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Abstract

The Waste Isolation Pilot Plant (WIPP) is located in southeastern New Mexico and is being developed by the U.S.
Department of Energy (DOE) for the geologic (deep underground) disposal of transuranic (TRU) waste. A detailed
performance assessment (PA) for the WIPP was carried out in 1996 and supports an application by the DOE to the
U.S. Environmental Protection Agency (EPA) for the certification of the WIPP for the disposal of TRU waste. The
1996 WIPP PA uses a computational structure that maintains a separation between stochastic (i.e., aleatory) and
subjective (i.e., epistemic) uncertainty, with stochastic uncertainty arising from the many possible disruptions that
could occur over the 10,000 yr regulatory period that applies to the WIPP and subjective uncertainty arising from the
imprecision with which many of the quantities required in the PA are known. Important parts of this structure are (1)
the use of Latin hypercube sampling to incorporate the effects of subjective uncertainty, (2) the use of Monte Carlo
(i.e., random) sampling to incorporate the effects of stochastic uncertainty, and (3) the efficient use of the necessarily
limited number of mechanistic calculations that can be performed to support the analysis. The use of Latin
hypercube sampling generates a mapping from imprecisely known analysis inputs to analysis outcomes of interest
that provides both a display of the uncertainty in analysis outcomes (i.e., uncertainty analysis) and a basis for
investigating the effects of individual inputs on these outcomes (i.e., sensitivity analysis). The sensitivity analysis
procedures used in the PA include examination of scatterplots, stepwise regression analysis, and partial correlation
analysis. Uncertainty and sensitivity analysis results obtained as part of the 1996 WIPP PA are presented and
discussed. Specific topics considered include two phase flow in the vicinity of the repository, radionuclide release
from the repository, fluid flow and radionuclide transport in formations overlying the repository, and complementary
cumulative distribution functions used in comparisons with regulatory standards (i.e., 40 CFR 191, Subpart B).
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1. Introduction

The Waste Isolation Pilot Plant (WIPP) is located in southeastern New Mexico and is being developed by the
U.S. Department of Energy (DOE) for the geologic (deep underground) disposal of transuranic (TRU) waste (U.S.
DOE 1980, 1990, 1993). Waste disposal will take place in panels excavated in bedded salt approximately 2,000 ft
below the land surface. As part of the development process for the WIPP, a sequence of performance assessments
(PAs) has been carried out by Sandia National Laboratories (SNL) to organize knowledge currently available about
the WIPP and to provide guidance for future research and development efforts (Marietta et al. 1989; Bertram-
Howery et al. 1990; WIPP PA 1991-1992, 1992-1993). The structure of these PAs derives from the U.S.
Environmental Protection Agency’s (EPA’s) regulation for the geologic disposal of radioactive waste: 40 CFR 191,
Subpart B: Environmental Radiation Protection Standards for the Management and Disposal of Spent Nuclear
Fuel, High-Level and Transuranic Radioactive Wastes (U.S. EPA 1985, 1993a; Helton 1993a; Helton et al. 1997).
The most recent iteration of these PAs was completed in the summer of 1996 and supports an application, designated
the Compliance Certification Application (CCA), by the DOE to the EPA for the certification of the WIPP for the
disposal of TRU waste (U.S. DOE 1996). This report presents a summary of uncertainty and sensitivity analysis
results obtained as part of the 1996 WIPP PA.

The report is organized as follows. The overall conceptual structure of the 1996 WIPP PA is described in
Chapter 2. This structure involves three basic entities: (1) A probabilistic characterization of different futures that
could occur at the WIPP site over the next 10,000 yr, (2) Models for the physical processes that take place at the
WIPP site and for the estimation of potential radionuclide releases that may be associated with these processes, and

(3) A probabilistic characterization of the uncertainty in the models and parameters that underlie the WIPP PA.

The probabilistic characterization of different futures is discussed in more detail in Chapter 3. This
characterization plays an important role in the construction of the complementary cumulative distribution function
(CCDF) specified in 40 CFR 191.13. Regulatory guidance and extensive review of the WIPP site resulted in
exploratory drilling for natural resources and the mining of potash being identified as the only significant disruptions
at the WIPP site with the potential to affect radionuclide releases to the accessible environment. Topics considered
in Chapter 3 include drilling intrusion time, drilling location, penetration of excavated/nonexcavated areas of the
repository, penetration of pressurized brine in the Castile Formation, borehole plugging patterns, activity level of

waste penetrated by a drilling intrusion, and time at which potash mining occurs.

Models for the physical processes that take place at the WIPP and for the estimation of potential radionuclide
releases are discussed in Chapter 4. These models are used in the construction of the CCDF specified in 40 CFR
191.13. Topics considered in Chapter 4 include two-phase (i.e., gas and brine) flow in the vicinity of the repository,

radionuclide transport in the vicinity of the repository, releases to the surface at the time of a drilling intrusion due to
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cuttings and cavings, releases to the surface at the time of a drilling intrusion due to spallings, releases to the surface
at the time of a drilling intrusion due to direct brine flows, brine flow in the Culebra Dolomite, and radionuclide

transport in the Culebra Dolomite.

The probabilistic characterization of parameter uncertainty is discussed in Chapter 5. It is this uncertainty that
gives rise to the uncertainty and sensitivity analysis results presented in this report. Further, this is the uncertainty
that must be considered in assessing the confidence that the CCDF specified in 40 CFR 191.13 will meet applicable
regulatory standards. Topics considered in Chapter 5 include uncertain variables incorporated into the 1996 WIPP

PA, the distributions assigned to these variables, and the correlations between variables.

Computational procedures that underlie the uncertainty and sensitivity analysis results presented in this report
are discussed in Chapter 6. Topics considered include sampling techniques (i.e., random, importance, and Latin
hypercube sampling), correlation control, sample size, statistical confidence for mean CCDF, generation of Latin
hypercube samples (LHSs), generation of individual 10,000 yr futures, construction of CCDFs, the Kaplan/Garrick
ordered triple representation for risk, calculations performed with the models discussed in Chapter 4, and the

sensitivity analysis techniques in use.

Uncertainty and sensitivity analysis results for two-phase flow in the vicinity of the repository under undisturbed
conditions are presented and discussed in Chapter 7. The primary emphasis is on conditions within the repository.
The topics considered include brine inflow, gas generation, repository pressure, brine saturation, and brine and gas

outflow.

Uncertainty and sensitivity analysis results for two-phase flow in the vicinity of the repository under disturbed
conditions (i.e., subsequent to one or more drilling intrusions) are presented and discussed in Chapter 8. Several
different patterns of drilling intrusion are considered: (1) a single drilling intrusion that does not penetrate
pressurized brine in the Castile Formation (i.e., an E2 intrusion), (2) a single drilling intrusion that penetrates
pressurized brine in the Castile Formation (i.e., an El intrusion), (3} an intrusion that does not penetrate pressurized
brine followed by an intrusion that does penetrate pressurized brine (i.e., an E2EI intrusion), and (4) multiple E1
intrusions. Uncertainty and sensitivity analysis results are presented for brine inflow, gas generation, repository
pressure, brine saturation, brine and gas outflow, and behavior of brine pockets in the Castile Formation subsequent

to a drilling intrusion.

Uncertainty and sensitivity analysis results for releases to the surface environment due to cuttings and cavings
and also to spallings are presented and discussed in Chapter 9. Results are presented for initial intrusions into the
repository and also for intrusions subsequent to an earlier intrusion. The procedures used to construct CCDFs

resulting from the cuttings and cavings releases and also from the spallings releases are described. The CCDFs that
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result from use of these procedures are presented, and the results of uncertainty and sensitivity analyses performed

with these CCDFs are described.

Uncertainty and sensitivity analysis results for releases to the surface environment due to direct brine flow (i.e.,
direct brine releases) are presented and discussed in Chapter 10. Results are presented for initial intrusions into the
repository and also for intrusions subsequent to an earlier intrusion. The procedures used to construct CCDFs
resulting from direct brine releases are described. The CCDFs that result from use of these procedures are presented,

and the results of uncertainty and sensitivity analyses performed with these CCDFs are described.

Uncertainty and sensitivity analysis results for dissolved and colloidal radionuclide releases from the repository
to the overlying Culebra Dolomite are presented and discussed in Chapter 11. Releases due to El, E2 and E2E1
intrusions are considered. Further, the procedures used to construct CCDFs for radionuclide releases from the
repository to the Culebra are described. The CCDFs that result from use of these procedures are presented, and the

results of uncertainty and sensitivity analyses performed with these CCDFs are described.

Uncertainty and sensitivity analysis results for radionuclide transport in the Culebra Dolomite are presented and
discussed in Chapter 12. No significant transport through the Culebra to the accessible environment occurred, with
the result that meaningful sensitivity studies were not possible for radionuclide transport through the Culebra with
the initial transport calculations performed for the 1996 WIPP PA. To provide a basis for sensitivity analysis for
radionuclide transport in the Culebra, a second set of transport calculations was performed on a much higher
resolution computational grid. Uncertainty and sensitivity analysis results obtained for these calculations are
presented. Further, the procedures developed to construct CCDFs for radionuclide transport through the Culebra are
described, although these procedures were not used in the 1996 WIPP PA due to the absence of radionuclide

transport through the Culebra to the accessible environment.

Uncertainty and sensitivity analysis results for the CCDFs used for comparison with the boundary line specified
in 40 CFR 191.13 are presented and discussed in Chapter 13. These CCDFs are based on all release modes
considered in the 1996 WIPP PA, although only the cuttings and cavings, spallings, and direct brine release modes
produced nonzero releases to the accessible environment. The total release CCDFs tend to be dominated by the
cuttings and cavings component, although the spalling component also has the potential to contribute significantly to
the total release. The distribution of CCDFs associated with all release modes falls substantially below the boundary
line specified in 40 CFR 191.13, which indicates a high degree of confidence that the WIPP satisfies this regulatory

requirement.
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2. Conceptual Structure of Analysis

2.1 Regulatory Requirements

The conceptual structure of the 1996 PA for the WIPP ultimately derives from the regulatory requirements
imposed on this facility. The primary regulation determining this structure is the U.S. EPA’s standard for the
geologic disposal of radioactive waste, Environmental Radiation Protection Standards for the Management and
Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191) (U.S. EPA 1985,
1993a), which is divided into three parts. Subpart A applies to a disposal facility prior to decommissioning and
limits annual radiation doses to members of the public from waste management and storage operations. Subpart B
applies after decommissioning and sets probabilistic limits on cumulative releases of radionuclides to the accessible
environment for 10,000 yr (40 CFR 191.13) and assurance requirements to provide confidence that 40 CFR 191.13
will be met (40 CFR 191.14). Subpart B also sets limits on radiation doses to members of the public in the
accessible environment for 10,000 yrs of undisturbed performance (40 CFR 191.15). Subpart C limits radioactive
contamination of certain sources of groundwater for 10,000 yr after disposal (40 CFR 191.24). The DOE must
provide a reasonable expectation that the WIPP will comply with the requirements of Subparts B and C of 40 CFR
191.

The following is the central requirement in 40 CFR 191, Subpart B, and the primary determinant of the
conceptual structure of the 1996 WIPP PA (p. 38086, U.S. EPA 1985):

§ 191.13 Containment requirements:

(a) Disposal systems for spent nuclear fuel or high-level or transuranic
radioactive wastes shall be designed to provide a reasonable expectation, based
upon performance assessments, that cumulative releases of radionuclides to the
accessible environment for 10,000 years after disposal from all significant
processes and events that may affect the disposal system shall:

(1) Have a likelihood of less than one chance in 10 of exceeding the
quantities calculated according to Table 1 (Appendix A); and

(2) Have a likelihood of less than one chance in 1,000 of exceeding ten
times the quantities calculated according to Table 1 (Appendix A).

(b) Performance assessments need not provide complete assurance that the
requirements of 191.13(a) will be met. Because of the long time period involved
and the nature of the events and processes of interest, there will inevitably be
substantial uncertainties in projecting disposal system performance. Proof of the
future performance of a disposal system is not to be had in the ordinary sense of
the word in situations that deal with much shorter time frames. Instead, what is
required is a reasonable expectation, on the basis of the record before the
implementing agency, that compliance with 191.13(a) will be achieved.
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Containment Requirement 191.13(a) refers to “quantities calculated according to Table 1 (Appendix A),” which
means a normalized radionuclide release to the accessible environment based on the type of waste being disposed of,
the initial waste inventory, and the release that takes place (App. A, U.S. EPA 1985). Table 1 (Appendix A)
specifies allowable releases (i.e., release limits) for individual radionuclides and is reproduced as Table 2.1.1 of this
presentation. The WIPP is intended for transuranic waste, which is defined to be “waste containing more than 100
nanocuries of alpha-emitting transuranic isotopes, with half-lives greater than twenty years, per gram of waste”

(p- 38084, U.S. EPA, 1985). Specifically, the normalized release R for transuranic waste is defined by

R=Z [%](lxloﬁ Ci/c), @.1.1)

1

where Q; is the cumulative release of radionuclide i to the accessible environment during the 10,000-yr period
following closure of the repository (Ci), L; is the release limit for radionuclide ¢ given in Table 2.1.1 (Ci) and C is the
amount of transuranic waste emplaced in the repository (Ci). In the 1996 WIPP PA, C = 3.44 x 100 Ci (Sanchez et
al. 1997). Further, accessible environment means (1) the atmosphere, (2) land surfaces, (3) surface waters,
(4) oceans, and (5) all of the lithosphere that is beyond the controlled area; and controlled area means (1) a surface
location, to be identified by passive institutional controls, that encompasses no more than 100 square kilometers and
extends horizontally no more than five kilometers in any direction from the outer boundary of the original location of

the radioactive wastes in a disposal system and (3) the subsurface underlying such a surface location.

To help clarity the intent of 40 CFR 191, the EPA also published 40 CFR 194, Criteria for the Certification and
Re-Certification of the Waste Isolation Pilot Plant’s Compliance With the 40 CFR Part 191 Disposal Regulations;
Final Rule (U.S. EPA 1996). There, the following elaboration on the intent of 40 CFR 191.13 is given (pp. 5242-
5243, U.S. EPA 1996):

§ 194.34 Results of performance assessments.

(a) The results of performance assessments shall be assembled into
“complementary, cumulative distributions functions” (CCDFs) that represent the
probability of exceeding various levels of cumulative release caused by all
signficant processes and events.

(b) Probability distributions for uncertain disposal system parameter values
used in performance assessments shall be developed and documented in any
compliance application.

(c) Computational techniques, which draw random samples from across the
entire range of the probability distributions developed pursuant to paragraph (b)
of this section, shall be used in generating CCDFs and shall be documented in
any compliance application.
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Table 2.1.1. Release Limits for the Containment Requirements (Table 1, App. A, U.S. EPA 1985)

Radionuclide

Release Limit L; per 1000 MTHM? or
other unit of waste?

Americium-241 or -243
Carbon 14
Cesium-135 or -137
Todine-129
Neptunium-237

Plutonium-238, -239, -240, or -242

Radium-226
Strontium-90
Technetium-99
Thorium-230 or -232
Tin-126

Uranium-233, -234, -235, -236, or -238

Any other alpha-emitting radionuclide with a half-life

greater than 20 yrs

Any other radionuclide with a half-life greater than 20 yrs
that does not emit alpha particles

100
100
1,000
100
100
100
100
1,000
10,000
10
1,000
100

100

1,000

4 Metric tons of heavy metal exposed to a burnup between 25,000 megawatt-days per metric ton of heavy metal (MWd/MTHM) and

40,000 MWd/MTHM

5 An amount of transuranic wastes containing one million curies of alpha-emitting transuranic radionuclides with half-lives greater than

20 yrs

When viewed at a high level, three basic entities (EN1, EN2, EN3) underlie the results required in 191.13 and

(d) The number of CCDFs generated shall be large enough such that, at
cumulative releases of 1 and 10, the maximum CCDF generated exceeds the 99th
percentile of the population of CCDFs with at least a 0.95 probability.

(e) Any compliance application shall display the full range of CCDFs
generated.

(f) Any compliance application shall provide information which
demonstrates that there is at least a 95 percent level of statistical confidence that
the mean of the population of CCDFs meets the containment requirements of §
191.13 of this chapter.

194.34 and ultimately determine the conceptual and computational structure of the 1996 WIPP PA:

EN1, a probabilistic characterization of the likelihood of different futures occurring at the WIPP site over the

next 10,000 yr,

EN2, a procedure for estimating the radionuclide releases to the accessible environment associated with each of

the possible futures that could occur at the WIPP site over the next 10,000 yr,



EN3, a probabilistic characterization of the uncertainty in the parameters used in the definition of EN1 and

EN2.

Together, ENI and EN2 give rise to the CCDF specified in 191.13(a) (Fig. 2.1.1), and EN3 corresponds to the
distributions indicated in 194.34(b).

The preceding entities arise from an attempt to answer three questions about the WIPP,
QI:  What occurrences could take place at the WIPP site over the next 10,000 yr?
Q2:  How likely are the different occurrences that could take place at the WIPP site over the next 10,000 yr?

Q3. What are the consequences of the different occurrences that could take place at the WIPP site over the

next 10,000 yr?
and one question about the WIPP PA,

Q4:  How much confidence should be placed in answers to the first three questions?

(1,0.1) Boundary Line:
~a| 191.13 (a)

/

1071 |-

10-2 |-
[R, prob (Rel > R)]

1078 = (R, [ 85 [F (xst )1t (X5t ) OVt ]

Sst

(10, 0.001)
Sa

Density Function
10-4 | Y

where "
CF 1 iff(xg)> R
1075 [ dRlf(xsr)l= { 0 otherwise

10-6 | CCDF Specified
in 191.13(a)

OEL,\/J 1 | 1 | 1 | 1 ]

0 105 104 103 102 10-' 100 1017 102
R : Release to Accessible Environment

prob (Rel> R): Probability of Release > R

TRI-6342-730-16

Fig. 2.1.1. Boundary line and associated CCDF specified in 40 CFR 191, Subpart B.
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In the WIPP PA, EN1 provides answers to Q1 and Q2, EN2 provides an answer to Q3, and EN3 provides an answer
to Q4. The nature of EN1, EN2 and EN3 and the role that they play in the 1996 WIPP PA are elaborated on in the

next three sections.

2.2 EN1: Probabilistic Characterization of Different Futures

The entity EN1 is the outcome of the scenario development process for the WIPP and provides a probabilistic
characterization of the likelihood of different futures that could occur at the WIPP site over the next 10,000 yr, with
the period of 10,000 yr specified in 40 CFR 191. When viewed formally, EN1 is defined by a probability space (Sp
i, Psp)» with the sample space o, given by

Sy = { Xy Xy is a possible 10,000 yr sequence of occurrences at the WIPP}. 2.2.1)

The subscript st refers to stochastic (i.e., aleatory) uncertainty and is used because (S d;,, Psp) is providing a

probabilistic characterization of occurrences that may take place in the future (Helton 1997).

As a reminder, a probability space (5, 4 p) consists of three components: a set & that contains everything that
could occur for the particular “universe” under consideration, a suitably restricted set £ of subsets of S and a
function p defined for elements of J that actually defines probability (p. 116, Feller 1971). In the terminology of
probability theory, & is the sample space, the elements of S are elementary events, the subsets of & contained in 4
are events, and p is a probability measure. In most applied problems, the function p defined on Jis replaced by a

probability density function (PDF) d (e.g., dy in Fig. 2.1.1).

The scenario development process for the WIPP identified exploratory drilling for natural resources as the only
disruption with sufficient likelihood and consequence for inclusion in the definition of EN1 (App. SCR, U.S. DOE
1996). In addition, 40 CFR 194 specifies that the occurrence of mining within the land withdrawal boundary must be

included in the analysis. As a result, the elements X, of &, are vectors of the form

X”=[tl, ll’ €, b], P> ay, I, lz, €, bz, P, @y, ..., 1, ln’ €5 bn, Dn- 4y, tmin] (222)

intrusion n[h intrusion

18 intrusion 2nd

in the 1996 WIPP PA, where n is the number of drilling intrusions, ¢; is the time (yr) of the ith intrusion, /; designates
the location of the i intrusion, e; designates the penetration of an excavated or nonexcavated area by the ith
intrusion, b; designates where or not the it intrusion penetrates pressurized brine in the Castile Formation, p;
designates the plugging procedure used with the i intrusion (i.e., continuous plug, two discrete plugs, three discrete
plugs), a; designates the type of waste penetrated by the /M intrusion (i.e., no waste, contact-handled (CH) waste,
remotely-handled (RH) waste), and 1, is the time at which potash mining occurs within the land withdrawal

boundary. In the development of (S, J;,, ps1), the probabilistic characterization of n, ;, [; and e; derives from the
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assumption that drilling intrusions occur randomly in time and space (i.e., follow a Poisson process), the
probabilistic characterization of b; derives from assessed properties of brine pockets, the probabilistic
characterization of a; derives from the properties of the waste to be emplaced at the WIPP, and the probabilistic
characterization of p; derives from current drilling practices in the sedimentary basin (i.e., the Delaware Basin) in
which the WIPP is located. A vector notation is used for a; because it is possible for a given drilling intrusion to
penetrate several different types of waste. Further, the probabilistic characterization for t,,, follows from the
guidance in 40 CFR 194 that the occurrence of potash mining within the land withdrawal boundary should be
assumed to occur randomly in time (i.e., follow a Poisson process with a rate constant of A, = 10~ yr=!), with all

commercially viable potash reserves within the land withdrawal boundary being extracted at time t,,,;,,.

With respect to the previously indicated questions, S provides an answer to Q1, while 4, and P provide an
answer to Q2. In practice, Q2 will be answered by specifying distributions for n, t;, I, e;, b;, p;, @;, and t,,;,,, which in
turn lead to definitions for ¢, and ps- The CCDF in 40 CFR 191 will be obtained by evaluating an integral
involving (S, &, ps) (Fig. 2.1.1). The definition of (Ss iy pyo) s discussed in more detail in Chapter 3.

2.3 EN2: Estimation of Releases

The entity EN2 is the outcome of the model development process for the WIPP and provides a way to estimate
radionuclide releases to the accessible environment for the different futures (i.e., elements X, of S,) that could occur
at the WIPP. Estimation of environmental releases corresponds to evaluation of the function fin Fig. 2.1.1. Release
mechanisms associated with f include direct removal to the surface at the time of a drilling intrusion (i.c., cuttings,
spallings, brine flow) and release subsequent to a drilling intrusion due to brine flow up a borehole with a degraded

plug (i.e., groundwater transport).

The primary computational models used in the 1996 WIPP PA are indicated in Fig. 2.3.1. Most of these models
involve the numerical solution of partial differential equations used to represent material deformation, fluid flow and

radionuclide transport. It is the models indicated in Fig. 2.3.1 that actually define the function fin Fig. 2.1.1.

The models in Fig. 2.3.1 are too complex to permit a closed form evaluation of the integral in Fig. 2.1.1 that
defines the CCDF specified in 40 CFR 191. Rather, a Monte Carlo procedure is used in the 1996 WIPP PA.
Specifically, elements X, ;, i =1, 2, ..., nS, are randomly sampled from S, in consistency with the definition of (S,

A, pe). Then, the integral in Fig. 2.1.1, and hence the associated CCDF, is approximated by

nS

SR[f(xsl )] dxt (xsr) dvxr = 2 6R[f<xx!,i)]/”5* (2.3.1)

i=1

prob(Rel > R) = J- ‘
St
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where dg[fix,)] = 1 if fix,) > R and O if fiX;,) < R (Helton and Shiver 1996). The models in Fig. 2.3.1 are too
computationally intensive to permit their evaluation for every element Xy ; of Sy in Eq. (2.3.1). Due to this
constraint, the models in Fig. 2.3.1 are evaluated for representative elements of & and then the results of these

evaluations are used to construct values of f for the large number of X, ; (e.g., 1S = 10,000} in Eq. (2.3.1).

With respect to the previously indicated questions, the models in Fig. 2.3.1 are providing an answer to Q3. The

models in Fig. 2.3.1, and hence the function fin Eq. (2.3.1), are discussed in more detail in Chapter 4.
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Fig. 2.3.1. Models used in 1996 WIPP PA.
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2.4 EN3: Probabilistic Characterization of Parameter Uncertainty

The entity EN3 is the outcome of the data development effort for the WIPP and provides a probabilistic
characterization of the uncertainty in the parameters that underlie the WIPP PA. When viewed formally, EN3 is

defined by a probability space (Sy,, iy, psu), with the sample space &, given by

Ssu = {Xg,!  Xgy is possibly the correct vector of parameter values to use in the WIPP PA models}. (2.4.1)

The subscript su refers to subjective (i.e., epistemic) uncertainty and is used because (S, Psy) 1S providing a
probabilistic characterization of where the appropriate inputs to use in the WIPP PA are believed to be located
(Helton 1997). In practice, some elements of X, could affect the definition of (5, 4,, Pss) (e.g., the rate constant A
used to define the Poisson process for drilling intrusions or the probability that a randomly placed drilling intrusion
will penetrate pressurized brine in the Castile Formation) and other elements could relate to the models in Fig. 2.3.1
that determine the function fin Fig. 2.1.1 and Eq. (2.3.1) (e.g., radionuclide solubilities in Castile brine or fracture

spacing in the Culebra Dolomite).

If the value for X, was precisely known, then the CCDF in Fig. 2.1.1 could be determined with certainty and
compared with the boundary line specified in 40 CFR 191. However, given the complexity of the WIPP site and the
10,000 yr time period under consideration, X, can never be known with certainty. Rather, uncertainty in X, as
characterized by (S, J;m, Psu) will lead to a distribution of CCDFs (Fig. 2.4.1), with a different CCDF resulting for
each possible value that X, can take on. The proximity of this distribution to the boundary line in Fig. 2.1.1

provides an indication of the confidence with which 40 CFR 191 will be met.

The distribution of CCDFs in Fig. 2.4.1 can be summarized by distributions of exceedance probabilities
conditional on individual release values (Fig. 2.4.2). For a given release value R, this distribution is defined by a
double integral over &, and S, (Helton 1996, 1997). In practice, this integral is too complex to permit a closed-
form evaluation. Instead, the WIPP PA uses Latin hypercube sampling (McKay et al. 1979) to evaluate the integral
over &, and, as indicated in Eq. (2.3.1), simple random sampling to evaluate the integral over &;. Specifically, a
Latin hypercube sample Xy, 4, k = 1, 2, ..., nLHS, is generated from &, in consistency with the definition of (S,
L, Psu) and a random sample X5, i =1, 2, ..., nS, is generated from & in consistency with the definition of (S,

Ay, pep). The probability prob(p < PIR) in Fig. 2.4.2 is then approximated by

nlLHS nS
prob(p < PIR)= 1= 3" 8p > Sg[ f(Xori0 X )|/ nS |/ nLHS. (24.2)
k=1 i=1

The result of the preceding calculation is typically displayed by plotting percentile values (e.g., Pg 1, Pg s, Po.9 from

Fig. 2.4.2) and also mean values for exceedance probabilities above the corresponding release values (i.e., R) and
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then connecting these points to form continuous curves (Fig. 2.4.3). The proximity of these curves to the indicated

boundary line provides an indication of the confidence with which 40 CFR 191 will be met.

With respect to the previously indicated questions, (S, By, psw) and results derived from (Sg,, Ly, pe) (€.2-,
the distributions in Figs. 2.4.1 - 2.4.3) are providing an answer to Q4. The definition of (S, Lo Py is discussed

in more detail in Chapter 5.
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2.5 Historical Perspective (Adapted from Helton and Burmaster 1996)

The importance of identifying, characterizing and displaying the uncertainty in the outcomes of analyses for
complex systems is now widely recognized: The EPA’s requirements for such results are explicitly stated in the
quotes from 40 CFR 191 and 40 CFR 194 in Sect. 2.1. As other examples, the following statements are made in the

indicated documents:
Risk Assessment in the Federal Government: Managing the Process (p. 148, NRC 1983)

Preparation of fully documented written risk assessments that explicitly define the judgments made
and attendant uncertainties clarifies the agency decision-making process and aids the review
process considerably.

Safety Goals for the Operation of Nuclear Power Plants (p. 30031, U.S. NRC 1986)

The Commission is aware that uncertainties are not caused by use of quantitative methodology in
decisionmaking but are merely highlighted through use of the quantification process. Confidence
in the use of probabilistic and risk assessment techniques has steadily improved since the time
these were used in the Reactor Safety Study. In fact, through use of quantitative techniques,
important uncertainties have been and continue to be brought into better focus and may even be
reduced compared to those that would remain with sole reliance on deterministic decisionmaking.
To the extent practicable, the Commission intends to ensure that the quantitative techniques used
for regulatory decisionmaking take into account the potential uncertainties that exist so than an
estimate can be made on the confidence level to be ascribed to the quantitative results.

Issues in Risk Assessment (p. 329, NRC 1993)

o A discussion of uncertainty should be included in any ecological risk assessment.
Uncertainties could be discussed in the methods section of a report, and the consequences of
uncertainties described in the discussion section. End-point selection is an important
component of ecological risk assessment. Uncertainties about the selection of end points need
to be addressed.

o Where possible, sensitivity analysis, Monte Carlo parameter uncertainty analysis, or another
approach to quantifying uncertainty should be used. Reducible uncertainties (related to
ignorance and sample size) and irreducible (aleatory) uncertainties should be clearly
distinguished. Quantitative risk estimates, if presented, should be expressed in terms of
distributions rather than as point estimates (especially worst-case scenarios).

An SAB Report: Multi-Media Risk Assessment for Radon, Review of Uncertainty Analysis of Risks Associated with
Exposure to Radon (pp. 24-25, U.S. EPA 1993b)

The Committee believes strongly that the explicit disclosure of uncertainty in quantitative risk
assessment is necessary any time the assessment is taken beyond a screening calculation. ...

The need for regulatory action must be based on more realistic estimates of risk. Realistic risk
estimating, however, requires a full disclosure of uncertainty. The disclosure of uncertainty



enables the scientific reviewer, as well as the decision-maker, to evaluate the degree of confidence
that one should have in the risk assessment. The confidence in the risk assessment should be a
major factor in determining strategies for regulatory action.

Large uncertainty in the risk estimate, although undesirable, may not be critical if the confidence
intervals about the risk estimate indicate that risks are clearly below regulatory levels of concern.
On the other hand, when these confidence intervals overlap the regulatory levels of concern,
consideration should be given to acquiring additional information to reduce the uncertainty in the
risk estimate by focusing research on the factors that dominate the uncertainty. The dominant
factors controlling the overall uncertainty are readily identified through a sensitivity analysis
conducted as an integral part of quantitative uncertainty analysis. Acquiring additional data to
reduce the uncertainty in the risk estimates is especially important when the cost of regulation is
high. Ultimately, the explicit disclosure (of the uncertainty) in the risk estimate should be factored
into analyses of the cost-effectiveness of risk reduction as well as in setting priorities for the
allocation of regulatory resources for reducing risk.

Science and Judgment in Risk Assessment (NRC 1994)

A distinction between uncertainty (i.e., degree of potential error) and inter-individual variability
(i.e., population heterogeneity) is generally required if the resulting quantitative risk
characterization is to be optimally useful for regulatory purposes, particularly insofar as risk
characterizations are treated quantitatively.

o The distinction between uncertainty and individual variability ought to be maintained
rigorously at the level of separate risk-assessment components (e.g., ambient concentration,
uptake and potency) as well as at the level of an integrated risk characterization. (p. 242)

When reporting estimates of risk to decision-makers and the public, EPA should report not only
point estimates of risk but also the sources and magnitudes of uncertainty associated with these
estimates. (p. 263)

Because EPA often fails to characterize fully the uncertainty in risk assessments, inappropriate
decisions and insufficiently or excessively conservative analyses can result. (p. 267)

Guiding Principles for Monte Carlo Analysis (p. 3, Risk Assessment Forum 1997)

... the basic goal of a Monte Carlo analysis is to characterize, quantitatively, the uncertainty and
variability in estimates of exposure or risk. A secondary goal is to identify key sources to the
overall variance and range of model results.

Consistent with EPA principles and policies, an analysis of variability and uncertainty should
provide its audience with clear and concise information on the variability in individual exposures
and risks; it should provide information on population risk (extent of harm in the exposed
population); it should provide information on the distribution of exposures and risks to highly
exposed or highly susceptible populations; it should describe qualitatively and quantitatively the
scientific uncertainty in the models applied, the data utilized, and the specific risk estimates that
are used.
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When viewed at a high level, the uncertainty referred to in 40 CFR 191, 40 CFR 194 (Sect. 2.1) and also in the
preceding quotes can usually be divided into two types: stochastic (i.e., aleatory) uncertainty, which arises because
the system under study can behave in many different ways and is thus a property of the system, and subjective (i.e.,
epistemic) uncertainty, which arises from a lack of knowledge about the system and is thus a property of the analysts
performing the study. When a distinction between stochastic and subjective uncertainty is not maintained, the
deleterious events associated with a system, the likelihood of such events, and the confidence with which both
likelihood and consequences can be estimated become commingled in a way that makes it difficult to draw useful
insights. Due to the pervasiveness and importance of these two types of uncertainty, they have attracted many
investigators (e.g., Kaplan and Garrick 1981; Vesely and Rasmuson 1984; Paté-Cornell 1986, 1996; Whipple 1986;
Silbergeld 1987; Parry 1988; Apostolakis 1989, 1990; TAEA 1989; Finkel 1990; McKone and Bogen 1991;
Breeding et al. 1992; Anderson et al. 1993; Helton 1993a, 1994, 1997; Kaplan 1993; Hoffman and Hammonds 1994,
Brattin et al. 1996, Frey and Rhodes 1996; Rai et al. 1996) and also many names (e.g., aleatory, type A, irreducible,
and variability as alternatives to the designation stochastic, and epistemic, type B, reducible, and state of knowledge
as alternatives to the designation subjective). Indeed, this distinction can be traced back to the beginnings of the

formal development of probability theory in the seventeenth century (Hacking 1975).

As an example, probabilistic risk assessments (PRAs) for nuclear power plants and other complex engineered
facilities involve stochastic uncertainty due to the many different types of accidents that can occur and subjective
uncertainty due to the inability of the analysts involved to precisely determine the frequency and consequences of
these accidents. The recent reassessment of the risk from nuclear power plants conducted by the U.S. Nuclear
Regulatory Commission (NUREG-1150) provides an example of a very large analysis in which an extensive effort
was made to separate stochastic and subjective uncertainty (U.S. NRC 1990-1991, Breeding et al. 1992). This
analysis was instituted in response to criticisms that the Reactor Safety Study (U.S. NRC 1975) had inadequately
characterized the uncertainty in its results (Lewis et al. 1978). Similarly, the EPA’s standard for the geologic
disposal of radioactive waste (Sect. 2.1) can be interpreted as requiring (1) the estimation of a CCDF, which arises
from the different disruptions that could occur at a waste disposal site and is thus a summary of the effects of
stochastic uncertainty (Sect. 2.2), and (2) the assessment of the uncertainty associated with the estimation of this
CCDF, with this uncertainty deriving from a lack of knowledge on the part of the analysts involved and thus
providing a representation for the effects of subjective uncertainty (Sect. 2.4). Conceptually, similar problems also
arise in the assessment of health effects within a population exposed to a carcinogenic chemical or some other stress,
where variability within the population can be viewed as stochastic uncertainty and the inability to exactly
characterize this variability and estimate associated exposures and health effects can be viewed as subjective
uncertainty (e.g., Bogen and Spear 1987, Hattis and Silver 1994, McKone 1994, Allen et al. 1996, NCRP 1996,
Price et al. 1996, Thompson and Graham 1996). Other examples also exist of analyses that maintain a separation of
stochastic and aleatory uncertainty (e.g., PLG 1982, 1983; Payne 1992; Payne et al. 1992a, b, ¢; Fogarty et al. 1992;

Maclntosh et al. 1994). Thus, by maintaining a separation between stochastic and subjective uncertainty as indicated
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in Sects. 2.2-2.4 and described in more detail in the remainder of this presentation, the 1996 WIPP Pa is in the main

stream of current analyses for complex systems.

Many individuals believe that the boundary line associated with 40 CFR 191.13 and illustrated in Fig. 2.1.1is a
novel concept. Actually, this construction is an example of the Farmer limit line approach to the definition of
acceptable risk (Farmer 1967, Cox and Baybutt 1982, Munera and Yadigaroglu 1986). A similar construction was
used in the NUREG-1150 analyses (U.S. NRC 1990-1991, Breeding et al. 1992) to implement the proposed large
release safety goal for reactor accidents (U.S. NRC 1986, Helton and Breeding 1993). Thus, again, the 1996 WIPP

PA involves widely used ideas, although the actual scale of the analysis is much large