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Abstract
The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy-sponsored facility for the
eventual disposal of defense-related transuranic nuclear waste, located in the Delaware Basin near
Carlsbad, New Mexico. We present here analyses of macro- and microscopic (intracrystalline)
brines observed within the WIPP facility and in the surrounding halite, with interpretations
regarding the origin and history of these fluids and their potential effect(s) on long-term waste
storage.

During excavation, several large (~1O Jim to several millimeters) fluid inclusions were recovered
from an area of highly recrystallized halite in a thick salt bed at the repository horizon (2150 ft be­
low ground level). Two populations of inclusions were distinguished on the basis of major element
content, using analyses for Mg, Ca, K, Na, CI, Br, and S04. We propose that the inclusion
compositions arise from the alteration of calcium sulfate to polyhalite and calcium carbonate to
magnesite, respectively. Overall, the inclusion compositions suggest a significant departure from a
simple seawater evaporation model.

In addition, 52 samples of brine "weeps" were collected from walls of recently excavated drifts at
the same stratigraphic horizon from which the fluid inclusion samples are assumed to have been
taken. Analyses of these fluids show that they differ substantially in composition from the
inclusion fluids (mainly by depletion of magnesium relative to potassium) and cannot be
explained by mixing of the fluid inclusion populations. Since weeps are associated with argilla­
ceous or anhydritic halite, these fluids may have originated by dewatering of clays and/or gypsum.
Their compositions may have also been modified by selective uptake of Mg during clay diagenesis
and by the formation of authigenic magnesite and magnesium silicates.

Finally, holes in the facility floor that filled with brine were sampled but with no stratigraphic
control; therefore it is not possible to interpret the compositions of these brines with any accuracy,
except insofar as they resemble the weep compositions but with greater variation in both K/Mg
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and Na/CI ratios. However, the Ca and 804 values for the floor holes are relatively close to the gyp­
sum saturation curve, suggesting that brines filling floor holes have been modified by the presence
of gypsum or anhydrite, possibly even originating in one or more of the laterally continuous
anhydrite units referred to in the WIPP literature as marker beds.

In conclusion, the wide compositional variety of fluids found in the WIPP workings suggests that
(1) an interconnected hydrologic system which could effectively transport radionuclides away
from the repository does not exist; (2) brine migration studies and experiments must consider the
mobility of intergranular fluids as well as those in inclusions; and (3) near- and far-field
radionuclide migration testing programs need to consider a wide range of brine compositions
rather than a few reference brines.
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Chemistry of Brines in Salt from the
Waste Isolation Pilot Plant (WIPP),

Southeastern New Mexico: A Preliminary
Investigation

Introduction
The Waste Isolation Pilot Plant (WIPP) is a

proposed nuclear waste repository under constru~tion

for the US Department of Energy (US DOE) prIma­
rily for the long-term storage of defense-related .trans­
uranic nuclear waste. This facility is located m the
lower portion of the Salado Formation (Permian), in
the Delaware Basin of southeastern New Mexico, in a
unit composed of flat-lying, bedded rock consisting
predominantly of halite and bounded above and bel?w
by thin anhydrite marker beds. The presence of b~me
in WIPP salt has been a subject of concern smce
inception of the project, as evidenced by the rep~rts

describing the preliminary stages of the geologIcal
characterization of the facility horizon (US DOE,
1983). Moreover, it is well established that large brine
reservoirs are locally present in the Castile Formation,
several hundred feet below the WIPP horizon (Regis­
ter, 1981). Because of the concern for radionuclide
containment generated by the possibility of similar
brine occurrences in the Salado Formation, we have
chosen to examine the brines that have been observed
in Salado halite during repository construction. The
purpose of this report is to characterize th~ geoche~­

istry of these brines so that we may elucIdate theIr
origins and obtain information regarding quantities ?f
fluids as well as rates and directions of possible flUid
movement. To this end, we present analytical data
from macro- and microscopic brine occurrences within
the WIPP facility and from the immediately adjacent
halite. In addition, based on these data, we propose a
geologic interpretation that explains the observed
brine compositions as resulting from both short- and
long-term diagenetic reactions and authigenic mineral
formation.

Halitic rock in the WIPP repository horizon is
composed predominantly of NaCI (greater than -90
wt 0,.; Stein, 1985a). Accessory mineralogy in the
halite includes minor amounts of anhydrite, magne­
site, polyhalite, and clays. A complete list of the

nonargillaceous minerals referred to or identified in
the samples examined in this study and their formulae
are given in Appendix A. In addition, the salt contains,
on the average, -0.6 wt C;(, intragranular water in the
form of fluid inclusions (Stein, 1985b).* In primary or
unrecrystallized salt, the inclusions are almost invari­
ably microscopic, ranging in size from < 1 to < 100
/.Lm; they occur in the structure known as hopper
crystals; i.e., bands of fluid inclusions that were
trapped on the growing crystal surfaces as the salt
crystals formed. The extremely high density of fluid
inclusions in these bands gives these crystal outlines a
milky or translucent appearance. This characteristic
texture is commonly used as an indicator of salt
crystals that have not been significantly recrystallized
since the time of their formation. In contrast, such
evidence of primary texture is absent in recrystallized
salt. Recrystallization of salt results in large clear
grains that contain fluid inclusions ranging in size
from several hundred micrometers to several millime­
ters on an edge. The larger of these permitted extrac­
tions of fluid from individual inclusions and analysis
of this fluid by standard wet chemical techniques.
Most of the analytic results pertaining to inclusion
data that are presented here refer to fluids from
recrystallized salt (Table 1). This report also includes
analyses of brines that occur in macroscopic quanti­
ties in the WIPP facility. These brines are found as
"weeps," or wet places, on freshly excavated walls
(data shown in Table 2), and as puddles on the facility
floor or as seepage into drill holes (Table 3). Finally,
we also present data on dissolved sulfate concen­
trations measured by laser Raman spectroscopy (Ta­
ble 4). These data are from fluid inclusions too small
to be analyzed by direct extraction of the fluid.

*This number represents an upper limit; results of the Site
Validation Study (US DOE, 1983) indicate a lesser amount
('::;0.22 wt ~i·) of water present as fluid inclusions, with up to
0.59 wt ',. driven off by heating to 400°C.

9



Table 1. Analyses of fluid inclusions (in ppt) Table 2. Analyses of brine "weeps" (in ppt)

Sample
SO: Group

Sample
SO/

Number Ca Mg K Na Cl Br Number Ca Mg K Na CI
1 2.5 81.5 12.3 91.3 191 1.8 23 II?

1 0.30 18.4 15.4 75.7 168.2 12.4
2 0.54 54.1 8.5 32.1 196 5.3 22.4 I

2 0.28 31.8 26.0 47.9 183.6 13.3
3 0.17 40.4 6.7 31.3 161 2.0 17.8 I

3 0.11 47.3 19.7 20.8 187.6 33.8
4 0.2:J 22.7 8.7 61.8 163 U 21.4 II

4 0.24 32.2 20.8 55.7 189.2 15.5
5 0.18 15.6 11.5 81.8 161 0.9 24.5 II?

5 0.27 17.3 16.1 78.5 173.8 13.8
6 0.21 21.4 8.1 66.0 163 1.8 26 II

6 0.24 17.9 16.3 76.9 173.0 15.5
7 0..15 23.3 10.9 66.9 161 1.4 21 II

7 0.26 17.5 15.9 76.8 177.5 14.3
8a 0.14 40.9 7.0 31.7 153 2.2 17 I

8 0.30 19.5 15.6 75.8 181.86 12.4
8b 0.15 37.9 6.6 33.7 153 2.2 17 I

9 0.40 19.8 15.3 75.2 193.8 9.3
8e 0.15 40.8 7.0 32.6 162 2.3 18 I

10 0.38 19.4 15.8 76.8 176.8 9.79
9 0.22 25.0 8.8 56.6 165 1.3 22 II

11 0.39 18.4 16.8 87.2 194.3 9.54
10 0.18 22.0 9.3 66.2 161 1.2 22 II

12 0.38 20.6 18.7 74.6 181.5 9.79
11 0.19 29.1 9.2 59.0 192 1.6 25.2 II

13 0.48 23.3 17.6 81.0 196.3 7.75
12 0.29 15.2 13.1 92.3 177 0.0 23.2 II

14 0.34 17.7 15.7 77.9 176.7 10.94
1:1 0.28 29.1 10.5 56.2 159 1.6 19 II

15 0.32 19.6 17.2 70.9 176.2 11.63
14 0.23 28.1 9.2 52.4 168 1.5 18.5 II

16 0.26 19.3 16.5 78.6 179.0 14.31
15 0.22 26.3 9.7 60.7 184 1.4 18.7 II

17 0.37 20.2 17.5 78.0 179.1 10.05
16 0.27 24.2 9.7 63.8 171 1.9 26 II

18 0.40 22.9 19.7 86.0 197.4 9.3
17 0.26 24.2 9.7 63.8 172 1.4 19.5 II

19 0.29 18.2 16.6 89.5 200.4 12.8
18 o.:n 15.7 6.4 78.5 167 0.0 17.4 II

20 0.31 18.2 16.2 75.1 176.9 12.0
21 0.36 17.5 19.9 76.1 175.2 10.3
22 0.26 18.7 17.0 77.7 174.1 14.31*S04 from ion chromatography; compare to 12.8 ppt (avg)
23 0.27 20.3 17.1 77.6 175.6 13.78S04 from laser Raman results.
24 0.38 20.1 15.4 79.0 183.3 9.79
25 0.26 19.0 14.2 71.2 174.9 14.31
26 0.29 18.9 14.5 73.9 175.4 12.83
27 0.48 21.9 15.8 77.9 185.0 7.75
28 0.42 21.6 15.8 78.7 181.7 8.86
29 0.32 20.1 14.6 72.3 175.2 11.63

*80, values calculated from Ksp for gypsum
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Table 3. Analyses of brine from floor holes Table 4. Laser Raman analyses for 504

(in ppt) from fluid inclusions

Sample Source of Sample Depth Band Ratio S04 Est Error*

Number Ca Mg K Na Cl Br SO, Sample (ft) (SO,/OH) (ppm) (ppm SO,)

101 0.23 17.7 13.51 63.6 166.7 1.24 15.1 WIPP-12 1125 <0.004 <lOOt <500

102 0.27 18.89 14.53 59.91 166.1 1.36 16.2 WIPP-12 1125 <0.007 <400t <500

lO:J 0.25 17.21 13.22 66.23 163.54 1.20 18.1 WIPP-12 1692 0.085 7900t ± :JOO

104 0.29 11.14 9.28 77.80 159.30 0.68 14.7 WIPP-12 1692 0.086 8000t ±:JOO

105 0.13 31.19 19.15 37.81 165.40 1.70 25.9 WIPP-12 1692 0.082 7600t ±300

106 0.22 21.74 15.06 57.25 162.65 1.53 18.6 Facility

107 0.18 22.4 15.36 42.24 166.54 1.39 15.1 Horizon 2150 0.140 13200 ±2600

108 0.19 18.93 13.22 59.87 168.72 1.44 15.5 DOE-I 2297 0.182 17300 ±900

109 0.04 47.30 17.25 15.10 183.89 3.15 33.4 WIPP-12 2483 0.120 l1::100t ±600

(no 110) WIPP-12 2483 O.l1:J I0600t ±600

III 0.96 0.59 97.01 162.92 4.23 WIPP-12 2483 0.118 11 lOOt ±600

201
WIPP-12 2483 0.105 9900t ±600

0.10 ::15.4 27.8 40.2 172.6

202
WIPP-12 2483 0.107 1OIOOt ±600

0.25 22.2 18.5 63.0 165.3 WIPP-12 2741 0.088 8200t ±700
20:J 0.22 17.9 15.6 73.4 165.5 WIPP-12
204

2741 0.088 lOOOOt ±::I400
0.21 27.4 22.4 56.4 167.8 DOE-I 3374 0.104 9800 ±700

205 0.25 22.2 18.3 63.0 164.5 DOE-I 3708 0.110 10400 ± 1100
206 0.19 31.0 19.9 46.8 170.2 DOE-I 3709 0.038 :1400 ±700
207 0.23 22.1 18.6 63.2 161.6 DOE-I 4031 0.036 3200t ± 1300
208 0.28 20.2 17.0 70.4 165.4 DOE-I 4031 0.100 9400t ± 1300

*90", confidence
tdifferent fluid inclusions
tsame fluid inclusion

Sample Collection and
Analytical Methods

The fluid inclusions from recrystallized halite in
the facility horizon (at 2150 ft) were unusually large,
often several millimeters on a side. Our extraction
technique involved drilling into these inclusions by
hand using an extremely small (#65) drill bit held
with a pin vice. It was necessary to continuously
remove powdered salt from the sample surface and
drill bit tip to prevent fluid loss into the powder as a
result of capillary action. After an inclusion had been
punctured in this manner, we used a preweighed
syringe with a 25-gage stainless steel needle to extract
the fluid. Maximum extraction was enhanced by
grinding the tip of the syringe needle flat. The syringe
was then reweighed after each extraction. The
amounts of inclusion fluids thus obtained ranged from

-10 to -100 mg. These fluids were injected into
small preweighed polyethylene bottles; after each ex­
traction, the syringe was rinsed repeatedly with dis­
tilled, deionized water into the bottle until it con­
tained -4 mL of liquid. The bottle was weighed again,
and the difference used to determine the dilution
factor required to compute the initial solution compo­
sitions (i.e., those of the inclusion fluids).

The brines appearing in macroscopic quantities in
the drifts were collected by several methods. Where
sufficient quantity was available, as in shallow floor
holes and puddles on the floor, amounts of 10 to 20 mL
were taken directly into a syringe, filtered through a
0.2-.um filter, and placed in prewashed polyethylene
bottles. In deeper holes, a length of Tygon tubing was
used to siphon water to the surface, after which the
water was filtered into clean polyethylene bottles, also
using the 0.2-.um filter paper and syringe.
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The weeps along the drift walls required a more
efficient collection technique. At locations where
brines were seen to be oozing from the walls of the
drift, a total of 52 holes (-13/8 in. diameter, -8 to 10
in. long) were drilled using a small hand-held rock
drill. A numbered, prewashed, preweighed, fabric­
covered sponge was inserted into each hole. The con­
figuration was designed to minimize the air space in
the hole surrounding the sponge. The holes were then
sealed with pieces of Parafilm and black rubber lab­
oratory stoppers. These sponges were left in place for
periods of 6 weeks to 2 months, at which time about
three-fourths of the sponges were observed to be
either "moist" or "wet," and many of the plugs were
surrounded by efflorescences identical to those associ­
ated with the weeps on the walls. Upon retrieval, the
sponges were placed in correspondingly numbered,
preweighed polyethylene bottles. The bottles now
containing the damp sponges were then reweighed.
The difference between the "before" and "after"
weights is attributed to brine that was soaked up by
the sponges. In general, measurable quantities of
brines were recovered by this technique. Amounts of
brine collected in this manner ranged between 0.1 g
and several grams. The brines were extracted by put­
ting them in a large excess of deionized water. Al­
though in most cases the fabric overcoat protected the
sponges from contamination with rock dust produced
by the drilling, a few analyses produced unreasonably
high Ca, Na, CI, and S04 values, leading us to conclude
that these samples were contaminated.

Cations from all fluid samples were analyzed by
DC plasma emission spectroscopy, using a Spectra­
span HIB set up for simultaneous analysis of K, Na,
Ca, and Mg. A total of -1 mL of each original sample
(after dilution) was consumed in the analysis for
cations. In several cases (Samples 1, 2, 7, 12, and 18;
Table 1) the dilution factors were so large that the
accuracy of these numbers is questionable. Samples
8a, b, and c (Table 1) are successive samples from a
single large inclusion; these analyses show that, over­
all, our technique apparently introduces errors that
are small in comparison to the differences between
inclusions. Beyond this it is not possible to present
replicate analyses for the inclusion samples because of
limited amounts of fluids. However, Spectraspan data
typically are reproducible to ± 5%, and so this is a
measure of the probable precision of these data. For
these fluids, SO~ and Br were analyzed using a
Dionix 2000i ion chromatograph (Merrill, 1985). Chlo­
ride was determined using a Buchler Chloridometer
and consumed -200 /-lL of each diluted sample. A
charge balance of these results shows an excess of
negative charge, suggesting that HCOI and HS - are
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of only minor importance. The major anion compo­
nents are assumed to be CI-, Br-, and SO~- . It is to be
emphasized that, in comparing these analyses with
data in the literature, care should be taken to check
the units. These brines have a density of -1.2 g/cm:!,
so that a comparison of analyses given in units of
g/kg with g/L will automatically result in a 20%
discrepancy.

In addition, a study was recently completed of the
fluid inclusions in salt from the lower Salado and
underlying Castile Formations using freezing point
depression analysis and laser Raman spectroscopy.
Details of these techniques and results can be found in
Stein (l985a) and Tallant et al (1983), and will not be
discussed here. The data are included (Table 4), how­
ever, because one of the samples analyzed by the laser
Raman technique was taken in the WIPP facility
horizon and the results are compared to other analyses
(this study) of samples taken from the same horizon.

Stein (1985b) describes the mineralogical analysis
of two cores taken in the WIPP facility, one extending
50 ft up into the roof and the other penetrating 50 ft
below the floor. Forty-seven samples from these cores
were analyzed for non-NaCI mineral components by
separation of water- and EDTA-insoluble residues.
The former consist of quartz, magnesite, anhydrite,
polyhalite, and clays, with minor gypsum and alkali
feldspar (tentatively identified). Treatment with
EDTA removes carbonates and sulfates (Bodine and
Fernalld, 1973), leaving a silicate residue composed
primarily of quartz and clays, the nature of which was
determined by scanning electron microscopy and con­
ventional x-ray diffraction techniques. Additional de­
tails regarding the silicate mineralogy of samples from
the WIPP facility horizon will appear in a separate
report (Krumhansl et aI., in preparation). A more
detailed examination of an argillaceous sample taken
from an exposed clay seam near Room J in the WIPP
workings is also presently under way, using scanning
and transmission electron microscopy, x-ray and elec­
tron diffraction, and semiquantitative energy disper­
sive x-ray analysis.

Analytical Results
An examination of all the fluid inclusion analyses

showed considerable compositional variation. In Fig­
ures 1 through 4 we show these compositions plotted
as element ratios. We chose this method of data
presentation primarily because (1) it minimizes inac­
curacies resulting from the large and variable dilution
factors employed during chemical analysis, and (2) it
simplifies graphical representation of the reduced
data.
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Looking only at the K/Mg ratios* (as shown in
Figure 1), we initially distinguish two compositionally
distinct groups of fluid inclusions, both of which differ
from compositions of the macroscopic brine accumu­
lations. Figure 2 shows the fluid inclusion composi­
tions plotted as ratios of Na/Cl to K/Mg, thus verify­
ing their bimodal distribution when all the major
components in solution are considered. We designated
the inclusions characterized by low Na/Cl and KlMg
values as Group I, and inclusions with higher Na/Cl
and K/Mg values as Group II. To summarize the data
briefly, the compositions of the Group I inclusions all
fall very close to the point where K/Mg =0.15, Na/Cl
=0.2. The compositions of the Group II inclusions are
much more diverse and cover the range from K/Mg
=0.3 to -0.8 and Na/Cl =0.3 to -0.5.

The weep data (Figure 2) also show considerable
variation, but with a different trend as compared to
the fluid inclusions. The weep analyses range from
K/Mg =004 to -1.15 and Na/Cl between 0.1 and 0.45.
Most of the weep analyses cluster in the region around
K/Mg =0.8, Na/CI =0.4. The weep fluids have Na/Cl
values in approximately the same range as the Group
II fluid inclusions, although the average KlMg value

*Ratios of element weights as ppt

for the weeps is higher. The Group I inclusions are
characterized by consistently lower values of both
Na/Cl and K/Mg as compared to the weeps.

Finally, the floor-hole analyses are also presented
in Figure 2. These data lie approximately within the
same compositional range as the weeps (K/Mg =0.35
to -0.8, Na/Cl =0.05 to -0045). The floor-hole data
clearly define a linear trend, with a more even distri­
bution of data points than for the weeps.

If the two compositional extremes of the fluid
inclusion analyses are taken as endpoints, the Na/Cl
and K/Mg values of various mixtures of these compo­
sitions yield the "mixing line" that is represented by
the dashed line in Figure 2. The curvature of this line
is due to our use of the element ratios and not to the
absolute element concentrations. The apparent fit of
the real data from the fluid inclusions to this mixing
line suggests a possibly significant geological correla­
tion. It is important to note here that the use of the
term "mixing line" refers only to the mathematical
construction of this line and must not be construed as
an implication of mechanism; e.g., a true mixing of two
discrete fluids to obtain the observed brine composi­
tions. Their origins are discussed in detail in the
following section.
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A previous study (Stein, 1985a) using laser Raman
spectroscopy found sulfate analysis in very small
«10 ~m) fluid inclusions from the WIPP facility
horizon to be (1) variable, (2) generally below what
would be expected for halite facies brines, and (3)
suggestive of polyhalite formation. When the larger
inclusions were analyzed by the direct fluid extraction
technique, sulfate values substantially in excess of
those obtained using the laser Raman technique
(shown in Table 4) were found.

The laser Raman sulfate analyses of these very
small fluid inclusions, some of which were in hopper
crystals, are lower than the lowest sulfate value ob­
tained by ion chromatography from an inclusion in
recrystallized salt from the same horizon (e.g., 13 vs.
17 ppt S04)' Whether this results from a systematic
depletion in S04 in the smaller inclusions, or whether
the Raman spectroscopic analyses had a systematic
error introduced by the absence of Mg and K in the
standard solutions remain topics for future research.

Geochemical Implications
It is not yet known if the minute fluid inclusions in

hopper crystals were mobilized by localized salt defor­
mation, thereby coalescing into these larger inclu­
sions, or if localized areas containing high concentra­
tions of inclusions actually initiated recrystallization
without the influence of large-scale mechanical defor­
mation. Nor is it clear how the weeps relate to the
various types of inclusions. In addition, the ultimate
origins of all of the observed fluids have not yet been
established with certainty. Several hypotheses are
discussed, including an origin attributing inclusion
fluids to the dehydration of primary gypsum, trapped
Permian seawater, and/or water released in various
reactions involving clay mineral diagenesis (e.g., the
conversion of normal sedimentary clays to a suite of
Mg-enriched sheet silicates such as talc or saponite).
While information on fluid compositions does not
answer all of the questions posed above, we attempt to
shed some light on the magnitude of possible fluid
inclusion movement within the waste repository and
to provide a historical perspective from which to
address the question of fluid migration in this waste
repository.

As a starting point to explain how these diverse
fluids originated, consider the evaporation of sea­
water. Isotopic data from fluid inclusions from the
WIPP facility horizon are compatible with an early
halite-facies origin (Knauth, 1985, pers. comm.). Com­
positionally these fluids were compared (Figure 2)
with brine analyses from halite-facies deposition in a
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modern basin (Brantley et al., 1984) and with what is
expected for the onset of both halite and sylvite
precipitation (Ivanov and Voronova, 1972). The solid
line (Figure 2) shows the changing Na/CI and K/Mg
ratios of evaporating seawater as calculated from salts
precipitated during the classical experiment of Usiglio
(1849), along with the present-day seawater analyses
of Brantley et al., (1984). The endpoint of this line
represents the final brine composition of Usiglio's
experiment; e.g., when very little fluid is left. It is
proposed that this brine resembles what would have
existed at the time evaporites were forming at the
stratigraphic level of the present-day WIPP site.
Apparently further modification of the brines oc­
curred, however, because the observed compositions
differ greatly from those noted by Usiglio for the
straightforward evaporation of seawater.

Further support for this hypothesis comes from
the work of Holser (1963). He illustrated the evolu­
tionary stages of evaporite-forming brines by plotting
their compositions as ratios of Br- /CI- vs Mg2

j /CI-,
assuming no postdepositional mineral reactions.
When our data for fluid inclusions and floor holes are
plotted according to this scheme* (Figure 3), two
points are immediately evident. First, most of the
floor-hole samples and the Group II inclusions appar­
ently originated in an environment that is consistent
with the mineralogy observed at the WIPP strati­
graphic level; e.g., that of the halite facies. Second, the
Group I inclusions should have originated along with
other highly soluble minerals characteristic of a pot­
ash-facies environment, (e.g., sylvite, carnallite, lang­
beinite, etc.; refer to Appendix B). This mineral as­
semblage, however, is conspicuously absent in the
halite in which these inclusions are found. t This ap­
parent contradiction may be resolved by assuming
that compositional modifications of brines occurred
after cessation of evaporite deposition, thus further
supporting a model that extends considerably beyond
one based on simple seawater evaporation.

*One of Holser's values for the New Mexico Permian differs
greatly from our analyses (Holser's point where
Mg/CI=O.l71, Br/CI=O.0035). There is, however, good
agreement between some of our data and Holser's analyses
of Kansas Permian and Ontario Silurian fluids

tThis mineral assemblage is restricted to the McNutt Pot­
ash Member, which is found several hundred feet up in the
stratigraphic sequence, above the WIPP facility horizon,
and is characterized by the potash minerals listed in Appen­
dix B.



Since previous work indicated that polyhalite for­
mation may significantly affect brine chemistry, it is
informative to explore how this would modify the
brine from Usiglio's experiments. Qualitatively, the
reaction* may be written as

2 gypsum (or anhydrite) + 2K+ + Mg2+ + 2S0~- ---+

polyhalite ± water (1)

thus consuming twice as much potassium as magne­
sium and shifting brine compositions to the left in
Figure 2. Moreover, although polyhalite occurs with
the suite of potash minerals listed in Appendix B, its
presence alone does not necessarily indicate a potash­
facies environment; it occurs commonly as a second­
ary mineral requiring only the reaction between a late­
stage highly concentrated brine and calcium sulfate
(gypsum or anhydrite).

Mineralogically, the sequence in Eq (1) is entirely
plausible. Anhydrite, a logical source of Ca and S04' is
present in abundance as either discrete layers such as
Marker Bed 139 (MB-139) immediately beneath the
facility floor, or finely disseminated in other portions
of the halite. Polyhalite, too, is present; it occurs
ubiquitously as a secondary mineral, sometimes noted
as a replacement of anhydrite, and it is occasionally
seen as a daughter mineral in the larger fluid inclu­
sions as well. We may then postulate the formation of
the hopper salt inclusions and the Group I fluid
inclusion compositions as having arisen from the reac­
tion of a late-stage halite-facies brine (represented by
the approximate end-point composition of Usiglio's
experiment, as shown in Figure 2) with either gypsum
or anhydrite to form polyhalite and a different brine
having a lower K/Mg ratio (represented by the Group
I analyses). Because these fluid inclusions occur in
close proximity to polyhalitic halite, and because all of
these inclusions were taken from recrystallized halite,
we infer that halite recrystallization and polyhalite
formation must have occurred very nearly simulta­
neously and must have involved minimal fluid move­
ment. Moreover, the brine compositions indicate that
these processes occurred late in the evaporative cycle.
Seawater must be reduced to -30% and -10% of the
original volume to precipitate gypsum and halite,
respectively (Berner, 1971); thus we suggest that the
Group I fluid inclusion compositions result from the
reaction of a late-stage evaporative brine with gypsum

*(Refer to Figure 2.) This reaction results in a decreased
K/Mg ratio, consumption of sulfate, and slight increases or
decreases in the Na/Cl ratio depending respectively on
whether halite dissolves or precipitates.

or anhydrite to form polyhalite, perhaps concomi­
tantly with halite precipitation. That this whole pro­
cess in fact occurred soon after halite-facies deposi­
tion is confirmed by the age dates in excess of 200 m.y.
BP (Brookins, 1980) obtained on polyhalites from
WIPP samples.

A second mineralogical reaction requiring consid­
eration is the formation of magnesite, a mineral occur­
ring frequently in samples taken within and adjacent
to the WIPP stratigraphic horizon. In cores extending
-50 ft above and below the WIPP facility, it was
found that polyhalite occurred in 4 out of 26 samples,
while magnesite was reported 20 times. Initially the
evaporite sequence probably contained calcium car­
bonate derived from indigenous biologic activity, as
suspended material washed in from the reefs on the
margins of the evaporite basin, or as a minor compo­
nent in the argillaceous debris derived from adjacent
land masses. In any case the magnesium-rich brines
evidently consumed the calcium carbonate according
to the reaction:

CaCO;l + Mg2
1 + SO~- ---+ CaS04 + MgC03 (2)

In contrast to polyhalite formation, this would shift
the K/Mg ratio to higher values. At the same time the
solute content of the fluid would decrease, causing
halite dissolution and an increase in the Na/CI ratio in
the fluids. t We suggest that the Group II inclusions
originated in this manner. Because these inclusions
are found in recrystallized salt containing polyhalite,
it is inferred that this reaction, too, occurred early in
the diagenetic sequence and involved only short-range
fluid movement.! However, this reaction did not occur
to the extent that Ca-rich brines were formed, as was
the case in the Palo Duro Basin, for example (Roed­
der, pers. comm., 1985). Instead, the brine-to-calcite
ratio must have been sufficiently high so that the Ca
liberated was precipitated by a large excess of sulfate,
forming either gypsum or anhydrite. Support for this
process can be found in the fact that, although these
brines have a molar ratio of calcium to sulfate sub­
stantially less than 1, all of the brines are approxi­
mately equilibrated with calcium sulfate (Figure 5).

t At this stage of evaporation, seawater contains more chlo­
ride than sodium. Consequently, addition of equal amounts
of Na and Cl during halite dissolution causes the Na/Cl ratio
to rise.

lNote that the distances of fluid migration in the formation
of polyhalite are not known but assumed (based on the
evidence presented here) to be small, perhaps less than a few
meters.
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Figure 5. Ca vs. 804 (by weight) of fluid inclusions and floor-hole brines. (The curved line
represents the calculated values for gypsum saturation at 25°C.)

Based on the data presented so far, the following
model is advanced to explain the variations in brine
compositions as seen in the fluid inclusions:

1. The stratigraphic section in the immediate
vicinity of the WIPP facility horizon at the
time of evaporite deposition contained a signif­
icant and unspecified amount of gypsum and a
small amount of calcium carbonate (calcite or
aragonite). These transformed to form, respec­
tively, polyhalite or magnesite, thus altering
the brine composition in close proximity to the
reacting mineral grains.

2. As P -T conditions changed with increasing
burial depth, gypsum transformed to anhy­
drite. This resulted in a volume reduction,
liberation of fresh water, and possible localized
deformation (including recrystallization) of the
adjacent rock salt.

3. This water may have mixed with earlier brines
whose compositions had been modified by for­
mation of polyhalite, magnesite, or both. These
solutions were then trapped as the larger inclu­
sions in the recrystallized salt. Two popula­
tions of inclusions are definable on the basis of
composition; however, the processes affecting
these compositions are not mutually exclusive.
Therefore it is not surprising that the two fields
shown in Figure 2 partially overlap.
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The relative importance of these two primary
processes should be related to the frequency of occur­
rence of the reaction products (e.g., polyhalite vs.
magnesite). Although quantitative data are not cur­
rently available, the many observations of magnesite
in samples taken within and adjacent to the WIPP
facility compare favorably with the greater abundance
of Group II inclusions.

Considering next the brines from the weeps and
floor-hole samples (Tables 2 and 3, Figures 2 through
4), it is evident that additional diagenetic processes
must have been involved since their compositions
preclude an origin from fluid inclusion migration in
the perturbed stress field surrounding the mine open­
ings. Instead, the weep and floor-hole brine composi­
tions appear to bear some relationship to the anhy­
drite marker beds found above and below the WIPP
facility. Three lines of evidence lend credence to this
tentative correlation:

(1) Holes drilled into these marker beds will fre­
quently fill with brine, whereas holes that fail
to penetrate the marker beds commonly re­
main dry.

(2) The data in Figure 4 plot as a straight line. It
appears that samples taken farthest away (in
the vertical direction) from MB-139 corre­
spond to the lowest NalCI and K/Mg values,
while those samples with increasingly higher
NalCI and K/Mg values came from holes
closer to or penetrating the marker bed.



(3) The calcium sulfate ion product for the floor­
hole samples closely parallels the saturation
curve for gypsum, whereas for the fluid inclu­
sions the ion product shows considerable scat­
ter. It is inferred that this contrast arises
because the fluids collected from the floor
holes have recently been in contact with calci­
um sulfate relative to the inclusion composi­
tions that have been modified by the gypsum­
anhydrite transition, polyhalite and mag­
nesite formation, and possibly even bacterial
sulfate removal. It is important to reiterate
that this correlation is very speculative, and
much more information is required for its
validation.* This is emphasized by the fact
that there are also many dry holes that pene­
trate the anhydrite marker beds.

Abundant field evidence supports the occurrence
of silicate diagenesis. Bodine (1978), for example, has
reported that clays in Salado halite are unusual in that
they are depleted in Al and Ca, and enriched in Mg. In
samples taken from a complete core through the
Salado Formation and from the uppermost part of the
underlying Castile Formation, he also finds that the
clay mineral assemblage includes such Mg-rich spe­
cies as talc; saponite; clinochlore; serpentine; and Mg­
rich, mixed-layer, smectite-illite clays. This mineralo­
gic picture was also confirmed by the more detailed
studies carried out on samples taken above and below
the WIPP horizon (Stein, 1985a).

Detailed clay mineralogy, employing electron mi­
croscopy, of a clay sample from an exposure in the
WIPP facility (near Room J) is in progress. Prelimi­
nary results confirm (1) the presence of several dis­
crete authigenic phases; (2) the enrichment of these
clays in magnesium over what would be expected in
normal clays derived from the midcontinent region;
and (3) an abundance of sub-micron-sized euhedral
crystals of magnesite in the clay seams. These obser­
vations are not surprising, since initially the clays
were predominantly illitic or kaolinitic (Bodine, 1978)
and certainly the brines contained an adequate
amount of Mg~ to effect the indicated alteration
(Figure 6), as indicated by the high-temperature ex­
perimental work of Krumhansl (1984). We propose
that the overall diagenetic mechanism for silicate
phases involved displacement of octahedrally coordi-

* Plans are presently under way to obtain samples from floor
holes using sampling technology that will assure known
stratigraphic source of the brines.

nated aluminum by magnesium, that, in turn, dis­
placed tetrahedrally coordinated SiH

.t The net result
is liberation of silica to form authigenic quartz (Figure
7), which has been observed in abundance in argilla­
ceous halite from the WIPP; consumption of magne­
sium, forming authigenic sheet silicates (Figure 8);
and where illite was involved, liberation of potassium.
The net change in solution composition is, clearly,
toward increasing the K concentration relative to that
of Mg (Figures 2 and 4).

Thus an explanation of the compositions of the
macroscopic brine accumulations requires consider­
ation of Mg uptake by solid phases during diagenetic
reactions involving silicate minerals and the brines.
These brines must have been in contact with the
indigenous (presumably primarily illitic) clays for suf­
ficient time for the extremely slow kinetics of room­
temperature silicate-water interactions to have al­
tered the brine compositions. In contrast,
modification of the brines that were isolated in fluid
inclusions in salt were dominated by faster reaction
kinetics, forming primarily the non-silicate phases
polyhalite and magnesite.

We have established thus far that a simplistic
seawater evaporation model does not account ade­
quately for the variations in brine compositions de­
scribed in the preceding sections. Consequently, a
more complex explanation for their origin is advanced
here and summarized in Figure 9. We present evidence
that supports the hypothesis that the early formation
of both polyhalite and magnesite is responsible for the
observed deviations in K i , Mg~ . , and SO~ values in
fluid inclusions from those in evaporating seawater,
and that the K/Mg ratio is shifted accordingly. The
inversion of gypsum to anhydrite results in the addi­
tion of fresh water to the system, with the net effect of
increasing Na t relative to CI . These three processes
are assumed to have occurred very nearly simulta­
neously, along with halite recrystallization (which
contributed no net change in the chemistry of the
system). Finally, the fourth process thought to be
operating more slowly than the others and for a much
longer time is the uptake of Mg (relative to K) by
indigenous clays and formation of new authigenic Mg­
silicate minerals. Correspondingly, the K/Mg ratio of
coexisting fluids increases, as evidenced by the com­
positions of fluids from the weeps and floor holes.

'Because gibbsite, corundum, and other hydrous Al oxides
do not appear in the x-ray diffraction traces, we submit that
the diagenetic reactions must occur in such a way that Al is
retained (i.e., conserved) in the structures of the sheet
silicates and that silica is liberated in accordance with the
observed authigenic quartz.
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Figure 6. Triangular diagram showing proposed direction of diagenesis resulting in alteration of
existing illite-smectites and formation of more Mg-rich silicate phases. (The R-values refer to chlorite
compositions taken from the literature; with the exception of four points, the thin-foil analyses of
WIPP clays are too iron-deficient to be classified as chlorite. The composition of Brine A can be found
in Table 5; see Krumhansl (1984) for details of hydrothermal work.)
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(a) Authigenic quartz crystal showing etching (upper pho­
tograph) and microcrystalline quartz overgrowths in the
etched portion (lower photograph). (Scale bar=500 ILm)

(b) Large authigenic quartz crystal from argillaceous WIPP
salt showing well-developed etch features. (Scale bar=
500 ILm)

Figure 7. Scanning electron micrographs of authigenic quartz from argillaceous halite taken from the facility horizon
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(a) Authigenic crystals of magnesite in clay (predominantly
illitic) from WIPP salt. (Background, consisting of authi­
genic Mg-rich clays, is largely amorphous, although occa­
sional euhedral crystals are observed (arrow). Scale bar=
1.5 /lm)

(b) Authigenic magnesite crystals growing in pits of surface
of authigenic quartz crystal, suggesting that magnesite pre­
cipitation occurred after, or perhaps in conjunction with,
corrosion of the quartz. (Scale bar=20 /lm)

Figure 8. Scanning electron micrographs of authigenic magnesite found in argillaceous halite from the facility horizon
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Technical Conclusions
Several fundamental conclusions may be drawn

from this work. First, the brines examined in this
study contain significant amounts of dissolved SO~ ,
K , Ca2

, and Mg2
" in addition to Na + and Cl .

Secondly, the inclusions that we analyzed are not
uniform in composition but may be segregated into
two distinct groups (Figures 1 and 9) which in turn are
distinct from weeps and hole-filling solutions in the
mine workings. The apparent control of fluid inclu­
sion compositions by formation of secondary polyha­
lite and magnesite near the stratigraphic horizon con­
taining the inclusion analyses presented here
indicates vertical fluid movement of the order of tens
of feet, at most. Furthermore, our evidence suggests
that this fluid movement occurred soon after deposi­
tion. Silicate diagenesis, resulting in solutions deplet­
ed in magnesium relative to potassium and magne­
sium-rich solid phases, is also interpreted here as
having occurred relatively soon after deposition. Thus
this segregation of fluid compositions preserved a
record of diagenetic processes that principally oc­
curred before the close of the Paleozoic. This, and the
fact that even weep samples show considerable vari­
ability, argue strongly against any sort of an intercon­
nected hydrologic system at this stratigraphic level
during the last hundred million years. Of broader
interest is the fact that apparently it will be difficult
to generalize regarding the composition of Paleozoic
seawater from fluid inclusions in these evaporites
because of the strong diagenetic overprint.

Finally, this study is preliminary, and much work
remains to be done before fluid inclusions from the
WIPP facility horizon will be fully characterized.
These inclusions are atypical in size and may also have
atypical compositions. Further laser Raman sulfate
analyses may resolve this matter. Also, the distribu­
tion of inclusions seemingly is heterogeneous and
needs to be mapped throughout the WIPP site and
related to the recrystallization of the salt in which
they are found. Another phenomenon not yet ade­
quately explained is the behavior of fluid inclusions
during migration along temperature gradients and
during simultaneous mineral reactions. Finally, there
are the more mundane analytic questions of (I) estab­
lishing a better statistical basis for predicting the
overall range of compositions to be encountered; (2)
obtaining more S07 and perhaps HCO;; analyses to
Rupplement the CI values already available; (3) iden­
tifying the gas (or gasef» present in the bubbles; and
(4) analyzing the halite containing the inclusions to
see if trace elements in the solid reflect variations in
fluid composition.
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Programmatic Applications
The brine compositions discussed in this report

bear on several questions related to the emplacement
of nuclear waste in a repository located in halite at a
depth of ~2150 ft in the Salado Formation. Briefly, a
discussion of the programmatic applications of this
brine study is divided into three general areas: hydrol­
ogy, brine migration, and materials testing. Although
some tentative conclusions are advanced with regard
to each topic, it cannot be stressed too strongly that
they are based on a very small number of analyses.
Thus the chief programmatic value of the work to date
is to set forth a methodology for addressing such
problems, assuming availability of sufficient re­
sources, rather than to provide a body of "facts" able
to withstand critical examination from the point of
view of site suitability.

In the overall field of nuclear waste management,
few questions are as important as quantifying the
extent to which the groundwaters in a repository
communicate with groundwaters in the adjacent
units. Although present only in small amounts,
groundwater clearly exists at the stratigraphic level of
the WIPP repository. Further, the presence of the
brine "weeps" indicates that, near an excavation, it is
at least locally mobile. Lower down in the strati­
graphic section, large brine pockets occur within frac­
tured anhydrites of the Castile Formation (Register,
1981) and apparently are related to zones of intensely
deformed halite. Because of the large size of f>uch
pockets, it is relevant to inquire whether the Castile
brine occurrences are in any way related to the
macroscopic brine occurrences observed in the WIPP
facility. Therefore it is also a matter of significant
interest to compare the chemical compositions of the
Castile brines to those obtained from the brines col­
lected from the WIPP facility, within the Salado
Formation (as reported here). In fact, the composi­
tional diversity that we describe herein apparently
indicates that reservoirs of substantially different
compositions located in close proximity to each other
(e.g., within tens of feet) have failed to homogenize
over periods of time far longer than that required for
the isolation of nuclear waste. Nor do any of these
compositions bear much resemblance to those found
either above or below the Salado (Table 5 and
Figure 10), in the Rustler and Castile Formations,
respectively. Thus, the geochemistry of the system
seems to preclude the existence of an interconnected
hydrologic network effective on any time scale shorter
than that required for the low-temperature silicate
diagenesis, presumably thousands of years.



The matter of brine migration is related to hydrol­
ogy, but is distinct in that the focus is on the influence
of the repository on fluid distribution. Two points
may be made in regard to this subject. First, prior to
this study it was thought that the weeps represented
fluid inclusion mobilization by localized relief of the
stress field in the halite adjacent to the open mine
workings. Unless future analytic work yields a popula­
tion of fluid inclusions of substantially different com­
position from those discussed here, this explanation of
the origin of the weeps seems unlikely. Instead, it
seems probable that the fluids giving rise to the weeps
are intergranular and hence may migrate by mecha­
nisms other than those thought to affect fluid inclu­
sions (or the same mechansims but to different de­
grees). Second, this suggests the importance of
investigating various migration phenomena. In the
ongoing field tests at the WIPP, much effort and
expense has been devoted to making large-scale mea­
surements of brine migration in salt adjacent to ex­
perimental waste canisters. McTigue (1984) has devel­
oped a predictive model for brine migration for the
simulated defense high-level waste experiments of
Molecke (1984) based on the porothermoelastic be­
havior of salt around a heated borehole. Unless it is
known what type of fluid is migrating as well as the
migration mechanism(s), it seems likely that the re­
sults from such experiments may either be uninterpre­
table, or interpreted incorrectly. Since the fluids are
compositionally distinct, though, this matter may be
resolved if the salt deposits formed on the heater hole
walls are collected and analyzed. Further, since differ­
ent fluids may migrate to the heater over time, some
thought should be given to the order in which various
mineral components appear in these encrustations.

Finally, an examination of brine compositions
bears directly on the matter of materials testing in
general and on backfill performance specifically.
Again, interpretation of the results from such testing
is predicated on an accurate assessment of the fluid
composition in which canister corrosion and alter­
ation of backfill materials may take place. Of practical
importance is the degree to which the brine analyses
presented here resemble the reference brines formu­
lated for environmental testing pertinent to WIPP. In
some respects, the synthetic Brine A (Molecke, 1983,
Table 5 and Figure 10) appears to be a reasonable
match. At elevated temperatures several brine­
bentonite interactions can occur, depending on the
chemical nature of the brine involved (Krumhansl,
1984; see also Figure 6). Brine A in fact contains
sufficient magnesium and potassium to test the rela­
tive importance and consequences of formation of
different clay mineral types. The formation of mixed-

layer illite-smectite clays consumes K+ and may de­
grade performance of backfill material around the
waste canisters (Krumhansl, 1984). Alternatively,
trioctahedral magnesium-rich smectite clays effect a
drop in magnesium concentration in coexisting fluids
and a lowering of the pH in the brine. The case for the
general application of anyone standard synthetic
brine to radionuclide migration studies is ambiguous
and requires more work.

Other aspects of the bentonite-brine problem re­
late to low-temperature backfill performance, and are
less easily dealt with. The rheological properties of a
bentonite backfill depend on the nature of the ex­
changeable cation on the clay. For example, the ex­
change of Ca or Mg for Na may significantly alter its
swelling and plasticity. With regard to predicting far­
field radionuclide migration, it is also necessary to
make measurements in fluids that will reasonably
approximate the compositions of those actually en­
countered in the WIPP. As an example, both Brines A
and B are much depleted in sulfate relative to those
found in the field. Increasing the sulfate concentration
from 3.5 to 25 ppt increases the solubility of the
actinide americium. This occurs because in the refer­
ence brines, sulfate complexes comprise <5"0 of the
americium in solution, whereas in the field those
complexes would account for -35'1(, of the dissolved
americium. Of this 35 %, about a third exists as
anionic Am(S04)~ , which presumably would not sorb
nearly as well as the cationic AmCli and AmCF" that
would predominate in Brines A or B.

Table 5. Summary of brine data (in ppt)

Ca Mg K Na Cl Hr SOl

Group I 0.23 42.8 7.2 32.3 165 2.8 18.4

Group II 0.39 23.6 9.8 67.8 170.3 1.27 21.8

Floor smpls. 0.28 20.7 13.06 57.7 166.6 1.4 17.7

Weeps' 0.32 21.3 17.0 73.9 181.0 0.98 17.8

Saladot 0.61 45.5 29.8 34.8 204.1 0.38 2.8

Rustler' 0.74 0.25 0.15 11.5 7.83 3.01

Castile' 0.24 0.64 2.1:3 65.8 103.8 0.1 9.3
Brine Al 0.5 29.2 25.0 35.0 158.3 0.3 2.9

Brine HI 0.75 0.008 0.01 95.8 145.8 0.3 2.9

*Weep data for Ca, Mg, K, Na, and CI include averages of
only one set of samples (those in Table 2). Br and 804 data
are taken from a preliminary set of samples that were
analyzed for Br and 80. but are not reported here because of
apparent contamination with halite.

tFrom Lambert (1978)

tFrom Molecke (1983)
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With regard to the general topic of materials
testing, then, the following generalizations can be
made as a result of this study. It is probable that a
variety of fluids may come in contact with the compo­
nents under consideration (e.g., backfill, waste, or
canister). Whether these variations will influence the
course of interactions around a waste canister cannot
be reliably determined in advance; otherwise there
would be little justification in experimentally evaluat­
ing their performance. Consequently, any program in
materials testing must employ a wide range of brine
compositions rather than one or two reference brines
as has been the practice in the past. We note here that
the focus of this paper is only the compositions of, and
possible consequences related to, Salado brines. The
work presented here presupposes an environment that
is completely isolated; e.g., by successful plugging and
sealing. However, other scenarios have in fact taken
into account influxes of brines from other sources, in
much larger amounts and of different compositions
than those discussed here.
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APPENDIX A

Common Evaporite Minerals and Their Formulas

Mineral

Halite
Anhydrite
Gypsum
Polyhalite
Glauberite
Magnesite
Calcite
Dolomite
Quartz

Composition

NaCI
CaS04
CaS04,2H20
KzMgCa2(S04)4·2H20
NaZCa(S04)2
MgCO:1

CaCO:1

CaMg(CO:)2
SiOz
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APPENDIX B

Potash Zone Mineralogy
(from Cheeseman, 1978)

Ore Minerals

Sylvite
Langbeinite

Gangue Minerals

Leonite
Kainite
Carnallite
Kieserite
Bloedite
Polyhalite
Anhydrite
Halite

Composition

Composition

K2Mg(SO4)2 04H20
KMgCIS04o3H20
KMgCI3 ·6H20
MgS04oH20
Na2Mg(S04)204H20
K2Ca2Mg(S04)402H20
CaS04
NaCI
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