Title 40 CFR Part 191 Compliance Certification Application for the Waste Isolation Pilot Plant

Appendix PAR

United States Department of Energy Waste Isolation Pilot Plant

Carlsbad Area Office Carlsbad, New Mexico

Parameters

	Title 40 CFR Part 191 Compliance Certification Application	
	CONTENTS	
AC	CRONYMS	PAR-vii
PA	R.1 Parameter Development Process	PAR-1
PA	R.2 Parameter Distributions	PAR-2
	PAR.2.1 Distribution Types and Applications	PAR-2
PA	R.3 Key to Parameter Sheets	PAR-10
PA	R.4 Parameter Correlation	PAR-12
PA	RAMETER SHEETS	
1	Inundated Corrosion Rate for Steel Without CO ₂ Present	PAR-15
2	Probability of Microbial Degradation of Plastics and Rubbers in the Waste in the	
	Event of Significant Microbial Gas Generation I	PAR-17
3	Biodegradation Rate of Cellulosics Under Brine-Inundated Conditions I	PAR-21
4	Biodegradation Rate of Cellulosics Under Humid Conditions	PAR-23
5	Factor β for Microbial Reaction Rates	PAR-25
6	Residual Gas Saturation - Repository I	PAR-27
7	Residual Brine Saturation - Repository I	PAR-29
8	Wicking Saturation I	PAR-32
9	Log of Intrinsic Permeability - All Clay Shaft Materials I	PAR-34
10	Log of Intrinsic Permeability - Concrete (T = 0-400 yrs) I	PAR-4 1
11	Log of Intrinsic Permeability - Asphalt Shaft Material I	PAR-45
12	Intrinsic Permeability - Shaft Disturbed Rock Zone I	PAR-50
13	Cumulative Probability - Salt Shaft Material I	PAR-56
14	Residual Gas Saturation - All Shaft Materials	PAR-60
15	Residual Brine Saturation - All Shaft Materials I	PAR-63
16	Pore Distribution - All Shaft Materials I	PAR-67
17	Effective Porosity - Halite I	PAR-72
18	Log of Intrinsic Permeability - Halite I	PAR-74
19	Rock Compressibility - Halite I	PAR-78
20	Log of Intrinsic Permeability - Marker Bed 138, Anhydrite Layers a & b, and	
	Marker Bed 139	PAR-81
21	Rock Compressibility - Marker Bed 138, Anhydrite Layers a & b, and Marker	
	Bed 139	PAR-86
22	Relative Permeability Model Number	PAR-90
23	Residual Brine Saturation - Marker Bed 138, Anhydrite Layers a & b, and Marker	
	Bed 139 1	PAR-92
24	Residual Gas Saturation - Marker Bed 138, Anhydrite Layers a & b, and Marker	
	Bed 139 1	PAR-94
25	Pore Distribution - Marker Bed 138, Anhydrite Layers a & b, and Marker	
	Bed 139	PAR-97
26	Initial Pressure - Salado Halite	PAR-99

1	27	Initial Pressure - Castile Brine Reservoir	PAR-101
2	28	Log of Intrinsic Permeability - Castile Brine Reservoir	PAR-104
3	29	Rock Compressibility - Castile Brine Reservoir	PAR-107
4	30	Log of Intrinsic Permeability - Intrusion Borehole Filled With Silty Sand .	PAR-111
5	31	Index for Selecting Brine Pocket Fields	PAR-113
6	32	Waste Particle Diameter in CUTTINGS Model	PAR-116
7	33	Effective Shear Resistance to Erosion	PAR-117
8	34	Mining Transmissivity Multiplier	PAR-119
9	35	Culebra Transmissivity Field Index	PAR-122
10	36	Log of the Distribution of Solubility of Am(III) in Salado Brine	PAR-124
11	37	Log of the Distribution of Solubility of Am(III) in Castile Brine	PAR-126
12	38	Log of the Distribution of Solubility of Pu(III) in Salado Brine	PAR-128
13	39	Log of the Distribution of Solubility of Pu(III) in Castile Brine	PAR-130
14	40	Log of the Distribution of Solubility of Pu(IV) in Salado Brine	PAR-132
15	41	Log of the Distribution of Solubility of Pu(IV) in Castile Brine	PAR-134
16	42	Log of the Distribution of Solubility of U(IV) in Salado Brine	PAR-136
17	43	Log of the Distribution of Solubility of U(VI) in Salado Brine	PAR-138
18	44	Log of the Distribution of Solubility of U(VI) in Castile Brine	PAR-141
19	45	Log of the Distribution of Solubility of Th(IV) in Salado Brine	PAR-144
20	46	Humic Proportionality Constant	PAR-146
21	47	Oxidation State Distribution Parameter	PAR-148
22	48	Climate Index	PAR-150
23	49	Culebra Half Matrix Block Length	PAR-152
24	50	Culebra Advective Porosity	PAR-155
25	51	Culebra Diffusive Porosity	PAR-158
26	52	Matrix Distribution Coefficient for U(VI)	PAR-161
27	53	Matrix Distribution Coefficient for U(IV)	PAR-164
28	54	Matrix Distribution Coefficient for Pu(III)	PAR-167
29	55	Matrix Distribution Coefficient for Pu(IV)	PAR-170
30	56	Matrix Distribution Coefficient for Th(IV)	PAR-173
31	57	Matrix Distribution Coefficient for Am(III)	PAR-176
32			

- 32
- 33
- 34
- 35

		Title 40 CFR Part 191 Compliance Certification Application
1		FIGURES
2		
3	PAR-1.	Logic diagram for possible outcomes and probabilities for the parameter
4		PROBDEG PAR-20
5	PAR-2.	Shaft-Seal System Conceptual Framework PAR-55
6	PAR-3.	Detailed Stratigraphy Near the WIPP Site PAR-77
7		
8		
9		
10		\frown

,

·	Title 40 CFR Part 191 Compliance Certification Application	
	TABLES	
PAR-1.	Brooks and Corey (1964) Materials Parameters - Unconsolidated	
_	Media	PAR-31
PAR-2.	Extent of the DRZ in Terms of Normalized Radius at Mid-Height of	f
	Component	PAR-40
PAR-3.	Extent of the DRZ in Terms of Normalized Radius at Mid-Height of	f
	Component	PAR-49
PAR-4.	Summary of Permeability Test-Interpretations Results from In Situ	
	Permeability Tests Representing Undisturbed Impure Halite	PAR-76
PAR-5.	Summary of Rock Compressibility Test-Interpretations Results from	n In
	Situ Permeability Tests for Undisturbed Halite and Polyhalite Map	
	Units	PAR-80
PAR-6.	Summary of Test-Interpretations Results from In Situ Permeability	
	Tests for Undisturbed Anhydrite Map Units	PAR-84
PAR-7.	Summary of MB139 Permeability Laboratory Test Results	PAR-85
PAR-8.	Summary of Rock Compressibility Test-Interpretations Results from	ı
	In Situ Permeability Tests for Undisturbed Anhydrite Marker Beds.	PAR-89
PAR-9.	Measured Castile Brine Reservoir Formation Pressures	. PAR-103
PAR-10.	Parameter Sampled in LHS Code	. PAR-179
PAR-11.	Borehole, Blowout, and Drill Mud Parameters	. PAR-190
PAR-12.	Borehole (Concrete Plug) Parameters	. PAR-192
PAR-13.	Borehole (Open) Parameters	. PAR-193
PAR-14.	Borehole (Silty Sand) Parameters	. PAR-194
PAR-15.	Borehole (Creep) Parameters	. PAR-195
PAR-16.	Earthen Fill Shaft Material Parameters	. PAR-196
PAR-17.	Rustler Compacted Clay Shaft Material Parameters	. PAR-197
PAR-18.	Asphalt Shaft Material Parameters	. PAR-198
PAR-19.	Concrete Shaft Material Parameters	. PAR-199
PAR-20.	Compacted Salt Shaft Material Parameter	. PAR-200
PAR-21.	Upper Clay Shaft Material Parameters	. PAR-203
PAR-22.	Lower Clay Shaft Material Parameters	. PAR-205
PAR-23.	Bottom Clay Shaft Material Parameters	. PAR-207
PAR-24.	Concrete Monolith Shaft Material Parameters	PAR-208
PAR-25.	Santa Rosa Formation Parameters	. PAR-209
PAR-26.	Dewey Lake Formation Parameters	PAR-210
PAR-27.	Forty-Niner Member of the Rustler Formation Parameters	PAR-211
PAR-28.	Magenta Member of the Rustler Formation Parameters	. PAR-212
PAR-29.	Tamarisk Member of the Rustler Formation Parameters	. PAR-213
PAR-30.	Culebra Member of the Rustler Formation Parameters	. PAR-214
PAR-31.	Unnamed Lower Member of the Rustler Formation Parameters	. PAR-215
PAR-32.	Salado Formation - Intact Halite - Parameters	PAR-216
PAR-33.	Salado Formation - Brine - Parameters	. PAR-217
PAR-34.	Salado Formation - Marker Bed 138 - Parameters	. PAR-218

网络

		Title 40 CFR Part 191 Compliance Certification Application
1	PAR-35.	Salado Formation - Marker Bed 139 - Parameters PAR-219
2	PAR-36.	Salado Formation - Anhydrite Beds a & b, Intact and Fractured -
3		Parameters PAR-220
4	PAR-37.	Disturbed Rock Zone Parameters PAR-221
5	PAR-38.	Waste Area and Waste Material Parameters PAR-223
6	PAR-39.	Waste Chemistry Parameters PAR-224
7	PAR-40.	Radionuclide Parameters PAR-227
8	PAR-41.	Isotope Inventory PAR-233
9	PAR-42.	Waste Container Parameters PAR-235
10	PAR-43.	Stoichiometric Gas Generation Model Parameters PAR-236
11	PAR-44.	Repository (Outside of Panel Region) Parameters PAR-237
12	PAR-45.	Predisposal Cavities (Waste Area) Parameters PAR-238
13	PAR-46.	Panel Closure Parameters PAR-240
14	PAR-47.	Operations Region Parameters PAR-241
15	PAR-48.	Experimental Area Parameters PAR-242
16	PAR-49.	Castile Formation Parameters PAR-243
17	PAR-50.	Castile Brine Reservoir Parameters PAR-244
18	PAR-51.	Castile Brine Fluid Parameters PAR-245
19	PAR-52.	Reference Constants PAR-246
20	PAR-53.	Intrusion Parameters PAR-248
21	PAR-54.	Listing of Parameters Used in BRAGFLO Which Differ From the
22		WIPP 1996 Compliance Certification Application Parameter
23		Database PAR-249
24	PAR-55.	Listing of Parameters Used in PANEL Which Differ From the WIPP
25		1996 Compliance Certification Application Parameter Database PAR-251
26	PAR-56.	Listing of Parameters Used in SWIFT II for GRASP_INVERSE
27		Which Differ From the WIPP 1996 Compliance Certification
28		Application Parameter Database PAR-252
29	PAR-57.	Reference Thicknesses for Hydrostratigraphic Units in BRAGFLO . PAR-253

THIS PAGE INTENTIONALLY LEFT BLANK

	1		ACRONYMS	
	2	415	Air Intake Shaft	
	3		All Illiake Shall	
	4	CCDE	complementary cumulative distribution function	
	5	CDE	completive distribution function	
	0	CH	contact-handled	
	, 8	DOF	Department of Energy	
	0	DR7	disturbed rock zone	
	10	FPΔ	Environmental Protection Agency	
	10	FMT	fracture matrix transport	
	12	GTFM	Graph Theoretic Field Model	
	13	D	identification number	
	14	LANL	Los Alamos National Laboratory	
	15	LHS	Latin hypercube sample	
	16	MB	marker bed	
	17	MU	map unit	
	18	PDF	probability distribution function	
	19	PNL	Pacific Northwest Laboratory	
	20	QA	quality assurance	
•	21	QAP	Quality Assurance Procedure	
	22	RH	remote-handled	
	23	SMC	Salado Mass Concrete	
	24	SNL	Sandia National Laboratories	
	25	SSSPT	Small Scale Seal Performance Tests	
	26	SWCF	Sandia WIPP Central Files	\sim
	27	TRU	transuranic	
	28	TWBIR	Transuranic Waste Baseline Inventory Report	/ R / \
	29	WES	Waterways Experiment Station	
	30	WIPP	Waste Isolation Pilot Plant	
				\sim

٠

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX PAR

Appendix PAR contains documentation (that is, parameter sheets) for the 57 parameters
 which were sampled by the Latin hypercube sample (LHS) code during the performance
 assessment (see also Section 6.1.5 for discussion on probabilistic analyses and Section 6.1.5.2
 for discussion on LHS). The results of the LHS sampling are contained in Appendix IRES
 (Intermediate Results). Additional information relevant to the parameters are contained in
 Appendices MASS, SOTERM, and WCA.

9

l

2

The parameter sheets for the sampled parameters appear in this appendix. In addition, fixed value parameters used in the performance assessment codes are tabulated at the end of
 Appendix PAR. For additional information regarding all parameters, readers are referred to
 the parameter records packages which are contained in the Sandia National Laboratories
 (SNL) Waste Isolation Pilot Plant (WIPP) Central Files (SWCF).

15 16

17

PAR.1 Parameter Development Process

18 The development of parameter values is covered in Quality Assurance Procedure (QAP) 19 Quality Assurance Requirements for the Selection and Documentation of Parameter Values used in WIPP Performance Assessment (QAP 9-2). The process includes documentation of 20 parameter development by those responsible for completion of a particular experimental 21 22 investigation, development of a system design, or by staff involved in the performance assessment modeling process. All of the references pertaining to parameter selection are 23 contained within the three levels of parameter and data documentation: 1) WIPP Data Entry 24 Form 464, 2) parameter records packages, and 3) supporting data records packages. 25

26

The WIPP Data Entry Form 464 is the highest level record documenting parameter development that includes application of statistics and interpretations. The WIPP Data Entry Form 464s include a source section which is a pointer to supporting information including, where applicable, the parameter records package(s). All values provided in Appendix PAR were derived from the WIPP performance assessment parameter database. These numbers may differ slightly from those contained in the Form 464s because of rounding.

33

The parameter records packages include a data and distribution summary, quality assurance (QA) status of the data and related interpretive numerical codes, references to related information, such as SAND reports, test plans, and related SWCF file codes, and, where applicable, a summary on the experimental data collection (that is, method used, assumptions made in testing, and interpretation). The parameter records packages point to the supporting data records packages. The data records packages contain information such as the raw data, analysis, and data interpretation.

41

42 Each WIPP Data Entry Form 464, parameter records package, and supporting data records
43 packages are assigned unique WPO numbers. Copies of the Form 464s, parameter records
44 package, and supporting data records packages are maintained in the SWCF.

1	WIPP perform	nance assessment parameters are classified as follows:	
2 3 4 5	Category 1)	Parameters that do not fall into Categories 2 through 4 but are necessary to WIPP performance assessment calculations.	
6 7 8 9	Category 2)	Parameters representing the inventory of the waste to be emplaced in the WII as defined in the <i>Waste Isolation Pilot Plant Transuranic Waste Baseline Inventory Report</i> (TWBIR) (DOE 1996) (included in this certification application as Appendix BIR).	р
11 12	Category 3)	Parameters representing physical constants (for example, the half-life of a radionuclide, gravitational constant).	
14 15	Category 4a)	Parameters that are assigned based on an assumed correlation of properties between similar materials.	۶. ⁻ .
10 17 18	Category 4b)	Parameters that are model configuration parameters.	
19	PAR.2 Para	meter Distributions	
21 22 23	Probability di parameter. N median, and r	stributions are used to characterize the uncertainty concerning the value of a fumbers that characterize a particular distribution include the range, the mean, mode.	
24 25 26	• Range a and	e. The range of a distribution can be denoted by (a,b), a pair of numbers in whi b are minimum and maximum values of the parameter, respectively.	ch
28 29 30 31	• Mean. a prob nonsy near th	Analogous to the arithmetic average of a series of numbers, the mean value of ability distribution is one measure of the central tendency of a distribution. For mmetrical distributions that are considerably skewed, the mean value may not the median or mode (see below).	f r lie
33 34 35 36	• <i>Media</i> 50th p above	an. The median value of a probability distribution (denoted here by $x_{0.5}$) is the percentile, the value in the distribution range at which 50 percent of all values 1 and below.	ie
37 38	• Mode. maxin	. The mode is the most probable value of the uncertain parameter; that is, the num value of the associated probability density function (PDF).	
40 41	PAR.2.1 Dis	stribution Types and Applications	
+1 42 43	Distributions include: unif	used to characterize uncertainty in parameters of the performance assessment form, cumulative, triangular, Student's-t, delta, normal, loguniform,	

- logcumulative, lognormal, and constant. -44

1 2	Uniform Distribution		
3	Density Function:	$f(x) = \frac{1}{B-A}$	$A \leq x \leq B$
4			\smile
5	Distribution Function:	$F(x) = \frac{x-A}{B-A}$	$A \leq x \leq B$
6			
7	Expected Value and Variance:	$E(X) = \frac{A+B}{2}$	$V(X) = \frac{(B-A)^2}{12}$
8			
9	Median:	$X_{0.5} = \text{mean}$	
10		- 1 - 11 - 1 1	
11	Use of the uniform distribution is appropriate	when all that is know	wh about a parameter is its
12	circumstances (Tierney 1990)	<i>Eximum Entropy</i> distr	fourion under these
15	circumstances (Tierney 1990).		
14	Cumulative Distribution		
15			
17 18	A cumulative cistribution (also called a <i>const</i> ordered pairs:	ructed distribution) i	s described by a set of N
	$(x_1,0), (x_2,P_2), (x_3,P_3), \dots, (x_N,1)$	{i.e., $P_1 = 0$ and	$P_N = 1$ always}
19 20	where $x_1 < x_2 < x_3 < \ldots < x_N$ and $0 < P_2 < P_3$	$< < P_{N-1} < 1$	
21	Because of the nature of the data, the PDF for	this distribution take	es the form:
		if $\xi < x_i$	
	P - P.	1	
22	$P(\xi) = \left\{ \frac{\frac{n}{n-1}}{x-x} \right\}$	$\text{if } x_{n-1} \leq \xi \leq x_n,$	n = 2, 3,, N
	$ \begin{bmatrix} x_n & x_{n-1} \\ 0 \end{bmatrix} $	if $\xi \ge x_N$	
23			
24	and so the cumulative distribution function (CDF) takes the form:	
25			

$$\begin{array}{ccc} 1 & \vdots \\ 1 & \vdots \\ \vdots & & P_r \left[X \le \xi \right] \approx \Pi(\xi) \\ 2 \end{array} = \begin{cases} 0 & \text{if } \xi < x_i \\ P_{n-1} + \frac{(P_n - P_{n-1})(\xi - x_{n-1})}{(x_n - x_{n-1})} & \text{if } \frac{x_{n-1} \le \xi \le x_x}{n = 2,3, \dots, N} \\ 1 & \text{if } \xi > x_N \end{cases}$$

4 Expected Value: $E(X) = \sum_{n=2}^{N} (P_n - P_{n-1}) \frac{(x_n + x_{n-1})}{2}$

6 Variance:
$$V(X) = \sum_{n=2}^{N} (P_n - P_{n-1}) \frac{(x_n^2 + x_n x_{n-1} + x_{n-1}^2)}{3} - \{E(X)\}^2$$

7

8 Median:
$$x_{0.50} = x_{m-1} + (x_m - x_{m-1} - \frac{(0.50 - P_{m-1})}{(P_m - P_{m-1})}$$
 where $P_{m-1} \le 0.50 < P_m$.

9 The cumulative distribution takes its name from the fact that it closely resembles the empirical CDF obtained by plotting the empirical percentiles of the data set $(x_1, x_2, x_3, ..., x_N)$ (Blom 10 1989, 216). The cumulative distribution used here is the result of plotting the subjectively 11 determined percentile points $(x_1, P_1), (x_2, P_2), (x_3, P_3) \dots$, that arise in a formal elicitation of 12 expert opinion concerning the form of the distribution of the parameter in question. A simple 13 form of the cumulative distribution is used when the range (a,c) of the parameter is known and 14 the analyst believes that his or her best estimate value, b, is also the median (or 50th percentile) 15 of the unknown distribution. In this case, the subjectively determined percentile points take 16 the form: (a, 0.0), (b, 0.5), (c, 1.0) (Tierney 1990). 17 18

The cumulative distribution is the *Maximum Entropy* distribution associated with a set of percentile points $(x_1,P_1), (x_2,P_2), ..., (x_N, P_N)$, no matter how that set of percentile points is obtained (that is, independent of whether the points are empirically or subjectively derived) (Tierney 1990).

- 24 Triangular Distribution
- 25

23

26 Density Function:
$$f(x) = \frac{2(x-a)}{(c-a)(b-a)} \qquad a \le x \le b$$
27
$$a \le x \le c$$

27
$$= \frac{2(c-x)}{(c-a)(c-b)} \qquad b \le x \le c$$

- $F(x) = \frac{(x-a)^2}{(c-a)(b-a)}$ **Distribution Function:** 1 $a \leq x \leq b$ 2 $=\frac{(b-a)}{(c-a)}-\frac{(x+b-2c)(x-b)}{(c-a)(c-b)} \qquad b \le x \le c$ 3 4 $E(X) = \frac{a+b+c}{2}$ 5 Expected Value: 6 $V(X) = \frac{a(a-b) + b(b-c) + c(c-a)}{18}$ 7 Variance: 8 $X_{0.5} = a + \sqrt{\frac{(c-a)(b-a)}{2}}$ if $b \ge \frac{a+c}{2}$ 9 Median: 10 $= c - \sqrt{\frac{(c-b)(c-a)}{2}} \qquad \text{if } b \le \frac{a+c}{2}$ 11 12 13 The triangular distribution is defined on the range (a,c) and has mode b. The mode can equal either of the two boundary values, which may simplify the computations above (Iman and 14 15 Shortencarier 1984). 16 Use of the triangular distribution is appropriate when the range, (a,c), of the parameter is 17 known and the analyst believes that his or her best estimate value, b, is also the mode (or most 18 probable value) of the unknown distribution. 19 20 21 Student's-t Distribution
- 22
- Student's-t Distribution

A Student's-t distribution is a Bayesian distribution for the unknown mean value of a parameter. Its use is appropriate when one has *measured* values of the parameter available (in contrast to values obtained subjectively through elicitation of professional opinion). If N denotes the number of measurements available, and $X_1, X_2, X_3, ..., X_N$ denote the values of the measurements, then the *expected value* or *mean* of the Student's-t distribution is the sample standard deviation divided by \sqrt{N} ; the *median value* is equal to the mean value.

29

1

2

3 4 5

6

7

8

9 10

11 12

15

16

19

20 21

22

23

24

25

26 27

28

 $\sum^2 = \sum_{n=1}^4 p_n (\bar{M} - M_n)^2$

PAR-6

and the variance of the models is similarly defined:

 $\bar{M} = \sum_{1}^{4} p_n M_n$

mathematical model is the linear combination

The graph of this CDF can be visualized as an ascending staircase starting at zero level for x

The notion of mean value and variance still apply to a delta distribution, but the meanings of

these quantities may require careful interpretation. If the M_n represent four different functions

(say, discharge as a function of pressure), then it makes sense to talk about mean and variance

functions. For the example of the four alternative mathematical models, the mean

- The delta distribution is used to assign probabilities to the elements of some set of objects. For example, if the set consists of four alternative mathematical models of some phenomena and each model is labeled with one of the integers $\{1,2,3,4\}$, in other words,
 - M_1, M_2, M_3, M_4

below) with the same mean and standard deviation.

Delta Distribution

then we might assign the vector of probabilities (p_1, p_2, p_3, p_4) , where each p_i is a number 13 between 0 and 1 and 14

- 17

less than one, and having steps of height p_n at the points x = 1, 2, 3, 4.

- The CDF associated with this delta distribution can be symbolically expressed by 18
 - $F(x) = \sum_{n=1}^{4} p_n u(x-n).$

 $p_1 + p_2 + p_3 + p_4 = 1.$

Title 40 CFR Part 191 Compliance Certification Application

The Student's-t distribution applies when there are few measurements, say 3 < N < 10. For large N, say N>20, there is little difference between the t-distribution and a normal distribution (see

The notion of median value is meaningless for a delta distribution.

Normal Distribution

5 Density function: $f(x) = \frac{1}{\sigma\sqrt{2}\pi} \exp\left\{\frac{-(x-\mu)^2}{2\sigma^2}\right\} -\infty < x < \infty$

6

7

8

1

2 3

4

Distribution function: $F(x) = \int_{-\infty}^{x} f(t) dt -\infty < x < \infty$

9	Expected value and variance:	$E(X) = \mu$ and $V(X) = \sigma^2$.
10		

11 The WIPP Performance Assessment Program employs a truncated normal distribution where 12 data are concentrated within an interval (lowrange, hirange) (Iman and Shortencarier 1984).

13 The parameters of the truncated distribution can be expressed as follows:

$$E(X) = \mu = \frac{(lowrange + hirange)}{2} \qquad V(X) = \sigma^2 = \left(\frac{hirange - lowrange}{6.18}\right)^2$$

Median = mean (μ) and *lowrange* = 0.01 quantile, *hirange* = 0.99 quantile. The range of the random variable is arbitrarily set to (*lowrange*, *hirange*). Alternatively, the expected value μ and the standard deviation σ can be specified by the user of this distribution; in this case, the random variable takes on the range ($-\infty$, ∞) and will need to be truncated to a finite interval and renormalized.

19

Use of the normal distribution is appropriate when it is known that the parameter is the sum of independent, identically-distributed random variables (this is seldom the case in practice) and there are a sufficient number of measurements of the parameter (N > 10) to make accurate, unbiased estimates of the mean (μ) and variance (σ^2) (Sandia WIPP Project 1992; Tierney 1990).

25 26

27

Loguniform Distribution

28 If X has a loguniform distribution on the interval from A to B where B > A > 0, then $Y = \log_{10}$ 29 X has a uniform distribution from $\log_{10} A$ to $\log_{10} B$ (Iman and Shortencarier 1984). 30

31 Density Function:
$$f(x) = \frac{1}{x}(\ln B - \ln A)$$
 $A < x < B$

1 Distribution Function:

$$F(x) = \frac{\ln x - \ln A}{\ln B - \ln A} \quad A < x < B$$
2
3 Expected Value:

$$E(X) = \frac{B - A}{\ln B - \ln A}$$
4
5 Variance:

$$V(X) = (B - A) \left[\frac{(\ln B - \ln A)(B + A) - 2(B - A)}{2(\ln B - \ln A)^2} \right]$$
6 Median:

$$X_{0.5} = \sqrt{AB}$$
8 Use of the loguniform distribution is appropriate when all that is known about a parameter is its range (a,b) and B/A > 10; that is, the range (a,b) spans many orders of magnitude.
1 Logcumulative Distribution
14 In this case, the independent variable is Y, where Y = log X. As with the cumulative distribution, this distribution is described by a set of N ordered pairs:

$$(y_{1,0}0, (y_{2}P_{2}), (y_{3}P_{3}), ..., (y_{N}1) \quad \{\text{that is, } P_{1} = 0 \quad \text{and} \quad P_{N} = 1 \quad \text{always} \}$$
17 where $y_{1} < y_{2} < y_{3} < ... < y_{N}$ and $0 < P_{2} < P_{3} < ... < P_{N-1} < 1$
18 Because of the nature of the data, the PDF for this distribution takes the form:

$$p(\xi) = \begin{cases} 0 & \text{if } \xi < x_{1} \\ 1 & x_{n-1} & x_{n-1} \\ 0 & \text{if } \xi > x_{N} \end{cases}$$
21 and so the CDF takes the form:
23
$$P_{r} X \le \xi = \begin{cases} P_{n-1} + \frac{(P_{n} - P_{n-1})(\ln \xi - \ln x_{n-1})}{(\ln x_{n} - \ln x_{n-1})} & \text{if } \xi < x_{N} \\ \text{if } \frac{x_{n-1} \le \xi \le x_{N}}{n = 2, 3, ..., N} \\ \text{if } \frac{\xi < x_{1}}{n = 2, 3, ..., N} \\ \text{if } \xi > x_{N} \end{cases}$$

October 1996

1 Constants

2

5

7

11

14

17

26

Parameters may also be assigned a constant value in the performance assessment parameter
 database. These parameters are tabulated at the end of the appendix.

6 PAR.3 Key to Parameter Sheets

8 The parameter sheets included in this appendix contain a variety of information, some of 9 which is extracted from the WIPP performance assessment parameter database. Information 10 presented in the parameter sheets is grouped into boxes labeled as follows:

- Parameter(s): The name of the parameter and the disposal system feature with which it isassociated.
- 15 **Parameter Description:** The Parameter Description box defines the parameter and, where 16 appropriate, explains the role of the parameter in the modeling.
- Material and Parameter Name(s): This box provides a link to the performance assessment 18 parameter database. The parameter label listed first is taken from the performance assessment 19 model parameter database field IDMTRL, which identifies the type of material in the disposal 20 system being modeled (for example, S_MB139 means Salado Marker Bed [MB] 139). The 21 second label describes the performance assessment model parameter name for the physical or 22 operational meaning for the parameter (for example, SAT RBRN means residual brine 23 saturation). The number associated with a parameter is the unique identification number (ID) 24 established in the WIPP performance assessment parameter database. 25
- Computational Code(s): A list of the current computational models used by the
 Performance Assessment Department that require specification of the parameter.
- Parameter Statistics: The box identifies the mean, median (or mode in the case of a triangular distribution), maximum, minimum, and standard deviation of the parameter distribution. All values provided in Appendix PAR were derived from the WIPP performance assessment parameter database. These numbers may differ slightly from those contained in the Form 464s because of rounding.
- 35

37

40

36 **Units:** The physical units of the parameters (usually expressed in metric units).

- 38 Distribution Type: This box identifies the type of parameter distribution (see Section
 39 PAR.2.1).
- 41 **CDF/PDF Graph:** This box contains graphs of an empirical CDF. The graphs were produced
- 42 using the 100 values that were sampled with the LHS procedure used in the performance
- 43 assessment calculations (note the irregularities in the curves owing to the finite sample size).

1 2	The mean, median, and the standard deviation of the parameter's distribution are plotted on the graph of the empirical CDF
2	me gruph of the emphanem opri-
4 5 6 7 8	Data: The basis for the parameter values or parameter distribution is provided in this section. All values provided in Appendix PAR were derived from the WIPP performance assessment parameter database. These numbers may differ slightly from those contained in the Form 464s because of rounding. The parameters are derived from the following kinds of data and information:
9	
10 11 12 13 14	• Site-specific or waste-specific experimental data. This data includes information obtained from in-situ experiments and research conducted at off-site laboratories (for example, permeability data, microbial gas generation). This category also includes simulated waste experiments and may indicate correlations made with other material regions based on professional judgment.
15	• Waste encoifie abcomptional data. This peterory includes date obtained through
10	• waste-specific observational data. This category includes data obtained through
17	observation or empirical analysis, such as semi-quantitative and qualitative visual
18	characterization or acceptable knowledge of transuranic (TRU) waste (for example,
19	waste components).
20	
21	• Professional judgment. This category of information may involve the use of
22	experimental or observational data from other non-WIPP contexts; interpreting
23 24	information obtained from the general literature; or may be based on general engineering knowledge (see below).
25	
26	Professional judgment is synonymous with performance assessment category 4
27	parameters; in some cases, professional judgment can be used in assigning values to
28	category 1 parameters.
29	
30	• General Literature Data. This category of information includes that obtained from
31	reports, journal articles, or handbooks relevant to systems or processes being modeled
32	in the performance assessment. It is often employed in conjunction with professional
33	judgment.
34	
35	• General Engineering Knowledge. This category of information identifies parameter
36	values obtained from knowledge of standard engineering principles.
37	
38	Readers are referred to parameter records packages and associated data packages maintained
39	in the SWCF for additional information.
40	
41	Discussion : This section identifies the source(s) of parameter value(s) and the rationale for
47	the parameter distribution and may clarify use of a particular parameter. Other relevant
72 13	background information is also included in this section, where clarification is appropriate
4J AA	background mornation is also metaded in this section, where clarification is appropriate.
++	

1	References: All of the references pertaining to parameter selection are contained within the
2	three levels of parameter and data documentation: 1) WIPP Data Entry Form 464, 2)
3	parameter records packages, and 3) supporting data records packages. Selected references
4	cited in the parameter records packages are included in the parameter sheets to establish data
5	quality. In addition, selected memoranda cited in the parameter sheets are contained in
6	Appendix MASS for convenience.
7	
8	PAR.4 Parameter Correlation
9	
10	Parameter correlations used in performance assessment are exclusively in LHS.
11	Consequently, parameter correlations affect only sampled parameters described in the attached
12	parameter sheets. Two types of parameter correlations are used, defined as explicit parameter
13	correlation and induced parameter correlation. This section addresses the following criteria
14	concerning parameter correlations, as specified in 40 CFR § 194.23(c)(6):
15	
16	(c) Documentation of all models and computer codes included as part of any compliance application
17	performance assessment calculation shall be provided. Such documentation shall include, but shall
18	not be limited to:
19	(6) An explanation of the manner in which models and computer codes incorporate the effects of
20	parameter correlation.
21 วา	Explicit parameter correlations are introduced or prohibited in LHS by the restricted pairing
22 73 ⁻	technique of Iman and Conover (1982). Three parameter correlations are specified in this
25 74	become assessment through this technique. These correlations are all related to rock
24 25	compressibility and permeability. In the MB130 material region in BPACEI O, rock
25 26	compressibility (COMP RCK ID # 580) and intrinsic nermeability (PRMX LOG ID #501)
20 27	are inverse correlated with a correlation coefficient of 0.00. In the Salado impure halite
21 78	material region in BRAGELO, rock compressibility (COMP, RCK, ID #19) and intrinsic
20 20	permeability (PRMX_LOG_ID #18) are inverse correlated with a correlation coefficient of
30	-0.99 (BRAGELO) In the Castile brine reservoir material region in BRAGELO rock
31	compressibility (COMP_RCK_ID #29) and intrinsic permeability (PRMX_LOG_ID #28) are
32	inverse correlated with a correlation coefficient of -0.75 . Explicit parameter correlation is not
33	used to correlate other sampled parameters
34	
35	Rock compressibilities and intrinsic permeabilities are correlated to be most consistent with
36	interpretations of the hydraulic tests that have been performed in these units. In hydraulic
37	testing hydraulic diffusivity the ratio of permeability to compressibility is determined more
38	precisely than either permeability or compressibility alone. Introducing the correlation of the
39	permeability and compressibility parameters in performance assessment better represents the
40	knowledge of the formation gained from hydraulic testing than specifying no correlation
41	whatsoever.
42	

- An induced correlation in performance assessment is created when a parameter sampled in
 LHS (the underlying variable) is used to define the values of other parameters (defined
- 45 variables). This is a prevalent method of correlation in this performance assessment. For

1	example, uncertainty in dissolved actinide oxidation states is represented in LHS by sampling		
2	the OXSTAT parameter (ID #3417). The results of this sampling are used in part to		
3	determine actinide solubilities (NUTS and PANEL), colloidal actinide concentrations (NUTS		
4	and PANEL), and K_D values (SECOTP2D) used for a particular vector. Selected examples of		
5	other induced parameter correlations include:		
6			
7	 the underlying variable x-direction permeability and the defined variables y- and z- 		
8	direction permeabilities in many materials (BRAGFLO),		
9			
10	 the underlying variable x-direction permeability and defined variable threshold 		
11	pressure in many materials (BRAGFLO),		
12			
13	 the underlying variable americium properties and the defined variable curium 		
14	properties (NUTS, PANEL, and SECOTP2D),		
15			
16	• the underlying variable Lower Salado Clay permeability and the defined variable		
17	permeabilities of other clay members of the shaft seal system (BRAGFLO),		
18			
19	• the underlying variable residual gas saturation (or other two-phase flow parameters) in		
20	many materials and the defined variable residual gas saturation (or other two-phase		
21	flow parameters) in other materials (BRAGFLO), and		
22			
23	• the underlying variable CUMPROB and the defined variables of time-dependent		
24	permeabilities of the compacted salt seal permeabilities in the shaft. Where relevant,		
25	parameter sheets in Appendix PAR contain information related to parameter		
26	correlation.		
27			
28	No correlations were used in this performance assessment for certain parameters used to $\frac{\partial N}{\partial t}$		
29	describe transport in the Culebra for which the possibility of correlation might be suspected.		
30	The treatment in performance assessment is most consistent with available information.		
31	because, as discussed in Appendix MASS (Attachments MASS 15-10 and 15-6, 14).		
32	correlation of well-to-well transmissivity versus well-to-well advective porosity and matrix		
33	block length is not evident in existing data, nor is the correlation between advective porosity		
34	and matrix block length		
35			
36	There are four additional ways in which parameter correlations may be considered to be used		
37	in this performance assessment, although they are not typically discussed as correlations <i>per</i>		
38	se. In a given LHS sample element, there is a correlation of 1 (100 percent) between the		
30	single observation of subjective uncertainty (the LHS sample for a complementary cumulative		
40	distribution function (CCDF) with all of the sequences of random future events (scenarios)		
41	used to construct a CCDF. This is discussed in Chapter 6.0. Section 6.1		
47 47			
72 43	A correlation is made between the scenario being considered and the chemical properties		
44	(chemical composition) of brine in the repository (the physical properties viscosity and density		

1 2 3	are assumed to be the same for all scenarios). Brine composition affects actinide solubility. For undisturbed performance and E2 scenarios, brine composition is considered to be that of Salado brine. For the E1 and E1E2 scenarios, the brine composition is considered to be that
4 5	of Castile brine. This is discussed in Chapter 6.0 (Section 6.4.3.4).
6	There are some correlations made in the construction of a CCDF regarding the similarity of
7	events in a sequence of random future events. For example, the volume released by
8	particulate spall and direct brine flow to the surface during an intrusion event are assumed to
9	be the same for the third and subsequent intrusions into the repository as they were for the
10	second intrusion. This is discussed in Chapter 6.0 (Section 6.4.13).
11	
12	Finally, there are also correlations among model parameters developed explicitly by the
13	governing equations of computational models used. For example, the porosity of nodal blocks
14	in BRAGFLO is a function of the initial porosity, pressure change, and compressibility.
15	These types of relationships among parameters are documented in the appendices for specific
16	codes.
17	
18	References:
19	
20	Biom, G. 1989. Probability and Statistics: Theory and Applications. Springer-veriag, New
21	TOIK, N.I., p. 210. N.W.M. LIDPARY, QA 275. B30 1989.
22	DOF (U.S. Department of Energy) 1006 Transuranic Wasta Baseling Inventory Report
23	(0.5. Department of Energy). 1990. Transarame waste basetine inventory Report(Rev. 3) DOF/CAO-95-1121
24 25	(Rev. 5). Doller. 640-55-1121.
26	Iman R.L. and Conover W.L. 1982 "A Distribution-Free Approach to Inducing Rank
27	Correlation Among Input Variables." Communications in Statistics: Simulation and
28	<i>Computation</i> . Vol. 11, no. 3, 311 – 334.
29	
30	Iman, R.L., and Shortencarier, M.J. 1984. A FORTRAN 77 Program and User's Guide for
31	the Generation of Latin Hypercube and Random Samples for Use With Computer Models.
32	SAND83-2365, Sandia National Laboratories, Albuquerque, NM.
33	·
34	Sandia WIPP Project. 1992. Preliminary Performance Assessment for the Waste Isolation
35	Pilot Plant, December 1992. Volume 3: Model Parameters. SAND92-0700/3, Sandia
36	National Laboratories, Albuquerque, NM. (see Sections 1.2.1 and 1.2.7.) WPO 23529.
37	
38	Tierney, Martin. 1990. Constructing Probability Distributions of Uncertain Variables in
39	Models of the Performance of the Waste Isolation Pilot Plant: The 1990 Performance
40	Simulations. SAND90-2510, Sandia National Laboratories, Albuquerque, NM. WPO 23860.
41	

	Title 40 CFR Part 191 Compliance Certification Application
	Parameter 1: Inundated Corrosion Rate for Steel Without CO ₂ Present (Continued)
	Data: Site- Specific Experimental Data
	The parameter records package associated with this parameter is located at SWCF-A:WBS1.1.09.1.1:PDD:QA:Estimates of Gas Generation (WPO 30819).
-	
	Discussion:
	Without CO ₂ present, anoxic steel corrosion will proceed via the reaction: $Fe^{\circ} + 2H_2O = Fe(OH)_2 + H_2$. The upper limit of the parameter is determined from long-term anoxic steel corrosion experiments. The minimum rate is set to zero because experimental work indicates that salt crystallization on the steel surface could potentially prevent steel corrosion (Wang and Brush 1996).
-	WIPP Data Entry Form #464 WPO#: 34357
	WIFT Data Entry Form #404 WI O#. 54557
	References:
	Wang, Y. and Brush, L. 1996. Memorandum to Martin Tierney, Re: Estimates of Gas- Generation Parameters for the Long-Term WIPP Performance Assessment, January 26, 1996.

	Probability of Mi in the Event o	crobial Degradation f Significant Micro	on of Plastics and R Abial Gas Generati	Subbers in the Wa
Parameter Des	cription:			
This parameter is rubbers in the w a sampled param applied to the re	is used to index all aste in the repositoneter for the waste pository regions o	ternative models of sory in the event of so emplacement area soutside of the panel r	microbial degradation ignificant microbial and the waste, and t region.	on of plastics and gas generation. In he values are then
Material and P	arameter Name(s	5):		
WAS AREA	PROBDEG (#2	2823)		
REPOSIT	PROBDEG (#2	2824)		
Computational	Code: BRAGFL	.0		
mean	median	minimum	maximum	std. deviatio
<u>n.a.</u>	n.a.	0	2	<u>n.a.</u>
			• • • • • • • • • • • • • • • • • • •	

Parameter 2: Probability of Microbial Degradation of Plastics and Rubbers in the Waste in the Event of Significant Microbial Gas Generation (Continued)

Data: General Engineering Knowledge - Professional Judgment

A discussion of the data associated with this parameter may be found in Tierney (1996) and the following parameter records package: SWCF-A:WBS1.1.09.1.1:PDD:QA:Estimates of Gas Generation (WPO 30819).

Discussion:

Cellulosics, plastics, and rubbers have been identified as the major organic materials to be emplaced in the WIPP repository (DOE/CAO 1996) and could be degraded by microbes in 10,000 years. The occurrence of significant microbial gas generation in the repository will depend on: (1) whether microbes capable of consuming the emplaced organic materials will be present and active; (2) whether sufficient electron acceptors will be present and available; and (3) whether enough nutrients will be present and available. Considering uncertainties in evaluation of these factors and also in order to bracket all possible effects of gas generation on the WIPP performance assessment, a probability of 50 percent is assigned to the occurrence of significant microbial gas generation (Wang and Brush 1996).

1 2 3

Parameter 2: Probability of Microbial Degradation of Plastics and Rubbers in the Waste in the Event of Significant Microbial Gas Generation (Continued)

Discussion (Continued):

5

 There are two factors that may potentially increase the biodegradability of these materials: long time scale and cometabolism. Over a time scale of 10,000 years, plastics and rubbers may change their chemical properties and therefore their biodegradability.

Cometabolism means that microbes degrade an organic compound, but do not use it or its constituent elements as a source of energy; these are derived from other substrates (Alexander 1994). In the WIPP repository, plastics and rubbers, which are resistant to biodegradation, may still be cometabolized with cellulosics and other more biodegradable organic compounds. Because of these uncertainties, a probability of 50 percent is assigned to the biodegradation of plastics and rubbers in the event of significant microbial gas generation (Wang and Brush 1996).

The distribution for PROBDEG parameter is illustrated in Figure PAR-1. The parameter value ranges over the integers from 0 (no significant microbial gas generation) to 2 (significant microbial gas generation with degradation of plastics and rubbers); the third choice, a parameter value of 1, represents significant microbial gas generation without degradation of plastics and rubbers. The default, or median, value is assumed to be 2 since it is the case of highest gas generation (Tierney 1996).

WIPP Data Entry Form #464 WPO#: 34881

References:

Alexander, M. 1994. *Biodegradation and Bioremediation*. Academic Press, N.Y. At New Mexico Tech. Still in print per BIP.

DOE/CAO. 1996. Transuranic Waste Baseline Inventory Report (Rev. 2). DOE/CAO-95-1121.

Tierney, M. 1996. Memorandum to File, Re: Reasons for choice of the PROBDEG parameter (id nos. 2824 and 2823) on February 22, 1996, March 29, 1996 (contained in WPO 34881).

Wang, Y., and Brush, L. 1996. Memorandum to Martin Tierney, Re: Estimates of Gas-Generation Parameters for the Long-Term WIPP Performance Assessment, January 26, 1996.
WPO 31943.

Parameter 2: Probability of Microbial Degradation of Plastics and Rubbers in the Waste in the Event of Significant Microbial Gas Generation (Continued)

p1 = Probability of Occurrence of Significant Microbial Gas Generation (= 50 percent)

p₂ = Probability of Occurrence of Plastics and Rubber Biodegradation in the Event of Significant Gas Generation (= 50 percent)

CCA-PAR001-0

Figure PAR-1. Logic Diagram for Possible Outcomes and Probabilities for the Parameter PROBDEG (Modified From Tierney 1996)

D	
Parameter Des	scription:
This parameter	is used to describe the rate of cellulosics biodegradation under anaerobic,
brine-inundated parameter for th repository regio	d conditions (see Appendix BRAGFLO, Section 4.13). It is a sampled he waste emplacement area and the waste and the values are then applied to the ons outside of the panel region.
brine-inundated parameter for th repository regio Material and P	d conditions (see Appendix BRAGFLO, Section 4.13). It is a sampled he waste emplacement area and the waste and the values are then applied to the ons outside of the panel region.
brine-inundated parameter for th repository regio Material and P WAS_AREA	d conditions (see Appendix BRAGFLO, Section 4.13). It is a sampled ne waste emplacement area and the waste and the values are then applied to the ons outside of the panel region. Parameter Name(s): GRATMICI (#657)

mean	median	minimum	maximum	std. deviation
4.915×10^{-9}	4.915×10^{-9}	3.171×10^{-10}	9.5129 × 10 ⁻⁹	0

Units: mol/kg*s

Distribution Type: Uniform

Parameter 3: Biodegradation Rate of Cellulosics Under Brine-Inundated Conditions (Continued)

Data: Site-Specific Experimental Data

The parameter records package associated with this parameter is located at: SWCF-A:WBS1.1.09.1.1:PDD:QA:Estimates of Gas Generation (WPO 30819).

Discussion:

The maximum rate is estimated using the data obtained from both NO_3^- and nutrientsamended experiments, whereas the minimum rate is derived using the data obtained from the inoculated-only experiments without any nutrient and NO_3^- amendment. The rates were calculated from the initial linear part of the experimental curve of CO_2 vs. time by assuming that cellulosics biodegradation in those experiments were nitrate- or nutrient-limited (Wang and Brush 1996).

WIPP Data Entry Form #464 WPO#: 34928

References: Wang, Y. and Brush, L. 1996. Memorandum to Martin Tierney, Re: Estimates of Gas-Generation Parameters for the Long-Term WIPP Performance Assessment, January 26, 1996. WPO 31943.

Parameter	c 4: Biodegradation	n Rate of Cellulos	sics Under Humid (<u>Conditions</u>
Parameter Descri	iption:			
This parameter is a humid conditions waste emplacement regions outside of	used to describe the solution (see Appendix BRA) at area and the waste the panel region.	rate of cellulosics GFLO, Section 4. , and the values ar	biodegradation unde 13). It is a sampled p re then applied to the	er anaerobio parameter f repository
Material and Par	ameter Name(s):	·····		_
WAS_AREA G REPOSIT G	RATMICH (#656) RATMICH (#2127)			
Computational C	ode: BRAGFLO		······································	
mean	median	minimum	maximum	std. dev
6.342×10^{-10}	6.342×10^{-10}	0.0	1.2684×10^{-9}	0
Distribution Type CDF/PDF Graph	e: Uniform			
	1.0	WAS_AREA GRAT		
	B.0 B.0 B.0 B.0 B.0 B.0 B.0 B.0 B.0 B.0	UNIT	FORM Distribution	

	The proceding and the of Contraction Chart Maning Containing (Containing
Data: Site	Specific Experimental Data
The parame SWCF-A:W	ter records package associated with this parameter is located at: /BS1.1.09.1.1:PDD:QA:Estimates of Gas Generation (WPO 30819).
Discussion	
The maxim anaerobic, h where micro	Im rate was estimated from cellulosics biodegradation experiments under numid conditions. The minimum rate is set to zero, corresponding to the cases obes become inactive because of water or nutrient stresses (Wang and Brush 1996
WIPP Data	Entry Form #464 WPO#: 34923
References	:
Wang, Y. a Generation WPO 31943	nd Brush, L. 1996. Memorandum to Martin Tierney, Re: Estimates of Gas- Parameters for the Long-Term WIPP Performance Assessment, January 26, 1996 3.

26

.

Parameter 5: Factor β for Microbial Reaction Rates

Parameter Description:

Factor β is an index that characterizes the stoichiometry used to calculate the microbiallygenerated gas, accounting for interaction with gases reacting with steel and steel corrosion products (see Appendix BRAGFLO, Section 4.13).

Material and Parameter Name(s):

CELLULS FBETA (#2994)

Computational Code: BRAGFLO

mean	median	minimum	maximum	std. deviation
0.5	0.5	0	1.0	0.29

Units: None

Distribution Type: Uniform

CDF/PDF Graph CELLULS FBETA 1.0 0.8 Cumulative Probability 0.6 0.4 UNIFORM Distribution Cumulative Probability 0.2 Sampled Data Variable 5 in LHS 0.0 0.2 1.0 0.0 0.4 0.6 FBETA 0.8 PLOTUHS X-2 00 20 7-4110-46 20:05 43

2 3

Parameter 5: Factor β for Microbial Reaction Rates (Continued)
Data: Site-Specific Experimental Data
The parameter records package associated with this parameter is located at:
SWCF-A:WBS1.1.09.1.1:PDD:QA:Estimates of Gas Generation (WPO 30819).
Discussion:
Microbially-generated gases CO_2 and H_2S may react with steel and steel corrosion products. Factor β characterizes the extent of CO_2 and H_2S consumption by those reactions: see Equation (18) in Wang and Brush 1996.
WIPP Data Entry Form #464 WPO#: 31826
References:
Wang, Y. and Brush, L. 1996. Memorandum to Martin Tierney, Re: Estimates of Gas- Generation Parameters for the Long-Term WIPP Performance Assessment, January 26, 1996.

Parameter 6: Residual Gas Saturation - Repository

Parameter Description:

The residual (critical) gas saturation (S_{gr}) is required in the two-phase flow model to define the relative permeability and capillary pressure curves. S_{gr} corresponds to the degree of wastegenerated gas saturation necessary to create an incipient interconnected pathway in porous material, a condition required for porous rock to be permeable to gas. Below values of the S_{gr} , gas is immobile. It is a sampled parameter for the waste emplacement area and the waste, and the values are then applied to the repository regions outside of the panel region.

WAS_AREA	SAT_RGAS (#671)
REPOSIT	SAT_RGAS (#2137)

Computational Code: BRAGFLO

mean	median	minimum	maximum	std. deviation
0.075	0.075	0	0.15	0.04

Units: None

Distribution Type: Uniform

CDF/PDF Graph

Parameter 6: Residual Gas Saturation - Repository (Continued)

Data: General Literature and Professional Judgment

The parameter values are based on a November 15, 1995 Solutions Engineering letter report to D.M. Stoelzel of Sandia National Laboratories entitled "Critical (residual) Gas Saturation Recommendations for WIPP."

Discussion:

Under conditions of chemical and biochemical gas generation and repository closure, gas saturation may increase to a level where the pore network in repository material regions becomes connected and gas permeability begins to increase. The lowest gas saturation at which continuous gas flow will occur is the residual (critical) gas saturation (S_{gr}) . In a review of studies involving S_{gr} , Solutions Engineering (1996) reports values ranging from 0 to 27 percent. The assigned range for S_{gr} between 0 to 15 percent is consistent with recommendations in the Solutions Engineering report.

WIPP Data Entry Form #464 WPO#: 34905

References:

Solutions Engineering. 1996. "Critical Gas Saturation Recommendations for WIPP." Letter Report to D.M. Stoelzel, Sandia National Laboratories, November 15, 1995, Albuquerque, New Mexico. WPO 38769.

Parameter 7: Residual Brine Saturation - Repository

Parameter Description:

The residual brine saturation (S_{br}) is required in the two-phase flow model to define the relative permeability and capillary pressure curves. Referred to also as S_{wr} (wetting phase) or S_{lr} (liquid phase), residual brine saturation is the point reached under high gas saturation conditions when brine is no longer continuous throughout the pore network and relative brine permeability becomes zero. Below the value of the S_{br} , brine is immobile. It is a sampled parameter for the waste emplacement area and the waste, and the values are then applied to the repository regions outside of the panel region.

Matarial	and	Doromot	or Nomo(c).
iviatel lai	anu	1 al anno	ci manie(s).

WAS AREA SAT_RBRN (#670) REPOSIT SAT_RBRN (#2741)

Computational Code: BRAGFLO

mean	median	minimum	maximum	std. deviation
0.276	0.276	0	0.552	0.16

Units: None

Distribution Type: Uniform

CDF/PDF Graph

38

1

3 4

6 7 8

9

10

11

12

13 14 15

16 18 19

20

31 33

34 36

Parameter 7: Residual Brine Saturation - Repository (Continued)

Data: General Literature and Professional Judgment

Two-phase flow parameters have not been measured for materials representing a collapsed empty, back-filled, or waste-filled room. Therefore, the parameter values are based on literature values for unconsolidated materials.

Discussion:

Brooks and Corey evaluated their two-phase characteristic equations against capillary pressure and relative permeability data obtained in laboratory experiments (Brooks and Corey 1964). Mualem (1976) proposed a modified procedure to that of Brooks and Corey for determining the wetting phase (S_{wr}) permeability curve by adding the constraint that the extrapolated curve should pass through the highest capillary pressure data point. Although their wetting phase relative permeability predictions are similar to each other and to the data, the Mualem procedure, in some cases, results in S_{wr} values less than those predicted by the Brooks and Corey model. Consequently, Table PAR-1 lists the Mualem (1976) residual wetting phase saturations to ensure that the potential for brine mobility is not underestimated. As indicated in Table PAR-1, single-phase liquid permeabilities of the Brooks and Corey materials are of the same order of magnitude as those assigned to waste disposal regions (10⁻¹³ square meters).

23

24 26

28

29 30

31

32 33

34

35 36 37

I

2 3

4

5

6 7 8

10 11

12

13

14

15

16

17

18 19

20

21

22

WIPP Data Entry Form #464 WPO#: 34902

| References:

Brooks, R.H., and Corey, A.T. 1964. *Hydraulic Properties of Porous Media*. Hydrology Paper No. 3. Fort Collins, CO: Colorado State University. NWM Library.

Mualem, Y. 1976. A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media. Water Resources Research. Vol. 12, no. 3, 513–522.

Vaughn, Palmer. 1996. Memo to Martin Tierney. RE: WAS_AREA and REPOSIT/SAT_RBRN Distribution, February 13, 1996. WPO 34902.

Parameter 7: Residual Brine Saturation - Repository (Continued)

Table PAR-1. Brooks and Corey (1964) Materials Parameters - Unconsolidated Media^a

Material	Permeability (square meters) ⁵	Porosity	Swr
Volcanic Sand	1.1×10^{-11}	0.365	0.137
Fine Sand	2.85×10^{-12}	0.360	0.140
Glass Beads	1.05×10^{-11}	0.383	0.0783
Fragmented Mixture	1.50×10^{-11}	0.441	0.275
Fragmented Fox Hill Sandstone	1.61×10^{-11}	0.503	0.318
Touchet Silt Loam	5.00×10^{-13}	0.469	0.277
Poudre River Sand	2.26×10^{-11}	0.364	0.0824
Amarillo Silty Clay Loam	2.34×10^{-12}	0.455	0.242
Consolidated Berea Sandstone	4.81×10^{-13}	0.206	0.243
Consolidated Hygiene Sandstone	1.78×10^{-13}	0.250	0.560
	Material Volcanic Sand Fine Sand Glass Beads Fragmented Mixture Fragmented Fox Hill Sandstone Touchet Silt Loam Poudre River Sand Amarillo Silty Clay Loam Consolidated Berea Sandstone Consolidated Hygiene Sandstone	Material Permeability (square meters) ^b Volcanic Sand 1.1×10^{-11} Fine Sand 2.85×10^{-12} Glass Beads 1.05×10^{-11} Fragmented Mixture 1.50×10^{-11} Fragmented Fox Hill Sandstone 1.61×10^{-11} Touchet Silt Loam 5.00×10^{-13} Poudre River Sand 2.26×10^{-11} Amarillo Silty Clay Loam 2.34×10^{-12} Consolidated Berea Sandstone 1.78×10^{-13}	MaterialPermeability (square meters) ^b PorosityVolcanic Sand 1.1×10^{-11} 0.365 Fine Sand 2.85×10^{-12} 0.360 Glass Beads 1.05×10^{-11} 0.383 Fragmented Mixture 1.50×10^{-11} 0.441 Fragmented Fox Hill Sandstone 1.61×10^{-11} 0.503 Touchet Silt Loam 5.00×10^{-13} 0.469 Poudre River Sand 2.26×10^{-11} 0.364 Amarillo Silty Clay Loam 2.34×10^{-12} 0.455 Consolidated Berea Sandstone 4.81×10^{-13} 0.206

a - Consolidated materials are identified in the material column

b - Single-phase liquid permeability

c - Mualem S_{wr} corrected for comparison to Brooks and Corey (1964)

Swr - Wetting phase residual saturation

18

14

15

16

17

Parameter 8: Wicking Saturation

	ratameter 6: Wicking Saturation (Continued)
E	ata: Professional Judgment
T s:	he wicking parameter value varies from 0 (0 percent saturation) to 1.0 (100 percent aturation) and the parameter is assumed to be uniformly distributed.
D	liscussion:
W ne in th e: s; ir	/icking is the ability of a material to carry a fluid by capillary action above the level it wo ormally seek in response to gravity. The use of a two-phase Darcy flow model in BRAGF icludes possible effects of capillary action, but uncertainty remains about the extent to wh he assumed homogeneous properties of the waste adequately characterize wicking. Becau stimated rates of gas generation are higher for waste that is in direct contact with brine, br aturation in the repository is adjusted in BRAGFLO to account for the possibility of wicking in the waste.
Т	he adjustment is done as follows:
S	$_{b},eff = S_{b} + S_{w},$
a	nd
S	$_{b}$,eff ≤ 1.0 ,
w sa tł g	where S_b is the brine saturation in the waste calculated by BRAGFLO, S_w is the wicking aturation that describes the additional amount of brine that may be present and in contact where waste because of wicking, and S_b , eff is the effective brine saturation used to determine as generation rates used in the analysis.
V	VIPP Data Entry Form #464 WPO#: 34908
F	Leferences:

.

Parameter 9: Log of Intrinsic Permeability - All Clay Shaft Materials

Parameter Description:

Ż

3 4

6 7 8

9

10

11

12 1**2** Log of the vertical and horizontal intrinsic permeability for the Rustler compacted clay, the lower Salado compacted clay, and the upper Salado compacted clay and the bottom clay column from 0 to 10,000 yrs. It is a sampled parameter for the Lower Salado Clay from T = 0 to 10 years used to calculate an effective permeability that is then applied to all other clay shaft materials and time periods.

15	Material and Pa	rameter Name(s):	
16			
17	CL_L_T1	PRMX_LOG (#2334)	
18	CL_L_T1	PRMY_LOG (#2335)	
19	CL_L_T1	PRMZ_LOG (#2336)	
20			
21	CLAY_RUS	PRMX_LOG (#3009)	
22	CLAY_RUS	PRMY_LOG (#3010)	
23	CLAY_RUS	PRMZ_LOG (#3011)	
24			
25	CL_L_T2	PRMX_LOG (#2351)	
26	CL_L_T2	PRMY_LOG (#2352)	
27	CL_L_T2	PRMZ_LOG (#2353)	
28			
29	CL_L_T3	PRMX_LOG (#2368)	
30	CL_L_T3	PRMY_LOG (#2369)	
31	CL_L_T3	PRMZ_LOG (#2370)	
32			
33	CL_L_T4	PRMX_LOG (#3078)	
34	CL_L_T4	PRMY_LOG (#3079)	
35	CL_L_T4	PRMZ_LOG (#3080)	
36			•
37	CL_M_T1	PRMX_LOG (#2385)	A A A
38	CL_M_T1	PRMY_LOG (#2386)	
39	CL_M_T1	PRMZ_LOG (#2387)	
40			
41	CL_M_T2	PRMX_LOG (#2402)	
42	CL_M_T2	PRMY_LOG (#2403)	
43	CL_M_T2	PRMZ_LOG (#2404)	
44			
45	CL_M_T3	PRMX_LOG (#2419)	
46	CL_M_T3	PRMY_LOG (#2420)	
47	CL_M_T3	PRMZ_LOG (#2421)	
48			

Parameter 9: Log of Intrinsic Permeability - All Clay Shaft Materials (Continued)

Data: General Literature - Professional Judgment and Site-Specific Experimental Data

Data are based on a review of the available literature and a series of small-scale in-situ tests. The data associated with this parameter are summarized in the following parameter records package: SWCF-A:1.1.03.2.1:PDD:QA:Shaft Seals BRAGFLO Parameters (WPO 30640).

Discussion:

A significant body of literature regarding compacted bentonite permeability was reviewed. Most literature sources report hydraulic conductivity rather than intrinsic permeability. Hydraulic conductivity can be related to intrinsic permeability through the fluid density and viscosity and the acceleration of gravity. The permeability of reported bentonites ranges from 1×10^{-21} square meters to 1×10^{-15} square meters.

A series of in-situ tests were conducted to evaluate the feasibility of various candidate materials to be used for sealing materials at the WIPP site. These tests are referred to as the Small Scale Seal Performance Tests (SSSPT). Results from these tests support the use of compacted bentonite as a sealing material at the WIPP site and in the Salado Formation. Test Series D consisted of two seals with 100 percent bentonite cores. Each seal had a diameter of 0.91 meters and was approximately 3 meters in length, with bentonite cores 0.91 meters in length. Cores of the two bentonite seals had initial dry densities of 1.8 and 2.0 grams per cubic centimeters. Pressure differentials of 0.72 and 0.32 megapascals were maintained across the bentonite seals with a brine reservoir on the upstream (bottom) of the seals for several years. Over the course of the seal test, no visible brine was observed at the downstream end of the seals. Because the saturation state of the bentonite seals is unknown, determination of the absolute permeability of the bentonite seals cannot be estimated precisely. However, a bounding calculation of permeability by Knowles and Howard (1996) for the bentonite seals reported a value of 1×10^{-19} square meters.

The compacted bentonite material specification (SAND96-1326) specifies that the clay seals will be emplaced at a dry density of 1.8 to 2.0 grams per cubic centimeter. Based upon this information, a distribution function for clay permeability was developed. The basis for the proposed distribution is the following:

- (1) A practical minimum for the distribution was specified at 1×10^{-21} square meters.
- (2) Assuming that the effective dry density of the bentonite emplaced in the seals only varies from 1.8 to 2.0 grams per cubic centimeter, then a maximum expected permeability can be extrapolated as 1×10^{-19} square meters.

F	Parameter 9: Log of Intrinsic Permeability - All Clay Shaft Materials (Continued
Disc	ussion (continued):
(3)	There is some uncertainty in the effective dry density of emplacement because of the difficulty of emplacing large columns of bentonite at high densities. To address this uncertainty, it is assumed that the compacted clay may be emplaced at a dry density a low as 1.6 grams per cubic centimeter. This actuality is not considered to be a high probability, but cannot be completely ruled out. At 1.6 grams per cubic centimeters, maximum permeability for the clay would be approximately 5×10^{-19} square meters. Therefore, assuming no salinity effects, a range of permeability from 1×10^{-21} square meters is defined (assuming a best estimate emplacement density of 1.8 grams per cuccentimeter). It could be argued that the best estimate could be as low as 2×10^{-20} square meters.
(4)	The literature reports that salinity increases permeability. However, these effects are greatly reduced at the emplacement densities specified for the shaft seal. At seawater salinity, Pusch et al. (1987) report the effects on permeability could be as much as a factor of 5 (one-half of a order of magnitude). It is expected that at the emplacement densities specified, the effect of salinity will be within an order of magnitude of the values reported in the literature measured with fresh pore water. To account for salin effects, the maximum permeability was increased from 5×10^{-19} square meters to 5×10^{-18} square meters. The best estimate permeability was increased by one-half order magnitude to 5×10^{19} square meters. The lower limit was held at 1×10^{-21} square meters. Because salinity effects are greatest at higher densities, the maximum was adjusted one full order of magnitude while the best estimate (assumed to reside at a density of 1.8 grams per cubic centimeters) was adjusted one-half of an order.
The calcu mode	disturbed rock zone (DRZ) permeability adjacent to the compacted clay column was ilated explicitly and then combined with the clay seal permeability in the BRAGFLO el.
In or the s the I the c were the I	rder to obtain an effective DRZ permeability, an estimate of the radius of the DRZ arous haft was provided. Structural calculations were performed to estimate the radial exten DRZ as a function of time and depth adjacent to the upper and lower compacted clay se compacted crushed salt seal, and the asphalt seal (SAND96-1326). The times considered e 0, 10, 25, 50, and 100 years after seal emplacement. Table PAR-2 shows the extent of DRZ in terms of normalized radius at the mid-height of each component.

. .

•

Title 40 CFR Part 191 Compliance Certification Application						
Para	Parameter 9: Log of Intrinsic Permeability - All Clay Shaft Materials (Continued)					
Discussi	on (Co	ntinu	ied):			
At the sh BRAGF	haft seal LO mod	mate del w	erials, the effective permeability of composite seal and DRZ for the as calculated from the equation:			
			$k_s A_s + k_d A_d$			
			$k_{\text{model}} = \frac{1}{A}$			
			* *model			
where:	k	=	effective composite permeability used in BRAGELO			
where.	A,	=	effective shaft area modeled in BRAGELO (equal to the shaft area, A.)			
	k A	=	summation of the shaft seal nermeability multiplied by the shaft seal			
	**s,* ~s	·	area for the four shafts			
	kA.	=	summation of the DRZ permeability multiplied by the DRZ area for the			
	aa		four shafts			
Assumin	ig that t	he ch	ange in permeability within the DRZ is log linear, the effective DRZ			
permeab	ility, k _d	, for e	each shaft was calculated from:			
1	• -	-				
		-	$\left(- \left(- \left(l_{r} \right) - l_{r} \left(l_{r} \right) \right) - \left(- \left(l_{r} \left(l_{r} \right) - l_{r} \left(l_{r} \right) \right) - \left(- \left(l_{r} \left(l_{r} \right) \right) \right) - \left(- \left(l_{r} \left(l_{r} \right) \right) \right) - \left(- \left(l_{r} \left(l_{r} \right) \right) \right) - \left(- \left(l_{r} \left(l_{r} \right) \right) \right) - \left(- \left(l_{r} \left(l_{r} \right) \right) \right) - \left(- \left(l_{r} \left(l_{r} \right) \right) \right) - \left(- \left(l_{r} \left(l_{r} \right) \right) \right) - \left(l_{r} \left(l_{r} \right) \right) \right)$			
	k. = -	2	$\frac{r_0(m(k_0) - m(k_i)) - \Delta r}{k_0 - 1} k_0 - \frac{r_1(m(k_0) - m(k_i)) - \Delta r}{k_0} k_0$			
	- a _n j	r ₀ +	$r_i (\ln(k_0) - \ln(k_i))^2 $			
where:	n	=	shaft index (1, 2, 3, or 4)			
	r _i	=	inner radius (shaft excavation radius)			
	r ₀	=	outer DRZ radius			
	Δr	=	outer DRZ radius minus the inner DRZ radius			
	k,	=	inner skin permeability (DRZ permeability at the shall/DRZ interface)			
	к ₀	=	intact halite permeability			
The our	motion	∼f D	D7 normachility multiplied by the DP7 area for all four shafts is equal to:			
	mation	ע וס	KZ permeability multiplied by the DKZ area for all four sharts is equal to.			
ļ	ŀΔ					
	ъdъq	-	$\kappa_{d1} \Lambda_{d1} + \kappa_{d2} \Lambda_{d2} + \kappa_{d3} \Lambda_{d3} + \kappa_{d4} \Lambda_{d4}$			
where:	d1	=	air-supply shaft			
W 1101 C.	d2	=	salt-handling shaft			
	d3	=	waste-handling shaft			
	d4	=	air-exhaust shaft			
	•					
and the s	summat	ion o	f shaft permeability multiplied by the shaft area for all four shafts is equal			
to:						

-	
I	Discussion (continued):
	$k_{s} A_{s} = k_{s1} A_{s1} + k_{s2} A_{s2} + k_{s3} A_{s3} + k_{s4} A_{s4}$
ſ	'he resulting permeabilities are presented in Appendix IRES.
(See also Parameter 12)
۲	WIPP Data Entry Form #464 WPO#: 31908
ł	leferences:
ት F 2 2	Knowles, M.K, and Howard, C.L. 1996. "Field and Laboratory Testing of Seal Materials Proposed for the Waste Isolation Pilot Plant," <i>Proceedings of the Waste Management 1995</i> Symposium. Tucson, AZ, February 25-29, 1996. SAND95-2082C. Albuquerque, NM: Sandia National Laboratories. WPO 30945
F 7 5	Pusch, R., Borgesson, L. and Ramqvist, G. 1987. Final Report of the Borehole, Shaft, an Funnel Sealing Test Volume I: Borehole Plugging. SKB 87-01. Stockholm, Sweden: Swedish Nuclear Fuel and Waste Management Co.
F S	Repository Isolation Systems Department. 1996. Waste Isolation Pilot Plant Shaft Sealin System Compliance Submittal Design Report. SAND96-1326. Sandia National Laborate

DOE/CAO 1996-2184

Parameter 9: Log of Intrinsic Permeability - All Clay Shaft Materials (Continued) 'able PAR-2. Extent of the DRZ in Terms of Normalized Radius at Mid-Height of Component						
Seal Material DRZ Extent Normalized Radius and Associated DRZ Zone Time Reference of Instantaneous Emplacement of Seal Materials						
<u></u>	0 vrs	10 vrs	25 vrs	50 vrs	100 yrs	
Asphalt Column DRZ-1	1.629	1.629	1.629	1.629	1.629	
Upper Salado Compacted Clay DRZ-2	1.709	1.469	1.283	1.107	1.000	
Reconsolidated Salt DRZ-3	1.814	1.110	1.000	1.000	1.000	
Lower Salado Compacted Clay DRZ-4	1.858	1.162	1.002	1.000	1.000	

Sec.

Parameter Descr	iption:			
Log of the vertica first 400 years. It the y- and z-direct	l and horizontal intr is a sampled param tions.	rinsic permeability f eter for the x-direct	or the concrete coli ion and the values	umn during the are then applied t
Material and Par	rameter Name(s):			
CONC T1	PRMX LOG (#	2470)		
$CONC_T1$	PRMY_LOG (#	2471)		
CONC_T1	PRMZ_LOG (#	2472)		
Computational (Code: BRAGFLO			
mean	mode	minimum	maximum	std. deviation
-18.8160	-18.750	- 20.699	-17.000	0.76
Linits. log(square	meter)		<u>, , , , , , , , , , , , , , , , , , , </u>	
Childs. 10g(square				
Distribution Tym	e: Triangular			
Distribution Typ	0			
		······		

Γ

Parameter 10: Log of Intrinsic Permeability - Concrete (T = 0-400 yrs) (Continued)

Data: Site-Specific Experimental Data

The intrinsic permeability of the concrete column is based on laboratory and in-situ data. The data associated with this parameter are summarized in the following parameter records package: SWCF-A:1.1.03.2.1:PDD:PPD/1.1.03.2.2:Shaft Seals BRAGFLO Parameters (WPO 30640).

Discussion:

As reported by Repository Isolation Systems Department (1996), traditional freshwater concrete has been widely used for hydraulic applications such as water storage tanks, water and sewer systems, and massive dams because it has exceptionally low permeability (less than 10^{-20} square meters upon hydration). Salado Mass Concrete (SMC) is a specially-designed salt-saturated concrete mix that was developed only recently (Wakeley et al. 1994; Wakeley et al. 1995).

Pfeifle, et al. (1996) performed two permeability tests on concrete specimens prepared from cores recovered from the WIPP SSSPT field experiments and one test on an SMC specimen prepared from a sample batched by the Waterways Experiment Station (WES). The specimens were tested as received with no attempts made to dry the specimens or to determine their moisture contents. Each test was performed using nitrogen gas as the permeant, flowmeters to measure gas flow, and fluid pressure gradients of either 0.3, 0.6, or 0.75 megapascals. Attempts were made to apply Klinkenberg corrections to measured values of permeability, but the range in pressure gradients used in the testing was not large enough to establish any particular trend when the permeability data were plotted as a function of reciprocal mean fluid pressure.

A total of 18 permeability measurements were made on the three specimens. Permeability of the SMC and SSPT specimens are all very low with a range from 2.1×10^{-21} square meters to 7.51×10^{-21} square meters with an average of 4.71×10^{-21} square meters. Permeability of the SSSPT specimens ranged from 3.00×10^{-20} square meters to 5.04×10^{-19} square meters with and average of 2.18×10^{-19} square meters. Knowles and Howard (1996) presented results of field permeability tests performed in the WIPP SSSPT boreholes during 1985-1987 and 1993-1995. Although individual seal system component material permeabilities for concrete, DRZ salt, and salt were not determined, overall seal system permeabilities were determined and ranged from 1.0×10^{-20} square meters to 1.0×10^{-17} square meters and from 1.0×10^{-23} square meters to 1.0×10^{-19} square meters for the 1985–1987 tests and the 1993-1995 tests, respectively. These ranges encompass the laboratory values measured by Pfeifle, et al. (1996).

The data described above were derived from gas permeability measurements in which no Klinkenberg corrections were applied to the measured values. The Klinkenberg corrections were expected to be small because of the low mean pressure gradients used in the tests.

DOE/CAO 1996-2184

Repository Isolation Systems Department. 1996. Waste Isolation Pilot Plant Shaft Sealing
System Compliance Submittal Design Report. SAND96-1326. Sandia National Laboratories.
Albuquerque, NM. August, 1996.

1

2 3 4

5

6

7

8 9 10

11

12

13

14

15

16

17

18

19

20 21

22

23 24 26

33

29 30

31

32

33

34 35

36

37

38 39 40

41

Title 40 CFR Part 191 Compliance Certification Application Parameter 10: Log of Intrinsic Permeability - Concrete (T = 0-400 yrs) (Continued) References (Continued): Wakeley, L.D., Poole, T.S. and Burkes, J.P. 1994. Durability of Concrete Materials in High-Magnesium Brine. SAND93-7073. Albuquerque, NM: Sandia National Laboratories. WPO 10674. Wakeley, L.D., Harrington, P.T., and Hansen, F.D. 1995. Variability in Properties of Salado Mass Concrete. SAND94-1495. Albuquerque, NM: Sandia National Laboratories. WPO 22744.

<u></u>	Title 40 CFR Part 19	1 Compliance Certifi	cation Application	
Paran	neter 11: Log of Int	rinsic Permeabilit	y - Asphalt Shaft	Material
Parameter Desc	cription:	_ <u></u>		
Log of the vertig	and horizontal intr	ingia normaahility f	or the combalt chaft	motorial. It
sampled paramet	ter for the x-direction	and the values are	then applied to the	y- and z-
directions.				
				,
Material and Pa	arameter Name(s):			
ASPHALT	PRMX_LOG (#22	83)		
ASPHALT	PRMY_LOG (#22	84)		
ASPHALT	PRMZ_LOG (#228	85)		
Computational	Code: BRAGFLO		<u></u>	<u> </u>
	·····	······	······································	T
mean	mode	minimum	maximum	std. devi
- 19.667	-20.000	-21.000	-18.000	0.62
Units: log(squa	re meters)		<u>, , , , , , , , , , , , , , , , , , , </u>	
Distribution Ty	ne Triangular	<u> </u>	<u> </u>	·
Distribution Ty	pe. Inaliguia	·		<u></u>
CDF/PDF Grap	ph	· · · · · · · · · · · · · · · · · · ·		
	10	ASPHALT PRMX_	LOG	
			June Andrewski and a start of the start of t	
		للحمر		
	0.8			
	Â		1	
	tive P			
	-	TRIA	NGULAR Distribution	\sim
	0.2		rlative Probability	
		+ Sar	npied Data	
	a survey and a survey of the s	Varia	ble 11 in LHS	
	0.0	-20 -19	-18.	

35

7-AUG-06

PLOTLHS VICE

× 2.00 200

20-06.43

Parameter 11: Log of Intrinsic Permeability - Asphalt Shaft Material (Continued)

Data: Professional Judgment

The parameter distribution is based on literature values and professional judgment. The parameter records package associated with this parameter is located at: SWCF-A:1.1.03.2.1: PDD:QA:Shaft Seals BRAGFLO Parameters (WPO 30640).

Discussion:

Asphalt mastic mix (AMM) is a mix of asphalt cement, sand, and other mineral fillers. The mix design specifies that the air void volume be between 1 and 2 percent and the mix will consist of 20 weight percent asphalt cement (AR-4000 graded asphalt), 70 weight percent aggregate (silica sand), and 10 weight percent hydrated lime. The high asphalt content along with the very fine-grained aggregate will result in a material with virtually no voids. The aggregate will resist settling and will provide a filter cake along the host rock contact to prevent excessive loss of asphalt to the formation. Hydrated lime is included to increase the stability of the material, to decrease moisture susceptibility, and to act as an anti-microbial agent.

Several sources were reviewed to find relevant information on the permeability of asphalt and asphaltic based construction materials. A large body of literature exists on applications of using asphalt as a barrier to water flow such as in the case of dams. Asphalt is routinely referred to in the literature as being impermeable, waterproof, etc. However, very little quantitative information exists regarding the permeability of asphalt. No permeability values were found for an AMM which shares the expected low void volume and high asphalt content that will exist in the shaft seal. However, literature on a few similar asphalt mixes was found and used in the development of the PDF. Myers and Duranceau (1994) reported on the asphalt concrete as a high-asphalt content product design to minimize the void spaces. The reported hydraulic conductivity of the asphalt concrete was estimated to be 1×10^{-9} meters per second (equivalent to an intrinsic permeability of approximately 1×10^{-16} assuming freshwater). Myers and Duranceau (1994) reported that the hydraulic conductivity of fluid applied asphalt was estimated to be 1.0×10^{-11} to 1.0×10^{-10} centimeters per second (equivalent to an intrinsic permeability of approximately 1.0×10^{-20} to 1.0×10^{-19} square meters, assuming freshwater).

In addition, Robert Romine, a Research Scientist in the Environmental Technology Division of Pacific Northwest Laboratories (PNL) and technical expert to SNL in the design and development of the specifications for the shaft seal AMM was consulted. Based on his experience designing and testing asphalt engineered barriers, the expected permeability for the WIPP AMM seal is less than 1×10^{-20} square meters.

42

Γ;

r_o

Δr

=

=

where: n

Parameter 11: Log of Intrinsic Permeability - Asphalt Shaft Material (Continued)

Discussion (Continued):

The DRZ permeability adjacent to the compacted clay column was calculated explicitly and then combined with the clay seal permeability in the BRAGFLO model.

In order to obtain an effective DRZ permeability, an estimate of the radius of the DRZ around the shaft was provided. Repository Isolation Systems Department (1996) performed structural calculations to estimate the radial extent of the DRZ as a function of time and depth adjacent to the Upper and Lower compacted clay seals, the compacted crushed salt seal, and the asphalt seal. The times considered were 0, 10, 25, 50, and 100 years after seal emplacement. Table PAR-3 shows the extent of the DRZ in terms of normalized radius at the mid-height of each component.

For the shaft seal materials, the effective permeability of the composite seal and DRZ for the BRAGFLO model was calculated from the equation:

 k_{model} = effective composite permeability used in BRAGFLO

the four shafts

permeability, k_{d_a} , for each shaft was calculated from:

= shaft index (1, 2, 3, or 4)

outer DRZ radius

= inner radius (shaft excavation radius)

shafts

$$k_{\text{model}} = \frac{k_s A_s + k_d A_d}{A_{\text{model}}}$$

 A_{model} = effective shaft area modeled in BRAGFLO (equal to the shaft area, A_{e})

Assuming that the change in permeability within the DRZ is log linear, the effective DRZ

 $k_{d} = \frac{2}{r_{0} + r_{i}} \left(\frac{r_{0}(\ln(k_{0}) - \ln(k_{i})) - \Delta r}{(\ln(k_{0}) - \ln(k_{i}))^{2}} \right) k_{0} - \left(\frac{r_{i}(\ln(k_{0}) - \ln(k_{i})) - \Delta r}{(\ln(k_{0}) - \ln(k_{i}))^{2}} \right) k_{i}$

 $k_d A_d$ = summation of the DRZ permeability multiplied by the DRZ area for the four

= summation of the shaft seal permeability multiplied by the shaft seal area, for

where:

k. A.

20 21 22

23 24

26

27

1 2

3 4

5

6 7

8 9

10

11

12

13 14 15

16

17

18

19

25

30 31

PAR-47

outer DRZ radius minus the inner DRZ radius

Discus	sion	(Co	itinued):	
	k _i k _o	=	inner skin permeability (DRZ permeability intact halite	at the shaft/DRZ interface)
The su	mma	tion	of DRZ permeability multiplied by the DRZ	area for all four shafts is equal t
	k _d A	_d =	$k_{d1} A_{d1} + k_{d2} A_{d2} + k_{d3} A_{d3} + k_{d4} A_{d4}$	
where:				
	d1	=	air-supply shaft	· · ·
	d2	=	salt-handling shaft	
	d3	=	waste-handling shaft	
	d4	Ξ	air-exhaust shaft	
The re (See al	sultin so Pa	g pe tram	rmeabilities are presented in Appendix IRES	5.
WIPP	Data	En	rv Form #464 WPO#: 31390	
Refere	ences	:		
Myers Docun	, D.R nent"	., an BHI	l Duranceau, D.A. 1994. "Prototype Hanfo -00007. Bechtel Hanford, Inc., Richland, W	ord Surface Barrier: Design Bas VA.
Reposi Systen	itory] n Con	Isola nplia	tion Systems Department. 1996. Waste Iso nce Submittal Design Report. SAND96-133	lation Pilot Plant Shaft Sealing 26. Sandia National Laborator

Title 40 CFR Part 191 Compliance Certification Application

Parameter 11: Log of Intrinsic Permeability - Asphalt Shaft Material (Continued)

able PAR-3. Ex	omponent	URZ in Terms	of Normalized	a Kadius at Mi	d-Height of
Seal Material and Associated		DRZ Ex	ent Normal	ized Radius	
DRZ Zone	Time Refe	erence of Insta	ntaneous Emp	placement of Se	al Material
	0 yrs	10 yrs	25 yrs	50 yrs	100 yrs
Asphalt Column DRZ-1	1.629	1.629	1.629	1.629	1.629
Upper Salado Compacted Clay DRZ-2	1.709	1.469	1.283	1.107	1.000
Reconsolidated Salt DRZ-3	1.814	1.110	1.000	1.000	1.000
Lower Salado Compacted Clay DRZ-4	1.858	1.162	1.002	1.000	1.000

<u> 2</u>6

Ż

4

Parameter 12: Intrinsic Permeability - Shaft Disturbed Rock Zone (Continued) 1 2 **Data:** Site-Specific Experimental Data 3 4 The data for the DRZ around the shaft come from field and laboratory data. 5 6 The data associated with this parameter are summarized in the following parameter records package: SWCF-A:WBS:1.1.03.2.1:PDD:QA:Shaft Seals BRAGFLO Parameters 7 (WPO 30640). 8 10 Discussion: 11 12 13 The shaft DRZ permeability is used to obtain the effective composite permeability for the shaft materials affected by a DRZ, including the clay, salt, and asphalt shaft materials (see Figure 14 15 PAR-2). 16 17 The zone of disturbed salt around the excavation is termed the DRZ. The DRZ in the bedded halite of the Salado Formation forms immediately upon passage of the mining tools and 18 progressively develops over time with the unloading of the formation as it creeps into 19 excavations. From a sealing perspective, the most important and controlling characteristic of 20 the DRZ is its enhanced permeability which results from the dilatant deformation and the 21 increased pore volume. 22 23 24 When the shaft seals are emplaced, back pressures in the shaft sealing material will develop with time as the surrounding salt creeps into the shaft. These back pressures both induce 25 higher mean stress and reduce the magnitude of the stress difference in the DRZ which, 26 ultimately, causes the microfracturing mechanism to become inactive (Brodsky and Munson 27 1994). The higher mean stresses also induce healing of the DRZ as shown by Brodsky (1990). 28 Healing is a time-dependent process; eventually, the permeability of the DRZ will return to 29 that of intact salt. Because the creep rate of the salt surrounding the shaft depend on depth, 30 back pressures in the shaft sealing materials develop more quickly at depth. Therefore, the 31 rate of healing increases with depth, and depends on the stiffness of the seal material. 32 33 A significant number of laboratory and, to a lesser extent, field studies have been performed to 34 characterize the DRZ and to determine the mechanics of DRZ development. DRZ 35 development has been documented in almost all horizontal rectangular excavations of the 36 WIPP underground facility by gas permeability testing, visual observations, and other 37 methodologies (Knowles, et al. 1996). However, no definitive studies in vertical excavations 38 were conducted at the WIPP until recently. Field testing was conducted to estimate the 39 permeability and radial extent of the DRZ in the halite of the Salado Formation surrounding 40 the AIS (Dale and Hurtado 1996). Two horizons were investigated: 345.9 meters and 629.4 41 meters below ground surface. Gas and/or brine permeability tests were performed at each 42 level in three 10.2 centimeters diameter boreholes. The testing protocol for all six boreholes 43 44

Title 40 CFR Part 191 Compliance Certification Application

Parameter 12: Intrinsic Permeability - Shaft Disturbed Rock Zone (Continued)

Discussion (Continued):

1 2

3

4 5

6

7

8

9

10

11

12

13

14

15

16

17

18 19

20

21 22

23

24

25 26

27

28

29

30

31

32 33

34

35 36 called for gas flow testing followed by brine infection testing. The resulting field data provided insight into the variation of permeability in the DRZ and the extent of the DRZ.

In addition, field testing designed to characterize the DRZ around partially sealed boreholes was recently completed at the WIPP site. Gas flow measurements were obtained as a function of radial distance from a seal emplacement borehole located in the floor of Room M of the WIPP underground repository. Experiments conducted in support of the Room D DRZ program measured fluid flow and geophysical parameters along this seal emplacement borehole (Knowles, et al. 1996). Measurements were taken to evaluate the formation permeability as a function of depth into the rib of Room D and radial distance from the open borehole and concrete seal. Analysis of gas flow data obtained in Room M indicates that the permeability of the DRZ near the excavation surfaces ranged from 1.0×10^{-12} to 1.0×10^{-14} square meters (Van Pelt 1995). Results of the Room D DRZ were within the same range, in spite of the difference in geometry between the two testing configurations. Gas and brine permeability measurements taken in the immediate vicinity of concrete seal conclusively show that no DRZ existed in this region.

The PDF for the permeability of the DRZ for all time was constructed based on the information obtained from these recent field test programs.

The DRZ permeability adjacent to the compacted clay column, the crushed salt column and the asphalt column was calculated explicitly and then combined with the seal permeability in the BRAGFLO model.

In order to obtain an effective DRZ permeability, an estimate of the radius of the DRZ around the shaft was provided. Structural calculations to estimate the radial extent of the DRZ as a function of time and depth adjacent to the Upper and Lower compacted clay seals, the compacted crushed salt seal, and the asphalt seal. The times considered were 0, 10, 25, 50, and 100 years after seal emplacement. Table PAR-3 shows the extent of the DRZ in terms of normalized radius at the mid-height of each component.

Assuming that the change in permeability within the DRZ is log linear, the effective DRZ permeability, k_d , is calculated from:

$$k_{d_n} = \frac{2}{r_0 + r_i} \left[\frac{r_0 (\ln(k_0) - \ln(k_i)) - \Delta r}{(\ln(k_0) - \ln(k_i))^2} \right] k_0 - \left(\frac{r_i (\ln(k_0) - \ln(k_i)) - \Delta r}{(\ln(k_0) - \ln(k_i))^2} \right] k_i$$

Parameter 12: Intrinsic Permeability - Shaft Disturbed Rock Zone (Continued)

Discussion (Continued): 1 2 3 where: shaft index (1, 2, 3, or 4)n = inner radius (shaft excavation radius) 4 = r, outer DRZ radius = 5 \mathbf{r}_0 outer DRZ radius minus the inner DRZ radius $\Delta r =$ 6 inner skin permeability (DRZ permeability at the shaft/DRZ 7 k, = interface) 8 9 intact halite k_0 = ĮØ For the shaft seal materials, the effective permeability of composite seal and DRZ for the 12 BRAGFLO model was calculated from the equation: 13 14 $k_{\text{model}} = \frac{k_s A_s + k_d A_d}{A_{\text{model}}}$ where: 15 effective composite permeability used in BRAGFLO. 16 $\mathbf{k}_{model} =$ $\begin{array}{l} A_{\text{model}} = \\ k_{\text{s}}, A_{\text{s}} = \end{array}$ effective shaft area modeled in BRAGFLO (equal to the shaft area, A_s). 17 summation of the shaft seal permeability multiplied by the shaft seal 18 area, for the four shafts. 19 $k_d, A_d =$ summation of the DRZ permeability multiplied by the DRZ area for hte 20 four shafts. 21 22 The summation of DRZ permeability multiplied by the DRZ area for all four shafts is equal to: 23 24 $k_{d}A_{d} = k_{d1}A_{d1} + k_{d2}A_{d2} + k_{d3}A_{d3} + k_{d4}A_{d4}$ 25 26 27 where: = air-supply shaft d1 28 d2= salt-handling shaft 29 d3 = waste-handling shaft 30 air-exhaust shaft d4= 31 32 and the summation of shaft permeability multiplied by the shaft area for all four shafts is equal 33 to: 34 35 36

	Parameter 12: Intrinsic Permeability - Shaft Disturbed Rock Zone (Continued)
Dis	cussion (Continued):
	$k_s A_s = k_{s1} A_{s1} + k_{s2} A_{s2} + k_{s3} A_{s3} + k_{s4} A_{s4}$ (Kelley et al., 1996a)
(Se	e also Parameters 9 and 11 and Appendix IRES.)
WI	PP Data Entry Form #464 WPO#: 36563
Re	ferences:
Bro <i>Wa</i> Sar	odsky, N.S. 1990. Crack Closure and Healing Studies in WIPP Salt Using Compressional ve Velocity and Attenuation Measurements: Test Methods and Results. SAND90-7076. Idia National Laboratories, Albuquerque, NM. 1990. WPO 25755
Bro for Ro SA	odsky, N.S. and Munson, D.E. 1994. "Thermomechanical Damage Recovery Parameters Rock-Salt From the Waste Isolation Pilot Plant," Proceedings of the First North American ok Mechanics Symposium, University of Texas, Austin, TX. June 1994. pp. 731-738. ND93-2067C. WPO 27175
Dal Pro Cai	le T.F., and Hurtado, L.D. 1996. "WIPP Air Intake Shaft Disturbed Rock Zone Study" ceedings of the 4th Conference on the Mechanical Behavior of Salt, Montreal, Quebec, nada, June 1996. SAND96-1327C.
Kel Sys Jan	lley, Van, Jones, T., and Ogintz, J. 1996. Memorandum to Diane Hurtado, Re: WIPP Se stem Parameters for Performance Assessment BRAGFLO Compliance Calculations, uary 15, 1995. WPO 30995
Kn Zei of 1 199	owles, M.K., Borns, D., Dale, T.F., Fredrich, J.T., Holcomb, D., Price, R., Van Pelt, R.S., ach, D. 1996. "Testing the Disturbed Zone Around a Rigid Inclusion in Salt," Proceeding the 4th Conference on the Mechanical Behavior of Salt: Montreal, Quebec, Canada: June 96. SAND95-1151C.
Va Bo	n Pelt, S. Technical Memorandum to M.K. Knowles, "Permeability Estimates from rehole MGFO8 and MGFO9," November 20, 1995. WPO 39631.

.

Parameter 12: Intrinisic Permeability - Shaft Disturbed Rock Zone (Continued)

Figure PAR-2. Shaft-Seal System Conceptual Framework

Pai	rameter 13: Cum	ulative Probability	- Salt Shaft Mate	erial
Parameter Descri	ption:			
This parameter rep different time steps could result in an in sampled. The para decreases in time p a result of random salt shaft material a salt shaft material p	presents the index for s. The distributions increasing permeab inter CUMPROB proportional to the of sampling (Vaughn at time $T = 0$ to 10 permeability distribution	or selecting the salt s for these permeabi ility over time if the ensures that the sal decreasing range of and McArthur 1996 years and the values putions.	shaft material perm lities have regions distributions are in t shaft material per permeability and d b). It is a sampled s are then applied t	neabilities at of overlap wh ndependently meability loes not increas parameter for to all of the oth
Material and Para	ameter Name(s):			
SALT_T1 C	CUMPROB (#2939)		
Computational Co	ode: BRAGFLO	·	,	
теян і				I otel device
0.50 Units: None	<u>median</u> 0.50	0.00	1.00	std. devia 0.29
0.50 Units: None Distribution Type	0.50 e: Uniform	0.00	1.00	std. devia 0.29
0.50 Units: None Distribution Type CDF/PDF Graph	median 0.50 e: Uniform			std. devia 0.29

Parameter 13: Cumulative Probability - Salt Shaft Material (Continued)

Data: Professional Judgment

No experimental data is associated with the cumulative probability parameter. The parameter is an index for selecting shaft salt material permeabilities at different time steps. It varies uniformly from 0 to 1.

Discussion:

1

2 3

4 5

6 7

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23 24

25 26

27

28

29

30

31

32

33

34

35

36 37

38

39

40

41

The value of CUMPROB gives the cumulative probability for a distribution of permeability. Six materials (SALT_T1, SALT_T2, SALT_T3, SALT_T4, SALT_T5, and SALT_T6) are used to represent the time-dependent permeability of the salt sealing material and its surrounding DRZ. Two of these materials are required by changes in the normalized radius of the DRZ. The other four materials are associated with the four overlapping ranges of permeability associated with the salt as it consolidates over a period of 200 years. CUMPROB is a cumulative probability which is sampled once for each vector. The salt permeability is represented by a log-triangular distribution with upper and lower endpoints and a permeability value at which the permeability peaks. The same CUMPROB value is used with each of the four log-triangular distributions to define a value for the salt permeability for the particular time period (0 to 50 years, 50 to 100 years, 100 to 200 years, and 200 to 10,000 years). This use of the same CUMPROB value ensures that the salt sealant permeability will decrease in time proportionally to the decreasing ranges of permeability, and not increase because of random sampling (Vaughn and McArthur 1996).

The permeability of the crushed salt seal component was obtained from laboratory data and model predictions. The parameter records package associated with the permeability of crushed salt is located at SWCF-A:1.1.03.2.1:PDD:QA:Shaft Seals BRAGFLO Parameters (WPO 30640). Brodsky (1994) measured permeability as part of a comprehensive study to characterize both the consolidation characteristics and permeability of WIPP crushed salt. Hansen and Ahrens (1996) reported gas permeability measurements for WIPP crushed salt from tests performed as part of a large-scale dynamic compaction demonstration. In addition, permeability tests were recently performed by Brodsky et al. (1996) on samples prepared from cores recovered from the large-scale dynamic compaction test and from two small-scale dynamic compaction tests performed by SNL (Hansen et al. 1995).

The development of probability distribution functions for the permeability of compacted crushed salt required a model relating permeability and density because the permeability is known to increase with density and the density of the crushed salt in the column seal increases with time during reconsolidation.

42 43 6-1

Parameter 13: Cumulative Probability - Salt Shaft Material (Continued) 1 **Discussion (Continued):** 2 3 4 Because of the limited experimental data available and the large uncertainty associated with the data, a conservative approach was implemented in relating permeability and density. Data 5 from permeability tests on dynamically compacted crushed salt were included in the 6 development of a permeability versus density relationship, even though physical evidence 7 (microscopy) indicated the permeability determined from these tests may be biased. That is, 8 the permeability may be higher than the permeability determined for specimens whose primary 9 consolidation mechanism is pressure solution/redeposition. 10 11 A loglinear model relating permeability (transformed into logarithmic space) and fractional 12 density was used to approximate the lab data. A linear least squares fit was performed. A 13 high degree of uncertainty was included in the distribution function for crushed salt 14 permeability to ensure that all measured values of permeability had a finite probability of 15 being included in the performance assessment calculations. Three prediction intervals were 16 determined for the empirical model. Each of these intervals was superimposed on the data. 17 Since the 90 percent prediction interval contained nearly all of the laboratory and in situ 18 measurements of permeability, it was selected. 19 20 Model predictions were used to predict density of the crushed salt column as a function of 21 time. Some uncertainty exists in these constitutive models because of the uncertainty 22 associated with the model parameters. 23 24 Distribution functions were given for five specific time including 0, 50, 100, 200, and 400 25 years after seal emplacement. These PDFs incorporated the uncertainty inherent in the 26 constitutive material models and the empirical model relating permeability to density, as well 27 as that of the data. 28 29 The DRZ permeability adjacent to the crushed salt column was explicitly calculated and then 30 combined with the crushed salt seal permeability in the performance assessment model. 31 32 32 WIPP Data Entry Form #464 WPO#: 33361 35 39 **References:** 38 39 Brodsky, N.S. 1994. Hydrostatic and Shear Consolidation Tests With Permeability 40 Measurements on Waste Isolation Pilot Plant Crushed Salt. SAND93-7058. Albuquerque, 41 NM: Sandia National Laboratories. WPO 10087 42 43

Title 40 CFR Part 191 Compliance Certification Application

	Parameter 13: Cumulative Probability - Salt Shaft Material (Continued)
Refere	nces (Continued):
Brodsk WIPP S Quebec	y, N.S., Hansen, F.D., and Pfeifle, T.W. 1996. <i>Properties of Dynamically Compacted Salt.</i> Proceedings of the 4th Conference on the Mechanical Behavior of Salt. Montreals, Canada, June. SAND96-0838C.
Hansen 4th Cor SAND9	n, F.D. and Ahrens, E.H. 1996. Large-Scale Dynamic Compaction of Natural Salt, the inference on the Mechanical Behavior of Salt, Montreal, Quebec, Canada, June. 96-0792C.
Hansen <i>Compa</i> U.S. Sy 2313C.	a, F.D., Ahrens, E.H., Tidwell, V.C., Tillerson, J.R., and Brodsky, N.S. 1995. Dynamic ction of Salt: Initial Demonstration and Performance Testing. Proceedings of the 35th proposium on Rock Mechanics, University of Nevada. Reno, NV, June 5-7. SAND94. WPO 23813.
Vaughr Parame	n, Palmer and McArthur, David. 1996. Memo to Martin Tierney, Re: CUMPROB eter Definition and Usage, May 20, 1996. WPO 37542.

.

Parameter 14: Residual Gas Saturation - All Shaft Materials

Parameter Description:

The residual (critical) gas saturation (S_{gr}) is required in the two-phase flow model to define the relative permeability and capillary pressure curves. S_{gr} corresponds to the degree of wastegenerated gas saturation necessary to create an incipient interconnected pathway in porous material, a condition required for porous rock to be permeable to gas. It is a sampled parameter for the salt shaft material at time T = 0 to 10 years and the values are then applied to all of the other shaft materials and time periods.

.7	Material and Para	meter Name(s):	
.8 :0	SALT TI	SAT RGAS (#2529)	
20	SALT T2	SAT_RGAS (#2546)	
21	SALT T3	SAT RGAS (#2563)	
22	SALT T4	SAT RGAS (#2580)	
23	SALT_T5	SAT_RGAS (#2597)	
24	SALT_T6	SAT_RGAS (#2993)	
25			
26	EARTH	SAT_RGAS (#2512)	
27			
28 20	CLAY_RUS	SA1_KGAS (#3015)	
.9 80	CLLT1	SAT RGAS (#2343)	
31	CL L T2	SAT RGAS (#2360)	
32	CL L T3	SAT RGAS (#2377)	
33	CL_L_T4	SAT_RGAS (#3083)	
34			
35	CL_M_T1	SAT_RGAS (#2394)	
86	CL_M_T2	SAT_RGAS (#2411)	
37	CL_M_T3	SAT_RGAS (#2428)	
38	CL_M_T4	SAT_RGAS (#2445)	
39	CL_M_T5	SAT_RGAS (#2462)	
40			
41	CLAY_BOT	SAT_RGAS (#2326)	
42			
43	CONC_TI	SAT_RGAS (#2479)	
44 • -	CONC_12	SAT_RGAS (#2495)	
45 46 47	CONC_MON	SAT_RGAS (#3064)	
+7 48	ALPHALT	SAT_RGAS (#2292)	,

Ż

Parameter 14: Residual Gas Saturation - All Shaft Materials (Continued)

Discussion (Continued):

A single value of 0.18 was found for normal concrete (Mayer et al. 1992). Based on this value, a distribution was assumed for the seal components. The recommended value was 0.2, and the recommended range was 0.0 to 0.4 with a uniform distribution for all shaft seal materials.

8

1

2 3

4

5

References:	
Mayer, G., J	acobs, F., and Wittmann, F.H. 1992. "Experimental Determination and
Numerical S	imulation of the Permeability of Cementitious Materials," Nuclear Engineering

\$

6 7

8

9

10

11

12 13

Parameter 15: Residual Brine Saturation - All Shaft Materials

Parameter Description:

The residual brine saturation (S_{br}) is required in the two-phase flow model to define the relative permeability and capillary pressure curves. Referred to also as S_{wr} (wetting phase) or S_{lr} (liquid phase), residual brine saturation is the point reached under high gas saturation conditions when brine is no longer continuous throughout the pore network and relative brine permeability becomes zero.

Material and Par	rameter Name(s):	
SALT_T1	SAT_RBRN (#2528)	
SALT_T2	SAT_RBRN (#2545)	
SALT_T3	SAT_RBRN (#2562)	
SALT_T4	SAT_RBRN (#2579)	
SALT_T5	SAT_RBRN (#2596)	
SALT_T6	SAT_RBRN (#2992)	
EARTH	SAT_RBRN (#2511)	
CLAY RUS	SAT RBRN (#3014)	
elim_kee	5.11_1010 (#5011)	
CL L T1	SAT RBRN (#2342)	
CL L T2	SAT RBRN (#2359)	
CL L T3	SAT RBRN (#2376)	
CLLT4	SAT RBRN (#3082)	
	.	
CL_M_T1	SAT_RBRN (#2393)	
CL_M_T2	SAT_RBRN (#2410)	مرور ومراقبتهم مع
CL_M_T4	SAT_RBRN (#2444)	503 8 11
CL_M_T5	SAT_RBRN (#2461)	
CLAY_BOT	SAT_RBRN (#2325)	
		and the second se
CONC_T1	SAT_RBRN (#2478)	
CONC_T2	SAT_RBRN (#2494)	
CONC_MON	SAT_RBRN (#3063)	
ASPHALT	SAT_RBRN (#2291)	

	Parameter 15: Residual Brine Saturation - All Shaft Materials (Continued)
ſ	Discussion (Continued):
w a u c o T a e s a s	vere found in four references (Brooks and Corey 1964; Lappala et al. 1987; Parker et al. 1987 nd Rawls et al. 1982). Brooks and Corey (1964) determined residual saturations for five inconsolidated samples based on measured values of liquid saturation as a function of apillary pressure. Lappala et al. (1987) determined residual moisture content for 11 soils by btaining best fits to measured moisture content versus pressure head data using three models the residual moisture contents determined for each soil using the three models were averaged and divided by the reported porosity to obtain a residual liquid saturation for each soil. Parke t al. (1987) fit their saturation-pressure relationship to observed data to obtain residual aturations for a sandy and clayey porous media. Residual water contents reported by Rawls of 1. (1982) for 11 soil texture classes were divided by the reported porosity to obtain residual aturations.
N re	Mayer et al. (1992) reported a residual liquid saturation for normal concrete of 0.30. Data egarding residual liquid saturations in asphalt materials were not found in the literature.
T W C	The literature values of residual liquid saturation for geologic materials and concrete fall within the range of 0.0 to 0.6 with all but two values falling within the range of 0.0 to 0.4. It was recommended that a value of 0.2 be used for the residual liquid saturation of all seal omponents. The recommended range was 0.0 to 0.6 with a uniform distribution.
- v	VIPP Data Entry Form #464 WPO#: 33418
F	References:
E P	Brooks, R.H., and Corey, A.T. 1964. Hydraulic Properties of Porous Media. Hydrology Paper No. 3. Fort Collins, CO: Colorado State University.
L V V T	Lappala, E.G., Healy, R.W., and Weeks, E.P. 1987. Documentation of Computer Program VS2D to Solve the Equations of Fluid Flow in Variably Saturated Porous Media. Water-Resources Investigations Report 83-4099. Denver, CO: U.S. Geological Survey. Cech Library books collection: PC173.4.P67L31987.
N N a	Mayer, G., Jacobs, F., and Wittmann, F.H. 1992. "Experimental Determination and Numerical Simulation of the Permeability of Cementitious Materials," <i>Nuclear Engineering</i> and Design. Vol. 138, no. 2, 171-177.

Parameter 15: Residual Brine Saturation - All Shaft Materials (Continued) 2 **References** (Continued): 3 Parker, J.C., Lenhard, R.J., and Kuppusamy, T. 1987. "A Parametric Model for Constitutive 4 Properties Governing Multiphase Flow in Porous Media," Water Resources Research. Vol. 5 23, no. 4, 618-624. 6 7 Rawls, W.J., Brakensiek, D.L., and Saxton, K.E. 1982. "Estimation of Soil Water 8 Properties," Transactions of the ASAE. St. Joseph, MI: American Society of Agricultural 9 Engineers. 1316-1328. 10 12 13

Title 40 CFR Part 191 Compliance Certification Application

1

Parameter 16: Pore Distribution - All Shaft Materials

Parameter Description:

The Brooks-Corey pore size distribution parameter (λ) is used to calculate capillary pressure and relative permeabilities for gas and brine flow in the two-phase flow model. It is a sampled parameter for the salt shaft material at time T = 0 to 10 years and the values are then applied to all of the other shaft materials and time periods.

SALT TI	PORE DIS (#2516)	
SALT T2	PORE DIS (#2533)	
SALT T3	PORE DIS (#2550)	
SALT_T4	PORE_DIS (#2567)	
SALT_T5	PORE_DIS (#2809)	
SALT_T6	PORE_DIS (#2989)	
EARTH	PORE_DIS (#2499)	
CLAY_RUS	PORE_DIS (#3006)	
CL_L_T1	PORE_DIS (#2330)	
CL_L_T2	PORE_DIS (#2347)	
CL_L_T3	PORE_DIS (#2364)	
CL_L_T4	PORE_DIS (#3076)	
CI. M TI	PORE DIS (#2381)	
CL M T2	PORE DIS (#2398)	
CL M T3	PORE DIS (#2415)	and the second
CL M T4	PORE DIS (#2432)	
CL_M_T5	PORE_DIS (#2449)	
CLAY_BOT	PORE_DIS (#2313)	
CONC_T1	PORE_DIS (#2466)	
CONC_T2	PORE_DIS (#2483)	
CONC_MON	PORE_DIS (#3057)	
ASPHALT	PORE_DIS (#2279)	

Computational Code: BRAGFLO

A literature search was conducted to find pore distribution (that is, lambda) values for geologic

materials and concrete. For geologic materials, 81 lambda values were found in five

	Parameter 16: Pore Distribution - All Shaft Materials (Continued)
Discus	sion (Continued):
referen	ces (Brooks and Corey 1964; Mualem 1976; Rawls et al. 1982; Haverkamp and
Parlang	ge 1986; and Lappala et al. 1987). In addition, 38 lambda values were calculated fro
values	of the van Genuchten parameter n found in six references (van Genuchten 1980; var
Genuc	iten and Nielsen 1985; Hopmans and Overmars 1986; Parker et al. 1987; Stephens e
1988; a	ind Wosten and van Genüchten 1988).
The tot	al number of lambda values found in the literature or calculated from n values found
the lite	rature was 119. In a few cases, different literature sources reported different values
lambda	a and/or n for the same materials. For this situation, the different lambda values wer
arithm	etically averaged to obtain a single value for the material. This procedure yielded
lambda	values for a total of 85 different geologic materials.
The lar	nbda values range from 0.11 to 11.67 and have a median of 0.94. Based on the shap
the his	togram and CDF, it appears that the lambda values are lognormally distributed. The
Lilliefo	ors test for normality (Iman and Conover 1983) was applied to the data to verify that
logarit	am of the lambda values can be described by a normal distribution. The mean of the
lambda	values was found to be -0.064 with a standard deviation of 1.08. The Lilliefors
bounds	represent the region within which 95 percent of normally distributed values will fall
For con	crete, a literature search yielded only one reference (Mayer et al. 1992). This refer
indicat	es that the Corey (1954) relationships are appropriate for describing the two-phase
charact	eristic curves for the normal concretes they tested. For asphalt materials, data regar
lambda	values were not found in the literature.
Both a	lognormal and cumulative distribution for this parameter were recommended for the
seal co	mponents constructed from granular earth materials (that is, earthen fill, compacted
clay, a	nd reconsolidated crushed salt). A cumulative distribution is appropriate when the
range (a, c) of the parameter is known and the best estimate value, b, is the median. The v
recom	nended was 0.94, which is the median of the literature values for geologic materials
I ne ree	commended range for the distribution was 0.11 to 8.1. Consequently, a cumulative
uistrid!	auton is assigned. In the absence of interature data, the same lambda distribution type
value,	and range were also recommended for the concrete and asphalt seaf components.
WIPP	Data Entry Form #464 WPO#: 33380
WIPP	Data Entry Form #464 WPO#: 33380

Parameter 16: Pore Distribution - All Shaft Materials (Continued)
References:
Brooks, R.H., and Corey, A.T. 1964. Hydraulic Properties of Porous Media. Hydrology Paper No. 3. Fort Collins, CO: Colorado State University.
Corey, A.T. 1954. "The Interrelation Between Gas and Oil Relative Permeabilities," <i>Producer's Monthly.</i> Vol. XIX, no. 1, 38–41.
Haverkamp, R., and Parlange, J.Y. 1986. "Predicting the Water-Retention Curve From Particle-Size Distribution: 1. Sandy Soils Without Organic Matter," <i>Soil Science</i> . Vol. 142, no. 6, 325-339.
Hopmans, J.W., and Overmars, B. 1986. "Presentation and Application of an Analytical Model to Describe Soil Hydraulic Properties," <i>Journal of Hydrology</i> . Vol. 87, no. 1–2. 135–143.
Iman, R.L., and Conover, W.J. 1983. Modern Business Statistics. New York, NY: John Wiley & Sons, Inc.
Lappala, E.G., Healy, R.W., and Weeks, E.P. 1987. Documentation of Computer Program VS2D to Solve the Equations of Fluid Flow in Variably Saturated Porous Media. Water- Resources Investigations Report 83-4099. Denver, CO: U.S. Geological Survey.
Mayer, G., Jacobs, F., and Wittmann, F.H. 1992. "Experimental Determination and Numerical Simulation of the Permeability of Cementitious Materials," <i>Nuclear Engineering</i> <i>and Design</i> . Vol. 138, no. 2, 171-177.
Mualem, Y. 1976. "A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media," <i>Water Resources Research</i> . Vol.12, no. 3, 513-522.
Parker, J.C., Lenhard, R.J., and Kuppusamy, T. 1987. "A Parametric Model for Constitutive Properties Governing Multiphase Flow in Porous Media," <i>Water Resources Research</i> . Vol. 23, no. 4, 618-624.
Rawls, W.J., Brakensiek, D.L., and Saxton, K.E. 1982. "Estimation of Soil Water Properties," <i>Transactions of the ASAE</i> . St. Joseph, MI: American Society of Agricultural Engineers. 1316-1328.

Г

DOE/CAO 1996-2184

Parameter 16: Pore Distribution - All Shaft Materials (Continued)

Stephe	ens, D.B., Unruh, M., Havlena, J., Knowlton, R.G., Jr., Mattson, E., and Cox, W. 1988.
"Vado Groun	se Zone Characterization of Low-Permeability Sediments Using Field Permeameters," d Water Monitoring Review Vol 8 no 2 59-66
0.0141	
van Ge	enuchten, M. Th. 1980. "A Closed-form Equation for Predicting the Hydraulic
Condu	ctivity of Unsaturated Soils," Soil Science Society of America Journal. Vol. 44, no. 5,
892-89	98.
van Ge	enuchten, M. Th., and Nielsen, D.R. 1985. "On Describing and Predicting the
Hydrai	ulic Properties of Unsaturated Soils," Annales Geophysicae. Vol. 3, no. 5, 615-628.
Wöster	n. J.H.M., and van Genuchten, M. Th. 1988. "Using Texture and Other Soil Properties
to Pred	lict the Unsaturated Soil Hydraulic Functions," Soil Science Society of America Journal.
Vol. 52	2, no. 6, 1762-1770.

	Parameter	17: Effective Poro	osity - Halite	
Parameter Desc	cription:			
The effective pointerconnected p	rosity of Salado Form ore volume to the bul	nation halite and policies with the second sec	lyhalite refers to th	e ratio of the
Material and Pa S_HALITE POR	arameter Name(s): OSITY (#544)			
Computational	Code: BRAGFLO			
mean	median	minimum	maximum	std. deviat
0.0128	0.01	0.001	0.03	0.01
CDF/PDF Cron	h			
	1.0 0.8 Адііяво 0.6 Аліяво 0.6 одинальника 0.2	S_HALITE POROSI CUMU Cumul + Sam	ILATIVE Distribution ative Probability ipled Data	

2: Z

Parameter 17: Effective Porosity - Halite (Continued)

Data: Site-Specific Experimental Data

The effective porosity distribution of Salado halite is supported by three separate porosity calculations: 1) Skokan et al. (1989; p. 15) determined from electromagnetic and DC resistivity experiments, 2) drying experiments described in Powers et al. (1978; p. 7-30), and 3) drying experiments reported in Deal et al. (1993). The parameter records package associated with this parameter is as follows: SCWF-A:WBS 1.2.07.1:PDD:QA:SALADO: PKG8:POROSITY: effective porosity/hal (WPO 30601).

Discussion:

2ā

 The high value (0.03) for the range of porosity is suggested in Skokan et al. (1989; p.6,13), based on the low end (10 ohm) of the DC resistivity measurements registered in the underground repository. The low value (0.001) is suggested in Powers et al. (1978) based on drying experiments. The median value of 0.01 is suggested in Skokan et al.(1989; p.15). Deal et al. (1993) found an average value of 0.016 for total porosity from a different series of drying experiments.

WIPP Data Entry Form #464 WPO#: 34387

References:

Deal, D.E., Abitz, R.J., Myers, J., Martin, M.L., Millgan, D.J., Sobocinski, R.W., Lipponer, P.P.J., and Belski, D.S. 1993. Brine Sampling and Evaluation Program, 1991 Report. DOE-WIPP-93-026. Carlsbad, NM: Westinghouse Electric Corporation, Waste Isolation Division.

Powers, D.W., Lambert, S.J., Shaffer, S.E., Hill, L.R., and Weart, W.D., eds. 1978.
Geological Characterization Report, Waste Isolation Pilot Plant (WIPP) Site, Southeastern New Mexico. SAND78-1596. Albuquerque, NM: Sandia National Laboratories. Vols. 1-2.
V. 1 - WPO 5448; V.2 - WPO 26829 - 26830, original photos - WPO 26859.

Skokan, C.K., Pfeifer, M.C., Keller, G.V., and Andersen, H.T. 1989. Studies of Electrical and Electromagnetic Methods for Characterizing Salt Properties at the WIPP Site, New Mexico. SAND87-7174. Albuquerque, NM: Sandia National Laboratories. WPO 24033.

	Parameter 18: Lo	og of Intrinsic Per	meability - Halit	e
Parameter Descr	iption:			
The Salada Form	tion holita is assigna	d on intrincia norm	aashilitu intandad	to raflact the
stratigraphic varia	bility of Salado halit	e and far-field hyd	reading intended	It is a sampled
parameter for the	x-direction and the v	alues are then appl	lied to the v- and z	z-directions.
T	<u>,</u>			
Matarial and Pau	amatar Nama(s).		· · · · · · · · · · · · · · · · · · ·	
	ameter mame(s).			
S_HALITE PRMI	X_LOG (#547)			
S_HALITE PRM	Y_LOG (#548)			
S_HALITE PRM	Z_LOG (#549)			
Computational C	Code: BRAGFLO			
mean	median	low	high	std. deviatio
-22.5	-22.5	- 24.0	-21.0	0.87
Tinitae la glaguar				
Units: log(square	(meters)			
Distribution Typ	e: Uniform	······································		
CDF/PDF Graph	_			
	1.0	S_HALITE PRMX_	LOG	
	E.			
	0.8			
	~		xxxx	
	Pro-			
		and the second sec		
	3			
		UNIF	ORM Distribution	
	0.2 🖣 🏒	• <u>Cum</u> i + Sa	mpled Data	
		, 04		
		Varia		
	0.0	Varia	ble 18 in LHS	

Parameter 18: Log of Intrinsic Permeability - Halite (Continued)

Data: Site-Specific Experimental Data

The reported permeability range of undisturbed impure halite is based on four selected in-situ hydraulic tests: three flow tests believed representative of far-field permeability and one flow test that measured permeability in a zone which included a range of halite lithologies. Computer-derived permeabilities based upon brine inflow data from Room Q fall within the range derived from flow tests. The reader is referred to the relevant parameter record package for more detail; the following parameter records packages are located at: SCWF-A: WBS1.2.07.1:PDD:QA:SALADO:PKG 7:Halite Permeability (x,y,z) (WPO 31218) SCWF-A:WBS1.2.07.1:PDD:QA: SALADO:PKG 7:Salado Halite Permeability (WPO 30721).

Discussion:

Impure halite denotes a broad range of lithologic types ranging from pure halite to lithologies with various degrees of impurities, including polyhalite, argillaceous and anhydritic halite. Far-field tests of the pure halite exist; however, far-field hydraulic tests data do not exist for relatively impure halites, which tend to show higher permeabilities in the near-field. Thus a range of permeability is specified, bounded by rounded low and high permeability values determined from the testing program.

Three hydraulic tests believed representative of far-field pure halite permeability were conducted in the present location of Room Q in map units with relatively low impurities: a halite with less than 0.5 percent impurity, a halite containing approximately 1 percent impurity and a halite and polyhalite zone with a 1-2 percent impurity. These tests are believed to represent the lower end of the permeability range for Salado halite (see Table PAR-4). These units were tested before the large-scale brine inflow excavation was mined and at stratigraphic intervals located over 66 feet (20 meters) from the excavation.

Although probably located within the influence of the DRZ, one flow test (C2H01-BGZ) measured within map units 0-4. This permeability value in conjunction with Room Q model analysis determination of far-field permeability are used to bound the maximum permeability of Salado halite containing relatively high impurities.

A summary of selected interpretative results of these four flow and pressure tests is compiled in the attached table. A schematic representation of Salado map units near the disposal area horizon, adapted from Deal et. al. (1989), is attached for information purposes (see Figure PAR-3).

WIPP Data Entry Form #464 WPO#: 34397

Ĺ	Parameter 18: Log of Intrinsic Permeability - Halite (Continued)
R	leferences:
B Ta S	eauheim, R.L., Saulnier, G.J., Jr., and Avis, J.D. 1991. Interpretation of Brine-Permeat ests of the Salado Formation at the Waste Isolation Pilot Plant Site: First Interim Report AND90-0083. Albuquerque, NM: Sandia National Laboratories. WPO 26033.
B Ta In W	eauheim, R.L., Roberts, R.M., Dale, T.F., Fort, M.D., and Stensrud, W.A. 1993. Hydran esting of Salado Formation Evaporites at the Waste Isolation Pilot Plant Site: Second interpretive Report. SAND92-0533. Albuquerque, NM: Sandia National Laboratories. WPO 23378.
D pa 54 re	vavies, Peter and Rick Beauheim. 1996. Memo to Martin Tierney. RE: Changes to the arameter records package and form #464 for far-field permeability of Salado halites (id#s 47, 548, and 549; idmtrl: S_HALITE; idpram: PRMX_LOG, PRMY_LOG, and PRMZ_l espectively). March 7, 1996. WPO 36772.
D P C	Peal, D.E., Abitz, R.J., Belski, D.S., and Case, J.B. 1989. Brine Sampling and Evaluation Program, 1988 Report. DOE-WIPP-89-015. Carlsbad, NM: Westinghouse Electric Corporation.
Je Bi Si	ensen, A.L., Howard, C.L., Jones, R.L., and Peterson, T.P. 1993. Room Q Data Report: Forehole Data from April 1989 through November 1991. SAND92-1172. Albuquerque, I andia National Laboratories. WPO 23548.
S: 19 S:	aulnier, G.J., Jr., Domski, P.S., Palmer, J.B., Roberts, R.M., Stensrud, W.A., and Jensen, 991. WIPP Salado Hydrology Program Data Report #1. SAND90-7000. Albuquerque, andia National Laboratories. WPO 25746
S ¹ G R	tensrud, W.A., Dale, T.F., Domski, P.S., Palmer, J.B., Roberts, R.M., Fort, M.D., Saulnie J.J., Jr., and Jensen, A.L. 1992. <i>Waste Isolation Pilot Plant Salado Hydrology Program</i> <i>Report #2.</i> SAND92-7072. Albuquerque, NM: Sandia National Laboratories. WPO 264
Ta	able PAR-4. Summary of Permeability Test-Interpretations Results from In Situ Permeability Tests Representing Undisturbed Impure Halite
	Test IntervalPermeability(meters fromAnalysisexcavation)HoleMap unit(s)Method(square meters)

Note: See Record Parameter Package for additional detail.

QPPO5

QPP12

QPP15

C2H01-BGZ

20.13-21.03

23.35-24.20

20.19-21.09

4.50-5.58

41

42

43

44

45

MU 6

H3

MU O - MU PH-4

MU O - MU 4

GTFM6.0

GTFM6.0

GTFM6.0

GTFM6.0

 1.12×10^{-24}

 2.69×10^{-22}

 5.5×10^{-24}

 1.38×10^{-21}

Figure PAR-3. Detailed Stratigraphy Near the WIPP Site (Deal et al. 1989)

ter Descri (or bulk) sibility that compressing nedia as for $\phi =$ porosity pore con- pore pre- reference compress	iption: compressibility of at is used in BRAG ibility on porosity a ollows: $\Phi_0 \exp(c_p(p-p_0))$ y of solid matrix (c y at reference press impressibility (pasc essure (pascals) ce pore pressure (pascals)	the Salado Formatio FLO. Pore compress and mass storage in t ubic meters/cubic m ure p _o sals ⁻¹) ascals) y effective porosity	on halite is used to a sibility is used to p the equation of state neters)	calculate the p predict the effe e for flow thro ompressibility.
(or bulk) sibility that compressing edia as for $\phi =$ porosity pore control pore pre- reference compress	compressibility of at is used in BRAG ibility on porosity a ollows: $\Phi_o \exp (c_p(p-p_o))$ y of solid matrix (c y at reference press ompressibility (pasc essure (pascals) ce pore pressure (pascals) ce pore pressure (pascals)	the Salado Formatio FLO. Pore compress and mass storage in t ubic meters/cubic m ure p _o :als ⁻¹) ascals) y effective porosity	on halite is used to operative solution of state equation of state here solution of state here solution of state to calculate pore components of the solution of state pore components of the solution of solution of state pore components of the solution of so	calculate the p predict the effe e for flow thro ompressibility.
φ = porosity pore co pore pre reference compress	$\Phi_{o} \exp (c_{p}(p-p_{o}))$ y of solid matrix (c y at reference press ompressibility (pasc essure (pascals) ce pore pressure (pascals) sibility is divided by	ubic meters/cubic m ure p _o als ⁻¹) ascals) y effective porosity	to calculate pore co	ompressibility.
 porosity poro sity pore control pore pression compression 	y of solid matrix (c y at reference press impressibility (pasc essure (pascals) ce pore pressure (pascals) sibility is divided by	ubic meters/cubic m ure p _o als ⁻¹) ascals) y effective porosity	to calculate pore co	ompressibility.
l and Para TE	ameter Name(s): COMP_RCK (#541)		
ational C	ode: BRAGFLO	<u></u>		
an	median	minimum	maximum	std. deviat
< 10 ⁻¹¹	9.75×10^{-11}	2.94×10^{-12}	1.92×10^{-10}	0
$D_{a^{-1}}$				
	TE ational C an 10^{-11} a^{-1}	TE COMP_RCK (ational Code: BRAGFLO an median 10^{-11} 9.75 × 10^{-11} a^{-1}	TE COMP_RCK (#541) ational Code: BRAGFLO an median minimum 10^{-11} 9.75×10^{-11} 2.94×10^{-12} a^{-1} a^{-1} a^{-1}	TE COMP_RCK (#541) ational Code: BRAGFLO minimum maximum 10 ⁻¹¹ 9.75 × 10 ⁻¹¹ $2.94 × 10^{-12}$ $1.92 × 10^{-10}$ a^{-1} a^{-1} a^{-1} a^{-1} a^{-1}

.

Data: Site-Specific Experimental Data

The parameter distribution for halite rock compressibility is based upon data from two hydraulic tests in Room Q: QPP05 and QPP15. Another data point calculated from sensitivity studies using brine inflow data from Room Q is within the range driven from the hydraulic tests. Parameter records packages associated with this parameter are located at SCWF-A:WBS1.2.07.1:PDD:QA: SALADO:PKG 5: Salado Halite Rock Compressibility (WPO 31220) and SCWF-A.WBS1.2.07.1:PDD:QA: SALADO:PKG 5: Salado Halite Rock Compressibility (WPO 30598).

Discussion:

The two in situ hydraulic tests were conducted in the location of Room Q before the largescale brine inflow excavation was mined. Test intervals were located over 65 feet (20 meters) from the excavation. Map units (MU) represented included MU 6 (halite) and MU 0 (halite)/MU PH-4 (polyhalite) within a radius of about 3.3 feet (one meter) of each borehole. Raw data included pressure, fluid volume, temperature, axial test-tool movement, and radial borehole closure.

26

6 7

8

9

10

11 12

13

14 15 19

18 19

20

21

22

23

24 25

1 2 3 4 5 6 7
9
10
12
13
14
15
16
17
18
19
20
21
22
23
24
25
20
21
29
30
31
32
33
34
35
36
37
38
39 40
41
42
43
44 45
46
41

Parameter 19: Rock Compressibility - Halite (Continued)

Discussion (Continued):

Interpretation of all flow tests in the WIPP facility is based on the assumption that Darcy flow and borehole closure are the only forms of pressure/flow transmission during hydraulic tests. References related to data collection and interpretation are listed in the references section.

WIPP Data Entry Form #464 WPO#: 34210

References:

Beauheim, R.L., Saulnier, G.J., Jr., and Avis, J.D. 1991. Interpretation of
 Brine-Permeability Tests of the Salado Formation at the Watts Isolation Pilot Plant Site:
 First Interim Report. SAND90-0083. Albuquerque, NM: Sandia National Laboratories.
 WPO 26003.

Beauheim, R.L., Roberts, R.M., Dale, T.F., Fort, M.D., and Stensrud, W.A. 1993. *Hydraulic Testing of Salado Formation Evaporites at the Waste Isolation Pilot Plant Site: Second Interpretive Report.* SAND92-0533. Albuquerque, NM: Sandia National Laboratories. WPO 23378.

Jensen, A.L., Howard, C.L., Jones, R.L., and Peterson, T.P. 1993. Room Q Data Report: Test Borehole Data from April 1989 through November 1991. SAND92-1172. Albuquerque, NM: Sandia National Laboratories. WPO 23548

Saulnier, G.J., Jr., Domski, P.S., Palmer, J.B., Roberts, R.M., Stensrud, W.A., and Jensen,
A.L. 1991. WIPP Salado Hydrology Program Data Report #1. SAND90-7000.
Albuquerque, NM: Sandia National Laboratories. WPO 25746

Stensrud, W.A., Dale, T.F., Domski, P.S., Palmer, J.B., Roberts, R.M., Fort, M.D., Saulnier, G.J., Jr., and Jensen, A.L. 1992. *Waste Isolation Pilot Plant Salado Hydrology Program Data Report* #2. SAND92-7072. Albuquerque, NM: Sandia National Laboratories. WPO 26432.

Table PAR-5. Summary of Rock Compressibility Test-Interpretations Results from In Situ Permeability Tests for Undisturbed Halite and Polyhalite Map Units

Test Interval (meters from excavation)	Hole	Zone	Map Unit(s)	Analysis Method	Rock Compressibility C, (1/pascal)	Formation Pore Pressure (megapascal)*
20.13-21.03 down	QPPO5 Room Q	undisturbed	MU 6	GTFM6.0	2.94×10^{-12}	13.89
20.19-21.09 down	QPP15 Room Q	undisturbed	MU 0 MU PH-4	GTFM6.0	1.92×10^{-10}	11.04

• - Mean

48

<u>48</u>

Note: See Record Parameter Package for additional detail.

Parameter 20: Log of Intrinsic Permeability - Marker Bed 138, Anhydrite Layers a & and Marker Bed 139					
Parameter I	Description:		<u> </u>	<u> </u>	
The intrinsic the values for MB138 and A	permeabilities MB139. It is Anhydrite Laye	for MB138 a sampled rs a & b.	8, Anhydrite Layers parameter for MB	s a & b, and MB13 139 and the values	9 are set equa are then appli
Material and	l Parameter N	ame(s):			
S_MB139	PRMX_L	OG (#	591)		
S_MB139	PRMY_L	OG (#	592)		
S_MB139	PRMZ_L0	OG (#	593)		
S_ANH_AB	PRMX_LOC	6 (#531)	S_MB138	PRMX_LOG (#570)
S_ANH_AB	PRMY_LOC	G (#532)	S_MB138	PRMY_LOG (#571)
S_ANH_AB	PRMZ_LOG	(#533)	S_MB138	PRMZ_LOG (#572)
Computatio	nal Code: BR	AGELO	······································	·····	
Computation		AGILO			
mean	me	dian	<u>mini</u> mum	maximum	std. devia
- 18.89	- 18	8.89	-21.0	-17.1	1.20
<u></u>		<u> </u>			

Title 40 CFR Part 191 Compliance Certification Application

Parameter 20: Log of Intrinsic Permeability - Marker Bed 138, Anhydrite Layers a & b, and Marker Bed 139 (Continued)

4

Data: Site-Specific Experimental Data and Laboratory-Measured Data

The reported parameter range of undisturbed Salado anhydrite permeabilities is based upon selected data collected from in situ hydraulic tests and measurements conducted in the laboratory: 1) five hydraulic tests conducted in the underground experimental area; and 2) 31 Klinkenberg-corrected gas permeabilities measured in the laboratory on specimens collected from MB139 core samples. Summary data tables are attached for both in situ and laboratory tests (see Tables PAR-6 and PAR-7). Parameter records packages associated with this parameter are located at: SCWF-A:WBS1.2.07.1:PDD:QA: SALADO: PKG 13:Anhydrite Permeability (x,y,z) (WPO 31217); SWCF-A:WBS1.2.07.1:PDD:QA: SALADO:PKG 13:PRMX_LOG.Log of Permeability in x direction/anh (WPO 30603); SWCF-A:WBS1.2.07.1:PDD:QA: SALADO:PKG13:PRMY_LOG Log of Permeability in y direction/anh (WPO 30605); SWCF-A:WBS1.2.07.1:PDD:QA:SALADO: PKG13: PRMZ_LOG Log of Permeability in the z direction/anh (WPO 30606).

20 21

17

18

Parameter 20: Log of Intrinsic Permeability - Marker Bed 138, Anhydrite Layers a & b, and Marker Bed 139 (Continued)

Out of 15 here	abolo and field	nome obility to sto	المعمد المعمد ال	- MD140 M	D120 MD120
out of 15 bor	enoie and neid	bydraulic tests are	conducted I	n MB140, M	B139, MB138 an
of undisturbe	d ophydrite per	nyuraune tests are	Considered	t 22 to 70 foot	t (10 to 24 maters
from the exec	u annyunce per	intervals for these	five boreho	l 33 to 79 leet	$\frac{10}{10} = \frac{10}{10} = \frac{10}{24} = \frac{10}{10} = \frac{10}{24} = \frac{10}{10} = \frac{10}{24} = \frac{10}{10} = 10$
radius of visi	hility ranged fro	mervars for these multiplication matrix $13 to 82 feet (4)$	to 25 meter	$r_{\rm s}$) The five s	successful tests a
summarized :	as follows.	15 to 62 teet (+		s). The five a	
Summinum200 (13 10110 115.				
Borehole	Location	Map Unit	Testin	g Period	
OPP03	Room O	Anhydrite b	4/89	11/91	A STATE STATE
OPP13	Room Q	MB 139	4/89	11/91	STAL OF
C2H02	Room C2	MB 139	4/89	12/89	· · · · · · · · · · · · · · · · · · ·
L4P51-C1	Room L4	MB 140	4/92	6/94	
SCP01-A	Core Storage	MB 139	4/90	10/90	τ, τ', 1 , 5γ
	5-		-		
Klinkenberg-	corrected gas pe	ermeability measur	ed in the la	boratory can b	be used as an
equivalent m	easure of liquid	permeability. Klin	nkenberg-co	prrected test sp	becimen data exis
from six who	le cores taken f	rom MB139 in the	northern ex	perimental ar	ea: E1X07, E1X0
E1X10, E1X	11 (E140 Drift).	P3X10, and P3X1	l 1 (Room L	<u>3</u>).	
For purposes	of parameteriza	tion, in situ test da	ita are treate	d differently	than laboratory-
derived data.	Uncertainty ex	ists in regards to th	ne spatial re	presentativen	ess of the core
samples. In s	situ hydraulic te	sts are considered	representati	ve of expected	d permeability
conditions on	the scale of the	grid system used	in the BRA	GFLO mesh.	Consequently, for
parameter dis	stribution above	, laboratory data fr	om the 6 m	egapascals ne	t effective stress
averaged as c	one data point, v	whereas each of the	five hydrau	ilic tests is co	nsidered an indiv
data point.					
+					
+					
1 					
WIPP Data 1	Entry Form #4	64 WPO#: 34865			
WIPP Data	Entry Form #4	64 WPO#: 34865			
WIPP Data	Entry Form #4	64 WPO#: 34865			· · · · ·
WIPP Data References:	Entry Form #4	64 WPO#: 34865			
WIPP Data References:	Entry Form #4	64 WPO#: 34865	D 1001		
WIPP Data References: Beauheim, R	Entry Form #4	64 WPO#: 34865	.D. 1991. <i>I</i>	Interpretation	of Brine-Permed
WIPP Data References: Beauheim, R Tests of the S	Entry Form #4 .L., Saulnier, G	64 WPO#: 34865	.D. 1991. I lation Pilot	nterpretation Plant Site: Fi	of Brine-Permed irst Interim Repo
WIPP Data References: Beauheim, R Tests of the S SAND90-008	Entry Form #4 .L., Saulnier, G Salado Formatio 83. Albuquerqu	64 WPO#: 34865 J., Jr., and Avis, J. on at the Waste Iso ie, NM: Sandia Na	.D. 1991. i lation Pilot tional Labo	Interpretation Plant Site: Fi ratories. WP0	of Brine-Permea irst Interim Repo D 26003.

Parameter 20: Log of Intrinsic Permeability - Marker Bed 138, Anhydrite Layers a & b, and Marker Bed 139 (Continued)

	References (Continued):
	Beauheim, R.L., Roberts, R.M., Dale, T.F., Fort, M.D., and Stensrud, W.A. 1993. Hydraul
I	Testing of Salado Formation Evaporites at the Waste Isolation Pilot Plant Site: Second
	Interpretive Report. SAND92-0533. Albuquerque, NM; Sandia National Laboratories.
Į	WPO 23378.
ĺ	
	Howarth S.M., and Christian-Frear, T. 1996. (WIPP Central Files WPO 38019). Porosity,
	Single – Phase Permeability, and Capillary Pressure Data from Preliminary Laboratory
ĺ	Experiments on Selected Samples from Marker Bed 139 at the Waste Isolation Pilot Plant.
	Jensen, A.L., Howard, C.L., Jones, R.L., and Peterson, T.P. 1993. Room Q Data Report: T
	Borenole Data from April 1989 through November 1991. SAND92-1172. Albuquerque, N.
l	Salidia National Laboratories. WPO 25548.
	Saulnier G.I. Ir. Domski P.S. Palmer I.B. Roberts R.M. Stensrud W.A. and Iensen
	A.L. 1991. WIPP Salado Hydrology Program Data Report #1. SAND90-7000.
	Albuquerque, NM: Sandia National Laboratories. WPO 25746.
l	
	Stensrud, W.A., T.F. Dale, P.S. Domski, J.B. Palmer, R.M. Roberts, M.D. Fort, G.J. Saulnie
	Jr., and A.L. Jensen. 1992. Waste Isolation Pilot Plant Salado Hydrology Program Data
1	Report #2. SAND92-7072. Albuquerque, NM: Sandia National Laboratories. WPO 2643:

Table PAR-6. Summary of Test-Interpretations Results from In Situ Permeability Tests for Undisturbed Anhydrite Map Units

Test Interval (meters from excavation)	Hole	Zone	Map Unit	Analysis Method	Permeability k (square meters)	Formation Pore Pressure (megapascals)
10.68-14.78 down	SCP01-A	undisturbed	MB139	GTFM6.0	1.4×10^{-19}	12.27
9.47-10.86 down	C2H02	undisturbed	MB139	GTFM6.0	1.0×10^{-21}	11.11
0.50-21.40 up	QPPO3	undisturbed	anhydrite b	GTFM6.0	7.6×10^{-20}	12.9
20.62-21.52 down	QPP13	undisturbed	MB139	GTFM6.0	6.0×10^{-20}	12.43
17.44-22.20 down	L4P51-C1	undisturbed	MB140	GTFM6.0	8.7×10^{-18}	9.38

Note: See Record Parameter Package for additional detail.

1 Tab	le PAR-7. Sur	nmary of M	IB139 Pern	neability La	aboratory	Fest Result	S
3		Permeability	(pressure va	lues are net e	ffective stress	s)	
4		Gas (Klinken	berg Correct	ed)	Log of Pern	neability	
5		3.4 megapascals	6 megapascals	10 megapascals	2 megapascals	6 megapascals	10 megapascals
		(square meters)	(square meters)	(square meters)	(square meters)	(square meters)	(square meters)
6	Minimum	1.5E~19	5.9E-20	5.0E-20	- 18.84	- 19.23	-19.30
7	Maximum	8.3E-16	3.0E-16	1.5E-16	-15.08	-15.52	~15.82
8	Sum	9.0E-16	3.4E-16	1.8E-16	-552.29	-524.43	-402.17
9	Points	31	29	22	31	29	22
10	Mean	2.9E-17	1.2E-17	8.0E-18	-17.82	- 18.08	-18.28
11	Median	1.3E-18	5.7E-19	3.1E-19	-17.89	-18.24	-18.51
12	Std Deviation	1.5E-16	5.6E-17	3.2E-17	0.67	0.69	0.83
13	Variance	2.2E-32	3.2E-33	1.1E-33	0.45	0.48	0.69

Parameter 21: Rock Compressibility - Marker Bed 138, Anhydrite Layers a & b, and Marker Bed 139				
Parameter Descri	iption:			- <u></u>
The rock (or bulk) MB138 and MB13 Pore compressibili mass storage in the	compressibility of 39 is used to calcula ity is used to predic e equation of state f	the Salado Formation ate the pore comprese t the effect of mater for flow through por	on Anhydrite Layer ssibility that is used ial compressibility rous media as follow	rs a & b and i in BRAGFLO on porosity and ws:
$\phi = \phi_{o} ex$	$p(c_p(p-p_o))$			
where,				
	y at reference press ompressibility (pasc essure (pascals) ce pore pressure (pa	als ⁻¹) ascals)		
is a sampled paran Layers a & b.	sibility is divided by neter for MB139 an	y effective porosity d the values are the	to calculate pore constraints applied to MB13	ompressibility. 8 and Anhydrite
is a sampled paran Layers a & b. Material and Par	sibility is divided by neter for MB139 an ameter Name(s):	y effective porosity d the values are the	to calculate pore con applied to MB13	ompressibility. 8 and Anhydrite
Material and Par S_MB139 S_ANH_AB S_MB138	sibility is divided by neter for MB139 an ameter Name(s): COMP_RCK COMP_RCK	y effective porosity d the values are the (#580) (#521) (#560)	to calculate pore con applied to MB13	ompressibility. 8 and Anhydrite
Material and Par S_MB139 S_ANH_AB S_MB138 Computational C	sibility is divided by neter for MB139 an ameter Name(s): COMP_RCK COMP_RCK COMP_RCK	y effective porosity d the values are the (#580) (#521) (#560)	to calculate pore con applied to MB13	ompressibility. 8 and Anhydrite
Material and Par S_MB139 S_ANH_AB S_MB138 Computational C mean	sibility is divided by neter for MB139 an ameter Name(s): COMP_RCK COMP_RCK COMP_RCK	y effective porosity d the values are the (#580) (#521) (#560) 	to calculate pore co n applied to MB13	Sompressibility. 8 and Anhydrite std. deviati
Material and Par S_MB139 S_ANH_AB S_MB138 Computational C mean 8.26 × 10 ⁻¹¹	sibility is divided by neter for MB139 an ameter Name(s): COMP_RCK COMP_RCK COMP_RCK COMP_RCK COMP_RCK COMP_RCK BRAGFLO median 8.26 × 10 ⁻¹¹	y effective porosity d the values are the (#580) (#521) (#560) $\underbrace{\text{minimum}}_{1.09 \times 10^{-11}}$	to calculate pore co n applied to MB133	Sompressibility. 8 and Anhydrit std. deviation
The fock compress is a sampled paran Layers a & b. Material and Par S_MB139 S_ANH_AB S_MB138 Computational C \underline{mean} 8.26×10^{-11} Units: pascals ⁻¹	sibility is divided by neter for MB139 an ameter Name(s): COMP_RCK COMP_RCK COMP_RCK COMP_RCK COMP_RCK COMP_RCK Sode: BRAGFLO median 8.26 × 10 ⁻¹¹	y effective porosity d the values are the (#580) (#521) (#560) <u>minimum</u> 1.09 × 10 ⁻¹¹	to calculate pore co n applied to MB133	ompressibility. 8 and Anhydrite std. deviati

October 1996

.

Borehole	Location	Start Date of Testing	End Date of Testing	
QPP03	Room Q	4/89	11/91	
QPP13	Room Q	4/89	11/91	
C2H02	Room C2	4/89	11/89	
SCP01-A	Core Storage	4/90	10/90	
	-			

Title 40 CFR Part 191 Compliance Certification Application

Discussion:

The four successful tests include:

Parameter 21: Rock Compressibility - Marker Bed 138, Anhydrite Layers a & b, and Marker Bed 139 (Continued)

	cussion (Commutu).
Rav test test anh	w data collected during hydraulic tests include pressure, fluid volume, temperature, axi -tool movement, and radial borehole closure. Pressure/flow transmission during hydra s is assumed to be a result of Darcy flow and borehole closure. The reader is referred hydrite rock compressibility parameter record package for more detail.
WI	PP Data Entry Form #464 WPO#: 34574
Re	farences»
I.C.	
Bea Tes SA	auheim, R.L., Saulnier, Jr., G.J., and Avis, J.D. 1991. Interpretation of Brine-Permean ts of the Salado Formation at the Waste Isolation Pilot Plant Site: First Interim Reporn ND90-0083. Albuquerque, NM: Sandia National Laboratories. WPO 26003.
Bea Tes Inte	uuheim, R.L., Roberts, R.M., Dale, T.F., Fort, M.D., and Stensrud, W.A. 1993. Hydra ting of Salado Formation Evaporites at the Waste Isolation Pilot Plant Site: Second erpretive Report. SAND92-0533. Albuquerque, NM: Sandia National Laboratories.
,, 1	0 20070.
Jen <i>Boi</i> Sar	sen, A.L., Howard, C.L., Jones, R.L., and Peterson, T.P. 1993. Room Q Data Report: rehole Data from April 1989 through November 1991. SAND92-1172. Albuquerque, adia National Laboratories. WPO 23548.
Sau A.I	Inier, Jr., G.J., Domski, P.S., Palmer, J.B., Roberts, R.M., Stensrud, W.A., and Jensen 1991. WIPP Salado Hydrology Program Data Report #1. SAND90-7000.
Alt	ouquerque, NM: Sandia National Laboratories. WPO 25746.
Ste	nsrud W A Dale T.F. Domski P.S. Palmer I.B. Roberts R.M. Fort M.D. Saulni
G.J	¹ ., Jr., and Jensen, A.L. 1992. Waste Isolation Pilot Plant Salado Hydrology Program ta Report #2. SAND92-7072. Albuquerque, NM: Sandia National Laboratories. WP

Parameter 21: Rock Compressibility - Marker Bed 138, Anhydrite Layers a & b, and Marker Bed 139 (Continued)

Table PAR-8.Summary of Rock Compressibility Test-Interpretations Results from In
Situ Permeability Tests for Undisturbed Anhydrite Marker Beds

Test Interval (meters from excavation)	Hole and Location	Zone	Map Unit(s)	Analysis Method	Rock Compressibility C _r (1/pascals)	Formation Pore Pressure (megapascals)
9.47-10.86 down	C2H02	undisturbed	MB 139	GTFM6.0	1.09 × 10 ⁻¹¹	11.11
20.62-21.52 down	QPP13	undisturbed	MB 139	GTFM6.0	3.37×10^{-11}	12.43
10.68-14.78 down	SCP01	undisturbed	MB 139	GTFM6.0	1.09×10^{-11}	12.27
20.50-21.40 up	QPP03	undisturbed	Anhydrite b	GTFM6.0	2.75×10^{-10}	12.94

* - Mean

1

3

4 5

6

22

23 24 Note: See Record Parameter Package for additional detail.

DOE/CAO 1996-2184

	Parameter 22: 1	Relative Permeabili	ty Model Number	•	
Parameter Desci	Parameter Description:				
The relative perm model for use in I applied to MB138 modified Brooks-	eability model nun BRAGFLO. It is a 8 and Anhydrite La Corey two-phase f	ber parameter is the sampled parameter f yers a & b. All othe ow model.	e flag used to select for MB139 and the r material regions	two-phase flo values are the use the second	
Material and Pa	rameter Name(s):		···		
S_MB139 (#596) S_ANH_AB (#53 S_MB138 (#575)	RELP_MOD 86) RELP_MOD RELP_MOD				
Computational (Code: BRAGFLO				
mean	median	minimum	maximum	std. deviat	
	meann		ing shirten	Brai ac ma	
n.a. Units: None	n.a.	1	4	n.a.	
n.a. Units: None Distribution Typ CDF/PDF Graph	n.a.	1 	4 		
n.a. Units: None Distribution Typ CDF/PDF Graph	n.a. n.a. pe: Delta n 1.0 0.8	S_MB139 RELP_N	4 MOD		
n.a. Units: None Distribution Typ CDF/PDF Graph	n.a. n.a. pe: Delta 1.0 0.8 1.0 0.8 1.0 0.8 1.0 0.8 1.0 0.8 1.0 0.8 1.0 0.8 1.0 0.8 1.0 0.8 1.0 0.8 1.0 0.8 1.0 0.8 1.0 0.4 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1 	4 	<u>n.a.</u>	
n.a. Units: None Distribution Typ CDF/PDF Graph	n.a. n.a. pe: Delta 1.0 0.8 1.0 0.8 0.6 0.4 0.2	I S_MB139 RELP_N DELT Cumm + Sar	A Distribution lative_Probability_npled_Data		

	Parameter 22: Relative Permeability Model Number (Continued)
Dat	a: Site-Specific Experimental Data
Site bor sub Anl two	-specific experimental data was collected from whole core taken from six underground choles at the WIPP. The specimens first underwent permeability and porosity testing, then sequent capillary pressure tests. Test data from MB139 was applied to MB138 and hydrite Layers a & b. All other material regions use the second modified Brooks-Corey -phase flow model.
Ass	umptions made during testing were:
1) 2) 3)	Cores were 100 percent saturated at initiation of capillary pressure tests. Use of a 140° contact angle was appropriate for correcting mercury-air data to brine-air repository conditions. Although tests were conducted at ambient conditions (no stress), the data are adequate to describe two-phase conditions at stress.
The A:1 (W)	following parameter records package is associated with the tests: SWCF- .2.07.1:PDD:QA:SALADO:PKG 10:Salado Anhydrite Two-Phase Parameters PO 30643).
Dis	cussion:
The incl the Ger	re are several two-phase relative permeability models described in Appendix BRAGFLO, uding the van Genuchten-Parker and the second modified Brooks-Corey. Interpretation of experimental test results showed that either the second modified Brooks-Corey or the van uchten-Parker two-phase flow models could be used to describe the data.
WI	PP Data Entry Form #464 WPO#: 34500
Ref	erences:
Ho Sin Exp	warth S.M., and Christian-Frear, T 1996. (WIPP Central Files WPO 38019). Porosity, gle – Phase Permeability, and Capillary Pressure Data from Preliminary Laboratory periments on Selected Samples from Marker Bed 139 at the Waste Isolation Pilot Plant.
We	bb, S.W. 1991. "Sensitivity Studies for Gas Release from the Waste Isolation Pilot Plant,"

Parameter 23: Residual Brine Saturation - Marker Bed 138, Anhydrite Layers a & b, and Marker Bed 139

Parameter Description:

The residual brine saturation (S_{br}) is required in the two-phase flow model to define the relative permeability and capillary pressure curves. Referred to also as Swr (wetting phase) or S_{ir} (liquid phase), residual brine saturation is the point reached under high gas saturation conditions when brine is no longer continuous throughout the pore network and relative brine permeability becomes zero. It is a sampled parameter for MB139 and the values are then applied to MB138 and Anhydrite Layers a & b.

	Material and Para	meter Name(s):
	S_MB139	SAT_RBRN (#598)
ļ	S_MB138	SAT_RBRN (#577)
	S_ANH_AB	SAT_RBRN (#538)

Computational Code: BRAGFLO

mean	median	minimum	maximum	std. deviation
0.08363	0.08363	0.007846	0.17400	0.05

Units: None

Distribution Type: Student's-t

CDF/PDF Graph

Pa	rameter 23: Residual Brine Saturation - Marker Bed 138, Anhydrite Layers a & b, and Marker Bed 139 (Continued)
Dat	a: Site-Specific Experimental Data
Res para para 1.2.	dual brine saturation parameter values for the marker beds are based on curve fit meter values predicted from laboratory measurements of capillary pressure. The meter records package associated with this parameter is retained in SWCF: SWCF-A 07.1:PDD:QA:SALADO:PKG 10:Salado Anhydrite Two-Phase Parameters (WPO 30643)
Dise	cussion:
Para inje mea 199 exp	meter values are based on curve fit capillary pressure data measured using a mercury ction technique. The two-phase flow program reports the results of curve-fitted surements of capillary pressure on six marker bed samples (Howarth and Christian-Frear 6). Specimens were collected from intact MB139 core samples taken from the erimental area of the repository.
WI	PP Data Entry Form #464 WPO#: 34506
Ref	erences:
Hov Sing Exp	warth S.M., and Christian-Frear, T. 1996. (WIPP Central Files WPO 38019). Porosity, ale-Phase Permeability, and Capillary Pressure Data from Preliminary Laboratory eriments on Selected Samples from Marker Bed 139 at the Waste Isolation Pilot Plant.

Г

ı

Parameter 24: Residual Gas Saturation - Marker Bed 138, Anhydrite Layers a & b, an Marker Bed 139				
Parameter Des	scription:			<u></u>
The residual (cr relative permea generated gas s material, a conc parameter for N	ritical) gas saturation (bility and capillary pro- aturation necessary to dition required for poro AB139 and the values	S_{gr}) is required in the essure curves. S_{gr} concreate an incipient is ous rock to be permulate then applied to be permuted to be permuted.	the two-phase flow for the dependence of the dep	model to define the egree of waste- nway in porous a sampled frite Layers a & b
Material and I	Parameter Name(s):			<u></u>
Material and I S_MB139 S_ANH_AB S_MB138	Parameter Name(s): SAT_RGAS (#599) SAT_RGAS (#539) SAT_RGAS (#578)			
Material and I S_MB139 S_ANH_AB S_MB138 Computationa	Parameter Name(s): SAT_RGAS (#599) SAT_RGAS (#539) SAT_RGAS (#578)			
Material and I S_MB139 S_ANH_AB S_MB138 Computationa mean	Parameter Name(s): SAT_RGAS (#599) SAT_RGAS (#539) SAT_RGAS (#578) I Code: BRAGFLO median	minimum	maximum	std. deviatio

Title 40 CFR Part 191 Compliance Certification Application

Parameter 24: Residual Gas Saturation - Marker Bed 138, Anhydrite Layers a & b, and

Data: Site-Specific Experimental Data

Residual gas saturation parameter values for the marker beds are based on curve-fitted laboratory measurements of capillary pressure. The parameter records package is retained in SWCF: SWCF-A 1.2.07.1:PDD:QA:SALADO: PKG 10:Salado Anhydrite Two-Phase Parameters (WPO 30643).

Discussion:

The two-phase flow program reports the results of curve-fitted measurements of capillary pressure on six marker bed samples tested using mercury injection (Howarth and Christian-Frear 1996). The samples were taken from intact MB139 core samples collected from the northern experimental area of the repository. The measurements were conducted at ambient conditions (no stress) and were assumed to be 100 percent saturated at the initiation of capillary pressure tests.

WIPP Data Entry Form #464 WPO#: 34508

Parameter 24: Residual Gas Saturation - Marker Bed 138, Anhydrite Layers a & b, and Marker Bed 139 (Continued)

1
2
3
4
5
6
7
8

9

References:

Howarth S.M., and Christian-Frear, T. 1996. (SWCF WPO 38019). Porosity, Single-Phase Permeability, and Capillary Pressure Data from Preliminary Laboratory Experiments on Selected Samples from Marker Bed 139 at the Waste Isolation Pilot Plant.

Parameter 25: Pore Distribution - Marker Bed 138, Anhydrite Layers a & b, and Marker Bed 139

Parameter(s) **Description**:

The Brooks-Corey pore size distribution parameter (λ) is used to calculate capillary pressure and relative permeabilities for gas and brine flow in the two-phase flow model. It is a sampled parameter for MB139 and the values are then applied to MB138 and Anhydrite Layers a & b.

Material and	Parameter Name(s):
S_MB139	PORE_DIS (#587)

S_MB138	PORE_DIS (#566)	
S_ANH_AB	PORE_DIS (#527)	

Computational Code: BRAGFLO

mean	median	minimum	maximum	std. deviation
0.6436	0.6436	0.49053	0.84178	0.11

Units: None

Distribution Type: Student's-t

Parameter 25: Pore Distribution - Marker Bed 138, Anhydrite Layers a & b, and Marker Bed 139 (Continued)

Data: Site-Specific Experimental Data

Pore size distribution parameter values for all anhydrite units are based on curve fit values predicted from laboratory measurements of capillary pressure. The parameter records package associated with this parameter is retained in SWCF: SWCF-A 1.2.07.1:PDD:QA:SALADO: PKG 10:Salado Anhydrite Two-Phase Parameters (WPO 30643).

Discussion:

Curve fit parameter values are derived from six specimens cut from intact MB139 core samples collected from the northern experimental area of the repository. Reported data and parameters are based on mercury injection capillary pressure tests (Howarth and Christian-Frear 1996). As with other two-phase flow parameters, the median value assigned to MB138 and anhydrite a and b is supported by and based on MB139 data.

WIPP Data Entry Form #464 WPO#: 34859

References:

Howarth S.M., and Christian-Frear, T. 1996. (WIPP Central Files WPO 38019). Porosity, Single-Phase Permeability, and Capillary Pressure Data from Preliminary Laboratory Experiments on Selected Samples from Marker Bed 139 at the Waste Isolation Pilot Plant.

31

1
	Parameter 26:	Initial Pressure -	Salado Halite	
Parameter Descr	iption:			
The initial brine fa	ar-field (undisturbed nt with the intersect	l) pore pressure in the ion of MB139 and the ion of the io	he Salado halite is he waste-handling	applied at an shaft.
Material and Par S_HALITE	ameter Name(s): PRESSURE (#546)		
Computational C	ode: BRAGFLO			
mean	median	minimum	maximum	std. deviation
1.247×10^{7}	1.247×10^{7}	1.104×10^{7}	1.389×10^{7}	8.23×10^{5}
Distribution Typ	e: Uniform	· · · · · · · · · · · · · · · · · · ·		· · ····
CDF/PDF Graph	10	S_HALITE PRESS		
	0.8			
, `	Cumuciative Probability 9.0 0.4 7.0 0.4 7.0 0.4			
,` .`	8.0 B.0 B.0 B.0 B.0 B.0 B.0 B.0 B.0 B.0 B	UNI UNI Cum + Si Vari	FORM Distribution rulative Probability impled Data able 26 in LHS	

33

۸.

7-400-46

20-08-43

PLOTUNS version \$-2.00 20

.

Parameter 26: Initial Pressure - Salado Halite (Continued)

Data: Site-Specific Experimental Data

Two hydraulic tests were performed in boreholes in undisturbed halite in the underground WIPP repository. Both tests were performed in the area where Room Q would later be mined. The tests were undertaken in April-July, 1989. Pressure, fluid volume, temperature, axial test-tool movement, and radial borehole closure were measured during the hydraulic tests in undisturbed rock. The following parameter records package is associated with the tests: SWCF-A:WBS 1.2.07.1:PDD:QA:SALADO:PKG4:Halite Pressure (WPO 31221).

Discussion:

It was assumed that Darcy flow and borehole closure were the only forms of pressure/flow transmission during the hydraulic tests in undisturbed halite. The uncertainty associated with the estimated parameter values is high. The distribution is based on the two data points provided in the data package and the calculated median is 1.247×10^7 pascals.

WIPP Data Entry Form #464 WPO#: 34394

References:

Beauheim, R.L., Saulnier, G.J., Jr., and Avis, J.D. 1991. Interpretation of Brine-Permeability Tests of the Salado Formation at the Waste Isolation Pilot Plant Site: First Interim Report. SAND90-0083. Albuquerque, NM: Sandia National Laboratories. WPO 26003.

Beauheim, R.L., Roberts, R.M., Dale, T.F., Fort, M.D., and Stensrud, W.A. 1993. Hydraulic Testing of Salado Formation Evaporities at the Waste Isolation Pilot Plant Site: Second Interpretive Report. SAND92-0533. Albuquerque, NM: Sandia National Laboratories. WPO 23378.

Jensen, A.L., Howard, C.L., Jones, R.L., and Peterson, T.P. 1993. Room Q Data Report: Test Borehole Data from April 1989 through November 1991. SAND92-1172. Albuquerque, NM: Sandia National Laboratories. WPO 23548.

Saulnier, G.J., Jr., Domski, P.S., Palmer, J.B., Roberts, R.M., Strensrud, W.A., and Jensen, A.L. 1991. WIPP Salado Hydrology Program Data Report #1. SAND90-7000. Albuquerque, NM: Sandia National Laboratories. WPO 25746.

Stensrud, W.A., Dale, T.F., Domski, P.S., Palmer, J.B., Roberts, R.M., Fort, M.D., and
Saulnier, G.J., Jr. 1992. Waste Isolation Pilot Plant Salado Hydrology Program Data Report
#2. SAND92-7072. Albuquerque, NM: Sandia National Laboratories. WPO 26432.

P	arameter 27: Ini	uai rressure - Casi	uie Brine Keservo	
Parameter Descri	ption:			
Initial brine pore p	ressure in the Casti	ile brine reservoir.		
Material and Para	ameter Name(s):			
CASTILER	PRESSURE (#	66)		
				····
	DALE: BRAGFLU		••• • • ••• •	,
mean	mode	minimum	maximum	std. deviat
1.36×10^{7}	1.27×10^{7}	1.11×10^{7}	1.70×10^{7}	1.2457 × 1
Distribution Type	: Triangular			
Distribution Type	: Triangular			
Distribution Type CDF/PDF Graph	: Triangular	CASTILER PRESSU	RE	
Distribution Type	10 0.8 Million 0.6 Million 0.6 Million 0.6 Million 0.6 Million 0.4	CASTILER PRESSU	RE	Ń

Parameter 27: Initial Pressure - Castile Brine Reservoir (Continued)

WBS1.2 (WPO 3	ameter records package associated with this parameter is as follows: SWCF:A: 2.07.1:PDD:QA:NONSALADO:PKG#19B: Castile Brine Reservoir Pressure 1072).
Discuss	ion:
All pres reservoi	sure measurements were adjusted to reflect formation pressure of the WIPP-12 r. Pressure adjustments were made as follows:
$P_a = P +$	$\rho g (h - 140) 1 \times 10^{-6}$
where:	$P_{a} = adjusted pressure (megapascals)$ $P = measured/estimated pressure (megapascals)$ $\rho = assumed density (kilograms per cubic meter)$ $g = gravitational constant (9.8 Newtons per kilogram)$ $h = brine reservoir elevation (meters above sea level)$
Observe with the found to adjusted depth of assumpt hydrosta equation 1989) w kilogram variation for WIP lithostat hydrosta MASS S	d (measured and interpreted) Castile brine reservoir fluid pressures were compare ir corresponding lithostatic pressures; four locations (shown in Table PAR-9) were best represent the formation pressure. The measured values in Table PAR-9 are to reflect formation pressure at the depth of WIPP-12 which is representative of the BRAGFLO Castile Brine Reservoir. The pressure adjustment requires an ion about pressure variation with depth in the Castile. Two bounding cases were atic and 85 percent of lithostatic; the adjusted pressure was calculated using the n provided above. A brine density of 1,240 kilograms per cubic meter (Reeves et vas assumed for the hydrostatic variation; an average formation density of 2,040 ns per cubic meter (Sandia WIPP Project 1992) was assumed for the lithostatic n. The best measured value (that is, the mode) is the brine reservoir pressure report P-12 (12.7 megapascals). The maximum brine reservoir pressure is 85 percent of ic at WIPP-12 depth (17 megapascals). The minimum value is the lowest measure atic pressure (11.1 megapascals). Freeze and Larson (1996), attached to Appendit Section 18, provide more detail.

Title 40 CFR Part 191 Compliance Certification Application
Parameter 27: Initial Pressure - Castile Brine Reservoir (Continued)
References:
Freeze, Geoff, and Larson, K. 1996. Memorandum to Martin Tierney Re: Initial Pressure in the Castile Brine Reservoir, March 20, 1996. WPO 37148.
Lappin, A.R., Hunter, R.L., Garber, D.P., and Davies, P.B., eds. 1989. Systems Analysis, Long-Term Radionuclide Transport, and Dose Assessments, Waste Isolation Pilot Plant (WIPP), Southeastern New Mexico, March, 1989. SAND89-0462. Albuquerque, NM: Sandia National Laboratories. WPO 24125.
Popielak, R.S., Beauheim, R.L., Black, S.R., Coons, W.E., Ellingson, C.T., and Olsen, R.L. 1983. Brine Reservoirs in the Castile Formation, Waste Isolation Pilot Plant (WIPP) Project, Southeastern New Mexico, DOE Report TME-3153.
Reeves, M., Freeze, G.A., Kelley, V.A., Pickens, J.F., Upton, D.T., and Davies, P.B. 1989. Regional Double-Porosity Solute Transport in the Culebra Dolomite under Brine-Reservoir- Breach Release Conditions: An Analysis of Parameter Sensitivity and Importance. SAND89- 7069. Albuquerque, NM: Sandia National Laboratories. WPO 24048.
Sandia WIPP Project. 1992. Preliminary Performance Assessment for the Waste Isolation Pilot Plant, December, 1992: Volume 3, Model Parameters. SAND92-0700/3. Albuquerque, NM: Sandia National Laboratories. WPO 23529.
Table PAR-9. Measured Castile Brine Reservoir Formation Pressures
Pressure at WIPP-12Pressure at WIPP-12Pressure at Reservoir DepthDepth with Hydrostatic AdjustmentDepth with 85 percent Lithostatic Adjustment (megapascals)Location(megapascals)(megapascals)

Location	Pressure at Reservoir Depth (megapascals)	Pressure at WIPP-12 Depth with Hydrostatic Adjustment (megapascals)	Pressure at WIPP-12 Depth with 85 percent Lithostatic Adjustment (megapascals)
WIPP-12	12.7 ^(b)	12.7	12.7
ERDA-6	14.1 ^(a)	15.5	16.4
Belco	14.3 ^(a)	14.5	14.5
Gulf Covington	13.6 ^(a)	12.1	11.1

^(a) from Popielak et al. 1983, Table H.1 ^(b) from Reeves et al. 1989, Appendix A

Para	ameter 28: Log of I	ntrinsic Permeabilit	y - Castile Brine R	leservoir
	······································	<u> </u>		<u></u>
Parameter Des	scription:			
The log of the i	intrinsic permeabilit	y of the Castile Brine	Reservoir. It is a s	ampled paran
for the x-direct	ion and the values a	re then applied to the	y- and z-directions.	-
Material and I	Parameter Name(s)	:		
CASTILER	PRMX_LOG (#	67)		
CASTILER	PRMY_LOG (#	68)		
CASTILER	PRMZ_LOG (#0	59)		
Computationa	Code: BRAGEL()		
computationa				
mean	mode	minimum	maximum	std. devia
-12.10	-11.80	- 14.70	-9.80	1.01
Distribution T	Syne: Triangular			
Distribution T	ype: Triangular			
Distribution T CDF/PDF Gra	ype: Triangular			
Distribution T	ype: Triangular	CASTILER PRMX_I	.0G	
Distribution T CDF/PDF Gra	ype: Triangular	CASTILER PRMX_I	.OG	
Distribution T CDF/PDF Gra	ype: Triangular	CASTILER PRMX_I	OG	
Distribution T CDF/PDF Gra	ype: Triangular	CASTILER PRMX_I	OG	
Distribution T CDF/PDF Gra	aph	CASTILER PRMX_I	.0G	
Distribution T CDF/PDF Gra	aph 1.0 1.0 0.8 1.0 0.	CASTILER PRMX_	OG	
Distribution T CDF/PDF Gra	interenteits)	CASTILER PRMX_I	OG	
Distribution T CDF/PDF Gra	aph 1.0 0.8 1.0 0.8 0.6 0.4	CASTILER PRMX_I	.0G	
Distribution T CDF/PDF Gra	aph 1.0 0.8 Miggel 0.6 Miggel 0.4	CASTILER PRMX_I	IGULAR Distribution	
Distribution T CDF/PDF Gra	Sype: Triangular aph 1.0 0.8 0.6 0.4 0.2 0.2	CASTILER PRMX_I TRIAN <u>Curmu</u> + San	IGULAR Distribution	
Distribution T CDF/PDF Gra	aph 1.0 0.8 1.0 0.8 0.6 0.4 0.2	CASTILER PRMX_I	IGULAR Distribution	

Parameter 28: Log of Intrinsic Permeability - Castile Brine Reservoir (Continued)

Data: Site-Specific Experimental Data and Professional Judgment

Although several shorter flow tests were conducted to measure permeability of Castile brine reservoirs, only one test is considered representative of the long-term behavior of the brine reservoir behavior: the WIPP-12 Flow Test 3 (24,800 bbl produced, 9 months recovery). The Graph Theoretic Field Model (GTFM) analysis of WIPP-12 Flow Test 3 (Reeves et al. 1989) is considered better than the Horner analysis because it considers the effects of pre-test borehole pumping history. The GTFM interpreted hydraulic conductivity from WIPP-12 Flow Test 3 therefore provides the basis for the mean permeability for the Castile brine reservoir. The other values from WIPP-12 and ERDA-6 were used to establish the permeability distribution.

Professional judgment was used to better define the data mean and range because of the shortage of directly relevant data points. The parameter records package associated with this parameter is as follows: SWCF-A:1.2.07.1:PDD:QA:NONSALADO:PKG#19A: Castile Brine Reservoir Permeability (WPO 31070).

Discussion:

The GTFM analysis from WIPP-12 Flow Test 3 consists of a match to pressure response data and a match to flow rate data. The late-time match to the pressure data are controlled primarily by the formation pressure and is not very sensitive to the hydraulic conductivity or the specific storage. To match the flow rate data, the GTFM interpreted hydraulic conductivity (K) is strongly correlated with the specified specific storage (S_s) , where:

 $S_s = \rho g (C_R + \Phi \beta)$

For Castile brine reservoir properties, specific storage is proportional to the bulk roc compressibility (C_R). The correlation between K and S_s is such that their product is approximately a constant. For example, if the assumed specific storage (or rock compressibility) in GTFM is reduced by an order of magnitude, the interpreted hydraulic conductivity must increase by an order of magnitude to produce the same flow rate. The new combination of K and S_s will produce a different early-time pressure response, but will not impact the late-time match. For the GTFM analyses of the WIPP-12 Flow Tests, a rock compressibility of 1×10^{-9} pascals⁻¹ was assumed. Because the mean rock compressibility for the Castile brine reservoir is 1×10^{-10} pascals⁻¹, the hydraulic conductivity required to reproduce the WIPP-12 flow is approximately 1×10^{-5} meters per second (permeability of -11.81 log (square meters)). For all triangular distributions, the mode is the best estimate.

Parameter 28: Log of Intrinsic Permeability - Castile Brine Reservoir (Continued)

Discussion (continued):

GTFM analysis determines a hydraulic conductivity (with units of meters per second) based on pressure change, flow rate, and assumptions about fluid and formation properties. Conversions from meters per second to square meters were based on a conversion factor of 1.7 $\times 10^{-7}$ square meters per (meters per second). The conversion factor is based on the assumed GTFM fluid properties.

WIPP Data Entry Form #464 WPO#: 31613

References:

Popielak, R.S., Beauheim, R.L., Black, S.R., Coons, W.E., Ellingson, C.T., and Olsen, R.L. 1983. Brine Reservoirs in the Castile Formation, Waste Isolation Pilot Plant (WIPP) Project, Southeastern New Mexico. DOE Report TME-3153.

Reeves, M., Freeze, G.A., Kelley, V.A., Pickens, J.F., Upton, D.T., and Davies, P.B. 1989. Regional Double-Porosity Solute Transport in the Culebra Dolomite under Brine-Reservoir-Breach Release Conditions: An Analysis of Parameter Sensitivity and Importance. SAND89-7069. Albuquerque, NM: Sandia National Laboratories. WPO 24048.

Parameter Description: The rock (or bulk) compressibility of the Castile Brine Reservoir is used to calculate compressibility which is used in BRAGFLO. Pore compressibility is used to predict of material compressibility on porosity and mass storage in the equation of state for through porous media as follows: $\phi = \phi_o \exp(c_p(p-p_o))$ where, $\phi = \text{porosity of solid matrix (cubic meters per cubic meters)}$ $\phi_o \cdot = \text{poro compressibility (pascals^{-1})}$ $p = \text{pore pressure (pascals)}$ The rock compressibility is divided by effective porosity to calculate pore compressi Material and Parameter Name(s):
The rock (or bulk) compressibility of the Castile Brine Reservoir is used to calculate compressibility which is used in BRAGFLO. Pore compressibility is used to predict of material compressibility on porosity and mass storage in the equation of state for a through porous media as follows: $\phi = \phi_o \exp(c_p(p-p_o))$ where, $\phi = \text{porosity of solid matrix (cubic meters per cubic meters)}$ $\phi_o \cdot = \text{porosity at reference pressure } p_o$ $c_p = \text{pore compressibility (pascals^{-1})}$ $p = \text{pore pressure (pascals)}$ The rock compressibility is divided by effective porosity to calculate pore compressi
$\varphi = \varphi_{o} \exp(c_{p}(p-p_{o}))$ where, $\varphi = \text{porosity of solid matrix (cubic meters per cubic meters)}$ $\varphi_{o} \cdot = \text{porosity at reference pressure } p_{o}$ $c_{p} = \text{pore compressibility (pascals^{-1})}$ $p = \text{pore pressure (pascals)}$ $P_{o} = \text{reference pore pressure (pascals)}$ The rock compressibility is divided by effective porosity to calculate pore compressi Material and Parameter Name(s):
where, $\phi = \text{porosity of solid matrix (cubic meters per cubic meters)}}$ $\phi_o = \text{porosity at reference pressure } p_o$ $c_p = \text{pore compressibility (pascals^{-1})}$ p = pore pressure (pascals) $p_o = \text{reference pore pressure (pascals)}$ The rock compressibility is divided by effective porosity to calculate pore compressi Material and Parameter Name(s):
CASTILER COMP_RCK (#61)
Computational Code: BRAGFLO
mean mode minimum maximum std.

Data: Site-Specific Experimental Data and Professional Judgment

Rock compressibility is interpreted from the bulk modulus from the acoustic log of the Castile Anhydrite III unit in WIPP-12 and other sources cited in the discussion section. The acoustic log measures compressional wave travel time through the rock, then uses a correlation between wave velocity and elastic rock properties to estimate bulk modulus.

The acoustic log covered the entire thickness of the Anhydrite III unit in WIPP-12. The laboratory compression tests on anhydrite from other WIPP locations give similar results for bulk modulus (Popielak et al. 1983).

The parameter records package associated with this parameter is as follows: SWCF-A:WBS1.2.07.1:PDD:NON-SALADO:PKG #19E:Castile Brine Reservoir Rock Compressibility (WPO 31084).

Discussion:

Acoustic logging measures velocities a relatively short distance, with few if any fractures included, and is therefore representative of undisturbed (intact) rock.

Parameter 29: Rock Compressibility - Castile Brine Reservoir (Continued)

Discussion (Continued):

 The estimated bulk modulus, K, for the intact Anhydrite III at WIPP-12 was 6.9×10^{10} pascals $(10 \times 10^6$ pounds per square inch). Assuming uniaxial strain, the rock compressibility (C_R) can be estimated from the bulk modulus (K) and the shear modulus (G) of the rock:

$$C_{R} \approx \frac{1}{K + 4 G/3}$$

No estimates for shear modulus for Anhydrite III were available. Beauheim et al. (1991) reported a value for G that was approximately 1/3 of K for Salado anhydrite. Using this estimate for G, the calculated intact rock compressibility is 1×10^{-11} pascals⁻¹.

The bulk modulus may be 2 to 10 times smaller for fractured rock (Popielak et al. 1983), corresponding to a 2 to 10 times increase in compressibility (assuming G changes accordingly). Beauheim et al. (1991) suggest that fracturing might result in a fourfold increase in rock compressibility. Using these adjustments for fractured rock, the calculated rock compressibility ranges from 2×10^{-11} pascals⁻¹ to 1×10^{-10} pascals⁻¹, with an average value of 5×10^{-11} pascals⁻¹.

Hydraulic testing was performed in transition-zone (disturbed) Salado anhydrite and halite. Interpreted rock compressibilities for transition zone anhydrite ranged from 5×10^{-12} pascals⁻¹ to 3×10^{-9} pascals⁻¹. Freeze and Cherry (1979) report a range for rock compressibility for fractured or jointed rock of 1×10^{-8} to 1×10^{-10} pascals⁻¹.

WIPP Data Entry Form #464 WPO#: 31561

References:

Beauheim, R.L., Saulnier, G.J., Jr., and Avis, J.D. 1991. Interpretation of Brine-Permeability Tests of the Salado Formation at the Waste Isolation Pilot Plant: First Interim Report. SAND90-0083. Albuquerque, NM: Sandia National Laboratories. WPO 26003.

Freeze, R.A., and Cherry, J.A. 1979. *Groundwater*. Prentice-Hall, Inc., Englewood Cliffs, NJ.

Parameter 29: Rock Compressibility - Castile Brine Reservoir (Continued)			
Refer	rences (Continued):		
Popie	lak, R.S., Beauheim, R.L., Black, S.R., Coons, W.E., Ellingson, C.T., and Olsen, R.L.		
1983.	Brine Reservoirs in the Castile Formation, Waste Isolation Pilot Plant (WIPP) Project		
<i>South</i>	eastern New Mexico. DOE Report TME-3153.		
Reeve	es, M., Freeze, G.A., Kelley, V.A., Pickens, J.F., Upton, D.T., and Davies, P.B. 1989.		
Regio	nal Double-Porosity Solute Transport in the Culebra Dolomite Under Brine-Reservoir-		
Breac	th Release Conditions: An Analysis of Parameter Sensitivity and Importance.		
SANI	D89-7069. Albuquerque, NM: Sandia National Laboratories. WPO 24048.		

Parameter 30: Log o	Intrinsic Permeability - Intrusion Borehole Filled With Silty Sand
Parameter Descriptio	ι:
This parameter represe in the human-intrusion material which may slu for the x-direction and	ts the log of the intrinsic permeability of the silty-sand-filled borehole scenario. This permeability is representative of degraded concrete or if into the borehole or spall from the sides. It is a sampled parameter he values are then applied to the y- and z-directions.
Material and Parame	er Name(s):
BH_SAND	PRMX_LOG (#3184)
BH_SAND	PRMY_LOG (#3190)
BH_SAND	PRMZ_LOG (#3191)

Title 40 CFR Part 191 Compliance Certification Application

Computational Code: BRAGFLO

mean	median	minimum	maximum	std. deviation
-12.50	-12.50	-14.00	-11.00	0.87

Units: log(square meters)

Distribution Type: Uniform

CDF/PDF Graph

ŧ

2Q

DOE/CAO 1996-2184

Parameter 30: Log of Intrinsic Permeability - Intrusion Borehole Filled With Silty Sand (Continued)

Data: Site-Specific Experimental Data

Permeability predictions for the intrusion borehole are based on models and data for steel corrosion and concrete alteration found in the literature; wherever possible, the predictions have been calibrated by comparing predicted behavior to field data (Thompson et al. 1996). This parameter varies uniformly from 10^{-14} to 10^{-11} square meters which is the permeability of a silty sand.

Discussion:

1

2 3

4

5

6

7 8

10

11 12

13

14

15

16

17

18

19

20 21

22

23

24

25

26

27

28 29

30

31

32

33

34

35

36

37

This parameter represents the permeability of the silty-sand-filled borehole in the humanintrusion scenario. The permeability is representative of degraded concrete or material which may sluff into the borehole or spall from the sides. There are three plug configurations and different permeabilities associated with each configuration. Borehole materials and plug configurations are based on a review of current regulations and practices, and the permeability predictions are based on models and data for steel corrosion and concrete alteration found in the literature (Thompson et al. 1996). Wherever possible, the predictions have been calibrated by comparing predicted behavior to field data (Thompson et al. 1996).

The three plug configurations consist of: a continuous concrete plug through the Salado and Castile which is assigned a probability of 0.02 (see section 6.4.7.2.1), a two-plug configuration (a lower plug located between the Castile brine reservoir and underlying formations and an upper plug located in the Rustler immediately above the Salado), which is assigned a probability of 0.68 (see section 6.4.7.2.2), and a three-plug configuration (two plugs same as two-plug configuration and third plug located in the Castile above the brine reservoir and below the waste-disposal panel) which is assigned a probability of 0.30 (see: section 6.4.7.2.3).

The plugs are initially expected to have a tight permeability of 5×10^{-17} square meters (Thompson et al. 1996). The continuous concrete plug is assumed not to degrade and has a permeability of 5×10^{-17} square meters for the entire regulatory period. For the two-plug configuration, the permeability between the repository and the surface is 5×10^{17} square meters for the first 200 years and 10^{-14} to 10^{-11} square meters after that; the permeability between the Castile and the repository is 10⁻¹⁴ to 10⁻¹¹ square meters up to 1,200 years and 10⁻¹⁵ to 10^{-12} square meters after that. The three-plug configuration has the same material properties as the corresponding regions in the two-plug configuration and the third plug is assumed to behave as the lower plug in the two-plug configuration.

- 38 30
- 41

42

WIPP Data Entry Form #464 WPO#: 36641

References:

44 45 Thompson, T.W., Coons, W.E., Krumhansl, J.L., and Hansen, F.D. 1996. Inadvertent 46 Intrusion Borehole Permeability, Final Draft, July 8, 1996. (see MASS Attachment 16-3) 47

Parameter 31: Index for Selecting Brine Pocket Volumes (Continued)

ø

Data: Professional Judgment

No experimental data are associated with the index for selecting brine pocket volumes.

Discussion:

This index identifies which Castile reservoir brine volume to use for determining the consequence of first penetration of a brine reservoir. There are five possible brine pocket volumes: 32,000, 64,000, 96,000, 128,000, and 160,000 cubic meters. Each parameter value (1 through 32) corresponds to one of these five volumes as shown below:

1 T		
15	1 = 32,000 cubic meters	17 = 32,000 cubic meters
16	2 = 32,000 cubic meters	18 = 64,000 cubic meters
17	3 = 32,000 cubic meters ³	19 = 64,000 cubic meters
18	4 = 64,000 cubic meters	20 = 96,000 cubic meters
19	5 = 32,000 cubic meters	21 = 64,000 cubic meters
20	6 = 64,000 cubic meters	22 = 96,000 cubic meters
21	7 = 64,000 cubic meters	23 = 96,000 cubic meters
22	8 = 96,000 cubic meters	24 = 128,000 cubic meters
23	9 = 32,000 cubic meters	25 = 64,000 cubic meters
24	10 = 64,000 cubic meters	26 = 96,000 cubic meters
25	11 = 64,000 cubic meters	27 = 96,000 cubic meters
26	12 = 96,000 cubic meters	28 = 128,000 cubic meters
27	13 = 64,000 cubic meters	29 = 96,000 cubic meters
28	14 = 96,000 cubic meters	30 = 128,000 cubic meters
29	15 = 96,000 cubic meters	31 = 128,000 cubic meters
30	16 = 128,000 cubic meters	32 = 160,000 cubic meters

Each of the 32 possibilities has an equal probability of occurring. The minimum volume (32,000 cubic meters) is the minimum value from the WIPP-12 analysis. The DOE also considers larger reservoir volumes because reservoirs larger than the WIPP-12 volume could reasonably exist under the waste panels.

 WIPP Data Entry Form #464 WPO#: 36658

References:

Helton, Jon. 1996. Memorandum to Martin Tierney, Re: Addition of Discrete Parameter, March 21, 1996. WPO 37147.

Title 40 CFR Part 191 Compliance Certification Application Parameter 32: Waste Particle Diameter in CUTTINGS Model (Continued) **Data: Professional Judgment** WIPP specific experimental data do not exist for the waste particle diameter. The minimum value is derived from the waste permeability value (as described below) and the maximum value is equal to 1/3 of a drum diameter. The parameter records packages associated with this parameter is located at: SWCF-A:WBS1.1.01.1.5:PDD/1.2.07.1/CUTTTINGS/QA:Release of Solids Caused by Blowout (WPO 35695). **Discussion:** The minimum particle diameter was derived from the BRAGFLO waste permeability value $(1.7 \times 10^{-13} \text{ square meters})$ and the Kozeny-Carmen equation: $K = \left(\frac{\ell q}{\mu}\right) \left[\frac{n^3}{(1-n)^2}\right] \left(\frac{d_m^2}{180}\right)$ (Freeze and Cherry 1979). The upper limit for the particle diameter is set to 1/3 of a drum diameter. This parameter distribution is conservative since it shifts the waste particle diameter toward the lower bound and hence, to greater release estimates (Berglund 1996). WIPP Data Entry Form #464 WPO#: 37088 **References:** Berglund, J.W. 1996. Memo to M.S. Tierney, "Parameters required for the CUTTINGS_S code for use in WIPP Performance Assessment." April 1, 1996. WPO 36766. Freeze, R.A., and Cherry, J.A. 1979. Groundwater. Englewood Cliffs, NJ: Prentice Hall, p. 351.

1 2

3

4 5

6

7

8 9 19

12 13

14

15

16 17

18 19

20

21 22 23

25 36

28 29

30

31 32

33

	Parameter 33:	Effective Shear Resi	stance to Erosion	
Parameter Desc	ription:			
This parameter d used in the CUT	escribes the intrusi TINGS_S code for	on borehole's effective the cavings model.	e shear strength for	r erosion. It is
Material and Pa	arameter Name(s)	:		
BOREHOLE	TAUFAIL (#225	4)		
Computational	Code: CUTTING	S_S		
mean	median	minimum	maximum	std. devia
5.03	5.03	0.05	10.0	2.9
	·····			
CDF/PDF Grap	h			
CDF/PDF Grap		BOREHOLE TAUFA		
CDF/PDF Grap	1.0 	BOREHOLE TAUFA	IL	
CDF/PDF Grap	0.8	BOREHOLE TAUFA	IL	
CDF/PDF Grap	.h 1.0 pmmmmpmm 0.8 tr	BOREHOLE TAUFA	IL	Ń
CDF/PDF Grap	h 1.0 میں 0.8 میں میں وو و	BOREHOLE TAUFA	IL	
CDF/PDF Grap	h 1.0 0.8 0.8 0.0 Millegeod 4 0.6 0.4 Millegeod 4 0.4 0.4	BOREHOLE TAUFA	IL	
CDF/PDF Grap	h 1.0 0.8 0.8 0.6 0.6 0.0 0.0 0.2	BOREHOLE TAUFA	RM Distribution ativo Probability pled Data	
CDF/PDF Grap	h 1.0 0.8 0.0 0.6 0.0 0.4 0.2 0.0 0.0	BOREHOLE TAUFA	RM Distribution ative Probability pied Data le 33 in LHS dimensional LHS dimensional LHS	

Parameter 33: Effective Shear Resistance to Erosion (Continued)

Data: Professional Judgment

WIPP specific experimental data do not exist for the effective shear resistance to erosion. Therefore, it is conservatively assumed to be similar to that of an ocean bay mud (Parthenaides and Passwell 1970), or a montmorillonite clay (Sargunam et al. 1973).

Discussion:

The cavings component of direct surface release consists of that quantity of waste material that is eroded from the borehole wall by the action of the flowing drilling fluid after a waste disposal room is penetrated. The erosion process is assumed to be driven solely by the shearing action of the drilling fluid (mud) on the waste as it moves up the borehole annulus.

The nature of the state of the waste material present at the time of intrusion by a drill bit is a major factor in the shear resistance to erosion. The future states of decomposed waste is both time dependent and unknowable, and consequently a decomposed state consisting of graded granular materials is assumed. This is consistent with the granular nature of decomposed geologic materials and corresponds to an end state of the decomposition process.

The final eroded diameter is determined through an iterative process that equates the fluid shear stress adjacent to the waste to a measure of the erosion resistance of the waste. The effective shear resistance for erosion equals the threshold value of fluid shear stress required to sustain general erosion at the borehole wall adjacent to the waste.

In the absence of experimental data, the effective shear resistance to erosion of the repository material is assumed to be similar to that of an ocean bay mud (Parthenaides and Paaswell 1970), or a montmorillonite clay (Sargunam et al. 1973). These values are on an order of a fraction to several pascals and for the cavings release model are considered to be conservative.

WIPF Data Entry Form #464 WPO#: 31536

References:

Partheniades, E. and Paaswell, R.E. 1970. "Erodibility of Channels with Cohesive Boundary." *Proceedings of the American Society of Civil Engineers, Journal of the Hydraulics Division*. Vol. 96, No. HY3, 755 - 771. WPO 31536.

Sargunam, A., Riley, P., Arulanandan, K., and Krone, R.B. 1973. "Physico-Chemical Factors in Erosion of Cohesive Soils." *Proceedings of the American Society of Civil Engineers*, *Journal of the Hydraulics Division*. Vol. 99. No. HY3: 555-558. March 1973.

	Parameter 34:	Mining Transmis	sivity Multiplier	
Parameter Desc	rintion:	<u>_</u>		
This parameter is are located above	a multiplier which a areas of present and	applies to the transr	nissivity in areas of	f the Culebra
Matarial and Pa	ramatar Name(s).			
Materiai allu ra	nameter Mame(s).			
CULEBRA	MINP_FAC (#341	.9)		
Computational	Code: SECOFL2D			
mean	median	minimum	maximum	std. dev
500 5	500.5	1.0	1000.0	289
Units: None	ne: Uniform			
Units: None Distribution Ty	pe: Uniform			
Units: None Distribution Ty CDF/PDF Grap	pe: Uniform			
Units: None Distribution Ty CDF/PDF Grap	pe: Uniform h	CULEBRA MINP_1	AC	
Units: None Distribution Ty CDF/PDF Grap	pe: Uniform h	CULEBRA MINP_1	AC	
Units: None Distribution Ty CDF/PDF Grap	pe: Uniform h	CULEBRA MINP_1	AC	
Units: None Distribution Ty CDF/PDF Grap	pe: Uniform h 1.0 0.8 € ac	CULEBRA MINP_1	AC	
Units: None Distribution Ty CDF/PDF Grap	pe: Uniform h 1.0 0.8 1.0	CULEBRA MINP_F	AC	
Units: None Distribution Ty CDF/PDF Grap	pe: Uniform h 1.0 0.8 Millegeoud Station 0.6 Millegeoud Station 0.4 Millegeoud 0.4	CULEBRA MINP_S	AC	
Units: None Distribution Type CDF/PDF Grap	pe: Uniform h 1.0 0.8 Million 0.6 Million 0.6 Million 0.4	CULEBRA MINP_S	FAC DEM Distribution	
Units: None Distribution Type CDF/PDF Grap	pe: Uniform h 1.0 0.8 Million 0.6 Million 0.6 Million 0.4 0.2	CULEBRA MINP_1	PAM Distribution	
Units: None Distribution Type CDF/PDF Grap	pe: Uniform h 10 0.8 0.6 0.6 0.4 0.2	CULEBRA MINP_1	PAM Distribution hative Probability pied Data	

.

Parameter 34: Mining Transmissivity Multiplier (Continued) 1 **Data: Regulatory Basis** 2 3 4 Data for the Mining Transmissivity Multiplier comes directly from the Preamble published in 5 40 CFR Part 194 (61 FR 5229). Based on its review of the literature, the EPA determined that mining can increase the conductivity of overlying formations by a factor of much as 1,000 (see 6 Section 6.4.6.2.3). Since the EPA does not specify a distribution for the multiplier, the DOE 7 has assigned it a uniform distribution from 1 to 1,000 with a median value of 500.5. A 8 discussion of the data associated with this parameter may be found in the following parameter 9 10 records package: SWCF-A:WBS1.2.07.1:PDD:QA:NON-SALADO:Mining Transmissivity Multiplier (WPO 36489). 11 12 13 **Discussion:** EPA's 40 CFR Part 194 requires that the DOE evaluate the consequences of mining in the McNutt on the performance of the WIPP (Larson 1996). The impacts of mining are taken into account by using a multiplier which varies from 1 to 1,000 with a uniform distribution. The 19 multiplier applies only to the transmissivity in the Culebra and it applies to areas that qualify 20 under a range of criteria, including both mined areas and areas to be mined (Howard, B. A. 1996). In the performance assessment, two cases are considered: 1) the partial mining case which includes all mining outside of the controlled area and 2) the full mining case which includes mining outside and inside of the controlled area. Everywhere that the Culebra is underlain by 26 economical quantities of potash (see Section 2.3.1.1), the transmissivity is multiplied by the 27 multiplier. The multiplier is applied uniformly over the entire mined area for a particular T-28 field; however, the value of the multiplier changes for different T-fields. The partial mining 29 case applies to all transmissivity vectors in the performance assessment analysis. Starting from that initial condition, the full mining case has a 1 in 100 probability of occurring in any 31 century over the 10,000 year regulatory time frame (for any given T-field). 32 WIPP Data Entry Form #464 WPO#: 37666 38 **References:** 39 40 41

Howard, B. A. 1996. Memo from B. A. Howard to Mel Marietta, April 3, 1996, RE: Future Mining Events in the Performance Assessment. Attachment: Extent of Mining Position Paper, Revision 1. WPO 38571.

- 15 16 17 18
- 21 22
- 23 24
- 25

30

- 33
- 35
- 36

42 43

Title 40 CFR Part 191 Compliance Certification Application

Larson, Kurt. 1996. Memo to Mike Wallace, "Mining Transmissivity Multiplier—Area to be mined." April 25, 1996. WPO 37455. Wallace, M. 1996. Memo to M. Tierney, "Distribution for Non-Salado Parameter for	Re	eferences (Continued):
mined." April 25, 1996. WPO 37455. Wallace, M. 1996. Memo to M. Tierney, "Distribution for Non-Salado Parameter for	La	rson, Kurt. 1996. Memo to Mike Wallace, "Mining Transmissivity Multiplier—Area to be
Wallace, M. 1996. Memo to M. Tierney, "Distribution for Non-Salado Parameter for	mi	ned." April 25, 1996. WPO 37455.
Wallace, M. 1990. Mellio to M. Henley, Distribution for Non-Salado Falameter for	XX 7.	allage M. 1006 Marro to M. Tierney, "Distribution for Non Salado Parameter for
SECUELZD: Minning Transmissivity Multiplier." April 18, 1996. WPU 39355.	SE	COFL2D: Mining Transmissivity Multiplier." April 18, 1996. WPO 39355.

.

· · · · · · · · · · · · · · · · · · ·	Parameter 35: (Culebra Transmiss	sivity Field Index	<u> </u>
Parameter Desci				
	-puon-			
This parameter is Culebra Dolomite	intended to incorpo	rate uncertainty in 1	the transmissivity fi	ield within th
Material and Pa	rameter Name(s):			
Material and Ta	rameter Name(s).			
GLOBAL TRA	NSIDX (#225)			
· · · · · · · · · · · · · · · · · · ·			·	
Computational (Code(s): SECOFL2	D	······································	·
mean	median	minimum	maximum	std. devi
0.5	0.5	0.0		0.29
Units: None Distribution Type	be: Uniform			
Units: None Distribution Typ CDF/PDF Grapt	e: Uniform			
Units: None Distribution Typ CDF/PDF Grapt	e: Uniform	GLOBAL TRANS	iDX	
Units: None Distribution Typ CDF/PDF Grapt	De: Uniform	GLOBAL TRANS	IDX	
Units: None Distribution Typ CDF/PDF Grapi	De: Uniform	GLOBAL TRANS	IDX	
Units: None Distribution Typ CDF/PDF Grapi	De: Uniform	GLOBAL TRANS	IDX	
Units: None Distribution Typ CDF/PDF Grapi	De: Uniform	GLOBAL TRANS	IDX	
Units: None Distribution Typ CDF/PDF Grapi		GLOBAL TRANS	IDX	
Units: None Distribution Typ CDF/PDF Grapi	De: Uniform	GLOBAL TRANS	IDX	
Units: None Distribution Typ CDF/PDF Grapt	De: Uniform	GLOBAL TRANS	IDX DRM Distribution	
Units: None Distribution Typ CDF/PDF Grapt	De: Uniform	GLOBAL TRANS	DRM Distribution Idive Probability mpied Data	
Units: None Distribution Typ CDF/PDF Grapt	De: Uniform	GLOBAL TRANS	DRM Distribution dative Probability mpied Data ble 35 in LHS	

Parameter 35: Culebra Transmissivity Field Index (Continued) Data: Professional Judgment - General Engineering Knowledge No experimental data are associated with the transmissivity field index. The parameter is an index for selecting one of 100 transmissivity fields produced by GRASP INV. It varies uniformly from 0 to 1. **Discussion:** Using an approach known as conditioning, or making realizations of random fields coherent with measured information such as hydraulic head values, 100 equally likely Culebra transmissivity fields were generated (employing GRASP-INV). After incorporating changes (requested by U.S. Environmental Protection Agency [EPA]) to account for future potash mining, the fields were ranked by travel time to the accessible environment (3.5 kilometers from the center of the repository area). Each realization was then converted to a flow field, assuming uniform Culebra thickness of 8 meters and 16 percent effective porosity. TRANSDIX was used to sample on the interval (0,1); the result was mapped onto the integers 1-100 (the number of transmissivity fields), and the resulting integer was used to select a transmissivity field (Ruskauff 1996; Sandia WIPP Project 1992). WIPP Data Entry Form #464 WPO#: 33055 **References:** Ruskauff, Greg. 1996. Memorandum to Martin Tierney, Re: Culebra Transmissivity Field Index, March 13, 1996. WPO 35193 Sandia WIPP Project. 1992. Preliminary Performance Assessment for the Waste Isolation Pilot Plant, December 1992, Vol.3: Model Parameters. SAND92-0700/3. Albuquerque, NM: Sandia National Laboratories. WPO 23529.

1

2 3

4

5

11 12

13

14

15

16

17

18

19

20

21 22 23

25 26

28 29 30

31 32 33

34

Parameter 3	36: Log of the Distr	ibution of Solubil	ity of Am(III) in S	Salado Brine
Parameter Descri	ption:			,,,,,,, _
This parameter rep solubility value for chemical environm	presents the distribut r americium in the + nent is controlled by	ion (log ₁₀) of the un III oxidation state i the Mg(OH) ₂ -MgO	fincertainty about the in Salado brine. The CO ₃ buffer system.	e modeled he disposal roor
Material and Par SOLAM3 SOLSI	ameter Name(s): M (#3262)			
	median	minimum	mavimum	ctd deviati
0.18	-0.09	-2.0	1 40	0.37
CDF/PDF Graph		· · · · · · · · · · · · · · · · · · ·		
	1.0 0.8	SOLAM3 SOLSI	M	3 7 7

Parameter 36: Log of the Distribution of Solubility of Am(III) in Salado Brine (Continued)

Data: Site-Specific Experimental Data and Thermodynamic Calculations Solubilities were calculated using the Fracture Matrix Transport (FMT) code (Novak 1996). Bynum (1996) compared 150 modeled and experimentally determined solubilities and provided a distribution of the differences between them. The parameter records package associated with this parameter is located at: SWCF-A:WBS 1.2.0.7.1; WBS 1.1.10.1.1:PDD:QA:DISSOLVED SPECIES:Actinides Solubility Source Term Look-up Tables (WPO 35835).

Discussion:

 The solubility of Am (+III) in Salado brine is a function of pH, CO_2 fugacity, and other brine components as modeled by FMT, a computer code for calculating equilibrium concentrations that is based on experimentally determined thermodynamic parameters (Novak 1996; Novak and Moore 1996; Siegel 1996). The FMT-calculated solubility is 5.82×10^{-7} moles/liter (see SOLMOD3, SOLSIM in Table PAR-39). The distribution of solubilities was determined by Bynum (1996) by comparing modeled solubilities for all oxidation states with the experimentally determined solubilities. The parameter is the log_{10} of the distribution about this value, which is plotted in log space as shown in the CDF/PDF graph. The log of the solubility is obtained by adding this parameter to the log of the FMT model value.

Further information on this parameter is provided in Appendix SOTERM and Appendix IRES.

WIPP Data Entry Form #464 WPO#: 37105

References:

Bynum, R.V. 1996. Memorandum to Martin Tierney and Christine Stockman, Re: Re Update of Uncertainty Range and Distribution for Actinide Solubility to be used in C NUTS Calculations, May 23, 1996. WPO 37791

Novak, C.F. 1996.Memorandum to J.T. Holmes Re: Release of FMT Data Base Files HMW_3456_960318.CHEMDAT and HMW_345_960325.CHEMDAT, March 27, 1996. WPO 35923.

Novak, C.F., and Moore, R.C. 1996. Technical Memorandum to Malcolm Siegel, Re:
Estimates of Dissolved Concentrations for +III, +IV, +V, and +VI Actinides in a Salado and a
Castile Brine under Anticipated Repository Conditions, March 28, 1996. WPO 36207.

Siegel, M. 1996. SNL Technical Memorandum to Martin Tierney Re: Solubility Parameters
 for Use in the CCA NUTS and GRIDFLOW Calculations, March 29, 1996. WPO 37314.

Parameter :	37: Log of the Dist	tribution of Solubil	ity of Am(III) in (Castile Brine
Parameter Descr	iption:	<u> </u>		
This parameter rep solubility value fo chemical environn	presents the distribure of a mericium in the nent is controlled by	tion (log ₁₀) of the un +III oxidation state in y the Mg(OH) ₂ -MgO	ncertainty about the n Castile brine. The CO ₃ buffer system.	e modeled he disposal ro
Material and Par SOLAM3 SOLCI	rameter Name(s): M (#3263)			<u> </u>
Computational C	Code(s): NUTS			
mean	median	minimum	maximum	std. devia
0.18	-0.09	-2.0	1.40	0.37
Units: None Distribution Typ	e: Log cumulative			
Units: None Distribution Typ CDF/PDF Graph	e: Log cumulative			
Units: None Distribution Typ CDF/PDF Graph	e: Log cumulative	SOLAM3 SOLCI	M	
Units: None Distribution Typ CDF/PDF Graph	e: Log cumulative	SOLAM3 SOLCI	M	

Parameter 37: Log of the Distribution of Solubility of Am(III) in Castile Brine (Continued)

Data: Site-Specific Experimental Data and Thermodynamic Calculations

Solubilities were calculated using the FMT code (Novak 1996). Bynum (1996) compared 150 modeled and experimentally determined solubilities and provided a distribution of the differences between them. The parameter records package associated with this parameter is located at: SWCF-A:WBS 1.2.0.7.1; WBS 1.1.10.1.1:PDD:QA:DISSOLVED SPECIES:Actinides Solubility Source Term Look-up Tables (WPO 35835).

Discussion:

1

2 3

4

5

6

7

8 10 11

12

13

14

15

16

17

18

19

20

21 22

23 24 **25**

27 28

30 31

32

33

34 35

36

37

38 39

40

41

42 43

44

45 46 The solubility of Am (+III) in Castile brine is a function of pH, CO_2 fugacity, and other brine components as modeled by FMT, a computer code for calculating equilibrium concentrations that is based on experimentally determined thermodynamic parameters (Novak 1996; Novak and Moore 1996; Siegel 1996). The FMT-calculated solubility is 6.52×10^{-8} moles/liter (see SOLMOD3, SOLCIM in Table PAR-39). The distribution of solubilities was determined by Bynum (1996) by comparing modeled solubilities for all oxidation states with the experimentally determined solubilities. The parameter is the log₁₀ of the distribution about this value, which is plotted in log space as shown in the CDF/PDF graph. The log of the solubility is obtained by adding this parameter to the log of the FMT model value.

Further information on this parameter is provided in Appendix SOTERM and Appendix IRES.

WIPP Data Entry Form #464 WPO#: 37106

References:

Bynum, R.V. 1996. Memorandum to Martin Tierney and Christine Stockman, Re: Revised Update of Uncertainty Range and Distribution for Actinide Solubility to be used in CCA NUTS Calculations, May 23, 1996. WPO 37791.

Novak, C.F. 1996.Memorandum to J.T. Holmes Re: Release of FMT Data Base Files HMW_3456_960318.CHEMDAT and HMW_345_960325.CHEMDAT, March 27, 1996. WPO 35923.

Novak, C.F., and Moore, R.C. 1996. Technical Memorandum to Malcolm Siegel, Re: Estimates of Dissolved Concentrations for +III, +IV, +V, and +VI Actinides in a Salado and a Castile Brine under Anticipated Repository Conditions, March 28, 1996. WPO 36207.

Siegel, M. 1996. SNL Technical Memorandum to Martin Tierney Re: Solubility Parameters for Use in the CCA NUTS and GRIDFLOW Calculations, March 29, 1996. WPO 37314.

Parameter Desci	ription:			
This parameter re solubility value fo chemical environ	presents the distril or plutonium in the ment is controlled	bution (log ₁₀) of the ur e +III oxidation state in by the Mg(OH) ₂ -MgC	certainty about the Salado brine. The CO_3 buffer system.	e modeled ne disposal roor
Material and Pa SOLPU3 SOLSI	rameter Name(s) M (#3265)			
mean	median	minimum	maximum	std. deviati
0.18	-0.09	-2.0	1 40	0.37
Distribution Typ	pe: Log cumulative	e		
Distribution Typ CDF/PDF Grapl	pe: Log cumulative	SOLPU3 SOLSIM	1	
Distribution Typ	h 1.0 0.8 Aligned o.6 Aligned o.6 Aligned o.4	SOLPU3 SOLSIN	JLATIVE Distribution	

Parameter 38: Log of the Distribution of Solubility of Pu(III) in Salado Brine (Continued)

Data: Site-Specific Experimental Data and Thermodynamic Calculations

Solubilities were calculated using the FMT code (Novak 1996). Bynum (1996) compared 150 4 5 modeled and experimentally determined solubilities and provided a distribution of the 6 differences between them. The parameter records package associated with this parameter is located at: SWCF-A:WBS 1.2.0.7.1; WBS 1.1.10.1.1:PDD:QA:DISSOLVED 7 SPECIES: Actinides Solubility Source Term Look-up Tables (WPO 35835). 8 10 **Discussion:** 11 12 13 The solubility of Pu (+III) in Salado brine is a function of pH, CO₂ fugacity, and other brine components as modeled by FMT, a computer code for calculating equilibrium concentrations 14 that is based on experimentally determined thermodynamic parameters (Novak 1996; Novak 15 and Moore 1996; Siegel 1996). The FMT-calculated solubility is 5.82×10^{-7} moles/liter (see 16 SOLMOD3, SOLSIM in Table PAR-39). The distribution of solubilities was determined by 17 Bynum (1996) by comparing modeled solubilities for all oxidation states with the 18 experimentally determined solubilities. The parameter is the \log_{10} of the distribution about this 19 20 value, which is plotted in log space as shown in the CDF/PDF graph. The log of the solubility is obtained by adding this parameter to the log of the FMT model value. 21 22 Further information on this parameter is provided in Appendix SOTERM and Appendix IRES. 23 24 25 WIPP Data Entry Form #464 WPO#: 37109 27 28 **References:** 30 31 Bynum, R.V. 1996. Memorandum to Martin Tierney and Christine Stockman, Re: Revised 32 Update of Uncertainty Range and Distribution for Actinide Solubility to be used in CCA 33 NUTS Calculations, May 23, 1996. WPO 37791 34 35 Novak, C.F. 1996. Memorandum to J.T. Holmes Re: Release of FMT Data Base Files 36 HMW_3456_960318.CHEMDAT and HMW_345_960325.CHEMDAT, March 27, 1996. 37 WPO 35923. 38 39 Novak, C.F., and Moore, R.C. 1996. Technical Memorandum to Malcolm Siegel, Re: 40 Estimates of Dissolved Concentrations for +III, +IV, +V, and +VI Actinides in a Salado and a 41 Castile Brine under Anticipated Repository Conditions, March 28, 1996. WPO 36207 42 43 Siegel, M. 1996. SNL Technical Memorandum to Martin Tierney Re: Solubility Parameters 44 for Use in the CCA NUTS and GRIDFLOW Calculations, March 29, 1996. WPO 37314. 45 46 DOE/CAO 1996-2184 **PAR-129** October 1996

1

	. <u> </u>		
iption:	·		<u> </u>
presents the distribut r plutonium in the + nent is controlled by	ion (log ₁₀) of the un III oxidation state i the Mg(OH) ₂ -Mg(ncertainty about the n Castile brine. The CO ₃ buffer system.	e modeled ne disposal roo
ameter Name(s):			<u></u>
ode(s): NUTS		······································	••••••••••••••••••••••••••••••••••••••
median	minimum	maximum	std. deviat
-0.09	-2.0	1.40	0.37
	SOLPU3 SOLCI	 M	
1.0	· · · · · · · · · · · · · · · · · · ·		
0.8	(***	
Aut	/		
	1	-	
6.0 BD Drugstyne Property P.0 Crauntatyne Drugstyne Drug		NULATIVE Distribution	
	ameter Name(s): M (#3264) Code(s): NUTS median -0.09 e: Log cumulative	median median -0.09 -2.0 SOLPU3 SOLCI 1.0 0.8	presents the distribution (log ₁₀) of the uncertainty about the r plutonium in the +III oxidation state in Castile brine. The nent is controlled by the Mg(OH) ₂ -MgCO ₃ buffer system. ameter Name(s): ameter Name(s): M (#3264) Pode(s): NUTS median minimum -0.09 -2.0 1.40 solution solution 0.8

Parameter 39: Log of the Distribution of Solubility of Pu(III) in Castile Brine (Continued)

Data: Site-Specific Experimental Data and Thermodynamic Calculations

Solubilities were calculated using the FMT code (Novak 1996). Bynum (1996) compared 150 modeled and experimentally determined solubilities and provided a distribution of the differences between them. The parameter records package associated with this parameter is located at: SWCF-A:WBS 1.2.0.7.1; WBS 1.1.10.1.1:PDD:QA:DISSOLVED SPECIES:Actinides Solubility Source Term Look-up Tables (WPO 35835).

Discussion:

1

2 3

4 5

6

7 8

10

11 12 13

14

15

16

17

18

19

20

21 22 23

24 2**5**

27 29 30

31

32 33

34 35

36

37

38 39

40

41

42 43 44

45 46 The solubility of Pu (+III) in Castile brine is a function of pH, CO₂ fugacity, and other brine components as modeled by FMT, a computer code for calculating equilibrium concentrations that is based on experimentally determined thermodynamic parameters (Novak 1996; Novak and Moore 1996; Siegel 1996). The FMT-calculated solubility is 6.52×10^{-8} moles/liter (see SOLMOD3, SOLCIM in Table PAR-39). The distribution of solubilities was determined by Bynum (1996) by comparing modeled solubilities for all oxidation states with the experimentally determined solubilities. The parameter is the log₁₀ of the distribution about this value, which is plotted in log space as shown in the CDF/PDF graph. The log of the solubility is obtained by adding this parameter to the log of the FMT model value.

Further information on this parameter is provided in Appendix SOTERM and Appendix IRES.

WIPP Data Entry Form #464 WPO#: 37108

References:

Bynum, R.V. 1996. Memorandum to Martin Tierney and Christine Stockman, Re: Revised Update of Uncertainty Range and Distribution for Actinide Solubility to be used in CCA NUTS Calculations, May 23, 1996. WPO 37791.

Novak, C.F. 1996.Memorandum to J.T. Holmes Re: Release of FMT Data Base Files HMW_3456_960318.CHEMDAT and HMW_345_960325.CHEMDAT, March 27, 1996. WPO 35923.

Novak, C.F., and Moore, R.C. 1996. Technical Memorandum to Malcolm Siegel, Re: Estimates of Dissolved Concentrations for +III, +IV, +V, and +VI Actinides in a Salado and a Castile Brine under Anticipated Repository Conditions, March 28, 1996. WPO 36207.

Siegel, M. 1996. SNL Technical Memorandum to Martin Tierney Re: Solubility Parameters for Use in the CCA NUTS and GRIDFLOW Calculations, March 29, 1996. WPO 37314.

Paramete	r 40: Log of the Dis	tribution of Solubi	lity of Pu(IV) in S	alado Brine
Parameter Desc	ription:			
This parameter re solubility value f chemical environ	epresents the distribu or plutonium in the - ment is controlled by	tion (log ₁₀) of the un FIV oxidation state in the Mg(OH) ₂ -Mg(ncertainty about th n Salado brine. The CO ₃ buffer system.	e modeled ne disposal roo
Material and Pa	rameter Name(s):			
SOLPU4 SOLSI	IM (#3266)			
Computational	Code(s): NUTS			
mean	median	minimum	maximum	std. deviat
0.18	-0.09	-2.0	1.40	0.37
Distribution Ty	pe: Log cumulative			
Distribution Ty CDF/PDF Grap	pe: Log cumulative			
Distribution Ty CDF/PDF Grap	pe: Log cumulative	SOLPU4 SOLSI	M	
Distribution Ty CDF/PDF Grap	pe: Log cumulative h	SOLPU4 SOLS	M	
Distribution Ty CDF/PDF Grap	pe: Log cumulative h 1.0 0.8 0.8 1.0 1.0 0.8 1.0 0.8 1.0 1.0 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	SOLPU4 SOLS	M	
Distribution Ty CDF/PDF Grap	pe: Log cumulative h 1.0 0.8 0.6 0.6 0.4 0.2 0.4 0.2	SOLPU4 SOLSI	M NULATIVE Distribution Iulative Probability	

Parameter 40: Log of the Distribution of Solubility of Pu(IV) in Salado Brine (Continued)

Data: Site-Specific Experimental Data and Thermodynamic Calculations

Solubilities were calculated using the FMT code (Novak 1996). Bynum (1996) compared 150 modeled and experimentally determined solubilities and provided a distribution of the differences between them. The parameter records package associated with this parameter is located at: SWCF-A:WBS 1.2.0.7.1; WBS 1.1.10.1.1:PDD:QA:DISSOLVED SPECIES:Actinides Solubility Source Term Look-up Tables (WPO 35835).

Discussion:

1

2 3

4 5

6

7 8

10

11 12

13 14

15

16

17

18

19

20

21 22 23

24 2**5**

27 29

30 31

32

33

34 35

36

37

38 39

40

41

42 43

44

45 46 The solubility of Pu(+IV) in Salado brine is a function of pH, CO_2 fugacity, and other brine components as modeled by FMT, a computer code for calculating equilibrium concentrations that is based on experimentally determined thermodynamic parameters (Novak 1996; Novak and Moore 1996; Siegel 1996). The FMT-calculated solubility is 4.4×10^{-6} moles/liter (see SOLMOD4, SOLSIM in Table PAR-39). The distribution of solubilities was determined by Bynum (1996) by comparing modeled solubilities for all oxidation states with the experimentally determined solubilities. The parameter is the log₁₀ of the distribution about this value, which is plotted in log space as shown in the CDF/PDF graph. The log of the solubility is obtained by adding this parameter to the log of the FMT model value.

Further information on this parameter is provided in Appendix SOTERM and Appendix IRES.

WIPP Data Entry Form #464 WPO#: 37110

References:

Bynum, R.V. 1996. Memorandum to Martin Tierney and Christine Stockman, Re: Revised Update of Uncertainty Range and Distribution for Actinide Solubility to be used in CCA NUTS Calculations, May 23, 1996. WPO 37791.

Novak, C.F. 1996.Memorandum to J.T. Holmes Re: Release of FMT Data Base Files HMW_3456_960318.CHEMDAT and HMW_345_960325.CHEMDAT, March 27, 1996. WPO 35923.

Novak, C.F., and Moore, R.C. 1996. Technical Memorandum to Malcolm Siegel, Re: Estimates of Dissolved Concentrations for +III, +IV, +V, and +VI Actinides in a Salado and a Castile Brine under Anticipated Repository Conditions, March 28, 1996. WPO 36207.

Siegel, M. 1996. SNL Technical Memorandum to Martin Tierney Re: Solubility Parameters for Use in the CCA NUTS and GRIDFLOW Calculations, March 29, 1996. WPO 37314.

•

·····	Title 40 CFR Part I	91 Compliance Certific	cation Application	
Parameter	41: Log of the Dis	tribution of Solubi	lity of Pu(IV) in (Castile Brine
Parameter Descr	iption:	<u></u>		
This parameter re solubility value for chemical environ	presents the distribu or plutonium in the - nent is controlled b	ation (log ₁₀) of the u +IV oxidation state y the Mg(OH) ₂ -Mg(ncertainty about the in Castile brine. The CO ₃ buffer system.	e modeled ne disposal roon
Material and Pa	rameter Name(s):			
SOL PLIA SOL CL	M (#3389)			
SOLI 04 SOLCI	WI (#3389)			
Computational (Code(s): NUTS			
mean	median	minimum	maximum	std. deviati
0.18	-0.09	-2.0	1.40	0.37
CDF/PDF Grapt	e: Log cumulative			
	1.0 F	SOLPU4 SOLCI	M	
	0.8 Augusto 0.6			
	A C C C C C C C C C C C C C C C C C C C	cur <u>Cur</u> + s	MULATIVE Distribution nulative Probability ampled Data	
	0.0		10	
	-2.0	-1.0 0.0		
Parameter 41: Log of the Distribution of Solubility of Pu(IV) in Castile Brine (Continued)

Data: Site-Specific Experimental Data and Thermodynamic Calculations

3 4 Solubilities were calculated using the FMT code (Novak 1996). Bynum (1996) compared 150 5 modeled and experimentally determined solubilities and provided a distribution of the 6 differences between them. The parameter records package associated with this parameter is located at: SWCF-A:WBS 1.2.0.7.1; WBS 1.1.10.1.1:PDD:QA:DISSOLVED 7 8 SPECIES: Actinides Solubility Source Term Look-up Tables (WPO 35835). 19 Discussion: 11 12 The solubility of Pu(+IV) in Castile brine is a function of pH, CO₂ fugacity, and other brine 13 components as modeled by FMT, a computer code for calculating equilibrium concentrations 14 that is based on experimentally determined thermodynamic parameters (Novak 1996; Novak 15 and Moore 1996; Siegel 1996). The FMT-calculated solubility is 6.0×10^{-9} moles/liter (see 16 SOLMOD4, SOLCIM in Table PAR-39). The distribution of solubilities was determined by 17 18 Bynum (1996) by comparing modeled solubilities for all oxidation states with the experimentally determined solubilities. The parameter is the \log_{10} of the distribution about this 19 value, which is plotted in log space as shown in the CDF/PDF graph. The log of the solubility 20 is obtained by adding this parameter to the log of the FMT model value. 21 22 23 Further information on this parameter is provided in Appendix SOTERM and Appendix IRES. 24 25 WIPP Data Entry Form #464 WPO#: 37111 27 29 **References:** 30 31 Bynum, R.V. 1996. Memorandum to Martin Tierney and Christine Stockman, Re: Rev 32 Update of Uncertainty Range and Distribution for Actinide Solubility to be used in CCA 33 NUTS Calculations, May 23, 1996. WPO 37791. 34 35 Novak, C.F. 1996. Memorandum to J.T. Holmes Re: Release of FMT Data Base Files 36 37

HMW_3456_960318.CHEMDAT and HMW_345_960325.CHEMDAT, March 27, 1996. WPO 35923.

Novak, C.F., and Moore, R.C. 1996. Technical Memorandum to Malcolm Siegel, Re: Estimates of Dissolved Concentrations for +III, +IV, +V, and +VI Actinides in a Salado and a Castile Brine under Anticipated Repository Conditions, March 28, 1996. WPO 36207.

Siegel, M. 1996. SNL Technical Memorandum to Martin Tierney Re: Solubility Parameters for Use in the CCA NUTS and GRIDFLOW Calculations, March 29, 1996. WPO 37314.

46 47

38 39

40

41

42 43

44

45

Parameter	42: Log of the Dis	tribution of Solub	ility of U(IV) in S	alado Brine
Parameter Descri	ption:		<u>,</u> 44	,
This parameter rep solubility value for chemical environm	resents the distribut ruranium in the +IV ment is controlled by	tion (\log_{10}) of the un <i>V</i> oxidation state in the Mg(OH) ₂ -Mg(ncertainty about the Salado brine. The CO_3 buffer system.	e modeled disposal roon
Material and Par SOLU4 SOLSIM	ameter Name(s): (#3390)			
Computational C	ode(s): NUTS			
mean	median	minimum	maximum	std. devia
0.18	-0.09	-2.0	1.40	0.37
CDF/PDF Graph			·····	
	1.0	SOLU4 SOLSI	N	

Parameter 42: Log of the Distribution of Solubility of U(IV) in Salado Brine (Continued)

Data: Site-Specific Experimental Data and Thermodynamic Calculations

Solubilities were calculated using the FMT code (Novak 1996). Bynum (1996) compared 150 modeled and experimentally determined solubilities and provided a distribution of the differences between them. The parameter records package associated with this parameter is located at: SWCF-A:WBS 1.2.0.7.1; WBS 1.1.10.1.1:PDD:QA:DISSOLVED SPECIES:Actinides Solubility Source Term Look-up Tables (WPO 35835).

Discussion:

5

9

The solubility of U(+IV) in Salado brine is a function of pH, CO_2 fugacity, and other brine components as modeled by FMT, a computer code for calculating equilibrium concentrations that is based on experimentally determined thermodynamic parameters (Novak 1996; Novak and Moore 1996; Siegel 1996). The FMT-calculated solubility is 4.4×10^{-6} moles/liter (see SOLMOD4, SOLSIM in Table PAR-39). The distribution of solubilities was determined by Bynum (1996) by comparing modeled solubilities for all oxidation states with the experimentally determined solubilities. The parameter is the log_{10} of the distribution about this value, which is plotted in log space as shown in the CDF/PDF graph. The log of the solubility is obtained by adding this parameter to the log of the FMT model value.

Further information on this parameter is provided in Appendix SOTERM and Appendix IRES.

WIPP Data Entry Form #464 WPO#: 37112

References:

Bynum, R.V. 1996. Memorandum to Martin Tierney and Christine Stockman, Re: Revised Update of Uncertainty Range and Distribution for Actinide Solubility to be used in CCA - NUTS Calculations, May 23, 1996. WPO 37791.

Novak, C.F. 1996. Memorandum to J.T. Holmes Re: Release of FMT Data Base Files HMW_3456_960318.CHEMDAT and HMW_345_960325.CHEMDAT, March 27, 1996. WPO 35923.

Novak, C.F., and Moore, R.C. 1996. Technical Memorandum to Malcolm Siegel, Re: Estimates of Dissolved Concentrations for +III, +IV, +V, and +VI Actinides in a Salado and a Castile Brine under Anticipated Repository Conditions, March 28, 1996. WPO 36207.

Siegel, M. 1996. SNL Technical Memorandum to Martin Tierney Re: Solubility Parameters for Use in the CCA NUTS and GRIDFLOW Calculations, March 29, 1996. WPO 37314.

	Title 40 CFR Part 1	91 Compliance Certific	ation Application	
Parameter	43: Log of the Di	istribution of Solub	ility of U(VI) in Sa	alado Brine
arameter Descri	iption:			· · · · · · · · · · · · · · · · · · ·
'his parameter rep olubility value for hemical environn	resents the distributer of the distributer of the second s	ution (log ₁₀) of the un VI oxidation state in by the Mg(OH) ₂ -Mg(ncertainty about the Salado brine. The CO_3 buffer system.	: modeled disposal room
Material and Par	ameter Name(s):	••••••••••••••••••••••••••••••••••••••		
OLU6 SOLSIM	(#3391)			
				• <u>•••</u> ••••
Computational C	ode(s): NUTS			
mean	median	minimum	maximum	std. deviation
0.18	-0.09	-2.0	1.40	0.37
Jnits: None Distribution Typ	e: Log cumulative			
CDF/PDF Graph			······································	
	1.0	SOLU6 SOLSI	M	
	0.8 Ailinge 0.6			
	P.0 C.0 Umnietive P.0 D.0		MULATIVE Distribution	
	0.0	-1.0 501 501	ampled Data able 43 in LHS	

	'arameter 43: Log of the Distribution of Solubility of U(VI) in Salado Brine (Continu
I	Data: Site-Specific Experimental Data and Thermodynamic Calculations
I	Data on U(+VI) solubility in Salado brine was compiled by Hobart and Moore (1996), both
f	rom ongoing WIPP-directed research and from published literature. Project experimental
d	ata was from Reed et al. (1996) (see SOTERM, Section 3.0). Published data was from
3	amazaki, et al (1992) and Pashalidas et al (1993). Based on these data, Hobart and Moor
r	ecommend a value for U(+VI) for use in performance assessment. The uncertainty in this
v	value was bounded by the distribution prepared by Bynum (1996). Bynum (1996) compared
1	50 modeled and experimentally determined solubilities and provided a distribution of the
d	lifferences between them. The parameter records package associated with this parameter i
1	ocated at: SWCF-A:WBS 1.2.0.7.1; WBS 1.1.10.1.1:PDD:OA:DISSOLVED
S	PECIES: Actinides Solubility Source Term Look-up Tables (WPO 35835).
I	Discussion:
I	'he solubility of U(+VI) in Salado brine is a function of pH, CO ₂ fugacity, and other brine
С	omponents. The solubility provided by Hobart and Moore (1996) is 8.7×10^{-6} moles/liter
(see SOLMOD6, SOLSIM in Table PAR-39). The distribution of solubilities was determined
b	by Bynum (1996) by comparing modeled solubilities for all oxidation states with the
e	xperimentally determined solubilities. The parameter is the log ₁₀ of the distribution about
V	alue, which is plotted in log space as shown in the CDF/PDF graph. The log of the solub
Ĺ	s obtained by adding this parameter to the log of the FMT model value.
F	Further information on this parameter is provided in Appendix SOTERM and Appendix IF
-	
7	WIPP Data Entry Form #464 WPO#: 37113
ł	References:
т	Winner D.V. 1006 Memorandum to Martin Tierrow and Christing Steelman Der Dervice
r r	Judate of Uncertainty Dange and Distribution for Actinide Solubility to be used in CCA
l	Sphale of Uncertainty Kange and Distribution for Actinitie Solubility to be used in CCA
N	NO IS Calculations, May 23, 1990. WFO 37791
ľ	
l F	Jobart, D.E., and Moore, R. 1996, Draft Analysis of Uranium (VI) Solubility Data for WI

Parameter 43: Log of the Distribution of Solubility of U(VI) in Salado Brine (Continued		
Referen	aces (Continued):	
Pashalid Pu(VI) a in WPO	lis, I., Runde, W., Kim, J.I. 1993. "A Study of Solid-Liquid Phase Equilibria of and U(VI) in Aqueous Carbonate Systems," <i>Radiochim. Acta</i> , 63, 141-146. Contained 36488.	
Reed, D U(VI) in commur	T., Wygmans, D.G., and Richmann, M.K. 1996. Stability of Pu(VI), Np(VI), and Simulated WIPP Brine, Argonne National Laboratory Interim Report (personal nication). Contained in WPO 35197 3/13/96 Interim Report – WPO 35197.	
Yamaza Brine, P Conferent IL, and A SAND9	ki, H., Lagerman, B., Symeopoulos, V., and Choppin, G. 1992. Solubility of Uranyl i roceedings of the Third International High Level Radioactive Waste Management nce, Las Vegas, NV, April 12-16, 1992, American Nuclear Society, La Grange Park, American Society of Engineers, New York. Located in: Vol. 2, p. 1607-1611. 2-7069C-WPO 39678	

• • • • •

Parameter Descri	iption:			
This parameter rep solubility value for chemical environn	presents the distrib r uranium in the +" nent is controlled b	ution (log ₁₀) of the un VI oxidation state in by the Mg(OH) ₂ -Mg(ncertainty about the Castile brine. The CO ₃ buffer system.	e modeled disposal roon
Material and Par	ameter Name(s):	· · · · · · · · · · · · · · · · · · ·	<u> </u>	
SOLU6 SOLCIM	(#3392) ode(s): NUTS			
mean	median	minimum	maximum	std. deviat
0.18	-0.09	-2.0	1.40	0.37
Distribution Type	e: Log cumulative			
CDF/PDF Graph		SOLU6 SOLCII	M	
	Cumulative Probability 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0			

0.0

-2.0

ROTUR

VERIES?

-1.0

K 200 20

0.0 SOLCIM

7-8430-98

11211

1.0

21-18-43

Parameter 44: Log of the Distribution of Solubility of U(VI) in Castile Brine (Continued)

2	Data: Site
3	
4	Data on U
5	from ong
6	data was f
7	Yamazaki
8	recommen
9	value was
10	150 mode
11	difference
12	located at:
13	SPECIES:
14	
18	
17	Discussion
18	
19	The solubi
20	componen
21	(see SOLN
22	by Bynum
23	experimen
24	value, whi
25	is obtained
26	
27	Further in
28	
38	
31	WIPP Da
33	
34	Reference
35	
36	Bynum, R
37	Update of
38	NUTS Ca
39	
40	Hobart, D

Data: Site-Specific Experimental Data and Thermodynamic Calculations

(+VI) solubility in Castile brine was compiled by Hobart and Moore (1996), both oing WIPP-directed research and from published literature. Project experimental from Reed et al. (1996) (see SOTERM, Section 3.0). Published data was from , et al (1992) and Pashalidas et al (1993). Based on these data, Hobart and Moore id a value for U(+VI) for use in performance assessment. The uncertainty in this bounded by the distribution prepared by Bynum (1996). Bynum (1996) compared led and experimentally determined solubilities and provided a distribution of the s between them. The parameter records package associated with this parameter is SWCF-A:WBS 1.2.0.7.1; WBS 1.1.10.1.1:PDD:QA:DISSOLVED Actinides Solubility Source Term Look-up Tables (WPO 35835).

n:

ility of U(+VI) in Castile brine is a function of pH, CO₂ fugacity, and other brine ts. The solubility provided by Hobart and Moore (1996) is 8.8×10^{-6} moles/liter MOD6, SOLCIM in Table PAR-39). The distribution of solubilities was determined (1996) by comparing modeled solubilities for all oxidation states with the stally determined solubilities. The parameter is the \log_{10} of the distribution about this ich is plotted in log space as shown in the CDF/PDF graph. The log of the solubility d by adding this parameter to the log of the FMT model value.

formation on this parameter is provided in Appendix SOTERM and Appendix IRES.

1

41 42 ta Entry Form #464 WPO#: 37114

es:

LV. 1996. Memorandum to Martin Tierney and Christine Stockman, Re: Revised Uncertainty Range and Distribution for Actinide Solubility to be used in CCA lculations, May 23, 1996. WPO 37791.

.E., and Moore, R. 1996. Draft Analysis of Uranium (VI) Solubility Data for WIPP Performance Assessment, Sandia National Laboratories, March 28, 1996. WPO 33703.

October 1996

Parameter 44: Log of the Distribution of Solubility of U(VI) in Castile Brine (Continued) 1 2 **References** (Continued): 3 Reed, D.T., Wygmans, D.G., and Richmann, M.K. 1996. Stability of Pu(VI), Np(VI), and 4 U(VI) in Simulated WIPP Brine, Argonne National Laboratory Interim Report (personal 5 communication). 3/13/96 Interim Report contained in WPO 35197. 6 7 Yamazaki, H., Lagerman, B., Symeopoulos, V., and Choppin, G. 1992. Solubility of Uranyl in 8 Brine, Proceedings of the Third International High Level Radioactive Waste Management 9 Conference, Las Vegas, NV, April 12-26, 1992, American Nuclear Society, La Grange Park 10 and American Society of Engineers, New York. SAND92-7069C - WPO 39678. 11 12 13

14

Title 40 CFR Part 191 Compliance Certification Application

Parameter 45: Log of the Distribution of Solubility of Th(IV) in Salado Brine (Continued)

Data: Site-Specific Experimental Data and Thermodynamic Calculat	ions
Solubilities were calculated using the EMT code (Novak 1996) Bynum ((1996) compared 150
modeled and experimentally determined solubilities and provided a distri	bution of the
differences between them. The parameter records package associated with	this parameter is
located at: SWCF-A:WBS 1.2.0.7.1; WBS 1.1.10.1.1:PDD:QA:DISSOL	VED
SPECIES: Actinides Solubility Source Term Look-up Tables (WPO 3583	5).
	·
Discussion:	
The solubility of Th(+IV) in Salado brine is a function of pH, CO_2 fugacity	y, and other brine
components as modeled by FMT, a computer code for calculating equilib	rium concentrations
that is based on experimentally determined thermodynamic parameters (N	lovak 1996; Novak
and Moore 1996; Siegel 1996). The FMT-calculated solubility is 4.4×1	0 ⁻⁶ moles/liter (see
SOLMOD4, SOLSIM in Table PAR-39). The distribution of solubilities	was determined by
Bynum (1996) by comparing modeled solubilities for all oxidation states	with the
experimentally determined solubilities. The parameter is the \log_{10} of the	distribution about thi
value, which is plotted in log space as shown in the CDF/PDF graph. The	e log of the solubility
is obtained by adding this parameter to the log of the FMT model value.	
Further information on this parameter is provided in Appendix SOTERM	and Appendix IRES
Further information on this parameter is provided in Appendix SOTERM	and Appendix IRES
Further information on this parameter is provided in Appendix SOTERM	and Appendix IRES
Further information on this parameter is provided in Appendix SOTERM WIPP Data Entry Form #464 WPO#: 37115	and Appendix IRES
Further information on this parameter is provided in Appendix SOTERM WIPP Data Entry Form #464 WPO#: 37115	and Appendix IRES
Further information on this parameter is provided in Appendix SOTERM WIPP Data Entry Form #464 WPO#: 37115 References:	and Appendix IRES
Further information on this parameter is provided in Appendix SOTERM WIPP Data Entry Form #464 WPO#: 37115 References: Bynum, R.V. 1996. Memorandum to Martin Tierney and Christine Stock	and Appendix IRES
Further information on this parameter is provided in Appendix SOTERM WIPP Data Entry Form #464 WPO#: 37115 References: Bynum, R.V. 1996. Memorandum to Martin Tierney and Christine Stock Update of Uncertainty Range and Distribution for Actinide Solubility to b	and Appendix IRES
Further information on this parameter is provided in Appendix SOTERM WIPP Data Entry Form #464 WPO#: 37115 References: Bynum, R.V. 1996. Memorandum to Martin Tierney and Christine Stock Update of Uncertainty Range and Distribution for Actinide Solubility to b NUTS Calculations, May 23, 1996. WPO 37791.	and Appendix IRES
Further information on this parameter is provided in Appendix SOTERM WIPP Data Entry Form #464 WPO#: 37115 References: Bynum, R.V. 1996. Memorandum to Martin Tierney and Christine Stock Update of Uncertainty Range and Distribution for Actinide Solubility to b NUTS Calculations, May 23, 1996. WPO 37791.	and Appendix IRES
Further information on this parameter is provided in Appendix SOTERM WIPP Data Entry Form #464 WPO#: 37115 References: Bynum, R.V. 1996. Memorandum to Martin Tierney and Christine Stock Update of Uncertainty Range and Distribution for Actinide Solubility to b NUTS Calculations, May 23, 1996. WPO 37791. Novak, C.F. 1996.Memorandum to J.T. Holmes Re: Release of FMT Da HMW 2456 060218 CHEMDAT and HMW 245 060225 CHEMDAT	and Appendix IRES man, Re: Revised be used in CCA ta Base Files
Further information on this parameter is provided in Appendix SOTERM WIPP Data Entry Form #464 WPO#: 37115 References: Bynum, R.V. 1996. Memorandum to Martin Tierney and Christine Stock Update of Uncertainty Range and Distribution for Actinide Solubility to b NUTS Calculations, May 23, 1996. WPO 37791. Novak, C.F. 1996.Memorandum to J.T. Holmes Re: Release of FMT Da HMW_3456_960318.CHEMDAT and HMW_345_960325.CHEMDAT, WPO 35923	and Appendix IRES man, Re: Revised be used in CCA ta Base Files March 27, 1996.
Further information on this parameter is provided in Appendix SOTERM WIPP Data Entry Form #464 WPO#: 37115 References: Bynum, R.V. 1996. Memorandum to Martin Tierney and Christine Stock Update of Uncertainty Range and Distribution for Actinide Solubility to b NUTS Calculations, May 23, 1996. WPO 37791. Novak, C.F. 1996.Memorandum to J.T. Holmes Re: Release of FMT Da HMW_3456_960318.CHEMDAT and HMW_345_960325.CHEMDAT, WPO 35923.	and Appendix IRES man, Re: Revised be used in CCA ta Base Files March 27, 1996.
Further information on this parameter is provided in Appendix SOTERM WIPP Data Entry Form #464 WPO#: 37115 References: Bynum, R.V. 1996. Memorandum to Martin Tierney and Christine Stock Update of Uncertainty Range and Distribution for Actinide Solubility to b NUTS Calculations, May 23, 1996. WPO 37791. Novak, C.F. 1996.Memorandum to J.T. Holmes Re: Release of FMT Da HMW_3456_960318.CHEMDAT and HMW_345_960325.CHEMDAT, WPO 35923. Novak, C.F., and Moore, R.C. 1996. Technical Memorandum to Malcolu	and Appendix IRES man, Re: Revised be used in CCA ta Base Files March 27, 1996.
Further information on this parameter is provided in Appendix SOTERM WIPP Data Entry Form #464 WPO#: 37115 References: Bynum, R.V. 1996. Memorandum to Martin Tierney and Christine Stock Update of Uncertainty Range and Distribution for Actinide Solubility to b NUTS Calculations, May 23, 1996. WPO 37791. Novak, C.F. 1996.Memorandum to J.T. Holmes Re: Release of FMT Da HMW_3456_960318.CHEMDAT and HMW_345_960325.CHEMDAT, WPO 35923. Novak, C.F., and Moore, R.C. 1996. Technical Memorandum to Malcoln Estimates of Dissolved Concentrations for +III. +IV. +V. and +VI Actinide	and Appendix IRES aman, Re: Revised be used in CCA ta Base Files March 27, 1996. n Siegel, Re: des in a Salado and a
Further information on this parameter is provided in Appendix SOTERM WIPP Data Entry Form #464 WPO#: 37115 References: Bynum, R.V. 1996. Memorandum to Martin Tierney and Christine Stock Update of Uncertainty Range and Distribution for Actinide Solubility to b NUTS Calculations, May 23, 1996. WPO 37791. Novak, C.F. 1996.Memorandum to J.T. Holmes Re: Release of FMT Da HMW_3456_960318.CHEMDAT and HMW_345_960325.CHEMDAT, WPO 35923. Novak, C.F., and Moore, R.C. 1996. Technical Memorandum to Malcoln Estimates of Dissolved Concentrations for +III, +IV, +V, and +VI Actinia Castile Brine under Anticipated Repository Conditions, March 28, 1996.	and Appendix IRES man, Re: Revised be used in CCA ta Base Files March 27, 1996. n Siegel, Re: des in a Salado and a WPO 36207.
Further information on this parameter is provided in Appendix SOTERM WIPP Data Entry Form #464 WPO#: 37115 References: Bynum, R.V. 1996. Memorandum to Martin Tierney and Christine Stock Update of Uncertainty Range and Distribution for Actinide Solubility to b NUTS Calculations, May 23, 1996. WPO 37791. Novak, C.F. 1996.Memorandum to J.T. Holmes Re: Release of FMT Da HMW_3456_960318.CHEMDAT and HMW_345_960325.CHEMDAT, WPO 35923. Novak, C.F., and Moore, R.C. 1996. Technical Memorandum to Malcoln Estimates of Dissolved Concentrations for +III, +IV, +V, and +VI Actinic Castile Brine under Anticipated Repository Conditions, March 28, 1996.	and Appendix IRES aman, Re: Revised be used in CCA ta Base Files March 27, 1996. In Siegel, Re: des in a Salado and a WPO 36207.
Further information on this parameter is provided in Appendix SOTERM WIPP Data Entry Form #464 WPO#: 37115 References: Bynum, R.V. 1996. Memorandum to Martin Tierney and Christine Stock Update of Uncertainty Range and Distribution for Actinide Solubility to b NUTS Calculations, May 23, 1996. WPO 37791. Novak, C.F. 1996.Memorandum to J.T. Holmes Re: Release of FMT Da HMW_3456_960318.CHEMDAT and HMW_345_960325.CHEMDAT, WPO 35923. Novak, C.F., and Moore, R.C. 1996. Technical Memorandum to Malcoln Estimates of Dissolved Concentrations for +III, +IV, +V, and +VI Actinic Castile Brine under Anticipated Repository Conditions, March 28, 1996. Siegel, M. 1996. SNL Technical Memorandum to Martin Tierney Re: So	and Appendix IRES and Appendix

· · · · · ·	Parameter 46:	Humic Proportion	nality Constant	
Parameter Descri	ption:	<u></u>		
The humic proport: with mobile humic brine.	ionality constant is u substances for actir	used to calculate control of the con	oncentrations of act oxidation state of -	tinides associa +III, in the Cas
Material and Para	ameter Name(s):		<u> </u>	
PHUMOX3 PHUN	MCIM (#3429)			
Computational Co	ode(s): NUTS			
mean	median	minimum	maximum	std. devia
1.0	1.37	0.065	1.6	0.47
CDF/PDF Graph	<u> </u>			
· · · · · · · · · · · · · · · · · · ·	1.0	PHUMOX3 PHUM		
	0.8			
	0.8 Log of the second	and the second second		

,

	Parameter 46: Humic Proportionality Constant (Continued)
]	Data: Site-Specific Experimental Data
] ; ; ;	Experiments were conducted at Florida State University (Greg R. Choppin) and at SNL (Hans W. Papenguth and co-workers). These results, combined with WIPP-specific data on calcium and magnesium concentrations, formed the basis for this parameter distribution. The parameter records package associated with this parameter is located at: SWCF-A:WBS1.1.10.2.1.PDD:QA:Mobile Colloidal Actinide Source Term 3: Humic Substances (WPO 35855).
]	Discussion:
] t s s c s c s i i i i i i]	Humic substances encompass a broad variety of high-molecular-weight organic compounds that can mobilize actinides. To determine the concentration of actinides associated with humic substances, four pieces of information are required: 1) the concentration of reactive humic substance in the aqueous phase (that is, humic solubility); 2) the binding capacity of the humic substance; 3) actinide uptake (that is, actinide complexation constants); and 4) concentration of actinide ions in the aqueous phase (that is, actinide solubility). Quantification of actinide solubilities is described in Novak and Moore (1996). Collection of the other data, interpretation of that information, and development of parameter values for performance assessment calculations is described in detail in Papenguth and Moore (1996). The humic proportionality constant is a combination of information from 1) and 3) above. This constant is multiplied by 4), the actinide concentration, to obtain the concentrations of actinides mobilized on humic colloids.
	WIPP Data Entry Form #464 WPO#: 37683
]	References:
]	Novak, C.F., and Moore, R.C. 1996. Technical Memorandum to Malcolm Siegel, Re: Estimates of Dissolved Concentrations for +III, +IV, +V, and +VI Actinides in a Salado and a Castile Brine under Anticipated Repository Conditions, March 28, 1996. WPO 36207.
	Papenguth, Hans W. 1996. Memo to Christine T. Stockman. RE: Colloidal Actinide Source Term Parameters, Revision 2, April 22, 1996. WPO 37522.
•	Papenguth, Hans W., and Moore, R.C. 1996. Mobile - Colloidal-Actinide Source Term, 3. Humic Substances, Sandia National Laboratories (WPO 35855 Attachment A).

Г

	Parameter 47: Oxi	idation State Distr	ibution Paramete	<u>r</u>
Parameter Descr	iption:	<u></u>		<u></u>
This parameter de reducing for a par	termines whether the ticular realization.	e repository enviro	nment is more redu	icing or less
Material and Par GLOBAL OXST	rameter Name(s): FAT (#3417)			
Computational C	Code(s): NUTS		· <u> </u>	
mean	median	minimum	maximum	std. devia
0.5	0.5	0	1.0	0.29
Distribution Tvp	e: Unitorm			
Distribution Typ CDF/PDF Graph	ne: Unitorni			
Distribution Typ	10	GLOBAL OXSTAT		
Distribution Typ		GLOBAL OXSTAT		
Distribution Typ	1.0 1.0 0.8 1.0 0.8 1.0 0.8 0.6 0.6 0.4 0.4 0.4 0.4	GLOBAL OXSTAT	RM Distribution	

Parameter 47: Oxidation State Distribution Parameter (Continued)

Data: Site-Specific Experimental Data and Literature Research

Experimental results from LANL, PNL, and Argonne National Laboratories-East were used, as well as data from an extensive literature search. The parameter records package associated with this parameter is located at: SWCF-A:WBS1.1.10.1.1:PDD:QA:DISSOLVED SPECIES:Oxidation State Distribution: Actinides:OX3:OX4:OX5:OX6 (WPO 35194).

Discussion:

The oxidation state distribution parameter is used to designate which oxidation states dominate the solubility. Actinides addressed are thorium, uranium, neptunium, plutonium, americium, and curium. Analysis of literature data demonstrated that certain actinides (that is, Am, Th, Cm) will exist only in one oxidation state given the expected WIPP repository conditions. Therefore, this distribution is not used with the performance assessment for these actinides. Experimental evidence indicated that two oxidation states were possible for Pu, U, and Np under the expected WIPP repository conditions. For these actinides, it is assumed that their solubilities and k_{ds} will be dominated by only one oxidation state, but it is uncertain which of two possible states will dominate. Therefore, in half of the realizations employing this parameter (if >0.5), the higher oxidation state solubilities and k_{ds} will be used, and in the other half of the realizations (if <0.5), the lower oxidation state solubilities and k_{ds} will be used (Weiner et al. 1996). Further information on this parameter is found in Appendix SOTERM.

25 26

1 2

3 4

5

6 7

8 10

11 12 13

14 15

16

17

18 19

20

21

22

23

24

- **2**8
- 29

39

- 32
- 33 34
- 35
- 36 37
- 38

39 40

- 41
- 42
- 42
- 44

References:

WIPP Data Entry Form #464 WPO#: 37663

Parameters in PA. April 16, 1996. WPO 37536.

Oxidation States in the WIPP, WBS 1.1.10.1.1. WPO 35194.

Novak, C.F., and Moore, R.C. 1996. Technical Memorandum to Malcolm Siegel, Re:

Castile Brine under Anticipated Repository Conditions, March 28, 1996. WPO 36207.

Weiner, Ruth F., Hobart, D.E., Tait, C.D., and Clark, D.L. 1996. Analysis of Actinide

Stockman, Christine. 1996. Memo to Martin Tierney. RE: Implementation of Chemistry

Estimates of Dissolved Concentrations for +III, +IV, +V, and +VI Actinides in a Salado and a

Title 40 CFR Part 191 Compliance Certification Application **Parameter 48: Climate Index Parameter Description:** A change in climate over the next 10,000 years could alter flow rates in the Culebra, thereby impacting radionuclide transport. The Climate Index is a multiplication factor to enhance the magnitude of flow in each realization of the Culebra flow field caused by changes in future climate. Material and Parameter Name(s): GLOBAL CLIMTIDX (#233) Computational Code(s): SECOTP2D maximum std. deviation median minimum mean 2.25 1.0 0.35 1.31 1.17 Units: None **Distribution Type:** Cumulative **CDF/PDF** Graph GLOBAL CLIMTIDX 1.0 0.8 Cumulative Probability 0.6 0.4 CUMULATIVE Distribution Cumulative Probability 0.2 Sampled Data Variable 48 in LHS 0.0 2.5 1.0 2.0 1.5 2.0 Index for Recharge Amplitude Factor

34

35

 $\frac{1}{2}$

3

October 1

X-7.00 ZO

PLOTLHS version

7-AUG-86

20-06 43

Paran	aeter 4	48: C	limate	Index	(Continued)

The	parameter distribution was obtained by first surveying the available literature to obtain
infor	mation that can be used to infer the annual precipitation rate since the end of the
Pleis	tocene and for the next 10,000 years. Next, numerical simulations were performed to
how	various assumed rates and temporal patterns of recharge would impact groundwater
velo	cities in the Culebra within the WIPP site. The parameter records package associated
this j	parameter is located at: SWCF-A:WBS1.2.0/.1:PDD:QA:NON-SALADO:Culebra
1141	SITISSIVITY ZONE. CLIWITIDA/GLOBAL (WPO 30423).
Disc	ussion:
The	following main assumptions were used in the numerical simulations:
THC	nonowing main assumptions were used in the numerical simulations.
1)	the groundwater basin conceptual model is applicable,
2)	the lateral boundaries are flow divides (that is, no-flow boundaries) during the period
,	simulated,
3)	flow in the unsaturated zone can be neglected, and
4)	the flow system was equilibrated to a recharge rate sufficient to maintain the water
	near the land surface at the start of the simulations.
Asd	escribed in the Climate Index Record Package (Corbet and Swift 1996), a step rechar
funci	tion, which represents a radical disruption of the climate pattern of the Holocene, is
unlik	tely and is assigned a 0.25 probability of occurrence and the Holocene recharge patter
assig	and a 0.75 probability of occurrence.
First	, simulations were performed using a step recharge function for the pattern of future
recha	arge. The results specify a uniform distribution between 1.5 and 2.25.
Next	, six transient simulations using the Holocene pattern of future recharge were perform
The	results specify a uniform distribution between 1.0 and 1.25.
WIF	P Data Entry Form #464 WPO#: 33031
Refe	erences:
Carl	not T and Swift D 1006 Mama to M Tiamay Day Distribution for Non Salada
Cort	et, 1. and Switt, P. 1990. Metho to M. Herney. Ke: Distribution for Non-Salado

· · · · · · · · · · · · · · · · · · ·	Parameter 49: 0	Culebra Half Mati	rix Block Length	
Parameter Desci	ription:			
This parameter is thickness of a mar- is one of the parameter conceptualization	used to describe the trix slab between two meters required in th of the Culebra (see	half matrix block h o parallel plates of the SECOTP2D code also: Appendix SE	ength (defined as or fractures) for the Cu for the double-por COTP2D).	ne-half the ulebra dolor osity
Material and Par CULEBRA HM	rameter Name(s): BLKLT (#3485)			
Computational (Code(s): SECOTP2	D		
mean	median	minimum	maximum	std. dev
0.275	0.275	0.05	0.5	0.1
CDE/PDE Cropt				· · · · · · · · · · · · · · · · · · ·
Compression	1.0 0.8	CULEBRA HMBLK		

Parameter 49: Culebra Half Matrix Block Length (Continued)

Data: Professional Judgment - General Engineering Knowledge

The half matrix block length distribution is derived from numerical simulations of tracer test data. The data associated with this parameter are located in the following parameter records packages: SWCF-A:WBS1.2.07.1:PDD:QA:NON-SALADO:Culebra Half Matrix Block Length (Culebra Transport Parameter) (WPO 37225). Supporting data records packages for this parameter include: SWCF-A:1.1.5.2.3:TD:QA:Tracer Test Interpretations, Interim Simulations (WPO 37450); SWCF-A:1.1.5.3.4:TD:QA:Tracer Test Sample Analyses, H-11 Tracer Tests Conducted June 1995 through July 1995 (WPO 37468); SWCF-A:1.1.5.3.4:TD: QA:Tracer Test Sample Analyses, H-19 Tracer Tests Conducted December 1995 through April 1996 (WPO 37452); and SWCF-A:1.1.5.3.4:TD:QA:Tracer Test Sample Analyses, H-11 Tracer Tests Conducted February 1996 through March 1996 (WPO 37467).

Discussion:

The half matrix block length is defined as one-half the thickness of a matrix slab between two parallel plates of fractures. Diffusive processes at the WIPP will cause some fraction of actinides, which are released from the repository, to diffuse from the advective porosity into the diffusive porosity (or matrix), thereby delaying and attenuating discharges at the site boundary. The larger the half matrix block length (smaller surface area for diffusion), the larger the release because there will be less diffusion and in turn less access to surface area for sorption (Meigs and McCord 1996; see Appendix MASS Attachment 15-6).

The distribution of values for the half matrix block length is uniform, with values ranging from 0.05 to 0.5 meters (that is, full matrix block length values from 0.1 to 1.0 meters). This distribution is based on numerical simulations of tracer test data from the H-3, H-11, and H-19 hydropads (Meigs and McCord 1996). Multiwell convergent flow tracer tests have been performed previously at H-3 and H-11 (Stensrud et al. 1989; Hydro Geo Chem, Inc. 1985). More recently, additional tracer tests have been performed at H-11 and new tests have been performed at H-19 (Beauheim et al. 1995). The 1995-96 tests at H-11 and H-19 consisted of single-well injection-withdrawal tests and multiwell convergent flow tests.

The matrix block length and the advective porosity are essentially fitting parameters inferred from comparing the results of numerical simulations of the tracer tests to the field data. Numerical simulations were performed with double-porosity models with both homogeneous and heterogeneous hydraulic conductivity fields. For the homogeneous approach, the field data was analyzed using the SWIFT-II transport code, and for the heterogeneous approach, the field data data was analyzed using the THEMM code. Both modeling approaches yielded consistent results for each well-to-well path with regard to matrix block length (Meigs and McCord,

Parameter 49: Culebra Half Matrix Block Length (Continued)

Discussion (Continued):

1996). Additional details on the numerical simulations are contained in a records package entitled "Tracer Test Interpretations, Interim Simulations" (WPO 37450).

WIPP Data Entry Form #464 WPO#: 38356

References:

Beauheim, R. L., Meigs, L.C., Saulnier, G.J., and Stensrud, W.A. 1995. Culebra Transport Program Test Plan: Tracer Testing of the Culebra Dolomite Member of the Rustler Formation at the H-19 and H-11 Hydropads on the WIPP Site. WPO 30156.

Hydro Geo Chem, Inc. 1985. WIPP Hydrology Program Waste Isolation Pilot Plant, SENM
Hydrologic Data Report #1. SAND85-7206. Albuquerque, NM: Sandia National
Laboratories. WPO 28430.

Meigs, Lucy, and McCord, Jim. 1996. Memo to file. RE: Physical Transport in the Culebra Dolomite, July 11, 1996 (contained in SWCF-A:1.1.5.2.3:TD:QA:Tracer Test Interpretations, Interim Simulations, WPO 37450).

Stensrud, W.A., Bame, M.A., Lantz, K.D., Palmer, J.B., and Saulnier, G.J., Jr. 1989. WIPP Hydrology Program Waste Isolation Pilot Plant Southeastern New Mexico Hydrologic Report #8. SAND89-7056. Albuquerque, NM: Sandia National Laboratories. WPO 28582.

	· · · · · · · · · · · · · · · · · · ·			
Material and Par	ameter Name(s):			
CULEBRA APC	DROS (#3487)			
				a=a=
Computational C	Code(s): SECOTP2	2D	·	
mean	median	minimum	maximum	std. deviatior
2.1×10^{-3}	1.0×10^{-3}	1.0×10^{-4}	1.0×10^{-2}	0
Units: None		<u>, , , , , , , , , , , , , , , , , , , </u>	. <u></u>	<u></u>
Units. None			·····	
Distribution Typ	e: Loguniform			
CDE/DE Crowb				
CDF/PDF Graph		CULEBRA APOROS	3	
CDF/PDF Graph	1.0	CULEBRA APORO	3	\sim
CDF/PDF Graph	1.0	CULEBRA APOROS		
CDF/PDF Graph	1.0 0.8	CULEBRA APOROS		
CDF/PDF Graph	1.0 0.8	CULEBRA APOROS		
CDF/PDF Graph	1.0 0.8 50.6 0.6	CULEBRA APOROS		
CDF/PDF Graph	1.0 0.8 Alineqoid externio	CULEBRA APOROS		
CDF/PDF Graph	1.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	CULEBRA APOROS	IFORM Distribution	
CDF/PDF Graph	1.0 0.8 6.0 7 0.0 8.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	CULEBRA APOROS	IFORM Distribution	

Parameter 50: Culebra Advective Porosity

This parameter is used to describe the advective porosity (typically referred to as the fracture

Ż

Parameter Description:

DOE/CAO 1996-2184

Parameter 50: Culebra Advective Porosity (Continued)

Data: Professional Judgment - General Engineering Knowledge

This porosity distribution is derived from numerical simulations of tracer test data. The data associated with this parameter are located in the following parameter records packages: SWCF-A:WBS1.2.07.1:PDD:QA:NON-SALADO:Culebra Advective Porosity (Culebra Transport Parameter) (WPO 37227). Supporting data records packages for this parameter include: SWCF-A:1.1.5.2.3:TD:QA: Tracer Test Interpretations, Interim Simulations (WPO 37450); SWCF-A:1.1.5.3.4:TD:QA: Tracer Test Sample Analyses, H-19 Tracer Tests Conducted December 1995 through April 1996 (WPO 37452); and SWCF-A:1.1.5.3.4:TD:QA:Tracer Test Sample Analyses, H-11 Tracer Tests Conducted February 1996 through March 1996 (WPO 37467).

Discussion:

1 2

3

4 5

6

7

8 9

10

11

12 13 14

16 17 18

19

20

21

22

23

24

25

26 27

28

29

30 31

32

33

34

35

36

37 38 39

40

41 42 The Culebra is a fractured dolomite with nonuniform properties and multiple scales of porosity, including fractures ranging from microscale to large, vuggy zones, inter-particle and inter-crystalline porosity. When the permeability contrast is significant between different scales of connected porosity, the total porosity of the system can be modeled by dividing it into the advective (for example, fractures, and to some extent vugs connected by fractures, and interparticle porosity) porosity and the diffusive (or matrix) porosity. The advective porosity refers to porosity through which most of the flow occurs (for example, fractures), while the diffusive porosity includes features such as intercrystalline porosity, and to some extent microfractures, vugs, and interparticle porosity, accessible to solutes only through diffusion. The advective porosity used for the performance assessment simulations has been determined from evaluation of tracer test data (Meigs and McCord 1996). The diffusive porosity has been determined from laboratory measurements of core plugs, which do not contain large fractures (Meigs and McCord 1996; see Appendix MASS Attachment 15-6).

The distribution for the advective porosity is based on numerical simulations of tracer test data from the H-3, H-11, and H-19 hydropads (Meigs and McCord 1996). Multiwell convergent flow tests have been performed previously at H-3 and H-11 (Stensrud et al. 1989; Hydro Geo Chem, Inc. 1985). More recently, additional tracer tests have been performed at H-11 and new tests have been performed at H-19 (Beauheim et al. 1995). The recent tests at H-11 and H-19 consisted of single-well injection-withdrawal tests and multiwell convergent flow tests.

The advective porosity and the matrix block length are essentially fitting parameters inferred from comparing the results of numerical simulations of the tracer tests to the field data. Numerical simulations were performed with double-porosity models with both homogeneous

	Tarameter 50. Culebra Advective Forosity (Continued)
Discussio	on (Continued):
and heter data was field data consisten McCord package o	ogeneous hydraulic conductivity fields. For the homogeneous approach, the field analyzed using the SWIFT-II transport code, and for the heterogeneous approach was analyzed using the THEMM code. Both modeling approaches yielded t results for each well-to-well path with regard to advective porosity (Meigs and 1996). Additional details on the numerical simulations are contained in a record entitled "Tracer Test Interpretations, Interim Simulations" (WPO 37450).
WIPP D	ata Entry Form #464 WPO#: 38358
Reference	es:
Beauhein Program at the H-	n, R. L., Meigs, L.C., Saulnier, G.J., and Stensrud, W.A. 1995. Culebra Transp Test Plan: Tracer Testing of the Culebra Dolomite Member of the Rustler Form 19 and H-11 Hydropads on the WIPP Site. WPO 30156.
Hydro Go Hydrolog Laborato	eo Chem, Inc. 1985. WIPP Hydrology Program Waste Isolation Pilot Plant, SE fic Data Report #1. SAND85-7206. Albuquerque, NM: Sandia National ries. WPO 28430.
Meigs, L Dolomite	ucy, and McCord, Jim. 1996. Memo to file. RE: Physical Transport in the Cul , July 11, 1996 (contained in SWCF-A:1.1.5.2.3:TD:QA:Tracer Test Interpretat imulations, WPO 37450).
Interim S	

	Parameter	51: Culebra Diffus	sive Porosity	
Parameter Desc	ription:	<u> </u>	<u></u>	<u></u>
This parameter is porosity) for the code for the doub SECOTP2D).	s used to describe th Culebra dolomite. 1 ole-porosity concept	e diffusive porosity (It is one of the param rualization of the Cul	(typically referred the teters required in the ebra (see also App	to as the matrix the SECOTP2D endix
Motorial and Pa	romotor Nomo(c)		· · · · · · · · · · · · · · · · · · ·	
Material and ra	rameter Name(s):			
CULEBRA DP	OROS (#3486)			
		······		
Computational	Code(s): SECOTP	2D		
mean	median	minimum	maximum	std deviatio
0.16	0.16	0.10	0.25	0.4
		······································		
Units: None				
Distribution Ty	ne: Cumulative	<u></u>		<u>. </u>
CDF/PDF Grap	h		<u></u>	
	1.0	CULEBRA DPORC	IS INTERNET	
		C		
	0.8	/		
	A:			
	40.6 40 40		4	
	lative	at the second seco		
			3	
	nwn 0.4	C (1941)	ATIVE Distribution	
	0.2 L	CUMU <u>Cumul</u>	LATIVE Distribution	
	0.2 L	CUMU Cumut + Sam	LATIVE Distribution ative Probability pled Data	
	0.2 0.0	CUMU <u>Cumut</u> + Sam Variab	LATIVE Distribution ative Probability pled Data le 51 in LHS	

Parameter 51: Culebra Diffusive Porosity (Continued) Data: Site-Specific Experimental Data and Professional Judgment - General 2 3 **Engineering Knowledge** 4 This porosity distribution is derived from laboratory measurements. The data associated with this parameter are located in the following parameter records packages: SWCF-6 A:WBS1.2.07.1:PDD:QA:NON-SALADO:Culebra Diffusive Porosity (Culebra Transport 7 Parameter) (WPO 37228). Supporting data records packages for this parameter include: 9 SWCF-A:1.1.5.3.4:TD:QA:Non-Salado Core Analyses Performed by Terra Tek (AA-2896) (WPO 38234). 10 13 14 **Discussion:** 15 16 The Culebra is a fractured dolomite with nonuniform properties and multiple scales of porosity, including fractures ranging from microscale to large, vuggy zones and inter-particle and inter-crystalline porosity. When the permeability contrast is significant between different scales of connected porosity, the total porosity of the system can be modeled by dividing it into the advective (for example, fractures and, to some extent, vugs connected by fractures, and 20 interparticle porosity) porosity and the diffusive (or matrix) porosity. The advective porosity refers to porosity through which most of the flow occurs, while the diffusive porosity includes features such as intercrystalline porosity and, to some extent, microfractures, vugs, and interparticle porosity accessible to solutes only through diffusion. The advective porosity to be used for the performance assessment simulations has been determined from evaluation of tracer test data. The diffusive porosity has been determined from laboratory measurement of 26 core plugs, which do not contain large fractures (Meigs and McCord 1996; see Appendix 28 MASS Attachment 15-6). 29 30 This diffusive porosity distribution is derived from laboratory measurements. Boyle's Law helium porosity measurements have been made from 103 Culebra core plugs from 17 locations as reported in Kelley and Saulnier (1990) as well as additional porosity measurements recently 32 completed by Terra Tek (WPO 38234). The methodology used for porosity measurements are 33 described in Kelley and Saulnier (1990). To account for areal averaging, individual porosity 34 measurements from a borehole and/or hydropad were averaged to yield a borehole/hydropad 35 average porosity. The averaged values were used to construct the distribution (Meigs and 36 37 McCord 1996). 38 20 WIPP Data Entry Form #464 WPO#: 38357 41 42

1

5

8

11

17

18

19

21

22

23

24

25

27

Ref	erences:
Kel <i>Dol</i> Nat	ley, V. A., and Saulnier, G. 1990. Core Analyses for Selected Samples from the Culebra Somite at the Waste Isolation Pilot Plant Site. SAND90-7011. Albuquerque, NM: Sandia ional Laboratories. WPO 28629.
Mei Dol Inte	gs, Lucy, and McCord, Jim. 1996. Memo to file. RE: Physical Transport in the Culebromite, July 11, 1996 (contained in SWCF-A:1.1.5.2.3:TD:QA:Tracer Test Interpretation rim Simulations, WPO 37450).

	Inte 40 CI K
2	
3	Parameter 52
4	
6	Parameter Description:
7	
8	This parameter describes the m
9	oxidation state. K_d is the equili
10	unit mass of solid divided by th
11	
13	
14	Material and Parameter Nam
15	
16	U+6 MKD_U (#3475)
17	
1 8	······
20	Computational Code(s): SEC
21	
22	mean media
23	1.5×10^{-2} 1.5×10^{-2}
2 4	
26	Units: cubic meters per kilogra
2 8	
29	Distribution Type: Uniform
3Q	
32	CDF/PDF Graph
33	10
	0.8
	2
	1 3 6 7 8 9 10 11 13 14 15 16 17 19 20 21 22 23 26 29 30 32 32 32 32 32 32 32 32 32 32

2: Matrix Distribution Coefficient for U(VI)

natrix distribution coefficient (K_d) for uranium in the +VI ibrium ratio of the mass of U adsorbed on the solid phase(s) per ne concentration of that element in the aqueous phase.

1e(s):

COTP2D, NUTS

mean	median	minimum	maximum	std. deviation
1.5×10^{-2}	1.5×10^{-2}	3.0×10^{-5}	3.0×10^{-2}	0.01

m

34

Parameter 52: Matrix Distribution Coefficient for U(VI) (Continued)

Data: Site-Specific Experimental Data

The data associated with this parameter are located in the following parameter records package: SWCF-A:WBS1.1.10.3.1:PDD:QA:Culebra Dissolved Actinide Distribution Coefficients (K_ds) (WPO 38231).

Discussion:

Brush (1996) describes the laboratory sorption studies used to determine matrix K_ds for dissolved U. The experimental data do not include K_ds for the clay-rich rock associated with fracture surfaces and dispersed in the matrix of the Culebra. Brush (1996) believes that this is a more conservative approach. Further, the fracture-surface K_d (actually, K_a) for U in the Culebra is set to zero, which is also conservative. The laboratory sorption studies are summarized below.

Triay at Los Alamos National Laboratory (LANL) studied the sorption of Pu(V), Am(III), U(VI), Th(IV), and Np(V) by dolomite-rich Culebra rock. These experiments yielded sorption isotherms, plots of the quantity of radionuclide sorbed by the solid phase(s) versus the final dissolved radionuclide concentration, or plots of K_ds versus the final dissolved radionuclide concentration. The samples which Triay used contained a lower concentration of clay minerals than the Culebra as a whole and therefore, Triay's K_ds are conservative (Brush 1996).

P. V. Brady at SNL studied the sorption of Pu(V), Am(III), Np(III) (a nonradioactive analog of Am(III) and Pu(III)), U(VI), Th(IV), and Np(V) from synthetic NaCl solutions by samples of pure dolomite from Norway. Although this study did not yield K_ds for actual samples of Culebra rock or Culebra fluids, it did yield results useful for interpreting the results of Triay's study and for extending Triay's data to the pH conditions (about 9 to 10) expected from an MgO backfill in WIPP disposal rooms (Brush 1996).

D. A. Lucero at SNL studied actinide transport through intact core samples from the Culebra in the WIPP Air Intake Shaft (AIS). This study did not yield K_ds directly; U was moderately retarded by sorption and discrete values for the retardation factor were obtained which were then used, along with the porosity determined from the nonsorbing tracer test, to calculate K_ds (Brush 1996).

H. W. Stockman at SNL performed a modeling study of the oxidation states of Pu and U in the
Culebra. This study showed that Culebra fluids have limited capacity to either oxidize or
reduce actinide elements. Therefore, it is reasonable to use the oxidation-state distributions of
Pu and U predicted for WIPP disposal rooms to specify the oxidation states in the Culebra and

Parameter 52: Matrix Distribution Coefficient for U(VI) (Continued)

Discussion (Continued):

1 2 3

4

5 6

7

8

9

10

11

12 13] §

16 18

19 20

21

22

23 24 25 to assume that these oxidation states will be maintained along the entire off-site transport pathway (Brush 1996).

The range and probability distribution of matrix K_{ds} for deep (Castile and Salado) or Culebra brines that resulted in less retardation for each element or elemental oxidation state was used in the calculations. Since there are uncertainties about the extent to which deep (Castile and Salado) and Culebra brines will mix, there are uncertainties as to the probability distributions of these factors (especially brine type, the partial pressure of CO₂, and the resulting pH) in the Culebra. Therefore, the matrix K_{ds} were specified as a uniform distribution rather than a Student's-t distribution.

WIPP Data Entry Form #464 WPO#: 38346

References:

Brush, L. H. 1996. Memo to M. S. Tierney, RE: Ranges and Probability Distributions of K_ds for Dissolved Pu, Am, U, Th, and Np in the Culebra for the PA Calculations to Support the WIPP CCA, June 10, 1996. WPO 38801.

-
3
4
6
7
8
9
10
11
13
14
15
16
17
18
20
21
22
23
2 4
26
2 8
29
3Q
32
33

Title 40 CFR Part 191 Compliance Certification Application

Parameter 53: Matrix Distribution Coefficient for U(IV)

Parameter Description:

This parameter describes the matrix distribution coefficient (K_d) for uranium in the +IV oxidation state. K_d is the equilibrium ratio of the mass of U adsorbed on the solid phase(s) per unit mass of solid divided by the concentration of that element in the aqueous phase.

Material and Parameter Name(s):

U+4 MKD_U (#3479)

Computational Code(s): SECOTP2D, NUTS

mean	median	minimum	maximum	std. deviation
10.0	10.0	0.90	20.0	5.5

Units: cubic meters per kilogram

Distribution Type: Uniform

Parameter 53: Matrix Distribution Coefficient for U(IV) (Continued)

Data: Site-Specific Experimental Data

The data associated with this parameter are located in the following parameter records package: SWCF-A:WBS1.1.10.3.1:PDD:QA:Culebra Dissolved Actinide Distribution Coefficients (K_ds) (WPO 38231).

Discussion:

Brush (1996) describes the laboratory sorption studies used to determine matrix K_{ds} for dissolved U. The experimental data do not include K_{ds} for the clay-rich rock associated with fracture surfaces and dispersed in the matrix of the Culebra. Brush (1996) believes that this is a more conservative approach. Further, the fracture-surface K_d (actually, K_a) for U in the Culebra is set to zero, which is also conservative. The laboratory sorption studies are summarized below.

Triay at LANL studied the sorption of Pu(V), Am(III), U(VI), Th(IV), and Np(V) by dolomiterich Culebra rock. These experiments yielded sorption isotherms, plots of the quantity of radionuclide sorbed by the solid phase(s) versus the final dissolved radionuclide concentration, or plots of K_{ds} versus the final dissolved radionuclide concentration. The samples which Triay used contained a lower concentration of clay minerals than the Culebra as a whole and therefore, Triay's K_{ds} are conservative (Brush 1996).

P. V. Brady at SNL studied the sorption of Pu(V), Am(III), Np(III) (a nonradioactive analog of Am(III) and Pu(III)), U(VI), Th(IV), and Np(V) from synthetic NaCl solutions by samples of pure dolomite from Norway. Although this study did not yield K_ds for actual samples of Culebra rock/Culebra fluids, it did yield results useful for interpreting the results of Triay's study and for extending Triay's data to the pH conditions (about 9 to 10) expected from an MgO backfill in WIPP disposal rooms (Brush 1996).

D. A. Lucero at SNL studied actinide transport through intact core samples from the Culebra in the WIPP AIS. This study did not yield K_ds directly; U was moderately retarded by sorption and discrete values for the retardation factor were obtained which were then used, along with the porosity determined from the nonsorbing tracer test, to calculate K_ds (Brush 1996).

H. W. Stockman at SNL performed a modeling study of the oxidation states of Pu and U in the Culebra. This study showed that Culebra fluids have limited capacity to either oxidize or reduce actinide elements. Therefore, it is reasonable to use the oxidation-state distributions of Pu and U predicted for WIPP disposal rooms to specify the oxidation states in the Culebra and

Parameter 53: Matrix Distribution Coefficient for U(IV) (Continued)
Discussion (Continued):
to assume that these oxidation states will be maintained along the entire off-site transport pathway (Brush 1996).
The range and probability distribution of matrix K_ds for deep (Castile and Salado) or Culebra brines that resulted in less retardation for each element or elemental oxidation state was used in the calculations. Since there are uncertainties about the extent to which deep (Castile and Salado) and Culebra brines will mix, there are uncertainties as to the probability distributions of these factors (especially brine type, the partial pressure of CO ₂ , and the resulting pH) in th Culebra. Therefore, the matrix K_ds were specified as a uniform distribution rather than a Student's-t distribution.
WIPD Data Entry Form #464 WPO#: 28250
WIFF Data Entry Form #404 WFO#: 38550
References:
Brush, L. H. 1996. Memo to M. S. Tierney, RE: Ranges and Probability Distributions of K _d for Dissolved Pu, Am, U, Th, and Np in the Culebra for the PA Calculations to Support the WIPP CCA, June 10, 1996. WPO 38801.

Parameter 54: Matrix Distribution Coefficient for Pu(III)

Parameter Description:

This parameter describes the matrix distribution coefficient (K_d) for plutonium in the +III oxidation state. K_d is the equilibrium ratio of the mass of Pu adsorbed on the solid phase(s) per unit mass of solid divided by the concentration of that element in the aqueous phase.

Material and Parameter Name(s):

PU+3 MKD_PU (#3480)

Computational Code(s): SECOTP2D, NUTS

mean	median	minimum	maximum	std. deviation
0.26	0.26	0.02	0.50	0.14

Units: cubic meters per kilogram

Distribution Type: Uniform

Parameter 54: Matrix Distribution Coefficient for Pu(III) (Continued)

Data: Site-Specific Experimental Data

The data associated with this parameter are located in the following parameter records package: SWCF-A:WBS1.1.10.3.1:PDD:QA:Culebra Dissolved Actinide Distribution Coefficients (K_ds) (WPO 38231).

Discussion:

Brush (1996) describes the laboratory sorption studies used to determine matrix K_ds for dissolved Pu. The experimental data do not include K_ds for the clay-rich rock associated with fracture surfaces and dispersed in the matrix of the Culebra. Brush (1996) believes that this is a more conservative approach. Further, the fracture-surface K_d (actually, K_a) for Pu in the Culebra is set to zero, which is also conservative. The laboratory sorption studies are summarized below.

Triay at LANL studied the sorption of Pu(V), Am(III), U(VI), Th(IV), and Np(V) by dolomiterich Culebra rock. These experiments yielded sorption isotherms, plots of the quantity of radionuclide sorbed by the solid phase(s) versus the final dissolved radionuclide concentration, or plots of K_ds versus the final dissolved radionuclide concentration. The samples which Triay used contained a lower concentration of clay minerals than the Culebra as a whole and therefore, Triay's K_ds are conservative (Brush 1996).

P. V. Brady at SNL studied the sorption of Pu(V), Am(III), Np(III) (a nonradioactive analog of Am(III) and Pu(III)), U(VI), Th(IV), and Np(V) from synthetic NaCl solutions by samples of pure dolomite from Norway. Although this study did not yield K_ds for actual samples of Culebra rock/Culebra fluids, it did yield results useful for interpreting the results of Triay's study and for extending Triay's data to the pH conditions (about 9 to 10) expected from an MgO backfill in WIPP disposal rooms (Brush 1996).

D. A. Lucero at SNL studied actinide transport through intact core samples from the Culebra in the WIPP AIS. This study did not yield K_ds directly because the experiments never reached breakthrough; Lucero was only able to calculate minimum values of retardation (R) and K_d . These minimum values depend on factors such as the initial concentration of each radionuclide, the volume of brine pumped through the core, and the analytical detection limit for the radionuclide (Brush 1996).

H. W. Stockman at SNL performed a modeling study of the oxidation states of Pu and U in the
 Culebra. This study showed that Culebra fluids have limited capacity to either oxidize or
 reduce actinide elements. Therefore, it is reasonable to use the oxidation-state distributions of

Parameter 54: Matrix Distribution Coefficient for Pu(III) (Continued)

Discussion (Continued):

1 2

3

4 5

6

7

8

9

10

11

12

18

20 21

22

23

24 25 26 Pu and U predicted for WIPP disposal rooms to specify the oxidation states in the Culebra and to assume that these oxidation states will be maintained along the entire off-site transport pathway (Brush 1996).

The range and probability distribution of matrix K_{ds} for deep (Castile and Salado) or Culebra brines that resulted in less retardation for each element or elemental oxidation state was used in the calculations. Since there are uncertainties about the extent to which deep (Castile and Salado) and Culebra brines will mix, there are uncertainties as to the probability distributions of these factors (especially brine type, the partial pressure of CO₂, and the resulting pH) in the Culebra. Therefore, the matrix K_{ds} were specified as a uniform distribution rather than a Student's-t distribution.

WIPP Data Entry Form #464 WPO#: 38351

References:

Brush, L. H. 1996. Memo to M. S. Tierney, RE: Ranges and Probability Distributions of K_ds for Dissolved Pu, Am, U, Th, and Np in the Culebra for the PA Calculations to Support the WIPP CCA, June 10, 1996. WPO 38801.

	Parameter 55: Ma	trix Distribution C	oefficient for Pu(l	<u>V)</u>
Parameter Des	cription:		· · · · · · · · · · · · · · · · · · ·	
This parameter of oxidation state. per unit mass of	lescribes the matrix K_d is the equilibrium solid divided by the	distribution coefficient n ratio of the mass of concentration of the	ent (K_d) for plutonic f Pu adsorbed on th at element in the aq	um in the +IV le solid phase(s) ueous phase.
 Material and P	arameter Name(s):			
PU+4 MKD_F	PU (#3481)			
Computational	Code(s): SECOTP	2D, NUTS		
mean	median	minimum	maximum	std. deviation
10.0	10.0	0.90	20.0	5.5
CDE/PDE Crow	pe: Uniform			
CDF/PDF Gra	<u>)[]</u>	PU+4 MKD_PU	J	<u> </u>
	0.0 B.0 B.0 B.0 B.0 B.0 B.0 B.0 B.0 B.0	UNIF <u>Cum</u> Varial	ORM Distribution Itative Probability Inpled Data ble 55 in LHS	
	Q.	10. MKD_PU	20.	
	PLOTLHS HARM	x-2 00 20 7 AUG-86	20:08 43	
Parameter 55: Matrix Distribution Coefficient for Pu(IV) (Continued)

Data: Site-Specific Experimental Data

The data associated with this parameter are located in the following parameter records package: SWCF-A:WBS1.1.10.3.1:PDD:QA:Culebra Dissolved Actinide Distribution Coefficients (K_{dS}) (WPO 38231).

Discussion:

Brush (1996) describes the laboratory sorption studies used to determine matrix K_ds for dissolved Pu. The experimental data do not include K_ds for the clay-rich rock associated with fracture surfaces and dispersed in the matrix of the Culebra. Brush (1996) believes that this is a more conservative approach. Further, the fracture-surface K_d (actually, K_a) for Pu in the Culebra is set to zero, which is also conservative. The laboratory sorption studies are summarized below.

Triay at LANL studied the sorption of Pu(V), Am(III), U(VI), Th(IV), and Np(V) by dolomiterich Culebra rock. These experiments yielded sorption isotherms, plots of the quantity of radionuclide sorbed by the solid phase(s) versus the final dissolved radionuclide concentration, or plots of K_ds versus the final dissolved radionuclide concentration. The samples which Triay used contained a lower concentration of clay minerals than the Culebra as a whole and therefore, Triay's K_ds are conservative (Brush 1996).

P. V. Brady at SNL studied the sorption of Pu(V), Am(III), Np(III) (a nonradioactive analog of Am(III) and Pu(III)), U(VI), Th(IV), and Np(V) from synthetic NaCl solutions by samples of pure dolomite from Norway. Although this study did not yield K_{ds} for actual samples of Culebra rock/Culebra fluids, it did yield results useful for interpreting the results of Triay's study and for extending Triay's data to the pH conditions (about 9 to 10) expected from an MgO backfill in WIPP disposal rooms (Brush 1996).

D. A. Lucero at SNL studied actinide transport through intact core samples from the Culebra in the WIPP AIS. This study did not yield K_ds directly because the experiments never reached breakthrough; Lucero was only able to calculate minimum values of retardation (R) and K_d . These minimum values depend on factors such as the initial concentration of each radionuclide, the volume of brine pumped through the core, and the analytical detection limit for the radionuclide (Brush 1996).

H. W. Stockman at SNL performed a modeling study of the oxidation states of Pu and U in the Culebra. This study showed that Culebra fluids have limited capacity to either oxidize or reduce actinide elements. Therefore, it is reasonable to use the oxidation-state distributions of

Parameter 55: Matrix Distribution Coefficient for Pu(IV) (Continued)

Discussion (Continued):

Pu and U predicted for WIPP disposal rooms to specify the oxidation states in the Culebra and to assume that these oxidation states will be maintained along the entire off-site transport pathway (Brush 1996).

The range and probability distribution of matrix K_ds for deep (Castile and Salado) or Culebra brines that resulted in less retardation for each element or elemental oxidation state was used in the calculations. Since there are uncertainties about the extent to which deep (Castile and Salado) and Culebra brines will mix, there are uncertainties as to the probability distributions of these factors (especially brine type, the partial pressure of CO₂, and the resulting pH) in the Culebra. Therefore, the matrix K_ds were specified as a uniform distribution rather than a Student's-t distribution.

WIPP Data Entry Form #464 WPO#: 38352

References:

Brush, L. H. 1996. Memo to M. S. Tierney, RE: Ranges and Probability Distributions of K_ds for Dissolved Pu, Am, U, Th, and Np in the Culebra for the PA Calculations to Support the WIPP CCA, June 10, 1996. WPO 38801.

Pa	arameter 56: Matr	ix Distribution Co	efficient for Th(I	V)
Parameter Descri	ntion:	<u></u>		
This parameter des oxidation state. K _d per unit mass of so	cribes the matrix di is the equilibrium i lid divided by the c	stribution coefficies ratio of the mass of oncentration of that	nt (K_d) for thorium Th adsorbed on the element in the aqu	in the +IV e solid phase neous phase.
Material and Para	ameter Name(s):	9		
TH+4 MKD_TH	(#3478)			
· · · · · · · · · · · · · · · · · · ·			<u>, , , , , , , , , , , , , , , , , , , </u>	
Computational Co	ode(s): SECOTP2I	D, NUTS		
mean	median	minimum	maximum	std. devia
10.0	10.0	0.90	20.0	5.5
Distribution Type	e: Uniform	<u> </u>		
CDF/PDF Graph		······································		
	1.0 0.8	TH+4 MKD_TH		Ń

·

Parameter 56: Matrix Distribution Coefficient for Th(IV) (Continued)

Data: Site-Specific Experimental Data

The data associated with this parameter are located in the following parameter records package: SWCF-A:WBS1.1.10.3.1:PDD:QA:Culebra Dissolved Actinide Distribution Coefficients (K_{ds}) (WPO 38231).

Discussion:

1

2 3 4

5

6 7 8

10 11 12

13

14 15

16

17 18 19

20

21

22

23 24

25

26

27

28

Brush (1996) describes the laboratory sorption studies used to determine matrix K_ds for dissolved Th. The experimental data do not include K_ds for the clay-rich rock associated with fracture surfaces and dispersed in the matrix of the Culebra. Brush (1996) believes that this is a more conservative approach. Further, the fracture-surface K_d (actually, K_a) for Th in the Culebra is set to zero, which is also conservative. The laboratory sorption studies are summarized below.

Triay at LANL studied the sorption of Pu(V), Am(III), U(VI), Th(IV), and Np(V) by dolomiterich Culebra rock. These experiments yielded sorption isotherms, plots of the quantity of radionuclide sorbed by the solid phase(s) versus the final dissolved radionuclide concentration, or plots of K_ds versus the final dissolved radionuclide concentration. The samples which Triay used contained a lower concentration of clay minerals than the Culebra as a whole and therefore, Triay's K_ds are conservative (Brush 1996).

P. V. Brady at SNL studied the sorption of Pu(V), Am(III), Np(III) (a nonradioactive analog of Am(III) and Pu(III)), U(VI), Th(IV), and Np(V) from synthetic NaCl solutions by samples of pure dolomite from Norway. Although this study did not yield K_ds for actual samples of Culebra rock/Culebra fluids, it did yield results useful for interpreting the results of Triay's study and for extending Triay's data to the pH conditions (about 9 to 10) expected from an MgO backfill in WIPP disposal rooms (Brush 1996).

D. A. Lucero at SNL studied actinide transport through intact core samples from the Culebra in the WIPP AIS. This study did not yield K_ds directly because the experiments never reached breakthrough; Lucero was only able to calculate minimum values of retardation (R) and K_d . These minimum values depend on factors such as the initial concentration of each radionuclide, the volume of brine pumped through the core, and the analytical detection limit for the radionuclide (Brush 1996).

The range and probability distribution of matrix K_ds for deep (Castile and Salado) or Culebra brines that resulted in less retardation for each element or elemental oxidation state was used in the calculations. Since there are uncertainties about the extent to which deep (Castile and

Parameter 56: Matrix Distribution Coefficient for Th(IV) (Continued)

Discussion (Continued):

Salado) and Culebra brines will mix, there are uncertainties as to the probability distributions of these factors (especially brine type, the partial pressure of CO_2 , and the resulting pH) in the Culebra. Therefore, the matrix K_ds were specified as a uniform distribution rather than a Student's-t distribution.

7 8

1 2 3

4

5

6

10 12

13 14

15

16

WIPP Data Entry Form #464 WPO#: 38349

References:

Brush, L. H. 1996. Memo to M. S. Tierney, RE: Ranges and Probability Distributions of K_ds for Dissolved Pu, Am, U, Th, and Np in the Culebra for the PA Calculations to Support the WIPP CCA, June 10, 1996. WPO 38801

	rameter 57: Mat	rix Distribution Co	pefficient for Am()	(11)
Parameter Descri	ption:	<u> </u>		
This parameter des oxidation state. K _d per unit mass of so	cribes the matrix of is the equilibrium lid divided by the	listribution coefficie ratio of the mass of concentration of tha	ent (\mathbf{K}_d) for americi f Am adsorbed on t t element in the aqu	um in the +III he solid phase ueous phase.
Material and Para AM+3 MKD_AN	ameter Name(s): M (#3482)			
Computational Co	ode(s): SECOTP2	2D, NUTS		
mean	median	minimum	maximum	std. devia
0.26	0.26	0.02	0.50	0.14
Units: cubic meter Distribution Type	s per kilogram			
Units: cubic meter Distribution Type	s per kilogram			
Units: cubic meter Distribution Type CDF/PDF Graph	s per kilogram	AM+3 MKD_AM		
Units: cubic meter Distribution Type CDF/PDF Graph	s per kilogram	AM+3 MKD_AM		
Units: cubic meter Distribution Type CDF/PDF Graph	1.0 1.0 0.8 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	AM+3 MKD_AM		
Units: cubic meter Distribution Type CDF/PDF Graph	1.0 1.0 0.8 1.0 0.8 1.0 0.8 0.6 0.6 0.4 0.2 0.2	AM+3 MKD_AM	A DRM Distribution lative Probability pield Data	

Parameter 57: Matrix Distribution Coefficient for Am(III) (Continued)

Data: Site-Specific Experimental Data

The data associated with this parameter are located in the following parameter records package: SWCF-A:WBS1.1.10.3.1:PDD:QA:Culebra Dissolved Actinide Distribution Coefficients (K_ds) (WPO 38231).

Discussion:

Brush (1996) describes the laboratory sorption studies used to determine matrix K_ds for dissolved Am. The experimental data do not include K_ds for the clay-rich rock associated with fracture surfaces and dispersed in the matrix of the Culebra. Brush (1996) believes that this is a more conservative approach. Further, the fracture-surface K_d (actually, K_a) for Am in the Culebra is set to zero, which is also conservative. The laboratory sorption studies are summarized below.

Triay at LANL studied the sorption of Pu(V), Am(III), U(VI), Th(IV), and Np(V) by dolomiterich Culebra rock. These experiments yielded sorption isotherms, plots of the quantity of radionuclide sorbed by the solid phase(s) versus the final dissolved radionuclide concentration, or plots of K_ds versus the final dissolved radionuclide concentration. The samples which Triay used contained a lower concentration of clay minerals than the Culebra as a whole and therefore, Triay's K_ds are conservative (Brush 1996).

P. V. Brady at SNL studied the sorption of Pu(V), Am(III), Np(III) (a nonradioactive analog of Am(III) and Pu(III)), U(VI), Th(IV), and Np(V) from synthetic NaCl solutions by samples of pure dolomite from Norway. Although this study did not yield K_ds for actual samples of Culebra rock/Culebra fluids, it did yield results useful for interpreting the results of Triay's study and for extending Triay's data to the pH conditions (about 9 to 10) expected from an MgO backfill in WIPP disposal rooms (Brush 1996).

D. A. Lucero at SNL studied actinide transport through intact core samples from the Culebra in the WIPP AIS. This study did not yield K_ds directly because the experiments never reached breakthrough; Lucero was only able to calculate minimum values of retardation (R) and K_d . These minimum values depend on factors such as the initial concentration of each radionuclide, the volume of brine pumped through the core, and the analytical detection limit for the radionuclide (Brush 1996).

The range and probability distribution of matrix K_{ds} for deep (Castile and Salado) or Culebra brines that resulted in less retardation for each element or elemental oxidation state was used in the calculations. Since there are uncertainties about the extent to which deep (Castile and

Parameter 57: Matrix Distribution Coefficient for Am(III) (Continued)

Discussion (Continued):

WIPP Data Entry Form #464 WPO#: 38353

Salado) and Culebra brines will mix, there are uncertainties as to the probability distributions of these factors (especially brine type, the partial pressure of CO₂, and the resulting pH) in the Culebra. Therefore, the matrix K_ds were specified as a uniform distribution rather than a Student's-t distribution.

8 10 12

13

14

15

16

17

1 2 3

4

5

6 Ş 7

- ---

*

References:

Brush, L. H. 1996. Memo to M. S. Tierney, RE: Ranges and Probability Distributions of K_ds for Dissolved Pu, Am, U, Th, and Np in the Culebra for the PA Calculations to Support the WIPP CCA, June 10, 1996. WPO 38801.

Title 40 CFR Part 191 Compliance Certification Application

)

$\mathbf{\nabla}^2$,							······
DE/C	II.	LHS ‡	Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Mean	Median ¹	Low	High	Standard Deviation	WPO #
AO 199	1	1	2907	STEEL	Generic steel in waste	CORRMCO2	Inundated corrosion rate for steel without CO2 present	UNIFORM	m/s	7.9370E-15	7.9370E-15	0	1.5870E-14	0	34357
6-2184	2	2	2823	WAS_AREA	Waste emplacement area and waste	PROBDEG	Prob. of plastics&rubber biodegradation in event of significant microbial gas generation	DELTA	NONE	Π.ჵ.	n.a.	0	2	n.a.	34881
7	C	2)	2824	REPOSIT	Repository regions outside of Panel region	PROBDEG	Prob. of plastics&rubber biodegradation in event of microbial gas generation	DELTA	NONE	n.a.	n.a.	0	2	n.a.	33264
8	3	3	657	WAS_AREA	Waste emplacement area and waste	GRATMICI	Biodegradation rate, inundated conditions	UNIFORM	mol/kg*s	4.9150E-09	4.9150E-09	3.1710E-10	9.5129E-09	0	34928
9		3)	2128	REPOSIT	Repository regions outside of Panel region	GRATMICI	Gas production rate, microbial, inundated conditions	UNIFORM	mol/kg*s	4.9150E-09	4.9150E-09	3.1710E-10	9.5129E-09	0	33235
PAR.	4	1	656	WAS_AREA	Waste emplacement area and waste	GRATMICH	Biodegradation rate, humid conditions relative to inundated rate	UNIFORM	mol/kg*s	6.3420E-10	6.3420E-10	0	1.2684E-09	0	34923
17511	((4)	2127	REPOSIT	Repository regions outside of Panel region	GRATMICH	Gas production rate, microbial, humid conditions relative to inundated rate	UNIFORM	mol/kg*s	6.3420E-10	6.3420E-10	0	1.2684E-09	0	33234
12	: 5	5	2994	CELLULS	Cellulose	FBETA	Factor beta for microbial reaction rates	UNIFORM	NONE	5.0000E-01	5.0000E-01	0	1.0000E+00	0.29	31826
13	6	5	671	WAS_AREA	Waste emplacement area and waste	SAT_RGAS	Residual Gas Saturation	UNIFORM	NONE	7.5000E-02	7.5000E-02	0	1.5000E-01	0.04	34905
14	((6)	2137	REPOSIT	Repository regions outside of Panel region	SAT_RGAS	Residual Gas Saturation	UNIFORM	NONE	7.5000E-02	7.5000E-02	0	1.5000E-01	0.04	33286
15	7	7	670	WAS_AREA	Waste emplacement area and waste	SAT_RBRN	Residual Brine Saturation	UNIFORM	NONE	2.7600E-01	2.7600E-01	0	5.5200E-01	0.16	34902
16	ile	(7)	2741	REPOSIT	Repository regions outside of Panel region	SAT_RBRN	Residual Brine Saturation	UNIFORM	NONÉ	2.7600E-01	2.7600E-01	0	5.5200E-01	0.16	33283
0 ¹⁷	18	3	2231	WAS_AREA	Waste emplacement area and waste	SAT_WICK	Index for computing wicking	UNIFORM	NONE	5.0000E-01	5.0000E-01	0	1.0000E+00	0.29	34908
or 18		(8)	2138	REPOSIT	Repository regions outside of Panel region	SAT_WICK	Index for computing wicking	UNIFORM	NONE	5.0000E-01	5.0000E-01	0	1.0000E+00	0.29	33289
99 8	9)	2334	CL_L_T1	Lower Salado clay: 0 to 10 years	PRMX_LOG	Log of intrinsic permeability, X-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	31908
20) ((9)	2335	CL_L_TI	Lower Salado clay: 0 to 10 years	PRMY_LOG	Log of intrinsic permeability, Y-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	31909
21 22	2	For p	aramete	rs with a triang	ilar distribution, the value	provided for the	median is actually the mode.								

)

Table PAR-10. Parameters Sampled in LHS Code (and parameters to which sampled values were applied) (Continued)

8 2					r									
tober 3	LH: #	S [Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Mean	Median ¹	Low	High	Standard Deviation	WPO #
- 1996	(9)	2336	CL_L_TI	Lower Salado clay: 0 to 10 years	PRMZ_LOG	Log of intrinsic permeability, Z-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	31910
6	(9)	3009	CLAY_RUS	Clay seals in Rustler formation	PRMX_LOG	Log of intrinsic permeability, X-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	31886
7	(9)	3010	CLAY_RUS	Clay seals in Rustler formation	PRMY_LOG	Log of intrinsic permeability, Y-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	31887
8	(9)	3011	CLAY_RUS	Clay seals in Rustler formation	PRMZLOG	Log of intrinsic permeability, Z-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	31888
9	(9)	2351	CL_L_T2	Lower Salado clay: 10 to 25 years	PRMX_LOG	Log of intrinsic permeability, X-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	31935
10	(9)	2352	CL_L_T2	Lower Salado clay: 10 to 25 years	PRMY_LOG	Log of intrinsic permeability, Y-direction	TRIANGULAR	log(m^2)	~1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	31936
11	(9)	2353	CL_L_T2	Lower Salado clay: 10 to 25 years	PRMZ_LOG	Log of intrinsic permeability, Z-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	31937
P^{12}_{A}	(9)	2368	CL_L_T3	Lower Salado clay: 25 to 50 years	PRMX_LOG	Log of intrinsic permeability, X-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	31990
R 13	(9)	2369	CL_L_T3	Lower Salado clay: 25 to 50 years	PRMY_LOG	Log of intrinsic permeability, Y-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	31992
14	(9)	2370	CL_L_T3	Lower Salado clay: 25 to 50 years	PRMZ_LOG	Log of intrinsic permeability, Z-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	31993
15	(9)	3078	CL_L_T4	Lower Salado clay: 50 to 10K years	PRMX_LOG	Log of intrinsic permeability, X-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	32016
16	(9)	3079	CL_L_T4	Lower Salado clay: 50 to 10K years	PRMY_LOG	Log of intrinsic permeability, Y-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	32017
17	(9)	3080	CL_L_T4	Lower Salado clay: 50 to 10K years	PRMZ_LOG	Log of intrinsic permeability, Z-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	32018
18	(9)	2385	CL_M_T1	Upper Salado clay: 0 to 10 years	PRMX_LOG	Log of intrinsic permeability, X-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	32048
D019 E	(9)	2386	CL_M_T1	Upper Salado clay: 0 to 10 years	PRMY_LOG	Log of intrinsic permeability, Y-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	32049
Q 20	(9)	2387	CL_M_T1	Upper Salado clay: 0 to 10 years	PRMZ_LOG	Log of intrinsic permeability, Z-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	32050
1996	(9)	2402	CL_M_T2	Upper Salado clay: 10 to 25 years	PRMX_LOG	Log of intrinsic permeability, X-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	32123
22 82 82	(9)	2403	CL_M_T2	Upper Salado clay: 10 to 25 years	PRMY_LOG	Log of intrinsic permeability, Y-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	32124
23	(9)	2404	CL_M_T2	Upper Salado clay: 10 to 25 years	PRMZ_LOG	Log of intrinsic permeability, Z-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	32125
24	(9)	2419	CL_M_T3	Upper Salado clay: 25 to 50 years	PRMX_LOG	Log of intrinsic permeability, X-direction	TRIANGULAR	log(m^2)	-1.88676401	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	32155

25 ¹For parameters with a triangular distribution, the value provided for the median is actually the mode.

1.1

Title 40 CFR Part 191 Compliance Certification Application

~ _

LHS #	Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Mean	Median	Low	High	Standard Deviation	WPO #
(9)	2420	CL_M_T3	Upper Salado clay: 25 to 50 years	PRMY_LOG	Log of intrinsic permeability, Y-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	32156
(9)	2421	CL_M_T3	Upper Salado clay: 25 to 50 years	PRMZ_LOG	Log of intrinsic permeability, Z-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	3215
(9)	2436	CL_M_T4	Upper Salado clay: 50 to 100 years	PRMX_LOG	Log of intrinsic permeability, X-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	3220
(9)	2437	CL_M_T4	Upper Salado clay: 50 to 100 years	PRMY_LOG	Log of intrinsic permeability, Y-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	3220
(9)	2438	CL_M_T4	Upper Salado clay: 50 to 100 years	PRMZ_LOG	Log of intrinsic permeability, Z-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	3220
(9)	2453	CL_M_TS	Upper Salado clay: 100 to 10K years	PRMX_LOG	Log of intrinsic permeability, X-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	3223
(9)	2454	CL_M_TS	Upper Salado clay: 100 to 10K years	PRMY_LOG	Log of intrinsic permeability, Y-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	3224
(9)	2455	CL_M_T5	Upper Salado clay: 100 to 10K years	PRMZ_LOG	Log of intrinsic permeability, Z-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	3224
(9)	2317	CLAY_BOT	Shaft Bottom Clay	PRMX_LOG	Log of intrinsic permeability, X-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	3180
(9)	2318	CLAY_BOT	Shaft Bottom Clay	PRMY_LOG	Log of intrinsic permeability, Y-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	3180
(9) •	2319	CLAY_BOT	Shaft Bottom Clay Upper Salado clay: 0 to 10 years	PRMZ_LOG	Log of intrinsic permeability, Z-direction	TRIANGULAR	log(m^2)	-1.8867E+01	-1.8301E+01	-2.1000E+01	-1.7301E+01	0.78	3180
10	2470	CONC_T1	Concrete column: 0 to 400 years	PRMX_LOG	Log of intrinsic permeability, X-direction	TRIANGULAR	log(m^2)	-1.8816E+01	-1.8750E+01	-2.0699E+01	-1.7000E+01	0.76	3258
(10)	2471	CONC_T1	Concrete column: 0 to 400 years	PRMY_LOG	Log of intrinsic permeability, Y-direction	TRIANGULAR	log(m^2)	-1.8816E+01	-1.8750E+01	-2.0699E+01	-1.7000E+01	0.76	3258
(10)	2472	CONC_TI	Concrete column: 0 to 400 years	PRMZ_LOG	Log of intrinsic permeability, Z-direction	TRIANGULAR	log(m^2)	-1.8816E+01	-1.8750E+01	-2.0699E+01	-1.7000E+01	0.76	3258
11	2283	ASPHALT	Asphalt column	PRMX_LOG	Log of intrinsic permeability, X-direction	TRIANGULAR	log(m^2)	-1.9667E+01	-2.0000E+01	-2.1000E+01	-1.8000E+01	0.62	313
(11)	2284	ASPHALT	Asphalt column	PRMY_LOG	Log of intrinsic permeability, Y-direction	TRIANGULAR	log(m^2)	-1.9667E+01	-2.0000E+01	-2.1000E+01	-1.8000E+01	0.62	313
(11)	2285	ASPHALT	Asphalt column	PRMZ_LOG	Log of intrinsic permeability, Z-direction	TRIANGULAR	log(m^2)	-1.9667E+01	-2.0000E+01	-2.1000E+01	-1.8000E+01	0.62	3139
12	3133	SHFT_DRZ	Shaft disturbed Rock Zone	PRMX_LOG	Log of intrinsic permeability, X-direction	TRIANGULAR	log(m^2)	-1.5333E+01	-1.5000E+01	-1.7000E+01	-1.4000E+01	0.62	3650
13	2939	SALT_T1	Shaft salt column compacted: time 0 to 10 years	CUMPROB	Cumulative Probability	UNIFORM	NONE	5.0000E-01	5.0000E-01	0	1.0000E+00	0.29	3336

Table PAR-10. Parameters Sampled in LHS Code (and parameters to which sampled values were applied) (Continued)

25 For parameters with a triangular distribution, the value provided for the median is actually the mode.

1

)

ctobe	LHS #	Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Mean	Median	Low	High	Standard Deviation	WPO #
r 1996	14	2529	SALT_TI	Shaft salt column compacted: time 0 to 10 years	SAT_RGAS	Residual Gas Saturation	UNIFORM	NONE	2,0000E-01	2.0000E-01	0	4.0000E-01	0.12	33420
6	(14)	2546	SALT_T2	Shaft salt column compacted: time 10 to 25 years	SAT_RGAS	Residual Gas Saturation	UNIFORM	NONE	2.0000E-01	2.0000E-01	0	4.0000E-01	0.12	33393
7	(14)	2563	SALT_T3	Shaft salt column compacted: time 25 to 50 years	SAT_RGAS	Residual Gas Saturation	UNIFORM	NONE	2.0000E-01	2.0000E-01	0	4.0000E-01	0.12	33447
8	(14)	2580	SALT_T4	Shaft salt column compacted: time 50 to 100 years	SAT_RGAS	Residual Gas Saturation	UNIFORM	NONE	2.0000E-01	2.0000E-01	0	4.0000E-01	0.12	33565
9	(14)	2597	SALT_T5	Shaft salt column compacted: time 100 to 200 years	SAT_RGAS	Residual Gas Saturation	UNIFORM	NONE	2.0000E-01	2.0000E-01	0	4.0000E-01	0.12	33628
PAR-	(14)	2993	SALT_T6	Shaft salt column compacted: time 200 to 10K years	SAT_RGAS	Residual Gas Saturation	UNIFORM	NONE	2.0000E-01	2.0000E-01	0	4.0000E-01	0.12	33484
<u></u> [11]	(14)	2512	EARTH	Earthen Fill	SAT_RGAS	Residual Gas Saturation	UNIFORM	NONE	2.0000E-01	2.0000E-01	0	4.0000E-01	0.12	32964
12	(14)	3015	CLAY_RUS	Clay seals in Rustler formation	SAT_RGAS	Residual Gas Saturation	UNIFORM	NONE	2.0000E-01	2.0000E-01	0	4.0000E-01	0.12	31896
13	(14)	2343	CL_L_TI	Lower Salado clay: 0 to 10 years	SAT_RGAS	Residual Gas Saturation	UNIFORM	NONE	2.0000E-01	2.0000E-01	0	4.0000E-01	0.12	31922
14	(14)	2360	CL_L_T2	Lower Salado clay: 10 to 25 years	SAT_RGAS	Residual Gas Saturation	UNIFORM	NONE	2.0000E-01	2.0000E-01	0	4.0000E-01	0.12	31971
15	(14)	2377	CL_L_T3	Lower Salado clay: 25 to 50 years	SAT_RGAS	Residual Gas Saturation	UNIFORM	NONE	2.0000E-01	2.0000E-01	0	4.0000E-01	0.12	32005
16	(14)	3083	CL_L_T4	Lower Salado clay: 50 to 10K years	SAT_RGAS	Residual Gas Saturation	UNIFORM	NONE	2.0000E-01	2.0000E-01	0	4.0000E-01	0.12	32027
OE 17	(14)	2394	CL_M_TI	Upper Salado clay: 0 to 10 years	SAT_RGAS	Residual Gas Saturation	UNIFORM	NONE	2.0000E-01	2.0000E-01	0	4.0000E-01	0.12	32062
CA 18	(14)	2411	CL_M_T2	Upper Salado clay: 10 to 25 years	SAT_RGAS	Residual Gas Saturation	UNIFORM	NONE	2.0000E-01	2.0000E-01	0	4.0000E-01	0.12	32137
1996 1996	(14)	2428	CL_M_T3	Upper Salado clay: 25 to 50 years	SAT_RGAS	Residual Gas Saturation	UNIFORM	NONE	2.0000E-01	2.0000E-01	0	4.0000E-01	0.12	32169
2120 184	(14)	2445	CL_M_T4	Upper Salado clay: 50 to 100 years	SAT_RGAS	Residual Gas Saturation	UNIFORM	NONE	2.0000E-01	2.0000E-01	0	4.0000E-01	0.12	32226
21	(14)	2462	CL_M_T5	Upper Salado clay: 100 to 10K years	SAT_RGAS	Residual Gas Saturation	UNIFORM	NONE	2.0000E-01	2.0000E-01	0	4.0000E-01	0.12	32255
22	(14)	2326	CLAY BOT	Shaft Bottom Clay	SAT_RGAS	Residual Gas Saturation	UNIFORM	NONE	2.0000E-01	2.0000E-01	<u> </u>	4.0000E-01	0,12	31875
23	'For p	arametei	s with a triangu	lar distribution, the value p	provided for the	median is actually the mode.					Pare 25	- 5- X		

Table PAR-10. Parameters Sampled in LHS Code (and parameters to which sampled values were applied) (Continued)

 2

1

č

	LHS #	Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Mean	Median	Low	High	Standard Deviation	WPO
5	(14)	2479	CONC_T1	Concrete column: 0 to 400 years	SAT_RGAS	Residual Gas Saturation	UNIFORM	NONE	2.0000E-01	2.0000E-01	0	4.0000E-01	0.12	32625
8 6	(14)	2495	CONC_T2	Concrete column: 400 to 10K years	SAT_RGAS	Residual Gas Saturation	UNIFORM	NONE	2.0000E-01	2.0000E-01	0	4.0000E-01	0.12	32678
7	(14)	3064	CONC_MON	Degraded concrete monolith at shaft base	SAT_RGAS	Residual Gas Saturation	UNIFORM	NONE	2.0000E-01	2.0000E-01	0	4.0000E-01	0.12	32540
8	(14)	2292	ASPHALT	Asphalt column	SAT_RGAS	Residual Gas Saturation	UNIFORM	NONE	2.0000E-01	2.0000E-01	0	4.0000E-01	0.12	31407
9	15	2528	SALT_T1	Shaft salt column compacted: time 0 to 10 years	SAT_RBRN	Residual Brine Saturation	CUMULATIVE	NONE	2.5000E-01	2.0000E-01	0	6.0000E-01	0.18	33418
10	(15)	2545	SALT_T2	Shaft salt column compacted: time 10 to 25 years	SAT_RBRN	Residual Brine Saturation	CUMULATIVE	NONE	2.5000E-01	2.0000E-01	0	6.0000E-01	0.18	33391
11	(15)	2562	SALT_T3	Shaft salt column compacted: time 25 to 50 years	SAT_RBRN	Residual Brine Saturation	CUMULATIVE	NONE	2.5000E-01	2.0000E-01	0	6.0000E-01	0.18	33446
12	(15)	2579	SALT_T4	Shaft salt column compacted; time 50 to 100 years	SAT_RBRN	Residual Brine Saturation	CUMULATIVE	NONE	2.5000E-01	2.0000E-01	0	6.0000E-01	0.18	33564
13	(15)	2596	SALT_T5	Shaft salt column compacted: time 100 to 200 years	SAT_RBRN	Residual Brine Saturation	CUMULATIVE	NONE	2.5000E-01	2.0000E-01	0	6.0000E-01	0.18	33626
14	(15)	2992	SALT_T6	Shaft salt column compacted: time 200 to 10K years	SAT_RBRN	Residual Brine Saturation	CUMULATIVE	NONE	2.5000E-01	2.0000E-01	0	6.0000E-01	0.18	33483
15	(15)	2511	EARTH	Earthen Fill	SAT_RBRN	Residual Brine Saturation	CUMULATIVE	NONE	2.5000E-01	2.0000E-01	0	6.0000E-01	0.18	32963
19	(15)	3014	CLAY_RUS	Clay seals in Rustler formation	SAT_RBRN	Residual Brine Saturation	CUMULATIVE	NONE	2.5000E-01	2.0000E-01	0	6.0000E-01	0.18	31895
17	(15)	2342	CL_L_TI	Lower Salado clay: 0 to 10 years	SAT_RBRN	Residual Brine Saturation	CUMULATIVE	NONE	2.5000E-01	2.0000E-01	0	6.0000E-01	0.18	31921
18	(15)	2359	CL_L_T2	Lower Salado clay: 10 to 25 years	SAT_RBRN	Residual Brine Saturation	CUMULATIVE	NONE	2.5000E-01	2.0000E-01	0	6.0000E-01	0.18	31969
219	(15)	2376	CL_L_T3	Lower Salado clay: 25 to 50 years	SAT_RBRN	Residual Brine Saturation	CUMULATIVE	NONE	2.5000E-01	2.0000E-01	0	6.0000E-01	0.18	32004
20	(15)	3082	CL_L_T4	Lower Salado clay: 50 to 10K years	SAT_RBRN	Residual Brine Saturation	CUMULATIVE	NONE	2.5000E-01	2.0000E-01	0	6.0000E-01	0.18	32025
21	(15)	2393	CL_M_TI	Upper Salado clay: 0 to	SAT_RBRN	Residual Brine Saturation	CUMULATIVE	NONE	2.5000E-01	2.0000E-01	0	6.0000E-01	0.18	32061

Table PAR-10 Parameters Sampled in LHS Code (and narameters to which sampled values were applied) (Continued)

'For parameters with a triangular distribution, the value provided for the median is actually the mode.
23
24
25
26
27

Title 40 CFR Part 191 Compliance Certification Application

3	LHS #	Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Mean	Median	Low	High	Standard Deviation	WPO #
5	(15)	2410	CL_M_T2	Upper Salado clay: 10 to 25 years	SAT_RBRN	Residual Brine Saturation	CUMULATIVE	NONE	2.5000E-01	2.0000E-01	0	6.0000E-01	0.18	32136
⁵ 6	(15)	2427	CL_M_T3	Upper Salado clay: 25 to 50 years	SAT_RBRN	Residual Brine Saturation	CUMULATIVE	NONE	2.5000E-01	2.0000E-01	0	6.0000E-01	0.18	32168
7	(15)	2444	CL_M_T4	Upper Salado clay: 50 to 100 years	SAT_RBRN	Residual Brine Saturation	CUMULATIVE	NONE	2.5000E-01	2.0000E-01	0	6.0000E-01	0.18	32225
8	(15)	2461	CL_M_T5	Upper Salado clay: 100 to 10K years	SAT_RBRN	Residual Brine Saturation	CUMULATIVE	NONE	2.5000E-01	2.0000E-01	0	6.0000E-01	0.18	32254
9	(15)	2325	CLAY_BOT	Shaft Bottom Clay	SAT_RBRN	Residual Brine Saturation	CUMULATIVE	NONE	2.5000E-01	2.0000E-01	0	6.0000E-01	0.18	31874A
10	(15)	2478	CONC_T1	Concrete column: 0 to 400 years	SAT_RBRN	Residual Brine Saturation	CUMULATIVE	NONE	2.5000E-01	2.0000E-01	0	6.0000E-01	0.18	32623
- 11	(15)	2494	CONC_T2	Concrete column: 400 to 10K years	SAT_RBRN	Residual Brine Saturation	CUMULATIVE	NONE	2.5000E-01	2.0000E-01	0	6.0000E-01	0.18	32676
12	(15)	3063	CONC_MON	Degraded concrete monolith at shaft base	SAT_RBRN	Residual Brine Saturation	CUMULATIVE	NONE	2.5000E-01	2.0000E-01	0	6.0000E-01	0.18	32542
213	(15)	2291	ASPHALT	Asphalt column	SAT_RBRN	Residual Brine Saturation	CUMULATIVE	NONE	2.5000E-01	2.0000E-01	0	6.0000E-01	0.18	31405
5 14	16	2516	SALT_T1	Shaft salt column compacted: time 0 to 10 years	PORE_DIS	Brooks-Corey pore distribution parameter	CUMULATIVE	NONE	2.5200E+00	9.4000E-01	1.1000E-01	8.1000E+00	2.48	33380
15	(16)	2550	SALT_T3	Shaft salt column compacted: time 25 to 50 years	POR_DIS	Brooks-Corey pore distribution parameter	CUMULATIVE	NONE	2.5200E+00	9.4000E-01	1.1000E-01	8.1000E+00	2.48	33415
16	(16)	2567	SALT_T4	Shaft salt column compacted: time 50 to 100 years	POR_DIS	Brooks-Corey pore distribution parameter	CUMULATIVE	NONE	2.5200E+00	9.4000E-01	1.1000E-01	8.1000E+00	2.48	33465
17	(16)	2533	SALT_T2	Shaft salt column compacted: time 10 to 25 years	POR_DIS	Brooks-Corey pore distribution parameter	CUMULATIVE	NONE	2.5200E+00	9.4000E-01	1.1000E-01	8.1000E+00	2.48	33355
2 ¹⁸	(16)	2809	SALT_T5	Shaft salt column compacted: time 100 to 200 years	POR_DIS	Brooks-Corey pore distribution parameter	CUMULATIVE	NONE	2.5200E+00	9.4000E-01	1.1000E-01	8.1000E+00	2.48	33588
) 19	(16)	2989	SALT_T6	Shaft salt column compacted: time 200 to 10K years	POR_DIS	Brooks-Corey pore distribution parameter	CUMULATIVE	NONE	2.5200E+00	9.4000E-01	1.1000E-01	8.1000E+00	2.48	33655
g 20	(16)	2499	EARTH	Earthen Fill	POR_DIS	Brooks-Corey pore distribution parameter	CUMULATIVE	NONE	2.5200E+00	9.4000E-01	1.1000E-01	8.1000E+00	2.48	32923
<u>e</u> 21	(16)	3006	CLAY_RUS	Clay seals in Rustler formation	POR_DIS	Brooks-Corey pore distribution parameter	CUMULATIVE	NONE	2.5200E+00	9.4000E-01	1.1000E-01	8.1000E+00	2.48	31883
22	(16)	2330	CL_L_TI	Lower Salado clay: 0 to 10 years	POR_DIS	Brooks-Corey pore distribution parameter	CUMULATIVE	NONE	2.5200E+00	9-4000E-01	1.1000E-01	8.1000E+00	2.48	31904

Table PAR-10. Parameters Sampled in LHS Code (and parameters to which sampled values were applied) (Continued)

23 'For parameters with a triangular distribution, the value provided for the median is actually the mode.
24

25

To - TWO OF OF

Title 40 CFR Part 191 Compliance Certification Application

ŎĔ/O	LHS #	Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Mean	Median	Low	High	Standard Deviation	WPO #
AO 5	(16)	2347	CL_L_T2	Lower Salado clay: 10 to 25 years	POR_DIS	Brooks-Corey pore distribution parameter	CUMULATIVE	NONE	2.5200E+00	9.4000E-01	1.1000E-01	8.1000E+00	2.48	31931
1996-1 1	(16)	2364	CL_L_T3	Lower Salado clay: 25 to 50 years	POR_DIS	Brooks-Corey pore distribution parameter	CUMULATIVE	NONE	2.5200E+00	9.4000E-01	1.1000E-01	8.1000E+00	2.48	31982
2184 7	(16)	3076	CL_L_T4	Lower Salado clay: 50 to 100 years	POR_DIS	Brooks-Corey pore distribution parameter	CUMULATIVE	NONE	2.5200E+00	9.4000E-01	1.1000E-01	8.1000E+00	2.48	32013
8	(16)	2381	CL_M_TI	Upper Salado clay: 0 to 10 years	POR_DIS	Brooks-Corey pore distribution parameter	CUMULATIVE	NONE	2.5200E+00	9.4000E-01	1.1000E-01	8.1000E+00	2.48	32044
9	(16)	2398	CL_M_T2	Upper Salado clay: 10 to 25 years	POR_DIS	Brooks-Corey pore distribution parameter	CUMULATIVE	NONE	2.5200E+00	9.4000E-01	1.1000E-01	8.1000E+00	2.48	32119
10	(16)	2415	CL_M_T3	Upper Salado clay: 25 to 50 years	POR_DIS	Brooks-Corey pore distribution parameter	CUMULATIVE	NONE	2.5200E+00	9.4000E-01	1.1000E-01	8.1000E+00	2.48	32146
11	(16)	2432	CL_M_T4	Upper Salado clay: 50 to 100 years	POR_DIS	Brooks-Corey pore distribution parameter	CUMULATIVE	NONE	2.5200E+00	9.4000E-01	1.1000E-01	8.1000E+00	2.48	32198
12 P	(16)	2449	CL_M_T5	Upper Salado clay: 100 to 10K years	POR_DIS	Brooks-Corey pore distribution parameter	CUMULATIVE	NONE	2.5200E+00	9.4000E-01	1.1000E-01	8.1000E+00	2.48	32235
AR-13	(16)	2313	CLAY_BOT	Shaft Bottom Clay	POR_DIS	Brooks-Corey pore distribution parameter	CUMULATIVE	NONE	2.5200E+00	9.4000E-01	1.1000E-01	8.1000E+00	2.48	31862
°° 14	(16)	2466	CONC_T1	Concrete column: 0 to 400 years	POR_DIS	Brooks-Corey pore distribution parameter	CUMULATIVE	NONE	2.5200E+00	9.4000E-01	1.1000E-01	8.1000E+00	2.48	32570
15	(16)	2466	CONC_TI	Concrete column: 0 to 400 years	POR_DIS	Brooks-Corey pore distribution parameter	CUMULATIVE	NONE	2.5200E+00	9.4000E-01	1.1000E-01	8.1000E+00	2.48	32570
16	(16)	2483	CONC_T2	Concrete column: 400 to 10K years	POR_DIS	Brooks-Corey pore distribution parameter	CUMULATIVE	NONE	2.5200E+00	9.4000E-01	1.1000E-01	8.1000E+00	2.48	32658
17	(16)	3057	CONC_MON	Degraded concrete monolith at shaft base	POR_DIS	Brooks-Corey pore distribution parameter	CUMULATIVE	NONE	2.5200E+00	9.4000E-01	1.1000E-01	8.1000E+00	2.48	32514
18	(16)	2279	ASPHALT	Asphalt column	POR_DIS	Brooks-Corey pore distribution parameter	CUMULATIVE	NONE	2.5200E+00	9.4000E-01	1.1000E-01	8.1000E+00	2.48	31386
19	17	544	S_HALITE	Salado halite, intact	POROSITY	Effective porosity	CUMULATIVE	NONE	1.2800E-02	1.0000E-02	1.0000E-03	3.0000E-02	0.01	34387
20	18	547	S_HALITE	Salado halite, intact	PRMX_LOG	Log of intrinsic permeability, X-direction	UNIFORM	log(m^2)	-2.2500E+01	-2.2500E+01	-2.4000E+01	-2.1000E+01	0.87	34397.
o ²¹	(18)	548	S_HALITE	Salado halite, intact	PRMY_LOG	Log of intrinsic permeability, Y-direction	UNIFORM	log(m^2)	-2.2500E+01	-2.2500E+01	-2.4000E+01	-2.1000E+01	0.87	34399
ହୁ 22	(18)	549	S_HALITE	Salado halite, intact	PRMZ_LOG	Log of intrinsic permeability, Z-direction	UNIFORM	log(m^2)	-2.2500E+01	-2.2500E+01	-2.4000E+01	-2.1000E+01	0.87	34401.
§23	19	541	S_HALITE	Salado halite, intact	COMP_RCK	Bulk Compressibility	UNIFORM	Pa^-1	9.7500E-11	9.7500E-11	2.9400E-12	1.9200E-10	0	34210
ే 24	20	591	S_MB139	Salado MB139, intact and fractured	PRMX_LOG	Log of intrinsic permeability, X-direction	STUDENT'S-T	log(m^2)	-1.8890E+01	-1.8890E+01	-2.1000E+01	-1.7100E+01	1.20	34865

Table PAR-10. Parameters Sampled in LHS Code (and parameters to which sampled values were applied) (Continued)

25 For parameters with a triangular distribution, the value provided for the median is actually the mode. 26

Title 40 CFR Part 191 Compliance Certification Application

- 3 - 4	LHS #	Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Mean	Median	Low	High	Standard Deviation	WPO #
5	(20)	592	S_MB139	Salado MB139, intact and fractured	PRMY_LOG	Log of intrinsic permeability, Y-direction	STUDENT'S-T	log(m^2)	-1.8890E+01	-1.8890E+01	-2.1000E+01	-1.7100E+01	1.20	34866
6	(20)	593	S_MB139	Salado MB139, intact and fractured	PRMZ_LOG	Log of intrinsic permeability, Z-direction	STUDENT'S-T	log(m^2)	-1.8890E+01	-1.8890E+01	-2.1000E+01	-1.7100E+01	1.20	34868
7	(20)	531	S_ANH_AB	Salado anhydrite beds a & b, intact and fractured	PRMX_LOG	Log of intrinsic permeability, X-direction	STUDENT'S-T	log(m^2)	-1.8890E+01	-1.8890E+01	-2.1000E+01	-1.7100E+01	1.20	34196
8	(20)	532	S_ANH_AB	Salado anhydrite beds a & b, intact and fractured	PRMY_LOG	Log of intrinsic permeability, Y-direction	STUDENT'S-T	log(m^2)	-1.8890E+01	-1.8890E+01	-2.1000E+01	-1.7100E+01	1.20	34197
9	(20)	533	S_ANH_AB	Salado anhydrite beds a & b, intact and fractured	PRMZ_LOG	Log of intrinsic permeability, Z-direction	STUDENT'S-T	log(m^2)	-1.8890E+01	-1.8890E+01	-2.1000E+01	-1.7100E+01	1.20	34198
10	(20)	570	S_MB138	Salado MB138, intact and fractured	PRMX_LOG	Log of intrinsic permeability, X-direction	STUDENT'S-T	log(m^2)	-1.8890E+01	-1.8890E+01	-2.1000E+01	-1.7100E+01	1.20	34536
11	(20)	571	S_MB138	Salado MB138, intact and fractured	PRMY_LOG	Log of intrinsic permeability, Y-direction	STUDENT'S-T	log(m^2)	-1.8890E+01	-1.8890E+01	-2.1000E+01	-1.7100E+01	1.20	34537
12	(20)	572	S_MB138	Salado MB138, intact and fractured	PRMZ_LOG	Log of intrinsic permeability, Z-direction	STUDENT'S-T	log(m^2)	-1.8890E+01	-1.8890E+01	-2.1000E+01	-1.7100E+01	1.20	34538
13	21	580	S_MB139	Salado MB139, intact and fractured	COMP_RCK	Bulk Compressibility	STUDENT'S-T	Pa^-1	8.2630E-11	8.2630E-11	1.0900E-11	2.7500E-10	0	34574
14	(21)	521	S_ANH_AB	Salado anhydrite beds a & b, intact and fractured	COMP_RCK	Bulk Compressibility	STUDENT'S-T	Pa^-1	8.2630E-11	8.2630E-11	1.0900E-11	2.7500E-10	0	34135
15	(21)	560	S_MB138	Salado MB138, intact and fractured	COMP_RCK	Bulk Compressibility	STUDENT' S-T	Pa^-1	8.2630E-11	8.2630E-11	1.0900E-11	2.7500E-10	0	34439
16	22	596	S_MB139	Salado MB139, intact and fractured	RELP_MOD	Model number, relative permeability model	DELTA	NONE	n.a.	n.a.	1	4	п.а.	34500
17	(22)	536	S_ANH_AB	Salado anhydrite beds a & b, intact and fractured	RELP_MOD	Model number, relative permeability model	DELTA	NONE	n.a.	n.a.	1	4	n.a.	34201
18	(22)	575	S_MB138	Salado MB138, intact and fractured	RELP_MOD	Model number, relative permeability model	DELTA	NONE	n.a.	n.a.	1	4	n.a.	34542
19	23	598	S_MB139	Salado MB139, intact and fractured	SAT_RBRN	Residual Brine Saturation	STUDENT'S-T	NONE	8.3630E-02	8.3630E-02	7.8460E-03	1.7400E-01	0.05	34506
20	(23)	538	S_ANH_AB	Salado anhydrite beds a & b, intact and fractured	SAT_RBRN	Residual Brine Saturation	STUDENT'S-T	NONE	8.3630E-02	8.3630E-02	7.8460E-03	1.7400E-01	0.05	34203

Table PAR-10. Parameters Sampled in LHS Code (and parameters to which sampled values were applied) (Continued)

¹For parameters with a triangular distribution, the value provided for the median is actually the mode.

. .

- O 1996-2184

Title 40 CFR Part 191 Compliance Certification Application

<u>ы</u> 2		-			· •	_	· · · · ·	. <u></u> .	1					
0E/0	LHS #	Id #	Materiai	Material Description	Parameter	Parameter Description	Distribution Type	Uaits	Mean	Median	Low	High	Standard Deviation	WPO
CAO 5	(23)	577	S_MB138	Salado MB138, intact and fractured	SAT_RBRN	Residual Brine Saturation	STUDENT'S-T	NONE	8.3630E-02	8.3630E-02	7.8460E-03	1.7400E-01	0.05	34545
1996-	24	599	S_MB139	Salado MB139, intact and fractured	SAT_RGAS	Residual Gas Saturation	STUDENT'S-T	NONE	7.7110E-02	7.7110E-02	1.3980E-02	1.9719E-01	0.06	34508
2184	(24)	539	S_ANH_AB	Salado anhydrite beds a & b, intact and fractured	SAT_RGAS	Residual Gas Saturation	STUDENT'S-T	NONE	7.7110E-02	7.7110E-02	1.3980E-02	1.9719E-01	0.06	34204
8	(24)	578	S_MB138	Salado MB138, intact and fractured	SAT_RGAS	Residual Gas Saturation	STUDENT'S-T	NONE	7.7110E-02	7.7110E-02	1.3980E-02	1.9719E-01	0.06	34546
9	25	587	S_MB139	Salado MB139, intact and fractured	PORE_DIS	Brooks-Corey pore distribution parameter	STUDENT'S-T	NONE	6.4360E-01	6.4360E-01	4.9053E-01	8.4178E-01	0.11	34859
10	(25)	527	S_ANH_AB	Salado anhydrite beds a & b, intact and fractured	POR_DIS	Brooks-Corey pore distribution parameter	STUDENT'S-T	NONE	6.4360E-01	6.4360E-01	4.9053E-01	8.4178E-01	0.11	34192
11	(25)	566	S_MB138	Salado MB138, intact and fractured	POR_DIS	Brooks-Corey pore distribution parameter	STUDENT'S-T	NONE	6.4360E-01	6.4360E-01	4.9053E-01	8.4178E-01	0.11	34527
_12 ⊸	26	546	S_HALITE	Salado halite, intact	PRESSURE	Brine far-field pore pressure	UNIFORM	Pa	1.2470E+07	1.2470E+07	1.1040E+07	1.3890E+07	823000.00	34394
AR-13	27	66	CASTILER	Castile Brine Reservoir	PRESSURE	Brine far-field pore	TRIANGULAR	Pa	1.3600E+07	1.2700E+07	1.1100E+07	1.7000E+07	1245700.00	31612A
⁹⁹ 14	28	67	CASTILER	Castile Brine Reservoir	PRMX_LOG	Log of intrinsic permeability, X-direction	TRIANGULAR	log(m^2)	-1.2100E+01	-1.1800E+01	-1.4700E+01	-9.8000E+00	1.01	31613
15	(28)	68	CASTILER	Castile Brine Reservoir	PRMY_LOG	Log of intrinsic permeability, Y-direction	TRIANGULAR	log(m^2)	-1.2100E+01	-1.1800E+01	-1.4700E+01	-9.8000E+00	1.01	31614
16	(28)	69	CASTILER	Castile Brine Reservoir	PRMZ_LOG	Log of intrinsic permeability, Z-direction	TRIANGULAR	log(m^2)	-1.2100E+01	-1.1800E+01	-1.4700E+01	-9.8000E+00	1.01	31615
17	29	61	CASTILER	Castile Brine Reservoir	COMP_RCK	Bulk Compressibility	TRIANGULAR	log(Pa^-1)	-9.8000E+00	-1.0000E+01	-1.1300E+01	-8.0000E+00	0.68	31561
18	30	3184	BH_SAND	Borehole filled with silty sand	PRMX_LOG	Log of intrinsie permeability, X-direction	UNIFORM	log(m^2)	-1.2500E+01	-1.2500E+01	-1.4000E+01	-1.1000E+01	0.87	36641
19	(30)	3190	BH_SAND	Borehole filled with silty sand	PRMY_LOG	Log of intrinsic permeability, Y-direction	UNIFORM	log(m^2)	-1.2500E+01	•1.2500E+01	-1,4000E+01	-1.1000E+01	0.87	36654
20	(30)	3191	BH_SAND	Borehole filled with silty sand	PRMZ_LOG	Log of intrinsic permeability, Z-direction	UNIFORM	log(m^2)	-1.2500E+01	-1.2500E+01	-1.4000E+01	-1.1000E+01	0.87	36655
Octob	31	3194	CASTILER	Castile Brine Reservoir	GRIDFLO	Index for selecting a Brine Pocket	DELTA	NONE	n.a.	n.a,	1	32	п.а.	36658A
er 1996	32	3246	BLOWOUT	BRAGFLO Direct Brine Releases	PARTDIA	Logarithm of waste particle diameter in CUTTINGS model	LOGUNIFORM	m	2.3500E-02	2.8000E-03	4.0000E-05	2.0000E-01	0.04	37088

Table PAR-10. Parameters Sampled in LHS Code (and parameters to which sampled values were applied) (Continued)

1

For parameters with a triangular distribution, the value provided for the median is actually the mode.

23 24 25

Title 40 CFR Part 191 Compliance Certification Application

. . . .

3 4	LHS #	Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Mean	Median	Low	Hìgh	Standard Deviation	WPO #
5	33	2254	BOREHOLE	Borehole and Fill	TAUFAIL	Effective shear strength for erosion (rfail)	UNIFORM	Pa	5.0300E+00	5.0300E+00	5.0000E-02	1.0000E+01	2.90	31536
6	34	3419	CULEBRA	Culebra member of the Rustler formation	MINP_FAC	Mining Transmissivity Multiplier	UNIFORM	NONE	5.0050E+02	5.0050E+02	1.0000E+00	1.0000E+03	288.40	37666
7	35	225	GLOBAL	Information that applies globally	TRANSIDX	Index for selecting realizations of the Transmissivity Field	UNIFORM	NONE	5.0000E-01	5.0000E-01	0.0000E+00	1.0000E+00	0.29	33055
8	36	3262	SOLAM3	Solubility of Americium in oxidation state III	SOLSIM	Solubility in Salado brine, inorganic chemistry controlled by the Mg(OH)2-MgCO3	CUMULATIVE	NONE	1.8000E-01	-9.0000E-02	-2.0000E+00	1.4000E+00	0.37	37105
9	37	3263	SOLAM3	Solubility of Americium in oxidation state III	SOLCIM	Solubility in Castile brine inorganic with chemistry controlled by Mg(OH)2-MgCO3	CUMULATIVE	NONE	1.8000E-01	-9.0000E-02	-2.0000E+00	1.4000E+00	0.37	37106
0	38	3265	SOLPU3	Solubility of Plutonium in oxidation state III	SOLSIM	Solubility in Salado brine, inorganic chemistry controlled by the Mg(OH)2-MgCO3	CUMULATIVE	NONE	1.8000E-01	-9,0000E-02	-2.0000E+00	1.4000E+00	0.37	3710
1	39	3264	SOLPU3	Solubility of Plutonium in oxidation state III	SOLCIM	Solubility in Castile brine inorganic with chemistry controlled by Mg(OH)2-MgCO3	CUMULATIVE	NONE	1.8000E-01	-9.0000E-02	-2.0000E+00	1.4000E+00	0.37	3710
2	40	3266	SOLPU4	Solubility of Plutonium in oxidation state IV	SOLSIM	Solubility in Salado brine, inorganic chemistry controlled by the Mg(OH)2-MgCO3	CUMULATIVE	NONE	1.8000E-01	-9.0000E-02	-2.0000E+00	1.4000E+00	0.37	3711
3	41	3389	SOLPU4	Solubility of Plutonium in oxidation state IV	SOLCIM	Solubility in Castile brine inorganic with chemistry controlled by Mg(OH)2-MgCO3	CUMULATIVE	NONE	1.8000E-01	-9.0000E-02	-2.0000E+00	1.4000E+00	0.37	37111
4	42	3390	SOLU4	Solubility of Uranium in oxidation state IV	SOLSIM	Solubility in Salado brine, inorganic chemistry controlled by the Mg(OH)2-MgCO3	CUMULATIVE	NONE	1.8000E-01	-9.0000E-02	-2.0000E+00	1.4000E+00	0.37	3711:
5	43	3391	SOLU6	Solubility of Uranium in oxidation state VI	SOLSIM	Solubility in Salado brine, inorganic chemistry controlled by the Ma(OH)2-MgCO3	CUMULATIVE	NONE	1.8000E-01	-9.0000E-02	-2.0000E+00	1.4000E+00	0.37	37113

Table PAR-10. Parameters Sampled in LHS Code (and parameters to which sampled values were applied) (Continued)

For parameters with a triangular distribution, the value provided for the median is actually the mode.

- 20

Title 40 CFR Part 191 Co rtification ≻ nnlication

Туре	Units	Mean	Median	Low	High	Deviation	#
CUMULATIVE	NONE	1.8000E-01	-9.0000E-02	-2.0000E+00	1.4000E+00	0.37	37114A
CUMULATIVE	NONE	1.8000E-01	-9.0000E-02	-2.0000E+00	1.4000E+00	0.37	37115A
CUMULATIVE	moles/liter	1.1000E+00	1.3700E+00	6.5000E-02	1.6000E+00	0.47	37683
UNIFORM	NONE	5.0000E-01	5.0000E-01	0.0000E+00	1.0000E+00	0.29	37663
CUMULATIVE	NONE	1.3100E+00	1.1700E+00	1.0000E+00	2.2500E+00	0.35	33031
UNIFORM	m	2.7500E-01	2.7500E-01	5.0000E-02	5.0000E-01	0.13	38356
LOGUNIFORM	NONE	2.1000E-03	1.0000E-03	1.0000E-04	1.0000E-02	0	38358
CUMULATIVE	NONE	1.6000E-01	1.6000E-01	1.0000E-01	2.5000E-01	0.04	38357
UNIFORM	m^3/kg	1.5000E-02	1.5000E-02	3.0000E-05	3.0000E-02	0.01	38346
UNIFORM	m^3/kg	1.0000E+01	1.0000E+01	9.0000E-01	2.0000E+01	5.50	38350
UNIFORM	m^3/kg	2.6000E-01	2.6000E-01	2.0000E-02	5.0000E-01	0.14	38351
UNIFORM	m^3/kg	1.0000E+01	1.0000E+01	9.0000E-01	2.0000E+01	5.50	38352

9.0000E-01

2.0000E-02

2.0000E+01

5.0000E-01

5.50

0.14

38349

38353

Table PAR-10. Parameters Sampled in LHS Code (and parameters to which sampled values were applied) (Continued)

Parameter Description

Solubility in Castile brine

inorganic with chemistry controlled by Mg(OH)2-

Solubility in Salado

chemistry controlled by the Mg(OH)2-MgCO3

Proportionality constant

brine w/ humic colloids,

of actinides incastile

Index for Oxidation

Culebra Half Matrix-

Diffusive Porosity for

Culebra Advective

Culebra Dolomite

Matrix Distribution

Matrix Distribution

Matrix Distribution

Matrix Distribution Coefficient for Plutonium

Matrix Distribution

Matrix Distribution

Coefficient for Americium

Coefficient for Thorium

Coefficient for Uranium

Coefficient for Uranium

Coefficient for Plutonium

brine, inorganic

MgCO3

inorgan

Solubilities

Climate Index

Block Length

Porosity

October 19 ¹For parameters with a triangular distribution, the value provided for the median is actually the mode.

Material Description

Solubility of Uranium

in oxidation state VI

Solubility of Thorium

in oxidation state IV

constant with humic

Information that applies globally

Information that applies globally

Rustler formation

Rustler formation

Rustler formation

Uranium VI

Uranium IV

Plutonium III

Plutonium IV

Thorium IV

Americium III

Culebra member of the

Culebra member of the

Culebra member of the

colloids for actinide in oxidation state III

Proportionality

Parameter

SOLCIM

SOLSIM

PHUMCIM

OXSTAT

CLIMTIDX

HMBLKLT

APOROS

DPOROS

MKD_U

MKD_U

MKD_PU

MKD_PU

MKD TH

MKD AM

1 2

3

4 #

5

6

44

45

7 46

8

9

PAR-189

47

48

49

50

12 51

14 53

15 54

16 55

17 56

57

13 52

LHS 10

3392

3393

3429

3417

223

3485

3487

3486

3475

3479

3480

3481

3478

3482

Material

SOLTH4

PHUMOX3

GLOBAL

GLOBAL

CULEBRA

CULEBRA

CULEBRA

U+6

U+4

PU+3

PU+4

TH+4

AM+3

SOLU6

DOE/CAO 1996-2184

Standard

WPO

40

ā

FR

Part

191

Compliance

Ce

rtification

Appl

Distribution

UNIFORM

UNIFORM

Type

Units

m^3/kg

m^3/kg

1.0000E+01

2.6000E-01

1.0000E+01

2.6000E-01

		Material	× ×		Distribution			WPO
Id #	. Material	Description	Parameter	Parameter Description	Туре	Units	Value	#
23	BOREHOLE	Borehole and Fill	CAP_MOD	Model number, capillary pressure model	CONSTANT	NONE	2.0000E+00	31486
3242	BOREHOLE	Borehole and Fill	COLDIA	Drill collar diameter in CUTTINGS model	CONSTANT	m	2.0320E-01	37084
25	BOREHOLE	Borehole and Fill	COMP_RCK ¹	Pore Compressibility	CONSTANT	Pa^-1	2.6400E-09	31510
26	BOREHOLE	Borehole and Fill	DIAMMOD	Modern or current diameter	CONSTANT	m	3.1115E-01	31511
27	BOREHOLE	Borehole and Fill	DOMEGA	Drill string angular velocity (O)	CUMULATIVE	rad/s	7.8000E+00	31512
3239	BOREHOLE	Borehole and Fill	INV_AR	The area of the repository in the CUTTINGS model	CONSTANT	m^2	1.1152E+05	37081
3122	BOREHOLE	Borehole and Fill	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	36361
3244	BOREHOLE	Borehole and Fill	LI	Drill collar length in CUTTINGS model	CONSTANT	m	1.8288E+02	37086
3243	BOREHOLE	Borehole and Fill	L2	Drill pipe length when repository penetrated, CUTTINGS model	CONSTANT	m	4.7212E+02	37085
29	BOREHOLE	Borehole and Fill	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	31514
3120	BOREHOLE	Borehole and Fill	PCT_A	Threshold pressure linear parameter	CONSTANT	NONE	5.6000E-01	36362
3121	BOREHOLE	Borehole and Fill	PCT_EXP	Threshold pressure exponential parameter	CONSTANT	NONE	-3.4600E-01	36363
3241	BOREHOLE	Borehole and Fill	PIPED	Drill pipe diameter in CUTTINGS model	CONSTANT	m	1.1430E-01	37083
32	BOREHOLE	Borehole and Fill	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Ра	1.0133E+05	31523
30	BOREHOLE	Borehole and Fill	PORE_DIS	Brooks-Corey pore distribution parameter	CONSTANT	NONE	9.4000E-01	31521
31	BOREHOLE	Borehole and Fill	POROSITY	Effective porosity	CONSTANT	NONE	5.0000E-02	31522
33	BOREHOLE	Borehole and Fill	PRESSURE	Brine far-field pore pressure	CONSTANT	Pa	0.0000E+00	31524
34	BOREHOLE	Borehole and Fill	PRMX_LOG	Log of intrinsic permeability, X-direction	NORMAL	log(m^2)	-1.2500E+01	31525
35	BOREHOLE	Borehole and Fill	PRMY_LOG	Log of intrinsic permeability, Y-direction	NORMAL	log (m^2)	-1.2500E+01	31527
36	BOREHOLE	Borehole and Fill	PRMZ_LOG	Log of intrinsic permeability, Z-direction	NORMAL	log(m^2)	-1.2500E+01	31528
38	BOREHOLE	Borehole and Fill	PTINDEX	Index for computing uncertainty in threshold displacement pressure	UNIFORM	NONE	5.0000E-01	31530
40	BOREHOLE	Borehole and Fill	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	31532
3261	BOREHOLE	Borehole and Fill	RHW_AR	The total area of the remote-handled waste in the CUTTINGS model	CONSTANT	m^2	1.5760E+04	37104
3240	BOREHOLE	Borehole and Fill	ROUGHP	Friction factor for very rough pipe in CUTTINGS model	CONSTANT	NONE	8.0000E-02	37082
41	BOREHOLE	Borehole and Fill	SAT_RBRN	Residual Brine Saturation	CONSTANT	NONE	2.0000E-01	31533
42	BOREHOLE	Borehole and Fill	SAT_RGAS	Residual Gas Saturation	CONSTANT	NONE	2.0000E-01	31535
3414	BOREHOLE	Borehole and Fill	WUF	Unit of Waste	CONSTANT	Curies	4.0700E+00	37137
3259	BLOWOUT	BRAGFLO Direct Brine Releases	APORO	Waste permeability in CUTTINGS model	CONSTANT	m^2	1.7E-13	37102
3245	BLOWOUT	BRAGFLO Direct Brine Releases	CEMENT	Waste Cementation Strength	CONSTANT	Pa	6895	37087
3420	BLOWOUT	BRAGFLO Direct Brine Releases	FCE	Cementation Scaling Factor	CONSTANT	NONE	1	37668

Table PAR-11. Borehole, Blowout, and Drill Mud Parameters

³COMP_RCK, in this case, refers to pore compressibility rather than bulk compressibility and pore compressibility is equivalent to bulk compressibility divided by the effective porosity.

1.

October 1996

PAR-190

DOE/CAO 1996-2184

Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
3256	BLOWOUT	BRAGFLO Direct Brine Releases	FGE	Gravity effectiveness factor in CUTTINGS model	CONSTANT	NONE	18.1	37098
3255	BLOWOUT	BRAGFLO Direct Brine Releases	FSE	Stress effectiveness factor in CUTTINGS model	CONSTANT	NONE	0	37097
3470	BLOWOUT	BRAGFLO Direct Brine Releases	GAS_MIN	Gas rate cut-off	CONSTANT	mscf/day	100	38209
3250	BLOWOUT	BRAGFLO Direct Brine Releases	HREPO	Height of repository at burial time in CUTTINGS model	CONSTANT	m	3.96	37092
3260	BLOWOUT	BRAGFLO Direct Brine Releases	INPORO	Default value for initial repository porosity in CUTTINGS model	CONSTANT	NONE	0.849	37103
32.54	BLOWOUT	BRAGFLO Direct Brine Releases	KGAS	Ratio of specific heats for Hydrogen in CUTTINGS model	CONSTANT	NONE	1.41	37096
3471	BLOWOUT	BRAGFLO Direct Brine Releases	MAXFLOW	Maximum blowout flow	CONSTANT	s	950400	38210
3472	BLOWOUT	BRAGFLO Direct Brine Releases	MINFLOW	Minimum blowout flow	CONSTANT	S	259200	38211
3246	BLOWOUT	BRAGFLO Direct Brine Releases	PARTDIA	Logarithm of waste particle diameter in CUTTINGS model	LOGUNIFORM	m	0.0028	37088
3251	BLOWOUT	BRAGFLO Direct Brine Releases	PSUF	Surface atmospheric pressure at elevation 1,039 meters in CUTTINGS model	CONSTANT	Ра	89465	37093
3456	BLOWOUT	BRAGFLO Direct Brine Releases	RE_CAST	External drainage radius for the Castile formation	CONSTANT	m	114	38208
3253	BLOWOUT	BRAGFLO Direct Brine Releases	RGAS	Gas Constant for Hydrogen	CONSTANT	N*m/kg/degK	4116	37095
3247	BLOWOUT	BRAGFLO Direct Brine Releases	RHOS	Waste Particle Density in CUTTING_S Model	CONSTANT	kg/m^3	2650	37089
3248	BLOWOUT	BRAGFLO Direct Brine Releases	ROOM	Equivalent radius of one room in CUTTINGS model	CONSTANT	m	17.1	37090
3249	BLOWOUT	BRAGFLO Direct Brine Releases	RPANEL	Equivalent radius of one panel in CUTTINGS model	CONSTANT	m	60.87	37091
3257	BLOWOUT	BRAGFLO Direct Brine Releases	SUFTEN	Surface tension of brine in CUTTINGS model	CONSTANT	N/m	0.08	37100
3473	BLOWOUT	BRAGFLO Direct Brine Releases	THCK_CAS	Thickness of the Castile formation	CONSTANT	m	12.34	38213
3258	BLOWOUT	BRAGFLO Direct Brine Releases	TREPO	Temperature of repository in CUTTINGS model	CONSTANT	К	300	37101
3252	BLOWOUT	BRAGFLO Direct Brine Releases	VISC	Hydrogen viscosity in CUTTINGS model	CONSTANT	Pa*s	0.0000092	37

Table PAR-11, Borehole, Blowout, and Drill Mud Parameters (Continued)

¹COMP_RCK, in this case, refers to pore compressibility rather than bulk compressibility and pore compressibility is equivalent to bulk compressibility divided by the effective porosity.

25

Z

DOE/CAO 1996-2184

3 4

PAR-191

October 1996

	L	
	e	
1	8	
	Ô	
1	Ξ	
	a	
	7	
	19	
	1	
	6	
	B	
	P	
	2	
	ICe	
	ň	
	È,	
	Ē	
	5	
	đ.	
	A	
İ		
	Ĕ.	
	6	
	E.	
	iā	

	Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
F	3150	CONC_PLG	Concrete Plug, surface and Rustler	CAP_MOD	Model number, capillary pressure model	CONSTANT	NONE	1.0000E+00	36593
	3148	CONC_PLG	Concrete Plug, surface and Rustler	COMP_RCK ¹	Pore Compressibility	CONSTANT	Pa^1	1.2000E-09	36591
	3156	CONC_PLG	Concrete Plug, surface and Rustler	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	36600
-	3151	CONC_PLG	Concrete Plug, surface and Rustler	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	36595
	3157	CONC_PLG	Concrete Plug, surface and Rustler	PCT_A	Threshold pressure linear parameter	CONSTANT	Pa	0.0000E+00	36601
	3158	CONC_PLG	Concrete Plug, surface and Rustler	PCT_EXP	Threshold pressure exponential parameter	CONSTANT	NONE	0.0000E+00	36603
	3155	CONC_PLG	Concrete Plug, surface and Rustler	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	36599
	3154	CONC_PLG	Concrete Plug, surface and Rustler	PORE_DIS	Brooks-Corey pore distribution parameter	CONSTANT	NONE	9.4000E-01	36598
	3147	CONC_PLG	Concrete Plug, surface and Rustler	POROSITY	Effective porosity	CONSTANT	NONE	3.2000E-01	36589
	3185	CONC_PLG	Concrete Plug, surface and Rustler	PRMX_LOG	Log of intrinsic permeability, X-direction	CONSTANT	log(m^2)	-1.6301E+01	36642
	3192	CONC_PLG	Concrete Plug, surface and Rustler	PRMY_LOG	Log of intrinsic permeability, Y-direction	CONSTANT	log(m^2)	-1.6301E+01	36656
	3193	CONC_PLG	Concrete Plug, surface and Rustler	PRMZ_LOG	Log of intrinsic permeability, Z-direction	CONSTANT	log(m^2)	-1.6301E+01	36657
	3149	CONC_PLG	Concrete Plug, surface and Rustler	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	36592
	3152	CONC_PLG	Concrete Plug, surface and Rustler	SAT_RBRN	Residual Brine Saturation	CONSTANT	NONE	0.0000E+00	36596
	3153	CONC PLG	Concrete Plug, surface and Rustler	SAT_RGAS	Residual Gas Saturation	CONSTANT	NONE	0.0000E+00	36597

¹COMP_RCK, in this case, refers to pore compressibility rather than bulk compressibility and pore compressibility is equivalent to bulk compressibility divided by the effective porosity.

Table PAR-12. Borehole (Concrete Plug) Parameters

20

Ta #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
3138	BH_OPEN	Borehole Unrestricted	CAP_MOD	Model number, capillary pressure model	CONSTANT	NONE	1.0000E+00	36568
3136	BH_OPEN	Borehole Unrestricted	COMP_RCK ¹	Pore Compressibility	CONSTANT	Pa^-1	0.0000E+00	36566
3144	BH_OPEN	Borehole Unrestricted	KPT	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	36585
3139	BH_OPEN	Borehole Unrestricted	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	36569
3145	BH_OPEN	Borehole Unrestricted	PCT_A	Threshold pressure linear parameter	CONSTANT	Pa	0.0000E+00	36586
3146	BH_OPEN	Borehole Unrestricted	PCT_EXP	Threshold pressure exponential parameter	CONSTANT	NONE	0.0000E+00	36588
3143	BH_OPEN	Borehole Unrestricted	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	36584
3142	BH_OPEN	Borehole Unrestricted	PORE_DIS	Brooks-Corey pore distribution parameter	CONSTANT	NONE	7.0000E-01	36572
3135	BH_OPEN	Borehole Unrestricted	POROSITY	Effective porosity	CONSTANT	NONE	3.2000E-01	36565
3134	BH_OPEN	Borehole Unrestricted	PRMX_LOG	Log of intrinsic permeability, X-direction	CONSTANT	log(m^2)	-9.0000E+00	36564
3186	BH_OPEN	Borehole Unrestricted	PRMY_LOG	Log of intrinsic permeability, Y-direction	CONSTANT	log(m^2)	-9.0000E+00	36649
3187	BH_OPEN	Borehole Unrestricted	PRMZ_LOG	Log of intrinsic permeability, Z-direction	CONSTANT	log(m^2)	-9.0000E+00	36650
3137	BH_OPEN	Borehole Unrestricted	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	5.0000E+00	36567
3140	BH_OPEN	Borehole Unrestricted	SAT_RBRN	Residual Brine Saturation	CONSTANT	NONE	0.0000E+00	36570
3141	BH_OPEN	Borehole Unrestricted	SAT_RGAS	Residual Gas Saturation	CONSTANT	NONE	0.0000E+00	36571

Table PAR-13. Borehole (Open) Parameters

)

'COMP_RCK, in this case, refers to pore compressibility rather than bulk compressibility and pore compressibility is equivalent to bulk compressibility divided by the effective porosity.

Title 40
CFR
Part 1
91 Co
mpliance
 Certification
Applic
atio

0.0000E+00 36615

CONSTANT

NONE

3					Demonstra Demonstration	Distribution	Tulia	V-h-	WPO
4	10 #	Material	Material Description	Parameter	Farameter Description		Units	Value	#
5	3162	BH_SAND	Borehole filled with silty sand	CAP_MOD	Model number, capillary pressure model	CUNSIANI	NUNE	1.0000E+00	36612
6	3160	BH_SAND	Borehole filled with silty sand	COMP_RCK ¹	Pore Compressibility	CONSTANT	Pa^-1	0.0000E+00	36610
7	3424	BH_SAND	Borehole filled with silty sand	CUMPROB1	Distributed Sampling Parameter 1	UNIFORM	NONE	5.0000E-01	37677
8	3425	BH_SAND	Borehole filled with silty sand	CUMPROB2	Distributed Sampling Parameter 2	UNIFORM	NONE	5.0000E-01	37678
9	3426	BH_SAND	Borehole filled with silty sand	CUMPROB3	Distributed Sampling Parameter 3	UNIFORM	NONE	5.0000E-01	37679
10	3427	BH_SAND	Borehole filled with silty sand	CUMPROB4	Distributed Sampling Parameter 4	UNIFORM	NONE	5.0000E-01	37680
11	3428	BH_SAND	Borehole filled with silty sand	CUMPROB5	Distributed Sampling Parameter 5	UNIFORM	NONE	5.0000E-01	38781
12	3168	BH_SAND	Borehole filled with silty sand	крт	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	36619
13	3163	BH_SAND	Borehole filled with silty sand	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	36613
14	3169	BH_SAND	Borehole filled with silty sand	PCT_A	Threshold pressure linear parameter	CONSTANT	Pa	0.0000E+00	36620
15	3170	BH_SAND	Borehole filled with silty sand	PCT_EXP	Threshold pressure exponential parameter	CONSTANT	NONE	0.0000E+00	36621
16	3423	BH_SAND	Borehole filled with silty sand	PMLOG_HI	Permeability Distribution - High	CONSTANT	Log(m^2)	-1.1000E+01	37675
17	3422	BH_SAND	Borehole filled with silty sand	PMLOG_LO	Permeability Distribution - Low	CONSTANT	Log(m ²)	-1.4000E+01	37672
18	3167	BH_SAND	Borehole filled with silty sand	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	36617
19	3166	BH_SAND	Borehole filled with silty sand	PORE_DIS	Brooks-Corey pore distribution parameter	CONSTANT	NONE	9.4000E-01	36616
20	3159	BH_SAND	Borehole filled with silty sand	POROSITY	Effective porosity	CONSTANT	NONE	3.2000E-01	36605
21	3161	BH_SAND	Borehole filled with silty sand	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	36611
22	3164	BH_SAND	Borehole filled with silty sand	SAT_RBRN	Residual Brine Saturation	CONSTANT	NONE	0.0000E+00	36614

Table PAR-14. Borehole (Silty Sand) Parameters

'COMP_RCK, in this case, refers to pore compressibility rather than bulk compressibility and pore compressibility is equivalent to bulk compressibility divided by the effective porosity.

Residual Gas Saturation

SAT_RGAS

1

24

25 26

27 28 3165

BH_SAND

Borehole filled with silty sand

Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
3174	BH_CREEP	Creep Borehole Fill	CAP_MOD	Model number, capillary pressure model	CONSTANT	NONE	1.0000E+00	36627
3172	BH_CREEP	Creep Borehole Fill	COMP_RCK ¹	Pore Compressibility	CONSTANT	Pa^-1	0.0000E+00	36625
3180	BH_CREEP	Creep Borehole Fill	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	36636
3175	BH_CREEP	Creep Borehole Fill	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	36628
3181	BH_CREEP	Creep Borehole Fill	PCT_A	Threshold pressure linear parameter	CONSTANT	Pa	0.0000E+00	36637
3182	BH_CREEP	Creep Borehole Fill	PCT_EXP	Threshold pressure exponential parameter	CONSTANT	NONE	0.0000E+00	36639
3179	BH_CREEP	Creep Borehole Fill	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	36634
3178	BH_CREEP	Creep Borehole Fill	PORE_DIS	Brooks-Corey pore distribution parameter	CONSTANT	NONE	9.4000E-01	36633
3171	BH_CREEP	Creep Borehole Fill	POROSITY	Effective porosity	CONSTANT	NONE	3.2000E-01	36624
3173	BH_CREEP	Creep Borehole Fill	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	36626
3176	BH_CREEP	Creep Borehole Fill	SAT_RBRN	Residual Brine Saturation	CONSTANT	NONE	0.0000E+00	36630
3177	BH_CREEP	Creep Borehole Fill	SAT_RGAS	Residual Gas Saturation	CONSTANT	NONE	0.0000E+00	36631

Table PAR-15. Borehole (Creep) Parameters

¹COMP_RCK, in this case, refers to pore compressibility rather than bulk compressibility and pore compressibility is equivalent to bulk compressibility divided by the effective porosity.

2

4

)

October 1996

Iđ #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
2497	EARTH	Earthen Fill	COMP_RCK ¹	Pore Compressibility	CONSTANT	Pa^-1	3.1000E-08	32918
2706	EARTH	Earthen Fill	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	32919
2498	EARTH	Earthen Fill	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	32922
2501	EARTH	Earthen Fill	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	32925
2500	EARTH	Earthen Fill	POROSITY	Effective porosity	CONSTANT	m^3/m^3	3.2000E-01	32924
2502	EARTH	Earthen Fill	PRESSURE	Brine far-field pore pressure	CONSTANT	Pa	1.0133E+05	32926
25 03	EARTH	Earthen Fill	PRMX_LOG	Log of intrinsic permeability, X-direction	TRIANGULAR	log(m^2)	-1.4000E+01	32927
2504	EARTH	Earthen Fill	PRMY_LOG	Log of intrinsic permeability, Y-direction	TRIANGULAR	log(m^2)	-1.4000E+01	32928
2505	EARTH	Earthen Fill	PRMZ_LOG	Log of intrinsic permeability, Z-direction	TRIANGULAR	log(m^2)	-1.4000E+01	32944
2509	EARTH	Earthen Fill	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	32952
3032	EARTH	Earthen Fill	RSH_AIR	Air-supply shaft radius (3.09 m)	CONSTANT	m	3.0900E+00	32954
3035	EARTH	Earthen Fill	RSH_EXH	Air-exhaust shaft radius (2.3 m)	CONSTANT	m	2.3000E+00	32956
3033	EARTH	Earthen Fill	RSH_SAL	Salt-handling shaft radius (1.8 m)	CONSTANT	m	1.8000E+00	32957
3034	EARTH	Earthen Fill	RSH WAS	Waste-handling shaft radius (3.5 m)	CONSTANT	m	3.5000E+00	32959

Table PAR-16. Earthen Fill Shaft Material Parameters

¹COMP_RCK, in this case, refers to pore compressibility rather than bulk compressibility and pore compressibility is equivalent to bulk compressibility divided by the effective porosity.

 $\overline{21}$

Title 40 CFR Part 191 Compliance Certification Application

Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
3001	CLAY_RUS	Clay seals in Rustler formation	COMP_RCK ¹	Pore Compressibility	CONSTANT	Pa^-1	1.9600E-09	31878
3002	CLAY_RUS	Clay seals in Rustler formation	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	31879
3003	CLAY_RUS	Clay seals in Rustler formation	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	31882
3131	CLAY_RUS	Clay seals in Rustler formation	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	36561
3007	CLAY_RUS	Clay seals in Rustler formation	POROSITY	Effective porosity	CONSTANT	m^3/m^3	2.4000E-01	31884
3008	CLAY_RUS	Clay seals in Rustler formation	PRESSURE	Brine far-field pore pressure	CONSTANT	Pa	1.0133E+05	31885
3012	CLAY_RUS	Clay seals in Rustler formation	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	31889
2996	CLAY_RUS	Clay seals in Rustler formation	RSH_AIR	Air-supply shaft radius (3.09 m)	CONSTANT	m	3.0900E+00	31890
2999	CLAY_RUS	Clay seals in Rustler formation	RSH_EXH	Air-exhaust shaft radius (2.3 m)	CONSTANT	m	2.3000E+00	31891
2997	CLAY_RUS	Clay seals in Rustler formation	RSH_SAL	Salt-handling shaft radius (1.8 m)	CONSTANT	m	1.8000E+00	31892
2998	CLAY RUS	Clay seals in Rustler formation	RSH_WAS	Waste-handling shaft radius (3.5 m)	CONSTANT	m	3.5000E+00	31893

Title 40 CFR Part 191 Compliance Certification Application

Table PAR-17. Rustler Compacted Clay Shaft Material Parameters

*COMP_RCK, in this case, refers to pore compressibility rather than bulk compressibility and pore compressibility is equivalent to bulk compressibility divided by the

18 effective porosity.

)

October 1996

Tit	
le 4	
Ð	
IFF	
P	
art	
191	
0	
Ĕ	
plia	
nce	
ő	
Prti	
fica	
E.	
PA	
PP	
lica	
tio	

Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
2277	ASPHALT	Asphalt column	COMP_RCK ¹	Pore Compressibility	CONSTANT	Pa^-1	2.9700E-08	31380
3238	ASPHALT	Asphalt column	DNSGRAIN	Material Grain Density	CONSTANT	kg/m^3	2.0222E+03	36760
2599	ASPHALT	Asphalt column	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	31381
2278	ASPHALT	Asphalt column	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	31385
2281	ASPHALT	Asphalt column	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	31388
2280	ASPHALT	Asphalt column	POROSITY	Effective porosity	CONSTANT	m^3/m^3	1.0000E-02	31387
2282	ASPHALT	Asphalt column	PRESSURE	Brine far-field pore pressure	CONSTANT	Ра	1.0133E+05	31389
2933	ASPHALT	Asphalt column	RADN_DRZ	DRZ outer radius at each shaft	CONSTANT	m/m	1.6290E+00	31395
2289	ASPHALT	Asphalt column	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	31397
2929	ASPHALT	Asphalt column	RSH_AIR	Air-supply shaft radius (3.09 m)	CONSTANT	m	3.0900E+00	31399
2932	ASPHALT	Asphalt column	RSH_EXH	Air-exhaust shaft radius (2.3 m)	CONSTANT	m	2.3000E+00	31400
2930	ASPHALT	Asphalt column	RSH_SAL	Salt-handling shaft radius (1.8 m)	CONSTANT	m	1.8000E+00	31401
2931	ASPHALT	Asphalt column	RSH_WAS	Waste-handling shaft radius (3.5 m)	CONSTANT	m	3.5000E+00	31402
2290	ASPHALT	Asphalt column	SAT_IBRN	Initial Brine Saturation	CONSTANT	NONE	0.0000E+00	31403

Table PAR-18. Asphalt Shaft Material Parameters

¹COMP_RCK, in this case, refers to pore compressibility rather than bulk compressibility and pore compressibility is equivalent to bulk compressibility divided by the effective porosity.

. . -

3	Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
5	2464	CONC_T1	Concrete column: 0 to 400 years	COMP_RCK ¹	Pore Compressibility	CONSTANT	Pa^1	1.2000E-09	32556
6	2681	CONC_T1	Concrete column: 0 to 400 years	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	32559
7	2465	CONC_T1	Concrete column: 0 to 400 years	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	32567
8	2468	CONC_T1	Concrete column: 0 to 400 years	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	32576
9	2467	CONC_T1	Concrete column: 0 to 400 years	POROSITY	Effective porosity	CONSTANT	m^3/m^3	5.0000E-02	32572
10	2469	CONC_T1	Concrete column: 0 to 400 years	PRESSURE	Brine far-field pore pressure	CONSTANT	Pa	1.0133E+05	32580
11	3040	CONC_T1	Concrete column: 0 to 400 years	RADN_DRZ	DRZ outer radius at each shaft	CONSTANT	m/m	1.0000E+00	32600
12	2476	CONC_T1	Concrete column: 0 to 400 years	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	32605
13	3036	CONC_T1	Concrete column: 0 to 400 years	RSH_AIR	Air-supply shaft radius (3.09 m)	CONSTANT		3.0900E+00	32607
14	3039	CONC_T1	Concrete column: 0 to 400 years	RSH_EXH	Air-exhaust shaft radius (2.3 m)	CONSTANT	m	2.3000E+00	32608
15	3037	CONC_T1	Concrete column: 0 to 400 years	RSH_SAL	Salt-handling shaft radius (1.8 m)	CONSTANT	m	1.8000E+00	32609
16	3038	CONC_TI	Concrete column: 0 to 400 years	RSH_WAS	Waste-handling shaft radius (3.5 m)	CONSTANT	m	3.5000E+00	32617
17	2481	CONC_T2	Concrete column: 400 to 10K years	COMP_RCK ¹	Pore Compressibility	CONSTANT	Pa^1	1.2000E-09	32638
18	2686	CONC_T2	Concrete column: 400 to 10K years	крт	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	32640
19	2482	CONC_T2	Concrete column: 400 to 10K years	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	32657
20	2808	CONC_T2	Concrete column: 400 to 10K years	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	32660
21	2484	CONC_T2	Concrete column: 400 to 10K years	POROSITY	Effective porosity	CONSTANT	m^3/m^3	5.0000E-02	32659
22	2485	CONC_T2	Concrete column: 400 to 10K years	PRESSURE	Brine far-field pore pressure	CONSTANT	Pa	1.0133E+05	32661
23	2486	CONC_T2	Concrete column: 400 to 10K years	PRMX_LOG	Log of intrinsic permeability, X-direction	CONSTANT	log(m^2)	-1.4000E+01	32662
24	2487	CONC_T2	Concrete column: 400 to 10K years	PRMY_LOG	Log of intrinsic permeability, Y-direction	CONSTANT	log(m^2)	1.4000E+01	32663
25	3045	CONC_T2	Concrete column: 400 to 10K years	RADN_DRZ	DRZ outer radius at each shaft	CONSTANT	m/m	1.0000E+00	32667
26	2492	CONC_T2	Concrete column: 400 to 10K years	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	32669
27	3041	CONC_T2	Concrete column: 400 to 10K years	RSH_AIR	Air-supply shaft radius (3.09 m)	CONSTANT		3.0900E+00	32670
28	3044	CONC_T2	Concrete column: 400 to 10K years	RSH_EXH	Air-exhaust shaft radius (2.3 m)	CONSTANT	m	2.3000E+00	32671
29	3042	CONC_T2	Concrete column: 400 to 10K years	RSH_SAL	Salt-handling shaft radius (1.8 m)	CONSTANT		1.8000E+00	32672
30	3043	CONC T2	Concrete column: 400 to 10K years	RSH WAS	Waste-handling shaft radius (3.5 m)	CONSTANT		3.5000E+00	32673

Table PAR-19. Concrete Shaft Material Parameters

32 'COMP_RCK, in this case, refers to pore compressibility rather than bulk compressibility and pore compressibility is equivalent to bulk compressibility divided by the

33 effective porosity.

34 35

1

PAR-199

October 1996

Table PAR-20. Compacted Salt Shaft Material Parameter

2									
3	Id #	Material	Material Description	Parameter	Parameter Description	Distribution	Units	Value	WPO #
5	2514	SALT TI	Shaft salt column compacted: time 0 to 10 years	COMP_RCK ¹	Pore Compressibility	CONSTANT	Pa^-1	1.6000E-09	33359
6	2744	SALT TI	Shaft salt column compacted: time 0 to 10 years	KPT	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	33364
7	2515	SALT TI	Shaft salt column compacted: time 0 to 10 years	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	33373
8	2942	SALT TI	Shaft salt column compacted: time 0 to 10 years	PMLT_HI	Log triangular distribution high value for permeability	CONSTANT	log(m^2)	-1.2265E+01	33375
9	2941	SALT_T1	Shaft salt column compacted: time 0 to 10 years	PMLT_LO	Log triangular distribution low value for permeability	CONSTANT	log(m^2)	-1.7301E+01	33377
10	2940	SALT TI	Shaft salt column compacted: time 0 to 10 years	PMLT_MD	Log triangular distribution mode for permeability	CONSTANT	log(m^2)	-1.4783E+01	33378
11	2518	SALT_T1	Shaft salt column compacted: time 0 to 10 years	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	33382
12	2517	SALT_T1	Shaft salt column compacted: time 0 to 10 years	POROSITY	Effective porosity	CONSTANT	m^3/m^3	5.0000E-02	33381
13	2519	SALT_TI	Shaft salt column compacted: time 0 to 10 years	PRESSURE	Brine far-field pore pressure	CONSTANT	Pa	1.0133E+05	33386
14	2938	SALT_T1	Shaft salt column compacted: time 0 to 10 years	RADN_DRZ	DRZ outer radius at each shaft	CONSTANT	m/m	1.8140E+00	33401
15	2526	SALT_T1	Shaft salt column compacted: time 0 to 10 years	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	33405
16	2934	SALT_T1	Shaft salt column compacted: time 0 to 10 years	RSH_AIR	Air-supply shaft radius (3.09 m)	CONSTANT	m	3.0900E+00	33407
17	2937	SALT_T1	Shaft salt column compacted: time 0 to 10 years	RSH_EXH	Air-exhaust shaft radius (2.3 m)	CONSTANT	m	2.3000E+00	33410
18	2935	SALT_T1	Shaft salt column compacted: time 0 to 10 years	RSH_SAL	Salt-handling shaft radius (1.8 m)	CONSTANT	m	1.8000E+00	33411
19	2936	SALT_T1	Shaft salt column compacted: time 0 to 10 years	RSH_WAS	Waste-handling shaft radius (3.5 m)	CONSTANT	m	3.5000E+00	33413
20	2531	SALT_T2	Shaft salt column compacted: time 10 to 25 years	COMP_RCK ¹	Pore Compressibility	CONSTANT	Pa^-1	1.6000E-09	33429
21	2749	SALT_T2	Shaft salt column compacted: time 10 to 25 years	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	33431
22	2532	SALT_T2	Shaft salt column compacted: time 10 to 25 years	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	33438
23	2950	SALT_T2	Shaft salt column compacted: time 10 to 25 years	PMLT_HI	Log triangular distribution high value for permeability	CONSTANT	log(m^2)	-1.2265E+01	33440
24	2949	SALT_T2	Shaft salt column compacted: time 10 to 25 years	PMLT_LO	Log triangular distribution low value for permeability	CONSTANT	log(m^2)	-1.7301E+01	33442
25	2948	SALT_T2	Shaft salt column compacted: time 10 to 25 years	PMLT_MD	Log triangular distribution mode for permeability	CONSTANT	log(m^2)	-1.4783E+01	33445
26	2535	SALT_T2	Shaft salt column compacted: time 10 to 25 years	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	33362
27	2534	SALT_T2	Shaft salt column compacted: time 10 to 25 years	POROSITY	Effective porosity	CONSTANT	m^3/m^3	5.0000E-02	33357
28	2947	SALT_T2	Shaft salt column compacted: time 10 to 25 years	RADN_DRZ	DRZ outer radius at each shaft	CONSTANT	m/m	1.1100E+00	33374
29	2543	SALT_T2	Shaft salt column compacted: time 10 to 25 years	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	33379
30	2943	SALT_T2	Shaft salt column compacted: time 10 to 25 years	RSH_AIR	Air-supply shaft radius (3.09 m)	CONSTANT	m	3.0900E+00	33383
31	2946	SALT_T2	Shaft salt column compacted: time 10 to 25 years	RSH_EXH	Air-exhaust shaft radius (2.3 m)	CONSTANT	m	2.3000E+00	33384
32	2944	SALT_T2	Shaft salt column compacted: time 10 to 25 years	RSH_SAL	Salt-handling shaft radius (1.8 m)	CONSTANT	m	1.8000E+00	33385
33	2945	SALT_T2	Shaft salt column compacted: time 10 to 25 years	RSH_WAS	Waste-handling shaft radius (3.5 m)	CONSTANT	m	3.5000E+00	33387
34	2548	SALT_T3	Shaft salt column compacted: time 25 to 50 years	COMP_RCK'	Pore Compressibility	CONSTANT	Pa^-1	1.6000E-09	33400
35	2754	SALT_T3	Shaft salt column compacted: time 25 to 50 years	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	33402
36	2549	SALT_T3	Shaft salt column compacted: time 25 to 50 years	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	33408
37	2958	SALT_T3	Shaft salt column compacted: time 25 to 50 years	PMLT_HI	Log triangular distribution high value for permeability	CONSTANT	log(m^2)	-1.2265E+01	33409
38	2957	SALT_T3	Shaft salt column compacted: time 25 to 50 years	PMLT_LO	Log triangular distribution low value for permeability	CONSTANT	log(m^2)	-1.7301E+01	33412

. ..

October 1996

40 COMP_RCK, in this case, refers to pore compressibility rather than bulk compressibility and pore compressibility is equivalent to bulk compressibility divided by the

41 effective porosity.

 Table PAR-20. Compacted Salt Shaft Material Parameter (Continued)

3		No. 1 1-1	Matantial Decomposition	Boremeter	Personator Deteriotion	Distribution	Inite	Vaha	WPO
4	ld #	Materiai	Material Description	Parameter	Log triangular distribution mode for normaphility	CONSTANT	log(m^2)	1 4783E+01	# 33414
5	2956	SALI_13	Shaft salt column compacted: time 25 to 50 years	PO MIN	Minimum brine pressure for capillary model KPC-3	CONSTANT	Da	1.01336+05	33414
7	2552	SALT_T	Shaft salt column comparted: time 25 to 50 years	POROSITY	Effective porosity	CONSTANT	m^3/m^3	5 0000E-02	33417
0	2055	SALT_T	Shaft salt column compacted: time 25 to 50 years	PADN DR7	DR7 outer radius at each shaft	CONSTANT	m/m	1 0000000000000000000000000000000000000	33432
0	2955	SALI_IS	Shaft salt column compacted: time 25 to 50 years	RELP MOD	Model number, relative permeability model	CONSTANT	NONE	4 0000E+00	33436
10	200	SALT T3	Shaft salt column compacted: time 25 to 50 years	RSH AIR	Air-supply shaft radius (3.09 m)	CONSTANT	m	3.0900E+00	33437
11	2931	SALT T3	Shaft salt column compacted: time 25 to 50 years	RSH FXH	Air-exhaust shaft radius (2.3 m)	CONSTANT	m	2.3000E+00	33439
12	2934	SALT T3	Shaft salt column compacted: time 25 to 50 years	RSH SAL	Salt-handling shaft radius (1.8 m)	CONSTANT	m	1.8000E+00	33441
12	2932	SALT TA	Shaft salt column compacted: time 25 to 50 years	RSH WAS	Waste-handling shaft radius (3.5 m)	CONSTANT	m	3.5000E+00	33443
10	2955	SALT TA	Shaft salt column compacted: time 50 to 100 years	COMP RCK ¹	Pore Compressibility	CONSTANT	Pa^-1	1.6000E-09	33453
15	2.505	SALT TA	Shaft salt column compacted: time 50 to 100 years	KPT	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	33454
16	2566	SALT T4	Shaft salt column compacted: time 50 to 100 years	PC MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	33459
17	2000	SALT T4	Shaft salt column compacted: time 50 to 100 years	PMLT HI	Log triangular distribution high value for permeability	CONSTANT	log(m^2)	-1.3951E+01	33460
18	2965	SALT T4	Shaft salt column compacted: time 50 to 100 years	PMLT LO	Log triangular distribution low value for permeability	CONSTANT	log(m^2)	-2.2876E+01	33461
19	2964	SALT T4	Shaft salt column compacted: time 50 to 100 years	PMLT MD	Log triangular distribution mode for permeability	CONSTANT	$log(m^2)$	-1.7166E+01	33463
20	2569	SALT T4	Shaft salt column compacted: time 50 to 100 years	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	33469
21	2568	SALT T4	Shaft salt column compacted: time 50 to 100 years	POROSITY	Effective porosity	CONSTANT	m^3/m^3	5.0000E-02	33467
22	2963	SALT T4	Shaft salt column compacted: time 50 to 100 years	RADN_DRZ	DRZ outer radius at each shaft	CONSTANT	m/m	1.0000E+00	33540
23	2577	SALT T4	Shaft salt column compacted: time 50 to 100 years	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	33553
24	2959	SALT T4	Shaft salt column compacted: time 50 to 100 years	RSH_AIR	Air-supply shaft radius (3.09 m)	CONSTANT	m	3.0900E+00	33556
25	2962	SALT T4	Shaft salt column compacted: time 50 to 100 years	RSH_EXH	Air-exhaust shaft radius (2.3 m)	CONSTANT	m	2.3000E+00	33558
26	2960	SALT_T4	Shaft salt column compacted: time 50 to 100 years	RSH_SAL	Salt-handling shaft radius (1.8 m)	CONSTANT	m	1.8000E+00	33560
27	2961	SALT_T4	Shaft salt column compacted: time 50 to 100 years	RSH_WAS	Waste-handling shaft radius (3.5 m)	CONSTANT	m	3.5000E+00	33561
28	2582	SALT_T5	Shaft salt column compacted: time 100 to 200 years	COMP_RCK ¹	Pore Compressibility	CONSTANT	Pa^-1	1.6000E-09	33572
29	2764	SALT_T5	Shaft salt column compacted: time 100 to 200 years	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	33573
30	2583	SALT_T5	Shaft salt column compacted: time 100 to 200 years	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	33579
31	2974	SALT_T5	Shaft salt column compacted: time 100 to 200 years	PMLT_HI	Log triangular distribution high value for permeability	CONSTANT	log(m^2)	-1.5426E+01	33581
32	2973	SALT_T5	Shaft salt column compacted: time 100 to 200 years	PMLT_LO	Log triangular distribution low value for permeability	CONSTANT	log(m^2)	-2.2876E+01	33583
33	2972	SALT_T5	Shaft salt column compacted: time 100 to 200 years	PMLT_MD	Log triangular distribution mode for permeability	CONSTANT	log(m^2)_	-1.9278E+01	33585
34	3125	SALT_T5	Shaft salt column compacted: time 100 to 200 years	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	36368
35	2585	SALT_T5	Shaft salt column compacted: time 100 to 200 years	POROSITY	Effective porosity	CONSTANT	m^3/m^3	5.0000E-02	33590
36	2971	SALT_T5	Shaft salt column compacted: time 100 to 200 years	RADN_DRZ	DRZ outer radius at each shaft	CONSTANT	m/m	1.0000E+00	33609
37	2594	SALT TS	Shaft salt column compacted: time 100 to 200 years	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	33614
38	2967	SALT_T5	Shaft salt column compacted: time 100 to 200 years	RSH_AIR	Air-supply shaft radius (3.09 m)	CONSTANT	m	3.0900E+00	33616
20	2070	SALT TS	Shaft salt column compacted: time 100 to 200 years	RSH EXH	Air-exhaust shaft radius (2.3 m)	CONSTANT	m	2.3000E+00	33618

1

41 ¹COMP_RCK, in this case, refers to pore compressibility rather than bulk compressibility and pore compressibility is equivalent to bulk compressibility divided by the 42 effective porosity.

October 1996

1

Table PAR-20. Compacted Salt Shaft Material Parameter (Continued)

2						<u></u>	<u></u>	<u></u>	
3	Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
5	2968	SALT_T5	Shaft salt column compacted: time 100 to 200 years	RSH_SAL	Salt-handling shaft radius (1.8 m)	CONSTANT	m	1.8000E+00	33620
6	2969	SALT T5	Shaft salt column compacted: time 100 to 200 years	RSH_WAS	Waste-handling shaft radius (3.5 m)	CONSTANT	m	3.5000E+00	33622
7	2984	SALT T6	Shaft salt column compacted: time 200 to 10K years	COMP_RCK ¹	Pore Compressibility	CONSTANT	Pa^-i	1.6000E-09	33635
8	2985	SALT T6	Shaft salt column compacted: time 200 to 10K years	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	33640
9	2986	SALT T6	Shaft salt column compacted: time 200 to 10K years	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	33647
10	2982	SALT T6	Shaft salt column compacted: time 200 to 10K years	PMLT_HI	Log triangular distribution high value for permeability	CONSTANT	log(m^2)	- <u>1.7668E+01</u>	33648
11	2981	SALT T6	Shaft salt column compacted: time 200 to 10K years	PMLT_LO	Log triangular distribution low value for permeability	CONSTANT	log(m^2)	- <u>2.2876E+01</u>	33650
12	2980	SALT T6	Shaft salt column compacted: time 200 to 10K years	PMLT_MD	Log triangular distribution mode for permeability	CONSTANT	log(m^2)	-2.0272E+01	33651
13	3126	SALT T6	Shaft salt column compacted: time 200 to 10K years	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	36369
14	2990	SALT T6	Shaft salt column compacted: time 200 to 10K years	POROSITY	Effective porosity	CONSTANT	m^3/m^3	5.0000E-02	33657
15	3119	SALT T6	Shaft salt column compacted: time 200 to 10K years	PRESSURE	Brine far-field pore pressure	CONSTANT	Pa	1.0133E+05	33475
16	2979	SALT T6	Shaft salt column compacted: time 200 to 10K years	RADN_DRZ	DRZ outer radius at each shaft	CONSTANT	m/m	1.0000E+00	33476
17	2991	SALT T6	Shaft salt column compacted: time 200 to 10K years	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	33478
18	2975	SALT T6	Shaft salt column compacted: time 200 to 10K years	RSH_AIR	Air-supply shaft radius (3.09 m)	CONSTANT	m	3.0900E+00	33479
19	2978	SALT_T6	Shaft salt column compacted: time 200 to 10K years	RSH_EXH	Air-exhaust shaft radius (2.3 m)	CONSTANT	m	2.3000E+00	33480
20	2976	SALT_T6	Shaft salt column compacted: time 200 to 10K years	RSH_SAL	Salt-handling shaft radius (1.8 m)	CONSTANT	m	1.8000E+00	33481
21	2977	SALT T6	Shaft salt column compacted: time 200 to 10K years	RSH WAS	Waste-handling shaft radius (3.5 m)	CONSTANT	m	3.5000E+00	33482

23 ¹COMP_RCK, in this case, refers to pore compressibility rather than bulk compressibility and pore compressibility is equivalent to bulk compressibility divided by the 24 effective porosity.

}

.

Td #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
2379	CL_M_TI	Upper Salado clay: 0 to 10 years	COMP_RCK ¹	Pore Compressibility	CONSTANT	Pa^-1	1.8100E-09	32039
2656	CL_M_TI	Upper Salado clay: 0 to 10 years	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	32040
2380	CL_M_TI	Upper Salado clay: 0 to 10 years	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	32043
2383	CL_M_TI	Upper Salado clay: 0 to 10 years	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	32046
2382	CL_M_TI	Upper Salado clay: 0 to 10 years	POROSITY	Effective porosity	CONSTANT	m^3/m^3	2.4000E-01	32045
2384	CL_M_TI	Upper Salado clay: 0 to 10 years	PRESSURE	Brine far-field pore pressure	CONSTANT	Pa	1.0133E+05	32047
3088	CL_M_TI	Upper Salado clay: 0 to 10 years	RADN_DRZ	DRZ outer radius at each shaft	CONSTANT	m/m	1.7090E+00	32053
2391	CL_M_TI	Upper Salado clay: 0 to 10 years	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	32055
3084	CL_M_T1	Upper Salado clay: 0 to 10 years	RSH_AIR	Air-supply shaft radius (3.09 m)	CONSTANT	m	3.0900E+00	32056
3087	CL_M_TI	Upper Salado clay: 0 to 10 years	RSH_EXH	Air-exhaust shaft radius (2.3 m)	CONSTANT	m	2.3000E+00	32057
3085	CL_M_T1	Upper Salado clay: 0 to 10 years	RSH_SAL	Salt-handling shaft radius (1.8 m)	CONSTANT	m	1.8000E+00	32058
3086	CL_M_TI	Upper Salado clay: 0 to 10 years	RSH_WAS	Waste-handling shaft radius (3.5 m)	CONSTANT	m	3.5000E+00	32059
2396	CL_M_T2	Upper Salado clay: 10 to 25 years	COMP_RCK ¹	Pore Compressibility	CONSTANT	Pa^-1	1.8100E-09	32066
2661	CL_M_T2	Upper Salado clay: 10 to 25 years	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	32067
2397	CL_M_T2	Upper Salado clay: 10 to 25 years	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	32118
2400	CL_M_12	Upper Salado clay: 10 to 25 years	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	32121
2399	CL_M_T2_	Upper Salado clay: 10 to 25 years	POROSITY	Effective porosity	CONSTANT	m^3/m^3	2.4000E-01	32120
3093	CL_M_T2	Upper Salado clay: 10 to 25 years	RADN_DRZ	DRZ outer radius at each shaft	CONSTANT	m/m	1.4690E+00	32128
2408	CL_M_T2	Upper Salado clay: 10 to 25 years	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	32130
3089	CL_M_T2	Upper Salado clay: 10 to 25 years	RSH_AIR	Air-supply shaft radius (3.09 m)	CONSTANT	m	3.0900E+00	32131
3092	CL_M_T2	Upper Salado clay: 10 to 25 years	RSH_EXH	Air-exhaust shaft radius (2.3 m)	CONSTANT	m	2.3000E+00	32132
3090	CL_M_T2	Upper Salado clay: 10 to 25 years	RSH_SAL	Salt-handling shaft radius (1.8 m)	CONSTANT	m	1.8000E+00	32133
3091	CL_M_T2	Upper Salado clay: 10 to 25 years	RSH_WAS	Waste-handling shaft radius (3.5 m)	CONSTANT	m	3.5000E+00	32134
2413	CL_M_T3	Upper Salado clay: 25 to 50 years	COMP_RCK ¹	Pore Compressibility	CONSTANT	Pa^-1	1.8100E-09	32141
2666	CL_M_T3	Upper Salado clay: 25 to 50 years	крт	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	32142
2414	CL_M_T3	Upper Salado clay: 25 to 50 years	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	32145
2417	CL_M_T3	Upper Salado clay: 25 to 50 years	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	32150
2416	CL_M_T3	Upper Salado clay: 25 to 50 years	POROSITY	Effective porosity	CONSTANT	m^3/m^3	2.4000E-01	32148
3098	CL_M_T3	Upper Salado clay: 25 to 50 years	RADN_DRZ	DRZ outer radius at each shaft	CONSTANT	m/m	1.2830E+00	32160
2425	CL M_T3	Upper Salado clay: 25 to 50 years	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	32162
.3094	CL_M_T3	Upper Salado clay: 25 to 50 years	RSH_AIR	Air-supply shaft radius (3.09 m)	CONSTANT	m	3.0900E+00	32163
3097	CL_M_T3	Upper Salado clay: 25 to 50 years	RSH_EXH	Air-exhaust shaft radius (2.3 m)	CONSTANT	m	2.3000E+00	32164
3095	CL_M_T3	Upper Salado clay: 25 to 50 years	RSH_SAL	Salt-handling shaft radius (1.8 m)	CONSTANT	m	1.8000E+00	32165
3096	CL M T3	Upper Salado clay: 25 to 50 years	RSH WAS	Waste-handling shaft radius (3.5 m)	CONSTANT	m	3.5000E+00	32166

¹COMP_RCK, in this case, refers to pore compressibility rather than bulk compressibility and pore compressibility is equivalent to bulk compressibility divided by the

41 42

effective porosity.

Title 40 CFR Part 191 Compliance Certification Application

Title 4	
0 CFR	
Part 19	
Compl	
iance C	
ertificat	
ion Apj	
olication	

0	1 2	
)ctohe	3 4	Id #
÷	5	2
906	6	2
	7	2
	8	2

Table PAR-21. Upper Clay Shaft Material Parameters (Continued)

.

	Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
Γ	2430	CL_M_T4	Upper Salado clay: 50 to 100 years	COMP_RCK ¹	Pore Compressibility	CONSTANT	Pa^-1	1.8100E-09	32193
Γ	2671		Upper Salado clay: 50 to 100 years	крт	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	32194
Γ	2431	CL_M_T4	Upper Salado clay: 50 to 100 years	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	32197
Γ	2434	CL_M_T4	Upper Salado clay: 50 to 100 years	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	32200
Γ	2433	CL_M_T4	Upper Salado clay: 50 to 100 years	POROSITY	Effective porosity	CONSTANT	m^3/m^3	2.4000E-01	32199
Γ	2923	CL_M_T4	Upper Salado clay: 50 to 100 years	RADN_DRZ	DRZ outer radius at each shaft	CONSTANT	m/m	1.1070E+00	32207
Γ	2442	CL_M_T4	Upper Salado clay: 50 to 100 years	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	32209
Γ	2919	CL_M_T4	Upper Salado clay: 50 to 100 years	RSH_AIR	Air-supply shaft radius (3.09 m)	CONSTANT	m	3.0900E+00	32212
	2922	CL_M_T4	Upper Salado clay: 50 to 100 years	RSH_EXH	Air-exhaust shaft radius (2.3 m)	CONSTANT	m	2.3000E+00	32213
Γ	2920	CL_M_T4	Upper Salado clay: 50 to 100 years	RSH_SAL	Salt-handling shaft radius (1.8 m)	CONSTANT	m	1.8000E+00	32214
Γ	2921	CL_M_T4	Upper Salado clay: 50 to 100 years	RSH_WAS	Waste-handling shaft radius (3.5 m)	CONSTANT	m	3.5000E+00	32215
Γ	2447	CL_M_T5	Upper Salado clay: 100 to 10K years	COMP_RCK ¹	Pore Compressibility	CONSTANT	Pa^-1	1.8100E-09	32230
	2676	CL_M_T5	Upper Salado clay: 100 to 10K years	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	32231
	2448	CL_M_T5	Upper Salado clay: 100 to 10K years	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	32234
	2451	CL_M_T5	Upper Salado clay: 100 to 10K years	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	32237
Γ	2450	CL M T5	Upper Salado clay: 100 to 10K years	POROSITY	Effective porosity	CONSTANT	m^3/m^3	2.4000E-01	32236
Γ	2928	CL_M_T5	Upper Salado clay: 100 to 10K years	RADN_DRZ	DRZ outer radius at each shaft	CONSTANT	m/m	1.0000E+00	32245
—	2459	CL_M_T5	Upper Salado clay: 100 to 10K years	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	32248
	2924	CL_M_T5	Upper Salado clay: 100 to 10K years	RSH_AIR	Air-supply shaft radius (3.09 m)	CONSTANT	m	3.0900E+00	32249
	2927	CL_M_T5	Upper Salado clay: 100 to 10K years	RSH_EXH	Air-exhaust shaft radius (2.3 m)	CONSTANT	m	2.3000E+00	32250
Γ	2925	CL_M_T5	Upper Salado clay: 100 to 10K years	RSH_SAL	Salt-handling shaft radius (1.8 m)	CONSTANT	m	1.8000E+00	32251
	2926	CL M T5	Upper Salado clay: 100 to 10K years	RSH_WAS	Waste-handling shaft radius (3.5 m)	CONSTANT	m	3.5000E+00	32252

¹COMP_RCK, in this case, refers to pore compressibility rather than bulk compressibility and pore compressibility is equivalent to bulk compressibility divided by the

1.2.17

1.5

28 ¹COMP_RCK, in t 29 effective porosity.

PAR-204

M60	anlaY	stin[]	noitudisteid	natnivosett veternéve4.	valamena¶	nottalroza() IsinatsW	leinateM	# 14
00812	00 20005 1	1 v•a	TUATZNOD	Pond rocor prost				4 101
66810	60-9006C-1	NONE L-JPJ	TUATONO	Flore compression de la compre	גיסראיף_אכא			8757
00619	00+20000.0		TUATONO				<u></u>	1+97
50615	80+900001	Do F3			XAM_J1	LOWER Salado Clay: U to 10 years		6752
90610	C0+3CC10.1	E1		Effective posterio	NIIM OJ	LOWER Salado Clay: U to TU years		7557
50615	10-3000±'Z	ъ» 			PDF5511PF	LOWER Salado Clay: U to 10 years		1552
/0619	00-30001			Dime im-neid pore pressure	LKESSUKE	FOMEL 291900 CISA: 0 IO 10 A6948		EEEZ
51615	00+30808.1					LOWER Salado Clay: U to IU years		120£
51616	00+30000.4	TNON			KELP_MUD	LOWET Salado clay: U to 10 years		5340
91615	3'000007+000	ານ		(m 60.c) suitai Itan yique ita	אוץ אוא	Lower Salado clay: 010 10 years		105
41615	00+90005.2	u u		Arrest shall radius (2, 3 m)	ван стр	Lower Salado clay: U to 10 years		0208
81615	00+30008.1	ш		(m 8.1) suibar fishaganionan-usc	אצוו־זער	Lower Salado clay: 010 10 years		810E
61615	3 2000E+00	u w	TNAT2NOO	(m č.č) suiber theka guildnen-strew	KSH_WAS	Lower Salado clay: 0 to 10 years		6105
97615	60-30062.1	Favel	TNATZNOO	Pore Compressibility	COMP_RCK	Lower Salado clay: 10 to 25 years		5787
17615	00+90000.0	U TNON		Fiag for permeability determined threshold	KPT KPT	Lower Salado clay: 10 to 25 years		5646
02612	80+30000.1	ba ba		Maximum allowable capillary pressure		Lower Salado clay: 10 to 25 years		5346
£2612	50+35510.1	94 95 84		Munimum brine pressure for capillary model KPC=3		Lower Salado clay: 10 to 25 years		5346
22612	5 4000E-01	<u>ғ, ш/ғ, ш</u>			LISONOL	Lower Salado clay: 10 to 25 years		5348
65615	1 1920E+00	ພ/ພ		DKZ onter radius at each shaft		Lower Salado clay: 10 to 25 years		3026
29615	4.0000E+00	INON		Model number, relative permeability model	KELP MOD	Lower Salado clay: 10 to 25 years		<i>1</i> 322
219615	00+30060'5	w		(m 60.č) suibsi lisna yiqqus-uA	KSH_AIR	Lower Salado clay: 10 to 25 years		770E
59615	00+90005'Z	 		(W C.2) SUIDEJ TERR TERRA (18.2)	HXT HSA	Lower Salado clay: 10 to 25 years		SZOE
99615	00+30008.1			(III 8.1) SUIDEN THEN SUIDHEN-THES	BOH WAS	LOWER SAIADO CIAY: 10 10 22 YEARS		5705
/9615	3 2000E+00			(m c.c) suid radius gnildnen-sizew	RSH_WAS	Lower Salado clay: 10 to 25 years		3024
9/616	00-3006C1	Loga			COMP_RCK	Lower Salado clay: 25 to 50 years		7957
8/610	1,00001,00		LINVISIOO			SIBAL OF OF CLARK CARD		107
1861£	1.0000E+08	r Ba	LNATANOU	Maximum allowable capillary pressure	PC_MAX	Lower Salado clay: 25 to 50 years	ณ 1 าว	5962

Table PAR-22. Lower Clay Shaft Material Parameters

effective porosity. COMP_RCK, in this case, refers to pore compressibility rather than bulk compressibility and pore compressibility is equivalent to bulk compressibility divided by the

RSH_WAS

RSH_SAL

RSH_EXH

RSH_AIR

RELP_MOD

RADN_DRZ

POROSITY

PO_MIN

Lower Salado clay: 50 to 10K years

Lower Salado clay: 25 to 50 years

COMP RCK¹ Pore Compressibility

(m 2.E) suiber flade gnilbnen-steeW

(m 8.1) suites there guilband the?

(m E.S) suiber Hads teuenxs-uiA

(m 90.5) suibsi fisda ylqqua-riA

DRZ outer radius at each shaft

Effective porosity

Model number, relative permeability model

Minimum brine pressure for capillary model KPC=3

1 2900E-09 32008

3.5000E+00 32002

1.8000E+00 32001

2.3000E+00 32000

3 0900E+00 31999

4.0000E+00 31998

1 0050E+00 31996

2.4000E-01 31984

2861E 20+3EE10.1

CONSTANT

CONSTANT

CONSTANT

CONSTANT

TNATZNOD

CONSTANT

CONSTANT

CONSTANT

CONSTANT

I-vgq

u

ա

u

ш

NONE

E^m/E^m

ш/ш

вq

October 1996

DOE/CAO 1996-2184

PAR-205

45

17 65

8£

LE

9£

55

34

EE

35

18

30

57

87

LZ

97 52

54

53

72

17

07

61

81

LL

91

51

14

٤I

15

П

10

6

8

L

9

ς

Þ £ 7

I

CC C 14

ณาว

นาาว

CT T L3

CL_L_T3

CL_L_L3

CL_L_U

น่าว่าว

TILOE

3059

3028

3030

7027

7314

1001

5962

П	1 2	
OE/C	3 4	
AC	5	Ľ
0	6	
966	7	
2-2	8	Γ
õ	9	Γ

Table PAR-22. Lower Clay Shaft Material Parameters (Continued)

3 4	Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
5	3072	CL_L_T4	Lower Salado clay: 50 to 10K years	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	32009
6	3073	CL_L_T4	Lower Salado clay: 50 to 10K years	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	32012
7	3123	CL_L_T4	Lower Salado clay: 50 to 10K years	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	36366
8	3077	CL_L_T4	Lower Salado clay: 50 to 10K years	POROSITY	Effective porosity	CONSTANT	m^3/m^3	2.4000E-01	32014
9	3069	CL_L_T4	Lower Salado clay: 50 to 10K years	RADN_DRZ	DRZ outer radius at each shaft	CONSTANT	m/m	1.0000E+00	32019
10	3081	CL_L_T4	Lower Salado clay: 50 to 10K years	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	32020
11	3065	CL_L_T4	Lower Salado clay: 50 to 10K years	RSH_AIR	Air-supply shaft radius (3.09 m)	CONSTANT	m	3.0900E+00	32021
12	3068	CL_L_T4	Lower Salado clay: 50 to 10K years	RSH_EXH	Air-exhaust shaft radius (2.3 m)	CONSTANT	m	2.3000E+00	32022
13	3066	CL_L_T4	Lower Salado clay: 50 to 10K years	RSH_SAL	Salt-handling shaft radius (1.8 m)	CONSTANT	m	1.8000E+00	32023
14	3067	CL_L_T4	Lower Salado clay: 50 to 10K years	RSH_WAS	Waste-handling shaft radius (3.5 m)	CONSTANT	m.	3.5000E+00	32024

16 ¹COMP_RCK, in this case, refers to pore compressibility rather than bulk compressibility and pore compressibility is equivalent to bulk compressibility divided by the

17 effective porosity. 18
2	,,			·····	· · · · · · · · · · · · · · · · · · ·				
3 4	Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
5	2311	CLAY_BOT	Shaft Bottom Clay	COMP_RCK ¹	Pore Compressibility	CONSTANT	Pa^-1	1.5900E-09	31857
6	2636	CLAY_BOT	Shaft Bottom Clay	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	31858
7	2312	CLAY_BOT	Shaft Bottom Clay	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	31861
8	2315	CLAY_BOT	Shaft Bottom Clay	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	31864
9	2314	CLAY_BOT	Shaft Bottom Clay	POROSITY	Effective porosity	CONSTANT	m^3/m^3	2.4000E-01	31863
10	2316	CLAY_BOT	Shaft Bottom Clay	PRESSURE	Brine far-field pore pressure	CONSTANT	Pa	1.0133E+05	31865
12	2323	CLAY_BOT	Shaft Bottom Clay	RELP MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	31872

Table PAR-23. Bottom Clay Shaft Material Parameters

COMP_RCK, in this case, refers to pore compressibility rather than bulk compressibility and pore compressibility is equivalent to bulk compressibility divided by the

4 effective porosity.

DOE/CAO 1996-2184

- 2									
34	Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
5	3052	CONC_MON	Concrete monolith at shaft base	COMP_RCK ¹	Pore Compressibility	CONSTANT	Pa^1	1.2000E-09	32504
6	3053	CONC_MON	Concrete monolith at shaft base	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	32507
7	3054	CONC MON	Concrete monolith at shaft base	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	32512
8	3124	CONC MON	Concrete monolith at shaft base	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	36367
9	3058	CONC MON	Concrete monolith at shaft base	POROSITY	Effective porosity	CONSTANT	m^3/m^3	5.0000E-02	32516
10	3114	CONC MON	Concrete monolith at shaft base	PRESSURE	Brine far-field pore pressure	CONSTANT	Pa	1.0133E+05	32518
11	3059	CONC MON	Concrete monolith at shaft base	PRMX_LOG	Log of intrinsic permeability, X-direction	CONSTANT	log(m^2)	-1.4000E+01	32520
12	3060	CONC MON	Concrete monolith at shaft base	PRMY_LOG	Log of intrinsic permeability, Y-direction	CONSTANT	log(m^2)	-1.4000E+01	32522
13	3061	CONC MON	Concrete monolith at shaft base	PRMZ_LOG	Log of intrinsic permeability, Z-direction	CONSTANT	log(m^2)	-1.4000E+01	32527
14	3050	CONC MON	Concrete monolith at shaft base	RADN_DRZ	DRZ outer radius at each shaft	CONSTANT	m/m	1.0000E+00	32528
15	3062	CONC MON	Concrete monolith at shaft base	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	32530
16	3046	CONC MON	Concrete monolith at shaft base	RSH_AIR	Air-supply shaft radius (3.09 m)	CONSTANT	m	3.0900E+00	32532
17	3049	CONC MON	Concrete monolith at shaft base	RSH_EXH	Air-exhaust shaft radius (2.3 m)	CONSTANT	m	2.3000E+00	32534
18	3047	CONC MON	Concrete monolith at shaft base	RSH_SAL	Salt-handling shaft radius (1.8 m)	CONSTANT	m	1.8000E+00	32537
18	3048	CONC MON	Concrete monolith at shaft base	RSH WAS	Waste-handling shaft radius (3.5 m)	CONSTANT		3.5000E+00	32538

Table PAR-24. Concrete Monolith Shaft Material Parameters

21 'COMP_RCK, in this case, refers to pore compressibility rather than bulk compressibility and pore compressibility is equivalent to bulk compressibility divided by the 22 effective porosity.

PAR-208

Title 40 CFR Part 191 Compliance Certification Application

Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
336	SANTAROS	Santa Rosa Formation	CAP_MOD	Model number, capillary pressure model	CONSTANT	NONE	1.0000E+00	33485
337	SANTAROS	Santa Rosa Formation	COMP_RCK	Bulk Compressibility	CONSTANT	Pa^-1	1.0000E-08	33487
2768	SANTAROS	Santa Rosa Formation	KPT	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	33510
339	SANTAROS	Santa Rosa Formation	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	33530
2769	SANTAROS	Santa Rosa Formation	PCT_A	Threshold pressure linear parameter	CONSTANT	Pa	0.0000E+00	33528
2770	SANTAROS	Santa Rosa Formation	PCT_EXP	Threshold pressure exponential parameter	CONSTANT	NONE	0.0000E+00	33529
342	SANTAROS	Santa Rosa Formation	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	33543
340	SANTAROS	Santa Rosa Formation	PORE_DIS	Brooks-Corey pore distribution parameter	CONSTANT	NONE	6.4360E-01	33538
341	SANTAROS	Santa Rosa Formation	POROSITY	Effective porosity	CONSTANT	NONE	1.7500E-01	33542
343	SANTAROS	Santa Rosa Formation	PRESSURE	Brine far-field pore pressure	CONSTANT	Pa	1.0133E+05	33544
344	SANTAROS	Santa Rosa Formation	PRMX_LOG	Log of intrinsic permeability, X-direction	CONSTANT	log(m^2)	-1.0000E+01	33545
345	SANTAROS	Santa Rosa Formation	PRMY_LOG	Log of intrinsic permeability, Y-direction	CONSTANT	log(m^2)	-1.0000E+01	33546
346	SANTAROS	Santa Rosa Formation	PRMZ_LOG	Log of intrinsic permeability, Z-direction	CONSTANT	log(m^2)	-1.0000E+01	33547
349	SANTAROS	Santa Rosa Formation	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	33550
350	SANTAROS	Santa Rosa Formation	SAT_IBRN	Initial Brine Saturation	CONSTANT	NONE	8.3630E-02	33552
351	SANTAROS	Santa Rosa Formation	SAT_RBRN	Residual Brine Saturation	CONSTANT	NONE	8.3630E-02	33554
352	SANTAROS	Santa Rosa Formation	SAT_RGAS	Residual Gas Saturation	CONSTANT	NONE	7.7110E-02	33557

Table PAR-25. Santa Rosa Formation Parameters

Title
40
CFR
Part
191
Compliance
Certification
Applicatio

Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
154	DEWYLAKE	Dewey Lake Red Beds	COMP_RCK	Bulk Compressibility	CONSTANT	Pa^-1	1.0000E-08	32802
2696	DEWYLAKE	Dewey Lake Red Beds	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	32703
156	DEWYLAKE	Dewey Lake Red Beds	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	32728
159	DEWYLAKE	Dewey Lake Red Beds	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	32732
157	DEWYLAKE	Dewey Lake Red Beds	PORE_DIS	Brooks-Corey pore distribution parameter	CONSTANT	NONE	6.4360E-01	32730
158	DEWYLAKE	Dewey Lake Red Beds	POROSITY	Effective porosity	STUDENT'S-T	NONE	1.4300E-01	32731
160	DEWYLAKE	Dewey Lake Red Beds	PRESSURE	Brine far-field pore pressure	CONSTANT	Pa	1.0133E+05	32733
161	DEWYLAKE	Dewey Lake Red Beds	PRMX_LOG	Log of intrinsic permeability, x-direction	CONSTANT	log(m^2)	-1.6300E+01	32734
162	DEWYLAKE	Dewey Lake Red Beds	PRMY_LOG	Log of intrinsic permeability, y-direction	CONSTANT	log(m^2)	-1.6300E+01	32735
163	DEWYLAKE	Dewey Lake Red Beds	PRMZ_LOG	Log of intrinsic permeability, z-direction	CONSTANT	log(m^2)	-1.6300E+01	32736
166	DEWYLAKE	Dewey Lake Red Beds	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	32739
167	DEWYLAKE	Dewey Lake Red Beds	SAL_USAT	Average saturation, unsaturated zones	CONSTANT	NONE	8.3600E-02	32740
168	DEWYLAKE	Dewey Lake Red Beds	SAT_IBRN	Initial Brine Saturation	CONSTANT	NONE	1.0000E+00	32741
169	DEWYLAKE	Dewey Lake Red Beds	SAT_RBRN	Residual Brine Saturation	CONSTANT	NONE	8.3630E-02	32742
170	DEWYLAKE	Dewey Lake Red Beds	SAT_RGAS	Residual Gas Saturation	CONSTANT	NONE	7.7110E-02	32743

Table PAR-26. Dewey Lake Formation Parameters

1d #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
2085	FORTYNIN	Forty Niner Member	CAP_MOD	Model number, capillary pressure model	CONSTANT	NONE	1.0000E+00	32975
2238	FORTYNIN	Forty Niner Member	COMP_RCK	Bulk Compressibility	CONSTANT	Pa^-1	0.0000E+00	32979
2715	FORTYNIN	Forty Niner Member	KPT	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	32982
2239	FORTYNIN	Forty Niner Member	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	32989
2716	FORTYNIN	Forty Niner Member	PCT_A	Threshold pressure linear parameter	CONSTANT	NONE	0.0000E+00	32984
2717	FORTYNIN	Forty Niner Member	PCT_EXP	Threshold pressure exponential parameter	CONSTANT	NONE	0.0000E+00	32986
2718	FORTYNIN	Forty Niner Member	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	32997
2087	FORTYNIN	Forty Niner Member	PORE_DIS	Brooks-Corey pore distribution parameter	CONSTANT	NONE	7.0000E-01	32991
2088	FORTYNIN	Forty Niner Member	POROSITY	Effective porosity	STUDENT'S-T	NONE	8.2000E-02	32995
2899	FORTYNIN	Forty Niner Member	PRMX_LOG	Log of intrinsic permeability, x-direction	CONSTANT	log(m^2)	-3.5000E+01	33002
2900	FORTYNIN	Forty Niner Member	PRMY_LOG	Log of intrinsic permeability, y-direction	CONSTANT	log(m^2)	-3.5000E+01	33008
2901	FORTYNIN	Forty Niner Member	PRMZ_LOG	Log of intrinsic permeability, z-direction	CONSTANT	log(m^2)	-3.5000E+01	33010
2093	FORTYNIN	Forty Niner Member	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	33019
2240	FORTYNIN	Forty Niner Member	SAT_RBRN	Residual Brine Saturation	CONSTANT	NONE	2.0000E-01	33022
2094	FORTYNIN	Forty Niner Member	SAT_RGAS	Residual Gas Saturation	CONSTANT	NONE	2.0000E-01	33024

Table PAR-27. Forty-Niner Member of the Rustler Formation Parameters

)

Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
2097	MAGENTA	Magenta Member	CAP_MOD	Model number, capillary pressure model	CONSTANT	NONE	2.0000E+00	33239
3016	MAGENTA	Magenta Member	COMP_RCK	Bulk Compressibility	STUDENT'S-T	Pa^-1	2.6440E-10	33249
2725	MAGENTA	Magenta Member	крт	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	33254
2098	MAGENTA	Magenta Member	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	33263
2726	MAGENTA	Magenta Member	PCT_A	Threshold pressure linear parameter	CONSTANT	Ра	2.6000E-01	33257
2727	MAGENTA	Magenta Member	PCT_EXP	Threshold pressure exponential parameter	CONSTANT	NONE	-3.4800E-01	33261
2728	MAGENTA	Magenta Member	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	32536
2099	MAGENTA	Magenta Member	PORE_DIS	Brooks-Corey pore distribution parameter	CONSTANT	NONE	6.4360E-01	32493
2100	MAGENTA	Magenta Member	POROSITY	Effective porosity	STUDENT'S-T	NONE	1.3800E-01	32531
2101	MAGENTA	Magenta Member	PRESSURE	Brine far-field pore pressure	CONSTANT	Pa	9.1700E+05	32539
2102	MAGENTA	Magenta Member	PRMX_LOG	Log of intrinsic permeability, x-direction	CONSTANT	log(m^2)	-1.5200E+01	32545
2103	MAGENTA	Magenta Member	PRMY_LOG	Log of intrinsic permeability, y-direction	CONSTANT	log(m^2)	-1.5200E+01	32547
2104	MAGENTA	Magenta Member	PRMZ_LOG	Log of intrinsic permeability, z-direction	CONSTANT	log(m^2)	-1.5200E+01	32550
2106	MAGENTA	Magenta Member	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	32557
2241	MAGENTA	Magenta Member	SAT_RBRN	Residual Brine Saturation	CONSTANT	NONE	8.3630E-02	32560
2107	MAGENTA	Magenta Member	SAT_RGAS	Residual Gas Saturation	CONSTANT	NONE	7.7110E-02	32562
2109	MAGENTA	Magenta Member	THICK	Thickness of feature or layer	CONSTANT		8.5000E+00	32568

)

Title 40 CFR Part 191 Compliance Certification Application

Table PAR-28. Magenta Member of the Rustler Formation Parameters

Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
2183	TAMARISK	Tamarisk Member	CAP_MOD	Model number, capillary pressure model	CONSTANT	NONE	1.0000E+00	34524
2243	TAMARISK	Tamarisk Member	COMP_RCK	Bulk Compressibility	CONSTANT	Pa^-1	0.0000E+00	34529
2793	TAMARISK	Tamarisk Member	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	34558
2244	TAMARISK	Tamarisk Member	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	34563
2794	TAMARISK	Tamarisk Member	PCT_A	Threshold pressure linear parameter	CONSTANT	NONE	0.0000E+00	34560
2795	TAMARISK	Tamarisk Member	PCT_EXP	Threshold pressure exponential parameter	CONSTANT	NONE	0.0000E+00	34562
2796	TAMARISK	Tamarisk Member	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	34571
2185	TAMARISK	Tamarisk Member	PORE_DIS	Brooks-Corey pore distribution parameter	CONSTANT	NONE	7.0000E-01	34565
2186	TAMARISK	Tamarisk Member	POROSITY	Effective porosity	STUDENT'S-T	NONE	6.4000E-02	34568
2914	TAMARISK	Tamarisk Member	PRMX_LOG	Log of intrinsic permeability, x-direction	CONSTANT	log(m^2)	-3.5000E+01	34580
2915	TAMARISK	Tamarisk Member	PRMY_LOG	Log of intrinsic permeability, y-direction	CONSTANT	log(m^2)	-3.5000E+01	34583
2916	TAMARISK	Tamarisk Member	PRMZ_LOG	Log of intrinsic permeability, z-direction	CONSTANT	log(m^2)	-3.5000E+01	34586
2191	TAMARISK	Tamarisk Member	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	34588
2245	TAMARISK	Tamarisk Member	SAT_RBRN	Residual Brine Saturation	CONSTANT	NONE	2.0000E-01	34589
2192	TAMARISK	Tamarisk Member	SAT_RGAS	Residual Gas Saturation	CONSTANT	NONE	2.0000E-01	34591

)

)

Table PAR-29. Tamarisk Member	of the Rustler	Formation Parameters
-------------------------------	----------------	----------------------

)

October 1996

October 1996

1

2 3 Distribution WPO 4 1d # Material Description Parameter **Parameter Description** Type Units Value Material # 5 Culebra member of the Rustler formation CAP MOD Model number, capillary pressure model CONSTANT NONE 2.0000E+00 32686 119 CULEBRA CONSTANT 1.0000E-10 32688 6 120 CULEBRA Culebra member of the Rustler formation COMP RCK Bulk Compressibility Pa^-1 7 0.0000E+00 38354 CULEBRA DISP L Longitudinal dispersivity CONSTANT 3483 Culebra member of the Rustler formation ш 8 0.0000E+00 38355 DISPT L Transverse dispersivity CONSANT m 3484 CULEBRA Culebra member of the Rustler formation 9 DNSGRAIN Material Grain Density CONSTANT kg/m^3 2.8200E+03 32689 843 CULEBRA Culebra member of the Rustler formation 10 DTORT CONSTANT NONE 1.1000E-01 38345 Diffusive Tortuosity 3474 CULEBRA Culebra member of the Rustler formation m · CONSTANT 4.0000E+00 37727 11 3462 CULEBRA Culebra member of the Rustler formation ETHICK Effective Thickness 12 ŃÓNE 1.0000E+00 32541 FTORT CONSTANT: 861 CULEBRA Culebra member of the Rustler formation Fracture Tortuosity 13 KPT 0.0000E+00 32555 Flag for permeability determined threshold CONSTANT NONE 2691 CULEBRA Culebra member of the Rustler formation 14 **CULEBRA** Culebra member of the Rustler formation MEA_STOR Measured Storativity CONSTANT NONE 1.0000E-05 37664 3418 PC_MAX 15 Maximum allowable capillary pressure CONSTANT Pa 1.0000E+08 32755 137 CULEBRA Culebra member of the Rustler formation 2.6000E-01 16 2692 CULEBRA Culebra member of the Rustler formation PCT A Threshold pressure linear parameter CONSTANT Pa 32752 17 32753 2693 CULEBRA Culebra member of the Rustler formation PCT EXP Threshold pressure exponential parameter CONSTANT NONE -3.4800E-01 Pa 1.0133E+05 32772 18 CULEBRA Culebra member of the Rustler formation PO MIN Minimum brine pressure for capillary model CONSTANT 141 KPC=3 19 NONE 6.4360E-01 32764 PORE_DIS Brooks-Corey pore distribution parameter CONSTANT 139 CULEBRA Culebra member of the Rustler formation 20 140 CULEBRA Culebra member of the Rustler formation POROSITY Effective porosity CONSTANT NONE 1.5100E-01 32769 8.2200E+05 32774 21 PRESSURE Brine far-field pore pressure CONSTANT Pa 142 CULEBRA Culebra member of the Rustler formation 22 CONSTANT -1.3678E+01 32775 PRMX_LOG Log of intrinsic permeability, x-direction $log(m^2)$ 143 CULEBRA Culebra member of the Rustler formation 23 Culebra member of the Rustler formation PRMY LOG Log of intrinsic permeability, y-direction CONSTANT $log(m^2)$ -1.3678E+01 32776 144 CULEBRA 24 CULEBRA Culebra member of the Rustler formation PRMZ_LOG Log of intrinsic permeability, z-direction CONSTANT log(m^2) -1.3678E+01 32777 145 25 148 CULEBRA Culebra member of the Rustler formation RELP MOD Model number, relative permeability model CONSTANT NONE 4.0000E+00 32780 1.0000E+00 32781 26Culebra member of the Rustler formation SAT IBRN Initial Brine Saturation CONSTANT NONE 149 CULEBRA 27 CONSTANT 8.3630E-02 32782 Culebra member of the Rustler formation SAT_RBRN **Residual Brine Saturation** NONE 150 CULEBRA 28 151 Culebra member of the Rustler formation SAT RGAS Residual Gas Saturation CONSTANT NONE 7.7110E-02 32783 CULEBRA 29 30 31 32 NONE 0.0000E+00 37735 3469 CULEBRA Culebra member of the Rustler formation SKIN RES Skin Resistance CONSTANT

 Table PAR-30.
 Culebra Member of the Rustler Formation Parameters

PAR-214

}

1			Table PAR-31. Unname	ed Lower N	1ember of the Rustler Formation	on Paramete	rs		
2 3 4	Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
5	2217	UNNAMED	Unnamed Lower Member of Rustler Formation	CAP_MOD	Model number, capillary pressure model	CONSTANT	NONE	1.0000E+00	34684
6	2218	UNNAMED	Unnamed Lower Member of Rustler Formation	COMP_RCK	Bulk Compressibility	CONSTANT	Pa^-1	0.0000E+00	34686
7	2799	UNNAMED	Unnamed Lower Member of Rustler Formation	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	34687
8	2247	UNNAMED	Unnamed Lower Member of Rustler Formation	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	34690
9	2800	UNNAMED	Unnamed Lower Member of Rustler Formation	PCT_A	Threshold pressure linear parameter	CONSTANT	NONE	0.0000E+00	34688
10	2801	UNNAMED	Unnamed Lower Member of Rustler Formation	PCT_EXP	Threshold pressure exponential parameter	CONSTANT	NONE	0.0000E+00	34689
11	2802	UNNAMED	Unnamed Lower Member of Rustler Formation	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	34693
12	2219	UNNAMED	Unnamed Lower Member of Rustler Formation	PORE_DIS	Brooks-Corey pore distribution parameter	CONSTANT	NONE	7.0000E-01	34691
13	2220	UNNAMED	Unnamed Lower Member of Rustler Formation	POROSITY	Effective porosity	STUDENT'S-T	NONE	1.8100E-01	34692
14	2911	UNNAMED	Unnamed Lower Member of Rustler Formation	PRMX_LOG	Log of intrinsic permeability, x-direction	CONSTANT	log(m^2)	-3.5000E+01	34695
15	2912	UNNAMED	Unnamed Lower Member of Rustler Formation	PRMY_LOG	Log of intrinsic permeability, y-direction	<u>CONSTAN</u> T	log(m^2)	-3.5000E+01	34697
16	2913	UNNAMED	Unnamed Lower Member of Rustler Formation	PRMZ_LOG	Log of intrinsic permeability, z-direction	CONSTANT	log(m^2)	-3.5000E+01	34699
17	2225	UNNAMED	Unnamed Lower Member of Rustler Formation	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	34701
18	2248	UNNAMED	Unnamed Lower Member of Rustler Formation	SAT_RBRN	Residual Brine Saturation	CONSTANT	NONE	2.0000E-01	34702
19	2226	UNNAMED	Unnamed Lower Member of Rustler Formation	SAT_RGAS	Residual Gas Saturation	CONSTANT	NONE	2.0000E-01	34703
20 21									

Table PAR-31. Unnamed Lower Member of the Rustler Formation Parameters

-

td #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
540	S HALITE	Salado halite, intact	CAP_MOD	Model number, capillary pressure model	CONSTANT	NONE	2.0000E+00	34208
1703	S HALITE	Salado halite, intact	DNSGRAIN	Material Grain Density	CONSTANT	kg/m^3	0.0000E+00	34211
2778	S HALITE	Salado halite, intact	KPT	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	34233
1724	S HALITE	Salado halite, intact	MDISP_L	Longitudinal Matrix Dispersivity	CONSTANT	m	1.0000E+02	34234
1725	S HALITE	Salado halite, intact	MDISP_T	Transverse Matrix Dispersivity	CONSTANT	m	5.0000E+00	34235
542	S HALITE	Salado halite, intact	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	34379
2779	S HALITE	Salado halite, intact	PCT_A	Threshold pressure linear parameter	CONSTANT	Pa	5.6000E-01	34375
2780	S HALITE	Salado halite, intact	PCT_EXP	Threshold pressure exponential parameter	CONSTANT	NONE	-3.4600E-01	34377
545	S HALITE	Salado halite, intact	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	34391
543	S HALITE	Salado halite, intact	PORE_DIS	Brooks-Corey pore distribution parameter	CUMULATIVE	NONE	7.0000E-01	34385
553	S HALITE	Salado halite, intact	RELP_MOD	Model number, relative permeability model	DELTA	NONE	4.0000E+00	34412
554	s halite	Salado halite, intact	SAT_IBRN	Initial Brine Saturation	CONSTANT	NONE	1.0000E+00	34416
555	S HALITE	Salado halite, intact	SAT_RBRN	Residual Brine Saturation	UNIFORM	NONE	3.0000E-01	34418
556	S HALITE	Salado halite, intact	SAT_RGAS	Residual Gas Saturation	UNIFORM	NONE	2.0000E-01	34420
1742	S_HALITE	Salado halite, intact	TORTUSTY	Matrix Tortuosity	CONSTANT	NONE	1.0000E+01	34428

Title 40 CFR Part 191 Compliance Certification Application

Table PAR-32. Salado Formation - Intact Halite - Parameters

· · · .

Id#	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units
48	BRINESAL	Salado Brine	COMPRES	Brine Compressibility	CONSTANT	Pa^-1
49	BRINESAL	Salado Brine	DNSFLUID	Brine Density	CONSTANT	kg/m^3
50	BRINESAL	Salado Brine	REF_PRES	Reference pressure for porosity	CONSTANT	Pa
51	BRINESAL	Salado Brine	REF_TEMP	Reference Temperature	CONSTANT	ĸ
52	BRINESAL	Salado Brine	RSLOPE	Constant in solubility-versus-pressure model	CONSTANT	NONE
55	BRINESAL	Salado Brine	VISCO	Viscosity of H2 gas at 27 degrees Celsius and 0.101325 MPa	CONSTANT	Pa*s
57	BRINESAL	Salado Brine	WTF	Mass fraction of salt in brine	STUDENT'S-T	NONE

Table PAR-33. Salado Formation - Brine - Parameters

1 2

3

4

5

6

7

8

9

10

11 12 13 WPO

#

3.1000E-10 31540

1.2200E+03 31541

1.0133E+05 31542

3.0015E+02 31543

0.0000E+00 31544

2.1000E-03 31548

3.2400E-01 31552

Value

Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
2904	S_MB138	Salado MB138, intact and fractured	BKLINK	Klinkenberg b correction parameters for H2 gas	CONSTANT	Pa	2.7100E-01	3442
<u>5</u> 59	S_MB138	Salado MB138, intact and fractured	CAP_MOD	Model number, capillary pressure model	CONSTANT	NONE	2.0000E+00	3443
1743	S_MB138	Salado MB138, intact and fractured	DNSGRAIN	Material Grain Density	CONSTANT	kg/m^3	2.7500E+03	3444
2169	S_MB138	Salado MB138, intact and fractured	DPHIMAX	Incremental increase in porosity relative to intact conditions	CONSTANT	NONE	3.9000E-02	3444
2902	S_MB138	Salado MB138, intact and fractured	EXPKLINK	Klinkenberg b correction parameters for H2 gas	CONSTANT	NONE	-3.4100E-01	3444
2810	S_MB138	Salado MB138, intact and fractured	IFRX	Index for fracture perm. enhancement in X-direction	CONSTANT	NONE	1.0000E+00	3446
2813	S_MB138	Salado MB138, intact and fractured	IFRY	Index for fracture perm. enhancement in Y-direction	CONSTANT	NONE	1.0000E+00	3446
2816	S_MB138	Salado MB138, intact and fractured	IFRZ	Index for fracture perm. enhancement in Z-direction	CONSTANT	NONE	0.0000E+00	3447
2170	S_MB138	Salado MB138, intact and fractured	KMAXLOG	Log of maximum permeability in altered anhydrite flow model anhydrites	CONSTANT	log (m**2)	-9.0000E+00	3447
2783	S_MB138	Salado MB138, intact and fractured	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	3447
561	S_MB138	Salado MB138, intact and fractured	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	3451
2784	S_MB138	Salado MB138, intact and fractured	PCT_A	Threshold pressure linear parameter	CONSTANT	Pa	2.6000E-01	3450
2785	S_MB138	Salado MB138, intact and fractured	PCT_EXP	Threshold pressure exponential parameter	CONSTANT	NONE	-3.4800E-01	3450
563	S_MB138	Salado MB138, intact and fractured	PF_DELTA	Incremental pressure for full fracture development	CONSTANT	Pa	3.8000E+06	3451
565	S_MB138	Salado MB138, intact and fractured	PI_DELTA	Fracture initiation pressure increment	CONSTANT	Pa	2.0000E+05	3452
<u>5</u> 68	S_MB138	Salado MB138, intact and fractured	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	3453
567	S_MB138	Salado MB138, intact and fractured	POROSITY	Effective porosity	STUDENT'S-T	NONE	1.1000E-02	34530
576	S_MB138	Salado MB138, intact and fractured	SAT_IBRN	Initial Brine Saturation	CONSTANT	NONE	1.0000E+00	3454

Table PAR-34. Salado Formation - Marker Bed 138 - Parameters

Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
2905	S_MB139	Salado MB139, intact and fractured	BKLINK	Klinkenberg b correction parameters for H2 gas	CONSTANT	Pa	2.7100E-01	34557
579	S_MB139	Salado MB139, intact and fractured	CAP_MOD	Model number, capillary pressure model	CONSTANT	NONE	2.0000E+00	34559
1784	S_MB139	Salado MB139, intact and fractured	DNSGRAIN	Material Grain Density	CONSTANT	kg/m^3	2.7500E+03	34579
177	S_MB139	Salado MB139, intact and fractured	DPHIMAX	Incremental increase in porosity relative to intact conditions	CONSTANT	NONE	3.9000E-02	34582
2903	S_MB139	Salado MB139, intact and fractured	EXPKLINK	Klinkenberg b correction parameters for H2 gas	CONSTANT	NONE	-3.4100E-01	34799
2811	S_MB139	Salado MB139, intact and fractured	IFRX	Index for fracture perm. enhancement in X-direction	CONSTANT	NONE	1.0000E+00	34818
814	S_MB139	Salado MB139, intact and fractured	IFRY	Index for fracture perm. enhancement in Y-direction	CONSTANT	NONE	1.0000E+00	34819
817	S_MB139	Salado MB139, intact and fractured	IFRZ	Index for fracture perm. enhancement in Z-direction	CONSTANT	NONE	0.0000E+00	34820
178	S_MB139	Salado MB139, intact and fractured	KMAXLOG	Log of maximum permeability in altered anhydrite flow model anhydrites	CONSTANT	log (m**2)	-9.0000E+00	34823
2788	S_MB139	Salado MB139, intact and fractured	крт	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	34825
582	S_MB139	Salado MB139, intact and fractured	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	34848
2789	S_MB139	Salado MB139, intact and fractured	PCT_A	Threshold pressure linear parameter	CONSTANT	Pa	2.6000E-01	34843
2790	S_MB139	Salado MB139, intact and fractured	PCT_EXP	Threshold pressure exponential parameter	CONSTANT	NONE	-3.4800E-01	34844
2180	S_MB139	Salado MB139, intact and fractured	PF_DELTA	Incremental pressure for full fracture development	CONSTANT	Pa	3.8000E+06	34850
586	S_MB139	Salado MB139, intact and fractured	PI_DELTA	Fracture initiation pressure increment	CONSTANT	Pa	2.0000E+05	34856
589	S_MB139	Salado MB139, intact and fractured	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	34862
588	S_MB139	Salado MB139, intact and fractured	POROSITY	Effective porosity	STUDENT'S-T	NONE	1.1000E-02	34860
597	S MB139	Salado MB139, intact and fractured	SAT_IBRN	Initial Brine Saturation	CONSTANT	NONE	1.0000E+00	34503

Table PAR-35. Salado Formation - Marker Bed 139 - Parameters

Table PAR-36. Salado Formation - Anhydrite Beds a & b, Intact and Fractured - Parameters

Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPC #
2819	S_ANH_AB	Salado anhydrite beds a & b, intact and fractured	BKLINK	Klinkenberg b correction parameters for H2 gas	CONSTANT	Pa	2.7100E-01	3412
520	\$_ANH_AB	Salado anhydrite beds a & b, intact and fractured	CAP_MOD	Model number, capillary pressure model	CONSTANT	NONE	2.0000E+00	3413
1661	S_ANH_AB	Salado anhydrite beds a & b, intact and fractured	DNSGRAIN	Material Grain Density	CONSTANT	kg/m^3	2.7500E+03	3413
2158	S_ANH_AB	Salado anhydrite beds a & b, intact and fractured	DPHIMAX	Incremental increase in porosity relative to intact conditions	CONSTANT	NONE	2.3900E-01	3413
2820	S_ANH_AB	Salado anhydrite beds a & b, intact and fractured	EXPKLINK	Klinkenberg b correction parameters for H2 gas	CONSTANT	NONE	-3.4100E-01	3413
2812	S_ANH_AB	Salado anhydrite beds a & b, intact and fractured	IFRX	Index for fracture perm. enhancement in X-direction	CONSTANT	NONE	1.0000E+00	3415
2815	S_ANH_AB	Salado anhydrite beds a & b, intact and fractured	IFRY	Index for fracture perm. enhancement in Y-direction	CONSTANT	NONE	1.0000E+00	3415
2818	S ANH_AB	Salado anhydrite beds a & b, intact and fractured	IFRZ	Index for fracture perm. enhancement in Z-direction	CONSTANT	NONE	0.0000E+00	3416
2159	S_ANH_AB	Salado anhydrite beds a & b, intact and fractured	KMAXLOG	Log of maximum permeability in altered anhydrite flow model anhydrites	CONSTANT	log (m**2)	-9.0000E+00	3416
2773	S_ANH_AB	Salado anhydrite beds a & b, intact and fractured	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	3416
1684	S_ANH_AB	Salado anhydrite beds a & b, intact and fractured	MDISP_L	Longitudinal Matrix Dispersivity	CONSTANT	m	1.0000E+02	3416
1685	S_ANH_AB	Salado anhydrite beds a & b, intact and fractureSa	MDISP_T	Transverse Matrix Dispersivity	CONSTANT	m	5.0000E+00	3416
522	S_ANH_AB	Salado anhydrite beds a & b, intact and fractured	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	3418
2774	S_ANH_AB	Salado anhydrite beds a & b, intact and fractured	PCT_A	Threshold pressure linear parameter	CONSTANT	Pa	2.6000E-01	3418
2775	S_ANH_AB	Salado anhydrite beds a & b, intact and fractured	PCT_EXP	Threshold pressure exponential parameter	CONSTANT	NONE	-3.4800E-01	3418
524	S_ANH_AB	Salado anhydrite beds a & b, intact and fractured	PF_DELTA	Incremental pressure for full fracture development	CONSTANT	Pa	3.8000E+06	3418
526	S_ANH_AB	Salado anhydrite beds a & b, intact and fractured	PI_DELTA	Fracture initiation pressure increment	CONSTANT	Pa	2.0000E+05	3419
529	S_ANH_AB	Salado anhydrite beds a & b, intact and fractured	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	3419
528	S_ANH_AB	Salado anhydrite beds a & b, intact and fractured	POROSITY	Effective porosity	STUDENT'S-T	NONE	1.1000E-02	3419
537	S_ANH_AB	Salado anhydrite beds a & b, intact and fractured	SAT_IBRN	Initial Brine Saturation	CONSTANT	NONE	1.0000E+00	3420
1702	S ANH AB	Salado anhydrite beds a & b, intact and fractured	TORTUSTY	Matrix Tortuosity	CONSTANT	NONE	1.0000E+01	3420

.

Title 40 CFR Part 191 Compliance Certification Application

October 1996

Td #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
174	DRZ_0	Disturbed rock zone; time period -5 to 0 years	CAP_MOD	Model number, capillary pressure model	CONSTANT	NONE	1.0000E+00	32754
175	DRZ_0	Disturbed rock zone; time period -5 to 0 years	COMP_RCK	Bulk Compressibility	CONSTANT	Pa^-1	7.4100E-10	32758
2701	DRZ_0	Disturbed rock zone; time period -5 to 0 years	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	32801
944	DRZ_0	Disturbed rock zone; time period -5 to 0 years	MDISP_L	Longitudinal Matrix Dispersivity	CONSTANT	m	1.0000E+02	32804
945	DRZ_0	Disturbed rock zone; time period -5 to 0 years	MDISP_T	Transverse Matrix Dispersivity	CONSTANT	m	5.0000E+00	32805
176	DRZ_0	Disturbed rock zone; time period -5 to 0 years	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	32834
2702	DRZ_0	Disturbed rock zone; time period -5 to 0 years	PCT_A	Threshold pressure linear parameter	CONSTANT	NONE	0.0000E+00	32832
2703	DRZ_0	Disturbed rock zone; time period -5 to 0 years	PCT_EXP	Threshold pressure exponential parameter	CONSTANT	NONE	0.0000E+00	32833
179	DRZ_0	Disturbed rock zone; time period -5 to 0 years	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	32844
177	DRZ_0	Disturbed rock zone; time period -5 to 0 years	PORE_DIS	Brooks-Corey pore distribution parameter	CONSTANT	NONE	7.0000E-01	32837
181	DRZ_0	Disturbed rock zone; time period -5 to 0 years	PRMX_LOG	Log of intrinsic permeability, X-direction	CONSTANT	log(m^2)	-1.7000E+01	32847
182	DRZ_0	Disturbed rock zone; time period -5 to 0 years	PRMY_LOG	Log of intrinsic permeability, Y-direction	CONSTANT	log(m^2)	-1.7000E+01	32849
183	DRZ_0	Disturbed rock zone; time period -5 to 0 years	PRMZ_LOG	Log of intrinsic permeability, Z-direction	CONSTANT	log(m^2)	-1.7000E+01	32850
186	DRZ_0	Disturbed rock zone; time period -5 to 0 years	RELP_MOD	Model number, relative permeability model	DELTA	NONE	4.0000E+00	32856
187	DRZ_0	Disturbed rock zone; time period -5 to 0 years	SAT_IBRN	Initial Brine Saturation	CONSTANT	NONE	1.0000E+00	32857
188	DRZ_0	Disturbed rock zone; time period -5 to 0 years	SAT_RBRN	Residual Brine Saturation	CONSTANT	NONE	0.0000E+00	32860
189	DRZ_0	Disturbed rock zone; time period -5 to 0 years	SAT_RGAS	Residual Gas Saturation	CONSTANT	NONE	0.0000E+00	32862

--- ,

Table PAR-37. Disturbed Rock Zone Parameters

)

PAR-221

October 1996

	Titl	
	e 40	
	G	
	RP	
	IT 1	
	91 (
	B	
	plia	
	nce	
	G	
	ifica	
	itior	
	Ap	
ľ	plic	
	atio	
I		

Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPC #
2072	DRZ_0	Disturbed rock zone; time period -5 to 0 years	SP_S_LOG	Logarithm of specific storage	CONSTANT	ļ	-5.0000E+00	3286
962	DRZ_0	Disturbed rock zone; time period -5 to 0 years	TORTUSTY	Matrix Tortuosity	CONSTANT	NONE	1.0000E+01	3286
190	DRZ_1	Disturbed rock zone; time period 0 to 1000 years	CAP_MOD	Model number, capillary pressure model	CONSTANT	NONE	1.0000E+00	328
191	DRZ_1	Disturbed rock zone; time period 0 to 1000 years	COMP_RCK	Bulk Compressibility	CONSTANT	Pa^-1	7.4100E-10	328
3116	DRZ_1	Disturbed rock zone; time period 0 to 1000 years	крт	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	3287
193	DRZ_1	Disturbed rock zone; time period 0 to 1000 years	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	3289
3128	DRZ_1	Disturbed rock zone; time period 0 to 1000 years	PCT_A	Threshold pressure linear parameter	CONSTANT	NONE	0.0000E+00	3655
3129	DRZ_1	Disturbed rock zone; time period 0 to 1000 years	PCT_EXP	Threshold pressure exponential parameter	CONSTANT	NONE	0.0000E+00	3650
196	DRZ_1	Disturbed rock zone; time period 0 to 1000 years	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	3290
194	DRZ_1	Disturbed rock zone; time period 0 to 1000 years	PORE_DIS	Brooks-Corey pore distribution parameter	CONSTANT	NONE	7.0000E-01	3290
198	DRZ_1	Disturbed rock zone; time period 0 to 1000 years	PRMX_LOG	Log of intrinsic permeability, X-direction	CONSTANT	log(m^2)	-1.5000E+01	3290
199	DRZ_1	Disturbed rock zone; time period 0 to 1000 years	PRMY_LOG	Log of intrinsic permeability, Y-direction	CONSTANT	log(m^2)	-1.5000E+01	3290
200	DRZ_1	Disturbed rock zone; time period 0 to 1000 years	PRMZ_LOG	Log of intrinsic permeability, Z-direction	CONSTANT	log(m^2)	-1.5000E+01	3290
203	DRZ_1	Disturbed rock zone; time period 0 to 1000 years	RELP_MOD	Model number, relative permeability model	DELTA	NONE	4.0000E+00	3291
205	DRZ_I	Disturbed rock zone; time period 0 to 1000 years	SAT_RBRN	Residual Brine Saturation	CONSTANT	NONE	0.0000E+00	3291
206	DRZ_1	Disturbed rock zone; time period 0 to 1000	SAT_RGAS	Residual Gas Saturation	CONSTANT	NONE	0.0000E+00	329

Table PAR-37. Disturbed Rock Zone Parameters (Continued)

October 1996

id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
651	WAS_AREA	Waste emplacement area and waste	ABSROUGH	Absolute roughness of material	UNIFORM	m	2.5000E-02	34980
652	WAS_AREA	Waste emplacement area and waste	CAP_MOD	Model number, capillary pressure model	CONSTANT	NONE	1.0000E+00	34982
3454	WAS_AREA	Waste emplacement area and waste	CLOSMOD	Closure Surface Model	CONSTANT	NONE	4.0000E+00	38200
653	WAS_AREA	Waste emplacement area and waste	COMP_RCK_	Bulk Compressibility	CONSTANT	Pa^-1	0.0000E+00	34987
2041	WAS_AREA	Waste emplacement area and waste	DCELLCHW	Average density of cellulosics in CH-TRU waste	CONSTANT	kg/m^3	5.4000E+01	32464
2274	WAS_AREA	Waste emplacement area and waste	DCELLRHW	Average density of cellulosics in RH-TRU waste	CONSTANT	kg/m^3	1.7000E+01	32465
1992	WAS_AREA	Waste emplacement area and waste	DIRNCCHW	Bulk density of iron containers, CH-TRU waste	CONSTANT	kg/m^3	1.3900E+02	32466
1993	WAS_AREA	Waste emplacement area and waste	<u>DIRNCRHW</u>	Bulk density of iron containers, RH-TRU waste	CONSTANT	kg/m^3	2.5910E+03	32467
2040	WAS_AREA	Waste emplacement area and waste	DIRONCHW	Average density of iron-based material in CH-TRU waste	CONSTANT	kg/m^3	1.7000E+02	32468
2044	WAS_AREA	Waste emplacement area and waste	DIRONRHW	Average density of iron-based material in RH-TRU waste	CONSTANT	kg/m^3	1.0000E+02	32469
1994	WAS_AREA	Waste emplacement area and waste	DNSGRAIN	Material Grain Density	CONSTANT	kg/m^3	0.0000E+00	36967
2043	WAS_AREA	Waste emplacement area and waste	DPLASCHW	Average density of plastics in CH-TRU waste	CONSTANT	kg/m^3	3.4000E+01	32474
2275	WAS_AREA	Waste emplacement area and waste	DPLASRHW	Average density of plastics in CH-TRU waste	CONSTANT	kg/m^3	1.5000E+01	32476
1995	WAS_AREA	Waste emplacement area and waste	DPLSCCHW	Bulk density of plastic liners, CH-TRU waste	CONSTANT	kg/m^3	2.6000E+01	32478
2228	WAS_AREA	Waste emplacement area and waste	DPLSCRHW	Bulk density of plastic liners, RH-TRU waste	CONSTANT	kg/m^3	3.1000E+00	32480
2042	WAS_AREA	Waste emplacement area and waste	DRUBBCHW	Average density of rubber in CH-TRU waste	CONSTANT	kg/m^3	1.0000E+01	32481
2046	WAS_AREA	Waste emplacement area and waste	DRUBBRHW	Average density of rubber in RH-TRU waste	CONSTANT	kg/m^3	3.3000E+00	32483
2804	WAS_AREA	Waste emplacement area and waste	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	34942
658	WAS_AREA	Waste emplacement area and waste	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	34986
2805	WAS_AREA	Waste emplacement area and waste	PCT_A	Threshold pressure linear parameter	CONSTANT	Pa	0.0000E+00	34983
2806	WAS_AREA	Waste emplacement area and waste	PCT_EXP	Threshold pressure exponential parameter	CONSTANT	NONE	0.0000E+00	<u>3</u> 4984
661	WAS_AREA	Waste emplacement area and waste	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	<u>3</u> 4875
659	WAS_AREA	Waste emplacement area and waste	PORE_DIS	Brooks-Corey pore distribution parameter	CUMULATIVE	NONE	2.8900E+00	34989
660	WAS_AREA	Waste emplacement area and waste	POROSITY	Effective porosity	CONSTANT	NONE	8.4800E-01	34874
662	WAS_AREA	Waste emplacement area and waste	PRESSURE	Brine far-field pore pressure	CONSTANT	Pa	1.0133E+05	34876
663	WAS_AREA	Waste emplacement area and waste	PRMX_LOG	Log of intrinsic permeability, x-direction	CONSTANT	log(m^2)	-1.2769E+01	34877
664	WAS_AREA	Waste emplacement area and waste	PRMY_LOG	Log of intrinsic permeability, y-direction	CONSTANT	log(m^2)	-1.2769E+01	34878
665	WAS_AREA	Waste emplacement area and waste	PRMZ_LOG	Log of intrinsic permeability, z-direction	CONSTANT	log(m^2)	-1.2769E+01	34879
668	WAS_AREA	Waste emplacement area and waste	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	34890
669	WAS_AREA	Waste emplacement area and waste	SAT_IBRN	Initial Brine Saturation	CONSTANT	NONE	1.5000E-02	34894
2232	WAS_AREA	Waste emplacement area and waste	VOLCHW	BIR total volume of CH-TRU waste	CONSTANT	m^3	1.6900E+05	32484
2233	WAS_AREA	Waste emplacement area and waste	VOLRHW	BIR total volume of RH-TRU waste	CONSTANT	m^3	7.0800E+03	32485

Table PAR-38 Waste Area and Waste Material Parameters

DOE/CAO 1996-2184

PAR-223

1 1 A 12 3

Table PAR-39. Waste Chemistry Parameters

4	Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO#
5	3457	AM	Americium	CAPHUM	Maximum concentration of actinide with mobile humic colloids	CONSTANT	moles/liter	1.1000E-05	37721
6	3447	АМ	Americium	CAPMIC	Maximum concentration of actinide on microbe colloids	CONSTANT	moles/liter	1.0000E+00	37712
7	3310	АМ	Americium	CONCINT	Actinide concentration with mobile actinide intrinsic colloids	CONSTANT	moles/liter	0.0000E+00	36857
8	3441	AM	Americium	CONCMIN	Actinide concentration with mobile mineral fragment colloids	CONSTANT	moles/liter	2.6000E-08	37704
9	3311	АМ	Americium	PROPMIC	Moles of actinide mobilized on microbe colloids per moles dissolved	CONSTANT	moles/moles	3.6000E+00	36858
0	3444	AM+3	Americium III	MD0	Molecular diffusion in pure fluid	CONSTANT	m^2/s	3.0000E-10	37709
1	3482	AM+3	Americium III	MKD_AM	Matrix Distribution Coefficient for Americium	UNIFORM	m^3/kg	2.6000E-01	38353
2	838	CF	Califorinum	LOGSOLM	Log of the radionuclide solubility	CONSTANT	Log(moles/l)	0.0000E+00	31827
3	841	CS	Cesium	LOGSOLM	Log of the radionuclide solubility	CUNSTANT	Log(moles/I)	0.0000E+00	32680
4	3458	NP	Neptunium	САРНИМ	Maximum concentration of actinide with mobile humic colloids	CONSTANT	moles/liter	1.1000E-05	37723
5	3313	NP	Neptunium	CAPMIC	Maximum concentration of actinide on microbe colloids	CONSTANT	moles/liter	2.7000E-03	36860
6	3312	NP	Neptunium	CONCINT	Actinide concentration with mobile actinide intrinsic colloids	CONSTANT	moles/liter	0.0000E+00	36859
7	3439	NP	Neptunium	CONCMIN	Actinide concentration with mobile mineral fragment colloids	CONSTANT	moles/liter	2.6000E-08	37700
8	3314	NP	Neptunium	PROPMIC	Moles of actinide mobilized on microbe colloids per moles dissolved	CONSTANT	moles/moles	1.2000E+01	36861
9	3477	NP+4	Neptunium IV	MKD_NP	Matrix Distribution Coefficient for Neptunium	UNIFORM	m^3/kg	1.0000E+01	38348
0	3476	NP+5	Neptunium V	MKD_NP	Matrix Distribution Coefficient for Neptunium	UNIFORM	m^3/kg	1.0000E-01	38347
1	282	PB	Lead	LOGSOLM	Log of the radionuclide solubility	CONSTANT	Log(moles/l)	0.0000E+00	33213
2	3429	PHUMOX3	Proportionality constant with humic colloids for actinide in oxidation state III	PHUMCIM	Proportionality constant of actinides incastile brine w/ humic colloids, inorgan	CUMULATIVE	moles/moles	1.3700E+00	37683
:3	3433	рнимохз	Proportionality constant with humic colloids for actinide in oxidation state III	PHUMSIM	Proportionality constant of actinides insalado brine w/ humic colloids,inorganic	CONSTANT	moles/moles	1.9000E-01	37690
:4	3430	PHUMOX4	Proportionality constant with humic colloids for actinide in oxidation state IV	PHUMCIM	Proportionality constant of actinides incastile brine w/ humic colloids, inorgan	CONSTANT	moles/moles	6.3000E+00	37685
25	3434	PHUMOX4	Proportionality constant with humic colloids for actinide in oxidation state IV	PHUMSIM	Proportionality constant of actinides insalado brine w/ humic colloids,inorganic	CONSTANT	moles/moles	6.3000E+00	37691
26	3431	PHUMOX5	Proportionality constant with humic colloids for actinide in oxidation state V	PHUMCIM	Proportionality constant of actinides incastile brine w/ humic colloids, inorgan	CONSTANT	moles/moles	7.4000E-03	37687
27	3435	PHUMOX5	Proportionality constant with humic colloids for actinide in oxidation state V	PHUMSIM	Proportionality constant of actinides insalado brine w/ humic colloids,inorganic	CONSTANT	moles/moles	9.1000E-04	37694
28	3432	PHUMOX6	Proportionality constant with humic colloids for actinide in oxidation state VI	PHUMCIM	Proportionality constant of actinides incastile brine w/ humic colloids, inorgan	CONSTANT	moles/moles	5.1000E-01	37688
29	3436	PHUMOX6	Proportionality constant with humic colloids for actinide in oxidation state VI	PHUMSIM	Proportionality constant of actinides insalado brine w/ humic colloids,inorganic	CONSTANT	moles/moles	1.2000E-01	37695

)

1

÷.,,

3	Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO#
4	1167	РМ	Promethium	LOGSOLM	Log of the radionuclide solubility	CONSTANT	logMolar	4.6600E+00	33227
5	3459	PU	Plutonium	CAPHUM	Maximum concentration of actinide with mobile humic colloids	CONSTANT	moles/liter	1.1000E-05	37724
6	3315	PU	Plutonium	CAPMIC	Maximum concentration of actinide on microbe colloids	CONSTANT	moles/liter	6.8000E-05	36862
7	3316	PU	Plutonium	CONCINT	Actinide concentration with mobile actinide intrinsic colloids	CONSTANT	moles/liter	1.0000E-09	36863
8	3440	PU	Plutonium	CONCMIN	Actinide concentration with mobile mineral fragment colloids	CONSTANT	moles/liter	2.6000E-08	37703
9	3317	PU	Plutonium	PROPMIC	Moles of actinide mobilized on microbe colloids per moles dissolved	CONSTANT	moles/moles	3.0000E-01	36864
0	3442	PU+3	Plutonium III	MD0	Molecular diffusion in pure fluid	CONSTANT	m^2/s	3.0000E-10	37705
1	3480	PU+3	Plutonium III	MKD_PU	Matrix Distribution Coefficient for Plutonium	UNIFORM	m^3/kg	2.6000E-01	38351
2	3443	PU+4	Plutonium IV	MD0	Molecular diffusion in pure fluid	CONSTANT	m^2/s	1.5300E-10	37708
3	3481	PU+4	Plutonium IV	MKD_PU	Matrix Distribution Coefficient for Plutonium	UNIFORM	m^3/kg	1.0000E+01	38352
4	313	RA	Radium	LOGSOLM	Log of the radionuclide solubility	CONSTANT	Log(moles/1)	0.0000E+00	33455
5	3402	SOLMOD3	Oxidation state III model	SOLCIM	Solubility in Castile brine inorganic with chemistry controlled by Mg(OH)2-MgCO3	CUMULATIVE	moles/liter	6.5200E-08	37125
6	3406	SOLMOD3	Oxidation state III model	SOLSIM	Solubility in Salado brine, inorganic chemistry controlled by the Mg(OH)2-MgCO3	CUMULATIVE	moles/liter	5.8200E-07	37129
7	3403	SOLMOD4	Oxidation state IV model	SOLCIM	Solubility in Castile brine inorganic with chemistry controlled by Mg(OH)2-MgCO3	CUMULATIVE	moles/liter	6.0000E-09	37126
8	3407	SOLMOD4	Oxidation state IV model	SOLSIM	Solubility in Salado brine, inorganic chemistry controlled by the Mg(OH)2-MgCO3	CUMULATIVE	moles/liter	4.4000E-06	37130
9	3404	SOLMOD5	Oxidation state V model	SOLCIM	Solubility in Castile brine inorganic with chemistry controlled by Mg(OH)2-MgCO3	CUMULATIVE	moles/liter	2.2000E-06	37127
20	3408	SOLMOD5	Oxidation state V model	SOLSIM	Solubility in Salado brine, inorganic chemistry controlled by the Mg(OH)2-MgCO3	CUMULATIVE	moles/liter	2.3000E-06	37131
1	3405	SOLMOD6	Oxidation state VI model	SOLCIM	Solubility in Castile brine inorganic with chemistry controlled by Mg(OH)2-MgCO3	CUMULATIVE	moles/liter	8.8000E-06	37128
22	3409	SOLMOD6	Oxidation state VI model	SOLSIM	Solubility in Salado brine, inorganic chemistry controlled by the Mg(OH)2-MgCO3	CUMULATIVE	moles/liter	8.7000E-06	37132
23	3264	SOLPU3	Solubility of Plutonium in oxidation state III	SOLCIM	Solubility in Castile brine inorganic with chemistry controlled by Mg(OH)2-MgCO3	CUMULATIVE	NONE	-9.0000E-02	37108
4	3265	SOLPU3	Solubility of Plutonium in oxidation state III	SOLSIM	Solubility in Salado brine, inorganic chemistry controlled by the Mg(OH)2-MgCO3	CUMULATIVE	NONE	-9.0000E-02	37109
5	3389	SOLPU4	Solubility of Plutonium in oxidation state IV	SOLCIM	Solubility in Castile brine inorganic with chemistry controlled by Mg(OH)2-MgCO3	CUMULATIVE	NONE	-9.0000E-02	3711
6	3266	SOLPU4	Solubility of Plutonium in oxidation state IV	SOLSIM	Solubility in Salado brine, inorganic chemistry controlled by the Mg(OH)2-MgCO3	CUMULATIVE	NONE	-9.0000E-02	3711(
27	3393	SOLTH4	Solubility of Thorium in oxidation state IV	SOLSIM	Solubility in Salado brine, inorganic chemistry controlled by the Mg(OH)2-MgCO3	CUMULATIVE	NONE	-9.0000E-02	37115
28	3390	SOLU4	Solubility of Uranium in oxidation state IV	SOLSIM	Solubility in Salado brine, inorganic chemistry controlled by the Mg(OH)2-MgCO3	CUMULATIVE	NONE	-9.0000E-02	37112

Table PAD-30 Waste Chemistry Parameters (Continued)

Title 40 CFR Part 191 Compliance Certification Application

2.2 1.20

÷ ... 1

Id #	Material	Material Description	Pärameter	Parameter Description	Distribution Type	Units	Value	WPO#
3	392 SOLU6	Solubility of Uranium in oxidation state VI	SOLCIM	Solubility in Castile brine inorganic with chemistry controlled by Mg(OH)2-MgCO3	CUMULATIVE	NONE	-9.0000E-02	371144
3	391 SOLU6	Solubility of Uranium in oxidation state VI	SOLSIM	Solubility in Salado brine, inorganic chemistry controlled by the Mg(OH)2-MgCO3	CUMULATIVE	NONE	-9.0000E-02	37113A
1	659 SR	Strontium	LOGSOLM	Log of the radionuclide solubility	CONSTANT	Log(moles/l)	0.0000E+00	34352
3	461 TH	Thorium	CAPHUM	Maximum concentration of actinide with mobile humic colloids	CONSTANT	moles/liter	1.1000E-05	37726
3	318 TH	Thorium	САРМІС	Maximum concentration of actinide on microbe colloids	CONSTANT	moles/liter	1.9000E-03	36865
3	319 TH	Thorium	CONCINT	Actinide concentration with mobile actinide intrinsic colloids	CONSTANT	moles/liter	0.0000E+00	36866
3	437 TH	Thorium	CONCMIN	Actinide concentration with mobile mineral fragment colloids	CONSTANT	moles/liter	2.6000E-08	37697
3	320 TH	Thorium	PROPMIC	Moles of actinide mobilized on microbe colloids per moles dissolved	CONSTANT	moles/moles	3.1000E+00	36867
3	449 TH+4	Thorium IV	MD0	Molecular diffusion in pure fluid	CONSTANT	m^2/s	1.5300E-10	37715
3	478 TH+4	Thorium IV	MKD_TH	Matrix Distribution Coefficient for Thorium	UNIFORM	m^3/kg	1.0000E+01	38349
3	460 U	Uranium	CAPHUM	Maximum concentration of actinide with mobile humic colloids	CONSTANT	moles/liter	1.1000E-05	37725
3	308 U	Uranium	CAPMIC	Maximum concentration of actinide on microbe colloids	CONSTANT	moles/liter	2.1000E-03	36855
3	307 U	Uranium	CONCINT	Actinide concentration with mobile actinide intrinsic colloids	CONSTANT	moles/liter	0.0000E+00	36854
3	438 U	Uranium	CONCMIN	Actinide concentration with mobile mineral fragment colloids	CONSTANT	moles/liter	2.6000E-08	37698
3	309 U	Uranium	PROPMIC	Moles of actinide mobilized on microbe colloids per moles dissolved	CONSTANT	moles/moles	2.1000E-03	36856
3	446 U+4	Uranium IV	MD0	Molecular diffusion in pure fluid	CONSTANT	m^2/s	1.5300E-10	37711
3	479 <u>U+4</u>	Uranium IV	MKD_U	Matrix Distribution Coefficient for Uranium	UNIFORM	m^3/kg	1.0000E+01	38350
3	448 U+6	Uranium VI	MD0	Molecular diffusion in pure fluid	CONSTANT	m^2/s	4.2600E-10	37714
3	475 <u>U+6</u>	Uranium VI	MKD U	Matrix Distribution Coefficient for Uranium	UNIFORM	m^3/kg	1.5000E-02	38346

Table PAR-39. Waste Chemistry Parameters (Continued)

)

Title 40 CFR Part 191 Compliance Certification Application

14#	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
3220	AC225	Actinium 225	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.2502E-01	36738
3321	AC225	Actinium 225	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36868
3267	AC225	Actinium 225	HALFLIFE	Halflife	CONSTANT	s	8.6400E+05	36795
3221	AC227	Actinium 227	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.2703E-01	36739
3364	AC227	Actinium 227	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	1.0000E+02	36926
3268	AC227	Actinium 227	HALFLIFE	Halflife	CONSTANT	8	6.8710E+08	36796
3222	AC228	Actinium 228	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.2803E-01	36740
3322	AC228	Actinium 228	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36869
3269	AC228	Actinium 228	HALFLIFE	Halflife	CONSTANT	s	2.2070E+04	36797
2	AM241	Americium 241	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.4106E-01	31357
3363	AM241	Americium 241	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	1.0000E+02	36925
3	AM241	Americium 241	HALFLIFE	Halflife	CONSTANT	s	1.3640E+10	31358
3223	AM243	Americium 243	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.4306E-01	36741
3365	AM243	Americium 243	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	1.0000E+02	36927
6	AM243	Americium 243	HALFLIFE	Halflife	CONSTANT	s	2.3290E+11	31374
3224	AT217	Astatine 217	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.1701E-01	36742
3323	AT217	Astatine 217	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36870
3270	AT217	Astatine 217	HALFLIFE	Halflife	CONSTANT	s	3.2300E-02	36799
3225	BA137	Barium 137	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	1.3691E-01	36743
3324	BA137	Barium 137	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36871
3271	BA137	Barium 137	HALFLIFE	Halflife	CONSTANT	s	1.0000E+38	36800
3226	BA137M	Barium 137 Metastable	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	1.3691E-01	36744
3325	BA137M	Barium 137 Metastable	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36872
3272	BA137M	Barium 137 Metastable	HALFLIFE	Halflife	CONSTANT	s	1.5310E+02	36801
3227	BI211	Bismuth 211	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.1099E-01	36746
3326	B1211	Bismuth 211	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36873
3273	B1211	Bismuth 211	HALFLIFE	Halflife	CONSTANT	s	1.2780E+02	36803
3228	BI212	Bismuth 212	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.1199E-01	36748
3327	BI212	Bismuth 212	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36874
3274	BI212	Bismuth 212	HALFLIFE	Halflife	CONSTANT	s	3.6330E+03	36804
3229	Bl213	Bismuth 213	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.1299E-01	36749
3328	BI213	Bismuth 213	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36875
3275	BI213	Bismuth 213	HALFLIFE	Halflife	CONSTANT	5	2.7390E+03	36806
3230	BI214	Bismuth 214	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.1400E-01	36750
3329	BI214	Bismuth 214	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36876
3276	BI214	Bismuth 214	HALFLIFE	Halflife	CONSTANT	s	1.1940E+03	36807
106	CE252	Californium 252	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kø/mole	2 5208E-01	31828

)

DOE/CAO 1996-2184

PAR-227

Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
3330	CF252	Californium 252	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36877
107	CF252	Californium 252	HALFLIFE	Halflife	CONSTANT	s	8.3250E+07	31829
3231	CM243	Curium 243	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.4306E-01	36751
3366	CM243	Curium 243	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	1.0000E+02	36928
3277	CM243	Curium 243	HALFLIFE	Halflife	CONSTANT	s	8.9940E+08	36809
110	CM244	Curium 244	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.4406E-01	32331
3331	CM244	Curium 244	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36878
111	CM244	Curium 244	HALFLIFE	Halflife	CONSTANT	s	5.7150E+08	32495
3232	CM245	Curium 245	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.4507E-01	36752
3367	CM245	Curium 245	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	1.0000E+02	36929
3278	CM245	Curium 245	HALFLIFE	Halflife	CONSTANT	s	2.6820E+11	36811
3233	CM248	Curium 248	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.4807E-01	36754
3368	CM248	Curium 248	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	1.0000E+02	36930
115	CM248	Curium 248	HALFLIFE	Halflife	CONSTANT	s	1.0700E+13	32499
116	C\$137	Cesium 137	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	1.3691E-01	32332
3369	CS137	Cesium 137	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	1.0000E+03	36931
117	CS137	Cesium 137	HALFLIFE	Halflife	CONSTANT	s	9.4670E+08	32682
3234	FR221	Francium 221	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.2101E-01	36755
3332	FR221	Francium 221	EPAREL	EPA Release Limit	CONSTANT	Cì/wuf	0.0000E+00	36879
3279	FR221	Francium 221	HALFLIFE	Halflife	CONSTANT	S	2.8800E+02	36812
3235	ND143	Neodymium 143	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	1.4291E-01	36757
3333	ND143	Neodymium 143	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36880
3280	ND143	Neodymium 143	HALFLIFE	Halflife	CONSTANT	s	1.0000E+38	36813
246	NP237	Neptunium 237	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.3705E-01	32336
3370	NP237	Neptunium 237	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	1.0000E+02	36932
247	NP237	Neptunium 237	HALFLIFE	Halflife	CONSTANT	s	_6.7530E+13	32579
3236	NP239	Neptunium 239	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.3905E-01	36758
3334	NP239	Neptunium 239	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36881
3281	NP239	Neptunium 239	HALFLIFE	Halflife	CONSTANT	s	2.0350E+05	36815
250	PA231	Protactinium 231	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.3104E-01	32337
3371	PA231	Protactinium 231	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	1.0000E+02	36933
251	PA231	Protactinium 231	HALFLIFE	Halflife	CONSTANT	s	1.0340E+12	32929
3237	PA233	Protactinium 233	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.3304E-01	36759
3335	PA233	Protactinium 233	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36882
3282	PA233	Protactinium 233	HALFLIFE	Halflife	CONSTANT	s	2.3330E+06	36828
3197	PA234M	Protactinium 234 Metastable	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.3404E-01	36660
1112	D. 02414	Description and Mexicolity	EDADEI	EBA Balanan Limit	CONSTANT	Cilumf	0.000000.00	26002

Table PAR-40. Radionuclide Parameters (Continued)

Title 40 CFR Part 191 Compliance Certification Application

. .

Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
3283	PA234M	Protactinium 234 Metastable	HALFLIFE	Halflife	CONSTANT	s	7.0200E+01	36829
3421	PB209	Lead 209	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.0898E-01	37670
3337	PB209	Lead 209	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36884
3284	PB209	Lead 209	HALFLIFE	Halflife	CONSTANT	5	1.1880E+04	36830
283	PB210	Lead 210	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.0998E-01	32338
3372	PB210	Lead 210	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	1.0000E+02	36934
284	PB210	Lead 210	HALFLIFE	Halflife	CONSTANT	8	7.0370E+08	33218
3200	PB211	Lead 211	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.1099E-01	36705
3338	PB211	Lead 211	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36885
3285	PB211	Lead 211	HALFLIFE	Halflife	CONSTANT	s	2.1660E+03	36831
3201	PB212	Lead 212	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.1199E-01	36706
3339	PB212	Lead 212	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36886
3286	PB212	Lead 212	HALFLIFE	Halflife	CONSTANT	s	3.8300E+04	36832
3202	PB214	Lead 214	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.1400E-01	36707
3340	PB214	Lead 214	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36888
3287	PB214	Lead 214	HALFLIFE	Halflife	CONSTANT	s	1.6080E+03	36833
287	PM147	Promethium 147	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	1.4692E-01	32339
3341	PM147	Promethium 147	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36889
288	PM147	Promethium 147	HALFLIFE	Halflife	CONSTANT	s	8.2790E+07	33231
3203	PO212	Polonium 212	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.1199E-01	36708
3342	PO212	Polonium 212	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36891
3288	PO212	Polonium 212	HALFLIFE	Halflife	CONSTANT	s	3.0000E-07	36834
3204	PO213	Polonium 213	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.1299E-01	36709
3343	PO213	Polonium 213	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36892
3289	PO213	Polonium 213	HALFLIFE	Halflife	CONSTANT	s	4.2000E-06	36835
3205	PO214	Polonium 214	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.1400E-01	36710
3344	PO214	Polonium 214	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36893
3290	PO214	Polonium 214	HALFLIFE	Halflife	CONSTANT	s	1.6430E-04	36836
3206	PO215	Polonium 215	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.1500E-01	36711
3345	PO215	Polonium 215	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36894
3291	PO215	Polonium 215	HALFLIFE	Halflife	CONSTANT	s	1.7800E-03	36837
3207	PO216	Polonium 216	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.1600E-01	36712
3346	PO216	Polonium 216	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36895
3292	PO216	Polonium 216	HALFLIFE	Halflife	CONSTANT	s	1.5000E-01	36838
3208	PO218	Polonium 218	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.1801E-01	36713
3347	PO218	Polonium 218	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36896
3293	PO218	Polonium 218	HALFLIFE	Halflife	CONSTANT	s	1.8300E+02	36839

Table PAR-40, Radionuclide Parameters (Continued)

Title 40 CFR Part 191 Compliance Certification Application

					Distribution		Walue	WPO
1d #	Material	Material Description	ATURICUT	Farameter Description	CONSTANT	Units ka(mole	2 2905E 01	22240
291	PU238	Plutonium 238	EDADEL	FDA Balassa Limit	CONSTANT	Cilumf	1.0000E(02	26025
3373	PU238	Plutonium 238	LIALER		CONSTANT	CBWUI	1.0000E+02	22245
292	PU238	Plutonium 238	HALFLIFE	Haime	CONSTANT	Is limited as	2.7690E+09	20241
295	PU239	Plutonium 239	AIWEIGHT	Atomic weight in kg/mole	CONSTANT		2.3903E-01	32341
3374	PU239	Plutonium 239	EPAREL	EPA Release Limit	CONSTANT		1.0000E+02	30930
296	PU239	Plutonium 239	HALFLIFE	Halflite	CONSTANT	<u>s</u>	7,5940E+11	33256
299	PU240	Plutonium 240	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.4005E-01	32342
3375	PU240	Plutonium 240	EPAREL	EPA Release Limit	CONSTANT_	Ci/wuf	1.0000E+02	36937
300	PU240	Plutonium 240	HALFLIFE	Halflife	CONSTANT	<u>s</u>	2.0630E+11	33265
	PU241	Plutonium 241	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.4106E-01	32343
3348	PU241	Plutonium 241	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36898
304	PU241	Plutonium 241	HALFLIFE	Halflife	CONSTANT	s	4.5440E+08	33292
307	PU242	Plutonium 242	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.4206E-01	32344
3376	PU242	Plutonium 242	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	1.0000E+02	36938
308	PU242	Plutonium 242	HALFLIFE	Halflife	CONSTANT	<u>s</u>	1.2210E+13	33295
311	PU244	Plutonium 244	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.4406E-01	32345
3377	PU244	Plutonium 244	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	1.0000E+02	36939
312	PU244	Plutonium 244	HALFLIFE	Halflife	CONSTANT	S	2.6070E+15	33297
3209	RA223	Radium 223	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.2302E-01	36714
3349	RA223	Radium 223	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36899
3294	RA223	Radium 223	HALFLIFE	Halflife	CONSTANT	s	9.8790E+05	36840
3210	RA224	Radium 224	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.2402E-01	36715
3350	RA224	Radium 224	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36901
3295	RA224	Radium 224	HALFLIFE	Halflife	CONSTANT	s	3.1620E+05	36841
3211	RA225	Radium 225	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.2502E-01	36716
3351	RA225	Radium 225	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36902
3296	RA225	Radium 225	HALFLIFE	Halflife	CONSTANT	s	1.2790E+06	36842
314	RA226	Radium 226	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.2603E-01	32347
3378	RA226	Radium 226	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	1.0000E+02	36940
315	RA226	Radium 226	HALFLIFE	Halflife	CONSTANT	s	5.0490E+10	33458
318	RA228	Radium 228	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.2803E-01	32348
3352	PA228	Radium 228	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36903
210	PA228	Radium 228	HALFLIFE	Halflife	CONSTANT	s	2.1143E+08	33468
2010	DN210	Radon 210	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2 1901E-01	36719
3212	BN210	Radon 210	FPAREI	EPA Release I imit	CONSTANT	Ci/wuf	0.0000E+00	36904
3353	RN219	Radon 210	HALELISE	Halflife	CONSTANT	e	3.96008+00	36843
3297	RN219	Radon 219	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	ka/mole	2 2001E-01	36720
1 3213	F KN220	Kadon 220	INT MERCINET	TATOTAL WEIGHT III NEUTIOR	UOIISTANT	TREATION	<u>4.20010-01</u>	10120

Title 40 CFR Part 191 Compliance Certification Application

.

٠<u>;</u>,

Table PAR-40. Radionuclide Parameters (Continued)

1d #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
3354	RN220	Radon 220	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36906
3298	RN220	Radon 220	HALFLIFE	Halflife	CONSTANT	s	5.5600E+01	36844
3214	RN222	Radon 222	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.2202E-01	36732
3355	RN222	Radon 222	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36907
3299	RN222	Radon 222	HALFLIFE	Halflife	CONSTANT	s	3.3040E+05	36845
514	SM147	Samarium 147	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	1.4692E-01	32455
3379	SM147	Samarium 147	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	1.0000E+02	36941
515	SM147	Samarium 147	HALFLIFE	Halflife	CONSTANT	s	3.3770E+18	34350
3215	SR90	Strontium 90	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	8.9908E-02	36733
516	SR90	Strontium 90	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	8.9908E-02	32456
3380	SR90	Strontium 90	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	1.0000E+03	36942
517	SR90	Strontium 90	HALFLIFE	Halflife	CONSTANT	s	9.1900E+08	34353
3216	TH227	Thorium 227	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.2703E-01	36734
3356	TH227	Thorium 227	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36909
3300	TH227	Thorium 227	HALFLIFE	Halflife	CONSTANT	s	1.6170E+06	36846
3217	TH228	Thorium 228	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.2803E-01	36735
3357	TH228	Thorium 228	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36910
3301	TH228	Thorium 228	HALFLIFE	Halflife	CONSTANT	s	6.0370E+07	36847
603	TH229	Thorium 229	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.2903E-01	34594
3381	TH229	Thorium 229	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	1.0000E+02	36943
604	TH229	Thorium 229	HALFLIFE	Halflife	CONSTANT	s	2.3160E+11	34595
607	TH230	Thorium 230	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.3003E-01	34600
3382	TH230	Thorium 230	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	1.0000E+01	36944
608	TH230	Thorium 230	HALFLIFE	Halflife	CONSTANT	s	2.4300E+12	34601
3218	TH231	Thorium 231	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.3104E-01	36736
3358	TH231	Thorium 231	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36911
3302	TH231	Thorium 231	HALFLIFE	Halflife	CONSTANT	S	9.1870E+04	36848
611	TH232	Thorium 232	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.3204E-01	32458
3383	TH232	Thorium 232	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	1.0000E+01	36945
612	TH232	Thorium 232	HALFLIFE	Halflife	CONSTANT	s	4.4340E+17	34605
3219	TH234	Thorium 234	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.3404E-01	36737
3359	TH234	Thorium 234	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36921
3303	TH234	Thorium 234	HALFLIFE	Halflife	CONSTANT	s	2.0820E+06	36849
3196	TL207	Thallium 207	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.0698E-01	36659
3360	TL207	Thallium 207	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36922
3304	TL207	Thallium 207	HALFLIFE	Halflife	CONSTANT	s	2.8620E+02	36850
632	1/233	Uranium 233	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.3304E-01	32459

)

Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
3384	U233	Uranium 233	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	1.0000E+02	36946
633	U233	Uranium 233	HALFLIFE	Halflife	CONSTANT	s	5.0020E+12	34662
636	U234	Uranium 234	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.3404E-01	32460
3385	U234	Uranium 234	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	1.0000E+02	36947
637	U234	Uranium 234	HALFLIFE	Halflife	CONSTANT	s	7.7160E+12	34667
640	U235	Uranium 235	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.3504E-01	32461
3386	U235	Uranium 235	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	1.0000E+02	36948
641	U235	Uranium 235	HALFLIFE	Halflife	CONSTANT	s	2.2210E+16	34671
644	U236	Uranium 236	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.3605E-01	32462
3387	U236	Uranium 236	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	1.0000E+02	36949
645	U236	Uranium 236	HALFLIFE	Halflife	CONSTANT	s	7.3890E+14	34676
647	U238	Uranium 238	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	2.3805E-01	32463
3388	U238	Uranium 238	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	1.0000E+02	36950
648	U238	Uranium 238	HALFLIFE	Halflife	CONSTANT	s	1.4100E+17	34680
3198	Y90	Yttrium 90	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	8.9907E-02	36703
3361	Y90	Yttrium 90	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36923
3305	Y90	Yttrium 90	HALFLIFE	Halflife	CONSTANT	s	2.3040E+05	36851
3199	ZR90	Zirconium 90	ATWEIGHT	Atomic Weight in kg/mole	CONSTANT	kg/mole	8.9905E-02	36704
3362	ZR90	Zirconium 90	EPAREL	EPA Release Limit	CONSTANT	Ci/wuf	0.0000E+00	36924
3306	ZR90	Zirconium 90	HALFLIFE	Halflife	CONSTANT	s	1.0000E+38	36852

)

Table PAR-40. Radionuclide Parameters (Continued)

Title 40 CFR Part 191 Compliance Certification Application

Table PAR-41. Isotope Inventory

)

Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
4	AM241	Americium 241	INVCHD	Inventory of contact handled design	CONSTANT	Ci	4.4200E+05	31359
5	AM241	Americium 241	INVRHD	Inventory of remote handled design	CONSTANT	Ci	5.9600E+03	31360
3415	AM243	Americium 243	INVCHD	Inventory of contact handled design	CONSTANT	Ci	3.2600E+01	37138
3416	AM243	Americium 243	INVRHD	Inventory of remote handled design	CONSTANT	Ci	2.2800E-04	<u>37139</u>
108	CF252	Californium 252	INVCHD	Inventory of contact handled design	CONSTANT	Ci	2.3900E+02	31830
109	CF252	Californium 252	INVRHD	Inventory of remote handled design	CONSTANT	Ci	1.2900E+00	31831
3410	CM243	Curium 243	INVCHD	Inventory of contact handled design	CONSTANT	Ci	2.7200E+00	37133
3411	CM243	Curium 243	INVRHD	Inventory of remote handled design	CONSTANT	Ci	4.9500E+01	37134
112	CM244	Curium 244	INVCHD	Inventory of contact handled design	CONSTANT	Ci	3.1500E+04	32496
113	CM244	Curium 244	INVRHD	Inventory of remote handled design	CONSTANT	Ci	3.1500E+02	32497
3412	CM245	Curium 245	INVCHD	Inventory of contact handled design	CONSTANT	Ci	1.1500E+02	37135
3413	CM245	Curium 245	INVRHD	Inventory of remote handled design	CONSTANT	Ci	1.4600E-06	37136
2265	CM248	Curium 248	INVCHD	Inventory of contact handled design	CONSTANT	Ci	8.9500E-02	32500
2266	CM248	Curium 248	INVRHD	Inventory of remote handled design	CONSTANT	Ci	2.0500E-04	32501
2037	CS137	Cesium 137	INVCHD	Inventory of contact handled design	CONSTANT	Ci	8.0600E+03	32683
118	CS137	Cesium 137	INVRHD	Inventory of remote handled design	CONSTANT	Ci	2.1600E+05	32684
248	NP237	Neptunium 237	INVCHD	Inventory of contact handled design	CONSTANT	Ci	5.6100E+01	32584
249	NP237	Neptunium 237	INVRHD	Inventory of remote handled design	CONSTANT	Ci	2.8500E+00	32593
2267	PA231	Protactinium 231	INVCHD	Inventory of contact handled design	CONSTANT	Ci	4.5100E-01	32930
2268	PA231	Protactinium 231	INVRHD	Inventory of remote handled design	CONSTANT	Ci	1.9100E-03	32931
285	PB210	Lead 210	INVCHD	Inventory of contact handled design	CONSTANT	Ci	2.5500E+00	33221
286	PB210	Lead 210	INVRHD	Inventory of remote handled design	CONSTANT	Ci	7.1600E-06	33223
2038	PM147	Promethium 147	INVCHD	Inventory of contact handled design	CONSTANT	Ci	7.8700E+00	33233
289	PM147	Promethium 147	INVRHD	Inventory of remote handled design	CONSTANT	Ci	1.0700E+01	33236
293	PU238	Plutonium 238	INVCHD	Inventory of contact handled design	CONSTANT	Ci	2.6100E+06	33247
294	PU238	Plutonium 238	INVRHD	Inventory of remote handled design	CONSTANT	Ci	1.4500E+03	33251
297	PU239	Plutonium 239	INVCHD	Inventory of contact handled design	CONSTANT	Ci	7.8500E+05	33260
298	PU239	Plutonium 239	INVRHD	Inventory of remote handled design	CONSTANT	Ci	1.0300E+04	33262
301	PU240	Plutonium 240	INVCHD	Inventory of contact handled design	CONSTANT	Ci	2.1000E+05	33267
302	PU240	Plutonium 240	INVRHD	Inventory of remote handled design	CONSTANT	Ci	5.0700E+03	33268
305	PU241	Plutonium 241	INVCHD	Inventory of contact handled design	CONSTANT	Ci	2.3100E+06	33270
306	PU241	Plutonium 241	INVRHD	Inventory of remote handled design	CONSTANT	Ci	1.4200E+05	33271
309	PU242	Plutonium 242	INVCHD	Inventory of contact handled design	CONSTANT	Ci	1.1700E+03	33274
310	PU242	Plutonium 242	INVRHD	Inventory of remote handled design	CONSTANT	Ci	1.5000E-01	33272
2269	PU244	Plutonium 244	INVCHD	Inventory of contact handled design	CONSTANT	Ci	1.5000E-06	33450
2270	PU244	Plutonium 244	INVRHD	Inventory of remote handled design	CONSTANT	Ci	2.2100E-11	33452

)

) CFR Pa
art 191 (
Complia
nce Certi
fication
Applica

		and the second	Survey and		This authority			Mino
ıa#	Material	Material Description	Parameter	Parameter Description	Туре	Units	Value	#
316	RA226	Radium 226	INVCHD	Inventory of contact handled design	CONSTANT	Ci	1.1600E+01	33462
317	RA226	Radium 226	INVRHD	Inventory of remote handled design	CONSTANT	Ci	3.5800E-05	33464
2271	RA228	Radium 228	INVCHD	Inventory of contact handled design	CONSTANT	Ci	7.4700E-01	33470
2272	RA228	Radium 228	INVRHD	Inventory of remote handled design	CONSTANT	Ci	7.7700E-02	36968
2039	SR90	Strontium 90	INVCHD	Inventory of contact handled design	CONSTANT	Ci	6.8500E+03	34354
518	SR90	Strontium 90	INVRHD	Inventory of remote handled design	CONSTANT	Ci	2.0900E+05	34355
605	TH229	Thorium 229	INVCHD	Inventory of contact handled design	CONSTANT	Ci	2.8800E+00	34596
606	TH229	Thorium 229	INVRHD	Inventory of remote handled design	CONSTANT	Ci	1.1700E-01	34597
609	TH230	Thorium 230	INVCHD	Inventory of contact handled design	CONSTANT	Ci	8.0600E-02	34602
610	TH230	Thorium 230	INVRHD	Inventory of remote handled design	CONSTANT	Ci	7.5600E-03	34603
613	TH232	Thorium 232	INVCHD	Inventory of contact handled design	CONSTANT	Ci	9.1300E-01	34606
614	TH232	Thorium 232	INVRHD	Inventory of remote handled design	CONSTANT	Ci	9.2500E-02	34607
634	U233	Uranium 233	INVCHD	Inventory of contact handled design	CONSTANT	Ci	1.7900E+03	34663
635	U233	Uranium 233	INVRHD	Inventory of remote handled design	CONSTANT	Ci	1.5800E+02	34664
638	U234	Uranium 234	INVCHD	Inventory of contact handled design	CONSTANT	Ci	4.6500E+02	34668
639	U234	Uranium 234	INVRHD	Inventory of remote handled design	CONSTANT	Ci	4.2700E+01	34669
642	U235	Uranium 235	INVCHD	Inventory of contact handled design	CONSTANT	Ci	1.2800E+01	34672
643	U235	Uranium 235	INVRHD	Inventory of remote handled design	CONSTANT	Ci	4.6300E+00	34674
2216	U236	Uranium 236	INVCHD	Inventory of contact handled design	CONSTANT	Ci	3.3300E-01	34677
646	U236	Uranium 236	INVRHD	Inventory of remote handled design	CONSTANT	Ci	9.6800E-02	34678
649	U238	Uranium 238	INVCHD	Inventory of contact handled design	CONSTANT	Ci	3.9600E+01	34681
650	U238	Uranium 238	INVRHD	Inventory of remote handled design	CONSTANT	Ci	1.0500E+01	34682

Table PAR-41. Isotope Inventory (Continued)

)

					Distribution			WPO
. Id #	Material	Material Description	Parameter	Parameter Description	Туре	Units	Value	#
3106	REFCON	Reference Constant	ASDRUM	Surface area of corrodable metal per drum	CONSTANT	m^2	6.0000E+00	36370
3132	REFCON	Reference Constant	DRROOM	Number of drums, per room, in ideal packing	CONSTANT	NONE	6.8040E+03	32372

Table PAR-42. Waste Container Parameters

5

6 7 8

	<)
1	

Title 40 CFR Part 191 Compliance Certification Application

.

3 4	Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
5	228	H2	Hydrogen Gas	VISCO	Viscosity of H2 gas at 27 degrees Celsius and 0.101325 MPa	CONSTANT	Pa*s	8.9339E-06	32334A
6	2906	NITRATE	Nitrate	QINIT	Initial quantity of material in waste	CONSTANT	moles	2.6100E+07	32335
7	2908	STEEL	Generic steel in waste	CORRWCO2	Inundated corrosion rate for steel with CO2 present	UNIFORM	m/s	1.0318E-13	34358
8	2910	STEEL	Generic steel in waste	HUMCORR	Humid corrosion rate for steel	CONSTANT	m/s	0.0000E+00	34127
9	2898	STEEL	Generic steel in waste	STOIFX	Stoichiometric factor - X	CONSTANT	NONE	1.0000E+00	34128
0	2909	SULFATE	Sulfate	QINIT	Initial quantity of material in waste	CONSTANT	moles	6.5900E+06	32457
11 12			• • • • • • • • • • • • • • • • • • • •						

Table PAR-43. Stoichiometric Gas Generation Model Parameters

1

.

.

Avenue
a /

Title 40 CFR Part 191 Compliance Certification Application

	Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Vatue	WPO #
Γ	2110	REPOSIT	Repository regions outside of Panel region	CAP_MOD	Model number, capillary pressure model	CONSTANT	NONE	1.0000E+00	33285
Γ	3455	REPOSIT	Repository regions outside of Panel region	CLOSMOD	Closure Surface Model	CONSTANT	NONE	4.0000E+00	38207
	2112	REPOSIT	Repository regions outside of Panel region	COMP_RCK	Bulk Compressibility	CONSTANT	Pa^-1	0.0000E+00	33290
	2113	REPOSIT	Repository regions outside of Panel region	DCELLCHW	Average density of cellulosics in CH-TRU waste	CONSTANT	kg/m^3	5.4000E+01	33298
Γ	2114	REPOSIT	Repository regions outside of Panel region	DCELLRHW	Average density of cellulosics in RH-TRU waste	CONSTANT	kg/m^3	1.7000E+01	32436
Γ	2115	REPOSIT	Repository regions outside of Panel region	DIRNCCHW	Bulk density of iron containers, CH-TRU waste	CONSTANT	kg/m^3	1.3900E+02	32439
	2116	REPOSIT	Repository regions outside of Panel region	DIRNCRHW	Bulk density of iron containers, RH-TRU waste	CONSTANT	kg/m^3	2.5910E+03	32440
	2117	REPOSIT	Repository regions outside of Panel region	DIRONCHW	Average density of iron-based material in CH- TRU waste	CONSTANT	kg/m^3	1.7000E+02	32442
	2118	REPOSIT	Repository regions outside of Panel region	DIRONRHW	Average density of iron-based material in RH- TRU waste	CONSTANT	kg/m^3	1.0000E+02	32443
Γ	2119	REPOSIT	Repository regions outside of Panel region	DPLASCHW	Average density of plastics in CH-TRU waste	CONSTANT	kg/m^3	3.4000E+01	32444
	2120	REPOSIT	Repository regions outside of Panel region	DPLASRHW	Average density of plastics in CH-TRU waste	CONSTANT	kg/m^3	1.5000E+01	32446
Γ	2121	REPOSIT	Repository regions outside of Panel region	DPLSCCHW	Bulk density of plastic liners, CH-TRU waste	CONSTANT	kg/m^3	2.6000E+01	32447
Γ	2995	REPOSIT	Repository regions outside of Panel region	DPLSCRHW	Bulk density of plastic liners, RH-TRU waste	CONSTANT	kg/m^3	3.1000E+00	32449
Γ	2122	REPOSIT	Repository regions outside of Panel region	DRUBBCHW	Average density of rubber in CH-TRU waste	CONSTANT	kg/m^3	1.0000E+01	32450
Γ	2123	REPOSIT	Repository regions outside of Panel region	DRUBBRHW	Average density of rubber in RH-TRU waste	CONSTANT	kg/m^3	3.3000E+00	32451
Γ	2736	REPOSIT	Repository regions outside of Panel region	крт	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	33238
Γ	2242	REPOSIT	Repository regions outside of Panel region	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	33246
Γ	2737	REPOSIT	Repository regions outside of Panel region	PCT_A	Threshold pressure linear parameter	CONSTANT	Pa	0.0000E+00	33240
Γ	2738	REPOSIT	Repository regions outside of Panel region	PCT_EXP	Threshold pressure exponential parameter	CONSTANT	NONE	0.0000E+00	33242
	2739	REPOSIT	Repository regions outside of Panel region	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	33252
Γ	2129	REPOSIT	Repository regions outside of Panel region	PORE_DIS	Brooks-Corey pore distribution parameter	CUMULATIVE	NONE	2.8900E+00	33248
Γ	2130	REPOSIT	Repository regions outside of Panel region	POROSITY	Effective porosity	CONSTANT	NONE	8.4800E-01	33250
Γ	2131	REPOSIT	Repository regions outside of Panel region	PRMX_LOG	Log of intrinsic permeability, X-direction	CONSTANT	log(m^2)	-1.2769E+01	33255
Γ	2132	REPOSIT	Repository regions outside of Panel region	PRMY_LOG	Log of intrinsic permeability, Y-direction	CONSTANT	log(m^2)	-1.2769E+01	33258
	2133	REPOSIT	Repository regions outside of Panel region	PRMZ LOG	Log of intrinsic permeability, Z-direction	CONSTANT	log(m^2)	-1.2769E+01	33259
Γ	2135	REPOSIT	Repository regions outside of Panel region	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	33275
Γ	2740	REPOSIT	Repository regions outside of Panel region	SAT_IBRN	Initial Brine Saturation	CONSTANT	NONE	1.5000E-02	33277
Γ	2141	REPOSIT	Repository regions outside of Panel region	VOLCHW	BIR total volume of CH-TRU waste	CONSTANT	m^3	1.6900E+05	32452
	2142	REPOSIT	Repository regions outside of Panel region	VOLRHW	BIR total volume of RH-TRU waste	CONSTANT	m^3	7.0800E+03	32453

1

Title 40 CFR Part 191 Compliance Certification Application

Table PAR-44. Repository (Outside of Panel Region) Parameters

1d #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
76	CAVITY_1	Cavity for Waste Areas	CAP_MOD	Model number, capillary pressure model	CONSTANT	NONE	1.0000E+00	31626
77	CAVITY_1	Cavity for Waste Areas	COMP_RCK	Bulk Compressibility	CONSTANT	Pa^-1	0.0000E+00	31628
2612	CAVITY_1	Cavity for Waste Areas	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	31650
78	CAVITY_1	Cavity for Waste Areas	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	31673
2613	CAVITY_1	Cavity for Waste Areas	PCT_A	Threshold pressure linear parameter	CONSTANT	Pa	0.0000E+00	31670
2614	CAVITY_1	Cavity for Waste Areas	PCT_EXP	Threshold pressure exponential parameter	CONSTANT	NONE	0.0000E+00	31672
81	CAVITY_1	Cavity for Waste Areas	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	31678
79	CAVITY_1	Cavity for Waste Areas	PORE_DIS	Brooks-Corey pore distribution parameter	CONSTANT	NONE	7.0000E-01	31675
80	CAVITY_1	Cavity for Waste Areas	POROSITY	Effective porosity	CONSTANT	NONE	1.0000E+00	31677
82	CAVITY_I	Cavity for Waste Areas	PRESSURE	Brine far-field pore pressure	CONSTANT	Pa	1.0133E+05	31679
83	CAVITY_1	Cavity for Waste Areas	PRMX_LOG	Log of intrinsic permeability, X-direction	CONSTANT	log(m^2)	-1.0000E+01	31680
84	CAVITY_1	Cavity for Waste Areas	PRMY_LOG	Log of intrinsic permeability, Y-direction	CONSTANT	log(m^2)	-1.0000E+01	31681
85	CAVITY_1	Cavity for Waste Areas	PRMZ_LOG	Log of intrinsic permeability, Z-direction	CONSTANT	log(m^2)	-1.0000E+01	31682
88	CAVITY_1	Cavity for Waste Areas	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	31685
3099	CAVITY_1	Cavity for Waste Areas	SAT_IBRN	Initial Brine Saturation	CONSTANT	NONE	0.0000E+00	31686
89	CAVITY_1	Cavity for Waste Areas	SAT_RBRN	Residual Brine Saturation	CONSTANT	NONE	0.0000E+00	31687
90	CAVITY_1	Cavity for Waste Areas	SAT_RGAS	Residual Gas Saturation	CONSTANT	NONE	0.0000E+00	31688
91	CAVITY_2	Cavity for Non-waste Areas	CAP_MOD	Model number, capiliary pressure model	CONSTANT	NONE	1.0000E+00	31692
92	CAVITY_2	Cavity for Non-waste Areas	COMP_RCK	Bulk Compressibility	CONSTANT	Pa^-1	0.0000E+00	31694
2616	CAVITY_2	Cavity for Non-waste Areas	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	31716
93	CAVITY_2	Cavity for Non-waste Areas	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	31743
2617	CAVITY_2	Cavity for Non-waste Areas	PCT_A	Threshold pressure linear parameter	CONSTANT	Pa	0.0000E+00	31740
2618	CAVITY_2	Cavity for Non-waste Areas	PCT_EXP	Threshold pressure exponential parameter	CONSTANT	NONE	0.0000E+00	31741
96	CAVITY_2	Cavity for Non-waste Areas	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	31749
94	CAVITY_2	Cavity for Non-waste Areas	PORE_DIS	Brooks-Corey pore distribution parameter	CONSTANT	NONE	7.0000E-01	31746
95	CAVITY_2	Cavity for Non-waste Areas	POROSITY	Effective porosity	CONSTANT	NONE	1.0000E+00	31747
97	CAVITY_2	Cavity for Non-waste Areas	PRESSURE	Brine far-field pore pressure	CONSTANT	Pa	1.0133E+05	31750
98	CAVITY_2	Cavity for Non-waste Areas	PRMX_LOG	Log of intrinsic permeability, X-direction	CONSTANT	log(m^2)	-1.0000E+01	31751
99	CAVITY_2	Cavity for Non-waste Areas	PRMY_LOG	Log of intrinsic permeability, Y-direction	CONSTANT	log(m^2)	-1.0000E+01	31752
100	CAVITY_2	Cavity for Non-waste Areas	PRMZ_LOG	Log of intrinsic permeability, Z-direction	CONSTANT	log(m^2)	-1.0000E+01	31754
103	CAVITY_2	Cavity for Non-waste Areas	RELP_MOD	Model number, relative permeability mode)	CONSTANT	NONE	4.0000E+00	31759
3100	CAVITY_2	Cavity for Non-waste Areas	SAT_IBRN	Initial Brine Saturation	CONSTANT	NONE	0.0000E+00	31760
104	CAVITY_2	Cavity for Non-waste Areas	SAT_RBRN	Residual Brine Saturation	CONSTANT	NONE	0.0000E+00	31761
105	CAVITY_2	Cavity for Non-waste Areas	SAT_RGAS	Residual Gas Saturation	CONSTANT	NONE	0.0000E+00	31763
2049	CAVITY_3	Cavity for Shaft	CAP_MOD	Model number, capillary pressure model	CONSTANT	NONE	1.0000E+00	31767
2051	CAVITY_3	Cavity for Shaft	COMP_RCK	Bulk Compressibility	CONSTANT	Pa^-1	0.0000E+00	31769

Table PAR-45. Predisposal Cavities (Waste Area) Parameters

Title 40 CFR Part 191 Compliance Certification Application

Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
2620	CAVITY_3	Cavity for Shaft	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	31770
2234	CAVITY_3	Cavity for Shaft	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	31775
2621	CAVITY_3	Cavity for Shaft	PCT_A	Threshold pressure linear parameter	CONSTANT	Pa	0.0000E+00	31773
2622	CAVITY_3	Cavity for Shaft	PCT_EXP	Threshold pressure exponential parameter	CONSTANT	NONE	0.0000E+00	31774
2623	CAVITY_3	Cavity for Shaft	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	31779
2052	CAVITY_3	Cavity for Shaft	PORE_DIS	Brooks-Corey pore distribution parameter	CONSTANT	NONE	7.0000E-01	31777
2053	CAVITY_3	Cavity for Shaft	POROSITY	Effective porosity	CONSTANT	NONE	1.0000E+00	31778
3101	CAVITY_3	Cavity for Shaft	PRESSURE	Brine far-field pore pressure	CONSTANT	Pa	1.0133E+05	31780
2054	CAVITY_3	Cavity for Shaft	PRMX_LOG	Log of intrinsic permeability, X-direction	CONSTANT	log(m^2)	-1.0000E+01	31781
2055	CAVITY_3	Cavity for Shaft	PRMY_LOG	Log of intrinsic permeability, Y-direction	CONSTANT	log(m^2)	-1.0000E+01	31782
2056	CAVITY_3	Cavity for Shaft	PRMZ_LOG	Log of intrinsic permeability, Z-direction	CONSTANT	log(m^2)	-1.0000E+01	31783
2058	CAVITY_3	Cavity for Shaft	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	31785
3102	CAVITY_3	Cavity for Shaft	SAT_IBRN	Initial Brine Saturation	CONSTANT	NONE	0.0000E+00	31786
2235	CAVITY_3	Cavity for Shaft	SAT_RBRN	Residual Brine Saturation	CONSTANT	NONE	0.0000E+00	31788
2059	CAVITY_3	Cavity for Shaft	SAT_RGAS	Residual Gas Saturation	CONSTANT	NONE	0.0000E+00	31789
2060	CAVITY_4	Cavity for Borehole	CAP_MOD	Model number, capillary pressure model	CONSTANT	NONE	1.0000E+00	31791
2062	CAVITY_4	Cavity for Borehole	COMP_RCK	Bulk Compressibility	CONSTANT	Pa^-1	0.0000E+00	31794
2625	CAVITY_4	Cavity for Borehole	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	31796
2236	CAVITY_4	Cavity for Borehole	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	31800
2626	CAVITY_4	Cavity for Borehole	PCT_A	Threshold pressure linear parameter	CONSTANT	Pa	0.0000E+00	31797
2627	CAVITY_4	Cavity for Borehole	PCT_EXP	Threshold pressure exponential parameter	CONSTANT	NONE	0.0000E+00	31798
2628	CAVITY_4	Cavity for Borehole	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	31803
2063	CAVITY 4	Cavity for Borehole	PORE_DIS	Brooks-Corey pore distribution parameter	CONSTANT	NONE	7.0000E-01	31801
2064	CAVITY_4	Cavity for Borehole	POROSITY	Effective porosity	CONSTANT	NONE	1.0000E+00	31802
3103	CAVITY_4	Cavity for Borehole	PRESSURE	Brine far-field pore pressure	CONSTANT	Pa	1.0133E+05	31815
2065	CAVITY 4	Cavity for Borehole	PRMX LOG	Log of intrinsic permeability, X-direction	CONSTANT	log(m^2)	-1.0000E+01	31817
2066	CAVITY_4	Cavity for Borehole	PRMY_LOG	Log of intrinsic permeability, Y-direction	CONSTANT	log(m^2)	-1.0000E+01	31818
2067	CAVITY 4	Cavity for Borehole	PRMZ_LOG	Log of intrinsic permeability, Z-direction	CONSTANT	log(m^2)	-1.0000E+01	31819
2069	CAVITY_4	Cavity for Borehole	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	31821
3104	CAVITY 4	Cavity for Borehole	SAT_IBRN	Initial Brine Saturation	CONSTANT	NONE	0.0000E+00	31822
2237	CAVITY 4	Cavity for Borehole	SAT_RBRN	Residual Brine Saturation	CONSTANT	NONE	0.0000E+00	31823
2070	CAVITY 4	Cavity for Borehole	SAT RGAS	Residual Gas Saturation	CONSTANT	NONE	0.0000E+00	31824

Table PAR-45. Predisposal Cavities (Waste Area) Parameters (Continued)

l

Title 40 CFR Part 191 Compliance Certification Application

$\frac{1}{2}$		Table PAK-46. Panel Closure Parameters									
- 3 4	Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #		
5	252	PAN_SEAL	Panel Closure	CAP_MOD	Model number, capillary pressure model	CONSTANT	NONE	2.0000E+00	32933		
6	253	PAN_SEAL	Panel Closure	COMP_RCK ¹	Pore Compressibility	CONSTANT	Pa^-1	2.6400E-09	32935		
7	2731	PAN_SEAL	Panel Closure	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	33089		
8	254	PAN_SEAL	Panel Closure	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	33109		
9	2732	PAN_SEAL	Panel Closure	PCT_A	Threshold pressure linear parameter	CONSTANT	NONE	5.6000E-01	33107		
10	2733	PAN_SEAL	Panel Closure	PCT_EXP	Threshold pressure exponential parameter	CONSTANT	NONE	-3.4600E-01	33108		
11	257	PAN_SEAL	Panel Closure	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	33115		
12	255	PAN_SEAL	Panel Closure	PORE_DIS	Brooks-Corey pore distribution parameter	CONSTANT	NONE	9.4000E-01	33112		
13	256	PAN SEAL	Panel Closure	POROSITY	Effective porosity	CONSTANT	NONE	7.5000E-02	33113		
14	258	PAN_SEAL	Panel Closure	PRESSURE	Brine far-field pore pressure	CONSTANT	Pa	1.0133E+05	33118		
15	259	PAN SEAL	Panel Closure	PRMX_LOG	Log of intrinsic permeability, X-direction	CONSTANT	log(m^2)	-1.5000E+01	33120		
16	260	PAN_SEAL	Panel Closure	PRMY_LOG	Log of intrinsic permeability, Y-direction	CONSTANT	log(m^2)	-1.5000E+01	33122		
17	261	PAN_SEAL	Panel Closure	PRMZ_LOG	Log of intrinsic permeability, Z-direction	CONSTANT	log(m^2)	-1.5000E+01	33123		
18	264	PAN SEAL	Panel Closure	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	33131		
19	2734	PAN SEAL	Panel Closure	SAT_IBRN	Initial Brine Saturation	CONSTANT	NONE	1.0000E+00	33134A		
20	265	PAN SEAL	Panel Closure	SAT_RBRN	Residual Brine Saturation	CONSTANT	NONE	2.0000E-01	33139		
21	266	PAN_SEAL	Panel Closure	SAT_RGAS	Residual Gas Saturation	CONSTANT	NONE	2.0000E-01	33141		

Table PAR-46. Panel Closure Parameters

21 ¹COMP_RCK, in this case, refers to pore compressibility rather than bulk compressibility and pore compressibility is equivalent to bulk compressibility divided by the effective 22 23 porosity.

Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
7	OPS_AREA	Operations Region	CAP_MOD	Model number, capillary pressure model	CONSTANT	NONE	1.0000E+00	32604
8	OPS_AREA	Operations Region	COMP_RCK	Bulk Compressibility	CONSTANT	Pa^-1	0.0000E+00	32606
2604	OPS_AREA	Operations Region	крт	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	32614
9	OPS_AREA	Operations Region	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	32619
2605	OPS_AREA	Operations Region	PCT_A	Threshold pressure linear parameter	CONSTANT	NONE	0.0000E+00	32616
2606	OPS_AREA	Operations Region	PCT_EXP	Threshold pressure exponential parameter	CONSTANT	NONE	0.0000E+00	32618
12	OPS_AREA	Operations Region	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	31474
10	OPS_AREA	Operations Region	PORE_DIS	Brooks-Corey pore distribution parameter	CONSTANT	NONE	7.0000E-01	32624
11	OPS_AREA	Operations Region	POROSITY	Effective porosity	CONSTANT	NONE	1.8000E-01	32626
13	OPS_AREA	Operations Region	PRESSURE	Brine far-field pore pressure	CONSTANT	Pa	1.0133E+05	32629
14	OPS_AREA	Operations Region	PRMX_LOG	Log of intrinsic permeability, X-direction	CONSTANT	log(m^2)	-1.1000E+01	32630
15	OPS_AREA	Operations Region	PRMY_LOG	Log of intrinsic permeability, Y-direction	CONSTANT	log(m^2)	-1.1000E+01	32632
16	OPS_AREA	Operations Region	PRMZ_LOG	Log of intrinsic permeability, Z-direction	CONSTANT	log(m^2)	-1.1000E+01	32633
19	OPS_AREA	Operations Region	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	32634
20	OPS_AREA	Operations Region	SAT_IBRN	Initial Brine Saturation	CONSTANT	NONE	0.0000E+00	32637
21	OPS_AREA	Operations Region	SAT_RBRN_	Residual Brine Saturation	CONSTANT	NONE	0.0000E+00	32639
22	OPS_AREA	Operations Region	SAT_RGAS	Residual Gas Saturation	CONSTANT	NONE	0.0000E+00	32641

Table PAR-47. Operations Region Parameters

1	
	2
1	H
	5
	69
1	4
1	ō
	Ξ
1	\circ
1	i i i i
3	-
1	\mathbf{R}
I	<u> </u>
I	2
1	22
ł	3
I	-
	1
1	9
I	Ē
l	<u> </u>
ł	\circ
ľ	ò"
1	ā.
1	3
	•
1	-
1	
1	=
1	2 ·
1	<u>Q</u>
1	œ.
1	\frown
1	<u> </u>
1	<u>e</u>
1	-
1	Ξ.
ł	<u>-</u>
1	5
I	<u>کہ</u>
I	—
I	Ξ.
I	8
I	2
I	h
1	
1	5
	÷.
ł	-
1	Ξ.
I	12
1	۳.
1	Ξ.
1	•
1	8
- 1	_

Ĭd #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
207	EXP_AREA	Experimental Area	CAP_MOD	Model number, capillary pressure model	CONSTANT	NONE	1.0000E+00	32969
208	EXP_AREA	Experimental Area	COMP_RCK	Bulk Compressibility	CONSTANT	Pa^-1	0.0000E+00	32972
2711	EXP_AREA	Experimental Area	КРТ	Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	33009
209	EXP_AREA	Experimental Area	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	33040
2712	EXP_AREA	Experimental Area	PCT_A	Threshold pressure linear parameter	CONSTANT	NONE	0.0000E+00	33037
2713	EXP_AREA	Experimental Area	PCT_EXP	Threshold pressure exponential parameter	CONSTANT	NONE	0.0000E+00	33039
212	EXP_AREA	Experimental Area	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	32946
210	EXP_AREA	Experimental Area	PORE_DIS	Brooks-Corey pore distribution parameter	CONSTANT	NONE	7.0000E-01	33045
211	EXP_AREA	Experimental Area	POROSITY	Effective porosity	CONSTANT	NONE	1.8000E-01	32945
213	EXP_AREA	Experimental Area	PRESSURE	Brine far-field pore pressure	CONSTANT	Pa	1.0133E+05	32948
214	EXP_AREA	Experimental Area	PRMX_LOG	Log of intrinsic permeability, X-direction	CONSTANT	log(m^2)	-1.1000E+01	32951
215	EXP_AREA	Experimental Area	PRMY_LOG	Log of intrinsic permeability, Y-direction	CONSTANT	log(m^2)	-1.1000E+01	32953
216	EXP_AREA	Experimental Area	PRMZ_LOG	Log of intrinsic permeability, Z-direction	CONSTANT	log(m^2)	-1.1000E+01	32955
219	EXP_AREA	Experimental Area	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	32962
220	EXP_AREA	Experimental Area	SAT_IBRN	Initial Brine Saturation	CONSTANT	NONE	0.0000E+00	32965
221	EXP_AREA	Experimental Area	SAT_RBRN	Residual Brine Saturation	CONSTANT	NONE	0.0000E+00	32967
222	EXP_AREA	Experimental Area	SAT_RGAS	Residual Gas Saturation	CONSTANT	NONE	0.0000E+00	32968

Table PAR-48. Experimental Area Parameters

Iđ #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
229	IMPERM_Z	Impermeable Zones	CAP_MOD	Model number, capillary pressure model	CONSTANT	NONE	1.0000E+00	33059
230	IMPERM_Z	Impermeable Zones	COMP_RCK	Bulk Compressibility	CONSTANT	Pa^-1	0.0000E+00	33064
2720	IMPERM_Z	Impermeable Zones	крт	Flag for permeability determined threshold		NONE	0.0000E+00	33119
231	IMPERM_Z	Impermeable Zones	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	33177
2721	IMPERM_Z	Impermeable Zones	PCT_A	Threshold pressure linear parameter	CONSTANT	NONE	0.0000E+00	33172
2722	IMPERM_Z	Impermeable Zones	PCT_EXP	Threshold pressure exponential parameter	CONSTANT	NONE	0.0000E+00	33174
234	IMPERM_Z	Impermeable Zones	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	33191
232	IMPERM_Z	Impermeable Zones	PORE_DIS	Brooks-Corey pore distribution parameter	CONSTANT	NONE	7.0000E-01	33185
233	IMPERM_Z	Impermeable Zones	POROSITY	Effective porosity	CONSTANT	NONE	5.0000E-03	33188
236	IMPERM_Z	Impermeable Zones	PRMX_LOG	Log of intrinsic permeability, X-direction	CONSTANT	log(m^2)	-3.5000E+01	33205
237	IMPERM_Z	Impermeable Zones	PRMY_LOG	Log of intrinsic permeability, Y-direction	CONSTANT	log(m^2)	-3.5000E+01	33209
238	IMPERM_Z	Impermeable Zones	PRMZ_LOG	Log of intrinsic permeability, Z-direction	CONSTANT	log(m^2)	-3.5000E+01	33214
241	IMPERM_Z	Impermeable Zones	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	33222
243	IMPERM_Z	Impermeable Zones	SAT_RBRN	Residual Brine Saturation	CONSTANT	NONE	0.0000E+00	33226
244	IMPERM_Z	Impermeable Zones	SAT_RGAS	Residual Gas Saturation	CONSTANT	NONE	0.0000E+00	33230

Table PAR-49. Castile Formation Parameters

)

1d #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
58	CASTILER	Castile Brine Reservoir	AREA_FRC	Area fraction of Panel that has Brine reservoir underneath	CUMULATIVE	NONE	4.0104E-01	31554
60	CASTILER	Castile Brine Reservoir	rine Reservoir CAP_MOD Model number, capillary pressure mod		CONSTANT	NONE	2.0000E+00	31556
2608	CASTILER Castile Brine Reservoir KPT Flag for permeability determined threshold		Flag for permeability determined threshold	CONSTANT	NONE	0.0000E+00	31583	
62	CASTILER	Castile Brine Reservoir	PC_MAX	Maximum allowable capillary pressure	CONSTANT	Pa	1.0000E+08	31607
2609	CASTILER	Castile Brine Reservoir	PCT_A	Threshold pressure linear parameter	CONSTANT	NONE	5.6000E-01	31605
2610	CASTILER	Castile Brine Reservoir	PCT_EXP	Threshold pressure exponential parameter	CONSTANT	NONE	-3.4600E-01	31606
65	CASTILER	Castile Brine Reservoir	PO_MIN	Minimum brine pressure for capillary model KPC=3	CONSTANT	Pa	1.0133E+05	31611
63	CASTILER	Castile Brine Reservoir	PORE_DIS	Brooks-Corey pore distribution parameter	CONSTANT	NONE	7.0000E-01	31609
64	CASTILER	Castile Brine Reservoir	POROSITY	Effective porosity	STUDENT'S-T	NONE	8.7000E-03	31610
72	CASTILER	Castile Brine Reservoir	RELP_MOD	Model number, relative permeability model	CONSTANT	NONE	4.0000E+00	31619
73	CASTILER	Castile Brine Reservoir	SAT_IBRN	Initial Brine Saturation	CONSTANT	NONE	1.0000E+00	31620
74	CASTILER	Castile Brine Reservoir	SAT_RBRN	Residual Brine Saturation	CONSTANT	NONE	2.0000E-01	31621
75	CASTILER	Castile Brine Reservoir	SAT_RGAS	Residual Gas Saturation	CONSTANT	NONE	2.0000E-01	31622
2918	CASTILER	Castile Brine Reservoir	VOLUME	Total Reservoir Volume	CONSTANT	m^3	4.0000E+06	31625A

Table PAR-50. Castile Brine Reservoir Parameters

		· · · · · · · · · · · · · · · · · · ·						
Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
43	BRINECST	Castile Brine	COMPRES	Brine Compressibility	CONSTANT	Pa^-1	9.0000E-10	31537
44	BRINECST	Castile Brine	DNSFLUID	Brine Density	CONSTANT	kg/m^3	1.2150E+03	31538

5

6 7 8

Table PAR-51. Castile Brine Fluid Parameters

Title 40 CFR Part 191 Compliance Certification Application

Ĩ.
 · `

1d #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
2833	REFCON	Reference Constant	ACF_CH4	Acentric Factors - CH4	CONSTANT	NONE	1.0000E-02	32349
2832	REFCON	Reference Constant	ACF_CO2	Acentric Factors - CO2	CONSTANT	NONE	2.3100E-01	32350
2831	REFCON	Reference Constant	ACF_H2	Acentric Factors - H2	CONSTANT	NONE	0.0000E+00	32351
2835	REFCON	Reference Constant	ACF_H2S	Acentric Factors - H2S	CONSTANT	NONE	1.0000E-01	32352
2834	REFCON	Reference Constant	ACF_N2	Acentric Factors - N2	CONSTANT	NONE	4.5000E-02	32354
2836	REFCON	Reference Constant	ACF_O2	Acentric Factors - O2	CONSTANT	NONE	1.9000E-02	32355
3113	REFCON	Reference Constant	ACTCONST	Activity Constant	CONSTANT	Kg/Ci	1.1280E+13	32356
2897	REFCON	Reference Constant	AL2	Log2	CONSTANT	NONE	6.9315E-01	32357
2890	REFCON	Reference Constant	АТМРА	Conversion from std. atmosphere to Pa	CONSTANT	Pa/atm	1.0133E+05	32358
3109	REFCON	Reference Constant	AVOGADRO	Avogadro's number	CONSTANT	1/mol	6.0221E+23	32359
2879	REFCON	Reference Constant	BBLG	Conversion from barrel to gallon	CONSTANT	gal/bbl	4.2000E+01	32360
3111	REFCON	Reference Constant	CITOBQ	Curie to Becquerel Conversion	CONSTANT	Bq/Ci	3.7000E+10	32377
2882	REFCON	Reference Constant	DARM2	Conversion from darcy to m^2	CONSTANT	m^2/darcy	9.8692E-13	32379
2887	REFCON	Reference Constant	DAYSEC	Conversion from days to seconds	CONSTANT	s/day	8.6400E+04	32383
2883	REFCON	Reference Constant	F3M3	Conversion from ft^3 to m^3	CONSTANT	m^3/ft^3	2.8317E-02	32384
2881	REFCON	Reference Constant	FTM	Conversion from feet to meter	CONSTANT	m/ft	3.0480E-01	32385
2884	REFCON	Reference Constant	GTI3	Conversion from gallon to in^3	CONSTANT	in^3/gal	2.3100E+02	32387
2886	REFCON	Reference Constant	KGLB	Conversion from kg to lb	CONSTANT	lb/kg	2.2046E+00	32388
2885	REFCON	Reference Constant	LBKG	Conversion from lb to kg	CONSTANT	kg/lb	4.5359E-01	32389
2877	REFCON	Reference Constant	MW_CACO3	Molecular Weight - CACO3	CONSTANT	kg/mol	1.0009E-01	32390
2875	REFCON	Reference Constant	MW_CAO	Molecular Weight - CAO	CONSTANT	kg/mol	5.6077E-02	32391
2876	REFCON	Reference Constant	MW CAOH2	Molecular Weight - CAOH2	CONSTANT	kg/mol	7.4093E-02	32392
2866	REFCON	Reference Constant	MW_CH2O	Molecular Weight - CH2O	CONSTANT	kg/mol	3.0026E-02	32393
2860	REFCON	Reference Constant	MW_CH4	Molecular Weight - CH4	CONSTANT	kg/mol	1.6043E-02	32394
2859	REFCON	Reference Constant	MW_CO2	Molecular Weight - CO2	CONSTANT	kg/mol	4.4098E-02	32395
2865	REFCON	Reference Constant	MW_FE	Molecular Weight - FE	CONSTANT	kg/mol	5.5847E-02	32396
2873	REFCON	Reference Constant	MW_FE3O4	Molecular Weight - FE3O4	CONSTANT	kg/mol	2.3154E-01	32397
2870	REFCON	Reference Constant	MW_FECO3	Molecular Weight - FECO3	CONSTANT	kg/mol	1.1586E-01	32398
2871	REFCON	Reference Constant	MW_FEOH2	Molecular Weight - FEOH2	CONSTANT	kg/mol	8.9862E-02	32399
2872	REFCON	Reference Constant	MW_FEOOH	Molecular Weight - FEOOH	CONSTANT	kg/mol	8.8854E-02	32400
2874	REFCON	Reference Constant	MW_FES	Molecular Weight - FES	CONSTANT	kg/mol	8.7913E-02	32401
2869	REFCON	Reference Constant	MW_FES2	Molecular Weight - FES2	CONSTANT	kg/mol	1.1998E-01	32402
2858	REFCON	Reference Constant	MW_H2	Molecular Weight - H2	CONSTANT	kg/mol	2.0159E-03	32403
2864	REFCON	Reference Constant	MW_H2O	Molecular Weight - H2O	CONSTANT	kg/mol	1.8015E-02	32405
2862	REFCON	Reference Constant	MW_H2S	Molecular Weight - H2S	CONSTANT	kg/mol	3.4082E-02	32406
2867	REFCON	Reference Constant	MW_H2SO4	Molecular Weight - H2SO4	CONSTANT	kg/mol	9.8079E-02	32407
2865	REFCON	Reference Constant	MW HNO3	Molecular Weight - HNO3	CONSTANT	kg/mol	6.3013E-02	32408

Title 40 CFR Part 191 Compliance Certification Application

Table PAR-52. Reference Constants

Id #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO #
2861	REFCON	Reference Constant	MW_N2	Molecular Weight - N2	CONSTANT	kg/mol	2.8013E-02	32409
2878	REFCON	Reference Constant	MW_NACL	Molecular Weight - NACL	CONSTANT	kg/moi	5.8442E-02	32410
2863	REFCON	Reference Constant	MW_02	Molecular Weight - O2	CONSTANT	kg/mol	3.1999E-02	32411
2880	REFCON	Reference Constant	PASCP	Conversion from Pa*s to cP	CONSTANT	cP/Pa*s	1.0000E+03	32414
2839	REFCON	Reference Constant	PC_CH4	Critical Pressure of CH4	CONSTANT	Pa	4.6170E+06	32415
2838	REFCON	Reference Constant	PC_CO2	Critical Pressure of CO2	CONSTANT	Pa	7.3760E+06	32416
2837	REFCON	Reference Constant	PC_H2	Critical Pressure of H2	CONSTANT	Pa	2.0470E+06	32417
2841	REFCON	Reference Constant	PC_H2S	Critical Pressure of H2S	CONSTANT	Pa	9.0070E+06	32418
2840	REFCON	Reference Constant	PC_N2	Critical Pressure of N2	CONSTANT	Pa	3.3940E+06	32419
2842	REFCON	Reference Constant	PC_O2	Critical Pressure of O2	CONSTANT	Pa	5.0800E+06	32420
2896	REFCON	Reference Constant	PI	Mathematical constant: PI	CONSTANT	NONE	3.1416E+00	32422
2892	REFCON	Reference Constant	PSIPA	Conversion from psi to pascal	CONSTANT	Pa*in^2/lb	6.8948E+03	32423
2893	REFCON	Reference Constant	R	Gas constant R	CONSTANT	J/mol*K	8.3145E+00	32424
2891	REFCON	Reference Constant	RTK	Conversion from Rankine to K	CONSTANT	K/rankine	5.5556E-01	32425
3112	REFCON	Reference Constant	SECYR	Seconds to years Conversion	CONSTANT	yr/s	3.1689E-08	32426
2827	REFCON	Reference Constant	TC_CH4	Critical temperature: Methane (CH4)	CONSTANT	К	1.9063E+02	32427
2826	REFCON	Reference Constant	TC_CO2	Critical temperature: Carbon Dioxide (CO2)	CONSTANT	K	3.0415E+02	32428
2825	REFCON	Reference Constant	TC_H2	Critical temperature: Hydrogen (H2)	CONSTANT	к	4.3600E+01	32429
2829	REFCON	Reference Constant	TC_H2S	Critical temperature: Hydrogen Sulfide (H2S)	CONSTANT	K	3.7355E+02	32430
2828	REFCON	Reference Constant	TC_N2	Critical temperature: Nitrogen (N2)	CONSTANT	к	1.2615E+02	32431
2830	REFCON	Reference Constant	TC_02	Critical temperature: Oxygen (O2)	CONSTANT	К	1.5477E+02	32432
3107	REFCON	Reference Constant	VPANLEX	Excavated volume of one panel	CONSTANT	m^3	4.6098E+04	33273
3108	REFCON	Reference Constant	VREPOS	Excavated storage volume of repository	CONSTANT	m^3	4.3602E+05	33276
3105	REFCON	Reference Constant	VROOM	Volume of one room in repository	CONSTANT	m^3	3.6444E+03	33280
2888	REFCON	Reference Constant	YRSEC	Conversion from mean solar or tropical year to seconds	CONSTANT	s/yr	3.1557E+07	32434
3110	REFCON	Reference Constant	ZCINK	Zero Celcius in Kelvin	CONSTANT	К	2.7315E+02	32435

Table PAR-52. Reference Constants (Continued)

E
le
8
E
1
E.
E.
17
<u> </u> 2
là -
18
8
0
H.
5
E
ĮĮ.
5
É.
١ <u>ټ</u>
E
Ι <u>δ</u> .

1 2				Table 1	PAR-53. Intrusion Parameters				
3]d #	Material	Material Description	Parameter	Parameter Description	Distribution Type	Units	Value	WPO#
4	3501	GLOBAL	Information that applies globally	FPICD	PIC Reduction Factor for Human Intrusion by Drilling	CONSTANT	NONE	1.0000E-02	38743
5	3500	GLOBAL	Information that applies globally	FPICM	PIC Reduction Factor for Human Intrusion by Mining	CONSTANT	NONE	1.0000E-02	38742
6	3494	GLOBAL	Information that applies globally	LAMBDAD	Drilling rate per unit area	CONSTANT	(km^- 2)yr^-1	4.6800E-03	38733
7	3497	GLOBAL	Information that applies globally	MINERT	Mining rate from 40 CFR Part 194	CONSTANT	yr^-1	1.0000E-04	38736
8	3493	GLOBAL	Information that applies globally	PBRINE	Prob. that drilling intrusion in excavated area encounters pressurized brine	CONSTANT	NONE	8.0000E-02	38732
9	3495	GLOBAL	Information that applies globally	PLGPAT	Index for plugging pattern after drilling intrusion	DELTA	NONE	0.0000E+00	38734
10	3491	GLOBAL	Information that applies globally	ТА	Time active institutional controls at WIPP	CONSTANT	yr	1.0000E+02	38730
11	3499	GLOBAL	Information that applies globally	TPICD	Time over which passive institutional controls reduce rate of drilling	CONSTANT	yr	6.0000E+02	38738
12	3498	GLOBAL	Information that applies globally	ТРІСМ	Time over which passive institutional controls reduce rate of mining	CONSTANT	yr	6.0000E+02	38737
13	3503	REFCON	Reference Constant	ABERM	Area of Berm Placed Over Waste Panel	CONSTANT	m^2	6.2850E+05	38745
14	3489	REFCON	Reference Constant	AREA_CH	Area for CH-TRU waste disposal in CCDFGF model	CONSTANT	m^2	1.1150E+05	38728
15	3496	REFCON	Reference Constant	AREA_RH	Area for RH-TRU waste disposal in CCDFGF model	CONSTANT	m^2	1.5760E+04	38735
16	3488	REFCON	Reference Constant	AREA_ZRO	Area in waste panels not used for disposal (CCDFGF model)	CONSTANT	m^2	4.1330E+03	38727
17	3492	REFCON	Reference Constant	FVW	Fraction of repository volume occupied by waste in CCDFGF model	CONSTANT	NONE	4.0300E-01	38731
18	3502	REFCON	Reference Constant	HRH	Emplaced Height of Remote Handled Waste in CCDFGF Model	CONSTANT	m	5.0900E-01	38744
19	3490	REFCON	Reference Constant	VOLWP	Uncompacted volume of waste panels in CCDFGF model	CONSTANT	m^3	4.3600E+05	38729
20									

Table PAR-53. Intrusion Parameters

Database material	Database parameter	Modeling value used	Distribution type	Datab	ase value		Units	WPO #
REFCON	GRAVACC	9.79	CONSTANT	9.8067			m/s^2	32386
DRZ_0	POROSITY	0.0029 + (realization value S_HALITE)	CONSTANT	3.90E-03	to	3.29E-02	log(m^2)	32839
DRZ_1	POROSITY	0.0029 + (realization value S_HALITE)	CUMULATIVE	1.00E+00	lo	1.03E+00	log(m^2	32902
DEWYLAKE	PCT_A	0.00	CONSTANT	2.60E-01			Pa	32725
DEWYLAKE	PCT_EXP	0.00	CONSTANT	-3.48E-01			none	32727
BH_CREEP	PRMX_LOG	0.1* + (realization value BH_SAND	UNIFORM	-1.50000E+01	to	-1.20000E+01	log(m^2)	36640
CL_L_TI	PCT_A	0.00	CONSTANT	0.56			Pa	31901
CL_L_T2	PCT_A	0.00	CONSTANT	0.56			Pa	31928
CL_L_T3	PCT_A	0.00	CONSTANT	0.56			Pa	31979
CL_L_T4	PCT_A	0.00	CONSTANT	0.56			Pa	32010
CL_M_TI	PCT_A	0.00	CONSTANT	0.56			Pa	32041
CL_M_T2	PCT_A	0.00	CONSTANT	0.56			Pa	32116
CL_M_T3	PCT_A	0.00	CONSTANT	0.56			Pa	32143
CL_M_T4	PCT_A	0.00	CONSTANT	0.56			Pa	32195
CL_M_T5	PCT_A	0.00	CONSTANT	0.56			Pa	32232
CLAY_BOT	PCT_A	0.00	CONSTANT	0.56			Pa	31859
CLAY_RUS	PCT_A	0.00	CONSTANT	0.56			Pa	31880
CONC_MON	PCT_A	0.00	CONSTANT	0.56			Pa	32508
CONC_T1	PCT_A	0.00	CONSTANT	0.56			Pa	32561
CONC_T2	PCT_A	0.00	CONSTANT	0.56	_		Pa	32652
EARTH	PCT_A	0.00	CONSTANT	0.56			Pa	32920
SALT_T1	PCT_A	0.00	CONSTANT	0.56			Pa	33369
SALT_T2	PCT_A	0.00	CONSTANT	0.56			Pa	33433
SALT_T3	PCT_A	0.00	CONSTANT	0.56			Pa	33404
SALT_T4	PCT_A	0.00	CONSTANT	0.56			Pa	33456
SALT_T5	PCT_A	0.00	CONSTANT	0.56			Pa	33575
SALT_T6	PCT_A	0.00	CONSTANT	0.56			Pa	33642
CONC_T1	PCT_EXP	0.00	CONSTANT	-3.46000E-01			none	32563
CONC_T2	PCT_EXP	0.00	CONSTANT	-3.46000E-01			none	32656
CLAY_RUS	PCT_EXP	0.00	CONSTANT	-3.46000E-01			поле	31881
CLAY_BOT	PCT_EXP	0.00	CONSTANT	-3.46000E-01			none	31860
CL_M_T1	PCT EXP	0.00	CONSTANT	-3.46000E-01			none	32042

1 Table PAR-54. Listing of Parameters Used in BRAGFLO Which Differ From the WIPP 1996 Compliance Certification Application

38 NOTES:

39 1. Further information and explanation of the difference in parameter values between the Performance Assessment Database and the BRAGFLO calculations may be found in the "Analysis Package for the Salado Flow

40 Calculations (TASK 1) of the Performance Assessment Analysis Supporting the Compliance Certification Application," SNL, 1996.

41 2. Pressure is specified in the Salado Halite at the horizon of MB139 and other pressures in the Salado are calculated, assuming a hydrostatic pressure gradient.

Octo	2	Param	eter Database (Continued)						
ober 19	Database material	Database parameter	Modeling value used	Distribution type	Dat	abase value		Units	WPO #
96 (CL_M_T2	PCT_EXP	0.00	CONSTANT	-3.46000E-01			none	31117
7	CL_M_T3	PCT_EXP	0.00	CONSTANT	-3.46000E-01			none	32144
8	CL_M_T4	PCT_EXP	0.00	CONSTANT	-3.46000E-01			none	32196
ç	CL_M_T5	PCT_EXP	0.00	CONSTANT	-3.46000E-01			none	32233
1(CL_L_TI	PCT_EXP	0.00	CONSTANT	-3.46000E-01			none	31902
1	CL_L_T2	PCT_EXP	0.00	CONSTANT	-3.46000E-01			none	31929
12	2 CL_L_T3	PCT_EXP	0.00	CONSTANT	-3.46000E-01			none	31980
13	CL_L_T4	PCT_EXP	0.00	CONSTANT	-3.46000E-01			none	32011
14	SALT_TI	PCT_EXP	0.00	CONSTANT	-3.46000E-01			none	33370
15	SALT_T2	PCT_EXP	0.00	CONSTANT	-3.46000E-01			none	33435
16	SALT_T3	PCT_EXP	0.00 CONSTANT -3.46000E-01			none	33406		
$\frac{P}{A}$ 17	SALT_T4	PCT_EXP	0.00	CONSTANT	-3.46000E-01			none	33457
218	SALT_T5	PCT_EXP	0.00	CONSTANT	-3.46000E-01			none	33577
519	SALT_T6	PCT_EXP	0.00	CONSTANT	-3.46000E-01			none	33645
20) EARTH	SAT_IBRN	0.9999999	CONSTANT	0.8			none	32961
21	CLAY_RUS	SAT_IBRN	0.9999999	CONSTANT	0.79			none	31894
22	CLAY_BOT	SAT_IBRN	0.9999999	CONSTANT	0.79			none	31873
23	CL_M_T1	SAT_IBRN	0.9999999	CONSTANT	0.79			none	32060
24	CL_L_TI	SAT_IBRN	0.9999999	CONSTANT	0.79			none	31920
25	SALT_TI	SAT_IBRN	0.9999999	CONSTANT	0.32			none	33416
26	CONC_TI	COMP_RCK	2.64E-9	CONSTANT	1.20E-9			Pa^-1	32556
L 27	CONC_T2	COMP_RCK	2.64E-9	CONSTANT	1.20E-9			Pa^-1	32638
ğ28	S_MB138	PRESSURE	See note 2	STUDENT'S-T	9.38000E+06	to	1.11100E+07	Pa	34532
829	S_MB139	PRESSURE	See note 2	STUDENT'S-T	9.38000E+06	to	1.11100E+07	Pa	34863
B30	CASTILER	POROSITY	POROSITY= POROSITY*(number of brine pockets/5)	STUDENT'S-T	2.00000E-03	to	1.60000E-02	none	31610
53	CULEBRA	THICK	7.70	CONSTANT	7.75			m	32790

1 Table PAR-54. Listing of Parameters Used in BRAGFLO Which Differ from the WIPP 1996 Compliance Certification Application **Parameter Database (Continued)**

32 NOTES:
 33 1. Further information and explanation of the difference in parameter values between the Performance Assessment Database and the BRAGFLO calculations may be found in the "Analysis Package for the Salado Flow
 34 Calculations (TASK 1) of the Performance Assessment Analysis Supporting the Compliance Certification Application," SNL, 1996.
 35 2. Pressure is specified in the Salado Halite at the horizon of MB139 and other pressures in the Salado are calculated, assuming a hydrostatic pressure gradient.

Title 40 CFR Part 191 Compliance Certification Application

Table PAR-55. Listing of Parameters Used in PANEL Which Differ From the WIPP 1996 Compliance Certification Application Parameter Database 3

4	Database material	Database parameter	PANEL halflife (years)	Database halflife (sec)	Database (sec/yr)	PANEL yr to sec	Haiflife % diff	Database parameter	PANEL atomic weight	Database atomic weight	Atomic weight % diff	WPO	J
6	SR-90	HALFLIFE	2.91200E+01	9.19000E+08	3.155693E+07	9.18938E+08	0.01%	ATWEIGHT	90	8.99080E-02	0.10%	34353	
7	CS-137	HALFLIFE	3.00000E+01	9.46700E+08		9.46708E+08	0.00%	ATWEIGHT	137	1.36907E-01	0.07%	32682	
8	PB-210	HALFLIFE	2.23000E+01	7.03700E+08		7.03720E+08	0.00%	ATWEIGHT	210	2.09984E-01	0.01%	33218	1
9	RA-226	HALFLIFE	1.60000E+03	5.04900E+10		5.04911E+10	0.00%	ATWEIGHT	226	2.26025E-01	0.01%	33458	
10	RA-228	HALFLIFE	5.75000E+00	2.11430E+08		1.81452E+08	14.18%	ATWEIGHT	228	2.28031E-01	0.01%	33468	Ĩ
-11	TH-229	HALFLIFE	7.34000E+03	2.31600E+11		2.31628E+11	0.01%	ATWEIGHT	229	2.29032E-01	0.01%	34595	4
12	TH-230	HALFLIFE	7.70000E+04	2.43000E+12		2.42988E+12	0.00%	ATWEIGHT	230	2.30033E-01	0.01%	34601	lõ
13	TH-232	HALFLIFE	1.40500E+10	4.43400E+17		4.43375E+17	0.01%	ATWEIGHT	232	2.32038E-01	0.02%	34605	E
14	PA-231	HALFLIFE	3.27600E+04	1.03400E+12		1.03381E+12	0.02%	ATWEIGHT	231	2.31036E-01	0.02%	32929	P
15	U -233	HALFLIFE	1.58500E+05	5.00200E+12		5.00177E+12	0.00%	ATWEIGHT	233	2.33040E-01	0.02%	34662	art
16	U -234	HALFLIFE	2.44500E+05	7.71600E+12		7.71567E+12	0.00%	ATWEIGHT	234	2.34041E-01	0.02%	34667	19
17	U -235	HALFLIFE	7.03800E+08	2.22100E+16		2.22098E+16	0.00%	ATWEIGHT	235	2.35044E-01	0.02%	34671	10
18	U -236	HALFLIFE	2.34200E+07	7.38900E+14		7.39063E+14	0.02%	ATWEIGHT	236	2.36046E-01	0.02%	34676	<u>ì</u>
19	U -238	HALFLIFE	4.46800E+09	1.41000E+17		1.40996E+17	0.00%	ATWEIGHT	238	2.38051E-01	0.02%	34680	Idu
20	NP-237	HALFLIFE	2.14000E+06	6.75300E+13		6.75318E+13	0.00%	ATWEIGHT	237	2.37048E-01	0.02%	32579	ian
21	PU-238	HALFLIFE	8.77400E+01	2.76900E+09		2.76881E+09	0.01%	ATWEIGHT	238	2.38050E-01	0.02%	33245	lce
22	PU-239	HALFLIFE	2.40700E+04	7.59400E+11		7.59575E+11	0.02%	ATWEIGHT	239	2.39052E-01	0.02%	33256	ا د ا
23	PU-240	HALFLIFE	6.53700E+03	2.06300E+11		2.06288E+11	0.01%	ATWEIGHT	240	2.40054E-01	0.02%	33265	Ĩ.
24	PU-241	HALFLIFE	1.44000E+01	4.54400E+08		4.54420E+08	0.00%	ATWEIGHT	241	2.41057E-01	0.02%	33292	E
25	PU-242	HALFLIFE	3.76300E+05	1.22100E+13		1.18749E+13	2.74%	ATWEIGHT	242	2.42059E-01	0.02%	33295	ati
26	PU-244	HALFLIFE	8.26000E+07	2.60700E+15		2.60660E+15	0.02%	ATWEIGHT	244	2.44064E-01	0.03%	33297	on
27	AM-241	HALFLIFE	4.32200E+02	1.36400E+10		1.36389E+10	0.01%	ATWEIGHT	241	2.41057E-01	0.02%	31358	Ap
28	CM-244	HALFLIFE	1.81100E+01	5.71500E+08		5.71496E+08	0.00%	ATWEIGHT	244	2.44063E-01	0.03%	32495	pli
29	CM-248	HALFLIFE	3.39000E+05	1.07000E+13		1.06978E+13	0.02%	ATWEIGHT	248	2.48072E-01	0.03%	32499	cat
- 30	CF-252	HALFLIFE	2.63800E+00	8.32500E+07		8.32472E+07	0.00%	ATWEIGHT	252	2.52082E-01	0.03%	31829	loi
31	PM-147	HALFLIFE	2.62340E+00	8.27900E+07		8.27865E+07	0.00%	ATWEIGHT	147	1.46915E-01	0.06%	33231	-
32	SM-147	HALFLIFE	1.06000E+11	3.37700E+18	1	3.34503E+18	0.95%	ATWEIGHT	147	1.46915E-01	0.06%	34350	
33	AM-243	HALFLIFE	7.37000E+03	2.32900E+11		2.32575E+11	0.14%	ATWEIGHT	243	2.43061E-01	0.03%	31374	
34	CM-243	HALFLIFE	2.91000E+01	8.99400E+08		9.18307E+08	2.10%	ATWEIGHT	243	2.43061E-01	0.03%	36809	
35	CM-245	HALFLIFE	8.53000E+03	2.68200E+11		2.69181E+11	0.37%	ATWEIGHT	245	2.45065E-01	0.03%	36811	

36 NOTES:

October 1996

37 1. The variables for PANEL can be found in block data GE_CHART, taken from u1:[jwgarne.panel]cpanel.for;99 dated 10-may-1996 10:56

38 2. PANEL uses halflife in years. The value is converted to seconds using the sec/yr stored in the database.

39 3. The difference columns were added to show the variation of the values for halflife and atomic weight.

40 4. Further information and explanation of the difference in parameter values between the Performance Assessment Database and the PANEL calculations may be found in the "Analysis Package for the Salado Transport

1 (TASK 2) of the Performance Assessment Analysis Supporting the Compliance Certification Application," SNL, 1996.

Table PAR-56. Listing of Parameters Used In SWIFT II for GRASP_INVERSE Which Differ From the WIPP 1996 Compliance Certification Application Parameter Database

3								
4 5 6	SWIFT II parameter name	Modeling value used	Database material	Database parameter	Database value equivalent	Units	Definition from SWIFT 11	WPO #
7	GRAV	9.792	REFCON	GRAVACC	9.8067	m/s^2	Gravitational constant	32386
8	CR	7.57E-10	CULEBRA	COMP_RCK	1.00E-10	Pa^-1	compressibility of pore structure	32688
9	ALPHL	50	CULEBRA	DISP_L	0.00	m	Longitudinal dispersivity factor	38354
0	ALPHT	2.5	CULEBRA	DISPT_L	0.00	m	Transverse dispersivity factor	38355
1	BROCK	2.50E+03	CULEBRA	DNSGRAIN	2.82E+03	kg/m^3	Rock density	32689

12 NOTES:

13 1. Further information and explanation of the parameter values may be found in the "Analysis of the Generation of Transmissivity Fields for the Culebra Dolomite," SNL, 1996.

.

14 2. SWIFT II for GRASP_INVERSE parameters and values are not stored or read from the database. The database equivalent column was used to show comparable parameters and values stored.

15

1

3 4 5	Hudunstrationable Unit	Total Hydrostratigraphic Unit Thickness (metars)	Geologic Units Combined as Units Above	Geologic Unit Thickness	
6	Units above Dewey Lake	15.76 ¹	Surficial Sediments Mescalero Caliche Gatuña Santa Rosa	0 - 3 $0 - 4.6^{2}$ $0 - [2.7 - 9.0]^{3}$ $0 - [0.6 - 64.0]^{4}$	
7	Dewey Lake	149.3			
8	Forty-niner	17.3			
9	Magenta	8.5			
10	Tamarisk	24.8			
11	Culebra	7.7			
12	Unnamed lower Member	36.0			
13	Impure Halite	600.3			
14	Marker Bed 138	0.18			
15	Anhydrite Layers a & b	0.27			
16	Marker Bed 139	0.85			
17	Castile	78.1			
18					

Table PAR-57. Reference Thicknesses for Hydrostratigraphic Units in BRAGFLO

PAR-253

1

DOE/CAO 1996-2184

19 ¹Thicknesses of supra-Dewey Lake hydrostratigraphic unit relates to the ranges of total thickness of geologic units as determined for the following quadrants of the land withdrawal area: 20

Northwest - 6.0 meters (H-6) - 22 meters (WIPP-13)

Southwest - 6.0 meters (P-6) - 12 meters (H-14)

Southeast - 11.3 meters (ERDA-9) - 47 meters (H-15)

Northeast - 21 meters (WIPP-21) - 67 meters (H-5)

 $\overline{2}\overline{3}$ 24 Source: Sanchez and McCasland, 1994, Assessment of Solid Waste Management Units: NMED/DOE/AIP-94/1, New Mexico Environment Department, Santa Fe, New Mexico, p. 4-1 - 4-28.

25 ²Mescalero caliche engulfs local bedrock; thickness of unit is accounted for in bedrock unit thickness of geologic units above Dewey Lake.

26 ³Gatuña thickness is variable; generally thickest on west half of land withdrawal area and absent on east side. Range includes AIS shaft (2.7 meters) and H-14 (9.0 meters).

 $\overline{27}$ ⁴Santa Rosa is generally absent on west half of land withdrawal area; thickens to east. Range includes AIS shaft (0.6 meters) and H-5 (64 meters).

1

THIS PAGE INTENTIONALLY LEFT BLANK

