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APPENDIX PORSURF 

Creep closure of the excavation and the presence of either brine or gas in the waste disposal 
region both influence time-dependent changes in void volume in the waste disposal area. As a 
consequence, these processes influence two-phase fluid flow of brine and gases through the 
waste and its capacity for storing fluids. For the performance assessment, a porosity surface 
method is used to indirectly couple mechanical closure and gas generation with two-phase 
fluid flow calculations implemented in the BRAGFLO code. The porosity surface approach is 
used because current codes are not capable of fully-coupling creep closure, waste 
consolidation, brine availability, and gas production and migration with computational 
efficiency. The porosity surface method incorporates the results of closure calculations 
obtained from the SANTOS code, a quasistatic, large deformation finite-element structural 
analysis code. The adequacy of the method is documented in Freeze (1996), who concludes 
that the approximation is valid so long as the rate of room pressurization in final calculations 
is bounded by the room pressurization history that was used to develop the porosity surface. 

PORSURF.1 Creep Closure Method 

Creep closure is accounted for in BRAGFLO by changing the porosity of the waste disposal 
area according to a look-up table of porosity (porosity surface) generated using the SANTOS 
code. The porosity surface is constructed from a minimal set of nonlinear finite element 
analyses in which the gas generation potential is varied to generate porosity time history 
curves. Disposal room porosities and gas pressures are calculated for each of the assumed 
histories as a function of time. SANTOS modeling results in a three-dimensional porosity 
surface representing changes in gas pressure and porosity over the 10,000-year simulation 
period. 

The completed porosity surface is compiled in tabular form and used to solve the gas and 
brine mass balance equations presented in Appendix BRAGFLO (p. 38). Porosity is 
interpolated from the porosity surface corresponding to the calculated gas pressure and fluid 
saturations at time level t,. The porosity surface is then accessed iteratively for the remainder 
of the simulation at the end of each BRAGFXO time step t,,,. The closure data provided by 
SANTOS can be viewed as a surface, with any gas generation history computed by 
BRAGFLO constrained to fall on this surface. Various techniques described in Freeze et al. 
(1995) were used to check the accuracy of this approach, and it was found to be a reasonable 
representation of the behavior observed in the complex models. 

In SANTOS, gas pressure in the disposal room is computed from the ideal gas law by the 
following relationship: 

NRT 
P, = f -7 v 
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where N, R, and Tare the mass of gas in g-moles at a given time, the universal gas constant, 
and the absolute temperature in degrees kelvin, respectively. V is the current free volume of 
the room. The gas generation variable,f, is a multiplier used in.the analyses to vary the 
amount of gas generation. 

To simulate different gas generation potentials within the room at any given time, the baseline 
gas production assumed for SANTOS is multiplied by a factor f that varies between 0 and 
2.0. Values off selected for the final compliance calculations ranged from f = 0 to f = 2 times 
the baseline f value off = 1. The condition off = 0 represents the state of the repository when 
no gas is produced; f = 2 represents two times the maximum expected gas generation. To 
bound the SANTOS results within the range of the actual BRAGFLO model results, relatively 
high gas production potentials are assumed, f = 1: 1050 moIes/dmm for corrosion and 550 
moles/dmm for microbial degradation. Values of 1 mole/year/dmm are used as the gas 
production rates for both corrosion and microbial degradation. Thirteen cases of gas 
generation are used to define the SANTOS-generated porosity surface: f = 0.0,0.025,0.05, 
0.1, 0.2,0.4, 0.5,0.6, 0.8, 1.0, 1.2, 1.6, and 2.0. 

PORSURF.2 Conceptual Model for Porosity Surface Method 

The ability of salt to deform with time, eliminate voids, and create an impermeable salt barrier 
around the waste was one of the principal reasons for locating the Waste Isolation Pilot Plant 
(WIPP) repository in a bedded salt formation. The creep closure process is a complex and 
interdependent series of events starting after a region within the repository is excavated. 
Immediately upon excavation, the equilibrium state of the rock surrounding the repository is 
disturbed, and the rock begins to deform and return to equilibrium. Eventually, at 
equilibrium, deformation ceases, and the waste region has undergone as much compaction as 
is possible by the weight of the rock above the repository horizon (overburden). 

Creep closure of the excavation begins immediately and causes the volume of the cavity to 
become smaller. If the room were empty, rather than partially filled with waste, closure would 
proceed to the point where the void volume created by the excavation would be eliminated 
and the surrounding halite would return to its undisturbed, uniform stress state. In a waste- 
filled room, the waste will eventually contact the surrounding rock; the rate of closure will 
decrease and eventually cease as the strength of the waste becomes sufficient to support the 
rock above the room. Initially, unprocessed waste can support only small loads, but as the 
room continues to close after contact with the waste, the waste will consolidate and support a H.,-.-.. ., 
greater portion of the weight of the overburden. Consolidation will continue until it reaches ,. 

mechanical equilibrium. 

The presence of either brine or gas retards the closure process. First, if brine is present and 
immobile in the waste, closure largely ceases when the void volume decreases to the point - - 
where the voids are completely filled (saturated) with brine. Consolidation continues only if 

-̂ r 

the brine can flow elsewhere. Second, when gas is present; closure and consolidation 
continue until the gas (pore pressure) increases to the point where it begins to exert 
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backpressure on the surrounding rock. In this process, the waste is considered to be a skeleton 
structure immersed in a pore fluid (the gas). As the pore pressure increases, less and less of 
the weight of the overburden is carried by the skeleton, and more support is provided by the 
gas. If the gas pressure increases to lithostatic pressure, the pore pressure alone is sufficient to 
support the overburden. 

PORSURF.3 SANTOS Numerical Analyses 

Computation of repository creep closure is a particularly challenging structural engineering 
problem, because the rock surrounding the repository continually deforms with time. Not 
only is the deformation of the salt inelastic, but it also involves larger deformations than are 
customarily addressed with conventional structural deformation codes. In addition, the 
formation surrounding the repository is not homogeneous in composition, containing various 
parting planes and interbeds with different properties than the salt. 

Deformation of the waste is also nonlinear, with large strains, and its response is complicated 
by the presence of gas. These complex characteristics of the materials comprising the 
repository and its surroundings require the use of highly specialized constitutive models that 
have been built into the SANTOS code over a number of years. Some p h i p a l  aspects 
describing the SANTOS analyses include 

Disposal Room Configuration and Idealized Stratigraphy: Disposal Room 
dimensions, computational configuration, and idealized stratigraphy are defined in the 
attached memo by Stone (1995) (Attachment 1). The idealized stratigraphy is 
reproduced in Figure PORSURF- 1. 

Discretized Finite Element Model: A two-dimensional plane strain model, as shown 
in Figure PORSURF-2, is used for the SANTOS analyses. The discretized model 
represents the room as one of an infinite number of rooms located at the repository 
horizon. The model contains 1,680 quadrilateral uniform-strain elements and 1,805 
nodal points. Additional detail on initial and boundary conditions is provided in 
Attachment 1. Contact surfaces between the stored waste and the surfaces of the room 
are addressed. 

Geomechanical Model: Mechanical material response models and their 
corresponding property values are assigned to each region of the configuration. These 
models include 

(1) a combined transient-secondary creep constitutive model for clean and 
argillaceous halite, 

(2) an inelastic constitutive model for anhydrite, and 
(3) a volumetric plasticity model for waste. 
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Material properties are provided in Attachment 1. Appendix BACK discusses the 
minimal effect on the analysis resulting from not incorporating backfill into the 
SANTOS calculation (Appendix BACK, 3-4). 

Porosity Surface: Figures PORSURF-3 and PORSURF-4 illustrate the SANTOS 
porosity surface results in two plots: one showing the 13 porosity curves plotted as a 
function of time and another showing gas pressure as a function of time. 

PORSURFA Dynamic Closure of the North-End and Hallways 

The porosity surface method is not used to model the unfilled north end of the repository 
occupied by the experimental and operational regions. A series of 60 BRAGFLO simulations 
compared dynamic consolidation with a baseline case in which the porosity and permeability 
of these regions were held constant (Vaughn et al. 1995). The study assessed the effect of 
these two approaches on brine releases to the accessible environment (disturbed and 
undisturbed conditions), as well as their effect on consequent brine pressures and brine 
saturations in the modeled regions. The study concludes that assuming constant low porosity 
and high permeability consistently leads to either similar or more conservative brine pressures 
and brine saturations and over-predicts potential releases relative to the dynamic closure 
model. For the performance assessment, the porosity of these regions is maintained at 
relatively low values associated with consolidated material for the entire modeling period, 
while the permeability of the region is fixed at a relatively high value that does not impede 
flow. 

PORSURF.5 Description of Attachments 

The following memos and attachments are provided to document additional details of the 
porosity surface method: 

(1)  Attachment 1, Proposed Model for the Final Porosity Surface Calculations 
(Stone, October 27,1995). This memo documents preliminary configuration and 
constitutive property values for the final porosity surface calculations. Tables in the 
memo include elastic and creep properties for clean halite and argillaceous halite, 
volumetric strain data and material constants used in the volumetric-plasticity model 
for waste, and elastic and Drucker-Prager constants assigned to anhydrite Marker Bed 
139. The following relevant SAND reports, scheduled for publication in 1996, will 

,,. 
supplement and update information in this memo: 

WJPP Disposal Room Model, 

Summary of Input Data for WIPP Final Porosity Surface Calculations, and 

Final Disposal Room Structural Response Calculations. A 
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Figure PORSURF-1. Stratigraphy for the Final Porosity Surface Calculations 
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Applied Traction 
13.57 MPa 

Figure PORSURF-2. Mesh Discretization and Boundary Conditions Used for the 
Disposal Room Analyses 
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Figure PORSURF-3. Disposal Room Porosity Curves for Various Values of the 
Gas Generation Scale Factor (f ). Gas Generation Values 
Range from 0.0 to 2.0 
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Time-Year 

Figure PORSURF-4. Disposal Room Internal Gas Pressure Generated by Decomposing 
Waste. Various Gas Generation Values are Plotted with an f Ranging 
from 0.0 to 2.0 

DOElCAO 1996-2184 PORSURF- 1 1 October 1996 



Title 40 CFR Part 191 Compliance Certification Application - 
THIS PAGE INTENTIONALLY LEFT BLANK 

October 1996 PORSURF- 12 



Title 40 CFR Part 191 Compliance Certification Application 

(2) Attachment 2, Baseline Inventory Assumptions for the Final Porosity Surface 
Calculations (Butcher, March 11, 1996). This memo discusses the effect of changes 
in the Transuranic Waste Baseline Inventory Report (TWBIR) on the SANTOS 
analyses. 

(3) Attachment 3, Corrosion and Microbial Gas Generation Potentials (Butcher, 
March 11, 1996). This memo discusses the rationale for using gas production 
potentials of 1,050 moles/drum for corrosion and 550 moles/dmm for microbial decay 
in the SANTOS analyses. 

(4) Attachment 4, Resolution of Remaining Issues for the Final Disposal Room 
Calculations (Stone, April 18, 1996). This memo provides additional detail on the 
disposal room elevation, determination of plastic constants for transuranic (TRU) 
waste, and determination of SANTOS input consiants for clean halite, argillaceous 
halite, and anhydrite. 

(5) Attachment 5, Sample SANTOS Input File for Disposal Room Analysis. A 
representative sample input file is provided in this attachment. The only difference in 
the selected set of SANTOS finite element analyses is a subroutine modifying the gas 
generation variable. 

(6) Attachment 6, Final Porosity Surface Data. From a parameter record package 
(PRP), WPO 35697, final porosity surface output is provided for selected gas 
generation scaling factors f = 2.0, f = 1 .O, and f = 0.5. Thirteen cases of gas generation 
are actually used in the SANTOS-generated porosity surface: f = 0.0,0.025,0.05,0.l, 
0.2,0.4, 0.5,0.6,0.8, 1.0, 1.2, 1.6, and 2.0. 

(7) Attachment 7, SANTOS - A Two-Dimensional Finite Element Program for the 
Quasistatic, Large Deformation, Inelastic Response of Solids (Stone, March 27, 
1996). This report provides documentation on the SANTOS code. WPO 35674. 
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Sandia National Laboratories 
date: October 27, 1995 

h 

to: B. M. Butcher, 6748 (MS1341) 

ch- y. -4% 
from: Charles M. Stone, 9117 (MS0443) 

Albuquerque, New Mexico 87185 

Introduction . a?. 
, I \  ,0145 

This memo documents our best estimate of the configuration and constitutive property 
values for the final porosity surface calculations. This estimate is based on information 
from WIPP project documents, contractor reports, scoping analyses, and from insight 
gained during previous disposal room analyses. The quasi-static, large deformation finite 
element code SANTOS [I] will be used for the analyses. It has the capability to compute 
an internal room pressure and to apply the resulting forces to nodes on the room boundary. 

Disposal Room Model 

The disposal room model consists of a rectangular room 3.96 m high by 10.06 m wide by 

91.44 m in length resulting in an initial room volume of 3642.75 m3. Unlike previous 
calculations which includcd a crushed salt layer around the waste, the current analyses 
consider a disposal room with waste only, no backfill. The current configuration & for 
6804 drums of uniformly distributed unprocessed waste to be stored in the disposal room. 

The corresponding volume occupied by the waste and the drums is 1728 m3. The waste is 
stored in a seven-pack drum configuration with three seven-packs stacked, for a total waste 
height of 2.676 m, along the length of the drift The initial porosity of the waste is 0.68 1 
resulting in a solid volume of 551.2 m3. 

Geomechanical Model 

A two-dimensional plane strain disposal room model will be used for the SANTOS 
analyses. The model represents the room as one of an S m i t e  number of rooms located at 
the repository horizon. Making use of symmetry, only half of the room needs to be 
modeled. The left and right boundaries are planes of symrnehy with a zero-displacement 
boundary condition applied in the horizontal direction. The upper and lower boundaries are 
located approximately 50 m from the room. Previous scoping studies have shown that - ., 
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locating the upper and lower boundaries at a distance of 50 m from the disposal room 
results in a 5 percent difference in room porosity when compared to room porosity A,, 

calculated with the boundaries located at a distance of 100 m. It is felt that this small 
diiference in room porosity is acceptable when compared to the factor of two increase in 
computer time associated with the larger model. A prescribed normal traction of 13.57 h4Pa 
is applied on the upper boundary and a normal traction of 14.76 MPa is applied at the lower 
boundary. A lithostatic stress (ox= a,= a,) that varies with depth is used as the initial 

stress on the configuration and gravity forces are included. 

The stratigraphy is based on the WIPP Revised Reference Stratigraphy that is defined in 
[2]. Recent work by Osnes and Labmhe [3] has quantified the differences in room closure 
obtained by assuming different stratigraphic models which incorporate different numbers , - 
of clay seams and marker beds. The full stratigraphic model consisting of 12 clay seams / 
and 7 anhydrite layers (12-Clay) is viewed as the reference analysis. Several different 

? 

models were studied including models with 7.5, and 3 clay seams. The models aLso j 
included different combinations of anhydrite layers. The only anhydrite layer in common 
with all the analyses is MB 139. The room closure and room porosity results reported by "-- --- J 

Osnes and Labreche showed that the simplified models reproduced the results of the 12- 
Clay model quite well. This suggests that a simplified model may confidently be used to 
capture the disposal room response. In addition, the results showed that a disposal room 
located in a stratigraphy composed of all salt closed considerably faster than a disposal 
room located in a stratigraphic model which contained anhydrite layers. 

h 

Based on these results, we feel that a simplified stratigraphic model is justified for the final 
~orositv surface calculations. In addition, we feel that the maior structural feature in the 
&atigkphy is the anhydrite layer at MB 139. Therefore, the &oposed stratigraphic model 
is composed of millaceous salt, a single clean salt layer, and MB 139. This proposed - - - 
stratigraphy is shown in Figure 1. The major question regardig this stratigraphic 
representation is whether the clay seam at the marker bed is structurally important In order 
to-answer this question, several scoping analyses were run to compare roo& closure results 
for a stratigraphy with and without a clay seam beneath MB 139. A second question to be 
answered by the study is whether the presence of the marker bed is sufficient to reduce the 
rate of room closure compared to an all salt stratigraphy as found by Osnes and Labreche 
[3]. These questions are answered by Figure 2 which shows the disposal room volume as a 
function of time for the scoping analyses. The analyses showed that the presence of the clay 
seam beneath MB 139 did not affect the closure of the disposal room. In addition, the 
presence of MB 139 did slow the rate of disposal room closure when compared to an all 
salt stratigraphy. An additional observation from this study is the fact that the horizontal 
closure increased when the marker bed was included in the stratigraphy. This is due to the 
fact that the stiff anhydrite layer forces more salt to flow horizontally into the drift rather 
than flowing upward at the drift floor. 

The disposal room contains material representing the stored waste. The basic half- 
symmetry room dimensions are 3.96 rn high by 5.03 m wide. The waste and drum volume 

of 1728 m3 is distributed along 87.96 rn of the drift at a height of 2.676 m. The assumption 
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-. 

Figure 1. Proposed Stratigraphy for the Final Porosity Surface 
Calculations 

is made that lateral deformation of a configuration of drums caused by inward movement 
of the walls of the disposal room is sufficient to eliminate space between the drums early 
in the closure process at low stress levels. Based on this assumption, the equivalent half- 
width of the waste is computed to be 3.735 m instead of the seven-pack width of 4.3 m. As 
previously described, within the room a gas pressure, pg , will be applied around the room 

boundary. 

Contact surfaces will be defined between the waste and room boundaries to model the 
contact and sliding that occurs as the room deforms and entombs the waste. Specifically, 
contact surfaces will be defied between the waste and floor of the room, the waste and 
room rib, and the waste and ceiling. All of the contacts surfaces will be allowed to separate 
if the forces between the surfaces reached a tensile value. This feature allows the room to 
reopen due to gas generation within the disposal room. 

A combined transient-secondary creep constitutive model for rock salt attributed to 
Munson and Dawson [4] and described by Munson, e t  a1 [5] will used for the clean and 
argillaceous salt The rnode,l can be decomposed into an elastic volumetric part defined by, 
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- Anhydrite Layer --- Anhydrite Layer Wfih Clay Seam --- All Salt Stratigraphy 
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Figure 2. Disposal Room Volume History For Various Stratigraphic 
Assumptions. 

(where the E~~ and the a,j are the total strain and stress cornponentr, respectively, and K 
is the elastic bulk modulus) and a deviatoric par& defined by, 

where the second term of the above equation represents the creep contribution. In the above 

Okk equation, sV is the deviatoric stress defmed as sii = crij - - , G is the elastic shear 
3 

Ekk modulus, and eij is the deviatoric strain defined by eij = E~~ - - . 
3 

In the creep term of Equation 3, F is a multiplier on the steady-state creep rate to simulate 
the transient creep response according to the following, 
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where A and 6 are work-hardening and recovery parameters, respectively, and E,* is the 

so-called transient strain limit Finally, < is an internal state variable whose rate of change 
is deterrdined by the following evolutionary equation, 

In Equation 4, the work-hardening parameter A is defined a s  A = a + plog @/G) whke 
a and p are constants. The variable 5 is the equivalent Tresca stress given by 

1 -3 J;j 3, 
5 = 2ficosf3 where 0 = - asin[ ] is the Lode angle and is limited to the 

2 ( ~ , ) ~ "  

n range -- < 9 5 E .  The variables J2 and J3 are the second and third invariants of the stress 
6 -  6 

1 1 
deviator given by J2 = 5"q~qp and J3 = ~spsss,.srp, respectively. The recovery 

CT - 
parameter 6 is held constant The transient strain limit is given by E,* = K,e ( IS/G)~ 

where K O ,  c , and M are constants. 

The steady-state, or secondary creep, strain rate, E,, is given by 

where the Ais and Bis are constants, the Qis are activation energies, T is the absolute 

temperature, R is the universal gas constant, the nis are the stress exponents, q is the so- 

called stress constant o, is the stress limit of the dislocation slip mechanism, and IHI is 

the Heaviside step function with the argument (E - IS,) . The material constants 

corresponding to the clean and argillaceous salt, used in the analyses, are given in Table 1 
and Table 2. 
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Table 1: Elastic Properties [2] 

Table 2: Creep Properties [2] 

Parameters Argillaceous 
(units) 

8.386E22 1.407E23 

The stress-strain behavior of the waste was represented by a volumetric plasticity model [I] 
with a piecewise linear function defining the relationship between the mean stress and the 
volumetric stain. Compaction experiments on simulated waste were used to develop this 
relationship. The deviatonc response of the waste material has not been characterized. It is 
anticipated that when a drum fded with loosely compacted waste is compressed axially, 
the drum will not undergo significant lateral expansion until most of the void space inside 
the drum has been eliminated. 

-.. 
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For the volumetric plasticity model, the yield surface in principal stress space is a surface 
of revolution with its axis centered about the hydrostat and the open end pointing into the 
compression direction. The open end is capped with a plane which is at right angles to the 
hydrostat The deviatoric part is elastic-perfectly plastic so the surface of revolution is 
stationary in stress space. The volumetric part has variable strain hardening so the end plane 
moves outward during volumetric yielding. The volumetric hardening is defined by a set 
of pressure-volumetric strain relations. A flow rule is used such that deviatoric strains 
produce no volume change (associated flow). The model is best broken into volumetric and 
deviatoric parts with the deviatoric part resembling conventional plasticity. The volumetric 
yield function is a product of two functions,$, and $, , describing the surface of revolution 

and the plane normal to the pressure axis, respectively. These are given by 

where ag, al, a2 are constants defining the deviatoric yield surface, p is the pressure, and E, 

is the volume strain. The form of g is defined in this problem by a set of piecewise linear 
segments relating pressure-volume strain. Table 3 lists the pressure-volumetric strain data 
used for the waste drum model. Note that the final point listed in the table is a linear 
extrapolation beyond the curve data given in [6] .  The final pressure value of 12 MPa 
corresponds to an axial stress on a waste drum of 36 MPa The elastic material parameters 
and constants defining the yield surface are given in Table 4. 

Table 3: Pressure-Volumetric Strain Data Used in the Volumetric-Plasticity Model 
for the Waste Drums [6] 

I Pressure (MPa) (P/PO) I 
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Table 4: Material Constants Used With the Volumetric Plasticity Model for the 
Waste -, 

The anhydrite layer beneath the disposal room is expected to experience inelastic material 
behavior. The MB 139 anhydrite layer is considered to be isotropic and elastic until vield 

Parameter 

G 

K 

a0 

- .  
occurs. Once the yield stre& is reached plastic strain begins to akumulats. Yield is 
assumed to be governed by the Drucker-Prager criterion 

p2 = C-aJ i  

where J2 is the second deviatoric stress invariant and J1 is the fust stress invariant(o,,). A 

Value 

333. Mpa 

222 Mpa 

1.0 Mpa 

nonassociative flow rule is used to determine the plastic strain components. The elastic ,.-. 
properties and Drucker-Prager constants, C and a, for the anhydrite are given in Table 5. 

Table 5: Elastic and Dmcker-Prager Constants for Anhydrite [q 

Gas Generation Model 

The gas generation potential and gas production rate are composed of gas from two 
sources: anoxic corrosion and microbial activity. Reference (81 repons that the estimated 
gas production potential from anoxic corrosion will be 1050 moles/drum with aproduction 
rate of 1 mole/drum/year. The gas production potential from microbial activity is estimated 
to be 550 moleddrum with a production rate of 1 molddruhear.  This means that 
microbial activity ceases at 550 years while anoxic corrosion will continue until 1050 years 
after emplacement The total amount of gas generated in a disposal room for the Baseline 
case was specified to be based on 6804 unprocessed waste drums per room. The total gas 
potential for the Baseline case is shown in Figure 3. 

Material 

Anhydrite 
L 

C (MPa) 

1.35 

Young's Modulus 
(GPa) 

75.1 

a 

- 
0.45 

Poisson,s Ratio 

0.35 
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8 

r - 
m - - 
C - 
0 
n 
n z - 4.0 m - z 

2 0  

<</. 0.0 Figure o 3. History 250 of the 500 Baseline Time Gas 750 (years) Generation 1000 Potentialused . . ,  1250 . .  for 1500 i 
the Disposal Room Analyses 

These values for the Baseline case are considered acceptable for the calculations, even 
though the values for the gas generation model recommended for the final Performance 
Assessment BRAGFLO calculations are likely to be diierent The use of the Baseline 
values is consistent with the porosity surface approach that compensates for the absence of 
detailed defdtion about gas generation within the repository by constructing a set of 
closure (void volume or porosity) curves using assumed gas generation (pressure) histories 
that span all of the gas generation histories that potentially might be encountered within the 
repository [9]. Several cdculations in which the assumed rate of gas production is doubled 
will be made, and calculations assuming a total gas potential of 3200 mles/drum/lear will 
also assure that the porosly surface data spans all potential gas generation histories. 

The gas pressure is computed from the ideal gas law based on the current free volume in 
the room. Specifically, the gas pressure, pb , is computed with the following relationship: 

where N, R , and T are the mass of gas in g-moles, the universal gas constant, and the 

absolute temperature in degrees Kelvin. The variable V is the current free volume of the 
room. After each iteration in the analysis, the current room free volume is calculated based 
on the locations of the nodes on the boundary of the room. The variable f is a multiplier 
used in the study to scale the pressure by varying the amount of gas generation. A value of 
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f =l  corresponds to an analysis with full gas generation, while a value of f=0 corresponds -. 
to no internal pressure increase due to gas generation. 
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Albuqusrquo. New Mexico 87185-1341 
I- 

date: March l l ,  1996: reissued July 10, 1996 after revision 

to: Memorandum of Record 

/3. M .  A ' s ,  
from: B. M. Butcher 

subject: Baseline Inventory Assumptions for the Final Porosity Surface Calculations 

Final porosity surface calculations were started November I, 1995, using waste compaction 
data derived from the February 1995 revision of the Baseline Inventory Report (BIR revision 
1). The assumption was made, therefore, that hture BIR adjustments would be small and 
have little effect on calculation results. 

In contrast to the assumption, an updated draft revision, Draft B, November 1995, of the 
inventory was found to be quite different than the February version (Revision 1). These 
changes were qualified in the sense that reported values were not considered final until the 
document was approved. Revision 2 of the BIR was published on December 28, 1995, after 
the porosity surface calculations were completed. At that time, the consequences of the new 
values were reviewed in order to decide whether or not to scrap already completed 
calculations and start over again using the new inventory. The conclusion of the review was 
that Revision 2 did not contain sufficient information to assess the consequences of the 
revisions. It was observed that the compaction characteristics of the inventory described in 
Revision 1 represent an upper bound of the final porosity states (greatest porosity at any 
given time), because it takes more time to compact waste that has not been partially vitrified 
(discussed in a following paragraph). Therefore, more time is available for gas pressure to 
build up and stop closure. Less closure is considered conservative with regard to repository 
performance because the waste is more porous, and therefore would offer less resistance to 
the flow of radioactive brine. 

Changes in Draft B are that vitrified waste is listed for the first time, the amount of iron- 
based metal has increased by over a factor of two and cellulosics waste has decreased in 
amount by a factor of three. New inventory values taken from Table ES-1 of Draft B are 
compared with the Revision 1 values in Table 1. 

Closer examination of the differences between Revision 1 and Draft B revealed that the 
increase in amount of waste was because of the presence of vitrified waste. During 
vitrification, combustibles iire burned up, causing the drop in the combustibles inventory, but 
the iron-based alloys remain intact. In addition, vitrification represents a 6 fold or greater 
reduction in waste volume, so that more of it can be used to fill the repository to capacity. In 
Draft B, the total amount of iron-based metal is the amount of iron in vitrified waste, 
augmented by the scaling process used to fill up the repository, plus the iron-based material 
in unprocessed waste. The procedure accounts for the increased iron content and decreased 
combustibles, but does not specify quantitatively how much iron is associated with the 
vitrified form. We need to know how much iron is associated with iron in vitrified waste and 
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how much is in unprocessed waste. This information is critical because the stress-strain 
response of iron in vitrified waste differs greatly from that of iron in unprocessed metals 
waste. Iron in vitrified waste is for all practical purposed locked up in it, undergoing little 
consolidation because the vitrification process produces a waste form that is likely to have 
high enough strength to resist further large scale densification. Vitrified waste thus undergoes 
little further consolidation during closure, whereas unprocessed metals waste undergoes a 
very large amount of densification during closure. 

Summary: The lack of quantitative definition of the amount of iron that is associated with the 
vitrified waste component in Revision 2 of the BIR prevented use of this latest information in 
constructing the compaction curve data input for the final porosity surface calculations. 
Instead, final calculations were made using waste compaction data derived from the February 
1995 version of the Baseline Inventory Report (BIR Revision 1). This approach is considered 
to provide an upper bound of the final porosity states. 
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Table 1: Baseline Inventory Assumptions for Disposal Room Model Calculations 

12 18 

Other Metals 27 72 

47 170 52 

Rubber 21 10 

Material 
Iron Base Metals 

63 33 

Total Rubber and Plastics 81 43 

92 PA 

Rg/m3 

Rev. 1: February 1995 

kp/m3 

83 

130 120 

Solidified Organic Material 7.8 2.6 

Rev. 2: December 
1995 

k& 

170 

Total Sludges 

0 
I 171 

Initial Waste Density 

0 

137.8 

0 

Soils 

I 126 

122.6 

5.7 

560 

32 

593 
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Albuquerque. New Mexico 87185.1341 

date: March 18, 1996: reissued July 10, 1996 after editorial revision 

to: Memorandum of Record 
' N F O ~ ~ ~ ~ o ~  

/3. M .  / 3 c  
from: B. M. Butcher, 6748, MS 1341 

subject: Corrosion and Microbial Gas Generation Potentials 

A number of values for the potential for corrosion and microbial gas generation have 
been used during development of the porosity surface approach (Butcher and 
Mendenhall, 1993, pp. 7-3 to 7-7). For example, inLappin et. al(1989, Sec. 4.10.2) the 
gas generation potential was quoted as 589 moleddrum for anoxic microbial decay and 
894 moles/drum for anoxic corrosion of metals. 

Later, Beraun and Davies (1992) referenced Brush as recommending a gas potential of 
1050 moleddrum for corrosion and 550 moleddrum for microbial decay. The source for 
these values was Reference 11 in Beraun and Davies (1992), which was described as "in 
draft," and apparently never issued. Source documentation for these values is therefore 
unknown, but may have been an early draft of the reference written by Brush (1991) in 
which the gas potential values were quoted as 900 moleddrum for corrosion and 600 
moles/drum for microbial decay in the final version. 

Recommended gas potentials have changed again several times since 1991. Nevertheless, 
use of the Beraun and Davies (1992) values of 1050 moleddrum for corrosion and 550 
moleddrum for microbial decay has continued. The justification for using these values is 
that the porosity surface concept was adopted in order to circumvent problems related to 
(1) the absence of detailed definition of gasgeneration within the repository and (2) the 
realization that gas production histories typical of the repository that depend on brine 
intlow could not be addressed at that time as part of a mechanical closure calculation. 
There was no way of estimating how the brine content of the waste changes with time 
with structural codes such as SAhTOS. To compensate for this deficiency, the porosity 
surface concept selects a set of gas generation histories that span all of the gas generation 
histories likely to be encountered within the repository. Disposal room porosities and gas 
pressures are calculated for each of the assumed histories as a function of time, 
summarized in data tables and transferred to BRAGFLO. Closure histories for specific 
repository conditions are then defined with the performance assessment code BRAGFLO, 
with which brine flow, gas generation, and gas migration are computed throughout the 
repository (Butcher et. al, 1994, Sections 3.2.4,3.4.1). 

In maintaining the link between SANTOS and BRAGFLO, the range of gas generation 
potentials for generation ofthe porosity surface data for the CCA exceed presently anticipated 
conditions for the repository. This procedure assures that BRAGFLO extrapolation outside 
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the data range is not needed. It also provides justification for using gas potential values that 
are not quite the same as values used on other performance assessment calculations. In other 
words, the gas model used for disposal room calculations is simply a device to enter a range of 
gas contents into the calculations, and should not be interpreted a s  having any exact 
significance in regard to predicted repository conditions. In other words while it is desirable 
to keep these gas contents somewhat typical of parameter values used in the BRAGFLO gas 
model, to assist in physical intuition of the porosity surface results, the values used in 
SANTOS need not be exactly representative of repository conditions. 
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date: April 18, 1996 

Sandia National Laboratories 
Albuquerque. New Mexico 87185 - 

to: B. M. Butcher, 6748, MS1341 

from: C. M. Stone, 91 17, MS0443- 

subject: Resolution of remaining issues for the final disposal room calculations 

Disuosal Room Elevation 

In Butcher and Holrnes (1995), the local zero reference is defined to be Clay G which is at 
Elevation 387.07 m above mean sea level and the top of MB 139 is at Elevation 379.11 
which results in a distance below the reference of 7.96 m. Butcher and Holmes also locates 
the floor of the disposal room at Elevation 380.49 m. This locates the floor 1.38 m above 
MB 139 and 6.58 below Clay G. The top of MB 139 is shown in Figure 2 of Butcher and 
Holmes (1995) and Munson (1989) to be - 7.77 m below Clay G rather than -7.96 m. It 
was decided to hold the top of MB 139 to be - 7.77 m as shown in the referenced figures 
and locate the disposal room floor 1.38 m above at -6.39 m below Clay G. It was felt that 
the location of the disposal room relative to MB 139 was the important dimension here. The 
top of the disposal room is located 3.96 m above the disposal room floor at -2.43 m relative 
to Clay G. 

Determination of Plastic Constants for the TRU Waste 

In Butcher and Holmes (1995), the inelastic deviatoric response of the TRU waste is 
characterized by a constitutive model of the form 

J2 = a o + a l p + a 2 p  
2 

(EQ 1) 

where J2 is the second deviatoric stress invariant, p is the pressure (positive in 
compression), and a,,, a,, and a2 are material constants. The material constants are defined 
for this particular form of deviatoric response. In SANTOS, the model for the waste is 
wrirten in a different functional form 

8 = A. + A l p  + A2p 
2 

(EQ 2) 

where E is the von Mises equivalent stress and p is the pressure (positive in compression). 
The material constants Al, AZ. and A3 are different from a,, a2, and a3. 
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SANTOS requires the input to the material model which describes the anhydrite nonlinear 

J l  response to be given in terms of effective stress, i5 = PI, and pressure, p = - . 
3 

Rewriting Eq. (5) in terms d 6 and p, we obtain the following relationship 

The SANTOS input constant A0 is fit and the input constant A1 is 3&a.  The set of 
SANTOS input parameters for the anhydrite is given in Table 2. 

Table 2: SANTOS Input Parameters for the Anhydrite Layers 

Determination of SANTOS Input Elastic Constants for Halite and - 
Argillaceous Halite 

Material 

Anhydrite 

The finite element code, SANTOS, uses TWO MU and BULK MODULUS as input for the 
elastic parameters in the M-D creep model. The quantity, TWO MU, is twice the shear 
modulus, p. The value of the shear modulus reported by Munson for halite and 
argillaceous halite is 12.4 Gpa. This means that TWO MU has a value of 24.8 Gpa. The 
value of the BULK MODULUS is not given directly by Munson (1995) but it may be 
calculated from the following relation given in Fung (1965): 

'IWoMU 
(Gpa) 

55.63 

where K, E and v are the bulk modulus, Young's modulus and Poisson's ratio, 
respectively. The values for Young's modulus and Poisson's ratio are given by Munson 

BULK 
MODULUS 

( G P ~ )  

83.444 

(1995). The resulting value of the bulk modulus is calculated to be 20.66 Gpa 
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( M P ~ )  

2.338 
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2.338 

A2 
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Sample SANTOS Input File 
for a Disposal Room Analysis 



TITLE 
DISPOSAL ROOM CALCULATION - FINAL - F = 2.0 - WASTE W/O BACWILL 

"f-- - PLANT, STRAIN 
INITIAL STRESS = USER 
GRAVITY = 1 = 0. = -9.79 = 0. L-I.2. 
PLOT E m ,  STRESS, STRAIN, VONMISES, PRESSURE 
PLOT NODAL, DISPLACEMENT, RESIDUAL 
PLOT STATE, EQCS, EV 
RESIDUm TOLERANCE = 0.5 
MAXIMM ITERATIONS = 1000 
HAXIXUW MLERANCE = 100. 
INTERXEDIATE PRINT = 100 
ELASTIC SOLUTION 
PREDICTOR SCALE FACTOR = 3 
AUTO STEP .015 2.592E6 NOREDUCE 1.E-5 
TIHE STEP SCALE = 0.5 
HOURGLASS STIFFENING = .005 
STEP CONTROL 

500 3.153607 
2000 3 .I53609 
36000 3.1536011 

END 
OUTPUT T m  

1 3.1536a7 
1 3.1536e9 

200 3.1536e11 
END - PLOT TIHE 

10 3.153607 
100 3.153609 
120 3.1536011 

END 
mTERIAL. 1, M-D CREEP MODEL, 2300. $ ARGILLACEOUS HALITE 

'IWO W = 24.8E9 
BULK MODULUS = 20.66E9 
A1 = 1.407323 
Q1/R = 41.94 
N1 = 5.5 
El = 8.99836 
A2 = 1.314E13 
Q2/R = 16.776 
N2 = 5.0 
B2 = 4.289E-2 
SIGO = 20.57E6 
QLC = 5335. 
M r 3.0 
KO = 2.47E6 
C 5 2.759 
ALP= = -14.96 
BETA = -7.738 
DELTLC = .58 
RN3 = 2. - A m L T  = .95 
END 



MATERIAL, 2, SOIL N FOAMS, 2300. $ ANHYDRITE 
TWO NU = 5.563ElO 
BULK MODULUS = 8.3444E10 
A0 = 2.33806 
A1 = 2.338 
A2 = 0. 
PRESSURE CUTOFF = 0.0 
FUNCTION ID = 0 
END 
MATERIAL, 3, M-D CREEP MODEL, 2300. $ PURE HALITE 
TWO MU = 24.8E9 
BULK MODULUS = 20.66E9 
A1 = 8.386E22 
Ql/R = 41.94 
N1 = 5.5 
B1 = 6.086E6 
A 2  = 9.672E12 
Q2/R = 16.776 
N2 = 5.0 
B2 = 3.034E-2 
SIGO = 20.5736 
QLC = 5335. 
I5 = 3.0 
KO = 6.275E5 
C = 2.759 
ALPHA = -17.37 
BETA = -7.738 
DELTLC = .58 
RN3 = 2. 
A?mLT = .95 
END 
MATERIAL, 4, SOIL N FOAMS, 752. 
TWO HU = 3.333E8 
BULK MODULUS = 2.223E8 
A0 = 1.0e6 
A1 = 3. 
A2 = 0. 
PRESSURE CUMFF = 0. 
FUNCTION ID = 2 
END 
NO DISPLACEKENT X = 1 
NO DISPLAC- Y = 2 
PRESSURE, 10, 1, 13.5736 
CONTACT SURFACE, 100, COO, O., 1.E-3, 1.E4O 
CONTACT SURPACE, 200, 500, 0.. l.E-3, 1.E4 
CONTACT SURPACE, 300, 600, O., 1.E-3, 1.E4 
CONTACT SURFACE, 300, 200, O., 1.E-3, 1.E4 
CONTACT SURFACE, 100, 200, O., l.E-3, 1.E4 - 
ADAPTIVE PRESSURE, 700, 1.e-6, -6.4 
PUNCTION,l $ FUNCTION TO DEFINE PRESCRIBED PRESSURE 
0.. 1. 
3.1536e11, 1. 
END 
FUNCTION, 2 



0.0000, 0.0000 
0.5101, 1.5300E6 
0.6314, 2.0307E6 
0.7189, 2.532136 
0.7855, 3.0312E6 
0.8382, 3.5301E6 
0.8808, 4.0258E6 
0.9422, 6.933316 
1.1400, 12.000E6 
END 
m C T I O N  = 3 
0. 0.5 
3.1536311 1. 

END 
EXIT 
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Program for the Quasistatic, Large Deformation, 

Inelastic Response of Solids 
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ABSTRACT 
C. 

SANTOS is a finite element program designed to compute the quasistatic, large deformation, inelastic response of 
two-dimensional planar or axisymmeuic solids. The code is derived from the transient m c  code PRONTO 
2D. The solution strategy used to compute the equilibrium states is based on a self-adaptive dynamic relaxation 
solution scheme, which is based on explicit cenual difference pseudo-time integration and artificial mass 
proponional damping. The element used in SANTOS is a uniform strain 4-node quadrilateral element with an 
hourglass control scheme to conuol the spurious deformation modes. Fillire strain constitutive models for many 
common engineering materials are included. A robust master-slave contact algorithm for modeling sliding contact 
is implemented. An interface for coupling to an external code is also provided. 
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1.0 INTRODUCTION 

SANTOS is a finite element program developed for quasistatic, large de f~~Ina t i~n ,  inelastic analysis of two- 

dimensional solids. It is a powerful analysis tool that allows the user to address the solution of complex problems 
that include both material and geomeuic nonliiearities. The wide variety of constitutive models in the code allows 

SANTOS to be used for a wide class of problems from geomechanics to metal forming. 

In 1986, Taylor and Flanagan at Sandia National LaboratoriesMew Mexico developed a new transient 
dynamics finite element code. which they named PRONTO (Taylor and Flanagan. 1987). that replaced the widely 

used HONDO Il (Key et al., 1978) code. PRONTO employed the same explicit cennal difference time integation 
operator as HONDO Il in addition to some new state-of-the-art features such as a uniform nrain quadrilateral 
element with single point integration, improved critical time step estimates, and more robust contact surfaces. The 

code was witten in a modular fashion wid1 an easy.-to-use interface for adding new connitutive models. The code 

archirecme and storage schemes in PRONTO were also developed to take advantage of vector processing on the 

CRAY computer and to i o w  for the solution of extremely large problems. It stemed only nanual, therefore, to 

take advantage of the development work of Taylor and Ranagan and adapt PRONTO for the solution of quasistatic 
problew by adding a self-adaptive dynamic relmtion scheme. A similar procedure was employed when adapting 

HONDO U to produce the SANCHO (Stone et al., 1985) quasistatic finite element code. The development and use 
of SANCHO showed that the same excellent resulu obfained for highly nonlinear transient dynamics problems 
using explicit methods could be achieved for quasistatic problems using an explicit method such as dynamc 

.- relaxation. 

SANTOS belongs to a snlall but growing class of special purpose finite element codes which use iterative or 

indirect solution methods to achieve quasistatic solutions. A companion code to SANTOS is JAC (Bifne and 

Blanford, 1994) which utilizes a nonlinear conjugate gradient iterative scheme for obtaining quasistatic solutions. 

The solution algorithm in SANlOS is based on a self-adaptive dynamic relmtion scheme with uniform mesh 

homogenization which is identical to the method used in SANMO. Because SANTOS is explicit in nalure, there 

is no stiifness matrix to form or to factorize which reduces the amount of computer storage necessary for execution. 

Dynanlic relaxation is not a new quasistatic solution technique with some of the early inuodunory papers on 

dynamic relaxation appearing in the mid-1960s. Dynamic relmtion is attractive for three reasons: 1) it is 

vectorizable, 2) it is versatile. and 3) it is reliable. Because it can be made ex-plicit, it is highly veaorizable for 

modern digital calculations. In an explicit form it is ideal for dealing with large deformations. finite Nains, 
inelastic material behavior and contact surfaces. It is reliable in that if the algorithm converges and equilibrium is 
achieved, then the solution obtained will be good An early introduction of the idea is given by Oner et al. (1966). 

but a more recent work which summariw all of the significant contributions on the topic since Otter et al. can be 

found in Underwood (1983). Additional information on dynanuc relaxation can be found in the paper by 

Papadr'lkakis (1974). 

There are many features and capabilities in SANTOS that make it a very versatile and user-fiendly computer 

program. The code has a user-oriented data input scheme based on a free-field reader with keyword descriptors 

that allow the user to define a complex problem with very few commands. The material library in SANTOS 
h 

contains several nonlinear constitutive models that can be used to model many different engineering materials from 
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metals to foams. The material model interface is also well documented so that new materials may be easily added - 
SANTOS l m  the capability to accept temperature history data from an cx3emal source for solving thermal mess 

problems. If the temperature history changes only in time and is uniform throughout the nructure, it can be 

generated within SANTOS itself The contact or sliding of two surfaces with friction can also be modeled using 

SANTOS. Surfaces can open or close as the solution dictates. which allows many physical processes to be 

realinicaliy modeled. Fixed coiltact surfaces may be used to join two regions with different mesh discretizations. 

A code interface (Taylor and Ranagan. 1988) is provided which allows an external, user-generated code to pass 

data to SANTOS and to access internally computed SANTOS variables. An example of such coupling would be a 

porous flow wde providing a pore presnve field to SANTOS and SANTOS providing updated nodal coordinates 

and mess components to the e x l e d  code. 

SANTOS resides and is maintained in the Sandia National Laboratories Engineering Analysis Code Access 
System (SEACAS) (Sjaardema. 1993). The program is designed to work with a separate mesh generation program 

that produces geometry and connectivity ulformation in the SEACO format (Taylor and Rannagaq 1987). The 

results from a S M O S  calculation are winen in the SEACO f o r k t o  a q a r a t e  6le for processing by separate 

graphical post-processing and visualization software. SANTOS is written in standard FORTRAN with any 

systemdependent coding contained in the SUPES (Red-Horse et al., 1990) utilities package. 

In the folloning sections of this report a description of the thwry and the computational models used in 

SANTOS are given. A description of the available constitutive models is also provided. Because SANTOS is 
derived directly from PRONTO. many of the theoretical sections are taken directly from the PRONTO theoretical 
repon. An input guide for use of the program is included along with several sample problems and their solutions. -\ 



In this chapter, we present the underlying continuum mechanics concepts necessary to follow the development 

of the numerical algorithms in the following chapters. Bold face characters denote tensors. The order of the tensor 

is implied by the context of the equation. 

2.1 Kinematics 

A material point in the reference confi-mation Bo with position vector X occupies position x at time t in the 

deformed configuration B. Hence we write x = x(X.t). The motion from the original configuration to the deformed 

configuration shown in Figure 2.1.1 has a deformation gradient F given by 

Applying the polar decomposition theorem to F: 

F = V R = R U  

where V and U are the symmemc, positive definite left and right stretch tensors, respectively, and R is a proper 

C- 
orthogonal rotanon tensor. Figure 2.1.1 illustrates the intermediate orientations defined by the two alternate 

decompositions of F defined by Equation (2.1.2). The determination of R as defined by Equation (2.1.2) presents a 

significant numerical challenge. In Section 3.3. we describe the incremental algebraic algorithm that we use to 

determine R. 

The velocity of the material point X is written as v = x where the superposed dot indicates time differentiation 

holding the material point fixed. The velocity gradient is denoted by L and may be expressed as 

The velocity p d i e n t  can be written in terms of the symmeeic (D) and antisyrnmemc (W) parts, respectively. 

L = D + W .  (2.1.4) 

Using the right decomposition from G a t i o n  (2.1.2) in Equation (2.1.3) gives 

Dienes 1131 denoted the first term on the right-hand side of Equation (2.1.5) by R: 
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TRI--2-9 

Figure 2.1.1. Original, deformed, and intermediate configurations of a body. 

Both W and R an antisymmemc and represent a rate of rotation (or angular velocity) about some axes. In 
general, R t W. The difference arises when the last tern of Equation (2.1.5) is not symmetric. The symmetric pan 

of U U-' is the unrotated deformation rate tensor d as defined below (note that both U and V1 are symmetric). 

There are two possible cases which can cause rotation of a material line element: rigid body rotation and shear. 

Because total shear vanishes along the axes of principal stretch, the rotation of these axes defines the total rigid body 

rotation of a material point 

It is a simple exercise in vector analysis to show that Equation (2.1.6) represents the ratc of rigid body rotation 
at a material point as shown by Dienes (1979). It is equally simple to show that W represents the ratc of rotation of 
the principal axes of the rate of deformation D. Since D and W have no sense of the history of deformation. they arc 

not sufficient to define the rate of rotation in a finite deformation context. 

Line elements where the rate of shear vanishes rotate solely due to rigid body rotations. These line elements are 
along the principal axes of U . We will apply a similar observation below as we derive Dienes' (1979) expression 

for calculating R: 
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-. 
Using the left decomposition of Equation (2.1.2) in Equation (2.1.3) gives 

L = V V - ' + V R V - I  . (2.1.8) 

Postmultiplying by V yields an expression which defines the decomposition of L into V and R: 

When the dual vector of the above expression is taken, the symmemc v vanishes to yield a set of three linear 

equations for the three independent components of R. 

The antisymmemc part of a tensor may be expressed in terms of its dual vector and the permutation tensor eijk. 

Define the following dual vectors; 

Using Equations (2.1.4), (2.1.10). and (2.1.11) in Equation (2.1.9) results in the expression that Dienes (1979) 
gave for determining R from W and V: 

..-- 
where 

We observe from the above expressions that R = W if and only if the product V D is symmetric. This condition 

requires that the principal axes of the deformation rate D coincide with the principal axes of the current stretch V. 
Clearly, a pure rotation is a special case of this condition since D, and consequently Equation (2.1.13). vanish. 

2.2 Stress and Strain Rates 

Our constitutive model architecture is posed in t e r n  of the conventional Cauchy smss, but we adopt the 

approach of Johnson and Bammann (1984) and define a Cauchy stress in the unrotated configuration. The reader 

seeking more detail than is presented here should see Flanagan and Taylor (1987). The "true" suess in the deformed 

configuration is denoted by T. The Cauchy s u n s  in the unrotated configuration is denoted by o. These two stress 

measures are related by 

Each material point in the unrotated configuration has its own reference frame which rotates such that the 

defonnation in this frame is a pure stretch. Then T is simply the tensor a in the fixed global reference frame. The - conjugate suain rate measures to T and a arc D and d, respectively. These strain rates were defined by Equations 
- (2.1.4) and (2.1.7). respectively. 
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-.~ 
conjugate strain rate measures ro T and u are D and d, respectively. These nrain rates were defined by Equations 
(2.1.1) and (2.1.7). respectively. 

The Principal of Material Frame Indifference (or objectivity) stipulates that a wnstitutive law must be 

insensitive to a change of reference frame (Truesdell. 1966). This requires that only objective quantities may be 

used in a constitutive law. An objective quantity is one which vandorms in the s q e  manner as the energy 

conjugate stress and strain rate pair under a superposed rigid body motion. The fundamental advantage of the 

unrotated stress over the true stress is that the material derivative of CJ is objective, whereas the material derivative 
of T is not. 

The Jaumann rate defined below is frequently used in constitutive relationships to resolve the need for an 

objective rate of Cauchy stress. 

A similar stress rate, called the Green-Naghdi rate by Johnson and Bammann (1984) can be derived by 

transforming the rate of the unrotated Cauchy stress to the fixed global frame as follow: 

The Jaunann rate and the Green-Naghdi rate are very similar in form. The important difference between the two A 

is that the Green-Naghdi rate is kinematically consistent with the rare of Cauchy mess, while the Jaumann rate is . 
not. By this statement we mean that 6 is identical to T in the absence of rigjd body rotations. It is clear .that '? 
need not equal T under the same conditions since W need not vanish with rigid body rotations. 

The simple shear problem presented by Dienes (1979) serves as an excellent demonsuation of the symptoms 

which can occur due to the deficiency of the Jaumann rate. Figure 2.2.1 shows a body which undergoes the 

following motion: 

Dienes applied a simple linear isotropic hypoelastic material law to both the Jaumann rate (2.2.2) and the Green- 

Naghdi rate (2.2.3). The analytic solution for the true svesses as a fundion of time using the Jaumann rate is 

shown in Figure 2.2.1. The Green-Naghdi rate solution is shown in Figure 2.2.2 and demonmates a monotonic 
increase in stress with increasing shear strain, while the Jaumann rate results in a harmonic oscillation of the 

stress. The reason that the Jaumann rate produces this orillation in stress is that W gives a constaut rate of 

rotation for the motion defined by Equation (2.2.4). while vanishes with time. Clearly, the body experiences 

rotations which diminish over time, but the Jaumann rate continues to drive the stress convection terms at a 

constant rate. This leads to the oscillatory behavior of the stresses shown in Figure 2.2.1. 

A distinct advantage of the unrotated reference frame is that all constitutive models are cast without regard to 

finite rotations. This greatly simplifies the numerical implementation of new constitutive models. The rotations of - 
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Figure 2.2.1. Computed stress-strain curves for a body undergoing simple shear using the Jaumann rate. 

Shear Strain (percent) 
TR16YB-IO 

Figure 2.2.2. Computed stress-strain curves for a body undergoing simple shear using the Green-Naghdi rate. 
.A, 

- 



WPO# 35674 March 27, 1996 

global state variables (e.g.. mess and strain) are dealt with on a global level which ensures that all constitutive - 
models are consistent. Internal state variables (e.g.. backstress) see no rotations whatsoever. 

The drawback to working in the unrotated reference frame is that we must accurately determine the rotation 

tensor, R, which is not a snaightforward numerical calculation. We present an incremental, algebraic algorithm to 

accomplish this task in Section 3.4. 

2.3 Fundamental Equations 

The equilibrium equation for the body is 

where p is the mass density per unit volume and b is a specific body force vector. 

We seek the solution to Equation (2.3.1) subject to the boundary conditions 

where S,, represents the portion of the boundary on which kinematic quantities are specified (displacement). In 

addition to satisfying the kinematic boundary conditions given by Equation (2.3.2). we must satisfy the traction 

boundary conditions - 
i 

where ST represents the portion of the boundary on which tractions are specified. The boundary of the body is given 

by the union of Su and ST, and we note that for a valid mechanics problem Su and ST have a null intersection. 

The jump conditions at all contact discontinuities must satisfy the relation 

w h m  Sc represents the contact surface intersection and the subscripts "+" and "-" denote different sides of the 

contact surface. 

To utilize dynamic relaxation as a solution strategy for quasistatics problems, we must first convert the 

quilibrium quations into equations of motion by adding an acceleration term. Thus, 

divT + pb = pii (2.3.5) 

where ii is the acceleration of the material point Now, all that remains is to introduce the concept of mesh 

homogenization and artificial damping as well as inte,pte forward in time from initial conditions until the aansient 

dynamic response has damped out to the static result with equilibrium satisfied. Further description of the 

implementation of the dynamic relaxation method will be discussed in a later section (Section 3.7). -, 
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3.0 NUMERICAL FORMULATION 

\-- 
In this chapter. we describe the finite element formulation of the problem and the numerical algorithms required 

to perform the spatial and temporal inte,gation of the equations of motion 

3.1 Four-Node Uniform Strain Element 

The four-node two-dimensional isoparamemc element is widely used in computational mechanics. Optimal 

integration schemes for these elements, however. present a dilemma. A one-point integration of the element under- 

integrates the el em en^ resulting in a rank deficiency for the element which manifests itself in spurious zero energy 

modes, commonly referred to as hourglass modes. A two-by-two integration of the element over-integrates the 

element and can lead to serious problems of element locking in fully plastic and incompressible problems. The four- 

point integration also carties a tremendous computational penalty compared to the one-point mle. We use the one- 

point integration of the element and implement an hourglass control scheme to eliminate the spurious modes. The 

development presented below follows directly from Ranagan and Belytschko (1981). We assume that the reader is 

somewhat familiar with the finite element method and will not go into a complete description of the method. The 

reader can consult numerous texts on the method (Hughes. 1987). 

The quadrilateral element relates the spatial coordinates xi to the nodal coordinates xi1 through the isoparamemc 

shape functions +I as follows: 
IC- 

xi = xi1 %(L TI) . (3.1.1) 

In accordance with indicial notation convention, repeated subscripts imply summation over the range of that 

subscript. The lowercase subscripts have a range of two, corresponding to the two-dimensional spatial coordinate 

diuections. Uppercase subscripts have a range of four. corresponding to the element nodes. 

The same shape functions are used to define the element displacement field in terms of the nodal displacements 

UiI 

Since the same shape funnions apply to both spatial coordinates and displacements. their material derivative 

(represented by a superposed dot) must vanish. Hence, the velocity field may be given by 

and likewise for the accclaation field 

The velocity gradient tensor, L, is defined in terms of nodal velocities as 
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-. 
By convention, a comma preceding a lowercase subscript denotes differentiation with respect to the spatial 

coordinates (e.g., ui,, denotes 3% I ax,) 

The two-dimensional isoparamemc-shape functions map the unit square in 5-'l to an arbiuary quadrilateral in x- 

y, as shown in Figure 3.1.1. We choose to center the unit square at the origin in 5-q space so that the shape functions 

may be conveniently expanded in terms of an onhogonal set of base vectors, given in Table 3.1, as follows: 

Table 3.1 

node 5 'l ZI h11 A21 TI 

The above vectors represent the displacement modes of a unit square. The first vector, XI. accounts far rigid 

body uanslation. We call 1 the summation vector since it may be employed in indicial notation to represent the 

algebraic sum of a vector. 

The linear base vectors Ai1 may be readily combined to define the uniform normal strains and shear strain in the 

element We refer to k ,~  as the volumeuic base vectors since, as we will illustrate below, they are the only base 

vectors that appear in the element area expression. 

The last vector. TI. gives rise to linear strain modes that are neglected in the uniform strain integration. This 
vector defines the hourglass pancrns for a unit cube. The displacement modes represented by the vectors in Table 

3.1 are also shown in Figure 3.1 .l. 
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Figure 3.1.1. Mode shapes for the four-node constant strain quadrilateral element. 

C 

3.1.1 Plane Strain Case 

In the finite element method, we replace the momentum Equation (2.3.5) with a weak form of the equation. 

Using the principal of virtual work, we write the weak form of the equation as 

where 6ui represents an arbitrary virtual displacement field, with the same interpolation as Equation (3.1.2). which 

satisfies the kinematic constraints. In plane strain, the thickness of the body is considered uniform and arbitrary and 

therefore can be eliminated from the preceding expression. Integrating by pam and applying Gauss' divergence 
theorem to Equation (3.1.7) then gives 

The summation symbol represents the assembly of element force vectors into a global nodal force array. We assume 
that the reader understands the details of this assembly; we will not discuss it further in this document. 
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The second integral in the preceding quation is used to define the element internal force vector f , ~  as 

biI fz = JAe Ti, 6ui,, dA . (3.1.9) 

The fmt and third integrals define the external force vector. and the fourth integral defines the inertial response 

We perform one-point integration by neglecting the nonlinear portion of the element displacement field, thereby 

considering a state of uniform main and stress. The preceding expression is approximated by 

- 
where we have eliminated the arbiuary vimal displacements, and Tij represents the assumed uniform suess tensor. 

By neglecting the nonlinear displacements, we have assumed that the mean sucsses depend only on the mean strains. 

Mean kinematic quantities are defined by integrating over the element as follows: 

We now define the discrete gradient operator as 

The mean velocity gradient, applying Equation (3.1.5), is given by 

Combining Equations (3.1 .lo) and (3.1.12), we may express the nodal forces by 

f .  - =f. B. 11 - IJ JI . 

Computing nodal forces with this integration scheme requires evaluation of the grad'int operator and the 

element area. These two tasks are linked since 

x. . = 6.. 
'.I 'J 

where 6ij is the Kroneker delta. Equations (3.1.1), (3.1.12). and (3.1.15) yield 
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- Consequendy, the gradient operator may be expressed by 

a A 
BiI =- 

ax i l  

To integrate the element area in closed form, we use the Jacobian of the isoparamemc transformation to 

aansform the integral in x-y space to an integral over the unit square: 

where 

ax ay ax ay J=----- 

at a,, ac 
Therefore, Equation (3.1.18) can be written as 

where 

In light of Equation (3.1.6). the above integration involves at most bilinear functions. Therefore, only the 

constant tam does not vanish and the inteagation yields 

Note that CU is antisymmeuic: 

CI, = -Cu 

Evaluating Equation (3.1.22). we obtain the following explicit representation for Cu:  

Substi~ting the above expression into Equation (3.1.20). we obtain the familiar expression for the area of a 
c quadrilateral: 

-. 
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Using this result in Equation (3.1.17). the B mamx may be expressed as 

The mean stress approach used here gives the same result in two dimensions as the one-point quadrature rule for the 

quadrilateral because the Jacobian is at most bilinear. 

3.1.2 Axisymrnetric Case 

The axisymmemc quadrilateral poses a special problem for the finite element method in that we must reduce a 

three-dimensional variational Equation (3.1.7) to a two-dimensional element domain. The formulation is 

complicated by the fact that the variational principle is cast in cylindrical. rather than Cartesian coordinates. 

We will start by defining the cylindrical coordinate system as follows: 

P = (r.z.9) . (3.1.27) 
-, 

While the above ordering of the coordinates is unconventional (and not right-handed), it degrades cleanly to the 

axisymmemc case. Note that Greek indices have a range of three and that supenaipts and subscripts indicate 

contravKiant and covariant tensor components, respectively 

The shape functions of the axisymmeeic uniform swain quadrilateral arc the same as those for the plane strain 

case (Table 3.1) and are defined implicitly in terms of the nodal coordinates 

Note that lowercase English indices have a a g e  of two and thaL since the two-dimensional coordinate system is 

Cartesian, there is no distinction beiween covariant and contravariant tensor components. 

In our Lagrangian formulation, the same shape functions are applied to the displacement fields. This implies 

that the material derivatives of the shape functions vanish. As a resulf these shape functions also apply to the 

v e l o c i ~  field, just as in the plane strain case: 

The weak form given by Equation (3.1.7) is expressed in cylindrical coordinates as 
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- We are now faced with a three-dimensional variational principle. but only a two-dimensional element Because 

the differential of volume imposes a factor of r on the differenrial of area (dV = ZmdA), there is an implicit r 

weighting on the integrand of the weak form in Equation (3.1.30). This means that the integrand vanishes near the 

axis of symmetry (r = 0) regardless of the variations! This also means that the discretized equations generated by the 

finite element method become ill-conditioned near the axis. 

This difficulty is resolved by dividing the inte,pnd of Equation (3.1.30) by r to reduce the integration to the 

element domain. However, we must carry this weighting factor in order to apply Gauss' theorem in three 

dimensions. This technique was referred to as a Peuov-Galerkin, or area-weighted finite elemenf formulation by 

Goudreau and Hallquist (1982). 

Integrating by parrs and applying Gauss' theorem yields the following: 

A 
~vhua t i ng  the covariant derivative in the preceding equation yields 

where T& are the Euclidian Christoffel symbols associated with the cylindrical coordinate system. The only 

nonzero components are 

We are now in a position to degenerate the variational equations to the axisymmemc case. The axisymmetry 

conditions require that variations and derivatives in 9 vanish. Combining Equations (3.1.32) to (3.1.34) and 

enforcing axisymmetry gives 
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Note that we have dropped the conuavariant superscript notation for English indices in going from Equations 
(3.1.32) to (3.1.35) because as we stated previously, there is no distinction between conuavariant and covariant 
components in our twdimensional coordinate system. 

A byproduct of the Peuov-Galerkin formulation is that the resultins weak form for the axisymrnemc case. 

Equation (3.1.35). is nearly identical to that of the plane strain case, Equation (3.1.8). The only difference is the 

addition of the last two terms to the internal force expression. which is the second integral above. This is clearly a 

major architectural advantage to SANTOS. 

Note that the last term of the axisymrnemc internal force expression is not associated with strain. These forces 

are analogous to the covected force term which appears in the suess divergence as shown below. 

If the llr correction is omitted in Equation (3.1.31). the final term in the axisyrnmemc internal force disappears. 

It is convenient for a finite element program to work with physical. rather than tensoral, stress components. In 
our formulation, the hoop mess is the only component which requires such a distinction. The physical hoop strcss 
T33 is given by 

The internal forces are then given by 

Evaluating all these integrals with single-point integration yields 

where 



- 
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We now see that the internal force vector for the axisymmemc case. Equation (3.1.39), is the same as that for the 

plane strain case, Equation (3.1.14). with the addition of the hoop suess and covected forces. 

The velocity gradient in cylindrical coordinates is 

Substituting Equation (3.1.34) into the above equation and enforcing axisymmeuy leaves only five nonzero 

components: the four in-plane components, and the physical hoop seain rate D 3 3  This additional strain rate 

component is defined conjugate to Equation (3.1.37) as 

We evaluate this quantity with one-point integration as follows: 

where 7 is given by Equation (3.1.40) and 

1 
,.- Ul =211 ulI 

3.1.3 Lumped Mass Matrix 

One of the aforementioned advantages of using the Petrov-Galerkin method for the axisymmemc case is that the 

inemal terms in the variational statement of the boundary value problem are identical for both the plane strain. 

Equation (3.1.8), and axisymmemc, Equation (3.1.35). cases. Therefore, we can treat both cases at one time. 

To reap the benefits of an explicit architecture. we must diaponalize the mass mamx. We do this by integrating 

the inertial energy variation as follows: 

where 

and ~IJ is the Kroneker delta. Clearly, the assembly process for the global m s  mamx from the individual clement 

matrices results in a global mass mamx which is diagonal and can be expressed as a vector, MI. 



3.2 Explicit Time Integration 

SANTOS uses a modified central difference scheme to intqpte the equations of motion duough time. By this 
we mean that the velocities are intepated with a forward difference, while the displacements arc integrated with a - 
backward difference. The integration scheme for a node is expressed as 

where f and f fST are the external and internal nodal forces, respectively, M is the nodal point lumped mars. 

and At is the time increment. 

The central difference operator is conditionally stable. It can be shown that the Courant stability limit for the 

operator is given in terns of the highest eigenvalue in the system (%): 

In Section 3.5, we discuss how the highest e ipvalue  is approximated and how we determine a stable time 

increment. -. 

3.3 Finite Rotation Algorithm 

We statcd in Section 2.2 that one of our fundamental numerical challenges in the development of an accurate 

algorithm for finite rotations was the determination of R. the rotation tensor defined by the polar decomposition of 

the deformation gradient F. We developed an incremental algorithm for reasons of computational efficiency and 
numerical accuracy. The validity of the unrotatcd reference frame is based on the orthogonal uansformarion given 

by Equation (2.2.1). 'Ilercfore, the crux of inte,mting Equation (2.1.6) for R is to maintain the onhogonality of R. 
1 If one integrates R = &2R via a forward difference scheme, the orthogonality of R degenerates rapidly no matter 

how fine the time increments. We instead adapted the algotithm of Hughes and Winget (1980) for integrating 

incremental mrations as follows. 

A rigid body rotation over a time increment At may be represented by 

whne QAt is a proper orthogonal tensor with the same race of rotation as R given by Equation (2.1.6). The total 
rotation R is updated via the highly accurate expression below. 
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For a constant rate of rotation, the midpoint velocity and the midpoint coordinates arc related by 

Combining Equations (3.3.1) and (3.3.3) yields 

Since xt is arbitrary in Equation (3.3.4), it may be eliminated. We then solve for Q A ~ .  The result is 

?he accuracy of this integration scheme is dependent on the accuracy of the midpoint relationship of Equation 

(3.3.3). The rate of rotation must not vary significantly over the time increment Funhermore, Hughes and Winget 

(1980) showed that the conditioning of Equation (3.3.5) degenerates as AtO ,pws. 

Our complete numerical algorithm for a single time step is as follows: 

- 1. ' ~ a l c u ~ a t e  D and W. 

2. Compute zi = eijk Vjm Dmk . 
o = w - 2[V - I tr(V)]-1 z , and 

3. Solve (I-+++. = (I+-++t 
4. Calculate v = (D + W) V - V R  . 

5. Update V t + ~ t  = Vt +At VAt . 

6. Compute d = RT D R . 

7. Integrate 6 =  f (d.0) . 

8. Compute T = R 0 RT . 

This algorithm requires that the tensors V and R be stored in memory for each element. 



Algorithms for calculating fhe stable time increment and hourglass control require dilatational and shear moduli. 

In SANTOS, we use an algorithm for adaptively determining the effective dilatational and shear moduli of the 

material. 

Because S N O S  uses an explicit integration algorithm, the constitutive response over a time step can be recast 

a posteriori as a hypoelastic relationship. We approximate this relationship as isotropic. This defines effective 

moduli, L and 6 in terms of the hypoelastic stress increment and strain increment as follows: 

Equation (3.4.1) can be rewritten in terms of volumetric and deviatoric pans as 

and 

where 

and 

?he effective bulk modulus follows directly from Equation (3.4.2) as 

Taking the inner product of Equation (3.4.3) with itself and solving for the effective shear modulus 2@ gives 

Using the result of Equation (3.4.6) with Equation (3.4.7), we can calculate the effective dilatational modulus 

i + 2 6 :  
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If the strain increments are insignificanr. Equations (3.4.6) and (3.4.7) will not yield numerically mcanin,&l 

results. In this circumstance, SANTOS sets the dilatational modulus to an initial estimate. Lo io 2 h .  An initial 

estimate for the dilatational modulus is, therefore. the only parameter which every constitutive model is required to 

provide to the time step control algorithm. 

In a case where the volumcmc strain increment is significant but the deviatoric increment is nor. the effective 

shear modulus can be estimated by rearranging Equation (3.4.8) as follows: 

If neither strain increment is significant SANTOS sets the effective shear modulus to the initial dilatational 

modulus. The algorithm that SANTOS follows to estimate the effective dilatational and shear moduli is summarized 

in Table 3.2. 

Table 3.2 

Adtdkk > &,. .. , 10-12 1% i + 2 $  2fi 

Yes Yes (3.4.8) (3.4.7) 

I Yes No Lo + 2Po (3.4.9) 

Yes LO +  PO (3.4.7) 

No h+2k XQ + 2p,, 

3.5 Determination of the Stable Time Increment 

Flanagan and Belytschko (1984) provided eigenvalue atimafcs for the uniform strain quadrilateral described in 

Section 3.1. They showed that the maximum eigenvalue was bounded by 

Using the effective dilatational modulus from Section 3.4 with the eigenvalue estimates of Equafion (35.1) allows us 

to write the stability criteria of Equation (3.2.4) as 



The estimate of the critical time increment given in the preceding quation is for the case where there is no 

damping present in the system. If we define E as the fraction of critical damping in the highest element mode, the 

stability criterion of Equation (3.5.2) becomes 

Conventional estimates of the critical time increment size have been based on the uansit time of the dilatational 

wave over the shonest dimension of an element or zone. For the undamped case, this gives 

where c is the dilatational wave speed and e is the shortest element dimension. 

There are two fundamental and imporrant differences between the time increment limits given by Equations 

(3.5.2) and (35.4). First, our time increment limit is dependent on a characteristic element dimension, which is 

based on the finite element gradient operator and does not rquire an ad hoc guess of this dimension. This 

characteristic element dimension. e, is defined by inspection of Equation (3.5.2) as 

Second, the sound speed used in the estimate is based on the current response of thc matcrial and not on the 

original elastic sound speed. For materials that experience a reduction in stiffness due to plastic flow, this can result 

in significant increases in the critical time increment 

It should be noted that the stability analysis performed at each time step predicts the critical dme increment for 

the next step. Our assumption is that the conservativeness of this estimate compensates for any reduction in the 

stable time increment over a single time step. 

3.6 Hourglass Control Algorithm 

The mean stress-strain formulation of the uniform strain element considers only a fully linear velocity field. The 

remaining portion of the nodal velocity field is the sosallcd hourglass field. Excitation of these modes may lead to 

severe, unresistcd mesh distortion. The hourglass control algorithm described here is taken d i i t l y  from Flanagan 

and Belytschko (1981). The method isolates the hourglass modes so that they may be treated independently of the 

rigid body and uniform suain modes. 

A fully linear velocity field for the quadrilateral can be described by 
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- The mean coordinates TI correspond to the center of the element and arc defined as 

The mean uanslational velocity is similarly defined by 

The linear ponion of the nodal velocity field may be expressed by specializing Equation (3.6.1) to the nodes as 

follows: 

where ZI is used to maintain consistent index notation and indicates that 5; and Xj are independent of position 

within the element. From Equations (3.1.16) and (3.6.4) and the orthogonality of the base vectors, it follows that 

lin ". E1=4Ci (3.6.5) 
11 

and 

rC-- 

The hourglass field "2 may now be defined by removing the linear portion of the nodal velocity field: 

. lin h g = " i I - U i I  . 
i~ (3.6.7) 

Equations (3.6.5) through (3.6.7) prove that XI and Bj1 are orthogonal to the hourglass field: 

(3.6.8) 

Furthermore. it can be shown that the B matrix is a linear combination of the volumetric base vectors. AI, so 

Equation (3.6.9) can be written as 
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Equations (3.6.8) and (3.6.10) show that the hourglass field is onhogonal to all the base vectors in Table 3.1 

except the hourglass base vectors. Therefore, "2 may be expanded as a linear combination of the hourglass base 

vectors as follows: 

The hourglass nodal velocities are represented by q i  above (the leading constant is added to normalize TI). We now 

define the hourglass-shape vector yl such that 

By substiruting Equations (3.6.4), (3.6.7), and (3.6.12) into (36.11). then multiplying by TI and using the 

orthogonality of the base vectors. we obtain the following: 

With the definition of the mean velocity gradient, Equation (3.1.13). we can eliminate the nodal velocities above. As 

a resulg we can compute y from the following expression: I 

The difference between the hourglass-base vectors TI and the hourglass-shape vectors yI is very imponant. 
They are identical if and only if the quadrilateral is a parallelogram. For a general shape. TI is orthogonal to Bj1 

whilc yI is orthogonal to the linear velocity field @. While TI defines the hourglass pattern, yI is necessary to 

accurately detect hourglassing. Equation (3.6.14) is simple enough for the quadrilateral that it can be winen 
explicitly as 

For the purpose of controlling the hourglass modes, we define generalid forces Qi, which arc conjugate to q i  so 
that the rate of work is 
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for arbitrary u i ~ .  Using Equation (3.6.12). it follows that the contribution of the hourglass resistance to the nodal . . - 
forces is given by 

Two types of hourglass resistance are used in S A N T O S :  artificial stiffness and artificial damping. We express 

this combination as 

In terms of the tunable stiffness (K) and viscosity (e) factors, these resistances are given by 

Note that the stiffness expression must be. integrated, which funher requires that this resistance be stored in a global 

array. 

Observe that the nodal antihourglass forces of Equation (3.6.17) have the shape of yI rather than TI. This fact is 

-4 essential since the antihourglass forces should be orthogonal to the linear velocity field, so that no energy is 

transferred to or from the rigid body and uniform strain modes by the antihourglassing scheme. 

We would prefer to use only hourglass stiffness and, in fact this is what is used for the plane strain case (K = .05 

and E = 0.0). Unfortunately, the nonstrain terms in the Petrov-Galerkin formulation give rise to an instability which 

is best stabilized using hourglass viscosity. For the axisymmetric case. values of K = .O1 and E = .03 are used. 

3.7 Dynamic Relaxation 

As a solution strategy for quasistatic mechanics problems, dynamic relaxation involves first convemng the 

equilibrium equations into equations of motion by adding an acceleration term, secondly. introducing an artificial 

damping. and finally, integrating foward in time from initial conditions until the transient dynamic response has 

damped out to the static result with equilibrium satisfied. To pmduce the uansient dynamic pmblem. an acceleration 

term is added to the equilibrium Equation (2.3.1). thus becoming 

where u is the displacement of the material point and r is a spatially varying density selected to minimize the number 

of iteration steps needed to reach equilibrium. ?he temporal quantity 7 is a pseudc-time scale connected with the 

dynamic relaxation process but distinct from real time t. The acceleration term is dixretized the same way that it _- 
would be in a m e  dynamics calculation. This leads us to write the discrete dynamic system as 
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where M(r) is the mass matrix, ii = ii(t). f lNT is the divergence of the stress field, and fEXT is the vector of 

prescribed body forces and surface tractions. The mass mamx is computed using the fictitious density. I. This 

density is different for each element, and it is selected such that the element has the same transit time for a 

dilatational wave as every other element in the mesh. This process is called mesh homogenization. and it is effective 

in minimizing the number of iterations for convergence. 

At time tn, equilibrium is satisfied such that fnm = fnm. A new solution is initiated by incrementing the 

load to its value at time $,+I. In general. equilibrium will not initially be satisfied so that the force imbalance will be 

represented by the acceleration tenn: 

Ccnwl difference expressions are introduced first for the acceleration in terms of the velocity, ii and then for 

the velocity in terms of the displacement, u. The resulting equations are 

The dynamic relaxation algorithm is based on these two expressions (Equation (3.7.4). It is a convenient.time to 
introduce the concept of the'equilibrium iteration. As the load is incremented to a new value at $,+I. the iteration 

process begins with calculation of the internal forces I INT and the calculation of the force imbalance. If the force 

imbalance is @cater than a user-specified tolerance. then another iteration through the solution sequence is required. 

When equilibrium is reached the iteration process stops and new loads arc calculated for the next time inncment. 

The central difference expressions above must be solved at each iteration with the appropriate amount of damping to 

reach the quasistatic solution. These equations take the following form for iteration, i, with the self-adaptive 

damping parameter, 6. 

Every iteration i leads to a new uial configuration and md mess state. The path in solution space traced out by 

the steps is artificial: it is a by-product of the dynamic relaxation, as is the advance in time 7. The mal states i 

represent equilibrium iterations. Figure 3.7.1 depicts the process in a multidimensional solution space of the nodal 

point coordinates. The point n is an equilibrium solution and the point n+l is the equilibrium state being sought 
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Figure 3.7.1. A model equilibrium iteration sequence in a multi-dimensional configuration space of nodal point 
positions developed with dynamic relaxation showing convergence at load step n+l. The straight 
line path from n to the last step calculated from dynamic relaxation is the interval over which the 

: stress is evaluated using the real time step At. 

The curved path between n and n+l maces out the nue solution. The spiral path marked with the tics and 

parameterized by steps in T is the sequence of uial states generated by the dynamic relaxation metbod. The suaight 

line from n to the last step calculated from dynamic relaxation is the interval over which the stress is evaluated using 

the real time step At. This is an imponant point in the implementation of the dynamic relaxation scheme. The 

internal forces frNT are ,-evaluated at each step i using the mal geometry and when equilibrium is achieved: a 

straight line approximation to the nue path between n and n+l is used for the constitutive model calculations. This 

scheme uncouples the path dependence and real-time dependence of the constitutive behavior from the arb'luary 

sequence of mal states generated by the dynamic relaxation method. 

Convergence is based on achieving an acceptably small equilibrium imbalance. Because the converged solution 

is a suaight line approximation, the true state at n+l will not be found, but a nearby equilibrium state will be found 

nonetheless. This nuncation error is common to the more conventional finite element methods and can be reduced 

by decreasing the time step size. The only questions remaining are how to select the variable density I, the pseudo- 

time step AT. and the damping parameter 6 to find a converged solution in ihc minimum number of steps. 

?he performance of dynamic relaxation is tied to the minimum natural frequency og and the maximum natural 

frequency 611 of the discrete equations. The damping per cycle is frequency dependent. For a given damping factor - 6, the decrease in amplitude per cycle is greatest for the lowest frequency component. The damping is then chosen 

to provide critical damping for the lowest frequency. By looking at the characteristic equation associated with the 
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- 
iteration mamx which relates the velocities and displacements at step ncl  to those ar step n, the expression for the 

damping parameter, 6, is found to be 

The allowable range on 6 is (0.1). A stability analysis on this set of explicit quations produces a critical 

pseudo-time sup  given by 

If the problem is linear so og and wl are fixed. then the number of h e  sups, N, rquired to reduce the 
vibration amplitude by a factor of ten is 

From this equation, it is seen that any effon to reduce the ratio w l l q  speeds convergence. 

From the linear problem and a uniform mesh of dimension Ax, the maximum frequency wl is given by 

In this expression. c is the dilatational wave speed given by 
I 

and r is the pseudo-density used for the computation of the fictitious mass. If we substitute the quantity 2fAz for o l  

and m e m b e r  that wl >> q-,, then the expression for the damping parameter becomes 

The fundamental frequency CLQ is continuously estimated using an approximate value found using the Rayleigh 

Quotient At each iteration i in the dynamic relaxation scheme, a new estimate ( q ) i  is computed as 

where K is a diagonal stiffness mamx whose jth component is computed from 

With each estimate of the fundamental frquency, a new value of the damping is computed. This has the virme 
that the lowest active mode will be found in the event that the fundamental mode is not panicipating (Underwood, -? 

1983). 



- 
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- 3.8 Convergence Measures 

When an iterative method. such as dynamic relaxation, is used to solve for static equilibrium, some criterion 

must be used to determine when the estimated solution is sufficiently close to the actual solution. Convergence of 

the equilibrium iteration process is achieved when a measure of the problem force imbalance reaches a value less 

than or cqual to a user-supplied error tolerance. The force imbalance is the sum of the external and internal nodal 

forces which at equilibrium should sum to zero. 

In SANTOS, two different convergence error measures are available to the analyst The first error measure is 

based on satisfying the following inequality: 

l l~ j l l  - I TOL 
l l ~ n  II 

where denotes the Lz norm of a vector. R, is the residual or imbalance force vector at iteration j, and F,, is the 

external force vector at step n which is composed of applied tractions, body forces (gravity forces). thermal forces. 

and the reactions at nodes where zero displacement boundaty conditions are applied. Equation 3.8.1 is a measure of 

how close the problem is to a state of equilibrium. The quantity TOL is input by the analyst as a means of 

identifying the relative imbalance the analyst is willing to accept in the solution. In SANTCS, TOL is set by default 

to a value of 0.5 percent. This error is called the GLOBAL CONVERGENCE measure and is the default error 

measure. 
e. 

The second error measure implemented in SANTOS is based on satisfying the error tolerance on a node-by-node 

basis. This error measure is called the LOCAL CONVERGENCE measure. The rationale for this criterion is that 

what is an acceptable force imbalance in one portion of the problem may be unacceptable at another location. For 

example, further reduction of a set of force residuals acting in a region of the problem whae the elements are large 

and stiff may produce only a small change in the element suesses in this region. If. however, the same set of force 

residuals was present at a different location where the element sizes were much smaller and the material was much 

more flexible, further reduction of the residuals could produce a large change in the element socsws. To address 

these concerns, the LOCAL CONVERGENCE error measure is included as an option. 

The error measure for each component i and iteration j of the residual force vector is defined as: 

I TOL 

/ + z mau(~fi/ ' .  f k i n  ) 
e 

where R \  is the residual or imbalance force. FA is the external force, f j  is the internal force, and f,,,i, is the 

minimum internal force in an element produced by a reference hydrostatic suess state specified by the analyst The 

minimum internal force is introduced to ensure that the denominator is never zero and to prevent elements with 

negligible stresses from controlling the convergence of the problem. The internal force contribution is summed over 
-. 
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h 
all ths elements, e, connected to node i. This error measure is satisfied when each component of the force vector 

satisfies the cri~erion. 



One of the primary reasons for developing SAhTOS was to take advantage of the many state-of-the-art features 

available in PRONTO and adapt them to quasistatic mechanics problems. One of those features is the flexible 

material model interface which allows a constitutive model to be added to the code with minimal effort. The 

constitutive developer does not have to be familiar with the internal workings of SANTOS but only needs to modify 

a few well documented subroutines to add a new material model. The material model implementation rquires the 

user to provide enmes in a few data statements to define the limits of the internal data SUUCNre. The code also 

rquires the constitutive developer to provide estimates of the initial dilatational and shear moduli so that the 

program can compute an initial stable time step. h e  material model may contain internal state variables that define 

the state or evolution of the material. The implementation requires that the developer provide names and any 

required initialization for the internal state variables. The internal state variable names for cach material currently 

implemented are provided in the User Guide section. These quantities may be individually selected for output to the 

ploning data base. The final changes to the material model subroutines require the developer to provide names for 

any necessary input quantities such as Young's modulus or Poisson's ratio. The input names for the material models 

currently implemented are given in the User Guide section. The code currently contains twelve continuum material 

models with more models being developed as our applications require them. The models range from purely elastic 

behavior to time-dependent viscoplastic response. 

SANTOS utilizes an indirect solution technique which can require hundreds of thousands of calls to the 

constinitive model during a complex analysis. Thus, efficient implementation of the constitutivemodel is a primary 
.- 

concern. Considerable effort has gone into writing each material model subroutine such that the routine vectorizes 

on a vector supercomputer. The material model routine is written in terms of the unrotated Cauchy stress, a, and the 

deformation rate in the unrotated configuration, d. The basic assumption is that the deformation or strain rate is 

constant over the sup. The deformation rate that is available to the constitutive subroutine is the mechanical strain 

rate, i t . ,  any thermal strain rate contribution to the total strain rate has already been removed. During cach iteration, 

the latest kinematic quantities are used to update the stress. Stresses written to the ploning data base arc rotated to 

the current configuration. 

4.1 Integration of the Rate Equations 

The constitutive models are written in a rate form and must be integrated forward at cach time step. In 

SANTOS, a forward Euler or a backward Euler interntion of the rate equations is used for many of the constitutive 

models. The forward Euler integration assumes that 

where f is the quantity to be integrated, n refers to the cumnt step for which values o f f  arc available and n+l refers 

to the next step for which values o f f  are being sought. The quantity f is defined using the known quantities at step 

n. apd At is the time step increment. The forward Euler scheme is simple and computationally efficient but is 

conditionally stable. The time step size allowed is controlled by a stability criterion that varies with cach material - 
model. -- 
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The backward Euler integator has the following form 

where the term f is evaluated at step n+l. This solution method is implicit and therefore requires some type of 

iterative method such as Newton-Raphson to solve for f "+I. The method is computationally more demanding than 

forward Euler, but the scheme is unconditionally stable. The only resmction on the time step size is accuracy of the 
solution. 

The time-dependent material models implemented in SANTOS, such as the creep and viscoplastic models, use 
the forward Euler operator even though the method is conditionally stable. The implementations rely on 
subinmmentation within the global time step, At, to maintain numerical stability. In most instances, the user- 
specified global solution step. At, is larger than the time step needed for accuracy and stability. Economic 
considerations do not allow the user to take the number of global solution timc steps needed to ensure an accurate 

and stable solution; therefore, the global solution time step is broken into subincrements for integrating the 
constitutive model. The size of each subincrement adapts to the change in stress occurring within the global solution 

step. So although this subincrementation process maintains the direction and magnitude of the total strain increments 

as constant for the global step, it allows the stress components to change over the step. That is, after each 

subincremental time step, the stresses and inelastic strain rates as well as the critical time step are updated before 
computing the solution for the next subincrement. 

- The implementation of this algorithm is designed to take advantage of the vector architecture of the Cray 

computer. The ~0nst i tut i~e model is called with the toral strain rates for the step and the stress fmm the previous 
step. Rwessing is done on a block of 64 elements, one block at a time. There are two FORTRAN loops involved in 

this approach. The outer loop is an implicit loop that adapts the size of the subincrement as the stresses change 
within the global solution step. This loop is not vectorizable. The inner loop computes the stresses for a block of 

NE dements, with NE having a maximum of 64. This loop is vectonzable. An additional feature of this approach. 
which is unique to indirect solution schemes, is that each element block may have its own unique number of 
subinmments. Thus. the amount of computation is minimal for elements in regions where the stress is small and the 

computauonal effon is concentrated where the stress is largest. 

The key to the scheme is the accurate determination of the stable time step which is accomplished using the 
work of Cormeau (1975) who developul a method for analytically determining the stable time step for a particular 

constitutive model. To determine the analytical expression for the stable timc step size. we introduce the following 

linearized differential quation 

where the quantity. af. represents the deviatoric stress at time t. 'Ihis equation represents a firstorder Taylor series 

expansion about the stress state at time t. This equation can be rewritten as 
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7 
A stability analysis of the forward Euler intepator shows that the time interval is stable if At C--- where 

1 
& is the largest eigenvalue of the square matrix A. Once we have the analytic expression for the stable time step. 

we can write an efficient. vectorired material model subroutine for implementation into SANTOS. 

4.2 Adaptive Time Stepping 

One important feature available for the time-dependent material models in SANTOS is the capability to do 

adaptable time stepping. This feature is desirable when the mechanics of the problem dictate small time steps during 

the early stress uansient, but the stress reaches a steady state at later times and the analyst desires to use larger time 

steps. If we consider a function f(t) which is analytic in the neighborhood of a point t: 

The forward Euler method is obtained by taking the first two terms of the series: 

where 0fi2) is the error associated with the truncation. The above equation can be rewritten in a slightly different 

form: 

and ti c ccti+l w h e ~  the last term is the truncation error per step. 

If it is assumed that f" is fairly constant over the im step interval, an estimate of the truncation error ET at the ifh 

step can be obtained from 

where f" is evaluated at 5 =ti. 
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The criterion for the time step control is 

where E is some small number, 

gives the following expression 

IET, / ' dfil (4.2.6) 

h2 Replacing ET in the above expression with -fi" and solving for the time step, h, 
I 2 

In SANTOS. we choose to conuol the time step with the effective smss so that the above equation becomes 

The accuracy of the method depends on the value of E chosen. For example, we might restrict the error to 1 

percent of at the beginning of the step so E would be selected as 0.01. Experience has shown that values of E in 

the range .O1 - .02 produce acceptable results. 

4.3 Basic Definitions and Assumptions 

The constitutive models implemented in SANTOS are described in the following sections. The fundamental 

assumptions used in developing the models are presented along with some details of their implementation. The 

nomenclature used for the descriptions will be presented first. Several of the models have their descriptions taken 

from other sources, and we will follow the nomenclature of those sources where appropriate. Throughout the report, 

components of tensors will appear using indicia1 notation, cri,, while quivalent scalar quantities appear with a bar, - 
0 .  

The material model development makes the fundamental arsumption of an additive suain rate decomposition of 

the total strain rate components, dij, into elastic and inelastic pans. 

The resulting smss  rate, 6ij, is determined from the elastic part of the suain rate using Hwke's law 

where C is a 4& order tensor of Hookean elastic constants. The suess rate can be broken into two independent pans 

representing volumetric and dcviatoric behavior. The volumeuic behavior is assumed for most material models to be 
.L-\ 

purely elastic with the volumetric suain rare. dkk. linearly related to the pressurc. p . through the relation 

34 



where K is the bulk modulus of the material. Because the strain rates are assumed constant over the step, the 

pressure at the end of the step can be easily found from the expression 

where At is the time step size and pn is the pressure at the beginning of the step. There are material models in 

SANTOS that do not have a linear bulk response. These exceptions include the volumemc creep model. soil and 

crushable foam model, and low density foam model. The particular volumemc response for each of these models 

will be discussed in each individual section. 

The deviatoric stress rate. Sij, is computed from the relation 

where 6ij is the Kronecker delta. If we r e ~ t e  the equation for the stress rate in terms of the deviatoric s u s s  part, 

we have 

h 

where &ij is the deviatoric component of the strain rate, dij. The deviatoric strain rate components are similarly 

calculated. 

In most of the material models currently implemented in SANTOS, we assume von Miscs flow, and we can define 

the equivalent von Mises stress. 5= and the equivalent deviatoric strain rate, 

convenient to introduce the idea of an elastic "trial" smss state for the end of the time step. This stress state is used 

in the plasticity models to detemlne if yielding will occur during the step, and it is also used for the timedependent 

models. Given the deviatoric strcss state at the beginning of the step, s", the elastic "trial" sues state 
'J 

for the end of the step is 

where p is the shear mod&. At is the time step increment. and €ij is thedeviatoric strain rate. If yielding does not 
n+l occur during the time step, then the ma1 smss becomes the final stress state at S-. . 
'I 
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4.4 Elastic Material, Hooke's Law 

A linear elastic material is defined using Hooke's Law. In a rate form, this is written as 

where 1 and p are the elastic Lame material constants. The stress rate equation is integrated forward using the 

backward Euler integrator. The model has no internal sate variables. 

The PROP array for this material contains the following enmes: 

PROP(1) - Young's modulus. E 

PROP(2) -Poisson's ratio, v 

4.5 Elastic Plastic Material with Combined Kinematic and Isotropic Hardening 

The elastic plastic model is based on a standard von Mises yield condition and uses combined kinematic and -, 
isotropic hardening. Isotropic hardening is the bchavior where the radius of the yield surface grows qually in all 

directions due to plastic straining. Kinematic hardening is the behavior w h m  the radius of the yield surface remains 
constant, but the center of the yield surface translates in the direction of the plastic smain rate. In this discussion of 

the elastic plastic material model, we assume that the material is yielding and that plastic smaining will occur. In the 
event that yielding does not occur. the matcrial behavior is elastic and the saess is computed using Hooke's Law as 

described in Section 4.4. This model is widely used in many finite element computer programs. and the current 

derivation is taken from Taylor and Flanagan (1987). 

Some definitions and assumptions are outlined here. Referring to Figure 4.5.1, which shows the yield surface in 
deviatoric smss space, we define the backstress (the center of the yield surface) by the tensor, a. 

If 0 is the c a n t  value of the smss. we define the deviatoric pan of the cumnt stress by 

We define the stress difference measured by subuacting the backstress from the deviatoric suess by 

The magnitude of the saess difference, R, is defined by 

~=)q=m 

36 
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Figure 4.5.1. Yield surface in deviatoric stress space. 

where we denote the inner product of second order tensors by S:S = Sij Sij. Note that if the backstress is zero 

(isotropic hardening case), the stress difference is equal to the deviatoric part of the current stress, S. 

,- ?hi von Mises yield surface is defined as 

The von Mises effective stress. 5 ,  is defined by 

Since R is the magnitude of the deviatoric stress tensor when a = 0, it follows that 

The normal to the yield surface can be determined from Equation (4.5.4) 

We assume that the strain rate can be decomposed into elastic and plastic par& by an additive decomposition 

d = $1 + dpl (4.5.8) 

- -  
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and assume that the plastic part of the strain rate is given by a normality condition 

dP1 = yQ 
when the scalar multiplier, y, must be determined. 

A scalar measure of equivalent plastic strain rate is defined by 

which is chosen such that 

- - 
od p1 = o:dP1 . 

The stress rate is assumed to be purely due to the elastic pan of the strain rate and is expressed in terms of 

Hooke's law by 

where h and p are the Lami: constants for the material. 

Below, we develop the theory for the cases of isotropic hardening, kinematic hardening, and combined 

hardening separately so that the reader can see the details for each case. - 
4.5.1 Isotropic Hardening 

In the isotropic hardening case, the backstress is zero and the stress difference is equal to the deviatoric stress, S. 
We write a consistency condition by taking the rate of Equation (4.5.4) 

By consistency we mean that the state of stress must remain on the yield surface at all times. We use the chain rule 

and the definition of the normal td the yield surface given by Equation (4.5.7) to obtain 

and from Equations (4.5.3) and (4.5.4) 

Combining Equations (4.5.13). (4.5.14). and (4.5.15) 
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1 - S : ~ = R  . 
R 

(4.5.16) 

Because S is deviatoric, S: 6 = 5:s and 

Then Equation (4.5.16) can be written as 

where H' is the slope of the yield stress versus equivalent plastic main (5 versus ~ p ' ) .  This is derivable from the 

data from a uniaxial tension test as shown in Figure 4.5.2. 

The consistency condition, Equation (4.5.16) and Equation (4.5.18), result in 

We define the uial elastic stress rate 6" by 

Figure 4.5.2. Conversion of data from a uniaxial tension test to equivalent plastic strain versus 
von Mises stress. 
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where C is the founh order tensor of elastic coefficients defined by Equation (4.5.12). Combining the strain rate - 
decomposition defined in Equation (4.5.8) with Equations (4.5.19) and (4.5.20) yields 

We note that because Q is deviatoric. C:Q = 2p Q and Q:C:Q = 2 ) ~  Then using the normality condition. 

Equation (45.9). the definition of equivalent plarric suain, Equation (45.10), and Equation (45.21) 

and since Q is deviatoric (Q: on = 2p Q: d ), wc can determine y from Equation (4.522) as 

The current normal to the yield surface, Q, and the total strain rate, d, are known quantities. Hence, from 

Equation (4.5.23), y can be determined which can be used in Equation (4.5.9) to determine the plastic part of the 
strain rate which, with the additive strain rate decomposition and the elastic mess rate of Equations (4.5.8) and 

(4.5.12). completes the definition of the rate equations. 

We still must explain how to integrate the rate equations subject to the constraint that the stress must remain on 
-. 

the yield surface. We will show how that is accomplished in Section 4.5.4. 

4.5.2 Kinematic Hardening 

Just as before with the isotropic hardening case, we write a von Mises yield condition but now in terms of the 

stress difference 

It is imponant to remember that a and 5 are deviatoric tensors. The consistency condition is written for 

kinematic hardening as 

because the size of the yield surface does not grow with kinematic hardening; therefore, K = 0. Using the chain rule 
on Equation (4.5.25) 
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and 

~ . l q ~ = n ~  JC a t  . (4.5.27) 

Combining Equations (4.5.26) and (4.5.27) and assuming that R t 0 

Q : ~ = O  

A geometric interpretation of Equation (4.5.29) is shown in Figure 4.5.3, where it can be seen that the backstress 

moves in a direction parallel to the normal to the yield surface. 

We must now decide how is defined. Recall that for the isotropic hardening case, Equation (4.5.29). 

m - ~ B - + o  

Figure 4.5.3. Geometric interpretation of the consistency condition for kinematic hardening. 



WPO# 35674 March 27, 1996 -,I---. 

where I$ is a material parameter. Equation (4.5.31) combined with Equation (4.5.29) gives a result identical to the 

isotropic hardening case. Equation (4.5.30). if @ is chosen to be LH'. Hence, either Equation (4.5.30) or (4.5.31) 
3 

gives us a scalar condition on a .  Note that both of these are assumptions and must be shown to be reasonable. Of 

course, experience with material models based on these assumptions has proven them to be reasonable 

representations of marerial behavior. 

Using Equation (4.5.30). the strain rate decomposition, Equation (4.5.8). and the elastic strain rate. Equation 

(45.121, in the consistency condition for kinematic hardening. Equation (4.5.29) gives 

Taking the tensor inner product of both sides of Equation (4.5.32) with Q gives 

Again, because Q is deviaroric; C:Q = 2p Q and Q:C:Q = 2p 

Solving Equation (4.5.33) for y gives 

which is the same result as was obtained for the isotropic hardening case 

4.5.3 Combined Isotropic and Kinematic Hardening 

For the combined hardening case, we define a scalar parameter, P, which determines the amount of each type of 

hardening. We require that 

Figure 4.5.4 illusnates the uniaxial response which will be computed for 5 for different choices of P. When 

p = 0 we have only kinematic hardening, and when $ = 1 we have only isotropic hardening. 
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TR16348-30.0 

Figure 4.5.4. Effect of the choice of the hardening parameter. P, on the computed uniaxial response. 

As before, we wite a consistency condition 

Using the elastic stress rate and the additive suain rate decomposition with Equation (4.256) and taking the tensor 
product with the normal. Q 
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Solving for y 

which is the same result obtained for each of the independent cases. 

We summarize the governing equations for the combined theory: 

4.5.4 Numerical Implementation 

Our finite element algorithm requires an incremental form of Equations (4.5.41) through (4.5.43). Additionally, 

we must have an algorithm which integrates the incremental equations subject to the consuaint that the mess remains 

on the yield surface. 

The incremental analogs of Equations (4.5.42) through (45.44) are 

and 

2 an+, = a n  +(I-p)?H'AyQ . (4.5.50) 

where Ay represents the product of the time increment and the equivalent plastic strain rate (Ay = At y). 
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The subscripts n and n+l refer to the beginning and end of a time sup, respectively. - 
We also need an incremental analog to the rate forms of the consistency condition given by Equations (4.5.13). 

(4.5.25), and (4.5.39). At the end of the time step. we insist that the suess state must be on the yield surface. Hence, 

the incremental consistency condition is 

Equation (4.5.51) is shown graphically in Figure 4.5.5. 

Substituting the definitions given by Equations (4.5.48) through (4.5.50) into the consistency condition of 
Equation (4.5.51) 

Taking the tensor product of both sides of Equation (4.5.52) with Q and solving for Ay 

Figure 4.5.5. Geometric interpretation of the incremental form of the consistency condition for 
combined hardening. 

i 

-. 
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It follows from Equation (4.5.53) that the plastic strain increment is proportional to the magnitude of the excursion , 
of the elastic ma1 mess past the yield surface (see Figre 4.5.6). 

Using the result of Equation (4.5.53) in Equations (4.5.48) through (4.5.50) completes the algorithm. In 

addition we can compute 

and 

The results of Equation (45.53) applied to Equation (4.5.48) show that the final stress is calculated by returning 

the elastic trial stress radially to the final yield surface at the end of the time step (hence the derivation of the name 

Radial Return Method). Estimates of the accuracy of this method and other methods for similarly integrating the rate 

equations me available in Krieg and Krieg (1977) and Schreyer et al. (1979) Note that the last term in Equation 

(4.5.48) (the radial return correction) is purely deviatoric. 

TRI-6348-12-0 

Figure 4.5.6. Geometric interpretation of the radial return comction. 
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I 
Tlie elastic plastic material model uses six internal state variables: 

EQPS - equivalent plastic main 

W N S  - current radius of yield surface 

ALPHA1 1 - 1.1 component of backstress in unrotated configuration 
ALPHA22 - 2.2 component of backstress in unrotated configuration 
ALPHA33 - 3.3 component of backstress in unrotated configuration 
ALPHA12 - 1.2 component of backstress in unrotated configuration. 

The PROP array for this material contains the following entries: 

- Young's modulus. E 
- Poisson's ratio, v 

- Yield Stress, ayd 

- Hardening Modulus, H 

- B 
- 2~ 
- 3p 

- / ( 2  + 3 (Note: ff = W(l -EM)) 
- 2. 

- 2p wn 
- 2(1- p)Wn . 

4.6 Soils and Crushable Foams Model 

The soils and crushable foams model in SANTOS is a dim3 descendant of the model developed by Krieg 

(1972). One major difficulty with the original version of this material model which has confounded users is that 

the pressure dependence of the yield mess is expressed in terms of J2, the second invariant of the stras tensor. We 

have reformulated the model so that the yield mess is wrinen directly in terms of the pressure. NO=: this means 

that old data mun be convened 

Tlie yield surface assumed is a surface of revolution about the hydrostat in principal stress space as shown in 
Figure 4.6.1. In addition, a planar end cap on the normally open end is assumed. The yield stress is specified as a 

polynomial in pressure. p (positive in compression) 

n l e  determination of the yield mess from Equation (4.3.1) places severe resuictions on the admissiile values of 

ao, al. and a2. There are three valid cases as shown in Figure 46.2. First, the user may specify a positive ag, and 
q and a2 equal to zero as showi in Figure 1.G.2a. This gives an elastieperfectly plastic deviatoric response, and 

the yield surface is a cylinder oriented along the hydrostat in principal stress space. Second, a conical yield surface 
. 
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- 
Figure 4.6.1. Pressure-dependent yield surface for the soils and crushable foams material model. 

(Figure 4.6.2b) is given by setting a2 to zero and entering appropriate values of ag and al.  The program checks the 

user's input to determine whether a valid (negative) tensile fracture pressure. Pfr. results from the input data. The 

hiid case results when all three constants ate nonzero and the program detects that a valid negative tensile failure 
pressure can be derived from the data. This case is shown in Figure 4.6.2~. A valid set of constants for the third 

case results in a parabola as shown in Figure 4.6.2~. We have drawn the descending portion of the curve with a 

dashed line, indicating that the program does not use that portion of the curve. Instead, when the pnssurr exceeds 
P*. the yield smss is held constant as shown at the maximum value. 

The plasticity theories for the volumetric and deviatoric pans of the material response arc completcly uncoupled. 
The volumemc response is computed first The mean pressure. p, is assumed to be positive in compression. and a 
yield function is written for the volumemc response as 

where f (e ) defines the volumetric stress-swain curve for the pressure S shown in Figure 4.6.3. This function is P "  
defined by the user with the restriction that the slope of the function must be less than or qua1 to the unloading bulk 

modulus, KO, everywhere. If the user wishes the volumetric response to be purely elastic, he simply specifies no 
function identification (e.g., FLJNCTION ID = 0). The yield function, qp, determines the motion of the end cap 
along the hydrostat. 
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P, Compression 

P, Compression '. 

F ~ p r e  4.6.2. Forms of valid yield surface which can be defined for the soils and crushable foams 
material model. 
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E" 
Ev = -In (Po/P); Compression 

Figure 4.6.3. Pressure versus volumemc seain curve in terns of a user-defined curve. F(&,), for the soils and 
crushable foams material model. 
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The mean volumemc strain is updated as 
..--- 

E;+I = E; +At& 

where iV is the volumetric part of the strain w e  (E - tr d) 
v - 3  

There are three possible regimes of the pressure-volumemc strain response. Tensile failure is assumed to occur 

if the pressure becomes smaller (more negative) than P+ The quantity Q is initialized to -Pf& by the program. 

If tensile failure is detected, the pressure is set to -Pfr Remember, pressure is negative in tension! Failure by 

monotonic tensile loading is shown in Figure 4.6.4a. As long as E, < E+ the pressure will remain q u a l  to -P+ 

If the volumemc strain exceeds E+ a check is then made to see if 

where E,, is the most positive (compressive) volumetric strain previously experienced by the material, set initially to 

zero by the program. If Equation (4.6.4) is satisfied. the step is elastic and 

This elastic response is shown in Figure 4.6.4b. 

If Equation (4.6.4) is not satisfied, the volumemc response is along the curve defined by fp(eV) and - 

and we set 

This response is shown in Figure 4.6.4~. Note, that if Equation (4.6.5) is used to determine p. we also drag efi along 

so that if we unload from the curve. fp(eV), we will fracture at the appropriate strain level as shown in Figure 4.6.4d. 

The deviatoric parl of the response is computed next and uses a conventional plasticity theory with radial return. 

See Krieg and Krieg (1977). The ma1 elastic deviatoric stresses are computed as 

where e is the deviatoric pan of the strain rate. The current value of yield stress is calculated using Equation 

(4.6.1), and the von Mises effective stress. 5,  is computed as 
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Figure 4.6.4. Possible loading cases for the pressure versus v o l u m e ~ c  strain response using rhe soils and 
crushable foamsmaterial mode. 
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The yield condition is checked to determine whether z< Oyd. If this is the case, the mal stress is the correct 

deviatoric stress at the end of the time step, Sn+l = Su. If yield is exceeded. a simple radial return is performed to 

calculate the deviatoric stress at the end of the time step 

Finally, the total stress is determined by 

The Soils and Crushable Foams model uses four internal state variables: 

EVMAX - maximum compressive volumeuic strain experienced (always positive). 

EVFRAC - current value of volumetric fracture strain (positive in compression). 

EV - current value of volumemc snain (positive in compression), 

NUM - integer pointing to the last increment in the pressure function where the interpolate was 

found. 

Th= PROP array contains the following enmes for this material: 

PROP(1) - 2p 

PROP(2) - Bulk Modulus, K 

PROP(3) - ag 
PROP(4) - a1 

PROP(5) - a2 
PROP(6) - Function ID number 

4.7 Low Density Foams 

The low density foams model presented here was developed by Neilsen. Morgan. and Krieg (1987) and is bawd 

on results from experimental tests on low density, closed-cell polyurethane foams. These foams having densities 

ranging from 2 to 10 pounds per cubic foot have been proposed for use as energy absorben in nuclear waste 

shipping containers. Representative responses of closed-cell polyurethane foams for various hydrostatic, uniaxial, 

and triaxial laboratory test conditions are shown in Figures 4.7.1 and 4.7.2. These results indicate that the 

volumemc response of the foam is highly dependent on load history. This implies that typical decompositions of 

total foam response into an independent volurneuic part and a mean stress (pressure) dependent deviatoric pan are 
not valid for this class of foam. Many "soil and crushable foam" models, including the other foam model described 
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Figure 4.7.1. Foam volume main versus mean stress for 6602 foam at various confining pressures. 
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Figure 4.7.2. Foam volume strain versus mean stress for 9505 foam at various confining pressures. 
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in Section 4.6, use such decompositions and hence are not valid for low-density, closed-cell polyurethane foams. 

The model presented here reproduces experimental test responses more accurately for this class of foams than the 

model in Section 4.6. 

The experimental tests on which this model is based were performed by the Civil Engineering Research Facility 

of the University of New Mexico with the results reported in (Neilsen et al., 1987). Foam samples were subjected to 

static, compressive svesses during these tests. In most of the tests, air was trapped in the closed cells of the foams 

and could not escape because the samples were jacketed with an impervious material. In this constitutive model. the 

total foam response is decomposed into contributions from the skeleton and from air trapped in the closed cells of 

the foam. The conmbution of the air to the total foam response is dependent on the application. If the foam is used 

in a vented application where the air can escape. the conmbution of the air is zero and the foam and skeleton 

responses are identical. If the foam is used in application where the air cannot escape (such as a sealed shipping 

container) the foam pressure is considered to be the sum of pressure carried by the skeleton and the air pressure. 

That is. 

Pf  = Psk +P.air (4.7.1) 

where pf and psk are the mean svesses (first invariants of the stress tensor divided by three) of the foam and 

skeleton, respectively. The mean svesses and air pressure are assumed positive in tension. The air pressure is 

determined from 

C4 

where y is the engineering volume swain (first invariant of the total seains). which is positive in tension and po and I$ 

arc model parameters. The parameter po is the initial foam pressure (usually atmospheric pressure of 14.7 psi), and 

$ is the ratio of the foam density to the polymer density from which the foam is produced. 

Test data indicate that the skeleton response in any principal stress direction is independent of loading in any 

other principal smss  direction. Thus, Poisson's ratio for the skeleton is equal to zero. Test data also indicate that the 

yield suength of the skeleton in any principal stress direction can be expressed in terms of the engineering volume 

main and the second invariant of the deviatoric strains with the following relationship 

A + B(1+ Cy); II', > 0 
f i  ={  

B(1+ Cy); II', = 0 

where Ilk is the second invariant of the deviatoric strain tensor; y is the engineering volume strain as in Equation 

(4.7.2); A, B. and C are constants determined from fining Equation (4.7.3) to the laboratoly data Constants B and C 

are determined from hydrostatic test data where IIVE is zero, and A is determined from any tew where the ioading is 

deviatoric. 

Numerical implementation of the model is as follows. Foam stresses and strains from the previous time increment 

are saved. At the beginning of the next time increment, the old skeleton sfsesses are computed from the old foam 
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stresses and the old air pressure. The strain rates for the new time increment are used to determine new strain - 
increments and ma1 elastic stress increments for the skeleton. These stress increments are added to the old skeleton 

stresses to produce new mal stresses for the skeleton. The mal skeleton stresses are then rotated to principal smss 

directions and compared with the yield stress determined from Equation (4.7.3). If yield occurs. the skeleton suesses 

are set to the yield smss. If yield does not occur, the mal skeleton principal stresses become the final skeleton 

principal stresses. The tinal skeleton stresses are obtained by rotating the final skeleton principal stresses back to the 
unrotated configuration. Then, thc final foam srresses are obtained by adding the air pressure contribution for the 

new strain state to the new skeleton stresses. 

Inpur parameters for the model arc the constants E. po, $, A, B, and C, which an defined above. If the foam is 
used in an application where the air can escape. po should be input as zero. Otherwise, po is the armospheric 

pressure at the beginning of the simulation. 

There are no internal state variables for this model. 

The PROP array contains the following entries for this material type: 

PROP(1) - Young's modulus, E 
PROP(2) - A 

PROP(3) - B 
PROP(4) - C 
PROP(5) - NAIR 

PROP(6) - Po 
PROP(7) - $. 

4.8 Elastic-Plastic Power Law Hardening Material 

One of the more commonly used models in the SANTOS material library is the elastic-plastic combined 
isouopidkinematic hardening model. This model considers the hardening modulus to be a constant, which means 

that the post-yield effective stress, 5,  versus effective plastic strain, Ep, relationship is linear. For a large class of 

imponant problems, a linear 5 versus Ep relationship may be adequate for the post-yield behavior over the range of 
interest. This, however, places a severe restriction on the materials to be modeled or requires a priori information 

about the expected strain levels in the problem so that an approximate hardening modulus may be sciccted to 
produce a good approximation to the correct smss state based on the expected strain values. In addition. the strain 

range of interest must be small (no large wain gradients) so that the linear hardening relationship is applicable. 

However, there are classes of problems in which the linear approximation for plastic hardening is inadequate. A 
constant hardening modulus cannot adequately describe the post-yield behavior to predict structural behavior in the 
detail required. Determination of limit load response is an cxample of a class of problems for which linear hardening - 
is inappropriate. 

To overcome these restrictions. a variable hardening plasticity model (Stone et al.. 1990) has been included in 
SAMOS. The use of piecewise linear se,ments to represent the hardening curve was an initial consideration based 

on the capability to match any material hardening behavior. but the resulting material model subroutine was not - 
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amenable to vectorization. Vectorization requirements limit the form of the model to a functional relationship 

i. between effective smss and effectwe plastic strain. The form of the current implementation considers the post-yield 

stress to be described by a power law involving the equivalent plastic strain with the option to include a Liiders main 

segment The form of the hardening model was selected for its simplicity and ability to match the post-yield 

behavior of many engineering materials. The model has the form during a plastic loading process 

where A and m are material constants, Ep is the equivalent plastic strain, 5 is the effective stress, uys is the initial 

yield stress, and EL is the Luders strain or yield plateau strain. The use of brackets in the above equation denotes the 

use of a Heaviside function. The function is zero until the arithmetic expression within the brackets becomes 

positive. The material constants for this model can be determined from the measured sacss versus strain data 

through simple curve fitting techniques. By suitably choosing the material constants A and m, the form of the model 

can represent either elastic/perfectly plastic or linear hardening material behavior in addition to the power law 

hardening response. The proposed material model is strictly valid for isotropic hardening behavior where rhc radius 

of the yield surface grows equally in all directions due to plastic suaining. 

Many engineering materials exhibit the phenomenon of Luders straining. A typical stress venus suain curve for 

such a material is shown in Figure 4.8.1. In reality. Luden strain does not occur at constant stress but rather in a 

serrated fashion. Each serration corresponds to the formation of a new Liiden band, The serrations are small 

enough that a constant s u e s  representation is adequate. In common ferrous alloys. Liiden strain as well as other 

yield point phenomena are generally associated with the interaction between solute atoms and dislocations. 
i-. 

The constitutive routine is entered with the stress state at the beginning of the step, x, the strain-rate over the 
'J 

step. iij. and the time step. At. An elastic trial stress, s z ,  is computed and a von Mises yield criterion is used to 
?1 

compute a ma1 effective suess, z t r ,  which is compared to the current radius of the yield surface. If the trial 

effective stress is less than the radius of the yield surface. then the load step is elastic and the mal suess becomes the 

final stress, Sij ' '. If the effective stress is greater than the radius of the yield surface, then plastic straining will 

occur over the step and the final mess state and plastic strain increment remain to be computed. 

The expression for the stress at the end of the step is 

' n + l  . where we have used a backward Euler integration for the suess. The stress rate at the end of the sup. Sij . 1s 

computed as follows 

where Epij are the components of plastic strain 
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Figure 4.8.1. Stress versus suain curve for a typical femtic steel exhibiting Liiders strain. 

For von Mises flow, we can write the above as 

where y is a scalar quantity. 

Substituting the above expression for s"" into the expression for S F 1  resuits in 
11 'J 

tr where Ay = yAt. The first two expressions on the right-hand-side of the equation define the ma1 stress S.. so that the 
'J 

final expression becomes 
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We make use of the following identity - 

to get the final expression for the suess at the end of the step 

The plastic main increment Ay, is the only unknown in the equation. To solve for the plastic strain increment 

we must go back to our expression for the yield function. Combining the yield function with the expression for 

s"+' and making use of the identity, we get 
'J 

which is solved for Ay using Newton Raphson iteration. The computed value of Ay is substituted back into the 

expression for s!?". Equation (4.8.8). 
?1 

The bulk response is assumed to be linear elastic. The pressure at the end of the step is calculated using the 

volumemc strain rate, d k ,  through the relation 

where K is the bulk modulus of the material, At is the time step size, and pn is the pressure at the beginning of the 

step. The mess from the deviatoric and bulk responses are combined to give the final stress state. 

The power law hardening material uses two internal state variables: 

RADIUS - current radius of the yield surface 

EQPS - equivalent plastic strain. 

The PROP array for this material contains the following entries: 

- Young's modulus, E 

- Poisson's ratio, v 
- Yield Stress, ayS 
- Hardening constant, A 

- Hardening exponent, m 

- Luders main, e~ 

- 2P 

- 3P 
- h. 
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4.9 Power Law Creep Material Model 

The power law creep material model described here is commonly used to model the time-dependent behavior of 

metals, brazes, or solders at high homologous temperatures as well as the time-dependent bchavior of geologic 

materials such as salt. The model is cast as a conventional power law secondary creep model of the form 

where 7i is the effective deviatoric sness, A and m are material constants, O is the absolute temperature, R is the 

universal gas constant ( ~ 9 8 7 A ) .  and Q is the activation energy. 

We choose to write the expression for the deviatoric stress at the end of the step as 

where we have used a forward Euler integration for the sness. We can write the swss  rare at step n as 

where E,.. are the creep strain rate components. The creep strain rate components for von Mises flow are -'. 
1J 

where & is the effective or equivalent creep strGn rate. Substituting into the expression for the stress rate gives 

where 5 is evaluated at step n. The mess rate is computed and stored as a state variable for use during step n+l 

Numerical analysis of the forward Euler operator shows that the method is conditionally stable. It is possible to 

calculate an estimate of the critical time step for stability of the forward Euler operator based on the form of the flow 

potential and the elastic constants (Cormeau. 1975). Following procedures outlined in Cormeau (1975), the critical 

time step for stability is calculated to be 

where E and u arc Young's modulus and Poisson's ratio. respectively. Accuracy of the method is assured if the rime 

steps are sufticiently small, but the stable time step docs not guarantee an accurate solution. However, our 

experience with the method has shown that the solution obtained using Akt is indeed accurate. The standard power 



WPO# 35674 March 27,1996 

law secondary creep model is requested in SANTOS by using the material name POWER LAW C W P  while the - 
adaptive time-stepping version is requested by using the name ADAPTIVE PL CREEP. 

The volumemc behavior of the material is assumed to be linearly elastic as shown below 

where K is the bulk modulus. d k  is the volumemc suain rate. At is the time step size, and pn is(4.9.6) 

the pressure at the beginning of the step. The stress from the deviatoric and bulk responses is combined to give the 

final suessstate for the material. 

The power law creep material uses a single state variable: 

EQCS - equivalent creep strain 

The PROP array for this material contains the following ennies: 

PROP(4) - m 

: PROP(5) - - Q - if isothermal or - ~f not. RO R 

4.10 Therrnoelastic Material Model 

This material model represents the behavior of an elastic material with temperature-dependent material 

constants. Both Young's modulus and Poisson's ratio are allowed to vary with tCmpeaNre. The values of Young's 

modulus and Poisson's ratio at the beginning (step n) and end (step n+l) of the time step arc stored as state variables. 

The relationship between the property value and temperature is specified using a FUNCTION definition. 

We will choose to separate the stress and suain behavior into bulk and deviatoric response. The resulting 

equation for the elastic deviatoric stress response is 

where the shear modulus p is a function of the temperature. at the end of the step. For our numerical 

implementation. we will cast the problem in an incremental form. The stress at the end of the step now becomes 
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We choose to write the smss  rate term. Sij,as 

with the expression for ji(@"+') defined as 

This definition for the stress increment is neither a pure fonuard or backward Euler representation but a hybrid 
method where we choose to use the total strain at the beginning of the stcp along with a backward difference for 

s?. 4&). If we employ the fact that E! = - " , we can write the final expression for the deviatoric stress as 
?v(Bn) 

The tcmperature-dependent elastic bulk response is computed in a similar fashion. The quation for the bulk 

response at step n+l is 
h 

(4.10.6) 

We can write the above equation in an incremental form that is more suitable for numerical implementation. 

The stress from the deviatoric and bulk responses is combined to give the final stress state. 

The themoelastic material uses the following state variables: 

Y M O  - Young's modulus at the beginning of the step 

YMI - Young's modulus at the end of the step 

XNUO - Poisson's ratio at the beginning of the step 

XNUI - Poisson's ratio at the end of the step. 

The PROP array for this material contains the following entries: 

PROP(1) - Young's modulus. E 

PROP(2) - Poisson's ratio, v 
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PROP(3) - Modulus function identification 

PROP(4) - Poisson's ratio function identification. 

4.11 Thermoelastic-Plastic Power Law Hardening Material Model 

This material model represents the behavior of an elastic-plastic power law hardening material with temperature- 

dependent material constants. Both Young's modulus and Poisson's ratio are allowed to vary with temperature along 

with the material yield stress. The values of Young's modulus, Poisson's ratio, and yield stress at the beginning and 

end of the time step arc stored as stare variables. The relationship between the material property value and 

temperature is specified using a FUNCTION definition. 

We will separate the material behavior into deviatoric and bulk responses. If we consider only deviatoric 

behavior. the model has the following form during a plastic loading process 

where A and m are material constanrs, csys is rhe temperature-dependent initial yield stress, Ep is the equivalent 

plastic strain. 5 is the effective stress, and EL is the Luders strain or yield plateau strain. The use of brackets in the 

above expression denotes the use of a Heaviside function. The function is m o  until the arithmetic expression within 

the brackets becomes positive. The material constants for this model can be determined from measured stress versus 

strain data through simple curve-finins procedures. By suitably choosing the material constants A and m, the form 

- of the model can represent either elasticiperfectly plastic or linear hardening material behavior in addition to the 

power law hardening response. The temperature dependence is captured by allowing the initial yield stress and 

elastic constants to be a function of temperature. 

The expression for the stress at the end of the step is 

where we have used a backward Eula integration for the stress. The stress rate at the end of the step. s?.+', is 
IJ 

defined as follows 

where epij are the components of the plastic strain. We choose to use this expression for the stress rate because in 

the absence of plastic strain we recover for the stress as derived for the thennoelastic model. 

We define the difference rxpression for 
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- For von Mises flow, we can write the above as 

+?.p(@n+lbjj -2p(@n+1(?g) ( . I  1.5) 

where y is a scalar quantity 

Substituting the above expression for s"+' into the expression for SF' results in 
'J 'J 

tr where Ay = yAt. The first two expressions on the right-hand-side of the equation define the ma1 stress S.. so that the 
'J 

final expression becomes 

We make use of the following identity 

to get the final expression for the stress at the end of the step 

The plastic strain incrernent,,Ay, is the only unknown in the quation. To solve for the plastic strain increment. 

we must go back to our expression for the yield function. Combining the yield function with the expression for 

s"' and making use of the identity, we get 
'I 

which is solved for Ay using Newton Raphson iteration. The computed value of Ay is substituted back into the 

expression for SF'. Equation (4.1 1.9). 
11 

The bulk response is assumed to be linear elastic. The pressure at the end of the step is calculated using the 

volumemc suain. ~ k k ,  through the relation 
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where ~(0"') is the temperawre-dependent bulk modulus at the end of the step. Following the procedure 

outlined for the thennoelastic material model, we can arrive at the final expression for the bulk response. 

The stress from the deviatoric and bulk responses is combined to give the final saess state. 

The thermoelastic-plastic material uses the following state variables: 

EQPS 

YMO 
YMI 
m o  
XNUl 

YSO 
YS1 

RADIUS 

- Equivalent plastic strain 
- Young's modulus at the beginning of the step 
- Young's modulus at the end of the step 

- Poisson's ratio at the beginning of the step 

- Poisson's ratio at the end of the step 
- Yield stress at the beginning of the step 

- Yield stress at the end of the step 

- Radius of the yield surface. 

The PROP m a y  for this material contains the following entries: 

- Young's modulus, E 
- Poisson's ration, v 
- Yield stress. ay 
- Modulus function identification 

- Pr function identification 
- Yield function identification 

- Hardening constanL A 

- Hardening exponent, m 
- Luders strain, EL. 

4.12 Multi-mechanism Deformation (M-D) Creep Model 

A muld-mechanism .deformation (M-D) model proposed by Munson and Dawson (1979, 1982. 1984) and 
exunded by Munson et al. (1988) has been included in SANTOS to model the creep behavior of rock salt This 

model, which is based on the deformation map for salt. describes the relationship between the stcady-state creep rau, 
stress. and temperature in terms of three deformation mechanisms in salt. Two of thsse mechanisms are dislocation 
glide and dislocation climb. The effects of a third mechanism are also included in the M-D model. Although this - mechanism has not been characterized in terms of microsmcrural processes, its effects are observed in creep 

- 
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experiments. Transient workhardening and recovery responses are incorporated through a state va~iable function 

that modifies the steady-state creep rates. - 
In the M-D model, the equivalent creep strain rate at steady-stare. ES, is assumed to be equal to the sum of three 

terms, each arising from one of the three mechanisms described above, i.e., 

The three equivalent strain rates appearing on the right-hand-side of the above equation are given by the 

following functions: 

where the Ai's. Bi's and nj's are constants, the Qi's are activation energies, O is the absolute temperature. R is the 

universal gas constant p i s  the elastic shear modulus, ae is the equivalent stress, q is a constant a. is the suess limit 

of the dislocation slip mechanism, and H is the Heaviside step function. In the above equation. isl represents the 

effects of the dislocation climb mechanism, ES2 represents the effects of the unidentified mechanism, and Es3 
represents the effects of the glide mechanism. The relationship between ae and the components of the stress tensor 

under general loading conditions depends on the choice of the stress generalization and will be discussed later. 

Transient creep is incorporated in the M-D model through the use of a scaling function F. which modifies the 

steady-state creep rate. The total equivalent creep rate E is ziven by: 

The arguments of the transient scaling function arc equivalent stress, temperature, and an internal state variable. 

6.  The evolution of 6 is described by a separate rate equation. Three branches of the function F can be identified: 

(1) a workhardening branch where F assumes a value greater than unity, (2) an equilibrium branch where F is qua1  

to unity, and (3) a recovay branch where F is less than unity. The expression for F is 
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In the above equations. A and 6 are referred to as the workhardening and recovery functions. respectively, while 

E; is referred to as the Uansient strain limit. The workhardening and recovery functions are assumed to be of the 

form 

The transient strain limit is a function of temperature and stress given by 

where Kg and c are constants. Finally, the evolution equation for the internal variable 5 is 

To complete the generalization of the M-D constitutive model, an equivalent stress and flow rule for the creep 

strain rate must be defined. These two definitions provide the necessary linkage among the three-dimensional smss 

state, the creep suain rate. and the invariant creep relationships described earlier. According to Munson et al. 

11988). the Tresca stress generalization provides the most appropriate definition of the equivalent stress for rock salt. 

With the Trcsca stress generalization, the equivalent stress becomes 

w h m  y is the Lode angle defined by 

sin 3 v =  
- 3 ~ , &  

2 ~ : ' ~  

In the two preceding equations, 12 and 13 are the second and third invariants of the deviatoric part of the stress 

tensor. and a 1  and a 3  arc the maximum and minimum principal stresses. rcspenively. The flow is assumed to be 

associative so that the direction of is normal to the Tresca flow surface. Unfortunately, the normal is undefined as 

W = f" where sharp corners exist in the Tresca flow surface. At these locations, the flow is assumed to be normal 6 
to the von Mises flow surface. The von Mises flow surface is characterized by a constant value of om where e 



- 
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< The expression for the effective or equivalent creep suain rate. E.., for Tresca flow is 
'J 

' n  where can be replaced by F E ~ .  The resulting expression for the stress rate. S.., now becomes 
IJ 

which is highly nonlinear. 

Integration of this equation and the evolutionary equation governing the rate of change of < requires the use of a 

numerical procedure. Studies of various numerical interation methods have revealed that simple forward Euler 

integration is as effective as any method. Following the methodology outlined previously for the Power Law Creep 

Model. the mess at step n+l is simply 

and in a similar fashion 

The forward Euler operator is conditionally stable. The critical time step for stability can be determined using 

the method of Cormeau (1975) based on the form of the flow potential and the elastic constants. This has been done 

for the M-D model. Two estimates for the critical time step are computed, and the minimum of the two is used for 

the calculation. These time step estimates are given by 

and 

- 
where rmax = c o s e f i  =a The equivdent Tresca suess, 5,  is the value at the end of step n. 

2 '  
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Accuracy of the method is assured if the time steps are sufficiently small, but using the stable time step cannot 

A 
be guaranteed to always produce an accurate solution. However, comparison of results using this integration method 

with known solutions for complex two- and three-dimensional creep problems has shown the method u, be very 

accurate when the stable time step is used. 

For a typical application. the time increment, Atstl. is smallest when E is largest and as the effective smss 

decreses, such as when the problem approaches steady-state creep, the critical time step increases. In most 

instances, the user-specified time step, At, will be larger than the time step needed for stability, min(Aktl. Aka). 

Therefore, the solution time step is broken into subincrements for integrating the constitutive model with the size of 

each subincrement changing with the stress. The subincrementation procedure is discussed at the bqinning of this 

chapter. 

The transient creep pan of the M-D model causes the stress to change rapidly, which causes the time step to be 

very small. The adaptive time step feature was developed to accommodate the small time step initially and allow it 

to grow as the solution proceeds toward steady state. Experience has shorn that an initial time step size of 1.0 x 10- 

seconds works well with a tolerance of 0.01. The maximum time step size depends on the time scale of the 

problem and the degree of nonlinearity. 

The M-D creep model uses the following state variables: 

EQCS - equivalent creep strain 

ZETA - current values of the evolutionary parameter 

SDOT - stress rate for the current time step 

TRESCA - equivalent stress computed using TRESCA criterion 

ETSTAR - transient strain limit. 

The PROP array for this material contains the following enmes: 
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PROP(19) - RN3, exponent of workhardening and recovery term used to compute F 

PROP(Z0) - AMULT, scalar multiplier of time step needed for stability (default 0.98) 

4.13 Volumetric Creep Model 

The consolidation behavior of geomaterials and salt, in particular, is of interest to analysts because of the use of 

these materials as bac!dll and as a sealing material in waste disposal applications. The volumetric creep model 

implemented in SANTOS is based on the work df Sjaardema and Krieg (1987). who developed their model based on 

the hydrostatic consolidation tests of salt with added water by Holcomb and Shields (1987). lime-dependent 

behavior is included in both the volumetric and the deviatoric response. The form of the model is such that the 

mechanical response of the consolidated material becomes identical to that of the intact material as the density 

approaches that of the inract material. The elastic moduli were found from the tests to depend on the density, p. of 

the material through relationships of the form 

where Kg. K1, w. and p1 are material constants. -. 

For the discussion of the volumetric creep model, it is appropriate to decompose the total strain rate into 

volumetric and deviatoric parts. Because intact salt creeps deviatorically when subjected to a deviatoric stress state. 

crushed salt should logically be expected to creep deviatorically. This expecration becomes more reasonable as the 

density increases because, in the limit, the crushed salt becomes intact salt. The deviatoric crushed salt creep model 

presented here is based on the power law secondary creep model, which has been used to describe the creep behavior 

of intact salt. This model is described in Section 4.9. Power Law Creep Material Model. 

The development proceeds by envisioning that the porous crushed salt uniaxial sample is composed of cylinders 

of salt, each of which has the intact salt secondary creep behavior separated by areas of open space. The local stress 

acting on the salt cylinders is then stated in terms of the average stress on the porous sample. The cross-xctional 

area of the porous sample is expressed in terms of the net cross-sectional area of the salt cylinders. The final 

resulting continuum model for the rate of the deviatoric stress of crushed salt is then 

where the constants A. Q, m, and p, refer to values for the intact material. The integration of the deviatoric part of 

the stress is performed using the forward Euler operator. The integration method is the same as used for the power 

law creep model, and the details of the integration may be found in Section 4.9, Power Law Creep Material Model. 
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The volumemc pan of the model can be written as the sum of elastic and inelastic pans as shown below - 
P dl& =-+dC 

K(P) kk 
(4.13.4) 

where d k  is the volumemc strain rate, f, =% is the rate of change of the pressure, dCW( is the v o l u m e ~ c  creep 
3 

strain rate, and K (p) is the density-dependent bulk modulus. Laboratory consolidation tests on cmshed salt have 

shown the volumemc creep strain rate to be fit well by an expression of the form 

where Bo, B1, and A are material constants obtained from the experiments. The density p is computed from the 

relationship 

where pg is the density at time to. Equation (4.13.4) is solved for p and combined with the definition of the 

volumemc creep main rate. Equation (4.13.5). to produce 

which is the expression to be integated. 

The expression for the pressure is integated using the backward Euier operator. This operator is 

unconditionally stable for any time step size. The expression for the pressure at the end of the step is 

which can be rewinen using the above equation as 

Let us define a uial pressure as pU = pn + pn+' d&t . which lets us =write the above expression as K( 
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We need to solve the above expression for the pressure, p"l, for which we have chosen to use a Newton - 
Raphson scheme with a fixed number of iterations. Once we have the pressure at the end of the step, it is combined 

with the deviatoric stresses to produce a ma1 suess state for the material. The mal saesses are accepted as the final 

stresses if: (1) the mean mess is tensile; (2) the out-of-plane ma1 suess is compressive; or (3) the mean stress is 

compressive, and the out-of-plane trial stress is tensile but is less rhan 10% of the absolute value of the mean stress. 

If these conditions are not meL then the deviatoric stresses are scaled back so that the out-of-plane stress is equal to 

10% of the absolute value of the mean stress. 

The volumeuic creep material model uses the following state variables: 

EQCS - equivalent creep strain 

DENSlTY - current density of the consolidating material, 

The PROP array for this material contains the following enmes: 

- 74 
- K 

- A, creep constant 

- m stress exponent 

Q .  - if isothermal or - ~f not RO R 
- p i ,  shear exponent 

- K1. bulk exponent 

- Bo 

- B1 
- A1 
- pintact, inmct density 

- PO. initial density. 

4.14 Viscoelastic Material Model 

The mechanical response of many plastics, mbbers, epoxies, glasses, and other polymeric compounds can be 

described quite well by a linear viscoelastic constitutive law. In the absence of any changes in temperature. the stress 

at time t in a linear material with memory depends only on the past strain history. This can be expressed in general 

terms as 

t 

Sij = 2 1 G(t - .r)iij(f)dt - 
for the shear response and 
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for the bulk response, where G(t) and K(t) are the shear and bulk relaxation moduli. respectively 
. . 

I? Unlike elastic constitutive equations in which the material moduli are constants, viscoelastic relations employ 
moduli that relax over some period of time. A specific form for the relaxation moduli is obtained by considering the 

mechanical analogy of the standard linear viscoelastic solid shown in Figure 4.14.1. The springs represent the elastic 

response and the dashpots represent the viscous response. By sainging together N such elements the relaxation 

moduli can be wnnen ar (Ferry, 1970) 

Figure 4.14.1 Mechanical analogy of the standard linear solid. 
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and 

where the B.s are relaxation constanrs (I@ = relaxation time) and Gw and Km are the long-time moduli. Since the 

bulk and shear behaviors are assumed to be independenr, Nb may be different from Ns arid the same goes for pb's 

and the PS's Ideally, an arbinary number of elements could be used to gain the most accurate representation of the 

behavior of the material. However, because of computer storage considerations, modeling of the bulk response is 

limited to one term while the shear response is limited to a threeterm representation. It should be noted that 

Equations (4.14.3) and (4.14.4) differ slightly from the usual representation in that the long-time modulus is 

subtracted from each relaxation modulus. This was done to simplify the data format, but caution should be used in 

determining material property data for the material model to ensure that it conforms to the form of Equations 

(4.14.3) and (4.14.4). 

?he constitutive law discussed above is based on the assumption that the entire body remains at a uniform 

temperature. The relaxation moduli and the material parameters necessary to evaluate them can be regarded as 

having been determined at a base-line temperature. 00. To evaluate the effects of temperature changes. fmt  let us 

consider the modifications to the constitutive law if a uniform change in temperature is allowed. To do this, let G(r, 

O) be the shear relaxation modulus at the constant temperature, 0. The remainder of the theory will be developed 

using the shear modulus as an example. The modifications to the bulk modulus are handled in the same manner and - 
will not be repeated. 

Using a change of variable, the shear modulus at the base-line temperature can be written as a function of log t 

We can now apply the hypothesis of temperature-time equivalence (Fary, 1970; Leaderman, 1943; Ferry, 1950), 

which states that all response functions (e.g., relaxation moduli) are affected by the uniform temperature change only 

within a corresponding uniform shift of the logarithmic time scale. Materials exhibiting this kind of behavior have 

come to be termed "thermorheologically simple" materials (Schwanl and Staverman, 1952) This leads to the 

following form for the relaxation moduli: 

where Y(8)  is the "shift function" and is usually written as 

y(0) = log ~ ( 0 )  (4.14.6) 

where the "shift factor." (p(8). conforms to 

If we now define a "reduced time" by 
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then 

rC4 

X i s  means that the entie family of response functions can be determined by one member G(t) = G(t. OO). 
provided the shift factor is known. The shift factor is assumed to be a material property that can be derennined 

experimentally. It should be noted that the temperature dependence of the responses in shear and in bulk could be 

governed by two different shift functions. However, this is  led out by the assumption of a thermorheologically 

simple material because the relaxation modulus in tension displays the shift property only if the bulk and shear shift 

functions are identical (Muki and Sternberg, 1961). 

An additional modification required to account for vaxying temperature is that the concept of rcduced time has 

to be redefined. Morland and Lee (1960) have shown that if the reduced time is defined as 

then a generalized relaxation integral law can be derived from Equations (4.14.3) and (4.14.4). Assuming no 

deformation has taken place before time, t = 0. the constitutive model can be written in the following form: 

For problems where changes in temperature arc important, the shift factor must be specified. For convenience, a 

specific form of the shift factor is incorporated into the material subroutine. An empirical equation which has been 
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shown to reflect accurately the behavior of many polymers near the glass transition temperature is used. This 

equation. known as the WLF equation (Feny, 1970; Williams. 1955; Williams et al.. 1955) is given by - .  

where C? and cy an WLF constants which have been determined for many common polymers [371. If a different 

shift factor is available for the material of interest, it can easily be incorporated into the subroutine in place of the 

WLF equation. 

Integration of the shear and bulk equations is done in an identical manner. The equations could. in principle, be 

integrated d i i t l y .  However, this would require additional computer storage because the integration for each time 

step is over all previous history. The storage requirements for this method would be prohibitive. A bener method 

for determining the stresses at each time step is based on the development of a recursion relation so that the stress at 

time n+l can be determined from historical quantities at time n and the current value of the strain rate. The 

development of this recursive method as implemented in SANTOS is described in Costin and Stone (1985). The 

deviatoric and the bulk stress components are combined to give the final stress state for the material. 

Historical information for each stress component is stored as a state variable. The viscoelastic material has the 

following state variables: 

BLKDECAY 

DECAYXI 

DECAYY I 

DECAY21 

DECAYXYI 

DECAYXZ 

DECAW2 

DECAY22 

DECAYXY?. 

DECAYX3 

DECAW3 

DECAYZ3 

DECAYXY 3 

- single term bulk pressure 
- shear relaxation term 1 x-stress 
- shear relaxation term 1 y-stress 
- shear relaxation term 1 z-stress 
- shear relaxation term 1 xy-stress 
- shear relaxation term 2 x-stress 
- shear relaxation term 2 y-stress 
- shear relaxation term 2 z-stress 
- shear relaxation term 2 xy-stress 
- shear relaxation term 3 x-stress 
- shear relaxation term 3 y-stress 
- sHear relaxation term 3 z-stress 
- shear relaxation term 3 xy-stress. 

I h e  PROP array for this material contains the following entries: 

PROP(1) - Shon Time Bulk Modulus, K 

PROP(2) - Long Time Bulk Modulus. KOD 

PROP(3) - Bulk Relaxation Constant. pk 
PROP(4) - Long Time Shear Modulus, GOD 

PROP(5) - First Shon Time Shear Modulus. GI  

PROP(6) - Second Shon Time Shear Modulus. G2 
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PROP(7) - Third Shon Time Shear Modulus. G3 
PROP(8) - Fis t  Shear Relaxation Constant, $; 
PROP(9) - Second Shear Relaxation Constant, 

PROP(I0) - Third Shear Relaxation Constant, $: 
PROP(I1) - First WLF constant. C 1 

PROP(12) - Second WLF constant. C2 
PROP(13) - Reference Temperature for Material Propenies. To. 
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5.0 CONTACT SURFACES 

Many structures of interest are composed of two or more pans that are either in contact or may come into 

contact during senice. After contact, these pans on also slide with respect to one another. In the field of 

computational mechanics, modeling contact and sliding behavior are done using contact surfaces. and there are 
several numerical approaches for modeling this behavior. One method utilizes a thin finite element with a special 

constitutive model to approximate gap and friction behavior (Goodman and Dubois. 1972). A second approach 

uses Lagrange multiplien to impose gap closure constraints and frictional Rick-slip conditions (Hiibitt Karlson & 

Sorensos Lnc.. 1992). In tlle setting of the dynamic relaxation a l g o r i m  SANTOS employs a sliding contact 
surface algorithm using a master-slave approach. 

In the master-slave concept the nodes on the designated slave surface are required by the algorithm to lie on 

the master surface. Any sliding or slip must occur along the master surface. In hun, nodal forces from the slave 

node are removed and applied to the master surface nodes. This transfer of forces maintains equilibrium at the 
interface. The tangential shear or friction force as well as the determination of slip or no slip is incorporated into 

this process involving the transfer of forces to the master surface. In SANTOS, the nodal forces are computed by 
the divergence of the stresses within an element. Therefore, nodal forces can be used in conjunction with a Mohr- 

Coulomb model for the contact surface friction. SANTOS currently suppons two l p e s  of master-slave contan 

surface b o ~ I I d a ~  conditions: (1) a deformable surface against a rigid plane, and (2) two distinct deformable 

surfaces againn each other. - 
For a mitt master-slave algorithm such as the one implemented in SANTOS, the user must specify which 

surface is the maner surface and which surface is the slave. This choice can have a significant effect on the 

calculation and the &cieocy of the solution. For example, the comer mesh should be designated as the master 

surface when the two contacting materials are the same as shown in Figure 5.la. If the master-slave nrrfaces are 
reversed as in Figure 5.lb. interpenetration that is not detected by the algorithm can result The choice of master- 

slave roles is less clear when the materials of the contacting bodies are different The user should typically select 

t l~e M e r  of the two materials to be the master surface but be prepared to reverse the roles if convergence is slow or 

interpeuetration is observed. 

The contact surface algorithm is composed of two phases: (I) a location phase where the time, location, and 

amount of slave node peneuation of the master surface is determined along with identification of the correct master 

nrrface segment and master surface nodes defining the segment, and (2) an application phase where the nodal 

force transfer from the slave node to the master surface nodes is performed along with a kinematic location of the 
slave node to the appropriate location on the master surface. 

5.1 Location Phase 

Corltact location is accomplished by monitoring the displacements of the slave nodes throughout the 

calculation for possible penetration of a maner surface. SANTOS uses an algorithm called neighborhood 

S 
idenrification to pair those slave nodes and master surfaces where potential contact is likely. The neighborhood 

identification is usually the most timesonsuming . . part of the location phase. Obviously, the most robust approach 
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(a) Surface 1 is the master and 
surface 2 is the slave 

(b) Surface 1 is the slave and 
surface 2 is the master 

Figure 5.1. Schematic showing the effect of changing the master-slave designation between two surfaces. 

c.r. 

would be to check every slave node against every master surface at every time step. This, however, is incfJicient 

The current Nategy is to use a global search to determine which slave nodes are in close proximity to a master 
surface. The search process accumulates these potential interactions by constructing a local neighborhood around 

the master surface and globally searching for all slave nodes that fall within the neighborhood. The algorithm is 
based on a panicle search technique, Heinstein et al., 1993. It sons the slave nodes by location and uses a binary 

search to construct a list of slave nodes in a master surface neighborhood. The search algorithm depends only on 

the number of slave nodes and not on the geometry of the problem. It takes advantage of the known positions of 

the slave nodes and master swfaces. 

Aner gathering a list of potential interactions, a detailed contact check is done for each slave-nodJmaster 

surface pair. This check determines: (1) which of the candidate master surfaces is in contact with the slave node, 

(2) the point of contact, (3) the amount of penemtion and (4) the direction the slave node should be pushed back. 
The contact checlc also vies to resolve pushback ambiguities that arise due to discretization of the master surface. 

A complete discussion of these ambiguities and their resolution on be found in Heinstein et al.. 1993. 

The benefits of reducing the time spent in the contact surface algorithms can be significant. For iterative 

solvers. such as dynarmc relax;~tiop inaccuracies in the location phase lead to an increase in the number of 

iterations required for convergence. These inaccuracies arise mainly fiom incorrectly determining the location of 

contact as a slave node slides across another surface. For large finite element simulations with large numbers of 

slave nodes and master surfaces, as much as 50% of the total CPU time is spent in the location phase. Thus, the 

speed and ac iency of the contact detection algorithms are important. 

80 
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5.2 Application Phase 
i 

The operation of the master-slave scheme can be demonsmated in the following example where slave node I Lies 

between master nodes M and N, as shown in Figure 5.2.1. The location phase algorithm has already determined that 

node I has peneaated the master surface sezment connecting nodes M and N. Because node I has pneuated the 

master surface, the normal force (Rn) and tangential force (Rt) at node I are detemined. The coefficient of friction. 

u is used in conjunction with R, to determine the threshold value for slip, a,. If Rt is less than fl,,, then no slip 
occurs and both the values of Rn and Rt are transferred to the master surface nodes using a weighting procedure 

based on the position of the slave node along the master sement. 

Figure 5.2.1. Schematic showing the penetration of the master surface by slave node I. Node I is kinematically 
restored to the master surface, and its nodal forces are transferred to the master surface nodes M 
and N. 
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The enforcement of the contact constraint is done using nodal velocities rather than displacements. In addition. 
I 

the consuaint is not enforced in one iteration but over several iterations to improve the convergence of the nonlinear 

equilibrium iterations. The nodal velocity of slave node I is rotated into normal and tangential components. For the 

no-slip case, the tangential velocity of the slave node is assigned a new nodal velocity b a d  on the tangential 

velocity of the corresponding point on the master surface. The normal velocity component of the slave node is given 

the normal velocity of the master surface modified by an incremental velocity based on the depth of pcneuation. 6. 
by the slave node. The incremental velocity is applied in a dirtxion to move the slave node back towards the master 

surface. The resulting equation for the normal velocity component is computed as 

The pushback factor of 0.1 ensures that the slave node is not pushed back to the master surface in a single iteration. 

For the case when Rt is greater than pRn. slip can occur. The tangential force Rt is reduced to its maximum 

allowable value of pRn which results in a force imbalance and allows movement of the slave node along the master 

surface to a new equilibrium position. The slave node forces, Rn and Rp are again transferred to the master nodes. 

The normal velocity of the slave node is modified exactly a in the no-slip case while the tangential velocity 

component is not modified at all. 

The nodal mass associated with each conmcting slave node is transferred to the appropriate master surface nodes 

using the weighting procedure used for transferring slave node forces. The transfer of mass is used by the solution 
F algorithm during the calculation of the nodal accelerations, a = -. This uansfer of mass, which is performed for 
rn 

each iteration, allows the master surface nodal accelerations to reflect the presence of the slave surface. 

Incorporated within the contact surface model is the capability for two surfaces initially in contact to separate at 

a prescribed load level and for two distinct surfaces to contact and remain in contact during deformation. The user is 

allowed to specify the separation force level and to specify the separation tolerance with which both surfaces are 

assumed to be in contact. The default value of the separation force level is 1. x 10~0. The default value of the 

separation tolerance is .02 times the lengrh of the master surface segment. Inclusion of friction does have the effect 

of increasing the number of iterations required for convergence in many cases. 
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6.0 LOADS AND BOUNDARY CONDITIONS 

S N O S  contains several types of loads and boundary conditions. Displacements, pressures, concentrated 

forces, and body forces may be prescribed. In this section, we describe how these are implemented in the program. 

6.1 Kinematic Boundary Conditions 

The kinematic boundary conditions described below are all accomplished by altering the acceleration. velocities, 

and displacements of the nodal points. The application of these boundary conditions does not vectorize because they 

require a function look-up and a scatter of values. All of the kinematic boundary conditions are applied to nodal 

point sets. 

6.1.1 No-Displacement Boundary Conditions 

The no-displacement boundary conditions are accomplished by setting the appropriate component of the 

acceleration, velocity, and displacement of the node to zero. The imbalance force component for the node is 

accumulated with other no-displacement nodes to produce a total reaction force which is written as a global variable 

(RX and RY) at each load step. The imbalance force component for the node is then set to zero. 

6.1.2' Prescribed Displacement Boundary Conditions 

The prescribed displacement boundary conditions are accomplished by setting the displacement component of 

the node point to the rquired displacement value corresponding to the end of the step. The appropriate components 

of the acceleration and velocity of the nodal points are set to zero along with the imbalance force component. 

6.1.3 Sloping Roller Boundary Conditions 

This displacement boundary condition requires the nodal point set to displace along a line defined by the 

analyst The analyst defines the line by providing the components of the surface outward normal. The acceleration 

and velocity of the node point are rotated into a coordinate system normal and tangential to the line. The normal 

acceleration and velocity components are set to zero, and the remaining tangential components are rorated back to 

the global coordinate system. The imbalance force associated with the node is also rotated into the normal and 

tangential coordinate system. The normal force component is set to zero, and the remaining tangential force is 

rotated back into the global coordinate system. 

6.2 Traction Boundary Conditions and Distributed Loads 

The boundary conditions described below apply external forces to selected nodes. The pressure boundary 

condition is associated with element side sets while the nodal force boundary condition applies to nodal point sets. - Body forces (dismbuted loads) are applied to each node in proportion to the mass of the material that surrounds it. 
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6.2.1 Pressure - 
The set of consistent nodal point forces yisine from pressures dismbuted over an element side is defined via the 

principle of virmal work by 

where the range of the lower-case SI 

6uiIfiI = 6uiI J Q ~ ( - ~ I I ~ ~ A  . 
S 

abscriprs is 1 to 2 and the upper-case subscripts 1 to 

Since the vimal displacements are arbiuary, they may be eliminated to yield 

fiI = pni  d~ . 
S 

The most general pressure distribution we allow is mapped from nodal point pressure values via the isoparamemc 

shape functions. The resulting expression for the consistent nodal forces is 

f i ~  = -PJI $14~ "J d.4 . (6.2.3) 
S 

For the four-node constant mess element used in PRONTO. @I is given by 

where 

and nini= 1. For the geometry and pressure distribution shown in Figure 6.2.1, it can be shown that 

Xi = xi141 
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/ 
TR-34 

Figure 6.2.1. Definition of a pressure boundary condition along an element side, 

IC. 

and 

Then the consistent nodal forces can be +sen as 

Combining Equations (6.2.4), (6.2.5), and (6.2.8): 

The above expression is evaluated as 
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and 

The nodal values for the pressure are calculated using the user-supplied scale factor and time history function. The 

values arc calculated for the beginning of the time step. 

The application of the pressure boundary conditions is fully vectorized. Blocks of element sides are processed 

in vector blocks using the scratch element space. After the consistent nodal point forces are calculated for a block of 

element sides, they are accumulated into the global nodal force array. 

6.2.2 Adaptive Pressure 

The adaptive pressure boundary condition in SANTOS allows the analyst to model the behavior of gas-filled 

cavities that change internal pressure as the cavity deforms. The analyst defines the cavity using a side set identifier. 

and the volume of the cavity is computed every iteration based on the current deformed shape. The cavity volume is 

pssed to SUBROUTINE FPRES, which is user supplied, when the gas pressure is computed. This gas pressure is 

then applied to the defined side set as a pressure boundary condiuon. 

6.2.3 Nodal Forces - 
Nodal point external forces are applied to each point in the node set. The magnitude of the force is determined 

by the user-supplied scale factor and a time history function. The time histoty function is evaluated at the end of the 

load step. If the analysis type is axisymmetric. then the nodal forces are input as force per radian. 

6.2.4 Gravity Forces, Body Forces, and Distributed Loads 

Gravity and body forces are computed using the third integnl in Equation (3.1.8). The same routines that 

compute the diagonal mass matrix are used to form the ,pvity load vector. The density, p, is the input density for 

the specific material and not the fictitious density computer for the stable time increment The component direction 

accelerations are specified on the GRAVITY input card. In addition to the x- and y-direction accelerations. the code 

supports an angular acceleration. The magnitude of the acceleration is determined by the user-supplied scale factor 

and a time history function. The time histoty function is evaluated at the end of the load step. 

The nodal values of the distributed loads are read from in externally written file. fort.38. in the following 

format: 

READ(38) TIME. (DISTXO, I=I,NNOD). @ISl'Y(I), I=I.NNOD) 

at the desired time intervals. DISTX and D I S n  are the nodal point dismbuted load components in the x and y 

directions, respectively. These nodal values are in units of force per unit volume. This force/volume is multiplied by 
h 

the appropriate nodal volume to obtain the magnitude of the nodal loading. Tne nodal volume is computed using the 
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diagonal mass mamx routines with a density equal to one. An example of this type of loading is the body force 
'- 

generated by the presence of a magnetic field. 

6.2.5 Thermal Forces 

Nodal point temperatures for performing thermallsuuctural analyses are input into SANTOS in two ways. The 

first method is to read an externally written temperature file, fort.56. in the following format: 

READ(56) TIME. (T(1). I = I W O D )  

where the temperature, T, is read for each nodal point. SANTOS interpolates linearly between thermal time steps to 

obtain the thermal solution for the time requested by the suuctural analysis. On the THERMAL STRESS input card. 

the enuy type is set to EXTERNAL to request this method. 

The second method is best suited for problems where the smcture is heated uniformly. The analyst can define 

the temperature history of the body using an input function, and SANTOS will interpolate the body temperature at 

the time requested by the suuctural analysis. On the THERMAL STRESS input card. the enuy type is set to 

m R N A L .  

SANTOS requires the analyst to input for each material, the c w e  of thermal strain versus temperature. Tnis 

curve is defined using an input function. With the temperature of each element known, it is a simple process to 

interpolate the thermal strain for each element. If we difference the thermal swain computed at the beginning and at .- 
the end of the load/time step and divide by At, we obtain a thermal strain rate. SANTOS computes the total strain 

rate, using the velocity gradients. which can be decomposed into mechanical and thermal strain rate components. 

The thermal strain rate is subtracted from the total strain rate to obtain the mechanical strain rate. which is passed 

into the SANTOS constitutive models. 
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SANTOS Users Manual 

f l  Listed below, in the order they appear in the text, are all the key words used in the SANTOS input 

I. rime 
2. PLAne STRain 
3. AXLFymmetn'c 
4. STEP CONtrol 
5. AUTO STEP 
6. OUTput TIme 
7. PLOT T h e  
8. PLOT NODal 
9. PLOT ELement 
10. PLOT STate 
11. T h e  STep Scale 
12. RESidual TOLerance 
13. MAXimum ITerations 
14. lTVTemediate PRint 
15. MAXimum TOLerance 
16. GLObal CONvergence 
17. LOCal CONvergence 
18. ELAStic SOLution 
19. PREdictor SCAle FACtor 

A 20. DISTributed LOAds 
21. mal STRess 
22. THERmal STRess 
23. GRAVity 
24. MINimum DAMping FACtor 
25. NO DAMping 
26. WRITe REStart 
27. READ REStart 
28. HOURglass STIFfening 
29. XBEGIN 
30. XEND 
31. EXIT 
32. FUNCtion 
33. NO DISplacement 
34. PREScribed DISPlacement 
35. SLOping ROLler 
36. PREScribed FORce 
37. PRESsure 
38. ADAptive PREssure 
39. CONtact SURface 
40. RIGid SURface 
41. MATerial 
42. MATerial Point 
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43. DELete MATerial 
+ 

The input data to SANTOS is in a free field form using key words. The key words are intended to 
define a user friendly program language input The input is order independentand can be entered 
in any order the user finds convenient The words as typed below in UPPER CASE represent key- 
words in the list above. Most of the words can be abbreviated to the Erst few characters. In the list 
above the upper case characters indicate the shortest abbreviation allowed. The words typed in 

lower case below indicate variables for which the user should enter a value. An example data file 
is shown below. 

The h e  field input allows the user to delineate entries by either a blank, a comma, or an equals 
sign. We find it useful to use blanks withcommands (keywords), equal signs to separate keywords 
andlor lists, and commas for lists of values. The material data requires material cues and their 
associated values and equal signs are useful there. See the example input below. 

A dollar sign indicates that whatever follows on the line of input is a comment and is ignored. An 
asterisk indicates that the line is to be continued on the next line. 

1. TITLE 
(enter a suitable title on the next line) 

2. PLANE STRAIN 
-L-. 

Indicates that a plane strain analysis is to be performed. If the analysis type keyword is omitted 
then a plane strain analysis is selected as default. 

3. AXISYMMETRIC 
Indicates that an axisymmetric analysis is to be performed. 

4. STEP CONTROL 
n, tl 

n ... number of load steps in interval 0 < t < t l  
tl ... end time for first load step interval 
m ... number of load steps in interval t l  < t < t2 
t2 ... end time for second load step interval 

?his command specifies the static load control parameters for the problem. The analysis is 
assumed to begin at t=O and-take n steps to time tl. The code then will take m load steps to time 
t2. This set of input is completed by an END card. Any number of step-time cards is allowed. 

5. AUTO STEP, to], dtmax, dtmin, dtinit 

A-4 
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to1 ... tolerance value used for conrolling change of time step in material model 
dnnax ... maximum value of time step allowed. Values of dt computed to be greater than - dtmax will be set to dtmax. 
drmin ... minimum vahe of time step allowed. Computed time step cannot be smaller then this 

value. If the user does not wish the time step to shrink insert NOREDUCE in this 
field. 

dnnir ... initial value of time step to be used in the calculation 

This command can be used to automatically grow the solution time step for any time dependent 
material model that allows such a feature. The command specifies a solution tolerance change 
allowed over the step, along with allowable values of the time step (dunax, dtmin, dtinit). The 
time step will grow and shrink according to satisfaction of tol. If the user does not wish to allow 
the time step to shrink, then insert the word NOREDUCE in place of dunin. 

6. OUTPUT TIME 
tl 

m, 

n ... frequency of printed output in interval 0 c t c t l  
tl ... end time for first output time control 

-. rn ... frequency of printed output in interval t l  c t < t2 
t2 ... end time for second output time control 

This command specifies how often the requested printed output is to be written to the output file. 
The required information is an integer number specifying how often, not the number of outputs, 
the printed information is to be written. For example, if n or m is 1 then the output file will be 
written every load increment. If n or m is 2 then the file will be written every 2 load increments. 
Currently, the times t l  and t2 must match the values specified on the STEP CONTROL card. An 
END card terminates this section of input 

7. PLOT TIME 
n, tl 
m, 

n ... frequency of plotted output in interval 0 c t c t l  
tl ... end tirne for first output rime control 
m ... frequency of plomd output in interval tl  c t < t2 
t2 ... end time for second output time control 

This command specifies how often the requested plotting output is to be written to the output file. 
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The required information is an integer number specifying how often, not the number of outputs, 
the plotting information is to be written. For example, if n or m is 1 then the output file will be -, 

written every load increment If n or m is 2 then the file will be written every 2 load increments. 
Currently, the times tl and t2 must match the values specified on the STEP CONTROL card. An 
END card terminates this section of input 

8. PLOT NODAL, nodal name 1, nodal name 2, ..... 
allowable nodal variable names: 

DISPLACEMENT - nodal displacements (DISPLXDISPLY) 
RESIDUAL - nodal residuals (RESIDX, RESIDY) and a scalar value (RESID) 
MASS - nodal lumped masses (MASS) 
REACTION - nodal force reactions (FX, FY) 

The default nodal variables written on the plotting data base are the displacements whether 
requested or not The MASS specification results in having the lumped nodal masses written on 
the data base. The names in parenthesis indicate the alphanumeric name of the variables which 
are written on the plotting data base. 

9. PLOT ELEMENT, element variable 1, element variable 2, .... 
allowable element variable names: 

STRESS - stresses (SIGXX,SIGYY,SIGZZ,TAUXY) 
STRAIN - total strains (EPSXXEPSYY,EPSZZ,EPSXY) 
RAEDFM - deformation rates @XXSW,DZZ,DXY) 
STRETCH - material stretches: V of F = V R (STRECHML,STRECHYY,STRECHZZ,STRE- -4 

CHXY) 
ROTATION - material rotations: R of F = V R (COSTHETA,SINTHETA) 
DENSlTY - current mass per unit volume (DENSlTY) 
PRESSURE - pressures (PRESSURE) 
VONMISES - Von M i s  equivalent stress (VONMISES) 
HG - hourglass resistance forces (HGX,HGY) 
EFFMOD - element effective modulus values used for the stable time step and mass scaling 

(EFFMOD) 
TEMPERATURE - element centroidal temperatures (TEMP) 

The names in parenthesis indicate the alphanumeric name of the variables which are written on 
the plotting data base. The default element variables are the stresses. 

10. PLOT STATE, state variable 1, state variable 2, .,, 
The user can ask for any of the internal state variables to be written on the plotting data base. 
Since all materials do not have the same internal state variables (some have none), a zero will be 
written on the data base for an element using a material model that does not have a state variable 
which is specified by the user. Hence, if t heke r  asks for EQPS (equivalent plastic strain) and 
ALPHA~~,ALHA~~,ALF'H&~, and ALPHA12 (back stress components for kinematic harden- 
ing) and he has a model where half the mesh uses the ELASTIC material and half the mesh uses 
the ELASTIC PLASTIC material, much of the data written on the plotting data base will contain - 
zeros. The table below gives all the internal state variables names for all the material models. 
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See the theorv section for definitions of the variables if they are not obvious. The default state . 
variables are none. W W G :  Indiscriminate use of this option can create extremely large 
plotting data bases. 

1 
allowable state variable names: 

--------------------------------- 
\ 

/ 
i' 

ELASTIC = (no internal state variables) 
ELASTIC PLASTIC = EOPS ALPHA11 ALPHA22 ALPHA33 ALPHA12 RADIUS 
POWER LAW CREEP = EQCS 
LOW DEN FOAM = (no intemal state variables) 
SOIL N FOAMS = EVMAX EVFRAC EV NUM 
EP POWER HARD =RADIUS EQPS 
LINEAR VISCOELASTIC = BLKDECAY DECAYXl DECAYYI DECAY21 DECAYXY 1 

DECAYX;! DECAYY2 DECAY22 DECAYXY2 DECAYX3 DECAYY3 DECAYZ3 
DECAYXY3 

THERMO EP = EQPS YMO YMI XNUO XNUl YSO YS1 RADIUS 
THERMOELASTIC = YMO YM1 XNUO XNUl 
VOLUMETRIC CREEP = EQCS DENSrrY 
M-D CREEP MODEL = EQCS ZETA SDOT TRESCA ETSTAR - - - ----------------------------- 

11. TIME STEP SCALE, sdt 
st$ ... scale factor to be applied to the internally calculated time step (default=l.O) 

h 

12. RESIDUAL TOLERANCE, value 
value ... number, in percent, that is used to check for equilibrium and convergence of the 

solution. Default is 0.5. 

13. MAXIMUM ITERATIONS, value 
value ... number of iterations allowed for any solution step. Default is two times the number 

of nodes. 

14. INTERMEDIATE PRINT, value 
value ... frequency of intermediate print that provides information such as current equilibrium 

imbalance, number of steps, and applied load magnitudes. 

15. MAXIMUM TOLERANCE, value 
value ... when the maximum number of iterations is reached, if the convergence tolerance is 

less than value then the solution is assumed to be converged and the problem is 
advanced to the next solution step. 

16. GLOBAL CONVERGENCE 
This card specifies that a global convergence measure is to be used for determining satisfaction 
of equilibrium. This is the default method. 

17. LOCAL CONVERGENCE, p l o d  
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plocal ... threshold residual value to be used in computation of local convergence. Values of 
.- 

the nodal residual below this value will be replaced by plocal in the convergence 
check. The default is plocal ~1.0. 

This card specifies that a local convergence measure will be used for determining satisfaction of 
equilibrium. The convergence check is done on a node by node basis and convergence is assumed 
if each nodal residual is below the specified value on the RESIDUAL TOLERANCE card. 

18. ELASTIC SOLUTION 
This specifies that a load step is requested using only time independent material response for the 
step. This card should be used only with the time-dependent material models. 

19. PREDICTOR SCALE FACTOR, function id 
function id. .. function id controlling the definition of the predictor scale factor 

This option specifies the function id which defines the mulfiplier to be used for predicting the dis- 
placements on the next load step. The multiplier is used on the incremental changes in displace- 
ment over the previous load increment. The multiplier can be useful for reducing the number of 
iterations required for a solution. The default value of the multiplier is 1. 

20. DISTRIBUTED LOADS 
This option specifies that an external file 38 is to be read for nodal values of a distributed force per 
unit volume. This forcdvolume is multiplied by the nodal volume to obtain the magnitude of the 
required loading. An example of this option is the body force generated by the presence of a mag- 
netic field. 

21. INITIAL STRESS, type, sigl, sig2, sig3, sig4 
rype ... specifies how the initial stress state will be specified. The choices are 'USER', or 

'CONSTANT'. If 'USER' is selected then a user wrimn subroutine must be supplied. 
If type is 'CONSTANT' then the values of sigl, sig2, sig3, and sig4 must be provided. 
The stresses will be assigned to each element in the model. 

22. THERMAL STRESS, type, to, ithf, thforc 
type ... identifies that a thermal stress analysis is to be performed. Default is no thermal stress 

analysis. If type is 'EXTERNAL' then an external file56 is required in the proper for- 
mat for use by the code. If type is 'INTERNAL' then the following input parameters 
are needed. 

to ... initial stress hx temperature. Default is 0. 
ithf ... function id controlling temperature time response 
tkforc ... thermal load norm for use in convergence tests. This parameter will be used as the 

applied load norm. The default is 0. 

23. GRAVITY, igrvf, gram, gravy, omega 
ig rvf... function id controlling load time response 
gravx ... specified acceleration in x-direction 
grmy ... specified acceleration in y-direction 
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omega ... specified angular velocity 
h 

24. MINIMUM DAMPING FACTOR, fac w 
fac ... this option allows the user to define the minimum allowable damping factor used in the 

dynamic relaxation algorithm. The allowable values of damping range from zero to 
one. If a damping value is computed that is less than fac, then the value is set equal to 
fac. The default value is set to 0.2. 

25. NO DAMPING, iter, ndstep 
irer ... number of iterations with zero damping. 
ndrtep ... number of load steps with zero damping 

This option is useful for problems with thin beam like behavior. The problem is allowed to 
deform without damping for a user specified number of iterations. This allows the problem to 
more quickly reach the fundamental deformation mode before damping begins. Iter should be 
selected as twice the number of elements meshed along the length dict ion.  The normal damping 
algorithm can be initiated after performing ndstep load steps. 

26. WRITE RESTART, n 
n ... this option specifies that a SANTOS restart tape is to be written at a frequency of every n 

increments. This information is written to file 30. 

27. READ RESTART, n 
n ... this option specifies that a SANTOS restart tape is to be read at step n and a new analysis 

performed. Some internal checking is performed to insure that the restart tape is valid. 
The restart tape is assigned to file 32. 

28. HOURGLASS STIFFENING, hgstiff, hgvis 
hgs riff... hourglass stiffening factor (default=.05 for plane strain and .O1 for axisymmemc) 
hgvis ... hourglass viscosity factor (default=.O for plane strain and .03 for axisymmemc) 

29. XBEGIN, code name 
code name ... name of the external code to be coupled with SANTOS. 

This option indicates that the following lines are input data for the external code 

30. XEND 
This option indicates an end to the external code input data 

3 1. EXIT (required to terminate the input data) 

32. FUNCTION, function id 
function id ... any nonzero number you wish to identify wiih this function; after a FUNCTION 

statement you must enter a list of points defining your function: 
xl , f(x1) 
fl , f(m 
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- 9 -  

xn, f(m) 
EM) 

m e  list is terminated by a line containing the word END as shown. Any other valid input cue 
will also work) 

If the function represents a time history function to be used with one of the nodal boundary con- 
dition specifications (e.g. PRESCRIBED DISPLACEMENT) or with a PRESSURE boundary 
condition, if the value of time is not within the limits defined by x l  and xn, no boundary condition 
will be applied until the current value of time falls within the limits. This means that you can have 
a boundary condition turn on at a specific time and/or turn off at a specific time. 

33. NO DISPLACEMENT, direction, node set flag 
direcnbn ... either X or Y 
node setflag ... identifying number from the input data base which identifies the nodes you 

want to have no displacement (note: this is a nodal bc!) 

34. PRESCRIBED DISPLACEMENT, dir, node set flag, function id, scale factor, aO, bO 
dir ... either X ,  Y, RADIAL, TANGENT, or NORMAL 
node setflag ... identifying number from the input data base which identifies the nodes you 

want to have this displacement (note: this is a nodal bc!) 
function id ... identifying number of the function you want to use to specify the time depen- 

dence of the displacement ,.-. 
scale factor ... scale factor to be applied to the function (default=l.O) 
a0,bO ... not used (if direction = X or Y) center of cylinder of sphere (if direction =RADIAL 

or TANGENT) components of normal (if direction = NORMAL) 

35. SLOPING ROLLER, node set flag, nl,  n2 
node se t f ig  ... identifying number from the input data base which identifies the nodes that 

have this bc (note: this is a nodal bc!) 
nl ,  n2 ... components of the surface outward normal 

36. PRESCRIBED FORCE, direction, node set flag, function id, scale factor, aO, bO 
direction ... either X ,  Y, RADIAL, TANGENT, or NORMAL 
node set f ig  ... identifyiig number from the input data base which identifies the nodes you 

want to have this force (note: this is a nodal bc!) 
function id ... identifying number of the function you want to use to prescribe the time depen- 

dence of the force 
scale factor ... scale factor which will be applied to the function (default=l.O) 
a0,bO ... not used (if direction = X or Y) center of cylinder of sphere (if direction =RADIAL 

or TANGENT) components of normal (if direction = NORMAL) 

37. PRESSURE, side set flag, function id, scale factor 
side se t f ig  ... identifying number from the input data base which identifies the sides you 

want to have this pressure (note: this is a side or element bc!) 
function id ... idenhfyiig number of the function you want to use to prescribe the time depen- 
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dence of the pressure 
. . - scale factor ... scale factor which will be applied to the function (default=l.O) 

38. ADAPTlVE PRESSURE, side set flag, xO, yo 
side s e t f i g  ... identifying side set flag from the input data base which identifies the sides you 

want to have this pressure 
&,yo ... coordinates of point used to determine cavity area 

This option allows the user to define a pressure boundary condition which depends on the solu- 
tion. The user can write a subroutine FPRES which can adaptively apply a pressure boundary 
condition based on various factors. An example of this option is the application of pressure due to 
compression of an ideal gas. 

39. CONTACT SURFACE, side set flag 1, side set flag 2, mu,&, tenre1 
side s e t f i g  I ... identifying number from the input data base which identifies the master sur- 

face. (note: this is a side or element bc!) 
side set jag 2 ... identifying number from the input dambase which identilies the slave sur- 

face. (note: this is a side or element bc!) 
mu ... coefficient of friction (default = 0.) if mu =FIXED then the surfaces are treated as fixed 

surfaces 
dis ... fraction of element side len-gh used to determine tolerance for proximity to master sur- 

face check (default is 1.e-8) 
tenrel ... residual normal force acting on the slave node used to determine release condi- 

tions.(default = 1.e40) 

40. RIGID SURFACE, slave flag, xO, yo, nx, ny, mu 
slavefig ... identifying number from the input data base which identifies sides that are slaved 

to the rigid surface (note: this is a side or element bc!) 
x0,yO ... coordinates of a point on the rigid surface 
nx,ny ... outward unit normal to the rigid surface 
mu ... coefficient of friction (default = 0.) If mu = FIXED then the surface is assumed to be 

fixed to the rigid surface. 

41. MATERIAL, material id flag, material name, density, func id, thermal strain scaling fac- 
tor 

material id ... material identification number from the input data base 
material name ... valid material type name 

The current material types allowed in SANTOS are: 
ELASTIC 
ELASTIC PLASTIC 
POWER LAW CREEP 
LOW DEN FOAM 
SOIL N FOAMS 
EP POWER HARD 
LINEAR VISCOELASTIC 

e THERMO EP 
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THERMOELASTIC 
VOLUMETRIC CREEP 
M-D CREEP MODEL 

density ... material density 
func id ... function id to be used for specifying function number with proper thermal strain 

variation with temperature. This value needed for THERMAL STRESS problems. 
t h e m 1  swain ... scaling factor multiplier for function values given from'thermal strain func- 

tion. The default value of this factor is 1. 

The allowable material names and their required material cues are given below. The material data 
can be entered in any order separated by commas. An END statement is required to terminate the 
material data. The material constant associated with each material cue, as defined in Section 4, is 
given in parentheses. 

1. ELASTIC (number of cues=2) 
YOUNGS MODULUS (E) 
POISSONS RATIO (v ) 

2. ELASTIC PLASTIC (number of cues=5) 
YOUNGS MODULUS (E) 
POISSONS RATIO (v )  
YIELD STRESS (a,,) 
HARDENING MODULUS (H) 
BETA ( P )  

3. POWER LAW CREEP (number of cues=5) 
TWOMU ( 2 ~ )  
BULK MODULUS (K) 
CREEP CONSTANT (A) 
STRESS EXPONENT (m) 

Q Q THERMAL CONSTANT (% if isothermal or - if not) R 

4. LOW DEN FOAM (number of cues=7) 
YOUNGS MODULUS (E) 
A 
B 
C 
NAIR (contribution ofnapped air to foam response; 1 for yes, 0 for no contribution) 
PO 
PHI(@) 

5. SOIL N FOAMS (number of cues=7) 



WPO# 35674 March 27. 1996 

l-woMu ( 2 ~ )  
BULK MODULUS (K) 
A0 
A1 
A2 
FUNCTION ID (function number of curve defining pressure-volume strain relationship) 
PRESSURE CUTOFF (valid (negative) tensile fracture pressure) 

6. EP POWER HARD (number of cues=6) 
YOUNGS MODULUS (E) 
POISSONS RATIO (v ) 
YIELD STRESS (ays) 
HARDENING CONSTANT (A) 
HARDENING EXPONENT (m) 
LUDERS STRAIN ( E ,  ) 

7. LINEAR VISCOELASTICITY (number of cues =13) 
BULK (K) 
BULK INF (K-) 
BULK RELAX ( pK ) 
SHEAR INF (G-) 
SHEAR ONE (GI ) 
SHEAR TWO (G,) 
SHEAR THREE (G, ) 
RELAX ONE ( pf ) 
RELAX TWO ( p; ) 

RELAX THREE (& ) 

C1,c;) 

c 2  (C,) 
TEMPO (reference temperature for the material properties) 

8. THERMO EP (number of cues = 9) 
YOUNGS MODULUS (E) 
POISSONS RATIO ( v )  
YIELD STRESS (a,,) 
MODULUS FUNCTION (function defining Young's modulus variation with O ) 
PR FUNCTION (function defining Poisson's ratio variation with Q )  
YIELD FUNCTION (function defining yield stress variation with Q )  
HARDENING CONSTANT (A) 
HARDENING EXPONENT (m) 
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LUDERS STRAIN (E,) 

9. THERMOELASTIC (number of cues = 4) 
Y OUNGS MODULUS (E) 
POISSONS R4TIO (v ) 
MODULUS FUNCTION (function defining Young's modulus variation with O ) 
PR FUNCTION (function defining Poisson's ratio variation with 0) . 

10. VOLUMETRIC CREEP (number of cues = 12) 
W O  h4-U (2P) 
BULK MODULUS (K) 
CREEP CONSTANT (A) 
STRESS EXPONENT (m) 

Q Q .  THERMAL CONSTANT if isothermal or - d not) 
R .  

SHEAR EXPONENT (p, ) 
BULK EXPONENT (K, ) 
BO 
B 1 
A1 
INTACT DENSTY (Pi,tacr ) 
IMTlAL DENSITY (p,) 

11. M-D CREEP MODEL (number of cues = 20) 
( 2 ~ )  

BULK MODULUS (K) 
A1 

Q 1fR 
N 1 
B 1 
A2 

Qm 
N2 
B2 
SIGO (0,) 

QLc (q) 
M (m) 
KO 
C (cO) 
ALPHA (a, ) 
BETA (Pw) 
DELTLC (6 ) 
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RN3 (exponent of workhardening and recovery term used to compute F) 
AMULT (scalar multiplier of time step needed for stability, default 0.98) 

Examples for the ELASTIC PLASTIC material are given below to illusrate how the user might 
input the data in different forms. AU three examples are identical as far as SANTOS is concerned. 

Example 1: 

MATERIAL, 1, -TIC PUSTIC, 1.. 1, 5.E-6 
HARDENING MODULUS = 30.E4 
YOVNCS MODULUS = 30.E6 
BETA = -5 
POISSONS RATIO = .3 
YIELD STRESS - 30.E3 
END 

Example 2: 

MATERIAL.1,EUSTIC PLASTIC,l.,l,S.E-6 
YOUNGS MODULUS = 30.E6 POISSONS RATIO = -3 BETA =.5 
YIELD STRESS s 30.E3 HARDENING MODULUS = 30.E4 
END 

Example 3: 

A YOUNGS MODULUS = 30.E6 POISSONS RATIO = -3 BETA = - 5  
YIELD STRESS = 30.E3 BARDENING MODULVS = 30.E4 END 

42. MATERIAL POINT, x, y 
x, y ... coordinates of a material point which will be monitored and printed at the output inter- 

vals, 

43. DELETE MATERIAL, material id, deletion time 
nurerial id ... material identification number 
deletion time ... time at which a l l  elements made up of this material should be deleted from 

the mesh. 

Example Input File: 

TITLE 
EXAMPLE INPUT FILE 

AXIS-TRIC 
STEP CONTROL 
10 1. 

END 
OUTPUT TIME ~ ~ 

2 1. 
END 
P M T  TIME 
1 1. 

END 
.-. NO D1SPLACEMENT.X = 1 

PRESCRIBED DISPLACEMENT,Y ,I, I,.. 05 
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FUNCTION, 1 
0,o 
l.,l. 
QID 
ERT!?XIAL.~,ELWTZC PLWTIC,Z. $ 31-6-9 StainZess Steel 
YOUNGS XODWLUS-29.4+6 POISSOWS RATI0=.3 
YIELD STR&SSdS.OE+3 IURDENmG XODULUS-29.4E+Q BETA-1. 
END 
MATERW,2,ZLbSTIC,l. $ Tape Joint Pillor (Steel) 
YOUNG9 3iO~OS-29.4E+6 POISSONS RATIO--3 
END 
B!ATERXAL,3,BLASTIC,l. $ Equivalent a s s  ~l-nts ~ImUlatlPa ratnain&*r 
YCWNGS XODULUS-30.E6 POISSONS RATIOs.3 EPfb 
RIGID SmtPACg - 100,O.rO. ,0-.0.,1. 
COi?TACl' SURFACE - 301,102 
CORPACT SURFACE - 103,104 
COSTACT SURFACE = 105,106 
CONTACT SURFACE - 107,108 
EXST 
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User Subroutines - 
SANTOS allows the user to supply their own subroutines for defining an initial mess state 
(SUBROUTINE INITST) and an adaptive pressure routine (SUBROUTINE FPRES). The initial 
mess feature is particulary useful for geomechanics applications where an overburden mess is a 
function of depth. The adaptive pressure capability has been successfully used to define the 
pressure acting on the walls of a deforming cavity based on an assumption of ideal gas behavior. 

The call to SUBROUTLNE INITST has the following form: 

SUBROLlTINE INITST ( SIC, CWRD, LINK, DATMAT, 1CONMAT.SCREL ) 

C 
INCLUDE 'params .blk' 
INCLUDE 'psize-blk' 
INCLUDE 'contrl.blk' 
INCLUDE 'bsize.blk' 
INCLUDE 'timer.blk' 

C 

DIMENSION LINK(NELNS,NIJHEL) ,KONMAT (10,NEPIBLK). 
C O O R D ( N N O D , N S P C ) , S I G ( N S Y P M , ~ ) , D A T M A T ( ~ C O N S , * ) ,  
SCREL (NEBLK, ' 1  

. . 
RETZTRN 
END 

where the calling arguments are defined as: 

SIG - element stress array which must be returned with the required stress values 
COORD - global nodal coordinate array 
LINK - element connectivity array 

DATMAT - material property array 
KONMAT - material property integer array 
SCREL - scratch element stbrage space 

The arguments contained in the DIMENSION statement are located in the COMMON blocks 
which will be included during the program MAKE operation. If the MAKE utility is not used then 
the COMMON blocks will have to be explicitly included. This subroutine is called once prior to 
beginning the calculation by SUBROUTINE INIT. An example of a typical routine used for a 
geomechanics application is shown below. In this example, only material #1 is being initialized 
with respect to depth. Other materials in the problem are having their initial messes set to zero. 
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SUBROUTINE INITST( SIG,COORD,LINK,DA~T,KONMAT,SCREL ) 
C 
C .*.*."*..***"**..*t**~.t****t*t********.*********.**************..*. 

C 
C DESCRIPTION: 
C THIS ROUTINE PROVIDES AN INITIAL STRESS STATE TO SANTOS 
C 
C FORMAL P W T E R S :  
C SIG REAL ELEPIENT STRESS ARRAY WEICH m S T  BE RET[JRNED . 
C WITH THE REQUIRED STRESS VALWES 
C COORD REAL GLOBAL NODAL COORDINATE ARRAY 
C LINK INTEGER CONNECTIVITY ARRAY 
C DATPYLT REAL MATERIAL PROPERTIES ARRAY 
C KONMAT INTEGER KaTERIAL PROPERTIES INTEGER ARRAY 
C 
C CALLED BY: INIT 
C 
C ................................................................... 
C 

INCLUDE 'params.blk' 
INCLUDE 'psize.blk' 
INCLUDE 'contrl.blk8 
INCLUDE 'baize-blk' 
INCLUDE 'timer.blk' 

C 
DIMENSION LINK(NELNS,~L),KO~T(lO.NEPIBLK), 
CooRD(NNOD,NSPC),SIG(NS~,NIJMEL),DATMAT(xCONS,*), 
SCREL(NEBLK, * )  

C 
DO 1000 I = 1,NEXBLK 

MATID = KONMAT(1.I) 
W I N D  = KONMAT(2.1) 
ISTRT = KONMAT(3.1) 
IEND = KONMAT(4,I) 
IF( MATID .EQ. 1 )TREN 

DO 500 J = ISTRT,IEND 
I1 = LINK( 1.J ) 

JJ = LINK( 2,J ) 

KK = LINK( 3,J) 
LL = LINK( 4,J ) 

ZAVG = 0.25 * ( COORD(II,2) + COORD(JJ.2) + CWRD(KK.2) + . COORD(LL,2) ) 

STRESS = - 2.25634 * ( 655. - ZAVG ) 

SIG(1, J) = STRESS 
SIG(2.J) = STRESS 
SIG(3, J) = STRESS 
SIG(4,J) = 0.0 

500 CONTINUE 
ELSE .. 

DO 600 J = ISTRT,IEI?D 
SIG(1.J) = 0.0 
SIG(2,J) = 0.0 
SIG(3,J) = 0.0 
SIG(4,J) = 0.0 
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600  CONTINUE 

END I F  
1 0 0 0  CONTINUE 

RETURN 
END 

The call to SUBROUTINE FPRES has the following form: 

S W R O U T I N E  FPRES ( VOL-, TIME, PGAS ) 

RETURN 
END 

where the calling arguments are defmed as: 

VOLUME - computed volume of the cavity 

TIME - current analysis time 

PGAS - calculated gas pressure to be returned to calling program 

This subroutine is called each iteration from SUBROUTINE EXLOAD. An example of a typical 
routirie used for a geomechanics application is shown below. In this example, the volume coming 

el into the subroudne corresponds to one-quarter of the total cavity volume due to the use of 
symmetry modeling conditions. The gas generation rate varies with time. The volume is multiplied 
by 4 to get the correct volume and the volume of solids is subtracted to get the free volume. The 
ideal gas law is then used to compute the internal cavity gas pressure. 

SWROUTINE FPRES ( VOLUKE,TIME,PGAS ) 

C .... 
C .... TFIE PRESSURE I S  COKPUTED ON THE BASIS OF THE IDEAL GAS LAW, 
C .... PV = NRT. THE TOTAL m E R  OF MOLES OF GAS, N (EN) ,  PRESENT 
C .... AT ANY TlXE IS DETERKINED ON THE BASIS OF A CONSTANT RATE O F  GAS 
C .... GENERATION. R I S  TKE UNIVERSAL GAS CONSTANT AND THETA IS  THE ROOK 

C .... TEKPERATVRE, 300 K. V IS  THE CURRENT VOL- OF THE ROOK. THE VOLtlW2 
C .... W S T  BE CORRECTED BY PIIJLTIPLYING BY 2 OR 4 TO ACCOUNT FOR TES USE OF 

C . . . . HALF OR QUARTER -S=TRY MODELS. THE VOLU13E MUST ALSO BE =TIPLIED 
C .... BY A FACTOR TO ACCOUNT FOR 30 LENGTH. 
C .... 
C 

R = 8.314 
THETA = 300. 

C 

I F (  TIME .LT. 1.7325310 )THEN 
PVALUE = 0 - 0  
RATE = 4.32E-4 
TSTAR = 0.0 
ELSE I F (  TIKZ .LT. 3.3075310 )TEEN 
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PVAGUE = 7.48E6 
RATE = 2.16E-4 
TSTAR = 1.7325310 
ELSE 
PVALUE = 1.088687 
RATE = 0.0 
TSTAR = 0.0 
END IF 

C 
C .... CORRECT VOLUME AT TEIS TIKE TO GET VOLUME OF VOIDS 
C 

EN = PVALUE + RATE ' ( TIXE - TSTAR ) 

SCALE = 1.0 
SYMPAC = 4. 
XLENG = 91.44 

C 
C .... TEIS MODIFICATION REXOVES TEE BACKPILL PROM VSOLID 
C 

VSOLID = 1229. 
VOLUME = SYKFAC ' VOLUME ' XLENG - VSOLID 
IF( VOLUME .LE. 0.0 )VOLUME = 1. 

C 
PGAS = SCALE ' EN * R ' THETA I VOLUME 

C 
RE TURN 
END 
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Printed Output Description 
A 

The SANTOS printed output begins with an echo of the input data stream from input unit 5. This 
is followed by the PROBLEM DEFTNITION section that lists the number of elements, nodal 
points, number of materials, analysis type, etc. that pertain to d e f h g  the problem to be solved. 
The information presented in this section also includes the solution algorithm parameters such as 
convergence tolerances, houglass stiffness and viscosity values, and the effective modulus status. 
The amount of output writtenin this section depends on the analysis type and the optionsrequested. 
An example of this output for a sample analysis is shown below. 

P R O B L E M  D E F I N I T I O N  

NUXBER OP ELEPIENTS ...................... 216 
NUXBER OP NODES ......................... 247 
NUXBER OP K?iTEPJALS ..................... 1 

..................... NUXBER OF PUNCTIONS 1 
m E R  OF CONTACT SURPACES .............. 0 
NllMBER OF RIGID SURPACES ................ 2 
NUXBER OF UTEPJAL POINTS MONITORED ..... 0 
ANALYSIS TYPE ........................... AXISYNXETRIC 
GLOBAL CONVERGENCE KEASURE .............. 
RESIDUAL TOLERANCE ...................... 5.000E-01 

............ MAXIWJM NUKBER OP ITERATIONS 3000 
ITERATIONS POR IlWERXEDIATE PRINT ....... 10 
MAXIMUM RESIDUAL TOLERANCE .............. 5.000E+00 
PREDICTOR SCALE FACTOR FUNCTION ......... 0 
MINIWJM DAJ5PING FACTOR .................. 2.000E-01 
EFFECTIVE MODULUS STATUS ................ CONSTANT 
SCALE FACTOR APPLIED TO TIME STEP ....... 1.00OE+00 
STRAIN SOFTENING S C U  FACTOR ........... 1.000E+00 
HOURCLASS STIFFNESS PACTOR .............. 1.000E-02 
HOURGLASS VISCOSITY FACTOR .............. 3.000E-02 

Following the PROBLEM DEFINITION section are the definitions of the load steps, printed 
output frequency and the plotted output frequency. A sample output for these sections is shown 
below. LOAD STEP DEFINTIONS shows the number of steps taken between each defined rime 
interval. The PRINTED OUTPUT FREQUENCY data echo shows the number of load steps 
between printed output dumps during the defined time interval. PLOTTED OUTPUT 
FREQUENCY echos the number of load steps between plot dumps during the defmed time 
interval. 
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L O A D  S T E P  D E F I N I T I O N S  

TIXE NO. OF STEPS TINE 
0.000E+00 100 1.000E+00 

P R I N T E D  O U T P U T  F R E Q U E N C Y  

T m  STEPS BETWEEN PRINTS T m  
0.000E+00 1 1.000E+00 

P L O T T E D  O U T P U T  F R E Q U E N C Y  

TINE STEPS BETWEEN PMTS TlME 
0.000E+00 1 1.000E+00 

The next output grouping echos back the material type and material constants. Some additional 
constants which are computed by S W O S  within the constitutive model preprocessor are also 
printed. -\ 

X A T E R I A L  D E F I N I T I O N S  

KATERIAL TYPE ........................ ELASTIC PLASTIC 
KATERIAL ID .......................... 1 
DENSITY .............................. 7.8333-06 
PUTERIAL PROPERTIES: 

YOUNOS MOIODVLUS = 2.000E+02 
POISSONS PATIO = 3.000E-01 
YIELD STRESS = 7.000E-01 
BARDWING XODULUS = 3.000E-01 
BETA = 1.000E+00 

The next section of output echos back the processed input data regarding kinematic and traction 
boundary condition data This data also includes function specifications and contact surface 
definitions. Distinction is made between NO DISPLACEMENT and PRESCRIBED 
DISPLACEMENT kinematic boundary conditions. 



FUNCTION ID ......... 1 NUb5ER OF POINTS .... 2 

N O  D I S P L A C E M E N T  B O U N D A R Y  C O N D I T I O N S  

NODE SET P U G  DIRECTION 
4 X 

P R E S C R I B E D  D I S P L A C E M E N T  B O U N D A R Y  C O N D I T I O N S  

NODE SET DIRECTION FUNCTION SCALE A0 BO 
FLAG ID FACTOR 

1 Y 1 9.000E+00 - - 

R I G I D  S U R F A C E S  

SURFACE SIDE SET COEFFICIENT XO YO NX NY 
NOPIBER FLAG OF FRICTION 

1 300 FIXED 0.000E+00 1.500E+01 0.000E+00-1.000E+00 
2 200 FIXED 0.000E+00 1.500E+01 0.000E+00-l.OOOE+OO 

The next grouping defines the quantities written to the plotting data base. The plotted output is 
grouped by whether the variable being written is a nodal, element, or global quantity. The global 
quantities, FX and FY, written to the data base refer to the sum of the applied loads in the x and 
y-directions, respectively. The quantities, RX and RY, refer to global reaction forces in the x and 
y-directions summed at nodes specified to have NO DISPLACEMENT boundary conditions 
applied. For axisyrnmetric analyses, the forces FX, FY, RX, and RY are output per radian. The 
nodal variables, RESlDX RESIDY RESID, refer to imbalance or residual forces acting at the 
nodes. The variables RESIDX and RESIDY refer to the x and y-component directions of the - imbalance forces, respectively. The variable RESID is the scalar magnitude of the components. 
Material model state variables appear as element variables in the plotting data base. 
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V A R I A B L E S  

NODAL ----- 
DISPLX 
DISPLY 
RESIDX 
RESIDY 
RESID 

O N  P L O T T I N G  D A T A  B A S E  

If the INTERMEDIATE PRINT option is in effect then the following output is obtained every n 
iterations. For this example, n is specified to be every 10 iterations. The values under the STEP 
column refer to the number of iterations taken relative to this load step. The column labeled TIME 
shows the problem time for which an equilibrium solution is being sought The column labeled 
TIME STEP shows the stable time step internally computed within SANTOS which is being used 
to integrate the equations of motion. This number may change from one iteration to the next as the 
element is deformed. The column labeled DAMPING FACTOR provides the current adaptive 
dynamic relaxation damping parameter. The next two columns provide information regarding 
convergence of the load step. The APPLIED LOAD NORM refers to the L2 norm of the externally 
appliedloads while the RESIDUAL LOAD NORM is the L2 norm of the imbalance forces at each 
node. The PERCENT IMBALANCE column is the result of dividing the RESIDUAL LOAD 
NORM by the APPLIED LOAD NORM which is the measure used to determine convergence of 

-> 
the iterative scheme. The column defined as TOTAL STEPS gives a running total of the number 
of iterations for the problem. 

STEP TIKE 
STEP 

9.9B4E-03 
9 -9913-03 
9.9943-03 
9.9963-03 
9 -9973-03 
9.9983-03 
9.9983-03 
9.999E-03 
9.999E-03 

DAUPING APPLIED 
FACTOR LOAD NORM I 
7.105E-01 2.9273+01 
7.024E-01 2.3953+01 
5.261E-01 1.748E+01 
9.896E-01 1.600E+01 
9.5743-01 1.311E+01 
9.0693-01 1.259E+Ol 
9.428E-01 1.236E+01 
9.3463-01 1.200E+01 
8.4383-01 1.166E+01 

RESIDUAL 
S A D  N O W  
l.O47E+OZ 
2.4563+01 
7.866E+00 
4.7273+00 
2.591E+00 
2.011E+00 
1.604E+00 
1.096E+00 
7.562E-01 

PERCENT 
-CE 
357.71 
102.55 
44.99 
29.55 
19.77 
15.97 
12.97 
9.13 
6.49 

TOTAL 
STEPS 

10 
20 
3 0 
4 0 
5 0 
6 0 
70 
80 
9 0 

The final output section to be described is the printed output that results when the iterative solution 
reaches equilibrium as measured by the PERCENT IMBALANCE. The printed output provides 
descriptive information about the problem such as when the problem was run, version of the 
software, title of the problem and a summary of information about the convergence of the load step. 
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1 SANTOS, VERSION SANTOS 2.0 ,RUN ON 01/20/95 ,AT 16:15:25 - .  
UPSETTING OF A CYLINDRICAL BILLET 

SUlIKARY OF DATA AT STEP NOKBER 1, T M E  = 1.000E-02 
NUMBER OF ITERATIONS = 212, TOTAL m E R  OF ITERATIONS r 212 
FINAL CONVERGENCE TOLERANCE = 4.90I.E-01 
SOW OF EXTERNAL PORCES IN X-DIRECTION = 0.000E+00 
.SUM OF EXTERNAL PORCES IN Y-DIRECTION = 0.000E+00 
SOW OF REACTION PORCES IN X-DIRECTION - 0.000E+00 
SOW OF REACTION PORCES IN Y-DIRECTION =-3.561E+01 
.................................................................... 

"'* PLOT TAPE WRITTEN AT TIME = 1.000E-02 STEP NOKBER 1 *'.* 
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APPENDIX D: 
Adding a New Constitutive Model to SANTOS 
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Adding A New Constitutive Model to SANTOS 

C A material interface subroutine has been incorporated which allows the constitutive model devel. 
oper to add a new material model with very little effort. The interface has been designed so that 
the developer does not need to understand the internal workings of SANTOS especially with 
respect to allocation and management of computer memory. If the developer follows the insmc- 
tions in subroutine MATINT, then SANTOS will handle all memory allocation, material data 
reading, and material data printing. There are three steps that should be followed when adding a 
new model. 

Subroutine M A W  contains insmctions using FORTRAN comment cards which outline the 
steps that should be followed to add a new material model. Most of the required changes involve 
adding or changing numbers in DATA and PARAMETER statements. Since we have no prior 
knowledge of what the material constants represent for a particular material, the code requires 
that a few lines of FORTRAN be added to compute the initial dilatational modulus ( h  + 2p)  and 

the initial shear modulus (2p ) for the material. The dilatational modulus and the shear modulus 
must be stored in the variables DATMOD and SHRMOD, respectively. At this same location in 
the code it is possible to calculate any combination of the input parameters that may be required in 
the constitutive subroutine (e.g. bulk modulus kom Young's modulus and Poisson's ratio). 

- There is a resmction to twenty characters in the material name, material cues, and internal state 
variable names which are defined in subroutine MATINT. The names may have blanks which 
means that multiple word cues are allowed. The names must be defined such that each word in the 
name is unique to the first three characters. This means that material cues C1, C2, C3, etc., are 
legal; but CON1, CON2, CON3, etc., are not. 

This step is optional and is only required if the new material model contains intemal state vari- 
ables which must be initialized to some value other than zero (all intemal state variables are ini- 
tialized to zero by default). If state variables must be initialized, an ELSE IF statement must be 
added to subroutine SVINIT for this material. This statement should read: 

ELSE IF( MKIND .EQ. (new material number) ) THEN 

initialize internal 
state variables here 

.C 
This new material number corresponds to the position where the material resides in the list of 
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material names defined in subroutine MATINT. Generally, when adding a new material, the new 
material is the last one defined and its number will be the same as the number of materials defined 
in STEP 1. The appiication of this step should be obvious from inspecting the coding of the other -, 

material models. Please use comments to record changes to the code. 

In subroutine UPDSTR, the call to the new material model must be added. The material subrou- 
tine may have any appropriate name. but current convention has been to name the material sub- 
routines MATI, MAT2, MAT3, etc., where the number corresponds to the material number 
defined in Step 2. The call is included by adding an ELSE IF block to subroutine UPDSTR which 
should read: 

ELSE IF( MUND .EQ. (new material number) ) THEN 
CALL new subroutine( ..... argument list ....) 

The application of this step should be obvious from inspecting the coding of the other material 
models. Please use comments to record changes to the code. 
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APPENDIX E: 
Verification and Sample Problems 
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Verification and Sample Problems - 
Sample problems are included to demonstrate code verification and to acquaint the user with the 
SANTOS program. The problems were se1ecte.d to exercise and demonstrate many of the major 
features and options in the code. 

Lawe Deflection Analvsis of a Cantilever Beam 

The large deformation of an elastic cantilever beam is included for comoarison with the analytical 
solutionas formulated by Holden (1972). The beam problem is challenging for the uniform &in 
quadrilateral elements and for the dynamic relaxation @R) algorithm. The beam has a length-to- 
thickness ratio of 30. The beam material is assumed to be elasuc with a Young's modulus of 

7 1. x 10 psi and a Poisson's ratio equal to zero. Both gravity and normal pressure loading 
conditions are considered. 

The fust loading condition considered is the beam loaded with gravity, which keeps the direction 
of loading constant throughout the analysis. Following the notation and development of Holden, 
the equation for the slope of the beam is 

(EQ E-1) 

-. where 0 is the angle between the beam neutral axis and the x-axis; S = s /L is the normalized arc 

L3 . 
length along the beam neutral axis; k = w- ~s a nondimensional loading parameter; L is the 

EZ 
length of the beam; w is the loading intensity (load per unit length); E is Young's modulus; and I 
is the beam's moment of inertia. This equation describes the f s t e  deflection of uniform beams 
using the Euler-Bernoulli theory of bending subject to vertical (gravity) loading. Boundary 
conditions for the cantilevered beam are a specifiid zero rotation at the fured end. 

The normalized horizontal and vemcal deflections of the free end of the beam are then given by 

and 

(EQ E-2) 

respectively. Equation E-l is solved using a Runge-Kutta procedure, the integrations for - deflections are computed using adaptive quadrature, and theresults are checked by comparison l~--.-- 
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Holden's published solution. Figure E-1 shows a schematic of the beam geometry and boundary 
conditions. The beam has thirty elements along its length and four through the beam thickness. .- 

The nonlinear beam response is calculated with SANTOS (mangles and squares) and compared to 
Holden's published solution (solid line) in Figure E-2. The comparison for this case is excellent 
The deformed shape of the beam corresponding to k = O., 6.5, and 20. is shown in Figure E-3. 

Figure E-1. Schematic of Cantilever Beam With Gravity Loading 
Showing the Geometry and Boundary Conditions 

1 .o 
-, 

0.8 

0.6 s 
J 
2 

0.4 

6/L V a t i c d U ~  

02 
h/L -D*pbcanat 

0.0 
0.0 4 . 0  8 .O 12.0 - 16.0 20.0 

k (=wL'/EI) 

Figure E2. Comparison of Analytic (solid line) and SANTOS (triangles and squares) 
Tip Displacements for the Beam With Gravity Loading. 
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To obtain a solution to the gravity loaded beam problem using DR, we must make use of the NO 

- DAMPING option. This option turns off the damping for a specified number of iterations which 
allows the beam to take on a more correct deformed shape before damping begins. In addition, this 
option is invoked only for the first 50 load steps which corresponds to the tip of the beam reaching 
a deflection magnitude equal to the thickness of the beam. Some large imbalance forces are 
experienced with the early load steps but these quickly disappear as the beam deforms and the 
deformation mode changes from small-deformation bending behavior to large-deformation 
bending behavior. A total of 310 load steps were taken for the gravity loaded case with each load 
step averaging 733 iterations. The SANTOS input fde for the gravity loaded beam problem is 
shown in Figure E-4. 

Figure E3. Deformed Shape of the Beam Under Gravity Loading. 
Deformed Shapes Correspond to k = 0.0,6.5, and 20. 

The second loading condition is pressure applied along the top of the beam so that the loads 
remains normal to the surface throughout deformation. The beam theory equation for this case is 

with the same boundary conditions as before. For large load magnitudes, this configuration causes 
more severe bending of the beam as shown in Figure E-5. The analytic solution (solid line) is 
compared to the SANTOS solution (mangles and squares) in Figure E-6. For this load case the 
fmite element model is stiffer than the Euler-Bernoulli beam theory predicts at the higher loads. - This difference is probably due to the fact that when the beam starts bending back on itself, the 
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TITLE 
30 TO 1 B E W  WITR GRAVITY LOADS - SANTOS QA PROBLEM 

RESIDOAL TOLERANCE, 0.5 
ZULXIMVM ITERATIONS, 3000 
I N T x R K E D I a T E  PRINT, 100 
LULXIMVM TOLERANCE, 1000 
NO DAX??mG, 100, 50 
PWUW STRAIN 
STEP COlPTROL 
310 1.55 
END 

PLOT T m  
10 1.55 

END 
OUTPUT TIXE 
1 1.55 
END 

PLOT NODAL DISPIAC- 
PLOT STRESS,VONKISES 
NO DISPLAC- Y, 4 
NO DISPIACEXENT X, 4 
GRAVITY, 1, o., I., 0. 
)?UNCTION, 1 $ VIMCTSON TO DEFINE GRAVITY W A D S  
0. 0. 
2. -2 .  
END 
MATERIAL, 1, W S T I C .  400. 
YOUNGS MODULUS = 1.E7 
POISSONS RATIO = 0.0 
END 
EXIT 

Figure E4. SANTOS Input F ie  for the Gravity Loaded Beam Verifkation 
Problem. 

radius of curvature is no longer large compared to the thickness of the beam. The SANTOS 
solution employed 1550 load steps with an average of 270 iterations per load step. The input fde 
for this load case is shown in E-7. 

Elastic-Plastic Thick-Walled Hollow Sahere 

The problem of a thick-walled hollow sphere loaded into the plastic range by an internal pressure 
serves as a good check of the elastic-plastic material model. The two cases analyzed are for an 
elastic-perfectly plastic sphere and an elastic-plastic sphere with linear strain hardening. The 
sphere analyzed has an internal radius of one and an outer radius of two. The internal pressure is 
increased from the start of initial yield at the inner surface and is increased until the sphere becomes 
fully plastic. The problem is analyzed using the axisymmenic option in SANTOS. In addition, 
symmetry boundary conditions are assumed so that only a quarter of the sphere is modeled as 
shown in Figure E-8. The mesh discretization uses 30 elements spaced uniformly in the radial 
direction and 20 elements spaced uniformly around the circumference for a total of 600 elements. 
The sphere material has a Young's modulus of 207. GPa and a Poisson's ratio of 0.3. The yield 
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Figure E-5. Deformed Shape of the Beam With Applied Pressure Loading. 
Deformed Shapes Correspond to k = 0.0.6.5, 13.. and 20. 
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Figure E-6. Comparison of Analytic (solid line) and SANTOS (squares and triangles) 

Tip Displacements for the Beam With Applied Pressure Loading. 
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TITLE 
30 TO 1 BEAEl WITE APPLIED PRESSURE 

RESIDUAL MLERANCE, 0.5 
XAXMUPI ITERATIONS, 3000 
INTEPXEDIATE PRINT, 100 
MAX'fMUX TOLERAPfCE, 1000 
NO DAXPING, 100, 50 
PLANE STRAIN 
STEP CONTROL 
1550 1.55 
EHD 
PLOT TIPIE 
10 1.55 
END 
OUTPUT TLMe 
1 1.55 
END 
PLOT NODAL DISPLACSKENT 
PLOT STRESS,VONMISES 
NO DISPWC- Y, 4 
NO DISPLAC- X, 4 
PRESSORE, 30, 1, 400. 
PLINCTION, 1 $ PUNCTION TO DEFINE PRESCRIBED DISPLAC- 
0. 0. 
2. 2. 
m?D 
XLTERIAL, 1, ELASTIC, 2167. 
YOUNOS MODULUS - 1.E7 
POISSONS RATIO r 0.0 
END 
EXIT 

Figure E-7. SANTOS Input File for Pressure Loaded Beam Verification 
Problem. 

stress is set to 10000. and the hardening modulus is 20.7 GPa for the linear strain hardening 
problem. The hardening modulus is set to zero for the elastic-perfectly plastic analysis. 

The analytical solutions for these problems were derived by Mendelson (1968). For an internally 
pressurized sphere, the elasticlplastic interface expands radially outward from the inner surface of 
the sphere according to the following equations taken born Mendelson. The first relation is for the 
elastic perfectly-plastic material and defmes the radius, c, of the elastic-plastic interface 

and the second equation defines the elastic-plastic interface for the linear s& hardening material. 
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The non-dimensional variables used in Equations E-5 and E-6 are: P = p / a y  is the ratio of 

applied internal pressure to material yield stress, a,,; p, = c / a  is the ratio of the elastic-plastic 

interface radius to the sphere's internal radius, a; $, = b/c is the ratio of the sphere's outer radius, 

b, to the elastic-plastic interface radius; $ = b / a  is the ratio of the sphere's outer to inner radii; 
m is the ratio of the hardening modulus to the Young's modulus; and v is Poisson's ratio. 

Figure E-8. Finite Element Mesh Diretization Used for the Thick- 
Walled Hollow Sphere Analyses. 

In Figures E-9 and E-10, the non-dimensional effective smss is plotted as a function of radius for 
loadings starting from initial plastic yield at the sphere inner radius to full plastic yielding of the 
sphere. The analytical solutions are plotted as solid lines in the figures. As can be seen from the 
plots of normalized effective stress, the computed and analytical results match almost exactly. The 
only deviation between the solutions is seen in Figure E-9 forthe case where the sphere should be 
fully plastic. The SANTOS solution does not predict a fully plastic sphere. The normalized 
effective stress for the element at the sphere outer surface does not yield although the pressure 
applied should induce full plastic yielding of the sphere. It appears that full plastic yielding results 

h in an increase in the calculated outer radius by an amount to stop further yielding and obtain 
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Figure E-9. Normalized Effective Stress Results for the Internally Pressurized 

Elastic-Perfectly Plastic Thick-Wded Hollow Sphere - 
equlibrium. In addition, if the sphere were to become fully plastic for an elastic-plastic material 
with no hardening, the solution would be difficult to converge since the material would be flowing 
in an unrestrained manner. The SANTOS input file for the internally pressurized elastic-plastic 
thick-walled hollow sphere is given in Figure E-11. 

This verification problem examines the behavior of a cylindrical metallic billet that has undergone 
a 60% upset by compression between two flat, rigid dies. The billet has as initial dimensions a 
length of 30 mm and a diameter of 20 mm. The axisymmeaic option in SANTOS is used and only 
the top half of the billet is modeled since the middle surface of the biiet can be viewed as a plane 
of symmetry. The time history of the die force is to be compared to computationalresults by other 
analysts (Taylor, 1981). 

The die material is assumed to be elastic-plastic with linear strain hardening. The material 
properties an taken f7om Lippmann (1979). The biller has a Young's modulus of 200 Gpa and a 
Poisson's ratio of 0.3. The initial yield stress of the material is 700 Mpa with a hardening modulus 
of 300 Mpa. A uniform mesh containing 216 quadrilateral elements is used. The mesh 
discntization and boundary conditions used are shown in Figure E-12. The middle surface of the 
billet is given a prescribed vertical displacement which compresses the billet against the top rigid 
die. The rigid die is modeled using the RIGID SURFACE option in SANTOS. The die surface is 
assumed to be rough which results in a no slip condition between the billet and die. This behavior c-- 

can be achieved by specifying the friction value as FIXED on the RIGID SURFACE option. 
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Figure E10. Normalized Effective Stress Results for the Internally 

Pressurized Elastic-Plastic Thick-Walled Hollow Sphere - With Linear Hardening. 
During deformation it is expected that the external surface of the billet will fold and come into 
contact with the rigid die, which means that the definition of the side set associated with the rigid 
surface must include both elements along the top of the billet and elements along the external 
boundary. One hundred load steps were taken for this analysis. 

Figure E-13 shows the deformed shape of the billet at several different times during the upset 
process. The folding of the billet's external surface is clearly seen as well as its contact with the 
rigid die. A close-up of the billet's final deformed shape at 60% upset is shown in Figure E-14. 
Figure E-15 shows a comparison of the upset force vs. die displacement with results taken from 
Taylor (1981). The agreement is seen to be excellent until the die displacement reaches 7.0 rnm. 
At this value of displacement, the billet is folding and the f m t  nodal point on the external surface 
is just coming into contact with the rigid surface. The slight difference in the upset force seen in 
the figure at die displacements greater than 7.0 mm is related to the contact occurring between the 
folding billet and the rigid surface. The SANTOS input file for the upsetting of the cylindrical billet 
is given in Figure E- 16. 

Closure of a Waste Disoosal Room in a Salt Stratimaohv 

Bedded salt is being considered as a storage medium for the long-term disposal of contact-handled 
transuranic wastes produced as a by-product of the defense activities of the United States. Salt was 
selected because of its propensity to creep under the action of deviatoric stresses. This creep 

,- deformation would eventually entomb the waste and isolate it from the biosphere. Under the 
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TITLE 
SANTOS PA PROBLEPI - HOLLOW SPKERE - 10/26/94 - HARDENING M = 0.1 1 

MISYlOlETRIC 
MAXIMVM ITERATIONS 20000 
RESIDUAL TOLERANCE .O1 
MATERIAL,l,EIASTIC PLASTIC,l.O 
YOUNGS MODULUS 2.07E+ll 
POISSONS RATIO 0.3 
YIEW) STRESS 10000. 
aARDENING MODtJLUS 2.07E+10 
BETA 0. 
END 
FDNCTION, 1 
0. 0. 
1. 5833. 
1.25 9756.5 
1.5 13003.2 
1.75 15798.4 
2. 18278.8 

END 
STEP CONTROL 
1.1. 
1,1.25 
1.1.50 
1.1.75 
1.2.0 

END 
PLOT TIPIE 
1.1. 
1.1.25 
1.1.50 
1.1.75 
1.2.0 
END 
OUTPUT TIPIE 
1.1. 
1,1.25 
1,1.50 
1.1.75 
1,2.0 

END 
NO DISPLAC-,X,1 
NO DISPUCE~~ENT, Y, 2 
PRESSURE,3,1.1. 
EXIT 

Figure Ell. SANTOS Input File for the Internally Pressurized Elastic-Plastic Thick- 
Walled Hollow Sphere With Linear Hardening. 

current plan, the wastes are to be stored in disposal rooms, which are part of a mined respository, 
650 m underground. The disposal rooms are 10.06 m wide by 3.96 m high and 91.44 m in length. -. 
As part of the repository performance assessment activity, it was a requirement to determine the 



WPO# 35674 March 27, 1996 

Side Set ID for the 

Axis of Symmetry f 

\i__ PrescribedVertical 
Displacement 

Fi-we E-12. Mesh Discretization and Boundarv Conditions Used for the - 
Analysis of the Upsetting of a ~ykidr ica l  ~ i e t  

Figure E13. Plots of the Deforming Billet at Various Times During the Upset 
Plots Shown Correspond to Non-Dimensional Times of O., 0.33, 
0.667, and 1.0. 
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Figure E-14. Final Deformed Shape of the Billet After 60% Upset. 

1000 , 
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Die Displacement (mm) 

Figure E-15. Comparison of SANTOS Calculation With Numerical Results 
Taken From Taylor (1981) for the Upset of a Cylindrical . 

Billet 
time required for the disposal room to creep closed. In answering this question, a model of a - 
disposal room in an all sk t  stratigraphy w& developed. 

In the disposal room rnode1,it is assumed that the disposal room is one of infiite number of 
parallel rooms located at the respository horizon. This assumption allows the use of vertical planes 
of symmetry at the room centerline and in the center of the pillar between rooms which results in 
the problem geometry shown with the discretized mesh in Figure E-17. The horizontal mesh 
dimension between symmetry planes is 20.27 m. The vertical mesh boundaries are located 
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TITLE 
UPSETTING OF A CnINDRICAL BILLET 

AXIS-c 
STEP CONTROL 
100.1 
END 
INTERMEDIATE PRINT= 10 
HAXIHOM ITERATIONS = 3000 
RESIDUAL TOLgRANCE - 0.5 
W I H O M  TOLERAUCE - 100.0 
OUTPUT TI13E 
1.1 
END 
PLOT TIKE 
1.1 
END 
PLOT NODAL = D I S P L A C ~ , R E A C T I O N , R E S I D U A L  
P M T  E- = MNXISES,PRESSVRE 
PLOT STATE - EQPS 
NO D1SPLACm.X = 4 
PRESCRIBED D 1 S P L A m . Y  = 1.1.9.E-3 
W C T I O N  = 1 
or0 
1.1 
END 
RIGID SURFACE 1500 , 0.. 15.E-3, 0.. -1.. FIXED 
HATERIAL,l,ELASTIC PLJLSTIC.7.8333-6 
YOVNGS XODULUS = 20009 , POISSONS RATIO = -3  
YIELD STRESS = .709 , E&RDENIlPG XODULUS - .3e9 , BETA = 1 
END 
EXIT 

Figure E-16. SANTOS Input File Used for Analyzing the Upsetting of 
a Cylindrical Billet 

approximately 50 m from the disposal room. The vertical extent of the problem is designed to 
remove the effect of the boundaries away from the disposal room. The problem has a traction 
representing the overburden load applied at the top boundary and the bottom boundary has a 
traction applied to equilibrate the overburden load plus the additional loads produced by applied 
gravity forces. An initial hydrostatic stress state is assumed to exist with the value of the stress set 
to the lithostatic stress. Vertical motion of the model is restrained at a location near the top surface 
as shown in Figure E-17. Contact surfaces are defmed around the interior of the disposal room to 
accommodate contact that occurs during the large-deformation room closure. Contact pairings are 
defined between the roof-floor, pillar-roof, and pillar-floor. The coefficient of friction is assumed 
to be zero for this calculation. 

The salt is modeled using the M-D creep model from the SANTOS material library. The M-D 
model is a combined transient-secondary creep constitutive model for rock salt The model 
includes the effects of workhardening and recovery through a state variable function that modifies 
the steady-state creep rate. The Tresca stress generalization is used in the model for the effective 

r" 
stress definition. The M-D material constants for argillaceous salt are given in Table 1. The AUTO 
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Figure E-17. Geometry, Boundary Conditions and Mesh Discretization for 
Analyzing the Closure of a Disposal Room in SaIt. 

STEP option is used with rhe M-D material model for this problem. The time step necessary for a 
stable and accurate solution for the M-D model is very small at the start of the analysis. The AUTO 

STEP option begins with a small initial time step, 1. x seconds, and allows it to grow to an 

analyst specified maximum of 2.592 x 10' seconds. Without invoking the AUTO STEP option, it 
is very time consuming to perform this analysis. 

Figure E-18 shows the deformed shape of the disposal room at several different times £rom the 
initial undeformed state to final closure. The closure process is characterized by shortening of the 
pillar and an inward displacement of the disposal room roof and floor. Contact between the roof- 
pillar and floor-pillar occurs neat the room comers. As contact occurs, the rate of room closure 
slows as the pillar begins to support the roof and floor. A close-up of the disposal room at closure 
is shown in Figure E-19. The contact of the disposal room interior surfaces is clearly shown in this 
figure. Figure E-20 shows the time history of room closure as measured by the sum of the 
diiplacements of the floor and roof centerline nodal points. When the sum of the diiplacements 
reaches 3.96 m then the floor and roof have come into contact and the disposal room is assumed to 
be closed. Closure is seen to occur at approximately 57 years. The SANTOS input frle for 
analyzing the closure of a waste disposal room in salt is given in Figure E-21. 
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Table 1: M-D Argillaceous Salt Creep Properties 

Parameters Parameter 
(units) 

G (MPa) 12,400 

3 1,000 



WPO# 35674 March 27, 1996 

Figure E18. Plots of the Deforming Disposal Room at Selected Times From 
Initial Excavation to Final Closure. Times O., 25.50., and 80 Years. 

Figure E-19. Deformed Shape of the Disposal Room 100 Years After 
Excavation. 

E-18 



TIME (years) 

Figure E-20. Closure History of the Disposal Room Centerline. Contact of the 
Floor and Roof is Reached at Approximately 57 Years. 
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TITLE 
DISPOSAL ROOM CALCUWLTION TO CLOSURE ALL SALT - M-D CREEP MODEL 

RESIDUAL TOLERANCE = 0.5 - 3 

mILIOZI ITERATIONS = 3000 
INTEmEDIATE PRINT = 100 
WILIOZI TOLERANCE = 10.0 
PLANE STRAIN 
ELASTIC SOLUTION 
INITIAL STRESS - USER 
GRAVITY = 1 = 0. = -9.8066 r 0. 
AUTO STEP -02 2.59236 NOREDUCE 1.E-5 
HOURGIASS STIFFENING = -005 
STEP CONTROL 
4000 3.15E9 

END 
PLOT TIME 
10 3.15E9 

END 
OUTPUT TIml 

PLOT NODAL DISPLACEL3ENT, RESIDUAL 
PLOT STRESS, VOIWISES, EFFXOD 
PLOT STATE EQCS 
NO DISPLJLCEL3ENT X, 1 
NO DISPLACEldENT X. 3 
NO DISPLaCEldENT Y ;  3 
FUNCTION, 1 
0. 1. 
10.E9 1. 
END 
PRESSURE.4.1.13.57E6 ~~. 
PRESSURE.2,1,15.96E6 
CONTACT SURFACE, 200, 100, O., l.E-6, 1.E40 
CONTACT SURFACE, 300, 200, 0.. l.E-6, 1.E4O 
CONTACT SURFACE, 100, 300, O., 1.E-6, 1.E40 
==RIAL, 1, M-D CREEP MODEL, 2300. $ ARGILLACEOUS EALITE 
TWO MU = 24.839 
BULK MODULUS = 20.6639 
A1 = 1.407E23 
Ql/R = 41.94 
N1 = 5.5 
B1 = 8.99836 
A2 = 1.314E13 
Q2lR = 16.776 
N2 - 5.0 
Bl = 4.2893-2 
SIGO = 20.57E6 
OLC = 5335. 

C - 2.759 
ALPEA = -14.96 
BET& = -7.738 
DELTLC = -58 
RN3 = 2. 
AWLT = .95 
END 
EXIT 

Figure E-21. SANTOS Input File for Analyzing the Closure of a Waste Disposal 
Room in Sal t  - 


