATURATION</th>
<th>POROSITY</th>
<th>PERMEABILITY (m^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>0.647427E+06</td>
<td>0.164512E-01</td>
<td>0.129131E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MAX</td>
<td>0.781402E+07</td>
<td>0.353094E+00</td>
<td>0.300751E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MEAN</td>
<td>0.261685E+07</td>
<td>0.163848E+00</td>
<td>0.182283E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MED</td>
<td>0.197308E+07</td>
<td>0.175266E+00</td>
<td>0.163732E+00</td>
<td>0.558470E-11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME = 0.100000E+04 years</th>
<th>BRINE PRESSURE (MPa)</th>
<th>BRINE SATURATION</th>
<th>POROSITY</th>
<th>PERMEABILITY (m^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>0.413829E+07</td>
<td>0.144595E-03</td>
<td>0.754796E-01</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MAX</td>
<td>0.211521E+08</td>
<td>0.941654E+00</td>
<td>0.260262E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MEAN</td>
<td>0.999799E+07</td>
<td>0.288060E+00</td>
<td>0.113453E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MED</td>
<td>0.832081E+07</td>
<td>0.273739E+00</td>
<td>0.989002E-01</td>
<td>0.558470E-11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME = 0.100000E+05 years</th>
<th>BRINE PRESSURE (MPa)</th>
<th>BRINE SATURATION</th>
<th>POROSITY</th>
<th>PERMEABILITY (m^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>0.594842E+07</td>
<td>0.162282E-03</td>
<td>0.831048E-01</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MAX</td>
<td>0.177635E+08</td>
<td>0.941763E+00</td>
<td>0.259203E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MEAN</td>
<td>0.905020E+07</td>
<td>0.396616E+00</td>
<td>0.115048E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MED</td>
<td>0.686173E+07</td>
<td>0.332423E+00</td>
<td>0.106518E+00</td>
<td>0.558470E-11</td>
</tr>
</tbody>
</table>
Table 6. Performance Measures for Blowout, Spalling, and Cuttings (Varying Permeability)

<table>
<thead>
<tr>
<th>TIME = 0.100000E+03 years</th>
<th>BRINE PRESSURE</th>
<th>BRINE SATURATION</th>
<th>POROSITY</th>
<th>PERMEABILITY (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>0.483525E+06</td>
<td>0.140190E-01</td>
<td>0.125528E+00</td>
<td>0.465815E-12</td>
</tr>
<tr>
<td>MAX</td>
<td>0.590756E+07</td>
<td>0.370326E+00</td>
<td>0.284497E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MEAN</td>
<td>0.189846E+07</td>
<td>0.170618E+00</td>
<td>0.164211E+00</td>
<td>0.103486E-11</td>
</tr>
<tr>
<td>MED</td>
<td>0.128377E+07</td>
<td>0.195572E+00</td>
<td>0.144605E+00</td>
<td>0.632053E-12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME = 0.100000E+04 years</th>
<th>BRINE PRESSURE</th>
<th>BRINE SATURATION</th>
<th>POROSITY</th>
<th>PERMEABILITY (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>0.389321E+07</td>
<td>0.237545E-05</td>
<td>0.744877E-01</td>
<td>0.124021E-12</td>
</tr>
<tr>
<td>MAX</td>
<td>0.206316E+08</td>
<td>0.796048E+00</td>
<td>0.228743E+00</td>
<td>0.144193E-11</td>
</tr>
<tr>
<td>MEAN</td>
<td>0.926481E+07</td>
<td>0.212871E+00</td>
<td>0.108107E+00</td>
<td>0.355010E-12</td>
</tr>
<tr>
<td>MED</td>
<td>0.750772E+07</td>
<td>0.185112E+00</td>
<td>0.997611E-01</td>
<td>0.274877E-12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME = 0.100000E+05 years</th>
<th>BRINE PRESSURE</th>
<th>BRINE SATURATION</th>
<th>POROSITY</th>
<th>PERMEABILITY (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>0.601188E+07</td>
<td>0.286979E-04</td>
<td>0.834056E-01</td>
<td>0.169520E-12</td>
</tr>
<tr>
<td>MAX</td>
<td>0.178354E+08</td>
<td>0.823441E+00</td>
<td>0.227975E+00</td>
<td>0.144193E-11</td>
</tr>
<tr>
<td>MEAN</td>
<td>0.892445E+07</td>
<td>0.267615E+00</td>
<td>0.108708E+00</td>
<td>0.360363E-12</td>
</tr>
<tr>
<td>MED</td>
<td>0.680374E+07</td>
<td>0.209017E+00</td>
<td>0.933637E-01</td>
<td>0.229360E-12</td>
</tr>
</tbody>
</table>

SWCF 1.1.6.3: PA: NG: TSK: DR2, DR3, DR6, DR7, and S6
Table 7. Performance Measures for Blowout, Spalling, and Cuttings (DRZ/TZ Alteration)

<table>
<thead>
<tr>
<th>TIME = 0.100000E+03 years</th>
<th>BRINE PRESSURE (Mpa)</th>
<th>BRINE SATURATION</th>
<th>POROSITY</th>
<th>PERMEABILITY (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>0.646341E+06</td>
<td>0.164512E-01</td>
<td>0.129134E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MAX</td>
<td>0.781343E+07</td>
<td>0.328698E+00</td>
<td>0.300751E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MEAN</td>
<td>0.261676E+07</td>
<td>0.159636E+00</td>
<td>0.182240E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MED</td>
<td>0.197438E+07</td>
<td>0.175165E+00</td>
<td>0.163647E+00</td>
<td>0.558470E-11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME = 0.100000E+04 years</th>
<th>BRINE PRESSURE (Mpa)</th>
<th>BRINE SATURATION</th>
<th>POROSITY</th>
<th>PERMEABILITY (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>0.405960E+07</td>
<td>0.779378E-04</td>
<td>0.753411E+01</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MAX</td>
<td>0.210439E+08</td>
<td>0.829489E+00</td>
<td>0.259995E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MEAN</td>
<td>0.990475E+07</td>
<td>0.223650E+00</td>
<td>0.114145E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MED</td>
<td>0.841570E+07</td>
<td>0.186801E+00</td>
<td>0.986526E+01</td>
<td>0.558470E-11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME = 0.100000E+05 years</th>
<th>BRINE PRESSURE (Mpa)</th>
<th>BRINE SATURATION</th>
<th>POROSITY</th>
<th>PERMEABILITY (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>0.596549E+07</td>
<td>0.161961E-03</td>
<td>0.831857E+01</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MAX</td>
<td>0.168361E+08</td>
<td>0.891300E+00</td>
<td>0.258682E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MEAN</td>
<td>0.906478E+07</td>
<td>0.293348E+00</td>
<td>0.115669E+00</td>
<td>0.558470E-11</td>
</tr>
<tr>
<td>MED</td>
<td>0.686131E+07</td>
<td>0.224303E+00</td>
<td>0.106594E+00</td>
<td>0.558470E-11</td>
</tr>
</tbody>
</table>

SWCF.1.1.6.3:PA:NG:TSK: DR2, DR3, DR6, DR7, and S6
APPENDIX 2

DESCRIPTIONS OF FEP MODELS
DESCRIPTION OF WICKING MODEL

The following relationship is used in BRAGFLO to determine effective corrosion and biodegradation rates from their respective inundated and humid component rates in the presence of wicking:

\[r = S_{b,\text{eff}} r_i + (1 - S_{b,\text{eff}}) r_h \quad S_{b,\text{eff}} > 0 \]

\[r = 0 \quad S_{b,\text{eff}} = 0 \]

with

\[S_{b,\text{eff}} = S_b + S_w \quad \text{and} \quad S_{b,\text{eff}} \leq 1.0 \]

where:

- \(r \) represents either the effective corrosion or biodegradation rate
- \(r_i \) represents either the inundated corrosion or biodegradation rate
- \(r_h \) represents either the humid corrosion or biodegradation rate
- \(S_b \) = brine saturation in the waste disposal region
- \(S_w \) = additional brine saturation that contacts solid reactants due to wicking
- \(S_{b,\text{eff}} \) = effective brine saturation for gas generation reactions

The parameter \(S_w \) was sampled from a uniform distribution of range from 0.0 to 1.0. When \(S_w \) is set to zero the effect of wicking is absent (assumed in baseline calculations). The net effect of a positive value for \(S_w \) on the gas generation rate is to weight more heavily the inundated contribution. This is consistent with increased capillary action drawing brine in contact with more of the solid reactants.

DESCRIPTION OF PUDDLING MODEL

To activate puddling, a parameter representing the fraction of immobile brine is defined. This parameter was sampled uniformly between a value of 0.1 and 0.8. Residual brine and gas saturations were sampled independently from a uniform distribution between the values of 0.0 and 0.4. The sampled values of residual brine saturation, residual gas saturation, and immobile brine fraction were combined to produce pseudo-residual saturations that were used in either the sampled Brooks/Corey or VanGenuchten/Parker models. The saturations were combined as follows:

\[S_{phr} = S_p + (1 - S_p) S_{wr} \]

\[S_{pgr} = S_{gr} - S_p S_{gr} \]

where:

- \(S_{phr} \) = pseudo-residual brine saturation
- \(S_{pgr} \) = pseudo-residual gas saturation
- \(S_{wr} \) = residual brine saturation
- \(S_{gr} \) = residual gas saturation
- \(S_p \) = immobile brine fraction
\[S_{\text{pfr}} = \text{the pseudo-residual brine saturation} \]
\[S_{\text{pgr}} = \text{the pseudo-residual gas saturation} \]
\[S_{\text{br}} = \text{the true residual brine saturation} \]
\[S_{\text{gr}} = \text{the true residual gas saturation} \]
\[S_p = \text{the fraction of immobile brine (puddling parameter)} \]

with the restriction that:

\[S_{\text{pfr}} = S_{\text{pgr}} \quad \text{if} \quad (1 - S_{\text{pgr}} - S_{\text{br}} - 0.05) > 0 \]

otherwise

\[S_{\text{pfr}} = 1 - S_{\text{br}} - 0.05 \]

DESCRIPTION OF DYNAMIC PERMEABILITY MODEL

The following relationship was implemented in BRAGFLO for those simulations in which permeability was allowed to vary dynamically with porosity during repository consolidation:

\[k = a f^n \]

where

- \(k \) is the local permeability (m\(^2\))
- \(f \) is the local porosity based on current repository volume
- \(a = 1.0 \times 10^{-11} \text{ m}^2 \)
- \(n = 4.6 \)

DESCRIPTION OF DRZ/TZ ALTERATION MODEL

The BRAGFLO treatment of alteration of formation properties (permeability and porosity) with pressure within the marker beds has been documented in (Key, S. et al, SAND94-0381). The porosity dependence on pressure is given piecewise by the formula:

for \(p < p_1 \)

\[\phi = \phi_0 \exp(C_i (p - p_o)) \]

for \(p_1 < p < p_a \)

\[\phi = \phi_0 \exp \left(C_i (p - p_o) + \frac{(C_a - C_i)(p - p_i)^2}{(p_a - p_i)^2} \right) \]

for \(p > p_a \)

\[\Delta A \text{ with } \Delta A \gtreq少 \]

SWCF1.16.3:PA:NG:TSK: DR2, DR3, DR6, DR7, and S6
\[\phi = \phi_a \]

where

\[C = \text{rock compressibility} \]
\[\phi = \text{porosity} \]
\[p = \text{brine pressure} \]

and subscripts

\[o = \text{reference condition} \]
\[i = \text{fracture initiation condition} \]
\[a = \text{full fracture condition} \]

BRAGFLO input determines pressures \(p_i \) and \(p_a \) and the porosity at the fully altered conditions, \(\phi_a \). From this information the fully altered compressibility, \(C_a \), is determined by specifying the full fracture porosity and solving the above equation for \(C_a \).

The BRAGFLO fracture treatment further allows for change in the material permeability. The often used parallel plate analogy for flow in fractured rock models the permeability by

\[\frac{k}{k_i} = \left[\frac{\phi}{\phi_i} \right]^n \]

where

\[k = \text{permeability of altered material} \]
\[k_i = \text{permeability of intact material} \]
\[\phi = \text{porosity of altered material} \]
\[\phi_i = \text{porosity of intact material} \]
\[n = \text{an empirical parameter} \]

The exponent \(n \) is determined by specifying the permeability at the fully altered condition, \(k_a \). Since the porosity is specified at this condition, the above expression determines the exponent \(n \).

The permeability-porosity data for the DRZ/Transition zone alteration is:

\[k_i = 10^{-12} \text{ m}^2 \quad \phi_i = \text{sampled intact Halite value} \]
\[k_a = 10^{-9} \text{ m}^2 \quad \phi_a = \phi_i + 0.01 \]

this results in an exponent \(n \) value of 54.34274.

When DRZ/Transition zone alteration is not used

\[k = 10^{-15} \text{ m}^2 \quad \phi_i = \text{sampled intact Halite value} \]

The initiation pressure, \(p_i \), and the full altered pressure, \(p_a \), are specified on input as a certain pressure increment above initial brine pressure. The pressure increments assigned for the DRZ/Transition zone will have the same values as the pressure increments for the marker beds.
APPENDIX 3

DIRECTORIES AND FILES USED IN THE FEPS SCREENING ANALYSIS
Directory F2:[FEP.DATAEXEC]

BRAGEX.DIR;1 DATABASE.DIR;1

Directory F2:[FEP.DATAEXEC.BRAGEX]

BF1.EXE;56 BF2_BRAGFLO.EXE;1 BF2_BRAGFLO.FOR;1 BF2_PARAMS.INC;1
NUTSSP2F.EXE;11 NUTSSP2F.FOR;12

Directory F2:[FEP.DATAEXEC.DATABASE]

PROP.SDB;4

Directory F2:[FEP.INPUT]

B_FEP_BASELINE_EOI_DOWN_R001.INP;1 B_FEP_BASELINE_EOI_DOWN_R002.INP;1
B_FEP_BASELINE_EOI_DOWN_R003.INP;1 B_FEP_BASELINE_EOI_DOWN_R004.INP;1
B_FEP_BASELINE_EOI_DOWN_R005.INP;1 B_FEP_BASELINE_EOI_DOWN_R006.INP;1
B_FEP_BASELINE_EOI_DOWN_R007.INP;1 B_FEP_BASELINE_EOI_DOWN_R008.INP;1
B_FEP_BASELINE_EOI_DOWN_R009.INP;1 B_FEP_BASELINE_EOI_DOWN_R010.INP;1
B_FEP_BASELINE_EOI_DOWN_R011.INP;1 B_FEP_BASELINE_EOI_DOWN_R012.INP;1
B_FEP_BASELINE_EOI_DOWN_R013.INP;1 B_FEP_BASELINE_EOI_DOWN_R014.INP;1
B_FEP_BASELINE_EOI_DOWN_R015.INP;1 B_FEP_BASELINE_EOI_DOWN_R016.INP;1
B_FEP_BASELINE_EOI_DOWN_R017.INP;1 B_FEP_BASELINE_EOI_DOWN_R018.INP;1
B_FEP_BASELINE_EOI_DOWN_R019.INP;1 B_FEP_BASELINE_EOI_DOWN_R020.INP;1
B_FEP_BASELINE_EOI_UP_R001.INP;1 B_FEP_BASELINE_EOI_UP_R002.INP;1
B_FEP_BASELINE_EOI_UP_R003.INP;1 B_FEP_BASELINE_EOI_UP_R004.INP;1
B_FEP_BASELINE_EOI_UP_R005.INP;1 B_FEP_BASELINE_EOI_UP_R006.INP;1
B_FEP_BASELINE_EOI_UP_R007.INP;1 B_FEP_BASELINE_EOI_UP_R008.INP;1
B_FEP_BASELINE_EOI_UP_R009.INP;1 B_FEP_BASELINE_EOI_UP_R010.INP;1
B_FEP_BASELINE_EOI_UP_R011.INP;1 B_FEP_BASELINE_EOI_UP_R012.INP;1
B_FEP_BASELINE_EOI_UP_R013.INP;1 B_FEP_BASELINE_EOI_UP_R014.INP;1
B_FEP_BASELINE_EOI_UP_R015.INP;1 B_FEP_BASELINE_EOI_UP_R016.INP;1
B_FEP_BASELINE_EOI_UP_R017.INP;1 B_FEP_BASELINE_EOI_UP_R018.INP;1
B_FEP_BASELINE_EOI_UP_R019.INP;1 B_FEP_BASELINE_EOI_UP_R020.INP;1
B_FEP_BASELINE_EOI_UP_R001.INP;2 B_FEP_BASELINE_EOI_UP_R002.INP;2
B_FEP_BASELINE_EOI_UP_R003.INP;2 B_FEP_BASELINE_EOI_UP_R004.INP;2
B_FEP_BASELINE_EOI_UP_R005.INP;2 B_FEP_BASELINE_EOI_UP_R006.INP;2
B_FEP_BASELINE_EOI_UP_R007.INP;2 B_FEP_BASELINE_EOI_UP_R008.INP;2
B_FEP_BASELINE_EOI_UP_R009.INP;2 B_FEP_BASELINE_EOI_UP_R010.INP;2
B_FEP_BASELINE_EOI_UP_R011.INP;2 B_FEP_BASELINE_EOI_UP_R012.INP;2
B_FEP_BASELINE_EOI_UP_R013.INP;2 B_FEP_BASELINE_EOI_UP_R014.INP;2
B_FEP_BASELINE_EOI_UP_R015.INP;2 B_FEP_BASELINE_EOI_UP_R016.INP;2
B_FEP_BASELINE_EOI_UP_R017.INP;2 B_FEP_BASELINE_EOI_UP_R018.INP;2
B_FEP_BASELINE_EOI_UP_R019.INP;2 B_FEP_BASELINE_EOI_UP_R020.INP;2

\[Q \]

\[A \] 12/26/95

SWCF1.1.6.3:PA:N6:TSK: DR2, DR3, DR6, DR7, and S6
B_FEP_WICK_E01_UP_R020.INP;1
B_FEP_WICK_UND_R002.INP;1
B_FEP_WICK_UND_R004.INP;1
B_FEP_WICK_UND_R006.INP;1
B_FEP_WICK_UND_R008.INP;1
B_FEP_WICK_UND_R010.INP;1
B_FEP_WICK_UND_R012.INP;1
B_FEP_WICK_UND_R014.INP;1
B_FEP_WICK_UND_R016.INP;1
B_FEP_WICK_UND_R018.INP;1
B_FEP_WICK_UND_R020.INP;1

Directory FL:[FEP.BASELINE]
EOI_DOWN.DIR;l
EOI_UP.DIR;l

Directory FL:[FEP.BASELINE.UNDIST]
BLOT.CMD;36
BLOT.PST;5
BLOTMR001.PST;1
BLOTMR001A.PST;1
BLOTMR002.PST;1
BLOTMR002A.PST;1
BLOTMR003.PST;1
BLOTMR003A.PST;1
BLOTMR004.PST;1
BLOTMR004A.PST;1
BLOTMR005.PST;1
BLOTMR005A.PST;1
BLOTMR006.PST;1
BLOTMR007.PST;1
BLOTMR008.PST;1
BLOTMR009.PST;1
BLOTMR010.PST;1
BLOTMR011.PST;1
BLOTMR012.PST;1
BLOTMR013.PST;1
BLOTMR014.PST;1
BLOTMR015.PST;1
BLOTMR016.PST;1
BLOTMR017.PST;1
BLOTMR018.PST;1
BLOTMR019.PST;1
BLOTMR020.PST;1
FEP01_BASE_UND.COM;2
FEP01_BASE_UND1.SMZ;2
FEP01_BASE_UND11.SMZ;1
FEP01_BASE_UND1_BO.SMZ;2
FEP01_BASE_UND3.SMZ;2
FEP01_BASE_UND5.SMZ;2
FEP01_BASE_UND7.SMZ;2
FEP01_BASE_UND9.SMZ;2
FEP01_BASE_UND_GAS.COM;3
FEP01_BASE_UND1_BO.COM;2
FEP01_BASE_UND1_GAS.COM;3
FEP01_BMGMB38C_UND.TBL;2
FEP01_BRNANABC_UND.TBL;2
FEP01_BRNM38C_UND.TBL;1
FEP01_GASANABC_UND.TBL;1
FEP01_GASMB38C_UND.TBL;1
FEP01_MXGAS_MOL_UND.TBL;2
FEP01_GASHUPC_UND.TBL;6
FEP01_MGASMOL_UND.TBL;2
GASHUPC.TBL;6
MAGS_ANHABR.PST;1
PA_GAS_FEP_BASE_UND.COM;6
PA_GAS_FEP_BASE_UND_01.COM;2
POST_ALG_GAS.INP;5
POST_ALG_GAS_UND.INP;10
POST_ALG_UND.INP;2
POST_ALG_UND_BO.INP;2
READTBL.EXE;6
READTBL.OBJ;6
READ_SUM.FOR;65
READ_TBL.EXE;4
READ_TBL.FOR;12
READ_TBL.OBJ;4
SATGAS_ANHABR.PST;1
SLOTMP.INP;9
SLOTMPB.INP;1
SLOTMBR010.INP;7
SLOTMB_MXGS.INP;1
SLOTMB_SATGAS.INP;2
SLOTMB_SATGAS_R003.PST;1
SLOTMB_SATGAS_R006.PST;1
SLOTMB_SATGAS_R009.PST;1
SLOTMB_SATGAS_R011.PST;1
TEST.OUT;7
TEST1.SMZ;11

SWCP 1.1.6.3: PA; NG: TSK: DR2, DR3, DR6, DR7, and S6
Directory F1:[FEP.BASELINE.E01_UP]

ALGEBRA_R001.CDB; ALGEBRA_R002.CDB; ALGEBRA_R003.CDB; ALGEBRA_R004.CDB;
ALGEBRA_R005.CDB; ALGEBRA_R006.CDB; ALGEBRA_R007.CDB; ALGEBRA_R008.CDB;
ALGEBRA_R009.CDB; ALGEBRA_R010.CDB; ALGEBRA_R011.CDB; ALGEBRA_R012.CDB;
ALGEBRA_R013.CDB; ALGEBRA_R014.CDB; ALGEBRA_R015.CDB; ALGEBRA_R016.CDB;
ALGEBRA_R017.CDB; ALGEBRA_R018.CDB; ALGEBRA_R019.CDB; ALGEBRA_R020.CDB;
FEP01_BASE_E01_UP.COM; FEP01_BASE_E01_UP11.SMZ;
FEP01_BASE_E01_UP12.SMZ; FEP01_BASE_E01_UP13.SMZ;
FEP01_BASE_E01_UP14.SMZ; FEP01_BASE_E01_UP15.SMZ;
FEP01_BASE_E01_UP16.SMZ; FEP01_BASE_E01_UP17.SMZ;
FEP01_BRNANABC_E01_UP.TBL; FEP01_BRNHUPC_E01_UP.TBL;
FEP01_BRNMB38C_E01_UP.TBL; FEP01_BRNMB39C_E01_UP.TBL;
FEP01_BRNSHUPC_E01_UP.TBL; POST_ALG_E01_UP.INP;
FEP01_MXGASMOL_E01_UP.TBL;

Directory F1:[FEP.BASELINE.E01_DOWN]

ALGEBRA_DOWN_R001.CDB; ALGEBRA_DOWN_R002.CDB; ALGEBRA_DOWN_R003.CDB;
ALGEBRA_DOWN_R005.CDB; ALGEBRA_DOWN_R006.CDB; ALGEBRA_DOWN_R007.CDB;
ALGEBRA_DOWN_R008.CDB; ALGEBRA_DOWN_R009.CDB; ALGEBRA_DOWN_R010.CDB;
ALGEBRA_DOWN_R011.CDB; ALGEBRA_DOWN_R012.CDB; ALGEBRA_DOWN_R013.CDB;
ALGEBRA_DOWN_R014.CDB; ALGEBRA_DOWN_R015.CDB; ALGEBRA_DOWN_R016.CDB;
ALGEBRA_DOWN_R017.CDB; ALGEBRA_DOWN_R018.CDB; ALGEBRA_DOWN_R019.CDB;
ALGEBRA_DOWN_R020.CDB; BATCHCDB_10.COM; BATCHCDB_11_20.COM;
BATCHCDB_19_20.COM; BATCHCDB_1_10.COM; BATCHCDB_8_10.COM;
BATCHCDB_9_10.COM; FEP01_BASE_E01_DOWN.COM;
FEP01_BASE_E01_DOWN.SMZ; FEP01_BASE_E01_DOWN10.SMZ;
FEP01_BASE_E01_DOWN11.SMZ; FEP01_BASE_E01_DOWN12.SMZ;
FEP01_BASE_E01_DOWN13.SMZ; FEP01_BASE_E01_DOWN14.SMZ;
FEP01_BASE_E01_DOWN2.SMZ; FEP01_BASE_E01_DOWN3.SMZ;
FEP01_BASE_E01_DOWN10_20.COM; FEP01_BASE_E01_DOWN19_20.COM;
FEP01_BASE_E01_DOWN8_20.COM; FEP01_BRNANABC_E01_DOWN.TBL;
FEP01_BRMB38C_E01_DOWN.TBL; FEP01_BRNMB39C_E01_DOWN.TBL;
FEP01_BRNHUPC_E01_DOWN.TBL; FEP01_GASBHUPC_E01_DOWN.TBL;
FEP01_GASBHUPC_E01_DOWN.TBL; POST_ALG_E01_DOWN.INP;

SWCF 1.1.6.3:PA:NG:TSK: DR2, DR3, DR6, DR7, and S6
Directory F1:[FEP.MCS.E01_UP]

ALGEBRA_R001.CDB; ALGEBRA_R002.CDB; ALGEBRA_R003.CDB;
ALGEBRA_R004.CDB;
ALGEBRA_R005.CDB; ALGEBRA_R006.CDB; ALGEBRA_R007.CDB;
ALGEBRA_R008.CDB;
ALGEBRA_R009.CDB; ALGEBRA_R010.CDB; ALGEBRA_R011.CDB;
ALGEBRA_R012.CDB;
ALGEBRA_R013.CDB; ALGEBRA_R014.CDB; ALGEBRA_R015.CDB;
ALGEBRA_R016.CDB;
ALGEBRA_R017.CDB; ALGEBRA_R018.CDB; ALGEBRA_R019.CDB;
ALGEBRA_R020.CDB;
B_FEP03_MCS_E01_UP_R001.CDB;
B_FEP03_MCS_E01_UP_R003.CDB;
B_FEP03_MCS_E01_UP_R005.CDB;
B_FEP03_MCS_E01_UP_R007.CDB;
B_FEP03_MCS_E01_UP_R009.CDB;
B_FEP03_MCS_E01_UP_R011.CDB;
B_FEP03_MCS_E01_UP_R013.CDB;
B_FEP03_MCS_E01_UP_R015.CDB;
B_FEP03_MCS_E01_UP_R017.CDB;
B_FEP03_MCS_E01_UP_R019.CDB;
FEP03_BRNANA_B_C_E01_UP.TBL;
FEP03_BRNMB38C_E01_UP.TBL;
FEP03_BRNSHUPC_E01_UP.TBL;
FEP03_MCS_E01_DOWN10.SMZ;
FEP03_MCS_E01_DOWN12.SMZ;
FEP03_MCS_E01_DOWN14.SMZ;
FEP03_MCS_E01_UP.COM;
FEP03_MCS_E01_UP11.SMZ;
FEP03_MCS_E01_UP13.SMZ;
FEP03_MCS_E01_UP14.SMZ;
FEP03_MCS_E01_UP2.SMZ;
FEP03_MXGASMOL_E01_UP.TBL;
POST_ALG_E01_UP.INP;

B_FEP03_MCS_E01_UP_R002.CDB;
B_FEP03_MCS_E01_UP_R004.CDB;
B_FEP03_MCS_E01_UP_R006.CDB;
B_FEP03_MCS_E01_UP_R008.CDB;
B_FEP03_MCS_E01_UP_R010.CDB;
B_FEP03_MCS_E01_UP_R012.CDB;
B_FEP03_MCS_E01_UP_R014.CDB;
B_FEP03_MCS_E01_UP_R016.CDB;
B_FEP03_MCS_E01_UP_R018.CDB;
FEP03_BRNBHUPC_E01_UP.TBL;
FEP03_BRNMB39C_E01_UP.TBL;
FEP03_GASBHUPC_E01_UP.TBL;
FEP03_MCS_E01_DOWN11.SMZ;
FEP03_MCS_E01_DOWN13.SMZ;
FEP03_MCS_E01_UP.COM;
FEP03_MCS_E01_UP10.SMZ;
FEP03_MCS_E01_UP12.SMZ;
FEP03_MCS_E01_UP13.SMZ;
FEP03_MCS_E01_UP2.SMZ;
FEP03_MCS_E01_UP9.SMZ;
FEP03_MXGASMOL_E01_UP.TBL;

SWCF 1.1.6.3:PA:NG:TSK: DR2, DR3, DR6, DR7, and S6
Directory F1:[FEP.MCS.EO1_DOWN]

BATCHCDB_MCS_E01_DOWN_11_20.COM;4 BATCHCDB_MCS_E01_DOWN_11_10.COM;2
B_FEP03_MCS_E01_DOWN_R001.CDB;1 B_FEP03_MCS_E01_DOWN_R002.CDB;1
B_FEP03_MCS_E01_DOWN_R003.CDB;1 B_FEP03_MCS_E01_DOWN_R004.CDB;1
B_FEP03_MCS_E01_DOWN_R005.CDB;1 B_FEP03_MCS_E01_DOWN_R006.CDB;1
B_FEP03_MCS_E01_DOWN_R007.CDB;1 B_FEP03_MCS_E01_DOWN_R008.CDB;1
B_FEP03_MCS_E01_DOWN_R009.CDB;1 B_FEP03_MCS_E01_DOWN_R010.CDB;1
B_FEP03_MCS_E01_DOWN_R011.CDB;1 B_FEP03_MCS_E01_DOWN_R012.CDB;1
B_FEP03_MCS_E01_DOWN_R013.CDB;1 B_FEP03_MCS_E01_DOWN_R014.CDB;1
B_FEP03_MCS_E01_DOWN_R015.CDB;1 B_FEP03_MCS_E01_DOWN_R016.CDB;1
B_FEP03_MCS_E01_DOWN_R017.CDB;1 B_FEP03_MCS_E01_DOWN_R018.CDB;1
B_FEP03_MCS_E01_DOWN_R019.CDB;1 B_FEP03_MCS_E01_DOWN_R020.CDB;1
B_FEP_MCS_E01_DOWN_R001.CDB;2 B_FEP_MCS_E01_DOWN_R002.CDB;2
B_FEP_MCS_E01_DOWN_R003.CDB;2 B_FEP_MCS_E01_DOWN_R004.CDB;2
B_FEP_MCS_E01_DOWN_R005.CDB;2 B_FEP_MCS_E01_DOWN_R006.CDB;2
B_FEP_MCS_E01_DOWN_R007.CDB;2 B_FEP_MCS_E01_DOWN_R008.CDB;2
B_FEP_MCS_E01_DOWN_R009.CDB;2 B_FEP_MCS_E01_DOWN_R010.CDB;2
B_FEP_MCS_E01_DOWN_R011.CDB;2 B_FEP_MCS_E01_DOWN_R012.CDB;2
B_FEP_MCS_E01_DOWN_R013.CDB;2 B_FEP_MCS_E01_DOWN_R014.CDB;2
B_FEP_MCS_E01_DOWN_R015.CDB;2 B_FEP_MCS_E01_DOWN_R016.CDB;2
B_FEP_MCS_E01_DOWN_R017.CDB;2 B_FEP_MCS_E01_DOWN_R018.CDB;2
B_FEP_MCS_E01_DOWN_R019.CDB;2 B_FEP_MCS_E01_DOWN_R020.CDB;2
FEP03_BRNANABC_E01_DOWN.TBL;1 FEP03_BRNMB38C_E01_DOWN.TBL;1
FEP03_BRNMB38C_E01_DOWN.TBL;1 FEP03_BRNMB38C_E01_DOWN.TBL;1
FEP03_MCS_E01_DOWN.COM;2 FEP03_MCS_E01_DOWN.COM;2
FEP03_MCS_E01_DOWN10.SMZ;2 FEP03_MCS_E01_DOWN10.SMZ;2
FEP03_MCS_E01_DOWN12.SMZ;2 FEP03_MCS_E01_DOWN12.SMZ;2
FEP03_MCS_E01_DOWN14.SMZ;2 FEP03_MCS_E01_DOWN14.SMZ;2
FEP03_MCS_E01_DOWN9.SMZ;2 FEP03_MCS_E01_DOWN9.SMZ;2
POST_ALG_E01_DOWN.INP;1

Directory F1:[FEP.POSTPROC]

BMGANABC_ALL_UND.TBL;1 BMGMB38C_ALL_UND.TBL;3
BMGMB38C_ALL_UND.TBL;1 E01_DOWN.DIR;1 E01_UP.DIR;1
E01_UP_BOREHOLE.SMZ;9 FEP01_BASE_UIND.SMZ;1
FEP02_DRZ_UND.SMZ2;2 FEP03_MCS_UND.SMZ2;2 FEP04_PUD_UND.SMZ;2
FEP05_RAD_UND.SMZ;2 FEP06_VPC_UND.SMZ2;2 FEP07_WICK_UND.SMZ;2
FEP_BASE_E01_UP_BRNWSTC_001_010.SMZ;3 GASANABC_ALL_UND.TBL;1
GASMB38C_ALL_UND.TBL;3 GASMB39C_ALL_UND.TBL;3
GASHUPC_ALL.TBL;2 GASHUPC_ALL_UND.TBL;1 MXGASMOL_ALL.TBL;1
MXGASMOL_ALL_UND.TBL;2 POST_ALG_UND.INP;2 READ2_TBL.COM;5
READ3_TBL.COM;2 READ4_TBL.COM;2 READ5_TBL.COM;2 READ6_TBL.COM;2
READ7_TBL.COM;2 READ8_TBL.COM;2 READ9_TBL.COM;1 READ_TBL.COM;1
READ_TBL.EXE;1 READ_TBL.FOR;13 READ_TBL.OBJ;1 TESTS1.SMZ;11
UNDIST.DIR;1

SWCF 1.1.6.3:PA: NG: TSK: DR2, DR3, DR6, DR7, and S6
Directory F1:[FEP.POSTPROC.UNDIST]

BMGANABC_ALL_UND.TBL;1 BMGMB38C_ALL_UND.TBL;3
BMGMB39C_ALL_UND.TBL;2 BRNANABC_ALL_UND.TBL;1
BRNMB38C_ALL_UND.TBL;2 BRNMB38C_SPLAT.CMD;7
BRNMB38C_UND.PST;2 BRNMB38C_UNDIST.PST;1
BRNMB39C_ALL_UND.TBL;5 BRNMB39C_SPLAT.CMD;5
BRNMB39C_UND.PST;1 BRNMB39C_ALL_UND.TBL;1
GASANABC_ALL_UND.TBL;1 GASMB38C_ALL_UND.TBL;2
GASMB39C_ALL_UND.TBL;3 GASMB39C_ALL_UND.TBL;2
GASHUPC_ALL_UND.TBL;1 GRAPH.PST;3
MXGASMOL_ALL_UND.TBL;1 MXGASMOL_ALL_UND.TBL;1
MXGASMOL_UND.PST;1 READ10_TBL.COM;2
READ11_TBL.COM;2 READ12_TBL.COM;2
READ13_TBL.COM;2 READ14_TBL.COM;2
READ15_TBL.COM;2 READ16_TBL.COM;2
READ17_TBL.COM;2 READ18_TBL.COM;3
READ19_TBL.COM;1
READ_TBL.COM;1 READ_TBL.EXE;1

Directory F1:[FEP.POSTPROC.E01_UP]

BRNANABC_ALL_E01_UP.TBL;2 BRNBHUPC_ALL_E01_UP.TBL;5
BRNMB38C_ALL_E01_UP.TBL;3 BRNMB39C_ALL_E01_UP.TBL;3
BRNMB39C_ALL_E01_UP.TBL;2 GASMB39C_ALL_E01_UP.TBL;2
GRAPH.PST;1 MXGASMOL_ALL_E01_UP.TBL;3
READ10_TBL.COM;3
READ11_TBL.COM;3 READ12_TBL.COM;3
READ13_TBL.COM;2 READ14_TBL.COM;2
READ15_TBL.COM;2 READ16_TBL.COM;2
READ17_TBL.COM;2 READ18_TBL.COM;3
READ19_TBL.COM;3
READ_TBL.COM;1 READ_TBL.EXE;1

Directory F1:[FEP.POSTPROC.E01_DOWN]

BRNANABC_ALL_E01_DOWN.TBL;1 BRNBHUPC_ALL_E01_DOWN.TBL;1
BRNMB38C_ALL_E01_DOWN.TBL;1 BRNMB39C_ALL_E01_DOWN.TBL;1
BRNMB39C_ALL_E01_DOWN.TBL;1 GASMB39C_ALL_E01_DOWN.TBL;1
MXGASMOL_ALL_E01_DOWN.TBL;1 READ10_TBL.COM;4
READ11_TBL.COM;4 READ12_TBL.COM;4
READ13_TBL.COM;3 READ14_TBL.COM;3
READ15_TBL.COM;3 READ16_TBL.COM;3
READ17_TBL.COM;2 READ18_TBL.COM;3
READ19_TBL.COM;4
READ_TBL.COM;1

Directory F1:[FEP.PUD]

E01_DOWN.DIR;1 E01_UP.DIR;1 UNDIST.DIR;1

SWCF 1.1.6.3:PA:NE:TSK: DR2, DR3, DR6, DR7, and S6

Information Only
Directory F1:[FEP.SCA.TIER.EOI_UP]

BMGANABC_SPLAT.CMD;3 BMGM38C_SPLAT.CMD;4
BMGMB39C_SPLAT.CMD;3 BRNANABC_ALL_E01_UP.TBL;2
BRNANABC_E01_UP.PST;1 BRNANABC_SPLAT.CMD;7
BRNANBC_E01_UP.PST;1 BRNBHUPC_ALL_E01_UP.TBL;5
BRNBHUPC_E01_UP.PST;1 BRNBHUPC_SPLAT.CMD;6
BRNMB38C_ALL_E01_UP.TBL;3 BRNMB38C_E01_UP.PST;4
BRNMB38C_SPLAT.CMD;6 BRNMB39C_ALL_E01_UP.TBL;3
BRNMB39C_E01_UP.PST;1 BRNMB39C_SPLAT.CMD;6
BRNBHUPC_ALL_E01_UP.TBL;2 BRNBHUPC_E01_UP.PST;1
BRNBHUPC_SPLAT.CMD;6 GASANABC_SPLAT.CMD;4
GASBHUPC_ALL_E01_UP.TBL;2 GASBHUPC_E01_UP.PST;1
GASBHUPC_SPLAT.CMD;6 GASBHUPC_SPLAT.CMD;3
GASMB38C_SPLAT.CMD;5 GASMB39C_SPLAT.CMD;4
GASSHUPC_E01_UP.PST;1 GASSHUPC_SPLAT.CMD;16
GRAPH.PST;7 MXGASMOL_ALL_E01_UP.TBL;3
MXGASMOL_E01_UP.PST;1 MXGASMOL_SPLAT.CMD;9

Directory F1:[FEP.SCA.TIER.EOI_DOWN]

BMGANABC_SPLAT.CMD;3 BMGM38C_SPLAT.CMD;4
BMGMB39C_SPLAT.CMD;3 BRNANABC_ALL_E01_DOWN.TBL;1
BRNANABC_E01_DOWN.PST;3 BRNANABC_SPLAT.CMD;8
BRNBHUPC_ALL_E01_DOWN.TBL;1 BRNBHUPC_E01_DOWN.PST;2
BRNBHUPC_SPLAT.CMD;7 BRNMB38C_ALL_E01_DOWN.TBL;1
BRNMB38C_E01_DOWN.PST;2 BRNMB38C_SPLAT.CMD;7
BRNMB39C_ALL_E01_DOWN.TBL;1 BRNMB39C_E01_DOWN.PST;2
BRNMB39C_SPLAT.CMD;7 BRNMB39C_SPLAT.CMD;7
BRNMB39C_SPLAT.CMD;7 GASBHUPC_ALL_E01_DOWN.TBL;1
GASBHUPC_SPLAT.CMD;4 GASBHUPC_SPLAT.CMD;4
GASBHUPC_E01_DOWN.PST;1 GASBHUPC_SPLAT.CMD;4
GASBHUPC_SPLAT.CMD;4 GASBHUPC_SPLAT.CMD;4
GASBHUPC_SPLAT.CMD;4 GRAPH.PST;1
GASSHUPC_SPLAT.CMD;16 MXGASMOL_ALL_E01_DOWN.TBL;1
MXGASMOL_E01_DOWN.PST;2 MXGASMOL_SPLAT.CMD;9

Directory F1:[FEP.VPC]

E01_DOWN.DIR;1 E01_UP.DIR;1 UNDIST.DIR;1
Directory F1:\[FEP.VPC.UNDIST]

B_FEP06_VPC_UND_R001.CDB;1 B_FEP06_VPC_UND_R002.CDB;1
B_FEP06_VPC_UND_R003.CDB;1 B_FEP06_VPC_UND_R004.CDB;1
B_FEP06_VPC_UND_R005.CDB;1 B_FEP06_VPC_UND_R006.CDB;1
B_FEP06_VPC_UND_R007.CDB;1 B_FEP06_VPC_UND_R008.CDB;1
B_FEP06_VPC_UND_R009.CDB;1 B_FEP06_VPC_UND_R010.CDB;1
B_FEP06_VPC_UND_R011.CDB;1 B_FEP06_VPC_UND_R012.CDB;1
B_FEP06_VPC_UND_R013.CDB;1 B_FEP06_VPC_UND_R014.CDB;1
B_FEP06_VPC_UND_R015.CDB;1 B_FEP06_VPC_UND_R016.CDB;1
B_FEP06_VPC_UND_R017.CDB;1 B_FEP06_VPC_UND_R018.CDB;1
B_FEP06_VPC_UND_R019.CDB;1 B_FEP06_VPC_UND_R020.CDB;1
FEPO6_BMGANABC_UND.TBL;1 FEP06_BMGMB38C_UND.TBL;1
FEP06_BMGMB39C_UND.TBL;1 FEP06_BRNANABC_UND.TBL;1
FEP06_BRNMB38C_UND.TBL;1 FEP06_BRNMB39C_UND.TBL;1
FEP06_BRNMB38C_UND.TBL;1 FEP06_BRNMB39C_UND.TBL;1
FEP06_BRNMB39C_UND.TBL;1 FEP06_GASANABC_UND.TBL;1
FEP06_GASANABC_UND.TBL;1 FEP06_GASMB38C_UND.TBL;1
FEP06_GASMB39C_UND.TBL;1 FEP06_GASMB39C_UND.TBL;1
FEP06_GASMB39C_UND.TBL;1 FEP06_GASSHUPC_UND.TBL;1
FEP06_GASSHUPC_UND.TBL;1 FEP06_MXGASMOL_UND.TBL;1
FEP06_VPC_UND.COM;2 FEP06_VPC_UND.SMZ;6 FEP06_VPC_UND10.SMZ;2
FEP06_VPC_UND11.SMZ;3 FEP06_VPC_UND12.SMZ;2
FEP06_VPC_UND3.SMZ;2 FEP06_VPC_UND4.SMZ;2
FEP06_VPC_UND5.SMZ;2 FEP06_VPC_UND6.SMZ;2
FEP06_VPC_UND7.SMZ;2 FEP06_VPC_UND8.SMZ;2
FEP06_VPC_UND9.SMZ;2 FEP06_VPC_UND_BO.COM;2
PA_GAS_FEP_VPC_UND.COM;2 POST_ALG_GAS.INP;5 POST_ALG_UND.INP;2
POST_ALG_UND_BO.INP;3

Directory F1:\[FEP.VPC.E01_UP]

B_FEP06_VPC_E01_UP_R001.CDB;1 B_FEP06_VPC_E01_UP_R002.CDB;1
B_FEP06_VPC_E01_UP_R003.CDB;1 B_FEP06_VPC_E01_UP_R004.CDB;1
B_FEP06_VPC_E01_UP_R005.CDB;1 B_FEP06_VPC_E01_UP_R006.CDB;1
B_FEP06_VPC_E01_UP_R007.CDB;1 B_FEP06_VPC_E01_UP_R008.CDB;1
B_FEP06_VPC_E01_UP_R009.CDB;1 B_FEP06_VPC_E01_UP_R010.CDB;1
B_FEP06_VPC_E01_UP_R011.CDB;1 B_FEP06_VPC_E01_UP_R012.CDB;1
B_FEP06_VPC_E01_UP_R013.CDB;1 B_FEP06_VPC_E01_UP_R014.CDB;1
B_FEP06_VPC_E01_UP_R015.CDB;1 B_FEP06_VPC_E01_UP_R016.CDB;1
B_FEP06_VPC_E01_UP_R017.CDB;1 B_FEP06_VPC_E01_UP_R018.CDB;1
B_FEP06_VPC_E01_UP_R019.CDB;1 B_FEP06_VPC_E01_UP_R020.CDB;1
FEPOS_RAD_E01_UP10.SMZ;1 FEPO5_RAD_E01_UP11.SMZ;1
FEPO5_RAD_E01_UP12.SMZ;1 FEPO5_RAD_E01_UP13.SMZ;1
FEPO5_RAD_E01_UP14.SMZ;1 FEPO5_RAD_E01_UP2.SMZ;1
FEPO5_RAD_E01_UP9.SMZ;1 FEP06_BRNANABC_E01_UP.TBL;1
FEP06_BRNMB38C_E01_UP.TBL;1 FEP06_BRNMB39C_E01_UP.TBL;1
FEP06_BRNMB39C_E01_UP.TBL;1 FEP06_GASBHUPC_E01_UP.TBL;1
FEP06_GASBHUPC_E01_UP.TBL;1 FEP06_MXGASMOL_E01_UP.TBL;2

SWCF 1.1.6.3:PA:NG:TSK: DR2, DR3, DR6, DR7, and S6
Information Only
Information Only
Information Only
Directory F1:[FEP.DMS_BLOWOUT.BO_BRAGFLO]

BATCH1.COM;12 BF2_BRAGFLO.EXE;1 BF2_BRAGFLO.FOR;1 BF2_BRAGFLO.OBJ;1
BRAGFLO_BO_FEP01_T00100_R001.BIN;1 BRAGFLO_BO_FEP01_T00100_R002.BIN;1
BRAGFLO_BO_FEP01_T00100_R003.BIN;1 BRAGFLO_BO_FEP01_T00100_R004.BIN;1
BRAGFLO_BO_FEP01_T00100_R005.BIN;1 BRAGFLO_BO_FEP01_T00100_R006.BIN;1
BRAGFLO_BO_FEP01_T00100_R007.BIN;1 BRAGFLO_BO_FEP01_T00100_R008.BIN;1
BRAGFLO_BO_FEP01_T00100_R009.BIN;1 BRAGFLO_BO_FEP01_T00100_R010.BIN;1
BRAGFLO_BO_FEP01_T00100_R011.BIN;1 BRAGFLO_BO_FEP01_T00100_R012.BIN;1
BRAGFLO_BO_FEP01_T00100_R013.BIN;1 BRAGFLO_BO_FEP01_T00100_R014.BIN;1
BRAGFLO_BO_FEP01_T00100_R015.BIN;1 BRAGFLO_BO_FEP01_T00100_R016.BIN;1
BRAGFLO_BO_FEP01_T00100_R017.BIN;1 BRAGFLO_BO_FEP01_T00100_R018.BIN;1
BRAGFLO_BO_FEP01_T00100_R019.BIN;1 BRAGFLO_BO_FEP01_T00100_R020.BIN;1
BRAGFLO_BO_FEP01_T00500_R001.BIN;1 BRAGFLO_BO_FEP01_T00500_R002.BIN;1
BRAGFLO_BO_FEP01_T00500_R003.BIN;1 BRAGFLO_BO_FEP01_T00500_R004.BIN;1
BRAGFLO_BO_FEP01_T00500_R005.BIN;1 BRAGFLO_BO_FEP01_T00500_R006.BIN;1
BRAGFLO_BO_FEP01_T00500_R007.BIN;1 BRAGFLO_BO_FEP01_T00500_R008.BIN;1
BRAGFLO_BO_FEP01_T00500_R009.BIN;1 BRAGFLO_BO_FEP01_T00500_R010.BIN;1
BRAGFLO_BO_FEP01_T00500_R011.BIN;1 BRAGFLO_BO_FEP01_T00500_R012.BIN;1
BRAGFLO_BO_FEP01_T00500_R013.BIN;1 BRAGFLO_BO_FEP01_T00500_R014.BIN;1
BRAGFLO_BO_FEP01_T00500_R015.BIN;1 BRAGFLO_BO_FEP01_T00500_R016.BIN;1
BRAGFLO_BO_FEP01_T00500_R017.BIN;1 BRAGFLO_BO_FEP01_T00500_R018.BIN;1
BRAGFLO_BO_FEP01_T00500_R019.BIN;1 BRAGFLO_BO_FEP01_T00500_R020.BIN;1
BRAGFLO_BO_FEP01_T01000_R001.BIN;1 BRAGFLO_BO_FEP01_T01000_R002.BIN;1
BRAGFLO_BO_FEP01_T01000_R003.BIN;1 BRAGFLO_BO_FEP01_T01000_R004.BIN;1
BRAGFLO_BO_FEP01_T01000_R005.BIN;1 BRAGFLO_BO_FEP01_T01000_R006.BIN;1
BRAGFLO_BO_FEP01_T01000_R007.BIN;1 BRAGFLO_BO_FEP01_T01000_R008.BIN;1
BRAGFLO_BO_FEP01_T01000_R009.BIN;1 BRAGFLO_BO_FEP01_T01000_R010.BIN;1
BRAGFLO_BO_FEP01_T01000_R011.BIN;1 BRAGFLO_BO_FEP01_T01000_R012.BIN;1
BRAGFLO_BO_FEP01_T01000_R013.BIN;1 BRAGFLO_BO_FEP01_T01000_R014.BIN;1
BRAGFLO_BO_FEP01_T01000_R015.BIN;1 BRAGFLO_BO_FEP01_T01000_R016.BIN;1
BRAGFLO_BO_FEP01_T01000_R017.BIN;1 BRAGFLO_BO_FEP01_T01000_R018.BIN;1
BRAGFLO_BO_FEP01_T10000_R001.BIN;1 BRAGFLO_BO_FEP01_T10000_R002.BIN;1
BRAGFLO_BO_FEP01_T10000_R003.BIN;1 BRAGFLO_BO_FEP01_T10000_R004.BIN;1
BRAGFLO_BO_FEP01_T10000_R005.BIN;1 BRAGFLO_BO_FEP01_T10000_R006.BIN;1
BRAGFLO_BO_FEP01_T10000_R007.BIN;1 BRAGFLO_BO_FEP01_T10000_R008.BIN;1
BRAGFLO_BO_FEP01_T10000_R009.BIN;1 BRAGFLO_BO_FEP01_T10000_R010.BIN;1
BRAGFLO_BO_FEP01_T10000_R011.BIN;1 BRAGFLO_BO_FEP01_T10000_R012.BIN;1
BRAGFLO_BO_FEP01_T10000_R013.BIN;1 BRAGFLO_BO_FEP01_T10000_R014.BIN;1
BRAGFLO_BO_FEP01_T10000_R015.BIN;1 BRAGFLO_BO_FEP01_T10000_R016.BIN;1
BRAGFLO_BO_FEP01_T10000_R017.BIN;1 BRAGFLO_BO_FEP01_T10000_R018.BIN;1
BRAGFLO_BO_FEP01_T10000_R019.BIN;1 BRAGFLO_BO_FEP01_T10000_R020.BIN;1
BRAGFLO_BO_FEP01_T10000_R021.BIN;1 BRAGFLO_BO_FEP01_T10000_R022.BIN;1

SWCF 1.1.6.3:PA;NG: TSK: DR2, DR3, DR6, DR7, and S6
Information Only
Directory F1:[FEP.DMS_BLOWOUT.POSTBRAG]

ALGEBRA_BO_PSTB_FEP01_T00100_R001.CDB;1
ALGEBRA_BO_PSTB_FEP01_T00100_R002.CDB;1
ALGEBRA_BO_PSTB_FEP01_T00100_R003.CDB;1
ALGEBRA_BO_PSTB_FEP01_T00100_R004.CDB;1
ALGEBRA_BO_PSTB_FEP01_T00100_R005.CDB;1
ALGEBRA_BO_FEP07_T00100_R016.BIN;1
ALGEBRA_BO_FEP07_T00100_R018.BIN;1
ALGEBRA_BO_FEP07_T00100_R020.BIN;1
ALGEBRA_BO_FEP07_T00500_R002.BIN;1
ALGEBRA_BO_FEP07_T00500_R004.BIN;1
ALGEBRA_BO_FEP07_T00500_R006.BIN;1
ALGEBRA_BO_FEP07_T00500_R008.BIN;1
ALGEBRA_BO_FEP07_T00500_R010.BIN;1
ALGEBRA_BO_FEP07_T00500_R012.BIN;1
ALGEBRA_BO_FEP07_T00500_R014.BIN;1
ALGEBRA_BO_FEP07_T00500_R016.BIN;1
ALGEBRA_BO_FEP07_T00500_R018.BIN;1
ALGEBRA_BO_FEP07_T00500_R020.BIN;1
ALGEBRA_BO_FEP07_T01000_R002.BIN;1
ALGEBRA_BO_FEP07_T01000_R004.BIN;1
ALGEBRA_BO_FEP07_T01000_R006.BIN;1
ALGEBRA_BO_FEP07_T01000_R008.BIN;1
ALGEBRA_BO_FEP07_T01000_R010.BIN;1
ALGEBRA_BO_FEP07_T01000_R012.BIN;1
ALGEBRA_BO_FEP07_T01000_R014.BIN;1
ALGEBRA_BO_FEP07_T01000_R016.BIN;1
ALGEBRA_BO_FEP07_T01000_R018.BIN;1
ALGEBRA_BO_FEP07_T01000_R020.BIN;1
ALGEBRA_BO_FEP07_T01000_R002.BIN;1
ALGEBRA_BO_FEP07_T01000_R004.BIN;1
ALGEBRA_BO_FEP07_T01000_R006.BIN;1
ALGEBRA_BO_FEP07_T01000_R008.BIN;1
ALGEBRA_BO_FEP07_T01000_R010.BIN;1
ALGEBRA_BO_FEP07_T01000_R012.BIN;1
ALGEBRA_BO_FEP07_T01000_R014.BIN;1
ALGEBRA_BO_FEP07_T01000_R016.BIN;1
ALGEBRA_BO_FEP07_T01000_R018.BIN;1
ALGEBRA_BO_FEP07_T01000_R020.BIN;1
ALGEBRA_BO_FEP07_T01000_R002.BIN;1
ALGEBRA_BO_FEP07_T01000_R004.BIN;1
ALGEBRA_BO_FEP07_T01000_R006.BIN;1
ALGEBRA_BO_FEP07_T01000_R008.BIN;1
ALGEBRA_BO_FEP07_T01000_R010.BIN;1
ALGEBRA_BO_FEP07_T01000_R012.BIN;1
ALGEBRA_BO_FEP07_T01000_R014.BIN;1
ALGEBRA_BO_FEP07_T01000_R016.BIN;1
ALGEBRA_BO_FEP07_T01000_R018.BIN;1
ALGEBRA_BO_FEP07_T01000_R020.BIN;1
ALGEBRA_BO_FEP07_T01000_R002.BIN;1
ALGEBRA_BO_FEP07_T01000_R004.BIN;1
ALGEBRA_BO_FEP07_T01000_R006.BIN;1
ALGEBRA_BO_FEP07_T01000_R008.BIN;1
ALGEBRA_BO_FEP07_T01000_R010.BIN;1
ALGEBRA_BO_FEP07_T01000_R012.BIN;1
ALGEBRA_BO_FEP07_T01000_R014.BIN;1
ALGEBRA_BO_FEP07_T01000_R016.BIN;1
ALGEBRA_BO_FEP07_T01000_R018.BIN;1
ALGEBRA_BO_FEP07_T01000_R020.BIN;1
ALGEBRA_BO_FEP07_T10000_R002.BIN;1
ALGEBRA_BO_FEP07_T10000_R004.BIN;1
ALGEBRA_BO_FEP07_T10000_R006.BIN;1
ALGEBRA_BO_FEP07_T10000_R008.BIN;1
ALGEBRA_BO_FEP07_T10000_R010.BIN;1
ALGEBRA_BO_FEP07_T10000_R012.BIN;1
ALGEBRA_BO_FEP07_T10000_R014.BIN;1
ALGEBRA_BO_FEP07_T10000_R016.BIN;1
ALGEBRA_BO_FEP07_T10000_R018.BIN;1
ALGEBRA_BO_FEP07_T10000_R020.BIN;1
BRF_BASE1.COM;2 BRF_BASE2.COM;2 BRF_RAD1.COM;1 BRF_RAD2.COM;1
BRF_WICK1.COM;2 BRF_WICK2.COM;2 DIRLIST.LIS;1 MACRO_BASE1.MAC;3
MACRO_BASE2.MAC;2 MACRO_WICK1.MAC;2 MACRO_WICK2.MAC;2
SWCF 1.1.6.3

Page 113
Directory F2:[FEP.GARNER.BLOW.PANEL5]

BATCHALL.COM;4 BATCH_BLOW.COM;2 BATCH_BLOW_A.COM;2 CCDF.DIR;1
PANEL_T10000_S00_S_R001.CDB;2 PANEL_T10000_S00_S_R001.DBG;1
PANEL_T10000_S00_S_R002.CDB;2 PANEL_T10000_S00_S_R002.DBG;1
PANEL_T10000_S00_S_R003.CDB;2 PANEL_T10000_S00_S_R003.DBG;1
PANEL_T10000_S00_S_R004.CDB;2 PANEL_T10000_S00_S_R004.DBG;1
PANEL_T10000_S00_S_R005.CDB;2 PANEL_T10000_S00_S_R005.DBG;1
PANEL_T10000_S00_S_R006.CDB;2 PANEL_T10000_S00_S_R006.DBG;1
PANEL_T10000_S00_S_R007.CDB;2 PANEL_T10000_S00_S_R007.DBG;1
PANEL_T10000_S00_S_R008.CDB;2 PANEL_T10000_S00_S_R008.DBG;1
PANEL_T10000_S00_S_R009.CDB;2 PANEL_T10000_S00_S_R009.DBG;1
PANEL_T10000_S00_S_R010.CDB;2 PANEL_T10000_S00_S_R010.DBG;1
PANEL_T10000_S00_S_R011.CDB;2 PANEL_T10000_S00_S_R011.DBG;1
PANEL_T10000_S00_S_R012.CDB;2 PANEL_T10000_S00_S_R012.DBG;1
PANEL_T10000_S00_S_R013.CDB;2 PANEL_T10000_S00_S_R013.DBG;1
PANEL_T10000_S00_S_R014.CDB;2 PANEL_T10000_S00_S_R014.DBG;1
PANEL_T10000_S00_S_R015.CDB;2 PANEL_T10000_S00_S_R015.DBG;1
PANEL_T10000_S00_S_R016.CDB;2 PANEL_T10000_S00_S_R016.DBG;1
PANEL_T10000_S00_S_R017.CDB;2 PANEL_T10000_S00_S_R017.DBG;1
PANEL_T10000_S00_S_R018.CDB;2 PANEL_T10000_S00_S_R018.DBG;1
PANEL_T10000_S00_S_R019.CDB;2 PANEL_T10000_S00_S_R019.DBG;1
PANEL_T10000_S00_S_R020.CDB;2 PANEL_T10000_S00_S_R020.DBG;1

Directory F2:[FEP.GARNER.BLOW.PANEL7]

BATCHALL.COM;3 BATCHALL.COM;2 BATCHALL.COM;1 BATCH_BLOW.COM;1
BATCH_BLOW_A.COM;1 CCDF.DIR;1 PANEL_T00100_S00_S_R001.CDB;2
PANEL_T00100_S00_S_R001.DBG;1 PANEL_T00100_S00_S_R002.CDB;2
PANEL_T00100_S00_S_R002.DBG;1 PANEL_T00100_S00_S_R003.CDB;2
PANEL_T00100_S00_S_R003.DBG;1 PANEL_T00100_S00_S_R004.CDB;2
PANEL_T00100_S00_S_R004.DBG;1 PANEL_T00100_S00_S_R005.CDB;2
PANEL_T00100_S00_S_R005.DBG;1 PANEL_T00100_S00_S_R006.CDB;2
PANEL_T00100_S00_S_R006.DBG;1 PANEL_T00100_S00_S_R007.CDB;2
PANEL_T00100_S00_S_R007.DBG;1 PANEL_T00100_S00_S_R008.CDB;2
PANEL_T00100_S00_S_R008.DBG;1 PANEL_T00100_S00_S_R009.CDB;2
PANEL_T00100_S00_S_R009.DBG;1 PANEL_T00100_S00_S_R010.CDB;2
PANEL_T00100_S00_S_R010.DBG;1 PANEL_T00100_S00_S_R011.CDB;2
PANEL_T00100_S00_S_R011.DBG;1 PANEL_T00100_S00_S_R012.CDB;2
PANEL_T00100_S00_S_R012.DBG;1 PANEL_T00100_S00_S_R013.CDB;2
PANEL_T00100_S00_S_R013.DBG;1 PANEL_T00100_S00_S_R014.CDB;2
PANEL_T00100_S00_S_R014.DBG;1 PANEL_T00100_S00_S_R015.CDB;2
PANEL_T00100_S00_S_R015.DBG;1 PANEL_T00100_S00_S_R016.CDB;2
PANEL_T00100_S00_S_R016.DBG;1 PANEL_T00100_S00_S_R017.CDB;2

SWCF 1.6.3:PA:NG:TSK: DR2, DR3, DR6, DR7, and S6