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t h a t  it might se rve  t h e  dual  purpose of  a l a rge  r e l i e f  hole t o  be 
used i n  conjunction with a burn cu t  f o r  s h a f t  s ink ing  by b l a s t i n g  o r  
a s  a p i l o t  ho le  f o r  r a i s e  d r i l l i n g .  

8.' The most bene f i c i a l  explorat ion technique f o r  a chamber such 
a s  t he  Po r t e r  Square S t a t i on  is t h e  construct ion o f  a p i l o t  tunnel .  
Idea l ly ,  t h e  tunne l  should be ava i lab le  e a r l y  i n  t h e  design phase of  
t h e  work s o  t h a t  designers  may derive maximum bene f i t  from t h e  in for -  
mation. The tunne l  should be constructed a s  a por t ion  of t h e  excava- 
t i o n  u l t imate ly  required and should be l a rge  enough t o  be u t i l i z e d  a s  
a por t ion  of t h e  construct ion sequence f o r  t he  proposed opening (e.g. 
l a rge  enough t o  f a c i l i t a t e  i n s t a l l a t i o n  of  b o l t s  o r  dowels p r i o r  t o  
a dd i t i ona l  excavation). The tunne l  should be long enough t o  expose 
condit ions f o r  t h e  f u l l  length of  t h e  proposed excavation. 

9. Detai led examination and mapping of  a p i l o t  tunne l  al lows 
rock mass d i s con t i nu i t i e s  t o  be determined and co r r e l a t ed  with in for -  
mation derived from core boring programs. J o i n t  s e t  spacing and 
t i gh tne s s  a r e  r e ad i l y  apparent. Most importantly, f e a tu r e  cont inu i ty  
and t h e  presence and o r i en t a t i on  of f a u l t s  can be determined. 

10. For t he  Po r t e r  Square S ta t ion ,  t he  p i l o t  tunnel  demonstrated 
t h a t  information derived from the  boring programs and inspec t ion  
s h a f t  and used f o r  design o f  t he  permanent support f o r  t he  opening 
was adequate. Assumptions made on j o in t  t igh tness  and condit ion were 
accurate. J o i n t  c o n t i n d t y  assumptions were found t o  be conservat ive.  
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subsurface damage t o  a r epos i t o ry  from an earthquake. Par t  o f  t h i s  
study involved t h e  co l l e c t i on  of  d a t a  on subsurface damage due t o  an 
earthquake, and another  p a r t  involved t h e  ca l cu l a t i on  of  displacement 
f i e l d s  a s  a r e s u l t  of an earthquake. Both o f  t he se  s t ud i e s  were 
conducted a t  Terra Tek of  S a l t  Lake City. This  r epo r t  i s  an abridged 
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ABSTRACT 

The po t en t i a l  seismic r i s k  f o r  an underground f a c i l i t y  i s  consid- 
ered i n  t h e  eva lua t ion  o f  i t s  locat ion and design. The pos s ib l e  
damage r e s u l t i n g  from e i t h e r  l a rge-sca le  displacements o r  high accel-  
e r a t i ons  should be considered i n  evaluat ing po t en t i a l  s i t e s  of 
underground f a c i l i t i e s .  

Sca t te red  through t h e  ava i lab le  l i t e r a t u r e  a r e  s tatements  t o  t h e  
e f f e c t  t h a t  below a few hundred meters shaking and damage i n  mines is 
l e s s  than a t  t h e  sur face ;  however, da t a  f o r  decreased damage under- 
ground have not been completely reported o r  explained. In order  t o  
assess  t he  seismic r i s k  f o r  an underground f a c i l i t y ,  a da t a  base was 
es tab l i shed  and analyzed t o  evaluate t h e  po t en t i a l  f o r  seismic 
disturbance. 

Subs tan t ia l  damage t o  underground f a c i l i t i e s  i s  usua l ly  t he  r e s u l t  
o f  displacements pr imar i ly  along pre-exist ing f a u l t s  and f r ac tu r e s ,  o r  
a t  t h e  sur face  entrance t o  these f a c i l i t i e s .  Evidence of t h i s  comes 
from both earthquakes as a funct ion o f  depth is  important i n  t h e  
eva lua t ion  of  t h e  hazard t o  underground f a c i l i t i e s .  To eva lua te  
po t e n t i a l  displacements due t o  seismic e f f ec t s  of  block motions along 
pre-ex is t ing  o r  induced f r ac tu r e s ,  t h e  displacement f i e l d s  surrounding 
two types of f a u l t s  were invest igated.  

Analyt ical  models were used t o  detennine r e l a t i v e  displacements of 
s h a f t s  and near-surface displacement of  l a rge  rock masses. Numerical 
methods were used t o  determine t h e  displacement f i e l d s  assoc ia ted  with 
pure s t r i k e - s l i p  and v e r t i c a l  normal f au l t s .  

Resul ts  a r e  presented a s  displacements f o r  various f a u l t  l engths  a s  
a funct ion of depth and distance.  This provides input  t o  determine 
p o t e n t i a l  displacements i n  terms of depth and d i s t ance  f o r  undergmund 
f a c i l i t i e s ,  important f o r  assessing poten t ia l  s i t e s  and design 
parameters. 

INTRODUCTION 

The po t en t i a l  seismic r i s k  f o r  an underground f a c i l i t y  must be 
considered i n  evaluat ing t h e  ul t imate locat ion.  The poss ib le  damage 
r e su l t i ng  from e i t h e r  large-scale displacements o r  high acce l e r a t i ons  
should be considered i n  evaluat ing a po t en t i a l  s i t e .  Statements have 
been made t o  t h e  e f f e c t  t h a t  below a few hundred meters shaking and 
damage i n  mines a r e  l e s s  than a t  t h e  surface;  however, da t a  f o r  
decreased damage underground have not been completely reported and 
explained. 
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In order  t o  a s s e s s  t h e  seismic r i s k  f o r  an underground f a c i l i t y ,  a 
da ta  base must be e s t ab l i shed  and analyzed t o  eva lua te  t he  po t en t i a l  
f o r  seismic dis turbance.  To develop t h i s  da t a  base, pe r t i nen t  l i t e r a -  
t u r e  was searched t o  document t h e  damage o r  non-damage t o  underground 
f a c i l i t i e s  due t o  earthquakes and t o  eva lua te  t h e  s i gn i f i c ance  of 
these  da ta .  A number of r epo r t s  l i s t e d  damage from earthquakes t o  
underground s t r u c t u r e s  such a s  mines and tunne ls ,  bu t  these  were p r i -  
mari ly of  a q u a l i t a t i v e  nature.  Displacements assoc ia ted  with four  
major earthquakes i n  s eve ra l  p a r t s  of  t h e  world were documented i n  
1959. ' More recent ly ,  t h e  e f f e c t  of earthquakes on shallow tunnels ,  
pr imari ly i n  t h e  United S t a t e s ,  has been co l l e c t ed  and analyzed. 
In addi t ion  t o  t he se  da ta ,  a l a rge  number of  i nd iv idua l  r epo r t s  have 
ind ica ted  both damage and non-damage r e s u l t i n g  from earthquakes of  
magnitudes g r e a t e r  than 5.4-8 

In addi t ion  t o  t he se  da ta ,  o t h e r  sources o f  p o t e n t i a l  information 
were inves t iga ted .  These include:  

i More complete and recent  da t a  f r o m  fore ign  sources i n  earthquake- 
prone a r ea s  such a s  Japan. 

a Data from mining opera t ions  where earthquakes a r e  i n i t i a t e d  by t h e  
mining process.  [These needed t o  be evaluated i n  terms of t h e  
po t en t i a l  damage from equivalent  f a r - f i e l d  earthquakes.) 

a Results  from t h e  nuc lear  events  a t  t h e  Nevada Test S i t e  and t h e  
Alaskan Tes t  S i t e  a s  well a s  Plowshare experiments. These t e s t s  
provide t h e  most q u a n t i t a t i v e  d a t a  i n  t h e  nea r - f i e l d  environment. 
These tests were well-instrumented and may a s s i s t  i n  evaluat ing 
and e s t ab l i sh ing  damage c r i t e r i a .  

Earth r i s k  maps (Figure 1 )  have been formulated f o r  t h e  United 
S t a t e s  based on h i s t o r i c a l  damage t o  various areas.'-' '  This map i s  
d i r e c t l y  c o r r e l a t i v e  with maps showing t h e  loca t ion  of  major ear th-  
quakes ( i n t e n s i t y  5 o r  g r ea t e r ) .  This co r r e l a t i on  i s  due t o  t h e  f a c t  
t h a t  t h e  r i s k  map was developed from sur face  damage assoc ia ted  with 
h i s t o r i c  se i smic i ty ;  however, how t h e  r i s k  map appl ied  t o  underground 
f a c i l i t i e s  is  not ye t  known. 

The r e s u l t i n g  ve loc i t y ,  acce le ra t ion ,  and displacement spec t r a  from 
an earthquake a r e  u sua l l y  p lo t t ed  a s  a funct ion o f  frequency (period)  
on a pseudo-velocity diagram. These p l o t s  a r e  he lp fu l  i n  evaluat ing 
and designing sur face  s t r uc tu r e s .  Relat ionships of  sur face  acce le ra -  
t i o n  and ve loc i t y  have been e s t ab l i shed  a s  a funct ion o f  i n t e n s i t y  and 
magnitude with d i s tance .  " The r e l a t i onsh ip s  between predominant 
period and magnitude as a func t ion  o f  d i s t ance  have a l s o  been 
developed. ' ' 
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Moderate Damage 

19 r.fajor Damage 

FIGURE 1. Risk o f  bamage from Earthquakes i n  the United States 

Poten t ia l  hazards of  earthquakes t o  t h e  i n t e g r i t y  o f  an underground 
f a c i l i t y  can be categorized i n t o  whether t h e  s i t e  is i n  t h e  near - f ie ld  
o r  f a r - f i e l d  o f  t h e  earthquake. The nea r - f i e l d  is defined by s e i s -  
mologists a s  t h e  region around an earthquake where seismic waves have 
not completely decoupled i n t o  separa te  compressional (P) and shear  (S) 
waves and a s  a r e s u l t  involve complicated motions with high accelera-  
t ions .  The f a r - f i e l d  i s  simply t h e  region beyond the  near - f ie ld ,  
although t h e  boundary is  not  sharp  and involves a t r a n s i t i o n  zone. 
Actual d i s tances  from t h e  source a t  which t h e  t r a n s i t i o n  between near  
and f a r - f i e l d  occurs  depend on t h e  source  ( s i z e ,  type, and geometry) 
and on t he  medium proper t ies ,  bu t  genera l ly  is l e s s  than several  f a u l t  
lengths. For small events  (Mb < 1.0) t h i s  d i s tance  may be l e s s  than 
one ki lometer ,  bu t  f o r  l a rge  events  (Mb > 7.0) t h e  t r a n s i t i o n  may 
occur a t  d i s t ance s  tens  o f  ki lometers  from t h e  source. 

We a r e  not concerned with t h e  d e t a i l s  of  separa t ing  near  and f a r -  
f i e l d  e f f e c t s  a s  much .as de l i nea t i ng  t h e  most l i k e l y  earthquake 
hazards t o  underground f a c i l i t i e s .  From a seismological  viewpoint, 
however, it is important t o  d i f f e r e n t i a t e  between t he se  two regions 
because e f f e c t s  i n  t he  nea r - f i e l d  of an earthquake i s  poorly under- 
stood with complicated techniques required t o  model even t h e  s implest  
earthquakes. 

Unlike sur face  s t r uc tu r e s ,  which can be damaged by l a rge  hor izonta l  
ground acce le ra t ions ,  t he  i n t e g r i t y  of  underground f a c i l i t i e s  may be 
suscept ib le  t o  permanent displacements which might cause damage o r  
change permeabi l i t i es ,  and thus, a l t e r  groundwater movements. High 
acce le ra t ions  can s t i l l  cause damage and w i l l  a l s o  be considered. The 
inducement of  such motion can occur e i t h e r  i n  t h e  nea r - f i e l d  o r  f a r -  
f i e l d  o f  an event and is r e l a t i v e l y  independent o f  t he  d e t a i l s  of t he  
source. A major f a c t o r  is t h e  r e l a t i v e  alignment o f  p re -ex is t ing  
f r ac tu r e s  t o  the  motion due t o  t h e  seismic waves. S t a t i c  displacement 
f i e l d s  o f  earthquakes were computed a s  a means o f  analyzing t h e  
s ign i f icance  of  permanent deformation assoc ia ted  with earthquakes. 
These displacements a r e  i n s i g n i f i c a n t  beyond a few f a u l t  lengths from 
the  source. However, within a few f a u l t . l e n g t h s ,  t h e  displacements 
vary g r ea t l y  depending on t h e  source geometry and depth. These 
s t ud i e s  represen t  an i n i t i a l  attempt t o  quant i fy  t h e  most obvious 
seismic hazards t o  underground f a c i l i t i e s .  

EXISTING DATA BASE ON EARTHQUAKE DAMAGE 

Tunnels and Shallow Underground Openings 

Data on t he  seismic s t a b i l i t y  and behavior o f  shallow underground 
openings a r e  very well summarized by ~ o z e n ~  and Dowding. ' Observa- 
t ions  from 71 tunnels  responding t o  earthquake motions were compared. 
Dynamic behavior was compared with i n t e n s i t y  and magnitude a s  a 
function of  d i s tance .  The s t ud i e s  compared ca l cu l a t ed  acce le ra t ions  
a t  t he  ground sur face  with tunnel damage and showed t h a t  t h e  tunnels  
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a r e  l e s s  suscept ib le  t o  damage than surface s t r uc tu r e s  o r  f a c i l i t i e s .  
Peak acce le ra t ion  a t  t he  sur face  of  l e s s  than 0.2 grav i ty  (g) d id  not  
damage t he  tunnels;  between 0.2 and 0.5 g, damage was only minor; and 
damage was s i g n i f i c a n t  only above 0.5 g (Figure 2).*" Most o f  t h e  
damage t h a t  occurred was tocated near  a po r t a l .  Richter  magnitude and 
Modified Mercalli  i n t e n s i t  were cor re la ted  with acce le ra t ion  f o r  
various cases i n  Figure 3.'~' Large acce le ra t ions  a r e  c o r r e l a t i v e  
with la rge  magnitudes and high i n t ens i t i e s .  A t  any one s p e c i f i c  s i t e ,  
ca lcu la t ions  of  su r f ace  acce le ra t ions  were based upon t h e  earthquake 
magnitude and ep i cen t r a l  d i s tance  through a t tenua t ion  laws developed 
by McGuire.12 No reduct ion was made f o r  a t tenua t ion  with depth.' 

  ow din^' summarized t h a t  (1) tunnels a r e  more s t a b l e  than s t ruc-  
t u r e s  located on t he  surface;  and (2) c r i t i c a l  frequencies a r e  lower 
f o r  l a rge  underground chambers than tunnels because o f  t he  increase  
i n  t he  s i z e  of  underground chambers. , 

The conceptual designs of  many underground f a c i l i t i e s  i nd i ca t e  t h a t  
configurat ions w i l l  probably be -10 m, r a t he r  than 100 m i n  diameter; 
hence, (1) c r i t i c a l  f requencies  calculated from Rozen's da t a  f o r  
underground openings of  t h i s  s i z e  a r e  -150 Hz, and, therefore ,  
threshold damage would not  occur unless  the  f a c i l i t y  was r e l a t i v e l y  
c lose  t o  t h e  epicenter ;  (2) perhaps most importantly, t h e  primary 
cause of  f a i l u r e  of t he se  underground excavations i s  r e l a t i v e  movement 
along pre-exist ing f a u l t s ,  o r  a t  t he  por ta l  of t h e  tunnel  which i s  
located a t  ground surface.  

Duke and ~ e e d s '  reviewed information on tunnel  damage a s  well  a s  
some mine damage due t o  earthquakes and drew the  following conclu- 
s ions :  

(1) Severe tunnel  damage appears t o  be i nev i t ab l e  when t h e  tunnel  
is crossed by a f a u l t  o r  f a u l t  f i s su r e  which s l i p s  during t he  
earthquake. 

(2) In tunnels  away from f a u l t  breaks, severe damage may be done 
by shaking t o  l i n ings  and po r t a l s  i n  t h e  ep icen t ra l  region of 
s t rong  earthquakes where construct ion i s  of marginal qua l i t y .  

(3)  Well-constructed tunne ls  outside t h e  ep icen t ra l  region,  but  
away from f a u l t  breaks, can be expected t o  s u f f e r  l i t t l e  o r  
no damage i n  s t rong  earthquakes. 

(4)  Within t h e  usual range of  des t ruc t ive  earthquake periods,  
i n t e ns i t y  of  shaking below ground is  l e s s  severe than on 
t h e  surface.  

I EARTHQUAKE DAMAQE TO UNDERQROUND FACILITIES 

a No Damage 
o Minor Damage Due to Shaking 
A Damage from Shaking 
PA Near Portal  
cir Shallow Cover 

01 U 
U 

Minor 
a Damage 
Y 

01 d, P- 0.3 
-0 
01 4.J 
111 

a 
U 

0-a No 

, VIII r 
Tunnel N u d e r  

FIGURE 2. Calculated Peak Acceleration a t  the Surface and 
Associated Tunnel Damage 



FIGURE 3 

1978 RETC PROCEEDINGS, VOL. 1 

1 . 1 ,  1 I I 
0 10 30 50 70 90 

Distance t o  Fault ,  km 

. Accelerat ions,  Modified Mercall i In tens l  t y ,  and 
Associated Tunnel Damage 

EARTHQUAKE DAMAGE TO UNDERGROUND FACILITIES 27 

Mines o r  Other Deep S t ruc tures  

Reports on earthquake damage t o  underground mines have genera l ly  
been q u a l i t a t i v e  i n  nature.  Quant i ta t ive  da t a  have been much more 
d i f f i c u l t  t o  ob ta in  and come pr imar i ly  from a few sources.  Most of  
the quan t i t a t i ve  da t a  a r e  i n  t h e  form o f  displacements o r  acce le ra -  
t ions noted i n  mines i n  Japan, South Africa,  and t h e  United S t a t e s .  

Several Japanese i nves t i ga to r s  measured earthquake motion simul- 
taneously a t  t h e  depth and sur face .  ~ a s u "  determined t h e  r a t i o  of  
displacements due t o  earthquakes a t  t h e  sur face  and i n  t unne l s  a t  
depths of up t o  160 m. One of t he  most s t r i k i n g  displacements was the  
2.3 m t ransverse  hor izonta l  o f f s e t  0.6 m beyond a tunnel heading 
during t he  1930 Tanna Earthquake. Surface/depth displacement r a t i o s  
were 4 .2 ,  1.5, and 1.2 f o r  periods of  0.3, 1.2, and 4 seconds, respec- 
t ive ly .  The geology cons is ted  of  lake depos i t s  a t  t h e  sur face  and 
volcanic andes i te  and agglomerates a t  t h e  160 m depth. Nasu concluded 
t ha t  underground motion may be fou r  times l e s s  than a t  t h e  surface.  

~ a n a i "  measured acce le ra t ions  a t  depths up t o  600 m i n  copper 
mines i n  Paleozoic rock a t  Hitachi ,  but unfortunately recorded da ta  
were from small earthquakes. The r a t i o  of sur face  maximum displace-  
ment t o  t h a t  a t  t he  300 m depth was about 6 : l .  

lwasakils obtained acce le ra t ion  records t o  depths of 150 m below 
the sur face  during a 5-year period from borehole accelerometers  
i n s t a l l ed  a t  four  loca t ions  around Tokyo Bay. Three of  t h e  s i t e s  
were i n  sands and c lays ,  and one was i n  a s i l t s t o n e .  During t h e  
period of  opera t ion ,  da t a  were obtained from 16 earthquakes ranging 
in magnitude from 4.8 t o  7.2. Iwasaki concluded from the  ana lys i s  of 
the acce le ra t ions  recorded i n  t h e  boreholes a t  t h e  d i f f e r e n t  depths, 
that  t he  d i s t r i b u t i o n  of  t h e  maximum acce l e r a t i ons  va r i e s  consider- 
ably with t h e  change of  s o i l  condit ions near  t h e  ground sur face .  
Ratios of t h e  sur face  acce le ra t ion  t o  t h a t  a t  t h e  deeper layer  (110 
t o  150 m) a r e  about 1.5 a t  a rocky ground, 1.5 t o  3 a t  sandy grounds, 
and 2.5 t o  3.5 a t  a very clayey ground. Although t h e  acce le ra t ion  
values a r e  smaller  a t  deeper layers ,  frequency c h a r a c t e r i s t i c s  of 
underground se i smic  motions a r e  c l o s e  t o  those o f  t h e  sur face  motions. 

Information on earthquake damage from South Afr ica  was obtained 
during discussions with U.S. Geological Survey personnel. On 
December 16. 1976, a damaging earthquake of magnitude 5.0 t o  5.5 was 
recorded a t  Welkom. South Africa. The sur face  damage was extreme, 
with la rge  s t r u c t u r e s  f a i l i n g .  Displacements 510 cm were noted i n  
the mine a t  a depth of 2.0 km. The foca l  depth of t h e  earthquake was 
%6 km. 

In both t he  Rand Gold d i s t r i c t  and t h e  Orange Free S t a t e  d i s t r i c t ,  
s tud ies  were conducted t o  a s s e s s  the  r e l a t i onsh ip  of acce le ra t ion ,  
displacement, and frequency of earthquakes t o  magnitude during mining 
operat ions.  These mines a r e  up t o  4 km i n  depth. ~ c ~ a r r ' ~  noted t ha t  
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shear  displacements on t h e  order  of  5 t o  10 cm were assoc ia ted  with 
rock b u r s t s  of magnitude 2 t o  3 due t o  r e s u l t i n g  s t r e s s  r e d i s t r i b u -  
t ion .  These d a t a  a r e  very important and, along with t h e  d a t a  a t  
Welkom, may give some i n d i c a t i o n s  of upper bounds of  displacements 
near  earthquake sources i n  t h e s e  very hard rocks. 

f i e  u.s.G.s." study o f  t h e  Alaskan earthquake o f  1964 repor ted  
t h a t  no s i g n i f i c a n t  damage was repor ted  t o  underground f a c i l i t i e s ,  
such a s  mines and tunne ls ,  a s  a r e s u l t  of  t h e  earthquake, although 
some rocks were shaken loose i n  places.  Included i n  t h i s  a n a l y s i s  
were r e p o r t s  of no damage i n  t h e  coa l  mines of t h e  Matanuska Valley, 
t h e  r a i l r o a d  tunnels  near  Whit t ier ,  t h e  tunnel  and penstocks a t  t h e  
Eklutna hydroe lec t r ic  p r o j e c t ,  and t h e  Chugach E l e c t r i c  Association 
tunnel  between Cooper Lake and Kenai Lake. m e r e  were a l s o  no r e p o r t s  
of damage t o  t h e  o i l  and gas wells  i n  and along cook I n l e t .  f i e  
repor t s  of non-damage from t h e  Alaskan earthquake a r e  s i g n i f i c a n t .  
This earthquake was one of t h e  l a r g e s t  (M = 8.5) t o  occur i n  t h i s  
century, and sur face  damage was extreme. 

During t h e  1960 Chilean earthquake, one of t h e  s t ronges t  ea r th -  
quakes on record, miners i n  coa l  mines heard s t range  no ises  but f e l t  
no e f f e c t s  of t h e  quake. Later.examination of these  mines, which 
extend under t h e  ocean, showed severa l  o l d  f a u l t s ,  but no new 
movement. l 8  

S imi la r  r e s u l t s  were repor ted  by cookelg f o r  t h e  P e n  earthquake 
of May 31, 1970. The earthquake of  Richter  magnitude 7.7 d i d  no 
damage t o  16 r a i l r o a d  tunne ls  t o t a l i n g  1740 m under l i t t l e  cover in 
zones of VII t o  VIII i n t e n s i t y .  Also, no damage was reported to 
t h e  underground works of a hydroe lec t r ic  p lan t ,  and 3 coa l  and 2 lead  
z inc  mines i n  t h e  MM VII i n t e n s i t y  zone. 

Nuclear Events a s  Earthquake Simulators 

I h e  use of nuc lear  events  as  equivalent  earthquake sources has 
been discussed. 2 0 ' 2 1  The d a t a  from nuclear  events can be useful  in 
assessing t h e  p o t e n t i a l  damage from earthquakes t o  underground 
fac i l i t i es .  The r e s u l t i n g  v e l o c i t i e s ,  acce le ra t ions ,  and displace-  
merits from nuclear  even ts  have been monitored care fu l ly  because of 
t h e i r  importance t o  defense-related i s sues .  In many cases,  t h e  d a t a  
a r e  obtained a t  condit ions t h a t  would be near  t h e  hypocenter of t h e  
earthquake and thus  more severe than would be an t ic ipa ted  from any 
earthquake a f fec t ing  an underground f a c i l i t y .  I t  should be possible, 
however, t o  p lace  c e r t a i n  bounds on t h e  maximum acce le ra t ions ,  
v e l o c i t i e s ,  and displacements expected from comparable earthquakes. 
nlis would be he lpfu l  i n  e s t a b l i s h i n g  damage c r i t e r i a  f o r  p o t e n t i a l  
earthquake damage. 
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~t t h e  o u t s e t ,  it is important t o  compare nuc lear  even ts  with 
earthquakes t o  determine t h e  s c a l i n g  r e l a t i o n s h i p s  between t h e  two- 
An important po in t  t o  make is t h a t  a comparable magnitude only indi-  
ca tes  t h a t  p-wave s i g n a l s  from both earthquakes and explosions a r e  of 
equal s t reng th .  However, nuc lear  explosions tend t o  produce much 
weaker sur face  waves than do earthquakes of comparable body-wave 
magnitude (Figure 4) .  As a consequence, t h e  sur face  wave energy 
associated with an earthquake of a given body-wave magnitude i s  on 
the  order  of t e n  times t h a t  o f  an explosion of an equal 
magnitude. 2 Q  f i e re fore ,  a magnitude 5 explosion does not have t h e  
same p o t e n t i a l  f o r  causing ground motion damage a t  t h e  sur face ,  a s  
does a magnitude 5 earthquake. An a n a l y s i s  of displacements ,  acce le r -  
a t ions ,  and v e l o c i t i e s  a t  depth and a t  t h e  sur face  from nuc lear  events  
i n  rock i s  given by p r a t t 2 1  and P e r r e t . 2 2  

Wells 

Ihe damage t o  water  and o i l  w e l l s  has  been documented i n  a l imi ted  
number of repor t s .  F a i l u r e  of  water w e l l s  is pr imar i ly  due t o  sanding 
o r  s i l t i n g ,  but ,  i n  some ins tances  t h e r e  has  been crushing,  bending, 
o r  shearing of  t h e  cas ing  due t o  d i f f e r e n t i a l  movement of  t h e  sur-  
rounding rock. Ihe  l a t t e r  mode of f a i l u r e  h a s  a l s o  a f f e c t e d  some o i l  
wells.  The damage t o  wel l s  appears t o  be more of  a near-surface 
phenomenon than one a t  depths of  ,100 m, except  where t h e  well  c rosses  
a f a u l t .  

Some damage t o  wel l s  occurred during t h e  earthquake on February 9. 
1971, i n  San Fernando, ~ a l i f o r n i a . ~ ~  Minor damage was repor ted  t o  a 
few o i l  wel l s  i n  t h e  a r e a ,  and a l l  seven wel l s  which supplied water 
t o  t h e  c i t y  o f  San Fernando suf fe red  damage during t h e  earthquake 
causing a severe  water supply problem. O i l  we l l s  i n  t h e  g r e a t e r  Los 
Angeles a rea  which c ross  f a u l t s  have had t h e  casing m p t u r e d  by move- 
ment along t h e  f a u l t s ,  but ,  it is uncer ta in  i f  t h e  movement is  creep 
of  a t e c t o n i c  o r i g i n  o r  se t t l ement  due t o  subsidence. Damage t o  wells  
i n  t h e  San Joaquin Valley due t o  compaction of sediments which is  
caused by t h e  withdrawal o f  groundwater is r e l a t i v e l y  comon, but t h i s  
damage is due t o  aseismic causes. A reduct ion i n  peak a c c e l e r a t i o n  
of  a f a c t o r  of  5, from 0.05 g a t  t h e  sur face  t o  0.01 g a t  t h e  depth 
of 165 m i n  a borehole, was noted during t h e  ~ r i o n e s  earthquake 
(ML = 4 . ~ ) . ~ '  The borehole was loca ted  i n  t h e  Hayward f a u l t  i n  
Berkeley, C a l i f o r n i a .  

f i e  U.S.G.S. documented t h e  e f f e c t s  of  t h e  Alaskan earthquake, 
March 27, 1964, on wel l s  throughout most o f  Alaska and t h e  changes 
i n  water l e v e l s  noted i n  t h e  lower 48. wal ler2 '  summarized t h e  
damage t o  wel l s  i n  Alaska a s  mainly due t o  sanding o r  s i l t i n g  of t h e  
well o r  d i f f e r e n t i a l  movement of  cas ing  caused by movement of t h e  
surrounding rock. f i r e e  c i t y  wel l s  were damaged i n  ~ n c h o r a g e  and 
possibly one p r i v a t e  well .  Three c i t y  wel l s  i n  Seward were damaged 
and rendered u s e l e s s  by ground movement and f i s s u r i n g .  In Valdez, 

? 
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FIGURE 4. Mean Surface-Wave Magnitude (M) Versus Body-Wave 
Magnitude (m) f o r  28 Earthquakes and 26 Nuclear 
Explosions In Southwestern North America, a s  
determined by Canadian Measurements 
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one well had t h e  casing sheared a t  a threaded j o i n t  4.7 m below ground 
surface. No damage was reported t o  any o f  t h e  o i l  and gas wel l s  i n  
and along Cook I n l e t .  

In genera l ,  t h e  performance o f  wel l s  during earthquakes is q u i t e  
good, with t h e  major damage r e s u l t i n g  from bending, crushing, o r .  
shearing of  t h e  casing due t o  d i f f e r e n t i a l  movement of  t h e  surrounding 
rock. The major damage appears t o  be t o  shallow wel l s  t h a t  a r e  i n  
unconsolidated sediments and near t h e  ~ u r f a c e .  There i s  very l i t t l e  
damage t o  wells  deeper than about 100 m except where t h e  well crosses  !, 

a f a u l t  plan along which movement occurs. i 
In summary, t h e  damage t o  underground tunnels ,  mines, and wel l s  

does not have a l a r g e  d a t a  base, e s p e c i a l l y  with respec t  t o  measured 
displacement. However, t h e  r e l a t i o n  between v e l o c i t y  (and thus  
dis tance f o r  M = 5, 6 ,  and 6.5) and damage l e v e l  has  been summarized 
by ~ o z e n . ~  Strong t e n s i l e  and some r a d i a l  cracking was noted a t  
surface v e l o c i t i e s  of  152 cm/sec which would occur  a t  d i s tances  of 
about 7 t o  8 km during a magnitude 6.5 earthquake. Even a t  t h e s e  
leve l s ,  seismic damage would be n e g l i g i b l e  i n  competent rock. 

The d a t a  f o r  measured displacements a s  a funct ion of  depth a r e  
summarized i n  Table 1 and Figure 5. Surface displacements range from 
a t  l e a s t  1 t o  10 m,  depending on geology, magnitude, e t c . ,  but  
decrease markedly with depth. Displacements of  525 cm have been 
measured a t  100 m depth i n  in a i t u  rock masses. Displacements of <7 m 
have been noted along pre -ex is t ing  f a u l t s .  The d a t a  base below 500 m 
is  almost neg l ig ib le .  The one da ta  po in t  fmm South Africa needs more 
d e t a i l e d  s tudy of  displacement, rock type,  and l o c a l  t e c t o n i c  
environment . 
BLOCK MOTION PHENOMENA I 

The r o l e  o f  block motion o r  d i f f e r e n t i a l  displacement along e i t h e r  
p re -ex is t ing  o r  induced f r a c t u r e s  due t o  earthquakes o r  l a r g e  explo- 
s ions can enhance our  understanding of  displacement f i e l d s  i n  l i g h t  of 
the  small d a t a  base from earthquakes. The major quest ions t h a t  need 
t o  be discussed are:  

Are observed sur face  f a u l t i n g  phenomenon r e s t r i c t e d  t o  t h e  
surface? I 

How deep and how d i s t a n t  from t h e  event can d i f f e r e n t i a l  I 

displacements occur? I 
How does t h e  source type determine s u r f a c e  and near-surface 
rupture and deformation phenomenon? 

Can p o t e n t i a l  block motion be pred ic ted  i n  terms of  loca t ion  and 
magnitude with respec t  t o  various geologic s t r u c t u r e s ,  f a u l t s .  
f r a c t u r e s ,  and j o i n t  systems? I 



TABLE 1 

DISPLACEMENTS AT DEPTH FOR MAJOR EARTHQUAKES 

San Francisco (1 906) 

South A f r i ca  (1976) 

Japan (1930) 

Japan (1930) 

Japan (1930) 

San Fernando (1 971 ) 

Japan (1923) 

Japan (1923) 

Kern County (1 952) 

Kern County (1952) 

21 4 

2,000 

140 

160 

160 

Surface 

76 

50 

50 

73 

137 

10 

750 . 

239 

51 

190 

25 

<1 

<20 

<20 

Shear Ex is t ing  
Faul t 

Hor izonta l  

Hor izonta l  

Ve r t i ca l  

Ve r t i ca l  

8.3 

5.1 

7.0 

7.0 

6.5 

8.16 

8.16 

7.6 

7.6 
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The r e l a t i o n s h i p  o f  s e i s m i c  a f t e r s h o c k s  t o  t o t a l  s t r e s s  f i e l d  
changes and t h e  r o l e  o f  in situ s t r e s s  and f l u i d  con ten t  on t h e  r e l a -  
t i v e  s t r e n g t h  p r o p e r t i e s  o f  t h e  rock masses needs t o  be determined. 
Sur face  waves (Raleigh and Love) r e l a t e d  t o  f a u l t  motions and t e c t o n i c  
energy r e l e a s e  need t o  be  analyzed. We a l s o  need more c r i t i c a l  
measurements and p r e d i c t i v e  models from t h e  f i e l d  t e s t s  t o  r e l a t e  
s u r f a c e  and subsur face  e f f e c t s .  The important d a t a  include:  
(1) geo log ic  evidence o f  s u r f a c e  displacements  from ear thquakes  and 
l a r g e  exp los ive  even t s  t o  e v a l u a t e  both s u r f a c e  and subsur face  d i s -  
placements;  (2) se i smolog ica l  evidence based on spontaneous block 
motion dur ing  ear thquakes  from f a r - f i e l d  ground motion record ings ,  
from obse rva t ions  o f  s u r f a c e  f a u l t i n g ,  from n e a r - f i e l d  ground motion 
record ings  and s t u d i e s  o f  a f t e r s h o c k  a c t i v i t i e s ;  (3) d a t a  from h igh  
exp los ives  s imula t ion  exper iments ;  and (4) a v a r i e t y  o f  a n a l y t i c a l  
models r e s u l t s  t o  e v a l u a t e  block motion. 

Geological  Evidence f o r  Block Motion 

Accelera t ion,  v e l o c i t y ,  and displacement ,  a s  a func t ion  o f  d i s t a n c e  
and magnitude o f  ear thquake,  has  been d i scussed  i n  d e t a i l  p re -  
v i ~ u s l y . ~ '  Observed f a u l t  d isplacement  a t  depth  from some o f  t h e  
l a r g e r  ear thquakes  a r e  summarized i n  Table  1 and p l o t t e d  a s  a func t ion  
o f  depth  i n  F igure  5. 

Seismological  Evidence f o r  Block Motion 

The se i smolog ica l  evidence f o r  b lock motion from both ea r thquakes  
and l a r g e  explosions  inc lude ,  f o r  t h e  l a r g e  explosions ,  f a r - f i e l d  
ground motion record ings ,  t h e  obse rva t ion  o f  s u r f a c e  f a u l t i n g ,  and 
n e a r - f i e l d  ground motion There i s  a l s o  evidence of  
p o s s i b l e  block motion a c t i v i t y  from ear thquake o r  nuc lea r  even t s .  
Earthquakes occur  when t h e  l o c a l  t e c t o n i c s  s t r e s s  f i e l d  i n c r e a s e s  
beyond t h e  f a i l u r e  s t r e n g t h  o f  t h e  rock mass. The s t r e s s  r e l e a s e ,  
which may cause  block motion displacements  i s  probably caused e i t h e r  
by a p r e s t r e s s e d  medium o r  by t h e  asymmetry o f  t h e  source  o f  t h e  
earthquake. 2 6  

Simulat ion Experiments 

E v i s n c e  of block motion e x i s t s  from nea r - su r face ,  h igh  exp los ive  
t e s t s .  These i n c l u d e  t e s t s  i n  sedimentary and igneous rock. The 
d i f f e r e n t i a l  d isplacement ,  p a r t i c l e  v e l o c i t y ,  and p o t e n t i a l  d i s p l a c e -  
ments a t  a c t u a l  and s c a l e d  ranges  were measured f o r  t h e s e  h igh  explo- 
s i v e  events .  Block motion displacements  observed i n  t h e s e  even t s  
inc lude  j o i n t  block displacement ,  t h r u s t  block displacement,  and 
f r a c t u r e  and bedding p lane  movements. Sur face  displacements  up t o  
s e v e r a l  f e e t  have been measured. 
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Models 

Various a n a l y t i c a l  models have been formulated t o  e s t i m a t e  poten- 
t i a l  d isplacements  d u r i n g  l o a d i n g  due t o  exp los ions .  Dai and ~ i ~ n e r ~ '  
have developed models t o  a s s e s s  va r ious  r eg ions  o f  i n t e r e s t  f o r  b lock 
motion displacements .  Th i s  would i n c l u d e  t h e  f r e e - s u r f a c e  r eg ion  
where t h r u s t  b lock model and s u r f a c e  block-dynamic re sponse  models a r e  
app l i cab le ,  and a t  depth  where k inemat i c  and i n c i p i e n t  f a u l t  motion 
models a r e  a p p l i c a b l e .  These models may be  modif ied f o r  a n  ear thquake 
source ,  bo th  i n  terms o f  geometry from t h e  deep source  and i n  terms of 
t h e  nuc lea r / ea r thquake  s o u r c e  energy r a t i o s .  The r e l a t i v e  i n f l u e n c e  
f o r  a p a r t i c u l a r  j o i n t  f r a c t u r e  o r  f a u l t  system w i l l  be  important .  
Whether a shea r  f a i l u r e  occurs  depends on t h e  d i s t a n c e  o f  t h e  f a u l t  
o r  d i s c o n t i n u i t y  from t h e  source ,  t h e  o r i e n t a t i o n  o f  t h e  d i s c o n t i -  
nu i ty ,  and t h e  l o c a l  in situ s t r e s s  cond i t ions .  These c o n s i d e r a t i o n s  
a r e  t h e  obvious ones  and must be  addressed i n  o r d e r  t o  make quan t i t a -  
t i v e  p r e d i c t i o n s  concerning f a i l u r e .  However, i n  most p r a c t i c a l  
in s t ances  a n a l y t i c a l  s o l u t i o n s  can be  p r o h i b i t i v e l y  complicated 
because o f  m a t e r i a l  inhomogeneity and n o n l i n e a r  e f f e c t s  n e a r  t h e  
source  i n  t h e  presence o f  f r e e  s u r f a c e .  

One i d e a l i z a t i o n  o f  t h i s  problem t h a t  has  been s o l v e d  a n a l y t i c a l l y  
i s  one o f  i n c i p i e n t  f a u l t  motion due t o  a s p h e r i c a l  e l a s t i c  wave i n  
an i n f i n i t e  homogeneous i s o t r o p i c  medium." Using reasonab le  f r i c -  
t i o n a l  f a i l u r e  c r i t e r i a ,  t h e  f a i l u r e  s u r f a c e  o f  an a r b i t r a r y  p l a n e  
was c a l c u l a t e d  a s  a f u n c t i o n  o f  o r i e n t a t i o n  and d i s t a n c e  from an 
exp los ive  source .  R e s u l t s  from t h e  a n a l y t i c a l  s o l u t i o n  i n d i c a t e d  
o r i e n t a t i o n s  c l o s e r  t o  0 = 60' a r e  c l e a r l y  most s u s c e p t i b l e  t o  
f a i l u r e .  They a l s o  i n d i c a t e  t h a t  t h e  t iming  o f  t h e  p u l s e  a r r i v a l  and 
t h e  p u l s e  shape a f f e c t s  j o i n t  f a i l u r e .  For ve ry  s h a r p  p u l s e s  and 
angles  l e s s  than  3S0, f a i l u r e  w i l l  n o t  occur  no m a t t e r  how c l o s e  t h e  
j o i n t  o r  f a u l t  is t o  t h e  s o u r c e  r a d i u s .  These r e s u l t s  should be  
t r a n s f e r a b l e  t o  ear thquake sources .  

STATIC DISPLACEMENT FIELDS OF EARTHQUAKES 

Surface  Displacements 

The u s e  o f  permanent s u r f a c e  deformat ion t o  i n f e r  something about  
t h e  f a u l t i n g  parameters  fol lowed t h e  development o f  d i s l o c a t i o n  
theory.  A d i s l o c a t i o n  s u r f a c e  i s  a p l a n e  w i t h i n  an e l a s t i c  medium 
ac ross  which t h e r e  i s  a d i s c o n t i n u i t y  i n  t h e  displacement  v e c t o r  
( i . e . ,  a f a u l t ) .  S teke tee3 '  used t h e  t h e o r y  of  d i s l o c a t i o n s  i n  a 
s e m i - i n f i n i t e ,  i s o t r o p i c ,  e l a s t i c  medium a s  a mathemat ical  model o f  
f a u l t i n g .  c h i n n e r y a 2  used some o f  S t e k e t e e ' s  r e s u l t s  t o  s t u d y  t h e  
s u r f a c e  deformat ion aroond rec tangu la r ,  v e r t i c a l ,  s t r i k e - s l i p  f a u l t s .  

Accompanying t h e  development o f  t h e  theory  was t h e  accumulat ion o f  
geode t i c  d a t a  on observed s u r f a c e  deformat ion a s s o c i a t e d  wi th  l a r g e  
earthquakes.  h e  of  t h e  e a r l i e s t  ea r thquakes  wi th  well-documented 
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sur face  displacements is t he  San Francisco earthquake o f  1906. 
Horizontal displacements g r ea t e r  than 4 m were documented near  
Tomales Bay (Figure 6) .  Ve r t i c a l  displacements associated with t h e  
1964 Alaskan earthquake were documented over  an area of  about 200,000 
km2 with maximum u p l i f t  averaging 3 m over a broad area. Table 2 
summarizes sur face  deformation d a t a  from a number of  l a rge  
earthquakes. 

Most of  the  da ta  on s t a t i c  deformation associated with earthquakes 
is confined t o  sur face  observat ions f o r  obvious reasons. Thus, i n  
t he  s t ud i e s  mentioned e a r l i e r ,  t h e  equations of  the deformation f i e l d  
were o f t en  s impl i f ied  by e l imina t ing  t he  depth dependent term. Yet, 
t h a t  is exac t ly  what i s  required f o r  t h i s  study.. Therefore, a 
computer program was developed which provides the  s t a t i c  deformation 
f i e l d  around a f a u l t  a s  a funct ion depth. 

'Iheory and Computat ions  

s teketee" derived t he  general  so lu t ion  f o r  t he  s t a t i c  displacement 
f i e l d  i n  a semi- inf in i te  medium using a Green's function approach. 
Assuming t he  d i scont inu i ty  A u ~  i s  a r i g i d  body displacement ( i . e . ,  a 
constant displacement  f a u l t  segment), the so lu t ion  i s  given as:  

where Uk is  t he  displacement, u is  the  r i g i d i t y  modulus, 1 i s  the  
d i s loca t ion  surface,  A U i  a r e  t he  displacements on C , and Vj a r e  t he  
d i r ec t i on  cosines of  t he  normal t o  the surface element d z .  The 

terms a r e  t he  Green's funct ions represent ing the displacement 
:t!!ds i n  a semi- inf in i te  medium due t o  a s e t  o f  elementary force  
systems. 

Consider t he  rec tangular  coordinate system depicted i n  Figure 7(a). 
~h inne ry"  in tegra ted  t he  above expression over a rec tangle  i n  t h e  
XI - X ,  plane. He fu r t he r  r e s t r i c t e d  the problem to  the  case of  a 
constant displacement Aui = f l  i n  t he  X I  d i rec t ion .  With these  
assumptions, an ana ly t i c  so lu t i on  i s  possible .  The so lu t ion ,  even i n  
i nde f in i t e  i n t eg r a l  form is very long and cumbersome and w i l l  not  be 
reproduced here.  Chinnery s impl i f ied  h i s  expression by s e t t i n g  the  
depth parameter X, equal t o  zero and assuming t h a t  Lame's parameter 
h i s  equal t o  p. The l a t t e r  assumption i s  adopted, however, the  depth 
dependence i s  re ta ined .  The r e su l t i ng  equations were programmed fo r  
rap id  ca lcu la t ions  o f  t he  s t a t i c  displacement f i e l d s  as  a funct ion of  
depth f o r  various v e r t i c a l  s t r i k e - s l i p  f a u l t  s i z e s .  Corresponding 
equations and programs were developed f o r  the v e r t i c a l  d i p - s l i p  f a u l t .  

An example of the  output  o f  t he  programs is given i n  Figure 8. 
Here displacements a r e  p lo t t ed  and contoured a s  a function o f  d i s tance  
along o r  away from the  f a u l t .  To general ize t h e  r e s u l t s  a s  much a s  
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FIGURE 6. Fall Off of Horizontal Displacements with Distance from 
San Andreas Fault  f o r  1906 Earthquake i n  Cal i forn ia  
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FIGURE 8. Displacement Contours (mn displacement/meter s l i p  on f a u l t )  
f o r  Vert ical  S t r i k e  S l i p  Fau l t ,  Faul t  Semi-length = 1.0, Depl 
t o  Top of  Faul t  = 0.0, Depth t o  Bottom of Fault = 2.0 
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possible ,  t h e  f a u l t  parameters a r e  normalized by t h e  ha l f - leng th  (L) 
of t h e  f a u l t .  Thus, t h e  length o f  t h e  f a u l t  (2 L) , t h e  depth t o  t h e  
top of t h e  f a u l t  (Dl),  depth t o  t h e  bottom of t h e  f a u l t  (D2). and t h e  
width of t h e  f a u l t  (D2 - Dl) must be  mul t ip l ied  by t h e  ha l f - leng th  i n  
order t o  convert t h e  numbers t o  t r u e  d i s t a n c e  u n i t s .  'Ihe d i sp lace-  
ments i n  t h e  medium a r e  normalized by t h e  cons tan t  s l i p  (n) on t h e  
f a u l t  and a r e  i n  u n i t s  of mi l l imete rs  of  displacement per  meter o f  
s l i p  on t h e  f a u l t .  'Ihe output  of t h e  program f o r  any input  of f a u l t  
parameters, L, D l ,  and D2 has t h e  fol lowing format: a t  each spec i f ied  
depth the  U 1 ,  U 2 ,  U 3 ,  and UI, components o f  h o r i z o n t a l  displacement i n  
the  X I ,  X 2  d i r e c t i o n s ;  t h e  U 3  component i s  t h e  v e r t i c a l  displacement 
(posi t ive down); and the  U4  component is t h e  t o t a l  displacement ( i .e . ,  
t h e  vector  sum of  U1, U 2 ,  and US). Only one quadrant i s  necessary 
due t o  symmetry. 

For t h e  ac tua l  computations we chose t o  look a t  t h r e e  d i f f e r e n t  
geometries f o r  each of t h e  s t r i k e - s l i p  f a u l t  and d i p - s l i p  f a u l t  cases. 
Case I modeled long, shallow f a u l t s  by s e t t i n g  D l  = 0.0 and D2 = 0.1; 
Case I 1  modeled square, shallow f a u l t s  by s e t t i n g  D l  = 0.0 and 
D2 = 2.0; and Case 111 modeled square, deep f a u l t s  by s e t t i n g  D l  = 2.0 
and D2 = 4.0. In each case, displacements were ca lcu la ted  a t  depth 
values of 0.0, 0.1, 0.5, 1 .0,  2.0, 3.0, and 4.0 ( r e c a l l  t h a t  these  
numbers a r e  normalized by t h e  f a u l t  ha l f - leng th) .  Because t h e  amount 
of output f o r  even t h e  few cases considered was enormous, t h e  r e s u l t s  
were tabulated and p l o t t e d  i n  t h e  fol lowing manner: f o r  a s p e c i f i c  
surface loca t ion  (XI, X2) t h e  t o t a l  displacement a s  a funct ion of  
depth was p l o t t e d  f o r  each of  the .  t h r e e  cases  f o r  both s t r i k e - s l i p  
and d i p - s l i p  f a u l t s  producing a t o t a l  of  s i x  curves f o r  each p l o t .  
We chose t h e  seven l o c a t i o n s  shown i n  Figure 7(b) a s  represen ta t ive  
of t h e  displacement f i e l d .  In t h i s  manner a l a r g e  amount o f  informa- 
t ion is presented i n  a small number of  f i g u r e s .  

Displacements a s  a Function of  Depth 

Deta i l s  of t h e  displacement p a t t e r n  around f a u l t s  vary g r e a t l y  
depending on the  p a r t i c u l a r  component o f  displacement and t h e  type  
of f a u l t  ( s t r i k e - s l i p  o r  d i p - s l i p ) .  For t h e  purpose of  t h i s  r e p o r t  
only t h e  t o t a l  magnitude o f  displacement w i l l  be considered i n  d e t a i l .  
Because t h e  t o t a l  magnitude i n  e f f e c t  averages a l l  t h r e e  components, 
the v a r i a t i o n s  of  displacement a s  a funct ion o f  azimuth from t h e  
center  of  the  f a u l t  a r e  smoothed ou t .  'Iherefore, t h e  v a r i a t i o n s  i n  
displacement t h a t  occur away from t h e  f a u l t  a t  an angle o f  45' i s  
represen ta t ive  of t h e  azimuth range 0' t o  90'. Figure 9 i l l u s t r a t e s  
the t o t a l  displacement a s  a funct ion of d i s t a n c e  from t h e  f a u l t  a t  
the sur face  and a depth of 1.0. A l l  t h r e e  cases  f o r  both d i p - s l i p  
and s t r i k e - s l i p  f a u l t s  a r e  p l o t t e d  on each graph. For most cases ,  
the displacement drops o f f  r a p i d l y  away from t h e  f a u l t .  In f a c t ,  f o r  
the shallow square f a u l t ,  v e r t i c a l  d i p - s l i p  case, t h e  displacements 
jus t  beneath t h e  f a u l t  can exceed t h e  a c t u a l  s l i p  on t h e  f a u l t .  'Ihis 
must be  due t o  some s o r t  o f  f ree -sur face  ampl i f ica t ion  e f f e c t .  'Ihere 
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I I I I I 
CASE I VSS I (Long shallow fault) l VSS - VERTICAL STRIKE 

2 2 (Sauar* rhallaw fault) o SLIP FAULT - 
S 3 ( ~ i u a r e  deep fault)  
4 VDS I (Long shallow fault) a VDS- VERTICAL DIP SLlP 
5 2 (Sauare rhallow fault) 0 FAULT I 

iURE 9. Displacement as a Function o f  Distance from Fau l t  a t  the Surface 
and a t  a Depth o f  1 F a u l t  Length I 
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a r e  s e v e r a l  c a s e s  f o r  which t h e  maximum displacement  occurs  away from 
the  f a u l t .  At t h e  s u r f a c e ,  t h e  square ,  deep s t r i k e - s l i p  f a u l t  r eaches  
a maximum a t  a d i s t a n c e  s l i g h t l y  g r e a t e r  than h a l f  a f a u l t  l e n g t h  
away; t h e  square ,  deep d i p - s l i p  f a u l t  r eaches  a maximum n e a r  a q u a r t e r  
of  a f a u l t  l eng th  away. At a depth  o f  h a l f  a f a u l t  l e n g t h ,  t h e  d i s -  
placement curve f o r  t h e  long, shallow s t r i k e - s l i p  f a u l t  changes 
d r a s t i c a l l y  from t h e  s u r f a c e  curve.  

'Ihe displacements  a s  a f u n c t i o n  of depth  a r e  p r e s e n t e d  g r a p h i c a l l y  
i n  Figures  10 and 11. A t  a p o i n t  c l o s e  t o  t h e  f a u l t  (F igure  8) a l l  
t h e  curves ,  except  one, have a maximum v a l u e  o f  about  400 mm/m a t  a 
depth where t h e  f a u l t  is  loca ted .  For t h e s e  c a s e s ,  t h e  displacements  
become ve ry  smal l  wi th in  h a l f  a f a u l t  l eng th  away from t h e  depth a t  
which t h e  maximum occurs .  The one excep t ion  t o  t h e s e  g e n e r a l i z a t i o n s  
is t h e  shal low,  square  f a u l t  which was mentioned e a r l i e r .  At a f u l l  
f a u l t  l eng th  away t h e  displacements  a r e  diminishing,  but  a r e  s t i l l  
near  t h e  maximum va lue  o f  t h e  o t h e r  cases .  

A t  t he  p o i n t  (1. 1 ) .  t h e  displacement  cu rves  t end  t o  vary l e s s  
d r a s t i c a l l y  wi th  depth  (Figure  11) .  With two excep t ions ,  t h e  curves  
remain n e a r  a va lue  o f  100 mmlm. The excep t ions  a r e  t h e  long,  
shallow f a u l t s .  The s t r i k e - s l i p  f a u l t  h a s  displacements  which 
inc rease  r a p i d l y  from a minimum v a l u e  a t  t h e  s u r f a c e  t o  a maximum 
near  a depth  o f  1 .0 .  The d i p - s l i p  f a u l t  has  displacements  which 
decrease  from a maximum a t  t h e  s u r f a c e  t o  n e a r l y  zero a t  a depth  o f  
4.0. 

A t  t h e  p o i n t  (2. 2) .  t h e  displacement  cu rves  have even l e s s  
cha rac te r .  Almost a l l  t h e  CUNeS a r e  n e a r l y  l i n e a r  wi th  dep th ,  l y i n g  
between va lues  o f  30 mmlm and 100 mmlm. The lone  excep t ion  i s  t h e  
long. shallow s t r i k e - s l i p  which aga in  dec reases  monotonical ly  t o  z e r o  
a t  a depth  o f  4 .O. 

Earthquake Source Parameter Re la t ionsh ips  

In t h e  p reced ing  s e c t i o n ,  t h e  f a u l t  model parameters  were normal- 
ized by t h e  h a l f - l e n g t h  o f  t h e  f a u l t .  Although t h e  normal i za t ion  
genera l i zes  t h e  r e s u l t s ,  it makes t h e  i n t e r p r e t a t i o n  o f  t h e  r e s u l t s  
i n  terms o f  a c t u n l  ear thquakes  more d i f f i c u l t .  To u s e  t h e  r e s u l t s  o f  
the  preceding s e c t i o n .  f o r  example, we need t o  know f o r  a g iven magni- 
tude ear thquake t h e  corresponding approximate f a u l t  l eng th .  Data a r e  
r equ i red  t o  p rov ide  t h e  necessa ry  r e l a t i o n s h i p s  among t h e  a p p r o p r i a t e  
ear thquake parameters  t o  make t h e  r e s u l t s  o f  t h e  p rev ious  s e c t i o n  
more meaningful. 

The most commonly used measure o f  t h e  s i z e  o f  an ea r thquake  is t h e  
magnitude; e i t h e r  l o c a l  (M1). body wave (Mb). o r  s u r f a c e  wave (M,) 
measurements. These magnitude measurements on ly  sample a narrow f r e -  
quency range o f  t h e  se i smic  wave spectrum. A b e t t e r  measure o f  t h e  
s i z e  o f  an ear thquake would sample a broader  range o f  t h e  spectrum. 
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MILLIMETERS OF DISPLACEMENT/METER SLlP ON FAULT 

LOCATION (.2,.?) CASE I VSS I (Long shallow fault)  l VSS - VERTICAL STRIKE 
2 2 (Square *hallow fault) o SLIP FAULT 
3 S (Square deep fault)  

, 4 VDS I (Long *hallow fault) a VDS- VE RTlCAL DIP SLlP 
S 2 (Square *hallow fault) 0 FAULT 
0 3 (Square deep fault) A 

MILLIMETERS OF DISPLACEMENT /METER SLlP ON FAULT 

LOCATION ( I, I) 

CASE I VSS I ( U n 9  *haI lw fault1 l VSS - VERTICAL STRIKE 
2 2 (Square *hallow lbM a SLIP FAULT 
3 3 (Square deep fauft)  
4 VDS I (Long *hallow fault)  a VDS- VERTICAL WP SLIP 
5 2 (Square ahallow fault) o FAULT 
0 3 (Square deep fault) A 
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Such a measure is  t he  seismic moment, MOD which i s  proport ional  t o  
t he  long period l eve l  of t h e  seismic source spectrum. In terms of 
physical  parameters, 

where p is t h e  r i g i d i t y  o f  the  medium around t h e  source, f l  is  t h e  
average s l i p  on t h e  f a u l t ,  and S i s  t h e  a rea  of t he  f a u l t .  Although 
t h e  ca lcu la t ion  o f  Mo o f  an earthquake is more involved than any of. 
t h e  o the r  magnitude measurements, more moment ca lcu la t ions  a r e  
becoming ava i lab le ,  espec ia l ly  f o r  t h e  la rger  earthquakes. 

Magnitude needs t o  be r e l a t ed  t o  two o ther  f a u l t  parameters; 
namely, f a u l t  length (L) and average f a u l t  displacement (Q). A t  t h e  
present time empirical  re la t ionsh ips  a r e  probably t h e  best .  These 
a r e  usua l ly  confined t o  t he  la rger  magnitude earthquakes, but because 
t he  l a rge r  earthquakes a r e  of primary i n t e r e s t ,  the  deficiency of 
data  on smaller  earthquakes i s  not c r i t i c a l .  In Figure 12 from 
chinnery3' some of  t h e  e a r l i e r  da ta  on magnitude displacement a r e  
p lo t ted .  Since t h a t  time, much da ta  has been accumulated, but t h e  
more recent  data  uses seismic moment ins tead  of magnitude a s  t h e  
independent parameter. 

For example, t he  sur face  horizontal  displacements noted f o r  t h e  
1906 San Francisco earthquakes (Figure 6 and Table 2) agree with 
those ca lcu la ted  f o r  a shallow, long, ve r t i c a l  s t r i k e - s l i p  f a u l t .  
The ca lcu la ted  displacements a l s o  agree with t h e  magnitude- 
displacement curve (Figure 12). The magnitude-fault length curve 
a l so  agrees with t h e  observed f i e l d  data. 

CONCLUSIONS 

The po t en t i a l  seismic r i s k  f o r  an underground f a c i l i t y  w i l l  be one 
of the  considerat ions i n  evaluat ing t h e  possible  locat ions.  A l i t e r a -  
t u r e  search and evaluat ion was performed t o  document t h e  damage or  
non-damage t o  underground f a c i l i t i e s  due t o  earthquakes. Damage was 
del ineated i n  terms of displacement and accelerat ion.  The sources of 
data  include both U.S. and foreign experiences of  earthquake damage 
t o  tunnels ,  mines, wel l s ,  and o ther  underground f a c i l i t i e s .  

The major conclusions developed from an assessment of t h e  informa- 
t i on  obtained i n  t h i s  study a r e  summarized a s  follows: 

(1) There a r e  very few da t a  on earthquake damage in  t h e  subsurface. 
This f a c t  i t s e l f  a t t e s t s  t o  t h e  lessened e f f ec t  of  earthquakes 
i n  t he  subsurface because mines ex i s t  i n  areas where s trong 
earthquakes have done extensive surface damage. 

(2) More damage i s  reported i n  shallow, near-surface tunnels  than 
i n  deep mines. Spec i f ica l ly ,  da t a  a r e  very sparse below 500 m. 

EARTHQUAKE DAMAOE TO UNDEROROUND FACILITIES 
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FIGURE 12. Magnitude M P la t ted  Agalnst the Logarithm of t h e  
Dlsplacernent D. The Solid Llne i s  a Least Squares 
F i t  t o  All o f  the  Polnts .  The Dashed Line i s  a 
Least Squares a t  the  Points  with M > 6.5 
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(3) In mines and tunne ls ,  l a r g e  displacements occur p r imar i ly  along 
pre -ex is t ing  f a u l t s  and f r a c t u r e s  o r  a t  the  sur face  entrance t o  
these  f a c i l i t i e s .  

(4) Data i n d i c a t e  v e r t i c a l  s t r u c t u r e s  such a s  wells  and s h a f t  a r e  
a l s o  not a s  s u s c e p t i b l e  t o  damage a s  a r e  surface f a c i l i t i e s .  
Even i n  t h e  Alaskan earthquake of  1964 (M = 8.5) few wel l s  were 
damaged. 

(5) Not enough d a t a  were found t o  assess  t h e  exact inf luence o f  
rock type,  but t h e  e f f e c t s  a r e  l e s s  i n  consolidated m a t e r i a l s  
than unconsolidated mate r ia l s ,  such a s  alluvium. Geologic 
s t r u c t u r e s ,  such as f a u l t s ,  seem t o  be a dominant f a c t o r  i n  
underground damage. 

(6) Frequencies most l i k e l y  t o  cause damage t o  subsurface f a c i l i t i e s  
a r e  s i g n i f i c a n t l y  higher  (50-100 Hz) than t h e  frequencies  (2-10 
Hz) t h a t  cause damage t o  sur face  f a c f l i t i e s .  

(7) Acceleration and displacement d a t a  from nuclear explosions may 
g ive  c lose- in  upperbound limits f o r  l a rge  earthquakes. 

(8) More a n a l y s i s  is required before a seismic c r i t e r i a  can be 
formulated f o r  t h e  s i t i n g  o f  an underground f a c i l i t y .  

Analysis of observed " r e l a t i v e  motion" d a t a  and ca lcu la t ions  of 
displacement f i e l d s  f o r  var ious  f a u l t  types and geometries ind ica te :  

(1) Most block, motion displacements have been recorded a t  t h e  
sur face  o r  a t  f r e e  sur face  of  tunnels .  

( 2 )  Relat ive block motion can occur  a t  depth, but displacement 
decreases markedly with d i s tance  and a decrease i n  energy 
source. 

(3) Analyt ical  models have been developed t o  predict  displacement 
a s  a funct ion of  d i s tance  and energy and t o  p red ic t  f a u l t  motion 
a s  a funct ion o f  d i s tance  and o r i e n t a t i o n  from a given source. 

(4) Calculated displacement f i e l d s  from v e r t i c a l  s t r i k e - s l i p  and 
v e r t i c a l  d i p - s l i p  f a u l t s  i n d i c a t e  t h a t :  

(a )  Displacements drop o f f  rap id ly  from t h e  f a u l t  i n  most 
cases  s tudied.  

(b) A t  a depth of one-half a f a u l t  length, t h e  displacement 
curve f o r  a shallow s t r i k e - s l i p  f a u l t  (e.g., San Andreas) 
changes d r a s t i c a l l y  from t h e  surface displacement curve. 

(c) Of t h e  models ca lcu la ted ,  shallow square v e r t i c a l  s t r i k e -  
s l i p  and d i p - s l i p  f a u l t s  give t h e  maximum displacement a s  
a funct ion of depth. 
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