ADDENDUM B2

CHEMICAL COMPATIBILITY ANALYSIS OF WASTE FORMS AND CONTAINER MATERIALS
CHEMICAL COMPATIBILITY ANALYSIS OF WASTE FORMS AND CONTAINER MATERIALS

The chemical compatibility analysis was carried out with all defense generated, contact-handled (CH) and remote-handled (RH) transuranic (TRU)-mixed waste streams reported in the Waste Isolation Pilot Plant (WIPP) Transuranic Waste Baseline InventoryReport (WTWBIR) (DOE, 1995). A summary of these waste streams is given in Table C-1 (Chapter C). The reported content of CH and RH streams will be verified through the WIPP Generator/Storage Site Waste Screening and Acceptance Audit Program (Appendix C11).

All information for the chemical lists and compatibility study is maintained in databases on a personal computer. The chemicals reported by the generator sites are classified into reaction groups as defined by the U.S. Environmental Protection Agency (EPA) document, A Method for Determining the Compatibility of Hazardous Wastes (Hatayama et al., 1980). The chemical lists are derived from the TRUPACT-II database, EPA hazardous waste codes listed in the WTWBIR, and waste descriptions.

A database program was developed to evaluate the chemical compatibility of the WTWBIR waste streams. Potential incompatibilities are defined on Figure 6 of the EPA document (Hatayama et al., 1980), which identifies combinations of chemical groups that are incompatible and the consequences (e.g., heat generation) of mixing incompatible chemical groups. All incompatible mixtures have been entered into a reference data base to be used in assessing the chemical compatibility of a given list of chemicals. The logic of the program used in evaluating the chemical compatibility by content code is described in detail below.

As an initial step, the program indexes the entire database according to the WTWBIR waste stream codes. The program then locates the first reaction group within the first waste stream code and picks the highest concentration of any chemical in that group. The selected reaction group is then paired with every other reaction group in the waste stream to check for incompatibility. If a potential incompatibility is found, it is printed out along with the corresponding waste stream codes. After finding all potential incompatibilities for a given waste stream code, the program moves on to the next waste stream code until all waste stream codes have been processed.

To ensure accuracy, the reference database was printed and checked against the EPA document for chemical compatibility, and the WTWBIR waste stream database was printed and checked against the original WTWBIR forms from the generator sites. The list of potential chemical incompatibilities reported by the program was hand checked using the EPA document as a reference to assure proper functioning of the program. All potential chemical incompatibilities were then evaluated on a case-by-case basis to identify which, if any, of the reactions could occur, given the nature of the waste, and the its chemical constituents, and final waste form.
Waste streams are classified as "incompatible" if the potential exists for any of the following reactions:

- corrosion
- explosion
- heat generation
- gas generation (flammable gases)
- pressure build-up (nonflammable gases)
- toxic by-product generation

Each generator and storage site has produced a comprehensive list of all possible chemicals present in its waste. The chemical components found in each waste generation process are determined by examination of the process technology, by chemical analysis, or by process flow analysis. Under this system, all chemical inputs into the system are accounted for, even though all of these components may not be a part of the waste. For example, generator sites might include both acids and bases in their lists, even though the two groups have been neutralized prior to placement in a waste container.

In addition to the chemicals listed in Appendix 2 of the EPA document (Hatayama et al., 1980), the following components that exhibit toxicity characteristics defined under 40 CFR §261.24 were added to the chemical list in trace (<1 weight percent) quantities:

Group 3 Acids, Organic
- 2,4-D
- 2,4,5-TP (Silvex)

Group 17 Halogenated Organics
- Methoxychlor
- Toxaphene
- 2,4-D
- Hexachlorobutadiene
- Hexachloroethane
- Tetrachloroethylene
- 2,4,5-Trichlorophenol
- 2,4,6-Trichlorophenol

All hazardous constituents listed in the Part A Permit are present in the chemical lists and accounted for in the compatibility analysis.

The compounds listed on the Material Safety Data Sheet for Radiac™ wash were added to the chemical compatibility assessment. The reactive compounds associated with Radiac™ wash are:
<table>
<thead>
<tr>
<th>GROUP</th>
<th>COMPOUND</th>
<th>CONCENTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>citric acid</td>
<td>M</td>
</tr>
<tr>
<td>106</td>
<td>water</td>
<td>D</td>
</tr>
</tbody>
</table>

The compounds found in the fire suppressants in use at the WIPP facility were added to evaluate chemical compatibility of these materials with the test wastes. The following reactive compounds were added:

<table>
<thead>
<tr>
<th>GROUP</th>
<th>COMPOUND</th>
<th>CONCENTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>diethylene glycol monobutyl ether</td>
<td>D</td>
</tr>
<tr>
<td>15</td>
<td>fluorosurfactants</td>
<td>D</td>
</tr>
<tr>
<td>106</td>
<td>water</td>
<td>D</td>
</tr>
</tbody>
</table>

Ansulite 6 percent AFFF (AFC-3) contains diethylene glycol monobutyl ether, fluorosurfactants, and water. The FORAY Dry Chemical Extinguishing Agent contains potassium aluminum silicate, magnesium aluminum silicate, monoammonium phosphate, ammonium sulfate, and methyl hydrogen polysiloxane, which are not hazardous reactive constituents.

To account for packaging, container, and backfill materials, the following components were added to the database for each content code in dominant (>10 weight %) quantities:

- **Group 10 Caustics**
 - Magnesium Oxide

- **Group 23 Metals**, other elemental and alloys as sheets, rods, moldings, drops, etc.
 - Low Carbon Steel D

- **Group 101 Combustible Materials**
 - Polyethylene D

The chemical concentration levels are reported as either Trace (T) (<1% by weight), Minor (M) (1-10%), or Dominant (D) (>10%). The chemical list is divided into groups based on chemical properties and structure (e.g., acids, caustics, metals, etc.). If incompatible groups are combined, the possibility exists for the reactions listed above. For example, a reaction between Group 1 (Acids, Mineral, Non-oxidizing) and Group 10 (Caustics) could result in heat generation.

Possible chemical incompatibilities between compounds present in trace quantities (<1 percent by weight) and compounds present in concentrations > 1 percent by weight (i.e., D x T, D x T1, D x T2, D x T3, M x T, M x T1, M x T2, or M x T3) are included in this report. However, interactions between compounds present in trace quantities (<1 percent by weight) and compounds present in concentrations < 1 percent by weight do not pose an incompatibility problem for the following reasons:
The trace chemicals reported by the sites are in concentrations well below the trace limit of 1 weight percent. Sampling programs show that the concentration levels of these compounds are significantly lower than the upper limit of 1 percent.

The trace chemicals are usually dispersed in the waste, which further dilutes concentrations of these materials.

Trace chemicals that might be incompatible with major and dominant materials/chemicals would have reacted during the waste treatment process prior to placement in waste containers.

Because of restrictions imposed by the EPA on reporting of hazardous wastes, some chemicals are listed in trace quantities even if they have already reacted. Hazardous waste regulations as promulgated by the EPA (EPA, 1988) (known as the mixture rule) require that a mixture of any solid waste and a hazardous waste listed in 40 CFR Part 261, Subpart D, be considered a hazardous waste subject to Resource Conservation and Recovery Act regulations. However, Subpart D does not list minimum concentrations for these listed wastes, with the result that any such mixtures must be considered hazardous waste even if the Subpart D constituent is at or below detection limits.

The waste is either solidified and immobilized (solidified materials) or present in bulk form as a solid (solid materials). In almost all cases, any possible reactions take place before the waste is generated in its final form.

Total trace chemicals within a payload container are limited to less than 5 weight percent.

All potential incompatibilities between trace, minor, and dominant compounds have been analyzed on a case-by-case basis for each waste stream reported in Table C-2 (Chapter C). Some chemicals listed as being present in the waste have reacted prior to placement in a waste container. For example, a site listing a caustic (Group 10) and an acid (Group 1) in its waste has only the neutralized product present in an immobilized form. Further reactions of this type do not occur once the waste is neutralized in its final form. An additional constraint on the chemicals and materials that can be present within each waste stream code is their gas generation potential due to radiolysis.

Unresolved incompatibilities between trace and minor, trace and dominant, minor and dominant, minor and minor, or dominant and dominant waste constituents were identified and segregated. These wastes cannot be transported until the incompatibilities are resolved (NuPac, 1989). Table C1-1 presents the chemical compatibility analysis for the modified chemical lists for the waste streams presented in Table C-2 (Chapter C). A list of explanations describing any noted incompatibilities precedes Table C1-1.
Summary of Potential Incompatibilities for Waste Forms and Container Material

The following is a listing and explanation of compatibility code numbers used to identify potential incompatibilities in Table C1-1. Where incompatibilities are noted, it is important to remember that these potential incompatibilities will be removed prior to shipment of the waste to WIPP. That is, unacceptable waste properties listed in Chapter C, Section C1-b will be removed prior to shipping. Verification of the compatibility of final waste forms will be carried out by the WIPP Generator/Storage Site Waste Screening and Acceptance Audit Program (Appendix C8).

Explanation Code Number Descriptions

00 (1 x 10, 2 x 10, 3 x 10, 5 x 10, 10 x 13, 10 x 17, 10 x 18, 10 x 19, 10 x 21, 10 x 22, 10 x 23, 10 x 24, 10 x 25, 10 x 27, 10 x 32, 10 x 102, 10 x 107) These potential incompatibilities result from the addition of magnesium oxide backfill material. However, the hydration of magnesium oxide results in the formation of brucite (Mg[OH]), which buffers the pH of the solution at approximately 8.5. Therefore, caustic conditions are not produced by the use of magnesium oxide backfill.

0a. (1 x 4) The potential chemical incompatibility is the possible dehydration or displacement reactions between non-oxidizing mineral acids (Group 1) and alcohols and glycols in waste forms (Group 4) resulting in heat generation. The potential chemical incompatibility results from reporting trace quantities (<1%) of non-oxidizing acid in generator waste streams. However, the non-oxidizing mineral acids are neutralized prior to packaging, and the materials in this waste stream are considered chemically compatible.

0aa. (1 x 10) The potential chemical incompatibility is the possible acid-base reaction between strong mineral acids (Group 1) and strong caustics (Group 10) resulting in heat generation. The potential chemical incompatibility results from reporting trace quantities (<1%) of non-oxidizing acid in generator waste streams. However, the non-oxidizing mineral acids are neutralized prior to packaging, and the materials in this waste stream are considered chemically compatible.

0aaa. (1 x 14) The potential chemical incompatibility is the possible hydrolysis reaction between strong mineral acids (Group 1) and ethers (Group 14), resulting in heat generation. The potential chemical incompatibility results from reporting trace quantities (<1%) of non-oxidizing acid in generator waste streams. However, the non-oxidizing mineral acids are neutralized prior to packaging, and the materials in this waste stream are considered chemically compatible.

0aaaa. (1 x 15) The potential chemical incompatibility is the possible formation of hydrogen fluoride when strong mineral acids (Group 1) mix with inorganic fluorides (Group 15), resulting in toxic gas generation. The potential chemical incompatibility results from reporting trace quantities (<1%) of non-oxidizing acid in generator waste streams.
However, the non-oxidizing mineral acids are neutralized prior to packaging, and the materials in this waste stream are considered chemically compatible.

0b. (1 x 17) The potential chemical incompatibility is the possible reaction between strong mineral acids (Group 1) and halogenated organics (Group 17), resulting in generation of heat and toxic hydrogen halide fumes. The potential chemical incompatibility results from reporting trace quantities (<1%) of non-oxidizing acid in generator waste streams. However, the non-oxidizing mineral acids are neutralized prior to packaging, and the materials in this waste stream are considered chemically compatible.

0bb. (1 x 19) The potential chemical incompatibility is the possible condensation reaction between strong mineral acids (Group 1) and ketones (Group 19), resulting in generation of heat. The potential chemical incompatibility results from reporting trace quantities (<1%) of non-oxidizing acid in generator waste streams. However, the non-oxidizing mineral acids are neutralized prior to packaging, and the materials in this waste stream are considered chemically compatible.

1 (1 x 23) The potential chemical incompatibility is the possible reaction between non-oxidizing mineral acids (Group 1) and metals and other elemental alloys as sheets, rods, moldings, drops, etc. (Group 23). The non-oxidizing mineral acids are present only in trace quantities (<1%) and are neutralized and bound in the cemented waste form. Due to the immobilization and prior reaction of the acids, the materials in this waste stream are considered chemically compatible.

2 (1 x 24) The potential chemical incompatibility is the tendency of non-oxidizing mineral acids (Group 1) to solubilize toxic metals and metal compounds (Group 24). The mineral acids are present only in trace quantities (<1%) and are neutralized and bound in the cemented waste form. Due to the immobilization and prior reaction of the acids, the materials in this waste stream are considered chemically compatible.

3 (1 x 101) The potential chemical incompatibility is the possible reaction between non-oxidizing mineral acids (Group 1) and combustible materials (Group 101). The mineral acids are present only in trace quantities (<1%) and are neutralized and bound in the cemented waste form. An absorbent has been added to immobilize free liquids. Due to the immobilization and prior reaction of the non-oxidizing acids, the materials in this waste stream are considered chemically compatible.

3a. (1 x 102) The potential chemical incompatibility is the possible violent reaction between non-oxidizing mineral acids (Group 1) and explosives (Group 102). However, explosives are not allowed to be shipped to WIPP unless treatment renders them inert. Additionally, mineral acids are present only in trace quantities (<1%) and are neutralized prior to loading in waste containers. Therefore, the materials in this waste stream are considered chemically compatible.
3aa. (1 x 104) The potential chemical incompatibility is the possible reaction between non-oxidizing mineral acids (Group 1) and strong oxidizing agents (Group 104), resulting in heat and generation of toxic and corrosive gases. However, the mineral acids and oxidizing agents are present in trace quantities (<1%) and neutralized prior to loading in waste containers. Therefore, the materials in this waste stream are considered chemically compatible.

3b. (1 x 106) The potential chemical incompatibility is the possible reaction between mineral acids (Group 1) and water (Group 106), resulting in the generation of heat. This potential incompatibility results from the presence of water in Ansulite™ fire extinguishing agents and/or Radiac™ wash solutions and/or absorbed water. However, the mineral acids are present only in trace quantities (<1%) and are neutralized prior to loading in waste containers. In addition, the presence of any absorbed liquids are immobilized in an absorbent and would not be available for reaction.

3c. (2 x 3) The potential chemical incompatibility is the reaction of oxidizing mineral acids (Group 2) with organic acids (Group 3) resulting in heat and gas generation. The potential chemical incompatibility results from the use of citric acid in Radiac™ wash solutions. The solid citric acid is diluted during preparation of the Radiac™ wash and is often further diluted prior to use for decontamination. As a result, the potential for reactions of solid citric acid with oxidizing mineral acids in waste forms is removed.

3d. (2 x 4) The potential chemical incompatibility is the possible dehydration or displacement reactions between oxidizing mineral acids (Group 2) and alcohols and glycols (Group 4), resulting in heat generation. The potential chemical incompatibility results from reporting trace quantities (<1%) of oxidizing acid in generator waste streams. However, the oxidizing mineral acids are neutralized prior to packaging, and the materials in this waste stream are considered chemically compatible.

3e. (2 x 10) The potential chemical incompatibility is the possible acid-base reaction between oxidizing mineral acids (Group 2) and strong caustics (Group 10), resulting in heat generation. The potential chemical incompatibility results from reporting trace quantities (<1%) of oxidizing acid in generator waste streams. However, the oxidizing mineral acids are neutralized prior to packaging, and the materials in this waste stream are considered chemically compatible.

3ee. (2 x 13) The potential chemical incompatibility is the possible reaction between oxidizing mineral acids (Group 2) and esters (Group 13), resulting in heat generation. The potential chemical incompatibility results from reporting trace quantities (<1%) of oxidizing acid in generator waste streams. However, the oxidizing mineral acids are neutralized prior to packaging, and the materials in this waste stream are considered chemically compatible.

3f. (2 x 14) The potential chemical incompatibility is the possible hydrolysis reaction between oxidizing mineral acids (Group 2) and ethers (Group 14), resulting in heat generation. The potential chemical incompatibility results from reporting trace quantities...
(<1%) of oxidizing acid in generator waste streams. However, the oxidizing mineral acids are neutralized prior to packaging, and the materials in this waste stream are considered chemically compatible.

3g. (2 x 15) The potential chemical incompatibility is the possible formation of hydrogen fluoride when oxidizing mineral acids (Group 2) mix with inorganic fluorides (Group 15), resulting in toxic gas generation. The potential chemical incompatibility results from reporting trace quantities (<1%) of oxidizing acid in generator waste streams. However, the oxidizing mineral acids are neutralized prior to packaging, and the materials in this waste stream are considered chemically compatible.

3gg. (2 x 16) The potential chemical incompatibility is the possible reaction between oxidizing mineral acids (Group 2) and aromatic hydrocarbons (Group 16). Oxidation of the hydrocarbon may produce enough heat to ignite the mixture. The potential chemical incompatibility results from reporting trace quantities (<1%) of oxidizing acid in generator waste streams. However, the oxidizing mineral acids are neutralized prior to packaging, and the materials in this waste stream are considered chemically compatible.

3h. (2 x 17) The potential chemical incompatibility is the possible reaction between oxidizing mineral acids (Group 2) and halogenated organics (Group 17), resulting in generation of heat and toxic hydrogen halide fumes. The potential chemical incompatibility results from reporting trace quantities (<1%) of oxidizing acid in generator waste streams. However, the oxidizing mineral acids are neutralized prior to packaging, and the materials in this waste stream are considered chemically compatible.

3i. (2 x 19) The potential chemical incompatibility is the possible condensation reaction between oxidizing mineral acids (Group 2) and ketones (Group 19), resulting in generation of heat. The potential chemical incompatibility results from reporting trace quantities (<1%) of oxidizing acid in generator waste streams. However, the oxidizing mineral acids are neutralized prior to packaging, and the materials in this waste stream are considered chemically compatible.

3j. (2 x 20) The potential chemical incompatibility is the possible reaction between oxidizing mineral acids (Group 2) and mercaptans (Group 20), resulting in generation of heat and toxic hydrogen sulfide fumes. The potential chemical incompatibility results from reporting trace quantities (<1%) of oxidizing acid in generator waste streams. However, the oxidizing mineral acids are neutralized prior to packaging, and the materials in this waste stream are considered chemically compatible.

4. (2 x 23) The potential chemical incompatibility is the possible reaction between oxidizing mineral acids (Group 2) and metals and other elemental alloys as sheets, rods, moldings, drops, etc. (Group 23). The oxidizing mineral acids are present only in trace quantities (<1%) and are reacted prior to loading in waste containers. In addition, the oxidizing mineral acids are fixed in the solidified product and would not be available to react with the metal.
5. (2 x 23) The potential chemical incompatibility is the possible reaction between oxidizing mineral acids (Group 2) and metals and other elemental alloys as sheets, rods, moldings, drops, etc. (Group 23). The oxidizing mineral acids are present only in trace quantities (<1%) as residues on glass or rubber gloves, and not as free liquids that could react with metals.

6. (2 x 24) The potential chemical incompatibility is the solubilization of toxic metals and metal compounds (Group 24) in oxidizing mineral acids (Group 2). The oxidizing mineral acids are present only in trace quantities (<1%) and are reacted prior to loading in waste containers. In addition, the oxidizing mineral acids are fixed in the solidified product and would not be available to react with the metal.

7. (2 x 24) The potential chemical incompatibility is the possible reaction between oxidizing mineral acids (Group 2) and toxic metals and compounds (Group 24). The oxidizing mineral acids are present only in trace quantities (<1%) as residues on glass or rubber gloves, and not as free liquids that could react with metals.

7a. (2 x 27) The potential chemical incompatibility is the possible reaction between oxidizing mineral acids (Group 2) and nitro compounds (Group 27), resulting in generation of heat and toxic nitrogen oxide fumes. The potential chemical incompatibility results from reporting trace quantities (<1%) of oxidizing acid in generator waste streams. However, the oxidizing mineral acids are neutralized prior to packaging, and the materials in this waste stream are considered chemically compatible.

8. (2 x 101) The potential chemical incompatibility is the possible reaction between oxidizing mineral acids (Group 2) and combustible materials (Group 101). The oxidizing mineral acids are present only in trace quantities (<1%) as residues on glass or rubber gloves, and not as free liquids that could react with metals.

9. (2 x 101) The potential chemical incompatibility is the possible decomposition of combustible materials (Group 101) by the oxidizing mineral acids (Group 2). The oxidizing mineral acids are present only in trace quantities (<1%) and are reacted prior to loading in waste containers. In addition, the oxidizing mineral acids are fixed in the solidified product and would not be available to react with the combustible materials.

9a. (2 x 102) The potential chemical incompatibility is the possible violent reaction between oxidizing mineral acids (Group 2) and explosives (Group 102). However, explosives are not allowed to be shipped to WIPP unless treatment renders them inert. Additionally, mineral acids are present only in trace quantities (<1%) and are neutralized prior to loading in waste containers. Therefore, the materials in this waste stream are considered chemically compatible.

10. (2 x 106) The potential chemical incompatibility is the possible dissolution of oxidizing mineral acids (Group 2) by water (Group 106). The oxidizing mineral acids are present only in trace quantities (<1%) and reacted prior to loading in waste containers. Both the...
The potential chemical incompatibility is the possible reaction between oxidizing mineral acids (Group 2) and water (Group 106), resulting in the generation of heat. This potential incompatibility results from the presence of water in Ansulite™ fire extinguishing agents and/or Radiac™ wash solutions and/or absorbed water. However, the mineral acids are present only in trace quantities (<1%) and are neutralized prior to loading in waste containers. In addition, the presence of any absorbed liquids are immobilized in an absorbent and would not be available for reaction.

The potential chemical incompatibility is the possible reaction between organic acids (Group 3) and alcohols and glycols (Group 4). The organic acids are immobilized in a cement matrix and not available to react with the alcohols and glycols. The alcohols and glycols are also immobilized in the solidified product.

The potential chemical incompatibility is the heat generated by polymerization of alcohols and glycols (Group 4) by organic acids (Group 3). Carboxylic acids with α-halogen substituents, or α- or α-hydroxyl substituents (e.g., citric acid) are the main concern among the organic acids (Group 3). The potential chemical incompatibility results from the use of citric acid in Radiac™ wash solutions. The solid citric acid is diluted during preparation of the Radiac™ wash and is often further diluted prior to use for decontamination. As a result, the potential for reactions of solid citric acid with alcohols and glycols (Group 4) that are dispersed and fixed in waste forms is removed.

The potential chemical incompatibility is the possibility of acid-base reactions. The organic acids (Group 3) are neutralized in a cement matrix and are not available to react with the Caustics (Group 10). Thus, this potential chemical incompatibility would not occur.

The potential chemical incompatibility is the heat generated by reactions of organic acids (Group 3) with caustics (Group 10). The potential chemical incompatibility results from the use of citric acid in Radiac™ wash solutions. The solid citric acid is diluted during preparation of the Radiac™ wash and is often further diluted prior to use for decontamination. As a result, the potential for reactions of solid citric acid with caustics in test waste forms is removed. The caustic in the waste forms is calcium oxide. Thus, the more significant incompatibility is potential hydrolysis reaction between water and calcium oxide to release heat. Because the calcium oxide is dispersed in the wastes, reaction is considered unlikely.

The potential chemical incompatibility is toxic and corrosive fumes generated by reactions of organic acids (Group 3) with metal fluoride salts (Group 15). The potential chemical incompatibility results from the use of citric acid in Radiac™ wash solutions. The solid citric acid is diluted during preparation of the Radiac™ wash and is often
Waste Isolation Pilot Plant
Hazardous Waste Facility Permit
Draft Renewal Application
May 2009

further diluted prior to use for decontamination. As a result, the potential for reactions of solid citric acid with fluoride salts in waste forms is removed.

12. (3 x 24) The potential chemical incompatibility is the possible reaction between organic acids (Group 3) and toxic metals and compounds (Group 24). The organic acids are basified prior to cementation and do not exist as free acids in the resulting product. Based on the immobilization of the acids, reactions are considered highly unlikely. In this case, solubilization is not possible.

12aa. (3 x 24) The potential chemical incompatibility is solubilization of toxic metals (Group 24) by complexation with organic acids (Group 3). The potential chemical incompatibility results from the use of citric acid in Radiac™ wash solutions. The solid citric acid is diluted during preparation of the Radiac™ wash and is often further diluted prior to use for decontamination. As a result, the potential for reactions of solid citric acid with toxic metals in waste forms is removed.

12bbb. (3 x 104) The potential chemical incompatibility is decomposition of the hydrocarbon moiety of organic acids (Group 3) by oxidizing agents (Group 104) resulting in heat and gas formation. The potential chemical incompatibility results from the use of citric acid in Radiac™ wash solutions. The solid citric acid is diluted during preparation of the Radiac™ wash and is often further diluted prior to use for decontamination. As a result, the potential for reactions of solid citric acid with oxidizing agents that are dispersed and fixed in waste forms is removed.

12bb. (4 x 104) The potential chemical incompatibility is formation of unstable compounds by reaction of alcohols and glycols (Group 4) with oxidizing agents (Group 104). However the alcohols and glycols are present as trace quantities (<1%) in the waste stream, and they are further isolated by dissemination within the waste stream. Additionally, oxidizing agents must be neutralized prior to shipment to WIPP. Therefore, the final waste form will contain compatible materials.

12b. (7 x 17) The potential chemical incompatibility between amines (Group 7) and halogenated organics (Group 17) would not occur because the halogenated organics are solidified and are not available for reaction.

12c. (7 x 24) The potential chemical incompatibility is the possible increase in the solubility of toxic metal compounds in water due to amines acting as potential surfactants. The amines are present only in trace (<1%) and are immobilized through absorption on sorbent materials. Also, these solid waste forms usually contain very little water and excess sorbents are added to waste containers to sorb any fluids.

12d. (7 x 104) The potential chemical incompatibility is formation of toxic nitrogen oxide fumes by reaction of amines (Group 7) with oxidizing agents (Group 104). However, the alcohols and glycols are present as trace quantities (<1%) in the waste stream, they are further isolated by dissemination within the waste stream. Additionally, oxidizing agents
must be neutralized prior to shipment to WIPP. Therefore, the final waste form will
contain compatible materials.

12e. (8 x 23) The potential chemical incompatibility is combustion of some azo compounds
(Group 8) on contact with surfaces of metal sheets, rods, drops, etc (Group 23). However
the azo compounds are present as trace quantities (<1%) in the waste stream and are
further isolated by dissemination within the waste stream. Therefore, spontaneous
combustion by reaction with metal surfaces is unlikely.

12f. (8 x 106) The potential chemical incompatibility is the generation of nitrogen gas by
reaction of some azo compounds (Group 8) with water (Group 106). This potential
incompatibility results from the presence of water in Ansulite™ fire extinguishing agents
and/or Radiac™ wash solutions and/or absorbed water. However, the azo compounds are
present only in trace quantities (T<1%) and are disseminated in the waste containers,
which minimizes their potential to form nitrogen gas. In addition, the presence of any
absorbed liquids are immobilized in an absorbent and would not be available for reaction.

13. (10 x 17) The potential chemical incompatibility is the possible reaction between caustics
(Group 10) and halogenated organics (Group 17). The caustic in this content code is
calcium oxide, a solid, which is dispersed in the chloride salts. The halogenated organics
are present in only trace quantities (T<1%) and are absorbed, immobilized, or solidified.
Due to the immobilization of the calcium oxide in the salt, reactions are considered
highly unlikely.

13a. (10 x 19) The potential chemical incompatibility is the possible self-condensation of
ketones (Group 19) catalyzed by caustics (Group 10). The caustic in this content code is
calcium oxide, a solid, which is dispersed in the chloride salts. Due to the immobilization
of the calcium oxide in salt, reactions are considered highly unlikely.

14. (10 x 23) The potential incompatibility is the possible reaction between caustics (Group
10) metals and other elemental alloys as sheets, rods, moldings, drops, etc. (Group 23).
The caustic in this waste stream code is calcium oxide, a solid, which is dispersed in the
chloride salts. Due to the immobilization of the calcium oxide in salt, dissolution of
metals in caustics is not possible.

15. (10 x 23) The potential incompatibility is the possible dissolution of metals and other
elemental alloys as sheets, rods, moldings, drops, etc. (Group 23) in caustics (Group 10).
The caustics are present only in trace quantities (<1%) and are reacted prior to loading in
waste containers. In addition, the caustics are fixed in the cemented sludge and would not
be available to react with the metals.

16. (10 x 24) The potential chemical incompatibility is the possible solubilization of toxic
metals (Group 24) in caustics (Group 10). The caustic in this content code is calcium
oxide, a solid, which is dispersed in the chloride salts. In this case, solubilization is not
possible.
16a. (10 x 24) The potential incompatibility is the possible solubility of toxic metals (Group 24) in caustics (Group 10). The caustics are present only in trace (<1% quantities and are reacted prior to loading in waste containers. In addition, the caustics are fixed in the cemented sludge and would not be available to react with the metals.

16b. (10 x 27) The potential chemical incompatibility is the formation of salts from nitro alkanes (Group 27) and caustics (Group 10) in the presence of water. The only caustic in this content code is calcium oxide, a solid, which is dispersed in the chloride salts. In addition, liquids are immobilized through absorption on sorbent materials. Due to the immobilization of the caustic in the fused salt, this reaction would not occur.

16c. (10 x 102) The potential chemical incompatibility is the possible violent reaction between caustics (Group 10) and explosives (Group 102) due to the generation of heat. However, explosives are not allowed to be shipped to WIPP unless treatment renders them inert. Additionally, caustics are present only in minor quantities (<10%) and are neutralized prior to loading in waste containers. Therefore, the materials in this waste stream are considered chemically compatible.

17. (10 x 107) This potential incompatibility is an artifact of the EPA method. Calcium oxide appears in Groups 10 and 107, and is compatible within itself.

17a. (14 x 104) This potential incompatibility is the reaction of ethers (Group 14) with strong oxidizers (Group 104) to produce heat, and possibly ignition or explosions. This incompatibility arises from the presence of diethylene glycol monobutyl ether in Ansulite™ fire extinguishing agents. However, the strong oxidizers are present in trace quantities (<1%) and disseminated in the waste, making ignition or explosions unlikely in the event the fire extinguishers are used.

17b. (14 x 107) This potential chemical incompatibility is the reaction of ethers (Group 14) with water reactive substances (Group 107). This incompatibility arises from the presence of diethylene glycol monobutyl ether in Ansulite™ fire extinguishing agents. However, the water reactive substances are present in trace quantities (<1%) and disseminated in the waste, making reactions unlikely in the event the fire extinguishers are used.

18. (15 x 107) This potential chemical incompatibility is the reaction of fluorides (Group 15) and water reactive substances (Group 107). The solid fluorides are present in only trace quantities (T<1%) and form part of the pyrochemical salt matrix. Calcium oxide, the only water reactive substance present, is a solid dispersed in the pyrochemical salt matrix. These salts always occur with each other and are compatible.

18a. (17 x 20) The potential chemical incompatibility is the possible reaction between halogenated organics (Group 17) and mercaptans (Group 20), resulting in generation of heat. The potential chemical incompatibility results from reporting trace quantities (<1%) of halogenated organics and mercaptans in generator waste streams. However, the
chemicals are neutralized prior to packaging, and the materials in this waste stream are considered chemically compatible.

19. (17 x 23) The potential chemical incompatibility is the reaction of halogenated organics (Group 17) with metals and other elemental alloys as sheets, rods, moldings, drops, etc. (Group 23). The halogenated organics are present in only trace quantities (T<1%) and are fixed in cemented sludge and would not be available to react with the metals.

20. (17 x 23) The potential chemical incompatibility is the reaction of halogenated organics (Group 17) with metals and other elemental alloys, as sheets, rods, moldings, drops, etc. (Group 23). The halogenated organics are present in only trace quantities (T<1%) and are absorbed on combustibles. The halogenated organics are not present as free liquids to react with the metals.

21. (17 x 23) The potential chemical incompatibility is the potential reaction between halogenated organics (Group 17) and metals and other elemental alloys as sheets, rods, drops, moldings, etc. (Group 23). Aluminum and magnesium in bulk forms are especially reactive with halogenated hydrocarbons, releasing much heat. Although this is a potential incompatibility, the potential effects are considered minimal for the following reasons. First, the halogenated hydrocarbons are only present in trace quantities (<1 percent by weight) and are immobilized through absorption on sorbent materials or solidification with calcium silicates or gypsum-base processes. Second, although the metals of concern may occur in dominant quantities in the content code, the metals only occur as large pieces and not in powder form. Due to the trace quantities of immobilized halogenated organics and the non-powder size of the metal pieces, any reaction that may occur will produce minimal heat.

22. (17 x 23) The potential chemical incompatibility is the reaction of halogenated organics (Group 17) with metals and other elemental alloys as sheets, rods, moldings, drops, etc. (Group 23). The halogenated organics are present in only very small trace quantities (<1 part per million) as residual films on the glass and not as free liquids that could react with metals.

23. (17 x 23) The potential chemical incompatibility is the reaction of halogenated organics (Group 17) with metals and other elemental alloys as sheets, rods, moldings, drops, etc. (Group 23). The halogenated organics are present in only trace quantities (<1%) as coatings on solid organic materials and are not present as free liquids that could react with metals.

24. (17 x 23) The potential chemical incompatibility is the reaction of halogenated organics (Group 17) with metals and other elemental alloys as sheets, rods, moldings, drops, etc. (Group 23). The halogenated organics are present in only trace quantities (<1%) as coating on the inorganic solid materials and are not present as free liquids that could react with metals.
25. (17 x 23) The potential chemical incompatibility is the reaction of halogenated organics (Group 17) with metals and other elemental alloys as sheets, rods, moldings, drops, etc. (Group 23). The halogenated organics are fixed in the cemented product and would not be available for reaction.

26. (17 x 23) The potential chemical incompatibility is the reaction of halogenated organics (Group 17) with metals and other elemental alloys, as sheets, rods, moldings, drops, etc. (Group 23). The halogenated organics are fixed in the solidified product and are not available for reaction with the metals.

27. (17 x 23) The potential chemical incompatibility is the reaction of halogenated organics (Group 17) with metals and other elemental alloys, as sheets, rods, moldings, drops, etc. (Group 23). An absorbent has been added to immobilize any free liquids that may exist. Due to the trace quantities and immobilization of the halogenated organics, reactions are highly unlikely.

28. (17 x 104) The potential chemical incompatibility is the reaction of halogenated organics (Group 17) with oxidizing agents (Group 107), resulting in the liberation of heat and formation of toxic gases. The halogenated organics are present in only trace quantities (<1%) and are not in the form of free liquids. Additionally, the oxidizing agents are neutralized prior to loading waste containers. Therefore, based on the neutralization of the oxidizing agents, reactions are considered highly unlikely.

28a. (18 x 106) The potential incompatibility is the possible reaction between isocyanates (Group 18) with water (Group 106). The isocyanates are present only in trace quantities (<1%). The water is usually fixed in the solidified product and would not be available for reaction.

28aa. (18 x 106) The potential chemical incompatibility is between isocyanates (Group 18) and water (Group 106) to generate carbon dioxide gas and heat. The potential chemical incompatibility results from the use of water in Ansulite™ fire extinguishing agents and Radiac™ wash solutions. However, isocyanates in the waste forms are present in trace quantities (<1%), are neutralized and fixed prior to loading the waste containers, and are not available for reaction. Therefore, the final waste form contains compatible materials.

28aaa. (19 x 20) The potential chemical incompatibility is the reaction between ketones (Group 19) and mercaptans (Group 20), resulting in heat generation. These chemicals are present only in trace quantities (<1%) as coatings on laboratory glassware. Therefore, contact between the chemicals, if it occurs, will be limited.

28b. (21 x 101) The potential chemical incompatibility is the reaction of alkali and alkaline earth metals (Group 21) with residual water present in the combustible materials (101), resulting in heat generation and ignition of the combustible materials. However, the combustible materials are polyethylene and polyvinyl chloride packaging materials which contain no residual water. Additionally, alkali and alkaline earth metals must be
neutralized prior to shipment to WIPP. Therefore, the final waste form will contain compatible materials.

28c. (21 x 104) The potential chemical incompatibility is the violent reaction between alkali and alkaline earth metals (Group 21) and oxidizing agents (Group 104). Oxidizing agents are present in trace quantities (<1%) and are neutralized prior to packaging. Additionally, alkali and alkaline earth metals must be neutralized prior to shipment to WIPP. Therefore, the final waste form will contain compatible materials.

28d. (21 x 106) The potential chemical incompatibility is the violent reaction between alkali and alkaline earth metals (Group 21) and water (Group 106), resulting in the evolution of hydrogen gas and formation of strong caustics. However, alkali and alkaline earth metals must be neutralized prior to shipment to WIPP. Therefore, the final waste form will contain compatible materials.

28e. (22 x 106) The potential chemical incompatibility is the reaction of metal powders (Group 22) with water (Group 106), resulting in the evolution of hydrogen gas and production of heat. Metal powders or shavings are present as trace quantities (<1%) on paper, rags, and rubber. This potential incompatibility results from the presence of water in Ansulite™ fire extinguishing agents and/or Radiac™ wash solutions and/or absorbed water. However, metal powders or shavings are present as trace quantities (<1%) on paper, rags, and rubber, which minimizes their potential to form hydrogen gas. In addition, the presence of any absorbed liquids are immobilized in an absorbent and would not be available for reaction.

29. (23 x 104) The potential incompatibility is the possible reaction between metals and other elemental alloys as sheets, rods, moldings, drops, etc. (Group 23) and oxidizing agents (Group 104). The oxidizing agents are present only in trace quantities (<1%) and reacted prior to loading in waste containers. The waste is mixed with cement to absorb any residual liquid. Due to the immobilization and prior reaction of the oxidizing agents, reactions are highly unlikely.

30. (23 x 104) The potential incompatibility is the possible reaction between metals, other elemental alloys as sheets, rods, moldings, drops, etc. (Group 23) and oxidizing agents (Group 104). The oxidizing agents are present only in trace quantities (<1%) and dissolved in aqueous solutions that were cemented into a solid monolith-type structure. Due to the immobilization and prior reaction of the oxidizing agents, reactions will not occur.

31. (23 x 107) The potential incompatibility is the possible reaction between metals and other elemental alloys, as sheets, rods, moldings, drops, etc. (Group 23) and water reactive substances (Group 107). The outer low carbon steel drum is the only Group 23 metal found in this content code. Calcium oxide, the only water reactive substance present, is a solid dispersed in the chloride salts. Based on the immobilization of the calcium oxide in the salt, reactions are considered highly unlikely.
32. (23 x 107) The potential incompatibility is the possible reaction between metals and other elemental alloys as sheets, rods, moldings, drops, etc. (Group 23) and water reactive substances (Group 107). Calcium oxide, the only water reactive substance present, is a solid dispersed in the chloride salts. Based on the immobilization of the calcium oxide in the salt, reactions are considered highly unlikely.

33. (24 x 106) The potential chemical incompatibility is the possible solubilization of toxic metals (Group 24), which is not a concern since the water (Group 106) from the sludge is fixed in the cemented product and would not be available for reaction.

33a. (24 x 106) The potential chemical incompatibility is the possible solubilization of toxic metals (Group 24) by water (Group 106). This potential chemical incompatibility results from the use of water in Ansulite™ fire extinguishing agents or Radiac™ wash solutions. Metals in the test waste forms are present in trace quantities (T<1%) as large pieces and not in powdered form. As a result, only minimal heat is expected to be formed.

34. (24 x 106) The potential incompatibility is the possible solubilization of toxic metals (Group 24). The water (Group 106) is fixed in the cemented product and would not be available for reaction.

35. (24 x 107) The potential incompatibility is the possible reaction between toxic metals and metal compounds (Group 24) and water reactive substances (Group 107). The metals are present only in trace quantities (<1% by weight). Calcium oxide, the only water reactive substance present, is a solid dispersed in the chloride salts. Based on the immobilization of the calcium oxide in the salt, reactions are considered highly unlikely.

36. (24 x 107) The potential incompatibility is the possible reaction between toxic metals and metal compounds (Group 24) and water reactive substances (Group 107). Calcium oxide, the only water reactive substance present, is dispersed in chloride salts. Based on the immobilization of the calcium oxide in the salts, reactions are considered highly unlikely.

36a. (25 x 101) The potential chemical incompatibility is the reaction of nitrides (Group 25) with residual water present in the combustible materials (Group 101), resulting in formation of ammonia gas, heat generation, and possible ignition of the combustible materials. However, the combustible materials are polyethylene and polyvinyl chloride packaging materials which contain no residual water. Additionally, any reactive nitrides must be neutralized prior to shipment to WIPP. Therefore, the final waste form will contain compatible materials.

36aa. (25 x 106) The potential chemical incompatibility is the reaction of nitrides (Group 25) with water present in the combustible materials (101), resulting in formation of ammonia gas, heat generation, and possible ignition of the combustible materials. However, any reactive nitrides must be neutralized prior to shipment to WIPP. Therefore, the final waste form will contain compatible materials.
36b. (27 x 104) The potential incompatibility is the possible reaction between nitro compounds (Group 27) and oxidizing agents (Group 107). Calcium oxide, the only water reactive substance present, is dispersed in chloride salts. Reactive oxidizing agents must be neutralized prior to shipment to WIPP. Based on the immobilization of the calcium oxide in the salts and neutralization of oxidizing agents, reactions are considered highly unlikely.

36c. (29 x 104) The potential incompatibility is the possible reaction between saturated aliphatics (Group 29) and oxidizing agents (Group 104). However, reactive oxidizing agents must be neutralized prior to shipment to WIPP. Therefore, the final waste form will contain compatible materials.

36d. (101 x 102) The potential incompatibility is the possible oxidation reaction between combustibles (Group 101) and explosives (102). However, explosives must be reacted prior to shipment to WIPP. Therefore, the final waste form will contain compatible materials.

37. (101 x 104) The potential incompatibility is the possible reaction between combustible materials (Group 101) and oxidizing agents (Group 104). The oxidizing agents are present only in trace quantities (<1%) and are reacted prior to loading in waste containers. In addition, cement is added to absorb any residual liquid. Due to the immobilization and prior reaction of the oxidizing agents, this content code is considered to be chemically compatible.

38. (101 x 104) The potential incompatibility is the possible reaction between combustible materials (Group 101) and oxidizing agents (Group 104). The oxidizing agents are present only in trace quantities (<1%) and are fixed in the solidified product. Due to the immobilization and prior reaction of the oxidizing agents, this content code is considered to be chemically compatible.

39. (101 x 107) The potential incompatibility is the possible reaction between combustible and flammable materials (Group 101) and water reactive substances (Group 107). The dominant combustible material in Group 101 is the polyethylene rigid drum liner. Calcium oxide, the only water reactive substance present, is a solid dispersed in the chloride salts. Based on the immobilization of the calcium oxide in the salt, reactions are considered highly unlikely.

40. (102 x 104) The potential incompatibility is the possible violent reaction between explosives (Group 102) and oxidizing agents (Group 104). However, both of these groups must be neutralized before shipment to WIPP. Therefore, the final waste form will contain compatible materials.

41. (104 x 107) The potential incompatibility is the possible violent reaction between oxidizing agents (Group 104) and water reactives (Group 107). However, both of these
groups must be neutralized before shipment to WIPP. Therefore, the final waste form will contain compatible materials.

List of References

