Acknowledgements

F. Geyer, P. Kaden (KIT-INE) are acknowledged. The contributions to this work by M. Böttle, X. Gaona, and K. Hinz1, M. Altmaier1, Th. Rabung1, M. Richmann2, M. Borkowski2, D. Reed2, H. Geckeis1

Solubility and Speciation of Cm(III) and Nd(III)
in borate rich NaCl and CaCl2 solutions

K. Hinz1, M. Altmaier1, Th. Rabung1, M. Richmann2, M. Borkowski2, D. Reed2, H. Geckeis1

1 Karlsruhe Institute of Technology, Institute für Nukleare Entsorgung, P. O. Box 3640, 76021 Karlsruhe, Germany
2 Los Alamos National Laboratory, Earth & Environmental Sciences Division, Carlsbad Operations, Carlsbad (USA)

*Corresponding author: katja.hinz@kit.edu, marcus.altmaier@kit.edu

Introduction

• Nuclear waste disposal in deep underground facilities requires detailed understanding of aqueous actinide (geo)chemistry in order to assess the long-term performance of a repository. Considering waste disposal in rock salt formations, dedicated studies at high ionic strength conditions are mandatory.
• Batch solubility studies allow robust predictions on radionuclide solubility limits as function of key geochemical parameters (pH, Eh, I) and potentially complexing ligands like borate. Nd(III) is used as a well-established analog for trivalent actinides.
• Detailed analysis of actinide speciation using advanced spectroscopic tools like TRLFS (Time Resolved Laser Fluorescence Spectroscopy) is advised as basis for correct and trustworthy chemical and thermodynamic models.
• Actinide–borate complexation has recently become a focus of research attention following the pioneering study of Borkowski et al. [10BOR/RIC]. Boron can be present a salt-based repository as a component of salt formations, dedicated studies at high ionic strength conditions are mandatory.
• Part of the studies on Cm(III)-TRLFS in NaCl performed in cooperation with LANL-CO.
• Focus of the present study is to:
 1. Derive experimental solubility data for Nd(OH)3(am) in dilute to concentrated NaCl at 7 < pHc < 13 and total boron concentrations from 4 mM < [B]tot < 40 mM.
 2. Derive experimental solubility data for Nd(OH)3(am) in dilute to concentrated CaCl2 at 8 < pHc < 12 and total boron concentrations from 4 mM < [B]tot < 40 mM.
 3. Perform systematic Cm(III)-TRLFS studies in the NaCl- and CaCl2 - borate system.
 4. Get information about the speciation of boron in solution by 11B-NMR studies in NaCl and CaCl2 solutions.

Experimental

Solubility experiments with Nd(III)
• Experiments conducted in Ar-glovebox
 - ca. 10 mg Nd(OH)3(am) per experiment (characterized by XRD)
 - [B4O7]3− = 1 mM and 10 mM
 - [Nd] = 1·10−7 M per sample
 - Background electrolytes: NaCl 0.1 M to 5.0 M
 - Equilibration time: 7d - 140 d
 - Phase separation: 10 kD (2-3 nm) ultrafiltration
 - Reference system without borate [GNSEC/ALT]

TRLFS experiments with Cm(III)
• Samples prepared in Ar-glovebox
 - [Cm] = 1·10−7 M per sample
 - [B4O7]3− = 1 mM and 10 mM, 4·10−3 M and 4·10−2 M
 - Background electrolytes: NaCl 0.1 M to 5.0 M
 - Equilibration time: spectra taken at 1 1 d
 - TRLFS data collection: single emission spectra
 - Reference system for TRLFS without borate [08RAB/ALT]

11B-NMR experiments
• Background electrolytes: NaCl 0.1 M to 5.0 M
 - [B]tot = 40 mM
 - Equilibration time: > 1 month

References

Conclusions

• The speciation of boron in aqueous systems is highly complicated and potentially affected by pH, ionic strength and total boron concentration — mandatory information required for comprehensive thermodynamic description of An-borate complexation.
• 11B-NMR studies only give limited information on the boron speciation in solution.
• Nd(OH)3(am) solubility studies in NaCl or CaCl2 solution at the investigated pHc and boron concentrations do not indicate a pronounced solubility enhancement due to strong boron complexation.
• TRLFS-studies in NaCl or CaCl2 solutions with trace amounts of Cm(III) indicate weak borate complexation at pHc = 8-9 and no borate complexation at high pHc (>10).
• Borate complexation seems to compete with hydrolysis of pHc > 8-9 and is out-competed at higher pH conditions. Evaluation of TRLFS data affected by uncertainties regarding Cm-hydrolysis scheme.
• Following the evaluation of the Nd(III) solubility data and TRLFS in NaCl and CaCl2 solution we conclude that the contribution from An(III)-borate complexation to a solubility based An(III) source term at the investigated borate concentrations is limited.
• Studies are currently being extended to (i) even higher borate concentrations (100 mM) in NaCl solution, (ii) investigations of An(III)-borate interactions in MgCl2 solutions and (iii) similar studies on Th(IV) solubility in borate systems. Studies aim at a comprehensive assessment of borate complexation for tri- and tetravalent Actinides in dilute to concentrated NaCl, MgCl2, and CaCl2 solutions.