Title 40 CFR Part 191 Compliance Certification Application for the Waste Isolation Pilot Plant

Appendix DEL

United States Department of Energy Waste Isolation Pilot Plant

Carlsbad Area Office Carlsbad, New Mexico **Delaware Basin Study**

,

1	CONTENTS
2	
3	ACRONYMS DEL-vii
4	
5	APPENDIX DEL DEL-1
6	
7	DEL.1 Purpose and Scope DEL-1
8	DEL.2 Regulatory Context DEL-1
9	DEL.2.1 EPA Radiation Protection Standards (40 CFR Part 191) DEL-1
10	DEL.2.2 WIPP Land Withdrawal Act DEL-3
11	DEL.2.3 EPA WIPP Compliance Certification/Determination
12	Criteria (40 CFR Part 194) DEL-3
13	DEL.3 Definitions of Key Terms DEL-9
14	DEL.4 The Delaware Basin and Its Economic Resources DEL-9
15	DEL.4.1 Delaware Basin Definition and Location DEL-10
16	DEL.4.2 Resources Within the Delaware Basin DEL-10
17	DEL.4.2.1 Oil and Natural Gas Resources of the
18	Delaware Basin DEL-10
19	DEL.4.2.2 Oil and Gas Producing Formations of the
20	Delaware Basin DEL-17
21	DEL.4.2.3 Oil and Gas Exploration and Production
22	Near the WIPP Site DEL-19
23	DEL.4.2.4 Potash DEL-25
24	DEL.4.2.5 Sulfur DEL-25
25	DEL.4.2.6 Groundwater DEL-25
26	DEL.5 Well Drilling, Plugging, and Abandonment Practices
27	DEL.5.1 Oil and Gas Well Drilling Technology DEL-26
28	DEL.5.1.1 Cable Tool Rig DEL-31
29	DEL.5.1.2 Rotary Drilling Rig DEL-31
30	DEL.5.1.3 Drilling Fluids DEL-31
31	DEL.5.1.4 Well Control and Safety DEL-32
32	DEL.5.1.5 Directional and Horizontal Drilling DEL-32
33	DEL.5.1.6 Other Recent Drilling Technologies DEL-35
34	DEL.5.1.7 Developing a Drilling Plan DEL-36
35	DEL.5.1.8 Drill Site Preparation
36	DEL.5.1.9 Well Completion DEL-40
37	DEL.5.2 Drilling of Potash Coreholes DEL-41
38	DEL.5.3 Drilling of Water Wells DEL-41
39	DEL.5.4 Development of Injection and Secondary Recovery Wells DEL-42
40	DEL.5.5 Well Plugging and Abandonment Practices
41	DEL.5.5.1 BLM Oil and Gas Plugging and Abandonment DEL-43
42	DEL.5.5.2 State of New Mexico Oil and Gas Well
43	Plugging and Abandonment DEL-45
44	DEL.5.5.3 Plugging of Oil and Gas Service Wells DEL-46

	Title 40 CFR Part 191 Compliance Certification Application	
	CONTENTS (Continued)	
	DEL.5.5.4 Plugging of Potash Coreholes	DEL-4
	DEL.5.5.5 Plugging of Water Wells	DEL-4
DEL.6	Regulations, Practices, and Problems Associated With Oil and Gas Well	
	and Other Drill Hole Drilling, Plugging, and Abandonment	DEL-4
	DEL.6.1 Bureau of Land Management (BLM)	DEL-4
	DEL.6.1.1 Steps Involved in Oil and Gas Resource	
	Development on Federal Lands	DEL-4
	DEL.6.1.2 BLM Regulation of Onshore Oil and Gas	
	Operations	DEL-5
	DEL.6.1.3 Agreement Between DOE and BLM on Oil and	
	Gas Activities Affecting WIPP I	DEL-5
	DEL.6.1.4 Protection of Potash Resources	DEL-6
	DEL.6.1.5 Bonds, Penalties, and Enforcement	DEL-6
	DEL.6.2 State of New Mexico	DEL-6
	DEL.6.2.1 Well Drilling Requirements	DEL-6
	DEL.6.2.2 Well Plugging and Abandonment Requirements I	DEL-6
	DEL.6.2.3 Incidence of Unplugged Oil and Gas Wells	DEL-7
	DEL.6.2.4 Oil and Gas Development in Potash Areas -	
	NMOCC Order R-111-P I	DEL-7
	DEL.6.2.5 Bonds, Penalties, and Enforcement I	DEL-7
	DEL.6.3 Regulation of Injection Wells I	DEL-7
	DEL.6.3.1 Definitions I	DEL-7
	DEL.6.3.2 Bureau of Land Management I	DEL-7
	DEL.6.3.3 State of New Mexico I	DEL-7
DEL.7	Inadvertent and Intermittent Intrusion by Drilling	DEL-7
	DEL.7.1 Regulatory Context I	DEL-7
	DEL.7.2 Shallow Drilling Events I	DEL-7
	DEL.7.2.1 Water Wells I	DEL-7
	DEL.7.2.2 Potash Coreholes I	DEL-8
	DEL.7.2.3 Sulfur Coreholes I	DEL-8
	DEL.7.3 Deep Drilling Events I	DEL-8
	DEL.7.4 Rate of Drilling in the Basin I	DEL-8
	DEL.7.5 Pressurized Brine Encounters Within the Delaware Basin I	DEL-8
	DEL.7.6 Borehole Permeability Assessment	DEL-8
REFEF	RENCES I	DEL-9
BIBLIC	OGRAPHYI	DEL-9
GLOSS	SARY OF TERMS I	DEL-9
ATTA	CHMENTS	DEL-9

....

		Title 40 CFR Part 191 Compliance Certification Application	
1		FIGURES	
2 3	DEL-1.	General Location of the WIPP Land Withdrawal Area	DEL-5
4	DEL-2.	WIPP Land Withdrawal Area	DEL-7
5	DEL-3.	Major Geological Features of the Delaware Basin	. DEL-11
6	DEL-4.	Oil and Gas Wells Drilled in the Delaware Basin	. DEL-13
7	DEL-5.	Stratigraphic Nomenclature Chart of the Delaware Basin	. DEL-15
8	DEL-6.	Oil and Gas Wells in Nine Township Area Surrounding the WIPP Site	. DEL-21
9	DEL-7.	Oil and Gas Wells Within One Mile of the WIPP Site Boundary	. DEL-23
10	DEL-8.	Potash Leases Within and Outside the Delaware Basin	. DEL-27
11	DEL-9.	Extent of Economically Minable Reserves Inside the Site Boundary	
12		(Based on NMBMMR Report)	. DEL-29
13	DEL-10.	Cable Tool and Rotary Drilling Rigs	. DEL-33
14	DEL-11.	Typical Well Completion	. DEL-37
15	DEL-12.	Carlsbad Resource Area	DEL-49
16	DEL-13.	Minimum Oil and Gas Well Plugging Requirements in the Delaware	
17		Basin	. DEL-57
18	DEL-14.	Standard Oil and Gas Well Plugging Practices in the Potash Resource	
19		Area of the Delaware Basin	. DEL-59
20	DEL-15.	Recent Occurrences of Pressurized Brine in the Castile	. DEL-89
21			
22			

		Title 40 CFR Part 191 Compliance Certification Application
1		TABLES
3	DEL-1.	BLM Oil and Gas Well Drilling, Production, and Abandonment Incidents
4 5		of Noncompliance, FY's 1991 to 1996 According to Violation Code for the Carlsbad Resource Area DEL-65
6	DEL-2.	New Mexico and SE New Mexico Oil and Gas Well Data, 1971 to 1996 DEL-75
7	DEL-3.	Boreholes Within the Delaware Basin
8	DEL-4.	Number of Shallow and Deep Boreholes Within the Delaware Basin, by
9		Resource or Type
10	DEL-5.	Number of Shallow Boreholes Per Square Kilometer in the Delaware
11		Basin, by Resource or Type DEL-83
12	DEL-6.	Number of Deep Boreholes Per Square Kilometer in the Delaware Basin,
13		by Resource or Type DEL-84
14	DEL-7.	Number of Boreholes Per Square Kilometer to be Used in Performance
15		Assessment Calculations DEL-84
16		
17		

.

ź

		Title 40 CFR Part 191 Compliance Certification Application
,		ACRONYMS
2		ACRONTING
2	BLM	Bureau of Land Management
4	CAD	Computer Aided Drafting
5	CCA	Compliance Certification Application
6	CFR	Code of Federal Regulations
7	CRA	Carlsbad Resource Area (BLM)
8	DOE	U.S. Department of Energy
9	DOI	U.S. Department of the Interior
10	EA	environmental assessments
11	EPA	U.S. Environmental Protection Agency
12	FR	Federal Register
13	FY	Fiscal Year
14	IIAP	Inadvertent Intrusion Advisory Panel
15	IM	Instruction Memorandum
16	INC	Incident(s) of Noncompliance
17	KPLA	Known Potash Leasing Area
18	LMR	Life-of-the-Mine Reserves
19	LWA	Land Withdrawal Act
20	MOU	Memorandum of Understanding
21	NEPA	National Environmental Policy Act
22	NMAC	New Mexico Administrative Code
23	NMBMMR	New Mexico Bureau of Mines and Mineral Resources
24	NMOCC	New Mexico Oil Conservation Commission
25	NMOCD	New Mexico Oil Conservation Division
26	NMSA	New Mexico Statutes Annotated
27	NOS	Notice of Staking
28	NTL	Notice to Lessee
29	PVC	polyvinyl chloride
30	RCRA	Resource Conservation and Recovery Act
31	RMP	Resource Management Plan (BLM)
32	RRC	Railroad Commission (Texas)
33	TDS	total dissolved solids
34	TRU	transuranic
35	USDW	underground source of drinking water
36	WIPP	Waste Isolation Pilot Plant

.

....

.

APPENDIX DEL

This report discusses factors that are pertinent to determining and evaluating inadvertent and intermittent intrusion into the U.S. Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) site boundary by oil, gas, and other resource-related drilling. It summarizes the most relevant provisions of the applicable laws and regulations pertaining to compliance by the DOE at the WIPP with U.S. Environmental Protection Agency (EPA) regulations for disposal of radioactive transuranic (TRU) wastes.

8 9 10

11

21

1 2

3

4

5

6

7

DEL.1 Purpose and Scope

The purpose of this investigation is to research and present information relevant to a 12 certification of WIPP compliance with the EPA TRU waste disposal requirements in 40 Code 13 of Federal Regulations (CFR) Part 191 and the relevant certification criteria of 40 CFR Part 14 194. This information serves as one of several assessments necessary to support the WIPP 15 Compliance Certification Application required by 40 CFR Part 194, Subpart B (61 Federal 16 Register [FR] 5224, February 9, 1996). It also supports the performance assessment and 17 compliance assessment required to comply with the EPA environmental standards for disposal 18 in 40 CFR Part 191, Subpart B and the environmental standards for groundwater protection in 19 40 CFR Part 191, Subpart C. 20

22 This report characterizes resource drilling historically accomplished in the Delaware Basin, which is in southeastern New Mexico and southwestern Texas. This report also describes 23 resources in the basin (Section DEL-4), the historic nature, extent, and frequency of drilling 24 for oil, gas, potash, sulfur, and water resources as well as the development and use of the most 25 prevalent oil and gas well drilling technology (Section DEL-5), and federal and state of New 26 Mexico regulations, policies, and problems related to drilling and plugging of oil and gas 27 wells and potash coreholes (Section DEL-6). In addition, the projected rates for potential 28 inadvertent and intermittent intrusion for exploratory oil and gas wells and other types of 29 boreholes over a 10,000-year period are calculated and presented in Section DEL-7. 30

31 32

DEL.2 Regulatory Context

33 34

35

36

37

This section provides a context for the inadvertent and intermittent drilling intrusion discussion in the following sections. It summarizes provisions of the EPA radiation protection standards in 40 CFR Part 191, requirements of the WIPP Land Withdrawal Act (LWA), and provisions of the WIPP compliance certification criteria in 40 CFR Part 194 as they pertain to this investigation.

38 39

42

43

44

40 41

DEL.2.1 EPA Radiation Protection Standards (40 CFR Part 191)

In 1985, the EPA promulgated its radiation protection standards for managing and disposing of spent nuclear fuel, high-level and transuranic wastes, which apply to management, storage, and disposal of TRU wastes at facilities operated by the DOE, including WIPP (40 CFR Part

Title 40 CFR Part 191 Compliance Certification Application
191; 50 FR 38084, September 19, 1985). Initially, the standard consisted of two subparts: Subpart A, Environmental Standards for Management and Storage; and Subpart B, Environmental Standards for Disposal. A third subpart was added in 1993: Subpart C, Environmental Standards for Ground-Water Protection (58 FR 66414; December 20, 1993). All three subparts apply to WIPP, although only Subparts B and C are subject to EPA certification, as specified in the WIPP LWA.
Subparts B and C apply to radioactive materials that may be released into the accessible environment resulting from the disposal of TRU wastes; radiation doses received by members of the public as a result of such disposal; and radiation contamination of certain sources of groundwater (40 CFR § 191.11). The containment requirements in 40 CFR § 191.13 provide as follows:
Disposal systems for transuranic radioactive wastes shall be designed to provide a reasonable expectation, <i>based upon performance assessments</i> , that the cumulative releases of radionuclides to the accessible environment for 10,000 years after disposal from <i>all significant processes and events that may affect the disposal system</i> shall [not exceed certain specified quantities]. (Emphasis added.)
Performance assessments that form the basis for determining compliance with the EPA containment requirements include the following:
(1) identification of processes and events that might affect the disposal system;
(2) examination of the effects of these processes and events on the disposal system; and
(3) estimation of the cumulative releases of radionuclides to the accessible environment over the 10,000-year regulatory period (40 CFR § 191.12).
(The processes and events analyzed in this report are those associated with drilling for resources.) As noted in 40 CFR § 191.13(b), because of the substantial uncertainties involved in projecting how the disposal system will perform in the long-term, performance assessments need not provide absolute proof that containment requirements will be met but only that a reasonable expectation of compliance will be achieved.
Part 191 also includes requirements pertaining to individual (40 CFR § 191.15) and groundwater (Subpart C) protection. Analyses performed to assess compliance with these provisions are called compliance assessments and are limited to the undisturbed performance of the disposal system. Compliance assessment analyses need not include an assumption that someone will intrude into the repository at some future time, but impacts of existing and near future drilling activities must be considered.
TRU waste disposal must also be conducted according to a number of assurance requirements (40 CFR § 191.14). These include but are not limited to the following: maintaining active institutional controls for as long as is practicable (but assuming no more than 100 years in the

performance assessment); designating disposal sites with permanent markers, records, and 1 2 other passive institutional controls; and using the concept of multiple barriers to isolate the wastes. Active institutional controls include disposal site access control, maintenance and 3 remedial action, release control and cleanup, and monitoring. Passive institutional controls 4 include: permanent disposal-site markers; public records and archives; and government 5 ownership and regulations regarding land or resource use (40 CFR § 191.12). No time limit is 6 imposed in 40 CFR § 191.14 on how long passive institutional controls (including 7 government ownership and resource-related regulations) can be expected to endure. 8

Title 40 CFR Part 191 Compliance Certification Application

9 10

11

DEL.2.2 WIPP Land Withdrawal Act

The WIPP LWA (Pub. L. 102 - 579) withdrew 16 sections (10,240 acres; 4,144 hectares) of 12 land from operation under public land laws and transferred administrative jurisdiction from 13 the Department of the Interior (DOI), Bureau of Land Management (BLM) to the DOE for 14 operation of the WIPP disposal facility (Figures DEL-1 and DEL-2). Under §7(b) of the Act, 15 the DOE is prohibited from disposing TRU waste in the WIPP repository until EPA certifies 16 that the facility is in compliance with the 40 CFR Part 191 final disposal standards (Subparts 17 B and C) discussed in Section DEL.1.2.1. Under §8(f) of the act, the DOE must document 18 and the EPA must recertify continued compliance with the disposal standards every five years 19 until the end of the decommissioning phase. Section 8(c) of the WIPP LWA requires the EPA 20 to issue criteria for certification of compliance with the disposal standards in 40 CFR 21 Part 191. 22

DEL.2.3 EPA WIPP Compliance Certification/Determination Criteria (40 CFR Part 194)

In response to the LWA requirements, the EPA issued criteria for certification and
recertification of the WIPP's compliance with the 40 CFR Part 191 disposal regulations.
These criteria were published on February 9, 1996 as 40 CFR Part 194 (EPA 1996a; 61 FR
5224). All of the terms (for example, active and passive institutional controls) used in the
criteria have the same definitions as those found in the Part 191 regulations. In addition to the
Part 194 compliance criteria, the EPA issued a report on March 29, 1996, entitled *Compliance Application Guidance Document for 40 CFR Part 194* (EPA 1996[b]).

33

23 24

25

The documentation that must be submitted to the EPA by the DOE is in the form of a compliance certification application, the contents of which are specified in 40 CFR § 194.14. This application must include information on the presence and characteristics of potential pathways for transport of waste from the disposal system to the accessible environment including, but not limited to, existing boreholes and other potentially permeable features (40 CFR § 194.14[a][3]).

40

The 40 CFR Part 194 rule clarifies, for the purposes of certification, the 40 CFR Part 191
definition of performance assessments by stating that the DOE consider both natural processes
and events, mining, deep drilling, and shallow drilling that may affect the disposal system
during the regulatory time frame (40 CFR § 194.32[a]). Deep drilling is defined as drilling

1 2	events in the Delaware Basin that reach or exceed a depth of 2,150 feet (655 meters) (the WIPP disposal horizon) while shallow drilling refers to drilling depths of less than 2,150 feet
3	(655 meters) (40 CFR § 194.2). The following process and assumptions, specified in 40 CFR
4	§ 194.33, are to be used in assessing the likelihood and consequences of drilling events.
5	
6	• Assume that inadvertent and intermittent drilling for resources is the most severe
7	(worst case) human intrusion scenario
, Q	
0	• In the performance assessment, assume that drilling for resources occurs at random
9	intervals in time and space over the 10 000-year time frame
10	Intervals in time and space over the 10,000-year time frame.
11	Coloulote the deep drilling frequency by identifying the drilling that has occurred for
12	• Calculate the deep utiling frequency by identifying the utiling that has becamed for
13	to be derived by symming the drilling rates for each resource
14	to be derived by summing the drining fates for each resource.
15	- Colculate the shallow drilling frequency by identifying the drilling that has occurred
10	• Calculate the Shallow unlining frequency by identifying the unlining that has occurred
17	resources of similar time and quality to those in the controlled area. The total drilling
10	rate is to be derived by summing the drilling rates for each resource
19	Tate is to be derived by summing the drining fates for each resource.
20	The analysis of the frequency and the consequences of resource-related drilling events over a
21	10 000 year period is dependent on future state assumptions (40 CFR § 194.25). To foreclose
22	speculation the EPA requires that compliance applications assume that characteristics of the
23	future remain what they are at the time the compliance application is prepared (40 CFR
2 4 25	8 194 25) This assumption applies to human existence and societal conditions and not to
25 26	geologic hydrologic or climatic changes. This means that, for purposes of the 40 CFR
20	Part 194 compliance evaluation the DOE can assume current drilling technologies, drilling
27	practices and regulatory requirements will remain consistent with practices in the Delaware
20	Basin at the time this application is prepared (40 CFR § 194.33[c][1]). The assumed future
30	drilling practices include, but are not limited to: types and amounts of drilling fluids:
31	borehole denths, diameters, and seals (plugs); and the fraction of boreholes sealed (plugged)
32	by humans. Although assumptions concerning drilling and plugging regulations are not
33	specified in 40 CFR § 194.33(c)(1), it is apparent that future drilling practices and
34	technologies are in part dependent on and interrelate with federal and state regulations.
35	Regulations are a societal condition under 40 CFR § 194.25(a) and are, therefore, assumed to
36	remain the same.
37	
38	In addition, provisions applicable to compliance assessment analyses, for the evaluation of
39	compliance with the individual and groundwater protection requirements, are defined in
40	40 CFR § 194.54. The rule specifies that
41	
42	(b) Compliance assessments of undisturbed performance shall include the effects on the
43	disposal system of:
44	,
45	

1

THIS PAGE INTENTIONALLY LEFT BLANK

Figure DEL-2. WIPP Land Withdrawal Area

1	(1)	Existing boreholes in the vicinity of the disposal system, with attention to the	
2		pathways they provide for migration of radionuclides from the site; and	
3 4	(2)	Any activities that occur in the vicinity of the disposal system prior to or	
5	(2)	soon after disposal. Such activities shall include, but shall not be limited to:	٦
6		existing boreholes and the development of any existing leases that can be	' /
7		reasonably expected to be developed in the near future, including boreholes	1
8		and leases that may be used for fluid injection activities.	
9			
10	The scope of complian	ce assessments is addressed by the EPA in its preamble to the 40 CFR	
11	Part 194 Final Rule:		
12			
13	Section 194.54 de	fines the scope of compliance assessments. Compliance assessments should	
14	be conducted of th	e undisturbed performance of the disposal system, which, by the definition in	
15	section 12 of 40 C	FR Part 191, denotes that the disposal system is not disrupted by human	
16	intrusion or the oc	currence of unlikely natural events.	
17	The Agency record	mizes however that recourse extraction and fluid injection activities which	
10	are currently perfo	mizes, nowever, that resource extraction and ridid injection activities which	
20	initial state of the	disposal system. The final rule requires that performance assessments and	
21	compliance assess	ments analyze the effects of all types of fluid-injection and all boreholes	
22	which can have an	effect on the disposal system and which have been or will have been drilled	
23	prior to or soon af	ter disposal. These boreholes shall be assumed to affect the properties of the	
24	disposal system fo	r the entire 10,000-year regulatory time frame. Predictions about such future	
25	activities shall be	strictly limited to the expected use of existing leases.	
26			
27	Compliance assessmen	its of undisturbed conditions for 40 CFR Part 191 Section 15 and	
28	Subpart C must consid	er the effects on the disposal system over the long-term of any borehole	
29	drilling activities that a	ire occurring in the vicinity of the disposal system today. Continued	
30	occurrence or initiation	1 of new occurrences of the same activities must also be considered, if	
31	expected to occur on e	xisting leases given today's conditions, up until the time of shaft	
32	 sealing. Activities und 	er way at the time of shaft sealing should be assumed to continue to	
33	their planned completion	on. Activities initiated after shaft sealing should not be considered in	
34	analyses of undisturbed	1 conditions.	
35			
36	DEL.3 Definitions of	Key Terms	
37		·	
38	The oil and gas industr	v, and the regulations that govern its activities, have specific	
39	terminology which is in	ncluded as a glossary of terms in this document. Key EPA regulatory	
40	terms are also included		
41	torms are also mendee	••	
42	DEL 4 The Delaward	Basin and Its Economic Resources	
42		, Dashi and Its Economic Acsources	
45	Significant aconomia -	acources in the Delaware Basin consist primarily of all gas notash	
44	Significant economic r	The location of the basin and measured and instantion and	
45	sultur, and groundwate	T. The location of the basin and resources exploration and	

Title 40 CFR Part 191 Compliance Certification Application

- 46 development activities in the basin are described in this section.
- 47

Title 40 CFR Part 191 Compliance Certification Application

DEL.4.1 Delaware Basin Definition and Location

The Delaware Basin covers 8,920 square miles (23,100 square kilometers). The greatest north-south distance is about 143 miles (231 kilometers) and the east-west distance is about 108 miles (174 kilometers). The basin is shown in Figure DEL-3; it is defined in 40 CFR § 194.2 as follows:

Delaware Basin means those surface and subsurface features which lie inside the boundary formed to the north, east and west of the [WIPP] disposal system, by the innermost edge of the Capitan Reef, and formed, to the south, by a straight line drawn from the southeastern point of the Davis Mountains to the most southwestern point of the Glass Mountains.

The Delaware Basin includes all or part of Brewster, Culberson, Jeff Davis, Loving, Pecos,
Reeves, Ward, and Winkler Counties in Texas, and portions of Eddy and Lea Counties in
New Mexico (Figure DEL-3).

17 DEL.4.2 Resources Within the Delaware Basin

Several natural resources are found within the basin, the most notable of which are oil, natural gas, potash, sulfur, and groundwater. The basin's hydrocarbon resources have been the source of successful exploration for over eighty years. Potash and sulfur are present in quantities large enough to be mined profitably. Caliche, gypsum, and halite are also present within the basin, but of these, only caliche is economically extracted at this time.

The New Mexico Bureau of Mines and Mineral Resources (NMBMMR) in its report, *Evaluation of Mineral Resources at the Waste Isolation Pilot Plant* (NMBMMR 1995), evaluated the resources within the Delaware Basin, with the primary area of focus being the area within one mile of the WIPP-site boundary.

30 DEL.4.2.1 Oil and Natural Gas Resources of the Delaware Basin

Since the first oil well was drilled in the Delaware Basin in 1909, the basin has been a
 continual source of oil and natural gas. There have been over 11,000 wells drilled for oil or
 gas in the Delaware Basin in the last 87 years. Exploration within the basin continues
 (Figure DEL-4).

The hydrocarbon resources of the Delaware Basin consist mostly of oil and associated gas found in the Permian strata and gas condensate in the Pennsylvanian strata. These strata exist beneath the WIPP site and immediately surrounding areas (Figure DEL-5). The majority of oil and gas production around WIPP has been from the following:

• sandstone reservoirs in the Delaware Mountain Group at 7,000 to 8,000 feet (2,134 to 2,438 meters),

44 45

41

42 43

1 2

7

8

9 10

11 12

16

18

24

29

31

Figure DEL-3. Delaware Basin Boundary

```
DOE/CAO 1996-2184
```


Figure DEL-4 is a large foldout contained in a pocket at the end of this volume.

18 19

17

Figure DEL-4. Oil and Gas Wells Drilled in the Delaware Basin

Title 40 CFR Part 191 Compliance Certification Application

SHADED AREA SHOWS INFORMAL OIL AND GAS STRATIGRAPHIC UNITS IN SUBSURFACE

CCA-DEL020-0

Figure DEL-5. Stratigraphic Nomenclature Chart of the Delaware Basin

Title 40 CFR Part 191 Compliance Certification Application

sandstone and carbonates in the Bone Spring Formation from 8,000 to 11,000 feet 1 . (2,438 to 3,353 meters), 2 3 carbonates from the Wolfcamp Group at approximately 12,000 feet (3,658 meters) 4 (secondary oil reservoirs), 5 6 carbonates in the Strawn Group at a depth of approximately 13,000 feet (3,963 meters) 7 (secondary reservoirs of gas and light oil or condensate), and 8 9 10 sandstone reservoirs of the Atoka and Morrow Groups. These groups are found at 13,000 to 14,000 feet (3,963 to 4,267 meters) and have been the source of most non-11 associated gas and condensate. 12 13 DEL.4.2.2 Oil and Gas Producing Formations of the Delaware Basin 14 15 Oil and gas resources occur at various depths within the Delaware Basin. To adequately 16 address these resources and their relationship to the WIPP, it is necessary to discuss each 17 resource as it is found and in which formations each resource is located. Figure DEL-5 18 provides a generalized stratigraphic cross-section of the oil- and gas-producing formations of 19 the Delaware Basin. The following formation descriptions are from the oldest to the youngest 20sediments. 21 22 DEL.4.2.2.1 The Morrow Group 23 24 The Morrow Group is known primarily for production of gas and condensate and is found 25 throughout the Delaware Basin. The Morrow is divided into two sections, the Morrow lime, 26 which is approximately 650 feet (198 meters) thick and the Morrow clastic interval, which is 27 600 feet (183 meters) to 700 feet (213 meters) thick. Nearly all production in the Delaware 28 Basin comes from the clastic section of the Morrow. Wells within the Morrow, immediately 29 30 west of the WIPP area, give mixed information regarding the potential for future production of natural gas. The complex nature of Morrow sandstone deposition and trapping 31 mechanisms makes it difficult to determine the probability and guality of any production. It is 32 not uncommon for a Morrow gas well within the Delaware Basin to produce at a relatively 33 high rate for a short period of time and then show dramatically reduced production due to 34 depletion of the gas reservoir. This has been observed in Morrow wells near the WIPP 35 (NMBMMR 1995). 36 37 38 DEL.4.2.2.2 The Atoka Group 39

The Atoka Group produces both oil and gas. The Atoka is composed of interbedded
 limestone, sandstone, and shale and is very similar to the Strawn Group in its configuration.
 Production within the Atoka is well established in the Delaware Basin in both limestone and
 sandstone reservoirs. All of the productive wells near the WIPP site produce primarily from
 one narrow and thin sandstone channel. Seven wells located adjacent to WIPP have produced

or are currently producing oil and gas. Estimated production from these seven wells is eight 1 billion cubic feet $(2.3 \times 10^8 \text{ cubic meters})$ and 70 thousand barrels (11.1 million liters) 2 condensate. Based on subsurface mapping of the reservoir, it appears that there is excellent 3 production potential near the WIPP (NMBMMR 1995). 4 5 DEL.4.2.2.3 The Strawn Group 6 7 The Strawn Group is a gas producer. Four wells have been completed in this group, three of 8 which appear to be economic producers. They have produced significant amounts of gas and 9 condensate. A new well drilled in late 1993 has revealed what appears to be a significant new 10 Strawn reservoir directly adjacent to the west edge of the WIPP land withdrawal area. With 11 only limited exploration of this group, production capability cannot be accurately calculated, 12 but based on drill stem tests it should be capable of producing similarly to other Strawn wells. 13 14 DEL.4.2.2.4 The Canyon, Cisco, and Wolfcamp Groups The Wolfcamp Group produces both oil and gas. The Cisco and the Canyon Groups have 17

Title 40 CFR Part 191 Compliance Certification Application

15 16

18

21

sequence (Foster 1974). Wolfcamp pools are producers of non-associated gas in the Delaware 19 Basin and oil and associated gas on the Northwest Shelf and Central Basin Platform. Two oil 20 and gas pools have been discovered within the nine-township area surrounding the WIPP site (See Figure DEL-6). Uneconomic volumes of oil and gas have been recorded from three 22 additional wells. Within the Wolfcamp Group, the Bilbrey Wolfcamp gas pool was 23 discovered in 1985, during a re-entry into an abandoned Morrow gas well. At a depth of from 24 12,100 feet (3,689 meters) to 12,138 feet (3,701 meters), perforation was completed and the 25 well was acidized. As of December 31, 1993, the well had produced 9,884 million cubic feet 26 $(2.8 \times 10^8 \text{ cubic meters})$ of gas and 11,683 barrels (1.9 million liters) of condensate. The 27 Diamondtail Wolfcamp pool was discovered in 1981 by a wildcat well during an unsuccessful 28 attempt to drill for gas in the Morrow and Atoka. The well was perforated, acidized, and 29 fractured between 12,181 feet (3,713 meters) and 12,193 feet (3,717 meters). After 30 completion, it was producing 38 barrels (6,041 liters) of oil per day. The true potential of this 31 pool has not been evaluated by further testing.

been included in the Wolfcamp group following the common oil-field usage of the Wolfcamp

32 33

DEL.4.2.2.5 Bone Spring Formation 34

35

The Bone Spring Formation is also an oil-producing unit. Numerous Bone Spring pools in the 36 Delaware Basin have been discovered by re-entering old gas wells in which production from 37 the Atoka or Morrow has declined to subeconomic levels. Many of the exploratory wells 38 leading to the discovery of oil in the Bone Spring Formation had originally targeted structural 39 traps in deeper formations. With the exception of the Red Tank pool, development of known 40 pools within the nine-township area surrounding the WIPP has been limited and is incomplete 41

because operators have concentrated on drilling for deeper gas in the Morrow and Atoka or for 42

shallower oil in the Delaware Mountain Group. Therefore, stratigraphic traps and 43

stratigraphic trends have not been fully defined and the Bone Spring remains inadequately 44

explored and developed in the area. It is highly likely that numerous significant commercial 1 2 accumulations of oil and associated gas remain to be found.

3 4

5

6 7

8

DEL.4.2.2.6 The Delaware Mountain Group

The Delaware Mountain Group is an oil-producing unit near the WIPP site. It is subdivided into three formations: Brushy Canyon, Cherry Canyon, and Bell Canyon. In areas adjacent to the WIPP site, production is obtained from the Cherry Canyon and Brushy Canyon Formations with most production coming from the Brushy Canyon (NMBMMR 1995).

9 10

The Brushy Canyon Formation has also been a producer of oil and associated gas in oil pools 11 adjacent to the WIPP land withdrawal area. The oil traps are largely stratigraphic sandstones 12 that are the major producers of all the Delaware oil pools adjacent to the WIPP site. The 13 Cherry Canyon Formation wells have been drilled since 1970 and several producing fields 14 exist within the Delaware Basin. The more productive Cherry Canyon wells have estimated 15 recoveries of more than 180,000 barrels $(2.86 \times 10^5 \text{ hectoliters})$ of oil per well. The Bell 16 Canyon Formation has been the zone most frequently drilled near the WIPP site. The majority 17 of exploratory oil and gas wells were drilled before 1965 and were in the upper or middle part 18 of the Bell Canyon Formation. Although a large number of these wells had positive oil shows 19 through drill stem or core testing, they were never completed as production wells. 20

22

21

23

DEL.4.2.2.7 Brushy Canyon Formation

The Brushy Canyon is considered to have five main areas of deposition of oil and gas. The 24 units of this formation have been carefully correlated and mapped. The Livingston Ridge 25 Delaware was discovered in 1988 and the Lost Tank Delaware in 1992. Resources in these 26 pools have been developed rapidly, averaging 25 wells per year since 1991. The Los Medanos 27 Complex was discovered in 1991. Since its discovery, 99 wells have been drilled at depths 28 ranging from 7,900 feet (2,409 meters) to 8,100 feet (2,470 meters). The Cabin Lake Pool 29 was discovered in 1986 and has been developed at an average rate of seven wells per year. 30 The Quahada Ridge Southeast Pool, the most recently discovered, began development in 31 1993. Development of this pool has been relatively slow with only three wells drilled in 1993. 32 and two more in 1994. 33

34

36

35

DEL.4.2.3 Oil and Gas Exploration and Production Near the WIPP Site

37 As late as 1974, the WIPP site and the area within one mile (1.6 kilometers) of the site boundary was not thought to have large petroleum resources located within its boundaries. 38 However, since 1974, successful completion of exploratory wells has demonstrated that 39 profitable quantities of resources are present beneath the WIPP site. Comprehensive well 40 records on file at the New Mexico Oil Conservation Division (NMOCD) show that 532 wells 41 have been drilled in the nine-township area centered around the WIPP site as of 1993, with a 42 large number of these completed after 1974 (Figure DEL-6). Few wells were drilled in the 43 area before 1960. From 1960 to 1989, drilling activity increased but was sporadic, although it 44

Title 40 CFR Part 191 Compliance Certification Application

exceeded 20 wells per year. In 1990, however, drilling increased markedly. Annual totals

increased to a maximum of 140 wells per year during 1993. Increases in well completions 2 during the 1990s can partially be attributed to the opening to drilling of previously restricted 3 potash areas. The status of oil and gas wells within the WIPP withdrawal area and within 4 1 mile (1.6 kilometers) of the WIPP site boundary as of April 6, 1994, is shown in 5 Figure DEL-7. 6 7 Lower parts of the Delaware Mountain Group were not generally recognized as exploratory 8 and development targets until the late 1980s and early 1990s. Prior to that time, they were 9 bypassed during drilling with little or no thought that they might contain economic oil 10 reservoirs. In the years prior to 1970, the majority of wells drilled near the WIPP were for 11 shallow oil 4,000 feet (1,220 meters) to 4,500 feet (1,372 meters) in the Bell Canyon 12

13 Formation (NMBMMR 1995). Although these wells were considered exploratory and most

- 14 were plugged and abandoned, there were many indications of oil in cores and drill-stem tests.
- 15 Interest in gas wells was limited due to a lack of accessible pipelines and low well head prices.
- 16 There was some limited success in the Bell Canyon area at Triste Draw, although none of the
- 17 wells was drilled deep enough to reach either the Cherry Canyon or Brushy Canyon reservoirs
- 18 which are now productive. Wells drilled after the 1970s and into the early 1980s were for
- 19 natural gas from the much deeper Morrow and Atoka formations.
- 20

1

Drilling within the 10,240-acre (4,147-hectare) WIPP land withdrawal area has been 21 extremely limited. Only three wells have been drilled for oil and gas within or below the area 22 that was withdrawn for the WIPP site (Figure DEL-7). Two of the three wells drilled during 23 the 1970s were abandoned without ever establishing production. The third well, drilled in 24 1982, reached the Atoka sandstone reservoir and gas production was established. This well, 25 the Perry R. Bass No. 13 James Ranch Unit, remains productive and to date has produced 26 4.664 billion cubic feet $(1.3 \times 10^8 \text{ cubic meters})$ of natural gas and 27,500 barrels (4.4 million 27 liters) of condensate from a total depth of 13,466 feet (4,105 meters). This well was 28 directionally drilled from a surface location outside the WIPP land withdrawal area to a 29 bottom hole location within the WIPP land withdrawal area. The drilling of this well was 30 allowed as the result of the final judgement on the condemnation of land within Township 22 31 South, Range 31 East, Section 31. 32

33

In 1977, the United States, at the request of the Acting Administrator of the Energy Research
and Development Administration, entered into condemnation actions (77-071-B and
77-776-B) for the acquisition of land within Township 22 South, Range 31 East, Section 31,
Eddy County, New Mexico. The final judgment of the condemnation hearing allowed the
U.S. to acquire the mineral rights for the surface and the underlying 6,000 feet (1,829 meters).
The mineral rights below 6,000 feet (1,829 meters) were retained by the leaseholders. The
mineral rights to the upper 6,000 feet (1,829 meters) were acquired to ensure that the bedded

- 40 Infineral rights to the upper 0,000 feet (1,829 meters) were acquired to ensure that in
 41 salt would remain intact and undisturbed by drilling.
- 42
- 43

Note: A full-sized map of this figure is in a pocket at the end of this volume.

CCA-DEL026-0

Figure DEL-6. Oil and Gas Wells in the Nine-Townships Study Area Surrounding the WIPP Site

DOE/CAO 1996-2184

Figure DEL-7. Oil and Gas Wells Within One Mile of the WIPP Site Boundary

DEL.4.2.4 Potash

Potash was discovered in Eddy County, New Mexico, in 1925 in the Snowden McSweeney 3 Well No. 1 near the center of what is now called the Know Potash Lease Area (KPLA) 4 (Figure DEL-8). The first potash coreholes were drilled in 1926. Potash is second in 5 economic importance among the resources found in the Delaware Basin. It is found primarily 6 in Eddy and Lea Counties of New Mexico which produced 83 percent of the nation's 7 domestic potash in 1992. The BLM Carlsbad Mining District in southeastern New Mexico 8 contains the largest domestic potash reserves (Figure DEL-8). The potash industry of New 9 Mexico produces sylvite and langbeinite. 10

11

1 2

In March 1995, the NMBMMR completed a comprehensive reevaluation of potash resources 12 within the WIPP land withdrawal area and the area within one mile (1.6 kilometer) of the land 13 withdrawal area. The re-evaluation was based on an examination of 40 existing boreholes in 14 the 36-square-mile (93-square-kilometer) area. This investigation indicated that economically 15 attractive potash reserves are contained within the study area. However, of the 11 recognized 16 potash zones, only the 4th and 10th zones within the area investigated contain economically 17 attractive potash reserves (see Figure DEL-9). Even though these potash reserves have been 18 identified as being present in the WIPP land withdrawal area, the repository itself is located in 19 an area that is either barren of potash or has only minor potash mineralization (BLM 1993). 20 Figure DEL-8 shows the distribution of potash leases within and outside of the Delaware 21 Basin. 22

23 24

25

DEL.4.2.5 Sulfur

Sulfur appears in the Delaware Basin approximately 50 miles (81 kilometers) south of the WIPP in significant quantities and is considered an economically important resource at that location. There is no sulfur mining activity in the BLM Carlsbad Mining District or in NMOCD Districts 1 and 2.

30 31

32

DEL.4.2.6 Groundwater

33 The northern portion of the Delaware Basin, where the WIPP site is located, is surrounded by the Capitan Reef Complex which is of Permian age. The inner margin of the Capitan Reef 34 serves as the boundary of the Delaware Basin (Section DEL.4.1 and Figure DEL-3). Within 35 the Basin, a thick sequence of Permian rocks and a thin layer of Triassic rock contain six units 36 that are important to the hydrogeology of the area: Bell Canyon, Castile, Salado, Rustler, 37 Dewey Lake, and Santa Rosa (Figure DEL-5). Of these six units, only the Rustler, Dewey 38 Lake, and Santa Rosa contain groundwaters that can be characterized as an economic 39 resource. A discussion of the occurrence of underground sources of drinking water near the 40 WIPP is provided in Appendix USDW. 41

Title 40 CFR Part 191 Compliance Certification Application

1 DEL.4.2.6.1 <u>Rustler Formation</u>

The Rustler contains the most significant water-bearing zone in the northern Delaware Basin in the Culebra and Magenta Dolomite Members (Figure DEL-5). The groundwater chemistry of the Culebra is extremely variable with total dissolved solids (TDS) concentrations ranging from less than 5,000 milligrams per liter to greater than 200,000 milligrams per liter east of the WIPP site. The use of water from the Culebra is limited due to its varying yields and salinity. Useable water from the Culebra occurs several miles southwest of the WIPP site where the salinity is low enough to provide water for livestock.

- The groundwater chemistry of the Magenta is also highly variable, ranging in TDS concentrations from 5,460 milligrams per liter to 270,000 milligrams per liter. Although, within the WIPP land withdrawal area, the general water quality of the Magenta is better than that of the Culebra, its use is very limited near the WIPP site.
- 15

17

10

2

16 DEL.4.2.6.2 Dewey Lake Formation

18 The Dewey Lake Redbeds overlie the Rustler Formation and underlies the Triassic Dockum 19 Group (Figure DEL-5). Although the Dewey Lake has not normally been found to yield 20 water, there are wells that will produce water in the southwestern to south-central portion of 21 the WIPP site. Wells on the J.C. Mills and Twin Wells ranches south of the site produce 22 water for both domestic and livestock use.

23 24

25

29

31

DEL.4.2.6.3 Santa Rosa Formation

The Santa Rosa Formation, which is present over the eastern half of the WIPP site, ranges in thickness from 0 to 300 feet (91 meters) (Figure DEL-5). Water occurrences in the Santa Rosa are very limited (DOE 1991 and DOE 1993).

30 DEL.5 Well Drilling, Plugging, and Abandonment Practices

This section discusses the current state of drilling technology for oil, gas, potash, and water, with primary emphasis directed at oil and gas well drilling technology. New and evolving drilling technologies are described where they apply. The intent of this section is to describe the current practices within the industry, within the Delaware Basin.

36

38

37 DEL.5.1 Oil and Gas Well Drilling Technology

Various types of drilling rigs, drill bits, and drilling fluids are discussed in this section. New
 drilling technologies, a typical drilling plan, and drill site preparation are also addressed. A
 typical oil and gas drilling sequence that might potentially occur in the New Mexico portion of
 the Delaware Basin is included in Attachment 1.

4	
5	
6	
7	
8	
9	
10	
11	
12	
13	Figure DEL-8 is a large foldout
14	contained in a pocket at the end of this volume.
15	

1 2 3

Figure DEL-8. Potash Leases Within and Outside the Delaware Basin

.

.

1

THIS PAGE INTENTIONALLY LEFT BLANK

.

Figure DEL-9. Extent of Economically Minable Reserves of Potash Inside the Site Boundary (Based on NMBMMR Report)

1

THIS PAGE INTENTIONALLY LEFT BLANK

DEL.5.1.1 Cable Tool Rig

Cable tool rigs were used in early exploration for oil and gas in the Delaware Basin and were the workhorses of the industry in the early years. Cable tool drilling operates on a combination hammer-suction principle. A heavy, sharp-pointed bit is raised and dropped continuously into the hole, so that it chips and breaks the rock away. The bottom of the hole is kept full of mud and water, and the motion of the bit is regulated so that the moment it hits bottom it starts up again, adding the effect of suction to the pounding. Cable tool drilling has been substantially replaced by rotary drilling rigs. Diagrams of both types of rigs are provided in Figure DEL-10.

10 11 12

13

20

1 2

3

4

5

6

7

8

9

DEL.5.1.2 Rotary Drilling Rig

The cable tool rig was replaced in the early 1900s by the rotary drilling rig. Rotary rigs make a hole with a boring action rather than punching a hole, as is the case with the cable tool rig. The bit rotates while in constant contact with the rock at the bottom of the hole. Part of the weight of the drill pipe above the bit rests on the rotating bit. This pressure forces the bit into the rock as it turns. Fluid is pumped down the drill pipe and back to the surface to remove rock cuttings produced by the drill bit (Kennedy 1983).

The basic idea of rotary drilling has not changed significantly in more than 75 years, although 21 there have been many improvements in the equipment comprising these rigs. Improvements 22 have brought greater efficiency, greater depth capability, increased safety, and more control 23 over hole conditions and reservoir fluids. The dual-speed top drive drilling rigs were 24 introduced in the early 1980s. Demand for this type of rig has increased worldwide. One of 25 the new dual-speed top drives is rated at 650 tons (590 metric tons). It can handle larger bit 26 sizes and larger drill-string diameters, and reach greater drilling depths. This type of drilling 27 rig offers greater personnel safety because it eliminates the rotary table. Other new tools have 28 been developed to supplement the basic rotary drilling machinery. 29

30

DEL.5.1.3 Drilling Fluids

31 32 33

34

35

36

37

38

Drilling fluids are an integral part of every drilling program. Rotary drilling rigs and drill bits would not be able to function without drilling fluids, or mud as it is most commonly referred to in the oil and gas industry. The drilling fluids are circulated continuously through the drill pipe, down hole to the bit nozzles, and back up the annulus to the mud tanks on the surface. The drilling fluids pumped through the bit nozzles cause the bit cutters to turn and cut the hole. As the fluid moves out through the drill bit, it carries the cuttings made by the bit to the surface.

39 40

> Drilling fluids serve several other functions as well. They lubricate and cool the bit, assist in bringing heavier cuttings to the surface, aid in controlling pressures that may exist in formations that are penetrated by the bit, and serve as a source of downhole information.

1 There are a variety of drilling fluids used in Delaware Basin drilling. Most rotary drilling operations use saturated brine (10 to 10.5 pounds per gallon) as a drilling fluid until reaching 2 the Bell Canyon Formation, where intermediate casing is set. The brine has most often been 3 manufactured by injecting fresh water into the Salado Formation and then pumping the water 4 back to the surface. This process enables drillers to have a constant source of quality brine 5 water. Saturated brine is used heavily in drilling because the intermediate string passes 6 through the Salado Formation, which is salt. Fresh water will cause washout of the salt. Once 7 drilling is continued in harder rock formations, such as the Bell Canyon Formation, materials 8 such as bentonite, barite, or attapulgite are often added to the drilling fluid. All of these 9 materials will increase viscosity and add weight to the drilling fluid column. 10 11 12 In recent years, the increased capacities of circulating systems and improvements in pumping technology have resulted in greater precision in controlling mud flow. Present day drilling 13 fluids have been formulated using complex chemistry to combat specific downhole problems. 14 These additions to fluid technology allow the driller to vary chemical and physical properties 15 of the drilling fluid many times if necessary while drilling an oil or gas well. 16 17

18 DEL.5.1.4 Well Control and Safety

Well control and safety are two of the major concerns related to drilling. Because they are so closely interrelated, one cannot exist without the other. Maintaining a constant downhole pressure during drilling operations is a key factor in controlling an oil or gas well. Detailed well planning is the first step in preventing well control problems. Constant monitoring of drilling variables, use of appropriate equipment, and employment of well-trained drilling crews can significantly reduce the chances of losing control of a well.

27 Failure to control well pressures can cause major impediments to drilling progress. Loss of 28 control over formation pressures can lead to loss of life, destruction of equipment, and abandonment of the well. Also, a well that has blown out may cause damage to the 29 surrounding environment. These potential consequences have resulted in great emphasis 30 being placed on the design and use of blowout control equipment, personnel training in well 31 control, and regulations aimed at reducing the probability of well blowouts. (Note: A well 32 blowout occurs when an uncontrolled flow of gas, oil, or other well fluids escapes into the 33 atmosphere or an underground formation which is not the source of the pressurized fluid. It 34 occurs when the pressure in an underground formation exceeds the pressure being applied by 35 the column of drilling fluid. [The University of Texas 1991]) 36

37 38

19

26

DEL.5.1.5 Directional and Horizontal Drilling

Directional, or deviated, drilling has been practiced in the petroleum industry for many years,
 however, the vast majority of wells are drilled vertically. Drilling rig personnel almost
 continually monitor drilling activity to maintain a vertical borehole. Occasions arise that call
 for the borehole to deviate in a direction that may be controlled by the driller. Methods to

44 change direction of the borehole while drilling have changed from the conventional

THIS PAGE INTENTIONALLY LEFT BLANK

whipstocking of the 1960s and 1970s to new and more efficient methods. Technical 1 developments since the mid-1980s have made it possible to complete wells that could not 2 have been completed earlier, either for technical or economic reasons. The petroleum industry 3 has placed much emphasis on the drilling, completion, and stimulation of wells through 4 directional drilling. Directional drilling has improved as the result of the development of 5 downhole motors with improved control capabilities that may be steered from the surface. 6 Communication between the downhole and the surface using telemetry allows the driller to 7 know exactly where the bit is and how drilling is progressing. This information is available 8 almost immediately to the driller, whereas before, drilling was delayed until drilled materials 9 were circulated to the surface. This technology makes it possible for the driller to make more 10 accurate adjustments in order to follow the planned pathway to the drilling target. 11

12

Horizontal drilling is a new technology that allows a driller to not only directionally drill a 13 14 well but also to be able to drill horizontally into the chosen drilling horizon thereby exposing more of the formation to production. This technique evolved in the 1980s and has been 15 improved upon since. The ability to open more of the paying zones of a formation allows the 16 producing company to bring more oil or gas to the surface and do so more quickly. 17 Directional and horizontal drilling is not widely practiced, however, as directional drilling 18 may increase the cost of drilling by 50 to 60 percent, while horizontal drilling could double 19 the cost of the well (NMBMMR 1995). 20

21 22

23

24

25

26 27

28

29

30

31

32

33

34

35

36

37

38

39 40

DEL.5.1.6 Other Recent Drilling Technologies

Recent innovations in drilling technologies are important to the understanding of the future states concept in the compliance evaluations; the same drilling techniques used today will be assumed to be used in the future. Several recent developments are summarized below.

Measurement and Logging While Drilling. Measurement while drilling and logging while drilling are two of the fastest growing new technologies and are currently used in the Delaware Basin. These new technologies are capable of providing continuous sampling of data through downhole sensors positioned close to or at the bit. The data collected downhole are then transmitted to the surface through the drilling fluid, inside the drill string, using pressure impulses. Impulses are analyzed at the surface. Recorded parameters can be monitored at the surface for better control of operating conditions and wellbore direction as well as lithological information. Measurement while drilling data are collected to ensure continuous surveying, monitoring, and control. Logging while drilling collects data on porosity, resistivity, gamma ray, and caliper measurements to ensure better control of the drilling zone and wellbore status. This information can be combined into an excellent guiding tool.

Oil and Gas Well Cementing. Improvements have been implemented in recent years in well cementing, particularly with regard to the use of cement additives. The use of additives has reduced the permeability of the cement behind the well casing. Gas
 migration in the annulus between the casing and the formation has been eliminated as

1	a result of the addition of four new cement additives: ironite sponge, XC-polymer,	
2	synthetic rubber, and Anchorage clay. Ironite sponge eliminates the micro-annulus	
3	between the casing and cement body by magnetically bonding the casing with the	
4	sponge. XC-polymer is a filtrate control agent. Anchorage clay reduces the	
5	permeability of cement by blocking pores. The addition of synthetic rubber	
6	compensates for the expansion and contraction cycles that are set in motion during the	
7	setting of the cement.	
8		
9	These improvements in cementing technology have a positive impact on wells completed in	
10	the Delaware Basin. The use of impermeable cement minimizes the threat of gas leaks.	
11	Cement with low permeability eliminates the formation of both micro-cracks and a micro-	
12	annulus. When used with dual-wall casing, it significantly reduces gas migration.	
13	······································	
14	Drill pipe metallurgy has also improved, effectively combating corrosion and enabling the	
15	pipe to withstand the stresses resulting from extreme temperatures, pressures, and depths.	
16	Pipe handling tools and downhole equipment have been developed to meet specific needs.	
17		
18	Several changes in rotary drilling have been studied and some have been field tested.	
19	Currently, none of these new ideas has been competitive with conventional drilling	
20	techniques. Two new techniques that have been tested, high-pressure water jetting and	
21	abrasive jetting, still use mechanical energy to remove rock from the bottom of the hole.	
22	These new methods are significant departures from the conventional rotary method because of	
23	the need for specially-designed equipment. Successful field testing of these new techniques	
24	has been conducted but neither method is used routinely.	
25	,	
26	DEL.5.1.7 Developing a Drilling Plan	
27		
28	A typical scenario for an oil or gas well in the WIPP area would begin with a well planning	
29	process that would forecast the potential production zones encountered along with their	
30	expected depths (see Section DEL.6.1.1 for additional details). The forecast would be	
31	prepared using the results of gravity, magnetic or seismic surveys, or data obtained from offset	
32	wells. Commercial companies as well as the NMOCD and BLM would be consulted for	
33	information. Records maintained by drilling companies would be reviewed for information	
34	on hole and casing size, setting depth, formation pressures, mud types and weights, general	
35	characteristics, and any drilling problems that had been observed at previous wells in the area.	
36		
37	Once this stage of well planning was completed, the selection of hole and casing sizes and	
38	setting depths would be determined. A typical well completion is shown in Figure DEL-11.	
39	A well drilled in the Delaware Basin would have the first casing string set and cemented	
40	above the projected top of the salt section. Surface casing would typically be set and	
41	cemented from the surface to a depth of 400 feet (122 meters) to 800 feet (244 meters). The	
42	second (intermediate) casing string would be set and cemented below the base of the salt.	
43	Near the WIPP, this interval would be from the surface down to between 3,800 feet	

1. •

CCA-DEL004-0

Figure DEL-11. Typical Well Completion

THIS PAGE INTENTIONALLY LEFT BLANK

October 1996

Title 40 CFR Part 191	Compliance (Certification A	Application

1 2	(1,159 meters) and 4,200 feet (1,280 meters). The production casing string would be run from the surface to the total depth once drilling was completed.
3	
4	Selection of the proper well casing weights and grades for the well is based on several
5	considerations. The casing pipe must have sufficient wall thickness and steel strength to
6	support the weight of the pipe as it is run into the hole. A safety factor must be added to both
7	pipe and the pipe connections because of the possibility of the pipe sticking while it is being
8	run into the hole. Pressure burst and collapse ratings must be calculated for the hole as they
9	bear on the selection of casing weight and grade.
10	
11	The type of cement, additives, and volumes must be selected for each casing string. Each
12	casing string must be considered separately. The volume of cement for the intermediate and
13	production string would be based upon bonding to the cement of the preceding casing string.
14	The well plan would also include a cement bond log to indicate the effectiveness of the
15	cementing of the casing strings.
16	
17	The selection of a drilling mud system is critical to the drilling plan. Factors that must be
18	considered include
19	
20	(1) counterbalancing formation fluid pressures;
21	
22	(2) efficient removal of rock fragments from the hole, including suspension of rock
23	fragments when circulation stops;
24	
25	(3) cooling, lubrication, and prevention of corrosion of the drill pipe and bit; and
26	
27	(4) minimizing formation damage during the drilling process so that maximum
28	information may be obtained from the formations as they are penetrated.
29	
30	DEL.5.1.8 Drill Site Preparation
31	
32	Following the completion of a drilling plan, a drilling site is selected by the operator. Upon
33	final approval to drill, the location is surveyed and staked, and the drilling contractor is
34	authorized to initiate construction. Information critical to construction of the drilling site (for
35	example, location, dimensions, placement of the cellar, locations of the mouse and rat holes,
36	and the layout of the reserve pit) is collected.
37	
38	The size of a typical oil or gas well drilling pad is 300 feet by 260 feet (91 meters by
39	79 meters) with an additional 150 feet by 150 feet (46 meters by 46 meters) area for the
40	reserve pit. Once the location of the pad is established, it is excavated to the underlying
41	caliche layer and leveled. Caliche is hauled to the site by truck and compacted as necessary to
42	establish a stable base. When the drilling pad is completed, a cellar is constructed over the
43	intended wellbore. The cellar is excavated with final dimensions of about 8 feet by 8 feet by 6
44	teet (2.4 meters by 2.4 meters by 1.8 meters) and lined with either concrete or heavy wooden

2 is then set and cemented in place. The diameter of the conductor pipe is determined by the 3 casing size selected for the well. 4

timbers. An auger contractor then drills a starter hole to a depth of 40 to 80 feet (12 to 24

Title 40 CFR Part 191 Compliance Certification Application

5 Reserve pits are then constructed at a point adjacent to the cellar. The reserve pits are 6 excavated to a depth of from 4 to 6 feet (1.2 to 1.8 meters) with a berm constructed around the 7 outside of the pit. The reserve pits are lined with 0.2 to 0.5 mil (0.005 to 0.0127 millimeters) 8 plastic. The plastic liner is required by the NMOCD to prevent possible contamination of 9 groundwater by drilling fluids that are circulated into the pit during the drilling operations. 10

11

1

12 At this stage, the location is ready for the drilling rig to arrive and be set up for drilling

operations. The rig size and type selected to drill the well is determined based on hole size 13 and anticipated total depth of the well. Factors considered in the selection of the appropriate 14 rig are horsepower, hoisting capability, derrick and substructure capacity and height, pumps, 15 and well control equipment. The rig size normally selected for drilling in the WIPP area is 16 one with a drilling depth capacity of 7,000 to 15,400 feet (2,134 to 4,695 meters). After 17 selection of the proper drilling rig, the drilling contractor moves onto the location and begins 18 drilling operations. A typical oil or gas drilling sequence for drilling that might occur in the 19 Delaware Basin in the future is included as Appendix A. 20

21 22

23

DEL.5.1.9 Well Completion

The final stage of the oil or gas drilling process is completion of the well (Figure DEL-11). A 24 pulling-unit is moved onto the location and set up over the wellbore. An engineering 25 completion company runs a cased hole log of the well. This log is compared to the open hole 26 log and areas within the selected formation are selected for perforation. In most instances, 27 standard 4-inch (10-centimeter) perforation guns are loaded at a shot-density determined by 28 the completion engineer. The perforation guns are then run into the hole to the depth selected 29 for perforation. (Note: Perforation involves puncturing or piercing the casing wall and 30 cement in a wellbore to provide holes through which formation fluids may enter the wellbore. 31 It is accomplished by lowering a perforating gun into the well which fires electrically 32 detonated bullets or shaped charges.) 33

34

When the completion company is confident that the perforation guns are at the correct depth, 35 casing perforation is completed. After perforation of the casing, the well could receive further 36 stimulation by fracturing or acidizing the wellbore at the site of the perforations to begin or 37 improve production. During these operations, sand and acid are pumped under high pressures 38 through the perforations into the formation. Sand pumping and acidizing cause fracturing of 39 the formation and can increase porosity and permeability, thereby enhancing the production of 40 oil or gas. 41

DEL.5.2 Drilling of Potash Coreholes

Potash coreholes are drilled for the purpose of locating potash reserves. Diesel-powered 3 wireline and conventional core drill rigs are used for potash exploration. With this equipment, 4 conventional rotary drilling procedures are used to bore to the top of the potash-bearing 5 section. Cores are then cut with a face-discharge bit that is set with diamonds. Cores are 6 typically 2.25 inches (6 centimeters) in diameter. A double-tube core barrel through which 7 drilling fluid is circulated between the inner and outer tubes is used to core the desired areas. 8 The drilling fluid is usually composed of saturated sodium and potassium chloride brine to 9 which starch, gel, and diesel fuel is added. Cores are usually cut in 10 or 20 feet (3 or 10 6 meter) lengths. These cores provide the potash industry with valuable data in determining 11 the presence of mineable potash as well as the type and grade of the potash. 12

14 Before potash coreholes are drilled, the mining company must contact the State Land Office and secure a right-of-way if the cores are to be taken from land currently held by the mining 15 company through a lease. If the land that the mining company plans to core drill is not held 16 by lease, a prospecting permit must be obtained from the State Land Office. Once the permit 17 is obtained, the mining company must then submit a sundry notice of intent to drill to the 18 State Engineer's Office. This notice is usually accompanied by a second notice of intent to 19 plug or abandon. Both of these notices are required by the State Engineer. The mining 20 company submits both forms before drilling any coreholes. 21

When the corehole has been drilled and all cores removed, the corehole is usually filled with cement before the drilling rig is moved to the next coring site. As a result of this, potash coreholes are expected to have no effect on the performance of the WIPP.

DEL.5.3 Drilling of Water Wells

Water wells must be drilled by a company or individual licensed by the State Engineer's Office. The driller is required to post a bond.

30 31

29

1 2

13

22 23

24

25 26

27 28

The typical sequence of activities for drilling a water well is initiated with the construction of a drilling pad with two pits, a mud pit, and a settling pit. A truck-mounted rotary drilling rig or a cable tool rig is then moved in and set up over the selected drilling site, after which drilling with mud or air is initiated.

36

42

When mud is selected as the drilling medium, the mud pit is filled with the appropriate drilling fluid. The mud is then pumped from the mud pit through the bit. The mud serves to drive the drill bit rotary cutters, cool the drilling bit, and circulate cuttings through the annulus to the surface and into the settling pit. Upon hitting water, the mud is used to flush cuttings from the hole. The well is then completed.

_

In drilling with air, the air performs the same function as mud. Air cools the bit and moves
cuttings to the settling pit. The mud pit, however, is left dry until water is hit. Once water has

- been encountered, the mud pit is filled and the mud is used to flush cuttings from the hole.The well is then completed.
- 3

Well completion typically consists of placing a 25-foot (8-meter) length of steel well screen 4 casing at the base of the well within the area where water is found. The steel screen is slotted, 5 with the slots usually being 0.02 inch (0.05 centimeter) wide. This size is used because the 6 casing is packed internally with gravel; the slots must not be large enough to allow the gravel 7 to pass through. The remaining wellbore is cased and cemented to the surface with 3 feet 8 (1-meter) of casing above ground level. A 10-foot (3-meter) layer of sand is deposited on top 9 of the gravel inside the casing; this sand filters water as it rises in the well. Depending upon 10 the depth of the water well, either polyvinyl chloride (PVC) or steel casing is installed to the 11 surface. 12

13

Water wells that exceed 500 feet (152 meters) must be cased with steel because PVC is not sufficiently strong to withstand the weight of the casing. Also, the pressures become too great

at that depth. Further, the bottom hole temperatures at that depth, combined with heat

17 generated through hydration of cement used in casing the well, may actually melt the PVC.

After cementing and packing, a submersible pump is installed in the well to allow water to be pumped to the surface for its intended use. When water wells are abandoned, the State Engineer's Office designates how the well will be plugged and witnesses the plugging activities.

21

23 24

DEL.5.4 Development of Injection and Secondary Recovery Wells

A permit is required from the NMOCD for any well used to inject gas, air, or water for secondary recovery or for water disposal. The regulation of injection wells is discussed in Section DEL.6.3. When injection well permits are granted, the NMOCD maintains close control over each well by requiring that annual casing-integrity testing be conducted and tracer surveys run to ensure that injected fluids are being pumped into the proper formations and they are not endangering any underground source of drinking water.

The most common type of injection well is for brine produced from the producing formation in oil and gas wells. Salt water disposal wells have become necessary as a result of the EPA's ruling that formation water may no longer be disposed of on the surface. All producing oil and gas wells produce water along with oil or gas. This water is now disposed of by injecting it into approved salt water disposal wells.

37

31

38 Waterflooding is the most common form of secondary recovery. This method involves the

- ³⁹ pumping of water through the existing perforations in a well in which production has
- 40 decreased sufficiently to merit stimulation. As the water is pumped into a formation, it
- 41 stimulates production of oil or gas in other nearby wells. This is a proven method of
- 42 recovering hydrocarbons that otherwise would be unretrievable.
- 43

groundwater. Since the late 1970s, strict control of waterflooding has been enforced. Section 4 DEL.6.3.3.4 provides information on the regulation of waterflooding in the Delaware Basin. 5 6 **DEL.5.5** Well Plugging and Abandonment Practices 7 8 9 This section addresses the technology associated with well plugging and abandonment. While the focus is on oil and gas wells, the plugging of potash coreholes and water wells is also 10 described. 11 12 DEL.5.5.1 BLM Oil and Gas Plugging and Abandonment 13 14 The BLM regulations on oil and gas plugging and abandonment in 43 CFR § 3162.3-4 and Oil 15 and Gas Order No. 2 are discussed in detail in Section DEL.4.1.2.2. This section serves as a 16 supplement to that discussion. 17 18 19 DEL.5.5.1.1 Oil and Gas Well Plugging Sequence 20 21 The first step in plugging and abandoning a well is the submission of the Sundry Notice (Form 3160-5, Attachment 2) that informs the BLM of the operator's intent to abandon the well. 22 This form must include a plan by the operator detailing exactly how the well will be plugged. 23 BLM inspectors will review and approve the plan as presented or make modifications which 24 the operator must follow. 25 26 The operator must provide a 24-hour notice to the BLM before beginning abandonment 27 operations in order to allow BLM personnel an opportunity to witness the operation. BLM 28 does not consider the plugging and abandonment procedure completed until a surface cap has 29 been welded on the opening to the casing, a 4-inch (10 centimeter)-diameter pipe, 10 feet 30 (3 meters) long, has been embedded in cement and extended 4 feet (1 meter) above ground 31 level, and the cellars have been filled to the surface. When all phases of the abandonment are 32 complete and have been inspected, the well plugging bond may be released (see Section 33 DEL.6.1.5). 34 35 Plugging operations are typically carried out using a pulling unit (a truck with a large mounted 36 derrick). The pulling unit sets up over the wellbore and is used to complete the plug and 37 abandonment operation. The first step in the plugging process is to set the required cast iron 38 bridge plug at the depth shown in the plugging plan as approved by the BLM. The point of 39 placement for the bridge plug is just above the uppermost production perforations in the 40 casing. Once the bridge plug is in place, the pulling unit operator will tag the bridge plug 41 (touch the top of the plug with the tubing) to make certain that it is set at the correct depth as 42

Title 40 CFR Part 191 Compliance Certification Application

Waterflooding has been a popular form of secondary recovery for over 40 years. In its early

that waterflooding is responsible for a number of environmental problems related to

stages, there was little or no monitoring of this process. More recently, it has been determined

- 43 specified on the plugging plan contained in Form 3160-5 (Attachment 2).

44

1 2

When the proper depth is confirmed, a minimum of 25 feet (8 meters) of cement is placed on top of the bridge plug. The operator will then fill the borehole with at least nine-pound mud or brine water, filling the borehole to the site of the next plug location. The viscosity of the mud allows the operator to then pump a type C or H cement through the tubing to its correct depth on top of the mud. The mud column will support the weight of the cement until it sets up. The operator, if required by the BLM, will again tag the top of the cement to verify both the position and length of the plug.

8

9 While the NMOCD has inspection personnel on site in every instance to verify this process, 10 the BLM elects to witness only selected plugging operations. The process of setting plugs 11 will continue in the same manner until each of the plugs identified on the plugging plan has 12 been properly placed. At this point, plugging operations are complete. The only remaining 13 requirement to complete the plug and abandonment operation is that of returning the drill pad 14 to a near-original state. This process may be completed in only a few days or possibly up to 15 several months after plugging has been completed.

16 17

DEL.5.5.1.2 Plugging of Temporarily Abandoned Wells

18 Wells may be temporarily abandoned for up to five one-year periods with BLM approval (see 19 Section DEL.6.1.2.3). A Sundry Notice must be submitted requesting temporary 20 abandonment (Form 3160-5, Attachment 2). The notice must include a description of the 21 abandonment procedure, a complete wellbore diagram, and the anticipated date the operations 22 will occur. As with plugging and abandonment, this plan must be reviewed and approved by 23 BLM inspectors. Once approved, a 48-hour notice must be given to BLM to allow an 24 opportunity for the plugging inspection. Operators must install a bridge plug or a cement plug 25 50 to 100 feet (15 to 30 meters) above the perforations. If a cement plug is chosen, it must be 26 tagged to make certain it is at the proper depth. Bridge plugs are set using a wireline with the 27 proper depth being verified before the plug is set. 28

29

32

34

The integrity of the casing must be also be verified. If testing indicates problems with the casing, repairs must be made before the well may be temporarily abandoned.

33 DEL.5.5.1.3 Plugging in the Potash Resource Area

BLM requirements for plugging and abandonment in the potash areas are the same as in non-35 potash areas. Although the BLM has not overseen the plugging of any oil or gas wells in the 36 potash area in a number of years, the requirements of the New Mexico Oil Conservation 37 Commission (NMOCC) Order R-111-P (see Section DEL.6.2.4) will be considered at the 38 appropriate time (Personal Communication 1996a). According to the Secretary of the Interior 39 Order of October 28, 1986 (51 FR 39425), on oil, gas, and potash leasing, the BLM will 40 cooperate with the NMOCD in implementing state rules and regulations although the BLM 41 will make the final decision. 42

DEL.5.5.1.4 Most Common Technical Violations

Large national oil companies and large independent companies normally comply strictly with 3 the oil and gas well plugging requirements. Large businesses, which have the necessary 4 resources to properly plug and abandon their wells, typically contract with other large 5 businesses to perform their plugging operations. It has been BLM's experience that these 6 7 companies follow sound business practices and wish to remain in good standing with the BLM. Smaller independent operators are more likely to lack resources to respond as quickly 8 9 to the BLM and may not plug a well with the same expertise that a larger established company might have. The BLM is aware of situations that pose a potential for improper plugging. If 10 the agency has a concern regarding a contractor's methods, BLM personnel are present during 11 the entire plugging operation (Personal Communication 1996b). 12

14 Plugging bonds are required to ensure that wells are plugged and abandoned properly and within a reasonable time frame (see Sections DEL.6.1.5 and DEL.6.2.1). Both NMOCD and 15 16 BLM have experienced higher rates recently of what they refer to as orphan wells. These are wells that should be plugged and abandoned, but owners of these wells cannot be located. 17 When this occurs, plugging of these wells becomes the responsibility of the agency upon 18 whose land they are located. Both agencies have orphan well plugging funds that are funded 19 partially through plugging bonds that have not been returned and money from their operating 20 budgets. These orphaned wells are a matter of concern to both agencies and they are working 21 to conserve financial resources for plugging. 22

23 24 25

1

2

13

DEL.5.5.2 State of New Mexico Oil and Gas Well Plugging and Abandonment

The NMOCD regulations on well plugging and abandonment are discussed in Sections DEL.6.2.2 and DEL.6.2.3. They are similar in many respects to the BLM requirements.

27 28 29

30

26

DEL.5.5.2.1 Plugging Outside the Potash Resource Area

The major distinction between NMOCD and BLM practices is that NMOCD witnesses every well plugging and abandonment operation on state and private land, whereas the BLM is only able to witness approximately 50 percent of the plugging operations on federal leases. Both agencies require sundry notices to be filed with an abandonment plan and both agencies review and approve or modify those plans.

- 36
- 37 38

DEL.5.5.2.2 Plugging Within the Potash Resource Area (R-111-P)

Operators must follow the same procedures within the potash enclave as they do in other areas, with the exception that the NMOCD requires the operator to run a solid cement plug through the entire salt section and water bearing zones in addition to installing a bridge plug above the perforations. Installing a solid cement plug through the salt provides additional assurance that no fluids or gases escape through the casing into potash mining areas or fresh water formations. (See Section DEL.6.2.3 on NMOCC Order R-111-P.)

DEL.5.5.2.3 Most Common Technical Violations

Because NMOCD inspectors are able to witness 100 percent of the plugging and 3 abandonment operations, technical violations are very rare. NMOCD inspectors are present 1 for each step in the plugging operation. Operators are informed that plugging operations are 5 not to begin before NMOCD inspectors are on site. If NMOCD inspectors are not present 6 7 when plugging operations begin, the operator may be required to remove everything from the well and start over. The NMOCD also requires plugging bonds to be secured by the operator 8 before plugging and abandonment are carried out (see Section DEL.6.2.1). The bond is not 9 released until all requirements for plug and abandonment have been properly completed 10 (Personal Communication 1996c). 11

12 13

14

1 2

DEL.5.5.3 Plugging of Oil and Gas Service Wells

15 Oil and gas operators are required to follow NMOCD Rule 705 on commencement,

discontinuance, and abandonment of injection operations when plugging an injection well.
 This rule requires operators to file a Notice of Discontinuance when a decision has been made
 to cease injection operations. The rule forbids temporary abandonment of service wells.
 Plugging requirements are the same as when plugging oil and gas wells or dry holes.

20 21 22

DEL.5.5.4 Plugging of Potash Coreholes

In June 1975, the land that is now the WIPP land withdrawal area became part of the Carlsbad 23 Underground Water Basin. This placed potash coreholes under the jurisdiction of the State 24 Engineer. A review of the records maintained by BLM on commercial potash coreholes 25 indicates that, since 1975, 155 coreholes have been drilled and plugged in the New Mexico 26 portion of the Delaware Basin. Of the 155 coreholes, 151 were plugged from bottom to top 27 with solid cement while four were plugged with a mixture of mud and cement. As indicated 28 29 by this review, the current plugging practice is to fill potash coreholes with a cement slurry from the bottom of the hole to the surface. 30

32 DEL.5.5.5 Plugging of Water Wells

The State Engineer has authority for all water wells. The State Engineer must be notified when a well is to be plugged and he designates how it is to be plugged. The method typically used in the Carlsbad Underground Water Basin is to remove all casing from the hole, clean the hole to the bottom using a sand pump or a cable tool drilling rig with a bailer, and fill the hole with red clay. The red clay is compacted as the hole is filled. Another method of filling the hole is to circulate the hole full of cement. This method is more expensive and is not typically used.

41

31

DEL.6 Regulations, Practices, and Problems Associated With Oil and Gas Well and Other Drill Hole Drilling, Plugging, and Abandonment

This section describes BLM (Section DEL.6.1) and NMOCD (Section DEL.6.2) regulatory requirements pertaining to the drilling and plugging of oil and gas wells. Requirements related to drilling and plugging of drill holes (coreholes) associated with exploration for potash resources are also briefly discussed. While the emphasis is on plugging of oil and gas or other types of boreholes, drilling requirements are discussed insofar as they may relate to inadvertent intrusion at the WIPP site. Enforcement actions, incidents of non-compliance with regulations, and other problems associated with drilling or plugging as they may relate to the integrity of the WIPP site are also identified.

The entire 10,240-acre (4,144-hectare) WIPP site (Figure DEL-2) is withdrawn from all forms 13 of oil and gas, potash, and other mineral leasing and appropriation under (3(a)(1)) of the Waste 14 Isolation Pilot Plant Land Withdrawal Act of 1992 (U.S. Congress 1992). WIPP activities 15 related to the management and disposal of TRU wastes are given priority although the WIPP 16 site may continue to be used for wildlife habitat, livestock grazing, and hunting subject to 17 conditions imposed by the DOI and applicable grazing laws and policies (LWA § 4[b]). With 18 the exception of two existing oil and gas leases (which can be acquired by the DOE if deemed 19 necessary), the LWA prohibits all surface and subsurface mining or oil and gas production on 20 land on or under the WIPP site (LWA § 4[b][5]). Slant drilling from outside the boundaries 21 of the WIPP site that would intrude into the withdrawal is also prohibited. 22

DEL.6.1 Bureau of Land Management (BLM)

Leasing of oil and gas resources under federal ownership in the WIPP area is conducted for the Carlsbad Resource Area (CRA) (Figure DEL-12) by the BLM Roswell District Office. Leasing has most recently been conducted under the 1988 Carlsbad Resource Management Plan and site-specific environmental assessments prepared to meet the requirements of the National Environmental Policy Act (NEPA). Leasing of oil and gas is authorized by the Mineral Leasing Act of 1920 and subsequent federal legislation.

32

23 24

25

1

2 3

4

5

6

7

8

9

10

11 12

The CRA encompasses approximately 6.4 million surface acres (2.6 million hectares) in Eddy 33 and Lea Counties and the southwest portion of Chaves County (Figure DEL-12). The federal 34 government owns both the surface estate and subsurface oil and gas resources on 35 approximately 2.2 million acres (0.9 million hectares). On another 1.9 million acres (0.8 36 million hectares), the subsurface oil and gas is under federal ownership while the surface is 37 either owned by non-federal surface owners or not administered by the BLM. Thus, federal 38 oil and gas resources underlie approximately 4.1 million surface acres (1.7 million hectares) 39 of the CRA. The CRA, within which the WIPP site is located, occupies only a small portion 40 of the northern part of the Delaware Basin (Figure DEL-3). 41

. <u> </u>	Title 40 CFR Part 191 Compliance Certification Application
DEL.6	5.1.1 Steps Involved in Oil and Gas Resource Development on Federal Lands
The st eventu BLM follow	eps involved in exploration, development, and production of oil and gas, as well as al plugging and abandonment, are similar on federal and State-regulated lands although and NMOCD regulatory requirements differ. The major steps on BLM lands are as 75.
1.	Screening of Parcels Proposed for Leasing. Screening is conducted according to a number of primarily environmental criteria and leasing requirements of other surface management agencies.
2.	Leasing of Parcels. Leasing is authorized by the Mineral Leasing Act of 1920 (and subsequent legislation) and conducted according to BLM regulations in 43 CFR Part 3100, Subpart 3101. A lessee has the right to use as much of the leased land as is necessary for exploratory drilling and development of the oil or gas resources. Leasing applies to the federal mineral estate whether the surface is administered by the BLM, a private individual or company, or some other government agency.
3.	Geophysical Exploration. Prospecting using seismic reflection surveys is the prevalent method used in the Roswell BLM District. Operators are required to file with the BLM Area Manager a notice of intent to conduct oil and gas exploration operations (Sundry Notice Form 3160-5; Attachment 2) accompanied by evidence of adequate bonding. When exploration activities are completed, the operator must file with the BLM a notice of completion of oil and gas exploration operations (Sundry Notice Form 3160-5; Attachment 2). The BLM may impose certain terms and conditions on exploration activities and notify the operator, following an inspection, if the terms and conditions have been met. If they have not been met, the surety bond required cannot be released. During the period of 1986 through 1992, the BLM approved 369 geophysical exploration notices of intent for the CRA.
4.	Drilling Permitting. The lessee or operator must submit to BLM either a notice of staking (NOS) or an application for a permit to drill (Form 3160-3; Attachment 2). This is followed by a BLM field inspection to assess possible surface and subsurface impacts and specify, as necessary, site-specific mitigation measures. Before approving the application for a permit to drill, the BLM must prepare the required NEPA documentation. A number of environmental and other conditions and stipulations are attached to all drilling permits.
5.	Drilling Operations. Applications for a permit to drill are approved for a one-year period and may receive a one year extension if drilling is not started during the first year. Drilling methods and technology are discussed in Section DEL.5.0. BLM drilling regulations are discussed in Section DEL.6.1.2.1.

TEXAS

CCA-DEL005-0

Figure DEL-12. Carlsbad Resource Area

THIS PAGE INTENTIONALLY LEFT BLANK

	Title 40 CFR Part 191 Compliance Certification Application
6.	Development and Production. Wells are completed and production equipment installed only when it is determined that oil or gas can be recovered in commercial quantities. A well completion or recompletion report and log, BLM Form 3160-4, is included in Attachment 2.
7.	Well Plugging and Abandonment. BLM regulatory requirements governing well plugging and abandonment are discussed in Section DEL.6.1.2.2. Plugging of an abandoned well is required to prevent migration of fluids between underground zones, protect other resources (for example, potash and useable water), and reclaim the surface. A correlative purpose of plugging is to prevent waste of oil and gas resources.
DEL.	6.1.2 BLM Regulation of Onshore Oil and Gas Operations
Explo the B CFR lands miner surfac gas re	bration, development, and production of oil and gas from federal leases administered by LM are governed by comprehensive regulations for onshore oil and gas operations in 43 Part 3160. Under the regulations, the term federal lands means all lands and interests in owned by the United States which are subject to the mineral leasing laws, including ral resources or mineral estates reserved to the United States in the conveyance of a ce or nonmineral estate (§ 3160.0-5[c]). Thus, the regulations are not limited to oil and ecovered from lands where the surface is administered by the BLM.
The E	BLM is authorized to require that
	[All] operations be conducted in a manner which protects other natural resources and the environmental quality, protects life and property and results in the maximum ultimate recovery of oil and gas with a minimum of waste and with minimum adverse effect on the ultimate recovery of other mineral resources (43 CFR § 3161.2).
The E and g Oil ar the sa (53 F abanc insper regula	BLM regulations in 43 CFR are implemented and supplemented by various onshore oil as orders which are periodically issued under Subpart 3164 of the regulations. Onshore and Gas Order No.1 (48 FR 48916) was issued on October 21, 1983, and covers many of time topics as the regulations, some in more detail. Onshore Oil and Gas Order No. 2 R 46798, November 18, 1988) applies particularly to drilling operations including well comment and plugging requirements, and it expands on the 43 CFR regulations. BLM ctions and enforcement activities rely more on the oil and gas orders than on the ations (Personal Communication 1996a).
DEL.	6.1.2.1 Well Drilling
The E	BLM has authority to approve and monitor drilling and production, impose assessments
or rel	ated surface disturbances can be commenced without approval of an application for a
permi	it to drill (43 CFR § 3162.3-1[c]). The application for a permit to drill (Form 3160-3;
Attac	hment 2) must include a drilling plan for a single well or several wells, a surface use
plan,	and evidence of bond coverage. A proposal to conduct well operations other than

1	drilling (for example, redrill, deepen, perform casing repairs, plug-back, and alter casing) must
2	also be submitted to BLM for approval on Form 3160-3 (Attachment 2). Before approving an
3	application for a permit to drill, the BLM must prepare an environmental review or an
4	environmental assessment. These documents are used to determine if an environmental
5	impact statement is required and to identify drilling approval terms and conditions (43 CFR
6	§ 3162.5-1[a]).
7	
8	During the drilling and completion of a well, the operator is required to conduct tests, run
9	logs, and make other necessary surveys (43 CFR § 3162.4-2). The operator is also required to
10	determine the amount and direction of any deviation of the well from vertical. Results of such
11	tests and surveys must be made available to the BLM.
12	·
13	Onshore Oil and Gas Order No. 2 details BLM's uniform national standards for minimum
14	levels of performance for conducting drilling operations as well as for plugging and
15	abandonment (53 FR 46798, November 18, 1988). Highly technical requirements are
16	included for well control, well casing and cementing, drilling mud and related drilling
17	procedures, drill stem testing, and special drilling operations. Casing and cementing programs
18	are to be conducted to protect and isolate usable water zones, potentially productive zones,
19	lost circulation zones, abnormally pressured zones, and any prospectively valuable mineral
20	deposits. Drilling mud characteristics, use, and testing and implementation of related drilling
21	procedures must be designed to prevent loss of well control.
22	
23	DEL.6.1.2.2 Well Abandonment and Plugging
24	
25	The BLM requirements pertaining to plugging and abandonment of oil and gas wells are
26	contained in 43 CFR § 3162.3-4 and Section III.G of Onshore Oil and Gas Order No. 2. The
27	regulations in 43 CFR Part 3160 provide as follows:
28	
29	The operator shall promptly plug and abandon, in accordance with a plan first approved in
30	writing or prescribed by the authorized officer, each newly completed or recompleted well in which all an approximate and in neutron quantities or which after being completed as a
30	moducing well is demonstrated to the satisfaction of the authorized officer to be no longer
32	canable of producing oil or gas in paying quantities (43 CFR § 3162 3-4[a])
34	capable of producing on of gas in paying quantities (45 Cr R § 5102.5-4(a)).
35	There is an exception to this requirement if the BLM approves the use of the well as an
36	injection well to recover additional oil or gas (enhanced recovery) or for subsurface disposal
37	of produced water. Also, completion of a well as plugged or abandoned may include using
38	the well as a water supply source, provided that the party using the well accepts responsibility
39	for all costs over and above the normal plugging and abandonment expenses.
40	
41	No well can be temporarily abandoned for more than 30 days without approval of the BLM,
42	although permanent abandonment may be delayed for a period of up to 24 months. A

44 paying quantities but which may be used as a service well. Drilling or production equipment

1	must be removed from a well site that is to be permanently abandoned and the land surface
2	reclaimed in accordance with an approved plan.
3	
4	Oil and Gas Order No. 2 provides as follows:
5	
6	All formations bearing useable-quality water, oil, gas, or geothermal resources, and/or a
7	prospectively valuable deposit of minerals shall be protected Failure to obtain approval [following on oral request and a written notice of intent] prior to commencement of
8 9	abandonment operations shall result in immediate assessment of [\$500]
10	completion of abandonment, a subsequent report of abandonment shall be filed (53 CFR at
11	46810).
12	
13	Oil and Gas Order No. 2 prescribes the following method of plugging either open holes (that
14	is, those holes in which no casing has been emplaced) or cased holes.
15	
16	Open Hole:
17	
18	• For an open hole, a cement plug must be placed to extend at least 50 feet (15 meters)
19	below the bottom (except as limited by total depth or plugged back total depth) to 50
20	feet (15 meters) above the top of any zone encountered during drilling that contains
21	fluid or gas with a potential to migrate or any prospectively valuable mineral deposits.
22	
23	• All cement plugs, except the surface plug, must have sufficient slurry volume to fill
24	100 feet (30 meters) of hole plus an additional 10 percent of slurry for each 1,000 feet
25	(305 meters) of depth.
26	
27	• No plug, except the surface plug, can consist of less than 25 sacks of cement without
28	approval from the BLM. (A sack of cement weighs 94 pounds [43 kilograms] and
29	produces between 1 and 2 cubic feet [0.03 and 0.06 cubic meters] of slurry volume,
30	depending on the quantity of additives used.)
31	
32	• Extremely thick sections of a single formation (for example, sait sections) may be
33	secured by placing 100-root (30-meter) plugs across the top and bottom of the
34	formation.
35	
36	• Unless there are zones containing fluids of gas with the potential to migrate of
37	potentially valuable mineral deposits (which require their own plugs 50 feet
38	[15 meters] above and 50 feet [15 meters] below), long sections of open note must be
39	plugged at least every 3,000 feet (915 meters).
40	
41	Casea noie:
42	Ear a considerable is account the placed approximation of the state of
43	• For a cased noie, a cement plug must be placed opposite all perforations (holes made
44	in the casing to allow formation fluids to enter the wellbore) and extend at least 50 feet
45	(15 meters) below to 50 feet (15 meters) above the perforated interval. All cement

1 2 3		plugs, except the surface plug, have the same slurry volume requirements as those for an open hole. A bridge plug (see glossary) is also acceptable provided certain conditions are met.
4 5 6 7 8	•	If any casing is cut and removed from the hole, a cement plug must be placed to extend at least 50 feet (15 meters) above and below the stub (the cut end of the casing). Plugging of the exposed hole resulting from casing removal must follow the procedure described above for plugging an open hole.
9 10 11 12	•	An additional cement plug must be placed to extend at least 50 feet (15 meters) above and below the surface casing shoe (see glossary).
13 14 15	•	No annular space (the space or annulus surrounding the pipe or casing in the wellbore) extending to the surface can be left open to the hole drilled below. If such a condition exists, at least the top 50 feet (15 meters) of annulus must be plugged with cement.
17 18 19 20 21 22 23	•	Any cement plug which is the only isolating medium for a fresh water interval or a potentially valuable mineral deposit must be tested by tagging with the drill string. (Tagging refers to touching a downhole object.) If any plugs are placed where the fluid level will not remain static, they must be tested either by tagging with the casing string or establishing a pumping pressure of 1,000 pounds per-square-inch (pounds per square inch) (6,895,000 pascals). The purpose is to determine the integrity of the plug.
23 24 25 26	•	If temperatures at the bottom of the hole exceed 230° F (110° C), silica sand or flour must be added to the slurry to prevent heat degradation of the cement.
27 28 29	•	A cement surface plug at least 50 feet (15 meters) thick must be placed across all of the annuli.
30 31 32 33 34	•	Each of the intervals between plugs must be filled with mud of sufficient density to exert hydrostatic pressure exceeding the greatest encountered during drilling. In the absence of other information, a minimum mud weight of nine pounds per gallon is required.
35 36 37 38 39 40 41 42	•	A surface cap (in addition to a surface plug) is required. The surface cap is a metal plate at least .25 inch (0.6 centimeters) thick welded in place or a 4-inch (10-centimeter) diameter pipe 10 feet (3 meters) long embedded in cement and extending 4 feet (1.2 meters) above ground level. Prior to emplacing the surface cap, the casing must be cut off at the base of the cellar (a pit in the ground under the well rig floor) or 3 feet (1 meter) below final restored ground level (whichever is deeper). The cellar is then filled with suitable material and the surface restored.
43 44	The dr	illing of oil or gas wells in the potash area (Figure DEL-8) has not occurred in many However, when such wells need to be plugged, the BLM will consider the NMOCD

Title 40 CFR Part 191 Compliance Certification Application
requirements in Order R-111-P (see Section DEL.6.2.3 below). The current plugging
procedure followed in the CRA is illustrated in Figures DEL-13 and DEL-14.
DEL.6.1.2.3 BLM Policy on Temporarily Abandoned and Shut-In Wells
A temporarily abandoned well is a completed well that is not capable of producing oil or gas
in commercial quantities but may have value as a service well (for example, injection or water disposal well). A shut-in well is a completed well capable of producing in commercial
quantities or being used as a service well. A well cannot be temporarily abandoned for more
than 30 days without prior BLM approval. Similarly, BLM approval is required if a well is to
have shut-in status for a year or longer. Extensions of time are available in both cases under
the regulations.
On December 16, 1994, the BLM New Mexico State Office issued Instruction Memorandum
(IM) No. NM-95-022 pertaining to a testing and review policy for both producing and non-
producing wells (Attachment 3). The IM requires the following considerations when BLM
reviews applications for temporary abandonment or continued shut-in status.
 An operator requesting temporary abandonment for a particular well (on Sundry
Notice Form 3160-5; Attachment 2) must
(1) justify why the well should be temporarily abandoned,
(2) describe the temporary abandonment procedure to be followed, and
(3) demonstrate the mechanical integrity of the well casing.
Specific plugging requirements for a well being temporarily abandoned are set forth in
the IM.
• (Attachment 3). The pressure test required to demonstrate the mechanical integrity of
the casing is also specified in the IM.
• While a well cannot be temporarily abandoned for more than 30 days without prior
BLM approval, permanent abandonment can be delayed for up to 24 months (see
43 CFR § 3262.3-4[c]).
• An operator requesting shut-in approval for a particular well (also on Form 3160-5)
must demonstrate that the well is capable of producing oil or gas in paying quantities.
The operator must justify why the well should receive shut-in (inactive) status rather
than being activated as a producing well or service well. Shut-in approval is granted
for a one-year period, renewable for up to five years if justified. This policy provides
the operator with a grace period of a least a year to do something with the well (for
example, reestablish production, plug and abandon, or convert to a service well). As

1 2	with temporary abandonment, the operator must demonstrate the mechanical integrity of the well casing through testing procedures specified in the IM (Attachment 3).
3	
4	This BLM policy and its implementation has minimized the number of inactive and
5	unplugged wells in the New Mexico portion of the Delaware Basin.
6	
7	The BLM CRA office in Carisbad, New Mexico, has been making a concerted effort to force
8	operators to produce or plug inactive wells by reviewing the actual status of wells classified
9	by operators as shut-in or temporarily abandoned. Infough these reviews, the BLM can
10	netermine if these wens have further economic use. If not, the operators are directed to
11	permanentry plug and abandon mem.
12	DEL 6124 Wall Passards and Panarts
13	DEL.0.1.2.4 Well Records and Reports
14	The BIM regulations require the operator to keep accurate and complete records on standard
15	forms of all lease operations including, but not limited to drilling production redrilling
17	deepening renairing plugging back and abandonment (43 CFR § 3162 4-1[a]) All records
18	and reports must be maintained for at least six years
10	and reports must be maintained for at least six yours.
20	DEL.6.1.3 Agreement Between DOE and BLM on Oil and Gas Activities Affecting WIPP
21	
22	The DOE and the BLM executed a Memorandum of Understanding (MOU) on July 19, 1994,
23	directed at establishing cooperative arrangements and procedures for land and resource
24	management within the WIPP withdrawal area (see Attachment 4). The MOU supplements
25	the WIPP Land Management Plan (DOE/WIPP 93-004). The MOU provides as follows:
26	
27	It is the intent of the DOE to ensure that mining and gas and oil activities do not encroach upon
28	the withdrawal area. Adherence to this MOU is crucial to protecting the repository from
29 30	Inadvertent numan intrusion In accordance with Section 4(b)(5)(A) of the LWA (WIPP Land Withdrawal Act), no surface or subsurface mining or oil and gas production, including
31	slant drilling from outside the boundaries of the withdrawal, shall be permitted at any time
32	(including after decommissioning) on lands on or under the withdrawal (MOU Section VI.E;
33	emphasis added).
34	
35	Exceptions to the LWA prohibition against resource extraction are for existing rights under
36	two existing oil and gas leases in the wIPP withdrawal area, unless the EPA determines that
37	acquisition of these leases is needed for wiPP to comply with the 40 CFR Part 191 disposal
38	requirements of the Resource Conservation and Recovery Act (RCRA) (LWA § 4[0][5][B]).
39	Under the MOU the DOE agrees to appending to with the PLM responding PLM permits for ail
4U 41	and gas drilling (or other mining activity) on BI M lands within one mile of the WIDD site
41 42	boundary DOE also agrees to interpret review, and verify oil and gas activity colorations
42 13	performed by the BIM. The BIM agrees to allow the DOE to review and comment on any
45 AA	applications for a permit to drill for oil and gas resources within one mile of the WIDD site
45	houndary Any DOF comments must be resolved before an application for a permit to drill
46	can be approved by the BLM.

THIS PAGE INTENTIONALLY LEFT BLANK

Figure DEL-14. Standard Oil and Gas Well Plugging Practices in the Potash Resource Area of the Deleware Basin

THIS PAGE INTENTIONALLY LEFT BLANK

1	BLM further agrees to the following as a special condition of approval for oil and gas activity within 330 feet (100 meters) of or closer to the WIPP boundary:
3	
4	• Ensure that the operator provides the BLM with drill site vertical deviation surveys for
5	each 500-foot (152-meter) drilling interval.
6	
7	• Provide (BLM) technical expertise for calculating wellbore deviation and forward the
8	results to DOE for review,
9	
10	• Require the operator, in accordance with NMOCD Rule 111 (see Section DEL.6.2.1)
11	to provide BLM with a directional survey to establish bottom hole location for
12	wellbores with deviation angles of more than five degrees from vertical in any 500-
13	foot (152-meter) interval,
14	
15	 Require the operator to provide the BLM with a directional survey to establish the
16	bottom hole location when it is indicated that the wellbore could deviate to within 100
17	feet (30 meters) of the WIPP withdrawal boundary, and
18	
19	• Provide the DOE with directional survey results when it is indicated that the bottom
20	hole location will deviate more than five degrees from vertical in any 500-foot (152-
21	meter) interval, as well as survey results on wellbores that could deviate to within 100
22	teet (30 meters) of the withdrawal boundary.
23	The DIM also arrest to provide the DOE with well arrestation alternations and also include
24	The BLM also agrees to provide the DOE with well completion, alternate use, and plugging
25	for a standonment reports related to drifting, production, injection, and mining activity on
20	rederal failds within one fille of the wirr boundary.
27	DEL 614 Protection of Potash Desources
20	DEL.0.1.4 Totection of Potasit Resources
29 30	On October 28, 1986, the Secretary of the Interior issued an order entitled Oil Gas and
31	Potash Leasing and Development Within the Designated Potash Area of Eddy and Lea
32	<i>Counties New Mexico</i> (51 FR 39425). The order addressed the revision of earlier rules
33	related to concurrent prospecting for, development, and production of oil and gas and potash
34	resources within the Secretary's designated potash area (the legal description of which is
35	contained in the order and shown in Figure DEL-8).
36	5 <i>y</i>
37	What BLM refers to as the Secretary's potash area is defined in 51 FR 39427 and
38	encompasses approximately 497,000 acres (201,000 hectares). The NMOCD Order R-111-P
39	potash area, which is the same as the KPLA, encompasses approximately 425 square miles
40	(272,000 acres; 110,077 hectares) and lies within the Secretary's potash area (Figure DEL-8).
41	The WIPP site is situated on the southeastern edge of the KPLA.
42	
43	The 1986 Secretarial order reaffirmed the DOI policy of requiring that the following lease
44	stipulations adequately protect the rights of oil and gas and potash leaseholders and operators.

1 2	•	Oil and gas drilling will be permitted only if the lessee can assure the BLM that the drilling will not interfere with the mining and recovery of potash deposits.
3		
4	•	No oil and gas wells can be drilled at a location which would result in undue waste of
5		potash deposits, pose a hazard to, or unduly interfere with potash mining.
6		If the DI M data the continuation (combining leaged treats on a field wide on
/	•	If the BLW determines that unitization (combining leased tracts on a fieldwide of
8		development and restaction of notach resources, no oil and gas wells can be drilled
9		urless they comply with the unit plan
10		uness mey comply with the unit plan.
11	-	The drilling or abandonment of any oil and gas well must comply with the BIM
12	•	regulations in 43 CER Part 3160 (see Sections DEL 6.1.2.1 and DEL 6.1.2.2 above)
13		including any BI M requirements prescribed to prevent the infiltration of oil gas or
15		water into potash deposits mines or workings
16		where where potential depositio, manage, or montaninger
17	As a re	ciprocal requirement, all potash permits and leases are subject to the stipulation that no
18	mining	or exploration operations be conducted that, in BLM's opinion, would constitute a
19	hazard	to oil or gas production or unreasonably interfere with orderly development and
20	produc	tion under any oil and gas lease issued for the same (potash) lands.
21	•	
22	The or	der imposes requirements on potash lessees to delineate on maps
23		
24	(1)	areas of current mining activity,
25		
26	(2)	areas where operations have been completed,
27		
28	(3)	areas containing minable reserves, and
29		
30	(4)	and areas believed to be barren of commercial ore (Figure DEL-8).
31	T I	
32 22	I ne or	these areas success for home and pair and gas well applications for a permit to drill
24	within the oil	and gas formation connect he reached within a horrow grash the PIM may establish on
34 25	oil and	and gas formation cannot be reacted within a barren area), the below may establish an
22 24	urbaro	notesh mining will be conducted within three years
30 27	where	potasi mining win be conducted whim thee years.
27 28	The or	der requires the BIM to cooperate with the NMOCD in implementing the state
30	regulat	ions Specifically federal notash leaseholders may protest to the NMOCD the drilling
40	of oil	and gas wildcat wells on federal lands located within the State's oil-notash area as
41	define	1 by Order No. R-111-P (see Section DEL 6.2.4) However, BLM has the prerogative
42	to mak	the the final decision. Although NMOCD oil and gas regulations, including Order No
43	R-111.	P. do not legally apply to federal lands, the requirements for concurrent oil and gas and
44	potash	development are given due deference by the BLM.

Title 40 CFR Part 191 Compliance Certification Application
DEL.6.1.5 Bonds, Penalties, and Enforcement
Prior to commencing any surface-disturbing activities related to drilling operations, the lessee
or operator must post a surety or cash bond in an amount not less than \$10,000 per lease to
assure compliance with all the BLM lease terms
including complete and timely plugging of well(s), reclamation of the lease area(s), and the restoration of any lands or surface waters adversely affected (43 CFR § 3104.1 and 3104.2).
Statewide bonds and nationwide bonds are established at minimums of \$25,000 and \$150,000,
respectively, to cover all leases and operations by the same owner statewide or nationwide.
Noncompliance with the BIM regulations, terms of any lease or permit, or a BIM notice or
order is subject to both civil and criminal penalties Assessments run from \$250 for a minor
violation to \$500 per day for such violations as failure to install blowout prevention
equipment or drilling without approval (43 CFR § 3163.1). Civil penalties range from \$500
to \$5,000 per violation per day depending on the amount of time the violation goes
uncorrected. Where public health and safety, the environment, or certain economic factors are
threatened, the BLM can order an immediate shutdown of operations. Criminal penalties can
be as severe as a \$50,000 fine and/or imprisonment for up to two years.
According to the CRA office, the BLM rarely needs to impose civil or criminal penalties
(Personal Communication 1995). Most noncompliance incidents involve surface uses rather
than well drilling or plugging. There are very few violations of application for a permit to
drill conditions due to BLM on-the-ground inspections and the self-interest of operators who
find enforcement delays costly. Drilling permit violations involve probably not more than one
in 100 wells (Personal Communication 1995).
Potentially well plugging has more noncompliance problems than drilling because the
owner/operator has no profit potential in plugging. To avoid poncompliance, well plugging
has the highest inspection rate by BLM and NMOCD
There were 788 incidents of noncompliance (INCs) involving improper drilling or production
activities during fiscal years 1991 through 1996. INCs involve noncompliance with BLM
regulations, orders, or instructions. Violation codes are assigned to each type of INC. The
number of INCs associated with production and drilling for five selected violation codes are
displayed in Table DEL-1. INCs for FYs earlier than FY 1991 have not been compiled from
individual well records. As can be seen, almost all of the INCs are for surface violations
associated with oil or gas production and not for well drilling or plugging.
The number of INCs has increased dramatically since FY 1993 because the BLM CRA office
has greatly increased the number of inspections as a result of environmental concerns. There
is increasing emphasis on such matters as surface reclamation, fencing of mud pits, removal of
surface hydrocarbons to protect waterfowl, and protection of groundwater from surface

seepage. The total assessments levied during FY 1991 through FY 1996 (to date) period were
 in the range of \$20,000 to \$25,000 (Personal Communication 1996a). There were no civil or
 criminal penalties assessed and there were no bond forfeitures.

5 Table DEL-1 does not reflect any INCs for improper plugging because BLM inspections 6 require that any plugging violation be corrected immediately. Certain wells are assigned 7 inspection priority with regard to drilling, casing, cementing, and plugging. BLM has had to 8 compel the proper plugging of only one well in the past six years (Personal Communication 9 1996a).

10

12

4

11 DEL.6.2 State of New Mexico

The NMOCD, as part of the New Mexico Energy, Minerals and Natural Resources 13 Department, is responsible for issuing permits pertaining to drilling, development, and 14 production of oil and natural gas resources under the authority of the Oil and Gas Act 15 (§§ 70-2-1 through 70-2-36 NMSA 1978) and the New Mexico Water Quality Act (§ 74-6-4E 16 NMSA 1978). The overall purpose of the NMOCD regulatory program is to protect oil, gas, 17 potash, geothermal resources, and useable water. Special requirements pertaining to the 18 protection of potash resources potentially impacted by oil and gas drilling activities are 19 contained in Order R-111-P discussed in Section DEL.6.2.4. 20 21

Although the Oil and Gas Act creates the NMOCC, it delegates to the NMOCD the 22 23 jurisdiction and authority over all matters relating to the conservation of oil and gas and the prevention of waste of potash as a result of oil and gas operations in this state (§ 70-2-6 24 NMSA 1978). The NMOCD has a day-to-day, hands-on administrative authority while the 25 NMOCC has a quasi-judicial function in that it can hold hearings, subpoena witnesses, and 26 27 implement rulemaking and enforcement functions. The NMOCD is authorized to collect data, conduct investigations, inspect properties, promulgate rules and regulations, and issue orders. 28 It is also authorized to 29

- require dry or abandoned wells to be plugged in a way that confines crude petroleum oil, natural gas, or water in the strata in which it is found and prevent it from escaping to other strata;
- require a cash or surety bond in a sum not to exceed \$50,000 to assure compliance with plugging and other oil and gas regulations;
- prevent drowning by water of any stratum capable of producing oil or gas;
- prevent fires, blowups, and caving; and
 - spend the oil and gas reclamation fund and perform all acts necessary to plug dry and abandoned oil and gas wells.

43 44

30

31 32

33 34

35

36 37

38 39
Table DEL-1.BLM Oil and Gas Well Drilling, Production, and AbandonmentIncidents of Noncompliance, FYs 1991 to 1996 According to ViolationCode for the Carlsbad Resource Area

Fiscal Year	Activity Type	Violation Code 2 ¹	Violation Code 3	Violation Code 6	Violation Code 50	Violation Code 53	Totz
FY 91	Production Drilling	60 0	35 0	7 0	7	0	109
FY 92	Production Drilling	3	4 0	0	1 0	1 0	9 0
FY 93	Production Drilling	1 0	9 0	0	0	0 0	10 0
FY 94	Production Drilling	270 0	181 0	8 0	1 0	11 0	47 0
FY 95	Production Drilling	23 0	158 1	1 0	3 0	0 0	18: 1
FY 96	Production Drilling (to 1/96)	4 0	47 1	2 0	1 0	1 0	55 1
Totals	Production Drilling	361 0	434 2	18 0	13 1	13 0	83) 3

Code 3. Environmental protection not satisfactory. Could include trash on location, previous oil spills not cleaned up, or pits containing fluids like oil or water.

Code 6. Surface use not in accordance with approved plan. Unauthorized pits or surface disturbance.

- Code 50.Failure to comply with a BLM notice, written order, or instruction. The violation could result
from the operator's failure to comply with any of the BLM regulations or orders related to INCs.
Failure to correct INCs results in a money assessment or civil penalty.
- Code 53. Failure to obtain approval of specific operations such as changing downhole production zones or commingling of production.
- Violation codes associated with drilling or plugging, with examples, are as follows:
 - Code 2. Drill site not properly identified according to BLM requirements.
- Code 3. Operations not conducted in a workmanlike manner or working outside of required safety guidelines.
- Code 6. Downhole drilling deviation is not within the approved tolerance.
- Code 50. Same as Code 50 as applied to drilling INCs.

The first comprehensive oil and gas regulations for New Mexico were issued by the NMOCC

- in 1935. The current rules and regulations, dated March 1, 1993 (plus some recent revisions),
- follow the same numbering system as those made effective on January 1, 1950. However, the

1	NMOCD is in the process of reformatting its rules in order to comply with the New Mexico
2	Administrative Code (NMAC). Under this reformatting, the NMOCD regulations on
3	petroleum, oil and gas storage and handling will be contained in NMAC Title 19 (Natural
4	Resources and Wildlife), Chapter 15. Section letters in the 1993 rules will also be used.
5	Thus, the former rule 101 on plugging bonds contained in Section C on drilling will become
6	19 NMAC 15.C.101. The rule numbers will be the same, although they will be preceded by
7	the remainder of the NMAC citation.
8	
9	All regulations promulgated by the NMOCD must be adopted by the NMOCC. The NMOCD
10	has divided the state into four districts, each with a district supervisor, an oil and gas
11	inspector, or a deputy oil and gas inspector. Eddy County, where the WIPP site is located, is
12	in District 2 which also includes Otero, Dona Ana, Luna, Hildago, Grant, Sierra, Lincoln, and
13	De Baca Counties and a portion of Chaves County. The District Office is in Artesia.
14	District 1, immediately east of District 2, is headquartered in Hobbs and includes Lea,
15	Roosevelt, and Curry Counties and a portion of Chaves County. Because of the geologic,
16	hydrologic, climatic, economic, and mineralization differentiations among all or portions of
17	the four NMOCD districts, district supervisors have considerable flexibility; the rules are
18	often applied on a case-by-case basis. However, rule interpretations that involve fundamental
19	property rights are the responsibility of the NMOCC.
20	
21	The NMOCD regulations apply to oil and gas operations on private and state-owned lands.
22	With a few exceptions (as agreed to by the BLM), they do not apply to BLM lands or other
23	lands where oil and gas resources are reserved to the United States. In NMOCD Districts 1
24	and 2, a large percentage of the oil and gas resources are subject to federal leasing and are
25	under BLM jurisdiction.
26	
27	DEL.6.2.1 Well Drilling Requirements
28	The NMCOCD mentations applies his to the defiling as association of all and associated h
29	The NMOUD regulations applicable to the drilling or acquisition of oil, gas, or associated
30	service wells are contained in Rules 101 through 118 (now 19 NMAC 15.C.101 to 118). The
31	Tonowing discussion summarizes the key provisions of selected rules that may potentially bear
52 22	on the effects of future off and gas drifting at the wiPP site. Numerous other drifting
33 24	requirements are not directly relevant to numan intrusion scenarios.
34 25	• Dule 101 - Dugging Rond Anyone who has drilled or acquired or is proposing to
33 26	• Rule 101 - Flugging Bond. Anyone who has drifted of acquired, of is proposing to drill or acquire, on cill gas, or service well on private or state owned lands must supply
20 27	a surety or each bond to assure that the well is plugged and abandoned in compliance
21 20	with the NMOCD rules. Plugging bonds are of two types: (1) a blanket bond in the
20 20	amount of \$50,000 covering all wells drilled in the state by the same owner/operator:
39 40	and (2) a one-well plugging bond in an amount determined by well depth and location
40	For example, one-well plugging bonds in Eddy and Lea Counties are established by
	well depth as follows: less than 5 000 feet \$5 000 5 000 to 10 000 feet \$7 500 and
-2 13	more than 10,000 feet \$10,000. When approved by the NMOCD District Office a
45	well can be drilled 500 feet deeper than the maximum denth covered by the bond. For
• •	

1		a deviated well, the bond is determined by the measured depth, not the vertical depth.	
2		The bond is not released until the plugging and abandonment of the well has been	
3		approved by the NMOCD. If the operator fails to properly plug and abandon the	
4		well(s) covered by the bond, the NMOCD may require that the bond be forfeited.	
5		Also, the NMOCD may take legal action to recover any additional costs.	
6			
7	•	Rule 102 - Notice of Intent to Drill. Before commencing operations, the operator	
8		must notify the NMOCD of its intent to drill an oil, gas, or injection well on Form	
9		C-101, the application for a permit to drill, reenter, deepen, plugback, or add a zone	
10		(Attachment 5). Information supplied on Form C-101 includes well surface location,	
11		bottom hole location, and the proposed casing and cementing program.	
12			
13	•	Rule 104 -Well Spacing Acreage Requirements. A well location and acreage	
14		dedication plat must be filed by the operator on Form C-102 (Attachment 5). Wildcat	`* . . *``
15		gas wells drilled in Eddy and Lea Counties must be located on 160-acre (65-hectare)	
16		tracts at least 660 feet (183 meters) from the tract's outer boundary and at least 330	
17		feet (101 meters) from any guarter-guarter section (40-acre; 16-hectare) inner	
18		boundary. However, if a wildcat well is proposed to be drilled in the Wolfcamp or	
19		older formations, the drilling tract must consist of two contiguous quarter sections	
20		(360 acres; 146 hectares). (The rule defines a side boundary and an end boundary.)	
21		Wildcat oil wells must be located on tracts of approximately 40 acres (quarter-quarter	
22		sections), at least 330 feet (101 meters) from the tract boundary. All well tracts should	
23		be essentially square in shape and capable of being identified as legal subdivisions	
24		established by U.S. Public Land Surveys. Development oil wells in all New Mexico	
25		counties must be located on 40-acre (16-hectare) tracts at least 330 feet (101 meters)	
26		from the tract boundary and at least the same distance from the closest well capable of	
27		producing from the same pool. (Note: More than one well can be drilled on 40-acre	
28		[16-hectare] spacing if the wells are producing from different pools.) Development	
29		gas wells in Eddy and Lea Counties must be located on 160-acre (65-hectare) drilling	
30		tracts (with the same boundary distances as for wildcat wells) and at least 1,320 feet	
31		(402 meters) from the nearest gas well capable of producing from the same pool.	
32		Under the rather complex requirements of Section F of Rule 104, the NMOCD may	
33		approve oil or gas wells in unorthodox locations based on topographical or geological	
34		conditions. The NMOCD well spacing requirements are also applied by the BLM.	
35			
36	٠	Rule 105 - Pit for Drilling Fluid and Drill Cuttings. Before drilling is commenced,	
37		operators must provide a pit adequate for the disposal of drilling fluids and drill	
38		cuttings in a manner protective of surface or subsurface waters. Removal of the pit	
39		contents for offsite disposal is not permitted unless approved by the NMOCD. (Note:	
40		There is no current requirement for sampling or testing mud pit contents for hazardous	
41		or radioactive characteristics.)	
42			
43	•	Rule 106 - Sealing Off Strata. During the drilling of an exploration, production,	
44		injection, or service well, all oil, gas, and water strata above the producing and/or	

injection horizon must be sealed or separated to prevent their contents from migrating into other strata. Groundwater valuable for domestic, commercial, or livestock purposes must be confined to their respective strata and protected by methods approved by the NMOCD. Shut-off of water from oil- and gas-bearing strata is generally accomplished by cementing the well casing into the wellbore.

Rule 107 - Casing and Tubing. All wells drilled for oil or gas must be equipped with surface and intermediate casing strings and associated cement as are necessary to seal off and isolate all water-, oil-, and gas-bearing strata encountered in the well. Production wells must be equipped with a string of properly cemented production casing at sufficient depth to protect all oil- and gas-bearing strata encountered in the well, including those from which the well is producing. Sufficient cement must be used around the surface casing to fill the annular space (or annulus, the space between the outside of the casing and the side of the wellbore). With certain exceptions, all cementing must be accomplished with hard setting cements which have been mixed with the appropriate additives. All casing strings must be pressure-tested after cementing and proved satisfactory before any other operations can proceed. The casing must remain stationary and under pressure for a least 8 hours following cementing. In Eddy and Lea Counties, casing strings my be allowed to stand until the compressive strength has reached 500 pounds per square inch before testing commences. All producing oil and gas wells with casing larger than 2.9-inch (7.3-centimeter) diameter casing must be tubed (running a small-diameter pipe through the casing to serve as a conduit for the passage of oil or gas).

• Rule 109 - Blowout Prevention. A blowout or gusher can occur when the underground formation pressure exceeds the pressure applied to it by the column of drilling fluid. This results in an uncontrolled flow of gas, oil, or other well fluids into the atmosphere or another underground formation. Under this rule, operators are required to install blowout preventers on all drilling rigs operating in areas of known high pressures (at or above the projected depth of the well) and in all areas where underground pressures are unknown. For any drilling operation requiring blowout prevention equipment, the operator must submit a blowout prevention program on Form C-101 (Attachment 5).

Rule 111 - Deviation Tests and Directional Drilling. This rule is particularly 35 relevant to inadvertent intrusion into the WIPP site. It was extensively revised on June 36 13, 1995. It requires that any well drilled or deepened must be tested at reasonably 37 frequent intervals to determine the deviation of the drilling from vertical. Such tests 38 must be made at least once every 500 feet (152 meters) or at the first bit change 39 succeeding 500 feet (152 meters). All deviation tests must be tabulated, notarized, 40 and submitted to the NMOCD on Form C-104 (Attachment 5). If the deviation 41 averages more than five degrees in any 500-foot (152-meter) interval, the operator 42 must calculate the maximum possible horizontal deviation of the wellbore. The 43

1

2

3

4

5 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23 24

25

26 27

28

29

30

31

32

NMOCD can then require a directional survey to establish the location of the producing interval.

The appropriate NMOCD District Office may approve the drilling of a deviated wellbore, the deviation of an existing wellbore to straighten a crooked hole, side track junk in the hole, or side track an existing wellbore when the operator follows specified procedures. The bottomhole location will be considered acceptable if the actual subsurface location is no more than 50 feet (15 meters) from the approved subsurface location. The director of the NMOCD has authority to approve a directional wellbore project when a number of conditions are met. The major requirement is that the wellbore be totally confined to a producing area.

• Rule 116 - Notification of Fire, Breaks, Leaks, Spills, and Blowouts. The NMOCD must be notified by the owner/operator of any fire, break, leak, spill, or blowout occurring at any injection or disposal facility or at any oil or gas drilling, producing, transporting, or processing facility. Notification must be immediate, as soon as possible after discovery either in person or by telephone to the NMOCD District Office. (See the notification of fire, breaks, spills, leaks, and blowouts form in Attachment 5.) A written report of the incident must be submitted to the NMOCD within 10 days following discovery.

DEL.6.2.2 Well Plugging and Abandonment Requirements

Abandonment and plugging of wells are covered in Section D of the NMOCD regulations, 24 Rules 201 through 204 (now 10 NMAC 15.D.201 to 204). These rules are included in their 25 entirety in Attachment 6. Under Rule 201, the operator is responsible for plugging not only 26 oil, gas, and injection wells but also seismic, core, or other exploration or service well. 27 (Note: A service well is a nonproductive well used for injecting liquids or gas to enhance 28 recovery, disposing of salt water, or producing a fresh water supply.) The well must be 29 plugged and abandoned, or temporarily abandoned, within (a) 150 days following the 30 suspension of drilling operations, (b) a determination that the well can no longer be put to 31 beneficial use, or (c) a period of one year of continuous inactivity. 32

33 34 35

1

2 3

4

5

6

7

8

9

10

11 12

13

14

15

16

17

18

19

20 21 22

23

DEL.6.2.2.1 Plugging and Permanent Abandonment - Rule 202

Under Rule 202, a notice of intention to plug must be filed with the NMOCD on Form C-103, 36 Sundry Notices and Reports on Wells (Attachment 5), by the operator before plugging 37 operations commence. The notice must identify the well and the proposed plugging 38 procedures, and provide a wellbore plugging diagram (see examples in Attachment 5). Under 39 Rule 1103 on sundry notices, the plugging notice must also contain a detailed statement of the 40 proposed work and plans for pulling casing, mudding, cementing (including the number of 41 sacks of cement and depths of plugs), and the time and date of the proposed plugging 42 operations. If not filed previously, a complete log of the well on Form C-105 (Attachment 5) 43 must accompany the notice to plug. In the case of a newly-drilled dry hole, the operator is 44

1 2 3	allowed to plug after obtaining verbal approval from the NMOCD District Supervisor. However, written notice must be filed within 10 days of the verbal approval.
4 5 6 7 8	Before any well is abandoned, it must be plugged in a manner which will permanently confine all oil, gas and water in the separate strata in which they are originally found (Rule 202.B[1]). This can be accomplished by using mud-laden fluid, cement, and a single plug or a combination of plugs. The exact method employed must be approved by the NMOCD as based on the notice of intention to plug. Minimum plugging requirements and standard
9	plugging practice in the potash resource area are shown in Figures DEL-13 and DEL-14.
10 11 12	Within a year following completion of plugging, the operator must accomplish the following:
12 13 14	(1) fill all pits,
15	(2) level the location,
10 17 18	(3) remove deadmen (buried anchors to steady the derrick) and all other junk, and
10 19 20	(4) take whatever measures are necessary to restore the site to a safe and clean condition.
21 22 23 24	When plugging and cleanup have been completed, the operator must contact the NMOCD and arrange for an inspection. The NMOCD will not approve the record of plugging until all necessary reports (Forms C-103 and C-105; Attachment 5) have been filed and the location has been inspected and approved.
25 26 27 28 29 30 31	Well marking requirements are specified in Rule 202.B(2). All plugged and abandoned wells must be marked with a 10-foot (3-meter) long steel marker at least 4 inches (10 centimeters) in diameter, set in cement, and extending at least 4 feet (1 meter) above mean ground level. The name of the operator, lease name, well number, and legal location (section, range, and township) must be welded, stamped or otherwise permanently engraved on the marker.
32 33 34 35 36 27	An exception is made for wells that can safely be used as a fresh water source. In such a case, the well need not be plugged above the sealing plug that is set below the fresh water formation. When this plugging has been completed, the operator seeking a bond release must file with the NMOCD a written agreement under which the landowner agrees to assume responsibility for the well.
37 38 20	DEL.6.2.2.2 <u>Temporary Abandonment - Rule 203</u>
39 40 41	A well can be temporarily abandoned for up to five years, during which period it must either be permanently plugged and abandoned or returned to beneficial use. After five years, an
42 43	operator can apply for a new temporary abandonment approval. (Compare with BLM policy on temporarily abandoned and shut-in wells as discussed in Section DEL.6.1.2.3.) In order to

1	on Form C-103 (Attachment 5). A well cannot be temporarily abandoned unless the casing is
2	mechanically sound and in good enough condition to prevent
3	
4	(1) damage to the producing zone
5	(1) damage to the producting zone,
5	(2) migration of hydrogenhops or water
0	(2) Inigration of hydrocarbons of water,
/	
8	(3) contamination of fresh water of other resources, and
9	
10	(4) leakage of any substance to the surface.
11	
12	If the well cannot meet the required mechanical integrity test, it must be plugged and
13	abandoned or the casing problem must be corrected and confirmed by retesting. Methods of
14	testing are detailed in Rule 203.C (Attachment 6).
15	
16	DEL.6.2.3 Incidence of Unplugged Oil and Gas Wells
17	
18	Criteria in 40 CFR Part 194 include the following:
10	Chiefia in 10 Chief alt 19 1 monado dio 1010 " mg.
20	Performance assessments shall document that in analyzing the consequences of drilling events, the
21	Department assumed that:
22	
23	(1) Future drilling practices and technology will remain consistent with practices in the Delaware
24	Basin at the time a compliance application is prepared. Such future drilling practices shall
25	include the fraction of such boreholes that are sealed by humans (40 CFR § 194.33[c]).
26	
27	Following these criteria, it was concluded that the fraction of boreholes that have been sealed
28	by humans should be determined by evaluating all wells in the New Mexico portion of the
29	Delaware Basin that were drilled and plugged since 1988 (the date the current plugging
30	regulations became effective). Texas wells were not considered because a well drilled at the
31	WIPP site would not subject to Texas regulations. The total number of hydrocarbon
32	boreholes in the New Mexico portion of the Delaware Basin with completion dates from 1988
33	to 1995, as taken from the Petroleum Information Corporation database, is 875. The NMOCD
34	records for each of these 875 wells were examined to determine the current status of each
35	well.
36	
37	Wells plugged or scheduled to be plugged on federal land were examined in detail. There
38	were 47 wells found in this category NMOCD records contain final plugging records for 43
20	of these wells and intent-to-plug notices for the remaining four wells
40	of these wens and intent-to-plug notices for the remaining four wens.
40	A field weiffingtion for those four multi-series and during the March 14, 1007. Thus, of the
41	A field verification for these four wells was conducted on March 14, 1996. Two of these
42	wells were plugged, one was being plugged on that date, and one well was unplugged. The
43	intent-to-plug notice for the unplugged well was approved on December 4, 1995, and,
44	according to the Carlsbad, New Mexico, BLM office, the company responsible for this well
45	was currently processing the appropriate paperwork to plug the well.

Based on this information, it is proposed that the performance assessment incorporate the 1 2 assumption that no oil and gas wells would be left unplugged. 3 DEL.6.2.4 Oil and Gas Development in Potash Areas - NMOCC Order R-111-P 4 5 The New Mexico Oil and Gas Act declares as waste 6 7 8 [D]rilling or producing operations for oil or gas within any area containing commercial deposits of potash where such operations would have the effect unduly to reduce the total quantity of such 9 commercial deposits of potash which may reasonably be recovered -- or where such operations 10 would interfere unduly with the orderly development of such potash deposits [§ 70-2-3(F) NMSA 11 12 1978]. 13 Both the BLM (see Section DEL.6.1.4) and the NMOCD have been dealing with conflicts 14 between the potash industry and oil and gas drilling and production operations for many years. 15 The first NMOCC order addressing oil and gas drilling and potash mining activities in areas 16 where leaseholds are overlapping was Order No. R-111-A of July 14, 1955. 17 18 On April 21, 1988, the NMOCC issued a major revision to Order No. R-111-A: Order No. R-19 111-P (now 19 NMAC 15.R.111). The objective of this order, which is still in effect, is to 20 prevent waste, protect correlative rights (rights of an owner of an oil and gas property to 21 produce his or her equitable share without waste), and ensure maximum conservation of New 22 Mexico oil, gas, and potash resources. The key provisions of Order No. R-111-P are as 23 follows: 24 25 No oil and gas wells can be drilled so as to result in an undue waste of potash deposits, ٠ 26 pose a hazard to, or unduly interfere with potash mining. 27 28 No potash mining can be conducted which will pose a hazard to oil or gas production 29 • or unreasonably interfere with orderly oil or gas development. 30 31 The intermediate string and production string of well casing must meet certain ٠ 32 cementing requirements. 33 34 A salt protection string of casing must be installed at least 100 feet (30 meters) below 35 and not more than 600 feet (183 meters) below the base of the salt section. Cementing 36 requirements for both shallow wells (above 5,000 feet [1,524 meters]) and deep wells 37 (below 5,000 feet [1,524 meters]) above or below the Delaware Mountain Group are 38 specified. 39 40 All oil and gas wells drilled within the potash area (same as the KPLA) must provide a ٠ 41 solid cement plug through the salt section and any water-bearing horizon and prevent 42 liquids or gases from entering the hole above or below the salt section. 43 44

Title 40 CFR Part 191 Compliance Certification Application
• The fluid used to mix the (plugging) cement must be saturated with salts common to the salt section penetrated but not more than three percent of calcium chloride by weight of cement wherever possible.
• Regardless of whether the potash lease is on federal or state lands, each potash lessee must file with the BLM and the State Land Office a designation of potash deposits considered by the lessee to be its life-of-the-mine reserves (LMR). LMRs are deposits believed to be economically minable using present mining methods and technology. Information on LMRs filed with the BLM and the State Land Office is considered proprietary and cannot be released to the general public.
• Before commencing oil or gas drilling operations within the potash area, the well operator must forward a map showing the location of the proposed well to every potash operator holding potash leases within a radius of one mile of the proposed well.
Permit applications for oil or gas well drilling on federal lands in the KPLA are processed by BLM while those on state or private lands are processed by the NMOCD. If State lands are involved, the State Land Office enters the picture because the NMOCD must determine from either the BLM or the State Land Office if the proposed well location is within a potash LMR area. Any application to drill in a potash LMR area must be approved by the lessor and lessees of both the potash and the oil and gas interests.
DEL.6.2.5 Bonds, Penalties, and Enforcement
Criminal and civil penalties for violations of the New Mexico Oil and Gas Act and related NMOCD rules and regulations are governed by §§ 70-2-28 through 70-2-32 NMSA 1978. Suits brought by the NMOCD through the State Attorney General may result in obtaining injunctions or temporary restraining orders. Knowing and willful violations can result in a \$1,000 per day fine for each violation. Criminal violations (for example, fraudulent representations) are subject to a fine of up to \$5,000, imprisonment up to three years, or both.
It is the bonding requirement that provides the teeth for the plugging requirements (see the discussion of NMOCD Rule 101 on plugging bonds in Section DEL.6.2.1). The NMOCD can order any well to be plugged and abandoned. Because failure to plug or improper plugging can result in pollution of both surface and underground water, well plugging and its enforcement would normally also be under the jurisdiction of the New Mexico Water Quality Control Commission. However, the Commission has delegated water quality matters related to oil and gas development to the NMOCD to prevent duplication of effort. The delegation of authority is authorized by the New Mexico Water Quality Act (§ 74-6-4E NMSA 1978)
A summary of oil and gas well data is provided in Table DEL-2 for the period 1971 through 1995. The table shows wells completed, wells plugged and abandoned, number of active wells, the number of regulatory cases docketed, and the number of cases pertaining to

compulsory plugging. 44

1000

1	DEL.6.3 Regulation of Injection Wells
2	
3	This section discusses the regulation of injection wells (which are often included in the
4	definition of service wells) by the BLM and the NMOCD. Injection wells located near the
5	WIPP are shown in Figure DEL-6.
6	DEL (21 Definitions
7	DEL.0.3.1 Definitions
8	DIM each are all and gas expertions regulations and related orders do not define either
9	initiation or contrine wells. The NMOCD rules define on injection or input well as any well
10	used for the injection of air, gas, water, or other fluids into any underground stratum
11	(Pule 0.1) The NMOCD rules do not define the term service well $The Dictionary for the$
12	Patroloum Industry (University of Texas 1991) defines injection well as
13	Feroleum mausiry (Oniversity of Texas 1991) defines injection wen as
14	a well through which fluids are injected into an underground stratum to increase reservoir
16	pressure and to displace oil.
17	
18	The same source defines service well as
19	
20	a well used for injecting liquid or gas into a reservoir for enhanced recovery as well as
21	saltwater disposal wells and water wells.
22	For the sum and of this applying injection well is defined breadly to mean wells used for
23	For the purpose of this analysis, injection well is defined broadly to mean wells used for
24	dispose of soltwater, and wells used for underground storage of bydroserbons. It does not
20 04	include wells that are initially drilled for oil or gas exploration or production but are later used
20	as water supply wells
21	as water supply wens.
20 20	Most injection wells used in the oil and gas industry are not drilled only for injection
29	nurposes. In most cases, exploratory wells or producing wells that have reached an advanced
31	state of depletion are converted to injection wells, either for water disposal or enhanced
32	production purposes. Thus, the same drilling and plugging requirements that apply to oil and
33	gas wells also apply to injection wells (see Sections DEL 6.1 and DEL 6.2)
34	
35	DEL.6.3.2 Bureau of Land Management
36	
37	The BLM does not have specific requirements that apply only to injection wells. Injection
38	wells are not addressed in either the 43 CFR Part 3160 regulations on onshore oil and gas
39	operations or the various onshore oil and gas orders. The requirements for drilling and
40	plugging of oil and gas wells described in Section DEL.6.1.2 apply equally to injection wells.
41	
42	Instead of having its own regulations governing injection wells, the BLM defers to the
43	NMOCD (or Texas Oil and Gas Division) requirements. In other words, the BLM requires oil
44	and gas operators to abide by the applicable state requirements and procedures. Of course,
45	BLM would still issue the drilling permit on federal lands.

Year	Wells Completed ³	Wells Abandoned ⁴	Active Wells 5	Docketed Cases ⁶	Compulso Plugging
1996 ²	1200	400	29,690	300	25
1995	1139	342	29,172	283	19
1994	897	335	28,663	322	2
1993	916	357	28,163	371	0
1992	797	348	27,671	314	1
199 1	929	284	27,461	383	2
1990	832	264	27,117	592	0
1989	668	272	26,965	457	3
1988	803	274	26,928	432	0
1987	770	313	26,664	302	2
1986	868	307	26,486	346	7
1985	1272	349	26,103	430	11
1984	11 97	212	25,190	525	6
1983	1212	344	24,641	326	6
1982	1573	180	24,124	342	18
1981	1419	118	23,137	39 9	7
1980	1221	159	22,365	410	16
1979	997	155	21,671	383	12
1978	999	126	21,062	346	29
1977	849	204	20,515	335	15
1976	784	309	20,171	264	15
1975	794	264	20,170	258	10
1974	901	241	20,127	262	18
1973	600 ⁸	207	19,952	276	18
1972	666 ⁹	295	19,845	302	3
1971	NA	NA	NA	169	4

•

.

1	¹ The first three columns of data are for southeastern New Mexico. The remaining columns show statewide data.
2	Southeastern New Mexico includes NMOCD District 1 (Lea, Roosevelt, Curry, and a portion of eastern
3	Chaves Counties) and District 2 (Eddy, most of Chaves, DeBaca, Lincoln, Otero, and Dona Ana Counties).
4	² Numbers for 1996 were estimated by E. Martin, NMOCD, Santa Fe, New Mexico, on March 12, 1996.
2	⁴ Includes oil, gas, dry noie, and service wells for NMOCD Districts 1 and 2.
07	⁵ Includes oil, gas, and injection wells for NMOCD Districts 1 and 2.
8	⁶ Docketed cases are those enforcement actions set for a hearing. They result in various types of hearing orders.
9	The numbers are for cases statewide, not only for NMOCD Districts 1 and 2. Docketed cases are categorized
10	into 16 different subjects. Compulsory plugging was selected as the subject most relevant to inadvertent
11	drilling into the WIPP.
12	⁷ These numbers are statewide and not only for NMOCD Districts 1 and 2. Compulsory plugging refers to wells
13	not totally in compliance with plugging requirements. The term does not refer to wells left unplugged.
14	^o No service wells are included in this number for 1972 and 1973.
15	⁹ This number for 1972 is for wells drilled, not wells completed.
16	
17	DEL.6.3.3 State of New Mexico
18	
19	The NMOCD regulations applicable to injection wells are contained in Rules 705 through 708
20	(19 NMAC 15.I.705-708). The rules apply to injection used for secondary or other enhanced
21	recovery, pressure maintenance, salt water disposal, and underground storage. The rules apply
22	to the injection of both fluids and gases. A permit is required from the NMOCD for the
23	injection of gas, air, water, or any other medium into any oil or gas reservoir in order to
24	maintain pressure for secondary or other enhanced recovery (Rule 701-A). A permit is also
25	required for injection of water for disposal or for underground storage. The permit will be
26	granted only after notice and hearing unless otherwise provided by the NMOCD rules.
27	Because applications for underground storage are rare in New Mexico, storage injection well
28	requirements are not discussed in this section
20	requirements are not discussed in this section.
20	DEL 6331 Injection Application
21	DEL.0.5.5.1 Injection Application
31	Amplication for an injection numit (authorization to inject) must be made on NM(OCD Form
32	Application for an injection permit (authorization to inject) must be made on NWOCD Form
33	C 108 (Attachment 5) and contain the following information:
34	
35	• complete well data for each proposed injection well,
36	
37	 map identifying all wells and leases within two miles of each proposed injection well
38	with a one-half mile radius circle showing the well's area of review,
39	
40	• tabulation of data (well type, location, depth, and plugging detail if plugged) for all
41	wells within the one-half mile area of review that penetrate the proposed injection
42	zone,
43	
44	• detailed data on the proposed injection well operation (volume of injection fluids
45	injection pressure, and chemical analyses of injection fluid)
46	

•	geological data including lithologic detail, thickness and depth of injection zone, and location of all underground sources of drinking water (USDW),
•	well logging and test data (if not previously submitted),
•	chemical analysis of fresh water from two or more existing and producing water wells within one mile of any injection or disposal well, and
•	statement to the effect that available geologic and engineering data do not indicate the existence of open faults or other hydrologic connections between the disposal zone and any USDW.
One o specif	f four purposes for which the injection project requires a permit from the NMOCD is ied on Form C-108: secondary recovery, pressure maintenance, disposal, or storage.
Inject applic lease NMO are ca appro circul	on well permit applicants must provide, by certified or registered mail, a copy of the ation to the surface landowner where the well is to be located and to each oil or gas operator within one-half mile of the proposed well location. (In actual practice, the CD determines if all wells within a one-half mile radius of the proposed injection well sed and cemented across the injection zone). If the application is for administrative
must l	val without a hearing, the applicant must publish notice in a newspaper of general ation in the county in which the proposed injection well will be located. If a written ion is filed with the NMOCD within 15 days of the filing of the application, a hearing be held (Rule 701-D).
DEL.	val without a hearing, the applicant must publish notice in a newspaper of general ation in the county in which the proposed injection well will be located. If a written ion is filed with the NMOCD within 15 days of the filing of the application, a hearing be held (Rule 701-D).

and when the waters are disposed of into a formation older than the Triassic (in Lea County only), provided there are no objections. Water disposal is not permitted into zones containing waters with TDS concentrations of 10,000 milligrams per liter or less, except after notice and hearing. Nevertheless, the NMOCD can authorize water disposal in such zones (TDS of 10,000 milligrams per liter or less) if the water to be disposed of is of higher quality than the water in the disposal zone. These restrictions do not apply to exempted aguifers which the NMOCD may establish.

DEL.6.3.3.3 Pressure Maintenance Projects

In pressure maintenance projects, fluids are injected into the oil- or gas-producing horizon in
 order to increase or maintain reservoir pressure in an area which has not reached the stripper
 well degree of depletion. All injection well permit applications for pressure maintenance

1	projects require both notice and a hearing unless the NMOCD grants an exception under
2	certain circumstances (Rule 701-F). Although not prescribed by rule, the NMOCD practice is
3	to limit all injection well pressures to 0.2 pounds per square inch (1,379 pascals) for each foot
4	of well depth to the top of the injection zone.
5	
6	DEL.0.3.3.4 Water Flood Projects
/	In water flooding, water is injected into a producing horizon in sufficient quantities and
ð	n water modified, water is injected into a producing nonzon in sufficient qualities and pressure to stimulate production from other wells in the area. It is limited under Pule 701 G
10	to areas in which the wells have reached an advanced or stripper well state of depletion All
11	applications for water flood projects require a hearing. However, if there are no objections, a
12	bearing is not required to permit additional injection wells that may be necessary to develop or
12	maintain a thorough and efficient water flood injection for any authorized project (Rule 701-G
14	[7]).
15	
16	DEL.6.3.3.5 Casing and Cementing of Injection Wells
17	
18	NMOCD Rule 702 requirements for casing and cementing of injection wells are, for all
19	practical purposes, the same as for exploration and production wells. Wells must be cased
20	with safe and adequate casing or tubing to prevent leakage and movement of either formation
21	or injected fluid from the injection zone into any other zone or to the surface.
22	
23	DEL.6.3.3.6 Injection Well Operation and Maintenance
24	
25	NMOCD Rule 703-A provides as follows:
26 27	Injection wells shall be assumed operated monitored and maintained to facilitate periodic testing
28	and to assure continued mechanical integrity which will result in no significant leak in the tubular
29	goods and packing materials and no significant fluid movement through vertical channels adjacent
30	to the wellbore.
31	
32	Any injection project must be operated so as to prevent surface damage or pollution resulting
33	from leaks, breaks, or spills. The failure of any injection well which may endanger a USDW
34 25	NMOCD District Office under the precedures expective in Pule 116. Detailed injection well
33 24	testing and monitoring requirements are outlined in NMOCD Pule 704
20 27	testing and monitoring requirements are outlined in NMOCD Rule 704.
38	DFL 6337 Commencement Discontinuance and Abandonment
30	DEL.0.5.5.7 Commencement, Discommunce, una Nounaonment
40	The operator of any injection well must immediately notify the NMOCD of the date when
41	injection operations commenced (Rule 705-B). The operator must also notify the NMOCD
42	within 30 days of the operations being discontinued and for what reasons. An injection well
43	cannot be temporarily abandoned longer than six months unless the injection interval has been
44	isolated by installing a cement plug or a bridge plug. Plugging requirements may be delayed
45	if there is a continuing need for the well, it is mechanically sound, and its temporary

1 2 3	abandonment will not endanger a USDW. When injection operations have ceased for a continuous period of six months, the well will be considered abandoned; the permit will terminate automatically.
4	
5	DEL.6.3.3.8 Records and Reports
6	
7	The operator of an injection well must keep accurate records and make monthly reports to the
8	NMOCD regarding the volumes of gas or fluids injected, stored, or produced. Various forms
9	(C-115, C-120-A, and C-131-B) are available for this purpose.
10	
11	DEL.7 Inadvertent and Intermittent Intrusion by Drilling
12	
13 14	Information pertinent to the assessment of the likelihood of inadvertent intrusion into the repository is presented in this section
15	repository is presented in this section.
16	DEL.7.1 Regulatory Context
17	
18	The EPA criteria for certification of WIPP's compliance with the 40 CFR Part 191 disposal
19	regulations state that performance assessments examine deep and shallow drilling that may
20	potentially affect the disposal system during the 10,000-year regulatory time frame (40 CFR
21	§ 194.33[a]). Deep drilling is defined by the criteria as drilling events that reach or exceed
22	2,150 feet (655 meters) below the surface while shallow drilling means drilling events that do
23	not reach a depth of 2,150 feet (655 meters) (40 CFR § 194.2). The total rate of deep drilling
24	must be calculated as the sum of the rates of deep drilling for each resource in the Delaware
25	Basin over the past 100 years. The total rate of shallow drilling must be calculated as the sum
26	of the rates of shallow drilling over the same time period for each resource in the Delaware
27	Basin that is of similar type and quality as the resources in the WIPP controlled area.
28	
29	DEL.7.2 Shallow Drilling Events
30	
31	The majority of shallow holes are composed of water wells, potash coreholes, and sulfur
32	coreholes. The identification, location, and depth of the shallow boreholes in the Delaware
33	Basin have been taken from existing commercial databases and maps. The data gathered on
34	shallow boreholes was taken directly from commercial databases and BLM records as
35	described below.
30	DEL 7.2.1 Water Walls
<i>د</i> ۱۰	DEL. 1.2.1 water wens
58 20	Information on water wells in the Delaware Pasin was aktained from a commercial database
39 40	developed by Whitester Comporation of Englewood, Colorado
40	developed by wintestal Corporation of Englewood, Colorado.
41	

÷ .

DEL.7.2.2 Potash Coreholes 1 2 Information on potash coreholes in the Delaware Basin was compiled from BLM records. 3 4 DEL.7.2.3 Sulfur Coreholes 5 6 Sulfur corehole information was obtained from a commercial database developed by 7 Whitestar Corporation of Englewood, Colorado, and the Petroleum Information Corporation 8 of Denver, Colorado. 9 10 **DEL.7.3** Deep Drilling Events 11 12 Only the drilling of a deep well could result in inadvertent human intrusion into the WIPP 13 repository. Information on the identification, location, and depth of the deep boreholes in the 14 Delaware Basin has been derived from existing commercial databases and maps. The data 15 gathered on the deep oil and gas boreholes are available from several commercial sources. To 16 assure the accuracy of these commercial databases and maps, and obtain the best possible 17 count of deep wells in the basin, these commercial sources were verified against one another. 18 19 The data sources selected for determining the number of oil and gas wells in the Delaware 20 Basin were maps obtained from the Midland Map Company and a database obtained from the 21 Petroleum Information Corporation. Both the Midland Map Company and Petroleum 22 Information Corporation obtained well records from the NMOCD and the Railroad 23 Commission of Texas Oil and Gas Division. These companies have a reputation for data 24 reliability; the information they provide is regarded as a standard within the industry. 25 However, these companies do not provide any warranty on the accuracy or the completeness 26 of the data. 27 28 It is not considered economically feasible to validate these data. The process of validating the 29 data would require field verification of wells in an area covering approximately 8,910 square 30 miles (23,077 square kilometers) as well as a comparison of NMOCD and BLM records with 31 the private records of the various oil and gas companies. 32 33 While it was not considered feasible to validate the original data, it was considered reasonable 34 to determine a verifiable deep well count. By comparing the two selected commercial sources 35 of data, a count of deep wells in the Delaware Basin has been prepared. In comparing the 36 Petroleum Information Corporation database to the Midland Map Company maps, some wells 37 were found to be identified either in the database or on the maps, but not in both sources. The 38 well count presented here was derived using all wells in the Petroleum Information 39 Corporation database plus the wells identified on the Midland Map Company maps that were 40 not in the Petroleum Information Corporation database. 41 42

DEL.7.4 Rate of Drilling in the Basin

The number of boreholes listed in the Petroleum Information Corporation database and the number of boreholes shown on the Midland Map Company map but not listed in the Petroleum Information Corporation database are provided in Table DEL-3. In addition, the number of shallow and deep boreholes created in the Delaware Basin over the past 100 years is shown by type of borehole in Table DEL-4.

In the case of water wells, the available data do not include the depths of all of the water wells
shown in the database. To arrive at an estimate of the total number of deep and shallow water
wells, the ratio of known deep wells (that is, those 2,150 feet [656 meters] or greater) versus
known shallow water wells was calculated and applied to the total number of water wells
shown in the database.

The intrusion rate for boreholes drilled per square kilometer (0.39 square mile) over 10,000 15 years has been calculated using the borehole counts listed in Tables DEL-4, DEL-5, and 16 17 DEL-6. The calculated rates suggested for use in the performance assessment are shown in Table DEL-7. As provided by 40 CFR § 194.33(b)(4)(iii), the calculated rate for shallow 18 boreholes excludes sulphur holes because no economically extractable sulphur is located 19 20 within the WIPP land withdrawal area (NMBMMR 1995). In addition, consistent with EPA guidance in the EPA 1996 Response to Comments Document For 40 CFR Part 194, page 21 12-8, last paragraph, both shallow and deep holes created as part of WIPP site characterization 22 efforts have been excluded from the count. Based on the data provided in these tables, the 23 calculated rates are 21.821 shallow holes per square kilometer (0.39 square mile) and 46.765 24 deep holes per square kilometer (0.39 square mile) over 10,000 years. 25

26 27

28

1 2 3

4

5

6

7 8

14

DEL.7.5 Pressurized Brine Encounters Within the Delaware Basin

29 Some of the human intrusion scenarios evaluated in the WIPP performance assessment include the assumption that a borehole results in the establishment of a flow path between the 30 repository and a pressurized brine pocket that could be located beneath the repository in the 31 Castile. To identify reasonable assumptions for use in the performance assessment, 32 commercial drillers and operators with experience in the Delaware Basin were surveyed to 33 determine the frequency of occurrence and typical depths of abnormally pressurized brine 34 zones within the Delaware Basin (Personal Communication 1996d; Personal Communication 35 1996e; Personal Communication 1996f; Personal Communication 1996g). 36

37

For the purpose of this investigation, abnormally pressurized brine zones are defined as those that exhibit pressures exceeding the hydrostatic pressure of the column of drilling fluid in the hole. Consistent with this definition, any brine encounter having pressure exceeding hydrostatic pressure is considered abnormally pressurized. Flow to the surface driven by differential pressures just above hydrostatic pressure, however, would typically not be noticed by a driller, and is expected to be of little impact to performance assessment.

		Boreholes Shown on the Midland Map But	· 91-102974
Borehole Type	Boreholes Listed in the PI Database	Not Listed in the PI Database	Total Number of Boreholes by Type
	Hydroca	rbon Boreholes	
Oil Well	5,728	37	5,765
Gas Well	1,569	2	1,571
Oil/Gas Well	14	0	14
Abandoned Wells	167	1	168
Dry Hole	3,453	56	3,509
Injection Well	72	2	74
Service Well	147	0	147
Total Hydrocarbo Boreholes	on 11,150	98	11,248
	Other Resource, Exploratory, or Test Boreholes		
Sulphur Corehole	584	0	584
Potash Corehole	925	0	925
Stratigraphic and Test Hole ¹	Core 1,271 ¹	0	1,271 1
Water Well	2,311	0	2,311
Brine Well (Solution Mining)	1	0	1 .
Total Other Borel	noles 5,092	0	5,092

Table DEL-3. Boreholes Within the Delaware Basin

¹ Excluding boreholes drilled as part of WIPP site characterization programs.

23 24 25

1

When asked how often abnormally pressurized brine zones are encountered, each of the drillers surveyed stated that it was an uncommon occurrence in the Delaware Basin, and that they believe the actual frequency to be less than five percent. This estimate captures those occurrences where the differential pressure could be great enough to drive a noticeable quantity of drilling fluid to the surface. The drillers reported that these zones are most frequently encountered in the Castile Formation in the Delaware Basin.

32

The Castile Formation within the land withdrawal area is approximately 1,250 feet (381 meters) thick. It is primarily an anhydrite formation and has been found to have isolated areas that hold quantities of brine. Based on observed Castile porosity (amount of space in the

Table DEL-4. Number of Shallow and Deep Boreholes Within the Delaware Basin, by **Resource or Type**

Borehole Type	Shallow Borehole ¹	Deep Borehole ²	
Hydrocarbon Borehole	608	10,640	
Sulphur Corehole	495	89	
Potash Corehole	906	19	
Stratigraphic and Core Test Hole ³	1,215 ³	56 ³	
Water Well	2,311	0	
Brine Well (Solution Mining)	1	0	
Total Boreholes, by Depth	5,536	10,804	

¹ Equal to or less than 2,150 feet (655 meters).
 ² Greater than 2,150 feet (655 meters).
 ³ Excluding boreholes drilled as part of WIPP site characterization programs.

Table DEL-5.Number of Shallow Boreholes Per Square Kilometer in the Delaware
Basin, by Resource or Type 1

Borehole Type	Shallow Boreholes ²	Boreholes Per Square Kilometer	
Hydrocarbon Borehole	608	2.632	
Sulphur Corehole	495	2.143	
Potash Corehole	906	3.922	
Stratigraphic and Core Test Holes ³	1,215 3	5.259 ³	
Water Wells	2,311	10.003	
Brine Well (Solution Mining)	1	0.004	
Total Shallow Boreholes	5,536	23.963	

¹ The area of the Delaware Basin is 23,102.1 square kilometers (14,356 square miles). The number of holes per square kilometer is calculated as follows: (number of holes) \times 10,000 years / area / 100 years. ² Equal to or less than 2,150 feet (655 meters).

³ Excluding boreholes drilled as part of WIPP site characterization programs.

Table DEL-6. Number of Deep Boreholes Per Square Kilometer in the Delaware Basin, by Resource or Type ¹

Borehole Type	Deep Boreholes ²	Boreholes Per Square Kilometer
Hydrocarbon Borehole	10,640	46.056
Sulphur Corehole	89	0.385
Potash Corehole	19	0.082
Stratigraphic and Core Test Holes ³	56 ³	0.242 ³
Water Well	0	0
Brine Well (Solution Mining)	0	0
Total Deep Boreholes	10,804	46.765

¹ The area of the Delaware Basin is 23,102.1 square kilometers (14,356 square miles). The number of holes per square kilometer is calculated as follows: (number of holes) × 10,000 years / area / 100 years.

 2 Greater than 2,150 feet (655 meters).

³ Excluding boreholes drilled as part of WIPP site characterization programs.

Table DEL-7. Number of Boreholes Per Square Kilometer to be Used in Performance Assessment Calculations Assessment Calculations

Type of Borehole	Number of Boreholes	Boreholes Per Square Kilometer
Shallow Borehole	5,041 ¹	21.821
Deep Borehole	10,804 ²	46.765

¹ Excluding sulphur coreholes and boreholes drilled as part of WIPP site characterization programs.

 2 Excluding boreholes drilled as part of WIPP site characterization programs.

formation to store brine) and permeability (ability of the formation to conduct fluids), brine present in the unit may be released into an intersecting uncased wellbore. This brine may be normally or abnormally pressured.

Hydrostatic pressure at any depth in the wellbore is calculated using the following formula:

$$Pm = MW \times D \times 0.052 \tag{1}$$

where
Pm = ressure (pounds per square inch),
MW = mud weight (pounds per gallon),
D = depth (feet), and
0.052 = a conversion factor representing mud density.

1 2 3	For example, at 3,000 feet (915 m per square inch $(1.08 \times 10^7 \text{ pasca})$ brine as the drilling fluid. In this the brine source is pressurized gr	neters), the hydrostatic pressure is calculated at 1,560 pounds ls) based upon the use of a 10-pounds-per-gallon saturated example, brine flow to the surface would be possible only if eater than 1,560 pounds per square inch
4	the brine source is pressurized gr	caler main 1,500 pounds per square men.
2		
6	Typically, the drifter would become	the aware of ability pressure of fluid in the suid sit. When
7	of the brine encounter is sufficient	it to cause a noticeable gain of fluid in the mud pit. when
8	this occurs and the flow is not gre	eat enough to cause immediate concern, drilling will typically
9	continue, but the driller will calcu	late the rate of brine flow. This is accomplished by shutting
10	off the pumps and using a bucket	of known capacity to catch the free-flowing brine and noting
11	the time that it takes to fill the bu	cket. From this measurement, the driller can determine the
12	rate of flow in barrels-per-minute	. If the flow rate is not so great as to cause concern of over-
13	filling the reserve pit, drilling wo	uld continue until the hole reaches the Bell Canyon
14	Formation. The intermediate cas	ing would then be run and cemented. Once in place, the
15	casing string would isolate the ov	erpressurized zone and prevent further flow to the surface.
16		
17	A very heavy brine flow, howeve	r, such as one that could potentially fill the pit within one-to-
18	two hours, would not be allowed	to continue. Corrective action would be taken in the form of
19	killing the flow of brine. This is	accomplished in the field by shutting in the blowout
20	preventor and calculating the dow	whole pressure. Using this pressure, the driller then
21	determines the quantity of barite	(the mud additive most often used) that must be added to the
22	drilling fluid to sufficiently increa	ase the hydrostatic pressure exerted by the column, so that
23	the differential pressure results in	downward flow from the drilling fluid column into the
24	formation. When brine flow to the	ne surface has stopped, drilling continues to the depth
25	originally determined in the well	plan. Once this depth is reached, intermediate casing is run
26	and cemented in place.	
27		
28	The drillers reported that measure	es to kill pressure-driven flow to the surface are required only
29	rarely. They are generally able to	drill through the Castile Formation while brine is flowing
30	and successfully set the intermedia	iate string in the Bell Canyon Formation (the usual drilling
31	horizon).	
32		
33	Using a typical drilling scenario b	based on a pressurized zone at a depth of 3,000 feet (915
34	meters) with a hydrostatic pressur	re of 1,560 pounds per square inch $(1.08 \times 10^7 \text{ pascals})$, flow
35	rates necessary to fill the pit at on	e-and-two-feet-per-hour increments have been calculated.
36	This calculation is provided below	<i>w</i> .
37		
38	Assume:	
39	A. Well Depth, ΔZ :	3,000 feet
40	B. Mud Pit Volume:	125 feet * 125 feet * 6 feet = 93,750 cubic feet = 701,298.701 gallons
41	C. Casing Weight:	32 pounds per foot
42 13	D. Casing inner Diameter E. Open Hole Inner Diameter	6.023 Inclues 11.5 inclues - 0.958 feet
4 4	F. Unit Volume:	15.625 cubic feet per foot of vertical height
45	G. Unit Volumetric Flow Rate:	4.34 cubic feet per second
46	H. Drilling Fluid:	Case 1: 10.25 pounds per gallon brine Case 2: barite

I. Density (ρ) : 1 2

Case 1: 76.68 pounds per cubic foot ³

 $\pi d^2 / 4 = \pi (0.958)^2 / 4 = 0.721$ square feet

 $V = Q/A = 4.34 \pm 2/0.721 = 12.034$ feet per second

Case 2: 263.3 pounds per cubic foot

1

0.06 for coated casing/open hole J. Friction Factor (f):

K. Internal Casing Pipe Area (A): 4

5 L. Gravity (g):

32.17 feet per square second V = Q/A = 4.34*1/0.721 = 6.017 feet per second M. Velocity (1 ft/ hr Brine Pit Disp.):

- 7 N. Velocity (2 ft/ hr Brine Pit Disp.):
- 8 Equation:

3

6

$$\frac{\Delta P}{\rho} = \frac{\Delta V^2}{2g} + \Delta Z + E_{12}$$
(2) 1

. . . .

$$\Delta P = \rho \left[\frac{\Delta V^2}{2g} + \Delta Z + \frac{fLV^2}{2gd} \right]$$
(3)

9	Derived from Gieck	(1987)
10	For the case of 1 ft/hr brine pit displacement:	$\Delta P = 1,654.099$ pounds per square inch
11		$(1.14046 \times 10^7 \text{ pascals})$ gauge
12		
13	For the case of 2 ft/hr brine pit displacement:	$\Delta P = 1,823.784$ pounds per square inch
14		$(1.25745 \times 10^7 \text{ pascals})$ gauge
15		
16	The calculation shows that a one-foot-per-h	our pit level increase would be possible only if
17	an accurtation bettern hele processors of at la	est 1 654 nounds non seusre inch course. A two
17	Enconnering donora-note pressures of alle	an i obe dounds del sultate inch valive – A two

ountering bottom-hole pressures of at least 1,654 pounds per square inch gauge. A two-17 foot-per-hour increase in the pit level would require a pressure of 1,824 pounds per square 18 inch $(1.25745 \times 10^7 \text{ Pa})$ gauge. Those surveyed indicated that pressures of this magnitude are 19 seldom experienced in the Delaware Basin, and that both one- and two-foot-per-hour pit level 20 rises would be noticed by the driller. 21

22

23 The low rate of occurrence of abnormally pressured brine has been further supported by

information documented in the drilling records. Using databases assembled by Petroleum 24

Information Corporation and Midland Map Company, which provide well name, operator, 25

location, total depths, casing sizes, and dates of drilling and completion, the DOE has 26

developed a list of all oil and gas wells that have been drilled within the New Mexico portion 27 of the Delaware Basin. Wells on this list are located in the southern portions of Eddy and Lea

28 Counties, which are the only New Mexico counties within the Delaware Basin. 29

30

The well files at the Oil Conservation Division offices in Artesia and Hobbs, New Mexico, 31

(the NMOCD maintains the records of wells drilled on both state and federal leases in Eddy 32

and Lea Counties) were also reviewed. The files record activities entered by the drillers from 33 initiation of drilling to completion of a particular well. Drillers note in these reports any

- 34 unusual occurrences such as abnormally pressured brine. Incidents of this type are reported in 35
- the form of daily reports. Although there is no requirement that they do so, drillers may 36
- include pressurized brine encounters in their daily reports, even if there has been no effect on 37
- drilling activities. The Texas portion of the Delaware Basin was not evaluated. The rationale 38

1	for not including the Texas portion is that wells nearer the WIPP land withdrawal area are of
ו ר	areatest interest in determining the presence of brine within the Castile
2	greatest merest in determining the presence of office wrann the classifie.
3	Ω f a total of 3 406 well files reviewed 28 were found to have notations by the driller
	indicating the encounter of pressurized brine (See Figure DFL 15)
5	indicating the choosines of pressurized of the (See Figure DEL-15.)
07	Another factor influencing performance assessment analyses is the time that flow from a
/ 0	Proceeding of the surface would continue prior to the installation of the intermediate
8	pressurized zone to the surface would continue prior to the instantation of the intermediate
9	Converse Example is reached, which is approximately 4,000 feet (1,220 meters) in denth near
10	the WIDP site. At this time, the drill string is removed from the hele and intermediate assing
11	ine wire side and intermediate casing is removed from the note and intermediate casing
12	is run and cemented from 4,000 feet (1,220 meters) to the surface. After cementing is
13	drilling assumes
14	drilling resumes.
15	Detilize time from the repeaters, don'th at 2 150 foot (656 meters) through the remaining
10	Drilling time from the repository depth at 2,150 feet (050 meters) through the remaining
17	portion of the Salado and all of the Castile (an additional 1,250 feet; 381 meters) is calculated (15.52)
18	to be 54 nours. This number is based on drilling rates of 50-10-00 feet (15-10-18 meters) per
19	nour from the base of the surface casing at 800 feet (244 meters), to the top of the Castile at
20	2,750 feet (858 meters) (New Mexico Junior College 1995). The drilling rate is expected to
21	slow to 30-to-40 feet (9-to-12 meters) per hour inrough the Castile (New Mexico Junior
22	Conege 1995). Once the Bell Canyon has been entered, an additional 14 hours are typically
23	required to remove the drill string from the noie and run and cement the 3,200 feet (976
24	meters) of casing.
25	To the main its of delling exceptions, the deiller will be able to set the deill about much the
26	In the majority of drilling operations, the driller will be able to safely drill ahead, reach the
27	Bell Canyon, and complete the intermediate casing, without having to resort to kining the
28	pressure. However, if pressures encountered are great enough that the driller is forced to
29	engage the blowout preventer and add weight to the drilling fluid, the maximum time that
30	flow to the surface would occur is one to two hours. I herefore, two hours represents a
31	reasonable lower bound duration and is derived from high pressure situations where the
32	blowout preventer would be used to stop the flow to the surface and control the pressure by
33	adding weight to the drilling fluids.
34	
35	DEL.7.6 Borehole Permeability Assessment
36	
37	Human intrusion scenarios evaluated in the WIPP performance assessment assume that one or
38	more boreholes intercept the repository and that the boreholes are subsequently plugged. To
39	support the evaluation of the potential consequences of scenarios of this type, the DOE has
40	assessed the permeabilities that may be expected in plugged boreholes in the Delaware Basin.
41	The permeability of the borehole plugs is important because this is a measure of the quantity

- 42 of contaminated fluids that could hypothetically flow through the borehole plug.
- 43

•

1	Result Attach	s of this work are reported in <i>Inadvertent Intrusion Borehole Permeability</i> , included as ment 7. The DOE report summarizes plugging practices in the Delaware Basin and
3	identif	ies three plugging configurations typically used in the basin:
4		
5	•	a single continuous plug through the evaporite sequence,
07	•	a two plug configuration that contains one plug in the Bell Canyon Formation (below
/ 0	•	the depth of potential brine reservoirs) plus one plug in the Rustler Formation
0		(between the Culebra aquifer and the repository) and
9		(between the culebra aquiter and the repository), and
10	•	a three-plug configuration that contains the two plugs described for the two-plug
11	•	configuration plus an additional plug in the Salado Formation
12		configuration, plus un additional plug in die balade i officiation.
13	Conch	usions presented in the DOE report for each of these configurations include the
15	follow	ing.
16	10110	
17	•	In the case of the single continuous plug, the permeability of the plug is expected to
18		remain at 5×10^{-17} square meters for the entire 10,000-year period of interest.
19		
20	•	For the two-plug configuration, the permeability between the repository and the
21		surface is expected to be 5×10^{-17} square meters for a period of 200 years and 10^{-11}
22		square meters to 10 ⁻¹⁴ square meters after that. The plug between the Castile and the
23		repository is expected to have a very high permeability for 200 years and values of
24		10^{-11} to 10^{-14} square meters up to 1,200 years, and 10^{-12} to 10^{-15} square meters after
25		that.
26		
27	•	With the three-plug configuration, the permeability between the intermediate plug and
28		the surface is expected to be 5×10^{-17} square meters for 200 years and 10^{-11} to 10^{-14}
29		square meters after that. The intermediate plug is expected to have a permeability of 5
30		$\times 10^{-17}$ square meters for a median time of 5,000 years, and the borehole between the
31		Castile and the repository is expected to have values ranging from 10^{-11} to 10^{-14}
32		square meters for 1,000 years more, and 10^{-12} to 10^{-13} square meters after that.
33		
34	Under	all scenarios considered in the report, the permeability of the borehole plug systems
35	never	exceed that of silty sand $(10^{-11} \text{ to } 10^{-14} \text{ square meters})$.
36		
	1	
	, , ,	·

DOE/CAO 1996-2184

• •

)

DEL-89

October 1996

THIS PAGE INTENTIONALLY LEFT BLANK

, ---

1	REFERENCES
2	
3	Gieck, K., 1987. Engineering Formulas, 5th edition, McGraw Hill Publishers, Heilbronn/N,
4	West Germany.
5	•
6	Kennedy, J.L., 1983. Fundamentals of Drilling, Penn Well Publishing.
7	
8 9	New Mexico Bureau of Mines and Mineral Resources, 1995. Evaluation of Mineral Resources at the Waste Isolation Pilot Plant, Final Report, Vols. I-IV.
10	•
11	New Mexico Junior College, 1995. Analytical Study of an Inadvertent Intrusion of the WIPP
12	Site, Hobbs, New Mexico.
13	
14	Personal Communication, 1995. J. Amos, R. Manus, S. Shaw, T. O'Brian, and C. Cranston,
15	U.S. Bureau of Land Management (BLM) and Roger Hansen, John Hart and Associates, P.A.
16	
17	Personal Communication, 1996a. J. Amos, U.S. Bureau of Land Management (BLM) and
18	Roger Hansen, John Hart and Associates, P.A. (JHA).
19	
20	Personal Communication, 1996b. S. Shaw, U.S. Bureau of Land Management (BLM) and
21	Jim Johns, Westinghouse Electric Corporation.
22	Personal Communication, 1006a, J. Souton, New Maying Oil Concernation Division
23	(NMOCD) and Jim Johns, Westinghouse Electric Corporation
24	(NMOCD) and Jim Johns, westinghouse Electric Corporation.
23	Personal Communication 1996d Ted McVey President McVey Drilling Company Hobbs
20	NM and Jim Johns Westinghouse Electric Corporation April 24, 1996
21	The and shirt johns, we sunghouse Electric Corporation, April 24, 1990.
20	Personal Communication 1996e Larry Scott President Lyny Petroleum Company Hobbs
30	NM and Jim Johns Westinghouse Electric Corporation April 24, 1996
31	The and shirt soling, we shinghouse Electric Corporation, reprir 21, 1990.
32	Personal Communication 1996f Derald Roberts, Drilling Superintendent, Santa Fe Energy
33	Corporation Midland TX and Jim Johns Westinghouse Electric Corporation April 23 1996
34	
35	Personal Communication 1996g Mike Stubblefield Field Engineer New Mexico Oil
36	Conservation Division, Artesia, NM and Jim Johns, Westinghouse Electric Corporation, April
37	24 1996
38	
39	The University of Texas, Petroleum Extension Service. Division of Continuing Education
40	1991. A Dictionary for the Petroleum Industry. First Edition
41	
42	U.S. Department of Energy (DOE), 1991, Waste Isolation Pilot Plant Environmental Report
43	for Calendar Year 1991, DOE/WIPP 92-007, Appendix 4.
44	,

1	U.S. Department of Energy (DOE), 1993. Resource Conservation and Recovery Act Part B
2	Permit Application, DOE/WIPP 91-005, Vol. XI, Appendix D7.
3	
4	U.S. Department of Energy (DOE), 1996. Inadvertent Intrusion Borehole Permeability,
5	Prepared by T.W. Thompson, W.E. Coons, J.L. Krumhansl and F.D. Hansen.
6	
7	U.S. Environmental Protection Agency (EPA), 1996a. 40 CFR Part 194, Criteria for the
8	Certification and Re-Certification of the Waste Isolation Pilot Plant's Compliance with the 40
9	CFR Part 191 Disposal Regulations.
10	
11	U.S. Environmental Protection Agency (EPA), 1996b. Compliance Application Guidance for
12	40 CFR Part 194, EPA 402-R-95-014, Washington, D.C.
13	
14	U.S. Environmental Protection Agency (EPA), 1996c. Response to Comments Document for
15	40 CFR Part 194, EPA 402-R-96-001, Office of Air and Radiation, Washington, D.C.
16	
17	U.S. Environmental Protection Agency (EPA), 1993. 40 CFR Part 191, Environmental
18	Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High
19	Level and Transuranic Radioactive Wastes.
20	
21	WIPP Inadvertent Intrusion Advisory Panel (WIIAP) and New Mexico Junior College, 1995.
22	Analytical Study of An Inadvertent Intrusion of the WIPP Site, Westinghouse Electric
	Comparation Sectomber 5, 1005

23 Corporation, September 5, 1995.

,

Title 40 CFR Part 191 Compliance Certification Application	
BIBLIOGRAPHY	
Foster, R.W., 1974. Oil and Gas Potential of a Proposed Site for the Disposal of High-Level Radioactive Wastes, ORNL/SUB-4423/1, New Mexico Bureau of Mines and Mineral Resources (NMBMMR), Socorro, NM, New Mexico Institute of Mining and Technology. Open-File Report, Contract No. AF(40-1)-4423. Oak Ridge National Laboratory, Oak Ridge, TN.	
Guzowski, R.V., and Gruebel, M.M., eds., 1991. Background Information Presented to the Expert Panel on Inadvertent Human Intrusion into the Waste Isolation Pilot Plant, SAND91-0928, Sandia National Laboratories, Albuquerque, New Mexico.	
Hiss, W.L., 1976. Structure of the Permian Ochoan Rustler Formation, Southeast New Mexico and West Texas, New Mexico Bureau of Mines and Mineral Resources, New Mexico Institute of Mining and Technology, Resource Map 7, 1976.	
Midland Map Company, 1995. Copyrighted Ownership Maps, Midland, Texas.	
Petroleum Information Corporation, 1995. Well Data Manager, a confidential and proprietary software product, Denver, Colorado.	
S.M. Stoller Corporation and Merrick and Company, 1995. Investigation of Borehole Brine Migration in Potash Mines - Phase II, Carlsbad, New Mexico.	
Sylvan Ascent, Inc., 1995. CD/MAPS, Toolbox Instructions and Data Definitions, Sylvan Ascent Software, Sylvan Ascent Inc., P.O. Box 4792, Santa Fe, New Mexico 87502.	
Underhill, P.T., 1996. Naturally Occurring Radioactive Materials Principals and Practices, St. Lucie Press, Delray Beach, FL.	
U.S. Bureau of Land Management (BLM), 1993. Preliminary Map Showing Distribution of Potash Resources, Carlsbad Mining District, Eddy & Lea Counties, New Mexico, BLM, Roswell District.	
U.S. Congress, 1992. Waste Isolation Power Plant Land Withdrawal Act. Public Law 102–579, October 1992. 102nd Congress, Washington, DC.	
Whitestar Corporation, Digital Mapping Specialists, Englewood Colorado.	

1		GLOSSARY OF TERMS
2	occessible or vironment	The stress-have lond suffree suffree sectors
5	accessible environment	and all of the lithosphere that is beyond the controlled
5		area. (40 CFR § 191.12)
6		Trace of hearing formations with a fill and a
/	acidize	increase production. This is accomplished by injecting
0 0		hydrochloric or other acid into the formation under
10		pressure. The acid etches the rock enlarging the pore
11		spaces for increased flow of reservoir fluids.
12		
13	active institutional control	(1) Controlling access to a disposal site by any means
14		other than passive institutional controls; (2) performing
15		maintenance operations or remedial actions at a site; (3)
16		controlling or cleaning up releases from a site; or (4)
17		monitoring parameters related to disposal system
18		performance. (40 CFR § 191.12)
19		171 1
20	annulus	The annular space surrounding the pipe in the wellbore.
21	blowout proventer	Also blowout proventer this is one of several values
22	blowout preventer	installed at the wellbead to prevent the accase of
23		pressure in the annular space between the casing and the
24		drill pipe or in an open hole with no drill pipe
26		
27	bottomhole	The lowest or deepest part of a well. Pertains to the
28		bottom of the wellbore.
29		
30	cast iron bridge plug	A metal plug with large rubber o-rings that is
31		mechanically set against the interior casing wall in an oil
32		or gas well. The plug is placed above the perforations in
33		an oil or gas well that is to be plugged and abandoned.
34		
35	casing shoe	A metal device attached at the base of the first casing
36		joint that is placed into the borehole of a well. The shoe
37	.	acts as a guide to divert cement into the casing annulus
38		during the process of cementing the casing string.
39 40	cellar	A nit usually lined with concrete or steel nine that
40 41	Utilai	provides space between the drilling rig floor and the
42		wellbead to accommodate other functions or equipment
43		It also collects drainage water and other fluids for
44		disposal.

1 2 3 4 5 6 7 8	certification	The EPA is required by $\$8(d)(1)(B)$ of the WIPP Land Withdrawal Act to certify whether the facility will comply with the disposal regulations in 40 CFR Part 191, Subpart B. Under $\$7(b)(1)$ of the act, the DOE may commence emplacement of TRU waste in the repository only after EPA certification has been granted. Certification criteria are contained in 40 CFR Part 194.
9	compliance assessment	The analysis conducted to determine compliance with 40
10		CFR § 191.15 and Part 191, Subpart C (40 CFR §
11	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	194.2).
12		
13	controlled area	(1) A surface location, to be identified by passive
14		institutional controls, that encompasses no more than
15		100 square kilometers and extends norizontally no more
16		houndary of the original location of the radioactive
17		wastes in a disposal system: and (2) the subsurface
10		underlying such a surface location (40 CFR $\&$ 191 12)
1 7 20		The WIPP controlled area is the 16-square mile area
20		withdrawn by the WIPP Land Withdrawal Act for use by
22		the DOE for the WIPP project.
23		
24	cuttings	Fragments of rock dislodged by the drilling bit and
25	–	brought to the surface in the drilling fluids. These are
26		often washed, dried, and analyzed to obtain information
27		about the formations through which the drill bit is
28		passing.
29		
30	deep drilling	For purposes of this report, deep drilling is oil or gas
31		well drilling to a depth of 2,150 feet (655 meters) or
32		greater.
33	N N	
34	disposal system	Any combination of engineered and natural barriers that
35		isolate radioactive waste after disposal (40 CFK §
36		191.12). The WIPP disposal system includes the
37		controlled area.
38	downhala	Downward as pertaining to a wellbore or borehole
3 9 40	uvwillioic	Downward, as pertaining to a wendore or borenoic.
40 /11	drilling fluids	Circulating fluids which lift drill cuttings out of the
47 47	AT WITTE TATA	wellbore cool the drilling bit and counteract downhole
~ ∠ 43		formation pressure. Such fluids commonly consist of a
44		mixture of brine, barite, clay, water, and chemical
r T		or orang, on any, any, and and another

1 2		additives. However, air, gas, water, or oil-based drilling muds are also used.
3		
4 5	drill stem	All of the machinery and equipment assembled together for rotary drilling.
6		
7	drill string	The column or string of drill pipe with attached tools for
8		transmitting fluids and rotational power.
ŷ.		
10	future state assumptions	The EPA WIPP compliance certification rule
11		assumption that all present day conditions will continue
17		to exist in their present state for the entire 10,000-year
12		regulatory time frame. The only exception is that
14	•	regulatory time frame. The only exception is that
14		events are assumed to evolve (change) over the same
15		time period (40 CEP & 104.25)
10		unie penou. (40 CFR § 194.23)
10	kolly	A length of pipe or hollow forcing with shoulders on the
10	Keny	A length of pipe of honow forging with shoulders on the
19		into a matching should and hale in the retary table of the
20		drill rig and is associated into the ten of the drill string
21		utili fig and is sciewed into the top of the utili string.
22	land withdrawal area	The 16 sections of land (10.240 serves 4.144 hostores)
23	lanu withurawai area	approximately 33 miles east southeast of Carlshad New
24 25		Maxico withdrawn under the WIDD L and Withdrawal
23		Act of 1002 (Pub J 102 570) from jurisdiction of the
20		Act of 1992 (Fub. L. $102 - 579$) from jurisdiction of the U.S. Department of Interior. Pursey of Lond
21		Management and transforred to the DOE for operation
20 20		of the WIPD disposal site
29 20		of the whit disposal site.
20 21	mousehole	A 20 to 30 feet (6 to 9 meter) deep hole, usually 12
31 22	11043611016	inches (30 centimeters) or more in diameter located in
32 22		the celler adjacent to the horshole. The mousehole as
25 24		with the rathole serves as a place to put the drillstem
24 25		when the drillstem in not in the main horshole
22 24		
0C 27	nossive institutional control-	(1) Dominant medicing placed at a diamond site (2)
3/ 20	passive institutional controls	(1) remained markers placed at a disposal site; (2) $\frac{1}{2}$
30 20		and regulations regarding land as recovery used and (A)
39 40		and regulations regarding land or resource use; and (4)
40		other methods of preserving knowledge about the
41		location, design, and contents of the disposal system.
42	·····	
43	perioration	A noie or noies made in the casing, the cement, or the
44		rock formation through which formation fluids can enter

the wellbore. Holes are usually made with a perforating 1 2 gun. 3 performance assessment 4 An analysis that (1) identifies the features, events and 5 processes that might affect the disposal system, (2) examines their effects on the performance of the 6 disposal system, and (3) estimates the cumulative 7 releases of radionuclides, considering the associated 8 9 uncertainties. These estimates must be incorporated into an overall probability distribution of cumulative releases 10 to the extent practicable. (40 CFR § 191.12) 11 12 permeability The resistance offered by a material to the movement of 13 fluids, measured in darcies. In geoscience, permeability 14 is a property which indicates the relative ease with 15 which a specified fluid will flow through rock, soil, or 16 an engineered material such as a borehole plug. 17 18 pipe A long, hollow cylinder (usually steel) through which 19 fluids are conducted. Pipe can refer to casing, drill pipe, 20 tubing, or line pipe. 21 22 porosity The relative volume of pore spaces between mineral 23 grains as compared to the total rock volume. Porosity 24 measures the capacity of rock to hold oil, gas, water, and 25 26 other fluids. The usual porosity range is 15 to 20 percent. 27 28 rathole A 20-to-30 foot (6-to-9-meter) deep hole, usually 12 29 inches (30 centimeters) or more in diameter. It is 30 31 located adjacent to the cellar and serves to hold the kelly when the kelly is not in the main borehole. 32 33 regulatory time frame The time period beginning when shafts are sealed and 34 ending 10,000 years after disposal. 35 36 37 reserve pit Can be either a mud pit for storage of drilling fluid or a waste pit. It is usually lined with plastic or other 38 material to prevent soil contamination. 39 40 rig up To install the tools and machinery necessary for 41 preparing the drilling rig. Rig down means to dismantle 42 the drilling rig following completion of drilling 43 operations. 44

1	shallow drilling	For purposes of this report, shallow drilling is drilling to a doubt of 2 150 fact (655 materia) or loss
2		a deput of 2,150 feet (055 meters) of fess.
3 4	transuranic (TRU) wastes	Wastes containing more than 100 nanocuries per gram
- 5		of alpha-emitting transuranic isotopes with half-lives
6		greater than 20 years except for (1) high-level
7		radioactive wastes. (2) wastes that do not need the
8		degree of isolation required by 40 CFR Part 191, or (3)
9		wastes that the Nuclear Regulatory Commission has
10		approved for disposal under 10 CFR Part 61. (40 CFR §
11		191.02[i])
12		
13	trip in/trip out	To go into or enter the drill hole or wellbore, as with a drill pipe. Come out of the hole
14		unin pipe. Come out of the note.
16	wellbore	A borehole or hole drilled by a bit. It may be cased.
17		uncased, or partly cased.
18		
19	well completion	The activities and techniques employed to prepare a well
20	_	for production of oil or gas or for some other function,
21		such as underground injection of fluids.
22		
23	well logging	The recording of information about subsurface geologic
24		conditions as well as data concerning drilling fluids,
25		cuttings, drill stem conditions, drill cores, radioactivity,
26		and other factors.
27		
28	wennead	The equipment installed at the surface of the wellbore.
29 20	2000	A rock stratum that is different from another rock
3U 21	20116	stratum Often the drilling zone or production zone
37		stratum. Often the drining zone of production zone.
72	٤.	

	Title 40 CFR Part 191 Compliance Certification Application
	ATTACHMENTS
Attachment 1	Typical Oil or Gas Drilling Sequence in the Delaware Basin
Attachment 2	U.S. Bureau of Land Management Forms
Attachment 3	U.S. Bureau of Land Management Instruction Memorandum No. NM-95-022 on Temporarily Abandoned Wells (September 30, 1996)
Attachment 4	Memorandum of Understanding Between the U.S. Department of Energy and the U.S. Department of the Interior Bureau of Land Management and Waste Isolation Pilot Plant Statement of Work for the U.S. Department of the Interior Bureau of Land Management
Attachment 5	State of New Mexico Energy, Minerals, and Natural Resources Department Oil Conservation Division Forms
Attachment 6	State of New Mexico Energy, Minerals, and Natural Resources Department Oil Conservation Division Rules on Abandonment and Plugging of Wells
Attachment 7	Inadvertent Intrusion Borehole Permeability
	 Appendix A Regulatory Basis for Consequence Analysis of Boreholes Appendix B Corrosion of Steel Appendix C Degradation of Concrete Appendix D Creep Closure of Boreholes

,

.

1 2

THIS PAGE INTENTIONALLY LEFT BLANK

