
Title 40 CFR Part 191 Compliance Certification Application for the Waste Isolation Pilot Plant

Appendix MON

United States Department of Energy Waste Isolation Pilot Plant

Carlsbad Area Office Carlsbad, New Mexico **Preclosure and Postclosure** (Long-Term) Monitoring Plan

	1			CONTENTS	
	2 3	ACRON	YMS		MON-vii
	4 5 6	APPENI	DIX MON .		. MON-1
	7 8	MON.1	Purpose .		. MON-1
	9 10	MON.2	Scope		. MON-1
	11 12 13 14 15 16 17	MON.3	MON.3.1 MON.3.2 MON.3.3 MON.3.4	Background40 CFR § 191.14 EPA Regulation40 CFR § 194.42 EPA Regulation40 CFR § 194.42 EPA Regulation40 CFR Part 264 Groundwater Monitoring Regulations40 CFR § 268.6Agreement for Consultation and Cooperation	. MON-2 . MON-3 . MON-4 . MON-5
	18 19 20 21	MON.4		MonitoringGeomechanical ParametersMON.4.1.2Geomechanical MonitoringMON.4.1.3Monitoring Experience	. MON-7 MON-10
	22 23 24			Hydrological ParametersMON.4.2.1Groundwater Monitoring DescriptionMON.4.2.2Groundwater Analysis	MON-15 MON-16 MON-22
	25 26 27 28		MON.4.3	Gaseous Parameters MON.4.3.1 Background Volatile Organic Compound Monitoring	
	29 30 31		MON.4.4	Monitoring	
	32 33 34 35 36	MON.5	MON.5.1 MON.5.2 MON.5.3	e (Long-Term) Monitoring Postclosure Monitoring Requirements Postclosure Monitoring System Specifications System Description Monitoring Schedules	MON-30 MON-30 MON-31
	37 38 39 40 41	MON.6		Postclosure Monitoring Technologies Subsidence	MON-34 MON-34
-	42 43 44		ન પ્ર દા પ્ર આ ગે બ	MON.6.1.3 Past Subsidence Work	MON-39 MON-40

DOE/CAO 1996-2184

.__

October 1996

		Title 40 CFR Part 191 Compliance Certification Application
1		MON.6.1.6 Future Work on Subsidence Monitoring MON-41
2		MON.6.1.7 Define Use of Subsidence Surveys for
3		Postclosure Monitoring MON-41
4	MON.6.2	Seismic Reflection and Refraction Surveys
5		MON.6.2.1 Advantages of Seismic Reflection and Refraction
6		Surveys MON-42
7		MON.6.2.2 Disadvantages of Seismic Reflection and
8	ي ويدمر	Refraction Surveys MON-42
9	* · · · · ·	MON.6.2.3 Past Seismic Reflection and Refraction Survey
10		Work MON-45
11		MON.6.2.4 Current Seismic Reflection and Refraction
12	Si Ci	Work MON-46
13	* مر ۱ <u>۳</u> ایک کم ^ی	MON.6.2.5 Define Uses for Seismic Reflection and
14		Refraction Surveys in Postclosure Monitoring MON-46
15	MON.6.3	Gravitational Surveys MON-47
16		MON.6.3.1 Advantages of Gravitational Surveys MON-47
17		MON.6.3.2 Disadvantages of Gravitational Surveys MON-47
18		MON.6.3.3 Past Gravitational Survey Work MON-47
19		MON.6.3.4 Current Gravitational Survey Work
20		MON.6.3.5 Define Uses of Gravitational Surveys for
21		Postclosure Monitoring MON-48
22	MON.6.4	Electromagnetic Conductivity Surveys MON-48
23		MON.6.4.1 Advantages of Electromagnetic Conductivity
24		Surveys MON-49
25		MON.6.4.2 Disadvantages of Electromagnetic Conductivity
26		Surveys
27		MON.6.4.3 Past Electromagnetic Conductivity Survey Work . MON-49
28		MON.6.4.4 Current Electromagnetic Conductivity Survey
29		Work MON-50 MON.6.4.5 Define Uses of Electromagnetic Conductivity
30		
31	MON 6.5	Surveys for Postclosure Monitoring MON-50 Resistivity Surveys
32 33	MON.0.5	MON.6.5.1 Advantages of Resistivity Surveys
33 34		MON.6.5.2 Disadvantages of Resistivity Surveys
34 35		MON.6.5.3 Past Resistivity Survey Work
35 36		MON.6.5.4 Current Resistivity Survey Work
30 37		MON.6.5.5 Define Uses of Resistivity Surveys for
38		Postclosure Monitoring
38 39	ΜΟΝΑΑ	Environmental Monitoring
39 40		Direct Repository Monitoring
40 41	IVIOIN.U./	MON.6.7.1 Sensor Calibration
41 42		MON.6.7.2 Sensor Longevity
42		WOW.0.7.2 School Longevity WOW-36

.

DOE/CAO 1996-2184

	Title 40 CFR Part 191 Compliance Certification Application
1	CONTENTS (Continued)
2	
3	MON.6.7.3 Data Collection and Transmission Power
4	Requirements MON-58
5	MON.6.7.4 Antenna Location and Size MON-60
6	MON.6.8 Conclusion MON-60
7	
8	MON.7 Postclosure Monitoring Program Summary MON-60
9	
10	MON.8 QA and Quality Control Requirements
11	
12	REFERENCES MON-63
13	
14	ATTACHMENT MON-66
15	

DOE/CAO 1996-2184

MON-iii

1		FIGURES
2		
3	MON-1.	Layout and Instrumentation of Geomechanical Monitoring System -
4		as of 1/96 MON-11
5	MON-2.	Location of the New Water Quality Sampling Wells MON-17
6	MON-3.	Groundwater Level Surveillance Wells MON-19
7	MON-4.	Preclosure Monitoring Program Conceptual Schedule MON-35
8	MON-5.	Postmonitoring Schedule
9	MON-6.	Seismic Reflection and Refraction Concept MON-43
10	MON-7.	Electromagnetic Survey Technique
11	MON-8.	Resistivity Survey Concept MON-55
12		
13		

October 1996

MON-iv

DOE/CAO 1996-2184

---.

		Title 40 CFR Part 191 Compliance Certification Application
1		TABLES
2		
3	MON-1.	Preclosure Monitorable Parameters MON-7
4	MON-2.	Instrumentation Used in Support of the Geomechanical Monitoring
5		System MON-13
6	MON-3.	Typical Sampling Schedule MON-16
7	MON-4.	Typical Environmental Surveillance Analyses
8		Postclosure Monitoring Parameters
9		
10		

DOE/CAO 1996-2184

MON-v

October 1996

THIS PAGE INTENTIONALLY LEFT BLANK

1

DOE/CAO 1996-2184

		Title 40 CFR Part 191 Compliance Certification Application
1		ACRONYMS
2		
3	BEAR	Backfill Engineering Analysis Report
4	C&C	Consultation and Cooperation
5	CFR	Code of Federal Regulations
6	DOE	U.S. Department of Energy
7	DOI	U.S. Department of the Interior
8	EPA	U.S. Environmental Protection Agency
9	FEIS	Final Environmental Impact Statement
10	FSAR	Final Safety Analysis Report
11	NGS	National Geodetic Survey
12	NMED	New Mexico Environment Department
13	NQA	nuclear quality assurance
14	QA	quality assurance
15	RCRA	Resource Conservation and Recovery Act
16	SNL	Sandia National Laboratories
17	SPDV	Site and Preliminary Design Validation
18	TRU	transuranic
19	VOC	volatile organic compounds
20	WEC	Westinghouse Electric Corporation
21	WIPP	Waste Isolation Pilot Plant
22	WQSP	Water Quality Sampling Program
23		

MON-vii

THIS PAGE INTENTIONALLY LEFT BLANK

October 1996

1

MON-viii

DOE/CAO 1996-2184

This report details the techniques and design descriptions of components and systems which will be used in implementation of the preclosure and postclosure (long-term) monitoring plan for the Waste Isolation Pilot Plant (WIPP) repository. The regulatory criteria which drive preclosure and postclosure monitoring of the facility and the rationale for the engineered systems that will be used for monitoring are discussed. This report describes both the preclosure and postclosure monitoring plans.
MON.1 Purpose
The purpose of this report is to discuss the preclosure and postclosure (long-term) monitoring programs that will be used to measure the WIPP-related significant and monitorable parameters that have been screened by summarizing the regulatory requirements (Title 40 of the Code of Federal Regulations [CFR] § 191.14(b) and the criteria at 40 CFR § 194.42). The five screening criteria that were applied to the parameters individually are
Addresses significant disposal system parameters,
Addresses an important disposal system concern,
Obtains meaningful data in a short time period,
Does not violate disposal system integrity, and
• Complements Resource Conservation and Recovery Act (RCRA) programs.
The report also identifies the use of subsidence monitoring as the focus for postclosure monitoring in addition to the screened parameters that will form the basis for preclosure monitoring. In describing the postclosure monitoring program, the report also provides an analysis of geophysical techniques that may have possible applicability to remote monitoring of repository performance subsequent to closure.
MON.2 Scope
The U.S. Department of Energy (DOE) has developed a number of separate monitoring programs to address various environmental, health, safety, and other applicable regulatory requirements. Within these programs, monitoring and measurement activities include the determination of values that are directly and indirectly related to parameters that have survived a screening process which includes the criteria described above. These ongoing programs include a geomechanical monitoring program, a groundwater monitoring program, an environmental monitoring program, a volatile organic compound (VOC) monitoring

APPENDIX MON

DOE/CAO 1996-2184

October 1996

program, and a subsidence monitoring program. This appendix identifies discrete programs that address monitoring for each of the parameters which survived the screening process, as well as subsidence monitoring.

5 This appendix describes in detail a postclosure monitoring program built around subsidence 6 monitoring for evaluating long-term repository performance. The postclosure monitoring 7 description includes defining the requirements and developing specifications for the 8 postclosure monitoring system. This will also include the development of testing, quality 9 assurance (QA), and quality control guidelines for the postclosure monitoring program.

9 10

1

2

3 4

11 Within the subsidence monitoring program description, a discussion of other geophysical

techniques addresses technologies that may be used to enhance the technical interpretations resulting from subsidence data in the event that some data are not within the expected range.

resulting from subsidence data in the event that some data are not within the expected range
 The known limitations of these technologies in remotely monitoring the repository

15 performance are also described.

16 17

18

35

36 37

38

39 40 41

42

43

44 45

MON.3 Regulatory Background

The WIPP is regulated by the U.S. Environmental Protection Agency (EPA) and the state of 19 20 New Mexico Environment Department (NMED). In addition, the DOE has entered into an agreement with the state of New Mexico for consultation and cooperation regarding the 21 WIPP. Prior to initiating disposal operations, a hazardous waste permit will be granted by the 22 NMED as required by the RCRA regulations. Also, the EPA is authorized to certify that the 23 WIPP is in compliance with the provisions of 40 CFR Part 191. In February 1996, the EPA 24 promulgated Title 40 CFR Part 194, entitled Criteria for the Certification and Re-25 Certification of the Waste Isolation Pilot Plant's Compliance with the 40 CFR 191 Disposal 26 Regulations (EPA 1996a). 27

As a result of the 40 CFR Part 194 standards governing certification of the WIPP, plans for monitoring the repository during waste emplacement (preclosure) and for the postclosure (long-term) are required. Other requirements imposed on postclosure monitoring are associated with the Agreement of Consultation and Cooperation (C&C) between the state of New Mexico and the DOE (DOE 1981). This agreement details specific postclosure environmental monitoring requirements.

MON.3.1 40 CFR § 191.14 EPA Regulation

The regulations found in 40 CFR Part 191 outline the requirements for the WIPP repository. 40 CFR § 191.14(b) states:

Disposal systems shall be monitored after disposal to detect substantial and detrimental deviation from expected performance. This monitoring shall be done with techniques that do not jeopardize the isolation of the wastes and shall be conducted until there are no significant concerns to be addressed by further monitoring.

ACLIVE	:	I a surface set a diseased size should be maintained for as lo	· · · · · · · · · · · · · · · · · · ·
		onal controls over the disposal sites should be maintained for as lo able after disposal; however, performance assessments that assess	
	•	the accessible environment shall not consider any contributions f	
		bre than 100 years after disposal.	
The regulation	on defin	nes as an element of active institutional control, "monitor	oring parameters
-		ystem performance."	oring parameters
Iolucou to alo	pobar oj	ystem pertermance.	
	ig list su	Immarizes 40 CFR Part 191 regulations relating to pos	tclosure
monitoring.			
• The d	lisnosal	site shall be monitored after disposal to detect substan	itial and detrimental
	-	om expected performance.	tial and detrimental
devia		on expected performance.	
• The n	nonito r i	ing techniques used must not jeopardize waste isolation	n.
• Moni	toring v	will continue as long as practicable and/or until no sign	ificant concerns are
	address		
MON.3.2 40) CFR §	§ 194.42 EPA Regulation	Start Barrier
	0 8 104	42 describes the EDA's monitoring criteric that the ED	A will use in
		42 describes the EPA's monitoring criteria that the EP. r or not the requirements which must be addressed by t	
-		egulation) have been achieved. These specific criteria	
Doputitioner	in the re	guianon) have been achieved. These speeme enterna	
(a)		Department shall conduct an analysis of the effects of disposal syste	
		containment of waste in the disposal system and shall include the	
		nalysis in any compliance application. The results of the analysis eloping plans for preclosure and postclosure monitoring required	
		raphs (c) and (d) of this section. The disposal system parameters a	-
		le, at a minimum:	2
	(1)		1 . 1
	(1)	 Properties of backfilled material, including porosity, permeabil degree of compaction and reconsolidation; 	lity, and
		engine of companies and reconcernantship	
	(2)	Stresses and extent of deformation of the surrounding roof, wa	lls, and floor
		of the waste disposal room;	
	(2)		
	(3)	Initiation or displacement of major brittle deformation features surrounding rock;	in the root or
		surrounding rock,	
		Ground water flow and other effects of human intrusion in the	vicinity of the
	(4)	Cround water new and other entered of mannan maaster in the	
	(4)	disposal system;	
		disposal system;	
	(4) (5)		
		disposal system;	

_

Title 40 CFR Part 191 Compliance Certification Application

<u></u>			Title 40 CFR Part 191 Compliance Certification Application	
		(6)	Gas quantity and composition; and	
		~~~		
		(7)	Temperature distribution.	
		Eas all	I dispass a sustain parameters and surgraph to non-mark (a) of this section	
	(b)		l disposal system parameters analyzed pursuant to paragraph (a) of this section, ompliance application shall document and substantiate the decision not to	
			or a particular disposal system parameter because that parameter is considered	
			insignificant to the containment of waste in the disposal system or to the	
			cation of predictions about the future performance of the disposal system.	
	(c)	Preclo	osure monitoring. To the extent practicable, preclosure monitoring shall be	
			cted of significant disposal system parameter(s) as identified by the analysis	
			cted pursuant to paragraph (a) of this section. A disposal system parameter	
		shall t	be considered significant if it affects the system's ability to contain waste or the	
		ability	to verify predictions about the future performance of the disposal system. Such	
			oring shall begin as soon as practicable; however, in no case shall waste be	
		-	ced in the disposal system prior to the implementation of preclosure monitoring.	
			osure monitoring shall end at the time at which the shafts of the disposal system	
		are ba	ckfilled and sealed.	
		*		
	(d)		osure monitoring. The disposal system shall, to the extent practicable, be	
			ored as soon as practicable after the shafts of the disposal system are backfilled	
			caled to detect substantial and detrimental deviations from expected performance	
			all end when the Department can demonstrate to the satisfaction of the nistrator that there are no significant concerns to be addressed by further	
			oring. Postclosure monitoring shall be complementary to monitoring required	
			ant to applicable federal hazardous waste regulations at part 264, 265, 268, and	
			f this chapter and shall be conducted with techniques that do not jeopardize the	
			nment of waste in the disposal system.	
	(e)		ompliance application shall include detailed preclosure and postclosure	
			oring plans for monitoring the performance of the disposal system. At a	
		minim	num, such plans shall:	
		(1)	Identify the parameters that will be monitored and how baseline values will	<u>_</u> .
		(1)	be determined;	<b>, ,</b>
		(2)	Indicate how each parameter will be used to evaluate any deviations from	
		. ,	the expected performance of the disposal system; and	
		(3)	Discuss the length of time over which each parameter will be monitored to	
			detect deviations from expected performance.	
MON	.3.3 40	) CFR I	Part 264 Groundwater Monitoring Regulations	
Previe	ous geo	logical	exploration and testing have mapped the geologic strata above and be	low
	-	-	minor water bearing units are in the Rustler Formation approximately	
		-	i to 260 meters) below ground level. The water quality of these units i	
			A small number of exploratory boreholes and hydrocarbon exploration	
wells	in the v	/icinity	of the WIPP site have documented encounters of isolated pressurized	

DOE/CAO 1996-2184

brine reservoirs in the Castile Formation, which is approximately 2,825 to 4,075 feet (860 to 1,242 meters) below ground level at the WIPP. 2

3 4 Typically, the RCRA regulations require groundwater monitoring in the uppermost aquifer located directly below a hazardous waste management unit. The EPA allows this requirement 5 6 to be waived if it can be proven that the hazardous material will not migrate past specified boundaries in excess of health-based limits and that monitoring will not be productive in 7 determining compliance. In its RCRA permit application to the state of New Mexico, the 8 DOE has applied for this groundwater monitoring waiver. However, the NMED has indicated 9 that it is their policy to require the DOE to perform groundwater monitoring regardless of 10 whether or not the WIPP is eligible for a groundwater monitoring waiver. Because of this, the 11 DOE has prepared a postclosure groundwater monitoring plan for implementation after the 12 completion of final facility closure. 13

14 An EPA RCRA document, RCRA Ground-Water Monitoring Technical Enforcement 15 Guidance Document, (EPA 1986) provides guidance for developing RCRA permit 16 applications. This guidance document describes hydrological well monitoring at hazardou 17 waste management facilities. In Section 10.3 of the EPA document, two postclosure 18 monitoring items are discussed. The EPA states, "Postclosure care must provide for a period 19 of at least 30 years after completion of the authorized closure of the repository. If ground-20 water monitoring systems are utilized during the repository active life, they must also be 21 operated and maintained throughout the postclosure care period" (EPA 1986). As stated, 22 monitoring groundwater is not always required but when monitoring is required and 23 performed during the operational period, the wells must be monitored for 30 years after 24 closure. 25

26

32

35

37

38

39

1

The DOE has installed six groundwater monitoring wells in the Culebra. Three wells are 27 located upgradient of the WIPP to provide background information against which to compare 28 downgradient well data. The other three wells are located downgradient. One other well has 29 been installed to sample groundwater in the Dewey Lake. The RCRA specifications are used 30 as guidelines in installing the wells to the extent practicable. 31

33 There are no unique requirements applicable to the WIPP contained within 40 CFR Parts 265 or 270 that are outside the monitoring described in this postclosure monitoring program. 34

MON.3.4 40 CFR § 268.6 36

In 40 CFR § 268.6(a)(4), the EPA states, "A monitoring plan that detects migration at the earliest practicable time..." is required when a no-migration variance is requested.

40 The WIPP has petitioned for a no-migration variance which, as stated in this regulation, 41 requires a postclosure monitoring plan. The DOE intends to operate a single postclosure 42 monitoring plan which satisfies the requirements of both 40 CFR § 268.6 and 40 CFR 43 Part 191. 44

1	MON.3.5 Agreement for Consultation and Cooperation
2	
3	The Agreement for Consultation and Cooperation is an agreement between the state of New
4	Mexico and the DOE (DOE 1981). This agreement defines specific legal areas of
5 6	responsibility for the two parties. In the agreement, two specific areas relating to postclosure monitoring are addressed. They are
	monitoring are addressed. They are
7 8	The level of environmental radiological surveillance developed during the operational phase
9	shall be continued during and for at least two years following complete decommissioning and
10	decontamination of the surface facilities. This is to include both the State and the Department
11	of Energy's programs. In addition, increased surface soil and vegetation samples will be
12	collected and analyzed to ensure decontamination standards in effect at the time are met. (DOE
13	1981)
14	
15	The final environmental radiological surveillance phase will primarily serve to ensure the
16	public that the re-suspension of contaminated ground surface particles, if any, is not creating a
17	potential long-term inhalation problem. The minimum program projected at this time and to be
18	continued for a period of not less than five (5) years following the termination of the
19	decommissioning and decontamination phase is:
20	
21 22	<ul> <li>(A) Intermittent operation of the state-operated high volume air sampling stations.</li> <li>(B) Four annual soil surface samples.</li> </ul>
22	<ul> <li>(B) Four annual soil surface samples.</li> <li>(C) Four annual water samples.</li> </ul>
24	(D) Thermoluminescent dosimeters. (DOE 1981)
25	<ul> <li>(A) Intermittent operation of the state-operated high volume an sampling stations.</li> <li>(B) Four annual soil surface samples.</li> <li>(C) Four annual water samples.</li> <li>(D) Thermoluminescent dosimeters. (DOE 1981)</li> </ul>
26	The radiological part of the environmental monitoring plan (Appendix EMP) for the WIPP
27	facility fulfills the first requirement (DOE 1994a, Section 5.3, Radiological Environmental
28	Monitoring). The total number of samples taken can be increased as necessary. The
29	appropriate section of the environmental monitoring plan can also be used for items (A), (B),
30	and (C). A determination was made by the DOE to discontinue the environmental
31	thermoluminescent dosimeters efforts at and around the WIPP. The Environmental
32	Evaluation Group concurred with the DOE determination. The DOE and Environmental
33	Evaluation Group determined that environmental thermoluminescent dosimeters would not
34	detect releases at the site because they are designed primarily to detect penetrating radiation.
35	The waste to be emplaced at the WIPP contains predominantly alpha emitters
36	(nonpenetrating). Therefore, no environmental thermoluminescent dosimeters monitoring
37	will be performed by DOE after closure (DOE 1994a, WD 1990).
38	
39	MON.4 Preclosure Monitoring
40	

Attachment MONPAR to this appendix documents the results of the analysis conducted to determine the effects of disposal system parameters on the containment of waste in the disposal system as required by 40 CFR § 194.42(a). The analysis also documents decisions not to monitor particular parameters. This information is required by 40 CFR § 194.42(b).

Information from the monitored parameters may be used to verify the reliability of models
 used in the performance assessment analysis. Where applicable, modifications to the models

Parameters	Comments
SALA	ADO PHYSICAL PARAMETERS
Creep closure	Direct measurement in open areas of repository
Extent of deformation	Direct measurement in open areas of repository
Initiation of brittle deformation	Analysis of monitored data
Displacement of deformation features	Direct observation and measurement in open areas of the repository
NON-SALA	ADO HYDROLOGICAL PROPERTIES
Culebra brine composition	Analysis of brine samples collected from water quality samp program (WQSP) wells
Culebra well water level	Direct measurements from WIPP wells
Culebra groundwater flow direction	Analysis of well water levels
Castile brine reservoir location	Observed based upon drilling activity in the Delaware Basin
Drilling practices	Observed based upon drilling activity in the Delaware Basin
WAS	STE RELATED PARAMETERS
Waste activity	Waste characterization information
	SUBSIDENCE
Subsidence	Direct measurements at benchmark locations

will be made to update the performance assessment during the five-year recertification periods. Table MON-1 describes all the preclosure parameters to be monitored.

#### MON.4.1 Geomechanical Parameters

The ground-control program at the WIPP facility involves a conservative approach to ensure that the underground repository is safe from any unplanned roof or rib falls. From the moment an excavation is mined and throughout the life of the opening, care is taken to remove or restrain any loose, unsafe pieces of ground. As the openings age, areas of the roof, ribs, and floor may become unstable. To prevent this from occurring, a comprehensive ground control monitoring and support system has been implemented.

The continuation of the ground-control program and use of the associated instrumentation during the preclosure phase of WIPP operations will provide information about the physical

October 1996

1 2 3	response of the Salado to the excavations. Specifically, the following parameters will be monitored
3 4	• creep closure,
5 6	• extent of deformation,
7 8	• initiation of brittle deformation, and
9	• Initiation of office deformation, and
10 11	• displacement of deformation features.
12	These parameters are only available for monitoring during the preclosure period.
13 14	MON.4.1.1 Ground Control Description
15 16 17 18 19 20	There are two major categories for the ground-control support systems, the rock-bolt systems and the supplementary systems. The rock-bolt systems comprise both mechanically anchored bolts and resin-anchored threaded bars. The supplementary systems include cable with mesh, truss, and/or other components.
20 21 22 23	The fundamentals on which the ground-control program at the WIPP facility are based are as follows:
23 24 25	• ground stability is maintained as long as access is possible,
26 27	• ground-control maintenance efforts will necessarily increase with the age of the openings,
28 29 30	• ground-control plans are specific, yet flexible, and
31 32	regular ground-control maintenance is necessary.
33 34 35	The approach used in the ground-control program at the WIPP facility uses experience gained from observation and analysis of salt behavior in the underground repository. This experience allows various projections to be made regarding future ground-support requirements.
36 37 38	One of the key elements incorporated into this approach is that salt moves, or creeps. Because of its plastic nature, salt tends to flow into any available opening. Ground-support systems
39 40 41	cannot resist salt creep, so to provide long-term support, the ground-control system must be able to accommodate the continuous creep of salt and restrain broken or fractured rock in the roof areas.
42 43 44	As more information becomes available regarding the long-term behavior of the WIPP underground excavations, the ground-control maintenance plan will be revised accordingly.

1	The long-term plans are, therefore, designed to be flexible enough to accommodate any
2	necessary future changes. The ground-control plan is, and will continue to be regularly
3	reviewed and revised as iterative, periodic evaluations are performed and the need is
4	identified.
5	
6	Prior to waste emplacement in any specific area (room), the plans (for Panels 2 through 8) are
7	to spot bolt with short, mechanically anchored bolts as needed. If spalls or loose ground are
8	encountered, mesh or an equivalent restraint will be used in conjunction with these bolts to
9	secure any loose ground encountered during normal inspection processes. These bolts will not
10	penetrate through to the next clay and anhydrite interface and will be anchored within the
11	beam formed by the mine roof and the clay and anhydrite interface above. This is the primary
12	or initial support that will be used in Panels 2 through 8.
13	
14	As deteriorating ground conditions require, pattern bolting will be used. However, based on
15	experience with the Site and Preliminary Design Validation (SPDV) rooms and the rooms in
16	Panel 1, pattern bolting will likely not be needed until two to five years after excavation. The
17	expert panel that was convened to study Panel 1 in 1991 (DOE 1991) concluded that the then-
18	current support technology of 10-foot- (3-meter-) long mechanical bolts used in Panel 1 was
19	adequate to ensure stability for 7 to 11 years from the time of excavation. These bolts were
20	installed beginning approximately two years after initial excavation on a pattern described as a
21	5-foot by 5-foot (1.5-meter by 1.5-meter) offset pattern (one bolt per 25 square feet
22	[2.3 square meters]). Experience in Panel 1 confirms the conclusion of the expert panel.
23	Plans call for bolt systems installed in future bolt patterns to be equal to or in excess of the
24	bearing characteristics of the mechanically anchored bolts used in the primary pattern in
25	Plans call for bolt systems installed in future bolt patterns to be equal to or in excess of the bearing characteristics of the mechanically anchored bolts used in the primary pattern in Panel 1.
26	the second s
27	Rigid support systems are currently available that provide superior load bearing capacity and
28	ductility when compared to mechanically anchored bolts. These include threaded bars, for
29	example, DSI or Williams manufacture, and cable bolts, for example, Rocky Mountain Bolt or
30	Jenmar manufacture. In addition, several yielding systems are now available that also provide
31	superior load bearing capacities and have yielding capabilities in ranges exceeding one foot.
32	These include yielding cable bolts, for example, Rocky Mountain Bolt or Western Support
33	Systems manufacture, and slip nut systems, for example, DSI manufacture. The system
34	judged best, which is available at the time a need for pattern bolting is identified, will be used
35	in Panels 2 through 8. In all cases, bolts will be located no more than 5 feet (1.5 meters) apart
36	(one bolt per 25 square feet [2.3 square meters]) in the center half of a room (8.25 feet
37	[2.5 meters] each side of centerline) where the potential for a detaching wedge exists. The
38	pattern support in the center half of the room will be anchored above the first clay and
39	anhydrite interface. Pattern support near the ribs will be capable of supporting spalls or
40	fractured ground typically found near ribs, but is not expected to penetrate the first clay and
41	anhydrite interface. Mesh will be used as appropriate to control small pieces of broken rock.
42	

DOE/CAO 1996-2184

MON-9

1 2	The justification for selection of these systems includes their demonstrated ability to support the expected loads. In the case of yielding systems, they will be selected based on their	
3	support capabilities and the ability to accommodate expected rock deformation.	
4		
5	MON.4.1.2 Geomechanical Monitoring	
6		
7	The geomechanical monitoring program at the WIPP facility is an integral part of the ground-	
8	control program (see Figure MON-1). Waste disposal rooms, drifts, and geomechanical test	
9	rooms will be monitored to provide confirmation of structural integrity. Geomechanical data	
10	on the performance of the repository shafts and excavated areas are collected as part of the	
11	geotechnical field-monitoring program. The results of the geotechnical investigations are	
12	reported annually. The report describes monitoring programs and geomechanical data	
13	collected during the previous year.	
14		
15	The ground control monitoring system is a commercially available, computerized process-	
16	control and real-time data acquisition system. This system is used in industry to control such	
17	things as drive belts, fans, pumps, and alarms. The primary use of the system at the WIPP is	
18	for geotechnical data acquisition.	
19		
20	At the WIPP, the system is presently used to monitor rockbolt loadcells, extensometers,	
21	convergence meters, strain gauges, and joint meters at various locations in the repository.	
22		
23	The geomechanical monitoring system provides in situ data to support the continuous	
24	assessment of the design for underground facilities. Specifically, the geomechanical	
25	monitoring system provides for	
26		
27	• early detection of conditions that could affect operational safety,	
28		
29	<ul> <li>evaluation of disposal room closure that ensures safe access,</li> </ul>	
30		
31	<ul> <li>guidance for system and component design modifications, and</li> </ul>	
32		
33	<ul> <li>data for interpreting the behavior of underground openings using established design</li> </ul>	
34	criteria as a benchmark.	
35		
36	The instrumentation components and systems in Table MON-2 are candidates for use in	
37	support of the geomechanical program. In addition to the over 100 installed extensometers,	
38	the geomechanical monitoring system includes over 400 convergence locations throughout the	
39	repository and shafts. These locations are comprised of anchor points installed in walls	
40	permitting repeatable measurements to be taken manually with a tape extensometer. The tape	
41	extensometer is capable of accuracy of 0.007 inches through the use of a dial indicator. The	
42	frequency of readings by location varies with an overall policy to read each location once per	
43	calendar quarter. Actual frequency of individual location monitoring is determined by the	
44	cognizant engineer based upon operational requirements and long-term excavation	

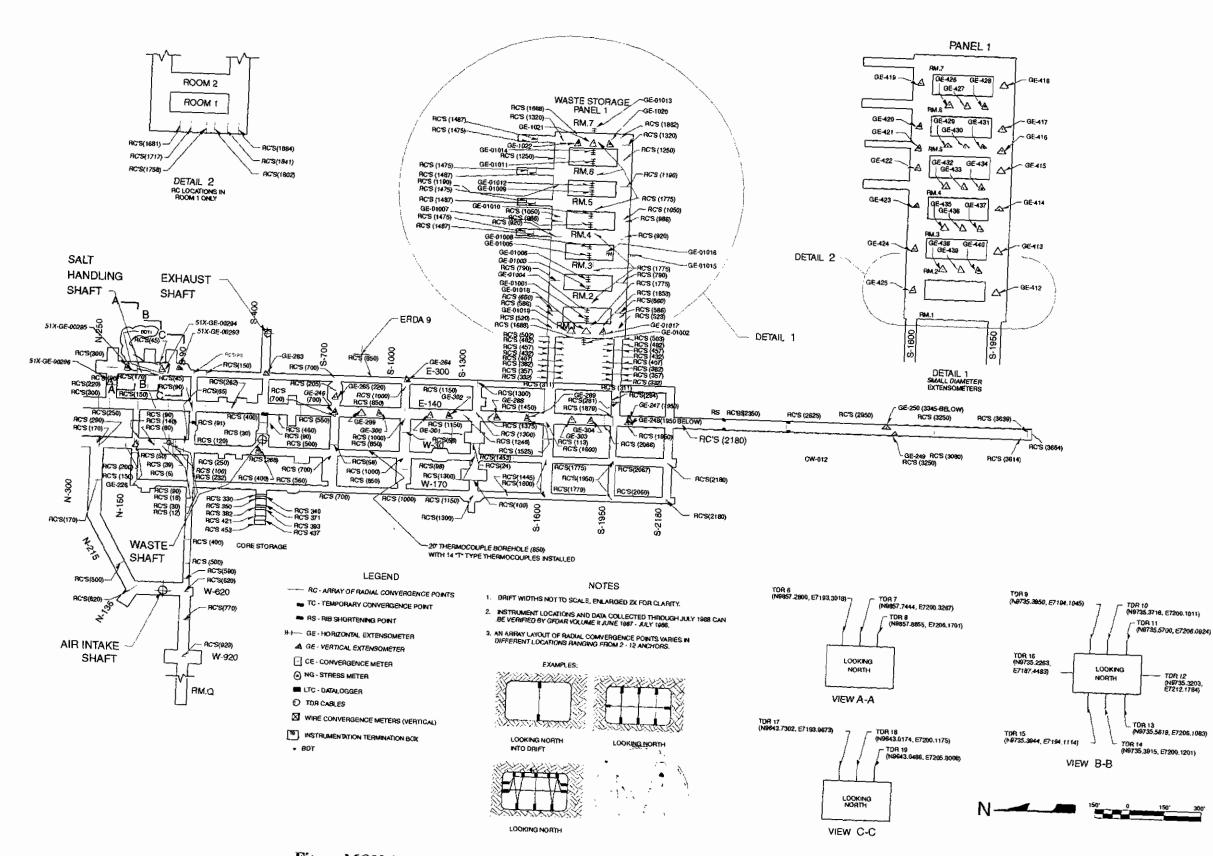



Figure MON-1. Layout and Instrumentation of Geomechanical Monitoring System - as of 1/96

(

CCA-MON008-0

,

#### THIS PAGE INTENTIONALLY LEFT BLANK



Instrument Type	Features	Parameter Measured	Range
Borehole Extensometer	The extensometer provides for monitoring the deformation parallel to the borehole axis. Units suitable for up to five measurement anchors in addition to the reference head. Maximum borehole depths shall be 50 feet (15 meters).	Cumulative deformation	0 to 2 inches (0 to 0.05 meters)
Borehole Television Camera	Closed circuit television may be used for monitoring areas otherwise inaccessible, such as boreholes or shafts.	Video image	N/A
Convergence Points and Tape Extensometers	Mechanically anchored eyebolts to which a portable tape extensometer is attached.	Cumulative deformation	2 to 50 feet (0.6 to 15 meters)
Convergence Meters	Includes wire and sonic meters. Mounted on rigid plates anchored to the rock surface.	Cumulative deformation	2 to 50 feet (0.6 to 15 meters)
Inclinometers	Both vertical and horizontal inclinometers are used. Traversing type of system in which a probe is moved periodically through casing located in the borehole whose inclination is being measured.	Cumulative deformation	0 to 30 degrees
Rock Bolt Load Cells	Spool type units suitable for use with rock bolts. Tensile stress is inferred from stain gauges mounted on the surface of the spool.	Load	0 to 300 kips
Earth Pressure Cells	Installed between concrete keys and rock. Preferred type is a hydraulic plate connected to a vibrating wire transmitter.	Lithostatic pressure	0 to 1000 pounds pe square inch
Piezometer Pressure Transducers	Located in shafts and of robust design and construction. Periodic checks on operability required.	Fluid pressure	0 to 500 pounds per square inch
Strain Gauges	Installed within the concrete shaft key. Suitably sealed for the environment. Two types used—surface mounted and embedded.	Cumulative deformation	0 to 3,000 microinches per inc (embedded) 0 to 2,500 microinches per inc (surface)

## Table MON-2. Instrumentation Used in Support of the Geomechanical Monitoring System

)

)

**Title 40 CFR Part 191 Compliance Certification Application** 

performance. Weekly schedules control the program. In addition, background observation

are made in all accessible areas at least annually. Hardcopy and electronic records meeting

3	QA documentation requirements in Appendix GTMP provide the historical records of
4	measurements and observations.
5	
6	The minimum instrumentation for Panels 2 through 8 is one borehole extensometer installed
7	in the roof at the center of each disposal room. The roof extensometers will be used to monitor
8	the dilation of the immediate salt roof beam and possible bed separations along clay seams.
9	Additional instrumentation will be installed as conditions warrant.
10	
11	Remote polling of the geomechanical instrumentation will be performed at least once every
12	month. The results from the remotely read instrumentation will be evaluated after each
13	scheduled polling. Documentation of the results will be provided annually in the geotechnical
14	analysis report. This frequency will be increased as necessary.
15	
16	Data from remotely read instrumentation are maintained as part of a geotechnical
17	instrumentation system. The instrumentation system provides for data maintenance, retrieval,
18	and presentation. The instrumentation system's cognizant engineer first retrieves the data
19	from the instrumentation system and verifies their accuracy by assuring the measurements
20	were taken in accordance with applicable instructions and that equipment calibration is
21	known. Next, the cognizant engineer reviews the data after each polling to assess the
22	performance of the instrument and of the excavation. Data that appear anomalous are
23	detected during this polling and are investigated to determine the cause (instrumentation
24	problem, error in recording, changing rock conditions). The data are then processed to calculate various parameters such as the change between successive readings and deformation
25 26	rates. Unexpected deformation rates are investigated by geotechnical engineering to
20 27	determine if remedial action is needed.
28	determine in remediar action is needed.
28 29	The stability of an open panel excavation is generally determined by the rock deformation
30	rate. The excavation may be considered unstable when there is a continuous increase in the
31	deformation rate that cannot be controlled. Evaluations will be conducted to assess the
32	effectiveness of the roof support system and estimate the stand-up time of the excavation.
33	
34	MON.4.1.3 Monitoring Experience
35	Mon.4.1.3 Montoffing Experience
36	The DOE established a geotechnical baseline during the SPDV phase as documented in
37	Appendix DVR. Ongoing measurements are reported annually. Much experience in the use
38	of geomechanical instrumentation was gained as the result of performance monitoring of
39	Panel 1, which began at the time of completion of the panel excavation in 1988. The
40	monitoring system installed at that time involved simple measurements and observations, for
41	example, vertical and horizontal convergence rates, and visual inspections. Minimal
42	maintenance of instrumentation is required, and the instrumentation is easily replaced if it
43	malfunctions. Conditions throughout Panel 1 are well known. The monitoring program

1

1	continues to provide data to compare the performance of Panel 1 with that established
2	elsewhere in the underground facility. Panel 1 performance is characterized by the following:
3	The development of had concretions and lateral shifts at the interference of the calt and
4	• The development of bed separations and lateral shifts at the interfaces of the salt and
5	the clays underlying the anhydrites a and b,
6 7	• Room closures. A closure caused only by the roof movement will be separated from
	the total closure,
8 9	the total closure,
10	• The behavior of the pillars,
11	- The behavior of the pinals,
12	• Fracture development in the roof and floor, and
13	
14	• Distribution of load on the support system.
15	
16	Roof conditions are assessed from observation boreholes and extensometer measurements.
17	Measurements of room closure, rock displacements, and observations of fracture development
18	in the immediate roof beam are made and used to evaluate the performance of a panel. A
19	description of the Panel 1 monitoring program was presented to the members of the
20	geotechnical experts panel (DOE 1991) who concurred that it was adequate to determine
21	deterioration within the rooms and that it could provide early warning of deteriorating
22	conditions.
23	
24	The assessment and evaluation of the condition of WIPP excavations is an interactive,
25	continuous process using the data from the monitoring programs. Criteria for corrective
26	action are continually reevaluated based on performance to date. Actions taken are based on
27	these analyses and planned utilization of the excavation. Because WIPP excavations are in a
28	natural geologic medium, there is inherent variability from point to point. The principle
29 20	adopted is to anticipate potential ground-control requirements and implement them in a timely manner rather than to wait until a need arises.
30 31	mannel famel man to wait until a need arises.
32	MON.4.2 Hydrological Parameters
33	110111112 Aryun ological I aramotors
34	The WIPP's groundwater monitoring plan is described in detail in Appendix GWMP. The
35	continuation of this program throughout the preclosure phase will provide information about
36	the following specific parameters:
37	
38	Culebra groundwater composition,
39	
40	Change in Culebra groundwater flow direction, and
41	
42	Culebra well water level.
43	

#### 1 2

16

17

MON.4.2.1 Groundwater Monitoring Description

Appendix GWMP describes the basis for the groundwater monitoring plan, the organization 3 of the program, the QA for the groundwater monitoring plan, and the sampling program 4 description. Water quality sampling locations are shown in Figure MON-2 (WQSP-1 through 5 WQSP-6A) for Culebra water samples. The locations of previous water quality sampling 6 wells are shown in Figure MON-3. Sampling frequency is defined in Table MON-3 to be 7 annually. However, the DOE is currently collecting background samples on these wells. This 8 will involve a minimum of four semiannual samples prior to the end of fiscal year 1997. 9 Analytes of interest are listed in Table MON-4. Background samples will be analyzed for 10 target analytes to allow precise analyses of samples collected from locations within the 11 monitoring area. Analytical methodologies used will be EPA-recommended procedures as 12 described in EPA Report SW-846 Test Methods for Evaluating Solid Waste, third edition, 13 November 1986 (EPA 1988a). The prescribed practical quantitation limits are the lowest 14 concentrations of analytes in groundwaters that can be reliably determined within specified 15

18 19 Type of Sample Sampling Locations* Sampling Frequency 20 Liquid influent 1 Annually 21 Liquid effluent 1 Annually 22 Airborne effluent 3 Continuously 2 Continuously 23 Meteorology Atmospheric particulate 7 Weekly 24 25 Vegetation radioanalysis 70 Annually Annually^b 26 Beef radioanalysis 2 27 Annually Game bird radioanalysis 1 2 28 Annually Rabbit radioanalysis 29 2 Annually Deer radioanalysis 2 Annually 30 Fish radioanalysis 6 Annually 31 Soil radioanalysis Annually 32 Surface-water radioanalysis 12 Annually 7 33 Groundwater 69 Monthly 34 Groundwater levels Annually 35 Sediments radioanalysis 10 36 Aerial photography 1 Annually Annually 37 Soil chemistry 7 Annually 38 Wildlife survey 4

#### Table MON-3. Typical Sampling Schedule

^a Sampling locations are shown in the Site Environmental Report (Appendix SER).

40 ^b If available.

41 ^c Semiannual sampling will be conducted on wells WQSP I through 6 and 6a until three samples are collected

42 for establishing baseline conditions. Annual samples will be taken subsequently.

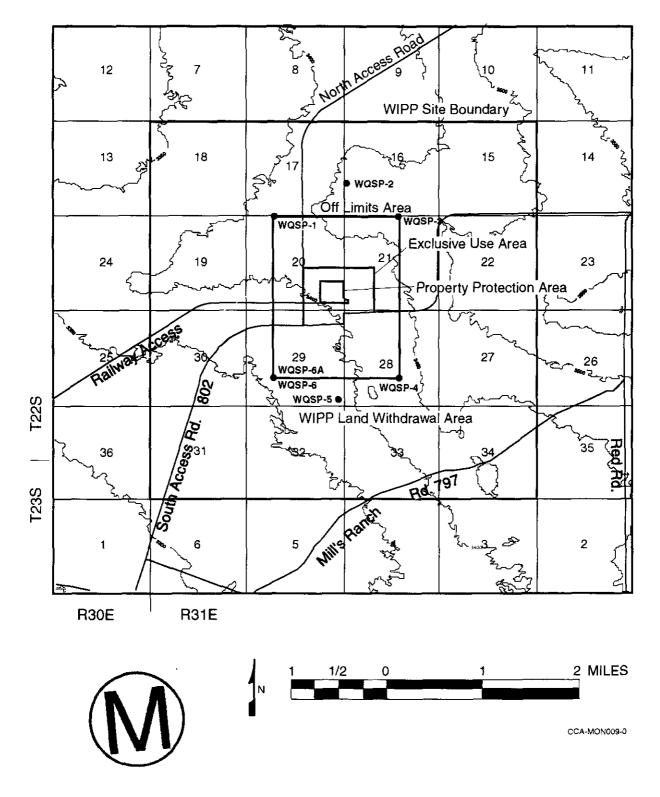



Figure MON-2. Location of the New Water Quality Sampling Wells

THIS PAGE INTENTIONALLY LEFT BLANK



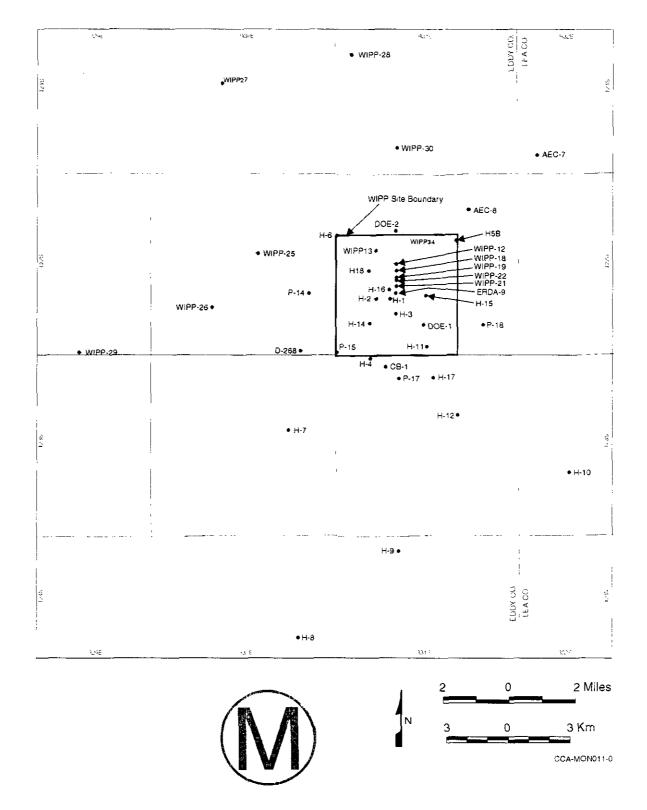



Figure MON-3. Groundwater Level Surveillance Wells

THIS PAGE INTENTIONALLY LEFT BLANK



Type of Sample	Analysis
Liquid influent	Radionuclides
Liquid effluent	Specific radionuclides, chemical constituents
Airborne effluent	Gross, $\beta$ , specific radionuclides
Meteorology	Temperature, wind speed, wind direction, precipitation, dewpoin barometric pressure
Air quality	Total suspended particulates
Vegetation radioanalysis	Specific radionuclides
Beef radioanalysis	Specific radionuclides
Game bird radioanalysis	Specific radionuclides
Rabbit radioanalysis	Specific radionuclides
Deer radioanalysis	Specific radionuclides
Fish radioanalysis	Specific radionuclides
Soil radioanalysis	Specific radionuclides
Surface-water radioanalysis	Specific radionuclides
Groundwater	Specific radionuclides, chemical constituents ^a
Sediments radioanalysis	Specific radionuclides
Aerial photography	Area of land disturbed
Wildlife survey	Bird and small mammal population densities
Salt impact study: Soil chemistry	pH, electrical conductivity, sodium, chloride, magnesium, calciu potassium

Table MON 4 Turical Environ .4.10 . . • • • • A . . . .

Chemical constituents = chloride; iron; manganese; phenols; sodium; sulfate; pH; specific conductance; total organic carbon; total organic halogen; Specified RCRA constituents; antimony; arsenic; barium; beryllium; cadmium; chromium; fluoride; lead; mercury; nickel; nitrate; selenium; silver; thallium; zinc; endrin; methoxychlor; toxaphene; 2-4-D; 2,4,5-TP silvex; radium; turbidity; coliform bacteria. Additional analytes may be specified in the WIPP facility hazardous waste permit.

^a For the purposes of establishing baseline values in wells WQSP 1-6 and 6a, the analyses will include all 40 CFR Part 264 Appendix IX constituents.

33 34

25

26

27 28

29

30

31

limits of precision and accuracy by the prescribed methods under routine laboratory operating 1 conditions. Data analysis will be conducted in such a way that it will provide an objective and 2 reliable means for interpreting data while relating it to the objectives of the data collection 3 program. For the groundwater monitoring plan the principal goal of data analyses is the 4 comparison of a data point or data set to equivalent data collected at another location and at an 5 earlier time (such as preoperational baseline data or data collected at a control location), or to 6 a fixed standard. 7 8 The Culebra groundwater composition and flow were characterized and documented in the 9 Background Water Quality Characterization Report for the Waste Isolation Pilot Plant, DOE-10 WIPP 92-013 (DOE 1992). 11

Individual grab samples are taken from each well by pumping the well. However, prior to taking the final sample, serial sampling is conducted to ensure that a representative final sample is obtained. Typically, a well is pumped for many hours prior to beginning serial sampling. The pumping rate varies from less than 1 gallon per minute to more than 10 gallons per minute depending upon the characteristics of the particular well being sampled. The final sample is taken through a dedicated nylon line to ensure no contamination from a metal line will occur.

Since many of the chemical constituents that are measured are not chemically stable and need 21 to be preserved, samples are treated where required with either high purity hydrochloric acid, 22 nitric acid, or sulfuric acid. This treatment information is recorded on the final sample 23 checklist for use by field personnel when collecting samples. A uniquely numbered Chain of 24 Custody form and Request for Analysis form are used to track the samples. The primary 25 consideration for storage or transportation is that samples must be analyzed within the 26 prescribed holding times. Insulated shipping containers packaged with reusable blue ice are 27 used to keep the samples cool during transport to the contract laboratory. Procedures for 28 sample tracking and preservation are generated, approved, and maintained in accordance with 29 an approved Quality Assurance Plan. 30

Results of the Groundwater Monitoring Program are published annually in the Site
 *Environmental Report* (DOE 1994b).

35 MON.4.2.2 Groundwater Analysis



- Several levels of analyses are required for each parameter before statistically valid interpretation of data can be achieved. The type of analysis used at each level varies among parameters because of the particular characteristics of parameters and the specific objectives of monitoring. Five general levels of data analyses are described here. Analyses at each of these levels is considered for each parameter. The levels are
- 43 (1) Determination of accuracy for each point measurement by quantification and control
   44 of precision and bias,

12

20

31

34

36

1 2	(2) Evaluation of the effects of auto-correlation on the expected value of the point measurement as a result of location and time of sampling,
3	mensurement us a result of result on and third of sampring,
4 5	(3) Identification of the appropriate model of variability, that is, a probability density distribution, for each point measurement and the calculation of descriptive statistics
6	based on the chosen model,
7	
8	(4) Treatment of data anomalies, and
9 10	(5) Interpretation of data through statistically valid comparisons (tests) and trend analysis.
11 12	Each of these levels of data analyses are described below. These descriptions also include a
13	discussion of applicable requirements for the groundwater monitoring plan.
14	MON.4.2.2.1 Accuracy
15 16	MON.4.2.2.1 Accuracy
17	Accuracy is a measure of the closeness of a measurement to its actual, or true, value. Because
18	the true value cannot be determined independently, accuracy cannot be absolutely determined.
19	However, accuracy is controlled by two basic elements: bias (consistent over- or
20	underestimation of the true value) and precision, (concentration of repeated measurements
21	around a central [expected] value). Accuracy is maximized when bias is minimized and
22	precision is maximized.
23	
24	To some extent, precision and bias are controlled by strict adherence to sample collection,
25	handling, and measurement protocols. Groundwater monitoring plan procedures specify the
26	protocols for those functions performed at the WIPP and quality control procedures establish
27	control on precision and bias for analytical work.
28	
29 20	MON.4.2.2.2 <u>Temporal and Spatial Analysis</u>
30 31	Environmental parameters vary with space and time. The effect of one or both of these two stars is the space and time.
31 32	factors on the expected value of a point measurement is statistically evaluated through spatial
33	analysis and time series analysis; however, these methods often require extensive sampling
34	efforts that are in excess of the practical requirements of the WIPP groundwater monitoring
35	plan. Applying these methods to a particular parameter is, therefore, limited by consideration
36	of its relative significance in the final interpretation of the data.
37	
38	In particular, spatial analysis has limited use in this program, although the effect of spatial
39	auto-correlation on the interpretation of the data is considered for each parameter. Spatial
40	variability is accounted for by selecting the optimal sampling locations. Data analysis is
41	performed on a location-specific basis, or data from different locations are combined only
42	when the data have been determined to be statistically homogeneous.
43	

Time series analysis plays a more important role in data analysis for the groundwater 1 monitoring plan. Parameters are reported as time series, either in tabular form or as time 2 plots. For key time series parameters, these plots are in the form of control charts on which 3 control levels will be identified based on preoperational data base, fixed standards, control 4 location data bases, or other standards for comparison. Where significant seasonal changes in 5 the expected value of the parameter are identified in the preoperational database or in the 6 control locations, corrections in the control levels that reflect the seasonal change are made. 7 8 9 MON.4.2.2.3 Distributions and Descriptive Statistics 10 11 For data sets that include more than 10 data points that are homogeneous in space and time (including seasonal homogeneity), and have less than 10 percent missing data, a test for 12 conformance to the normal distribution is performed. A probability plot is an accepted 13

method for performing this test; however, more powerful tests of normality, such as the
 W Test, or D'Agostino's Test are more accurate. Any standard best-fit test is acceptable,
 provided the assumptions of the tests are met.

17

18 If normality is not observed, the data will be log-transformed and retested for normality. If the 19 transformed data fit a normal distribution, the original data will be accepted as having log-20 normal distribution. If normality is still not observed, two courses of action may be taken. 21 One option is to continue to test the fit to standard families of distributions, such as the 22 gamma, beta, and Weibull, with proper modifications to subsequent analyses based on these 23 results. The other possible course of action is to use nonparametric methods of data analysis.

24

For data sets smaller than 10, but homogeneous and complete, the log-normal distribution is assumed. Data sets with more than 10 percent missing data are analyzed using nonparametric methods. Nonhomogeneous data sets are divided into homogeneous subsets and each of these analyzed individually.

---29

30 Descriptive statistics are calculated for each homogeneous data set. At a minimum, these 31 calculations include determining a central value and a range of variation. The central value is 32 the arithmetic mean of the untransformed data if the data are not censored at either end. If the 33 data are censored, either a trimmed mean or the median is used as the central value (which 34 may be within the censored range). If the data set is greater than 10 and is uncensored, the 35 standard deviation is calculated and used as a basis for the reported range in variation. If thes 36 criteria are not met, the range between the 25th and 75th percentiles is used.

37

- 38 MON.4.2.2.4 Data Anomalies
- 40 Data anomalies include data points reported as being below the limit of detection or otherwise
- 41 censored over a specific range of values, missing data points occurring randomly in the data
- 42 set, and outliers that cannot be ascribed to a known variation source.
- 43

Whenever possible, values that are below detection limits are obtained and incorporated into the database for statistical analysis. When values are not available, alternative methods of
analysis, as described in previous sections, are used. In particular, the use of nonparametric statistics is required.
Missing data points comprising less than 10 percent of the data set do not affect data analyses Results based on data where more than 10 percent are missing are identified as such at the time of reporting. Consideration of the potential effect of missing data must be made when the majority of the data are missing from a discrete time span.
An explicit in defined on one data maint accounting in eicher automa automa an lever anne af the
An outlier is defined as any data point occurring in either extreme upper or lower range of the
data distribution for which there is less than 0.01 probability of occurrence. For normally distributed data, this is roughly 2.3 or more standard deviations above or below the mean.
When no probability model is identified, outliers may only be found through visual inspection
of the data.
If an outside source of variation is not identified to account for outliers in a data set, the
outlier(s) is included in the data set and is considered in all subsequent analyses. If the
inclusion of such outliers is found to affect the final results of the analyses significantly,
results both with and without outliers are reported.
r r
MON.4.2.2.5 Comparisons and Reporting
Comparisons between data sets are performed using standard statistical tests. The selection of
the specific test is dependent upon the relative power of the test and the degree to which the
underlying requirements of the test are met. In addition to tests comparing data from distinct
locations and times, trend analyses are performed on time series where sufficient data exist.
95-percent confidence level will be used for the final interpretation of results.
Citation of the source of the test method or the software used to perform the tests will be made
when results are reported. Data and subsequent calculated values are reported in the annual
site environmental report in accordance with standard rules for significant figures.
MON.4.3 Gaseous Parameters
VOC monitoring has been notformed at the WIDD facility to establish heaters with VOC lass
VOC monitoring has been performed at the WIPP facility to establish background VOC leve
at the site. During initial stages of the disposal phase, confirmatory VOC monitoring will be
performed in the repository. Appendix VCMP describes the confirmatory VOC monitoring
program in detail.
MON.4.3.1 Background Volatile Organic Compound Monitoring
worster.
The VOC monitoring program has focused on the air pathway since 1991. The airborne

1	operations, and this pathway will be eliminated upon final facility closure. With more than		
2	four years of data collected, a credible basis for determining the WIPP facility's background		
3	levels of the targeted VOCs has been established.		
4			
5	The VOC monitoring plan conducted for the WIPP to date is described in detail in the VOC		
6	Monitoring Plan (WEC 1994a). The program monitored the air exhausted from the mine's		
7	ventilation shaft for VOCs that might have been released from the test wastes. To		
8	differentiate between ambient or background VOCs from aboveground and underground		
9	sources and VOCs released from transuranic (TRU) -mixed wastes, VOC concentrations have		
10	been measured at the following locations:		
11			
12	• near the top of the exhaust shaft (Station VOC-1),		
13			
14	• near the air intake shaft (Station VOC-2), and		
15			
16	• ventilation air intake passageways to the waste-containing rooms (Station VOC-8).		
17			
18	Sampling followed a regular schedule with the samples analyzed for the quantities of five		
19	target VOCs. The samples were then analyzed for other organics present in sufficient		
20	quantities to be detected. The five target compounds were carbon tetrachloride,		
21	trichloroethylene, methylene chloride, 1,1,1-trichloroethane, and 1,1,2-trichloro-1,2,2-		
22	trifluoroethane. These compounds were selected because of their prevalence in TRU-mixed		
23	wastes and their inclusion in the conditional no-migration determination. The VOC		
24	Monitoring Quality Assurance Project Plan identifies the following data quality objectives as		
25	applicable to the VOCs monitoring program (WEC 1994b)		
26			
27	• Method detection limit of 0.5 parts per billion or one-fifth of any health-based limit for		
28	a targeted constituent, whichever is greater,		
29			
30	• Precision, that is, relative percent difference between field duplicate samples, of		
31	±15 percent,		
32			
33	• Accuracy of ±10 percent, and		
34			
35	• Data completeness of 90 percent, as adjusted statistically to account for the results of		
36	data validation audits.		
37			
38	The EPA Compendium Method TO-14 (EPA 1988b), which specifies passivated stainless		
39	steel canisters for sample collection, was used as guidance to meet these objectives. The		
40	analytical methods consisted of cryogenic trapping and gas chromatography and mass		
41	spectrometry. Results of the VOC monitoring program have been provided annually to the		
42	EPA. QA and quality control activities conducted in accordance with the VOC Monitoring		
43	Quality Assurance Project Plan (WEC 1994b) included duplicate sampling, spiked samples,		
44	and annual audits of the laboratory conducting the analyses.		

MON.4.3.2 Confirmatory Volatile Organic Compound Monitoring
The concentrations of VOCs at the point of compliance during disposal operations and facility
closure have been estimated to be one-third to five orders of magnitude below health-based
limits. Since these calculations were based on conservative assumptions, and since the DOE
has collected more than four years of data to support the validity of background levels of
VOCs in air, the DOE will implement confirmatory VOC monitoring activities during the
disposal phase.
The DOE has prepared a VOC monitoring plan that describes the aspects of a VOC
monitoring strategy. The plan has been prepared so that the DOE can show that the
assumptions and predictions used to demonstrate compliance to the environmental
performance standards are valid. Validity is shown when observed emissions are equal to or
less than those predicted. The VOC confirmatory monitoring plan is provided in Appendix
VCMP. The confirmatory monitoring plan includes monitoring design, sampling and analysis
procedures, and QA objectives. The plan was submitted in compliance with 20 NMAC 4.1,
Subpart V, § 264.602, § 268.6, and § 270.23(a)(2).
The VOC confirmatory monitoring plan describes a sampling and analysis program to confirm
the theoretical calculations. The monitoring program is capable of quantifying VOC
concentrations in the ambient mine air at the WIPP. The confirmatory monitoring plan
addresses the following information requirements:
• Detionals for the design of the manitoring program based on possible nothways
• Rationale for the design of the monitoring program, based on possible pathways, operations, engineered and natural barriers, and monitoring locations optimized for
detection, and
• Descriptions of the specific elements of the monitoring program including the type of
monitoring, the location of stations, the frequency of sampling, the target analytes, the
schedule for implementation, the equipment used, the sampling and analytical
techniques, and the data recording and reporting procedures.
The design of the confirmatory monitoring plan was based on the results of extensive
background VOC monitoring activities conducted at the WIPP. These data represent the
anticipated background levels of VOCs during operations at the WIPP.
The DOE's intent is to collect air samples upstream and downstream of Panel 1 beginning jus
prior to waste emplacement and proceeding until at least six months following completion of
panel closure. The DOE will continue monitoring until the criteria for terminating monitoring are met. These criteria are established in Appendix VCMP for each target analyte.
are met. These cinenta are established in Appendix vevir for each larger analyte.
The current VOC monitoring program uses EPA Compendium Method TO-14 (EPA 1988b).
= 110  outout + 00  montoring program used of recomponential from 0.1 T (DI II 17000).
The DOE has had success with TO-14 at the WIPP when care is taken in placing samplers so

canisters. This level of rigor is necessary because of the extremely low concentrations of 1 analytes that are being monitored. The DOE is evaluating the use of the Fourier Transform 2 Infra-Red technique for monitoring VOCs at WIPP. This method is being used successfully at 3 other locations and has recently been approved by the EPA for measuring the concentration of 4 VOCs in the headspace gases of drums of transuranic waste. If the Fourier Transform Infra-5 Red technique becomes viable, the monitoring plan will be revised and the revisions will be 6 submitted to the NMED for approval prior to implementation. 7 8 9 The confirmatory monitoring plan will be run under a QA plan that conforms to the document entitled, EPA Requirements for Quality Assurance Project Plans for Environmental Data 10 Operations (EPA 1994). QA criteria are described in Appendix VCMP. Appendix VCMP 11 also includes a discussion of other aspects of the QA program including sample handling, 12 calibration, analytical procedures, data reduction, validation and reporting, performance and 13 system audits, preventive maintenance, and corrective actions. 14 15 **MON.4.4** Other Parameters 16 17 A number of other parameters may be evaluated from the observation of activities included 18 within the WIPP program and/or occurring in the WIPP vicinity. In the course of 19 characterizing WIPP waste at other DOE facilities, waste activity is determined as part of the 20 data needed to ensure that the waste received at WIPP meets the applicable restrictions in the 21 Waste Acceptance Criteria. 22 23 Through continuation of monitoring the drilling activities in the nine townships centered on 24 the township within which the WIPP is located, additional data can be developed on drilling 25 rates for comparison to the assumed values developed from the 100-year history of Delaware 26 Basin resource recovery. The monitoring of the drilling activities for boreholes penetrating 27 the Castile Formation will provide additional data regarding assumptions made in 28 performance assessment with respect to location of Castile brine reservoirs. Monitoring the 29 well plugging and abandonment operations within the nine townships will provide 30 information regarding the types of plugs used and their rate of use. Important deviations will 31

- be recognized and considered in performance assessment activities supporting recertification.
- 33

35

# 34 MON.5 Postclosure (Long-Term) Monitoring

36 The basis for postclosure monitoring is found in 40 CFR Part 191, 40 CFR Part 268, and

- 40 CFR Part 264. 40 CFR Part 194 provides the criteria for meeting the 40 CFR Part 191
- requirements. In March 1996 the EPA published EPA 402-R-95-014, Compliance
- 39 Application Guidance for 40 CFR Part 194 (EPA 1996b). The compliance application
- 40 guidance provides guidance in meeting the criteria specified in 40 CFR Part 194. The
- 41 regulations were reviewed and the areas that apply to postclosure monitoring are discussed
- 42 below. An outline of individual design requirements is also provided.

• Culebra groundwater, water	r level changes, and changes in groundwater flow directi
• Castile brine reservoir locat	ion, and
• drilling practices (including	; plugging).
Table MON-5	Postclosure Monitoring Parameters
NON-SALA	DO HYDROLOGICAL PARAMETERS
Culebra brine composition	Analysis of brine samples collected from WQSP wells
Culebra well water level	Direct measurements from WIPP wells
Culebra groundwater flow direction	Observation of well water level changes over time
Castile brine reservoir location	Observed based upon drilling activity in the Delaware Basin
Castile brine reservoir pressure	Observed based upon drilling activity in the Delaware Basin
Drilling intensity	Observed based upon drilling activity in the Delaware Basin
Borehole plugging	Observed based upon drilling activity in the Delaware Basin
REPOSITO	DRY PERFORMANCE PARAMETER
Subsidence	Can be measured and evaluated against predictions and baseline database
n addition to these parameters, con	ntinued, periodic subsidence surveys will provide data fo
	ions. This will allow the DOE to identify any data
nomalies that might occur. Analy	rsis of such anomalies, if they do occur, may provide al models used to predict long-term repository

33

Postclosure monitoring of the repository will use subsidence monitoring as the repository's primary performance indicator. In addition, radiological environmental monitoring will be performed at the same level as was used during the operational phase for the first two years after decontamination and decommissioning, and in a limited fashion, environmental monitoring will be conducted for three years thereafter.

## 1 MON.5.1 Postclosure Monitoring Requirements

2 The postclosure monitoring plan will not be implemented until after final facility closure 3 4 (sealing of the shafts). The repository is scheduled to open in 1998 and is projected to operate until 2023; decontamination and decommissioning will be completed within 10 years 5 following the final receipt of TRU waste. The postclosure monitoring plan includes 6 provisions to review the postclosure monitoring system during the operational phase. Any 7 changes will be made only after review and approval by the appropriate regulatory authorities. 8 9 10 After closure, buildings and above ground facilities will be removed, and active controls will be implemented. Postclosure monitoring techniques will be designed so as to minimize 11 associated maintenance activities and the need for support facilities. The monitoring 12 techniques are as stand-alone as possible since power may only be available for part of the 13 postclosure period. The postclosure monitoring systems will be located on the surface to 14 facilitate access for maintenance and operation. Safeguards will be provided to protect the 15 equipment from vandalism and the environment. 16 17 Monitoring techniques that obtain useful data at reasonable cost with minimal maintenance 18 over an extended period of time are the most favorable. 19 20 In summary, institutional postclosure monitoring requirements used as assumptions to arrive 21 at system specifications are as follows: 22 23 • The postclosure monitoring system design shall be as human independent as 24 practicable, 25 26 The system must endure the conditions posed by the natural environment, 27 28 The system must be cost-effective, 29 30 The system must not require unreasonably large support facilities, 31 ٠ 32 The system shall require minimal maintenance and power requirements, and 33 34 35 All components susceptible to vandalism shall be secured from public access. 36 37 MON.5.2 Postclosure Monitoring System Specifications 38 39 The postclosure monitoring specifications are listed below. 40 Those parameters identified in Attachment 1, MONPAR, to this appendix as 41 applicable for postclosure monitoring will be included in the postclosure monitoring 42 program. 43 44

	<del></del>	Title 40 CFR Part 191 Compliance Certification Application
1 2 3	•	The postclosure monitoring system shall be designed and implemented so as to detect substantial deviations from expected repository performance after closure.
4 5	•	The monitoring technique(s) used must not jeopardize the naturally protective nature of the disposal system and must therefore be nonintrusive.
6 7 8 9	•	Monitoring will continue as long as practicable, and/or until the DOE can demonstrate to EPA that there are no significant concerns to be addressed by further monitoring.
9 10 11 12	•	The groundwater monitoring plan and the water quality sampling wells shall be maintained for a minimum of 30 years after closure.
13 14 15	•	The radiological aspect of the operational environmental monitoring plan shall be continued for a minimum of two years past decontamination and decommissioning in accordance with the C&C agreement.
16 17 18 19	٠	Four annual soil surface samples and four annual surface water samples shall be taken for five years after decontamination and decommissioning in accordance with the C&C agreement.
20 21 22 23	•	The design of the postclosure monitoring program will depend in part on the results of data obtained during the operational phase.
23 24 25	٠	Postclosure monitoring system design shall require minimal support from humans.
26	•	The system must endure the natural environment.
27 28 29	•	The system must be cost-effective.
30 31	•	The system must not require unreasonably large support facilities.
32 33	٠	All components susceptible to vandalism shall be secured from public access.
34 35	MON.	5.3 System Description
35 36 37 38 39 40 41	monite compt (2) rac	asic requirements listed in the Section MON.5.1 were used to define a postclosure oring system that would best fulfill all the applicable requirements. The system tises four monitoring programs of varying duration: (1) groundwater surveillance; liological environmental monitoring; (3) subsidence monitoring; and (4) observation of g activities.
42 43 44	any ac	ostclosure monitoring system will also consist of any preexisting hydrological wells plus Iditional wells deemed useful. The well monitoring program that was used during the ional phase will be used during the postclosure phase. The frequency of the testing will

be modified after closure to include maintenance and well casing replacement as appropriate. 1 Testing intervals will be lengthened if previous data have been relatively constant during the 2 operational phase. The final postclosure monitoring schedule will be determined by a closure 3 review study. 4 5 The radiological portions of the operational environmental monitoring plan in place prior to 6 closure will be used in postclosure monitoring for a minimum of two years after closure with 7 limited radiological monitoring for the following three years. 8 9 Subsidence monitoring will be supported by several other systems. These systems include a 10 subsidence network, a monitoring program, a baseline database, a closure review study, and a 11 subsidence data study. The postclosure monitoring will be implemented until the DOE 12 decides, and the regulators concur, that no further monitoring is required. The data collection 13 for both the baseline database and subsidence data are verified through a QA and quality 14 control program to assure data quality. The monitoring program will be documented through 15 a set of operating procedures that are validated and maintained under the QA and quality 16 control program. All actions relating to repository performance indications from the 17 subsidence monitoring program will be resolved through the DOE office overseeing the 18 project. 19 20 A subsidence data study will be performed during the developmental and operational (waste 21 emplacement) phases of the WIPP. This study will provide the subsidence prediction data and 22 gather all data for the baseline database. The findings will include the predictions and 23 bounding conditions for repository performance and will be used to define scenarios that 24 would characterize what measured subsidence is outside of the bounds of the predicted range. 25 These scenarios will be used in the baseline database to provide guidance that will be used in 26 evaluating unexpected subsidence monitoring data. 27 28 The DOE will continue to observe drilling and borehole plugging practices in the Delaware 29 Basin, thereby gathering additional information relevant to human intrusion and the 30 parameters in Table MON-5, as these are significant to repository performance. 31 32 A closure review study will be performed during the late operational phase that assesses the 33 condition of the facility at closure. The study will: 34 35 • Evaluate the postclosure monitoring plan, the data generated during the operational 36 and closure phases and regulatory requirements at the closure date, 37 38 Update the postclosure monitoring program, 39 40 • Evaluate the necessity for continued monitoring and determine the appropriate 41 repository parameters to be monitored, and 42 43

• Revise the postclosure monitoring schedule to account for any necessary changes based on the study findings.

The groundwater surveillance program is described in detail in Appendix GWMP. The environmental monitoring program is described in Appendix EMP. The subsidence monitoring program is described in Appendix SMP. The observation of drilling practices is described in Appendix DMP.

9 Technology, regulations, site management, safety requirements, and public opinions will 10 advance and change over the period of time from now until final facility closure. A review at 11 the time of facility closure will be performed to update the postclosure monitoring techniques 12 and schedules. Monitoring frequencies, instrumentation, locations, and dates will be revised 13 as appropriate.

A closure review study will be initiated to evaluate the postclosure monitoring plan and update all aspects that are not current. This plan will review the data in the baseline database and all governing regulatory issues associated with postclosure monitoring of the facility. The closure review study will determine what monitoring is required, what will be monitored, what equipment and techniques will be used, and the area and lines that will be monitored. A feasibility study will evaluate technology available at that time that can be used to accomplish the monitoring objectives.

# MON.5.4 Monitoring Schedules

The schedule for postclosure monitoring is based on an approach using several basic 25 monitoring groups to implement the four parts of the monitoring program; the initial 26 geophysical survey group, the radiological environmental monitoring plan group, the 27 subsidence monitoring group, and the abbreviated radiological environmental monitoring 28 group. The initial geophysical survey group will be composed of a seismic survey, a 29 resistivity survey, an environmental monitoring survey, a gravitational survey, and a 30 radiological aerial survey. The radiological environmental monitoring plan group (a 31 continuation of the operational environmental monitoring program) will be performed for the 32 first two years only. The subsidence monitoring group will include a leveling survey in the 33 first and third year and every 10 years thereafter. The last group, the abbreviated radiological 34 environmental monitoring group, will include only three sample types (airborne particulate, 35 soil, and water) taken on an annual basis for at least three years following cessation of the 36 radiological environmental monitoring plan group. The schedule for the preclosure 37 monitoring process is detailed in Figure MON-4 and the specific postclosure monitoring 38 schedule is shown in Figure MON-5. 39

40 41

42

1

2 3

4

5

6

7 8

14

15

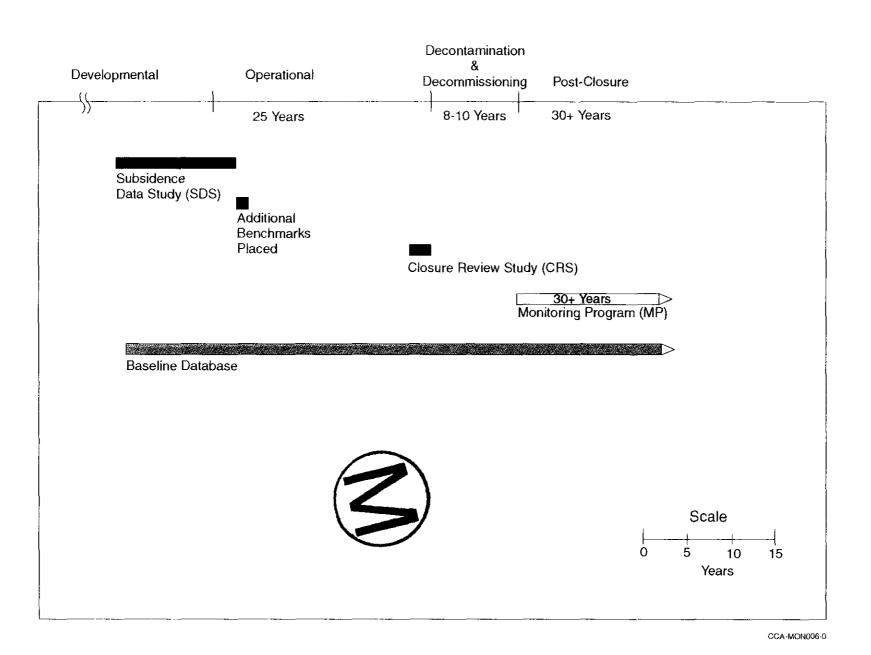
16

17

18

19

20


21 22

23 24

## MON.6 Review of Postclosure Monitoring Technologies

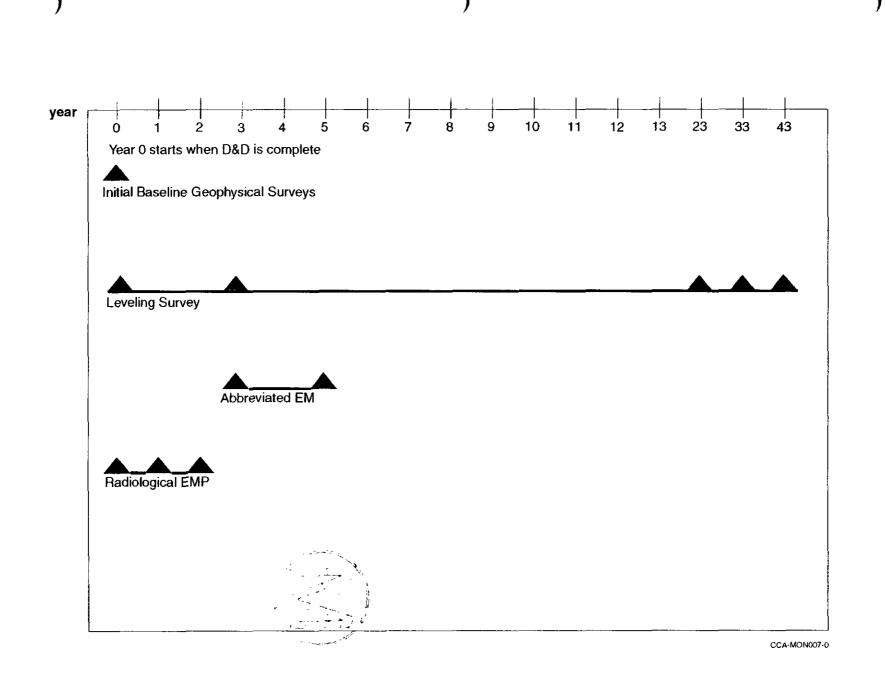
43 Each of the technologies listed below are discussed, defining the monitoring technology and 44 describing the past, current, and future work using this technology as related to performance

1	monitoring. Also defined are the advantages, disadvantages, and proposed uses of the
2	technologies in postclosure monitoring of the repository.
3	Quite' to use
4	• Subsidence
5	Colorado and action and action
6	Seismic reflection and refraction
7	
8	Gravitational
9	
10	• Electromagnetic
11	Basistivity
12	• Resistivity
13	Direct repeatern mentaring
]4 15	Direct repository monitoring
15	MON.6.1 Subsidence
16 17	MON.0.1 Subsuence
17	Subsidence is defined as vertical movement of the land surface anywhere in the subsidence
19	basin. Subsidence monitoring is defined as the measurement of <i>relative vertical movement</i> of
20	the land surface. This movement can be up (uplift) or down (subsidence) and is relative to a
20	fixed reference. This reference is assumed fixed, even though it is subjected to the same
22	factors that cause the surface movement and is moving also. Subsidence monitoring is used to
22	determine the measurable vertical movement of a land mass. The techniques used to monitor
24	subsidence measure the vertical height difference between two or more markers placed on the
25	surface a known distance away from each other and is done with a leveling survey. Usually,
26	one reference benchmark is used as the standard and the relative movement of other stations
27	or benchmarks are measured to detect vertical movement over time. All subsidence
28	measurements are relative because the reference is not fixed.
29	
30	The error of the survey is determined by the equipment and distances between the stations. A
31	first order survey has an error of one part in 100,000 and a second order survey has an error of
32	one part in 20,000. With current technology, several thousandths of an inch vertical
33	movement can be measured to the stated accuracy.
34	-
35	Subsidence can be caused by a variety of factors. Mining, hydrocarbon extraction, water
36	injection and extraction, geological tilt, and dissolutioning are major subsidence causing
37	factors all of which may be applicable to the WIPP over the long term.
38	
39	MON.6.1.1 Advantages of Subsidence Monitoring
40	
41	Subsidence monitoring is advantageous because it is a passive monitoring technique that is
42	relatively simple to perform and uses well established technologies. The cost of the survey is
43	low compared to other technologies. This technique requires little system maintenance or
44	monitoring and has no power requirement. The benchmarks are not affected by weather and



MON-35

DOE/CAO 1996-2184




ر ر

## THIS PAGE INTENTIONALLY LEFT BLANK



October 1996



MON-37

THIS PAGE INTENTIONALLY LEFT BLANK



October 1996

#### can last for hundreds of years. Benchmarks can be replaced if required and the data can be 1 2 offset to account for the change without affecting data quality. 3 MON.6.1.2 Disadvantages of Subsidence Monitoring 4 5 The disadvantages associated with subsidence monitoring is in the benchmark placement. 6 The benchmark should be left undisturbed. Existing benchmarks may be destroyed or moved 7 if new construction occurs over the benchmarks. The permanent markers design calls for 8 9 large earthen berms around the facility after closure. The placement of the berm may cover some of the existing benchmarks and may preclude the necessary line-of-sight measurements 10 between existing benchmarks. The benchmarks are also not currently protected, and could be 11 destroyed during land use by ranchers, drillers, or developers. This necessitates replacing 12 markers and incorporating new markers on the berm to maintain a line-of-sight reference with 13 14 the benchmarks. Future advancements in global positioning systems may eliminate the need for line-of-sight placement of the benchmarks. 15 16 MON.6.1.3 Past Subsidence Work 17 18 During the initial site selection process, 195 miles (314 kilometers) of first order, Class 1 19 leveling survey was performed in 1977 by the National Geodetic Survey (NGS). Later, new 20 survey lines were established that connected the previous first order benchmarks through 21 Carlsbad to second order survey lines through Eunice and Hobbs. Benchmarks were placed 22 over the Nash Draw from the north end to the Remuda Basin, over potash mines, the WIPP 23 site, and the San Simon Sink (Powers 1993). Independent of the NGS benchmarks, an 24 additional 52 benchmarks were installed over the WIPP site and surrounding area. 25 26 The NGS network was resurveyed in 1981 and the relative movement between Carlsbad and 27 the WIPP site was measured to be about 0.8 inches (2 centimeters). The relationships 28 between subsidence and potash mining in the WIPP vicinity are discussed in Powers (1993). 29 From data in this report, potash mining was shown to have caused significant subsidence at 30 mines close to the WIPP. Two benchmarks over the Mississippi Chemical Corporation mine 31 measured relative to Carlsbad show 10- and 40-inch (25.4- and 102.7-centimeter) movement 32 downward from 1977 to 1981. Powers (1993) also discusses mining effects on surface 33 subsidence at other mines and correlated a relationship between mining and the surface area 34 effects. This effect is of importance to WIPP monitoring in that estimations of area mining 35 and WIPP mining can be calculated into the subsidence predictions. 36 37 From Powers (1993), "In May, 1982, the NGS placed and leveled 15 additional high-quality 38 benchmarks along a north-south line across the position of WIPP 12 (1 mile [1.6 kilometers] 39 north of WIPP surface facilities) and the underlying brine reservoirs in the Castile Formation." 40 After testing and fluid production of approximately 27,058 barrels of brine from the brine 41 reservoir, the NGS resurveyed these benchmarks in January, 1983. According to Powers 42

**Title 40 CFR Part 191 Compliance Certification Application** 

43

(1993), "The major difference in elevation across these 15 benchmarks from May, 1982 to

Title 40 CF	R Part 191 Compliance Certification Application	
January, 1983, is about 6 to 7 r approximate position of the W	nillimeters between the north end of the line and the IPP."	
MON.6.1.4 Subsidence Predic	etions .	
Subsidence predictions as a res	sult of mining can also be calculated empirically. Te	abriques
<u> </u>	tional Coal Board, and profile and influence function	-
	used by mining. The influence function technique ca	
	ar type mining, which is the type of mining used at the	
	Four studies have been performed that have calculated	
	ults are found in the Final Environmental Impact Sta	
-	Safety Analysis Report (FSAR) (DOE 1990), Sandia	
	mparison with 40 CFR Part 191 (WIPP Performance	
	d the Backfill Engineering Analysis Report (BEAR) (	
	each report's maximum subsidence predictions:	
MAXIMUM SUBSIDENCE P	REDICTIONS	
FEIS		
70-percent backfill density	1-foot (0.3-meter) subsidence	
50-percent backfill density	1.6-foot (0.5-meter) subsidence	
No backfill	3.28-foot (1.0-meter) subsidence	
FSAR		
Shaft pillar area	1- to 1.2-foot (0.3- to 0.38-meter) subsidence	_
(backfill type and amount not s	specified)	
SNL		IN IN
35° angle	0.3-foot (0.09-meter) subsidence	
25° angle	0.4-foot (0.13-meter) subsidence	
25 aligie	0.4-1007 (0.13-meter) subsidence	
BEAR		
No backfill	1.3- to 2-foot (0.40- to 0.60-meter) subsidence	
Highly compacted backfill	1- to $1.7$ -foot (0.30- to $0.52$ -meter) subsidence	
MON.6.1.5 Current Work in S	Subsidence Monitoring	
-		
Current subsidence work inclu-	des annual monitoring, a proposed NGS, and a satell	ite
positioning survey. The WIPP	Subsidence Monitoring Program is performed annua	ally
	he data, development of a database, and analysis of su	-
characteristics at the WIPP site	. The program includes surface subsidence monitori	ng
<u> </u>	ling loops through approximately fifty monuments (S	• ·
Subsidence monitoring surveys	s include Global Positioning Satellite and surveys of	the
Subsidence monitoring surveys	s include Global Positioning Satellite and surveys of	the

Subsidence monitoring surveys include Global Positioning Satellite and surveys of the
 S-Caps. Figure SMP-1 (see Appendix SMP) identifies approximately 50 benchmarks (those

1	designated "S" and "PT") distributed throughout the area of influence of the repository and
2	excavated support regions. The annual survey is completed so as to achieve closures that
3	exceed a minimum standard of Second Order Class II for vertical control surveys. State of the
4	art digital leveling technology is employed for all subsidence surveys. From 1996 onward, the
5	survey is being performed to yet higher standards to allow for upgrading the precision of
6	measurements.
7	
8	Maintenance and calibration of equipment used for monitoring is addressed in Section 2.4.4 of
9	the Westinghouse Waste Isolation Division Quality Assurance Program Description, (see
10	Appendix QAPD). For subsidence measurements, maintenance and calibration are performed
11	by the equipment vendor in accordance with national standards. Equipment is only procured
12	from, maintained, and calibrated by vendors on the WIPP approved Qualified Supplier's List.
13	
14	Data, plots, graphics, and reports generated as a result of the subsidence surveys are reviewed
15	by cognizant technical engineering personnel to ensure their adequacy and accuracy in
16	accordance with DOE and DOE/WIPP Quality Assurance Review procedures.
17	The WIPP currently monitors the existing benchmarks as indicated in Figure SMP-1 (see
18	Appendix SMP) on an annual basis (drawing by John West Engineering Co., 1-11-93).
19	
20	MON.6.1.6 Future Work on Subsidence Monitoring
21	
22	A NGS survey was performed in 1996 however the final report has not yet been published.
23	The current plan is to resurvey about every 10 years. The last NGS survey was performed in
24	1982.
25 26	MON 6.1.7 Define Lice of Subsidence Surveys for Postelesure Monitoring
26 27	MON.6.1.7 Define Use of Subsidence Surveys for Postclosure Monitoring
27	This report assumes that substantial work will be performed during the operational phase to
28 29	gather subsidence information and data. This data will be used to relate expected subsidence
30	over time for various scenarios of repository performance. The effects of petroleum
31	production, mining, and geological subsidence must be accounted for in these scenarios.
32	These estimates would be compared to actual measurements.
33	
34	During the operational phase, the current benchmarks and new benchmark network will be
35	used to gather baseline data. After the operational phase, however, decommissioning of the
36	surface facilities and erection of active and passive controls will eliminate some of this
37	network. For this reason, during the decommissioning, damaged or lost stations should be
38	replaced. Additional stations may be necessary to compensate for line-of-sight losses incurred
39	as a result of the proposed passive permanent markers. It is expected that analysis may have
40	determined subsidence estimates at specific locations; these locations should be included in
41	the benchmark network.
42	
43	After decommissioning and adjustment of the benchmark network, a Class 1 leveling survey
44	will be performed to determine baseline data. The network will be monitored after closure

profile along the line surveyed. Figure MON-6 details the basic seismic surveying technique.
MON.6.2.1 Advantages of Seismic Reflection and Refraction Surveys
One advantage of this technique is the abundance of existing data. Numerous petroleum companies have performed seismic surveys in the WIPP area and several other surveys were performed during site selection (Powers et al. 1978; included in this compliance application a Appendix GCR). This data can be used as a reference to detect changes by comparison with new data. The quality of the data is good for lower structures but is not as useful above the 3,000-foot (914-meter) level (Appendix GCR).
Seismic surveys are nonintrusive and require no permanent devices to be installed at the site. Seismic surveys are relatively inexpensive.
MON.6.2.2 Disadvantages of Seismic Reflection and Refraction Surveys
Basic disadvantages of this technique include data quality and interpretation. This technique is sensitive to noise and equipment set-up. The data must be electronically processed,
October 1996 MON-42 DOE/CAO 1996-2

and until monitoring is determined to be no longer necessary. The monitoring frequency is to 1 be every third year for the first 15 years. During this time, the data will be compared to the 2 previous trends and if no important anomalies are found, the monitoring frequencies will be 3 adjusted to 10-year intervals. 4

MON.6.2 Seismic Reflection and Refraction Surveys 6

7 Seismic reflection and refraction surveys are used to determine the depth, thickness, 8 composition, and physical properties of geologic layers. Data from the survey can locate 9 specific horizons such as water tables, clay layers, and bedrock. This technology can be used 10 to map the geological structures of large areas at great depths. Survey results are often used 11 by geologists to locate specific geologies that may contain hydrocarbon reserves. 12

13

5

14 This method uses seismic wave transmissions to determine geologic structure depth and

composition. Seismic waves travel at different velocities depending on the soil and rock type. 15

Hard and dense rock have higher wave velocities than soft and less dense rock. Seismic 16

waves can travel through, reflect, or refract off of geological structures. Some of the wave 17

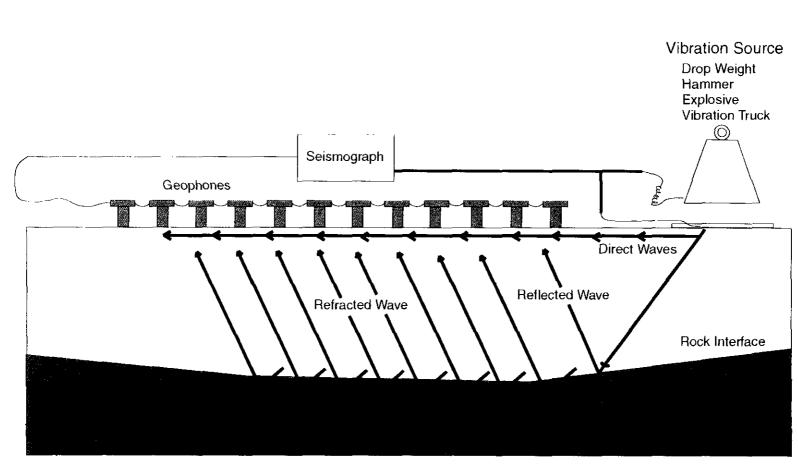
- energy will travel along the layers. This phenomena is used to determine depth and 18 composition of the strata by measuring the return time of an induced wave generated at the 19
- surface and reflected and refracted back from the underlying strata. 20 21

This technique measures wave travel times through a sensor array called geophones placed 22 over the area of interest. A seismic wave is generated by dropping a weight (anything from a 23 hand sledge to truck-mounted ram), or by using high explosives. A seismograph is used to 24 amplify and record the data. By using various seismic wave input energies, sensor array 25 spacings and numbers, specific depths can be mapped. The map corresponds to a geological 26 urveying technique. 27

29

37

28


- installed at the site. 38 39
- 40 41

42

43



DUE/CAU 1996-2184



CCA-MON003-0

Title 40 CFR Part 191 Compliance Certification Application



Figure MON-6. Seismic Reflection and Refraction Survey Concept

1

# THIS PAGE INTENTIONALLY LEFT BLANK



1	conditioned, and interpreted by an experienced geologist. Interpretation is an art form and no
2	two interpretations are the same (Griswold 1977). This can create repeatability errors if the
3	surveys are repeated on the same geology. The results are usually compared to core samples
4	to verify the interpretation and validate the results.
5	
6	Seismic surveys use equipment that allows for many variations in how data are collected. For
7	comparison reasons, surveys must be performed using similar equipment set-ups, that is, array
8	spacings, line locations, and data conditioning. Any variations in the technique and
9	equipment must be accounted for in the interpretation of the data to ensure that changes
10	caused when different equipment is used for repeated surveys are not interpreted as geological
11	changes.
12	
13	Relatively thin strata and layers of similar densities cannot be distinguished. Because the
14	technique is based on wave velocities, layers of material that may have different chemical and
15	geological characteristics, but similar velocity components, cannot be differentiated.
16	
17	MON.6.2.3 Past Seismic Reflection and Refraction Survey Work
18	
19	During the siting process for the WIPP, several geophysical techniques were used to gather
20	geological data that would identify a suitable site location.
21	
22	From 1976 to 1978, SNL conducted three surveys totaling 79 line miles (127 kilometers) of
23	data, of which 72 line miles (116 kilometers) were over or near the WIPP site (Hern et al.
24	1978). The first survey consisted of three lines totaling 24.98 line miles (40.47 kilometers) of
25	conventional petroleum style data and was collected from petroleum companies. The other
26	two surveys were conducted using short geophone spacing and high signal frequency for
27	better shallow field resolution above 4,000 feet (1,220 meters) (Appendix GCR). One of
28	these surveys totaled 47.04 line miles (67.65 kilometers) involving 13 lines. The third survey
29	included 7.5 line miles (12 kilometers) of profiling run along crossing lines through the site
30	(Griswold 1977; Hern et al. 1978).
31	
32	Approximately 189 line miles (304 kilometers) of older (1950s to 1960s) seismic surveys
33	performed by Shell Oil Co. were purchased from a brokerage firm (G.J. Long Associates
34	1976). Exxon allowed 196 line miles (315 kilometers) of their data to be viewed at their
35	office, Amoco allowed 513 line miles (825 kilometers) of data to be viewed (G.J. Long
36	Associates 1976). This data were considered proprietary and could not be distributed to other
37	sources. All of the listed data were gathered and interpreted during 1976 (Griswold 1977).
38	Results of the data were used to map the geological layers around the WIPP site. These maps
39	are found in WP 02-9, FSAR Section 2.7 (DOE 1990).
40	
41	In 1976, attempts were made to perform a high-resolution shallow survey using weight drop
42	techniques. This survey produced data that was not interpretable when compared to known
43	geological information (Hern et al. 1978).
44	

1 2 3 4 5 6 7 8	In 1979, an extensive seismic survey was performed that profiled lines directly over the WIPP site boundaries in north-south and east-west patterns. The north-south lines were spaced at 0.25-mile (0.4-kilometer) intervals and the east-west lines were spaced 0.5-mile (0.8-kilometer) apart in Zone 2. In the areas between Zones 2 and 3, the lines were spaced farther apart. The north-south lines were separated by 0.5-miles (0.8-kilometers) and the east-west lines were spaced at one mile (1.62 kilometers). This survey used the same basic parameters as the original Sandia National Laboratories (SNL) survey with closer line spacing. The intent was to improve the accuracy of the data above the Salado.
9 10 11	MON.6.2.4 Current Seismic Reflection and Refraction Work
12 13	No seismic surveys are being performed.
14 15 16	MON.6.2.5 Define Uses for Seismic Reflection and Refraction Surveys in Postclosure Monitoring
17 18 19 20 21 22 23	The seismic method determines the difference in geology by measuring the velocity of a wave through the rock. Any physical change in the rock is accompanied by a corresponding change in its velocity. Seismic surveys can be used to map the repository at various times. The specific depths and densities of various formations can be mapped and compared to data generated in the future to evaluate the repository performance. Changes in the strata, such as changes in aquifer depth and strata density changes, can be determined.
24 25 26 27 28 29 30 31	After the repository is sealed and the facility is decommissioned, a seismic survey could be performed to performed over the repository and surrounding area. This survey could be performed to provide good resolution above and below the repository. The survey results and raw data could be documented and all interpretations of the data could be documented. The results and data could be archived so baseline data can be used for comparison to future seismic data if the need arises. The baseline data will help identify changes in the geology surrounding the facility that could help determine if the repository performance is acceptable. The survey could be performed after closure and will not be resurveyed unless new data are required.
32 33 34	The following are requirements for seismic monitoring uses in postclosure monitoring.
35 36	• Archive data in at least two permanent formats,
37 38	• Line surveys will be referenced to benchmarks in the subsidence network,
39 40	• All data reduction programs will be included in the archive data,
41 42 43	• The exact location for the survey will be in accordance with the recommendation of an experienced geologist, and

• Research will be conducted to identify methods to improve repeatability in geophone placement.

# MON.6.3 Gravitational Surveys

The gravity survey method maps small variations in the earth's gravitational field. These variations result from mass and density difference in the subsurface lithography of the earth's crust. Interpretation of the data from a gravity survey can detect structural displacement in the strata (Barrows et al. 1983). The survey is performed by using a gravimeter. The instrument measures the gravity intensity at a point. The data is expressed in milligal, where a gal is an 10 acceleration of 1 centimeter per square second. Standard equipment is accurate to within a tenth of a milligal. 12

13 14

15

16

17

18

19

21

22 23

24 25

26

27 28

11

1

2 3

4 5

6

7

8

9

MON.6.3.1 Advantages of Gravitational Surveys

This technology is helpful in determining the depth and area of various geological anomalies. In itself, gravity surveys are not concise, but aid the researcher in determining areas (anomalies) that should be explored using other geophysical techniques to determine the specifics of the anomaly.

20

The gravity survey is nonintrusive and relatively inexpensive when compared to other geophysical monitoring techniques.



## MON.6.3.2 Disadvantages of Gravitational Surveys

Gravity surveys do not provide the type of information that allows a geologist to determine the exact geological description and location of the strata surveyed.

This technique is very dependent on placement of the gravimeter. Placement errors can cause 29 variability in results if the survey is repeated. For repeatability, exact placement of the 30 gravimeter must be recorded and verified. This variation is not as pronounced when the 31 results are mapped over a large area. 32

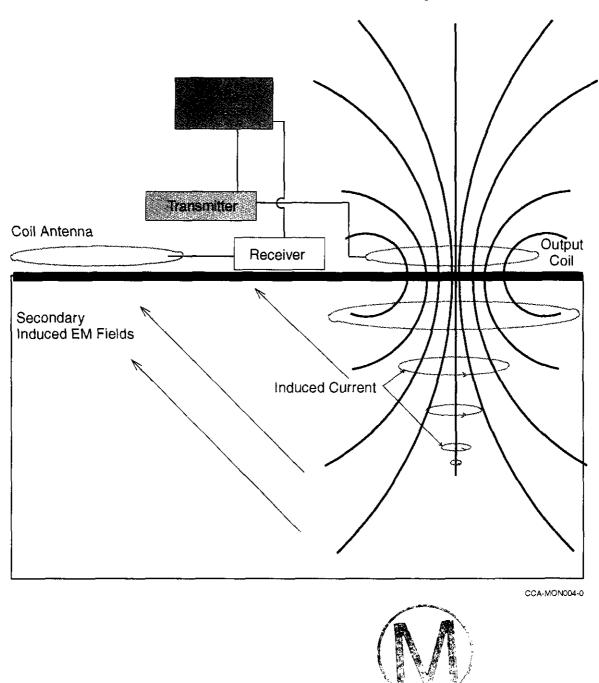
33

The data from the gravimeter is sensitive to surface structure, elevation, geographic latitude, 34 and solar and lunar tides (Barrows et al. 1983). Corrections must be made for the terrain and 35 usually cause an error of  $\pm 0.3$  milligal (U.S. Department of the Interior [DOI] 1981). 36 Surveying data point position and altitude is half the effort of the gravity survey. This method 37 is prone to human error because manual recording is used. The data is often edited by 38 reviewing the data and deleting any suspected transcription errors. 39

40

41

MON.6.3.3 Past Gravitational Survey Work


42 During the siting phase a regional gravity control was purchased in 1976, from a geophysical 43 company (Griswold 1977, DOE 1983). Over 3,000 miles (4,800 kilometers) of gravity data 44

were collected in the area as part of various hydrocarbon exploration surveys (Westinghouse 1 Electric Corporation (WEC) 1990, Final Safety Analysis Report (FSAR) 2.7-27). Also, two 2 gravity surveys, the main site and the reconnaissance profiles, were conducted by SNL. Three 3 smaller areas within the main site survey were resurveyed in greater detail to provide 4 information on suspected anomalies. 5 6 The main site survey covered approximately 8.5 square miles (13.7 square kilometers). The 7 lines were spaced 0.6 miles (0.27 kilometers) apart and ran north-south with the stations 8 spaced at 0.18-mile (0.09-kilometer) intervals (Barrows et al. 1983). During this survey, an 9 anomaly was discovered and a borehole was drilled in that area. This area was surveyed in 10 greater detail and covered an area 1,164 feet by 679 feet (355 meters by 207 meters). The 11 stations were spaced in a grid 97 feet (30 meters) apart. Two other smaller areas were 12 resurveyed to provide enhanced detail. 13 14 These data were used to detect anomalies in the strata and develop an interpretation of the 15 disturbed zone. However, the disturbed zone data was inconclusive (Barrows et al. 1983). 16 Areas surveyed detected some karst development. A gravity contour map of the WIPP site 17 areas surveyed is found in Barrows et al. (1983). 18 19 20 MON.6.3.4 Current Gravitational Survey Work 21 No gravitational survey work is currently being performed by the DOE. 22 23 MON.6.3.5 Define Uses of Gravitational Surveys for Postclosure Monitoring 24 25 Gravity survey data could be included in the baseline database. All past surveys could be 26 included along with extensive documentation defining the equipment, procedures, and data 27 collection and processing techniques used. Surveys could be performed over the repository 28 after closure and decommissioning, to provide baseline data for the repository. The original 29 gravity survey data will not include the influence of over 6 million cubic feet (170 thousand 30 cubic meters) of waste, so a new survey would be needed to provide a baseline after closure. 31 32 **MON.6.4** Electromagnetic Conductivity Surveys 33 34 The term electromagnetic conductivity is used by many geological companies to describe 35 various geophysical equipment. For this report, the term is defined as a method that measures 36 subsurface conductivity by low-frequency electromagnetic induction. This method uses a coil 37 placed on the surface that transmits electromagnetic pulses that induce eddy current loops in 38 the layered strata below the transmitting loop. The induced loop currents are in theory directly 39 proportional to the resistance of the strata. The induced current produces a secondary field 40 current that can be sensed by a receiving coil placed a fixed distance from the transmitting 41 coil. The reading is a bulk measurement of conductivity of the strata directly below the 42 transmitting loop to the effective depth of the instrument. The instruments effective depth is 43 related to the distance between the transmitting and receiving coils. The electromagnetic 44

system usually measures conductivity of the materials in millimhos per meter and is easily
converted to resistivity. Conductivity is the reciprocal of resistivity.
The electromagnetic system determines the conductivity of the strata that is related to the soil
and rock geophysical and geochemical properties. Properties such as porosity, permeability,
concentrations of colloids and dissolved electrolytes in the pores, and conductive minerals all
influence conductivity, but the most influential factor is water content. Because water is the
main factor, aquifers and brine pockets can be detected. Pipes, waste containers, metallic
debris, and wire lines can also be detected.
Electromagnetic systems can be used to profile and map strata. Both stationary and mobile
systems are available. Mobile systems are capable of taking continuous readings. A diagram
of the basic system configuration is shown in Figure MON-7.
NON (41 Advantages of Electrometric Oc. 1. divite St.
MON.6.4.1 Advantages of Electromagnetic Conductivity Surveys
The electrometric method is perintensive and any detect being a second starts by
The electromagnetic method is nonintrusive and can detect brine occurrences, strata layers
with differing physical properties, and aquifers. Mapping of an area can be compared to
subsequently acquired data to determine changes such as brine movements. The depth and
area of brine pockets can be determined which can then be used to estimate the volumes of the
pockets. Electromagnetic surveys may be used to locate waste after placement.
The electromagnetic method does not require ground contact and the measurements can be
taken continuously. Methods of this nature have good repeatability. Measurements can be
made at ground level or from aerial surveys.
MON.6.4.2 Disadvantages of Electromagnetic Conductivity Surveys
Electromagnetic technology falls short in data interpretation when a highly resistive layer is
sandwiched between two highly conductive layers. Strata can have the same relative
conductivity but be entirely different geologically. This method is not concise enough to be a
stand-alone method, but can be used along with other geophysical techniques to interpret the
strata.
The results can vary with ground moisture content. Results after substantial rains are
significantly different than those performed after prolonged droughts. Interpretation of the
data must account for these variations.
MON.6.4.3 Past Electromagnetic Conductivity Survey Work
Several electromagnetic type surveys were performed by SNL. One survey was initiated to
map brine occurrences in the strata above and below the repository. The survey measured 36
locations in a 0.9- by 0.6-mile (1.5- by 1.0-kilometer) grid directly over the repository. Two

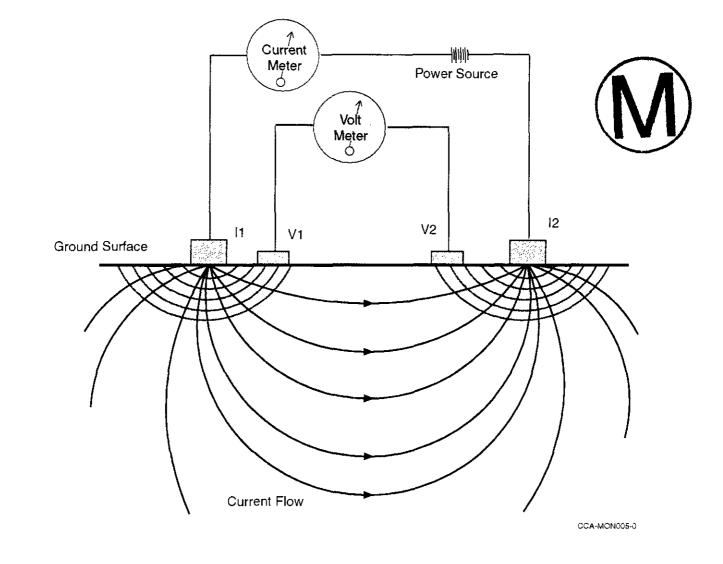
DOE/CAO 1996-2184

1	borehole. A calibration measurement was made at ERDA-9. The final interpretation of the
2	survey data details brine occurrences. These results correlated well with the depths of the
3	brine occurrences found at WIPP-12 and ERDA-9 (Earth Technology Corporation 1988).
4	
5	When comparing the results of electromagnetic survey data with borehole logs, the accuracy
6	of determining the depth to brine is better than 246 feet (75 meters) at depths between 3,280
7	to 4,920 feet (1,000 to 1,500 meters).
8	
9	Aeromagnetic survey maps are available from the U.S. Geological Survey (Map GP-861,
10	Carlsbad/West Texas) and Aero Service Library (No. 43-6, Carlsbad/West Texas) (Elliot
11	Geophysical Co. 1976).
12	
13	MON.6.4.4 Current Electromagnetic Conductivity Survey Work
14	
15	No electromagnetic work is currently being performed.
16	
17	MON.6.4.5 Define Uses of Electromagnetic Conductivity Surveys for Postclosure
18	Monitoring
19	
20	Electromagnetic surveying is capable of detecting water or brine occurrences, and can
21	differentiate layers with varying physical properties. This technique could be used to monitor
22	the facility after closure to determine if brine has migrated into the shafts, boreholes and/or
23	repository.
24	
25	The performance of the shaft, borehole seals, and boreholes could be monitored to determine
26	if they are maintaining the isolation between the aquifers in the Rustler Formation. The
2 <b>7</b>	repository could be mapped directly after the repository is sealed and included in the baseline
28	data to be used for comparison at a later date.
29 [·]	*
30	MON.6.5 Resistivity Surveys
31	
32	The resistivity method is similar in nature to the electromagnetic method. Resistivity
33	measures the resistance of the rock and electromagnetic measures the conductance.
34	Resistance is the reciprocal of conductance. The resistivity of the rock and soil is influenced
35	by the same factors listed in the previous section for conductivity. By varying the electrode
36	spacing geometries and currents, different parameters can be measured. Two specific
37	methods used during WIPP siting are called Schlumberger sounding and gradient array
38	profiling.
39	
40	The resistivity method uses four sets of electrodes on the surface, spaced in a specific
41	geometry. Two electrodes are energized to create a current through the strata between the
42	electrodes. The second pair of electrodes measures the potential produced from the first pair.
43	The strata's resistivity can be calculated from the potential and electrode geometry and
44	spacing.



Primary Electromagnetic Fields

Figure MON-7. Electromagnetic Survey Technique


# THIS PAGE INTENTIONALLY LEFT BLANK



	Title 40 CFR Part 191 Compliance Certification Application
1 2 3 4 5	As with the other types of geophysical monitoring methods, resistivity measurements can be used to perform sounding and profiling. Profiling maps the changes in the subsurface resistivity horizontally. Sounding can detect vertical changes in subsurface resistivity. The interpretation of the results can be used to determine the depth and thickness of geologic layers of different resistivity. This method can detect soil thickness and depth to aquifers or
6	brine layers. A diagram describing the basic system configuration is shown in Figure MON-8.
7	
8	MON.6.5.1 Advantages of Resistivity Surveys
9 10 11	The gradient array method is a relatively simple method. The electrodes are separated at large distances which enables economical mapping of large areas.
12	distances which chapters contained mapping of large acas.
13 14	The advantages of this method are identical to the electromagnetic method.
15	MON.6.5.2 Disadvantages of Resistivity Surveys
16	Variations in placement will give differing results if the survey is repeated in the same area
17 18 19 20 21	Variations in placement will give differing results if the survey is repeated in the same area. The resistivity surveys require direct ground contact and cannot be performed continuously. The condition of the surface layer can affect the results because variation in the soils moisture content can be detected. Measurements performed shortly after rains will be significantly different than measurements taken after prolonged droughts. However, this can be accounted
22 23 24	for in the interpretation of the results. Resistivity also has the same disadvantages as the electromagnetic method.
24 25 26	MON.6.5.3 Past Resistivity Survey Work
27 28 29 30 31 32	Extensive resistivity surveys were conducted during the siting of the WIPP from 1976 to 1978. Areas around suspected breccia pipes and sinks (off-site) were surveyed to determine if resistivity surveys could be used to detect these structures within the WIPP site. All zones of the WIPP site were surveyed. Mining Geophysical Surveys, Inc. performed 53 Schlumberger array soundings and approximately 391 line miles (629 kilometers) of gradient array profiling (9,880 measurements) (Elliot Geophysical Co. 1977).
33 34 35	MON.6.5.4 Current Resistivity Survey Work
35 36 37	No resistivity work is currently being performed.
38	MON.6.5.5 Define Uses of Resistivity Surveys for Postclosure Monitoring
39 40	This technology can be used along with electromagnetic techniques to gather data
40	immediately after the repository is sealed. Both profiling and sounding would be performed
42	to produce geological maps of the strata's resistivity. When the surveys are made, the exact

43 locations and methods used could be carefully documented. If possible, research could be

-	ed to develop a system for electrode placement to ensure good re	
survey	rs. This data would be documented in the baseline database for t	ruture comparison.
MON	6.6 Environmental Monitoring	
	or David on mental monitoring	
Enviro	onmental monitoring of the WIPP repository will be performed of	luring the operational
	contamination-and-decommissioning periods. The C&C betwe	÷ •
	o and the DOE requires radiological environmental monitoring	
	inal facility closure. This agreement specifies that the environm	-
progra	m in place during the operational phase must be continued after	closure and
decom	missioning for at least two years, and that an abbreviated progra	am with a limited
numbe	er of radiological air, soil, water, and background samples be con	ntinued for the
follow	ing three years.	
	ostelosure environmental monitoring program is required to incl	ude the following (DO
1994a)	):	
	Radiological Environmental Monitoring (first two years after d	lecontamination and
·	decommissioning)	
	decommissioning)	
	- Airborne particulate	
	lo-vol sampling, eight stations	
	- Vegetation	
	four sites	
	- Beef	
	annual muscle samples if available	
	- Game animals	
	annual muscle samples of rabbits and quail.	· ·
	- Soil samples	<u>_</u>
	<ul> <li>annual, multiple samples at multiple depths at six locations</li> <li>Surface and drinking water</li> </ul>	8.
	annual surface water samples from 12 major bodies of surf	face water in the vicini
	of the site (drinking water will not exist after decontaminal	
	decommissioning)	
	- Groundwater	
	annually, one sample from eight of the wells within the 16	sections boundary take
	from the Culebra Dolomite.	-
	- Aquatic foodstuffs	
	samples of catfish taken from the Pecos River and Brantley	y Lake and analysis
	annually.	
	- Sediment sampling	
	annual samples taken from the Hill and Indian tank and the	e Pecos River near
	Artesia and Malaga, New Mexico.	



# Figure MON-8. Resistivity Survey Concept

## THIS PAGE INTENTIONALLY LEFT BLANK



]	• Abbreviated radiological environmental monitoring (three, four, and five years after
,	decontamination and decommissioning).
2	
4	- Airborne particulate
-	intermittent operation of the state-operated high-volume air sampling stations.
(	- Soil
	four annual soil surface samples.
8	- Water
<u> </u>	four annual well water samples.
10	
1	Only the radiological environmental monitoring techniques that apply after final closure are
12	included. Items such as effluent monitoring at the exhaust shaft were not included because
13	they do not apply after final facility closure.
14	Environmental monitoring has been an ongoing program since the WIDD's incention
11 10	Environmental monitoring has been an ongoing program since the WIPP's inception.
11	environmental monitoring plan was created. The current operational environmental
18	monitoring plan is detailed in the Waste Isolation Pilot Plant Environmental Monitoring Plan,
19	WIPP/DOE 94-024 (DOE 1994a) and the Waste Isolation Pilot Plant Site Environmental
20	Report for the Calendar Year 1993, DOE/WIPP 94-2033 (DOE 1994b).
- 2	
22	MON.6.7 Direct Repository Monitoring
23	
24	From earlier discussions, no proposed postclosure monitoring techniques include technologies
25	to directly monitor the repository. This is due to the inherent difficulties imposed by the
20	noninvasive requirement. No wiring or boreholes will be used to connect monitoring
27	equipment in the repository to the surface.
28	
29	The U.S. Bureau of Mines and commercial companies throughout the world are currently
30	researching techniques to communicate through the strata to mine working areas using very-
3	low frequency and ultra-low frequency electromagnetic radiation. Several companies have
32	developed mine paging systems that use very-low frequency to warn workers within the mine
33	using a system placed on the surface. One system can transmit messages with up to 32
34	characters to mobile mine pagers. This technology shows promise in remote instrumentation
3.	communication that could directly monitor the repository. It has been demonstrated in other
30	salt mines that communication from the surface to the depth of the WIPP repository is
3'	possible.
31	
39	Recently, researchers have started to investigate methods to remotely monitor the sealed
4(	rooms and panels. This work uses very-low frequency technology to link sensors and
4	equipment in sealed rooms to the data recorder without a hardwired link. Current work is
42	focused on communication from where the link between the transmitter and receiver is only
4	10 to 33 feet (3 to 10 meters).
44	

1 2 3 4	Very-low frequency could be used to transmit data from the surface to equipment located in the repository but the problem lies in communicating the sensor data to the surface. The power required to transmit between the surface and the underground using the current technology is related to the strata conductivity, the output power at the transmitter, and the	
5	antenna design. Tests performed in actual mines used large loop antennas on the surface to	
6	transmit the signal. Tests have shown that loop diameter is more important in transmission	
7	efficiency than output power. Antennas ranging from 98 feet to over 328 feet (30 meters to	
8	over 100 meters) in diameter have been used (DOI 1991).	
9		
10	There are many problems that must be overcome to directly monitor the repository after	
11	closure. Some of these problems are listed below.	
12	Future sensor and transducer calibration would not be possible,	
13	• Future sensor and transducer calibration would not be possible,	
14		
15 .	• Sensor longevity in the repository environment is not likely,	
16		
17	• Data collection and transmission power requirements could be problematic, and	
18		
19	• Antenna locations and sizes could pose issues with regard to other surface structures	
20	and activities.	
21		
22	MON.6.7.1 Sensor Calibration	
23		
24	Over time, most sensors, such as pressure, gas analyzer, and extensometer sensor and	
25	transducer, experience some change in resolution or drift. Any type of sensor and transducer	
26	used would need to operate for 100 years without recalibration. To overcome this problem,	
27	redundant sensors, sensor drift calculations, and accessible sensors as standards could be used	
28	to limit the induced errors. However, this would not ensure accuracy over the required time	
29	frame.	
30		
31	MON.6.7.2 Sensor Longevity	
32		
33	The sensors used for postclosure monitoring would be required to operate in a salt/brine	
34	environment for over 100 years. This imposes the biggest obstacle in direct repository	
35	monitoring. Corrosion, oxidation, and various chemical reactions would easily limit the life	
36	span to less than 50 years.	
37		
38	MON.6.7.3 Data Collection and Transmission Power Requirements	
38 39	had the man concerned and reasons of the requirements	
40	A power source that could operate for the time required is not currently available. Battery	
40	systems have limited shelf lives and capacities. Lithium-type batteries have the longest shelf	
41	life of the common battery types. Standard shelf lives of five to 10 years at their rated	
42 43	capacity is standard with some manufacturer's claiming 80-percent capacity after 15 years.	
	Because the capacity requirements are dependent on the equipment load, the highest current	
44	because the capacity requirements are dependent on the equipment load, the ingliest current	

#### requirement would occur during data transmittal. From experimental work, an estimate of at 1 least 350 watts may be required to transmit to the surface. This can be accomplished with 2 standard power sources for the short-term, but other currently unavailable methods of power 3 generation would be required for the long-term. 4 5 One potential method is power transmission and retention. Power could be transmitted from 6 the surface using ultra-low frequency energy and an antenna would intercept this energy and 7 store it in capacitors or a special battery. Because the system could be charged for long 8 periods of time between data transmissions, only a small amount of surface transmitted power 9 is required. The problem with this approach is power storage. 10 11 The chemical nature of rechargeable batteries limits their life span. The effects of oxidation, 12 outgasing, and heat damage will cause a battery to fail. The life span of most common 13 rechargeable (lead acid, gel, and nickel cadmium) batteries is dependent on the number of 14 recharge cycles, the rate of discharge, and charge rates. Under favorable conditions, most 15 rechargeable batteries can last up to 10 years. 16 17 The capacitor is a device that stores energy on two plates separated by an insulator. 18 Capacitors can be designed for this application that would last the required time frame. The 19 problem associated with capacitors is related to power storage capability and size. In 20 comparison, a capacitor and a battery with the same approximate volume do not have the 21 same energy storage capacity. For example, a one-microfarad capacitor charged to 1,000 volts 22 has 0.5 Joules of energy storage, a 500-mAh nickel cadmium (1.2 volts) of similar volume has 23 2,160 Joules of energy storage. A capacitor that has this energy storage potential would be 24 extremely large (4,320 times larger). 25 26 Satellite power sources use nuclear energy to generate power. The systems are not considered 27 off-the-shelf technology. However, work is progressing on a nuclear heat power source using 28 (almost) off-the-shelf technology. One experimental study calls this type of power source a 29 Powerstick (Chmielewski and Ewell 1994). This theoretical device would use a nuclear heat 30 source and a thermopile to generate an electrical potential. The heat source is a common 31 satellite product used to heat instrumentation. The power source is capable of producing 42 32 milliwatts at 15 volts initially and would degrade to 37 milliwatts at 14 volts in 10 years. 33 These power sources could be used to slowly charge batteries and/or capacitors that would 34 then be used for a short duration, high-demand data transmission cycle or in parallel for a 35 higher current source. 36 37 The regulatory issues associated with nuclear power sources have not been researched. If the 38 remotely-handled waste could supply an adequate heat source and WIPP receives remotely-39 handled waste, the regulatory issues may be overcome. 40 41

**Title 40 CFR Part 191 Compliance Certification Application** 

4

The nuclear and thermopile power source technology has not been proven and there is no
prototype as yet. Advances in battery design and the development of this nuclear power
source could eventually allow this technology to power a direct repository monitor.

#### 1 MON.6.7.4 Antenna Location and Size

The size of the antenna may pose a problem in the mine setting. If the antenna is placed inside a room, diameters are limited to a maximum of approximately 328 feet (100 meters). If the antenna can be wrapped around a pillar, the antenna would have a radius of approximately 164 feet (50 meters) but diameters between 32.8 feet and 328 feet (10 meters and 100 meters) would require special provisions. Also, the effects of the metal in the room will increase the power requirement. These problems can be overcome and experimentation would be needed to verify the effectiveness of the antenna design.

10

2

11 From current technology, no known system is currently available that could be used to directly

12 transmit data to the surface without a hardwired link. Extensive research and development is

- 13 needed to develop such a system; however, the systems longevity will be suspect, since actual
- 14 long-term testing could not be accomplished and new technologies are rarely foolproof. For 15 this reason, direct repository monitoring is not recommended at this time for postclosure
- 16 monitoring.
- 10

19

# 18 MON.6.8 Conclusion

20 There is no single geophysical technical exploratory technique that can determine the

21 condition of the surveyed strata. Several techniques are used to gather data to assess the

22 geological structure that is being examined because interpretation of one technique often uses

- data from another. For this reason, no single technique could be used to fully assess the
   repository's condition. One technique can be used as an identifier to alert that a condition
- may exist and other techniques can be used in unison to assess and validate the condition.
- 26 27

From the review of geophysical survey techniques, the best current monitoring technology that can be used for a postclosure monitoring identifier is subsidence. This method is the most

- can be used for a postclosure monitoring identifier is subsidence. This method is the most
   practical because it is a simple, repeatable, low-cost, low-maintenance, low-technology
- 30 approach to monitoring the repository. This method should be used as a primary monitor
- 31 technique for determining that a possible repository performance problem exists. Other

techniques can then be utilized to determine the cause of the problem.

33

A combination of seismic, electromagnetic, resistivity, and gravitational surveys can be used to assess repository performance. However, it is not practical to perform these on a regular basis. These techniques are also not needed if there is good confidence that a performancerelated event will not occur. For this reason, an initial collection of surveys could be compiled and used as a standard to assess future data and perform subsidence monitoring to forewarn of changing conditions that may significantly affect repository performance.

40

42

# 41 MON.7 Postclosure Monitoring Program Summary

Physical, chemical, economical, and technical factors have been included in the conceptual
 approach to designing a practical, yet effective, postclosure monitoring system. The needed



1 2		nation can be obtained from a monitoring system composed of a subsidence network, a oring program, a baseline database, a closure review study, and a subsidence data study.	
3			
4	The fo	ollowing summarizes the postclosure monitoring program.	
5		The DOD will exceed a bandling details of the induction form developments of the	
6	•	The DOE will create a baseline database that includes data from developmental and	
7		operational phase activities.	
8		The DOE will perform a subsidence data study.	
9	•	The DOE will perform a subsidence data study.	
10	•	The DOE will compile subsidence predictions and include any performance	
11 12	•	assessment- developed scenarios of repository performance which fall outside the	
12		baseline subsidence predictions. The DOE will develop proper benchmark locations	
13		over the repository. The subsidence predictions will be developed from the	
15		information available in the Backfill Engineering Analysis Report (BEAR) (WEC	
16		1994c) and from any additional information provided by the performance assessment.	
17			
18	•	The DOE will create a subsidence network over and around the facility.	
19			
20	•	The DOE will perform a closure review study.	
21		1 5	
22	•	The DOE will perform the following surveys to establish baseline data for the baseline	
23		database.	
24			
25		- Seismic survey over the waste panels after final facility closure (one time).	
26		- Resistivity survey over the waste panels after final facility closure (one time).	
27		- Electromagnetic survey over the waste panels after closure (one time).	
28		- Gravitational survey after final facility closure (one time).	
29		- Subsidence survey (throughout the program lifetime).	
30		- Obtain and archive core samples from previous core work (one time).	
31			
32	٠	The DOE will initiate the monitoring program after closure. The DOE will perform	
33		periodic leveling surveys of the subsidence network and develop a schedule for future	
34		surveys. The DOE will perform the radiological environmental monitoring program	
35		for two years and the abbreviated program for an additional three years.	
36			
37	•	The DOE will compare leveling survey data to expected results.	
38			
39	•	The DOE will perform periodic reviews at least every two years during the monitoring	
40		program to evaluate the monitoring schedule.	
41			
42	•	The DOE will perform maintenance on RCRA wells, replacing casings as required or	
43		every 25 years until monitoring ceases. The DOE will monitor in accordance with the	
44		postclosure monitoring schedule and postclosure monitoring plan requirements.	

• The DOE will perform maintenance on subsidence network as required (determined during the leveling surveys).

This monitoring concept is based on current technologies and data for monitoring repository
performance. Future monitoring during the repository development and operational phases
may provide data that lead to the conclusion that postclosure monitoring will not be relevant
or may identify new parameters that must be monitored.

9 The monitoring techniques specified in this report can be used to meet the requirements in the 10 current regulations governing the facility and to monitor performance of the facility. This 11 concept provides for a reliable database against which future monitoring results can be 12 compared.

14 MON.8 QA and Quality Control Requirements

15 Various QA and quality control requirements exist for the DOE and many QA and quality 16 control programs are in place. The WIPP is a DOE facility and as such has specific DOE 17 guidelines for QA and quality control management. These guidelines for WIPP can be 18 19 referenced in the Quality Assurance Program Document, CA0-94-1012, 1996, Revision 1.0. The DOE has agreed to adopt QA and quality control guidance from the American Society of 20 Mechanical Engineers Nuclear Quality Assurance (NQA)-1, NQA-2 Part 2.7, and NQA-3. 21 The EPA also has imposed QA and quality control requirements for the data management and 22 the postclosure monitoring plan, specifically requirements in 40 CFR § 268.6(b (4) and 40 23 CFR § 268.6 (c) (1 through 5). The scientific advisor also has a QA and quality control 24

- 25 program that is used for data collection that impacts postclosure monitoring.
- 26

1

2 3

8

13

For this postclosure monitoring report, all the current and future programs will be conducted under the applicable QA and quality control qualifications described in Chapter 5.0.

29

30 Other QA issues are associated with 40 CFR § 268.6 requirements. This regulation requires

31 the postclosure monitoring plan to contain detailed records of the postclosure monitoring

32 system and data collection and recording procedures. Specifically, "All sampling, testing, and

- analytical data must be approved by the Administrator and must provide data that is accurate
- and reproducible" (40 CFR § 268.6(c)(5)(i)) and, "A quality assurance and quality control
- 35 plan addressing all aspects of the monitoring program must be provided to and approved by
- 36 the Administrator" (40 CFR § 268.6(c)(5)(iii)). The DOE's quality control description for the
- 37 WIPP has been used in all applicable postclosure monitoring program development and shall
- 38 be used for all future actions within the postclosure monitoring program.

1	REFERENCES
2 3 4 5 6	Barrows, L.J., Shaffer, S-E., Miller, W.B., and Fett, J.D. 1983. Waste Isolation Pilot Plant (WIPP) Site Gravity Survey and Interpretation, SAND82-2922. Sandia National Laboratories, Albuquerque, NM.
7 8	Chmielewski, B.C., and Ewell R. 1994. <i>The Powerstick</i> . Jet Propulsion Laboratory. Pasadena, CA: California Institute of Technology.
9 10 11 12 13	DOE (U.S. Department of Energy). 1980. <i>Final Environmental Impact Statement, Waste Isolation Pilot Plant.</i> DOE/EIS-0026, Vols. 1 and 2. Office of Environmental Restoration and Waste Management, Washington, D.C.
14 15 16 17	DOE (U.S. Department of Energy). 1981. State of New Mexico vs. U. S. Department of Energy, <i>Agreement for Consultation and Cooperation</i> . Civil Action No. 81-0363 JB, July 1981 and supplements, revisions, and modifications dated December 1982, March 1983, November 1984, and March 1988.
18 19 20 21	DOE (U.S. Department of Energy). 1983. Results of Site Validation Experiments, TME-3177, Vol. II, p. 47. U.S. Department of Energy, Albuquerque, NM.
22 23 24	DOE (U.S. Department of Energy). 1990. Final Safety Analysis Report. WP 02-9, Rev. 0, May 1990. Westinghouse Electric Corporation, Waste Isolation Pilot Plant, Carlsbad, NM.
25 26 27	DOE (U.S. Department of Energy). 1991. Report of the Geotechnical Panel on the Effective Life of Rooms in Panel 1, DOE/WIPP 91-023. Waste Isolation Pilot Plant, Carlsbad, NM.
28 29 30 31	DOE (U.S. Department of Energy). 1992. Background Water Quality Characterization Report for the Waste Isolation Pilot Plant (WIPP). DOE-WIPP 92-013. Department of Energy, Carlsbad, NM.
32 33 34	DOE (U.S. Department of Energy). 1993. Waste Isolation Pilot Plant Repository Monitoring Program Strategic Plan, DOE/WIPP 93-029. Waste Isolation Pilot Plant, Carlsbad, NM.
35 36 37	DOE (U. S. Department of Energy). 1994a. Waste Isolation Pilot Plant Environmental Monitoring Plan, DOE/WIPP 94-024. Waste Isolation Pilot Plant, Carlsbad, NM.
38 39 40	DOE (U. S. Department of Energy). 1994b. Waste Isolation Pilot Plant Site Environmental Report for the Calendar Year 1993, DOE/WIPP 94-2033. Waste Isolation Pilot Plant, Carlsbad, NM.
41 42 43 44	DOI (U.S. Department of the Interior) Geologic Survey. 1981. A Preliminary Analysis of Gravity and Aeromagnetic Surveys of the Timber Mountain Area, Southern Nevada. Open File Report.

DOE/CAO 1996-2184

October 1996

, , ,

1	DOI (U.S. Department of the Interior) Bureau of Mines. 1991. Ultra Low Frequency
2	Electromagnetic Fire Alarm System for Underground Mines. Report of Investigations RI-9377.
3	Earth Technology Composition 1098 Final Person for Time Demain Flastness and the
4	Earth Technology Corporation. 1988. Final Report for Time Domain Electromagnetic
5	(TDEM) Surveys at the WIPP Site, SAND87-7144. Sandia National Laboratories,
6	Albuquerque, NM.
7	Elliot Coophysical Company, 1076 A Budinging Coophysical Study of a Tugohyte Dike in
8	Elliot Geophysical Company. 1976. A Preliminary Geophysical Study of a Trachyte Dike in
9	Close Proximity to the Proposed Los Medaños Nuclear Waste Disposal Site, Eddy and Lea
10	Counties, New Mexico.
11	Ellist Coophysical Company, 1077 Evaluation of the Despected Les Madañes Musley, Waste
12	Elliot Geophysical Company. 1977. Evaluation of the Proposed Los Medaños Nuclear Waste
13	Disposal Site by Means of Electrical Resistivity Surveys, Eddy and Lea Counties, New Mexico.
14	Mexico.
15 16	EPA (U.S. Environmental Protection Agency). 1986. RCRA Ground-Water Monitoring
	Technical Enforcement Guidance Document, OSWER-9950.1. Washington, D.C.
17 18	Technical Enjorcement Guidance Document, 05 w ER-9950.1. Washington, D.C.
18	EPA (U.S. Environmental Protection Agency). 1988a. Test Methods for Evaluating Solid
20	Waste. Volume 1A through 1C and Volume 2. Field Manual Physical Chemical Methods
20	(3rd Edition). Report EPA/SW-846, September 1988, National Technical Information
22	Service, Springfield, VA.
22	Service, Springheid, VA.
23	EPA (U.S. Environmental Protection Agency). 1988b. Compendium Method TO-14, The
25	Determination of Volatile Organic Compounds (VOCs) in Ambient Air Using SUMMA®
26	Passivated Canister Sampling and Gas Chromatographic Analysis Washington D.C.
20	i assivatea Canister Sampling and Oas Chromatographic Matrysis. Washington, D.C.
28	EPA (U.S. Environmental Protection Agency). 1994. Requirements for Quality Assurance
29	EPA (U.S. Environmental Protection Agency). 1994. Requirements for Quality Assurance Project Plans for Environmental Data Operations. EPA QA/R-5. Quality Assurance
30	Management Staff. U.S. Environmental Protection Agency (Draft Interim Final).
31	Washington, D.C.
32	
33	EPA (U.S. Environmental Protection Agency). 1996a. 40 CFR Part 194: Criteria for the
34	Certification and Re-Certification of the Waste Isolation Pilot Plant's Compliance with the 40
35	CFR Part 191 Disposal Regulations; Final Rule. Federal Register, Vol. 61, pp. 5224 – 5245,
36	February 9, 1996. Office of Radiation and Indoor Air, Washington, D.C.
37	- · · · · · · · · · · · · · · · · · · ·
38	EPA (U.S. Environmental Protection Agency). 1996b. Compliance Application Guide for
39	40 CFR Part 194. EPA 402-R-95-014, March 29, 1996. Office of Radiation and Indoor Air,
40	Washington, D.C.
41	
42	G.J. Long and Associates, Inc. 1976. Report Interpretation of Geological Data Los Medaños
43	and Vicinity Lea and Eddy Counties, New Mexico.
44	

	Title 40 CFR Part 191 Compliance Certification Application
1	Griswold, G.B. 1977. Site Selection and Evaluation Studies of the Waste Isolation Pilot
2	Plant (WIPP), Los Medaños, Eddy County, NM. SAND77-0964. Sandia National
3	Laboratories, Albuquerque, NM.
4	
5	Hern, J.L., Powers, D.W., and Barrows, L.J. 1978. Seismic Reflection Data Report Waste
6	Isolation Pilot Plant (WIPP) Site, Southeastern New Mexico, Vol. I & II. SAND79-0264.
7	Sandia National Laboratories, Albuquerque, NM.
8	
9	Powers, D.W., Lambert, S.J., Shaffer, S-E., Hill, L.R., and Weart, W.D., eds. 1978.
10	Geological Characterization Report, Waste Isolation Pilot Plant (WIPP) Site, Southeastern
11	New Mexico. SAND78-1596. Sandia National Laboratories, Albuquerque, NM.
12	
13	Powers, D.W. 1993. Background Report on Subsidence Studies for the Potash Mines and
14	WIPP Site Area, Southeastern New Mexico. IT Corporation.
15	
16	Sutherland, H.J. and Munson. 1983. Subsidence Predictions for High Extraction Mining
17	Using Complementary Influence Functions. SAND82-2949. Albuquerque: Sandia National
18	Laboratories.
19	
20	WD (WD:90:1003). 1990. R. F. Kehrman letter to J. A. Mewhinney, "Subject:
21	Discontinuation of Environmental Dosimetry Program." July 24, 1990.
22	
23	WEC (Westinghouse Electric Corporation). 1994a. VOC Monitoring Plan. WP 12-6, Rev.
24	1. January 21, 1994. Waste Isolation Division, Carlsbad, NM.
25	NTEC (Next shares Electric Constants) 1004h WOCM is to Only A
26	WEC (Westinghouse Electric Corporation). 1994b. VOC Monitoring Quality Assurance
27	Project Plan. WP 12-7, Rev. 2. January 21, 1994. Carlsbad, NM: Waste Isolation Division.
28	NEC (Nestinghouse Electric Comparties) 10040 Bashfill Engineering Anglusic Banart IE
29	WEC (Westinghouse Electric Corporation). 1994c. Backfill Engineering Analysis Report. IT
30 31	Corporation for WEC.
31 32	WIPP Performance Assessment Division. 1991. Preliminary Comparison with 40 CFR Part
32 33	191, Subpart B for the Waste Isolation Pilot Plant, December 1991. SAND91-0893. Vols.
33	1.2 Sandia National Laboratorias, Albuquerque, NM

- 1-3. Sandia National Laboratories, Albuquerque, NM. 34



## ATTACHMENT

2 3 Attachment 1: MONPAR (Monitoring Parameters)



ۍ انځ نې