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ABSTRACT

Pressure-pulse lests have been performed in bedded evaporites of the Salado Formation at the Waste
Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the
Salado. Hydraulic conductivities ranging from about 10-14 to 10-11 m/s (permeabilities of about 10-21 to
10-18 m2) have been interpreted from nine tests conducted on five stratigraphic intervals within eleven
meters of the WIPP underground excavations. Tests of a pure halite layer showed no measurable
permeability. Pore pressures in the stratigraphic intervals range from about 0.5 to 9.3 MPa. An anhydrite
interbed (Marker Bed 139) appears to be one or more orders of magnitude more permeable than the
surrounding halite. Hydraulic conductivities appear to increase, and pore pressures decrease, with
increasing proximity to the excavations. These effects are particularly evident within two to three meters of
the excavations. Two tests indicated the presence of apparent zero-flow boundaries about two to three
meters from the boreholes. The other tests revealed no apparent boundaries within the radii of influence
of the tests, which were calculated to range from about four to thirty-five meters from the test holes. The
data are insufficient to determine it brine flow through evaporites results from Darcy-like flow driven by
pressure gradients within naturally interconnected porosity or from shear deformation around excavations
connecting previously isolated pores, thereby providing pathways for fluids at or near lithostatic pressure
to be driven towards the low-pressure excavations. Future testing will be performed at greater distances
from the excavations to evaluate hydraulic properties and processes beyond the range of excavation
eftects.
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1. INTRODUCTION

This report presents preliminary interpretations of hy-
draulic tests conducted in bedded evaporites of the
Salado Formation from 1988 through early 1990 atthe
Waste Isolation Pilot Plant (WIPP) site in southeastern
New Mexico (Figure 1-1). The WIPP is a U.S. Depart-
ment of Energy research and development facility
designed to demonstrate safe disposal of transuranic
wastes resulting from the nation's defense programs.
The WIPP disposal horizon is located in the lower
portion ofthe Permian Salado Formation. The hydrau-
lic tests discussed in this report were performed in the
WIPP underground facility by INTERA Inc., Austin,
Texas, underthetechnical direction of Sandia National
Laboratories, Albuquerque, New Mexico.

New Mexico

WIPP
SITE

0 5 10 15 mi
— - —

|
0 10 20 km

TR#-6330-3-2

Figure 1-1. Location of the WIPP Site.

Hydraulic testing is being performed in the Salado
Formation to provide quantitative estimates of the
hydraulic properties controlling brine fiow through the
Salado Formation. The specific objectives of the tests
are:

» Todetermine permeabilities of different stratigraphic
intervals inthe Salado Formation around the WIPP
facility;

= To determine formation pore pressures within dif-
ferent stratigraphic intervals in the Salado Forma-
tion around the facility;

» To determine whether or not hydraulic boundaries
are encountered within the Salado on the scale of
testing;

» To define the distance(s) to which the presence of
the WIPP facility has affected hydraulic properties
and/or formation pore pressures inthe surrounding
rock; and

+ To provide data which may allow discrimination
between different conceptual models that attempt
to explainflow through evaporites, such as a Darcy-
flow model in which flow is driven by pore-pressure
gradients, and a stress- or creep-driven flow model
in which brine is squeezed out of the formation by
plastic deformation of the rock.

From 1976 to 1985, a number of hydraulic tests of the
Salado Formation were performed in boreholes drilled
from the surface. Drillstem tests (DSTs), air-injection
tests, and/or pressure-pulse tests were performed in
boreholes ERDA-9, ERDA-10, AEC-7, AEC-8, Cabin
Baby-1, DOE-2, and WIPP-12, but none provided data
that could be interpreted to yield reliable estimates of
formation permeability and/or pore pressure (Appen-
dix A). In 1986, permeability tests of portions of the
Salado were performed in several holes drilled from
within the WIPP underground facility using both air and
brine as test fluids. Peterson et al. (1987) interpreted



hydraulic conductivities ranging from 7 x 1075 to 3 x
102 mv/s from these tests. In 1987, permeability
testing was performed at two depths in the Salado in
holes drilled from within the waste-handling shaft at the
WIPP site (Stensrud et al., 1988). Interpretation of the
data from these tests indicated hydraulic conductivi-
ties ranging from2 x 10'*to 1 x10"* m/s (Saulnier and
Avis, 1988). Following these experiences, testing in
holes drilled from within the WIPP underground facility
was considered to have a greater likelihood of success
than continued attempts at surface-based testing,
leading to the development of the testing program
discussed in this report.

The hydraulic testing reported herein consists of
pressure-pulse tests offive stratigraphicintervals within
eleven meters of the WIPP excavations. The
stratigraphic intervals tested include halite {both pure
and impure), anhydrite, and clay. From September
1988 through February 1990, nine sets of pulse tests
were completed in five different boreholes. Testing of
a sixth stratigraphic interval consisting entirely of
relatively pure halite was attemptedinanotherborehole,
but no interpretable response was observed. Testing
of a seventh stratigraphic interval was begun, but had
to be terminated prematurely because of conflicts with
other activities in that part of the WIPP underground
facility.

Unlike porous media such as sandstones, halite exhibits
creep behavior that may complicate the interpretation
of hydraulictests. Creep causes borehole dimensions
to change during tests and may also cause time-
dependent changes in the permeability and specific
storage of the region undergoingcreep. Compensating

for these changes is complicated by the dependence
of creep rates around a borehole on the fluid pressure
in the borehole. In addition, because halite and other
evaporites tend to have extremely low permeabilities,
temperature changes and equipment-related factors
that have negligible effects on tests in higher
permeability media may significantly affect observed
fluid-pressure responses in evaporites. Thus, the
effects of temperature changes, pressure-dependent
test-tool-volume changes (compliance), and movement
of thetesttoolduringtesting also needto be incorporated
into the test interpretation.

Other factors specific to the tests of the Salado
Formation, which bear on test interpretation, are
borehole orientation (in some cases the holes were not
drilled perpendicular to bedding), possible partial-
penetration effects (test intervals may not have been
fully confined), the effect of trapped gas within test
intervals on test-zone compressibility, and possible
two-phase flow caused by gas having exsolved from
the Salado brine in the relatively depressurized near-
borehole region of the surrounding rock.

The interpretations presented in this report are termed
“preliminary” because they do not fully incorporate all
of the complexities discussed above. In particular,
formation creep, partial-penetration effects, pressure-
dependent test-zone compressibility resulting fromthe
presence of gas, and two-phase fiow are not
quantitatively addressed in this report. Additional
experimentation, study, and model development will
be required before many of these complexities canbe

incorporated into the test intemretations.



2. GEOLOGIC SETTING AND LOCAL STRATIGRAPHY

The WIPP site is located in the northern parnt of the
Delaware Basin in southeastern New Mexico. WIPP-
site geologic investigations have concentrated on the
upper seven formations typically found in that part of
the Delaware Basin. These are, in ascending order,
the Bell Canyon Formation, the Castile Formation, the
Salado Formation, the Rustler Formation, the Dewey
Lake Red Beds, the Dockum Group, and the Gatufa
Formation (Figure 2-1). All of these formations are of
Permian age, except for the Dockum Group, which is
of Triassic age, and the Gatufia, which is a Quatemary
deposit.

The WIPP underground facility lies in the lower part of
the Salado Formation at an approximate depth of
655 m below ground surface. The Salado Formation
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Figure 2-1. WIPP Site Stratigraphic Column.

is approximately 600 m thick at the WIPP site and is
composed largely of halite with minor amounts of
interspersed clay and polyhalite. The Salado also
contains interbeds of anhydrite, polyhalite, clay, and
siltstone. Many of these interbeds are traceable over
most of the Delaware Basin. Jones et al. (1960)
designated 45 of the anhydrite and/or polyhalite
interbeds as “Marker Beds”, and numbered these
“Marker Beds”, from 100to 144, increasing downward.
The WIPP facility horizon (the stratigraphic location of
the underground excavations from which the bore-
holes for the brine-permeability program were drilled)
lies between Marker Beds 138 and 139.

A typical stratigraphic section of the Salado Formation
inthe vicinity of the WIPP undergroundfacility, adapted
from Westinghouse (1989), is shown in Figure 2-2.
Westinghouse (1989) presents a detailed description
of stratigraphic units that correlate throughout most of
the underground facility (Appendix B). The description
covers a 37.5-m interval of the Salado, centered
approximately at the stratigraphic midpoint of the ex-
cavations. This description delineates 16 “map units,”
numbered 0 to 15, and 20 unnumbered units. The
majority of the map units are composed primarily of
halite, and are differentiated principally on the basis of
differing clay and polyhalite contents. The remainder
of the map units are anhydrite interbeds such as
Marker Beds 138 and 139. Thinner anhydrite inter-
beds and anumber of the more continuous clay seams
have also been given letter designations to facilitate
consistent referencing. These units are shown on
Figure 2-2. The stratigraphic positions of the WIPP
excavations with respect to the designated map units
are shown in Figure 2-3. The testing and guard-zone
monitoring discussed in this report were carried out in
map unit 9 and in all of the strata from map unit 6 to the
halite underlying anhydrite “c.”
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The stratigraphic units described by Westinghouse
(1989) are not encountered by all boreholes, however.
As shown in detailed geologic maps of drift and room
ribs (walls) throughout the underground facility (e.g.,
Westinghouse, 1989, 1990), the halitic map units are
locally crosscut by syndepositional dissolution pits
(Powers and Hassinger, 1985). These pits range in
depth and width from a few centimeters to afew meters
and may completely crosscutone or several map units
at any given location. The pits are typically filled by
relatively pure, coarsely crystalline halite.

As mentioned above, the halitic map units designated
by Westinghouse (1989) were defined on the basis of

relatively consistent differences in clay content and/or
color and polyhalite content that are apparent in mac-
roscopic examination, ratherthan on sedimentological
differences. The local absence of map units can be
attributed to depositional processes. Holt and Powers
(1990) present a detailed discussion of the sedimen-
tology of the Salado Formation. They provide descrip-
tions of lithofacies commonly found within the Salado
and discuss syndepositional alteration processes.
Salado textures and lithofacies distributions are highly
variable both laterally (at a local scale) and vertically,
as they are the producits of repeated episodes of
dissolution and alteration over a large areal scale.



3. TESTING EQUIPMENT

The following sections briefly describe the equipment
used in the permeability-testing program in the WIPP
underground facility. The equipment includes
multipacker test tools, data-acquisition systems, in-
struments to measure borehole deformation, pressure
transducers, and thermocouples. More detailed de-
scriptions of the testing equipment and the procedures
and methods used to calibrate the equipment are
presented in Saulnier et al. (1991).

NOTE: The use of brand names in this report is
for identification only, and does not imply
endorsement of specific products by Sandia
National Laboratories.

3.1 Multipacker Test Tool

The first two sets of tests performed under this pro-
gram, in borehole C2H01, employed the multipacker
test tool used for permeability tests in the waste-
handling shaft as described in Stensrud et al. (1988)
and Saulnier and Avis (1988). This tool (Figure 3-1) is
in principle very similar to the multipacker test tool
designed specifically for the underground permeabil-
ity-testing program, but lacks borehole-deformation
measuring devices. All other permeability tests were
conducted using the multipacker test tool described
below.

The multipacker test tool designed for this testing
program, shown on Figures 3-2 and 3-3, has two
sliding-end, 9.5-cm outside diameter (O.D.) inflatable
packers mounted on a 4.83-cm O.D. mandrel and
oriented with the packers’ fixed ends toward the bot-
tom-hole end of the test tool. The packers have 0.92-
m long inflatable elastic elements composed of natural
rubber and synthetic materials. The packer elements
have approximately 0.81-m seal lengths when inflated
in 10.2-cm diameter boreholes. The tool is anchored
to the wall or floor of the underground facility during

testing by bolting a mandrel clamp to the flange of a
0.51-m long borehole collar grouted into the top of the
hole. For sometests, thetesttool s also secured using
across made of 1-miengths of 5.08-cm square tubular
steel, which is clamped onto the mandrel or its exten-
sion and anchored to the fioor or wall using 61-cm long
rock bolts.

Each multipacker test tool is equipped with three sets
of ports to the bottom-hole test zone and the guard
zone betweenthe packers. One set of portsis used to
transmit fluid pressures fromthe test and guard zones
to the transducers, which are mounted outside of the
boreholes. A second set of ports is used to dissipate
“squeeze” pressures created during packer inflation
and to vent fluid from the isolated intervals to initiate
pulse-withdrawal tests. These two sets of ports are
accessed by continuous lengths of 0.48-cm (3/16-
inch) O.D. stainless-steeltubing. The third set of ports
provides access for 0.32-cm (1/8-inch) diameter Type
E thermocouples to measure temperatures in the test
and guard zones. Packer-inflation pressures are
monitored with transducers attached to the packer-
inflation lines.

The test-interval section of each test tool is equipped
with linear variable-differential transformers (LVDTs)
to measure borehole deformation and test-tool move-
ment during the testing period. Three radially oriented
LVDTs are located below the test-interval packer, and
one axially oriented LVDT is mounted at the bottom
end of the multipacker test tool (Figure 3-3) to measure
tool movement relative to the bottom of the hole during
testing.

3.2 Data-Acquisition System
A computer-controlled data-acquisition system
(DAS) monitors the progress of each test and records
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fluid—pressure, fluid-temperature, and borehole-
deformation data (Figure 3-4). Each DAS consists of
an IBM PS/2 Model 50 desktop computer for system
control and data storage, and a Hewlett Packard (HP)
3497 A Data-Acquisition/Control Unit containing power
supplies to excite the transducers, thermocouples,
and LVDTs, a signal scanner to switch and read
channels, and a 5-1/2 digit voltmeter to measure the
output from the transducers, thermocouples, and
LVDTs. The data-acquisition software allows sam-
pling of the sensors’ outputs at user-specified time
intervals ranging from 15 seconds to 24 hours. Asthe
data are acquired, they are stored both on the
computer’s hard disk and on either 3.5-inch or 5.25-
inch diskettes. Real-time listing of the data on an
auxiliary printer and screen and/or printer plots of the
accumulated data are also possible.

3.3 Pressure Transducers

Fluid pressures in the test and guard zones and in the
packers are monitored with Druck PDCR-830 strain-
gage pressure transducers rated to monitor pressures
from 0 to 14 MPa. The manufacturer’s stated accu-
racy of the transducers is = 0.1% of full scale, or
+0.014 MPa. Transducers are calibrated before and
after each installation of a multipacker test tool accord-
ing to procedures described in Saulnier et al. (1991).
The transducers are mounted outside the boreholes
and are connected to the isolated zones and the
packers through 0.48-cm (3/16 inch) O.D. stainless-
steel tubing, which passes into and throughthe packer
mandrels (Figure 3-2). Calibration data for the trans-
ducers used during the permeability testing discussed
in this report are tabulated in Saulnier et al. (1991).

3.4 Thermocouples

Pickens et al. (1987) have shown that the thermal
expansion or contraction of fluid in an isolated test
zone in a borehole can have a significant effect onthe
measured fluid-pressure response during testing in
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low-permeability media. Therefore, Type E Chromel-
Constantan thermocouples are used to monitor tem-
peratures within the test and guard zones during the
permeability tests, and these data are incorporated in
test interpretation. The thermocouples used are
0.32 cm (1/8 inch) indiameter, are sheathed in Inconel
600, and are manufactured by ARI Industries. The
thermocouples are reported to be accurate to within
+0.006 °C. The thermocouples are calibrated by
Sandia National Laboratories, and the calibration data
are stored at the WIPP-site Sandia office.

3.5 Linear Variable-Differential
Transformers

Open boreholes, rooms, and drifts in the underground
facility exhibit closure, deformation, and differential
movementbetween halite and anhydrite beds (Bechtel,
1986). Measureable borehole closure (onthe order of
a few tenths-of-a-millimeter change in borehole diam-
eter) in a shut-in, fluid-filled test interval could raise the
fiuid pressure to higher levels thanwould occur without
this closure. Axial movement of the multipacker test
tool can be caused by packer inflation, fluid-pressure
buildup orwithdrawaliinthe isolatedintervals, and hole
elongation resulting from creep closure of the excava-
tions. (The rate of rock creep decreases with increas-
ing distance froman excavation (Westinghouse, 1990),
causing boreholes drilled from an excavation to elon-
gate.) Axial movement of the test tool can change the
test-zone volume, which, in low-permeability media,
can affect the observed fluid-pressure response in an
isolated borehole interval. Three Trans-Tek Model
241LVDTs areradially mounted, with 120° separation,
on the test-interval part of the multipacker test tool to
measure radialborehole deformation (Figures 3-2 and
3-3). These LVDTs can each measure a range of
motionof 0.5cm. An axially mounted Trans-Tek Model
245 LVDT on the bottom of the test tool measures tool
movement along the borehole axis (Figures 3-2 and
3-3). This LVDT has a range of motionof 10 cm. The
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LVDT responses are reported by Trans-Tek to be
linear within + 0.5% over their working ranges. Jensen
(1990) discusses in detail the design, calibration, and
use of the LVDTs.

3.6 Compliance-Testing Equipment

Pickens et al. (1987) have shown that test-tool move-
ment in response to packer inflation and fluid injection
or withdrawal can affect fluid-pressure responses in
isolated intervals in boreholes in low-permeability
media. Figure 3-5 illustrates how packer movement
due to packer inflation can cause the packer element
to displace fluid in isolated intervals, causing changes
in fluid pressure. Changes in the shape, volume, or
position of the test tool that affect fluid-pressure re-
sponses during testing are referred to as compliance.
To evaluate the magnitude of compliance for the
multipacker test tool, preinstallation compliance tests
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were conducted in the underground facility on all test
tools according to procedures outlined in Section 4.1.
Compliance tests were conducted in sealed and pres-
sure-tested sections of 11.43-cm (4.5 inch) O.D. steel
or stainless-steel casing to differentiate test-tool-re-
lated phenomena from fluid-pressure responses ob-
served in drilled boreholes. The casing was intended
to simulate a borehole with effectively zero permeabil-
ity. Early compliance tests were conducted inthe test
rooms with the compliance chamber mounted on a
jackstand from August 1988 through June 1989. Be-
cause the magnitude of diurnal temperature changes
monitored during early compliance tests in the steel
casing appeared to cause thermally induced fluid-
pressure responses, a stainless-steel chamber for
subsequent compliance tests wasplaced inaborehole
drilled into the Salado Formation from the under-
ground facility as shown on Figure 3-6.
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