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1.0 Introduction

This document presents the methods, supporting data, and results of calculations done in support
of Culebra head and hydraulic gradient network monitoring design. Three different approaches
to monitoring network design are examined and results for the Culebra are obtained for each.
These results include optimal locations for additional monitoring wells and identification of
wells in the current monitoring network that could be removed with minimal effect on meeting
the monitoring objectives. The three different sets of results are then combined into a final set of
maps indicating areas for the installation of new monitoring wells. Additionally, several wells in
the existing network could be removed with minimal effect on the ability of the monitoring
network to predict heads at unmonitored locations and to detect changes in the hydraulic
gradient.

1.1 Background

The Waste Isolation Pilot Plant (WIPP) is located in southeastern New Mexico and has been
developed by the U.S. Department of Energy (DOE) for the geologic (deep underground)
disposal of transuranic (TRU) waste. Containment of TRU waste at the WIPP is regulated by the
U.S. Environmental Protection Agency (EPA) according to the regulations set forth at Title 40 of
the Code of Federal Regulations, Parts 191 and 194. The DOE demonstrates compliance with
the containment requirements in the regulations by means of a performance assessment (PA),
which cstimates releases from the repository for the regulatory period of 10,000 years after
closure.

In October 1996, DOE submitted the Compliance Certification Application (CCA; U.S. DOE,
1996) to the EPA, which included the results of extensive PA analyses and modeling. After an
extensive review, in May 1998 the EPA certified that the WIPP met the criteria in the regulations
and was approved for disposal of transuranic waste. The first shipment of waste arrived at the
site in March 1999.

The results of the PA conducted for the CCA were subsequently summarized in a Sandia
Nattonal Laboratories (SNL) report (Helton et al., 1998) and in refereed journal articles (see
Helton and Marietta, 2000).

Groundwater-monitoring and modeling activities at the WIPP are an integral part of the DOE’s
broader requirements to demonstrate that WIPP operations are performed in a manner that
ensures protection of the environment, the health and safety of workers and the public, proper
charactenization of the disposal system, and compliance of the WIPP with applicable regulations.
Continued compliance with regulations must be demonstrated every five years during the
operational phase of the WIPP. The monitoring requirements apply not only for the current
operational phase (~35 years), but extend through the post-closure phase of the facility to meet
applicable regulations. Because of these long-term requirements, DOE’s Carlsbad Field Office
(CBFOQ) has developed a Strategic Plan For Groundwater Monitoring at the Waste Isolation
Pilot Plant (DOE, 2003) that describes: relevant regulatory (EPA and NMED) drivers; the
current groundwater-monitoring network and how it has evolved over time; current groundwater
program elements; strategies for maintaining compliance; methods for implementing the
strategies; and roles and responsibilities of monitoring program participants.



1.2 Purpose

The purpose of these calculations is to identify optimal locations for new Culebra monitoring
wells. Additionally, it is necessary to examine the current monitoring network to determine if
redundant information with respect to the monitoring goals is being collected. If so, it may be
possible to remove some of the existing wells from the network without compromising the
ability of the network to predict heads at unmonitored locations or to detect changes in the
magnitude and direction of the hydraulic gradient. The calculations herein will be focused on

meeting the goals of:
1. The monitoring network must allow the determination of the direction and
rate of groundwater flow across the WIPP site. This is a NMED and EPA
requirement (NMAC, 2000 incorporating 40 CFR Part 194 §264.98(e)
EPA, 1996);
2. The monitoring network must provide data needed to infer causes of

changes in water levels that might be observed. This is an EPA
requirement, 40 CFR Part 194, Subpart C §194.42 (EPA, 1996}; and

3. The monitoring network must provide spatially distributed head data
adequate to allow both defensible boundary conditions to be inferred for
Culebra flow models and defensible calibration of those models (PA
requirements).

The degree to which these objectives can be reduced to quantitative measures is evaluated as part
of the work reported in this Analysis Report.

The optimized and minimized monitoring network will be created using available information
including existing wells and up to date understanding of the hydrology of the Culebra. The
optimization and minimization process must take the following factors into consideration:

1.
2.

Optimize around (i.c., preserve) existing locations of fiberglass-cased wells

Preserve existing locations of steel-cased wells where feasible to minmimize pad/road
construction, permitting, and survey costs

3. Identify existing well locations that are not needed

Known T variations and geologic boundaries

5. Where feasible, locate new wells in areas where questions have arisen concerning the

geologic and/or hydrologic conceptual models

Where feasible, locate new wells in areas of high groundwater flow and/or particle
travel time model sensitivity

1.3 Outline

This report documents the data, methods, and summary results of the work completed under
Analysis Plan 111 (Beauheim and McKenna, 2003). The sections of this report and a brief
description of each subsection are:

1.0 Introduction
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1.1 Background: A brief background of the WIPP certification and recertification process

1.2 Purpose: A concise statement of the purpose of this work

1.3 Qutline

1.4 Calculation Domain: Definition of the spatial domain of the model and changes from the
CRA model

1.5 Observed Data: A description of the measured head and drawdown data used for the
calibration of the base transmissivity fields and the references from which these
measurements were obtained

2.0 Geostatistical Variance Reduction

2.1 Trend Fitting and Residual Calculations: A planar trend is fit to the 2000 and 2003 head
data sets and residuals between the trend and the measurements are calculated

2.2 Variogram Calculation and Modeling: Variograms of the residuals are calculated and
modeled

2.3 Knging: The residuals are kriged to get estimates of residuals and estimation variance at
all locations without wells

2.4 Estimation Variance Calculations: The average estimation variance in the model domain
and in the WIPP site is calculated

2.5 Calculation Details: Details of the calculations, directory names and file names and
locations are provided for the work done in this chapter

3.0 Local Gradient Estimation

3.1 Background: Literature review of previous work on local gradient estimation

3.2 Estimation of the Gradient: The equations for three-point estimation

3.3 Local Gradient Estimator Error Analysis: Summary of numerical analysis of the effects
of measurement error on local gradient estimation

3.3.1 Relative Measurement Error: The definition of the relative head measurement error

3.3.2 Estimator Shape and Gradient Orientation: Summary of numerical experiments
conducted to determine the effect of estimator shape and orientation on the accuracy of
the estimates

3.3.3 Choosing Acceptable Three-Point Estimators: Summary of the rules developed for
necessary estimator shape and relative head measurement error to achieve accurate
estimates

3.4 Application 1: Monitoring Temporal Changes: Use of local gradient estimators to
identify changes in the Culebra gradient from August 2000 to August 2003

3.5 Application 2: Long-Term Monitoring Network Design: Use of local gradient estimators
to optimize existing well removal and addition of wells to the network.

3.5.1 Removal of Existing Monitoring Wells

3.5.2 Addition of New Monitoring Wells

3.6 Local Gradient Estimation Summary

3.7 Assumption of Homogeneity: Discussion of numerical calculations done to examine the
effects of assuming a homogeneous aquifer within each three-point estimator

3.8 Calculation Details: Details of the calculations, directory names and file names and
locations are provided for the work done in this chapter

4.0  Spatial Sensitivity-Based Monitoring

11



4.1 Background: Literature review on other efforts

4.2 Derivative-Based Sensitivity Coefficients: Definition of the more traditional derivative-
based sensitivity coefficients

4.3 Sampling-Based Sensitivity Coefficients: Definition of sampling-based sensitivity
coefficients

4.4 Application to Culebra Calculations: Comparison of derivative and sampling-based
sensitivity coefficients

4.5 Results: Sensitivity of travel time to WIPP boundary with respect to head and
transmissivity

4.6 Summary

4.7 Calculation Details: Details of the calculations, directory names and file names and
locations are provided for the work done in this chapter

5.0 Combining Monitoring Approaches
5.1 Results: final maps of the sum of the rescaled maps of the different approaches
5.2 Summary
5.3 Calculation Details: Details of the calculations, directory names and file names and
locations are provided for the work done in this chapter

6.0 Conclusions

7.0 References: Other work cited in this report

1.4 Calculation Domain

The spatial domain used for the different calculations in support of monitoring network design is
the same as the model domain used in the stochastic inverse calibration of the Culebra T fields to
steady-state and transient data (McKenna and Hart, 2003) for the CRA (DOE, 2004). This
model domain is oriented with the compass directions and is 30.6 km in the north-south direction
and 22.3 km in the east-west direction. The corners of the WIPP model domain are given in
Table 1. These coordinates define the center of 100x100-m” model cells at the four corers of
the model domain. All monitoring calculations that produce results on a spatial grid employ the
same grid as used for the stochastic inverse calibrations.

Table 1. The UTM (NAD27) coordinates of the corners of the numerical model domain.

Domain Corner X Coordinate (meters) Y Coordinate (meters)
Northeast 624,000 3,597,100
Northwest 601,700 3,597,100
Southeast 624,000 3,566,500
Southwest 601,700 3,566,500

The WIPP land-withdrawal boundary, or the “WIPP site boundary”, is an approximately 6.4 X
6.4 km area near the center of the model domain, The boundary of the WIPP site is defined by
the coordinates shown in Table 2. For the calculations described in this report, the coordinates
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shown in Table 2 are used to determine different measures of the effectiveness of the monitoring
network.

Table 2. The UTM (NAD27) coordinates of the WIPP site boundary.

Domain Corner X Coordinate (meters) Y Coordinate (meters)
Northeast 616,941 3,585,109
Northwest 610,495 3,585,068
Southeast 617,015 3,578,681
Southwest 610,567 3,578,623

1.5 Observed Data

The approaches developed in this report can be applied to any set of simultaneous head
measurements. Additionally, the monitoring network optimization techniques developed herein
can also be applied to sets of heads measured at different times and the differences in the results
will provide an indication of changes in the heads and gradient over time. For comparison across
different times, the wells in which the heads are measured must remain constant. To develop and
demonstrate the monitoring network optimization approaches in this report, two different sets of
heads measured in the same wells three years apart, August 2000 and August 2003, are
employed.

The observation wells are taken from the current Culebra monitoring network. The wells used
for this analysis are the intersection of the set of wells in which heads were observed in both
August of 2000 (WTS, 2003) and August of 2003 (Jones, 2003). In two cases, H-9 and H-10,
different wells on the same hydropad (~30 m apart) were monitored at the two different times.
For these analyses, the two different wells on each hydropad are considered to be equivalent and
are counted as a single well. Additionally, the WIPP-29 well was removed from the analysis
because it is far enough west of the other wells that heads measured in WIPP-29 are not
representative of the heads in the vicinity of the WIPP site. The final sets of 30 wells and the
adjusted freshwater heads measured in those wells in both 2000 and 2003 used in the monitoring
network analysis in this report are shown in Table 3.
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Table 3. Results of Monthly Head Monitoring Program for August 2000 and 2003.

Adjusted Adjusted

Y 2000 2003 Difference
Integer | Well X coordinate | coordinate | Freshwater | Freshwater | 2003-2000
ID Name (m) (m) Head (m) Head (m) (meters)
1 AEC-7 621126 3589381 933.10 933.36 0.26
2 DOE-1 615203 3580333 915.42 916.49 1.07
3 ERDA-9 | 613696 3581958 921.56 922.25 0.69
4 H-2b2 612661 3581649 926.28 927.13 0.85
5 H-3b2 613701 3580906 917.28 917.93 0.66
6 H-4b 612380 3578483 915.90 915.66 -0.24
7 H-5b 616872 3584801 936.73 937.12 0.39
8 H-6b 610594 3585008 933.79 934,51 0.72
9 H-7b2 608117 3574620 913.64 913.59 -0.05
10 H-%/c 613989 3568261 911.27 911.28 0.01
11 H-10b/c | 622975 3572473 922 42 922.06 -0.36
12 H-11b4 | 615301 3579131 915.52 915.45 -0.06
13 H-12 617023 3575452 916.10 917.02 0.92
14 H-17 615718 3577513 917.38 917.99 0.61
15 H-19b0 | 614514 3580716 917.65 918.30 0.65
16 P-17 613926 3577466 913.46 913.79 0.33
17 WIPP-12 | 613710 3583524 935.30 935.82 0.52
18 WIPP-13 | 612644 3584247 935.29 935.18 -0.11
19 WIPP-19 { 613739 3582782 937.88 038.59 0.70
20 WIPP-21 | 613743 3582319 926.55 0927.12 0.57
21 WIPP-22 | 613739 3582653 932.83 033.59 0.76
22 WIPP-25 [ 606385 3584028 931.66 932.14 0.49
23 WIPP-26 | 604014 3581162 921.14 921.25 0.12
24 WIPP-30 | 613721 3589701 936.79 938.23 1.43
25 WQSP-1 | 612561 3583427 935.69 936.29 0.60
26 WQSP-2 | 613776 3583973 938.75 939.05 0.30
27 WQSP-3 | 614686 3583518 935.70 935.97 0.27
28 WQSP-4 | 614728 3580766 917.87 918.45 0.58
29 WQSP-5 | 613668 3580353 917.12 917.88 0.76
30 WQSP-6 | 612605 3580736 920.16 920.95 0.79

The locations of the monitoring wells in Table 3 with respect to the WIPP site are shown in

Figure 1.
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Figure 1. Locations of the monitoring wells with head observations (Table 3) used in this study.

In general, there has been a rise in head from 2000 to 2003 (positive values in the right column
of Table 3), with a maximum rise of 1.43 meters in WIPP-30. The degree of change in the heads
across the 3-year time period is shown as a scatterplot in Figure 2. Figure 2 shows that the rise
in heads during this three-year time period has been fairly uniform and independent of the actual
magnitude of the measured head.

15



940 1

935

930

825

920

August 2003 Head (meters)

915

910

910 915 920 925 930 935 940
August 2000 Head (meters)

Figure 2. Scatterplot showing the relationship between the heads measured in August 2000 and
August 2003,

In addition to the measured heads from August 2000 and August 2003, calculation results from
the most recent stochastic inverse calibration of the Culebra transmissivity fields (McKenna and
Hart, 2003) are also used. These results include the simulated head values and calibrated
transmissivity values for each calibrated field. These files are stored on the lylin102
computational cluster in the subdirectories below: /h/WIPPcvs/trans/runs/. These results are
used in the third approach, sensitivity-based, to long-term monitoring network design.
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2.0 Geostatistical Variance Reduction

Geostatistics is the study and modeling of spatially correlated information and it has been used
extensively over the past 30 years in areas including ore reserve estimation, contaminant
mapping in soils and groundwater and modeling spatial variability of physical properties of
aquifers and petroleum reservoirs. The geostatistical algorithm used for spatial estimation is
kriging and, compared to other spatial interpolation algorithms, kriging is unique in that it
produces both an estimate and a variance about that estimate at unsampled locations.

Previous studies (e.g., Rouhani, 1985) have used the kriging variance as a measure of the ability
of a groundwater monitoring network to predict heads at locations where no wells exist.
Groundwater monitoring network design can be optimized to reduce the kriging variance to a
prescribed level at all locations or to minimize the maximum kriging variance. Calculation of
the kriging variance can also be used to determine what welis to remove from an existing
network such that the overall kriging variance has a minimal increase when those wells are
removed. As an example, Tuckfield et al. (2001) used the kriging variance of contaminants in a
plume to determine the redundancy of groundwater contaminant monitoring wells and targeted
those wells with the highest redundancy for removal from the network. A major advantage of
monitoring network design using kriging is that the kriging variance is not a direct function of
the sample value at any single point and therefore changes in the kriging variance from the
addition or removal of a well can be determined prior to adding or removing that well.

2.1 Trend Fitting and Residual Calculations

The more recent of the two sets of head observations, August 2003, are used for the geostatistical
variance reduction analysis. A single best-fit planar gradient for these heads was calculated
using the equation fitting tool in SigmaPlot (version 8.02). The equation for the best-fit plane to
the August 2003 heads is:

Head(x,y)= Ax+ By+C 8y

The results of this equation fitting produced 4 = 1.98E-04, B = 1.62E-03 and C =5007.74. With
these parameter values, (1) fits the August 2003 heads with an R? of 0.60. Diagnostics regarding
the equation fitting process are given in Appendix 1. This best-fit plane has a hydraulic gradient
of 1.64E-03 and a flow direction (negative of the mathematical gradient) of 173.04°
counterclockwise from north, or —173.04°. Results of these calculations are stored in the
spreadsheet Trend_results.xls on the CD-ROM as part of this analysis package (see the
“Calculation Details” section). Residuals between the measured and estimated heads are
calculated and shown in Table 4. The estimated and measured heads are compared graphically
in Figure 3. Figure 3 shows that the planar fit to the heads has difficulty in estimating the highest
and lowest measured heads.
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Table 4. August 2003 head data and estimates of the head data from a best-fit plane. The
residuals in the right column are calculated as the estimated - measured head.

Integer Well X coordinate | Y coordinate | Measured | Estimated | Residual
ID Name (m) {m) Head (m) | Head (m) (m)
1 AEC-7 621126 3589381 933.36 940.48 7.12
2 DOE-1 615203 3580333 916.49 924.62 8.13
3 ERDA-9 613696 3581958 922.25 926.96 4.71
4 H-2b2 612661 3581649 927.13 926.25 -0.88
5 H-3b2 613701 3580906 917.93 925.25 7.32
6 H-4b 612380 3578483 915.66 921.06 5.40
7 H-5b 616872 3584801 937.12 932.20 -4.92
8 H-6b 610594 3585008 934.51 931.29 -3.22
9 H-7b2 608117 3574620 913.59 913.95 0.36
10 H-9b/c 613989 3568261 911.28 904.79 -6.49
11 H-10b/c 622975 3572473 922.06 913.40 -8.66
12 H-11b4 615301 3579131 915.45 §22.69 7.24
13 H-12 617023 3575452 917.02 917.06 0.04
14 H-17 615718 3577513 917.99 920.15 2.16
15 H-19b0 614514 3580716 918.30 925.11 6.81
16 P-17 613926 3577466 913.79 919.71 5.92
17 WIPP-12 613710 3583524 935.82 929.50 -6.32
18 WIPP-13 612644 3584247 935.18 930.47 -4.71
19 WIPP-19 613739 3582782 938.59 928.31 -10.28
20 WIPP-21 613743 3582319 0927.12 927.55 0.43
21 WIPP-22 613739 3582653 933.59 928.10 -5.49
22 WIPP-25 606385 3584028 932.14 028.87 -3.27
23 WIPP-26 604014 3581162 921.25 923.75 2.50
24 WIPP-30 613721 3589701 938.23 939.53 1.30
25 WQSP-1 612561 3583427 936.29 929.12 -7.17
26 WQSP-2 613776 3583973 935.05 930.25 -8.80
27 WQSP-3 614686 3583518 935.97 929.69 -6.28
28 WQSP-4 614728 3580766 918.45 925.23 6.78
29 WOQSP-5 613668 3580353 917.88 924.35 6.47
30 WQSP-6 612605 3580736 020.95 924.76 3.81
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Figure 3. Scatterplot showing the relationship between the measured heads and those estimated
with the best-fit plane for the August 2003 sampling period.

The residuals between the estimated and measured heads are used as the input data for the
geostatistical analysis. The X, Y, measured head and residual values from the Trend results.xls
file are saved 1n Aug 03 resid.dat and a six line GeoEAS header is added to this file to allow for
its use in the variogram and kriging calculations. The reason for using the head residuals in the
geostatistical analysis is that the raw head measurements represent a strong trend in the data from
high heads in the north to lower heads in the south. This type of trend is representative of a non-
stationary mean in the data; however, geostatistical models have an inherent theoretical
assumption of second-order (mean and variance) stationarity. Therefore, the head residuals
represent the detrended head measurements and are suitable for geostatistical modeling.
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2.2 Variogram Calculation and Modeling

The experimental variogram is calculated and then modeled using the commercial off-the-shelf
VarioWin (version 2.21) software (Pannatier, 1996). The experimental variogram is calculated
as:

N(I)

~ 1 5
y(b) —ME[Z(H,-)—Z(HE +h)] )

where h 1s the lag spacing, z are the residual values, N(k) is the number of pairs of data points for
a given lag spacing and u is a vector of spatial coordinates (x,y) for the sample locations of each
residual value. The values of the experimental variogram yA), are plotted as a function of h and
a variogram model is fit to these data. Only a few variogram models are available that will
produce a positive definite covariance matrix in the kriging equations and one of these, the
Gaussian model, is chosen to fit the experimental variogram points. The equation of the
Gaussian variogram model as implemented in VarioWin is:

wWh)=C- {1 - exp[ (3'?2 ]} 3)
[

where C is the sill and « is the range. The Gaussian model fit to the experimental variogram
points is shown in Figure 4. This model has a nugget value of 13.0, a sill of 45.2 and a range of
9000 m. The numbers of data pairs that were used for the calculation of each point in the
experimental variogram are also shown in Figure 4. The calculation of the experimental
variogram was done by considering combinations of pairs of data points in all directions, an
“omnidirectional calculation”. Due to the limited number of head data, 30, it was not possible to
calcunlate directionally dependent variograms that might show anisotropy in the spatial
correlation of the residuals. The Gaussian model fit to the experimental variogram in Figure 4
was constrained to reach a maximum at the covariance of the residual data set, 58.2 mz, ag shown
by the horizontal dashed line in Figure 4. The experimental variogram points beyond the range
of 9000 m and above the level of the covariance represent negative spatial correlation and are a
result of the first-order frend surface fit to the measured heads not accounting for all variation in
the head data. Higher order trend surfaces could be fit to the data, but the planar model is used
here to be consistent with the calculations done for the local gradient estimates in the following
section.
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2.3 Kriging

Kriging is a geostatistical algorithm for calculating spatial estimates of a measured property at
unsampled locations. The kriging equations are formulated to provide an unbiased, minimum
variance estimate of the property from a linear combination of the surrounding measured data. A
distinct advantage of kriging over other spatial estimation algorithms is that in addition to the
property estimates, kriging also provides a measure of the uncertainty about each estimate. The
uncertainty measure is known as the kriging variance or the estimation variance. Details on the
many variants of the kriging algorthim and its application can be found in Deutsch and Journel
(1998), Goovaerts (1997), and Olea (1999) among others. For this work, we use ordinary
kriging (OK) and the details of the OK algorithm are presented briefly.

Consider the problem of estimating the value of a continuous attribute, z, (e.g. head residual) at
an unsampled location u. The information available consists of measurements of z at » locations
Ug, z(W,), o = 1,2, ..., n, as obtained at the monitoring wells. Kriging is a form of generalized
least square regression and therefore all univariate kriging estimates are variants of the general
linear regression estimate z (u) defined as:

n(u)

z" (w) - m(u) = 3 A, (Wlz(u, )~ m(,)] G

a =l
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where A, (u) is the weight assigned to the datum z(u,;) and m(u) is the trend component of the
spatially varying attribute. In practice, only the observations closest to u being estimated are
retained, that is the #(u) data within a given neighborhood or window W(u) centered on u. If
there 1s no trend in the data across the site, m is no longer 2 function of the spatial location u but
is now the global mean of the data set, then (4) defines the simple kriging, SK, estimator. In
most practical applications of kriging, SK has proven to be overly restrictive and ordinary
kriging is the preferred choice.

The most common kriging estimator is OK, which estimates the unsampled value z(u} as a linear
combination of neighboring observations without enforcing a global mean onto the estimate:

a(u)

Zo () = D, A0¢ (w)2(u,, ) &)

=1

OK weights A, are determined so as to minimize the error or estimation variance oz(u) =
Var{Z (u)-Z(u)} under the constraint of unbiasedness of the estimate (5). These weights are
obtained by solving a system of linear equations, which is known as the “ordinary kriging
system”, Solution of the kriging system requires that covariances, Cov, between any two
locations be calculated. These covariances are derived from the variogram model under an
assumption of second-order stationarity.

n{u)

ZA‘B(“) yu, —u,)—uu)=y(u, —u) a =1,..,n(0)

) (6)
Z’lﬁ (w)=1.

A=

The unbiasedness of the OK estimator is ensured by constraining the weights to sum to one,
which requires the definition of the Lagrange parameter z(u) within the system of equations.

The addition of the Lagrange parameter can be thought of as the addition of another unknown to
balance the additional equation added to the system to ensure unbiased estimates. The only
information required for solution of the OK system is the variogram values for different lags, and
these are readily derived from the variogram model fit to experimental values.

The kriging variance is also derived from the set of weights and the Lagrange parameter
determined through solution of (6) and it is given as:

oo (1) = Cov(0) — i A.Cov(u,u,)— u

i=1

N

The covariances used to calculate the ordinary kriging variance are derived from the variogram
model. The covariance with a zero distance argument, Cov(0) is equal to the variance of the data
set. The kriging variance has units of the square of the quantity being estimated, in this case
head residuals, m*. Itis important to note that the OK variance is not a function of the specific
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data values, other than how those data values define the variogram of the residuals. As shown
below, the kriging variance is only a function of the data configuration defined relative to the
variogram model. Additionally, the kriging equations are non-parametric meaning that the OK
estimate and the OK variance are the mean and variance of the local distribution defining the
uncertainty in the estimate at any location, but there is no shape (e.g., Gaussian) assigned to that
distribution. If it is necessary to assign a shape to this distribution, the multivariate Gaussian
(mG) variant of kriging can be used.

2.4 Estimation Variance Calculations

The program kt3d (Deutsch and Joumnel, 1998) is used with the variogram model determined
above to calculate both the estimated residuals and the estimation variance at all locations. The
input parameter file for running kt3d, kt3d.par, is given in Appendix 2. The results of the
kriging calculation are in the \Monitoring 04\Geostat subdirectory on the CD-ROM. The full
calculation domain is 68,768 cells, each 100x100 meters, with 14,570 of those cells, 21 percent,
lying to the west of the no-flow boundary. Those cells are not included in the calculations of
estimation variance. A total of 4290 of the active cells are within the boundaries of the WIPP
site. For the calculations done herein, the average estimation variance both within the flow
domain and within the WIPP site are calculated for different monitoring well configurations.

The map of estimation variance for the August 2003 monitoring network defined in Table 3 is
shown in Figure 5. From Figure 3, the effect of the monitoring network configuration on the
resulting estimates of variance is obvious. The lowest estimation variance values, the nugget
value of 13.0, occur at the well locations and the highest values occur at locations that are
beyond the distance of the variogram range, 9000 meters, from the closest observation well. The
mmimum possible value of the kriging variance is the value of the nugget in the variogram
model. Therefore, complete coverage of the site by the monitoring network would result in an
estimation variance of 13.0 at all locations. Under ideal conditions, the maximum possible value
of the kriging variance is equal to the total sill of the variogram, 58.2 m’ in this case; however, in
cases where data points are clustered, such as within the WIPP site, screening of some data by
others can result in negative kriging weights that cause the kriging variance to increase above the
level of the sill. The maximum kriging variance in these calculations is approximately 82 m”. In
the following analysis, the actual values of the kriging variance are not significant, it is only the
relative changes in the kriging variance due to the addition, or subtraction, of wells to, or from,
the monitoring network that are of interest.
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The full monitoring network of 30 wells and the variogram model calculated from the head
residuals at those 30 wells produce an average estimation variance within the flow domain of
53.6 m’and an average estimation variance within the WIPP domain of 23.5 m”. From the map
in Figure 5, it is obvious that there are many locations outside of the WIPP site where the
addition of a well would have maximum impact on reducing the estimation variance. These
locations are wherever a well could be located where its influence does not overlap on the region
of decreased variance from an already existing monitoring well. Within the WIPP site, the
estimation variance is already relatively low at all locations. In fact, given the small distances
between some wells relative to the range of the variogram, it may be possible to remove some of
the existing wells with only minimal increase in the estimation variance within the WIPP site

boundary.
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Figure 5. Kriging variance (m?) for estimation of the residuals between the estimated and
measured heads.

Any location that is proposed for a new well can easily be added to the current data set and the
estimation variance can be recalculated with inclusion of the proposed well. This approach takes
advantage of the fact that the estimation variance does not depend on the data values, only the
data configuration. This approach does require the assumption that the variogram model would
not change significantly with the addition of one new well. Therefore it is easy to add one or
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more proposed well locations to the current network and recalculate the estimation variance.
Given the large number of potential well locations that could all produce a maximum reduction
in the estimation variance, locations for the addition of new wells are not quantified any further
than the map shown in Figure 5 for this study. When new well locations are proposed and/or
drilled in the future, these calculations can be completed (See section 6.0 for an example).

The same approach for determining the variance reduction due to the addition of a new
monitoring well can also be used to calculate the increase in the estimation variance from the
removal of an existing well. In this case, it is possible to recalculate the variogram model from
the remaining wells after any number of wells are removed; however, to make the process more
efficient, the same variogram is used for all calculations done herein. This approach assumes
that the variogram does not change significantly with the loss of any one of the 30 wells.

Each existing well, with the exception of the H-19 well and the WQSP wells that must remain in
any future monitoring network configuration, is removed and the average estimation variances
across the flow domain and the WIPP site are recalculated. These caleulations were done in the
\Monitoring_04\Geostat\krig_minus subdirectory through the use of a DOS batch file
krig_min.bat. All of the input data files, each with a different data point removed, are located in
this directory. A listing of this batch file is given in Appendix 3. Those wells that cause the
smallest increase in average estimation variance are the ones that could be removed with a
minimal impact on the ability of the monitoring network to provide accurate predictions of heads
at locations without monitoring wells. The results of these calculations are shown in Table 5.
The summary calculations for Table 5 are contained in the results_min.xls file in the
\Monitoring_04\Geostat \krig_minus subdirectory

Table 5 shows the average estimation variance within the flow domain as well as within the
WIPP site area as calculated using all wells in the network (top row) and also for the remaining
23 wells when each well is removed from the network in sequence. Removal of the WQSP wells
and the H-19 well are not considered, as the WQSP wells must remain in any future monitoring
network and H-19 is a relatively new, fiberglass-cased well with an expected long useful life.
Table 5 also shows the percent increase in the average estimation variance for the entire domain
and within the WIPP site when each well is removed from the network. Removal of wells that
result in the largest increases in the estimation variance are the wells that are most important with
respect to the ability of the network to predict heads. Therefore, if the goal is to predict heads
across the entire domain, the wells that create the largest increases in estimation variance when
removed are generally those located distant from other wells: AEC-7, WIPP-30, H-10, H-9, H-7,
WIPP-25, and WIPP-26. Because these wells are located far from other wells, the removal of
more than one of them would cause the overall increase in the estimation variance to be the sum
of the increases due to removal of the individual wells. Small decreases in the estimation
variance can also occur with the removal of a well (e.g., WIPP-13). These decreases are due to
the configuration of the current wells creating negative kriging weights in the solution of kriging
equations. These decreases are always less then one-tenth of one percent of the original variance
and are considered as insignificant changes in this work.
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Table 5. Results of estimation variance changes for the removal of one well from the current
head-monitoring network.

Well Domain Percent WIPP Percent

Removed Average Increase Average Increase
None 50.84 NA 23.30 NA
AEC-7 53.87 6.0 23.34 0.2
DOE-1 50.83 0.0 23.75 1.9
ERDA-9 50.84 0.0 23.31 0.0
H-2 50.85 0.0 23.74 1.9
H-3 50.84 0.0 23.33 0.1
H-4 51.08 0.5 24.29 4.2
-5 51.94 2.2 25.37 8.8
H-6 51.46 1.2 24.06 33
H-7 52.09 25 23.33 0.1
H-9 52.93 4.1 23.30 0.0
H-10 53.11 4.5 23.34 0.2
H-11 50.84 0.0 23.69 1.6
H-12 51.97 2.2 23.33 0.1
H-17 50.83 0.0 23.45 0.6
P-17 50.96 0.2 23.40 0.4
WIPP-12 50.83 0.0 2332 0.1
WIPP-13 50.80 -0.1 23.39 1.2
WIPP-19 50.84 0.0 23.30 0.0
WIPP-21 50.84 0.0 23.29 0.0
WIPP-22 50.84 0.0 23.30 0.0
WIPP-25 52.14 2.6 23.32 0.1
WIPP-26 51.99 2.3 23.32 0.1
WIPP-30 53.44 51 23.32 0.0

The wells that could be removed from the network and create the smallest increase in the
estimation variance are those wells in close proximity to other existing wells. These include:
DOE-1, ERDA-9, H-2, H-3, H-11, WIPP-12, WIPP-19, WIPP-21 and WIPP-22 (Table 5).
However, because these wells are close to existing wells, the increase in the estimation variance
from removing more than one of them will not be additive, but will become significantly larger
as all wells are removed from a given area in the aquifer.

The wells outside of the WIPP site that, when removed, create the largest increases in the
estimation variance for the flow domain have extremely little or no effect on the estimation
variance within the WIPP site. These wells, AEC-7, H-9, H-10, H-12, WIPP-25, WIPP-26, and
WIPP-30, are too far away from the WIPP site to impact the estimation variance therein. The
most 1mportant monitoring wells, those that create the largest variance increase upon removal,
for predicting heads within the WIPP site are: H-5, H-4, and H-6. The wells that create the
smallest increases in estimation variance upon removal for both the WIPP site and the flow
domain are: ERDA-9, H-3, WIPP-12, WIPP-19, WIPP-21 and WIPP-22. Any one of these six
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wells could be removed with minimal effect on the ability of the network to predict heads across
both the domain and the WIPP site. These calculations are for removal of a single well.

Two additional well-removal scenarios are considered. Wells WIPP-12 and WIPP-22 are
removed from the network and then the changes in estimation variance for the removal of each
remaining well in the network are calculated as done previously. Then, wells WIPP-12, WIPP-
22, H-12, and P-17 are removed and each remaining well is removed one at a time and the
estimation variances are recalculated. Wells H-12 and P-17 were removed based on their
expected limited remaining life span within the monitoring network.

A decision was made to use the original residual variogram (Figure 4) for all calculations. The
removal of two or more wells from the data set does change the shape and range of the
variogram. However, the goal of this exercise is to examine changes in estimation variance due
solely to the removal of different sets of wells and, to compare results across the different well
removal scenarios, the original variogram was used for all calculations. The results of these two
sets of calculations are shown in Tables 6 and 7.

Table 6. Results of estimation variance changes for the removal of one well from the head-
monitoring network after wells WIPP-12 and WIPP-22 have been removed.

Well Domain Percent WIPP Percent

Removed Average Increase Average Increase
WIPP-12 & WIPP-22 50.83 NA 23.32 NA
AEC-7 53.86 6.0 23.35 0.2
DOE-1 50.83 0.0 23.77 1.9
ERDA-9 50.83 0.0 23.32 0.0
H-2 50.84 0.0 23.75 1.8
H-3 50.83 0.0 23.34 0.1
H-4 51.07 0.5 24.30 4.2
H-5 51.91 2.1 25.35 8.7
H-6 3145 1.2 24.08 33
H-7 52.08 2.5 23.34 0.1
H9 52.93 4.1 23.32 0.0
H-10 53.10 4.5 23.35 0.1
H-11 50.83 0.6 23.70 1.6
H-12 51.96 22 23.34 0.1
H-17 50.82 0.0 23.47 0.6
P-17 50.95 0.2 2341 0.4
WIPP-13 50.79 -0.1 23.64 1.4
WIPP-19 50.83 0.0 23.33 0.1
WIPP-21 50.83 0.0 23.32 0.0
WIPP-25 3213 2.6 23.34 0.1
WIPP-26 51.98 2.3 23.33 0.1
WIPP-30 53.42 3.1 23.33 0.1
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Table 7. Results of estimation variance changes for the removal of one well from the head-
monitoring network after wells WIPP-12, WIPP-22, H-12, and P-17 have been removed.

Well Domain Percent WIPP Percent

Removed Average | Increase | Average Increase
WIPP-12, WIPP-22, H-12, P-17 52.01 NA 23.43 NA
AEC-7 55.07 5.9 23.48 0.2
DOE-1 51.97 -0.1 23.89 1.9
ERDA-9 52.00 0.0 23.43 0.0
H-2 52.02 0.0 23.86 1.8
H-3 32.00 0.0 23.46 0.1
H-4 32.46 0.9 24.80 5.8
H-5 53.13 2.2 25.52 8.9
H-6 52.63 1.2 2419 3.2
H-7 53.35 2.6 23.46 0.1
H-9 54.30 4.4 23.43 0.0
H-10 54.55 4.9 23.48 0.2
H-11 51.87 0.3 23.84 L7
H-17 52.59 1.1 23.65 0.9
WIPP-13 51.97 -0.1 23.75 1.4
WIPP-19 52.00 0.0 2345 0.1
WIPP-21 52.00 0.0 23.44 0.0
WIPP-25 53.31 2.5 23.45 0.1
WIPP-26 53.16 2.2 23.45 0.1
WIPP-30 54.62 5.0 23.45 0.1

Results of the average variance calculations shown in Tables 5, 6, and 7 (columns 2 and 4) can
be compared across all three tables as these are absolute values. The percent increases in
eshimation variance are relative to the base case in each table and cannot be compared across
tables. The base cases considered are all 30 wells in the network (Table 3), wells WIPP-12 and
WIPP-22 removed (28 wells total, Table 6), and wells WIPP-12, WIPP-22, H-12, and P-17
removed (26 wells total, Table 7).

The results show that removing wells WIPP-12 and WIPP-22 has negligible effect on the
average estimation variances at both the domain and WIPP site scales. These results are
expected as both of these wells are very close to other wells in the monitoring network (Figure
1). When H-12 and P-17 are also removed from the network, the change in average variances
becomes significant (e.g., the average domain variance increases by more than one percent from
50.8 to 52.0. This is also expected as these two wells are not close to other wells in the network
and therefore have a larger impact. The change in variances due to removal of just these two
wells can be determined by comparing the top rows of Tables 5 and 6. The increase in variance
with the removal of H-12 and P-17 is larger for the domain than within the WIPP site as both of
these wells are outside of the WIPP site boundaries. From the final set of results in Table 6,
wells ERDA-9, H-3, WIPP-19 and WIPP-21 are likely candidates for removal.
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In summary, it is relatively simple to calculate the decrease or increase in the head estimation
variance over a specified area from the addition or removal of a single monitoring well,
respectively. The maximum reduction in estimation variance, or increase in the ability to predict
heads, can be achieved by placing a new monitoring well in any location of the flow domain that
is far away from any existing well. There are a large number of locations in the domain where a
new well could be placed to meet this condition. At this point in the analysis, a maximal
reduction in variance from a new well can be considered as a necessary, but not complete,
condition for locating a new well. The estimation variance map shown in Figure 5 will be
combined with other analyses such as local gradient estimators and sensitivity maps, as well as
practical concerns such as development costs and access to the location, to determine the optimal
locations for additional wells.

Removal of wells from the existing monitoring network was also examined using the estimation
variance calculations. The impact of well removal was evaluated by calculating the increase in
estimation variance for both the entire flow domain and the area of the WIPP site. These
calculations were done for the removal of one well at a time starting from a base case network of
30, 28, or 26 wells and the results are only valid for the removal of the one specified well. These
results also assume that the variogram is constant across all monitoring network configurations.
These calculations can be completed again for removal of combinations of multiple wells when
those combinations of interest are defined. Wells that are most important to the existing
monitoring network that should not be removed are listed above and are, generally, those wells
most distant from any existing wells. Wells that have the smallest influence on the ability of the
current network to predict heads at unmeasured locations across the entire flow domain as well
as within the WIPP site are also listed above. If more than one well is to be removed, the
combinations of wells should be selected from this list,

2.5 Calculation Details

All calculations done for the variance reduction section were completed on a PC with a 1.7-GHz
Pentium 4 chip under the Windows 2000 operating system. These calculations are contained
within the \Monitoring_04\Geostat\ directory on the CD-ROM accompanying this analysis
package. Four different calculations were done in this section:

1) A planar trend was fit to the existing data and residuals between the measured heads and
the planar trend were calculated using the commercial off-the-shelf software SigmaPiot
(ver. 8.02).

2) Variograms of the residuals were calculated and modeled using the commercial off-the-
shelf software VarioWin (ver. 2.21). The variogram model parameters determined here
are necessary input to the kt3d code for the kriging step.

3) The residual fields were kriged using the software package kt3d. kt3d is part of the
GSLIB public domain geostatistics software library and has been qualified and used
previously on the WIPP project for the inverse calibration of transmissivity fields
(McKenna and Hart, 2003). The output files from kt3d are named
“Aug 03 resid_min_WELL.out” where the WELL portion of the file name is replaced
with a character string that identifies the well removed from the network for that
particular calculation. The output files from running kt3d multiple times are used as
input to the cale_var.c routine.
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4)

5)

6)

The average estimation variance across the domain and within the WIPP site boundaries
for the case of all 30 wells and for each case where a single well is removed are
calculated using the routine: cale_var.c. These calculations are in the
\Monitoring_04\Geostat\krig_min\ subdirectory. The routine cale_var.c is qualified as
part of this analysis package. The final results of the variance reduction calculations are
stored in the Excel spreadsheet: results_min.xls and the calculations of the percent
variance reduction for each different configuration of monitoring wells relative to the
current monitoring network are also calculated in this spreadsheet,

The average estimation variance across the domain and within the WIPP site boundaries
for the base case of 28 wells and for each case where a single well is removed are
calculated using the same routine: cale_var.c. These calculations are in the
\Monitoring 04\Geostat\krig_min3\ subdirectory. The final results of the variance
reduction calculations are stored in the Excel spreadsheet: results min3.xls and the
calculations of the percent variance reduction for each different configuration of
monitoring wells relative to the current monitoring network are also calculated in this
spreadsheet.

The average estimation variance across the domain and within the WIPP site boundaries
for the base case of 26 wells and for each case where a single well is removed are
calculated using the same routine: cale_var.c. These calculations are in the
\Monitoring 04\Geostat\krig_min35\ subdirectory. The final results of the variance
reduction calculations are stored in the Excel spreadsheet: results_min5.xls and the
calculations of the percent variance reduction for each different configuration of
monitoring wells relattve to the current monitoring network are also calculated in this
spreadsheet.
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3.0 Local Gradient Estimation

The Culebra is a nearly textbook example of a 2-D aquifer. It is much more laterally extensive
than it is thick and it is bounded on the top and bottom by relatively impermeable units. For such
an aquifer, the groundwater flow patterns are essentially two-dimensional and any three
measurements of the hydraulic head at different locations are all that is needed to estimate the
magnitude and orientation of the hydraulic gradient. This three-point estimation is also referred
to as a “local” gradient estimate as the estimates are relevant only in the area of the three head
measurements. Recently, there has been a strong interest in the use of three-point estimators for
discerning information on groundwater flow patterns that is more highly resolved than just an
estimate of the magnitude and orientation of the regional gradient.

Two separate sets of calculations are done for the application of three-point estimators to
determining flow patterns in the Culebra:

1) Simulations are completed using synthetic data to critically examine the applicability of
three-point estimators through Monte Carlo simulation. The effects of estimator shape,
orientation of the estimator relative to the direction of groundwater flow and the effects
of measurement error are examined using synthetic data. Results of these calculations
provide a set of constraints for application of three-point estimators to the Culebra data in
step 2.

2) The use of three-point estimators in detecting temporal changes in the Culebra hydraulic
gradient and in determining both redundant wells in the existing monitoring network and
best locations to add wells to the monitoring network is demonstrated. This second set of
calculations is done using data collected from the Culebra monitoring network.

3.1 Background

The earliest work on examining three-point local hydraulic gradient estimators appears to be that
of Mizell (1980) who used perturbation theory to develop analytical expressions for the variance
of the estimated magnitude and orientation of the hydraulic gradient as a function of the length
scale of the three-point estimator normalized by the correlation length of the transmissivity field.
All of Mizell’s (1980) results were calculated from only a single triangle shape (right-isosceles)
and the analytical expressions are limited to relatively small values of transmissivity field
variance. Resnlts show that as the length scale of the estimator reaches and exceeds the
correlation length of the transmissivity field, the variance in the estimates decreases significantly.
In Mizell’s formulation, for estimator length scales that are smaller than the correlation length of
the transmissivity field, the variance of the estimates is constant. The results of Mizell (1980)
show that measurement error only affects the results for estimator length scales less than the
correlation length of the transmissivity field. A simple application to three wells with 19 weekly
observations is presented.

The work of Mizell (1980) does not appear to have been published outside of his dissertation and
had largely gone unrecognized with the exception of Ruskauff and Rumbaugh (1996) who used
Mizell’s results to guide a series of groundwater flow and solute transport simulations. Ruskauff
and Rumbaugh’s (1996) results point out the fact that a groundwater flow model calibrated to
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observed heads within an acceptable tolerance will not necessarily reproduce the true magnitude
and orientation of the gradient.

Cole and Silliman (1996) looked at the ability of a three-point estimator with an isosceles shape
to accurately determine the orientation and magnitude of the hydraulic gradient in unconfined
aquifers. The goals of this study included a comparison of estimates made with the non-linear
equation for unconfined head versus estimates made with a linearized version of this equation in
terms of head squared. Additionally, Cole and Silliman (1996) completed a Monte Carlo
modeling study of the effects of heterogeneity on the accuracy and precision of the orientation
and magnitude estimates. Results of this work showed that the linearized unconfined flow
equation provided unbiased estimates of both orientation and magnitude. Contrary to the theory
developed by Mizell {1980}, hydraulic conductivity heterogeneity with different levels of
variability and correlation lengths produces slightly biased estimates of the magnitude and the
orientation for well separation distances of less than one correlation length. For larger well
separation distances, the accuracy and precision of the estimates improve, but large standard
deviations about the orientation estimates exist at relative well separations of 10 correlation
lengths or more.

Silliman and Frost (1998) pointed out that local estimates of the hydraulic gradient made with
three-point estimators could provide significant information on the regional gradient as well as
local vanations in that regional gradient. They present plots of the estimated orientation and
magnitude from each combination of three wells as a function of the size {area) of the estimator
and demonstrate that these types of plots can provide additional information on the regional
gradient beyond what might be gained from traditional head contouring techniques.
Demonstrations of these techniques are presented on a laboratory “ant-farm” aquifer and from
data collected at a field site. Results show that the plots developed in this work are excellent at
identifying anomalous flow directions and magnitudes and that when correlated, these two types
of anomalous resulis may indicate a region of low conductivity in the aquifer. This paper also
demonstrates the use of examining data at different times to detect changes.

Silliman and Mantz (2000) examined the effect of measurement error on the ability of local
gradient estimators to produce accurate estimates of the hydraulic gradient. This work was
focused on the effects of measurement error in estimating vertical gradients from four
measurement points in a three-dimensional domain. The results show that relatively smail
amounts of measurement error can cause the estimated orientation of the vertical component of
the gradient to be straight up or straight down. Silliman and Mantz (2000) call for better
determination of the measurement error in field studies and warn that measurement error will
also complicate estimates of horizontal gradients when the gradient is small and/or the wells are
placed close together.

The solution for fitting a potentiometric surface to more than three head measurements is to
minimize a least squares, or average absolute, measure of the residuals between the fitted
potentiometric surface and the measured heads. Such an approach was followed by Devlin
(2003) who developed a spreadsheet program to calculate a least squares best-fit of the hydraulic
gradient using multiple linear regression with up to 20 different head measurements, The planar
surface that best fits multiple head measurements provides the orientation and magnitude of the
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regional hydraulic gradient rather than a more local estimate as can be obtained when using only
three measurements.

A large amount of previous work in monitoring network design has approached the problem
from the perspective of minimizing the head estimation variance calculated from the proposed
network (e.g., Rouhani, 1985; Loaiciga, 1989). This focus on monitoring head has Jed to the
development of technigues for determining point locations that are, by some measure, optimal
for the placement of new monitoring wells. A different perspective is to design a monitoring
network to detect changes in both the magnitude and orientation of the hydraulic gradient.
Estimation of the hydraulic gradient requires at least 3 wells, for a 2-D flow field, or 4 wells for a
3-D flow field and, contrary to head measurements, gradient estimates cannot be made from a
single point support datum. With the exception of the work by Conwell, et al. (1997), who were
interested in optimizing the design of networks of local gradient estimators for the calculation of
variograms, monitoring network design from the perspective of data obtained using local
gradient estimators has not been studied.

This portion of the report presents a critical examination of the ability of three-point estimators
to accurately predict the orientation and magnitude of the gradient and then applies three-point
estimators to monitoring network design. Specifically, this work provides:

1) Assessment of the accuracy and precision of the gradient estimates under measurement
etror when measurement error is cast in terms of relative head drop across the three-point
estimator.

2} Examination of the effect of groundwater flow orientation on accuracy and precision of
the gradient estimates made by three-point estimators.

3) Systematic examination of the effect of estimator shape on the accuracy and precision of
the gradient estimates.

4) Extension of previously developed graphical techniques to detect and quantify changes in
the hydraulic gradient over time.

5) Use of three-point estimators to identify redundant wells in an existing monitoring
network.

6) Use of three-point estimators to identify optimal locations at which wells can be added to
the monitoring network to improve the ability of the network to detect changes in the
gradient.

3.2 Estimation of the Gradient

Following the work of Silliman and Frost (1998), the equation of the plane defining the
potentiometric surface of a confined aquifer is:

H(x,y)=Ax+By+C, (3
where H is the value of head measured at location (x,y) and A, B and C are coefficients with
unknown values. Three measurements of H at unique (x,)) locations provide enough information

to set up three equations and solve for the three unknowns: 4, B and C. This solution leads to
expressions for the magnitude and orientation of the hydraulic gradient:
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magnitude =N A* + B* , (9)
. . B
orientation = arctan[—A—j . (10)

A slightly expanded formulation of these expressions is given by Devlin (2003). Silliman and
Frost (1998) also provide the equivalent formulations for an unconfined aquifer.

3.3 Local Gradient Estimator Error Analysis

Two different aspects of the estimator and head measurement error are examined through Monte
Carlo simulations. These two aspects are the relative measurement error and the shape of the
estimator. All simulations assume that the estimator is applied to a steady-state groundwater
system in a homogeneous aquifer. The effects of the homogeneous aquifer assumption are
examined further below.

3.3.1 Relative Measurement Error

The amount of error inherent in measuring the head within an aquifer is not casily quantified.
Multiple factors including calibration and drift of the electronics in the measurement device,
changes in the measurement device hardware (e.g., cable stretching), elevation survey errors, and
variations in barometric pressure make it difficult to determine the true head level at any point in
a confined aquifer. Additionally, as pointed out by Ruskauff and Rumbaugh (1996), the
importance of the amount of measurement error is relative to the amount of head drop across the
estimator. In areas of low gradients, small measurement errors may be enough to completely
degrade the estimates of hydraulic gradient magnitude and orientation.

For this study, head measurement error is assumed to be normally distributed with a zero mean
and defined standard deviation: N(0,5). Measurement error is also assumed to be independent
between the three different measurement points in the estimator. In the Monte Carlo simulations
with synthetic data, measurement error is drawn independently from the N(0, gj distribution for
each of the three wells in a given three-point estimator. This error is then added to the known,
true, head value at ¢ach well to define the measured head (true + error) at each well and the
orientation and magnitude of the hydraulic gradient are calculated from these measurements. For
the case of synthetic data, the calculated values of the orientation and magnitude of the gradient
are compared to the true values calculated without the addition of error. Results of this
comparison are shown as a function of the relative head measurement error (RHME) defined as:

o

RHME = (11)

head drop

where head drop is the decrease in head across the estimator from one edge to the opposite along
a vector paraliel but opposite to the direction of the gradient. The head drop is defined by the
orientation and magnitude of the true gradient, both of which are known for the synthetic data
case. The RMHE is the absolute measurement error normalized by the expected head drop
across an estimator.,
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Equation (8) is linear in head and therefore we would expect the variance of the estimates made
with (8) to increase linearly with increasing amounts of head measurement error (Taylor, 1996).
To examine the increase in the variance of the estimates, a single estimator shape, a right-
isosceles friangle, was used with 5000 sets of head measurement etrors drawn at each of five
different levels of RHME (one percent through ten percent). These measurements are then used
to estimate both the magnitude and orientation of the hydraulic gradient, and the ratio of the
estimated to true magnitude and orientation (Figure 6). These results show that independent,
normally distributed measurement errors produce unbiased estimates of the magnitude and
orientation and that increasing measurement error decreases the precision (larger estimation
variance) of the gradient magnitude estimates more strongly than it does the gradient orientation
estimates.

2 g
£ 1 5
g J:
f 12 - : - 1 Q
E B L4

g1 - =
@ <
0.9 1~ e A g
- 084 IR e . ﬂ" . QU J
§ . @09

U_? P R . EETTRPPI PR .. []
w neq - . [P J. i

057 - T T T —r ca T T T ‘ —

0.00 o002 0.04 .06 ¢.08 .10 0.12 0.00 0.02 0.04 006 .08 0.10 12
Maasurement Ercor / Head Drop Measurement Error / Head Drop

Figure 6. Box and whisker plots of the distribution of the ratio of the estimated to true
magnitude (left graph) and the estimated to true orientation (right graph) as a function of the
RHME. The boxes define the 25" and 75" percentiles. The whiskers define the 5™ and 95
percentiles and the circles beyond the ends of the whiskers are individual results. Al
distributions contain 5000 results.

3.3.2 Estimator Shape and Gradient Orientation

Previous studies (e.g., Mizell, 1980; Cole and Silliman, 1996) have generally used a single
estimator shape, most often an equilateral or right-isosceles triangle and, to date, the effect of
different estimator shapes on the final gradient estimates has not been systematically studied.
Intuitively, triangles with very large or very small base to height ratios may provide poor
estimates of the magnitude and/or orientation of the hydraulic gradient for certain groundwater
flow directions.

Here, eleven different estimator shapes are examined to determine the effect of shape on the
ability of the three-point estimator to produce accurate and precise estimates of the gradient. The
eleven different shapes are all isosceles triangles and are defined by both the size of the two
equal angles as well as the base to height ratio (Figure 7). Each of the eleven different estimators
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encompasses the same area. For each estimator shape, the direction of groundwater flow is
varied in roughly 15-degree increments around the full 360-degree range (24 different
directions). At each groundwater flow orientation, Monte Carlo simulation is used to draw 2000
head measurements at each measurement location with a specified value of RHME. Four
different levels of RHME are used: 0.001, 0.005, 0.01, and 0.05.

The results of this analysis were examined in two ways: 1) the effect of flow orientation on the

estimates of magnitude and orientation are examined for an individual estimator shape; and 2)
the results from the different flow orientations and estimator shapes are summarized.
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Figure 7. Shapes of the different triangles examined in this study. Each triangle is defined by
the size of the two equal angles and the base to height ratio. All triangles have the same area.

The orientation of the flow relative to the three-point estimator can have a significant effect on
both the gradient magnitude and orientation estimates. This result is demonstrated in Figure 8
that shows the results for the 41-degree estimator (base/height = 2.3). Figure 8 (top graph)
shows the percent absolute error in the estimation of the gradient magnitude as a function of the
orientation of the groundwater flow direction. Percent absolute error in the magnitude of the
gradient is calculated as:

TrueMagnitude — EstimatedMagnitude
TrueMagnitude

Percent Absolute Error = X 100

Each point on the upper graph in Figure 8 represents the 95™ percentile of the distribution across
2000 realizations (i.e., 95 percent of all calculated errors are less than or equal to the value
shown by each point in Figure 8). Results for calculations at each of the four different values of
RHME are shown. The solution for the gradient is set up such that a singularity occurs when the
flow direction is aligned with the right leg of the triangle and results with that flow direction
cannot be accurately determined. Figure 8 (lower graph) shows the absolute error, in degrees,
for the estimates of the orientation of the hydraulic gradient. The lower graph in Figure 8 is the
same as the upper graph with the exception that the Y-axis shows the absolute error of the
estimated orientation, not the percent absolute error as shown in the upper graph.

Disregarding the results at flow directions of —41 and 139 degrees (aligned with the right leg of

the iriangie), the results in Figure § show that the different orientations of the groundwater flow
direction can change the resulting error in the estimates of the magnitude approximately one-half
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of an order of magnitude. Changes in the error of the orientation estimates are somewhat less
than the errors calculated for the gradient magnitude (lower graph, Figure 8).
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Figure 8. The 95" percentile error values for gradient magnitude (upper graph) and onentation
(lower graph) for the 41 degree estimator as a function of groundwater flow direction and
RHME. The different levels of RHME are shown in the legend.

The change in error across the different flow directions is abstracted by calculating the median
value of the 95™ percentile error across all 24 flow directions for each estimator shape. These
median error values are then plotted as a function of estimator shape for each of the four
different values of RHME (Figure 9). Results in Figure 9 show that approximately one order of
magnitude variation in the hydraulic gradient magnitude error exists across the eleven different
estimator shapes for a single level of RHME (upper graph, Figure 9). Results are similar for the
hydraulic gradient orientation error (lower plot, Figure 9) with the range in variation being
slightly less than one order of magnitude for any given level of RHME. For both the magnitude
and orientation results, the minimum error values occur for three-point estimators with base to
height ratios between 0.5 and 5.0.
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Figure 9. The median 95 percentile errors in magnitude (upper graph) and orientation (lower
graph) as a function of estimator shape and RHME. The different RHME values are shown by
the different symbols and the legend. Each median value is calculated across the results for the
24 different flow directions for a given estimator shape (e.g., the results in Figure 8).

The results of this analysis prove that not all three-point estimators produce equally accurate
estimates of the magnitude and orientation of the hydraulic gradient. Any analysis using three-
point estimators of the local gradient needs to take into account the shape of the triangle and the
value of the RHME.
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3.3.3 Choosing Acceptable Three-Point Estimators

For a given monitoring well network, the total number of possible three-point estimators can be
determined as the number of unique combinations of wells taken three at a time from the existing
monitoring network. The number of unique combinations containing # wells that can be chosen
from a total of m wells in the network is:

m!

where mCn is read as “m choose n”. For the set of monitoring wells considered in this example
(m=30), there are 4060 possibie three-point estimators. However, as seen above, not all
gstimators yield equivalently accurate estimates of the local gradient.

The criterion for acceptance of the estimators based on shape is simply to calculate the base and
height dimensions of each estimator and determine if the base/height ratio falls within the
acceptable limits of 0.5 to 5.0.

The criteria for acceptance of estimators with respect to the RHME is implemented as follows:

1) All available wells for a given time period are used to calculate the magnitude and
direction of the regional gradient as a best-fit plane to the observed data. These
calculations are done in SigmaPlot and are in the \Monitoring 04\Planar Trend\
subdirectory

2) The standard deviation of the normally distributed measurement errors is estimated based
on knowledge of the measurement instrument and field conditions and an acceptable
value of the RHME is specified.

3) The minimum distances in the X and ¥ directions (East-West and North-South) required
to achieve an acceptable head drop across an estimator based on the X and Y components
of the calculated regional gradient, (dh/dx),.; and (dh/dy),ee, and specified acceptable

RHME are determined as:
X = 7 AN (13)
[__) RHME ﬁi— RHME
dx reg dy reg

4) Each three-point estimator is evaluated to determine whether or not it can contain X,
and Y,,;, within the bounds of the three wells. If yes, the estimator is retained. If not, the
estimator is not used to estimate properties of the gradient.

The implementation of the RHME criteria as described above is relatively simple. However, the

calculation of X, and Y,,;, will degenerate if the regional gradient is oriented in one of the
cardinal directions such that either (dh/dx),., or (dh/dy),.; becomes undefined.
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3.4 Application 1: Monitoring Temporal Changes

The monthly Culebra head monitoring program at WIPP has incorporated practices over the past
several years to reduce absolute head measurement error to as little as possible. These practices
include routine calibration of the measurement instrument, using the same instrument for all well
measurements, surveyed elevations at each well and taking all measurements within a 24-36 hour
period to reduce head fluctuations in a single sampling round due to changes in barometric
pressure. However, as pointed out by other authors (e.g., Silliman and Mantz, 2000), it 1s nearly
impossible to completely quantify the head measurement error in the field. For the examples
shown in this work, the head measurement error is assumed to have a Gaussian distribution with
a mean of zero and a standard deviation of 0.10 meters.

The RHME is defined relative to the head drop across a given triangle along the direction of
groundwater flow as would occur given that the regional gradient in the Culebra applied locally
at all locations. This use of the regional gradient is done to avoid using the heads measured at
the three wells to estimate the local gradient as well as the local head drop and the RHME. For
each set of measurements, the magnitude and the orientation of the regional gradient are
calculated using SigmaPiot 8.0. Results of these regional gradient calculations for both time
periods are stored on the CD-ROM in the \Monitoring 04\Planar Trend\ directory in the
trend_results.xIs file. The magnitude and orientation of the calculated trends are shown in Table
8. The orientations in Table 8 are given as degrees counterclockwise from north where the
negative sign indicates the counterclockwise direction.

Table 8. Magnitude and orientation of the regional gradient as determined through the best-fit
plane technique for the 2000 and 2003 time periods.

Observation Period Magnitude (-) Orientation (degrees)
August 2000 1.60E-03 -172.84
August 2003 1.64E-03 -173.04

The results in Table 8 show that the regional gradient is essentially unchanged from 2000 to
2003. The average of the two gradient magnitudes, 1.62E-03, and the average of the estimated
orientations, -172.94 degrees, will be used in the calculations of the local gradients from the
different estimators.

For a measurement distribution with a standard deviation of 0.10 meters and an acceptable
RHME of 0.02, two percent of the expected head drop across an estimator using the regional
gradient, the minimum X and Y distances that an estimator needs to have (Equations 13} are
approximately 25,000 and 3000 meters respectively. The large difference in the necessary
estimator size between the X and Y directions is due to the orientation of the regional gradient
being nearly due south. The closer the orientation of the regional gradient to due south, the less
significant the east-west components of the gradient vector become to the point where if the
orientation was completely due south, it would not be possible to calculate a distance in the X
direction using (13). Given this regional orientation, only the minimum Y distance is used to
screen out potential three-point estimators.
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The local estimates of the gradient by each three-point estimator are calculated for: 1) all
possible estimators; 2) those estimators with a shape such that 0.5 > base/height > 5.0; and 3)
those estimators with both 0.5 > base/height > 5.0 and a minimum north-south distance of 3000
meters. The results of these calculations are shown via the relationships developed by Silliman
and Frost (1998). However, to better interpret the information from the two different sampling
periods, the results of each sampling period are shown on a single graph. Figure 10 shows the
estimated magnitude of the gradient as a function of estimator size (area). The top image in
Figure 10 shows all of the 4060 possible estimators, the middle image shows only those
estimators that meet the shape criterion, and the bottom image of Figure 10 shows only those
estimators that meet both the shape and RHME criteria.

The graphs in Figure 10 show the estimated magnitude as a function of the size {area) of the
three-point estimator. For the larger triangles, the estimated magnitudes approximate that of the
regional magnitude of 1.6E-03 as determined above using the best-fit method. The size of the
estimators does not change from one time period to the next and therefore it is possible to
compare results along any vertical line for the same estimator. Changes in the estimated
magnitude from 2000 to 2003 are evident when the “plus” and “box™ symbols do not overlap,
but are offset vertically from one another. Several instances of changes between time periods are
visible in lower left portions of the images.
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Figure 10. Estimated magnitude of the hydraulic gradient across all three-point estimators as a
function of estimator size for the 2000 and 2003 head data. The upper graph shows all
estimators, the middle graph shows resuits for those estimators meeting the shape criterion, and
the lower graph shows results for estimators meeting the shape and RHME criteria.
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Results (Figure 10) show that as additional criteria are applied to selecting estimators, the range
in the estimated gradient magnitudes decreases from roughly 4.5 orders of magnitude to 3.5
orders of magnitude with the biggest decrease due to the application of the RHME criterion
(bottom graph, Figure 10). Almost all of the reduction in the range of magnitude estimates takes
place in the estimators with the smallest areas (left sides of the graphs).

The application of the estimator shape and RHME criteria to the set of all possible estimators
reduces the number of estimators to those that should give acceptable estimates based on the
simulations discussed above. The number of estimators in each graph of Figure 11 are 4060,
2280, and 1879 from top to bottom, respectively. The application of the shape and RHME
criteria reduce the number of estimators to 56.2 and 41.7 percent of the original number,
respectively. The final result in the bottom image {s noteworthy in that using only the estimators
that provide acceptable results, there are still three and a half orders of magnitude variation in the
estimated magnitudes of the hydranlic gradient for this region of the Culebra. This variability in
the results is due to heterogeneity within the Culebra causing higher and lower gradient
magnitudes in different locations.

A set of graphs similar to those in Figure 10 is shown in Figure 11 for the orientation estimates.
The orientations are measured clockwise from north where north equals a zero degree
orientation. Similar to the magnitude estimates, the larger estimators produce estimates that
approach the regional estimate of approximately —173° as calculated above. However, there is
considerable variation in the orientation of the largest estimators between —150° and -180° and
there are also several large estimators that produce orientation estimates of approximately 170 (-
190)°. All of the large estimators, those with sizes of 1.0E+08m’ or larger, produce consistent
orientation estimates between the 2000 and 2003 sampling periods. Variations of the estimated
orientation of 20° or more can be seen for some of the three-point estimators with smaller areas.

Application of the acceptable estimator criteria developed through simulation reduces the
variability of the estimates from 2 somewhat uniform distribution (upper image, Figure 11) to a
more bimodal distribution (lower image, Figure 11) with the modes centered on the —150° and
+165° orientations. There is also a relatively large number of estimates from small area
estimators between 60° and 90° for both time periods. Heterogeneity within the Culebra creates
this variability in the estimated orientations.
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Figure 11. Estimated orientation of the hydraulic gradient across all three-point estimators as a
function of estimator size for the 2000 and 2003 head data. The upper graph shows results for all
estimators, the middle graph shows results for those estimators meeting the shape criterion, and
the lower graph shows results for estimators meeting the shape and RHME criteria.

The final set of comparison graphs is shown in Figure 12. These graphs show the estimated
orientation as a function of the estimated magnitude. As noted previously (e.g., Silliman and
Frost, 1998), there can be strong relationships between the magnitude and orientation. Most
interestingly, magnitudes that are significantly larger than the regional magnitude may have
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orientations that are significantly off of the regional orientation. Silliman and Frost (1998)
atiributed these results to areas of the aquifer where flow was crossing low-permeability regtons;
however, they did not consider estimator shape or RMHE when interpreting their results.

Figure 12 (upper image) shows that the Culebra does exhibit coupled estimates of magnitude and
orientation that are both significantly off of the regional values. The largest magnitudes in this
figure are oriented at both 90° and —90° and are fairly consistent from 2000 to 2003. Application
of the shape criterion to these results (Figure 12, middle image) shows that the majority of these
estimates along the +/- 90° orientations are spurious and due to extremely tall or flat three-point
estimators. The majority of the estimators that meet the shape criterion show a reasonably
uniform distribution of magnitudes near the 155° and -155° orientations observed in Figure 12
with the largest magnitudes occurring at 135°, 75°, and —135° as well as a few at 90 and —90°.

Application of the RHME criterion to these data results in the removal of ail but four pairs of
estimated magnitudes greater than 0.1 and causes the majority of the remaining estimates to be
clustered near 150° and —-150° (Figure 12, bottom image). Additionally, there are some results
trending towards higher magnitudes for orientations between 150° and 60° and —150° and -90°.
Almost all of the remaining estimates have magnitudes between 0.001 and 0.01, and the largest
change between 2000 and 2003 occurs in areas where the gradient is the smallest.
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Figure 12. Estimated orientation of the hydraulic gradient as a function of estimated magnitude
for the 2000 and 2003 head data. The upper graph shows results for all estimators, the middle
graph shows results for those estimators meeting the shape criterion, and the lower graph shows
results for estimators meeting the shape and RHME criteria.
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In addition to the series of plots presented in Figures 10, 11 and 12, the direct differences in both
the magnitude and orientation of the gradient between any two time periods can be determined
for every estimator. Cumulative distributions of the absolute values of the differences in the
orientation and magnitude of the gradient between August 2000 and August 2003 are presented
in Figure 13 for all three sets of estimators. The absolute values of the differences are shown in
order to better display the range of variation.

The distribution of the absolute values of the differences in the magnitude of the gradient (Figure
13, top) shows that the vast majority of the differences are less than the value of the regional
gradient (1.6E-03). Roughly 95 percent of the differences in the orientation are less than 10
degrees between the two time periods. As the shape and RHME coustraints are applied to the
estimators, the variance of the distributions decreases. This is due largely to the estimators that
produce the extreme differences being removed from the data set, although some very large
differences do remain even after both criteria are applied. The root canse of these differences
can now be examined in the field. In the future, the results produced by the three-point
estimation calculations could be used to determine if the extreme differences in magnitude
and/or orientation are all from estimators that have one or two wells in common. If so, changes
in monitoring practices at these wells, or local changes in the Culebra hydrology such as nearby
potentially leaky brine injection wells can be identified.
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orientation (bottom} of the hydraulic gradient between the 2000 and 2003 measurements as
calculated using the three sets of local gradient estimators.
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3.5 Application 2: Long-Term Monitoring Network Design

There are two questions to be answered in the design of a long-term monitoring network that is
an extension of an existing monitoring network: 1) Can any wells be removed from the current
network with no, or very little, impact on the ability of the network to detect and characterize
changes in the hydraulic gradient? and 2) Where are the best locations to add wells to the
network in order to increase the ability of the network to detect and characterize changes in the
gradient? Both of these questions are examined using the three-point estimators.

The August 2003 head data, second from right column of Table 3, are used for the well removal
and addition calculations as they represent the more recent set of monitoring network
observations. The magnitude and orientation of the regional gradient as calculated by the best-fit
method for the August 2003 heads (Table 8, bottom row) are used in the calculation of the
RMHE for the well removal and addition study. The shape and RMHE constraints used
previously are also applied to the well removal and addition calculations.

3.5.1 Removal of Existing Monitoring Wells

Wells can be removed one at a time from an existing network and the resulting number of
acceptable three-point estimators can be determined from the remaining wells. This calculation
has been completed three times and the results are in Tables 9, 10, and 11. The three
calculations are done with the original 30-well network, a 28-well network where WIPP-12 and
WIPP-22 have been removed, and a 26-well network where WIPP-12, WIPP-22, H-12, and P-17
have been removed. The same constraints on estimator shape and RHME as discussed in the
previous section are also applied to these calculations. The August 2003 observations result in
1879 acceptable estimators. This number is slightly different from the 1861 acceptable
estimators calculated above using the average of the 2000 and 2003 regional gradient values,

If there were no constraints on the shape or RMHE of the estimators, 30 wells would produce
4060 unique three-well combinations. Removal of a single well would decrease this number to
3654 (Equation 12), a drop of 406 three-well combinations. Therefore, the maximum possible
reduction in the number of acceptable triangles is 406. For this maximum reduction to occur, the
removed well would have to have been included in every acceptable estimator, which will
certainly not be the case. The corresponding number for the 28-well case is 3276 possible well
combinations, and removal of a single well would decrease the possible number of combinations
to 2923, a drop of 351 possible combinations. The 26-well network can produce 2600 possible
combinations of threc wells, and removing a single well from this network decreases this
possible amount by 300 to 2300.

Results of the well removal calculations are shown in Tables 9, 10, and 11. For the case of the
original 30-well network, a total of 23 different wells are removed, one at a time, and the
remaining numbers of acceptable estimators are determined. Not all of the original 30 wells are
removed for these calculations. The WQSP wells must remain in the network because they also
serve as the water quality monitoring network. Additionally, one of the wells on the H-19
hydropad will likely remain in the gradient monitoring network for the foreseeable future
because of the longevity of the fiberglass casing used at that location. The minimum drop in the
acceptable number of estimators when one well is removed is 113 and the maximum decrease is
261 combinations (Table 9). These values are —5.0 and —12.9 percent decreases from the number
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of acceptable estimators when all 30 wells are used in the calculations. Across all wells, removal
of a single well results in decreases in the number of estimators that are between 28 and 64
percent of the theoretically possible maximum decrease.

The results in Table 9 indicate that removal of either the ERDA-9 or WIPP-21 wells would have
the smallest impact on the gradient-monitoring network. Removal of the WIPP-19 or WIPP-22
wells would have only slightly greater impacts on the gradient monitoring network. Wells that
would have the greatest impact on the gradient-monitoring network if they were removed are
WIPP-25 and H-7b2, with H-5b, H-12, and WIPP-30 having only slightiy less impact on the
network.

Table 9. Decrease in the number of acceptable local gradient estimators due to removing one
well at a time from the full (30-well) monitoring network

Removed Remaining Absolute Percent Percent of

Well Acceptable Decrease Decrease Maximum

Estimators Decrease
AEC-7 1650 229 -11.2 56.4
DOE-1 1683 196 -9.4 48.3
ERDA-9 1765 114 -5.1 28.1
H-2b2 1722 157 -7.4 38.7
H-3b2 1736 143 -6.6 35.2
H-4b 1644 235 -11.5 57.9
H-5b 1625 254 -12.5 62.6
H-6b 1650 229 -11.2 56.4
H-7b2 1620 259 -12.8 63.8
H-9b/c 1696 183 -8.7 45.1
H-10b/c 1672 207 -10.0 51.0
H-11b4 1665 214 -10.4 52.7
H-12 1634 245 -12.0 60.3
H-17 1642 237 -11.6 58.4
P-17 1653 226 -11.0 55.7
WIPP-12 1737 142 -6.6 35.0
WIPP-13 1696 183 -8.7 45.1
WIPP-19 1752 127 -5.8 31.3
WIPP-21 1766 113 -5.0 27.8
WIPP-22 1757 122 -5.5 30.0
WIPP-25 1618 261 -12.9 64.3
WIPP-26 1650 229 -11.2 56.4
WIPP-30 1634 245 -12.0 60.3

For the calculations done when WIPP-12 and WIPP-22 are already removed from the network,
the minimum drop in the acceptable number of estimators when one well is removed is 111 and
the maximum decrease is 233 estimators (Table 10). These values are 5.9 and —13.4 percent
decreases from the number of acceptable estimators when the base case of 28 wells is used in the
calculations. Across all wells, removal of a single well results in decreases in the number of
estimators that are between 32 and 66 percent of the theoretically possible maximum decrease,

51



The results in Table 10 indicate that if WIPP-12 and WIPP-22 are removed from the network,
then subsequent removal of either the ERDA-9 or WIPP-21 wells would have the smallest
impact on the gradient-monitoring network. Removal of the WIPP-19 or H-3b2 wells would
have only slightly greater impacts on the gradient monitoring network. Wells that would have
the greatest rmpact on the gradient-monitoring network if they were removed are WIPP-25, H-5b
and H-7b2, with H-12 and WIPP-30 having only slightly less impact on the network. All of
these results are consistent with the resuits from removing wells from the original 30-well
network.

Table 10. Decrease in the number of acceptable local gradient estimators due to removing one
well at a time from the 28-well monitoring network where WIPP-12 and WIPP-22 have already
been removed.

Removed Remaining Absolute Percent Percent of
Well Acceptable Decrease Decrease Maximum
Estimators Decrease
AEC-7 1414 202 -11.5 57.5
DOE-1 1448 168 -9.4 47.9
ERDA-9 1505 111 -5.9 31.6
H-2b2 1473 143 -7.8 40.7
H-3b2 1487 129 -7.0 36.8
H-4b 1414 202 -11.5 57.5
H-5b 1390 226 -13.0 64.4
H-6b 1410 206 -11.7 58.7
H-7b2 1385 231 -13.3 65.8
H-9b/c 1448 168 -9.4 47.9
H-10b/c 1432 184 -10.4 52.4
H-11b4 1433 183 -10.3 52.1
H-12 1397 219 -12.6 62.4
H-17 1410 206 -11.7 58.7
P-17 1416 200 -11.4 57.0 |

WIPP-13 1440 176 -9.9 50.1
WIPP-19 1491 125 -6.7 35.6
WIPP-21 1503 113 -6.0 32.2
WIPP-25 1383 233 -13.4 66.4
WIPP-26 1409 207 -11.8 59.0
WIPP-30 1401 215 -12.3 61.3
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For the calculations done when four wells are removed from the original network (WIPP-12,
WIPP-22, H-12 and P-17), the minimum drop in the acceptable number of estimators when one
subsequent well is removed is 82 and the maximum decrease i1s 191 wells (Table 11). These
values are —5.7 and —14.7 percent decreases from the number of acceptable estimators when the
base case of 26 wells was used in the calculations. Across all wells, removal of a single well
results in decreases in the number of estimators that are between 27 and 64 percent of the
theoretically possible maximum decrease.

The results in Table 11 indicate that if WIPP-12, WIPP-22, H-12, and P-17 are removed from the
network, then subsequent removal of either the ERDA-9 or WIPP-21 wells would have the
smallest impact on the gradient-monitoring network. Removal of the WIPP-19 or H-3b2 wells
would have only slightly greater impacts on the gradient monitoring network. Wells that would
have the greatest impact on the gradient-monitoring network if they were removed are WIPP-25,
H-5b, H-7b2, H-17, and WIPP-30. These results are consistent with the previous results shown
in Tables 9 and 10.

In all three cases, ERDA-9, WIPP-21, WIPP-19, and H-3b2 are the least important wells and
WIPP-25, WIPP-30, H-5b, and H-7b2 are the most important wells when wells are removed one
at a time from the different base case networks. The results also indicate that H-12 would be an
important well to replace should it be lost from service.

Table 11. Decrease in the number of acceptable local gradient estimators due to removing one
well at a time from the 26-well monitoring network where WIPP-12, WIPP-22, H-12, and P-17
have already been removed.

Removed Remaining Absolute Percent Percent of

Well Acceptable Decrease Decrease Maximum

Estimators Decrease
AEC-7 1052 164 -12.5 54.7
DOE-1 1076 140 -10.5 46.7
ERDA-9 1134 82 -5.7 27.3
H-2b2 1104 112 -8.2 373
H-3b2 1112 104 7.6 34.7
H-4b 1046 170 -13.0 56.7
H-5b 1032 184 -14.1 61.3
H-6b 1038 178 - -13.6 59.3
H-7b2 1028 188 -14.5 62.7
H-9b/c 1074 142 -10.7 47.3
H-10b/c 1066 150 -11.3 50.0
H-11b4 1058 158 -12.0 52,7
H-17 1029 187 -14.4 62.3
WIPP-13 1064 152 -11.5 50.7
WIPP-19 1117 99 -7.1 33.0
WIPP-21 1127 89 -6.3 29.7
- WIPP-25 1025 191 -14.7 63.7
WIPP-26 1049 167 -12.7 55.7
WIPP-30 1032 184 -14.1 61.3
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3.5.2 Addition of New Monitoring Wells

To determine the best locations for new wells, an algorithm was developed to examine the
number of acceptable estimators that would exist given the addition of a new well at any location
within the domain. This calculation is conducted by locating a new well at every cell center on a
100x100 m® grid and then determining the number of acceptable estimators resulting from the
insertton of this new well. Because wells do not actually exist in these locations, the average
head resulting from 100 calibrated stochastic transmissivity fields (McKenna and Hart, 2003;
Beauheim, 2003) is used as the “measured” head at each potential well location. The 100-meter
grid used to define the potential well locations corresponds to the groundwater flow model grid
used in the calibration of the transmissivity fields (see Table 1). Again, the number of acceptable
estimators for the August 2003 data is 1879.

The addition of a new well to the existing monitoring network can only increase the number of
acceptable estimators, Without the shape or RHME criteria, the maximum possible number of
estimators from 30 wells is 4060 (Equation 12). The maximum possible number of estimators
from 31 wells is 4495, an increase of 435, If the additional well can be placed such that all
additional estimators created from that well meet both criteria, then the increase in the number of
accepiable esimators will be 435. This number serves as an upper bound on the possible
number of new estimators.

On average, addition of a new well to the Culebra network creates a total of 2137 acceptable
three-point estimators, or an increase of 258 (14 percent), over the 1879 estimators created from
the existing network. The maximum number of acceptable estimators constructed from the
addition of a new well is 2195, or an increase of 316 (17 percent) over the existing well network.
The minimum number of acceptable estimators created with the addition of a new well is 1966,
an increase of 87 (5 percent) over the current network. These increases range from roughly 20 to
73 percent of the maximum possible increase in the number of estimators of 435.

The results of the well-addition calculations are shown as a map in Figure 14. Locations where
the addition of a well will increase the number of acceptable estimators the most are generally in
the areas surrounding the outside of the WIPP site. A well added in these areas can take
advantage of the large number of existing wells within the WIPP site to create estimators that
meet both the shape and RHME criteria. Exceptions to these areas are locations between the
WIPP site and locations where wells already exist. The areas of highest return do not extend all
the way to the edges of the domain because either the no-flow region restricts the number of
triangles that can be created or, in the NE corner of the domain the addition of a single new well
is not enough to create a large number of new estimators. The problem is not as great in the SE
corer of the domain as there are already existing wells closer to that corner of the domain. An
additional well within the WIPP site will produce the smallest increase in the number of
acceptable estimators as this area already has a large number of wells and the majority of the
estimators created by an additional well within this area will not be large enough to achieve the
necessary head drop to meet the RMHE criterion.
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Figure 14. Number of acceptable local gradient estimators for a single new well placed at any
location within the domain. The current network produces 1879 acceptable local gradient
estimators. The black crosses show the existing 30-well monitoring network. The contour is 25
estimators and the contour levels correspond to the levels identified in the color scale.

3.6 Local Gradient Estimation Summary

The ability of local gradient estimators consisting of three wells at unique locations to accurately
and precisely estimate the magnitude and orientation of the hydraulic gradient was examined
with respect to the RHME, the triangle shape, and the orientation of the hydraulic gradient
relative to the orientation of the three-point estimator. Head measurement errors were simulated
using Monte Carlo simulation and the results show that the unbiased measurement errors
produce unbiased (accurate) estimates of both the orientation and magnitude of the hydraulic
gradient. As would be expected, the precision of the estimated magnitude and orientation
decreases linearly with increasing measurement error, with the rate of decrease in the precision
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for the orientation estimates being roughly half of that for the magnitude estimates. The
measurement error can be cast as a proportion of the expected head drop across any three-point
estimator and is called the RHME. Across eleven different isosceles triangles all with the same
size (area) but covering a broad range of shapes (base to height ratios) those triangles with base
to height ratios between 0.5 and 5.0 produced the most precise estimates of the magnitude and
orientation of the hydraulic gradient for four different levels of RHME.

Two criteria for selection of acceptable three-point estimators were developed from the results of
the Monte Carlo simulations: 1) Triangles need to be large enough to allow for a RHME of 0.02
or less; and 2) Triangles must have base to height ratios between 0.5 and 5.0. These two criteria
were applied to the existing Culebra head monitoring network in the vicinity of the WIPP site.
Application of these two criteria to the three-point estimators in the Culebra results in 1879
acceptable estimators relative to a total of 4060 possible estimators. Application of these criteria
reduces the range of estimated hydraulic gradient magnitudes by at least an order of magnitude
and significantly changes the distribution of estimated orientations relative to when all possible
three-point estimators are used to make the estimates. These results indicate that estimator size
is not necessarily a good indication of the accuracy of the magnitude and orientation estimates
provided by the three-point estimator and that accurate estimates can be obtained from smaller
triangles.

The three-point estimators that meet the RHME and shape criteria are used in two different
applications of monitoring network design for the Culebra. Changes in the estimated magnitudes
and orientations of the local gradients over a three-year time period range from essentially zero
to 1E-01 and 170° respectively, although the majority of the magnitude and orientation
differences are less than 1.0E-03 and 10°, respectively. In a future analysis, the estimators
responsible for the largest changes in magnitude and orientation could be identified and the wells
comprising those estimators could be examined for the causes of these large changes. The
possibility of doing this type of analysis points out the higher level of understanding that can be
gained from monitoring gradients rather than just monitoring heads. The comparison of the 2000
and 2003 heads shows a general rise in head during this time (Figure 2). The comparison of the
2000 and 2003 estimated magnitudes and orientations (Figures 10 through 13) uses the same 30
data points as used to detect changes in heads, but provides a much richer picture of how flow
conditions in the aquifer are changing during this time period relative to just examining head
changes.

The second application of the three-point estimators to monitoring network design determined
the two sets of existing wells that had the least and the greatest impact on the ability of the
network to estimate the magnitude and orientation of the hydraulic gradient. The number of
acceptable three-point estimators lost due to removal of a single well serves as a measure of the
reduction in the ability of the network to make accurate estimates of the magnitude and
orientation of the gradient. Three-point estimators have not been used previously for this type of
analysis and the resuits indicate that three-point estimators do an excellent job of preserving the
wells that uniquely provide coverage in certain areas and also in identifying wells that provide
redundant coverage. This approach demonstrated here can readily complement the more
commonly used variance reduction and data-worth approaches to long-term monitoring network
design. The decrease in the number of acceptable estimators due to the removal of a single well
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ranges between 5 and 13 percent of the current number of acceptable estimators depending on
which well is removed. A similar approach was used to determine the locations where an
additional well would have the greatest increase in the number of acceptable three-point
estimators. These calculations were done by placing a new well at every location on a 100x100
m’ grid within the calculation domain and then assigning a head to the new well location that is
equal to the average head from an ensemble of previously calibrated groundwater flow models.
The percent increase in the number of acceptable three-point estimators due to a single new well
relative to the existing network ranges from 5 to 17 percent with an average increase of 14
percent. Mapping these results across the calculation domain shows that the best places for a
new well are in a nearly continuous circular band outside of the WIPP site with the areas within
the WIPP site producing the lowest increase in the number of acceptable three-point estimators.
The calculations for both existing well removal and the addition of a new well are done for the
removal/addition of a single well. Further calculations for the removal/addition of combinations
of two or more wells can be completed, but the possible combinations of well locations,
especially for the addition problem, are essentially infinite and other well placement criteria
would need to be used to constrain these calculations.

3.7 Assumption of Homogeneity

An implicit assumption in the use of the local gradient estimators to determine the orientation
and magnitude of the hydraulic gradient is that the aquifer material within any three-point
estimator (triangle) is homogeneous. For any aquifer, this assumption will not be met. Previous
work (e.g., Mizell, 1980) has shown that when the size of the triangle is much larger or much
smaller than the correlation length scale of the transmissivity, it is possible to invoke the
homogeneous assumption.

The homogeneity assumption was evaluated by selecting a series of 1879 triangles for which the
magnitude and orientation of the gradient could be evaluated. These 1879 triangles are a subset
of the total possible 4060 triangles that meet both the shape and RHME constraints (see Section
3.4). For each triangle, the head estimates are available at each of 100 calibrated transmissivity
fields (Hart and McKenna, 2003; subdirectories below /b/WIPPcvs/trans/runs/). These heads can
be used as input to a three-point estimator to estimate the magnitude and orientation of the
gradient 100 times for each triangle (187,900 total estimates of ortentation and magnitude). This
ensemble of estimates can be compared directly with the estimates made from the field
observations of head using those same 1879 three-point estimators. Comparison of the estimates
of magnitude and orientation based on measured and model-generated heads are shown in Figure
15. This comparison is made using just the mean results of all estimators as calculated across all
100 realizations.

The comparison in Figure 15 shows that there is considerably less variation in the estimates of
both magnitude and orientation when the model-generated heads are used versus those measured
in the field. For example, considerably fewer magnitudes lie outside the 0.01 contour for the
model-generated heads (right image) compared to the field-based estimates (left image). From
Figure 13, it is not possible to determine if there is a significant change in the mean orientation
estimate between the field- and model-based results. The decrease in variation from the field- to
the model-based estimates can be due to incorrect representation of the true heterogeneity within
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the model as well as the averaging process. It is not possible to determine in exactly what way
the model incorrectly represents the heterogeneity, but certainly the use of 100x100 m? cells in
the model will smooth out some of the true heterogeneity.

Well Data Mean of Cakulated Heads

0 Flow Dlreetion at Well Locations 0 Flow Direction

Figure 15, Polar coordinate plots comparing the estimated orientation and magnitude of the
hydraulic gradient based on field measurements (left image) and model-generated heads (right
image). The magnitudes are shown on logl0 scale.

The question of the effect of heterogeneity on the ability of local gradient estimators to
accurately estimate the hydraulic gradient is examined by discretizing each of the three-point
estimators as defined by the wells into a number of smaller triangles. For this work, each
triangle defined by the wells, “well triangle”, was subdivided into smaller triangles, “grid
triangles”, based on the underlying 100-meter grid spacing. This discretization is shown for an
example triangle in Figure 16. Each grid triangle is an isosceles triangle that fits in a 3x3 set of
grid cells. For the example in Figure 16, 221 grid triangles fit within the example well triangle.
Details on the calculation and assignment of the different triangle sizes are given in Appendix 4.

The grid triangles are small enough such that they are only a fraction, less than or equal to 0.20,
of the transmissivity correlation length calculated by McKenna and Hart (2003) and therefore
should contain relatively homogeneous regions of the aquifer. The same local gradient
estimation techniques used for the data at the wells are also applied to the calculated heads at
each of the vertices of each smaller triangle. An average hydraulic gradient and orientation as
calculated across all grid triangles can then be compared to the same quantities as calculated
using the well triangle that contains all grid triangles. These averages are calculated as a straight
linear average and as a flux-weighted average where the total flux through each grid triangle
relative to the flux through the well triangle determines its weight in the average. If the average
magnitude and orientation of the gradient as calculated over all grid triangles is consistent with
the larger scale estimate made over the well triangle, then the triangles defined by the three wells
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are reasonable estimators of the composite gradient within them and heterogeneity becomes a
second-order effect.

A complication of this comparison approach is that there is not a single groundwater flow model
result from which to obtain head values from the grid triangles. There are 100 calibrated head
ficlds. Therefore, every one of the 1879 well triangles will have a distribution of 100 average
gradients as calculated over all of the grid triangles contained within that well triangle. These
distmbutions are calculated using the Median_HeadGrad program (Appendix 5) and compared
to the results of the gradient estimates calculated using the field observations in Figure 17
(magnitudes) and 18 (orientations).
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Figure 16. Example of discretizing a large triangle defined by wells with a number of smaller
isosceles triangles defined using the underlying 100-meter grid spacing.
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Figure 17. Estimates of the magnitude of the hydraulic gradient from the observed head values
at the wells and as unweighted (top) and flux-weighted averages (bottom) of the grid triangles
within each well triangle. The resuits are sorted by the mean values {not shown) and are
arranged from high to low magnitude and then each result is assigned an index for plotting.
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Figure 18, Estimates of the orientation of the hydraulic gradient from the observed heads values
at the wells and as unweighted (top) and flux-weighted (bottom) averages of the grid triangles
within each well triangle. The different estimators are assigned indices for plotting.

Figures 17 and 18 show several interesting patterns. For both the magnitude and orientation
estimates, the observed head data produce considerably more variation in the estimates than are
seen in the model output. This result is due to the model producing estimates with less
variability for any set of measurements as seen in Figure 15 and is also due to the distributions
shown in Figures 17 and 18 being distributions of averages across many small triangles not
distributions of estimates made from individual sets of observations. The model effect and the
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averaging both act to reduce the variation in the estimated values. The variation of the gradient
estimates from the observed data is due to measurement error and heterogeneity. As seen in
Figure 15, the numerical model smoothes the estimates of the magnitude and orientation relative
to estimates made directly from the field observations.

The choice of averaging algorithm for the grid triangles makes a large difference in the resulting
estimates of the magnitude of the gradient (note the decrease in estimated magnitudes when flux-
weighted averaging is used (Figure 17)), but has little effect on the orientation estimates (Figure
18). Using the linear (unweighted) average produces relatively unbiased estimates of the
magnitude while using the flux-weighted averages shifts the model estimates to below those of
the field-based estimates. Prior to this set of calculations, the importance of incorporating the
flux into the averaging process was unknown and these results confirm that a simple unweighted
average of the smaller, grid, triangles provides the best estimates of the gradient magnitudes
made from the observed data. For either type of averaging, the orientation estimates produce
relatively unbiased estimates of the orientation obtained from the field observations.

A specific question to be addressed in this analysis is whether or not there is an estimator size
beyond which a triangle becomes so Jarge that it cannot provide reliable estimates of the
hydraulic gradient on the WIPP site. This question cannot be answered directly as the true
gradient is unknown. However, the relationship between the average gradient estimated from the
small triangles enclosed by a well triangle and the gradient defined by the observed heads can be
determined. If this relationship is a strong function of estimator size, then there may be a point at
which an estimator becomes so large as to no longer provide an estimate of the gradient
consistent with the average calculated from the triangles enclosed within that estimator. The
difference between the median value of the average magnitude and orientation of each estimator
as determined by all grid triangles within the larger well triangle and the estimates of the
magnitude and orientation as defined by the well data are shown as a function of estimator size
in Figures 19 and 20.

The major result of this analysis as shown in Figures 19 and 20 is that the differences in the
magmtude and orientation of the hydraulic gradient as estimated from averages of modeled
heads in smaller internal triangles or from the observed head data at the wells are only a general
function of estimator size. In both Figures 19 and 20, trends of decreasing differences with
increasing estimator size can be identified. For example, absolute differences of magnitude
above 1.0B-02 only occur for estimators smaller than 1.0E+07 m” in the unweighted case (Figure
19, top image) and slightly less than 1.0E+07 m? for the weighted case. In general, the larger the
estimator, the less difference there is between the gradient estimated from the observed heads
and the gradient calculated as an average of all the small, relatively homogeneous regions of the
aquifer within the estimator. However, the smallest absolute differences of all, those of 1.0E-04
or less, occur in a relatively uniform band between estimator sizes of roughly 8.0E+05 to
1.0E+08 m®.
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Figure 19. Difference between the magnitude of the hydraulic gradient as estimated from the
well observations and the median average estimated magnitude across 100 realizations as a
function of estimator size. The results of the unweighted averaging are shown in the top image
and the flux-weighted averaging results are shown in the lower image.

63



g 2

120

[{e]
o
]

i
>

[o7]
<

[
o O
I

&
o
i
|
|
|
|

&
B

Differences {Obs. - Median)
o
[==]
i

-120 1 —
-150 +——- p— . — e

-180 -
1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09

T T T

Estimator Area (m°)

180 -
150
120 -

o 8 8 8

-30

_60 -

-90 1
-120 -
-150 -

‘180 T T T T
1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09

Weighted Differences (Obs. - Median)

Estimator Area (mz)

Figure 20. Difference between the orientation of the hydraulic gradient as estimated from the
well observations and the median average estimated orientation across 100 realizations as a
function of estimator size. The results of the unweighted averaging are shown in the top image
and the flux-weighted averaging results are shown in the lower image.
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In order to monitor the gradient across the WIPP site, three-point estimators could be used that
are, at the minimum end, contained completely within the WIPP site and at the maximum size
extend beyond the WIPP site boundaries. As a frame of reference, a three point estimator using
wells at the center of the panel area and the two southern comers of the WIPP site would have an
area of roughly one-fourth the WIPP site or 1.05E-+07 m®. An estimator of this size would fall
nearly in the middle of the range of lowest values of absolute differences in observed vs.
modeled gradient magnitudes (Figure 19). Using Figure 19 as a guide, the estimator could be a
factor of four to five times larger than this and still provide consistent results between the
modeled and observed magnitudes. Estimators smaller than this can provide consistency
between modeled and observed gradient magnitudes, but the maximum difference between
modeled and observed results increases as the estimator size decreases. This size of an estimator
corresponds to a wide range of differences between modeled and observed orientations (Figure
20). Increasing the size of the estimator beyond that of one-half the WIPP site decreases the
differences between modeled and observed orientations (Figure 20).

Given the results in Figures 19 and 20, the upper limit on estimator size appears to be
approximately 1E+08m?, or two and half times the size of the WIPP site. The lower limit, using
a absolute difference of 1.0E-02 in the unweighted gradient magnitudes (Figure 19, upper image)
as a threshold, is approximately 5.0E+06 m®, or 8 times smaller than the WIPP site. Estimators
within this range of sizes that are either fully contained within the WIPP site boundaries or
contain a large portion of the WIPP site within the three wells can be expected to provide good
estimates of the magnitude of the gradient across the WIPP site. Based on these same
calculations, good estimates of the orientation of the gradient can be made with estimators that
are the size of the WIPP site, 4.3E+07m?, and larger.

These calculations show that model-based estimates of the hydraulic gradient are considerably
less variable than those made with field data. While heterogeneity plays a role in the amount of
variability from the field estimates, in general across all triangles, the correct orientation and
magnitude of the hydraulic gradient can be determined. These calculations show that the
estimate of the hydraulic gradient as determined from three wells in a triangle is a good estimate
of the gradient when calculated as an average of many small local gradient estimates across
relatively homogeneous domains within that larger triangle. In other words, the average of a
number of estimates on small, relatively homogeneous pieces of the aquifer is well approximated
by the larger scale calculation done over the heterogeneous piece of aquifer. The larger the
estimator, the better the degree of approximation.

From the opposite perspective, if the monitoring goal is to accurately determine the local-scale
gradients over a smaller portion of the Culebra, such as the southern end of the WIPP site, large
triangles will not be capable of determining this local scale variability in magnitude and
orientation. Figures 19 and 20 show that for a triangle of 1.05E+07m?, one-fourth of the WIPP
site area, there is a three order of magnitude variation in the gradient magnitude and a nearly 360
degree range in orientation. Not all of this variability will occur within the southern end of the
WIPP site as there are many triangles of this size throughout the monitoring network, but it can
be concluded that the largest triangles will not provide the detail necessary to monitor gradient
magnitudes and directions over a portion of the WIPP site,
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3.8 Calculation Details

The first set of calculations done in this section was completed to develop a relationship between
the absolute head measurement error and the error in the estimated magnitude and orientation of
the hydraulic gradient. These calculations are done using the RHME code. The code is tested in
the Monitoring 04\Test Problems\RHME _test\ subdirectory on the CD-ROM that is part of this
analysis package. A summary of the test problem and results are included here as Appendix 6.
The RHME code is then used to create the data that are the basis for Figure 6. These calculations
are done in the Monitoring 04\RHME _cales\ subdirectory. The final results are contained in the
mserr_H### out files where #### denotes the value of RHME and are also stored and processed
in the rhme _cales.xls file.

The effects of estimator shape and orientation of the gradient on the ability of the estimator to
produce accurate estimates of the hydraulic gradient are calculated using the main code. The
main code is tested in the \Monitoring 04\Test Problems\shape_test\ subdirectory and a
summary of this testing is included as Appendix 7. The calculations are done in the
\Monitoring 04\shape_calcs subdirectory. For each of the 11 triangle shapes as defined in
Figure 7 there is a single input file. The naming convention for the input files is ##cases.txt
where the ## defines the size of the two equal angles in the triangle in degrees. A set of 2000
calculations is done on each of 24 gradient orientations for a specified value of RHME (set as
ERR_TO_DROP in the main code). Each set of these 48,000 calculations is contained in a
single output file and there are a total of 11 output files for each value of RHME, one for each
estimator shape. The naming convention for the output files is mserr## $3$8.out where the ##
defines the shape of the triangle as given in Figure 7 and $$% defines the value of RHME.

The output files are read into a series of Excel files, one for each estimator shape, that have the
naming convention of ##.xIs where the ## defines the shape of the estimator. Each of these
Excel files contains all the output for a given triangle shape across all four values of RHME.
Additionally, the 95™ percentiles of the distributions for each orientation of the gradient and each
level of RHME are calculated in a separate worksheet in the file. At the bottom of these
worksheets, the mean and median values of the 95™ percentile across all 24 directions are
calculated. These median values are then summarized for all shapes in the file
Msmt_error_summary.xls.

The removal of a single well from the network and the recalculation of the number of acceptable
three-point estimators are calculated with the estimate_remove code. This code is tested ona
six and then five well configuration in the \Monitoring 04\Test_Problems\Remove_test
directory. The results of this testing are summarized in Appendix 8. The same code is used for
the Culebra calculations in the \Monitoring 04\Removal\ subdirectory. Several modifications
are made to the estimate_remove.cpp file prior to recompiling it and running it on the Culebra
problem. These are a change of the loop limit on line 65 from 2 to 24, removal of the comment
marks on lines:; 128, 134, 135, 136, 142 and 143 to activate the base to height ratio criteria and
the RHME criteria for the Y component of the gradient, and addition of the correct input and
output file names to the switch statement at the bottom of the file. These changes are readily
apparent by comparing the file estimate_remove.cpp in both the
\Monitoring_04\Test_Problems\Remove test and \Monitoring_04\Removal subdirectories. This
same code is used to look at the case of first removing WIPP-12 and WIPP-22 and then every
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well in order in the \Monitoring_04\Removal_3 subdirectory. In order to not modify the code,
the input and output file names are kept the same as in the original run in
\Monitoring_04\Removal subdirectory. Each original input file is modified to remove the lines
with the WIPP-12 and WIPP-22 information. The WIPP-12 and WIPP-22 output files are
ignored. The number of triangles is the number of lines in each output file minus one for the
header line. The same approach is used for the case where the WIPP-12, WIPP-22, H-12, and P-
17 wells are removed prior to all other removals. These calculations are in the
\Monitoring_04\Removal_3 subdirectory.

The well addition calculations are made using the locat code. This code is tested using a 10x10
grid of potential well locations in the \Monitoring 04\Test_problems\add_test\ subdirectory. A
summary of this testing is included in Appendix 9. The same code is used for the Culebra
calculations in the \Monitoring_(4\locat_triangle! subdirectory with some modifications. Lines
223,231, 232, 233, 237 and 239 are uncommented and the input and output file names in the
switch statement at the bottom of the file are changed to Aug 2003 wells.in and

Aug 2003 _wells.out, respectively, for the Culebra calculations. These changes are readily

apparent by comparing the locat.cpp file in the \Monitoring 04\Test_problems\add_test\ and
WMonitoring 04\locat_triangle\.
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4.0 Spatial Sensitivity-Based Monitoring

In addition to the variance reduction and local gradient estimator approaches to moniforing
network design, a third approach is also examined to directly incorporate uncertainty in the
performance assessment into the monitoring network design. These calculations also incorporate
recent updates in the geologic conceptual model and the influence of these updates on the spatial
distribution of transmissivity within the Culebra. These recent updates in the geologic
conceptual model have been used to produce the base transmissivity fields used in this study and
are documented by Holt and Yarbrough (2003).

4.1 Background

Spatial sampling design is concerned with locating samples such that variations in state variables
and/or material properties can be accurately mapped. In an aquifer, these state variables are
typically hydraulic head or contaminant concentration. Traditional approaches to spatial
sampling design have focused on either increasing the probability of detection of an object(s)
with a prescribed shape and size (Gilbert, 1987) or locating samples to minimize the variance of
the prediction error in the sampled property (Burgess et al., 1981; Olea, 1984; Rouhani, 1985;
Tuckfield et al., 2001) as was done in the first section of this report. While there are numerous
vanations on these approaches, they can all be considered as techniques that add samples to
minimize the limitations of the current data set where these limitations are defined through easily
calculated geometrical and/or spatial covariance-based relationships.

Another approach to the sample optimization involves heavy use of numerical simulation and
has been applied mainly to the development of monitoring networks for efficient detection of
groundwater contamination downstream of an existing disposal site. Work in this area includes
optimization of future well locations based on those that provide maximal data worth (James and
Gorelick, 1994; Wagner, 1995), where “worth” is quantified in monetary terms, or locations that
meet other objectives such as finding networks that simultaneously minimize network cost,
maximize probability of detecting a contaminant leak and minimize the extent of the
contaminant distribution at first detection (Meyer et al., 1994; Storck et al., 1997).

More recent works in spatial sample design have begun to consider the sensitivity of a model
output to the estimates of one or more heterogeneous state variables and/or the influence of the
model acting on the spatially heterogeneous material properties. Spatial variability in material
properties, such as transmissivity, leads to variations in the influence of any location within a
model domain on the model results. For simple models of variability with few parameters
governing the distribution of material properties, analytical techniques, such as Taylor series
expansion, can be used to determine the sensitivity of the model output to the material property
parameters. Work in this area has examined the sensitivity of mechanics models to the spatially
discrete distribution of soil properties for geotechnical applications (Gracttinger and Dowding,
2001). This approach has recently been extended to properties that vary continuously in space
through the incorporation of kriging variance in the sensitivity calculations (Supriyaslip et al.,
2003).
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However, depending on the scale of the problem, the variation in many material properties may
not be adequately described by simple assignment of homogeneous properties within predefined
zones (Hill et al., 2001) and are better characterized as spatial random variables (SRV’s). For
these types of material properties, Monte Carlo sampling of the spatial random function can be
employed. Here we propose a new approach for the calculation of spatial sensitivity coefficients
based on the results of an ensemble of stochastic models. In contrast to previous work involving
spatially varying sensitivity that has employed derivatives to determine sensitivities, the
sensitivity values calculated herein rely on sampling-based sensitivity values (Helton and Davis,
2000). This work compares input parameter values to model outputs using rank regression as a
sampling-based measure of sensitivity.

The goal of this portion of the report is to propose and demonstrate a new approach to
monitoring network design that will specifically address the PA monitoring network design goal
of providing head data for defensible calibration of PA models. Additionally, the approach
developed here specifically incorporates PA information in the form of groundwater travel times
from the repository area to the boundaries of the WIPP site. This approach makes use of the
already existing ensemble of calibrated transmissivity fields (McKenna and Hart, 2003) such that
no additional groundwater flow and/or transport modeling is necessary.

4.2 Derivative-Based Sensitivity Coefficients

The goal of this work is to develop a technique determining the sensitivity of a model output
with respect to all uncertain inputs. While such an approach is generally applicable, the focus
here 1s on spatially varying model inputs. Typically, sensitivity coefficients, S, are calculated as
the denvative of a model output with respect to each input parameter:

=2 (14)
oF,
where Sy is the sensitivity of the /* model output, O, to the /* model parameter, P;. For models
with a linear relationship between the input parameters and the output, values of § can be
calculated directly. For models with non-linear relationships between the parameters and the
outputs, a Taylor series expansion of the derivative is used to linearize the relationship and
sensitivities (see Graettinger and Dowding, 2001). The Taylor series expansion approach is
limited to a relatively small number of model parameters and may entail some specific
assumptions (e.g., Gaussian distributions) on the uncertainty inherent in the model.

4.3 Sampling-Based Sensitivity Coefficients

Another approach to sensitivity calculation that is used heavily in probabilistic modeling is
sampling-based sensitivity (Helton and Davis, 2000) where regression models are used to define
relationships between model inputs and outputs. The spatially heterogeneous distribution of
material properties is modeled as the realization of an SRV. While the values of the actual
realization are only known at the sample locations, multiple conditional realizations of the SRV
can be drawn from a specified spatial random function (SRF). A two-point spatial covariance
model 1s used to define a spatially correlated, conditional, N-variate conditional cumulative
distribution function (ccdf) of the N SRV’s, Z;. The multivariate cedfs, Fyy, are defined as:
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Fmy = (21, . . .. znl(n) = Prob{Z; <z; i=1, .. . N|(n}} (15)

where z; are the values sampled from SRV and | indicates the set of » data used to condition the
N SRV’s. The N variables represent the same attribute (e.g., transmissivity) sampled at the N
nodes of a dense grid used to discretize the model domain.

Stochastic simulation algorithms are used to sample these ccdfs where one set of samples results
in a single spatially correlated property field (realization). Repeated application of these
algorithms creates an ensemble of equally probable random fields that reproduces the first and
second (bivariate) moments of a specified distribution under an assumption of second-order
stationarity. Details of the stochastic spatial simulation algorithms can be found in the works of
Goovaerts (1997) and Deutsch and Journel (1998). This ensemble of random fields is used as
mput to a physical process model (e.g., groundwater flow). For each application of the physical
process model, a prediction of some performance measure is produced. The performance
measure is the result of the integrated response of that physical process across the joint
distribution of the sampled ccdfs. Across the full ensemble of material fields, the physical
process model acts as a transfer function to transfer the uncertainty in the spatial distribution of
material properties to uncertainty in the resulting physical process.

The empirical distribution of simulated values at any location, x, within the model domain across
multiple realizations amounts to repeated independent samples of the local ccdf. The actual
distribution of F(N,x) changes from one realization to the next, but across all £ realizations a
local cedf, Fyy is defined. Each independent sample of Fyy . ;; defines the property value of a
single model cell in a single realization and therefore is associated with a single model output,
All model cells in a given random field, /, are associated with the same model output O;. Across
the ensemble of all realizations, sensitivity of the model output to the property values at each
location within the domain can be computed with sampling-based sensitivity technigues (Helton
and Davis, 2000). Here we examine the ability of the Spearman rank correlation coefficient (see
Conover, 1980) calculated for each location in the model domain, r(x);, to identify changes in O,
with respect to changes in the values drawn from Fyy ;. The Spearman rank correlation
coefficient is:

> (R - By$x), -5

?"(X)Sp = r P
JZ (R, = R) |3 (S(x), - S(0)’

(16)

where R and § are the internal ranks of O; and the values contained in Fyy 5 respectively, and
define the sensitivity of the integrated model output to each of the locally sampled property
values. The value of r(x}, defines the proportion of the variability in O; explained by Fyy,;; and
can be displayed as a map across the model domain for all locations.
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4.4 Application to Culebra Calculations

Determination of r(x}; across an ensemble of stochastic transmissivity fields is applied to the
results of groundwater flow and advective transport models that use heterogeneous,
stochastically-generated transmissivity (T) fields as input. Calculations of spatial sensitivity
coefficients developed here are provided to determine the locations to which the groundwater
flow model calibration is most sensitive to the simulated value of T and to simulated head
values. These sampling-based sensitivity coefficients, calculated as r(x);, are compared to
sensitivity coefficients calculated as partial derivatives of the model calibration (Equation 14) to
the T value through a Taylor series approach at 99 selected locations. In addition to mapping the
sensifivity of the model output to the spatially variable T, the spatial sensitivity of the model to
the single state variable, pressure, is also determined.

Results of the previously completed transmissivity field calibration (McKenna and Hart, 2003)
are used to compare analytically calculated sensitivity coefficients with the sampling-based
sensitivity coefficients. For this comparison, the sensitivity of the overall calibration is
calculated with respect to the estimated transmissivity values at each pilot point. The 100
transmissivity fields were created through a stochastic inverse modeling procedure where 99
pilot points distributed throughout the domain were considered to be the design variables in the
inversion process (McKenna and Hart, 2003). The selection of the 100 fields used in this study
was done by Beauheim (2003). For each pilot point, the inverse parameter estimation procedure
calculates the sensitivity of the overall objective function to the estimated values of each pilot
point. In the Culebra stochastic inverse modeling, the overall objective function was composed
of both the mismatch between the modeled and measured heads, including both steady-state
heads and drawdowns observed during a number of transient pumping tests, as well as the
regularization function that forced the pilot point values to be as similar to each other as possible.
The sensitivities of the value of the objective function with respect to the estimated values of the
pilot points can be compared to the sampling-based sensitivity coefficients at the same locations.
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