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APPENDIX C
MATHEMATICAL SIMULATION OF UNDERGROUND IN SITU BEHAVIOR

C.1 INTRODUCTION

The methodoiogy described in the foliowing sections presents anaiytical
techniques for simulating underground behavior in salt formations.
Consideration is given to time-dependent non-linear material behavior
and incorporation of 1in situ measurements to predict structural
responses. The theoretical background and procedures presented by this
methodology are explained.

C.2 MATERIAL BEHAVIOR OF HOST ROCKS

The most significant physical property of halite is that it creepé.
Its creep behavior is dependent upon the variations of stress and
temperature with respect to time. The creep phenomenon is also
affected by the physical properties of the geologic strata adjacent to
the halite and by discontinuities in the geologic layers. Therefore,
non-halitic interbeds and clay seams should also be considered when
modeling and simulating the structural behavior of sait formations.
The following subsections summarize the material behavior of various
host rocks (ref. C-1).

C.2.7 Halitic Materials

The constitutive equation for halitic materials can be expressed as:

v . l+v . .C ' _
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where: éij are the components of the strain tensor;
» is Poisson's ratio; (" ’
.
E is Young's modulus; N

sij s the Kronecker deita;

&1j are the components of the stress tensor; and
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the creep strain rate, < , is given by:
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where: a;j are the components of the deviatoric stress tensor.

The magnitude of the creep strain rate can be expressed in terms of the
effective creep strain rate, ¢, or the effective stress, <. Thus,

c .

Iéijl = /1.5 ¢ : (C.2-3)

where the effective strain rate ¢ is defined as:

. ) 1/2
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which is the sum of the primary and secondary creep strain rates, namely

€ = ép * & (C.2-5)

where the primary creep strain rate is defined as:
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where és can be defined by an exponential law

i =Dao " e O/RO (C.2-7)
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and o= (35 ai: o) is the effective stress; N\
1] 1] 3&1 Y
e*, A and B are primary creep constants; ii\/J
N -

D and n are secondary creep constants;

@ is temperature in Kelvin;

Q is the effective activation energy in cal/mole; and
R is the universal gas constant, 1.987 cal/mole-K.

C-2




C.2.2 Non-halitic Materials

In the underground facility horizon at the WIPP site, certain portions
of the rock are non-halitic. The stress-strain relationship for
non-halitic materials is assumed to follow the Prandti-Reuss
constitutive equation:

P (C.2-8)
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The plastic behavior is defined by the two-dimensional Mohr-Coulomb
criterion:

6, - O, = ZeocosB - (03 + 01)51HB (C.2-9)

3 1

and the Drucker-Prager criterion, which is the generalized form of the
Mohr-Coulomb criterion:

— .
13,7 = ¢ - al, (C.2-10)

where; 4 and S are the two principal stresses, which are positive in
tension;

90, B, ¢ and a are the plastic constants;

/357 is the second deviatoric stress invariant; and

J1 is the first stress invariant.

The numerical modeling does not include failure criterion for the
non-halitic materials. Anhydrite is assumed to be 1inearly elastic.
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€.2.3 Clay Seams

Thin seams of clay are present between some of the rock layers. These
clay seams can allow relative silippage and separation of the layers
across the clay seams. The slippage of the clay seams follows a dry
friction law:

O = ¥ ldlll (C.2-11)
where: u is the frictional coefficient; direction 1 of the stress is
normal to the plan of the seam; and direction 2 of the stress
js in the direction of motion or incipient motion.




C.3 FORMULATION OF GOVERNING EQUATIONS

The underground behavior of salt can be determined by solving the
following governing equations:

(1) Equation of equilibrium:
.+ X.=0 (C.3-1)

where: dij is the stress tensor; and

X, 1is the body force vector.

{2} Strain-rate velocity relation:

where: c.. is the strain rate tensor;
~u; is the velocity vector; and

(") represents the derivative of ( ) with respect to
time t.

(3) Stress strain relations:
halitic materials

I+v . .C
t T St ey (C.3-3)
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where: éc is defined in subsection C.Z2.1.

non-halitic materials
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(4) Boundary conditions:

ﬁ, = ﬁ. over Su {C.3-5)

o..n,. =T, over SG (C.3-6)

where: Su is the surface on which 0i is specified as
Ui and SG is the surface on which the traction
vector dijnj is specified as Ti where nj is
the component of the outward-pointing unit normal
vector,
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C.4 NORMALIZATION OF GOVERNING EQUATIONS

In order to determine the creep properties of halite, the gqoverning
equations in Section C.3 need to be solved before knowing the values of
the creep constants. This can be achieved by normalizing the governing
equations to the creep function and solving the normalized equations.
The creep constants can then be determined by correlating the
analtytical results with in situ data.

Consider the creep behavior of halitic material follows a power law:
e=Fago (€C.4-1}

where: F is a creep function.

The governing equations in Section (.2 can be normalized to F by
transforming to a normalized time domain in terms of time t* such that:

dt* = F dt _ : (C.4-2)

By substituting equation (C.4-2) into equations (C.3-1) through
(C.3-6), a system of normalized equations can be formed:

(1) Equation of equiiibrium;

.+ X.=0 (C.4-3)
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(2) Strain-rate velocity relation:

ax (C.4-4)

Ze*. = Uu* . +
1) 1,3 J,1

where: ( *) represents the derivative of ( ) with respect to
the normalized time t*.

(3} Stress strain relations:
halitic materials

. v . I+v . .,C

E?j = - E Ek a.ij E d?j + S?-;j (C.4_5)
. -N .

where: X = ¢ (C.4-6)

non-halitic materials

. . +v . ..P
=-- * .4 - * * ¥ -
sﬁj E %k 613 * T a:J + c:J (C.4-T)
(4) Boundary conditions:
ur = Ur | over S (C.4-8)
i i u

where: U: is computed as ﬁ? = Ui/F

o. . n.= T. over Sd (C.4-9)

The above normalized governing equations are similar to the governing
equations before normalization, except that the time derivatives in the
normalized equations are taken with respect to normaiized time t*, and
the creep function F has been eliminated. Since the normalized
governing equations have the same form as the governing equations
before normalization, a conventional method such as the finite element
technique can be used to solve the normalized gqoverning equations for
the analytical results in terms of normalized time t*, without knowing
the creep function F.
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After obtaining the normalized anaiytical result, the creep function F
can be determined for establishing the relationship between the real
and the normalized time domains. From Equations (C.2-5) through
(C.2-1), the function F can be expressed as:

F = {f(ep,és) +11c (C.4-10)
_Q/Re; A is defined in equation (L.2-6); 0, §, R and ©
are defined in equation (C.2-7); and f(cp,es) represents

the portion inside the parentheses of equation (C.2-6), which
is expressed as:

where: C =De

-y oa . -
f(sp,es) =A-8B ep | for e _>_ £
and (C.4-11)
fle i) =A-B%% for & < &
“p’ts & %p s
From egquation (C.4-11), it can be found that at time t = 0, ep = 0,
which provides an initial condition: '
f(ep,és) = A for t = 0 (C.4-12)

When the time t approaches the steady state stage ts, primary creep
is no longer active. Therefore:

f(sp,és) >0 for t >t (C.4-13)
since the primary creep‘decreases exponentially with time (ref. C-1}.

Based on the auxiliary conditions (C.4-12) and (C.4-13), the function f
can be expressed as an exponential function:

(C.4-14)
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By substituting equation (C.4-14) into equation (C.4-1), function F can
be written as:

Fepae?tvige (C.4-15)

where: the constants C, A and z can be determined from in situ data.
The relationship between the real time domain and the normalized time

domain can then be obtained by integrating equation (C.4-2):

t* F dt (C.4-16)

L}

Substituting equation .(C.4-15) into equation (C.4-16)} and using the
initial condition t* = 0, when t = 0, equation (C.4-16) becomes:

t* = C [t +A/z (1 - e 25y (C.4-17)

After determining the creep constants, the analytical results can then
be mapped from the normalized time domain to the real time domain using
equation (C.4-17).
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C.5 DETERMINATION OF CREEP CONSTANTS

The computaticnal method can aiso be considered as a two-phased process
which allows structural responses to be determined for any time in
question. The first phase is a transformation from the real to the
normalized time domain by use of parametric eguations containing creep
constants. The second phase is relating a structural response to that
the normalized time by performing a structural analysis. The
fundamental relationship can be represented graphicaliy as shown on
Figure C-1. The upper curve indicates the expression relating the two
time domains which depends on the creep constants C, A and z. The
double vertical axes represent the relationship between the normalized
time t* and respoense as indicated by the results of the structural
analysis.

The terms A and z represent primary creep constants that can be viewed
in a number of ways. By themselves, 'A' relates the ratio of initial
to steady-state creep rates and 'z' corresponds to the primary creep
decay constant. A simplified relationship can be used utilizing only
the ratio of A to z when the term inside the parentheses in equation
(C.4-15) approaches unity in the steady-state period. As Fiqure (-2
indicates, the value of A/z (also identified as to) represents a real
time offset such that the following equation can be used:

t* =C (t + A/Z) (€.5-1)
A S5alt Creep Constant Evaluation computer program (SCCE, Bechtel

computer program CE 465) was developed for the purpose of evaluating
the creep constants from in situ data.
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The 1ink between real time and response is completed by relating the
normalized time to the response determined from the structural
analysis. In brief, if the creep constants are known, the normalized
time associated with any real time can be determined from equation
(C.4-17) and the response corresponding to this time is found from the
analysis results. Conversely, if in situ data which relates real time
to response 1is available, this two-phased process can be worked
backwards to evaluate the creep constants.

Because the response 1in both the 1in situ measurements and the
structural analysis must be consistent, the displacements caused by
creep are related.

In the analysis, the total response is an accumulation of elastic and

creep responses,
*} = *x) 4 * C.5-2
Rt(t ) Rc(t ) Re(t ) ( )
where: Rt'is the total response;
Rc 1s the creep response; and

Re is the elastic response.

In as much as the total response at time t* = 0 consists of elastic
response only, and the elastic response Re(t*) is  always
approximately equal to Rt(O), the following equation can be used in
lieu of equation (C.5-2):

Rc(t*) = Rt(t*) - Rt(O) (C.5-3)

C-14




The in situ readings represent the response relative to the time when
the instrument was installed. In order for aﬁ actual creep response to
be determined, the creep response which takes place between tﬁe time
the excavation was made and the time when the instrument was insta]]ed
must be found. Theoretically, if an instrument had been installed very
shortly after excavation, this difference between measured and actual
creep responses would be negligible. 1In reality, the excavation of all
material contributing te¢ the support of a specific location in an
opening cannot be completed within a few days. As a result, the
measured response from an instrument installed immediately after
excavation woulid be a combination of dinitial creep and elastic
responses. The term "instrument offset" is introduced to identify the
difference between the actual creep response and the measured response
starting at time t] when nearby excavations no 1longer finiroduce
initial creep and elastic responses. This relationship is shown below:

R (1) = Ry(t) + R (L) (C.5-4)

where: RI is the actual in situ response;

RH is the measured response; and

Rl(t1) is the instrument offset.

Determination of the constant C, which represents the steady state
creep rate, requires that the in situ readings are well into the steady
state range. If this is the case, the relationship

dt* = F dt (C.5-5)

can be used to determine the value of C since € equals F at very large
values of t. The expression for € is:

C = (t*n - t*m) / (1:n - ‘tm) / N\ (C.5-6)




If tm and tn represent the times at which instrument readings are
taken and RI(tm) and RI(tn) are the actual creep responses at
these times, then the values of t*m, and t*n can be found by
relating these actual in situ creep responses with the analytical creep

responses.

Assuming for the moment that the true value of instrument offset is
known, equation (C.4-15) <can be written for two time-response
situations to produce two simultaneous equations which contain only the
two remaining creep constants, A and z. By cancelling out the A term,
the éo]ution of the following equation_provides the value of z.

e"ztn t*n/C - tn

— - - =0 (C.5-7)
zt, tk /-t

1 -

1 -e
Once the value of z is found to satisfy the expression, A can be found
from the foilowing equation:

A=z (t*/C-t) /(1 - e %ty (C.5-8)

Graphically this method determines constants which force the analytical
curve to match the in situ data at the two time-response situations
used in calculating the constants. Each different set of data points
yields different values of A and z. Figure C-3 compares analytical and
in situ responses for a few different sets of data points. Whereas
creep behavior is history dependent, matching the last available data
point is advantageous in predicting futuré responses. The
determination of best values of A and z is done by minimizing the area
between in situ and analytic response histories. The least area yields
the best values. The SCCE program can be set up to search for this
optimal conditijon.
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The point which must be kept in perspective is that the determination
of the constants A and z are dependent on both the instrument offset
and the steady-state creep constant C. The effects of uncertainty in C
can be minimized by assuring that no extraneous data are used in the
solution of equation (C.5-6). The appropriate value of the dinstrument
offset can only be found from minimizing the response deviation as was
described in the previous paragraph. Figure C-4 shows how analytical
and in situ responses compare for a few different values of the
instrument offset. The curves in Figures €-3 and (-4 were generated
throqgh use of the SCCE program.

The SCCE computer program provides an effective means of determining

salt creep properties by being able to process the large volume of in
situ data and analytical results for design validation.

€.6 PREDICTION OF STRUCTURAL BEHAVIOR

After the creep constanté C, A and z are determined, the structural
response history can then be mapped from the normalized time domain
into the real time domain using equation (C.4-15). Utilizing the in
situ creep constants, additional mathematical models can also be used
to predict the future structural responses for various facilities.

C.7 CONCLUSIONS

By normalizing the time in the governing equations to the creep
function, the structural responses can be computed as functions of
normalized time. This computation is performed without knowing the
creep constants. After correlating the response history obtained from
the anaiysis to the corresponding one measured from the site, the creep
constants can be determined. Consequently, the relationship between
the normalized and real time can be established, and the analytical
responses can be mapped from the normalized time domain to the real
time domain. Predicted results can therefore be provided for
validating the adequacy of the underground behavior in the salt

D

formation.
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