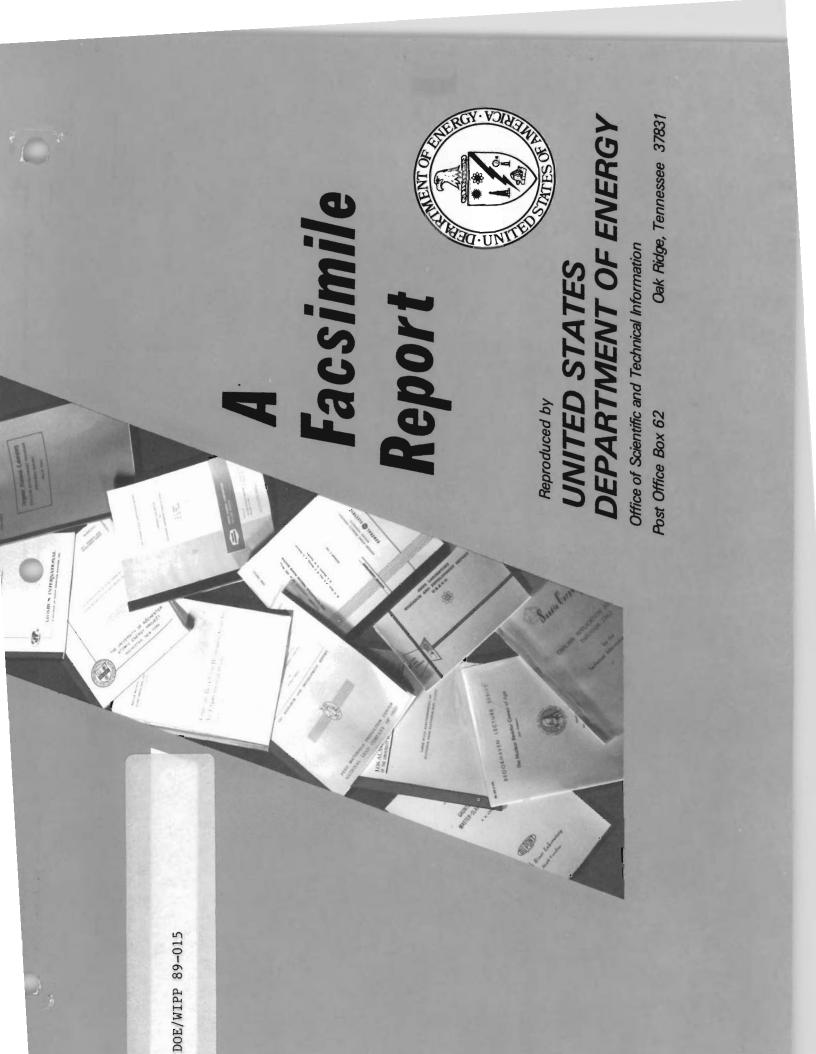
Waste Isolation Pilot Plant


Compliance Certification Application

Reference 167

Deal, D.E., and R.J. Abitz, D.S.Belski, J.B.Case, M.E. Crawley, R.M. Deshler, P.E. Drez, C.A. Givens, R.B. King, B.A. Lauctes, J. Myers, S. Niou, J.M. Peitz, W.M. Roggenthen, J.R. Tyburski, and M.G. Wallace, 1989.

Brine Sampling and Evaluation Program, 1988 Report, DOE/WIPP 89-015, Section 4.1, 1989.

Submitted in accordance with 40 CFR §194.13, Submission of Reference Materials.

BRINE SAMPLING AND EVALUATION PROGRAM 1988 REPORT

DOE/WIPP--89-015

DOE-WIPP-89-015

DE91 008821

December 1989

AUTHORS

D. E. Deal - IT Corporation R. J. Abitz - IT Corporation D. S. Belski - Westinghouse Electric Corporation J. B. Case - IT Corporation M. E. Crawley - IT Corporation R. M. Deshler - IT Corporation P. E. Drez - IT Corporation C. A. Givens - IT Corporation R. B. King - IT Corporation B.A. Lauctes - Geoscience Consultants, Ltd. J. Myers - IT Corporation S. Niou - W. W. Irwin Environmental Science J. M. Pietz - IT Corporation W. M. Roggenthen - IT Corporation J. R. Tyburski - IT Corporation M. G. Wallace - Re/Spec Inc.

Any comments or questions regarding this report should be directed to the U.S. Department of Energy WIPP Project Office P. O. Box 3090 Carlsbad, New Mexico 88221

> or to the Manager, Engineering Department Westinghouse Electric Corporation P.O. Box 2978 Carlsbad, New Mexico 88221

MASTER

This report was prepared for the U.S. Department of Energy by the Engineering and Repository Technology Department of the Management and Operating Contractor, Waste Isolation Pilot Plant, under Contract No. DE-AC04-86AL31950.

CONTENTS

					PAGE
EX	ECUT	VE SUM	MARY		E-1
1.0	INTI	RODUCT	10N		1-1
2.0	MOI	NITORIN	G OF BRI	NE INFLOW PARAMETERS	2-1
	2.1	INFLO	W DATA		2-1
		2.1.1	Introduct	tion	2-1
		2.1.2	Downhol	les	2-1
			2.1.2.1	Downholes in the Heated Experimental Area	2-6
			2.1.2.2	Downholes in Room G	2-6
			2.1.2.3	BTP Downholes at S1650/W170	2-6
			2.1.2.4	Downhole DHP402A at the East End of S1950 Drift.	2-7
			2.1.2.5	Inclinometer Downholes in the SPDV Rooms	2-7
			2.1.2.6	Downholes in Room L1	2-7
			2.1.2.7	Downhole NG252 in SPDV Room 2	2-10
		2.1.3	Upholes.		2-10
			2.1.3.1	Upholes in the Heated Experimental Area	2-10
			2.1.3.2	Upholes in Room G	2-13
			2.1.3.3	BTP Upholes at S1620/W170	2-14
			2.1.3.4	Uphole DH215 at S1950/E153	2-14
			2.1.3.5	Uphole DHP at the Southeast Corner of Panel 1	2-15
		2.1.4	Horizonta	al Holes	2-15
		2.1.5	Damp or	Wet Areas on Floors	2-18
	2.2			OF RIB WEEPS: QUANTITATIVE ESTIMATES OF ATION WEIGHTS AND INFERRED BRINE VOLUMES	2-19
		2.2.1	Introducti	ion	2-19
		2.2.2	Methods	· · · · · · · · · · · · · · · · · · ·	2-19
		2.2.3	Data		2-20
		2.2.4	Discussio	on	2-21
3.0	GEO	CHEMIC	AL AND E	BACTERIOLOGICAL PROPERTIES OF THE BRINE	3-1
	3.1	BRINE	GEOCHE	MISTRY	3-1
		3.1.1	Introducti	on	3-1
			3.1.1.1	Sampling Problems	3-1

CONTENTS (CONTINUED)

PAGE

	3.1.1.2	Analytical Pro	oblems	3-2
	3.1.1.3	Contaminatio	n of BTP and DHP402A Holes	3-3
3.1.2	Analytical	Results	· · · · · · · · · · · · · · · · · · ·	3-7
	3.1.2.1	Set One Para	ameters	3-11
		3.1.2.1.1	Specific Gravity (SG)	3-11
		3.1.2.1.2	Total Dissolved Solids (TDS)	3-11
	3.1.2.2	Set Two Pa	rameters	3-11
-		3.1.2.2.1	Alkalinity and Extended Alkalinity	3-11
		3.1.2.2.2	Total Inorganic Carbon (TIC)	3-12
		3.1.2.2.3	Total Organic Carbon (TOC)	3-12
		3.1.2.2.4	Nitrate (NO3 ⁻) and Ammonium (NH4 ⁺) .	3-13
		3.1.2.2.5	Phosphate (PO ₄ - ³)	3-13
		3.1.2.2.6	Sulfate (SO ₄ ⁻²)	3-14
	3.1.2.3	Set Three F	Parameters	3-14
		3.1.2.3.1	Bromine (Br) and Chlorine (Cl)	3-14
		3.1.2.3.2	Fluorine (F) and lodine (I)	3-14
	3.1.2.4	Set Four Pa	arameters	3-15
		3.1.2.4.1	рН	3-15
		3.1.2.4.2	Aluminum (Al), Arsenic (As), Barium (Ba), and Iron (Fe)	3-15
		3.1.2.4.3	Calcium (Ca), Potassium (K), Magnesium (Mg), and Sodium (Na)	3-16
		3.1.2.4.4	Boron (B) and Silicon (Si)	3-16
		3.1.2.4.5	Manganese (Mn) and Strontium (Sr)	3-17
	3.1.2.5	Composite	Brine Chemistry	3-17
3.1.3	Discussion.			3-19
	3.1.3.1	Evaluation	of pH and Eh in Brines	3-19
	3.1.3.2	Solution All	alinity	3-20
	3.1.3.3	Major Elem	ent Ratios	3-27
		3.1.3.3.1	Na/CI versus K/Mg	3-27
		3.1.3.3.2	Mg/CI versus Br/CI	3-29
		3.1.3.3.3	Na/Cl versus Ca/SO ₄ ⁻²	3-33
	3.1.3.4	Trace Elem	ents	3-35

1483

CONTENTS (CONTINUED)

			۰.		PAGE
			3.1.3.5	Rock/Brine Equilibria	3-40
			3.1.3.6	Future Work	3-44
		3.1.4	Conclusion	ıs	3-44
	3.2	BACT	ERIOLOGIC	AL STUDIES	3-45
		3.2.1	Introductio	n	3-45
		3.2.2	Sampling	Program	3-46
			3.2.2.1	Sampling Procedure	3-47
			3.2.2.2	Sample Preservation and Transportation	3-50
		3.2.3	Culture Me	edia and Procedures	3-50
			3.2.3.1	Special Culture Media	3-50
			3.2.3.2	High Salt Media	3-51
			3.2.3.3	Culture Procedures	3-51
		3.2.4	Results an	d Discussion	3-51
		3.2.5	Conclusion	ns	3-60
		3.2.6	Summary .		3-61
		3.2.7	Recommer	ndations	3-62
4.0	CHA	RACTER	RIZATION O	F FORMATION PROPERTIES RELATED TO BRINE	4-1
	4.1	MOIST	URE CONT	ENT OF THE SALADO FORMATION AT THE WIPP	4-1
		4.1.1	Introduction	n	4-1
		4.1.2	Previous S	tudies	4-1
		4.1.3	Sampling N	Methodology	4-10
		4.1.4	Laboratory	Analysis	4-10
		4.1.5	Results Ev	aluation	4-11
			4.1.5.1 Sa	ample Size	4-11
			4.1.5.2 Sp	batial Comparisons	4-13
			4.1.5.3 Te	esting Distributional Assumptions	4-15
			4.1.5.4 St	ratigraphic Comparison	4-16
			4.1.5.5 Ag	e Comparison	4-18
				her Studies	4-22
			4.1.6 Sum	mary and Conclusions	4-30
	4.2			ING	4-32
					4-32
		Tobas I I			- 06

CONTENTS (CONTINUED)

.

				PAGE
		4.2.2	General Theory	4-32
	k	4.2.3	Methodology	4-39
		4.2.4	Borehole Locations	4-39
		4.2.5	Induction Log Data	4-41
		4.2.6	Moisture Content by Applying Archie's Law	4-41
		4.2.7	Qualitative Comparison With Physical Samples	4-42
		4.2.8	Conclusions	4-48
	4.3	RESU	LTS OF THE DRILLHOLE VIDEO-CAMERA SURVEY	4-49
		4.3.1	Equipment	4-49
		4.3.2	Method	4-49
		4.3.3	Results	4-53
		4.3.4	Conclusions	4-54
5.0			EXERCISES TO DETERMINE THE EFFECTS OF ROCK	
				5-1
	5.1			5-1
	5.2		JRRENCE OF BRINE AND NITROGEN IN BEDDED AT THE WIPP	5-2
	5.3		FLOW THROUGH DEFORMABLE ROCKS	5-4
	5.4			5-6
	5.5		ATIONS FOR FLUID FLOW	5-8
	5.6		TIONS FOR STRESS ANALYSIS.	5-9
	5.7		PUTER CODE DESCRIPTIONS AND VERIFICATIONS	5-10
	5.8		YSIS OF A CIRCULAR OPENING IN HOMOGENEOUS SALT	5-11
		5.8.1	Problem Description	5-11
			5.8.1.1 Geometry and Boundary Conditions of Opening	5-12
			5.8.1.2 Model Input Properties	5-12
		5.8.2	Deformational Response of the Salt	5-18
			5.8.2.1 Stress Relaxation in the Abutment Zone	5-18
			5.8.2.2 Development of the Disturbed Rock Zone	5-21
		5.8.3	Brine Flow Response in Salt	5-23
			5.8.3.1 Fluid Pressure Response in Salt	5-23
			5.8.3.2 Brine Flow Response Under Near-Field and	E OA
		E 0 4	Far-Field Boundary Conditions	5-24
		5.8.4	Potential for Hydrofracturing in the Disturbed Zone	5-26

CONTENTS

(CONTINUED)

PAGE

	5.9	DISCU	SSION	5-26
		5.9.1	Development of the DRZ	5-26
		5.9.2	Development of Brine Flow	5-27
	5.10	SUMM	ARY OF MAJOR LIMITATIONS AND ASSUMPTIONS	5-28
	5.11	CONCL	USIONS AND RECOMMENDATIONS	5-29
6.0	REFE	ERENCE	S	6-1

APPENDIX A - BRINE ACCUMULATION

PART I - LIST OF UNDERGROUND LOCATIONS WHERE BRINE OCCURRENCES WERE OBSERVED AND MONITORED PART II - BRINE ACCUMULATION DATA TABLES

- APPENDIX B GRAPHS OF BRINE ACCUMULATION DATA
- APPENDIX C ANALYTICAL RESULTS FOR BRINE SAMPLES
- APPENDIX D STATISTICAL RESULTS FOR BRINE ANALYSES

PART I - SIMPLE STATISTICS PART II - MULTIVARIATE ANALYSIS

- APPENDIX E DUSSAULT'S STAIN PROCEDURE
- APPENDIX F BACTERIA ISOLATES
 - PART I ISOLATE CHARACTERISTICS
 - PART II ISOLATES PER SAMPLE ON HIGH SALT MEDIA
 - PART III DESCRIPTION OF ISOLATES ON MEDIA SELECTIVE FOR SPECIAL ORGANISMS
- APPENDIX G SUMMARY OF MOISTURE CONTENT ANALYSIS
- APPENDIX H STRATIGRAPHY, INDUCTION LOGS, CONDUCTIVITIES, AND MOISTURE CONTENT OF SELECTED BOREHOLES AT WIPP
- APPENDIX I FEATURES OBSERVED WITH VIDEO CAMERA CORRELATED WITH THE LITHOLOGIC DRILL LOG
- APPENDIX J MATHEMATICAL FORMULATION OF THE COUPLED SALT CREEP/BRINE FLOW PHENOMENA

TABLES

TABLE NO.	TITLE	PAGE
2-1	Brine Accumulation Summary for Downholes	2-5
2-2	Brine Accumulation Summary for Upholes	2-12
2-3	Brine Accumulation Summary for Horizontal Holes at S1950/E100	2-17
2-4	Rib Encrustation Data	2-22
2-5	Estimated Brine Flux to 7.4 m ² and 731 m ² Rib Areas	2-25
3-1	Analytical Methods Used in the Analysis of BSEP Brines	3-4
3-2	Analyses of Air Intake Shaft (AIS) Sump, B & E, BTP-C1, Culebra, DH36, and DHP402A Waters	3-5
3-3	Results (mg/L) for Total Inorganic Carbon (TIC), Total Organic Carbon (TOC), Alcohol, Phenol, and Monocarboxylic Acids	3-8
3-4	Range of Mean (X) and Standard Deviation (S) Values for BSEP Brines From the WIPP Respository Horizon	3-10
3-5	Composite Brine Chemistry for IT-Export and UNC Geotech Analytical Groups	3-18
3-6	Boron Specie Distribution Compatible With Alkalinity Values in Composite and LIX00 Brines, and Diluted LIX00 Brine Spiked with $Na_2B_40_7$	3-25
3-7	Saturation Indices (SI) for Anhydrite (CaSO ₄), Barite (BaSO ₄), and Celestite (SrSO ₄) in Select BSEP Brines	3-38
3-8	NaCl and SrSO ₄ Ion-Activity Products for A1X02, DHP401, and GSEEP Brines Saturated With Respect To Celestite	3-39
3-9	Results of EQ3NR Modeling of Composite Brine	3-41
3-10	Locations of Samples Taken on 9/8/88	3-48
3-11	Hypersaline Media	3-52
3-12	Flow Chart of Procedures for the Isolation of Possible Pathogens and Special Organisms	3-53
3-13	Flow Chart of Procedures for the Isolation of Halotolerant/Halophilic Organisms	3-54
3-14	Flow Chart of Procedures for the Preparation of Solid Salt Samples	3-55

TABLES (CONTINUED)

TABLE NO.	TITLE	PAGE
4-1	Summary of Unit Moisture Content (Samples Heated to 95°C)	4-17
4-2	Summary of Average Unit Moisture Content for Area 3 Samples	4-21
4-3	Moisture Content Data From BSEP Vertical Corehole Sampling	4-24
4-4	Moisture Content Data From the Site and Preliminary Design Validation Program	4-26
4-5	Moisture Content Data From Hohlfelder	4-27
4-6	Moisture Content Data From USGS-Well No. AEC-8 (McNutt Potash Zone)	4-28
4-7	Summary of Current Moisture Content Analyses (Weight Percent)	4-31
4-8	Logged and Modeled Boreholes	4-33
4-9	Moisture Contents (weight percent) Up Boreholes	4-43
4-10	Moisture Contents (weight percent) Down Boreholes	4-45
4-11	Drillholes Investigated With the Video Camera During the First Survey	4-50
4-12	Drillholes Investigated With the Video Camera During the Second Survey	4-51
5-1	Salt/Brine Material Constitutive Properties	5-15

١

FIGURES

FIGURE NO.	TITLE	PAGE
1-1	Location Map of the WIPP Site	1-2
1-2	Surface and Underground Layout of the WIPP Facility	1-3
1-3	Generalized Stratigraphic Cross Section	1-4
2-1	Map of the WIPP Underground Workings Showing BSEP Observation Locations as of December 31, 1988	2-2
2-2	Geologic Cross Section of the Facility With Unit Number Designations	2-3
2-3	Correlation of the Stratigraphy With Downholes in the Northern Part of the Facility	2-4
2-4	Drillholes in the North End of Room L1	2-8
2-5	Correlation of the Stratigraphy with Upholes in the Northern Part of the Facility	2-11
2-6	Sketch of the North Rib at S1950/E100 Showing the Location of the BTR Holes	2-16
3-1	Extended-Alkalinity-Titration Plot for Holes BTPB3 and A2X01 (Samples 212 and 214, Appendix C)	3-6
3-2	Extended-Alkalinity-Titration Plot for L1X00 Brine	3-22
3-3	Log of Boron Concentration versus pH for the System B-H ₂ 0 at 25°C	3-23
3-4	Boron versus Extended Alkalinity for BSEP Brines and Diluted L1X00 Brine Spiked with $Na_2B_4O_7$	3-26
3-5	Ratios (by Weight) of Na/CI versus K/Mg for BSEP Brines	3-28
3-6	Temporal Variation of K/Mg for Three BSEP Brines	3-30
3-7	Temporal Variation of Na/CI for Three BSEP Brines	3-31
3-8	Ratios (by Weight) of Mg/CI versus Br/CI for BSEP Brines	3-32
3-9	Ratios (by Weight) of Na/CI versus Ca/SO4-2 for BSEP Brines	3-34
3-10	Mn, Sr, and Ba versus SO_4^{-2} for BSEP Brines	3-36
3-11	Map of the WIPP Underground Workings Showing the Areas Where AIS Brine was Spread and Sample Locations for the Bacteriological Study	3-49

FIGURES (CONTINUED)

FIGURE NO.	TITLE	PAGE
4-1	General Site Location Plan	4-2
4-2	Area 1 Sampling Locations	4-3
4-3	Area 1 Sampling Locations, (cont'd.)	4-4
4-4	Area 2 Sampling Locations	4-5
4-5	Area 3 Sampling Locations	4-6
4-6	Area 4 Sampling Locations	4-7
4-7	Area 4 Sampling Locations, (cont'd.)	4-8
4-8	Frequency Curve for All Samples at 95°C	4-12
4-9	Cumulative Frequency Plots of Areas 1, 2, and 3 Data	4-14
4-10	Clay Pellets in Excavation Walls	4-19
4-11	Close-Up of Clay in Excavation Wall	4-20
4-12	Corehole versus Rib Surface Data	4-23
4-13	Cumulative Frequency Plots for Previous and Current Moisture Content Studies	4-29
4-14	Relation of Magnetic Field and Induced Electric Eddy Currents in a Vertical Borehole	4-36
4-15	Distance From Borehole versus Relative Response - Geonics EM-39 Borehole Induction Logger	4-37
4-16	Estimation of Cementation Factor	4-40
4-17	Correlation of Calculated Moisture Content to Measured Moisture Content	4-47
4-18	Components and Arrangement of the Drillhole Video-Camera System	4-52
5-1	Finite Element Mesh	5-13
5-2	The Model Boundary and Loading Conditions for the Salt Creep Analysis	5-14
5-3	Modification of Lai's Original Relationship	5-17

FIGURES (CONTINUED)

FIGURE NO.	<u>TITLE</u>	PAGE
5-4	Tangential Stress Development	5-19
5-5	Radial Stress Development	5-19
5-6	Stress versus Time for Various Points	5-20
5-7	Development of Porosity With Time	5-20
5-8	Development of Permeability With Time	5-22
5-9	Comparison of Predicted and Field Permeabilities	5-22
5-10	Dimensionless Flux for Near-Field and Far-Field Cases	5-25

х

ACKNOWLEDGMENTS

The work reported in this document has involved more than one hundred individuals. Many disciplines are represented: geology, hydrology, rock mechanics, numerical modeling, geological engineering, bacteriology, chemistry, geochemistry, geophysics and technical skill in precision drilling, laboratory analyses, and other support.

We make no attempt to mention everyone by name, but this work has clearly been a team effort and is truly multi-authored, mostly by engineers and scientists of the International Technology (IT) Corporation, working out of their Albuquerque and Carlsbad, New Mexico, offices, and the staff of the Geotechnical Engineering Section of Westinghouse Electric Corporation at the Waste Isolation Pilot Plant (WIPP). Most of the underground work has been done by technicians and drillers of the Westinghouse Electric Corporation.

Dwight Deal provided the overall direction and coordination of this work and authored Section 2.1, a discussion of the brine inflow data. Bill Roggenthen, on "loan" to IT and the WIPP from the South Dakota School of Mines, was the lead author of Section 2.2, a study of the weeps and salt encrustations on the walls of the underground openings.

Rich Abitz wrote Section 3.1 on the brine geochemistry, with critical and helpful reviews by Jon Myers and Paul Drez. Analytical difficulties encountered with the analysis of highionic-strength brines were overcome through the efforts made by professional and dedicated staff at each analytical laboratory. The work at UNC Geotech at Grand Junction, Colorado, was under the direction of Ron Chessmore. David Dunlop was our major interface at the International Technology Analytical Services lab in Export, Pennsylvania. Jeffry Means, Battelle Memorial Institute in Columbus, Ohio, did some special lab work with the organic components in the brines.

Barry King wrote Section 3.2, describing the bacteriological work. The bacteriological lab work was done by Larry Jones at the University of Texas at El Paso (UTEP), and both he and Dennis Powers contributed significantly.

Joe Tyburski wrote Section 4.1 on the moisture content of the rocks exposed in the excavations and supported several other parts of this work as well. Craig Givens reduced the borehole induction logging data and wrote Section 4.2, with review and suggestions from Bill Roggenthen. Rick Deshler operated the drillhole video camera and authored Section 4.3.

A-1

The modeling effort, Section 5 and Appendix J, was complex and involved many individuals under the guidance of Dwight Deal and John Case. Stephen Niou is credited for taking a global approach to the problem of brine flow through deforming salt (Appendix J). Many had a hand in the final product that you find here, notably John Case, John Pietz, and Mike Wallace, with tedious quality control (QC) support by Saeid Saeb, Clayton Carney, Craig Givens, and Bernie Lauctus. Sections 5.4 through 5.10, coupling two finite-element codes to produce useable results, was a major effort for John Pietz and Mike Wallace, again with the suggestions and support of John Case, Bernie Lauctus, Craig Givens, and Bill Roggenthen. Particularly important support was provided by Roy Cook of Westinghouse Electric Corporation at the WIPP, who helped with the VISCOT code and provided a critical reading that greatly improved this section. A final editorial and QC effort was made by John Case and Saeid Saeb to get this section into the form that is included here.

Shifting demands at the WIPP resulted in a complex editorial history. Bill Roggenthen initiated the effort of organizing the various contributions and styles into a single report and outlining summary comments. After he returned to academia, Mark Crawley took over the editorial task, which was finished by Rich Abitz, Joe Tyburski, and Dwight Deal.

The most important single individual has been Dave Belski, a senior Westinghouse Electric Corporation technician at WIPP. He lead the underground and surface support of the Brine Sampling and Evaluation Program (BSEP) at the WIPP site, and was assisted by Mel Balderrama, Steve Azzinaro, and Steve Ozmansky. Dave Beliski collected most of the samples, wrote the field notes, packaged samples for shipping, performed any on-site laboratory analyses, did the routine QC, and maintained the records and files.

Finally, we want to thank our colleagues at Sandia National Laboratories for providing useful comments and sharing their perspectives on the brine phenomenon: Jim Nowak, Jim Krumhansl, Sharon Findley, Rick Beauheim, and David Bornes. A very special thanks to Larry Brush and his crew: Anne Rutledge, Glenn Barker, and Grace Bujewski, who often provided thoughtful as well as physical assistance in collecting the underground brine samples for chemical analysis.

A-2

EXECUTIVE SUMMARY

ni ansti

The data presented in this report are the result of Brine Sampling and Evaluation Program (BSEP) activities at the Waste Isolation Pilot Plant (WIPP) during 1988. These activities, which are a continuation and update of studies that began in 1982 as part of the Site Validation Program, were formalized as the BSEP in 1985 to document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation, and seepage of that brine into the excavations at the WIPP. Previous BSEP reports (Deal and Case, 1987; Deal and others, 1987) described the results of ongoing activities that monitor brine inflow into boreholes in the facility, moisture content of the Salado Formation, brine geochemistry, and brine weeps and crusts. The information provided in this report updates past work and describes progress made during the calendar year 1988.

During 1988, BSEP activities focused on four major areas to describe and quantify brine activity: (1) monitoring of brine inflow parameters, e.g., measuring brines recovered from holes drilled upward from the underground drifts (upholes), downward from the underground drifts (downholes), and near-horizontal holes; (2) characterizing the brine, e.g., the geochemistry of the brine and the presence of bacteria and their possible interactions with experiments and operations; (3) characterizing formation properties associated with the occurrence of brine, e.g., determining the water content of various geologic units, examining these units in boreholes using a video camera system, and measuring their resistivity (conductivity); and (4) modeling to examine the interaction of salt deformation near the workings and brine seepage through the deforming **salt**.

<u>Monitoring Brine Inflow Parameters</u>. Relative amounts of brine seepage between upholes drilled into the back of the excavations, downholes drilled into the floors, and horizontal holes drilled laterally into the ribs are similar to earlier reports. Typically, upholes produce much smaller amounts of brine than the downholes and tend to cease production after 2 to 3 years. Similarly, the few horizontal holes available for long-term monitoring show an initial brine production that rapidly decreases with time. No horizontal holes older than 2.5 years are producing brine.

Brine recovery from downholes substantially differs from holes drilled in other orientations. Downholes tend to produce brine over extended periods of time and sometimes show increased seepage rates with time. Holes that are very closely spaced may have seepage rates, volumes, and brine levels varying by two orders of magnitude or more. Some holes, such as the one in Waste Storage Panel 1 at S1950-E1320, receive water introduced to the underground from sources other than the Salado Formation. Much of the brine in this and other similar holes throughout the facility appears to be a mixture of Salado Formation brine and construction water spread upon the floors for the purpose of dust control or roadway consolidation. Brine samples contaminated with construction water can be identified by their geochemical signature.

A series of horizontal holes were drilled westward from the western termination of the S2180, S1950, and S1600 drifts in support of the BSEP activities. These holes were drilled into the location of future storage panel access drifts. None of the holes drilled in this phase of the program left the outlines of these access drift locations. Three holes were drilled at each drift location: two 15-meter holes and one 46-meter hole. At each location, one 15-meter hole was located in Map Unit 4, approximately 0.6 meter above the orange band (Map Unit 1) and one 15-meter hole was located in Map Unit 0, approximately 0.3 meter foot below the orange band. The 46-meter boreholes were begun at the top of the orange band. All of the holes were started with a downward slope of 1 or 2 degrees. Consequently, brine entering the hole flowed to the back of the hole, away from the face and any disturbed zone near the face. Pressure-suction moisture-collecting devices have been installed in all nine of the holes. To date, brine has been recovered from five of the nine holes.

Brine weeps, consisting of small salt encrustations on the ribs of many of the underground excavations, develop when brine seeps very slowly out of the ribs and evaporates at the surface due to the ventilation. These surficial salt encrustations have been sampled systematically at three locations: (1) the west end of Room G; (2) along W170, just south of S1650; and (3) along S1950 between W30 and W140. Salt encrustations have been collected and the material weighed, dried at 250°C, and weighed again. X-ray diffraction studies of the salt encrustations have shown that they are composed almost entirely of halite and sylvite. Apparently, not all of the brine evaporates into the facility air at ambient temperatures; the highly soluble components (mostly magnesium and potassium salts) remain in solution and escape with the remaining fluid, probably into fractures and other openings in the ribs and floor. Using the data on salt encrustations and brine chemistry for the mass of sodium, potassium, magnesium, chlorine, and sulfate, the maximum amount of brine responsible for the development of salt encrustations on an 7.4-square-meter sample site is approximately 5.9 liters. The sites have been revisited one year after the initial sampling, and only very small amounts of salt encrustations had reestablished themselves.

This is consistent with the observation that the encrustations cease to grow a few years after initial excavation.

O

<u>Characterization of Brine Geochemistry</u>. Analysis of the geochemistry of the brine has proven to be an extremely useful tool in understanding the modes of brine occurrence in the rock and the means by which brine enters the excavations. Anomalous compositions of brines recovered from upholes can be accounted for by evaporation due to the slow accumulation of the brine. Analyses of brines coming from many of the downholes indicate that most are not indigenous to the Salado Formation, but rather have been introduced during the course of mining operations for purposes of dust control and roadbed consolidation. Mixing models for these brines have indicated that, in the Panel 1 area, after water was spread to consolidate the floors, as much as 40 percent of the brine recovered from a downhole penetrating Marker Bed 139 may have originated from construction water.

Brines recovered from upholes have been modified by evaporation during the sample collection process. Variation in the composition of brines recovered from downholes suggests spatial heterogeneity exists, which implies mixing and fluid homogenization is limited within the Salado Formation at the WIPP repository horizon. Additionally, the chemistry of downhole brines cannot be linked to larger-scale vertical migration of waters from the overlying Rustler Formation or underlying Castile Formation, because each of these formational waters are chemically distinct from WIPP brines.

Major-element compositions of indigenous WIPP brine suggest an origin from evaporating seawater, modified by diagenetic reactions involving gypsum, magnesite, and polyhalite and ion-exchange reactions with clay minerals. The major-element compositions of brines recovered from downholes are distinct from fluid inclusions in WIPP halite. This observation indicates that the brine recovered in drillholes is largely intergranular fluid, but not intragranular fluid which has been released by migration of fluid inclusions to grain boundaries during stress relief.

Based upon statistical analyses, a composite chemistry for the Salado Formation brines in the vicinity of the repository horizon was constructed. Calculation of a composition brine may not be totally appropriate because separate, stratigraphy-dependent brine compositions may exist. If distinct, then they probably have stratigraphy-dependent sources and the derivation of the brine from a general hydrologic system would be difficult.

Rock-brine equilibria were evaluated using brine analyses and the speciation-solubility code EQ3NR. The modeling results indicated all WIPP brines were saturated with anhydrite, barite, fluorite, glauberite, gypsum, and halite and several brines were calculated to be saturated with celestite, dolomite, magnesite, and polyhalite. Model results agreed with the observed mineralogy at the WIPP repository, and supported the contention that WIPP brines are intergranular fluids which have equilibrated with evaporite salts.

Finally, the analytical results and solubility calculations argue for derivation of WIPP brines from near-field, intergranular fluids. Although the data do not unequivocally rule out largescale brine migration, the time scale required for migration of the fluid through the halite of the Salado Formation would have to be greater than that required for diagenetic reactions to produce magnesite, polyhalite, and quartz. Excluding human intrusion scenarios, time constraints on fluid migration through halite after the repository is sealed and repressurized suggest that soluble radionuclides will be constrained to the near-field environment of the waste for time periods sufficient to meet regulatory guidelines.

<u>Bacteriological Studies</u>. Bacteriological studies were conducted with cultures prepared from brines present in the facility, from muck present on the floor of the facility, and from Salado Formation cores. No bacterial growth were observed in cultures from the Salado Formation cores, but a total of 48 different bacterial forms were found and presumed to be introduced during the mining activities. Many of the forms cultured were similar to existing forms in the surrounding surficial salt ponds near the WIPP. No bacterial forms were found that constitute a health hazard to the workers in the facility.

<u>Characterization of the Moisture Contents of the Salado Formation</u>. Determination of the moisture content of the map units exposed in the workings continued. Samples from a total of 11 different stratigraphic horizons were measured. Moisture content, defined as the weight percent of water that can be removed from a sample by heating to 95°C, was determined for samples taken throughout the facility at various times since excavation. This should be a reasonable measure of the amount of moisture present in the salt that is available to move into the excavations under local pressure gradients, but only part of that moisture will do so. No clearly discernible temporal or lateral trends in moisture content were found, although moisture content varied with stratigraphy and was correlated with clay content. Moisture content varied from 0.01 percent by weight for clear halite to 6.67 percent by weight for one isolated sample selected for high clay content. After analyzing 545 samples, the conclusion was that an average near-field moisture of 0.5 to 0.75 percent by weight was a reasonable representative value for the amount of moisture present in the

repository host rock. The average moisture content for map units exposed at the repository level (Units 0 through 4), taking into account the stratigraphic thickness of each unit, was approximately 0.60 percent by weight.

<u>Direct Examination of Drillholes Using a Video Camera</u>. Completion of the examination of boreholes using a video camera was delayed at the time of the BSEP Phase II report because of equipment failures. This examination was completed during 1988. Although the examination attempted to delineate wet zones and zones of potential inflow in boreholes, it was generally unsuccessful in locating these features. Because of the high reflectance of the salt crystals, zones of wetness could not be identified with the available equipment. However, areas of squeezing of the thin clay seams were evident and appeared to be prevalent in the upholes.

<u>Geophysical Investigations</u>. A program of geophysical logging of upholes and downholes in the northern, experimental end of the facility has been undertaken to characterize the moisture content of the stratigraphic units in areas far from the working face, floor, or back. The induction logging tool that is used has a maximum response approximately 0.5 meters away from the borehole. The tool reacts much more strongly to brine that is intergranular and occupying interconnected spaces than to intracrystalline fluid inclusions that are isolated within the salt crystals. For clear halite units, moisture content calculated from the logging agrees well with measured moisture content of samples taken at the face.

Borehole induction logging has proven to be a reasonably efficient and accurate method of measuring conductivity of the rock units and, thereby, their moisture content. The moisture content measured by laboratory analysis and that calculated from the geophysical logging show an absolute difference of 0.05 percent when the averages of all units are considered, which is a good correlation given the spatial differences in the sampling sets. When measured by the induction logging tool, anhydrites and anhydritic units appear to be substantially wetter, and argillaceous halite units appear to be drier than the samples of the same units taken at the face.

<u>Modeling Rationale and Performance of Modeling</u>. Much of the inflow behavior of brine in the form of weeps, and the small production of brine from upholes and downholes, suggests that sources near the openings may produce most of the brine. Many experiments and modeling efforts are underway to determine the importance of far field or normal hydrologic processes in delivering brine to the underground and to investigate the nearby rock as a source of brine. Studies of the moisture content of the Salado Formation as a

function of stratigraphy show that the map units accessible from the drifts contain approximately 0.60 weight percent moisture. This moisture does not include fluid inclusions, but is present as intergranular fluid in interstitial pores between the salt crystals, in the underconsolidated clays in clay seams, and in the argillaceous halite units such as Map Units 0, 2, and 4.

Excavation-induced deviatoric stress results in salt, brine, and gas flow into the mined openings. Salt deformation alters the porosity and permeability of the stratigraphic horizons with respect to both the brine and dissolved gases present in the interstitial pore spaces. The presence of brine and gases in the salt, in turn, affects salt deformation. Consequently, an extensive examination of these processes and the mathematical model describing them has been undertaken to develop a basis for evaluating their importance to brine seepage into the underground.

The first step was to formulate the complex problem of brine and nitrogen flow through deforming salt as completely as possible. The derived equations involved rock mechanics and fluid flow, and were coupled, where appropriate, in order to closely describe the natural phenomena.

In an effort to produce a practical solution to the preceding formulation, a rock deformation computer code, VISCOT, was combined with a flow-modeling code, SUTRA, to examine the coupled effects of rock deformation with the modified flow properties of the salt. A number of important simplifying assumptions were made in the application of the model, including: (1) the effects of exsolution of gases were not considered, (2) all flow was considered to be saturated, (3) the permeability versus porosity relationship could be estimated based upon available experimental information, and (4) the salt was taken to be homogeneous.

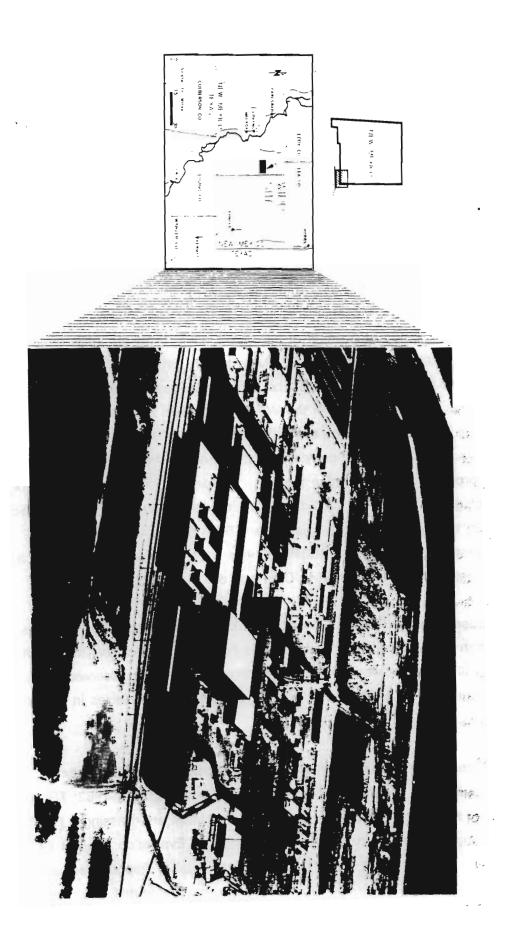
The hybrid computer code was applied to a 1.8-meter shaft analogous to the Salt Handling Shaft in the facility horizon. This hybrid model took a standard hydrologic flow model and assumed that the rock in the far field behaved as an elastic, porous solid with a 1.0-nanodarcy effective permeability and added a near-field enhancement to flow resulting from salt creep into the excavation. The subsequent modeling runs showed that, even with a contribution to flow from the far field, the rock in the near field increased in porosity faster than brine would fill those spaces and thus the rock became unsaturated close to the excavation. At this point, the assumption of saturated flow conditions became invalid and the modeling runs were terminated.

It is desirable to be able to distinguish between the consequences of assuming that the ultimate source of the brine seepage is in the far field, in which flow occurs at very slow rates, from the consequences of assuming that the effective far-field permeability is too low to permit flow through the undisturbed salt, requiring that any seepage come from dewatering of the enhanced permeability Disturbed Rock Zone (DRZ) developing around the excavation. The rock mechanics portion of the hybrid code show that, in the case of a 1.8-meter-radius shaft at a depth of 655 meters, the rate of increase in the size of the DRZ is very, very slow after 1,000 days, when it reaches a distance of approximately 12 meters from the surface of the opening.

To compare the amount of brine seepage predicted from the near-field model with that predicted by the far-field model, the porosity and permeability distribution that has occurred within 12 meters of the excavation after 1,000 days is used. It is assumed that this distribution does not change with time, the pores remain saturated, and the physical properties of both the salt and the brine remain constant. In the near-field model, the permeability for radial distances greater than 12 meters is set to zero. In the far-field model, the permeability for radial distances greater than 12 meters is set at 1.0 nanodarcy. The results predicted that a near-excavation source of brine inflow differs little in cumulative inflow or rates from a far-field model for the first 30 years following excavation. After 30 years, the curves diverge markedly. In the near-field model, the inflow decreases as the zone of disturbance, which is dewatering, ceases to develop further, whereas the far field continues to supply brine to the excavation. The volume of disturbed rock surrounding the excavation is a function of the square of the shaft radius. Therefore, repeating the exercise for a much smaller radius shaft (or drillhole) should minimize the contribution of brine from the DRZ in the case of the near-field model. It is expected that the predicted brine inflow for the two models should diverge sooner for holes or excavations smaller than the 1.8-meter-radius shaft considered during the present studies.

1.0 INTRODUCTION

The Waste Isolation Pilot Plant (WIPP) is a Department of Energy (DOE) research and development facility established to demonstrate the safe disposal of radioactive wastes derived from the defense activities of the United States. The WIPP Project's mission consists of two parts. The first part is demonstrating the safe handling and disposal of transuranic (TRU) waste in bedded salt. The second part is creating a research facility for in situ examination of the technical issues related to the emplacement of defense-related radioactive waste in bedded salt.


The WIPP facility is located approximately 42 kilometers east of Carlsbad, New Mexico, in an area known as Los Medaños (Figure 1-1). The underground portion of the facility (Figure 1-2) is located at a depth of approximately 655 meters in an evaporite sequence over 1,000 meters thick (Figure 1-3). An extensive program of site characterization and validation has been conducted over the past twelve years (1976 to 1988). The results of these studies are summarized in the WIPP "Geological Site Characterization Report" (Powers and others, 1978) and the WIPP "Preliminary Design Validation Report" (Bechtel National, Inc., 1983). Additional site investigations are being conducted as part of an ongoing program to further refine the understanding of the site-specific geology. The hydrogeological activities of the Brine Sampling and Evaluation Program (BSEP), as outlined in the Brine Testing Program Plan (BTP) (Morse and Hassinger, 1985), are part of these investigations. Phase I BSEP activities were reported by Deal and Case (1987) and Phase II activities were reported in Deal and others (1987).

The purpose of the BSEP is investigating the origin, hydraulic characteristics, extent, and composition of brine occurrences in Salado Formation excavations at the WIPP repository horizon. Although the workings are considered dry, brine is observed to weep from exposed surfaces in the repository horizon and seep into drillholes in the underground excavations.

The data presented in this report are a continuation and update of studies that began in 1982 as part of the Site Validation Program (Black and others, 1983; TSC-D'Appolonia, Part II, 1983; Alcorn, 1983), were formalized by Morse and Hassinger (1985), and have been previously reported in the Brine Sampling and Evaluation Phase I Report (Deal and Case, 1987) and the Brine Sampling Evaluation Phase II Report (Deal and others, 1987). Users should consult those two reports for background information, detailed descriptions of

1-1

FIGURE 1-1 LOCATION MAP OF THE WIPP SITE

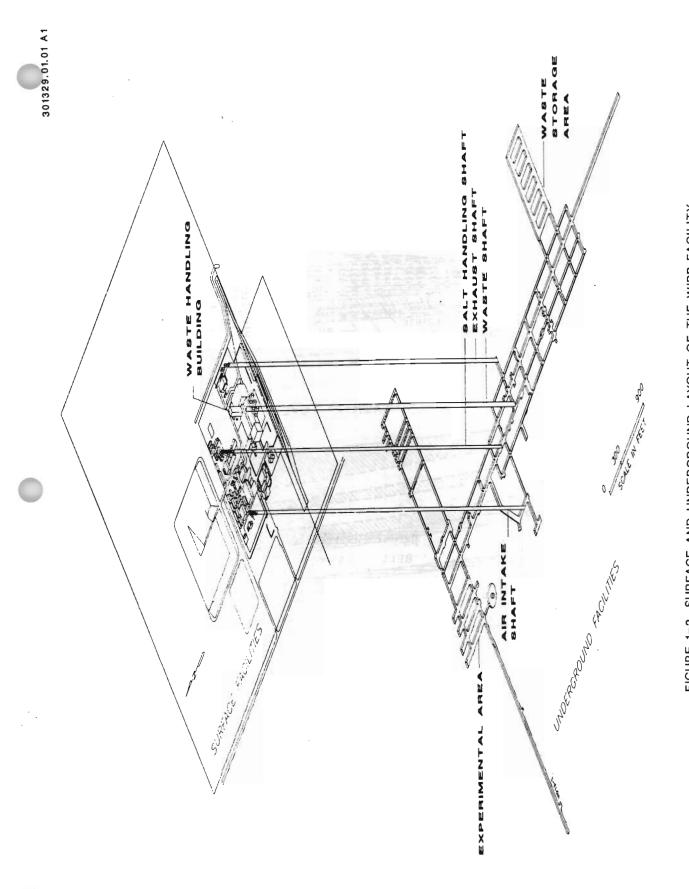
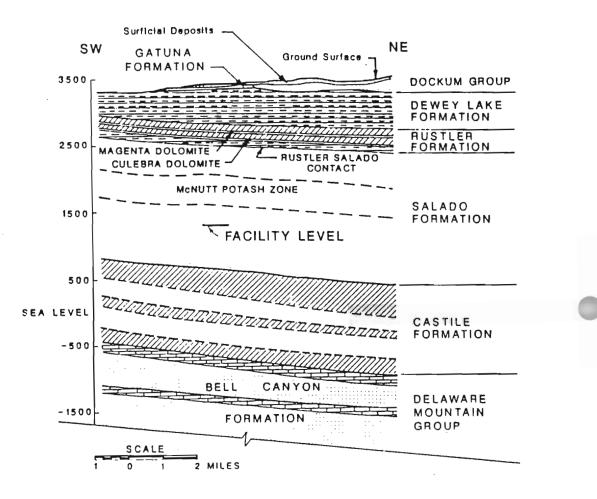



FIGURE 1-2 SURFACE AND UNDERGROUND LAYOUT OF THE WIPP FACILITY

301329.01.01 A2

LEGEND

SAND AND SANDSTONE MUDSTONE AND SILTSTONE ANHYDRITE HALITE LIMESTONE

FIGURE 1–3 GENERALIZED STRATIGRAPHIC CROSS SECTION (MODIFIED FROM FIG. 1-2, DEAL AND CASE, 1987)

the data gathering and analytical procedures, and the cautions that should be exercised when using the data presented herein.

This report is limited to activities performed or initiated during the 1988 calendar year. These activities, which dealt primarily with the immediate environment of the underground excavations, were designed to provide information on the amount of brine that flows into the underground, the properties of the brine, the properties of the formation in which the brine resides, and modeling of the potential for brine inflow from the formation immediately surrounding the excavations.

Information on brine inflow comes from several sources. Most information was derived from measurements either of brine removed from holes drilled downward from the facility horizon or of brine seeping from holes drilled upward from the facility horizon. Some data were also collected from the brine weeps that form on exposed surfaces shortly after excavation. These inflow data are listed in Section 2.0 of this report.

Section 3.0 presents data regarding the properties of the brine. The geochemistry of the brine recovered from underground provides insight into its origin and subsequent modification. Newly improved analytical procedures increased the confidence in the geochemical analyses and allowed substantial progress to be made in modeling the data and understanding key elements of the chemical system of which the brine is a major part. As part of the characterization of the brine, a study was conducted to investigate brine and surface area microbiology in the underground excavations. Salt-tolerant bacteria were found in all brines, muck, and boreholes sampled within the workings. No human pathogens were found during this study.

Studies describing the properties of the formation containing the brines are presented in Section 4.0. The investigations included a characterization of the moisture content of the formation, measured by heating the samples taken from the surfaces of the drifts after they had been categorized by age of excavation, stratigraphic position, and geographic location. The electrical properties of the repository stratigraphy were determined in more than 20 boreholes from the repository horizon and correlated with the free brine content of the rocks using a borehole induction logging tool. The borehole video camera survey was also completed, and the final results are summarized in this chapter.

Modeling studies, which relate the deformation experienced by the rock immediately surrounding the underground workings to the potential for brine inflow, are presented in

1-5

Section 5.0. The general relationships between the effects of rock deformation, brine degassing, and depressurization of the rocks due to mining are developed in a rigorous fashion in Appendix J. Sections 5.4 through 5.10 present an actual application of this relationship to deformation around, and brine inflow to, a circular opening in the repository. This exercise is accomplished by using simplifying assumptions to allow the coupling of salt deformation and fluid flow computer codes to predict fluid behavior of a hydrologic system strongly affected by near-field deformational effects.

Quantification of the rate of brine inflow and evaluation of the total volume of brine that can inflow to the repository are important tasks from the standpoint of long-term repository performance. While the repository is open, much of the brine that enters the repository is removed by evaporation. After closure, however, this mechanism of removal will not be available. Evaluation of the effects of resaturation and repressurization of the facility following closure will require as much information as possible regarding these inflow rates and their cumulative results. Many long-term predictions are based upon the type of mechanism by which the brine is generated and moved. These preliminary modeling exercises compare the effects of differing brine inflow mechanisms.

2.0 MONITORING OF BRINE INFLOW PARAMETERS

2.1 INFLOW DATA

2.1.1 Introduction

Brine seepage into some underground locations at WIPP has been measured since January 1985. The data presented in this report cover the time period between August 1987 and December 1988 and are primarily an extension of the data presented in the BSEP Phase I Report (Deal and Case, 1987) and Phase II Report (Deal and others, 1987). Brine accumulation data are presented in Appendix A. Smoothed curves (11-point moving averages) of these data are presented in Appendix B.

The brine accumulations in holes drilled from the WIPP underground workings and the stratigraphy of the Salado Formation have been extensively discussed in previous reports (Deal and Case, 1987; Deal and others, 1987; Deal, 1988; Deal and Roggenthen, 1989). The locations of the BSEP observation holes referred to in this report are shown in Figure 2-1, which also shows the extent of the excavations that existed at the end of December 1988. A list of the underground locations where brine observations have been made as part of the BSEP is presented in Appendix A. The holes can be grouped as near-vertical downholes, near-vertical upholes, and nearly horizontal holes. The stratigraphy of the rocks close to the excavations is shown in Figure 2-2. The detailed stratigraphy from drilling logs for many of the drillholes is presented in Appendix H of this report, as part of the discussion on the results of observations made with a borehole camera.

2.1.2 Downholes

Table 2-1 summarizes the most important data obtained to date from the downholes. Additional information is contained in Appendix A. Figure 2-3 shows the relationship between the downholes and the stratigraphy.

Deal and Case (1987 - Table 3-1) discussed brine inflow into 13 downholes with observations beginning in late 1984 or early 1985 and extending through August 1986. After 1.5 years of observation, ten of those holes showed fairly steady inflow trends, two were decreasing, and one was increasing. As of July 1987 (Deal and others, 1987) after approximately 2.5 years of observation, five remained steady, five that had been steady were decreasing, the two that had been decreasing were still decreasing, and the one that had been increasing was decreasing. As of the end of December 1988 (Table 2-1), after approximately 4 years of observation, three 15-meter holes (two in the heated experimental

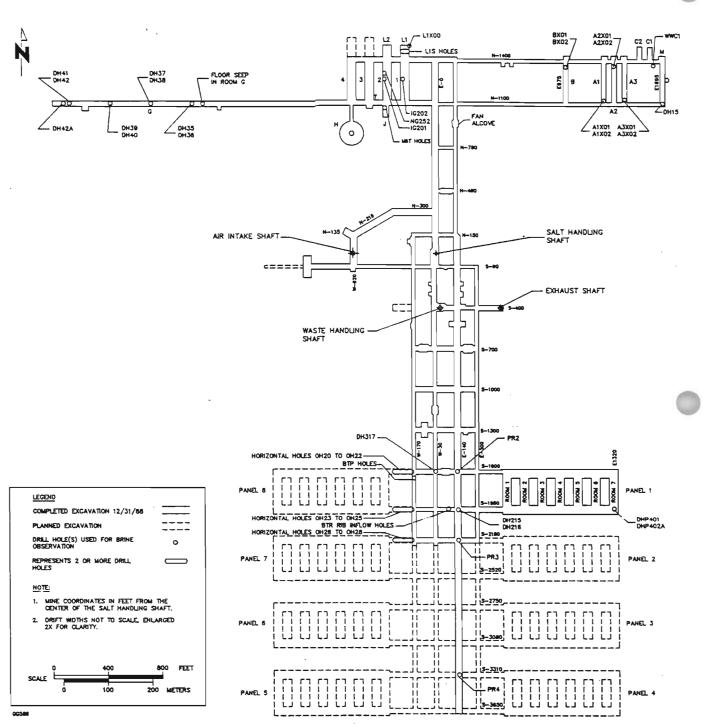


FIGURE 2-1 MAP OF WIPP UNDERGROUND WORKINGS SHOWING BSEP OBSERVATION LOCATIONS AS OF DECEMBER 31, 1988

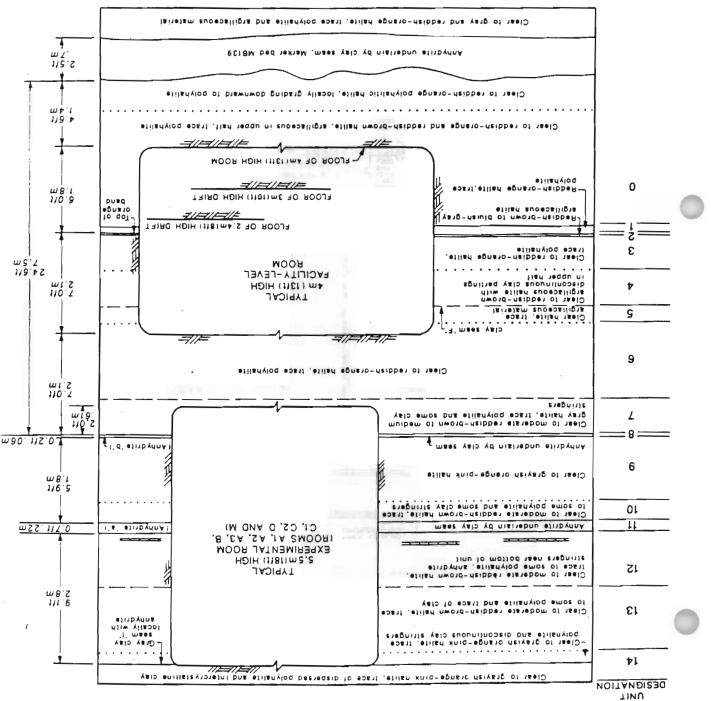

2-2

FIGURE 2-2 GEOLOGIC CROSS-SECTION OF THE FACILITY WITH UNIT NUMBER DESIGNATIONS

(12861 ,ess) bas leed refield

- Room dimensions have changed with time due to salt-creep closure.
 - 2. Unit thickness are epproximate and vary slightly.
- משסוסקור התגמטורק לגוג ורטה וזה וטער נפזר רסטה גוול מגופרו השווגו גרפג געמסוסקור האגמטוקט ווסטר וזיסר האנווטה נוסה וזה רשהגווווק PDV פגרגיאגווטה.
- 1. Dimensions and Hithologic descriptions are derived primarily from corehole and

SELON

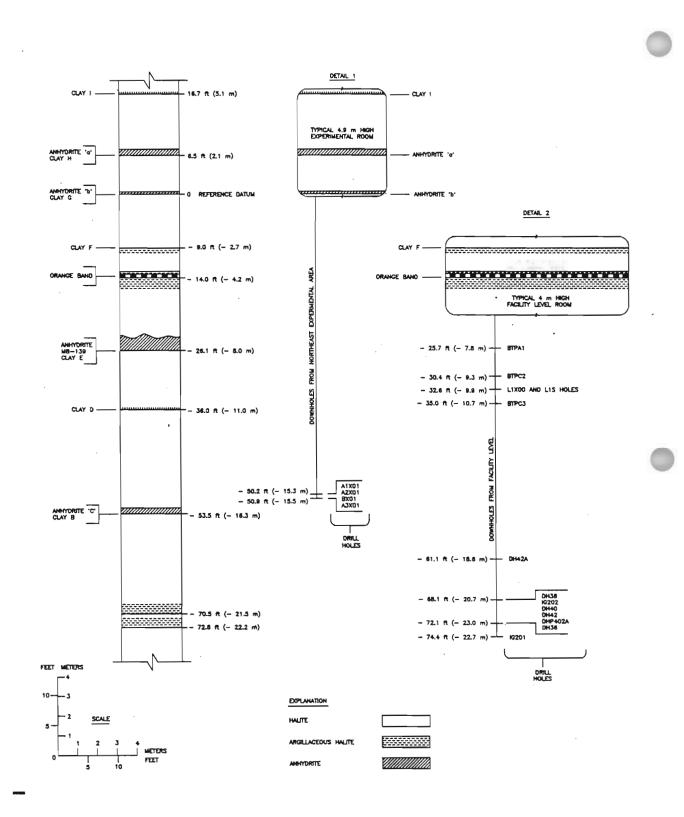


FIGURE 2-3 CORRELATION OF THE STRATIGRAPHY WITH DOWNHOLES IN THE NORTHERN PART OF THE FACILITY

TABLE 2-1

BRINE ACCUMULATION SUMMARY FOR DOWNHOLES

HOLE	ROOM OR LOCATION	DATE ROOM EXCAVATED	DATE HOLE DRILLED	DATE FIRST OBSERVED	APPROX. MAXIMUM INFLOW (l/DAY)	APPROX. INFLOW 12/88 (l/DAY)	INFLOW TREND 12/88 (I,S,D)*	APPROX. TOTAL VOL. REMOVED BY 12/88(<i>l</i>)
A1X01	A1	10/84	2/85	3/85	0.05	0.026	S	. 38
A2X01	A2	07/84	2/85	2/85	0.12	0.020	D	37
A3X01	A3	11/84	1/85	2/85	0.03	0.020	S	32
3X01	В	06/84	1/85	1/85	0.12	0.022	D	66
DH36	G	12/84	1/85	1/85	0.28	0.03	D	
DH38	G	12/84	1/85	1/85	0.18	0.045	D	272
DH40	G	12/84	1/85	1/85	0.04	0.045	S S	73 7
DH42	G	12/84	1/85	1/85	0.05	0.02	S	38
DH42A	G	12/84	1/85	1/85	0.2	0.10	5	142
DHP402A	S1950/E1330	10/86	12/86	12/86	4	1.13	Ď	332
1S25	L1	04/84	6/85	8/85	0.02	0.005	D	13
1S26	L1	04/84	6/85	8/85	0.004	0.002	S	2
1S27	L1	04/84	7/85	8/85	0.007	0.003	S	4
1528	L1	04/84	7/85	8/85	0.005	0.005	S	2
1529	L1	04/84	7/85	8/85	0.8	0.13	Ŭ	151
1S30	L1	4/84	7/85	8/85	0.08	0.02	D	83
1S31	L1	4/84	7/85	8/85	0.15	0.15	Ĭ	28
1\$32	L1	4/84	7/85	8/85	0.18	0.16	S	101
_1S33	L1	4/84	7/85	8/85	0.1	0.1	ĭ	50
1\$34	L1	4/84	7/85	8/85	0	0	DRY	0
1\$35	L1	4/84	7/85	8/85	Ō	Õ	DRY	0.1
1S36	L1	4/84	7/85	8/85	0.01	Õ	DRY	5
_1X00	L1	4/84	5/84	5/85	0.03	0.24	S	53
VG252	2	3/83	3/83	12/84	0.5	0.07	D	377

Data summarized and rounded from Appendices A and B. * I = Increasing S = Steady D = Decreasing

1

room area, A1X01 and A3X01, and one in Room G, DH42), remained steady, each producing approximately 0.02 to 0.03 liter of brine per day. Two of the 15-meter holes that had remained steady through August 1987 (A2X01 in the heated experimental area and DH36 in Room G) were declining in the fall of 1988. Of the five 15-meter holes that had gone from steady to decreasing by August 1987, one was still decreasing (BX01 in the heated experimental area), two were leveled out and fairly steady (DH38 and DH40 in Room G), one (DH42A at the far western end of Room G) had turned around in August 1988 and was increasing, and one (IG202 in SPDV Room 2) had been closed by salt creep and could no longer be sampled. Of the two holes that had been decreasing steadily since before August 1986, both located in SPDV Room 2, one (NG252) continued to decrease and the other (IG201) was closed by salt creep and could no longer be sampled. The remaining hole, (L1X00 in Room L1) which had shown increasing inflow in August 1986 and decreased in July 1987, was fairly steady by December 1988.

2.1.2.1 Downholes in the Heated Experimental Area

The four downholes in the heated experimental area (A1X01, A2X01, A3X01, and BX01; Figure 2-1) penetrate a slightly different stratigraphy than do other 15-meter downholes (Figure 2-3), intersecting Marker Bed 139 approximately 7 meters beneath the floor. As described above, they are remarkably similar and steady, producing brine at approximately 0.02 to 0.03 liter per day.

2.1.2.2 Downholes in Room G

The four evenly-spaced 15-meter downholes in Room G (from east to west, DH36, DH38, DH40, and DH42; Figure 2-1) intersect Marker Bed 139 approximately 2 meters beneath the floor of the drift (Figure 2-3). The graphs of the seepage into them (Appendix B) show very similar patterns, but there is a difference of two orders of magnitude in the rate at which brine seeps into them (0.1, 0.04, 0.002, and 0.02 liter per day, respectively). The westernmost drillhole in the workings, DH42A, is only 2 meters west of DH42 (Deal and Case, 1987), only 12 meters deep, and continues a seepage inflow pattern (Appendix B) that is quite different from that of others discussed above. It showed a clear, increasing inflow trend in August 1988 and continues to produce brine four times faster than its deeper neighbor, DH42.

2.1.2.3 BTP Downholes at S1650/W170

The BTP downholes, drilled as part of the BSEP, just south of the intersection of the S1650 and W170 drifts, have been discussed in Deal and others (1987 - pp. 14-17), and inflow data are included in Appendix A of this report. Water has been spread in this area

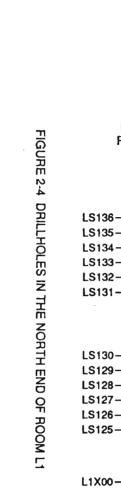
2-6

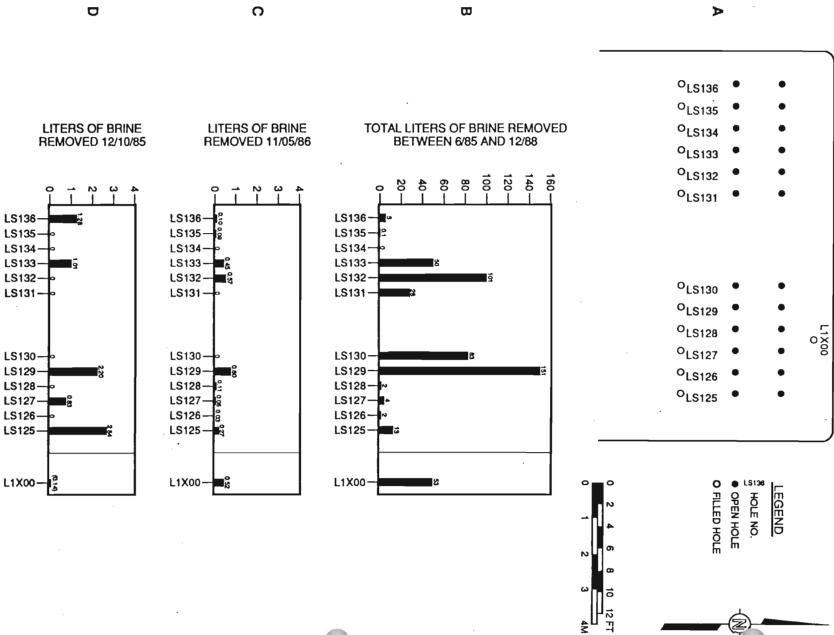
for dust control and chemical analysis of the brine removed from these holes shows that they contain components not characteristic of the Salado Formation (Section 3.1.1.3). Additionally, calculated seepage rates show sudden increases after water has been spread in the area. The data provided by these drillholes reflect construction activity more than a natural brine seepage phenomena. Therefore, these holes are no longer being surveyed as part of the BSEP; the data from them are not included in Table 2.1.

2.1.2.4 Downhole DHP402A at the East End of S1950 Drift

This downhole in the southeast corner of Waste Storage Panel 1, drilled in December 1986, had drilling brine spilled into it in July 1987, had been buried beneath a pile of muck from October 1987 through July 1988, and had collected a considerable amount of brine that was spread in August 1988 as part of a construction effort to reconstitute loose muck on the floor. The inflow rates calculated for this hole during the time period covered by this report strongly reflect these activities (Appendix A). Valuable chemical data have been obtained from the brine in this hole, demonstrating that the chemical "fingerprints" of the various waters encountered and utilized in the WIPP excavations can be identified. This knowledge can be used to approximate the amount of dilution that occurs to the naturally-occurring brines (Section 3.1.1.3 and Table 3-2). DHP402A continues to be included in the routine observations made as part of the BSEP.

2.1.2.5 Inclinometer Downholes in the SPDV Rooms


Inclinometer holes IG201 and IG202 were discussed at length in Deal and Case (1987 - Appendix D, Sections 3.1 and 3.2). Salt creep caused shear closure of the holes and they are no longer accessible. They were deleted from the BSEP.


2.1.2.6 Downholes in Room L1

Downholes L1X00 and L1S25 through L1S36 were discussed at length in Deal and others (1987 - Section 2.3.1.3). The L1S holes are a line of 12 downholes, spaced about 0.6 meters apart in two groups of six (Figure 2-4a). L1X00, observed since November 1984 as part of the BSEP, is located in the northeast corner of Room L1, approximately 4.4 meters north of the line of L1S holes. The data demonstrate the striking variation in seepage rates that can occur in closely spaced drillholes.

Similar variations in seepage measurements in closely spaced drillholes have been noted in other places in the WIPP excavations, most notably in the Materials Interface Interaction Test (MIIT) drillholes in Room J (Morse and Hassinger, 1985; and Deal and Case, 1987 -

301407.03.01 A3

₽U

Appendix D, Section 3.5), and holes DH42 and DH42A in Room G (Section 2.1.2.2). These observations lead Deal and Case (1987) to remark that "the great variation in inflow characteristics between locations only a short distance (a few meters, or in some instances, less than a meter) apart make the discussion of 'averages' or 'typical occurrences' difficult or misleading."

Room L1 was excavated in April 1984. Downhole L1X00 was drilled in the northeast corner of the room (Figure 2-4a) in May 1984 and was one of the first holes observed as part of the BSEP (Deal and Case, 1987 - Appendix D, Section 3.6). The L1S array of 36 drillholes, each 10 centimeters in diameter and 3.6 meters deep, was drilled through Marker Bed 139 as part of the sealing and plugging experimental program at the WIPP. These downholes were drilled in three lines of 12 holes each, south of L1X00. The northern two lines were filled with grout as part of the experimental program, but the southern line, holes L1S25 through L1S36, was left open (Figure 2-4a). These 12 holes, drilled in June 1985, have been observed as part of the BSEP since that time.

Initial seepage rates observed in 1985, as illustrated by the data for December 1985 (Figure 2-4d) showed striking variations in seepage rates from hole to hole. Higher seepage rates tended to occur in the holes on the outside of the array, as might be expected for pressure-driven brine flow moving from regions of high confining stress under the adjacent ribs (creating pressures perhaps as high as 2000 psi) toward atmospheric pressures found in the drillholes, and the lower confining stress beneath the center of the excavated rooms.

By May 1986, seepage into the holes was more evenly distributed, but in the late summer and fall of 1986, a dramatic increase in seepage into holes near the center of the room began (Appendix A and B). This trend is evident in the data for November 1986 (Figure 2-4c), although it was initially interpreted simply as a decrease of seepage into the holes near the edges of the room (L1S25 and L1S36) in response to a lowering pressure gradient in the surrounding deforming salt. It is interesting to note that through that time period the two holes closest to the center of the room (L1S30 and L1S31) had exceedingly low seepage rates, perhaps because most of the brine moving toward the center of the room was intercepted by other drillholes. L1S31 was never observed to contain any brine until after March 1987.

The data for the L1S holes not only show variations from hole to hole, but also show a change in pattern with time. We feel the variations from hole to hole at any given point in time to be controlled by slight local variations in stratigraphy and fracturing and that the change of pattern with time is caused by the development of excavation-induced fracturing beneath the drifts. The development of this fracturing and the effect it may have on brine seepage into any given drillhole have been discussed by Deal and Case (1987 - Appendix D, Section 3.2.2; and Section 2.1.2.7 of this report).

2.1.2.7 Downhole NG252 in SPDV Room 2

Downhole NG252, a small-diameter (38-millimeter) drillhole in the floor of SPDV Room 2, was discussed at length by Deal and Case (1987 - Appendix D, Section 3.2.2). This hole behaved anomalously and produced relatively large amounts of brine from an excavation-induced fracture associated with Marker Bed 139. When initially measured in the spring of 1985, the seepage rate into this small hole was approximately 0.5 liter per day. Calculated seepage rates (Appendices A and B) showed a decline over 4 years, to a rate of about 0.1 liter per day at the end of 1988.

2.1.3 Upholes

Brine seepage into upholes has been discussed in Deal and Case (1987) and Deal and others (1987 - Section 2.3.2). The upholes characteristically produce less brine than the downholes and do so for shorter periods of time. Part of this can be attributed to the fact that it has been difficult to seal the upholes to prevent evaporation (Deal and Case, 1987) and loss of moisture by dispersion from the hole collar. Not only is loss of moisture by evaporation evident from the salt crust buildup in and around most of the upholes, but the chemical data (Section 3.1.3) also show compositional differences between the brines from upholes and downholes that can be explained by evaporation of some of the uphole brine. The stratigraphy exposed in the upholes (Figure 2-5) is slightly different from that exposed in the downholes. Summary data for selected upholes are presented in Table 2-2. Only two of the 17 upholes listed continue to produce any brine at all. Additional data are presented in Appendix A.

2.1.3.1 Upholes in the Heated Experimental Area

Four upholes, located in the heated test rooms (Rooms A1, A2, A3, and B), are, from east to west, A3X02, A2X02, A1X02, and BX02 (Figure 2-1). These holes cut a slightly different stratigraphy than do the upholes drilled from the facility level (Figures 2-5, H-3, H-5, H-7, and H-9), which includes anhydrite Marker Bed 138, six clay partings, and the

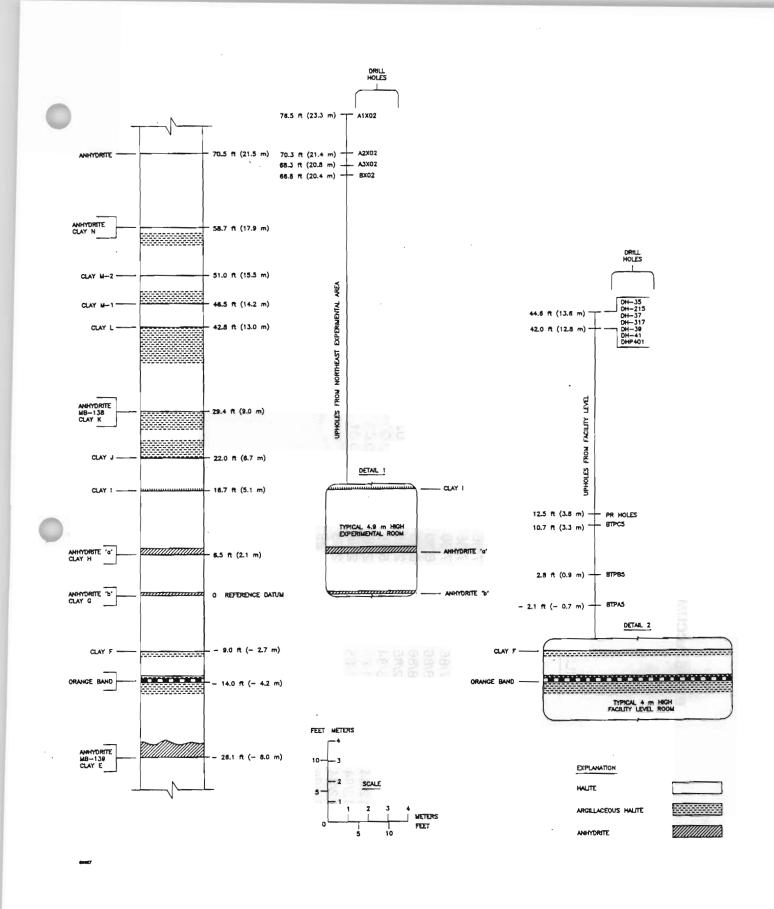


FIGURE 2-5 CORRELATION OF THE STRATIGRAPHY WITH UPHOLES IN THE NORTHERN PART OF THE FACILITY

TABLE 2-2

BRINE ACCUMULATION SUMMARY FOR UPHOLES

HOLE	ROOM OR LOCATION	DATE ROOM	DATE HOLE DRILLED	DATE FIRST OBSERVED	APPROX. MAXIMUM INFLOW (l/DAY)	APPROX. INFLOW 12/88 (l/DAY)	INFLOW TREND 12/88 (I,S,D)*	APPROX. TOTAL VOL. REMOVED BY 12/88(l)	
A1X02	A1	10/84	3/85	3/85	0.09	0.03	D	40	
A2X02	A2	07/84	2/85	2/85	0.04	0	DRY	5	
A3X02	A3	11/84	1/85	2/85	0.02	0	DRY	4	
BTPA4	S1620/W170	09/85	7/86	7/86	0	0	DRY	0	
BTPA5	S1620/W170	09/85	7/86	7/86	0	0	DRY	0	
BTPB4	S1620/W170	09/85	7/86	7/86	0	0	DRY	0	
BTPB5	S1620/W170	09/85	7/86	7/86	0	0	DRY	0	
BTPC4	S1620/W170	09/85	8/86	8/86	0.03	0.003	D	5	
BTPC5	S1620/W170	09/85	8/86	8/86	0	0	DRY	0	
BX02	В	06/84	2/85	2/85	0.02	0	DRY	2	
DH15	N1104/E1688	03/84	3/84	5/86	0.009	0	DRY	4	
DH35	G	12/84	1/85	2/85	0.02	0	DRY	4	
DH37	G	12/84	1/85	2/85	0.01	0	DRY	1	
DH39	G	12/84	1/85	2/85	Trace	0	DRY	0	
DH41	G	12/84	1/85	2/85	Trace	0	DRY	0	
DH215	S1960/E153	01/83	2/83	4/84	0.09	0	DRY	18	
DHP401	S1950/E1330	10/86	1/87	3/87	0.008	0	DRY	2	

2-12

Data summarized and rounded from Appendices A and B. * I = Increasing S = Steady D = Decreasing

anhydrite just above clay I. Three of the holes are 15-meters deep, but the one uphole with anomalous seepage behavior (A1X02) is 18-meters long and intersects an additional anhydrite interbed that is not intersected by any of the other observed upholes. All four of these upholes have been observed as part of the BSEP since they were drilled in early 1985. The heated experiments were energized in Room B on April 23, 1985 and in the A rooms on October 2, 1985. All four holes (Appendices A and B) showed a typical seepage rate peak a few weeks after drilling then began to decline. Seepage into BX02 and A3X02 decreased to zero fairly quickly, with the holes becoming essentially dry by October 1985, and February 1986, respectively.

Upholes A1X02 and A2X02 both exhibited an increased seepage rate in the summer of 1986, beginning in June, peaking in August, and declining back to May rates by October. The fact that the peak occurred in the summer is likely to be a coincidence. It is probable that the increased inflow is related to the time since excavation (~ 2 years) or the time since heating of the rooms began (~ 1 year). We suggest the phenomenon is most likely associated with excavation-induced parting along anhydrite Marker Bed 138 and underlying clay K, that may additionally be driven by thermal effects resulting from heating of the rooms. Seepage into A2X02 continued to drop off and the hole became dry by September 1987.

Seepage into A1X02 became difficult to measure in the fall of 1986 due to a blockage developing in the collecting device, which was completely plugged by December 1986. Repeated attempts to open the tubing were unsuccessful and the entire collecting system was replaced at the end of June 1987. The new system functioned properly and seepage rates increased during the winter of 1987 through 1988, reaching a maximum in March 1988. Seepage rates began to decline and were still doing so at the end of December 1988.

2.1.3.2 Upholes in Room G and coefficient and the sport of the

Four 15-meter long upholes in Room G have been observed since they were drilled in January 1985. Very little moisture seeped into any of these holes, although moist areas and salt crusts occurred around each of them. A small amount of moisture accumulated in the collecting device attached to DH39 in March 1985, but otherwise the collecting container did not contain measurable amounts of brine. Detectable amounts of moisture stopped accumulating in DH41 in February 1986, in DH37 in July 1986, and in DH35 in September 1986.

2.1.3.3 BTP Upholes at S1620/W170

Six upholes were drilled in this location in July 1986 to evaluate relative variations in brine seepage from different horizons above the repository-level excavations. The shallow holes (BTPA4 and BTPA5) are open for the first 1.4 to 1.6 meters above the back and penetrate the halite units below anhydrite B, but not anhydrite "b" and clay G. Two holes of intermediate lengths (BTPB4 and BTPB5) are cased and grouted to approximately 2 meters and are open from there to approximately 3 meters, through the zone that contains anhydrite "b" and clay G. The deepest holes (BTPC4 and BTPC5) are cased and grouted through the anhydrite and clay zone and are open from approximately 4.2 to 5.5 meters in the clear halite between anhydrites A and B. All the holes were sealed at the collar; thus it is unlikely that evaporation into the repository atmosphere was significant in reducing apparent brine volumes accumulated by the collecting system.

All of the holes, except for one of the longest (BTPC4), were dry. BTPC4 started to produce some brine in August 1986, on the order of 0.02 liter per day, and declined to approximately 0.003 liter per day by October 1988 (Appendices A and B). In December 1986, the W170 drift was extended southward causing stress redistributions to occur around the intersection. A slight increase in brine seepage occurred, similar to the more obvious response that occurred in DH215 (Section 2.1.3.4). The BTP holes are no longer being observed as part of the BSEP.

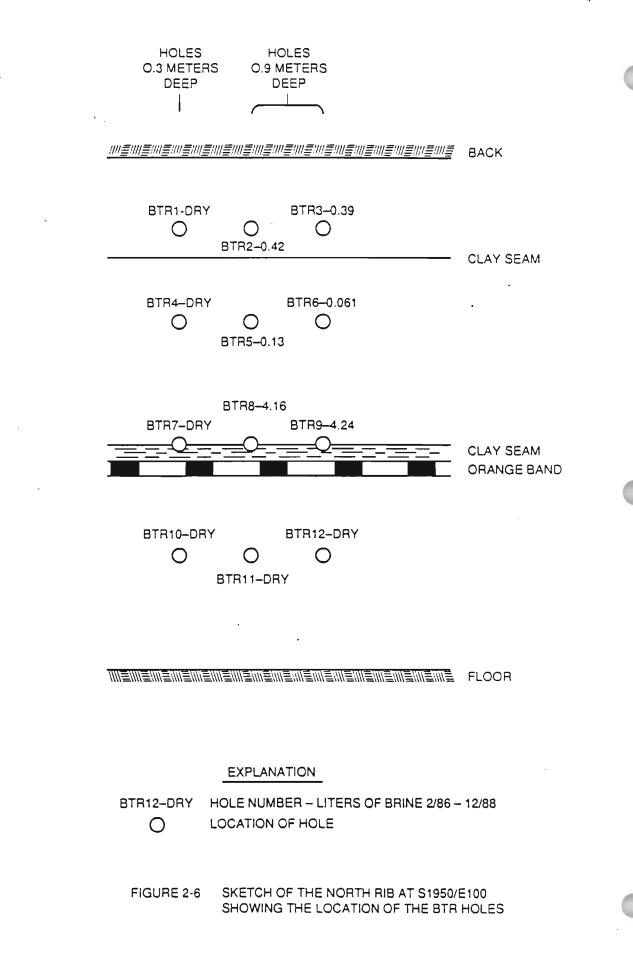
2.1.3.4 Uphole DH215 at S1950/E153

This part of the E140 drift was mined in January 1983. Uphole DH215 was drilled at S1950 shortly after excavation. In the spring of 1984, brine was noticed dripping from the hole and the hole was fitted with a brine collection device in April 1984. In November 1985, the floor of the E140 drift was lowered and the S1950 cross drift was cut. Shortly thereafter, brine seepage into this uphole increased threefold. Deal and Case (1987) described the excavation and seepage history at this location and stated that the change in seepage rates "almost certainly reflect changes in the stress distribution in the disturbed zone in the immediate vicinity of the repository excavations."

Seepage into this hole has continued to be monitored (Appendices A and B). Inflow reached a maximum in January 1986 and then began to decline. By October and November of 1986, the seepage into the hole had almost completely ceased, but then began to pick up again in February and March 1987. Seepage rates then decreased over the summer of 1987. The last brine was collected at this location in September 1987. It remained dry throughout 1988.

2.1.3.5 Uphole DHP at the Southeast Corner of Panel 1

Uphole DHP401 is a 15-meter-long observation hole drilled in the southeast corner of Waste Storage Panel 1 at S1950/E1330. It was completed in January 1987. A small amount of brine seeped into the hole during 1987 (Appendix A), accumulating a total of 2.36 liters by March 1988. Due to construction activities, the collecting device was removed from the hole and not reinstalled until October 1988. No brine had accumulated by the end of 1988.


2.1.4 Horizontal Holes

An array of horizontal holes was drilled into the north rib of the S1950 drift at about E100. The holes were drilled as part of the BSEP to investigate any easily observed variability in seepage from different stratigraphic horizons exposed in the facility-level excavations. Figure 2-6 is a sketch showing the locations of the holes and their stratigraphic positions. The detailed stratigraphy of the facility level is shown in Figure 2-2. The holes, numbered BTR1 through BTR12, are inclined slightly downward so that the end of the hole is lower than the collar.

This segment of the drift was excavated on January 31, 1986. The holes were drilled on February 27, 1986, approximately 1 month after the drift surface was cut. Suction soil moisture collecting devices were placed in the holes the following day and the openings were sealed to prevent evaporation and the loss of brine.

The brine seepage data for these holes are included in Appendix A and summarized in Table 2-3. The shallow (~ 0.3 meters deep) holes have never produced brine. The deeper holes (~ 0.9 meters deep) show distinct differences related to the stratigraphy and time since excavation.

The holes (BTR11 and BTR12) in the lower unit of clear halite near the floor were the driest and did not produce measurable quantities of brine. The holes (BTR8 and BTR9) penetrating the orange band and the clay seam above it were the most moist, followed by holes (BTR2 and BTR3) drilled in a unit containing some clay and intersecting a small clay seam. The holes (BTR5 and BTR6) in slightly clayey halite produced only small amounts of brine. These observations corroborate those in other sections of this report that note a correlation of moisture content and brine inflow with the amount of clay present in the salt.

TABLE 2-3

BRINE ACCUMULATION SUMMARY FOR HORIZONTAL HOLES AT S1950/E100

DRIFT EXCAVATED: 1/86 HOLES DRILLED: 2/86 HOLES FIRST OBSERVED: 3/86

HOLE	DEPTH OF HOLE (m)	APPROX. MAXIMUM INFLOW (l/DAY)	APPROX. INFLOW 12/88 (I/DAY)	INFLOW TREND 12/88 (I,S,D)*	DRY SINCE	APPROX. TOTAL VOL. REMOVED BY 12/88 (<i>l</i>)
BTR1	0.3	0	0	DRY	02/86	0
BTR2	1.0	0.015	0	DRY	10/88	0.42
BTR3	1.0	0.001	0	DRY	10/88	0.39
BTR4	0.3	0	0	DRY	02/86	0
BTR5	0.9	0.001	0	DRY	10/87	0.13
BTR6	0.9	0.001	0	DRY ·	11/86	0.06
BTR7	0.3	0	0	DRY	02/86	0
BTR8	0.9	0.04	0	DRY	02/88	4.16
BTR9	0.9	0.02	0	DRY	07/88	4.24
BTR10	0.4	0	0	DRY	02/86	0
BTR11	0.9	0.001	0	DRY	09/86	0.1
BTR12	0.9	0.0004	0	DRY	03/86	0.01

Data summarized and rounded from Appendices A and B. Hole locations shown in Figure 2-6.

- * I = Increasing
 - S = Steady
 - D = Decreasing

Maximum seepage in the rocks near the excavation surface seems to take place approximately 11 to 19 months after excavation (Appendix A). This can be seen best in the data for BTR8 and BTR9, during the time period from November 1986 through July 1987. The same seems to occur in BTR6. Maximum seepage into BTR2 appears to occur between December 1986 and March 1987 and into BTR3 between March 1987 and October 1987.

All of these holes have now stopped producing measurable quantities of brine. They are no longer monitored as part of the BSEP.

2.1.5 Damp or Wet Areas on Floors

Moist areas have been observed on the floor of the WIPP workings and have previously been discussed by Deal and Case (1987) and Deal and others (1987). Presently, there is only one sizeable, persistently, moist area.

Room G was excavated in November 1984. In August 1985, a small area of damp muck along N1100 was noticed on the floor at approximately E1140, adjacent to the south rib. In November 1985, the damp area had expanded in size to approximately 5 meters eastwest and approximately 4 meters north-south on the floor of the drift. The bedrock salt floor at this location is covered with several inches of partially consolidated salt muck saturated with brine, which was evaporating into the repository air, forming a salt crust and cementing the surface of the muck. In November 1985 a small pit was excavated by hand through the salt muck down to the level of the bedrock. Brine inflow measurements were made by evacuating this small sump, but only partial dewatering of the saturated muck on the floor of the drift was achieved. As noted in Deal and others (1987), the resulting values calculated for seepage rates in terms of liters per day are quite irregular as a result of incomplete and inconsistent dewatering of the muck (Appendices A and B).

Additionally, it was realized that a reduction in the frequency of brine collection from every week or two to once a month in November 1986 resulted in seemingly reduced seepage rates. Approximately the same amount of brine was being collected each time, probably because that was the maximum amount of brine that could be collected with the existing techniques, regardless of whether collections took place every 2 weeks or every month. In July 1987, we returned to sampling every week or two, and the calculated seepage rates returned to the same values we had obtained earlier. It seems clear that the apparent reduction of inflow rates between November 1986 and July 1987 reflects changes in sampling technique rather than a change in the actual seepage rate.

To improve our ability to sample at this location, a small sump, approximately 45 centimeters deep and 45 centimeters in diameter, was drilled in the floor at this location. The idea was to provide a drain and collecting sump for the brine that saturated the muck on the floor, and not to drill a "well" to a brine-producing zone. The sump has worked quite well; brine can be seen slowly seeping into the sump at the muck-bedrock interface 2 or 3 centimeters below the floor. A generalization of the data is that the seep in Room G has been producing approximately 0.5 liter of brine per day from December 1985 through December 1988. Over 440 liters of brine have been collected and measured in that time and more brine is known to have evaporated into the repository air.

The chemical data for the brine collected from G Seep (Section 3.1.3) indicate differences from the brine obtained from uncontaminated downholes. Evaporation is obviously taking place at G Seep, but that alone is not sufficient to account for all the differences in the brine chemistry. In order to obtain better seepage numbers and brine chemistry that may be less altered by evaporation, the collecting sump was fitted with a cover made from brattice cloth in August 1988.

2.2 <u>MEASUREMENT OF RIB WEEPS: QUANTITATIVE ESTIMATES OF SALT</u> ENCRUSTATION WEIGHTS AND INFERRED BRINE VOLUMES

2.2.1 Introduction

Small encrustations of precipitated salt tend to develop on newly excavated portions of the underground workings at the WIPP facility. The encrustations, sometimes called salt efflorescences, result from the evaporation of brine draining from the adjacent salt and often take the form of "buttons" or larger masses, depending upon the amount of brine available.

The salt efflorescences on the ribs are quite noticeable, thus are often the subject of comment when the topic of brine inflow arises, but quantification of the brine required to form them had not been attempted prior to this program. In order to quantify the amount and distribution of the brine, the amounts of salt that developed as encrustations were measured on selected portions of the ribs. Based upon the measurements, the amounts of brine required to form those encrustations were estimated.

2.2.2 Methods

Three areas with well-developed encrustations were selected. These are: (1) Area R1S, located on the south rib of S1950/W120; (2) Area R2S, located on the south rib at the

extreme west end of Room G (N1100); and (3) Area R3S located on the east rib of W170/S1750.

At each location a randomly chosen section of rib was gridded on 0.3 meter intervals using a Ramset gun, nails, and nylon string. A total of 3.1 meters horizontally and 2.4 meters vertically were gridded, yielding a measured area of 7.4 square meters in all three cases. The grid was centered vertically between the back and the floor of the drifts and the position of the orange band and other stratigraphic markers were noted on the field data sheets. The encrustations within each square-meter area were carefully collected by scraping the wall and allowing the loosened material to fall into a tray held beneath the square. In general, the encrustations were surprisingly easy to remove, particularly if they were relatively wet.

The material from each square-foot area was placed into individual plastic bags, labeled, and sealed to prevent moisture loss. Upon return to the surface, the material from each square was weighed and heated to 250°C until the weight stabilized as water was lost from the sample. The dry weight of each sample was determined and the water loss from each sample was calculated as a percentage of loss compared to the original weight of the sample.

2.2.3 Data

The two quantities, dry weight and percentage water loss, were ascribed to the center of the gridded square for the purposes of further interpretation. It is recognized that for any given square-meter area, it is possible that some encrustation could have resulted from brine that flowed down the vertical surface from above. Similarly, some brine that seeped to the surface within the area may have flowed downward to lower areas before crystallizing.

Some additional uncertainties exist in the gridded values obtained for each square foot due to the collection techniques. Although care was taken to completely scrape the ribs of all encrusting material, some halite was left behind due to the inability to completely remove it in areas where the encrustation was merely a thin film on the rock surface. This type of error yields an underestimation of the encrustation weight. Conversely, sometimes small amounts of clay and salt not associated with the encrustation were incorporated in the samples. Although these amounts were small, their effect would be to provide overestimates of the dry weights of the samples. Given the listed uncertainties, the

estimated accuracy of the dry weights due to sampling error is ± 5 percent. The summary of the rib encrustation data for each 7.4-square-meter area is given in Table 2-4.

2.2.4 Discussion

The calculation based on the dry salt-encrustation weight results in the amount of brine required to produce the salt encrustations measured in each area. If the assumption is made that the brine totally evaporates, then the true volume of brine required to produce the weep accumulations would be underestimated. Krumhansl and others (1987) noted that chemical analyses of weep encrustations are deficient in magnesium in relation to typical brine geochemistries. They ascribed this difference to the difficulty in precipitating the highly soluble magnesium salts by evaporation into facility air at ambient temperatures, and they proposed that there is a loss of magnesium-rich liquids from the weep vicinity, perhaps through small cracks and fissures within the ribs. These cracks and fissures developed due to the creep closure of the rooms.

Estimation of the amount of brine required to form the weeps, therefore, must be corrected to reflect the greater proportion of halite in the weeps in relation to the halite content of the brines, based on sodium and chlorine concentrations. The following minerals appear to be the most important in the system Na-K-CI-SO₄-H₂O:

Carnallite	KMgCl₃ • 6H₂O
Sylvite	KCI
Halite	NaCl
Bischofite	MgCl ₂ • 6H ₂ O
Kainite	MgSÕ₄ • KČI • 3H₂O
Keiserite	MgSO₄ ∙ H₂O
Bloedite	Na ₂ Mg(SO ₄) ₂ • 4H ₂ O
Leonite	K₂Mg(SO₄)₂ • 4H₂O
Glaserite	KNa₃(SO₄)₂
Lowewite	Na ₁₂ Mg ₇ (SO ₄) ₁₃ • 15H ₂ O

Krumhansl and others (1987) performed x-ray diffraction studies of the weep encrustations from Rooms J and B in the experimental area. They determined that only halite and sylvite were volumetrically important, with kainite and carnallite being present occasionally. Although other mineralogic phases may occur in the encrustations as well, they probably do not affect the overall, gross composition of the encrustations. Of the phases recognized in the encrustations, only halite contains sodium.

TABLE 2-4 RIB ENCRUSTATION DATA

Sample	Original	Avg. Water	Dry	Date	Time Since	
Area	Weight (gm)	Loss (%)	Weight (gi	m) Excavated	Excavation	
R1S	1538.34	11.3	1364.65	(12/04/86)	502 days	
R2S	798.98	3.7	771.12	(01/02/85)	1211 days	
R3S	361.02	12.8	314.80	(12/15/86)	520 days	

.

To estimate the amount of brine required to form the salt encrustations, the following assumptions were made:

- The salt encrustations are comprised of halite and minor sylvite, with trace occurrences of carnallite and kainite.
- The average composition of the J Room salt encrustations (derived from analyses by Krumhansl and others, 1987) is representative of the salt encrustations sampled for the present study.
- The composite brine reported in Table 3-5 (UNC Geotech data) is typical of the brine which evaporated to form the salt encrustations.
- The minerals halite and sylvite control the molar Na/K ratio in the brine, and this
 ratio can be estimated from the cotectic point in the system Na-K-CI-H₂O.

Using these assumptions and the supporting analytical data on the salt encrustations and brine, two independent mass balance equations were set up to account for the molar ratio of sodium to potassium in the brine (at the cotectic point) and in the salt encrustations. These equations were solved simultaneously to calculate the moles of sodium and potassium removed from a liter of brine (e.g., the moles of sodium precipitated as halite). Using the moles of sodium removed from the brine and mole fraction data for sodium in the salt encrustations, the total molar mass removed from the brine was calculated. The moles removed from the brine for other principal constituents in the salt encrustations (i.e., potassium, magnesium, chlorine, and sulfate) were then calculated from the mole-fraction and the total-molar-mass values. All molar values were converted to grams to yield a calculated evaporative precipitate of 233 grams per liter (g/L) of brine.

Given these values, an estimate on the upper bound for the volume of brine required to form the salt encrustations can be set using the expression

$$V_{b} = \frac{W_{s}}{233 \text{ g/L}}$$

(2.1)

where

 V_b = The volume of brine required to form the salt encrustations, W_s = Total dry weight of salt encrustations taken from the rib, and 233 g/L = The grams of solid precipitated from a liter of brine. Based upon this relationship, the inflow rates can be calculated (Table 2-5), assuming that only the ribs on the long sides of the room contribute to flow (rib area for a storage room is equal to $91.4m \times 4.0m \times 2$ ribs, or 731 square meters) and that the flow is constant over the entire rib area through time.

The assumption that the flow is constant with time over the entire rib area is probably not warranted. After 2 to 3 years, the encrustations cease to grow and become dry. Several explanations for the cessation in activity may be envisioned: (1) a decrease in driving pressure for the brine; (2) dewatering of the near field through the opening of cracks within the ribs; (3) macrofracturing, which cuts off the source of the brine; or (4) a combination of two or more of these factors. Comparing the 0.3-meter grid squares that have higher dry weight and greater water loss with the mapped geology at each location strongly suggests that encrustation development is a function of stratigraphy. Encrustations are best developed in the vicinity of this orange marker band (Map Unit 1, Figure 2-2) and clay F (just below Map Unit 5, Figure 2-2), and are least developed in the clear halite units.

There is a lateral variation along any given stratigraphic horizon that suggests the main development of encrustations appears to come from point sources that sometimes coalesce if the flow is sufficiently great. Field examination of the sources of encrustations confirms that the source seems to have a point origin in many cases.

These three sampling locations were revisited 1 year after the initial sampling and only very small amounts of encrustations had reestablished themselves. This is consistent with the observation (Deal and Case, 1987; Deal and others, 1987) that the encrustations cease to grow a few years after initial excavation.

TABLE 2-5

ESTIMATED BRINE FLUX TO 7.4 m² AND 731 m² RIB AREAS

۰.

Sample Area	Estimated Rib Flow in 7.4 m ²	Estimated Rib Flow in 731 m ²	Estimated Annual Rib Flow Rate Over The Total Time the Salt Encrustations Were Accumulating
R1S	5.9 liter	571 liter	415 liter/year
R2S	3.3 liter	323 liter	97 liter/year
R3S	1.4 liter	132 liter	93 liter/year

.

3.0 GEOCHEMICAL AND BACTERIOLOGICAL PROPERTIES OF THE BRINE

3.1 BRINE GEOCHEMISTRY

3.1.1 Introduction

A major objective of the BSEP has been to characterize the composition of brine collected from drillholes in the Salado Formation at the facility horizon. Characterized brines will be used to estimate the chemistry of a composite brine that may develop after closure of the repository (Deal and Case, 1987).

The BSEP has been hindered by difficulties (addressed below) encountered in the sampling and analysis of brines. Recently, quantitative data utilizing state-of-the-art analytical techniques for brine chemistry have become available and over 160 brine samples, from 25 drillholes in the Salado Formation at the WIPP, have been analyzed by two independent laboratories, UNC Geotech in Grand Junction, Colorado and IT-Export in Pittsburgh, Pennsylvania for up to 25 chemical parameters. Two laboratories are used to provide an independent check on data precision and accuracy. The results obtained from the two laboratories may be slightly different for a given constituent, primarily due to the use of different analytical techniques (see Section 3.1.2). UNC Geotech has been used as the principal laboratory for analyses, and several samples with a limited quantity of brine were exclusively analyzed by UNC Geotech. A complete listing of the drillhole number, analytical lab, date, and analytical parameters for each analysis is presented in Appendix C.

3.1.1.1 Sampling Problems

Brine sampling procedures and problems have been documented in the BSEP Phase I report (Deal and Case, 1987). The most notable observations and problems are:

- The inflow rates appear to depend on the number of thin clay and anhydrite beds or open fractures intersected by drillholes,
- The chemistry of some samples has been altered by exposure to mine ventilation air during the collection and sampling process,
- The difficulty in collecting all downhole brine due to salt crystals and waste rock from mining activities interfering with check-valve seating and bailing techniques,
- The difficulty of placing airtight seals around uphole collars to prevent brine evaporation,

- The difficulty in recovering a sufficient sample volume from soil moisture sampling devices placed in horizontal holes, and
- The presence of organic solvents and fluids associated with mining activities that have contaminated some sampling holes.

These observations and problems affect the collection and analytical results of BSEP brines. Variable and low-inflow rates of brine to the drillholes preclude following the sampling and protocol procedures established by the U.S. Environmental Protection Agency (National Water Well Association/U.S. Environmental Protection Agency, 1986). Additionally, a sufficient volume of brine for analysis (e.g., ~ 1 liter) may take a week to several months to accumulate; thus, brine samples recovered for analysis are exposed to mine ventilation air for some period of time.

Collection of limited volumes of sample from upholes (drillholes placed into the back of the drift) and horizontal holes (drillholes placed into the ribs of the drift) has resulted in very few analyses for these holes, relative to downholes (drillholes placed into the floor of the drift). The chemistry of uphole samples has usually been modified by evaporation of water and precipitation of halite.

Analytical data obtained from collected brines must be interpreted cautiously. For instance, Eh and total inorganic carbon (TIC) measurements obtained from collected brine may reflect equilibration with atmospheric gases. Furthermore, long sample-accumulation periods increase the probability of evaporation and possible contamination by fluids from mining activities and/or spreading of brine on the drift floors for dust control.

3.1.1.2 Analytical Problems

Most routine analytical techniques used on aqueous solutions with low total dissolved solids (TDS), such as atomic-absorption spectroscopy (AAS) and inductively coupled-argonplasma (ICAP) spectrometry, are difficult to apply to brine without some modification or substitution of an alternative technique. Some of the most frequent problems associated with the analysis of brines are:

 High TDS will plug the nebulizer (AAS and ICAP) and severely disturb the flame (AAS) or plasma (ICAP), resulting in high backgrounds. Therefore, the sample is diluted prior to analysis, which results in poor precision for trace elements.

- Solutions with high TDS commonly encounter matrix enhancements, resulting in higher apparent concentrations for some major and trace elements. High concentrations of sodium and potassium in solution commonly cause this type of enhancement.
- High concentrations of alkaline earth metals (e.g., calcium and magnesium) can cause elemental interferences with many trace elements of interest using AAS and ICAP. Unless properly corrected, erroneous results will be reported.
- Unusually high ratios of elements within a group, such as the halogens, can cause large errors in specific ion-electrode determinations (e.g., chlorine masking fluorine when measured by an LaF electrode). Procedures utilizing specific ion electrodes have to be modified to include standard addition techniques to eliminate possible interferences.

The UNC Geotech and IT-Export laboratories have interacted closely to identify areas of concern for the analysis of brines. For some types of analyses, existing methods were modified or alternate methods were used (e.g., iodine by ion chromatography [UNC Geotech] and silica by flow-injection analysis [IT-Export]). Table 3-1 summarizes the analytical techniques used by the laboratories.

3.1.1.3 Contamination of BTP and DHP402A Holes

All BTP samples and DHP402A samples collected on August 22, 1988, display aberrant results compared to the majority of brine samples analyzed. BTP samples have high pH, calcium and strontium values, and low bromine and boron concentrations when compared to a typical BSEP brine (DH36, Table 3-2). DHP402A samples (collected August 22, 1988) have element concentrations which lie between representative BSEP brines and water present in the air intake shaft (AIS) sump (Table 3-2). Samples appearing in Appendix C with the BTP prefix and DHP402A (downholes) are considered contaminated for the following reasons:

- Some of the BTP holes have been grouted during completion activities and leaching of the grout material could be occurring if the brines are in contact with the grout (e.g., high pH and calcium values and multiple inflection points on alkalinity titration curves [Figure 3-1], probably from organic acids in the grout).
- Water present in the AIS sump, mostly Culebra water modified by dissolution of salts in the AIS and variable amounts of construction brine (B & E brine in Table 3-2), is collected and spread underground to minimize dust in the mine. An effort has been made to restrict spreading in areas where BSEP holes occur, but spreading has occurred in the area of BTP and DHP402A holes.

TABLE 3-1

ANALYTICAL METHODS USED IN THE ANALYSIS OF BSEP BRINES

ANALYTICAL METHOD

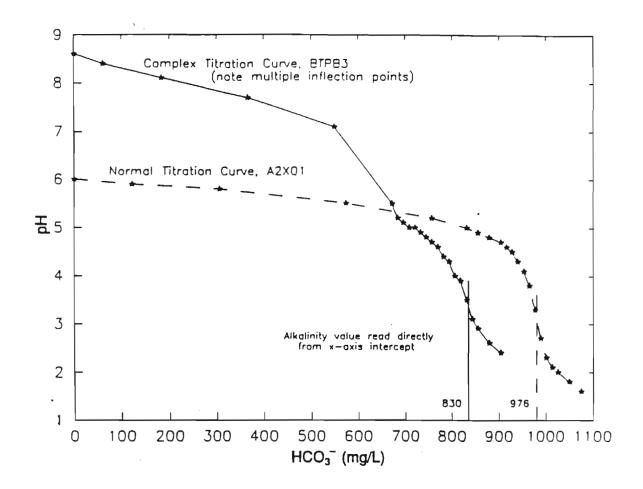
1

PARAMETER	UNC GEOTECH	IT-EXPORT
SG & TDS	Gravimetric	Gravimetric
рН	Electrometric	Electrometric
Alkalinity	Titrimetric	Titrimetric
Br	lon chromatography	Spectrophotometric
CI	Mohr's titration	Titrimetric
F	lon chromatography	Potentiometric
Ι	lon chromatography	Titrimetric
NH₄⁺	Spectrophotometric	Titimetric
NO ₃ ⁻	lon chromatography	lon flow injection
PO₄ ⁻³	lon chromatography	Was not determined
SO ₄ -2	Ion chromatography	Spectrophotometric
TIC	Coulometric titration	Coulometric titration
TOC	Coulometric titration	Was not determined
AI	AAS, furnace	ICAP
As	AAS, flameless	AAS, furnace
В	ICAP	ICAP
Ba	ICAP	ICAP
Ca	ICAP	ICAP
Fe	ICAP	ICAP
К	AAS, flame	ICAP
Mg	ICAP	ICAP
Mn	ICAP	ICAP
Na	AAS, flame	ICAP
Si	ICAP	lon flow injection
Sr	ICAP	AAS, flame

AAS = Atomic-absorption spectroscopy. ICAP = Inductively-coupled-argon-plasma spectroscopy.

TABLE 3-2

рН	EAlk mg/L	Br mg/L	CI mg/L	SO₄-² mg/L	B mg/L	Ca mg/L	Mg mg/L	K mg/L	Na mg/L	Sr mg/L
7.1	122	42	188000	6170	13	953	1040	1720	118000	31
	195		189000	4063		1840	72	1720	122000	01
8.0	348	358	192000	11600	116	554	6630	9690	106000	51
7.9	99	22	20500	5650	30	1000	515	410	12500	12
6.0	831	1450	195000	16300	1490	340	18300	18200	87200	1
6.2	451	95	192000	14800	640	469	12900	10700	93200	20
	7.1 8.0 7.9 6.0	7.1 122 195 8.0 348 7.9 99 6.0 831	mg/L mg/L 7.1 122 42 195 348 358 7.9 99 22 6.0 831 1450	mg/L mg/L mg/L 7.1 122 42 188000 195 189000 8.0 348 358 192000 7.9 99 22 20500 6.0 831 1450 195000	pH EAik mg/L Br mg/L CI mg/L SO4 mg/L 7.1 122 42 188000 6170 195 189000 4063 8.0 348 358 192000 11600 7.9 99 22 20500 5650 6.0 831 1450 195000 16300	pH EAIK mg/L Br mg/L CI mg/L SO ₄ mg/L Br mg/L SO ₄ mg/L Br mg/L 7.1 122 42 188000 6170 13 195 189000 4063 348 358 192000 11600 116 7.9 99 22 20500 5650 30 6.0 831 1450 195000 16300 1490	pH EAlk mg/L Br mg/L CI mg/L SO ₄ mg/L B mg/L Ca mg/L 7.1 122 42 188000 6170 13 953 195 189000 4063 1840 8.0 348 358 192000 11600 116 554 7.9 99 22 20500 5650 30 1000 6.0 831 1450 195000 16300 1490 340	pH EAlk mg/L Br mg/L CI mg/L SO ₄ mg/L B mg/L Ca mg/L Mg mg/L 7.1 122 42 188000 6170 13 953 1040 195 189000 4063 1840 72 8.0 348 358 192000 11600 116 554 6630 7.9 99 22 20500 5650 30 1000 515 6.0 831 1450 195000 16300 1490 340 18300	pH EAlk mg/L Br mg/L CI mg/L SO ₄ mg/L B mg/L Ca mg/L Mg mg/L K mg/L 7.1 122 42 188000 6170 13 953 1040 1720 195 189000 4063 1840 72 1840 72 8.0 348 358 192000 11600 116 554 6630 9690 7.9 99 22 20500 5650 30 1000 515 410 6.0 831 1450 195000 16300 1490 340 18300 18200	pH EAIR mg/L Br mg/L CI mg/L SO ₄ B Ca mg/L Mg mg/L K Na mg/L 7.1 122 42 188000 6170 13 953 1040 1720 118000 195 189000 4063 1840 72 122000 8.0 348 358 192000 11600 116 554 6630 9690 106000 7.9 99 22 20500 5650 30 1000 515 410 12500 6.0 831 1450 195000 16300 1490 340 18300 18200 87200


ANALYSES OF AIR INTAKE SHAFT (AIS) SUMP, B & E, BTP-C1, CULEBRA, DH36, AND DHP402A WATERS⁽¹⁾

3TP-C1 mean values calculated from data in Appendix C. B & E drilling brine from Deal (written communication). S, DH36 and DHP402A (August analyses) are averages taken from Appendix D (UNC Geotech values). Extended valinity (EAlk) as HCO₃.

nalysis taken from Culebra water entering air intake shaft (Lyon, 1989).

۰.

P:R-1625-T3-2

FIGURE 3-1 EXTENDED-ALKALINITY-TITRATION PLOT FOR HOLES BTPB3 AND A2X01 (SAMPLES 212 AND 214, APPENDIX C)

• Organic solvent vapors are frequently noted during sampling of BTP holes (see total organic carbon [TOC] values in Table 3-3), indicating contamination of these holes.

BTP and DHP402A (August analyses) brines may contain a component from AIS water because most of their parameter values lie between those representing AIS and typical BSEP brine (DH-36, Table 3-2). However, simple mixing of AIS and DH-36 brines cannot account for BTP and DHP402A brine compositions, reflecting the uncertainty in knowing the true composition of the AIS water on the date it was spread and the amount of dissolution and sorption that may have occurred as the spread water passed through salt on the drift floors.

Based on the evidence outlined above, BTP and DHP402A analyses do not represent true BSEP brine compositions and have not been considered in statistical calculations and further discussions. DHP402A results from the September 27, 1988, sampling round show less contamination than results for August 22, 1988 (Appendix C), suggesting typical BSEP brine may be recovered from this hole in future sampling rounds. There is no chemical evidence to suggest that the remaining BSEP brines contain components derived from carbonate waters in the overlying Rustler Formation or brines from the underlying Castile Formation.

3.1.2 Analytical Results

BSEP brines were analyzed for 25 parameters (Table 3-1) that were chosen for the following reasons:

- Seventeen are important seawater components (sodium, magnesium, calcium, potassium, chlorine, bicarbonate, sulfate, boron, silicon, strontium, manganese, fluorine, iodine, barium, phosphate, ammonium, nitrate) and, because BSEP brines are thought to represent seawater that has been evaporated to halite facies deposition, their concentrations must be measured to evaluate brine evolution models.
- Silicon, aluminum, and iron concentrations are useful parameters for evaluating clay diagenesis.
- TIC and TOC were measured to determine their contributions to the alkalinity values.
- Specific gravity and TDS are physical parameters that characterize the gravimetric properties of the brines, and are required in aqueous-speciation models to calculate molal concentrations (moles/kg H₂O) from data reported as milligrams per liter (mg/L).

TABLE 3-3

RESULTS (mg/L) FOR TOTAL INORGANIC CARBON (TIC), TOTAL ORGANIC CARBON (TOC),
ALCOHOL, PHENOL, AND MONOCARBOXYLIC ACIDS

SAMPLE	#HOLE	TIC1	TOC'	METHANOL	ETHANOL	2-PROPANOL	1-PROPANOL	PHENOL	ACETIC	PROPIONIC ACID		BUTYRIC ACID		VALERIC ACID
245-C	BTP B1	102		<5	<5	<5	<5	<1	<5	<5	<5	<5	<5	<5
245-D	BTP B1		472					<1						
247-C	BTP C1	91		<5	<5	<5	<5		<5	<5	<5	<5	<5	<5
247-D	BTP C1		406					<1						
254-C	DH-42A	3.6		<5	<5	<5	<5		<5	<5	<5	<5	<5	<5
254-D	DH-42A		15.7					<1						
260-C	DH-38	4.6		<5	<5	<5	<5		<5	<5	<5	<5	<5	<5
260-D	DH-38		12.7					<1						
265-C	DH-36	3.6		<5	<5	<5	<5		<5	<5	<5	<5	<5	<5
266-D	DH-36		4.1					<1						
275-C	G-SEEP	2.0		<5	<5	<5	<5		<5	<5	<5	<5	<5	<5
276-D	G-SEEP		7.1					<1						
281-C	G-SEEP	2.0		<5	<5	<5	<5		<5	<5	<5	<5	<5	<5
282-D	G-SEEP		12.2					<1						
293-C	BX-01	6.1		<5	<5	<5	<5		<5	<5	<5	<5	<5	<5
293-D	BX-01		22.4					<1				_		
294-C	BX-01	5.6		<5	<5	<5	<5		<5	<5	<5	<5	<5	<5
294-D	BX-01		25.4					<1						
301-C	A1X02	1.5		<5	<5	<5	<5		<5	<5	<5	<5	<5	<5
302-D	A1X02		6.6					<1	_	_		_	_	_
309- C	NG252	6.6		<5	<5	<5	<5		<5	<5	<5	<5	<5	<5
310-D	NG252		2.5	<5	<5	<5	<5	<1	<5	<5	<5	<5	<5	<5

Analyses by Battelle. C and D represent, respectively, unacidified and acidified samples. Less than sign (<) indicates below detection limit. 'Reported as equivalent HCO₃

WP:WIP:R-1625-T3-3

Arsenic was determined to investigate its usefulness as a redox couple, whereas barium concentrations are needed to investigate solid-solution behavior with celestite and possible substitution into anhydrite.

Brine analyses are listed in Appendix C and statistical calculations of the mean and standard deviation appear in Appendix D. The data in Appendix C represent sampling and analyses carried out over the periods April 1987 through September 1988 for UNC Geotech, and November 1987 through July 1988 for IT-Export. Four of the 17 uncontamiated holes (see Figure 2-1 for their locations) have yielded a single analysis (A2X02, BTR8, BTR9, DH15, and DH40), and 13 have two or more analyses each (A1X01, A1X02, A2X01, A3X01, BX01, DHP401, DH36, DH38, DH42, DH42A, GSEEP, L1X00, and NG252). Holes with a single analysis were not used in statistical calculations and are not discussed below. Ranges in values for the mean and standard deviation were calculated for the 13 holes listed above. Minimum and maximum standard deviation and mean values reported in the text are followed by identification of the analytical laboratory that provided the results.

Each of the analytical groups (IT-Export and UNC Geotech) has been treated separately in the data reduction to evaluate variations in brine chemistry resulting from different procedures and techniques within laboratories. A relative measure of these differences is the range of minimum and maximum values for the mean and standard deviation (Table 3-4). Differences in the number of significant figures reported for a given analyte (Table 3-4) result from variation in the analytical techniques of the laboratories (Table 3-1) and dilution factors. Tables 3-1 and 3-4 should be referred to when the presentation of results cites analytical methods and/or range values.

To simplify presentation and discussion of the statistical results in Appendix D, the parameters in the data base have been divided into four sets, distinguished by the physical and chemical properties of mass, element complexes, halogens, and metals. The members of each set are as follows:

- Set One: Specific gravity and TDS,
- Set Two: Alkalinity (titrated to endpoint pH = 4.5), extended alkalinity (titrated to endpoint pH = 2.5), TIC, TOC, nitrogen (ammonium and nitrate), phosphate, and sulfate,
- Set Three: Bromine, chlorine, fluorine, and iodine, and

TABLE 3-4

_			VALU	ES FOR	BSED B	RINE	S FRO	M THE W	PP REP	OSITORY	HORIZON				,
IT Export	(7 holes)														
	SG g/cc	TDS mg/L	pH mg/L	EAlk mg/L	All mç	(^{a)} g/L	Br mg/L	Cl mg/L	⁻F mg/L	l ^(b) mg/L	NH₊+ mg/L	NO₃ ⁻⁽ mg/L	5)	SO ₄ -2 mg/L	TIC ⁽ mg/l
X min X max	1.21 1.23	330 000 350000	5.7 6.1	693 925			1280 2000	173000 199000		21 22	108 150	0.03		15200 33100	5 5
S min S max	<0.01 0.02	2000 11000	0.0 0.2	9 88			40 270	3000 11000		1 2	9 20	0.01 1.01		600 2200	0 0
	Al ^(e) mg/L	As mg/L	B mg/L	Ba ^(e) mg/L	(m	Ca g/L	Fe mg/L	, K mg/L	Mg mg/L	Mn mg/L	Na mg/L	Si mg/L		Sr	
X min X max		0.006 0.020	1480 1860			260 330	2 4	16100 20800	16400 32500	0.8 5.1	67500 98700	0.4 0.8		1.0 6.9	
S min S max		0.001 0.010	40 160			5 39	0 1	300 2100	400 1800	0.0 0.2	900 10600	0.1 0.2		0.1 0.3	
UNC Geo	tech (13 hole	<u>s)</u>													
	SG g/cc	TDS mg/L	рН	EAlk mg/L	All mg		Br mg/L	Cl mg/L	F mg/L	l mg/L	NH₊⁺ mg/L	NO ₃ ^(۱) mg/L		SO _₄ -² mg/L	TIC mg/L
X min X max	1.22 1.25	368000 402000	5.6 6.4	818 1253	783 911	_	1340 2410	187000 202000		12.2 17.9	145 205	3 10		16000 31800	2.8 95.1
S min S max	<0.01 0.01	3000 39000	0.1 0.6	13 265	11 66		20 510	1000 9000		0.7 8.3	5 40	1 11		700 3700	1.2 94.5
	Al ^(g) mg/L	As mg/L	B mg/L	Ba mg/L	Ca mg/L	Fe ^(g) mg/L		K mg/L	Mg mg/L	Mn mg/L	Na mg/L	Si mg/L	Sr		
X min X max	0.109 0.989	0.001 0.012	1420 1880	0.015 0.074	270 381	0.25 15.60		15100 22700	16200 44300	0.67 7.99	50800 94700	1.22 5.14	0.87 5.89		
S min S max	0.080 0.833	0.000 0.006	80 240	0.00 2 0.057	11 65	0.02 15.50		300 2700	900 3000	0.03 0.66	400 4800	0. 14 2.60	0.06 0.77		

RANGE OF MEAN (X) AND STANDARD DEVIATION (S)

Reported ranges taken from the results of simple statistic calculations appearing in Appendix D. Abbreviations as follows: TDS = Total dissolved solids; EAlk = extended alkalinity (titrated to endpoint pH of 4.5); TIC = total organic carbon. EAlk, Alk, and TIC reported as equivalent HCO₂.

Key:

^(a)Analyses not available. ^(d)Analyses available for 5 holes. ^(g)Analyses available for 12 holes.

^(b)Analyses available for 3 holes. ^(e)Below detection limit.

^(c)Analyses available for 6 holes. ^(f)Analyses available for 10 holes.

Set Four: Aluminum, arsenic, barium, boron, calcium, iron, magnesium, manganese, potassium, silicon, sodium, and strontium.

3.1.2.1 Set One Parameters

3.1.2.1.1 Specific Gravity (SG)

Mean values for SG range from 1.21 to 1.23 (IT-Export) and 1.22 to 1.25 (UNC Geotech) grams per cubic centimeter (g/cc), with standard deviations less than 0.02 g/cc (Table 3-4). There is excellent agreement between laboratories on all samples.

3.1.2.1.2 Total Dissolved Solids (TDS)

TDS mean values show a range of 330,000 to 350,000 (IT-Export) and 368,000 to 402,000 (UNC Geotech) mg/L and standard deviations of 2,000 (IT-Export) to 39,000 (UNC Geotech) mg/L (Table 3-4). For identical splits of a sample, the IT-Export mean values are 30,000 to 40,000 mg/L lower than the UNC Geotech values. This difference probably results from IT-Export drying the precipitates at 180°C, which could result in dehydration of complex salts (e.g., MgCl₂:6H₂O and MgSO₄:7H₂O), versus 105°C for UNC Geotech. To substantiate this hypothesis, UNC Geotech redetermined TDS on two NG252 samples (102 and 103, Appendix C; TDS = 377,000 mg/L at 105°C) at a temperature of 230°C and was able to obtain values within the range reported by IT-Export for NG252 (TDS = 328,000 to 347,000 mg/L, Appendix C).

3.1.2.2 Set Two Parameters

To facilitate comparison of results for alkalinity, extended alkalinity, TIC and TOC, these parameters are reported as equivalent bicarbonate (HCO_3^{-}) .

3.1.2.2.1 Alkalinity and Extended Alkalinity

Results for alkalinity and extended alkalinity are reported as equivalent bicarbonate. Alkalinity (titrated to endpoint pH = 4.5) measurements were replaced by extended alkalinity (titrated to endpoint pH = 2.5) determinations in November 1988. The purpose of this extended titration is to identify any organic or weak inorganic acids that may be present and contributing to the alkalinity. As a result of this change, no alkalinity measurements are available for IT-Export results (i.e., no reported results prior to November 1988), and a limited number of holes (DH36, DH38, DH42A, GSEEP, NG252) analyzed by UNC Geotech prior to November 1988 have alkalinity and extended alkalinity measurements. UNC Geotech samples analyzed for alkalinity and extended alkalinity have extended alkalinity values 26 to 41 mg/L greater than alkalinity values. These differences may arise from low concentrations of TOC in BSEP brines (see Table 3-3) or protonation of weak acid species (e.g., $HB_4O_7^- + H^+ \rightarrow H_2B_4O_7$) during titration to a lower pH.

Extended alkalinity mean values range from 693 to 925 (IT-Export) and 818 to 1,253 (UNC Geotech) mg/L (Table 3-4). UNC Geotech results are 16 to 250 mg/L greater than results reported by IT-Export on similar holes. Differences greater than 60 mg/L are statistically significant and may arise from variations in the handling, storage, and hold times of the samples prior to analysis.

3.1.2.2.2 Total Inorganic Carbon (TIC)

TIC (reported as bicarbonate) was not determined on samples collected prior to February 1988. Samples analyzed by IT-Export were at or below the analytical detection limit of 5 mg/L. UNC mean values range from 2.8 to 95.1 mg/L and have standard deviations of 1.2 to 94.5 mg/L. Large standard deviations exist for BX01, DH36, and DH42 because of large increases in TIC concentrations reported for samples collected in November 1987, July 1988, and August 1988 (see Appendix C); thus mean values for these holes are anomalously high. Temporal and spatial variations within individual holes and among holes may be due to absorption of atmospheric carbon dioxide (CO₂) by the samples during collection, handling, and holding time prior to analysis. Variation is probably not related to analytical techniques, as determination of TIC is not known to have any interferences due to high TDS in solution.

The maximum TIC concentration (95.1 mg/L HCO_3) cannot account for the lowest extended alkalinity value (693 mg/L HCO_3), implying additional aqueous species must contribute to the alkalinity. Possible contributors to the alkalinity values observed in BSEP brines are organic acids (Section 3.1.2.2.3) and weak inorganic acids of ammonia (Section 3.1.2.2.4.), boron, silicon (both in Section 3.1.2.4.4), and aluminum (Section 3.1.2.4.2). However, only boron concentrations are sufficiently high to significantly contribute to the alkalinity values observed in BSEP brines (Section 3.1.3.2).

3.1.2.2.3 Total Organic Carbon (TOC)

To investigate whether organic carbon was contributing to the alkalinity, BSEP brine samples were sent to Battelle Memorial Institute-Columbus Division to be analyzed for TIC, TOC, short-chain alcohols and phenol, and short-chain aliphatic acid anions. The results are given in Table 3-3. TIC and TOC values (reported as equivalent bicarbonate) are

generally very low, with the exception of two BTP holes contaminated by grout. Alcohol, phenol, and monocarboxylic acid contents were below the detection limit of the analytical method (<5 mg/L). The data in Table 3-3 confirm that neither organic acids nor TIC is responsible for the high alkalinity values. Weak inorganic acid ions of boron, ammonia, silica, and alumina could be contributing to the alkalinity. Of these, boron is the only parameter of sufficient concentration to account for the alkalinity (see Section 3.1.3.2).

3.1.2.2.4 Nitrate (NO3') and Ammonium (NH4*)

The concentration of nitrate in the brines is low, generally below the detection limit of the IT-Export (0.02 to 0.04 mg/L) and UNC Geotech (3 to 10 mg/L) techniques. Six holes have multiple data reported above the detection limit. For these holes, the nitrate mean ranges from 0.03 to 0.70 (IT-Export) and 3 to 10 (UNC Geotech) mg/L (Table 3-4). Holes BX01, DH36, GSEEP and NG252 have data available from both analytical groups; the UNC Geotech mean is 3 to 10 mg/L greater than the IT-Export mean, probably due to different analytical techniques (see Table 3-1). It is difficult to place a high level of confidence in any of the nitrate concentrations because all values are near analytical detection limits.

Ammonium mean values range from 108 to 150 mg/L for IT-Export and 145 to 205 mg/L for UNC Geotech (Table 3-4). For identical holes, IT-Export values are 37 to 55 mg/L lower than those of UNC Geotech because their ammonium values represent nitrogen reported as ammonia (NH₃). A mass conversion was not performed on the IT-Export data due to a delay in receiving confirmation on their analytical method.

Concentrations of ammonium are one to three orders of magnitude larger than nitrate values, suggesting a redox state below +400 mv at pH = 6. This value should be considered an upper bound, due to the probable introduction of atmospheric oxygen, the low rates of equilibration of the redox couple, and the semivolatile nature of ammonia (Section 3.1.3.1). Ammonia is not stable in solutions with pH below 11 (Pourbaix, 1974) and, therefore, is deficient in BSEP brines (pH = 6).

3.1.2.2.5 Phosphate (PO4-3)

IT-Export has not analyzed for phosphate in BSEP brines. UNC Geotech phosphate concentrations are below the detection limit (<1 mg/L) of the ion-chromatographic method, because BSEP brine samples must be diluted by a factor of 40 to keep the sulfate peak sharp on the elution pattern. However, quantitative phosphate values are necessary to

assess the role of microorganisms in the performance of the repository. Therefore, alternative analytical techniques to obtain quantitative phosphate values are currently being investigated in cooperation with UNC Geotech.

3.1.2.2.6 Sulfate (SO4-2)

The sulfate mean values range from 15,200 to 33,100 (IT-Export) and 16,000 to 31,800 (UNC Geotech) mg/L, with standard deviations of 600 (IT-Export) to 3,700 (UNC Geotech) mg/L (Table 3-4). Results from both laboratories on individual holes agree well. Mean sulfate concentrations for A1X02, L1X00, and GSEEP are 5,000 to 18,000 mg/L higher than for all other holes. This discrepancy can be satisfactorily accounted for in A1X02 and L1X00 by evaporation, because bromine, boron, and magnesium have higher concentrations and sodium a lower concentration (probably due to halite precipitation) relative to other holes. However, evaporation alone cannot explain the chemistry of the GSEEP samples because of the relative depletion of chlorine and magnesium and the high sodium concentrations. The anomalous composition of GSEEP is further addressed in Section 3.1.3.3.3.

3.1.2.3 Set Three Parameters

3.1.2.3.1 Bromine (Br) and Chlorine (Cl)

The ranges for bromine and chlorine mean values are, respectively, 1,280 to 2,000 (IT-Export) and 1,340 to 2,410 (UNC Geotech) mg/L, and 173,000 to 199,000 (IT-Export) and 187,000 to 202,000 (UNC Geotech) mg/L (Table 3-4). IT-Export values for CI are 6,000 to 20,000 mg/L lower than UNC Geotech values and for bromine 50 to 500 mg/L lower, resulting in large positive charge balances in some IT-Export samples (see samples 423, 425, and 427, in Appendix C). This discrepancy between the laboratories may result from the slightly different titration method used for chlorine and the different analytical techniques used for bromine (Table 3-1).

3.1.2.3.2 Fluorine (F) and lodine (I)

Mean values for fluorine range from 4.9 to 10.9 mg/L for UNC Geotech results and 5 to 8 mg/L for IT-Export determinations. IT-Export values were determined by an ion-specific LaF electrode and are generally 1 to 2 mg/L lower than values measured by ion chromatography at UNC Geotech. However, large standard deviations in the data of both analytical groups result in considerable overlap.

Not all samples were analyzed for iodine, and most IT-Export analyses are below their detection limit of 20 mg/L. The mean values for UNC Geotech determinations have a range of 12.2 to 17.9 mg/L. This range is typical of brines derived from seawater evaporation and probably represents a concentration factor from precipitation of salts and the breakdown of organic material (Hem, 1970).

3.1.2.4 Set Four Parameters

3.1.2.4.1 pH

The range in mean values for pH is 5.7 to 6.1 (IT-Export) and 5.6 to 6.4 (UNC Geotech) and, for identical holes analyzed by both analytical laboratories, they are commensurate within the standard deviation of either analytical group's mean. IT-Export values are typically 0.1 to 0.3 pH units below the UNC Geotech values. It is difficult to evaluate this discrepancy rigorously because of possible differences in travel time to the laboratories, temperature variation during transport, and holding time of the samples at the laboratories.

Field measurement of pH was conducted on BSEP brines sampled in September 1987. Laboratory pH measurements obtained on the same samples were 0.1 to 0.4 pH units lower than field measurements. However, these differences are not significant because they fall within the pH standard deviation of most holes. Additionally, low inflow rates of brine necessitated the recovery of samples that have resided in drillholes for 2 to 3 months. Thus, any change in pH will probably have occurred prior to sample collection and field measurements. For these reasons, field measurement of pH is no longer required. Further evaluation of the pH of BSEP brine is addressed in Section 3.1.3.1.

3.1.2.4.2 <u>Aluminum (AI), Arsenic (As), Barium (Ba), and Iron (Fe)</u> Results for aluminum, arsenic, barium and iron are inconclusive for the following reasons:

- Low concentrations in brines,
- Analytical problems associated with higher detection limits as a result of dilution factors,
- · Possible iron contamination from instruments placed in sampled drillholes, and
- Large standard deviations (generally greater than 50 percent of the mean value) among all samples.

3.1.2.4.3 Calcium (Ca), Potassium (K), Magnesium (Mg), and Sodium (Na)

Ranges for the mean values of major cations in BSEP brines are: sodium, 67,500 to 98,700 (IT-Export) and 50,800 to 94,700 (UNC Geotech) mg/L; magnesium, 16,400 to 32,500 (IT-Export) and 16,200 to 44,300 (UNC Geotech) mg/L; potassium, 16,100 to 20,800 (IT-Export) and 15,100 to 22,700 (UNC Geotech) mg/L; and calcium, 260 to 330 (IT-Export) and 270 to 381 (UNC Geotech) mg/L (Table 3-4). Standard deviations are generally less than 5 percent of the mean for sodium, magnesium, potassium, and calcium, but approach 10 percent on measurements from upholes.

Drillholes with multiple rounds of sample analyses (e.g., BX01, DH36, and NG252) display a complex temporal trend for magnesium and, to a lesser extent, for sodium. Over the 16-month sampling period, magnesium concentrations have a tendency to decrease as sodium concentrations increase. Upon closer inspection, these trends show discontinuities (increase in magnesium and decrease in sodium) during the September 1987 to November 1987 period. These temporal trends are addressed in more detail in Section 3.1.3.3.1.

3.1.2.4.4 Boron (B) and Silicon (Si)

Ranges for the mean boron and silicon values in BSEP brines are, respectively, 1,480 to 1,860 (IT-Export) and 1,420 to 1,880 (UNC Geotech) mg/L, and 0.4 to 0.8 (IT-Export) and 1.22 to 5.14 (UNC Geotech) mg/L (Table 3-4). Standard deviations for boron are less than 10 percent of the mean for downholes and approach 20 percent for upholes, while silicon standard deviations are 10 to 40 percent of the mean value. Silicon values reported by IT-Export are three to seven times lower than those reported by UNC Geotech. This difference is statistically significant and probably results from differences in the analytical methods used by each laboratory (Table 3-1).

The high boron concentrations and near neutral pH of the brines suggest boron is present as the aqueous species HB_4O_7 and H_3BO_3 (Pourbaix, 1974). HB_4O_7 probably contributes to the large alkalinity values in excess of TIC (see Section 3.1.3.2). Silicon most likely forms the aqueous species SiO_2 and H_4SiO_4 or H_3SiO_4 (Pourbaix, 1974). The latter silicon specie does not play a significant role in the high alkalinity values because of low silicon concentrations.

3.1.2.4.5 Manganese (Mn) and Strontium (Sr)

Ranges for the mean concentration levels of the trace elements manganese and strontium are, respectively, 0.8 to 5.1 (IT-Export) and 0.67 to 7.99 (UNC Geotech) mg/L and 1.0 to 6.9 (IT-Export) and 0.87 to 5.89 (UNC Geotech) and mg/L (Table 3-4). Standard deviations are 5 to 40 percent of the mean, with higher values for manganese relative to strontium. In general, UNC Geotech samples have lower standard deviations than identical IT-Export samples. The manganese concentrations are equal to or an order of magnitude higher than seawater and strontium concentrations are equal to or an order of magnitude lower than seawater (Hem, 1970). These trends toward manganese enrichment and strontium depletion, relative to seawater, are addressed in Section 3.1.3.4.

3.1.2.5 Composite Brine Chemistry

The Statistical Analysis Software package (SAS Institute, Inc., 1985) and simple statistics were used to characterize an average composition for brine that might develop at the repository horizon. Multivariate-analysis-of-variance calculations (Walpole and Myers, 1985) were carried out on analytical results obtained during the period November 1987 through August 1988. Input parameters to the statistical programs were pH, bromine, chlorine, sulfate, ammonium, boron, calcium, potassium, magnesium, sodium, silicon, and strontium. Alkalinity, extended alkalinity, fluorine, iodine, nitrate, TIC, aluminum, arsenic, barium and iron were omitted from the calculations due to an insufficient number of analyses, results that were at or below the detection limit of the analytical technique, and/or contamination of brines by in-hole instrumentation.

A model was developed to test (at the 95-percent confidence level) for significant differences in the parameter mean values among individual holes. Application of **a** multiplerange test (which determines if mean values can be grouped into one or more populations) grouped those holes which did not have significantly different means. Each analytical group was modeled separately, because IT-Export analyses consistently showed excess positive charge balance (i.e., greater than 2 percent) relative to UNC Geotech. Results **of** the modeling and simple statistical calculations are given in Appendix D; the IT-Export a**nd** UNC Geotech composite brines are listed in Table 3-5. For parameters entered into the statistical program, composite brine values represent averages derived from the mean values of holes grouped by the multiple-range test (Appendix D). The composite brine values for parameters that were not entered into the statistical program were calculated by averaging the mean values on holes that were consistently grouped as similar by the

TABLE 3-5

COMPOSITE BRINE CHEMISTRY FOR IT-EXPORT AND UNC GEOTECH ANALYTICAL GROUPS

												,													
	SG g/cc	TDS mg/L	ph	EAlk mg/L	Alk mg/L	Br mg/L	Cł mg/L	F mg/L	l mg/L	NH4* mg/L		S04 ² mg/L		Al mg/L		B mg/L	Ba mg/L	Ca mg/L	Fe mg/L	K mg/L	Mg mg/L	Mn mg/L	Na mg/L	Si mg/L	Sr mg/L
<u></u>																									
Ν	5/5	5/5	6/7	5/5	٠	6/7	5/7	5/5	2/5	5/7	5/5	5/7	4/5	5/5	5/5	6/7	5/5	3/7	5/5	3/7	3/7	4/7	5/7	4/7	4/7
x	1.21	340000	6.1	818	•	1370	183000	6	22	116	0.23	16200	5	BDL	0.016	1540	BDL	327	3	20100	18400	1.2	84800	0.6	1.4
UNC																									
Ν	6/6	6/6	13/13	6/6	6/ 6	9/13	8/13	6/6	6/6	9/13	6/6	9/13	6/6	6/6	6/6	10/13	6/6	9/13	6/6	5/13	5/13	5/13	6/13	11/13	8/13
x	1.22	375000	6.1	881	817	1380	19400 0	6.1	15.0	158	6	17000	37	0.397	0.005	1480	0.031	328	2.44	18100	18200	1.07	85400	2.25	1.29

All available holes (IT =7, UNC = 13) were utilized in multivariate-analysis-of-variance (MANOVA) calculations. Alkalinity (Alk), F, I, N0₃, total inorganic carbon (TIC), Al, As, Ba and Fe were not used in MANOVA calculations because data were limited for these parameters. Extended alkalinity (EAlk), specific gravity (SG) and total dissolved solids (TDS) were not input to MANOVA calculations because data lines were limited to 60 columns. Averages calculated for the excluded parameters (using simple-statistic mean values in Appendix D) were obtained from holes which were consistently grouped as similar by Duncan's multiple-range test (carried out with MANOVA calculations). For IT-Export, these holes were BX01, DH36, DH38, DH42A and NG252. Simple averages for UNC Geotech were calculated from the same five holes utilized for IT-Export averages and additionally DH42. EAlk, Alk and TIC reported as equivalent HC0₃.

*Analyses not available for IT-Export.

BDL = Below Detection Limit

N = Number of samples used/total number of samples.

X = Sample mean (based on number of samples used)

multiple-range test (i.e., BX01, DH36, DH38, DH42A, and NG252). Holes A1X02, DHP402A, GSEEP and L1X00 were consistently rejected by the multiple-range test and have not been used in calculating the composite brine chemistry.

The upholes (A1X02 and DHP401) were rejected because their brine chemistry was modified by evaporation, as evidenced by the formation of halite stalactites around uphole collars (Deal and Case, 1987). GSEEP (described in Section 2.1.5) is located some distance downdip from an active experimental area (Room J) where grouting, artificial brines, and fresh water have been introduced. Excavation-induced fracturing (subparallel to drift floor) may have opened flow paths in Marker Bed 139 extending from Room J to GSEEP (Figures 2-1 and 2-2). Therefore, contamination of GSEEP cannot be ruled out (Section 3.1.3.3.3). There are a large number of grouted test holes close to hole L1X00; brine analyses from this hole may also reflect contamination from grout.

Results presented in Table 3-5 show good agreement between the analytical laboratories except for the parameters TDS, extended alkalinity, chlorine, iodine, ammonium, nitrate, TIC, potassium, and silicon. These differences probably result from variations in holding times of samples, laboratory techniques, and analytical methods (see Table 3-1). Based on UNC Geotech's better charge-balance totals (usually -2 percent to 2 percent), we suggest their averages should be adopted as the best estimate for a composite-brine chemistry at this time. However, further studies dealing with the spatial frequency **an**d volume percent of anomalous brines (i.e., brines rejected as part of the population based on the statistical evaluation) are needed to evaluate whether they contribute significantly to the composite chemistry.

3.1.3 Discussion

3.1.3.1 Evaluation of pH and Eh in Brines

Solution pH and Eh values are critical parameters to constrain in all solution-equilibrium models. Unfortunately, the high ionic strengths of BSEP brines (> 7) suggest an uncertainty may be introduced in the measurement of pH by standard glass-electrode techniques. This uncertainty was evaluated by investigating independent controls on the brine pH, such as mineral/brine equilibria as it pertains to magnesite (MgCO₃). Magnesite was chosen over other carbonate minerals because it is present as a minor phase in the repository horizon (Stein and Krumhansl, 1988).

Eh values for surface and ground waters frequently show disequilibrium between redox couples and platinum-electrode measurements (Lindberg and Runnells, 1984). However, isolated brines in the Permian Castile Formation (underlying the Salado Formation) show good agreement between measured Eh values and those obtained from sulfate/sulfide and ammonium/nitrate redox couples (Popielak and others, 1983 - Table C-2). Unfortunately, BSEP drillholes in the Salado Formation have very low brine-inflow rates (Deal and Case, 1987 - Table E-20) and atmospheric oxygen (O₂) probably diffuses into the brine prior to collection. Exposure of brine samples to air during the collection process introduces uncertainties to the field measurement of Eh and calculated redox-couple values. An Eh value for BSEP brine was calculated with the ammonium/nitrate couple, but this value represents an upper bound due to low rates of equilibration for this couple and/or atmospheric oxygen diffusing into the brine prior to and during sample collection.

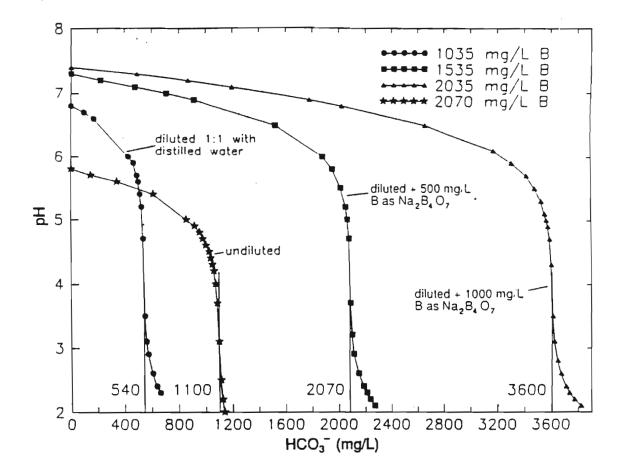
An average BSEP brine composition (Table 3-5, UNC Geotech data) was entered into the EQ3NR code (Wolery, 1983; Jackson, 1988; Pitzer option with data 0, ver. 3245R54) and equilibrated with magnesite to calculate the solution pH at $T = 27^{\circ}$ C, P = 1 bar, and Eh = +409 mV (Eh constrained by ammonium/nitrate equilibria). A specific redox value is not critical to the pH calculation because of the assumption that pH is controlled by carbonate equilibria. This was demonstrated by running the model at Eh = -400 mV and obtaining results identical to those calculated at Eh = +409 mV. Model results for an Eh range of -400 to +409 mV indicate a calculated pH of 6.0, overlapping with the mean range observed for glass-electrode measurements of 5.9 to 6.4 (Appendix D).

Wolery (1983) estimated the uncertainty in calculating the saturation indices (SI) of a particular phase as \pm 0.4 SI units based on overall quality of the thermodynamic data base. Therefore, magnesite would be considered saturated if its calculated SI value was in the range of -0.4 to 0.4, which corresponds to a pH range of about 5.4 to 6.3. The modeling results suggest the magnesite/brine equilibrium is consistent with the measured pH variation in BSEP brines. However, no inference is made that the modeled Eh and pH values, or measured pH values, necessarily represent the "true" Eh and pH values of BSEP brines.

3.1.3.2 Solution Alkalinity

A question raised by the extended alkalinity (Section 3.1.2.2.1) is whether alkalinity measurements are much greater than the sum of TOC and TIC (all reported as mg/L

 HCO_3^{-}). This suggests a noncarbonate source for most of the measured alkalinity. Organic acid species (Table 3-3) and weak acids of aluminum and silicon (e.g., $H_3SiO_4^{-}$) cannot account for the alkalinity because of their very low concentrations. Concentrations reported in Appendix C suggest the most reasonable contributor to the alkalinity is boron.


To determine the effect of boron on alkalinity, sodium tetraborate $(Na_2B_4O_7)$ was added to a L1X00 brine (sample number 200; Appendix C) diluted 1:1 with distilled water. Sodium tetraborate was added to the brine because tetraborate species were the expected boron species in the brines (see Section 3.1.2.4.4). Dilution was required to avoid oversaturating the brine with halite (NaCl) upon addition of sodium tetraborate. Prior to the extended-alkalinity titrations, initial pH values were 5.8 for undiluted brine, 6.7 for diluted brine, and 7.3 and 7.4, respectively, for diluted brine spiked with 500 and 1,000 mg/L boron. The pH increases are probably due to dilution of the original brine, which lowers the activity of the hydrogen ion, and addition of sodium tetraborate to the diluted brine, which dissociates and consumes hydrogen ions according to the reaction

$$H^* + B_4 O_7^{-2} \rightarrow HB_4 O_7^{-1}$$
(3.1)

All samples were titrated to an endpoint pH between 2.5 and 2 with 1.6N H_2SO_4 . Results for the experiment are illustrated in Figure 3-2. The undiluted brine contains 2,070 mg/L boron and has an extended-alkalinity value of 1,100 mg/L bicarbonate, values twice those of the 1:1 diluted brine. Two successive titrations were carried out on the diluted brine, each after the addition of 500 mg/L boron to the solution. An alkalinity increase of 1,530 mg/L bicarbonate was measured after each successive titration. Based on similar boron concentrations (i.e., approximately 1,050 mg/L) and dissimilar extended-alkalinity values for undiluted brine and diluted brine spiked with 1,000 mg/L boron (Figure 3-2), the dominant boron specie in each of these respective brines is probably H_3BO_3 and HB_4O_7 .

Figure 3-3 plots boron concentration against pH for the system boron and water at 25°C (Pourbaix, 1974) and supports the contention that H_3BO_3 and $HB_4O_7^-$ are the dominant aqueous species in solutions with high boron concentrations and pH between 4 and 9. Results of the boron-extended-alkalinity experiment and a composite brine (Table 3-5, UNC Geotech values) are also shown in Figure 3-3. The unspiked brines (undiluted and diluted

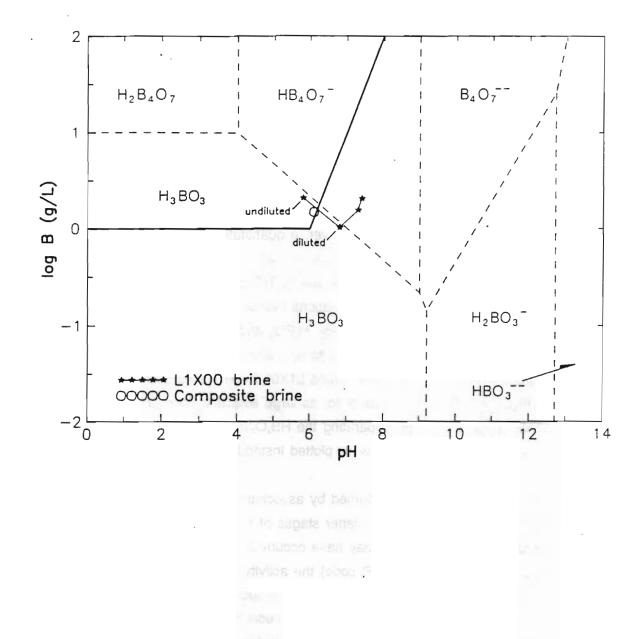
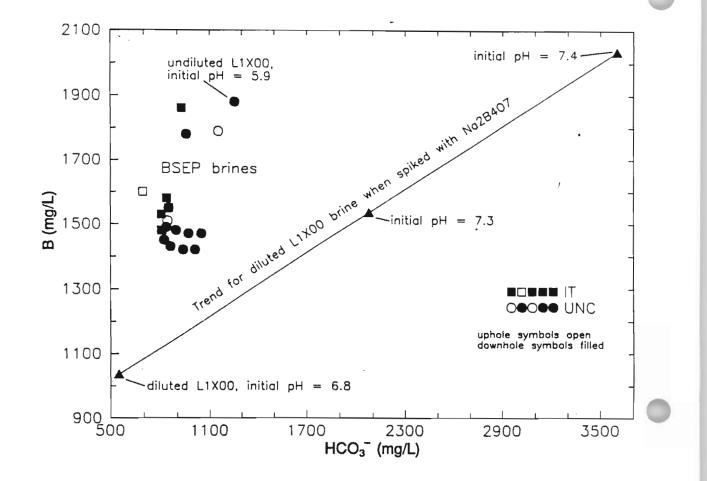


FIGURE 3-3 LOG OF BORON CONCENTRATION VERSUS pH FOR THE SYSTEM B-H₂O AT 25°C (AFTER POURBAIX, 1974). DILUTION OF L1X00 BRINE CAUSES COMPOSITION TO PARALLEL H₃BO₃/HB₄O₇ JOIN. ADDITION OF Na₂B₄O₇ TO DILUTED L1X00 BRINE DRIVES COMPOSITION INTO HB₄O₇⁻ FIELD. SOLID LINE INDICATES EMPIRICAL SATURATION BOUNDARY FOR H₃BO₃.

L1X00 and composite from Table 3-5) lie near the H_3BO_3/HB_4O_7 line and the boron-spiked L1X00 brines lie within the HB_4O_7 field. It is important to reiterate that the pH shift in boron-spiked L1X00 brines, relative to undiluted L1X00 brines, places them in the HB_4O_7 field, which increases their capacity to buffer the titration and results in higher extended-alkalinity values for a given boron concentration (Figure 3-2). Undiluted brines lie above the empirical saturation boundary for boric acid; thus boric acid may be present in precipitated material found in some brine samples upon arrival at the analytical laboratories.

Unfortunately, there is a lack of thermodynamic data on aqueous boron species at high boron concentrations and evaluation of the $H_3BO_3/HB_4O_7^-$ ratio in the brines by speciation models (e.g., EQ3NR) is not possible. However, a quantitative assessment of the boron speciation in the brines can be made by assuming that boron species do not form metal complexes and all alkalinity in excess of that due to TIC can be accounted for by $HB_4O_7^-$ and $B_4O_7^{-2}$. Under these assumptions, calculations indicate the dominant species in unspiked and B-spiked brines are, respectively, H_3BO_3 and $HB_4O_7^-$ (Table 3-6). Unspiked brines have $H_3BO_3/HB_4O_7^-$ molar ratios of 5.8 to 6.7, whereas this ratio in boron-spiked brines is less than or equal to 0.2. The diluted L1X00 brine spiked with 1,000 mg/L boron must contain $HB_4O_7^-$ and $B_4O_7^{-2}$ to account for its large alkalinity value ($HB_4O_7/B_4O_7^{-2} = 2.9$; Table 3-6). This suggests the line separating the $HB_4O_7^-/B_4O_7^{-2}$ fields (Figure 3-3) may lie at a lower pH value if boron activities were plotted instead of concentrations.

Alternatively, if hydrogen ions are consumed by association with chloride (Cl⁻ = 97,000 mg/L in diluted L1X00 brine) during the latter stages of titration (endpoint pH = 2.5 to 2), protonation of Cl, rather than $B_4O_7^{-2}$, may have occurred. This alternative hypothesis was tested by calculating (using the EQ3NR code) the activity product of HCl in the diluted brine and comparing this product to the equilibrium association constant at 25°C. This exercise led to the rejection of the alternative hypothesis because the activity product was an order of magnitude lower than the association constant. Therefore, a low concentration of $B_4O_7^{-2}$ probably contributes to the large alkalinity value in diluted brine spiked with 1,000 mg/L boron.


Figure 3-4 plots boron against extended alkalinity for all BSEP brines and the experimental results. Undiluted BSEP brines lie well above the trend defined by the diluted and spiked L1X00 brine because the former have lower pH values and, therefore, larger $H_3BO_3/HB_4O_7^-$ ratios. Very high alkalinity values in diluted and spiked L1X00 brine, relative to undiluted

BORON SPECIE DISTRIBUTION COMPATIBLE WITH ALKALINITY VALUES IN COMPOSITE L1X00 BRINE AND DILUTED L1X00 BRINE SPIKED WITH Na₂B₄O₇

BRINE	EA-TIC mmol/L	B mmol/L	H₃BO₃ mmol/L	HB₄O ₇ ° mmol/L	B₄O ₇ -² mmol/L	H₃BO₃/HB₄O ₇ °	HB ₄ O ₇ /B ₄ O ₇ ⁻²
Composite	14	137	81	14		5.8	
L1X00	18	191	119	18		6.6	
Diluted L1X00	9	96	60	9		6.7	
Diluted L1X00 + 11.6 mmol/l Na₂B₄O ₇	34	142	6	34		0.2	
Diluted L1X00 + 23.2 mmol/l Na₂B₄O ₇	59	188		35	12		, 2.9

EA = Extended Alkalinity, TIC = Total Inorganic Carbon

EA - TIC is alkalinity (as HCO_3) in excess of that due to TIC Proton equivalents required to neutralize excess alkalinity = EA - TIC = HB_4O_7 + (2 * B_4O_7 ⁻²)

FIGURE 3-4 BORON VERSUS EXTENDED ALKALINITY FOR BSEP BRINES AND DILUTED L1X00 BRINE SPIKED WITH Na $_2B_40_7$

BSEP brines which contain similar boron concentrations, are attributed to dissolution of Na₂B₄O₇ and subsequent protonation of $B_4O_7^{-2}$ to the HB₄O₇ specie.

3.1.3.3 Major Element Ratios

Insight into the origin of BSEP brines is provided by variation diagrams which utilize majorelement ratios (by weight). Some of the most useful diagrams are Na/CI versus K/Mg, Mg/CI versus Br/CI, and Na/CI versus Ca/SO_4^{-2} . The first diagram allows a qualitative assessment of halite precipitation and diagenetic processes (Stein and Krumhansl, 1988), while the second plot evaluates the role of potash facies in decreasing magnesium and bromine concentrations (McCaffrey and others, 1987). Na/CI versus Ca/SO_4^{-2} was chosen for the third diagram to evaluate anhydrite and halite facies deposition.

3.1.3.3.1 Na/CI versus K/Mg

Figure 3-5 displays variation between Na/CI and K/Mg mass ratios by utilizing the mean values of all holes. Upholes (excluding A2X02 and DHP401) have K/Mg values (0.3 to 0.5) similar to seawater in equilibrium with modern evaporites (Brantley and others, 1984), but are relatively depleted in Na/CI (0.25 to 0.35). Lower Na/CI mass ratios in upholes can be attributed to halite (NaCI) precipitation during evaporation, because fewer moles of sodium are initially present and halite precipitation will remove an equal number of moles of sodium and chlorine. Na/CI mass ratios for downholes (0.35 to 0.57) are similar to brines in equilibrium with modern evaporites. However, the K/Mg mass ratios for downholes range from 0.5 to 1.2, well above the 0.4 value expected for surface brines found today. Higher K/Mg mass ratios suggest depletion of magnesium either by diagenetic reactions to form magnesite (Stein and Krumhansl, 1988) or exchange with clay minerals. Upholes with Na/CI less than 0.4 do not reflect this magnesium enrichment, suggesting either substitution of potassium for sodium during halite precipitation (i.e., a sylvite component in halite) or subsequent depletion of potassium relative to magnesium during polyhalite formation. Two upholes (A2X02 and DHP401) plot within the downhole field. For A2X02 (UNC Geotech), this indicates a more successful endeavor in sealing off the hole and preventing evaporation. However, DHP401 (IT-Export) lies in the downhole field due to the low chlorine determinations (compare with UNC Geotech mean for DHP401). For identical holes, Na/CI and K/Mg values are always greater for IT-Export determinations than for those of UNC Geotech. This trend results from IT-Export values on chlorine and potassium being, respectively, lower than and higher than those of UNC Geotech.

301001.89.08.02 A45

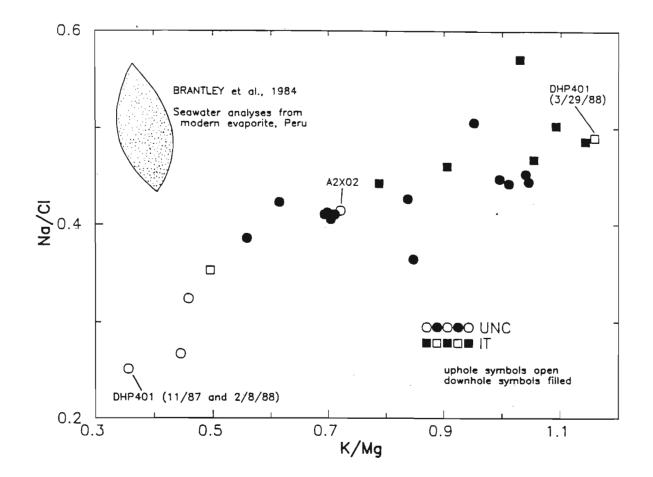


FIGURE 3-5 RATIOS (BY WEIGHT) OF Na/CI VERSUS K/Mg FOR BSEP BRINES

Temporal variation of the K/Mg ratio and, to a lesser extent, the Na/CI ratio are illustrated in Figures 3-6 and 3-7. Increases in the K/Mg ratio took place over the intervals of June 1987 through September 1987 and November 1987 through February 1988, while the September 1987 through November 1987 period was characterized by a decrease in the K/Mg value (Figure 3-6). The remaining sampling intervals are inconclusive because over any individual interval, K/Mg ratios decreased, increased, or remained the same. Na/CI values remained constant or showed weak antithetic variation with K/Mg ratios (Figure 3-7). The sharp decrease in Na/CI for IT-Export analyses over the November 1987 to February 1988 period is followed by a sharp increase for July 1988 analyses, probably reflecting analytical difficulty in the determination of chlorine concentrations (note large + and charge balances for DH36 samples analyzed by IT-Export; Appendix C, Samples 262 and 425).

Although each hole has not been plotted in Figures 3-6 and 3-7, temporal variations exist in all holes (up and down), independent of the analytical laboratory and the duration of the period over which the sampling was conducted. It is difficult to ascribe the temporal trends to a single mechanism, because they most likely **re**present the complex interplay of evaporation, crystallization, diagenesis, dilution and analytical error. Additionally, the sampling holes may receive brines from a progressively greater rock volume as time proceeds. For instance, excavation-induced stress redistribution could cause a timedependent increase in the permeability of clay and anhydrite seams in the Salado Formation (Deal and Case, 1987). Similar trends for other element ratios are being investigated to isolate specific mechanisms or analytical problems that may account for the temporal variation.

3.1.3.3.2 Mg/Cl versus Br/Cl

In the Mg/CI versus Br/CI plot (Figure 3-8), the trend for seawater during halite facies deposition (Holser, 1963) is broadly paralleled by upholes due to evaporation and crystallization of halite. Most downholes cluster between Mg/CI mass values of 0.14 to 0.09 and Br/CI mass values of 0.007 to 0.009 and exhibit a weak antithetic relationship between Mg/CI and Br/CI. All holes have lower Mg/CI mass ratios relative to the halite facies trend (Figure 3-8), which is attributed to depletion of magnesium by diagenetic reactions (see Section 3.1.3.3.1). All of the sampled BSEP brines have Br/CI mass ratios similar to those predicted by empirical (Holser, 1963) and experimental (McCaffrey and others, 1987) studies for halite facies deposition (Figure 3-8). Thus, the Br/CI mass ratio

301001.89.08.02 A46

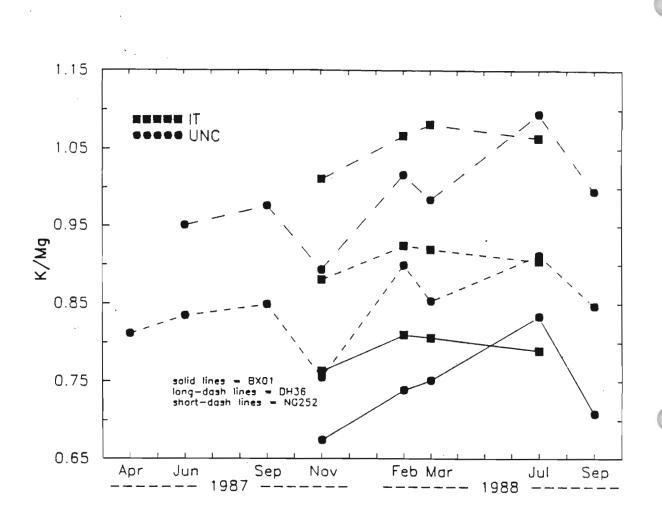


FIGURE 3-6 TEMPORAL VARIATION OF K/Mg FOR THREE BSEP BRINES

301001.89.08.02 A47

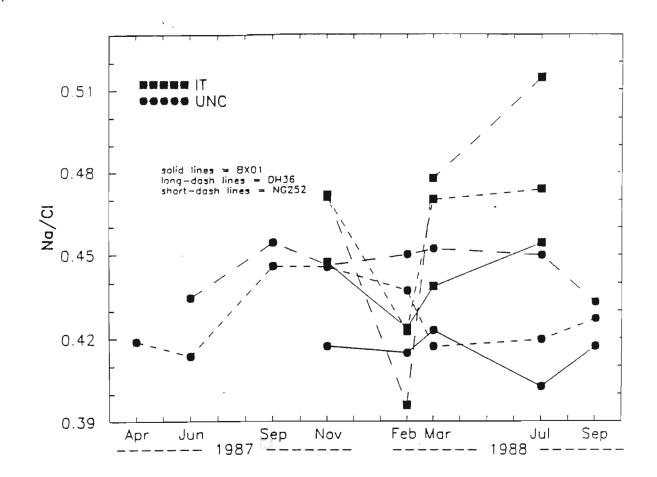


FIGURE 3-7 TEMPORAL VARIATION OF Na/CI FOR THREE BSEP BRINES

WP:WIP:R-1625-3

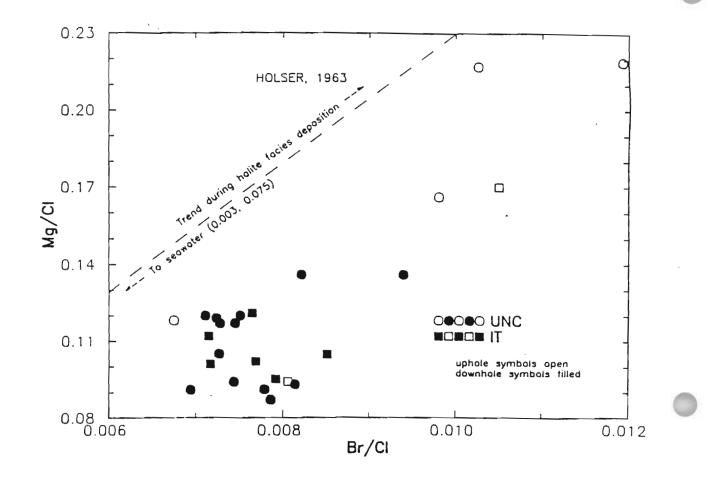


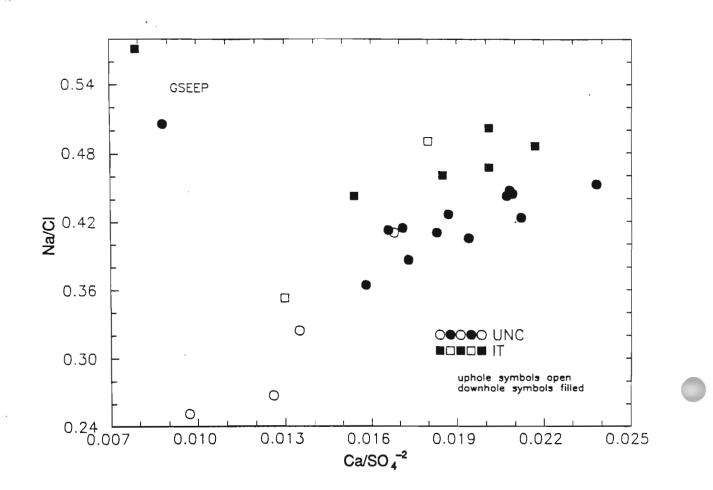
FIGURE 3-8 RATIOS (BY WEIGHT) OF Mg/CI VERSUS Br/CI FOR BSEP BRINES

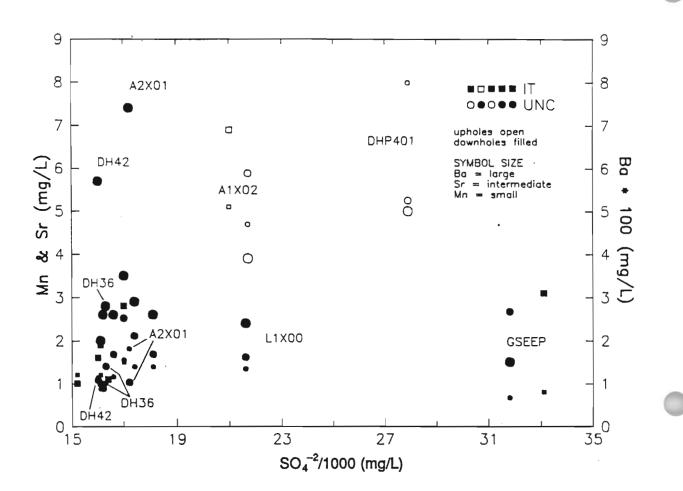
for these brines implies that extreme evaporation characteristic of potash facies deposition was probably not reached. In contrast to the brine data, Stein and Krumhansl (1988) reported Br/Cl values consistent with potash facies deposition from a number of fluid inclusions recovered from recrystallized halite at the WIPP repository horizon. However, it is unlikely that primary brines are preserved in large quantities; the degree to which BSEP brines represent compositions modified by evaporation, crystallization, and diagenetic processes is still being investigated.

3.1.3.3.3 <u>Na/Cl versus Ca/SO4-2</u>

The variation of Na/CI with Ca/SO₄⁻² is illustrated in Figure 3-9. Excluding GSEEP, the samples exhibit a sympathetic trend which is probably controlled by precipitation of anhydrite (or gypsum) and halite (i.e., decreasing Na/CI and Ca/SO₄⁻² mass ratios in upholes). GSEEP samples have Na/CI and Ca/SO₄⁻² values very close to those for evaporated seawater prior to halite deposition (Na/CI = 0.56 and Ca/SO₄⁻² = 0.007; calculated from the data of Usiglio as reported by Krauskopf, 1967, p. 324). These mass ratios could imply that halite was not precipitated from GSEEP brines. However, contamination cannot be ruled out because GSEEP lies downdip from an active experimental area (Room J) where addition of artificial brine to an excavated pit has occurred.

The bottom of the GSEEP hole and the excavated pit in Room J are proximal to a fractured, thick (50-cm to 90-cm) anhydrite bed. Shortly after excavation of Room J, the anhydrite (MB 139) was observed yielding brine to the pit excavated in the floor (Deal and Case, 1987). Therefore, fractures beneath the floor of the excavations might serve as a common plumbing system for GSEEP and the excavated pit in Room J (Deal and others, 1987). The high Na/CI values for GSEEP could indicate contamination from artificial brine (made with mined salt muck and fresh water) that migrated out of Room J along fractures. About 7,400 liters of artificial brine were introduced to the excavated pit in Room J in 1985 and an additional 7,000 to 8,000 liters of fresh water were added, a small amount at a time, over several years. Presumably, most of the artificial brine evaporated into the repository atmosphere, but some may have migrated out of the pit. It should be noted that the GSEEP chemistry is not observed in DH holes, one of which (DH36) is located 6 meters to the west of GSEEP. Contamination may not have occurred in DH holes because, relative to MB 139, they lie updip of GSEEP (Deal and others, 1987).




FIGURE 3-9 RATIOS (BY WEIGHT) OF Na/CI VERSUS Ca/SO4 -2 FOR BSEP BRINES

The contamination hypothesis could be tested by sampling Room J artificial brine for the purpose of obtaining chemical analyses. Using the analytical results for artificial brine and typical BSEP brine, mixing models can be evaluated to determine if GSEEP chemistry is a mixture of the two end members.

3.1.3.4 Trace Elements

Interpretation of the concentrations of trace elements in BSEP brines must be approached cautiously because large dilution factors are required prior to analysis, introducing a greater degree of uncertainty in analytical results relative to undiluted waters with low TDS. For instance, fluorine and iodine show no significant difference in their concentrations between upholes and downholes, yet most upholes have experienced evaporation and should have higher fluorine and iodine concentrations relative to downholes (see also bromine concentrations of upholes and downholes). The dilution factors may also result in elevated detection limits for many elements (e.g., aluminum, boron, and iodine [IT-Export]; nitrate and phosphate [UNC Geotech]). Additionally, different analytical techniques may be utilized by the analytical laboratories on a specific element, which can result in order-of-magnitude differences in the reported element's concentration (e.g., Si). At this time, the most reliable trace elements for interpretation and discussion are manganese and strontium.

- BSEP brines are depleted in strontium (0.9 to 6.7 mg/L) and enriched in manganese (0.7 to 8.0 mg/L), relative to seawater concentrations of strontium and manganese (7.9 and 0.002 mg/L, respectively; Hem, 1970, p. 11). The observed strontium concentrations are compatible with the partitioning of strontium into anhydrite (or gypsum) and/or precipitation of celestite (SrSO₄). The pH (5.6 to 6.4, Table 3-4) and Eh (less than 400 mV; Section 3.1.2.2.4) values of BSEP brine limit the oxidation state of manganese to +2. Therefore, manganese concentrations are not controlled by the solubility of MnO₂ and can be concentrated by evaporation.
- These processes can be illustrated by plotting strontium and manganese against sulfate (Figure 3-10). Available barium data (UNC Geotech) has also been plotted in Figure 3-10 because barite (BaSO₄) forms a complete solid solution with celestite (Deer and others, 1966), and small amounts of barium can substitute for calcium in anhydrite. Anhydrite is not isostructural with barite and celestite because of the small size of the calcium ion relative to strontium and barium (Deer and others, 1966). Downholes, excluding L1X00 and GSEEP and upholes A1X02 and DHP401 define a sympathetic trend with respect to

manganese and sulfate, indicating manganese and sulfate were concentrated in upholes by evaporation. However, these same holes show a more complex trend for strontium and barium versus sulfate, suggesting mineral solubilities may control these relationships. Relative to most downholes, L1X00 and GSEEP have similar trace-element concentrations, but greater sulfate values, while A2X01 and DH42 have anomalously high barium concentrations.

The solubility products of barite and celestite, and ion substitution in anhydrite, probably control the trace-element distribution of barium and strontium in BSEP brines. To test this hypothesis, the average compositions of six brines (A1X02, A2X01, DH36, DHP401, GSEEP, and L1X00; Appendix D, UNC Geotech values) were entered into the EQ3NR code (Pitzer option with data0 ver. 3245R54) to calculate the saturation indices (SI) of anhydrite, barite and celestite. The SI for these minerals are presented in Table 3-7. All brines tested are saturated with anhydrite and supersaturated with barite (except GSEEP, which is saturated with barite). A1X02, DHP401, and GSEEP are saturated and the remaining brines are unsaturated with celestite.

Strontium concentrations in downhole brines (excluding GSEEP) that are unsaturated with celestite may be controlled by the weak partitioning of strontium into anhydrite (D_s, about 0.4 at 25°C; Kushnir, 1982) and/or diagenetic replacement of calcium by strontium in anhydrite, whereas the remaining brines (upholes and GSEEP) may have their strontium concentrations controlled by the celestite solubility product (Table 3-7).

The EQ3NR calculations of the ion-activity products for sodium and chloride (NaCl) and strontium and sulfate (SrSO₄) in brines saturated with celestite (Table 3-7) are in good agreement with the experimental results of Reardon and Armstrong (1987). Reardon and Armstrong (1987) conducted celestite solubility measurements in solutions to concentrations of 5.0 molal (mole/kg H₂0) NaCl at 25°C. Their results show a rapid rise in the celestite solubility product with increasing NaCl molality to a maximum of 5 millimolal (millimole/kg H₂0) SrSO₄ in a 3 molal NaCl solution. Further addition of NaCl to the solution caused a decrease in the celestite solubility product, to about 4 millimolal at 5 molal NaCl. Table 3-8 summarizes the modeled results for BSEP brines and shows a decrease in the ion-activity product of SrSO₄ from 4.8 to 3.8 millimolal as NaCl increases from 4.1 to 5.5 molal.

WP:WIP:R-1625-3

SATURATION INDICES (SI) FOR ANHYDRITE (CaSO₄), BARITE (BaSO₄), AND CELESTITE (SrSO₄) IN SELECT BSEP BRINES

	CaSO₄		BaSO	4	SrSO₄	
BRINE	SI	STATE	SI	STATE	SI	STATE
A1X02	0.152	sat	0.728	ssat	0.012	sat
A2X01	0.133	sat	0.929	ssat	-0.793	usat
DH36	0.055	sat	0.438	ssat	-0.730	usat
DHP401	0.218	sat	0.927	ssat	-0.037	sat
GSEEP	0.186	sat	0.337	sat	-0.304	sat
LIX00	0.175	sat	0.437	ssat	-0.568	usat

Saturation indices (SI = log[ion-activity product/solubility product]) calculated with EQ3NR code by the ion-interaction method of Pitzer (1973), using the Pitzer thermodynamic data base. Input parameters taken from Appendix D (UNC values) with $T = 27^{\circ}C$ and Eh - 409mV. SI>0.4, supersaturated (ssat); 0.4>SI>-0.4, saturated (sat); SI<-0.4, undersaturated (usat).

NaCI AND SrSO, ION-ACTIVITY PRODUCTS FOR A1X02, DHP401, AND GSEEP BRINES SATURATED WITH CELESTITE

BRINE	NaCl mol/kgH ₂ O	SrSO₄ mol/kgH₂O	
A1X02	4.683	4.667 E-3	
DHP401	4.102	4.845 E-3	
GSEEP	5.470	3.759 E-3	

Activity products calculated with EQ3NR code by the ion-interaction method of Pitzer (1973), using the Pitzer thermodynamic data base. Input parameters as in Table 3-2.

Brine ion-activity products for barium and sulfate (BaSO₄) indicate these solutions are saturated to supersaturated with barite. However, barite is not observed as a precipitate in supersaturated solutions. Presently, there is insufficient kinetic data on barite to evaluate the role of supersaturation in nucleation of barite crystals. Therefore, the calculated supersaturation of these brines may reflect an insufficient number of Pitzer interaction parameters for barium. The relatively high barium concentrations in brines A2X01 and DH42 are responsible for their large BaSO₄ ion-activity products. These brines have very large standard deviations for barium and high TIC values relative to other downholes (Appendix D), which may indicate some minor contamination has occurred to these drillholes.

3.1.3.5 Rock/Brine Equilibria

An objective of the BSEP is the characterization of rock/brine equilibria. To this end, preliminary modeling of the composite-brine chemistry (Table 3-5) with the solubility/speciation code EQ3NR (Wolery, 1983; Jackson, 1988; Pitzer option with data0 ver. 3245R54) has provided some insight. Runs of EQ3NR utilized both the Pitzer (1973) and Harvie-Moller-Weare (HMW) (Harvie and others, 1984) data bases, because all parameters cannot be input into a single data base. The Pitzer data base has thermodynamic parameters based on osmotic coefficients derived from isopiestic measurements, while the HMW data base is based on solubility measurements. Input for the Pitzer run consisted of values for pH, sodium, magnesium, potassium, calcium, chlorine, sulfate, strontium, manganese, ammonium, nitrate, bromine, fluorine, and iodine. Eh was determined by the ammonium/nitrate couple, which should be considered a bounding upper limit. For the HMW option, input consisted of values for pH, sodium, magnesium, magnesium, potassium, calcium, chlorine, sulfate, and bicarbonate (as converted TIC). The Eh value was constrained by the ammonium/nitrate couple in the Pitzer run and the calculated value of +409 mV was entered into the HMW run.

Results of the EQ3NR modeling are given in Table 3-9. Minerals are listed with their SI values, which is the log of ion-activity product divided by the solubility product (log $[IAP/K_{sp}]$) for the mineral of interest. In general, undersaturation, saturation, and supersaturation of a solid phase are indicated by, respectively, negative, zero, and positive SI values. The precision of thermodynamic data is probably within ±0.4 SI units (Wolery, 1983); thus minerals are assumed to be saturated within the range of -0.4 to 0.4.

Pitzer data base				
	2			
Input parameters: Br', Cl', F', I',	SO_4^2 , NO_3^2 , NH_4	*, Ca* ² K	* Mg*², Mn	* ² Na ^{+,} Sr ⁺²
MINERAL	FORMULA		SI	STATE
Anhydrite	CaSO₄		0.001	sat
Bassanite	CaSO₄·½H₂0		-0.698	usat
Celestite	SrSO₄		-0.802	usat
Fluorite	CaF₂		1.215	ssat
Glauberite	Na₂Ca(SO₄)₂		0.079	sat
Gypsum	CaSO₄·2H₂O		-0.120	sat
Halite	NaCl		-0.018	sat
	MgF₂		0.792	ssat
Polyhalite	K₂Ca₂Mg(SO₄)₄·2	H₂O	-0.246	sat
Sylvite	KCI		-0.584	usat
Syngenite	$K_2Ca(SO_4)_2 \cdot H_2O$		-0.392	usat
Thenardite	Na₂SO₄		-0.779	usat

TABLE 3-9 RESULTS OF EQ3NR MODELING OF COMPOSITE BRINE

usat = undersaturated; sat = saturated; ssat = supersaturated

RESULTS OF EQ3NR MODELING OF COMPOSITE BRINE (CONTINUED)

Harvie-Moller-Weare database

Input Parameters: Cl⁻, HCO⁻₃, SO₄⁻², Ca⁺², K⁺, Na⁺, Mg⁺²

MINERAL	FORMULA	SI	STATE
Anhydrite	CaSO₄	-0.112	sat
Bassanite	CaSO₄·½H₂O	-0.810	usat
Dolomite-ord	CaMg(CO ₃) ₂	0.431	ssat
Dolomite		0.431	ssat
Glauberite	Na ₂ Ca(SO ₄) ₂	-0.146	sat
Gypsum	CaSO₄·2H₂0	-0.231	sat
Halite	NaCl	-0.055	sat
Magnesite	MgCO₃	0.178	sat
Polyhalite	K₂Ca₂Mg(SO₄)₄·2H₂O	-0.900	usat
Sylvite	KCI	-0.688	usat
Syngenite	K₂Ca(SO₄)₂H₂O	-0.750	usat
Thenardite	Na₂SO₄	-0.891	usat

Saturation indices (SI=log[ion-activity product/solubility product]) were calculated by the ioninteraction method of Pitzer (1973) using the Pitzer and Harvie-Moller-Weare thermodynamic data bases. Minerals with SI values less than -0.4 are undersaturated, -0.4 to 0.4 saturated, and values greater than 0.4 supersaturated with respect to the solution. Only minerals with SI greater than -1.0 are listed. Solution speciation was evaluated at T = 27°C, density = 1.23 g/cc, total dissolved solids = 375 g/L, pH = 6.1 and Eh = 409 mv. Eh was constrained by the NH⁺₄/NO₃⁻ couple using the Pitzer data base. Element parameters of each run are indicated.

usat = undersaturated; sat = saturated; ssat = supersaturated.

Results for the Pitzer run indicate that the composite brine is saturated with halite, anhydrite, gypsum, polyhalite, and glauberite, and supersaturated with fluorite and MgF₂ (Table 3-9). Utilizing the HMW data base, results of the EQ3NR run listed halite, anhydrite, gypsum, magnesite, and glauberite as the saturated phases and dolomite and ordered dolomite as supersaturated (Table 3-9). The EQ3NR runs produced different phase assemblages because each input file has a distinct set of elements (listed above). Thus celestite, fluorite, and MgF₂ are unique to the Pitzer run, whereas dolomite, ordered dolomite and magnesite appear in the HMW run. Phases that appear in both runs do not have identical SI values (e.g., polyhalite) because, the interaction parameters are based on isopiestic and solubility measurements in, respectively, the Pitzer and HMW data bases (Harvie and others, 1984). Additionally, the supersaturation of fluorite and MgF₂ may reflect an incomplete set of Pitzer interaction parameters for fluorine.

The joint modeling results are in good agreement with the observed mineralogy present at the WIPP repository horizon. At this level, Salado Formation mineralogy consists primarily of halite, with thin horizons of anhydrite, and trace amounts of quartz, polyhalite, gypsum, magnesite and clays (Stein and Krumhansl, 1988). The observed mineralogy and modeling results indicate BSEP brines have compositions consistent with rock/brine equilibria. Concentrations of barium, calcium, chlorine, sodium, strontium, and sulfate are probably controlled by halite, anhydrite (or gypsum), celestite, and barite (see Section 3.1.3.4 for barium and strontium results). Magnesite and polyhalite may constrain bicarbonate, potassium, and magnesium concentrations in BSEP brines, but modeling results are equivocal for these components.

Failure to achieve a perfect match between the observed phases and those calculated to be saturated in the brine reflect many complex factors, the most critical being:

- A lack of a complete set of interaction parameters for the variety of seawater species,
- A need to incorporate redox kinetics (inorganic and biologic) and crystal growth/dissolution kinetics into low-temperature solution equilibria models, and
- A need to refine the pH, trace-element, and TIC data of the brines.

There appears to be no immediate solution to the first two factors cited above, because extensive research will be required before a comprehensive treatment can be achieved. However, brines evaluated in this report have further constrained and refined a compositebrine chemistry (Table 3-5) that yields modeled saturated phases consistent with the hypothesis of rock/brine equilibria. As better quantitative, thermodynamic, and kinetic data become available for brines, the knowledge and understanding of rock/brine equilibria and solution models will evolve.

3.1.3.6 Future Work

To obtain further insight and knowledge on BSEP brines and rock/brine equilibria within the Salado Formation, future studies should be directed toward the following activities:

- Investigate the areal distribution and composition of brine along a north-south traverse between experimental rooms and waste panels.
- Obtain analyses of additional trace elements to evaluate contamination scenarios.
- Develop a composite-brine chemistry by statistical reduction of weighted means based on brine-inflow rates and areal distribution.
- Evaluate and model evaporation, precipitation, and diagenetic processes with additional major-element ratios and trace elements.
- Compare statistically derived, composite-brine chemistry with reaction-path modeling of seawater solutions evaporated to halite facies deposition.

The first two activities are required to assess the distribution of anomalous brine within the repository and develop a more rigorous statistical model for composite brine. Additional trace elements (e.g., lithium, rubidium, and cesium) can be utilized in contamination models to resolve the role of artificial brine in producing anomalous chemical signatures in some BSEP brines. Further speciation and reaction-path modeling will quantify evaporation, precipitation, and diagenetic processes and will lead to a more comprehensive understanding of the origin of BSEP brines.

3.1.4 Conclusions

Over 160 brine samples from 25 drillholes in the Salado Formation at the WIPP repository horizon have been analyzed by two independent groups for up to 25 chemical parameters. Holes with BTP prefixes and DHP402A were omitted in statistical reduction of the data and determination of the composite-brine chemistry, because their chemistries have been modified by grout placed in drillholes and/or air-intake-shaft water or construction water spread on drift floors for dust control. Multivariate statistical tests were utilized to derive a composite-brine chemistry that was incorporated into EQ3NR solubility/speciation models.

Excluding the BTP and DHP402A holes, there is no chemical evidence to suggest that WIPP brines contain a component derived from the carbonate-dominated Rustler Formation aquifer. No brine component from the underlying Castile Formation has been detected in WIPP brines. Furthermore, WIPP brines do not appear to chemically record extreme evaporation conditions characteristic of potash facies deposition present in the McNutt potash zone above the WIPP repository horizon.

Modeling of the composite chemistry with the EQ3NR code, utilizing the Pitzer and HMW data bases, revealed the brine to be saturated with respect to halite, anhydrite, gypsum, polyhalite, and magnesite; this finding is in agreement with the observed mineralogy in the Salado Formation at the repository horizon. WIPP brines have major-element compositions that suggest an origin from seawater that was evaporated to halite facies deposition and subsequently modified by both diagenetic reactions that formed gypsum, magnesite, and polyhalite and ion-exchange reactions with detrital clay minerals.

Analytical problems with trace elements preclude their rigorous application to the problems of brine equilibria. However, results for manganese and strontium concentrations in WIPP brines suggest that, relative to seawater, manganese was concentrated by evaporation and strontium was depleted by substitution for calcium in anhydrite and/or celestite formation. As more quantitative trace-element data become available, further insight will be gained into the composition and origin of BSEP brines.

3.2 BACTERIOLOGICAL STUDIES

3.2.1 Introduction

Between July 13 and August 1, 1988, during the construction of the Air Intake Shaft (AIS) at the WIPP, approximately 129,000 gallons of artificial brine (provided by an oil-field trucking company, B&E Inc.) were pumped into the shaft by the contractor in an effort to flush the upream bit cutterheads. This brine, along with inflows from the Rustler Formation, was collected in a sump constructed in the S-90 Drift. Some of this brine was later distributed in the underground workings during construction-related activities. On August 16 and 20, 1988, approximately 4,600 gallons of brine from the sump were spread on the floor of Panel 1 to assist in the reconstitution of the loose muck (salt cuttings) on the floor. Some of the brine in the AIS sump came from the Rustler Formation and some was an artificial brine used for construction purposes made by dissolving Salado Formation halite in

fresh water. The portion of the underground impacted by this introduced AIS brine included the western end of the S-90 Drift and adjacent areas. Also, some of the brine from the AIS sump was distributed in parts of the underground workings for dust control (see discussion of chemistry of brine in hole DHP402A in Section 3.1.1.3). The introduction of this AIS brine raised concerns over the possible introduction and spread of bacteria into the WIPP underground. Therefore, an underground sampling was conducted for microbial analysis to investigate this possibility.

Although limited in scope, the objectives of this microbiological survey were to establish:

- Any potential immediate health threats to workers from human pathogens among the microbes introduced with AIS brine,
- The nature of the introduced organisms and the extent of their distribution in the underground, and
- The identifiable effects of these introduced microbes on the experiments to be conducted during the test phase.

Another objective of microbial characterization, not within the scope of this work but germane to the overall WIPP mission is to determine the potential effects of any native or introduced halophilic (or other) organisms on shaft sealing, long-term isolation of the waste, and performance assessment.

This study, in addition to addressing the concerns in the first three objectives, is a first step in identification of microbes already present in the underground workings. The data on microbiological functions within the WIPP during operation and after closure will need to be developed for, and examined as part of, performance assessment. The organisms isolated as a result of this study are relevant to concerns of the Performance Assessment Source-Term Group (Brush and Anderson, 1988).

3.2.2 Sampling Program

The basic plan was to examine introduced AIS brine, muck samples, rib surface samples, rib wall cores, and the brine being collected as part of the ongoing BSEP in the underground. Because there are other possible sources for microbial contamination (e.g., air circulated for ventilation, other human activities, and organisms native to the Salado Formation), samples were also taken in areas where inoculation by AIS brine was thought to be unlikely or impossible. All samples were collected in sterile 125-milliliter (ml) Whirlpaks or 100-ml plastic containers, taking care not to cross-contaminate samples and using prescribed aseptic technique (APHA, 1985). Sample types and locations are given in Table 3-10 and shown in Figure 3-11.

3.2.2.1 Sampling Procedure

Brine was obtained from a number of underground locations (Figure 3-11 and Table 3-10). Samples of the introduced AIS brine were collected in Whirlpaks from the S-90 Drift on July 25, August 15, and September 8, 1988. Free-standing AIS brine was dipped from the. floor sump directly into sterile Whirlpaks.

Brine was also obtained on September 8, 1988 from several boreholes in the floor and ceiling routinely sampled for the BSEP for an estimate of the extent of microbial contamination in the underground workings of the WIPP. Ceiling brine was obtained directly from the catch containers and placed into sterile Whirlpaks or plastic containers. Floor brines were sampled by lowering a sterile plastic container down the open borehole and carefully capping the container immediately upon retrieval. Some sample points had air pressure applied, forcing accumulated brine to exit through a sample line. These brine samples necessarily exhibit whatever contamination was carried to them by such means as prior samplings, airborne sources, human handling prior to our sampling, and water (AIS brine) applied for dust control in the drifts.

Samples of floor muck were taken by hand, scooping muck directly into open sterile Whirlpaks without the use of a tool. Sampling locations are shown in Figure 3-11.

Samples of the rock salt on the rib wall surface were scraped into sterile Whirlpaks using a stainless steel blade which had been flamed with a propane torch. These samples were taken at points on the rib located approximately 5 feet above the floor. Sample locations are shown in Figure 3-11.

Core samples (Figure 3-11) were taken adjacent to the rib surface samples and were obtained as follows. First, the undisturbed surface and the 2-inch coring tool were flamed with a propane torch. A rotary drill coring tool was used to obtain a 2-inch-deep core which was broken off and discarded. The tool and the borehole were then flamed again and another 2 inches of core were removed. This sterile core sample was dropped directly into a sterile Whirlpak.

LOCATIONS OF SAMPLES TAKEN ON 9/8/88

	BRINE	MUCK	RIB SURFACE	RIB CORE
N1420/E1000				Anhydrite.
N1420/E1005			Halite	
N1130/E1220	Roof			
N1100/W2025			Clay Seam	Halite
N1100/W2030			Wall Seep	
S90/W200	Brine Saturated Muck			
S1600/W170	Floor ⁽¹⁾ Roof			
S1620/W170		Halite		
S1950/E1320	Floor	Halite	Clay Seam	Clay Seam
S2190/W30				Clay Seam
S2200/W30		Halite	Halite	
Muck Pile at Surface		Halite		
Air Intake Shaft	Floor			

⁽¹⁾Two floor brine samples were taken at this location.

۰.

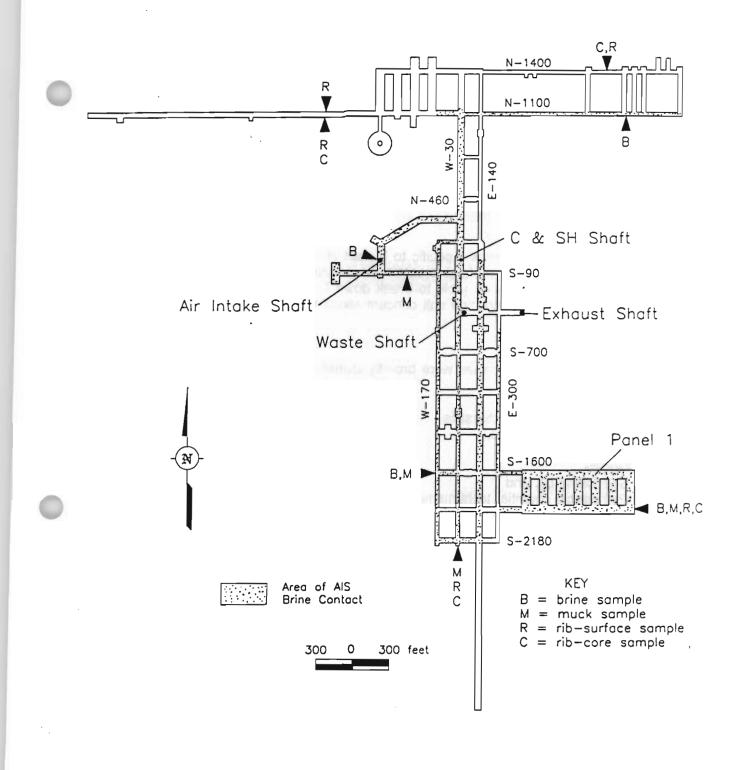


FIGURE 3-11 MAP OF THE WIPP UNDERGROUND WORKINGS SHOWING THE AREAS WHERE AIS BRINE WAS SPREAD AND SAMPLE LOCATIONS FOR THE BACTERIOLOGICAL STUDY.

3.2.2.2 Sample Preservation and Transportation

The samples were placed in sealed Ziplock bags on ice and transported to the Laboratory of Dr. Larry Jones at the University of Texas, El Paso (UTEP). Samples were transferred to a UTEP lab refrigerator and maintained until analysis could be initiated.

3.2.3 Culture Media and Procedures

The microbiological examination of these samples was selective for:

- · Pathogens and coliforms (specific to human disease),
- Cellulolytic microbes (able to break down cellulose),
- Methylotrophic microbes (able to break down C₁ compounds),
- Halobacteria (requiring high salt concentrations for growth), and
- Yeasts and fungi.

Organisms cultured from these samples were broadly identified for:

- Morphological characteristics,
- Nutrient requirements,
- Staining responses,
- Motility,
- Salt tolerance, and
- Pathogenic potential to humans.

3.2.3.1 Special Culture Media

Because the task required identification of possible human pathogens as well as halotolerant and halophilic organisms, suitable culture media were employed for isolation of potential pathogens according to their reaction to the Gram's stain. Culture media for pathogens include:

- Blood agar for Gram positive (+) bacteria (Blair and others, 1970),
- MacConkey's agar for Gram negative (-) bacteria (Smith and others, 1985), and
- For specific pathogens:
 - Salmonella/Shigella Medium (Smith and others, 1985)
 - Staphylococcus 110 Medium (Difco Manual, 1984).

For coliforms, methylotrophs, cellulolytics, and yeasts and fungi, the culture media used were, respectively, eosine methylene blue agar (Difco Manual, 1984), 1090 marine

methanol medium (Cote, 1984), trypticase soy agar supplemented with cellulose, 2 percent (Cote, 1984), and Sabouraud's dextrose agar (Smith and others, 1985).

3.2.3.2 High Salt Media

Four different hypersaline media described in Table 3-11 were employed for isolation of halotolerant/halophilic microbes:

- Medium 1176 (17 percent salt),
- Medium MORS (8 percent salt),
- Medium 974 (12 percent salt), and
- Medium 213 (25 percent salt).

3.2.3.3 Culture Procedures

Culture procedures followed for isolation and identification of human pathogens and halotolerant microbes are depicted in flow charts (Tables 3-12 through 3-14). Procedures approved by the American Public Health Association (1985) were followed (Cote, 1984). Isolates from liquid samples were prepared by centrifuging 100 ml of sample and resuspending the pellet in 0.85-percent sterile saline solution. Solid rock salt samples were dissolved in sterile saline solution prior to centrifugation. The sequence of these separations and plating regimes was designed to confirm halotolerant and/or pathogenic microbes utilizing appropriate nutrient media, culture methods, staining techniques, and microscopic examinations.

All samples were cultured on the halotolerant and the pathogenic media. Microbes growing on the pathogenic media regime (Table 3-12) were subjected to Gram's staining and further analyzed for pathogenicity. Microbes growing on the high salt media (Table 3-13) were subjected to Dussault's stain (Appendix E) for halophilic microbes and examined by microscope for gross morphology.

3.2.4 Results and Discussion

In all, 19 samples from all parts of the underground workings were submitted for microbiological evaluation (Table 3-10). A total of 48 organisms were isolated from these samples (Jones, 1988). All isolates came from either brine or muck samples. No organisms from rib surface or rib wall core samples grew on the media used in this study.

Characteristics of all 48 colonies isolated from samples in this study are summarized in Appendix F, which gives their description by microscopic appearance and gross morphology

HYPERSALINE MEDIA

• .		GRAMS/LITER			
CONSTITUENT	MEDIUM 1176	MEDIUM	MEDIUM 974	MEDIUM 213	
	150	20	105	050	
NaCl	156	80	125	250	
MgCl₂	33	17	55	10	
CaCl ₂	1	0.5	0.2	0.2	
KCI	4	2		5	
K₂SO₄			5		
NaHCO ₃	0.2	0.1			
Yeast Extract	5	5	5	10	
Tryptone			5	2.5	
Dextrose	1	1			
Agar	20	20	20	20	
Water	1000 ml	1000 ml	1000 ml	1000 ml	
рН	7.0	7.0	6.8	7.2	
% Salt	16	8	13	25	

WP:WIP:R-1625-T3-11

•

FLOW CHART OF PROCEDURES FOR THE ISOLATION OF POSSIBLE PATHOGENS AND SPECIAL ORGANISMS

100 ml of sample

Centrifuge at 10,000 rpm for 10 min

Decant supernatant and resuspend pellet in 2 ml of 0.85% saline solution

Spread 0.1 ml of the resuspension on each of the following plates with an "L" rod

Blood agar Tryptocase soy agar + 2% cellulose Staphylococcus 110 agar Eosine Methylene Blue agar MacConkey's agar Marine Methanol Medium agar Salmonella/Shigella agar Sabouraud Dextrose agar

(0)

Incubate at 37°C for 24-48 hrs

Identify and count similar colonies

Isolate pure colonies and transfer to fresh medium (Appendix F)

Perform gram reaction to determine the morphology (Appendix F)

Place on slants for further identification studies

FLOW CHART OF PROCEDURES FOR THE ISOLATION OF HALOTOLERANT/HALOPHILIC ORGANISMS

100 ml of sample

Centrifuge at 10,000 rpm for 10 min

Decant supernatant and resuspend pellet in 2 ml of 15% saline solution

Spread 0.1 ml of the suspension on each of the following plates with an "L" rod

Medium 1176 x 2 MORS Medium x 2 Medium 974 x 2 Medium 213 x 2

Incubate at 43°C until growth is observed

Identify and count colonies (Appendix F)

Isolate pure colonies and transfer to fresh media (Appendix F)

Gross morphology + Dussalt's stain + microscopic observations

(Appendix E)

FLOW CHART OF PROCEDURES FOR THE PREPARATION OF SOLID SALT SAMPLES

15 g solid sample

Add 15 ml of 0.85% saline

Add 15 ml of 15% saline

Spread 0.1 ml of the suspension on each of the following plates with an "L" rod

Continue as shown in flow chart of procedures for the isolation of possible pathogens (Table 3-12). Continue as shown in flow chart of procedures for the isolation of halotolerant/halophilic organisms (Table 3-13).

anter Voua Tront on agar plates. These colonies were further identified by plating on the high salt media (Table 3-11 and Appendix F), which provided viable counts on the various media for confirmation of pathogens. All 48 of the isolates are at least halotolerant. Some may even be true halophiles (requiring high salt concentrations for growth). All were isolated and maintained in aerobic conditions. Several anaerobic microbes, which initially grew in anaerobic jars, died after isolation due to the inability to maintain strict anoxic conditions without an anaerobic culture apparatus. These were strictly anaerobic halotolerant microbes. Some of the 48 aerobic halotolerant microbes may also be facultatively anaerobic (able to grow in the presence or absence of oxygen).

Gram's staining is important for indication of pathogenicity. Common human pathogens are usually Gram negative and sometimes form spores. Many of the isolates were Gram Intermediate (staining both Gram positive and Gram negative). Many did not stain well at all, turning black in response to the stain (not unusual for organisms isolated from the natural environment). Microbial characteristics, isolation media, stain reactions, and colony morphology of the potential pathogens and other specialized organisms are given in Appendix F. Potential pathogens were further evaluated by culture on agar slants for confirmation. Although some of these suspect organisms grew on media designed to select for human pathogens, no pathogens were found. Based on colony morphology, biochemical media screening, and Gram's staining, none of the 48 isolates were indicated as pathogenic to humans. The fact that some grew well on media designed to mimic human physiological fluids (blood agar, protein-enriched agar, etc.) may have been due to the complex nature of the media.

With regard to the distribution of the WIPP organisms, it is significant that most of the 48 isolates were found in samples of brine or floor muck that had come into contact with brine spread for dust control. Also, the samples taken from the surface muck (salt) pile were found to have viable organisms. No organisms from samples of rib surface or the rib wall cores grew on the media used in this study. This suggests that there are no organisms in the host rock that can be easily cultivated in the laboratory. This could be due to any of the following three reasons:

• The organisms in the native halite formation are either dormant or metabolize too slowly to be observed when incubated for only a few weeks on these media. Halophilic microbes are extremely small and grow at abnormally slow rates, (sometimes taking many weeks to show signs of visible growth), or

- The procedures and/or media were incorrect, or
- There are no native organisms in the formation.

Incubation was terminated after several weeks as there are no known halophilic human pathogens.

The absence of viable organisms in drift face and rib wall cores is significant for another important reason. Consistency of sampling procedures and quality control during sample acquisition is evident from the consistent absence of contaminants in these samples.

Populations of microbes indigenous to hypersaline environments are rather specialized organisms adapted to live in the strong brine and prefer, and sometimes require, the high salinity of their environment for growth and reproduction (Larson, 1980). Sodium and magnesium chlorides are the dominating salts of hypersaline environments throughout the world. Calcium chloride and calcium sulfate brines have also been found. These environments are mostly aerobic, but anoxic situations are also encountered. Acidities may differ considerably from one environment to another.

During a previous study, brine ponds near the WIPP site in Nash Draw were surveyed in a preliminary study of the bacterial ecology of surface environments (Turner, 1986). Pond conditions included measurements of seasonal changes. Temperatures ranged from 8°C to 30°C. Brine densities varied from 1.106 to 1.247 gm/cc. Potassium/sodium ratios varied from 2 to 0.5, with magnesium/calcium generally greater than 10 (Powers, 1989). The study provided information on the halotolerant and halophilic bacteria found in these ponds. Valuable experience was gained in the care and culture of these fragile and unaccommodating, yet highly adaptable, organisms.

Of the 48 isolates obtained during the present study, many were found to closely resemble the salt pond microbes found in Nash Draw (Jones, 1990). A final determination of these apparent similarities requires that all the organisms are identified (keyed to genus and species). Taxonomic keys have been developed for the halophiles (Vreeland and others, 1980). This can be done, but is beyond the scope of this initial study.

The muck pile at the WIPP probably maintains a saturated to partly saturated aqueous environment internally that is generally similar to the brine ponds in Nash Draw. Salado Formation salt from shaft and facility horizon excavation yields potassium and magnesium, as do the tailings piles from the potash mines in the area. Although the chemistry of the tailings pile has not been studied, the solute chemistry is likely to be similar to that of the brine ponds which are fed partly from the runoff and seepage from tailings piles. The WIPP tailings pile has most likely been inoculated with airborne and/or avian-transported bacteria from these ponds (Powers, 1989).

Medium 213 was the halotolerant selective substrate of highest salt concentration tested (25 percent). A total of six organisms grew on this medium; two organisms (W-18 and W-47)¹ grew extremely well and may actually be true halophiles. Three additional organisms reacted positively to the Dussault's stain for halophiles (W-28, W-30, and W-43).

Samples obtained shortly after AIS brine introduction into the WIPP (July 25, 1988) showed a total of five organisms growing well on high salt media. When this brine was sampled again 21 days later (August 15, 1988), this number had increased to 17 organisms. When sampled again after another 24 days (September 8, 1988), there were 19 halotolerants and three of these had an affinity for the Medium 213 (either adaptive halophiles, which were introduced, or dormant native species, which revived in the saturated brine). Additionally, the 19 organisms bear little resemblance to the original populations in the earlier AIS brine samples collected in July and August. What seems to have occurred is that the original contaminating microbes either adapted to the new environment, exhibiting new nutrient requirements, or were replaced by a more successful community.

One sample of floor muck produced two halotolerants which were limited to that specific location (S1620/W170) and did not occur in any other samples. Another floor muck sample taken in a newly excavated drift (S2200/W30) produced only a single type of organism (W-29). A similar organism appeared at one other location (S90/W200) in an area that had been saturated with the AIS brine. As this organism did not occur in the original AIS brine samples, it may be native to the Salado Formation or could have been introduced via mine air. Also, its numbers were three times higher in the wet muck sample containing the AIS brine (S90/W200) than at the undisturbed area (S2200/W30). No dust control water had been applied in this new drift.

^{&#}x27;Organisms are numbered W-1 through W-48 in Appendix F.

A large range of organisms was isolated from the surface muck pile, including fungi. Of these, the single microbe which showed halotolerance was not found in the underground and may have come from the salt pond communities via avian transport.

Two floor brine samples known to be contaminated with AIS brine (DHP-402A and BTP-C1) showed very similar microbes, even though they are quite distant from each other. This seems to confirm the more or less common distribution of certain organisms via dust control operations (such as W-13, which occurs also in the AIS brine samples and in floor brine sample BTP-A2, also known to be contaminated with AIS brine).

The sole methanol-oxidizing organism isolated came from a roof brine (BTP-C4). This organism was not found in any of the AIS brine samples or in the surface muck pile. It is quite difficult to explain its existence here as a contaminant.

A most peculiar organism (W-16) was found in only two samples (BTP-C4 and A1X02). Both sample sites were roof brines located at opposite ends of the facility. It could be argued that some of the brine sources are connected and have unique microbial communities. Organisms W-15 and W-17, found in both floor and roof brine samples, may not be contaminants, as they were found nowhere else. Another explanation for the spatial distribution of microbes found in boreholes is that they were introduced with the numerous tools that were inserted for measurements (Roggenthen, 1988).

Colors of the colonies can be an important key to identification. Colonies isolated in this study were colored clear, white to gray, blue, yellow, brown, pink, and orange to bright red. (Red color is characteristic of some true halophiles which color local salt ponds during bacterial "blooms" and are responsible for the proverbial **"red** herring".) Several isolate pairs could not be separated from each other and are true symbionts (only able to live in the presence of one other). One isolate, found in floor brines DHP-402A and BTP-C1, liquefied agar. Eight possible cellulose degraders found in AIS brine, the surface muck pile, and one roof brine sample, were also isolated. This roof brine sample (BTP-C4) also contained the only microbe isolated in the study that grew on 1090 marine methanol agar. This organism is a true methylotroph (can break down C₁ compounds as a food source) and is able to utilize a total of six of the media tested in the study, indicating that it is

most probably a facultative methylotroph. It is a highly adaptable microbe for this extreme environment and is very much out of place in relation to the other isolates.

Two samples (muck pile and AIS brine) were found to contain fungi. These organisms are aerobic and some degrade cellulose.

The methanogens are a specific group of strict anaerobes that are capable of utilizing CO_2 , H_2 , methanol, acetate, and a few other simple compounds in the production of methane. Some acetogenic bacteria are also obligate anaerobes that utilize CO_2 as a terminal electron acceptor in the production of acetate and formate, which are the substrates for the methanogens (Brock and Madigan, 1988). Although halophilic anaerobes were discovered in some of the samples, special equipment required for their culture and isolation was not available and the organisms were lost. Their existence in the WIPP could have significance to long-term waste degradation (U.S. Department of Energy, 1989, a and b).

The methanogens and acetogens are a potential source for gas generation. Due to the lack of an available anaerobic culture apparatus, these groups could not be addressed at the time of the study. However, isolates of the aerobic organisms are being maintained at UTEP by sequential transfer to fresh media for future reference. Even though all measures are taken to maintain such cultures, steady natural mortality in these cultures will reduce the number of viable strains available for additional study as time goes by.

Because of the existence of the organisms discovered to be actively metabolizing in the WIPP environment, future investigations can be made more meaningful by incorporation of the actual resident organisms into the experimental designs. The cultures being maintained at UTEP can provide the inocula for the tests and measurements described as key to objectives outlined for future testing (U.S. Department of Energy, 1989, a and b). The chemistry of the gas and waste budgets, waste degradation, radionuclide migration pathways, seal degradation, backfill interactions, changes in formation permeability due to biofilm formation, and overall repository performance depend on the ability to experimentally simulate the "realistic conditions" called for.

3.2.5 Conclusions

 The results of this study show that there were no human pathogens found in the WIPP underground.

- Both aerobic and anaerobic microbes inhabit the WIPP.
 - A total of 48 aerobic microbes were isolated in this study from 21 samples (see Appendix F). All were at least halotolerant. Some show characteristics of the true halophiles.
- Several anaerobic organisms (some having potential as gas generators) were isolated but could not be studied due to lack of an anaerobic system at UTEP.
- Most of the isolated organism grew slowly on artificial media and total counts ranged up to 4,500 organisms per milliliter of brine or gram of salt. A few samples were too voluminous to count.
- A large portion of these organisms seem to have been distributed by applications of brine or water for dust control.
- Viable native organisms were not found in areas where the halite is dry (rib surface and rib cores), although some of the brine samples did contain unique organisms. These microbes exhibited qualities which suggest they may be native to the Salado Formation, although this could not be conclusively addressed in this study.
- Viable populations of microbes were found to exist in the surface muck pile. These may be remote members of the communities known to exist in the salt ponds in Nash Draw.
- The successive samplings of AIS brine gave increasing numbers of organisms, suggesting that this brine could be associated with the rapid increase in overall population numbers of halotolerant microbes. These have exhibited a dramatic proliferation and the development of diverse community structure over time.
- Microbes were isolated that are able to metabolize media containing cellulose, protein, and methanol. Some fungi were also found. These microbes are also potentially important gas generators.

3.2.6 Summary

During July 1988, brine was introduced into the AIS at the WIPP during construction operations. Some of this brine was spread in the underground workings for dust control and the question arose whether this created any impacts to worker health or WIPP scientific programs. As a result, a preliminary survey of the microbiology of the WIPP underground was performed in order to determine if any impacts had been introduced.

A sampling program was undertaken to provide an overview of the microbial populations actively metabolizing in the WIPP environment. The objectives were to determine the

nature and extent of distribution of the microbes existing in the WIPP. Special attention was directed toward identifying any pathogenic organisms in the populations isolated that could impact worker health. This baseline survey would also establish the kinds of microbial metabolic effects that could be expected during operation and after closure of the repository. This information will be important to the Performance Assessment Source-Term Group. Samples of brine, muck, rib surfaces, and rib wall cores were taken for analysis. These samples were transported to the laboratories of Dr. Larry Jones at the UTEP, Biology Department. Culture methods were followed for isolation of microorganisms found in the samples. Special emphasis was placed on human pathogens, halotolerant and halophilic microbes, and special trophic types using standard methods.

Results showed that there are at least 48 halotolerant aerobic microbes living in the WIPP. No human pathogens were found. Also isolated were several anaerobic microbes, although specific nutritional requirements could not be determined. All isolates were found in brine. All were at least halotolerant and some may be true halophiles. It could not be conclusively determined whether there are any indigenous organisms in the Salado Formation, although some organisms exhibited that potential and some closely resemble the halophilic microbes indigenous to the nearby Nash Draw salt ponds. Several microbes have potential to produce significant quantities of gas.

Eleven conclusions were drawn that characterize the microbial populations by type and distribution in the underground. It is not recommended that further examination for pathogens be undertaken.

This study of microbial organisms is an important baseline, and it is recommended that the WIPP and environs should be further sampled to obtain information on distribution and populations of microbes. The specific cultures being maintained at UTEP and any new organisms isolated should be extensively characterized as part of the experiments to be performed to support performance assessment.

3.2.7 Recommendations

As no pathogenic microbes were found in either brine or rock salt samples, there appears to be no likelihood that pathogens will be of concern during operations. Therefore, a follow-up study focusing on pathogens is not recommended. However, additional sampling of the WIPP should be pursued as part of a continuing general study of microbial activity in

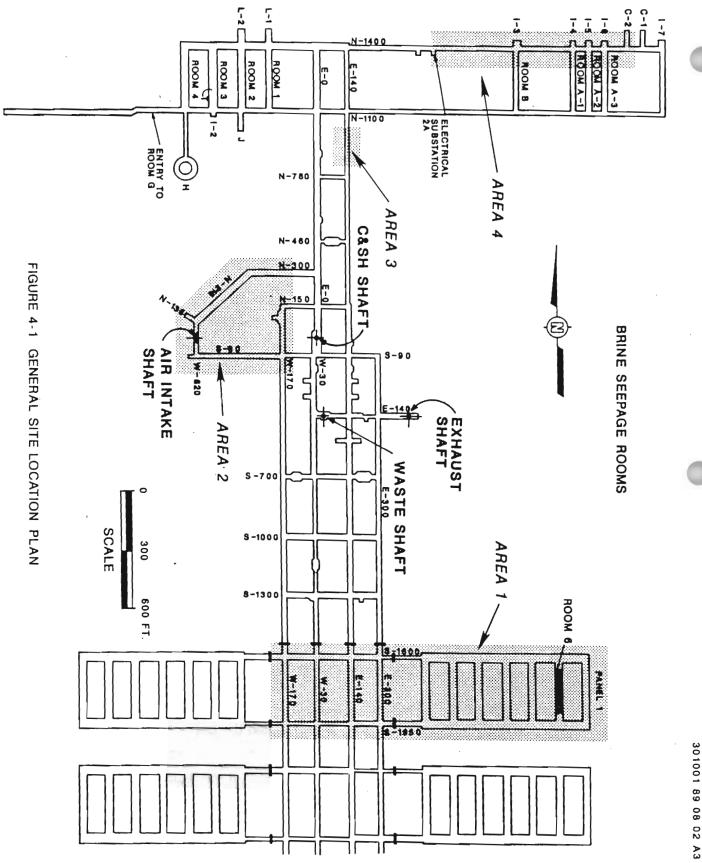
the repository. Specifically, microbes that inhabit the WIPP are important to the experiments to be conducted for gas generation. The denitrifying (converting nitrates to nitrogen gas), sulfate-reducing (converting sulfates to hydrogen sulfide), and methanogenic microbes are especially important to gas and water budgets and gas-generation potential. The cultures isolated during this study should be maintained for further experimentation.

4.0 CHARACTERIZATION OF FORMATION PROPERTIES RELATED TO BRINE

4.1 MOISTURE CONTENT OF THE SALADO FORMATION AT THE WIPP

4.1.1 Introduction

The existence of moisture in the Salado Formation at the WIPP facility horizon has previously been discussed by Deal and Case (1987) and Deal and others (1987). They have shown that moisture occurs in the facility rocks principally in:


- Hydrous minerals (mostly gypsum and clay),
- Fluid inclusions in bedded salt,
- Intergranular porosity, and
- Open fractures.

The present study was designed to determine the measurable variations of the moisture content of rocks very near the excavations. Specifically, the tasks were to evaluate what areal or stratigraphic variation exists in the host rock and determine if there are distinct locations of brine sources.

Because areal and stratigraphic variations were anticipated to be the dominant parameters affecting moisture content, the sampling and testing program was designed to identify possible correlations. Representative samples from specific stratigraphic horizons were collected at each sampling location. The program characterized four distinct areas in the underground: (1) Area 1, the Panel 1 waste area; (2) Area 2, a newly excavated drift (Air Intake Shaft access drifts); (3) Area 3, an older northern drift excavation with some additional recent excavations for a booster fan installation (near N1100 and E140); and (4) Area 4, the northern experimental area excavated in the upper stratigraphic sequence. The areas were arbitrarily defined and are shown in Figure 4-1. Each area was sampled extensively on a stratigraphically controlled pattern. The specific sample locations for each area are shown in Figures 4-2 through 4-7.

4.1.2 Previous Studies

The BSEP Phase II Report (Deal and others, 1987) presented the background information on the previous studies and programs that evaluated the moisture content of the WIPP facility host rock. These studies investigated the brine content of the facility interval strata to address the WIPP site qualification criteria (Black and others, 1983). The conclusions of the previous studies will be summarized here.

WP:WIP:R-1625-4

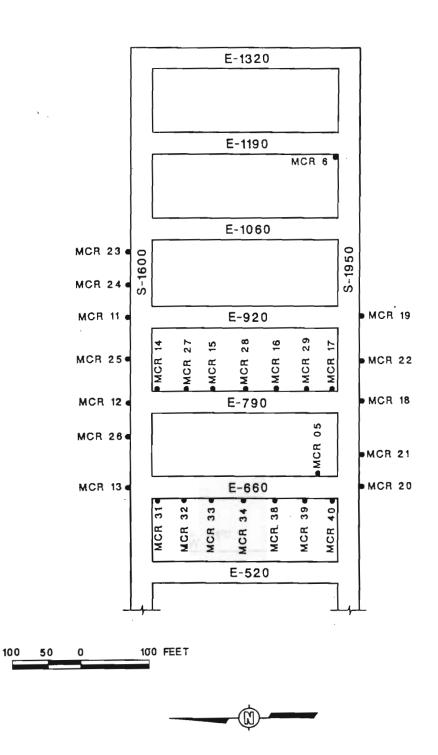


FIGURE 4-2 AREA 1 SAMPLING LOCATIONS

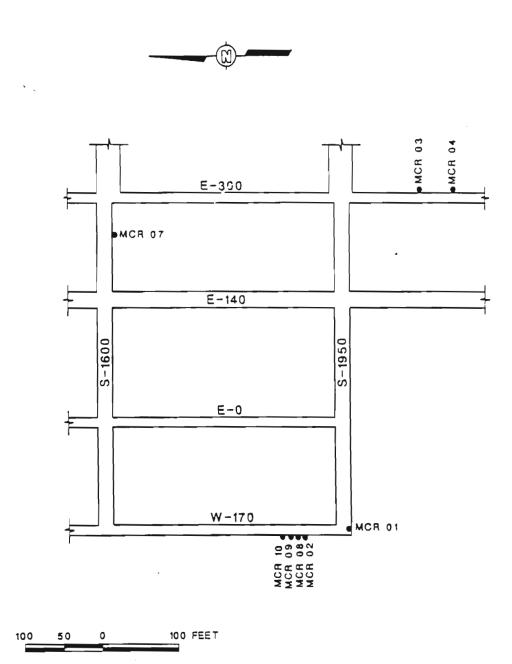


FIGURE 4-3 AREA 1 SAMPLING LOCATIONS (CONTD)

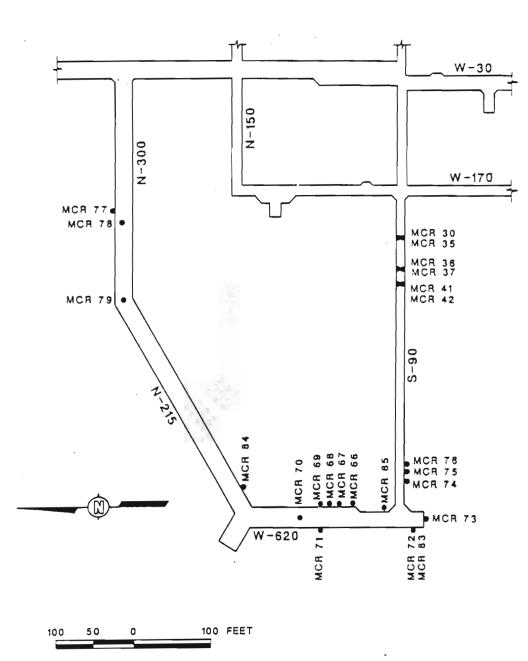
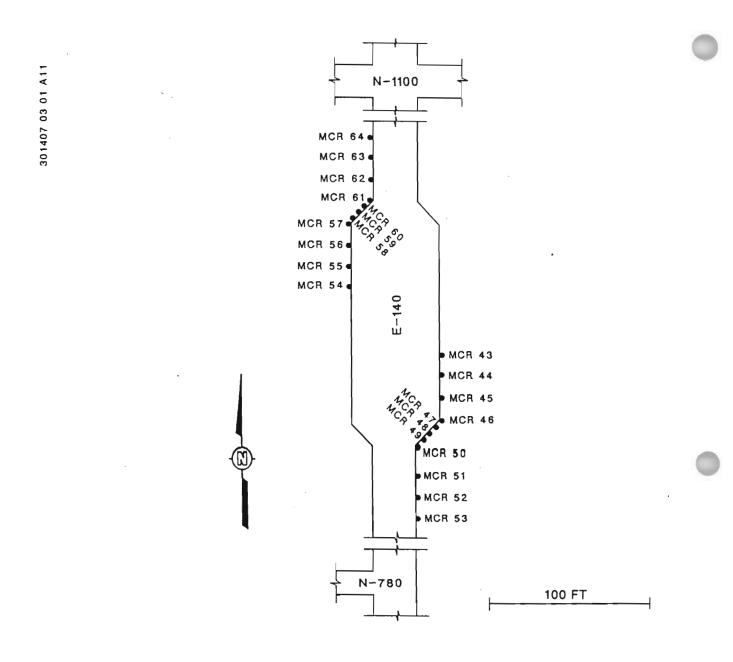
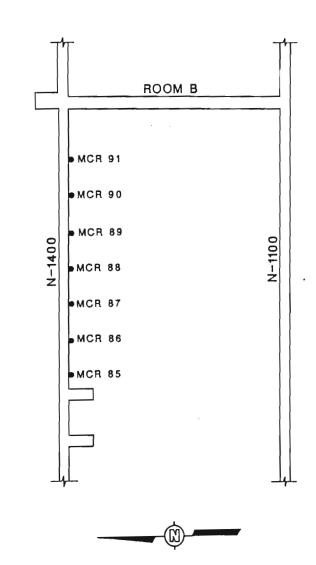
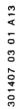
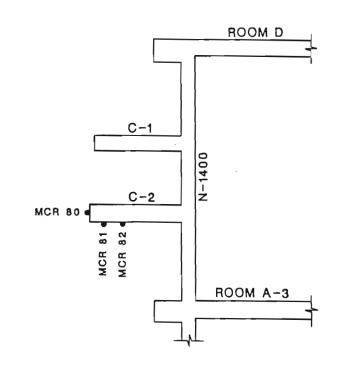


FIGURE 4-4 AREA 2 SAMPLING LOCATIONS

,


FIGURE 4-5 AREA 3 SAMPLING LOCATIONS

100 FT

FIGURE 4-6 AREA 4 SAMPLING LOCATIONS

100 FT

FIGURE 4-7 AREA 4 SAMPLING LOCATIONS (CONT'D)

The Geological Characterization Studies (Powers and others, 1978) included differential thermal analyses (DTA) and thermogravimetric analyses of samples ground to a small grain size. A number of different responses to heating were exhibited by the samples analyzed. Heating to 70°C was designed to measure absorbed water. Depending on sample constituents, moisture loss at 70°C ranged from 0 to 1.9 percent by weight, with values typically in the 0.20 to 0.30 percent range. The range of weight loss at 102°C \pm 5°C was from 0 to 3.5 percent by weight, with the majority of samples showing less than 0.5 percent weight loss. Most samples showed very little weight loss between 200°C and 300°C (Powers and others, 1978).

The Site Validation Program (SVP) was initiated, in part, to address the moisture content of the disposal stratum at the facility (Black and others, 1983). The thermogravimetric analysis of 24 samples in the SVP studies indicated that most of the free water was liberated from the rock salt in the range of 25°C to 250°C. Water released from the dehydration of polyhalite and illite occurred in the range of 250°C to 400°C. The authors (Black and others, 1983) concluded that the average weight loss for each of the temperature ranges was as follows:

- 25°C to 250°C: 0.10 percent,
- 250°C to 400°C: 0.12 percent, and
- 400°C to 500°C: 0.34 percent.

A study conducted by Hohlfelder (1981) on samples from the McNutt Potash Zone in the Upper Salado Formation indicated an average moisture loss of 0.51 percent by weight for samples weighing approximately 400 grams and heated to 424°C. These results were similar to another Hohlfelder study (1979) using much smaller samples (20 grams). Both studies indicated a mass loss of less than 0.08 percent for temperatures below 230°C. The U.S. Geological Survey (1974) also analyzed samples from the McNutt Potash Zone obtained from well AEC No. 8. The average moisture content for 30 core samples heated to 60°C was 2.2 percent.

These previous studies were used to direct the current activities and design a sampling and analysis scheme. The previous studies demonstrated that rock containing free and bound water will lose water at discrete temperatures, depending on how tightly bound the water is in the specimen. Free interstitial water will be lost at lower temperatures, whereas water of hydration will be lost at higher temperatures. The moisture content of the host rock in this current study was defined as the easily moved liquid at low-temperature ranges. A temperature range of 95°C to 150°C was selected to be representative of the free water in a sample that is easily driven off by heating.

4.1.3 Sampling Methodology

The sample collection phase of the program was conducted intermittently from January 1987 through January 1988. A total of 545 samples were collected, the majority of which were shallow core samples taken from the rib surface of the excavations. A small number of the samples were taken from vertical coreholes drilled from the facility horizon, and others were obtained as bulk samples immediately after mining.

Figures 4-2 through 4-7 are maps showing specific sampling locations. These figures indicate that the most extensive sample coverage was accomplished in Area 1, both because the underground excavation sequence allowed ready access and because Panel 1 was of particular interest as the first area proposed to receive waste at the facility.

In general, six core specimens were obtained at each of the sample locations at the facility horizon. The specimens were selected to represent the dominant lithologic types (Units 0 through 4 in Figure 2-2). In areas where excavation dimensions or stratigraphy differed, the number of core specimens was modified accordingly and additional units were sampled.

Samples from the shallow horizontal coreholes were obtained by dry drilling, without air circulation, using a single thin-walled diamond core barrel. The core barrel was advanced with a hand-held electric power drill. The final core dimension was 4.1 cm in diameter and approximately 15 cm long. Specimens were placed in moisture-tight containers until the laboratory analyses were conducted, as per WIPP sample procedures.

4.1.4 Laboratory Analysis

The moisture content determinations are based on the easily moved liquid in the lowtemperature range (25°C to 250°C) defined in thermogravimetric studies (Powers and others, 1978; Black and others, 1983). The easily moved fluid, for purposes of this study, was defined as that fluid contained in the rock that can flow through interconnected pore spaces and existing fractures, is not bound chemically or as intragranular inclusions, and is easily driven off by heat. It is this easily moved fluid that is most likely to flow toward the excavation under mining-induced pressure gradients.

Samples analyzed for moisture content were obtained from the previously described coring process. The specimens were heated to temperatures of 95°C and 150°C, as per WIPP

procedures. The temperature range evaluated was selected based on previous studies conducted and discussed in Section 4.1.2. This temperature range was considered to be within the range from which most intergranular free water is liberated, but well below the temperature causing decrepitation of the sample and rupture of intragranular fluid inclusions.

The fluid content of the specimen was calculated with the following formula:

$$F_{c} = (W_{I} / W_{SB}) \times 100 \text{ percent}$$

$$(4.1)$$

where

 F_c = fluid content by percent weight, W_1 = weight loss during drying, and W_{sB} = weight of sample before drying.

This relationship provides the moisture content of the specimen as a percent of the total original weight of the specimen. Results for all specimens collected in this study are provided in Appendix G.

4.1.5 <u>Results Evaluation</u>

Analysis of the moisture content data developed to evaluate the areal and stratigraphic variations in the rock moisture content was accomplished with several appropriate statistical techniques and other qualitative graphical and numerical comparisons. The following sections discuss these approaches and provide an interpretation of the results. A frequency curve for all samples heated to 95°C is provided as Figure 4-8 for reference in this section.

4.1.5.1 Sample Size

The adequacy of the sample sizes was evaluated by applying the standard error of the mean method to the data. This method approximates the number of sample points required to satisfy a given bound on the error of estimation and confidence interval. The method, as discussed by Mendenhall (1975), requires knowledge of the standard deviation from previous sampling, an approximation of the value, or, as applied here, an exact value. An acceptable error of estimation for this application was arbitrarily chosen as 0.2 percent moisture. The empirical rule states that a 95 percent probability is expected at two standard deviations. A 95 percent probability (two standard deviations) was arbitrarily applied to the evaluation performed in this report.

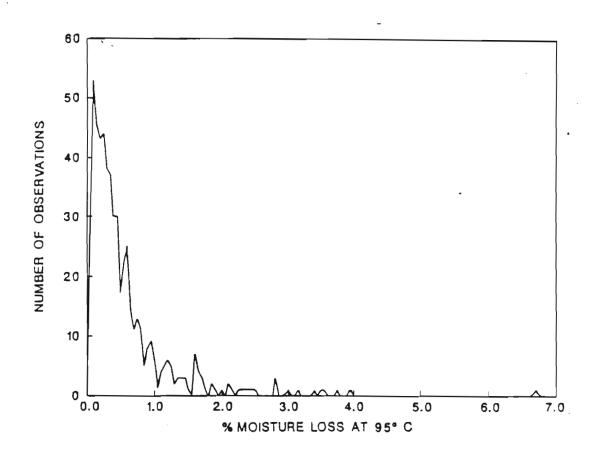
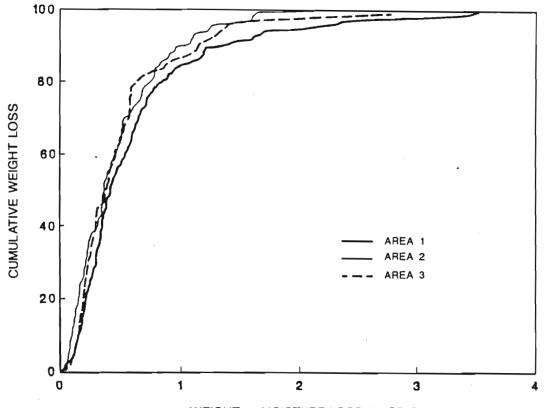


FIGURE 4-8 FREQUENCY CURVE FOR ALL SAMPLES AT 95° C

The sample size evaluation indicates that adequate sampling was obtained for Units 0 through 4 as a group and Units 0 through 4 individually. Some of the upper stratigraphic units were not adequately represented as determined by this approximation, due to the limited sampling effort in the upper sequence.


4.1.5.2 Spatial Comparisons

One of the primary intents of this study was to evaluate whether an areal variation in the host rock moisture content exists. To accomplish this, several statistical techniques were used to evaluate whether the sample sets for individual areas came from the same population. If all sample groups could be interpreted to have come from the same population, the probability of spatial differences would be low at a selected confidence level.

The Kolomogorov-Smirnov (KS) statistic is a technique that can be used to test the null hypothesis that two sample frequency distributions were drawn from populations having the same distribution (Miller and Kahn, 1962). This statistic is nonparametric; no assumptions need be made regarding the form of the distribution, nor is the test subject to very small sample size limitations. The technique is graphic and requires that the maximum separation between two cumulative frequency distributions be measured from the plotted curves of those distributions. The hypothesis that two distributions come from the same population is accepted if the measured maximum deviation of the sample pairs is less than what would be allowed for a selected confidence interval and known sample size, as determined from published graphs or formulas.

The KS statistic was applied to combinations of data representing similar stratigraphic intervals from Areas 1, 2, and 3 (Figure 4-1) to evaluate whether sample sets coming from distinctly different underground locations could be interpreted as being derived from the same population. This would imply that no areal variations exist in the sample sets. The spatial difference comparison for the first three sample sets was accomplished by comparing Area 1 versus Area 2, Area 1 versus Area 3, and Area 2 versus Area 3. Area 4 was not included in this analysis because it is comprised predominantly of samples from the upper stratigraphic sequence with different lithologic characteristics. The analysis was limited to the three sample sets representing similar stratigraphic intervals. Figure 4-9 presents the cumulative frequency curves for the three areas analyzed. In all cases, the

÷

WEIGHT % MOISTURE LOSS AT 95°C

FIGURE 4-9 CUMULATIVE FREQUENCY PLOTS OF AREA 1, 2, AND 3 DATA

distributions for the areas were determined to come from the same population at the 95 percent confidence level. Although the groups are areally separated, no systematic statistical difference exists and the null hypothesis is satisfied.

The T-Test was also applied to the data to provide a further test of the degree of spatial variation in moisture contents. This test is an analytical approach used to test the null hypothesis (that two sample sets may be accepted as coming from the same population), much like the KS statistic. However, unlike the KS statistic, the T-Test assumes that the variables are normally and independently distributed. The T-Test was applied to the same sample set pairs as the KS statistic. The variables were assumed to be normally distributed as discussed in the following section (Section 4.1.5.3). The T-Test analysis was performed using a commercially available statistical software package for personal computers called SAS (SAS Institute, 1985).

The spatial difference comparisons for Area 1 versus Area 2 and Area 2 versus Area 3 were accepted as having come from the same population. Comparison of Area 1 to Area 3 resulted in rejection of the null hypothesis. This is based on a confidence interval of 90 percent, which is a reasonable assumption for the two T-Tests. The slight discrepancy between the T-Test and the KS statistic test results (where the T-Test rejected the Area 1 versus Area 3 comparison) may be explained by the fact that the Area 2 distribution is similar enough to the Area 1 and Area 3 distributions to be considered from the same population, but Area 1 and Area 3 are far enough to either extreme that they are not interpreted to be of the same population. Also, the graphic approach in the KS statistic may not provide the same resolution as a pure analytical technique (T-Test) and a greater error may be introduced in using the KS test. Regardless, results from either technique are close enough to conclude that no difference exists between areas with similarly sampled stratigraphy and that any spatial differences between areas are negligible.

4.1.5.3 Testing Distributional Assumptions

The W-Test and F-Test were used to evaluate the assumption of a normal or log-normal distribution. Normal distributions were assumed in applying the T-Test in the above evaluation. A SAS procedure using a method developed by Shapiro and Wilk for the W-Test was applied to the sample sets (SAS Institute, 1985). The F-Test compares a ratio of the two group's variances against tabulated values for acceptance or rejection of a hypothesis. The details of these approaches will not be discussed here.

The majority of tests rejected the populations as being normally distributed because of the limited data and low probability. Therefore, it was concluded that the distributions tested are not normal. However, the central-limit theorem states that, under general conditions, samples of random measurements drawn from a population tend to possess an approximately normal distribution in repeated sampling (Mendenhall, 1975). Further, earth processes will be normally distributed if large samples are included in the population sample set (Mendenhall, 1975). Therefore, the frequency distributions were treated as normal distributions and application of the T-Test was then considered appropriate. (If normality was not assumed, few, if any, other techniques would be suitable in this evaluation.)

4.1.5.4 Stratigraphic Comparison

The majority of sampling was conducted in Units 0 through 4 (Figure 2-2). A summary of the maximum and minimum moisture contents for the units sampled is provided in Table 4-1. Also included are the number of samples from each unit and the average moisture for the units. The averages for Units 0 through 4 range from 0.2 percent to 0.88 percent. The "solution pits" located in the repository horizon fell within the range defined by the averages of Units 1 through 4, but clay seam F and Unit 5 are greater than 1 percent outside that range. These three horizons have been sampled to a lesser extent (total of 15 specimens). The maximum and minimum values for repository-level sampling range from 6.67 percent (for one isolated clayey sample in Unit 0) to 0.01 percent (for a clear halite specimen in Unit 3).

The specimens collected from older drift excavation surfaces are generally represented by Units 6 through 14 (Figure 2-2). The moisture values for these units range from a maximum of 1.64 percent to a minimum of 0.02 percent with unit averages ranging between 0.58 percent to 0.08 percent. The average moisture content of the upper stratigraphic units is less than 0.5 weight percent.

Deal and others (1987) concluded that greater variability in the clay content in a unit resulted in greater variability in the moisture content. As the clay content increases, the moisture content also increases. Comparison of unit descriptions from Figure 2-2 and average moisture contents listed in Table 4-1 support this conclusion. These data show that units generally having argillaceous zones will tend to have higher average moisture contents and also will have greater deviations from the mean.

SUMMARY OF UNIT MOISTURE CONTENT (WEIGHT PERCENT; SAMPLES HEATED TO 95°C)

UNIT	MAXIMUM	MINIMUM	N	MEAN	STANDARD DEVIATION
14	0.31	0.15	3	0.23	0.08
13	0.21	0.05	3	0.12	0.08
12	0.17	0.05	11	0.13	0.04
11 (Anhydrite "a")	0.98	0.16	6	0.58	0.36
9	0.11	0.05	28	0.08	0.02
8 (Anhydrite "b")	1.44	0.07	5	0.47	0.57
Clay G	2.44	1.34	9	1.75	0.34
7	1.64	0.13	20	0.42	0.34
6	0.59	0.02	22	0.16	0.14
5	2.76	0.86	2	1.81	1.34
Clay F	3.94	0.87	3	2.23	1.56
4	3.75	0.04	104	0.88	0.82
3	0.84	0.01	62	0.24	0.15
2	1.70	0.22	53	0.74	0.37
1	0.94	0.03	69	0.20	0.15
0	6.67	0.08	136	0.66	0.70
*Solution Pits	0.71	0.11	10	0.39	0.22
All Units	6.67	0.01	545	0.55	0.64

*Penecontemperaneous feature having distinct lithology characteristics.

.

This conclusion is geologically reasonable, as the clays in the Salado Formation are probably relatively uncompacted. They were included within the massive salt, which is relatively impermeable and plastic, and appear to have remained there, probably since Permian time. The clay, in the deforming environment of the disturbed rock zone, may actually be undergoing compaction and may finally be able to release what was originally connate water to the underground excavations. This was observed to occur, at least locally, in the days immediately following the excavation of Room H in February 1985, where clay and moisture were quickly squeezed out of the central pillar, as verified through field observations by Deal (1985). Additionally, clay is commonly extruded from vertical surfaces in the WIPP underground in areas where active weeps occur (Figures 4-10 and 4-11).

4.1.5.5 Age Comparison

The effects of excavation age on the moisture content of the host rock were evaluated by three methods: (1) using an area (Area 3) that was reexcavated four years after the initial excavation to evaluate old and new surfaces in the same location; (2) performing qualitative analyses on limited vertical borehole data; and (3) statistically analyzing data throughout the repository for time effects on moisture content. For samples where age of excavation might be significant, the results would be expected to show that the distributions came from different populations. In other words, the frequency distribution curves for the older excavation samples were similar to the general population and, therefore, suggest that the age of excavation is insignificant.

Samples from Area 3 were used to evaluate moisture content as a function of relative time since excavation. They were divided into those samples taken from the old excavation surface, a newly excavated surface, and a transitional area between the two. The KS statistic was applied to these three areas, as was done for the spatial comparison of Areas 1, 2, and 3, described above. The results indicated that no systematic statistical difference existed between the sample sets.

Although a qualitative inspection of the averages for all samples collected in Area 3 (Table 4-2) indicates that the newer surfaces have slightly higher moisture contents, averages for similar stratigraphic units (Units 1 and 3) are nearly the same. Based on this qualitative comparison of similar stratigraphic units, age of excavation does not appear to be significant.

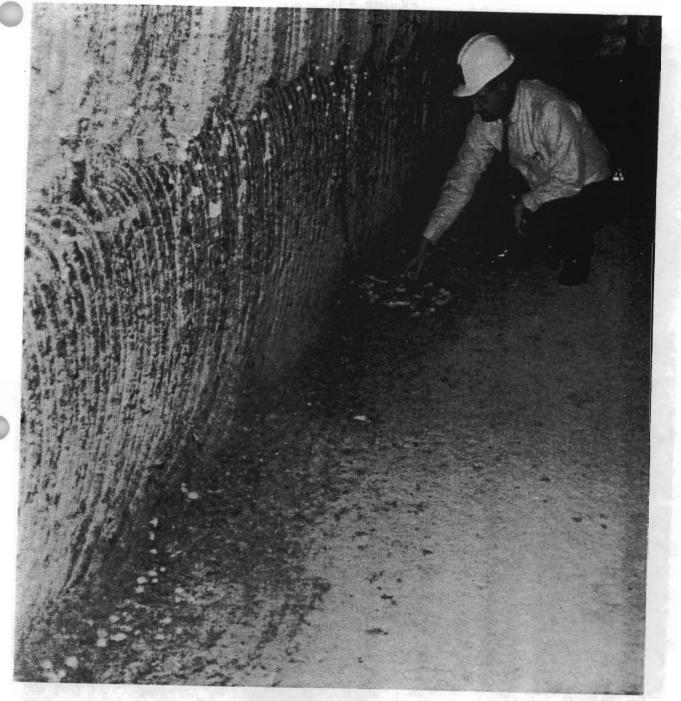


FIGURE 4-10 CLAY PELLETS IN EXCAVATION WALLS. HUNDREDS OF THOUSANDS OF SMALL CLAY PELLETS HAVE BEEN SQUEEZED OUT OF THE WALLS IN THE WIPP EXCAVATIONS. THE ACCUMULATION IS SEEN AS THE DARK BAND ABOUT ONE HALF METER WIDE ON THE FLOOR, AT THE BASE OF THE WALL. THIS EXAMPLE IS IN PANEL 1, ROOM 6.

FIGURE 4-11 CLOSE-UP OF CLAY IN EXCAVATION WALL. CLAY BLEB IN MAP UNIT 0, JUST BELOW THE ORANGE MARKER BAND, PANEL 1, ROOM 6.

SUMMARY OF AVERAGE UNIT MOISTURE CONTENT FOR AREA 3 SAMPLES

		MEANS	
	NEW	OLD	TRANSITION
All Samples	0.70	0.54	0.41
Select Units*	0.21	0.24	0.24

*NOTE: These samples represent Units 1 and 3.

٠.

We discernible in We discernible in pinning the difference workwation. This a Moisture content data collected in early sampling efforts from one corehole drilled vertically upward were presented in the BSEP Phase II report. Additional rib sampling of this upper sequence in Area 2 (Air Intake Shaft access drifts) and Area 4 (northern experimental area) has been accomplished and results of the analyses were compared to the vertical corehole data obtained earlier. Figure 4-12 presents the moisture content data summary for the corehole and rib excavation sampling. The correlation is very good, particularly considering that the sampling and time since excavation for the two sample sets differ by 18 months. The argillaceous halite unit at six feet of depth in the back appears to be the only unit to have experienced some drying between collection of the corehole and rib samples. The moisture contents for the remaining corresponding units in the corehole and ribs correlate very well. There does not appear to be any influence due to time of sampling.

The effects of age on sample moisture contents were also examined by arbitrarily grouping the data into sets representing six-month time periods between excavation and sampling. The data were combined; means, medians, and standard deviations were calculated and the averages plotted for the time groups. No discernible trends were recognized. Another qualitative exercise was performed by plotting the difference between the 95°C and 150°C moisture contents versus the time since excavation. This approach did not suggest a relationship between moisture content and time since excavation. Neither of these preliminary approaches was pursued further, nor have the results been presented in this report.

4.1.5.6 Other Studies

Several other studies evaluating the moisture content of the repository host rock were discussed previously. They were performed in the Site Validation Program, by Hohlfelder (1979), the U.S. Geological Survey (1974), and in early portions of the BSEP (Deal and Case, 1987; Deal and others, 1987). The results of these studies are summarized in Tables 4-3 through 4-6.

Figure 4-13 shows the cumulative frequency curves for the data presented in Appendix G and Tables 4-3 through 4-6. The figure is provided as a qualitative comparison. It should be recognized that the samples analyzed in these studies come from different zones (i.e., McNutt Potash Zone) and different stratigraphic sequences and were analyzed at different temperatures using different techniques. The variations in parameters between the studies do not allow them to be directly related to the current program. However, it is evident that the trends for the BSEP rib and corehole data are similar (Figure 4-12). The corehole data was derived from limited sampling of horizons above and below the actual repository level.

301407.03.01 A5

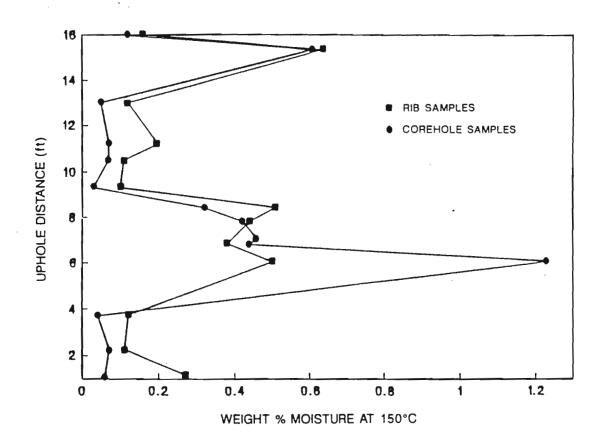


FIGURE 4-12 COREHOLE VERSUS RIB SURFACE DATA

MOISTURE CONTENT DATA FROM BSEP VERTICAL COREHOLE SAMPLING

۰.

SAMPLE	DATE	GEOLOGIC	SAMPLED GEOLOGIC (DAYS AFTER		LATIVE EIGHT LOSS AT
NUMBER	SAMPLED	UNIT	EXCAVATION)	95°C	150°C
BTP 01	06/30/86	UNIT 6	299	0.05	0.07
BTP 02	06/30/86	UNIT 6	299	0.05	0.07
BTP 03	06/30/86	UNIT 6	299	0.03	0.04
BTP 04	07/01/86	UNIT 7	300	1.14	1.23
BTP 05	07/01/86	UNIT 7	300	0.40	0.44
BTP 06	07/01/86	UNIT 7	300	0.38	0.42
BTP 07	07/01/86	ANHYD B	300	0.28	0.32
BTP 08	07/01/86	UNIT 9	300	0.03	0.03
BTP 09	07/01/86	UNIT 7	300	0.43	0.46
BTP 10	07/01/86	UNIT 9	300	0.06	0.07
BTP 11	07/01/86	UNIT 9	300	0.06	0.07
BTP 12	07/01/86	UNIT 9	300	0.00	0.00
BTP 13	07/01/86	UNIT 9	300	0.04	0.05
BTP 18	07/15/86	-	314	0.25	0.26
BTP 19	07/15/86		314	0.24	0.25
BTP 20	07/15/86		314	0.50	0.51
BTP 21	07/15/86		314	1.14	1.20
BTP 22	07/15/86		314	0.22	0.23
BTP 23	07/1 5/8 6		314	0.09	0.10
BTP 24	07/16/86		315	0.20	0.20
BTP 25	07/16/86		315	0.09	0.11
BTP 26	07/16/ 86		315	0.21	0.24
BTP 27	07/16/86		315	0.08	0.12
BTP 28	07/16/86		315	1.61	1.66
BTP 29	07/16/86		315	0.70	0.71
BTP 30	07/1 7/8 6		316	0.26	0.27
BTP 31	07/18/86		317	0.12	0.13
BTP 32	07/18/86		317	0.12	0.16
BTP 33	07/18/86		317	0.06	0.15

MOISTURE CONTENT DATA FROM BSEP VERTICAL COREHOLE SAMPLING (CONTINUED)

DATE	GEOLOGIC	SAMPLED (DAYS AFTER		LATIVE EIGHT LOSS AT
SAMPLED	UNIT	EXCAVATION)	95°C	150°C
07/18/86		317	0.12	0.19
07/18/86		317	0.14	0.16
07/18/86		317	0.18	0.18
07/18/86		317	0.32	0.34
07/18/86		317	1.54	0.57
07/30/86		329	0.24	0.27
07/30/86		329	0.13	0.13
07/30/86		329	0.10	0.11
07/30/86		329	0.10	0.10
07/30/86		329	0.62	0.62
07/30/86		329	0.13	0.13
08/05/86		335	0.00	0.61
08/05/86		335	0.00	0.12
	07/18/86 07/18/86 07/18/86 07/18/86 07/18/86 07/30/86 07/30/86 07/30/86 07/30/86 07/30/86 07/30/86 07/30/86	SAMPLED UNIT 07/18/86 07/18/86 07/18/86 07/18/86 07/18/86 07/18/86 07/18/86 07/30/86 07/30/86 07/30/86 07/30/86 07/30/86 07/30/86 07/30/86 07/30/86 07/30/86 07/30/86 07/30/86 07/30/86 07/30/86 07/30/86 07/30/86 07/30/86 08/05/86	DATE SAMPLEDGEOLOGIC UNIT(DAYS AFTER EXCAVATION)07/18/8631707/18/8631707/18/8631707/18/8631707/18/8631707/18/8631707/30/8632907/30/8632907/30/8632907/30/8632907/30/8632907/30/8632907/30/8632907/30/8632907/30/8632907/30/8632907/30/8632907/30/8632907/30/8632907/30/8632907/30/8632907/30/8632908/05/86335	DATE SAMPLEDGEOLOGIC UNIT(DAYS AFTER EXCAVATION)PERCENT WE 95°C07/18/863170.1207/18/863170.1407/18/863170.1807/18/863170.3207/18/863170.3207/18/863171.5407/30/863290.2407/30/863290.1007/30/863290.1007/30/863290.1007/30/863290.1007/30/863290.1007/30/863290.1007/30/863290.1308/05/863350.00

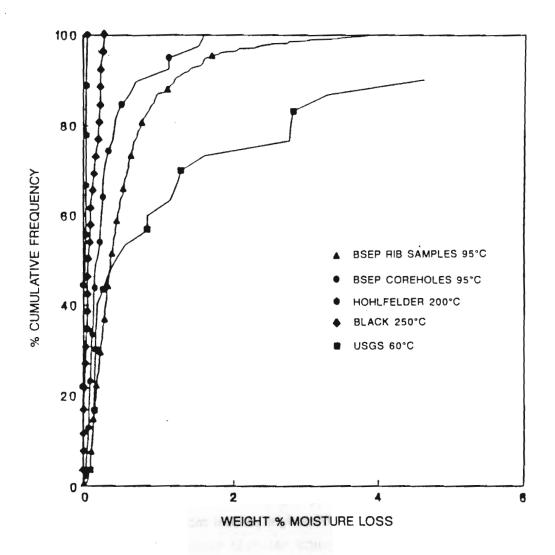
MOISTURE CONTENT DATA FROM THE SITE AND PRELIMINARY DESIGN VALIDATION PROGRAM

۰.

SAMPLE	DATE	GEOLOGIC	SAMPLED DAYS AFTER	CUMULATIVE PERCENT WEIGHT LOSS AT		DSS AT
NUMBER	SAMPLED	UNIT	EXCAVATION	250°C	400°C	400°C
			_			
WIPP-FH-01	11/04/82		5	0.00	0.17	0.28
WIPP-FH-04	11/08/82		24	0.02	0.20	0.28
WIPP-FH-06A	11/11/82	UNIT 3	0	0.04	0.37	0.45
WIPP-FH-06B	11/11/82	UNIT 0/3	0	0.19	0.19	1.16
WIPP-FH-06B2	11/11/82	UNIT 0/3	0	0.03	0.06	0.11
WIPP-FH-10	11/04/82		12	0.04	0.07	0.47
WIPP-FH-11	11/04/82		12	0.08	0.08	0.29
WIPP-FH-14	11/04/82		12	0.00	0.11	0.19
WIPP-FH-16	11/10/82		17	0.03	0.03	0.35
WIPP-FH-20	11/17/82		0	0.15	0.23	0.68
WIPP-FH-24	11/26/82		1	0.02	0.11	1.51
WIPP-FH-26	12/0 7/82		0	0.01	0.03	0.08
WIPP-FH-27	12/14/82		0	0.04	0.23	0.38
WIPP-FH-28	12/17/82		29	0.22	0.49	0.82
WIPP-FH-31	12/22/82		6	0.13	0.66	0.78
WIPP-FH-32	12/22/82		0	0.22	0.31	0.84
WIPP-FH-33	01/06/83		0	0.22	0.30	0.58
WIPP-FH-34	01/06/83		0	0.08	0.14	0.32
WIPP-FH-35	01/17/83		8	0.01	0.01	0.05
WIPP-FH-36	01/15/83		2	0.07	0.12	0.18
WIPP-FH-37	01/21/83		0	0.26	0.37	0.76
WIPP-FH-40	01/20/83		88	0.04	0.17	0.45
WIPP-FH-43	01/19/83		7	0.00	0.37	0.86
WIPP-FH-45	01/23/83		3	0.27	0.38	1.46
WIPP-FH-48	01/31/83		93	0.11	0.25	0.44
WIPP-FH-49	01/29/83		4	0.20	0.25	0.85

.

MOISTURE CONTENT DATA FROM HOHLFELDER


۰.

SAMPLE	DATE	GEOLOGIC	SAMPLED DAYS AFTER		JMULATIVE T WEIGHT L	OSS AT
NUMBER	SAMPLED	UNIT	EXCAVATION	200°C	250°C	400°C
1	NA	POTASH ZONE	0	0.02	0.08	0.41
2	NA	POTASH ZONE	0	0.03	0.09	0.43
3	NA	POTASH ZONE	0	0.01	0.05	0.46
4	NA	POTASH ZONE	0	0.03	0.04	0.47
5	NA	POTASH ZONE	0	0.03	0.05	0.29
6	NA	POTASH ZONE	0	0.03	0.10	1.19
7	NA	POTASH ZONE	0	0.04	0.04	0.24
8	NA	POTASH ZONE	0	0.03	0.12	0.64
9	NA	POTASH ZONE	0	0.03	0.06	0.35

MOISTURE CONTENT DATA FROM USGS-WELL NO. AEC-8 (MCNUTT POTASH ZONE)

۰.

SAMPLE NUMBER	DATE SAMPLED	GEOLOGIC UNIT	SAMPLED DAYS AFTER EXCAVATION	PERCENT WEIGHT LOSS AT 60°C
8-01	05/ 30/7 4	ZONE #4	19	0.14
8-02	05/30/74	ZONE #4	19	0.13
8-03	05/30/74	ZONE #4	19	0.14
8-04	05/30/74	ZONE #4	19	0.17
8-05	05/30/74	ZONE #4	19	1.30
8-06	05/30/74	ZONE #4	19	1.24
8-07	05/30/74	ZONE #4	19	0.11
8-08	05/30/74	STRAY ZONE	19	0.32
8-09	05/30/74	STRAY ZONE	19	0.54
8-10	05/30/74	STRAY ZONE	20	0.25
8-11	05/30/74	ZONE #10	20	0.17
8-12	05/30/74	ZONE # 10	20	2.84
8-13	05/30/74	ZONE #10	20	3.29
8-14	05/30/74	ZONE #10	20	18.67
8-15	05/30/74	ZONE #10	20	1.61
8-16	05/30/74	ZONE #10	20	0.42
8-17	05/30/74	ZONE #9	20	6.24
8-18	05/30/74	ZONE #9	20	14.49
8-19	05/30/74	ZONE #9	20	4.62
8-20	05/30/74	ZONE #9	20	1.15
8-21	05/30/74	ZONE #9	20	0.85
8-22	05/30/74	ZONE #8	20	0.15
8-23	05/30/74	ZONE #8	20	2.80
8-24	05/30/74	ZONE #8	20	0.10
8-25	05/30/74	ZONE #8	20	0.13
8-26	05/30/74	ZONE #8	20	0.07
8-27	05/30/74	ZONE #8	20	0.08
8-28	05/30/74	ZONE #8	20	0.15
8-29	05/30/74	ZONE #8	20	2.79
8-30	05/30/74	ZONE #8	20	0.85

FIGURE 4-13 CUMULATIVE FREQUENCY PLOTS FOR PREVIOUS AND CURRENT MOISTURE CONTENT STUDIES

o t

104100

The rib sampling emphasized the repository horizon, but also included the upper stratigraphy. The frequency curves for the two groups suggest that moisture distributions are similar on the average when enough samples are collected, although this observation is based upon limited samples from boreholes.

4.1.6 <u>Summary and Conclusions</u>

This task was initiated to determine whether areal or stratigraphic variations exist within the Salado Formation. The analyses show that moisture content in samples from different underground locations, but from the same stratigraphic intervals, can be considered to have come from the same population. No areal differences were recognized in the sample sets and the three areas that were extensively sampled at the repository level appear to be from the same population. Stratigraphic variations in moisture content were shown by Deal and others (1987) and, in this report, to be related to the clay content of the units. In general, the units having higher percentages of clay content are those which have higher average moisture contents and which also have a greater range of maximum and minimum moisture content. Table 4-1 is a summary of moisture values for the units sampled. Units 0, 2, and 4 are considered most variable at the repository level. The basic statistics for Units 0 through 4 at the repository level, Units 5 through 14, and the entire sample set are given in Table 4-7.

Based upon the thicknesses of the stratigraphic units, a weighted average was calculated for Units 0 through 4, which are typically exposed in the underground excavation. The weighted average is approximately 0.60 weight percent moisture content. It appears from the data collected to date that an average near-field moisture content of 0.5 to 0.75 percent by weight is a reasonable representative moisture for the repository host rock. This range is also reasonable for the overlying strata given the results from limited vertical sampling of vertical boreholes and its relation to the rib sample results.

In addition, to further confirm the values reported here, it may be suitable to continue analyzing samples obtained at depth from the excavation surface. As probe holes or vertical instrumentation boreholes are drilled, samples collected for moisture content determinations may further improve the data base. Special procedures may be applied to preserve the in situ moisture of the cores during sampling. These samples could then be used to indicate the suitability of applying the near-surface rib sample results to a volume of rock at a given depth from the excavation and to determine at what point that relation may break down. Consideration should be given to collecting additional, deeper samples when construction activities are conducive to such a procedure.

	N	MAX	MIN	MEAN	STANDARD DEVIATION	VARIANCE
Units 0 thru 4 (Areas 1, 2, & 3)	424	6.67	0.01	0.59	0.64	0.41
Units 5 thru 14 (Area 4)	95	2.76	0.02	0.25	0.36	0.13
All Samples	545	6.67	0.01	0.55	0.64	0.41

SUMMARY OF CURRENT MOISTURE CONTENT ANALYSES (WEIGHT PERCENT)

NOTE: Samples heated to 95°C.

4.2 MOISTURE CONTENT DETERMINATION USING BOREHOLE INDUCTION LOGGING 4.2.1 Introduction

Electromagnetic (EM) induction logging of 28 boreholes was performed at the WIPP facility from May 24 through June 2, 1988. Fifteen boreholes were selectively modeled to determine the conductivities for individual beds within the boreholes. The logging was performed to:

- · Determine the material conductivity,
- · Further delineate the geological stratigraphy throughout the repository, and
- Use that material conductivity by applying Archie's Law (Archie, 1942) to determine a gross material moisture content.

Table 4-8 lists the logged and modeled boreholes and their locations within the WIPP facility. A Geonics EM-39 Borehole Induction Logger (EM-39) with an intercoil spacing of 50 cm was utilized in the exercise.

4.2.2 General Theory

Conductivity is a measure of the ease with which electric current can flow through a material. Conductivity is the inverse of resistivity, as shown by the formula (Gieck, 1986):

$$C = \frac{1}{R}$$
(4.2)

where

C = conductivity in mhos (siemens) and

R = resistivity in ohms.

EM induction logging of ground conductivity has been widely used in ground water exploration and ground water contaminant plume mapping. The surface geophysical method has recently been used to develop a borehole conductivity measuring probe (Snelgrove and McNeill, 1985).

The EM method of measuring conductivity by induction uses a probe containing a transmitting coil and a receiving coil. The coils are located at either end of the borehole probe, which thereby defines the intercoil spacing (50 cm in the instrument used). The transmitting coil generates an electromagnetic field due to an alternating current passing through the coil. This magnetic field induces an electric (eddy) current in conductive media

TABLE 4-8 LOGGED AND MODELED BOREHOLES

BOREHOLE	LOCATION	DIRECTION	COLLAR* ELEVATION	LENGTH OF HOLE	DATE DRILLED	DATE OF GEOLOGIC LOG	DATE OF NDUCTION LOG
A1X01	Room A-1 South End	Vertical, Down	400.4 m, 1313.0 ft	15.2 m, 49.75 ft	2/26/85	2/26/85	5/26/88
A1X02	Room A-1 South End	Vertical, Up	405.8 m, 1331.5 ft	18.0 m, 59.0 ft	3/7/85	3/7/85	6/1/88
A2X01	Room A-2 North End	Vertical, Down	399.9 m, 1312.0 ft	15.3 m, 50.15 ft	2/9/85	2/9/85	5/26/88
A2X02	Room A-2 North End	Vertical, Up	405.5 m, 1330.5 ft	16.1 m, 52.75 ft	2/20/85	2/20/85	6/1/88
A3X01	Room A-3 South End	Vertical, Down	399.1 m, 1309.5 ft	15.4 m, 50.5 ft	1/14/85	1/14/85	5/26/88
A3X02	Room A-3 South End	Vertical, Up	404.8 m, 1328.0 ft	15.5 m, 50.75 ft	1/22/85	1/22/85	6/1/88
BX01	Room B, North End	Vertical, Down	401.7 m, 1318.0 ft	15.3 m, 50.15 ft	1/27/85	1/27/85	5/26/88
BX02	Room B, North End	Vertical, Up	407.2 m, 1336.0 ft	15.0 m, 49.25 ft	2/1/85	2/1/85	6/2/88
DH-35	Room G, N1102, W1882	Vertical, Up	394.5 m, 1294.4 ft	15.8 m, 52.0 ft	1/27/85	2/13/85	5/31/88
DH-36	Room G, N1102, W1882	Vertical, Down	391.5 m, 1284.6 ft	15.7 m, 51.5 ft	1/26/86	1/27/85	5/24/88

TABLE 4-8 LOGGED AND MODELED BOREHOLES (CONTINUED)

BOREHOLE	LOCATION	DIRECTION	COLLAR* ELEVATION	LENGTH OF HOLE	DATE DRILLED	DATE OF GEOLOGIC LOG	DATE OF INDUCTION LOG
DH-37	Room G, N1101, W2182	Vertical, Up	395.4 M, 1297.4 ft	15.7 m, 51.5 ft	1/26/85	1/26/85	5/31/88
DH-38	Room G, N1101, W2182	Vertical, Down	392.3 m, 1287.0 ft	14.5 m, 47.5 ft	1/26/85	1/26/85	5/24/88
DH-41	Room G, N1101, W2782	Vertical, Up	395.0 m, 1295.8 ft	15.2 m, 49.9 ft	1/24/85	1/24/85	5/31/88
DH-42	Room G, N1101, W2782	Vertical, Down	391.9 m, 1285.9 ft	15.6 m, 51.2 ft	1/23/85	1/14/85	5/24/88
DH-42A	Room G, N1101, W2789	Vertical, Down	391.9 m, 1285.7 ft	12.3 m, 40.5 ft	1/25/85	1/24/85	5/24/88

*Collar elevations of boreholes located in rooms A-1, A-2, A-3, and B were estimated from known elevations in the area and room geometry.

in the subsurface and the resulting magnetic field is measured by the receiving coil. Figure 4-14 shows this relation in a vertical borehole. Tx and Rx represent the transmitting and receiving coils, respectively.

Physical contact with the borehole surface by the probe is not necessary and the coils are configured to be reasonably insensitive to any borehole fluid. These characteristics are achieved by selecting the proper intercoil spacing during construction of the probe. Large spacings minimize nearby borehole effects, including the borehole fluid, and achieve a large lateral range of exploration away from the borehole, whereas smaller spacings allow high resolution of thin layers (McNeill, 1986). A compromise spacing will optimize the two. Additional coils can be used to focus the probe, further reducing its sensitivity to the borehole fluid and improving vertical resolution.

As discussed above, the intercoil spacing of the transmitter and receiver determines the depth of optimum response in the probe. This optimum response is approximately half the spacing. Figure 4-15 shows the relative response of the EM-39 used in this exercise as a function of distance from the borehole axis. Maximum response is achieved at approximately 25 cm from the borehole axis, with a relatively small fraction of the response coming from within the borehole itself.

The induction log curves were modeled using the DAT39Q "Forward Layer Model" software provided by Geonics with the EM-39 (McNeill, 1986). The objective of the modeling was to calculate successive approximations so that the modeled layering produced the same conductivity response as the actual measured data. Input to the model consisted of up to 20 units, for which thickness and conductivity were specified, although some of the boreholes were modeled in two parts because greater than 20 units were required for accurate modeling. A first approximation for stratigraphic thickness and unit conductivity in the model was based on details provided in the geologic log for a particular borehole. The modeled curve was then plotted over the actual induction log data curve and compared.

The preliminary modeling was based on depth-stratigraphic unit relationships of the cores obtained from the boreholes. In some cases the induction log data curve was shifted in relation to the modeled log to adjust for cable slippage during measurement or inaccuracies associated with the relation between the probe and the borehole collar. Clay seams and anhydrite near clay seams were used to position the peaks of the induction log and determine the amount of shift necessary when this adjustment was required.

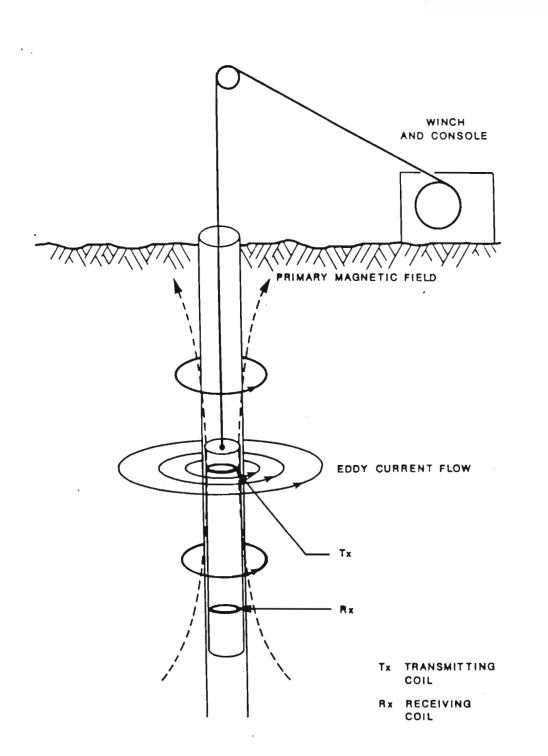


FIGURE 4-14 RELATION OF MAGNETIC FIELD AND INDUCED ELECTRIC EDDY CURRENTS IN VERTICAL BOREHOLE (AFTER McNEILL, 1986)

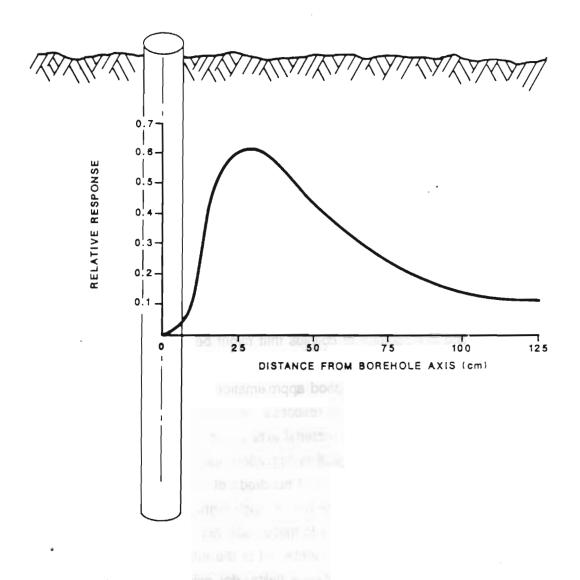


FIGURE 4-15 DISTANCE FROM BOREHOLE VERSUS RELATIVE RESPONSE-GEONICS EM-39 BOREHOLE INDUCTION LOGGER (AFTER SNELGROVE AND McNEILL, 1985)

Subsequent model runs were performed by modifying unit conductivities and/or thicknesses until the modeled curve adequately matched the induction log data curve by visual inspection. The final modeled curves, the corresponding stratigraphic unit thicknesses and conductivities, and the geologic core logs are provided in Appendix H, along with the measured induction log data curves for each borehole modeled.

Conduction generally takes place through the electrolyte (brine) contained within the moisture-filled pores of the matrix of interest (Dobrin, 1976). Because the resistivity of individual salt crystals is extremely high, they do not contribute appreciably to the conductivity of the salt rock. Conductivity in the rock mass is considered to be controlled by (McNeill, 1980):

- Effective porosity and the size, number, and shape of these interconnected passages,
- Moisture content,
- · Concentration of the electrolyte,
- · Temperature and phase of the fluid, and
- · Amount and composition of colloids that might be present in the fluids.

Archie's Law (Archie, 1942) provides a good approximation of the moisture content of the material based on the measured electrical response. Archie's Law, an empirical relationship, assumes that the formation material acts as an insulator and that the conductivity is due solely to the intercrystalline formation fluid. Crystalline halite has a low conductivity (or high resistivity, on the order of hundreds of thousands of ohm-meters [ohm-m]), whereas salt saturated with brine has a much higher conductivity, on the order of 1 mho/m or 1 ohm-m (Matula, 1981). The formation salt acts as an insulator and the conductivity is controlled by the brine fluid contained in the interconnected formation pore spaces. It is also assumed that, like crystalline halite, dry polyhalite, anhydrite, and clay have a very low conductivity relative to the formation fluid and, therefore, Archie's Law can be applied equally well to stratigraphic units consisting of these materials. Archie's Law is expressed as:

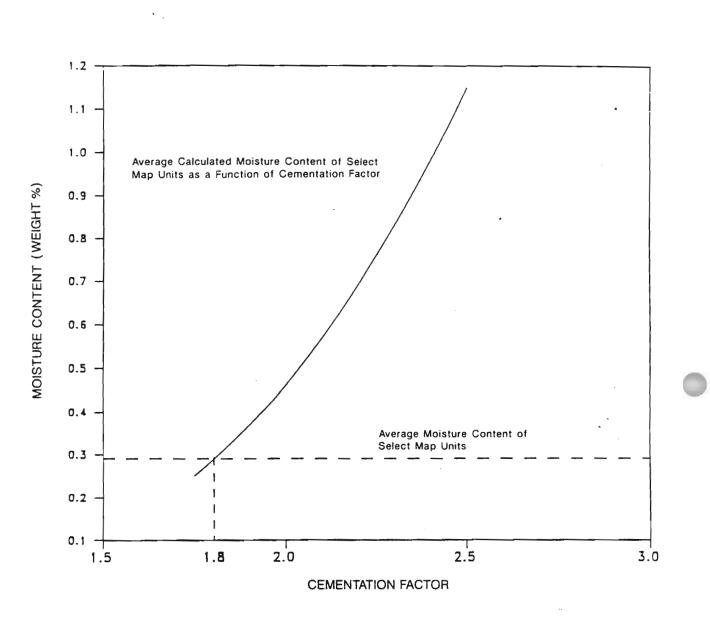
$$\frac{P_o}{P_w} = n^m$$
 (4.3)

where

- P_w = conductivity of brine solution (assumed constant = 2.17 mho/m [Kessels and others, 1985]),
- P_o = measured conductivity of the medium (from modeled values),
- m = cementation factor (assumed 1.8), and
- n = formation porosity.

The cementation factor of 1.8 was assumed to closely represent the average conditions in the WIPP stratigraphy after comparison (similar to Kessels and others, 1985) with moisture contents determined by physical sample analyses of several stratigraphic map units (Figure 4-16).

4.2.3 <u>Methodology</u>


The EM-39 hardware consists of transmitter and receiver coils contained within a borehole probe 4.2 cm in diameter and 133 cm in length. The probe is electrically connected to a data acquisition unit that maintains a digital record of the material conductivities which are later downloaded to a microcomputer. Prior to the logging of each borehole, the tool is calibrated by moving the probe to a reasonable distance from any metal in the workings and adjusting it to zero conductivity for air.

During operation, the probe was lowered or raised to the back of the borehole, depending upon whether downholes or upholes were being logged. It was then slowly returned to the borehole collar, recording formation response. The instrument cable connecting the probe to the instrument recorder was run over a counter wheel and meterage was automatically recorded. Data points were taken every 10 cm as measured by the counter wheel with a logging speed of approximately 0.1 meter/second. Normally, at least two runs in each hole were made to ensure repeatability. At this rate, a 50-foot borehole can be logged, on average, in approximately one hour or less, including setup and transportation time.

4.2.4 Borehole Locations

A total of 28 boreholes were logged. Only boreholes in the northern repository area were logged because of the availability of open vertical holes. Additionally, the boreholes in the northern repository area penetrated the stratigraphic sequence of interest (Units 0 through 4). In Appendix H, Figure H-1 shows the stratigraphy in the area of the WIPP horizon and the position of test room and waste room horizons to the stratigraphy and Table H-1 contains descriptions of the stratigraphic units and the approximate distance of

FIGURE 4-16 ESTIMATION OF CEMENTATION FACTOR

each from the reference seam clay G. Eight of the logged and modeled boreholes were oriented vertically downward into the floor of the excavation, and seven of the logged and modeled holes were oriented vertically upward into the roof. Six additional horizontal boreholes were logged, but not modeled. These horizontal holes did not penetrate more than a single stratigraphic unit and consequently were not included in this report.

4.2.5 Induction Log Data

The conductive response of several of the boreholes logged and modeled is presented in Appendix H. The response is a function of both the conductivity and thickness of the unit represented. Sharp peak responses typically represent thinner, more highly conductive units; lower, rounded peaks typically represent thicker, slightly conductive units. The actual conductivity of each stratigraphic unit is a function of both the magnitude and shape of the measured response, although in general, the higher the measured peak response, the higher the conductivity of that unit. The height of the response is roughly equal to the conductivity of the unit times its thickness, e.g., a unit with a conductivity of 0.075 mho/m and a 0.5-meter thickness would have a measured response of 0.0375 mho/m, as would a unit with a conductivity of 0.150 mho/m and a 0.25-meter thickness.

Because the coils are asymmetrical in the instrument probe, the response for a highly conductive, narrow seam shows a shoulder or shadow on the far side of the peak (toward the back of the hole). This is evident in a number of the logs presented in Appendix H, due to the existence of thin, moist clay seams in the stratigraphic sequence.

4.2.6 Moisture Content by Applying Archie's Law

The modeled induction log response was used to determine the resistivity of the stratigraphic intervals in the underground boreholes. The modeled conductivities shown in Appendix H were used as input to Archie's Law to determine the moisture content values of the stratigraphic intervals (Archie, 1942).

At partially saturated conditions, the conductivities were decreased due to the insulating effects of the gas or air particles in impeding the current flow. However, Archie's Law was still applied by assuming a cementation factor of approximately 2 for this condition (McNeill, 1980). The cementation factor of 1.8 appeared to represent the average conditions in the WIPP stratigraphy after comparison (similar to Kessels and others, 1985) with moisture contents determined by physical sample analyses of several stratigraphic map units (Figure 4-16).

Archie's Law was applied in this analysis, assuming saturated conditions within the measured medium, as was assumed by other investigators (Kessels and others, 1985). Porosities for the various stratigraphic units were calculated from Equation (4.3) above. Knowing the formation porosity and assuming a specific gravity for the solid particles in the various materials being considered, a percent moisture by weight was then determined. These calculated moisture contents and the formation conductivities are shown in Appendix H.

4.2.7 Qualitative Comparison with Physical Samples

The estimated moisture contents developed using Archie's Law may be compared to previous physical sample analyses performed and summarized in Section 4.1. This previous work focused on the repository horizon stratigraphy, as do the surveys presented here. Comparisons of the two approaches are made where data for similar horizons are available. Tables 4-9 and 4-10 present the calculated moisture content for each stratigraphic unit by borehole and the average moisture content for each unit. The average moisture contents from the previous work (Section 4.1) are also reported in Tables 4-9 and 4-10 for comparison.

The correlation between the two sources is variable, depending upon the stratigraphic unit. Figure 4-17 presents the relative correlation for each map unit. Some of the scatter in this figure may be explained by differences in materials type and/or degree and location of physical sampling. Map Units 0, 2, and 4 contain argillaceous zones and Map Units 8 and 11 represent anhydrites "b" and "a", respectively. The cementation factor selected was based on clean halite beds and then applied to other material types. The cementation factor for these other materials may need to be refined with the aid of additional data. The anhydrite layers are usually associated with clay seams, and it is difficult to distinguish the clay seams in the induction log modeling. Therefore, calculated moisture contents for the anhydrite layers may have been influenced by higher moisture contents of the clay seams. Map Units 5 and 14 are layers that had limited physical moisture sampling performed (two and three samples, respectively). These two units are also adjacent to clay seams, which may have influenced both the calculated moisture content and the physical sampling.

The absolute difference between the calculated moisture contents (from Archie's Law) and the physical sample analyses ranges from 0.02 percent for Map Unit 3 to 1.55 percent for Map Unit 5. The absolute difference for Units 0 through 4 (units with the highest number of physically tested specimens) is less than 0.57 percent or better. This is considered to

MOISTURE CONTENTS (WEIGHT PERCENT) UP BOREHOLES

STRATIGRAPHIC	A1X02	A2X02	A3X03	BX02	DH-35	DH-37	DH-41	AVERAGE ⁽¹⁾ (%)	STANDARD DEVIATION	MEAN ⁽²⁾ LABORATORY MOISTURE CONTENT	ABSOLUTE ⁽³⁾ DIFFERENCE (%)
PH-6	0.269		0.217	0.217				0.234	0.030	/	•
AH-4	0.431	0.219	0.219	0.301				0.292	0.100		
H-8	0.343	0.408	0.386	0.324				0.365	0.038		
PH-5	0.217	0.217	0.147	0.217				0.200	0.035		
AH-3	0.844	0.813	1.089	1.406				1.038	0.274		••••
H-7	0.342	0.321	0.407	0.423	0.219	0.219		0.322	0.088		
H-6	0.345	0.322	0.813	0.327 ·	0.149	0.149	0.219	0.332	0.228		
MB-138	4.397	1.964	2.772	2.806	3.189	2.744	2.047	2.846	0.812		
AH-2	0.500	0.387	0.339	0.858	0.260	0.250	0.267	0.409	0.217		
H-5	0.404	0.322	0.259	0.322	0.165	0.165	0.112	0.250	0.106		
AH-1	0.404	0.322	0.259	0.592	0.165	0.089	0.112	0.278	0.179		
Map Unit 15	0.404	1.983	0.274	0.596	0.330	0.270	0.193	0.579	0.633		
Map Unit 14	0.404				0.219	0.538	3.098	1.065	1.362	0.230	0.835
Map Unit 13					0.149	0.122	0.179	0.150	0.029	0.120	0.030
Map Unit 12					0.075	0.274	0.261	0.203	0.111	0.130	0.073
Map Unit 11 (Anhydrite "a")					1.204	1.394	1.185	1.261	0.116	0.580	0.681

MOISTURE CONTENTS (WEIGHT PERCENT) UP BOREHOLES (CONTINUED)

STRATIGRAPHIC	A1X02	A2X02	A3X03	BX02	DH-35	DH-37	DH-41	AVERAGE ⁽¹⁾ (%)	STANDARD DEVIATION	MEAN ⁽²⁾ LABORATORY MOISTURE CONTENT	ABSOLUTE ⁽³⁾ DIFFERENCE (%)
Map Unit 10					0.344	0.149	0.219	0.237	0.099		
Map Unit 9					0.307	0.212	0.247	0.255	0.048	0.080	0.175
Map Unit 8 (Anhydritə "b")					1.780	2.175	1.825	1.927	0.216	1.110*	0.817
Map Unit 7					0.365	0.322	0.322	0.336	0.025	0.420	0.084
Map Unit 6					0.284	0.475	0.373	0.377	0.096	0.160	0.217
Map Unit 5							0.475	0.475		1.810	1.335

This unit was divided into two sub units for the laboratory moisture content measurement. The reported value here is the average of 0.47% for Map Unit 8 (anhydrite "b") and 1.75% for clay G.
 ⁽¹⁾Average moisture content calculated from induction log data.
 ⁽²⁾Average moisture content reported from laboratory testing of soil samples (Section 4.1).
 ⁽³⁾Absolute difference between the calculated moisture content and the laboratory data in Section 4.1.

.

MOISTURE CONTENTS (WEIGHT PERCENT) DOWN BOREHOLES

ABSOLUTE ⁽³⁾ DIFFERENCE (%)	0.11	0.23	1.55	0.57	0.02	0.48	0.17	0.43				-		1	
MEAN ⁽³⁾ LABORATORY MOISTURE CONTENT	0.42	0.16	1.81	0.88	0.24	0.74	0.20	0.66		1	1	-		1	
STANDARD DEVIATION	0.273	0.239	060.0	0.127	0.140	0.140	0.262	0.040	0.095	0,098	0.045	0.063	0.456	0.060	0.071
AVERAGE ⁽¹⁾ (%)	0.533	0.392	0.264	0.309	0.263	0.263	0.369	0.228	0.261	1.002	0.231	0.251	0.468	0.228	0.329
DH-42A								0.257	0.251	0.956	0.225	0.204	1.404	0.191	0.404
DH-42								0.252	0.130	0.873	0.205	0.130	0.955	0.163	0.311
DH-38								0.297	0.301	1.180	0.219	0.293	0.219	0.191	0.289
DH-36								0.219	0.272	1.027	0.340	0.315	0.219	0.217	0.310
BX01		0.219	0.399	0.219	0.217	0.217	0.760	0.200	0.200	0.989	0.200	0.217	0.289	0.211	0.441
A3X01	0.715	0.726	0.219	0.219	0.468	0.468	0.219	0.219	0.381	1.067	0.219	0.271	0.219	0.217	0.288
A2X01	0.665	0.219	0.219	0.309	0.149	0.149	0.279	0.165	0.165	006.0	0.219	0.268	0.219	0.294	0.368
A1X01	0.219	0.406	0.219	0.489	0.219	0.219	0.219	0.219	0.389	1.025	0.219	0.309	0.219	0.344	0.219
STRATIGRAPHIC UNIT	Map Unit 7	Map Unit 6	Map Unit 5	Map Unit 4	Map Unit 3	Map Unit 2	Map Unit 1	Map Unit 0	PH-4	MB-139	H-4	PH-3	H-3	PH-2	Н-2

R-1625-T4-12

.

4-45

•

MOISTURE CONTENTS (WEIGHT PERCENT) DOWN BOREHOLES (CONTINUED)

STRATIGRAPHIC UNIT	A1X01	A2X01	A3X01	BX01	DH-36	DH-38	DH-42	DH-42A	AVERAGE ⁽¹⁾ (%)	STANDARD DEVIATION	MEAN ⁽²⁾ LABORATORY MOISTURE CONTENT	ABSOLUTE ⁽³⁾ DIFFERENCE (%)
PH-1		0.415	0.217		0.218	0.217	0.218	0.161	0.241	0.088		
Anhydrite "c"					0.819	1.154	0.722	0.827	0.881	0.188		
H-1					0.219	0.219	0.219	0.224	0.220	0.003		
All Units									0.504	0.523	0.55	0.05

1

"Average moisture content calculated from induction log data.

⁽²⁾Average moisture content reported from laboratory testing of soil samples (Section 4.1).

⁽³⁾Absolute difference between the calculated moisture content and the laboratory data in Section 4.1.

R-1625-T4-12

FIGURE 4-17 CORRELATION OF CALCULATED MOISTURE CONTENT TO MEASURED MOISTURE CONTENT

be a fairly good relationship, given the coarseness of the induction log survey. The average calculated moisture content for all the units is 0.50 percent, only 0.05 percent difference from the average moisture content (0.55 percent) for all units reported in Section 4.1.

4.2.8 Conclusions

Borehole induction logging performed in this exercise has proven to be a reasonably efficient and accurate method for measuring material conductivity and, thereby, its moisture content. The moisture contents determined from the geophysical logging compare reasonably well with the moisture contents determined from the laboratory analyses. The previous discussions have shown that the two approaches exhibit an absolute difference in moisture content of 0.05 percent if the averages for all units are considered, which is a good correlation given the spatial differences in the sampling sets.

The geophysical approach allows the repetition of surveying the same borehole intervals (i.e., the same rock volumes) to monitor changes in the material response over time. Drying or, possibly, wetting fronts that develop in the vicinity of the excavated borehole are expected to be readily observed in subsequent induction log surveys. Further investigation into the relation of moisture content to excavation depth may also be evaluated with induction logging by observing overall moisture trends from borehole surface to some depth. Unlike physical samples, which are difficult to obtain undisturbed at depth (i.e., representative of in-situ moisture) the induction logging approach allows in situ measurement.

Future recommended activities include:

- Performing additional select borehole surveys to evaluate the time effects of moisture variation (especially on boreholes in areas of new excavation),
- Performing induction log surveys in conjunction with laboratory and field analyses of physical samples from fresh boreholes to further correlate moisture content measurements obtained from physical sampling with those obtained from conductivity logging,
- Performing additional borehole logging where deep open boreholes become available (particularly in the area of declined boreholes drilled in the first panel area for brine inflow monitoring), and
- Performing additional laboratory analyses of the WIPP geologic materials to define resistivity, specific gravity, and average effective porosity to be used in calculating moisture contents from the unit conductivity and Archie's Law.

4.3 RESULTS OF THE DRILLHOLE VIDEO-CAMERA SURVEY

One of the questions raised during Phase I of the BSEP concerned the exact stratigraphic source of the brine inflows into the WIPP underground drillholes. A drillhole video-camera survey was undertaken in an attempt to help answer that question. The primary objective was to determine if it was possible to observe the location of wet areas or salt encrustation on the walls of drillholes that might indicate points of brine inflow. A secondary objective was to determine the usefulness of the existing drillhole camera in discerning lithologic and structural features.

Twenty-one drillholes were selected for observation from those used in the BSEP -Appendix B (Deal and Case, 1987). Eleven of these were downholes and ten were upholes. Six of these drillholes were logged between February 12, 1987 and April 28, 1987 (Table 4-11), at which time the drillhole camera malfunctioned. The results from that survey are reported in the BSEP Phase II report (Deal and others, 1987). After repair of the camera, the remaining 15 holes were logged between June 7, 1988 and September 1, 1988 (Table 4-12). The results of the completed survey are presented in Appendix I and discussed below.

4.3.1 Equipment

This survey was conducted using the same camera that was used in the first part of the video survey, a Circon color drillhole camera fitted with a wide-angle lens placed at right angles to the axis of the drillhole. Snap-together aluminum rods 1.8 meters long were attached to the back of the camera and were used to manipulate the camera in the drillholes. The camera was connected to a Circon color video control unit by a cable 15.2 meters long. The camera cable could not be lengthened without redesigning the circuitry. This camera's limited usefulness with this configuration only allowed it to be inserted a maximum of 13.40 meters into the downholes and 14.63 meters into the upholes. As a result, the end part of most of the holes could not be observed with this equipment. The control unit was connected to a video recorder and TV monitor (Figure 4-18). Video tapes produced during the examinations are kept on file in the Geotechnical Engineering Section at WIPP. The unit is powered by 120V AC current or a 12V DC battery pack. The battery pack was used during this survey.

4.3.2 <u>Method</u>

Both upholes and downholes were examined in the survey. The downholes were sounded with the Solinst tape to determine the brine level prior to inserting the camera so that the

DRILLHOLES INVESTIGATED WITH THE VIDEO CAMERA DURING THE FIRST SURVEY

۰.

HOLE	ROOM	LOCATION (MINE COORDINATES)	DIRECTION	DATE DRILLED	DATE INVESTIGATED	DEPTH (METERS)
Experimental I	Rooms					_
A2X01	A2	N1393.7 E1338.9	Down	02/09/85	04/28/87	15.4
Facility Horizo	n					
L1X00	L1	N1538.5 W225.0	Down	05/13/84	02/12/87	3.8
DH-38	G	N1101.0 W2182.0	Down	01/26/85	02/12/87	14.5
DH-40	G	N1101.0 W2482.0	Down	01/25/85	02/12/87	15.5
DH-42	G	N1101.0 W2782.0	Down	01/23/85	02/12/87	15.6
DH-42A	G	N1101.0 W2789.0	Down	01/23/85	02/12/87	12.3

DRILLHOLES INVESTIGATED WITH THE VIDEO CAMERA DURING THE SECOND SURVEY

HOLE	ROOM	LOCATION (MINE COORDINATES)	DIRECTION	DATE DRILLED	DATE INVESTIGATED	DEPTH (METERS)
Experimental Ro	ooms					
BX01	В	N1394.6 E982.3	Down	01/27/85	06/09/88	15.3
BX02	В	N1384.4 E982.9	Up	02/01/85	08/29/88	15.0
A1X01	A1	N1147.0 E1254.4	Down	02/26/85	06/09/88	15.1
A1X02	A1	N1146.9 E1254.2	Up	03/07/85	09/01/88	17.0
A2X02	A2	N1393.6 E1338.9	Up	02/20/85	09/01/88	16.1
A3X01	A3	N1125.0 E1408.0	Down	01/14/85	09/01/88	15.4
A3X02	A3	N1104.0 E1408.0	Up	01/22/85	09/01/88	15.5
DH-15	D	N1104.0 E1688.5	Up	03/09/84	06/09/88	15.5
Facility Horizon						
DH-35	G	N1102.0 W1882.0	Up	01/27/85	06/08/88	15.8
DH-36	G	N1102.0 W1882.0	Down	01/26/85	06/08/88	15.7
DH-37	G	N1101.0 W2182.0	Up	01/26/85	06/07/88	15.7
DH-39	Ğ	N1101.0 W2482.0	Up	01/24/85	06/07/88	15.5
DH-41	Ğ	N1101.0 W2782.0	Úp	01/24/85	06/07/88	15.2
DHP-401	Panel 1	S1950.0 E1320.0*	Up	12/08/86	08/29/88	15.0
DHP-402A	Panel 1	S1950.0 E1320.0*	Down	12/04/86	08/29/88	15.2

*Locations only approximate.

WP:WIP:R-1625-T4-11

۰.

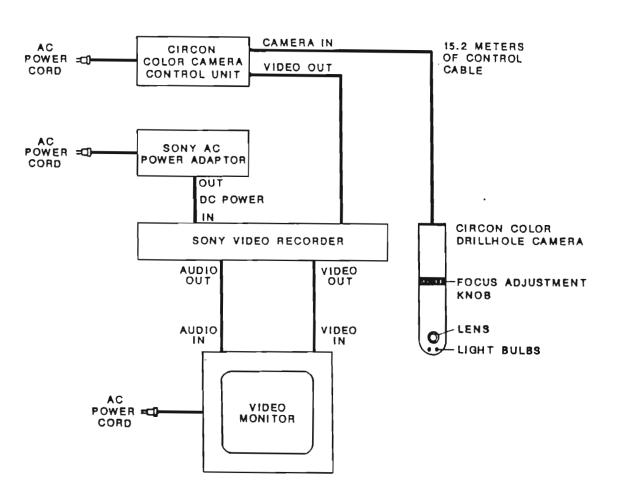


FIGURE 4-18 COMPONENTS AND ARRANGEMENT OF THE DRILLHOLE VIDEO-CAMERA SYSTEM

camera would not be immersed in brine. Once the level of the brine was determined (for downholes) the camera was slowly inserted into the hole by a technician using the aluminum rods while the other member of the team watched the TV monitor, measured how far the camera had been inserted in the hole, and recorded any features noted on the TV monitor. The depth of the camera was determined by adding the length of the camera and the length of the aluminum rods attached to it. If an exact depth was needed to record a particular feature, the distance from the end of the rod protruding from the hole to the collar of the hole was measured and that distance was subtracted from the total length of the rods and the camera. Interesting zones noted on the monitor were examined on all sides of the hole by rotating the camera a full 360 degrees. For downholes, the camera was lowered to within 15 cm of the brine level or to the end of the cable. The camera was then retrieved from the hole. All observations and camera depths were recorded on drillhole video survey log sheets.

During the survey, 21 drillholes were examined in Rooms A1, A2, A3, B, D, G, and L1 and Panel 1 (Figure 2-1). Four of the drillholes examined in Room G and one in Room L1 were examined on February 12, 1987, as a trial run to test the camera's effectiveness for determining locations of brine inflow. Following this trial run, the data was analyzed and a second trial run was conducted on April 28, 1987, on a drillhole with known wet and dry areas to see if a difference could be observed between a wet drillhole wall and one that was reflecting the camera light from dry crystal faces. After looking at a drillhole where the wet and dry areas were known, drillhole A2X01 was examined. From these examinations, it was determined that the difference between wet areas and areas where dry halite was reflecting the camera light was neither easily discernible using the drillhole video camera nor defined sufficiently to be used in logging wet areas in the drillholes. However, salt encrustations and some lithologic units were discernible; thus, the decision was made to continue the survey once the drillhole camera was repaired. Nine holes (four downholes and five upholes) were examined on June 7, 8, and 9, 1988, and six more (five upholes and one downhole) were observed between August 29 and September 1, 1988. This last effort completed the survey.

4.3.3 Results

Even though wet and dry areas could not be defined using the drillhole video camera, salt encrustations, contacts between anhydrite and salt, clay and anhydrite stringers, fractures, and offsets in the drillholes were identifiable (Appendix I). Salt crusts and knobs were observed in eight of the upholes and eight of the downholes. Anhydrite beds and seams were seen in all of the upholes and nine of the downholes. Four of the drillholes, three downholes and an uphole also had identifiable fractures. In five of the downholes which had a salt buildup, the buildup started either at the top of or within the polyhalitic anhydrite of Marker Bed 139 and ended near the bottom of the unit. Even in Hole A2X01, where the top of Marker Bed 139 is 6.9 meters below the collar of the hole, there was a salt buildup at the top of the unit. In two of the holes that had salt crusts not associated with Marker Bed 139, the crust was associated with a fracture that had been identified in the core. In all eight of the upholes, salt buildups occurred within two meters of the collar of the hole. There were a few buildups deeper inside one of the holes, but there was no identifiable correlation between the buildups and observed features in either the drillhole or the lithologic drillhole log.

In the downholes, Marker Bed 139 was identified in five of the holes and anhydrite "c" was identified in four of the holes. However, six of the holes were not deep enough to reach anhydrite "c".

In the upholes, Marker Bed 138 was identified in all of the drillholes and anhydrites "a" and "b" were seen in five of the holes. The other five holes, those in the experimental area, were collared above those units.

4.3.4 Conclusions

The buildup of salt crust around Marker Bed 139 (drillholes L1X00, DH40, and DH42A) indicates that it is a source for some of the brines in the drillholes. Anhydrite "c", located approximately 10.6 meters below Marker Bed 139, is another possible source for brine, as evidenced by the wet appearance of the unit (drillholes DH38 and DH42) and the buildup of salt crust around it (drillhole DH40). Another source of brine may be fractures, as evidenced by the salt buildups between 2.0 and 2.2 meters in drillhole A2X01 and at 2.6 meters in hole BX01, both of which occur just below fractures identified in the core when the drillholes were logged (Gallerani, 1985).

The drillhole camera is not useful for locating wet areas in the salt sections because it is extremely difficult to differentiate wet areas from areas where the light from the camera is reflected by the salt. In anhydrite and clay sections, it is easier to distinguish wet areas because these section do not reflect light from the dry surfaces. Although it is difficult to distinguish between clay and anhydrite in the smaller seams, the larger ones greater than 2.5 cm are relatively easy to distinguish. The camera is most useful for identifying changes in lithology, fractures, salt encrustations, and offsets in the drillholes.

5.0 MODELING EXERCISES TO DETERMINE THE EFFECTS OF ROCK DEFORMATION ON BRINE INFLOW

5.1 INTRODUCTION

Although the excavations in bedded salt at the WIPP are for all practical purposes dry, small amounts of brine have been observed to weep from exposed surfaces in the repository horizon and seep into drillholes in the underground excavations. As part of the BSEP at the WIPP, a modeling study has been undertaken to formulate and analyze the complex problem of brine and nitrogen flow through deforming salt. The modeled relations involve rock mechanics and fluid flow phenomena, and have been coupled, where appropriate, in order to closely describe the natural phenomena. The main objectives of this section and Appendix J are to (1) present the comprehensive formulation of rock deformation and brine flow and suggest methods by which the formulation might be solved in order to estimate the brine inflow rate into the excavated rooms at the WIPP repository level, (2) implement a preliminary solution by utilizing modifications to two existing codes (modeling rock mechanics and fluid flow) to obtain an initial estimate of the effects of salt deformation on the flow of brine to a 1.8-meter-radius shaft at a depth of 655 meters, and (3) provide modeling support for interpreting the brine inflow measurements for identification of both sources of brine and flow mechanisms.

Excavations at the WIPP create openings at atmospheric pressure, and the resulting pressure gradients induce fluids (contained in the salt) to flow toward the excavated rooms. In rock salt that cannot sustain deviatoric stress over long periods of time, the brine pressure is approximately equal to the lithostatic state of stress (~ 15 MPa). Excavation creates a stress differential between atmospheric pressure and the virgin rock stress in the intact salt. This stress differential causes salt to creep into the excavated rooms and shafts. Gases (mostly nitrogen) dissolved in the brine also exsolve and move toward the excavation, moving through both the salt and the brine. The result is that excavation-induced flow of three phases (represented by salt, brine, and nitrogen) occurs simultaneously.

The relevant factors and mechanisms involved in brine inflow are as follows (Deal and Case, 1987): (1) the nonuniform distribution of brine; (2) the surrounding salt is continuously deforming resulting in local changes in permeability; (3) a coupling of salt deformation and the flow of brine; (4) the presence of unsaturated flow conditions, especially in the proximity of the

excavation; (5) the development of fractures around excavations; (6) the exsolution of nitrogen from brine; and (7) the stratigraphic variations within the salt sequence.

The processes of salt creep and fluid flow are coupled in a complex manner. As brine flows into the rooms of the WIPP repository, the rock salt around these rooms is also creeping into the excavation. The creep of intact salt will modify the permeability and porosity of the salt itself, which in turn results in changes in the fluid pressure. Fluid pressure in rock pores may then affect stresses in the rock and, consequently, the salt creep rate. Because detailed experimental data on these coupling effects are not available at the present time, the relative importance of each mechanism is unknown.

The comprehensive formulation of brine inflow is presented in this section and Appendix J. The equations describing brine flow through deformable porous media are derived and expanded for the potential two-phase flow conditions. Consideration is given to the existence of material properties and modeling assumptions. A simplified mathematical model is developed and used to perform a preliminary numerical analysis. The results are evaluated relative to the modeling assumptions to provide guidance for future work.

5.2 OCCURRENCE OF BRINE AND NITROGEN IN BEDDED SALT AT THE WIPP

The brine occurrences and flow mechanisms have been discussed elsewhere (Deal and Case, 1987). This section presents a brief discussion of the important modeling assumptions made in performing the analysis. The complex evaporite sequence exposed in and near the WIPP excavations was initially deposited in the Permian sea, where normal marine waters were concentrated by evaporation. Rainfall, muddy runoff from nearby land, and influxes of normal marine water caused the salinity of the water to fluctuate, so that periods of precipitation of halite alternated with periods of dissolution. Although the Salado Formation is composed predominantly of halite, the resultant rock contains some clay and other evaporite minerals such as polyhalite, anhydrite, and various potash minerals (Holt and Powers, in preparation). Some residual sea water containing gases dissolved from the Permian atmosphere was trapped in the precipitating evaporites.

After burial beneath the sea floor, a chemically and physically complex set of diagenetic processes acted on the deposits, causing extensive recrystallization to occur (Holt and

Powers, in preparation). The composition of the residual brine and gases in the salt was also changed during diagenesis and it is likely that whatever residual oxygen was present combined with other elements at that time. The WIPP brines are notable for the fact that they contain essentially no dissolved oxygen or carbon dioxide and that the gas exsolving from the brine is mostly nitrogen with traces of methane. The nitrogen today may either exist within the rock matrix as free gas or be dissolved in the brine. The amount of nitrogen dissolved in the brine depends upon the pressure and temperature of the undisturbed salt.

Observations in the WIPP excavations indicate that delicate features formed during deposition and diagenesis are very well preserved and that the bedding is nearly horizontal and appears to be essentially undisturbed since Permian time. Only burial, uplift, and gentle warping has occurred. There is evidence that local pressure gradients in the salt near the WIPP repository were probably insignificant and that little or no flow of salt or brine occurred for a long time prior to excavation.

Prior to excavation, fluid pressure in the pore spaces prevents additional plastic closure of those pore spaces. Since salt is a plastic material and creeps under deviatoric stress, it is likely that brine pressure is near lithostatic and the salt exhibits low permeability. After excavation, the salt creeps into the opening and the porosity and permeability of the adjacent salt near that excavation increases.¹ If the salt has any effective permeability, it is likely that the brine and gas will move through openings in the salt under a high pressure gradient more rapidly than the salt can deform. It is therefore possible that at some distance from the excavation, in the far field (but not so far that undisturbed conditions persist) where a small pressure gradient toward the excavation exists, brine and gas flow through the pore spaces reducing the pressure within them, allowing salt-creep closure and consolidation of clays within the pillars due to loading with a reduction of the size of the intercrystalline pore space (microfractures, intergranular spaces, pores, or the apertures that connect them). This process might continue until the open pathways become so small that surface-tension forces dominate, Darcy's Law no longer applies and, for all practical purposes, the fluids become immobile and effective permeability is reduced to zero. Brine seepage phenomena may be

¹The salt dilates in response to a decreased confining stress, resulting in an increase in both intracrystalline and intercrystalline porosity.

self-limiting and, at least in a horizontal direction away from the excavations, a "barrier" zone of reduced or negligible permeability might naturally develop.

5.3 FLUID FLOW THROUGH DEFORMABLE ROCKS

The hydraulic regime around the excavations at the WIPP is more complex than that encountered in most common geohydrologic settings, in which it is reasonable to assume that the rock properties of porosity and permeability remain constant and that the rock matrix is an elastic solid. Further, salt deformation causes changes in fluid pressure which influence flow (a consolidation problem). At the WIPP the rock matrix is an elastoviscoplastic material and, once excavations at atmospheric pressure are created, the porosity and permeability of the rock matrix close to the excavations change dramatically with time as the salt creep occurs. Additionally, the atmospheric pressure in the excavated rooms acts like a pressure sink for fluids and gases stored in the salt. As brine and nitrogen flow toward the pressure sinks (rooms), the steepness of the pressure gradient decreases and the zone of pressure relief propagates outward with time. Distribution of pore pressures may eventually reach steady state after some time.

A two-step approach has been taken to understanding this flow regime. This formulation assumes:

- Rocks can be modeled as continuous and porous flow media,
- Permeability and porosity of rock salt are affected by salt creep and brine flow,
- Darcy's Law applies,
- Linear relationships are applied wherever possible, and
- Compressibility of brine is consistent over the applicable range of pressure.

The set of derived equations (Appendix J, Sections J.1-J.6) describe, in general, the flow of brine through creeping salt under the influence of stress and temperature change. The equations include:

- Mass conservation equations for two-phase flow of fluids through a porous media,
- · Stress equilibrium and displacement compatibility equations,
- Stress-strain constitutive relations.

Derivations are carried out based upon:

- Darcy's Law and a piece-wise application of linear relationships between pressure gradient and fluid flow rate,
- The concept of mass and energy balance, and
- A proposed constitutive model for salt deformation.

These equations provide a theoretical basis for understanding the relationships between parameters in multiphase coupled flow. The constitutive relations proposed in Appendix J can be applied to conditions at the WIPP only after there is better information on the specific properties of the Salado Formation near the facility horizon.

In order to define the properties necessary to perform the analyses using the proposed relationships, it may be necessary to consider the following variabilities near the WIPP excavations:

- The Salado Formation is a complex, bedded stratigraphic unit with considerable vertical variation and numerous horizontal discontinuities,
- Brine is not uniformly distributed within the Salado Formation,
- Unsaturated flow conditions are known to exist, at least locally, in close proximity to the excavations, and
- Fracturing is part of the salt deformation process close to the excavations.

The fracturing is associated with several near-field deformation mechanisms. These include (Holt and Powers, in preparation):

- Vertical surficial spalling in pillars,
- Low-angled (relative to horizontal) fracturing that develops from the rib/roof and rib/floor lines,
- Subhorizontal fractures that develop within the first 18 inches of the roof,
- Bed separation that develops at the Anhydrite B interface in the roof,

- Vertical surficial spalling in the roof that probably develops as a result of restraint by remedial bolting, and
- Low-angled shear fractures that daylight across the roof.

While the aperture, length, width, and orientation of individual fractures may be characterized, the hydraulic properties of the fractured zone are currently unknown.

We did not attempt to develop a totally new modeling code based on the global derivation (such as Niou and Deal, 1989; and Appendix J, Sections J.1-J.6). Our approach used simplifying assumptions and coupled two existing codes to obtain a preliminary evaluation of the effects of deformation on fluid flow to the WIPP excavations. We then applied the coupled code to a test case.

5.4 MODELING ASSUMPTIONS

The technical approach adopted in performing the analysis is to model both salt deformation and fluid flow simultaneously, subject to the following major assumptions:

- The Salado formation, although known to contain horizontal stratigraphic discontinuities, is modeled here as a continuous media.
- The salt is modeled as an elastoviscoplastic material exhibiting time-dependent deformation.
- Effective stress equals total stress in the rock. The porosity is so small (.001) (Peterson and others, 1985) in the deforming salt that the change in pore pressure is assumed not to affect total stress. Therefore, the presence of brine does not affect the creep rate or the elastic deformation of the rock. This allows simplification of the coupling of the modeling codes.
- The permeability and porosity of the rock are affected by salt creep in that stresses are redistributed around the opening.
- The brine is uniformly distributed through the salt and flows under Darcy's Law under saturated conditions as fluid pressure is reduced at the opening due to development of brine inflow.
- The nitrogen exsolves rapidly following excavation. The precise gas content is unknown, though estimates based on the solubility of nitrogen in sea water yield volumetric changes of 20 percent for a saturated brine that is depressurized (Roggenthen, 1988).

The fundamental assumption is that porosity and permeability are affected by the response of the salt to excavation (Borns and Stormont, 1988; Case and Kelsall, 1987). For infinitesimal strains which relate to porosity

$$\Delta V \doteq V_{o} \varepsilon_{ii} \tag{5.1}$$

where

 ε_{ii} = first strain invariant,

 V_{o} = initial volume, and

 $\Delta V =$ change in volume.

Note that the repeated index i indicates summation from 1 to 3. The porosity is given by

$$\theta = \frac{V_{v}}{V} = \frac{V_{0} \theta_{0} + \Delta V}{V_{0} + \Delta V}$$
(5.2)

where

 $\theta_o = \text{initial porosity,}$ V = volume of a rock element, $V_v = \text{volume of pores in the same rock element when strains are very small, and}$ $V_o = \text{initial volume.}$

For infinitesimal strains

$$\theta = \frac{\theta_0 + \varepsilon_{ii}}{1 + \varepsilon_{ii}}$$
(5.3)

To relate porosity with permeability for rock salts, the following equation was obtained through laboratory tests (Lai, 1971)

$$\frac{\theta^3}{(1-\theta)^2} = \frac{k^a}{b}$$
(5.4)

where

k = intrinsic permeability,a = constant, andb = constant.

Lai's experimental tests were conducted in a high-pressure, triaxial cell with external hydrostatic stress and pore pressure held constant. Salt samples were prepared in the laboratory and were free of joints and fractures. Because of the experimental set up, his results have the following shortcomings:

- The tests were conducted on a short-term basis as opposed to a long-term basis.
- The pore pressure was independent of rock stress.
- The migrating fluid used by Lai was kerosene, which is nonreactive to the salt. In the current study, the migrating fluid is brine that, if unsaturated, may react with the salt and affect permeability.
- The induced fracture system and stratigraphic variations in the vicinity of the WIPP excavations cannot be modeled in small rock samples.

While equation (5.4) does not completely describe the relationship between porosity and permeability found in the vicinity of the repository excavation, this equation is suggested for the time being until such time that better relationships between rock deformation and permeability become available.

5.5 EQUATIONS FOR FLUID FLOW

The general fluid-flow equations were developed from the continuity equations and then expanded based on several proposed constitutive relationships. To describe the flow system for a deforming media, the following relationship is used (Huyakorn and Pinder, 1983 - Equation [6.2.1.22]):

$$\frac{\partial}{\partial x_{i}} \left[\frac{k}{\mu} \left(\frac{\partial P}{\partial x_{i}} + \rho g_{i} \right) \right] = \theta \beta \frac{\partial P}{\partial t} + \frac{\partial}{\partial t} \left(\frac{\partial u_{i}}{\partial x_{i}} \right)$$
(5.5)

where

- u, = displacement,
- k = intrinsic permeability,
- ρ = fluid density,
- θ = porosity,
- β = fluid compressiblity,
- P = fluid pressure,
- t = time,
- $x_i = i^{th}$ coordinate axes,
- g_i = ith component of gravitational acceleration, and
- μ = absolute viscosity.

Assuming that the pressure potential is large relative to the elevation potential at the repository horizon, one can neglect the ρg_i term. Then, given constant density and viscosity for a twodimensional analysis (x, y plane), Equation (5.5) simplifies to

$$\frac{1}{\mu} \left[\frac{\partial}{\partial x} \left(\frac{k}{\partial x} \frac{\partial P}{\partial x}\right) + \frac{\partial}{\partial y} \left(\frac{k}{\partial y} \frac{\partial P}{\partial y}\right)\right] = \theta \beta \frac{\partial P}{\partial t} + \frac{\partial}{\partial t} \left(\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y}\right)$$
(5.6)

The second term (Q_d) on the right-hand side of the equation is defined as

$$Q_{d} = \frac{\partial}{\partial t} \left(\frac{\partial u_{x}}{\partial x} + \frac{\partial u_{y}}{\partial y} \right)$$

It is assumed that this term represents the time rate of change of elastic strain and represents the compression or expansion of the void space due to changes in stress in the salt as determined from the elastoplastic stress analysis.

5.6 EQUATIONS FOR STRESS ANALYSIS

In the absence of external forces, the change in the stress tensor over space is equal to the body forces distributed over the volume. The general static equilibrium is given by

$$\sigma_{\mu_i} + F_i = 0 \tag{5.7}$$

or

 $\dot{\sigma}_{ij,j} = 0$

where

$$\sigma_{ij}$$
 = the stress tensor, and F_i = the body forces.

Note that the comma indicates partial differentiation on the σ_{\parallel} term.

The equilibrium relations are solved in conjunction with the constitutive relationships for rock salt and strain compatibility relationships. These relations were selected for performing the analysis discussed below. The relations assume:

- · Elastic deformation occurs under hydrostatic compression,
- Viscoelastic deformation is neglected,
- Thermal elastic deformation is neglected because temperatures at the repository horizon are constant,
- The yield stress for viscoplastic deformation is equal to zero, and
- The influence of moisture and pore pressure on salt creep is neglected.

The analysis uses the elastic-secondary-creep constitutive relations of Krieg (1982) used in performing the WIPP benchmark problem (Morgan and others, 1981) under isothermal conditions.

5.7 COMPUTER CODE DESCRIPTIONS AND VERIFICATIONS

To implement the model, a coupled finite-element analysis was performed using two modified computer codes. These include the VISCOT code (Intera, 1983) for modeling rock mechanics and the SUTRA code (Voss, 1984) for saturated fluid flow. The resulting computer code is written in modular form such that if further refinements become necessary, they can be easily accommodated. A more complete description of solution algorithms is presented in Appendix J, Section J.7.

5-10

(5.8)

In implementing the computer code, a number of verification calculations against closed form solutions were performed. These include:

- Elastic Kirsch solution under external hydrostatic loading,
- Elastic Kirsch solution under external hydrostatic loading with stress relief at the circular boundary,
- A cylindrical laboratory specimen of salt with viscoplastic constitutive relations (Sandia Creep Law) subject to triaxial compression, and
- The Theis solution for drawdown versus radius versus time.

The details of these verification problems are presented in Appendix J, which shows comparisons between closed form and numerical solutions.

5.8 ANALYSIS OF A CIRCULAR OPENING IN HOMOGENEOUS SALT

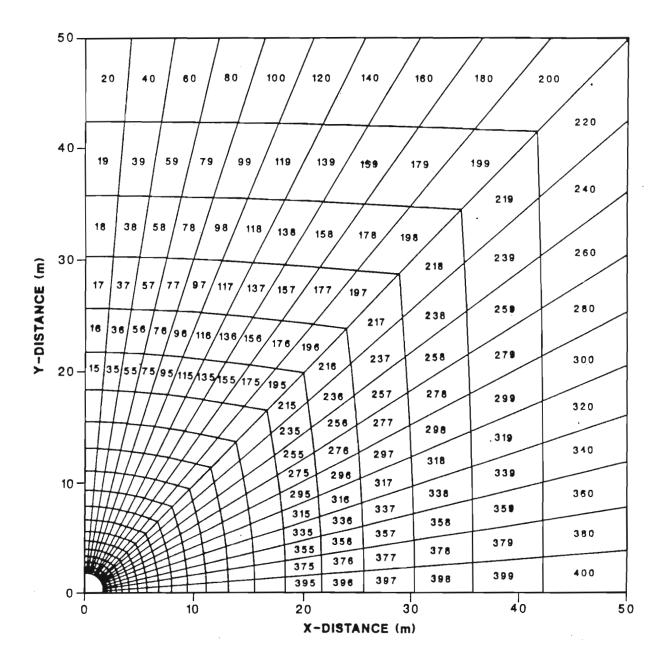
In performing the pilot analysis described in this report, several key issues are addressed to provide guidance in future modeling efforts. These issues include the development of the disturbed rock zone (DRZ) around the excavation, the relationship of rock strain to changes in porosity and permeability, and the nature of flow into the excavation cavity as described below.

In order to demonstrate the current computer code capabilities and to perform a sensitivity study, an analysis of a circular opening in homogeneous salt was performed. The results of the analysis can be compared against closed form solutions for elastoviscoplastic deformation. The results provide an indication of phenomenological behavior of the disturbed zone and its modification in space and time. The number of degrees of freedom is also comparable to solving a large-scale problem with the computer code.

5.8.1 Problem Description

The following discussion presents the excavation geometry and boundary conditions in Section 5.8.1.1, the salt brine constitutive properties in Section 5.8.1.2, and other modeling parameters in Section 5.8.1.3.

5.8.1.1 Geometry and Boundary Conditions of Opening


The circular excavation has a radius of 1.8 meters, which corresponds approximately with the radius of the construction and salt handling shaft (C and SH shaft) at the WIPP. The VISCOT code reasonably models the observed closure rates in that shaft (U.S. Department of Energy, 1989b - Section 5.4.4). The analysis ignores the effects of surrounding excavations. The finite element model, which is composed of 400 elements as illustrated in Figure 5-1, models one quadrant surrounding the excavation. The boundary conditions for the salt-creep analysis are shown in Figure 5-2. The model utilizes an initial lithostatic stress field corresponding to a depth of 670m. The stresses on the inner boundary were set to zero for the simulation. For the fluid-flow analysis, the far-field and inner boundaries were fixed pressure boundaries. An initial hydrostatic pressure equal to a lithostatic pressure of 15 MPa was assumed. The inner boundary was fixed at atmospheric pressure.

5.8.1.2 Model Input Properties

The material properties for performing the coupled analysis include the elastic and secondary creep properties of the salt, the compressibility of the brine, and the best estimate for permeability of the undisturbed rock salt. Wherever possible, reference properties for the WIPP repository as summarized in Table 5-1 were used in the analysis.

The permeability of the intact, undisturbed salt was taken as 10⁻⁶ millidarcy (md) (Peterson and others, 1985). Brine in salt may flow through either the intercrystalline or intracrystalline structure of salt. Owing to the relatively low permeability of individual salt crystals, fluid inclusions within individual crystals may move very slowly, whereas fluid movement occurs more rapidly in the intercrystalline structure of the salt. Case and Kelsall (1987) compiled data on salt permeability from laboratory and field studies; they found that laboratory measurements and field measurements show the permeability of salt ranges from 1 md to 10⁻⁶ md, while the measurement of a single salt crystal was 10⁻⁹ md.

Theoretical studies (Kelsall and others, 1982; Case and Kelsall, 1987) as well as field measurements (Peterson and others, 1985; Borns and Stormont, 1988) support the existence of a zone of increased permeability. This physically disturbed zone in the rock occurs in the immediate vicinity of the excavations, following excavation of a new opening and continues

٠.

-

FIGURE 5-1 FINITE ELEMENT MESH

•

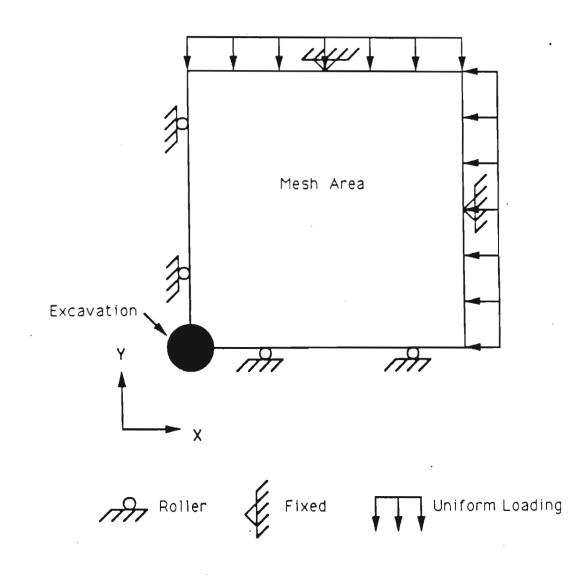


FIGURE 5-2 THE MODEL BOUNDARY AND LOADING CONDITIONS FOR THE SALT CREEP ANALYSIS

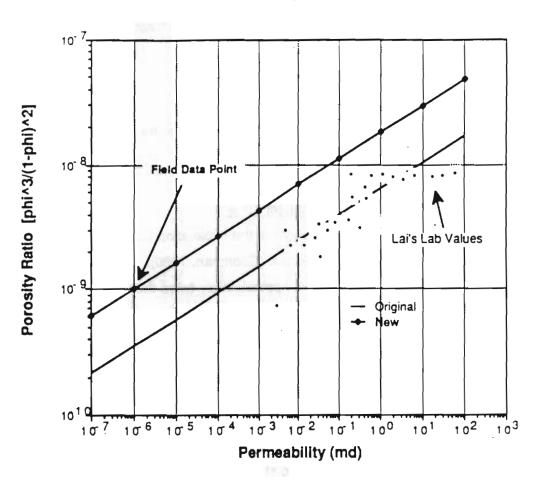
TABLE 5-1 SALT/BRINE MATERIAL CONSTITUTIVE PROPERTIES

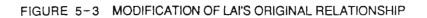
۰.

PARAMETER	BASE CASE VALUE	UNITS				
Salt						
Activation Energy, Q	12,000	Calories/mole				
Stress Exponent, n	4.9					
Empirical Constant, A	0.126	MPa [⊸] ⁰/day				
Universal Gas Constant, R	1.987	calories/(mole °K)				
Salt Temperature	300°K	°K				
Young's Modulus	31,000	MPa				
Poisson's Ratio	0.25					
Salt Far Field Stress, P.	15	MPa				
Brine Compressibility	5 x 10 ⁻¹⁰	1/Pa				
Salt Porosity	.001					
Brine Viscosity	1.6 x 10 ⁻³	Pa - S				
Intact Salt Permeability	1.0	Nanodarcy				

until repressurization after closure. In a practical sense, this zone extends approximately a few tens of meters away from the excavation.

Evidence regarding this change in permeability around an entry has been obtained using a guarded, straddle-packer system. The tests were performed to determine the permeability of salt, its variation with distance from the mined surface, and the influence of interspersed anhydrite and clay seams. The combined permeability measurements indicate that there is a relationship of permeability with test interval depth. The data indicate that permeability in salt is reduced by two orders of magnitude (10⁻⁴ to 10⁻⁶ md) over depths of 1 to 14 meters. This trend is similar to that predicted by Kelsall and others (1982). Because measurements are made for flow parallel to the drift surface and normal to the direction of stress relief, the results were expected.


Predictions of the zone of increased permeability at the WIPP have been made using the porosity-permeability relations developed by Lai (1971). In order to make predictions of the development of a modified permeability zone, the porosity-permeability relationship of Equation (5.4) was written in logarithmic form and modified (Figure 5-3) as:


$$\log[\frac{\theta^3}{(1-\theta)^2}] = a \log k - \log b$$
 (5.9)

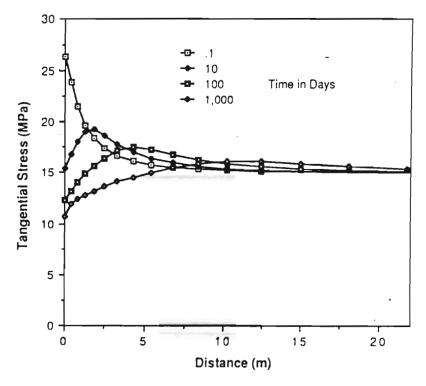
If it is assumed that the empirical constant, a, the constant related to the relative changes in permeability with porosity, which represents the slope in the above relation, is the same as in Lai's experimental work, then the linear relationship presented above may, with the measured properties, be used for undisturbed salt. Intrinsic permeability is 10⁻⁶ millidarcies at a porosity of 0.1 percent (Peterson and others, 1985).

In the evaluations of brine flow rates, two alternate hypotheses have been presented for brine flow to the underground repository. In the first hypothesis, the ultimate source of the brine is from the far field, in which flow occurs at very slow rates. In the second hypothesis, the farfield permeability is too low to permit significant flow through salt and, therefore, flow to the repository is a consequence of desaturation or the enhanced permeability of the DRZ around the excavation.

301329.01.01 A17

By constructing models of each, these hypotheses were investigated for effects on brine flux at the repository. The model of the first hypothesis incorporated a far-field permeability of 1 nanodarcy. The far-field permeability for the model of the second hypothesis was set to much lower than 1 nanodarcy, so that the far field was essentially impermeable. The near-field permeability for both models was taken from the stress analysis; the permeability distribution used was similar to the trend of measured permeabilities with distance reported by Peterson and others (1985).

5.8.2 Deformational Response of the Salt


The following sections describe stress relaxation in an abutment zone and the development of a zone of enhanced permeability.

5.8.2.1 Stress Relaxation in the Abutment Zone

It was anticipated that the stress analysis of the excavation for the circular opening should initially follow the elastic solution of Kirsch (Goodman, 1980). At the excavation, the boundary or tangential stress should increase to approximately twice the value of the initial stress, while the radial stress is zero. In the absence of creep, this stress state would be maintained throughout time. However, in response to the high deviatoric stress, the salt will creep inward and the radial and tangential stresses (Figures 5-4 and 5-5) will relax with time. The tangential stress will form a stress abutment zone in the salt. The stress abutment zone will propagate radially outward with time and this process is essentially complete after approximately 1,000 days. Because stresses are also changing with time, elastic strains are changing in response to these changing stresses.

An alternative view of the stress development at the excavation surface is shown in Figure 5-6, where the radial stress adjacent to the excavation is reduced slightly over time. The radial stresses 20 meters from the excavation do not change appreciably from the initial stress state as might be expected.

Because the elastic strains which affect porosity and permeability are a direct consequence of the state of stress, it can be seen from the preceding discussion that the initial response to excavation produces a large change in tangential stress, as predicted by the Kirsch solution.

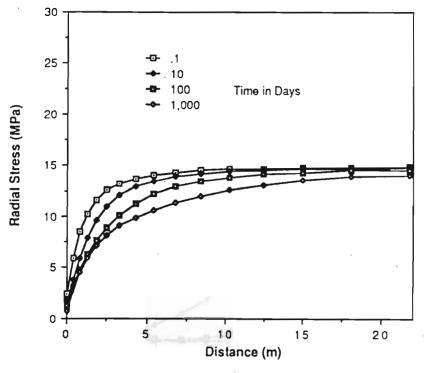
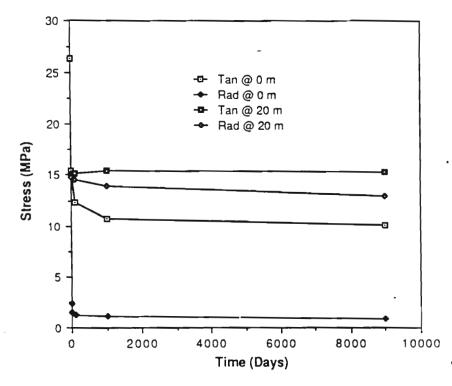
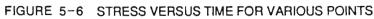




FIGURE 5-5 RADIAL STRESS DEVELOPMENT

301329.01.01 A

301329.01.01 A20

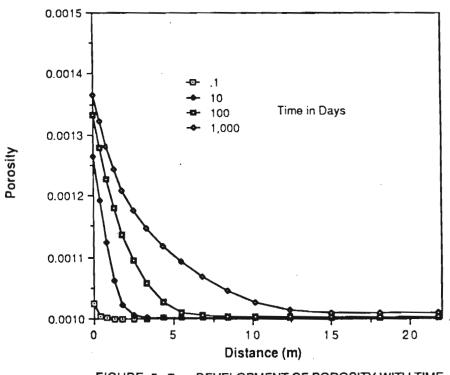
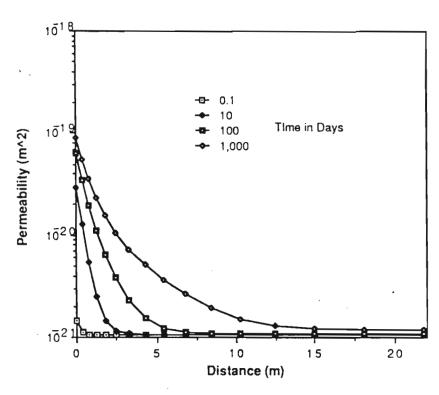


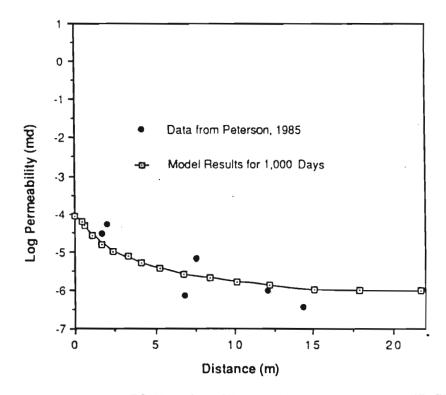
FIGURE 5-7 DEVELOPMENT OF POROSITY WITH TIME

301329.01.01 A21

Tangential stress thereafter relaxes, because of salt creep, and the elastic response to this changing stress produces changes in porosity and, in turn, changes in permeability.


5.8.2.2 Development of the Disturbed Rock Zone

Initially, a small increase in porosity occurs near the excavation (Figure 5-7). As boundary stresses relax and the stress abutment zone moves outward into the salt, a distinct zone of enhanced porosity develops. The maximum increase in porosity is approximately 40 percent over the undisturbed porosity of .001.


The development of permeability with time is illustrated in Figure 5-8. The far-field permeability is approximately 1.0 nanodarcy (10⁻²¹m²). At the earliest time shown, there is very little permeability enhancement. This result also follows from the Kirsch solution in that the sum of the normal strains (the first strain invariant is dependent on the first stress invariant), which enter into the porosity calculation described previously, should be equal to zero initially. As salt creep relaxes the built-up stresses, the sum of the strains is no longer constant, and porosity and permeability increase with time. Because only the tangential stresses relax significantly over time (compare tangential and radial stress relaxation in Figures 5-4 and 5-5), the changes in permeability in the model may be chiefly attributed to changes in tangential stress.

Following 1,000 days, at a distance of 12 meters from the excavation, the model predicts insignificant increases in porosity and permeability. Figure 5-9 shows the predicted permeability distribution versus radius at 1,000 days after excavation. This figure also shows the data from Peterson and others (1985). The trend of the predicted permeabilities appears to agree reasonably well with in situ measurements. The good agreement between predicted and measured results presented here suggests that the elastic response of the rock due to excavation, coupled with the modeled salt creep phenomena, may be responsible for the trend of reduced permeabilities with depth observed in situ.

The model predicts a radius for the DRZ of approximately 12 meters for a circular excavation of radius 1.8 meters. Peterson and others (1985) suggest a radius for the DRZ of approximately ten meters for a comparable size excavation, while Borns and Stormont (1988)

describe the DRZ radius as approximately 1 to 5 meters. It is noted that a larger excavation would produce a larger disturbed rock zone.

5.8.3 Brine Flow Response in Salt

The following sections describe the pressure and fluid flow response in the DRZ.

5.8.3.1 Fluid Pressure Response in Salt

Shortly after the simulation began, the predicted pressures near the excavation opening dropped to near atmospheric. These results indicate the potential development of an unsaturated zone near the excavation. The unsaturated zone is a consequence of both the increases in porosity due to stress relaxation and the relative impermeability of the salt. Fluid flow from the surrounding salt is not sufficient to keep the expanding void spaces saturated.

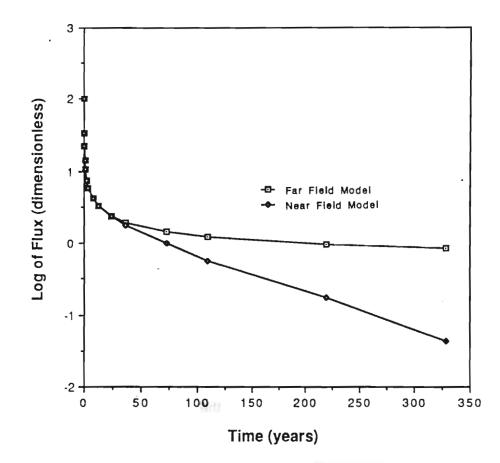
This conclusion was borne out in subsequent parametric analyses. Each of these analyses involved the modification of only one parameter from the base case. When permeabilities were raised by three orders of magnitude (all other things being equal) the analysis did not predict a zone of desaturation. When the fluid compressibility term was raised by several orders of magnitude, the analysis again did not predict a zone of desaturation.

However, all values for each of these parameters required to prevent desaturation were unrealistic and confidence exists in the order of magnitude for the assigned values. Furthermore, observations of moisture content suggest that unsaturated conditions do exist within at least the first 5 meters of the salt (Borns and Stormont, 1988).

The extent of propagation of this unsaturated zone is not possible to predict with the current model, because it was not designed to simulate variably saturated (or multiphase) flow. However, the parametric analyses have shown that when strain rates are several orders of magnitude lower than the maximum predicted rates, the analysis did not predict a zone of desaturation. The maximum strain rates occur at early times in the immediate vicinity of the opening. After 10 days, the strain rates dampen out dramatically and the above conditions are nearly satisfied throughout the flow regime. At this time, the stress abutment zone itself has migrated out approximately 2 meters into the salt.

Strain rates which are a function of Young's Modulus, are the only parameters in the analyses which vary significantly with time or distance. Therefore, their distribution in time and space are likely to play a significant role in determining the ultimate extent of the unsaturated zone.

One could conclude that the unsaturated zone would extend no farther than the boundary of significant strain rates. That boundary is coincident with the boundary of the DRZ which, as implied in Figure 5-4, extends approximately 12 meters into the host rock. Beyond that radius, the rock may remain saturated with brine.


5.8.3.2 Brine Flow Response Under Near-Field and Far-Field Boundary Conditions

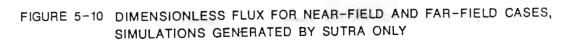

A subsequent analysis utilized the unmodified SUTRA code to determine whether flow measurements can distinguish, in an ideal case, between near-field and far-field boundary conditions operating in the salt. The assumptions are that the physical properties of the salt remain constant, that the pore spaces remain saturated, and that the opening is a 1.8-meter-radius shaft at a depth of 655 meters. In the near-field model, the permeability for radial distances greater than 12 meters was set to zero. In the far-field model, the permeability was set to 1.0 nanodarcy (10⁻²¹m²). A constant porosity of .001 was also used for these simulations. For both cases, the permeability distribution within the DRZ (0 to 12 meters) was identical. (The permeability distribution shown in Figure 5-9 for approximately 1,000 days was used.) Furthermore, this permeability distribution did not vary with time.

Figure 5-10 illustrates the dimensionless flux with time for both models. The flux has been normalized to focus attention on the trends with time rather than actual quantities of brine moving across the surface of the shaft. The dimensionless flux rate appears indistinguishable for approximately the first 30 years. The flux for the near-field case decreases below the level for the far-field case later in time, as the brine available within the DRZ diminishes. Over the time frame of the simulations, both of these results are consistent with classical analytical solutions; the far-field model is similar to flow in a semi-infinite media and the near-field model is similar to the solution obtained for flow from a finite region (0 to 12 meters) with a no-flow condition on the outer boundary.

These results suggest that short-term measurements of brine inflow across the surface of the shaft cannot distinguish between the near-field and far-field models for the ideal case of

301329.01.01 A24

homogeneous salt possessing the assumed properties. For the actual repository, the presence of fractures may decrease the time necessary for such a distinction if the presence of fractures substantially increases the average permeability.

5.8.4 Potential for Hydrofracturing in the Disturbed Zone

Hydrofracturing within the zone of modified rock stresses will occur if the fluid pressure exceeds the confining stress. If this occurs, then fracturing will occur in a direction perpendicular to the minimum confining stress. In Figures 5-4 and 5-5, the tangential stress and radial stress development is shown versus time. Given the initial fluid pressures and these stress distributions, hydrofracturing appears at least qualitatively possible. The zone of potential for hydrofracturing roughly corresponds to the measurements that suggest a DRZ of 5 to 10 meters.

5.9 DISCUSSION

The following discussion provides a framework for evaluating the flow of brine to the excavation.

5.9.1 Development of the DRZ

Excavation induces stress concentrations near the opening in accordance with classical solutions for a circular geometry. With time, salt creep serves to reduce this stress concentration for an excavation in salt. In the modeling results presented here, the elastic strains induced by a circular excavation in the tangential and radial directions were assumed to offset each other, and no porosity increase due to the excavation-induced strains initially occurred. For the circular excavation, the compression in the tangential direction and the dilation in the radial direction were equal and opposite, producing no net change in porosity. However, as salt creep relaxed the excavation-induced stress build-up, the sum of the principal elastic strains became nonzero and porosity increases occurred (Figure 5-7).

The model for the development of the DRZ is preliminary and may be refined through subsequent office, laboratory, and field studies. In their discussion of DRZ formation, Borns and Stormont (1988) have alluded to a rate-of-strain failure criteria for salt. This concept may have potential for describing the initial excavation-induced response of the salt, which in the current model is assumed to yield no initial porosity increase.

Creep strains do not directly enter into the porosity calculation in this model. Creep-induced fracturing and fracture propagation is a geometric effect and was beyond the scope of the current model.

5.9.2 Development of Brine Flow

The simulation results for the salt-creep analysis have indicated the presence of a stressabutment zone and a corresponding zone of enhanced porosity around the excavation. It is useful to construct the possible sequence of events which affect brine flow along with a discussion of the possible models for boundary conditions within the salt which affect flow, such as the permeability or impermeability of the far field.

udeptr.

The excavation, as demonstrated in the model results, induces a response in the salt that increases the porosity and permeability within the DRZ. The presence of dissolved gas, mostly nitrogen, within the brine may then exsolve from the brine and result in a relatively rapid, transient increase in brine flow from the excavation walls, which is consistent with the observation of brine efflorescence.

The model results indicate, depending on the compressibility of the brine, the strain-rate distribution with time and space, and the initial permeability distribution that an unsaturated zone can form near the excavation. This zone may extend as far into the host rock as the DRZ.

The modeling and analyses presented above have focused on the enhanced porosity resulting from the excavation response, assuming a porous media. Creep fracturing near the surface of the excavation and underground mine ventilation may also cause the formation of an unsaturated zone.

According to the model results, stress relaxation due to the excavation is essentially complete within approximately 3 years. Salt-creep-induced fracturing near the excavation surface will enhance the effective permeability of the salt. The maximum distance for this effect, given the geometry of repository rooms, appears to be related to the stress build-up caused by salt creep. Because of geometric effects, the depth of fractures caused by creep may be

significant. The variation of mechanical properties for features such as anhydrite marker beds may affect not only the creep fracture response, but also the original excavation-induced response modeled in this report. Within the framework of the model developed in this work, heterogeneities and their effect on the excavation-induced response may be easily incorporated into the model.

5.10 SUMMARY OF MAJOR LIMITATIONS AND ASSUMPTIONS

The modeling and analysis of the development of a DRZ and brine inflow rates was not directed at the development of a totally new code based on a global derivation (such as that of Niou and Deal, 1989), but rather was an attempt to couple two existing codes to obtain a preliminary evaluation of the effects of deformation of initially very impermeable salt on the flow of brine to a 1.8-meter-radius shaft at a depth of 655 meters. Limitations exist in both codes and in the assumptions necessary to couple them. The following limitations and assumptions apply:

- Deformations do not significantly affect model geometry. Both models (VISCOT and SUTRA) are based upon small-strain theory.
- The governing equation for fluid flow is taken from the soil consolidation equation of Huyakorn and Pinder (1983), in which changes in local strain affect fluid pressure.
- Effective stress equals total stress in the rock. The porosity is so small in the deforming salt that the change in pore pressure is assumed not to affect total stress. This allows unidirectional coupling from VISCOT to SUTRA, eliminating the need to input the change in pore pressure from SUTRA into each iteration run of VISCOT.
- Only elastic strain (no plastic strain) is considered in the calculation of changes in porosity.
- Elastic strain of the salt is entirely converted to change in porosity.
- The rock is assumed to be saturated with fluid.
- Permeability is calculated from a relationship derived from the empirical relationship found by Lai (1971), that was modified to more closely simulate the salt at the WIPP.
- Neither microfracture nor macrofracture porosity were considered.

5.11 CONCLUSIONS AND RECOMMENDATIONS

This work has described a coupled model for the simulation of salt-creep and fluid-flow characteristics for the near term. The coupling between salt creep and the fluid flow was unidirectional in that the effective stress acting to deform the porosity was taken to be the total stress. The pore pressure was thus assumed not to affect the deformation of the rock. A second critical assumption states that the development of elastic strains is equivalent to changes in porosity.

After excavation of the circular opening, the tangential stress predicted by the model is equal to the stress given by the elastic Kirsch solution. Salt creep serves to relax this stress buildup, and the relaxation of this stress build-up causes the propagation of a stress abutment zone into the salt. This stress abutment zone, in turn, causes elastic deformation of the salt, which increases porosity and permeability.

For the base case simulation using reference properties, including the measured brine compressibility, the model results show the development of an unsaturated zone near the excavation. This unsaturated zone results from an increase in void volume and the inability of the fluid to flow and expand into the new void volume within the time frame of the simulation. For compressibilities two orders of magnitude higher, the brine expanded into the enhanced porosity and the development of the unsaturated zone was not observed. For permeabilities three orders of magnitude higher, the rock remained saturated. Finally, the rock remained saturated if strain rates were several orders of magnitude lower. The values of any of these parameters required to maintain saturation are not considered realistic.

Because strain rates are the only parameters of the three discussed that change significantly with time and distance, they are believed to play a singular role in determining the extent of the unsaturated zone. Beyond the DRZ, the strain rates are significantly lower than the highest predicted rates throughout the simulation. Therefore, it is possible that the unsaturated zone does not extend substantially beyond the DRZ.

Use of the DRZ permeability distribution for the near field, and either 1.0 nanodarcy (10⁻²¹m²) or approximately zero permeability for the far field gave two cases representing the far-field

flow and near-field boundary conditions, respectively. Dimensionless flux for these two cases showed that they are indistinguishable for early times (over a period of 30 years).

Depending on the value of the initial fluid pressure, hydrofracturing appears possible because of the decay of the excavation-induced stresses by salt creep. The stresses within approximately 7 meters of the excavation may decrease significantly enough for fluid pressures to exceed the level of confining stress and thus produce hydrofracturing.

The model results appear to concur with measured results in two important areas. First, a radius of 10 to 12 meters for the DRZ appears roughly to correspond to the radius indicated by permeability measurements conducted by Peterson and others (1985) and DRZ measurements conducted by Borns and Stormont (1988). Secondly, the use of Lai's relationship appeared to accurately predict the trend of the permeabilities as measured by Peterson and others (1985).

From this standpoint, the assumed relationship between elastic strain and porosity, in which all of the elastic strain is converted into porosity, appears to yield at least a qualitative fit to the observed permeabilities and radius for the DRZ. Future work may involve the refinement of the relationship between elastic strain and porosity. One approach may be an examination of the threshold stress at which crystal boundaries in salt elucidate.

The coupled model can be used to model more realistic geometries. Future work may involve the construction of a grid that includes heterogeneities of the salt, as well as more realistic room geometries. Because of the assumption of insignificant volumetric deformations, the model may not be used to show the long-term behavior of the salt. To model the long-term behavior, a large strain theory may be required.

Anticipated flow measurements from long horizontal boreholes into intact salt may provide information for the determination of the effective boundary conditions within the salt. The nature of these boundary conditions obviously affects the long-term performance of the repository; if these boundary conditions are near field, the amount of brine may be limited by the volume of brine within the DRZ, which in the actual repository, must be extended to include the excavation-induced disturbances in heterogeneities and marker beds.

Finally, the presence of heterogeneities within the salt may mask any attempt to generalize results from modeling unless these heterogeneities are incorporated into a model. Heterogeneities within the salt may cloud the distinction between near- and far-field effects. Where permeabilities are relatively low in the far field, the near-field disturbed zone may dominate. Where permeabilities of the intact salt are higher, such as in marker beds, the far field may dominate.

Recommendations for additional work are listed below:

- Investigation of failure criteria for intact salt to refine the relationship between salt strain and porosity,
- Construction of a more realistic model geometry that incorporates features such as marker beds,
- Assessment of gas exsolution driving forces using a multiphase numerical model,
- Investigation of the gas content of the brine, and
- Investigation of flow rate data from long horizontal boreholes to determine a better estimate of the far-field salt permeability.

6.0 REFERENCES

Alcorn, S. R., 1983, Memo, Occurrence of Brine Weeps in the WIPP Facility: Memo to D. K. Shukla, October 3, 1983, <u>WD:83:02910 1.02.00</u>, transmitted to J. M. McGough, U.S. Department of Energy from TSC--D'Appolonia Consulting Engineers, Albuquerque, New Mexico, October 23, 1983.

APHA, 1985, <u>Standard Methods for the Analysis of Water and Wastewater</u>, 16th Edition, American Public Health Association, New York, New York.

Archie, G. E., 1942, "Electrical Resistivity as an Aid in Core Analysis Interpretation," Transactions of the American Institute of Mining Engineers, Vol. 146, p. 54.

Bechtel National, Inc., 1983, "Waste Isolation Pilot Plant Preliminary Design Validation Report," prepared for the U.S. Department of Energy by Bechtel National, Inc., San Francisco, California.

Bechtel National, Inc., 1984, "Quarterly Geotechnical Field Data Report," <u>WIPP-DOE-202</u>, November 1984.

Bechtel National, Inc., 1985, "Quarterly Geotechnical Field Data Report," <u>WIPP-DOE-213</u>, June 1985.

Black, S. R., R. S. Newton, and D. K. Shukla (Eds.), 1983, "Results of Site Validation Experiments, Waste Isolation Pilot Plant," <u>DOE-TME-3177</u>, prepared for the U.S. Department of Energy by TSC--D'Appolonia Consulting Engineers, Albuquerque, New Mexico.

Blair, J. E., E. H. Lennette, and J. P. Truant, 1970, <u>Manual of Clinical Microbiology</u>, Williams and Wilkins Co., Baltimore, Maryland.

Borns, D. J., and J. C. Stormont, 1988, "An Interim Report on Excavation Effect Studies at the Waste Isolation Pilot Plant: The Delineation of the Disturbed Rock Zone," <u>SAND87-1375</u>, Sandia National Laboratories, Albuquerque, New Mexico.

Brantley, S. L., D. A. Crepar, N. E. Moeller, and J. H. Weare, 1984, "Geochemistry of A Modern Evaporite: Bocana de Virilla, Peru," J. Sediment. Petrol., Vol. 54, pp. 447-462.

Brock, T. D., and M. T. Madigan, 1988, <u>Biology of Microorganisms</u>, Fifth Edition, Prentice Hall, Englewood Cliffs, New Jersey.

Brush, L. H., and D. R. Anderson, 1988, Memo, Second Meeting of the WIPP PA Source-Term Group, Sandia National Laboratories, Albuquerque, New Mexico, December 9, 1988.

Case, J. B., and P. C. Kelsall, 1987, "Coupled Processes in Repository Sealing," <u>Proceedings of the Symposium on Coupled Processes Associated with Nuclear Waste</u> <u>Repositories</u>, Academic Press, Inc., New York, New York, pp. 591-604.

Cote, R. (Ed.), 1984, ATCC Media Handbook, ATCC Media Unit, Rockville, Maryland.

Deal, D. E., 1985, Unpublished field notes, WIPP data files, International Technology Corporation.

Deal, D. E., 1988, "Brine Seepage Into the Waste Isolation Pilot Plant (WIPP) Excavation," <u>Proceedings of Waste Management '88</u>, Tucson, Arizona, Vol. 2, pp. 649-657.

Deal, D. E., and J. B. Case, 1987, "Brine Sampling and Evaluation Program, Phase I Report, June, 1987;". <u>DOE-WIPP-87-008</u>, prepared for the U.S. Department of Energy by International Technology Corporation and Westinghouse Electric Corporation, Albuquerque, New Mexico.

Deal, D. E., and W. M. Roggenthen, 1989, "The Brine Sampling and Evaluation Program (BSEP) at WIPP: Results of Four Years of Brine Seepage Data," <u>Proceedings of Waste</u> <u>Management '89</u>, Tucson, Arizona, Vol. 1, pp. 405-406.

Deal, D. E., J. B. Case, R. M. Deshler, P. E. Drez, J. Myers, and J. A. Tyburski, 1987, "Brine Sampling and Evaluation Program, Phase II Report," <u>DOE-WIPP-87-010</u>, U.S. Department of Energy Waste Isolation Pilot Plant, Carlsbad, New Mexico.

Deer, W. A., R. A. Howie, and J. Zussman, 1966, <u>An Introduction to the Rock-Forming</u> <u>Minerals</u>, Longman Group Limited, Essex, England.

Difco Laboratories, 1984, Difco Manual, Difco Laboratories, Detroit, Michigan.

Dobrin, M. B., 1976, <u>Introduction to Geophysical Prospecting</u>, McGraw-Hill, New York, New York.

Gallerani, J. G., 1985, Unpublished Field Notes and Drill Log of Core from Holes A2X01 and BX01, WIPP Data Files, Bechtel National, Inc., San Francisco, California.

Gieck, K., 1986, Engineering Formulas, 5th Edition, McGraw-Hill, New York, New York.

Goodman, R. E., 1980, Introduction to Rock Mechanics, John Wiley & Sons, New York, New York.

Harvie, C. E., N. Moller, and J. H. Weare, 1984, "The Prediction of Mineral Solubility in Natural Waters: The Na-K-Mg-Ca-H-Cl-SO₄-OH-HCO₃-CO₂-H₂O System to High Ionic Strengths at 25°C," <u>Geochim. Cosmochim. Acta</u>, Vol. 48, pp. 723-751.

Hem, J. D., 1970, "Study and Interpretation of the Chemical Characteristics of Natural Water," U.S. Geological Survey Water Supply <u>Paper 1473</u>, U.S. Government Printing Office, Washington, DC.

Hohlfelder, J. J., 1981, "Volatile Content of Rock Salt," <u>SAND79-2349</u>, Sandia National Laboratories, Albuquerque, New Mexico.

Hohlfelder, J. J., 1979, "Measurement of Water Lost from Heated Geologic Salt," <u>SAND79-</u> 0462, Sandia National Laboratories, Albuquerque, New Mexico.

Holser, W. T., 1963, "Chemistry of Brine Inclusions in Permian Salt from Hutchinson, Kansas," in J. L. Rau, Ed., <u>Symposium on Salt</u>, Northern Ohio Geological Society, pp. 86-103.

Holt, R. M. and D. W. Powers, in preparation, Geologic Mapping of the Air Intake Shaft at the Waste Isolation Pilot Plant, report prepared for the U.S. Department of Energy by International Technology Corporation and Westinghouse Electric Corporation, Albuquerque, New Mexico.

Huyakorn, P. S., and G. F. Pinder, 1983, <u>Computational Methods in Subsurface Flow</u>, Academic Press, New York, New York.

INTERA Environmental Consultants, Inc., 1983, "VISCOT: A Two-Dimensional and Axisymmetric Nonlinear Transient Thermoviscoelastic and Thermoviscoplastic Finite-Element Code for Modeling Time-Dependent Viscous Mechanical Behavior of a Rock Mass," <u>ONWI-437</u>, Office of Nuclear Waste Isolation, Battelle Memorial Institute, Columbus, Ohio.

Jackson, K. J., 1988, "Verification and Validation Studies of the Addition of Pitzer's Equations to the EQ3/6 Brine Model," <u>UCRL-53841</u>, Lawrence Livermore National Laboratory, Livermore, California.

Jones, L. P., 1988, Final Report: Bacterial and Fungal Analysis for the WIPP Project, prepared by Department of Biology, University of Texas, El Paso for International Technology Corporation, December 14, 1988.

Jones, L. P., 1990, Personal Communication with D. Deal, University of Texas at El Paso, El Paso, Texas, December 6, 1990.

Kelsall, P. C., J. Case, and C. R. Chabannes, 1982, "A Preliminary Evaluation of the Rock Disturbance Resulting from Shaft, Tunnel, or Borehole Excavation," <u>ONWI-411</u>, Office of Nuclear Waste Isolation, Battelle Memorial Institute, Columbus, Ohio.

Kessels, W., I. Flengte, and H. Kolditz, 1985, "DC Geoelectric Sounding to Determine Water Content in the Salt Mine Asse (FRG)," <u>Geophysical Prospecting</u>, Vol. 33, pp. 436-446.

Krauskopf, K. B., 1967, Introduction to Geochemistry, McGraw-Hill Book Company, San Francisco, California.

Krieg, R. D., 1982, "Reference Stratigraphy and Rock Properties for the Waste Isolation Pilot Plant (WIPP) Project," <u>SAND83-1908</u>, Sandia National Laboratories, Albuquerque, New Mexico.

Krumhansl, J. L., G. D. Jarrel, and U. S. McConnell, 1987, Memo, Further Documentation of WIPP Field Test Related Analyses, Sandia National Laboratories, Albuquerque, New Mexico, August 19, 1987.

Kushnir, J., 1982, "The Partitioning of Seawater Cations During the Transformation of Gypsum to Anhydrite," <u>Geochim. Cosmochim. Acta</u>, Vol. 46, pp. 433-446.

Lai, C. S., 1971, "Fluid Flow Through Rock Salt Under Various Stress States," Ph.D. Dissertation, Michigan State University, East Lansing, Michigan.

Larson, H., 1980, Ecology of Hypersaline Environments, in Nissenbaum A. (ed), Hypersaline Brines and Evaporitic Environments, Elsevier, New York, pp 23-60.

Lindberg, J. W., and D. D. Runnels, 1984, "Ground Water Redox Reactions: An Analysis of Equilibrium State Applied to Eh Measurements and Geochemical Modeling," <u>Science</u>, Vol. 225, pp. 925-927.

Lyon, M., 1989, <u>Annual Water Quality Data Report</u>, <u>WIPP-89-001</u>, U.S. Department of Energy Report, Department of Energy Waste Isolation Pilot Plant, Carlsbad, New Mexico.

Matula, R. A., 1981, "Electrical and Magnetic Properties of Rock Salt," National Bureau of Standards Monograph 167, U.S. Government Printing Office, Washington, D.C., pp. 242-282.

McCaffrey, M. A., B. Lazar, and H. D. Holland, 1987, "The Evaporation Path of Seawater and the Coprecipitation of Br and K⁺ with Halite," <u>J. Sediment. Petrol.</u>, Vol. 57, pp. 928-937.

McNeill, J. D., 1980, "Electrical Conductivity of Soils and Rocks," <u>Technical Note TN-5</u>, Geonics Limited, Ontario, Canada.

McNeill, J. D., 1986, "Geonics EM39 Borehole Conductivity Meter, Theory of Operation," <u>Technical Note TN-20</u>, Geonics Limited, Ontario, Canada.

Mendenhall, W., 1975, "Introduction to Probability and Statistics," Fourth Edition, Duxbury Press, North Scituate, Massachusetts.

Miller, R. L., and J. S. Kahn, 1962, <u>Statistical Analysis in the Geological Sciences</u>, John Wiley & Sons, Inc., New York, New York.

Morgan, H. S., R. D. Krieg, and R. V. Matalucci, 1981, "Comparative Analysis of Nine Structural Codes Used in the Second WIPP Benchmark Problem," <u>SAND81-1389</u>, Sandia National Laboratories, Albuquerque, New Mexico.

Morse, J. G., and B. W. Hassinger, 1985, "Brine Testing Program Plan: Waste Isolation Pilot Plant (WIPP) Project, Carlsbad, New Mexico, Revision 2," Internal Document <u>WD:85:01214</u>; transmitted as a letter from W. R. Cooper to R. H. Neill, <u>WIPP:AEH 85:086</u>, April 11, 1985.

National Water Well Association/U.S. Environmental Protections Agency, 1986, <u>RCRA</u> <u>Ground Water Monitoring Technical Enforcement Guidance Document</u>, NWWA/EPA Series, Dublin, Ohio.

Niou, S., and D. E. Deal, 1989, "Migration of Brine and Nitrogen in Creeping Salt," Proceedings of Waste Management 1989, Tucson, Arizona, Vol. I, pp. 329-409.

Peterson, E. W., P. L. Lagus, and K. Lie, 1985, "WIPP Horizon In Situ Permeability Measurements Final Report," <u>SAND85-7166</u>, Sandia National Laboratories, Albuquerque, New Mexico.

Pitzer, K. S., 1973, "Thermodynamics of Electrolytes - I. Theoretical Basis and General Equations," J. Phys. Chem., Vol. 77, pp. 268-277.

Popielak, R. S., R. L. Beauheim, S. R. Black, W. E. Coons, C. T. Ellingson, and R. L. Olsen, 1983, <u>Brine Reservoirs in the Castile Formation, Southeastern New Mexico</u>, <u>WIPP</u> TME 3153, U.S. Department of Energy Waste Isolation Pilot Plant, Carlsbad, New Mexico.

Pourbaix, M., 1974, <u>Atlas of Electrochemical Equilibria in Aqueous Solutions</u>, Cebelcor, Brussels, Belgium.

Powers, D. W., 1989, Written Communication to Barry King, International Technology Corporation, Albuquerque, New Mexico, March 20, 1989.

Powers, D. W., S. J. Lambert, S. Shaffer, L. R. Hill, W. D. Weart (eds.), 1978, "Geological Characterization Report, Waste Isolation Pilot Plant (WIPP) Site, Southeastern New Mexico, Vol. II," <u>SAND78-1596</u>, Sandia National Laboratories, Albuquerque, New Mexico.

Reardon, E. J., and D. K. Armstrong, 1987, "Celestite (SrSO₄) Solubility in Water, Seawater, and NaCl Solution," <u>Geochim. Cosmochim. Acta</u>, Vol. 51, pp. 63-72.

Roggenthen, W., 1988, Memo to Stephen Niou, "Solubility of Nitrogen in WIPP Brines," International Technology Corporation, Albuquerque, New Mexico, February 19, 1988.

SAS Institute, Inc., 1985, "SAS/STAT Guide for Personal Computers, Version 6," SAS Institute, Inc., Cary, North Carolina.

Smith, J. R., R. J. Laudicina, and R. D. Rufo, 1985, Learning Guides for the Medical Microbiology Laboratory, John Wiley & Sons, New York.

Snelgrove, F. B., and J. D. McNeill, 1985, "Theory and Design Considerations of a Borehole Electromagnetic Conductivity Probe," <u>Surface and Borehole Geophysical Methods</u> in <u>Ground Water Investigations</u>, Second National Conference and Exposition, Fort Worth, Texas.

Stein, C. L., and J. L. Krumhansl, 1988, "A Model for the Evolution of Brines in Salt from the Lower Salado Formation, Southeastern New Mexico," <u>Geochim. Cosmochim. Acta</u>, Vol. 52, pp. 1037-1046.

TSC-D'Appolonia, 1983, Quarterly Geotechnical Field Data Report Part II, July 1983: <u>WIPP-DOE-163</u>, compiled for the U.S. Department of Energy by TSC-D'Appolonia Consulting Engineers, Albuquerque, New Mexico.

Turner, M., 1986, Isolation of Eleven Halophiles from Salt Ponds near Carlsbad, New Mexico, Unpublished Research Report, Department of Biological Sciences, University of Texas, El Paso.

U.S. Department of Energy, 1989a, "U.S. Department of Energy Plan for WIPP Performance Assessment and Operations Demonstration Draft Report," <u>DOE/WIPP88-015</u>, U.S. Department of Energy Waste Isolation Pilot Plant, Carlsbad, New Mexico.

U.S. Department of Energy, 1989b, "Geotechnical Field Data and Analysis Report - July 1987 - June 1988", DOE/WIPP89-009, U.S. Department of Energy, Carlsbad, New Mexico.

U.S. Geological Survey, 1974, "Statement of Analysis, AEC 8 Samples, Cores from Salt," BSEP 78-01E13, WIPP Data Files.

Voss, C.I., 1984, "SUTRA Saturated-Unsaturated Transport: A Finite Element Simulation Model for Saturated-Unsaturated, Fluid-Density Dependent Ground Water Flow with Energy Transport or Chemically Reactive Single-Species Solute Transport," U.S. Geological Survey Water Resources Investigations <u>Report 84-4369</u>, prepared in cooperation with U.S. Air Force Engineering and Services Center, Washington, D.C. Vreeland, R. H., C. D. Litchfield, E. L. Martin, and E. Elliot, 1980, "<u>Halomonas elongata</u>, A New Genus and Species of Extremely Salt-Tolerant Bacteria," <u>International Journal of Systematic Bacteriology</u>, p. 485.

Walpole, R. E., and R. H. Myers, 1985, <u>Probability and Statistics for Engineers and Scientists</u>, MacMillan Publishing Company, New York, New York.

Wolery, T. J., 1983, "EQ3NR, A Computer Program for Geochemical Aqueous Speciation-Solubility Calculations: User's Guide and Documentation," <u>UCRL-53414</u>, Lawrence Livermore National Laboratory, Livermore, California.

APPENDIX A BRINE ACCUMULATION

PART I - LIST OF UNDERGROUND LOCATIONS WHERE BRINE OCCURRENCES WERE OBSERVED AND MONITORED

PART II - BRINE ACCUMULATION DATA TABLES

APPENDIX A

BRINE ACCUMULATION

PART I - LIST OF UNDERGROUND LOCATIONS WHERE BRINE OCCURRENCES WERE OBSERVED AND MONITORED

TABLE A-1

LIST OF UNDERGROUND LOCATIONS WHERE BRINE OCCURRENCES WERE OBSERVED AND MONITORED THROUGH DECEMBER, 1988 AS PART OF THE BRINE SAMPLING AND EVALUATION PROGRAM AT WIPP

Hole Number	Room or Location	Survey Accuracy S=Surveyed A=Approximate	North-South Coordinates	East-West Coordinates	Elevation	Dia. (in)	Depth (ft)	Direction U=Up D=Down H=Horizontal	Angle	References	Remarks
A1X01	A1	S	N1147.02	E1254.40	1313.26	4	49.75	D	90	B, D, E	Monitored as part of the BSEP since it was drilled in 3/85.
A1X02	A1	S	N1146.88	E1254.24	1331.29	4	59.0	U	90	B, D, E	Monitored as part of the BSEP since it was drilled in 3/85
A2X01	A2	S	N1393.72	E1338.88	1311.20	4	50.15	D	90	B, D, E	Monitored as part of the BSEP since it was drilled in 2/85.
A2X02	A2	S	N1393.65	E1338.89	1328.86	4	52.75	U	90	B, D, E	In 2/85. Monitored as part of the BSEP since it was drilled in 2/85. At the present, no brine is collected because of insufficient inflow.
A3X01	A3	S	N1137.94	E1406.84	1309.78	4	50.5	D	90	B, D, E	Monitored as part of the BSEP since it was drilled in 1/85. Drillers did not report any moisture while drilling. Hole started producing brine a few weeks later.
A3X02	A3	s	N1138.00	E1406.89	1327.93	4	50.75	U	90	B, D, E	Monitored as part of the BSEP since it was drilled 1/85. Drillers did not encounter moisture while drilling. Hole started producing brine a few weeks later. At the present, no brine is collected because of insufficient inflow.
BTPA1	S1620/W17	A 0	S1638	W162	1258	3	5.1	D	90	В	Open from 0 to 5.1 ft. Drilled for BSEP study 7/86 and monitored until 12/02/88.
BTPA2	S1620/W17	70 A	S1638	W166	1258	3	9.1	D	90	В	Cased from 0 to 5.4 ft. Open from 5.4 to 9.1 ft. Drilled for BSEP study 7/86 and monitored until 12/02/88.
BTPA3	S1620/W17	A 0	S1638	W170	1258	3	14.0	D	90	В	Cased from 0 to 10.3 ft. Open from 10.3 to 14.0 ft. Drilled for BSEP study 7/86 and monitored until 12/02/88.
BTPA4	S1620/W17	A 0	S1638	W166	1271	3	4.6	U	90	В	Open from 0 to 4.6 ft. Drilled for BSEP study 7/86 and monitored until 9/27/88. Dry.
BTPA5	S1620/W17	A 0	S1638	W170	1271	3	5.3	U	90	В	Open from 0 to 5.3 ft. Drilled for BSEP study 7/86 and monitored until 9/27/88. Dry.
BTPB1	S1620/W17	A 0	S1636	W162	1258	3	5.1	D	90	В	Open from 0 to 5.1 ft. Drilled for BSEP study 7/86 and monitored until 9/27/88.
BTPB2	S1620/W17	0 A	S1636	W166	1258	3	9.6	D	90	В	Cased 0 to 5.9 ft. Open from 5.9 to 9.6 ft. Drilled for BSEP study 7/86 and monitored until 9/27/88.
BTPB3	S1620/W17	0 A	S1636	W170	1258	3	13.3	D	90	В	Cased 0 to 10.0 ft. Open from 10.0 to 13.3 ft. Drilled for BSEP study 7/86 and monitored until 9/27/88.
BTPB4	S1620/W17	0 A	S1636	W166	1271	3	9.75	U	90	В	Cased to 6.8 ft. Open from 6.8 to 9.75 ft. Drilled for BSEP study 7/86 and monitored until 9/27/88.
BTPB5	S1620/W17	0 A	S1636	W170	1271	3	10.3	U	90	В	Cased 0 to 6.3 ft. Open from 6.3 to 10.3 ft. Drilled
BTPC1	S1620/W17	0 A	S1634	W162	1258	3	5.0	D	90	В	for BSEP study 7/86 and monitored until 9/27/88. Open from 0 to 5.0 ft. Drilled for BSEP study 7/86
BTPC2	S1620/W17	0 A	S1634	W166	1258	3	9.8	D	90	В	and monitored until 9/27/88. Cased from 0 to 5.5 ft. Open from 5.9 to 9.8 ft. Drilled for BSEP study 8/86 and monitored until 9/27/88.

LIST OF UNDERGROUND LOCATION AS WHERE BRINE OCCURRENCES WERE OBSERVED AND MONITORED THROUGH DECEMBER, 1988 AS PART OF THE BRINE SAMPLING AND EVALUATION PROGRAM AT WIPP (CONTINUED)

Hole Number	Room or Location	Survey Accuracy S=Surveyed A=Approximate	North-South Coordinates	East-West Coordinates	Elevation	Dia. (in)	Depth (ft)	Direction U=Up D=Down H=Horizontal	Angle	References	Remarks
BTPC3	S1620/W1	70 A	S1634	W170	1258	3	14.4	D	90	В	Cased from 0 to 10.0 ft. Open from 10.0 to 14.4 ft. Drilled for BSEP study 8/86 and monitored until
BTPC4	S1620/W1	70 A	S1634	W166	1271	з	17.6	U	90	в	9/27/88. Cased from 0 to 13.9 ft. Open from 13.9 to 17.6
BTPC5	S1620/W1	70 A	S1634	W170	1271	3	18.2	U	90	В	ft. Drilled for BSEP study 7/86 and monitored 9/27/88. Cased from 0 to 14.0 ft. Open from 14.0 to 18.2 ft. Drilled for BSEP study 7/86 and monitored until
BTR1	S1950/E10	A 0	S1942	E98	1269.5	3.25	1.0	н	5	В	9/27/88. Dry. Hole slightly declined below horizontal. Collar above upper clay seam, about 1 ft. below back. Drilled
BTR2	S1950/E10	A 0	S1942	E100	1269.5	3.25	3.2	н	5	B	6/86 and monitored until 9/27/88. Dry. Hole slightly declined below horizontal. Collar above upper clay seam, about 1 ft. below back. Drilled
BTR3	S1950/E10	A 0	S1942	E101	1269.5	3.25	3.3	н	5	В	6/86 and monitored until 12/02/88. Hole slightly declined below horizontal. Collar above upper clay seam, about 1 ft. below back. Drilled
BTR4	S1950/E10	A 0	S1942	E98	1267.5	3.25	0.95	5 Н	5	В	6/86 and monitored until 12/02/88. Hole slightly declined below horizontal. Collar in halite about 3.5 ft. below back. Drilled 6/86 and monitored
BTR5	S1950/E10	A	S1942	E100	1267.5	3.25	3.0	н	5	В	until 12/02/88. Hole slightly declined below horizontal. Collar in halite about 3.5 ft. below back. Drilled 6/86 and monitored
BTR6	S1950/E10	A 0	S1942	E101	1267.5	3.25	3.0	н	5	В	until 12/02/88. Hole slightly declined below horizontal. Collar in halite about 3.5 ft. below back. Drilled 6/86 and monitored until 12/02/88.
BTR7	S1950/E10	A 0	S1942	E98	1264.7	3.25	1.1	н	5	В	Hole slightly declined below horizontal. Collar just above orange band. Drilled 6/86 and monitored until
BTR8	S1950/E10	A 0	S1942	E100	1264.7	3.25	3.1	н	5	В	12/02/88. Dry. Hole slightly declined below horizontal. Collar just above orange band. Drilled 6/86 and monitored until
BTR9	S1950/E10	A 0	S1942	E101	1264.7	3.25	3.1	н	5	В	12/02/88. Hole slightly declined below horizontal. Collar just above orange band. Drilled 6/86 and monitored until
BTR10	S1950/E10	A 0	S1942	E98	1262.2	3.25	1.2	н	5	В	12/02/88. Hole slightly declined below horizontal. Collar about 2.5 ft. above floor. Drilled 6/86 and monitored until
BTR11	S1950/E10	A 0	S1942	E100	1262.2	3.25	3.05	н н	5	В	12/02/88. Dry. Hole slightly declined below horizontal. Collar about 2.5 ft. above floor. Drilled 6/86 and monitored until
BTR12	S1950/E10	A 0	S1942	E101	1262.2	3.25	3.05	; н	5	В	12/02/88. Hole slightly declined below horizontal. Collar about 2.5 ft. above floor. Drilled 6/86 and monitored until
							61.9 15				12/02/88.

WP:WIP:R-1625-AppA

TABLE A-1

LIST OF UNDERGROUND LOCATIONS WHERE BRINE OCCURRENCES WERE OBSERVED AND MONITORED THROUGH DECEMBER, 1988 AS PART OF THE BRINE SAMPLING AND EVALUATION PROGRAM AT WIPP (CONTINUED)

Hole Number	Room or Location	Survey Accuracy S=Surveyed A=Approximate	North-South Coordinates	East-West Coordinates	Elevation	Dia. (in)	Depth (ft)	Direction U=Up D=Down H=Horizontal	Angle	References	Remarks
BX01	В	S	N1384.68	E0982.33	1317.44	4	50.15	_	90	B, E	Monitored as part of the BSEP since it was drilled
BAUT	D	3	N1304.00	20902.33	1317.44		50.15	U	50	D, L	in 1/85. Core moist from 10.6 to 11.1 meters in coarsely crystalline clear halite. MB139 at 7.1 to 7.9 meters.
BX02	В	S	N1384.44	E0982.87	1335.47	4	49.25	U	90	B, E	Monitored as part of the BSEP since it was drilled in 1/85. At the present no brine is collected because of insufficient inflow.
DH15	N1140/E16	89 A	N1104	E1688.5	1319.9	3	51	U	90	В	Moisture noticed at collar in 4/86. Collecting device installed 5/86 and monitored as part of the BSEP since then.
DH35	G	Α	N1102	W1882	1294.4	3.5	52.0	U	90	A3, B	Monitored as part of BSEP since 2/85. At present no brine is collected because of insufficient inflow.
DH36	G	Α	N1102	W1882	1284.6	3.5	51.5	D	90	A3. B	Monitored as part of BSEP since 1/85.
DH37	G	s	N1101	W2182	1297.4	3.5	51.5	Ū	90	A3, B	Monitored as part of BSEP since 1/85. At the present no brine is collected because of insufficient inflow.
DH38	G	S	N1101	W2182	1287.0	3.5	47.5	D	90	A3, B	Monitored as part of BSEP since 1/85.
DH39	Ğ	S	N1101	W2482	1296.0	3.5	50.7	U	90	A3, B	Monitored as part of BTP since 2/85. At the present no brine is collected because of insufficient inflow.
DH40	G	S	N1101	W2482	1286.1	3.5	51.0	D	90	A3, B	Monitored as part of BSEP since 1/85.
DH41	G	S	N1101	W2782	1295.8	3.5	49.9	U	90	A3, B	Monitored as part of BSEP since 2/85. At the present no brine is collected because of insufficient inflow.
DH42	G	S	N1101	W2782	1285.9	3.5	51.2	D	90	A3, B	Monitored as part of the BSEP since 2/85.
DH42A	G	S	N1101	W2789	1285.7	3.5	40.5	D	90	A3, B	Monitored as part of the BSEP since 2/85.
DH215	S1960/E153	8 S	S1960	E0153	1272.0	3	52.0	U	90	A1, B	Gas releases had been observed in this hole. Monitored as part of the BSEP since 1/85.
DH216	S1960/E153	8 S	S1960	E0153	1262.6	3	54.2	D	90	A1, B	Gas releases had been observed in this hole. Monitored as part of the BSEP from 1/85 to 6/85 when collar was destroyed and hole plugged by mining.
DH317	S1600/W33	S	S1600	W0030	1271.3	3	50.1	U	90	A2, B	Stalactite growth monitored as part of the BSEP from 5/85 to 2/86.
DH317A	S1600/W30	S	S1600	W0028	1271.2	3	5.0	U	90	A2, B	Stalactite growth monitored as part of BSEP from 5/85 to 2/86.
DH317B	S1600/W30	S	S1597	W0027	1271.2	3.5	51.0	U	90	A2, B	Gas pocket at 45.91. Brine seeped from hole after drill rods were broken at end of run at depth of 16.3 ft. Probable source was anhydrite "a". Stalactite growth monitored as part of BSEP from 5/85 to 2/86.
DHP401	S1950/E133	80 A	S1950	E1330	1268.0	4	49.5	U	90	В	Drilled 1/87, observed as part of BSEP since 3/87.
DHP402A	S1950/E133		S1950	E1330	1255.8	4	49.8	D	90	В	Drilled 12/86, observed as part of BSEP since 12/86. Hole offset at 45 ft. There may be a rock bolt or piece of steel in hole.
EES12B		Α	N1430	E0140		1.87	9.8	D	90	к	Drilled 6/86 as part of the Excavation Effects Study. Observed as part of BSEP from date of drilling until 12/86 Band brine and gas inflow through open

A-4

Observed as part of BSEP from date of drilling until 12/86. Rapid brine and gas inflow through open fractures.

LIST OF UNDERGROUND LOCAT....IS WHERE BRINE OCCURRENCES WERE OBSERVED AND MONITORED THROUGH DECEMBER, 1988 AS PART OF THE BRINE SAMPLING AND EVALUATION PROGRAM AT WIPP (CONTINUED)

Hole Number	Room or Location	Survey Accuracy S=Surveyed A=Approximate	North-South Coordinates	East-West Coordinates	Elevation	Dia. (in)	Depth (ft)	Direction U=Up D=Down H=Horizontal	Angle	References	Remarks
EES21B		Α	S0700	E0066		1.87	9.1	D	90	к	Drilled 7/86 as part of the Excavation Effects Study. Observed as part of the BSEP since drilling until 12/86.
G Seep	G	A	N1095	W1837	1284					В	Rapid brine and gas inflow through fractures. Damp area on the floor of Room G, near south rib, approximately 45 ft. east of DH35. Seep noticed 8/85. Damp area larger in 11/85. Monitored as part of BSEP since 11/85. 16-inch diameter collecting
IG201	2	S	N1275.54	W0379.51	1294.97	2.875	53.83	D	90	A3, B, H, J	sump drilled 9/87. Monitored as part of BSEP from 11/84 to 9/87 when shear closure pinched hole shut so that sampler would not go to bottom.
IG202	1	S	N1264.79	W0246.11	1296.49	2.875	48.16	6 D	90	АЗ, В, Н, Ј	Monitored as part of BSEP from 11/84 to 7/87 when shear closure pinched hole shut so that sampler would not go to bottom. Last BSEP brine data collected
JV8 JV9 L1S25 L1S26 L1S27 L1S29 L1S30 L1S32 L1S33 L1S36 L1X00 L2C03	J J L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	S S A A A A A A A A A A A A A A A A A A	N1067 N1067 N1524 N1524 N1524 N1524 N1524 N1524 N1524 N1524 N1528 N1510	W0374 W0218 W0220 W0222 W0226 W0228 W0228 W0237 W0239 W0245 W0235 W0365	1290 1290.4 1312 1312 1312 1312 1312 1312 1312 131	36 36 4 4 4 4 4 4 4 4 4 5	8.1 8.1 11.90 11.72 11.93 12.03 12.18 11.98 12.22 12.45 12 12	2 D 3 D 3 D 3 D 3 D 3 D 3 D 2 D 5 D 5 D 0 5 D	90 90 90 90 90 90 90 90 90 90	D, F, G D, G B, H B, H B, H B, H B, H B, H B, H B, H	in 3/87. Drilled 8/08/85, drillers reported water at 7 ft. 10 inches. Brine in bottom of pilot hole on 8/20/85. Monitored as part of BSEP since 8/85. Monitored as part of BSEP since 8/85. Drillers reported "found water in hole at 10 ft., 5/13/84", monitored as part of the BSEP since 10/84. Drilled 4/85 overcoring and destroying L2C25. Brine and gas enters hole quickly through open fractures. Monitored intermittently as part of BSEP from 12/85 through 12/86. L2C25 is a 5-inch overcore of a previously grouted SNL test hole. The overcore was drilled 3/85 and air and brine was blown through fractures into hole L2C29, 4 ft. to the north. In 4/85, a 16-inch overcore
MUTO							1.1-0			-	was made destroying this hole. The larger hole is designed L2C03.
MIIT2 MIIT4	J	S S	N1088.03 N1086.05	W0377.02 W0377.13	1290.81 1290.82	3.25 3.25	2.9 3.27	75 D	90 90	B, D, G B, D, G	Brine since drilled, monitored from 10/26/85 to 4/23/85. Brine since drilled, monitored from 10/26/84 through 4/23/85.
MIIT6	J	S	N1084.16	W0377.15	1290.55	3.25	3.12	25 D	90	B, D, G	4/23/85. Brine since drilled, monitored from 10/26/84 through 4/23/85.
MIIT8	J	S	N1082.08	W0377.24	1290.48	3.25	3.05		90	B, D, G	Brine since drilled, monitored from 10/26/84 to 4/23/85.
WP:WIP:R	-1625-App/	4					A-5				

TABLE A-1

LIST OF UNDERGROUND LOCATIONS WHERE BRINE OCCURRENCES WERE OBSERVED AND MONITORED THROUGH DECEMBER, 1988 AS PART OF THE BRINE SAMPLING AND EVALUATION PROGRAM AT WIPP (CONTINUED)

	Room	Survey Accuracy					_	Direction U=Up			
Hole Number	or Location	S=Surveyed A=Approximate	North-South Coordinates	East-West Coordinates	Elevation	Dia. _(in)	Depth (ft)	D≃Down H=Horizontal	Angle	References	Remarks
MIIT10	J	S	N1079.98	W0377.23	1290.38	3.25	3.07	5 D	90	B, D, G	Brine since drilled, monitored from 10/26/84 through 4/23/85.
MIIT12	J	S	N1078.11	W0377.21	1290.20	3.25	3.05	D	90	B, D, G	Brine since drilled, monitored from 10/26/84 through 4/23/85.
MIIT14	J	S	N1076.18	W0377.30	1289.85	3	3.05	D	90	B, D, G	Brine since drilled, monitored from 10/26/84 through 4/23/85.
MIIT16	J	s	N1074.17	W0377.18	1289.2	3	2.97	5 D	90	B, D, G	Brine since drilled, monitored from 10/26/84 through 4/23/85.
MIIT17	J	S	N1072.03	W0379.10	1290.31	3	3.25	0 D	90	B, D, G	4/23/85. Brine since drilled, monitored from 10/26/84 through 4/23/85. Sandia filled hole with Brine A 4/30/85 and plugged with rubber cork.
MIIT18	J	S	N1071.91	W0377.18	1290.25	3	3.92	5 D	90	B, D, G	Brine since drilled, monitored from 10/26/84 through 4/23/85. Sandia experiment filled hole with Brine A 4/20/85 and plugged hole with rubber cork.
MIIT20	J	S	N1069.84	W0377.22	1290.34	3	5.97	5 D	90	B, D, G	Brine noted 10/26/84, monitored from 10/26/84 through 4/23/85.
MIIT22	J	S	N1067.93	W0377.23	1290.44	3	5.82	5 D	90	B, D, G	Brine noted 10/26/84, monitored from 10/26/84 through 4/23/85.
MIIT24	J	s	N1065.79	W0377.21	1290.74	3	5.97	5 D	90	B, D, G	Brine noted 10/26/84, monitored 10/26/84 through 4/23/85, Sandia experiment added Brine A to hole 4/30/85 and plugged with rubber cork.
MIITP	J	A	N1067	W0378	1290.8	1.5	8.8	D	90	B, F	Brine since drilled, pilot hole for 36-inch diameter hole that was never completed. Monitored from 4/02/85 through 4/23/85.
NG252	2	S	N1275.86	W0381.05	1294.89	1.5	7.54	D	90	A3, B, H, J	Monitored as part of the BSEP since 11/84. This hole continues to produce gas, first time noticed before 10/84.
PR2	S1600/E140	Α	S1600	E0140	1271.2	2	20	U	90	B, C	Stalactite growth monitored as part of the BSEP from 5/85 to 2/86.
PR3	S1282/E140	Α	S2182	E0140	1263	2	20	U	90	В, С	Stalactite growth monitored as part of the BSEP from 5/85 to 2/86.
PR4	S2748/E140	Α	S2748	E0140	1250	2	20	U	90	B, C	Stalactite growth monitored as part of the BSEP from 5/85 to 2/86.
WWC1	N1420/Room	nC1 A				36	16	SOUTH	0	В	Large horizontal hole on south rib of N1420 drift, across from Room C1. Photographically monitored for salt buildup.

References:

- A1 TSC-D'Appolonia. 1983 (WIPP-DOE-163) A2 Bechtel National, 1984 (WIPP-DOE-202)
- A3
- в
- Bechtel National, 1985 (WIPP-DOE-213) Brine Sampling and Evaluation Program File Records of Special Drill Holes, 9/12/83: BSEP Files С
- D As-Built Survey Calculation Sheets: BSEP Files

- E F Field Notes, J. Gallerani, Bechtel National: BSEP Files
- Field Notes, D. Deal, International Technology Corp.: BSEP Files
- G
- Room J Brine Survey: BSEP Files Room L1 and L2 Field Notes: BSEP Files н
- Geotechnical Instrumentation List, 11/02/83: BSEP files J
- к Excavation Effects Drilling Program, Data Transmittal 8/12/86: Excavation Effects Files: WIPP Geotechnical Engineering Files

APPENDIX A

BRINE ACCUMULATION

PART II - BRINE ACCUMULATION DATA TABLES

This appendix contains copies of the brine accumulation data collected by the WIPP Brine Sampling and Evaluation Program through December 31, 1988. The brine measurements were made in accordance with WIPP Procedure WP07-410. Sampling methodology, data handling, and calculations have been discussed by Deal and Case (1987), and reference is made to that document for a thorough discussion of the data.

WIPP BRINE SAMPLING AND EVALUATION PROGRAM Appendix A for the 1988 BSEP Report Data through December 31, 1988

.

A1X01 10/10/84 00:00 NA 0.000 0.000 0.000 0.000 Room A1 completed. A1X01 02/26/85 00:00 NA 0.000 0.000 0.00 0.000 Downhole drilled 2/21/85 to 2/26/85 A1X01 03/20/85 13:30 00.38 70.514 1.000 0.08 0.000 First time collected. A1X01 03/20/85 11:25 00.23 84.476 5.914 0.69 0.039 Muck in hole, valved leaked, some b drained back down hole. A1X01 04/02/85 12:15 00.33 99.514 8.004 1.41 0.041 A1X01 04/10/85 12:20 00.33 99.514 8.004 1.41 0.041 A1X01 04/17/85 11:30 00.28 106.479 6.965 1.69 0.040 A1X01 04/23/85 10:50 00.23 112.451 5.972 1.92 0.039 A1X01 04/23/85 10:50 00.23 112.451 5.972 1.92 0.039 A1X01 04/23/85 10:50 00.24 133.421 7.039 2.67 0.034 A1X01 05/07/85 09:10 00.25 126.382 6.822 2.43 0.037 A1X01 05/07/85 09:10 00.25 126.382 6.822 2.43 0.037 A1X01 05/29/85 10:00 00.27 148.417 7.931 3.20 0.034 A1X01 05/29/85 10:00 00.27 148.417 7.931 3.20 0.034 A1X01 05/29/85 10:00 00.23 182.458 7.055 4.31 0.033 A1X01 05/29/85 10:00 00.23 189.417 6.959 4.54 0.033 A1X01 05/29/85 10:00 00.23 189.417 6.959 4.54 0.033 A1X01 05/29/85 10:00 00.23 189.417 7.931 3.20 0.034 A1X01 05/29/85 10:00 00.23 189.417 6.959 4.54 0.033 A1X01 06/11/85 09:40 00.23 189.417 6.959 4.54 0.033 A1X01 06/18/85 09:34 00.23 189.417 7.951 3.20 0.034 A1X01 06/18/85 09:34 00.23 189.417 7.955 4.31 0.033 A1X01 06/18/85 09:34 00.23 189.417 7.955 4.31 0.033 A1X01 07/09/85 10:00 00.23 189.417 7.962 5.02 0.031 A1X01 07/16/85 10:50 00.23 189.417 7.962 5.02 0.031 A1X01 07/16/85 10:50 00.23 189.417 7.962 5.02 0.031 A1X01 07/24/85 10:00 00.23 189.417 7.962 5.02 0.031 A1X01 07/16/85 10:50 00.23 189.417 7.962 5.02 0.031 A1X01 07/24/85 10:00 00.23 129.240 8.007 5.65 0.029 A1X01 08/26/85 09:32 00.19 210.397 5.65 0.029 A1X01 08/26/85 09:32 00.21 217.401 7.004 5.42 0.032 A1X01 08/26/85 09:33 00.23 225.408 8.007 5.65 0.029 A1X01 08/26/85 09:48 00.23 225.408 8.007 5.65 0.029 A1X01 08/26/85 09:3	
A1X01 04/02/85 12:15 00.39 91.510 7.034 1.08 0.055 A1X01 04/10/85 12:20 00.33 99.514 8.004 1.41 0.041 A1X01 04/17/85 11:30 00.28 106.479 6.965 1.69 0.040 A1X01 04/23/85 10:50 00.23 112.451 5.972 1.92 0.039 A1X01 04/30/85 13:26 00.26 119.560 7.109 2.18 0.037 A1X01 05/07/85 09:10 00.25 126.382 6.822 2.43 0.037 A1X01 05/21/85 11:40 00.26 140.486 7.065 2.93 0.037 A1X01 05/29/85 10:00 00.27 148.417 7.931 3.20 0.033 A1X01 06/04/85 10:20 00.23 161.403 6.972 3.63 0.033 A1X01 06/18/85 09:40 00.22 175.403 7.004 4.08 0.031 A1X01 06/18/85 09:40 0.22 175.403 <t< td=""><td></td></t<>	
A1X01 09/04/85 09:46 00.19 266.407 7.023 6.26 0.027 A1X01 09/10/85 09:30 00.18 252.396 6.44 0.030 A1X01 09/24/85 09:10 00.19 259.382 6.966 6.63 0.027 A1X01 10/01/85 09:23 00.21 275.391 7.008 7.05 0.030 A1X01 10/01/85 09:23 00.21 275.391 7.028 7.05 0.028 Room A1 heaters turned on 10/02/85. A1X01 10/15/85 09:43 00.19 287.405 6.888 7.44 0.028 A1X01 10/28/85 11:25 00.20 295.413 8.008 7.64 0.028 A1X01 10/28/95 11:05 00.17 301.462 6.049 7.81 0.028 A1X01 11/28/85 09:15 00.22 316.385 8.007 8.22 0.027 A1X01 11/21/85 10:40 00.21 324.444 8.059 8.43 0.028 A1X01 11/21/85 10:40 00.14 329.424 4.980 8.57 0.028 A1X01 11/21/85 10:40 00.14 329.424 4.980 8.57 0.028 A1X01 11/21/85 10:40 00.13 343.444 5.852 8.92 0.026 A1X01 12/04/85 14:13 00.20 337.592 8.168 8.77 0.024 A1X01 12/10/85 10:40 00.14 367.403 16.820 9.52 0.026 A1X01 12/17/85 10:40 00.14 367.403 16.820 9.52 0.024 A1X01 01/03/86 09:40 00.41 367.403 16.820 9.52 0.024 A1X01 01/03/86 09:40 00.41 367.403 16.820 9.52 0.026 A1X01 01/03/86 09:50 00.25 380.410 7.979 9.86 0.031 A1X01 01/23/86 10:10 00.15 343.444 5.852 8.92 0.026 A1X01 01/23/86 10:10 00.16 387.424 11.962 10.55 0.025 A1X01 02/12/86 10:00 0.15 423.587 9.132 10.66 0.031 A1X01 01/23/86 09:50 00.25 380.410 7.979 9.86 0.031 A1X01 01/23/86 09:50 00.25 380.410 7.979 9.86 10.031 A1X01 01/23/86 09:50 00.25 380.410 7.979 9.86 10.025 A1X01 02/12/86 10:10 00.16 433.996 6.979 11.29 0.026 A1X01 02/12/86 10:10 00.17 423.877 9.122 10.96 0.025 A1X01 02/12/86 10:50 00.18 433.996 6.979 11.29 0.026 A1X01 02/12/86 09:20 00.31 443.397 6.979 11.29 0.026 A1X01 02/12/86 09:20 00.31 443.397 6.979 11.29 0.025 A1X01 02/12/86 09:20 00.18 456.375 6.986 11.80 0.025 A1X01 02/12/86 09:20 00.18 456.375 6.986 11.80 0.025 A1X01 02/12/86 10:13 00.15 428.417 0.081 13.90 .025 A1X01 02/12/86 10:13 00.15 428.47 0.356 11.95 0.025 A1X01 02/276 09:20 00.18 456.375 0.088 1	

A1X01 A1X01	07/29/86 10:05 00.17 08/05/86 10:21 00.19 08/12/86 09:58 00.18 08/19/86 10:40 00.18 08/26/86 10:07 00.18 09/04/86 10:02 00.20 09/09/86 10:30 00.15 09/16/86 09:36 00.18 09/23/86 09:41 00.19 10/08/86 10:34 00.17 10/14/86 10:57 00.15 11/05/86 10:30 0.55 11/20/86 11:45 00.38 12/31/86 12:05 00.96 02/03/87 12:15 00.80 03/06/87 11:55 0.79 03/30/87 11:55 0.79 05/07/87 10:50 0.98 06/17/87 11:45 1.17 09/01/87 11:55 0.79	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	14.74 0.024 14.93 0.027 15.11 0.026 15.29 0.026 15.67 0.022 15.82 0.030 16.00 0.026 16.18 0.026 16.18 0.024 16.54 0.024 16.54 0.024 16.59 0.025 17.24 0.025 17.62 0.025 17.62 0.025 18.58 0.023 19.38 0.024 20.17 0.025 21.74 0.025 21.74 0.025 22.78 0.025 23.95 0.029 24.74 0.023 Hose came loose and some brine may have drained back down hole. Trace of diesel/oi in brine.
A1X01 A1X01 A1X01 A1X01 A1X01 A1X01 A1X01 A1X01 A1X01 A1X01	10/20/87 11:08 1.39 11/19/87 10:30 0.77 01/04/88 11:10 1.20 02/08/88 13:25 0.68 03/30/88 12:10 2.25 05/12/88 10:10 1.09 07/12/88 09:30 1.56 09/27/88 08:25 1.82 12/13/88 09:30 2.35	1022.46 48.963 1052.44 29.980 1098.47 46.030 1133.56 35.090 1184.51 50.950 1227.42 42.910 1288.40 60.980 1365.35 76.950 1442.40 77.050	26.13 0.028 26.90 0.026 28.10 0.026 28.78 0.019 Lost some brine back down into hole. 31.03 0.044 Volume high due to lack of complete evacuation on 2/08/88. 32.12 0.025 33.68 0.026 35.50 0.024 37.85 0.030

Location	n Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks
A1X02 A1X02	10/10/84 03/07/85			0.000 65.396	0.000 1.000			Room A1 completed. Uphole drilled 2/27/85 to 3/07/85. Hit brine
A1X02	03/12/85	12:00	NA	70.500	6.104	0.00	0.000	at 12 ft. on 2/27/85. Trace brine, deepened hole to clay seam.
A1X02 A1X02	03/20/85 03/26/85			78.542 84.476	14.146 20.080	0.00	0.000 0.000	Moisture on back 1 ft radius. Trace brine, drip missing funnel. Repositioned funnel, collected one cup of salt crystals with trace of brine
A1X02 A1X02 A1X02 A1X02 A1X02 A1X02 A1X02 A1X02 A1X02 A1X02 A1X02 A1X02 A1X02 A1X02 A1X02 A1X02 A1X02 A1X02	04/02/85 04/10/85 04/17/85 04/23/85 05/07/85 05/21/85 05/21/85 05/21/85 05/21/85 05/21/85 05/21/85 05/21/85 05/21/85 06/14/85 06/18/85 06/25/85 07/02/85 07/09/85 07/16/85	12:20 11:30 10:50 13:16 09:05 10:04 11:35 10:00 10:25 09:40 09:30 09:45 11:00 09:58 10:53	0.22 0.12 0.12 0.12 0.12 0.13 0.13 0.21 0.13 0.21 0.13 0.21 0.05 0.08 0.16 0.05 0.08 0.16 0.05 0.24	99.514 106.479 112.451 119.553 126.378 133.419 140.483 148.417 154.434 161.403 168.396 175.406 182.458 189.415 196.453	27.114 8.004 6.965 5.972 7.102 6.825 7.041 7.064 6.017 6.969 6.993 7.010 7.052 6.957 7.038	0.55 0.67 0.79 0.95 1.14 1.27 1.48 1.65 1.70 1.78 1.94 2.04 2.19 2.43	0.027 0.017 0.020 0.017 0.023 0.027 0.018 0.026 0.028 0.028 0.007 0.011 0.023 0.014 0.022 0.034	salt crystals with trace of brine. Some drips missing funnel. Collecting container had leak. Some drips missing funnel. Some drips missing funnel. Some drips missing funnel. Some drips missing funnel.
A1X02 A1X02	07/24/85 07/30/85 08/06/85 08/20/85 08/28/85 09/04/85 09/04/85 09/17/85 09/17/85 10/08/85 10/08/85 10/15/85 10/23/85 11/05/85 11/05/85 11/21/85 12/04/85 12/10/85	9:30 9:35 09:24 10:09:44 09:24 09:21 09:21 09:21 09:21 09:21 09:21 09:21 09:21 09:21 09:21 09:21 09:21 09:21 09:21 09:21 09:21 09:21 09:21 09:22 09:21 09:22 00:20 00 00 00 00 00 00 00 00 00 00 00 00 0	0.15 0.14 0.05 0.09 0.06 0.07 0.12 0.13 0.14 0.12 0.14 0.12 0.14 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	204.409 210.396 217.399 225.393 225.393 231.426 239.381 246.406 252.392 259.381 266.380 273.390 280.513 287.403 295.405 301.460 308.365 316.386 324.448 337.588 337.588 343.438	7.956 5.987 7.003 7.994 6.033 7.955 7.025 5.986 6.999 7.010 7.123 6.890 8.0055 6.905 8.021 8.062 13.140 5.850	2.67 2.82 2.96 3.01 3.10 3.16 3.23 3.35 3.48 3.65 3.79 3.95 4.07 4.26 4.38 4.50 4.63 4.50 4.63 4.76 4.90	0.030 0.025 0.020 0.006 0.015 0.008 0.015 0.020 0.020 0.022 0.012 0.022 0.022 0.022 0.022 0.022 0.024 0.020 0.024 0.020 0.024 0.020	Some drips missing funnel. Room A1 heaters turned on 10/02/85. Some drips missing funnel. Some drips missing funnel.
A1X02 A1X02	12/17/85 01/03/86 01/23/86 02/12/86 02/12/86 02/12/86 02/28/86 03/13/86 03/13/86 03/26/86 04/02/86 04/02/86 04/02/86 04/02/86 05/06/86 05/13/86 05/20/86 05/20/86 05/20/86 05/20/86 05/20/86 05/20/86 05/20/86 05/20/86 05/20/86 05/20/86 05/20/86 05/20/86 05/10/86 05/20/86 05/20/86 05/20/86 05/20/86 05/20/86 05/20/86 05/20/86 07/16/86 07/22/86 07/22/86 08/05/86	9:40 10:105 11:05 10:50 9:20 11:05 10:50 1	016222072255582055762245532072255582055762245532072255582055762245532112562 88888888888888888888888888888888888	350.581 367.403 387.424 395.462 407.424 414.451 423.583 436.396 449.389 456.375 470.479 478.399 456.375 470.479 478.399 484.424 490.403 497.392 504.428 511.628 518.394 525.451 532.416 533.420 553.420 553.420 551.413 557.420 581.430	7.143 16.822 20.021 8.038 11.962 7.027 9.132 12.813 12.993 6.986 7.920 6.989 7.036 7.036 7.007 6.965 7.008 7.007 6.889 7.993 5.980 7.027 7.010	5.02 5.08 5.31 5.53 5.60 5.62 5.67 5.72 5.80 5.95 6.02 6.18 6.20 6.24 6.39 6.52 6.74 6.52 6.74 6.74 7.33 7.58 7.74 8.00	0.003 0.029 0.018 0.010 0.002 0.004 0.004 0.011 0.007 0.006 0.012 0.007 0.005 0.005 0.021 0.019 0.014 0.019 0.014 0.036	Some drips missing funnel. New, larger funnel since 01/17.

0

A1X02 A1X02 A1X02 A1X02 A1X02 A1X02 A1X02 A1X02 A1X02 A1X02 A1X02 A1X02 A1X02 A1X02 A1X02 A1X02	08/12/86 09:58 00.28 08/19/86 10:38 00.26 08/26/86 10:07 00.24 09/04/86 10:25 00.17 09/16/86 09:35 00.27 09/23/86 09:39 00.26 10/01/86 11:39 00.24 10/08/86 10:32 00.17 10/14/86 10:33 00.13 11/05/86 10:30 0.30 11/20/86 11:43 00.11 12/31/86 12:10 00.14	588.415 6.985 595.443 7.028 602.422 6.979 611.417 8.995 616.434 5.017 623.399 6.965 630.402 7.003 638.485 8.083 645.439 6.954 651.453 6.014 673.438 21.985 688.488 15.050 729.507 41.019	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 4 9 7 7 0 4 4 4
A1X02 A1X02 A1X02 A1X02 A1X02 A1X02	02/03/87 12:16 NA 03/06/87 11:55 0.05 03/30/87 11:55 0.01 05/07/87 10:45 0.01 06/30/87 12:00 1.58	763.000 33.493 794.497 64.990 818.497 24.000 856.448 1.000 910.500 92.003	11.21 0.00	0
A1X02 A1X02 A1X02 A1X02 A1X02 A1X02 A1X02 A1X02 A1X02	07/28/87 11:45 0.85 09/01/87 11:55 0.94 10/20/87 10:59 1.84 11/19/87 10:30 1.09 01/04/88 11:05 3.73 02/08/88 13:17 1.65 03/30/88 12:20 4.86 06/14/88 09:00 5.15	938.490 27.990 973.497 35.007 1022.46 48.963 1052.44 29.980 1098.46 46.020 1133.55 35.090 1184.51 50.960 1260.38 75.870	13.64 0.03 14.58 0.02 16.42 0.03 17.51 0.03 21.24 0.08 22.89 0.04 27.75 0.09 32.90 0.06	D 7 8 6 1 7
A1X02 A1X02	07/12/88 09:30 1.11 09/15/88 11:00 0.18	1288.40 28.020 1353.46 0.000	34.01 0.04 34.19 0.00	
A1X02	09/27/88 08:30 3.00	1365.35 76.950	37.19 0.04	9/15 + 3.00 on 9/27).
A1X02	12/13/88 09:30 2.50	1442.40 77.050	39.69 0.03	2

					Data ti	in ough Decen		, 1900	
Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks	
A2X01 A2X01	07/25/84 02/09/85 02/19/85 03/07/85 03/02/85 03/20/85 03/20/85 04/02/85 04/02/85 04/10/85 04/10/85 04/10/85 05/21/85 05/21/85 06/11/85 06/18/85 06/18/85 06/18/85 07/09/85 07/00/85 07/00/85 08/14/85 08/28/85	$\begin{array}{c} 00:00\\ 13:20\\ 09:30\\ 11:30\\ 41:53\\ 11:10\\ 13:50\\ 13:50\\ 09:40\\ 12:08\\ 09:15\\ 09:15\\ 09:15\\ 09:15\\ 09:39\\ 09:55\\ 09:50\\ 00:50\\ 00$	NA NA 029 08.52 08.52 08.33 08.022 08.33 08.022 08.224 08.225 08.224 08.225 08.224 08.225 08.224 08.225 08.224 08.225 08.224 08.225 08.255 08.	0.000 49.556 65.396 70.479 78.544 84.460 91.499 9106.465 112.438 119.576 126.365 133.403 140.506 148.375 154.399 161.385 168.385 175.385 182.458 189.395 182.458 189.395 196.438 204.402 210.372 217.390 225.378 231.410	0.000 1.000 1.000 5.083 8.065 5.916 7.039 7.937 7.138 6.789 7.038 7.103 7.103 7.103 7.869 6.024 6.986 7.000 7.000 7.003 7.943 5.970 5.977 7.043 7.988 6.032 7.988 6.032 7.988 6.032	0.29 0.91 1.43 1.81 2.53 2.80 3.04 3.33 3.58 3.82 4.06 4.32 4.32 4.75 4.98 5.21 5.44 5.66 5.89 6.13 6.32 6.53 6.78 6.97	0.000 0.000 0.0122 0.064 0.064 0.051 0.045 0.039 0.040 0.041 0.037 0.034 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.032 0.030 0.032 0.030 0.031 0.031	Room A2 completed. Downhole drilled 2/04/85 to 2/09/85. Moist muck. First entry. Lots of muck, some oil. Brine and muck. Some muck included. Brine effervesces.	
A2X01 A2X01	08/28/85 09/04/85 09/10/85 09/17/85 09/17/85 09/24/85 10/01/85 10/08/85 10/23/85 10/23/85 10/23/85 11/05/85 11/05/85 11/05/85 12/10/85 12/10/85 12/17/85 01/03/86 01/08/86 01/23/86 01/23/86 01/21/86 02/12/86 02/19/86	09:21 09:50 08:48 09:12 12:57 09:322 11:20 09:32 10:56 13:45 13:39 09:50 09:40 09:40 09:40 09:40	$\begin{array}{c} 00.25\\ 00.21\\ 00.21\\ 00.21\\ 00.21\\ 00.21\\ 00.22\\ 00.22\\ 00.23\\ 00.23\\ 00.23\\ 00.23\\ 00.23\\ 00.23\\ 00.23\\ 00.16\\ 00.21\\ 00.15\\ 00.15\\ 00.15\\ 00.22\\ 00.25\\ 00.34\\ \end{array}$	239.365 246.390 252.381 259.368 266.367 273.383 280.540 287.389 295.397 301.472 308.353 316.375 324.427 329.403 337.573 343.456 350.569 350.569 357.410 380.389 387.403 395.448 407.403 414.597	7.955 7.025 5.991 6.987 6.999 7.016 7.016 7.015 6.849 8.008 6.075 6.849 8.008 6.075 6.849 8.008 6.075 6.849 8.008 6.075 6.849 8.008 6.075 6.849 8.008 6.075 6.849 8.008 6.075 6.849 8.008 6.075 6.849 8.008 6.075 6.849 8.008 6.075 6.849 8.008 6.075 6.849 8.008 6.075 6.849 8.008 6.075 6.849 8.008 6.075 6.849 8.002 8.052 4.976 8.170 5.014 7.105 7.119 7.119 7.016 7.119 7.194	7.43 7.61 7.82 8.03 8.24 8.45 8.65 8.87 9.02 9.23 9.46 9.69 9.83 10.03 10.19 10.40 10.87 11.02 11.24 11.43 11.68 12.02	0.036 0.030 0.030 0.029 0.029 0.029 0.029 0.025 0.021 0.029 0.021 0.020	Suction soil probe was used, some fluid was	(
A2X01	02/28/86	14:30	00.20	423.604	9.007	12.34	0.022	left in hole. Soil suction probe was used, some fluid left	
A2X01 A2X01 A2X01 A2X01 A2X01 A2X01 A2X01 A2X01 A2X01 A2X01 A2X01 A2X01 A2X01 A2X01 A2X01 A2X01	03/04/86 03/06/86 03/13/86 03/26/86 04/02/86 04/08/86 04/08/86 04/16/86 04/24/86 04/30/86 05/06/86 05/06/86 05/20/86 05/20/86 05/20/86 05/20/86 06/10/86 06/10/86	09:30 09:00 09:05 08:40 08:50 10:45 09:20 09:55 09:25 09:25 09:10 09:45 14:45 09:10 10:34	0.07 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.24 0.15 0.24 0.20 0.13 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	427.375 429.396 436.375 449.378 456.361 462.368 470.448 478.389 484.413 490.392 497.382 504.406 511.615 518.382 525.440 532.401	3.771 2.021 6.979 13.003 6.983 6.007 8.080 7.941 6.024 5.979 6.990 7.024 7.209 6.767 7.058 6.961	12.56 12.71 12.76 13.08 13.27 13.42 13.66 13.86 13.89 14.19 14.39 14.59 14.78 14.78	0.021 0.011 0.046 0.032 0.019 0.030	Removed suction probe. Resumed sampling with bailer.	
				2021-001	0.701				- 7

A2X01 A2X01 A2X01	06/24/86 09:55 00.1 07/01/86 12:17 00.1 07/08/86 09:37 00.1	9 546	.512 7	2.012 2.099 .889	15.34 15.53 15.72	0.026 0.027 0.028
A2X01	07/16/86 09:37 00.1			.000	15.90	0.022
A2X01	07/22/86 09:10 00.1			.981	16.08	0.030
A2X01	07/29/86 09:50 00.1			.028	16.26	0.026
A2X01	08/05/86 10:03 00.1			.009	16.39	0.019
A2X01	08/12/86 09:40 00.1	8 588	.403 6	.984	16.57	0.026
A2X01	08/19/86 10:20 00.1	8 595	.431 7	.028	16.75	0.026
A2X01	08/26/86 09:51 00.1			.979	16.92	0.024
A2X01	09/04/86 09:41 00.1			.993	17.07	0.017
A2X01	09/09/86 10:50 00.1			.048	17.23	0.032
A2X01	09/16/86 09:17 00.2			.936	17.45	0.032
A2X01	09/23/86 09:25 00.1			.005	17.62	0.024
A2X01	10/01/86 11:21 00.3			.081	17.94	0.040
A2X01	10/08/86 10:10 00.1			.951	18.11 18.28	0.024
A2X01 A2X01	11/05/86 10:10 0.51			.982	18.79	0.023
A2X01 A2X01	11/20/86 11:05 00.2			. 902	19.08	0.019
A2X01	12/31/86 11:25 00.9			.014	20.04	0.023
A2X01	02/03/87 11:30 00.8			.003	20.84	0.024
A2X01	03/06/87 11:50 0.77			.014	21.61	0.025
A2X01	03/30/87 11:55 0.62			.010	22.23	0.026
A2X01	05/07/87 10:06 0.90			.918	23.13	0.024
A2X01	06/17/87 11:15 1.05	897	.469 41	.048	24.18	0.026
A2X01	07/28/87 12:15 1.10	938		.041	25.28	0.027
A2X01	09/01/87 11:30 0.87			.969	26.15	0.025
A2X01	10/20/87 10:34 1.14			.961	27.29	0.023
A2X01	11/19/87 10:10 0.70			.980	27.99	0.023
A2X01	01/04/88 10:45 1.43			.030	29.42	0.031
A2X01	02/08/88 12:45 0.96			.080	30.38	0.027
A2X01	03/30/88 12:00 1.23			.970	31.61	0.024
A2X01	05/12/88 10:30 0.83			.940	32.44	0.019
A2X01 A2X01	07/12/88 10:00 1.51 09/27/88 08:15 1.56			.980 .920	35.51	0.020 S
ACAUT	U7/2//00 U0:10 1.00	1.30	0.34 (0	. 720	5.51	0.020 S
A2X01	12/13/88 09:10 1.61	144	2.38 77	.040	37.12	0.021 0

Suction hose came off, some brine drained back down hole. Orange color.

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	
A2X02 A2X02	07/25/84 02/19/85			0.000 49.556	0.000 1.000			Room A2 completed. Uphole drilled 2/11/85 to 2/20/85, installed
A2X02 A2X02 A2X02 A2X02 A2X02 A2X02	03/07/85 03/12/85 03/20/85 03/26/85 04/02/85	11:30 13:04 11:02	00.21 00.31 00.14	65.396 70.479 78.544 84.460 91.499	16.840 5.083 8.065 5.916 7.039	0.86 1.00	0.041 0.038 0.024	Significant salt buildup. 4' dia. wet spot on
A2X02 A2X02	04/10/85 04/23/85 05/07/85 07/09/85 07/16/85 07/16/85 07/24/85 08/06/85 09/04/85 09/04/85 09/10/85 09/10/85 09/115/85 01/31/86 02/12/86 03/26/86 04/02/86	10:30 08:41 09:40 09:25 10:23 09:33 09:22 08:35 09:24 08:35 09:04 08:55 09:17 10:40 09:40 09:40 09:05	80.01 NA NA 80.05	99.495 112.438 126.362 133.403 189.392 196.433 204.398 217.390 239.358 246.387 252.378 259.372 287.387 395.444 407.403 436.375 449.378 456.361	108.057 11.959 28.972	1.24 1.24 1.29 1.35 1.37 1.38 1.39 1.47 1.49 1.51 1.53 1.58 1.60 1.61	0.001 0.000 0.000 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.003 0.003 0.003 0.000 0.000 0.000	back. Reset collecting device. Some drips missing funnel. Some drips missing funnel. Room A2 heaters turned on 10/02/85. High reading probably due to unplugging temporary blockage in collecting tube on
A2X02 A2X02 A2X02 A2X02 A2X02 A2X02 A2X02 A2X02 A2X02 A2X02 A2X02 A2X02	04/16/86 04/24/86 05/06/86 05/13/86 05/20/86 06/10/86 06/10/86 06/17/86 06/24/86	09:20 09:55 09:25 09:10 09:45 09:10 10:34 09:38	00.02 00.02 00.02 NA NA NA NA NA 00.01	470.448 478.389 484.413 490.392 497.382 504.406 518.382 525.440 532.401 539.410	14.087 7.941 6.024 5.979 6.990 7.024 21.000 28.058 35.019 7.009	1.89 1.91 1.93 1.93 1.93 1.93 1.93 1.93 1.9	0.000 0.000 0.000 0.000	Trace collected. Trace collected. Trace collected. Trace collected. Trace collected. Trace collected. Very humid air. High reading probably due to unplugging of temporary blockage in
A2X02 A2X02	07/01/86 07/08/86 07/16/86 07/12/86 08/05/86 08/12/86 08/12/86 08/12/86 09/04/86 09/16/86 09/16/86 09/16/86 10/01/86 10/08/86 10/08/86 10/08/86 11/05/86 11/20/86 11/20/86 11/20/86 11/20/87 03/06/87 03/06/87 05/07/87 07/28/87 07/28/87 07/28/87 07/28/87 07/01/87 01/04/88 02/08/88 03/30/88 07/12/88	09:27 09:33 09:95 09:59 11:50 11:50 11:50 11:50 11:50 11:50 11:50 11:50 11:50 11:50 11:50 11:50 11:50 11:50 11:50 11:50 11:50 11:50 11:50	00.17 00.14 00.05 00.12 00.07 00.12 00.07 00.12 00.07 00.11 00.06 00.08 00.07 00.09 00.05 00.03 0.10 00.40 00.11 0.05 0.03 0.50 0.12 0.00 0.05 0.12 0.07 0.12 0.07 0.11 0.05 0.12 0.07 0.11 0.05 0.12 0.07 0.11 0.05 0.12 0.07 0.11 0.05 0.12 0.07 0.11 0.05 0.12 0.07 0.11 0.05 0.07 0.12 0.07 0.11 0.05 0.07 0.12 0.07 0.11 0.05 0.05 0.07 0.05 0.5 0.	973.479 1022.44 1052.42	50.970	2.74 2.88 2.93 3.05 3.24 3.35 3.42 3.53 3.59 3.67 3.74 3.88 3.91 4.01 4.51 4.62 4.67 5.32 5.32 5.32 5.32 5.32 5.32	0.039 0.025 0.017 0.008 0.017 0.010 0.012 0.005 0.005 0.005 0.005 0.002 0.0010 0.0010 0.0010 0.0010 0.0010 0.005 0.005 0.002 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.005 0.002 0.0010 0.0010 0.0010 0.002 0.002 0.0010 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.000 0.000 0.000 0.0000 0.000 0.000000	Dry. Dry. Dry. Dry. Dry. Dry. Dry. Dry.

 A2X02
 09/27/88
 08:15
 0.04
 1365.34
 76.920
 5.36
 0.001

 A2X02
 12/13/88
 09:10
 1442.38
 77.040
 5.36
 0.000
 Dry.

۰.

5

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks
A3X01 A3X01 A3X01 A3X01 A3X01 A3X01 A3X01 A3X01	11/06/84 01/14/85 02/05/85 02/26/85 03/07/85 03/12/85 03/20/85	00:00 11:10 13:40 13:20 09:45 11:45	NA NA 00.30 00.23 00.26 00.17	0.000 35.465 49.569 56.556 65.406 70.490 78.551	0.000 0.000 1.000 15.104 6.987 8.850 5.084 8.061	0.00 0.00 0.30 0.53 0.79	0.000 0.000 0.020 0.033 0.029 0.033	Room A3 completed. Downhole drilled 12/20/85 to 1/14/85. Moist muck at the bottom. Some oil. First time collected. Brine and oil. Valved leaked, some brine drained back down bole
	GJ/20/85 GJ/20/85 GJ/20/85 GJ/02/85 GJ/02/85 GJ/02/85 GJ/10/85 GJ/17/85 GJ/17/85 GJ/17/85 GJ/14/85 GJ/14/85 GJ/14/85 GJ/14/85 GJ/14/85 GJ/02/85 GJ/16/85 GJ/16/85 GJ/24/85 GJ/	11 12 12 13 12<	0.19 2212306000000000000000000000000000000000			$\begin{array}{c} 1.15\\ 1.37\\ 1.58\\ 1.81\\ 2.01\\ 2.37\\ 2.57\\ 2.57\\ 2.57\\ 2.57\\ 2.57\\ 2.57\\ 2.57\\ 2.57\\ 2.57\\ 2.57\\ 2.57\\ 5.331\\ 3.49\\ 3.67\\ 3.86\\ 4.05\\ 4.22\\ 4.40\\ 4.61\\ 4.76\\ 4.93\\ 5.29\\ 5.50\\ 5.67\\ 5.82\\ 5.98\\ 6.15\\ 6.651\\ 6.86\\ 7.00\\ 7.16\\ 7.35\\ 7.54\\ 7.82\\ 7.96\\ 8.10\end{array}$	0.024 0.037 0.030 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.025 0.025 0.024 0.025 0.025 0.024 0.025 0.025 0.024 0.024 0.023 0.021 0.024 0.023 0	Valued leaked, some brine drained back down hole. Brine effervesces. Room A3 heaters turned on 10/02/85.
A3X01 A3X01 A3X01	06/10/86 06/17/86 06/24/86	09:51	00.12	525.446 532.410 539.420	7.057 6.964 7.010	12.05 12.17 12.33	0.023 0.017 0.023	

A3x01 07/08/86 09:57 00.15 553.415 6.891 12.64 0.022 A3x01 07/16/86 09:23 00.14 567.391 5.983 12.97 0.023 A3x01 07/22/86 10:15 00.14 567.391 5.983 12.97 0.023 A3x01 08/05/86 10:15 00.14 567.391 5.983 12.97 0.024 A3x01 08/05/86 10:15 00.16 588.410 6.983 13.45 0.023 A3x01 08/12/86 10:20 0.15 602.417 6.976 13.76 0.022 A3x01 08/26/86 10:20 0.016 588.410 14.08 0.024 A3x01 09/04/86 09:52 0.020 611.411 8.994 13.96 0.024 A3x01 09/16/86 09:29 0.14 623.395 6.954 14.42 0.024 A3x01 09/16/86 09:26 0.14 633.479 8.079 14.59 0.024 A3x01 10/07/86 10:24 0.024 33x01 10/07/86 <th>ot be sampled. Room has bad back.</th>	ot be sampled. Room has bad back.
---	-----------------------------------

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks
A3X02 A3X02 A3X02 A3X02 A3X02 A3X02 A3X02	11/06/84 01/22/85 02/05/85 02/19/85 02/26/85 03/07/85	00:00 11:10 13:40 13:20	NA NA 00.11 00.11	0.000 0.000 35.465 49.569 56.556 65.406	0.000 0.000 1.000 15.104 6.987 8.850	0.00 0.00 0.11 0.22	0.000 0.000 0.007 0.016	Room A3 completed. Uphole drilled 1/15/85 to 1/22/85. No drips noticed. First time collected. Wet spot within 1.5 ft. radius. Moist area on back, approximately 1 ft
A3X02 A3X02	03/12/85 03/20/85 03/26/85 04/02/85 04/10/85 04/10/85 04/23/85 05/07/85 05/07/85 05/07/85 05/21/85 05/21/85 05/29/85 06/04/85 06/04/85 06/11/85 06/11/85 06/11/85 06/25/85 07/02/85 07/02/85 07/16/85 07/24/85	$\begin{array}{c} 13:14\\ 11:12\\ 12:02\\ 12:20\\ 10:40\\ 93:55\\ 09:55\\ 09:55\\ 09:52\\ 09:55\\ 09:52\\ 09:52\\ 09:55\\ 09:52\\ 00:52\\ 00$	00.01 00.28 00.08 00.05 00.11 00.09 00.12 00.13 00.13 00.13 00.13 00.13 00.13 00.13 00.13 00.13 00.13 00.13 00.13 00.12 00.13 00.10 00.22 00.02	70.490 78.551 84.467 91.500 99.501 106.472 112.444 119.562 126.368 133.412 140.497 148.389 154.410 161.389 154.410 161.389 168.392 175.392 182.458 189.406 196.449 204.406	5.084 8.061 5.916 7.033 8.001 6.972 7.118 6.806 7.044 7.085 7.097 7.003 7.000 7.066 6.948 7.043 7.957	0.83 0.91 0.96 1.07 1.16 1.28 1.41 1.54 1.67 1.81 2.04 2.16 2.29 2.39 2.41 2.43	0.001 0.047 0.011 0.006 0.015 0.015 0.017 0.019 0.018 0.018 0.018 0.018 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.011 0.003 0.003	High volume probably due to unplugging
A3X02 A3X02	07/30/85 08/06/85 08/28/85 09/04/85 09/04/85 09/17/85 09/24/85 10/01/85 10/05/85 10/23/85 10/23/85 11/13/85 11/13/85 11/13/85 12/04/85 12/10/85 12/10/85 12/17/85 01/03/86 01/16/86 01/16/86 05/06/86 05/10/86 05/12/86 05/12/86 05/12/86 05/12/86 10/08/86 07/14/86 10/14/86 11/105/86 11/20/86 12/31/86	9:005826450999999999999999999999999999999999999	8.08 8.02 8.02 8.03	210.392 217.394 225.382 231.417 239.374 246.393 252.385 259.378 266.377 273.385 280.523 287.397 295.401 301.465 308.360 316.394 324.434 337.581 343.446 350.576 308.360 316.394 324.434 337.581 343.446 350.576 367.417 372.424 380.399 395.455 478.396 430.399 511.625 518.389 552.440 532.410 552.440 532.410 555.440 653.2410 555.440 653.2410 555.440 653.2410 555.440 653.2410 555.440 653.2410 555.440 653.2410 555.440 653.2410 555.440 653.415 574.417 588.410 595.440 630.398 638.478 645.432 651.447 673.431 688.479 729.490	5.007 7.975 15.056 82.941 12.003 21.226 27.057 14.021 28.133 6.893 21.002 34.995 42.025 57.995 76.983 8.080 6.954 6.015 27.999 43.047	2.88 2.96 3.05 3.33 3.36 3.68 3.89 3.68 3.68 3.68 3.68 3.68 4.08 4.427 2.33 4.08 4.427 2.35 4.08 4.427 4.433 4.4344 4.4344 4.4344 4.4344 4.4344 4.4344 4.4344 4.4344 4.4344 4.4344 4.4344 4.4344 4.4344 4.4344 4.4344 4.43444 4.43444 4.43444 4.43444 4.43444 4.43444 4.434444 4.434444 4.4344444 4.434444444 4.4344444444	0.011 0.010 0.013 0.009 0.013 0.006 0.010 0.006 0.008 0.009 0.004 0.008 0.009 0.004 0.008 0.009 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000000 0.00000 0.00000000	Trace <00.01 liters of brine. Trace. Trace. Trace. Dry.

A3X02	02/03/87 12:02 NA	763.000 117.568	4.43 0.000 Dry.
A3X02	03/06/87 11:45 NA	794.490 149.058	4.43 0.000 Dry.
A3X02	03/30/87 12:00 0.00	818.500 24.010	4.43 0.000 Dry.
A3X02	05/07/87 10:39 0.00	856.444 61.954	4.43 0.000 Dry.
A3X02	07/28/87 12:02 0.00	938.501 144.011	4.43 0.000 Dry.
A3X02	09/01/87 11:48 0.00	973.492 34.991	4.43 0.000 Dry.
A3X02	10/20/87 10:50 0.00	1022.45 48.958	4.43 0.000 Dry.
A3X02	11/19/87 10:20 0.00	1052.43 29.980	4.43 0.000 Dry.
A3X02	01/04/88 11:00 0.00	1098.46 46.030	4.43 0.000 Dry.
A3X02	02/08/88 13:30 0.00	1133.56 35.100	4.43 0.000 Dry.
A3X02	03/30/88 12:10 0.00	1184.51 50.950	4.43 0.000 Dry.
A3X02	07/12/88 09:40 0.00	1288.40 103.890	4.43 0.000 Dry.
A3X02	09/27/88 08:25 0.00	1365.35 76.950	4.43 0.000 Dry.
A3X02	12/13/88 09:25 0	1442.39 77.040	4.43 0.000 Dry.

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	
BTPA1	09/04/85 07/16/86 08/12/86 08/19/86 09/04/86 09/09/86 09/16/86 09/23/86 10/01/86 10/01/86 10/08/86 11/05/86 11/20/86 12/12/86	00:00 12:00 12:12 11:27 11:33 13:22 11:01 11:06 08:49 13:26 13:05 12:30 NA:	NA NA NA NA NA NA NA NA NA	0.000 0.000 588.500 595.508 602.477 611.481 616.557 623.459 630.463 638.367 645.560 651.545 673.521 688.000 0.000	64.045 86.021		0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Drý. Dry. Dry. Dry. Dry. Dry. Dry. Probe removed, not sampled.
BTPA1 BTPA1	12/30/86 03/06/87 06/18/87 09/10/87 10/20/87 11/19/87 01/04/88 02/09/88 03/29/88 07/12/88 09/15/88 09/15/88 12/02/88	10:10 09:45 14:30 09:48 09:15 09:40 10:10 09:40 11:00 10:45 11:45	1.33 0.03 0.05 0.05 0.03 0.02 0.03 0.06 0.00 0.03	728.000 794.424 898.406 982.604 1022.41 1052.39 1098.40 1134.42 1183.40 1288.46 1353.45 1365.49 1431.54	206.924 246.861 84.198 39.806 29.980 46.010 36.020 48.980 105.060 64.990 12.040	1.36	0.000 0.005 0.000 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.002	Covered with muck, not able to sample. Floor may have been watered for dust control. Possible contamination by water spread to control dust. Dry. No suction.

Location	Date	Time	Liters Removed	Days Since 1/01/85	Used	Cumulative Liters Collected	Liters per Day	
	09/04/85 07/29/86			0.000		0.00 0.00		Alcove at S1620/W170 excavated. Downhole drilled 7/16/86 to 7/29/86, open from 5.4 to 9.1 ft.
BTPA2	08/12/86	12:00	00.01	588.500	1.000	0.01	0.000	First time collected. Probe did not keep yacuum, brine remained in hole.
BTPA2 BTPA2 BTPA2 BTPA2 BTPA2 BTPA2 BTPA2 BTPA2 BTPA2 BTPA2 BTPA2 BTPA2	08/19/86 08/26/86 09/04/86 09/09/86 09/16/86 09/23/86 10/01/86 10/08/86 10/14/86 11/05/86 11/20/86 12/12/86	11:28 11:35 13:23 11:00 11:07 08:50 13:27 13:12 12:30 NA:	00.04 00.04 00.03 00.03 00.03 00.03 00.03 00.02 00.03 NA	595.508 602.478 611.483 616.558 623.458 630.463 638.368 645.560 651.550 673.521 688.000 0.000	6.970 9.005 5.075 6.900 7.005 7.905 7.192 5.990 21.971 36.450	0.19 0.22 0.25 0.28 0.31 0.33 0.36 0.36	0.006 0.004 0.006 0.004 0.004 0.004 0.003 0.005 0.000 0.000 0.000	Probe removed, not sampled. W170 drift extended southward from this alcove on 12/12/86. Drift completed to \$1950
BTPA2	12/30/86 03/06/87 06/18/87	10:10		794.424	76.450 142.874 246.846	0.36	0.000 0.000 0.002	on 1/10/87. Covered with muck, not able to sample. Floor may have been watered for dust control.
BTPA2	09/10/87	14:20	0.29	982.597	84.201	1.08	0.003	Hole contaminated with PVC pieces. Possible contamination by water spread to control dust.
BTPA2 BTPA2 BTPA2 BTPA2 BTPA2 BTPA2 BTPA2 BTPA2	10/20/87 11/19/87 01/04/88 02/09/88 03/29/88 07/12/88 09/15/88 09/27/88 12/02/88	09:20 09:40 10:10 09:43 11:00 10:35 11:50	0.05 0.06 0.10 0.27 0.87 0.16 0.91	1052.39 1098.40 1134.42 1183.40 1288.46 1353.44 1365.49	39.813 29.980 46.010 36.020 48.980 105.060 0.000 77.030 66.070	1.14 1.20 1.30 1.57 2.44 2.60 3.51	0.000 0.002 0.001 0.003 0.006 0.008 0.000 0.014 0.001	Not fully evacuated. Don't use for calculation. Sampled for bacteriology. Used 1.07 liters for calculation (0.16 on 9/15 + 0.91 on 9/27). Sampler removed. Last time sampled for BSEP, hole capped.

•

A-21

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks
BTPA3 BTPA3 BTPA3 BTPA3	09/04/85 07/30/86 08/12/86 08/19/86	00:00	NA NA	0.000 0.000 588.503 595.508	0.000 0.000 1.000 8.005	0.00	0.000	Alcove at S1620/W170 excavated. Downhole drilled 7/15/86 to 7/30/86, open from 10.3 to 14.0 ft. Dry. Lysimeter installed 8/20/86.
BTPA3 BTPA3 BTPA3 BTPA3 BTPA3	08/26/86 09/04/86 09/09/86 09/16/86 09/23/86	11:29 11:35 13:24 11:01	00.03 00.13 00.03 00.04	602.478 611.483 616.558 623.459 630.464	9.005 5.075 6.901 7.005	0.03 0.16 0.19 0.23		First time collected, some fluid left in hole.
BTPA3 BTPA3 BTPA3 BTPA3 BTPA3	10/01/86 10/08/86 10/14/86 11/05/86 11/20/86	08:53 13:29 13:14 12:30 NA:	00.05 00.02 00.04 NA NA	638.370 645.562 651.551 673.521 688.000	7.906 7.192 5.989 21.970 36.449	0.32 0.34 0.38 0.38 0.38	0.006 0.003 0.007 0.000 0.000	Probe removed, not sampled.
BTPA3 BTPA3 BTPA3 BTPA3	12/12/86 12/30/86 03/06/87 06/18/87	NA: 10:10	NA NA	0.000 728.000 794.424 898.385	142.873		0.000	W170 drift extended southward from this alcove on 12/12/86. Drift completed to S1950 on 1/10/87. Covered with muck, not able to sample. Floor may have been watered for dust control.
BTPA3	09/10/87	14:10	0.07	982.590 1022.41	84.205	1.07	0.001	Hole contaminated with PVC pieces. Possible contamination by water spread to control dust. Brine not saved, zero amount left in
BTPA3 BTPA3 BTPA3 BTPA3 BTPA3 BTPA3 BTPA3 BTPA3 BTPA3	11/19/87 01/04/88 02/09/88 03/29/88 07/12/88 09/15/88 09/27/88 12/02/88	09:20 09:40 10:15 09:44 11:10 10:40 11:55	0.08 Trace 0.00 0.00 0.00 Trace 0.00	1052.39 1098.40 1134.43 1183.41 1288.47 1353.44 1365.50 1431.58	29.980 46.010 36.030 48.980 105.060	1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15	0.003 0.000 0.000 0.000 0.000 0.000 0.000	collecting containter. Dry. Dry. Dry.

Location	Date	Time	Liters Removed	Days Since 1/01/85	Used	Cumulative Liters Collected	per	
BTPA4 BTPA4 BTPA4 BTPA4	09/04/85 07/03/86 08/12/86 08/19/86 09/04/86 09/09/86 09/09/86 09/03/86 10/01/86 10/01/86 11/05/86 11/20/86 12/12/86	00:00 12:05 12:11 11:25 11:31 13:25 10:59 08:38 13:20 13:00 12:41 NA:	NA NA NA NA NA NA NA NA NA NA NA		1.000 8.005 14.973 23.977 29.056 35.955 42.955 50.857 58.053 64.039 86.025 100.497	0.00	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Dry. Dry. Dry. Dry. Dry. Dry. Dry. Dry.
8TPA4 8TPA4 8TPA4 8TPA4 8TPA4 8TPA4 8TPA4 8TPA4 8TPA4 8TPA4	12/30/86 03/06/87 03/30/87 05/07/87 06/17/87 07/28/87 10/20/87 01/04/88 02/09/88 03/29/88 07/12/88 09/27/88	10:15 10:35 12:46 09:30 09:39 09:11 09:55 10:15 09:44 11:10	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	728.000 794.427 818.441 856.532 897.396 938.402 1022.38 1098.41 1134.43 1183.41 1288.47 1365.50	206.924 90.441 128.532 169.396 210.402 83.978 76.030 36.020 48.980 105.060	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Dry. Dry. Dry. Dry. Dry. Dry. Dry. Dry.

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks
BTPAS BTPAS BTPAS BTPAS BTPAS BTPAS BTPAS BTPAS BTPAS BTPAS BTPAS BTPAS BTPAS BTPAS	09/04/85 07/03/86 08/12/86 08/12/86 08/26/86 09/04/86 09/04/86 09/09/86 09/16/86 10/01/86 10/01/86 10/014/86 11/05/86 11/20/86 12/12/86	00:00 12:05 12:11 11:25 11:31 13:26 10:59 11:00 08:39 13:20 13:20 13:00 12:41 NA:	NA NA NA NA NA NA NA NA NA NA	0.000 0.000 588.503 595.508 602.476 611.480 616.560 623.458 630.458 638.360 645.556 651.542 673.528 688.000 0.000		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	C.000 C.000 C.000 C.000 C.000 C.000 C.000 C.000 C.000 C.000 C.000 C.000 C.000 C.000 C.000	Dry. Dry. Dry. Dry. Dry. Dry. Dry. Dry.
BTPAS BTPAS BTPAS BTPAS BTPAS BTPAS BTPAS BTPAS BTPAS BTPAS BTPAS BTPAS BTPAS	12/12/86 12/30/86 03/06/87 05/07/87 05/07/87 06/17/87 07/28/87 01/04/88 02/09/88 03/29/88 03/29/88 07/12/88 09/27/88	NA: 10:15 10:35 12:47 09:31 09:39 09:12 10:00 10:20 09:44 11:10	NA NA 0.00 0.00 0.00 0.00 0.00 0.00 0.00	728.000 794.427 818.441 856.533 897.397 938.402 1022.38 1098.42 1134.43 1183.41 1288.47 1365.50	206-924 90.441 128.533 169.397 210.402 83.978 76.040 36.010 48.980 105.060	0.00	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Drý. Dry. Dry. Dry. Dry. Dry.

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	
BTPB1 BTPB1	09/04/85 07/17/86			0.000	0.000	0.00 0.00	0.000	Alcove at \$1620/W170 excavated. Downhole drilled 7/17/86, open from 0 to 5.1 ft.
8TP81 8TP81 8TP81 8TP81 8TP81 8TP81 8TP81 8TP81 8TP81 8TP81 8TP81 8TP81	08/12/86 08/26/86 09/04/86 09/04/86 09/16/86 09/16/86 09/23/86 10/01/86 10/08/86 10/14/86 11/05/86 11/20/86 12/12/86	12:16 11:27 11:33 13:27 11:01 11:06 08:48 13:26 13:05 12:42 NA:	NA NA NA NA NA NA NA NA NA NA	588.507 595.511 602.477 611.481 616.560 623.459 630.463 638.367 645.560 651.545 673.529 688.000 0.000	1.000 8.004 14.970 23.974 29.053 35.952 42.956 50.860 58.053 64.038 86.022 100.493 0.000	0.00 0.00 0.00 0.00 0.00	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Drý. Dry. Dry. Dry. Dry. Dry. Dry.
BTPB1 BTPB1 BTPB1 BTPB1	12/30/86 03/06/87 06/18/87 09/10/87	10:15 10:00	0.42	794.427 898.417	140.493 206.920 246.872 84.163	0.00 0.00 0.42 0.45	0.000	Covered with muck, not able to sample. Floor may have been watered for dust control. Possible contamination by water spread to control dust.
8TP81 8TP81 8TP81 8TP81 8TP81 8TP81 8TP81 8TP81	10/20/87 11/19/87 01/04/88 02/09/88 03/29/88 07/12/88 09/27/88	09:25 09:50 10:25 09:50 11:20	0.90 0.68 0.71 0.55 0.65	1022.40 1052.39 1098.41 1134.43 1183.41 1288.47 1365.50	39.820 29.990 46.020 36.020 48.980 105.060 77.030		0.006	Last time sampled for BSEP.

Location	Date	Time	Liters R e moved	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	per	Remarks
BTPB2 BTPB2	09/04/85 07/30/86			0.000 0.000	0.000 0.000	0.00		Alcove at \$1620/W170 excavated. Downhole drilled 7/18/86 to 7/30/86, open from 5.9 to 9.6 ft.
BTPB2 BTPB2	08/12/86 08/19/86			588.507 595.511	1.000 8.004	0.00 0.03		Not evacuated, installed lysimeter. First time collected, some brine left in hole.
BTPB2 BTPB2 BTPB2 BTPB2 BTPB2 BTPB2	08/26/86 09/04/86 09/09/86 09/16/86	11:45 13:28 11:02	00.01 00.01 00.08	602.476 611.490 616.561 623.460	6.965 9.014 5.071 6.899	0.16 0.17 0.18 0.26	0.001 0.002 0.012	Some brine left in hole. Some brine left in hole.
BTPB2 BTPB2 BTPB2 BTPB2 BTPB2	09/23/86 10/01/86 10/08/86 10/14/86 11/05/86	09:03 13:36 13:15	00.02 00.10 00.03	630.467 638.377 645.567 651.552 673.529	7.007 7.910 7.190 5.985 21.977	0.27 0.29 0.39 0.42 0.42	0.003 0.014 0.005	Probe removed, not sampled.
BTPB2 BTPB2	11/20/86 12/12/86	NA: 1	NA	688.000 0.000	36.448 0.000	0.42	0.000	
BTP82 BTP82 BTP82	12/30/86 03/06/87 06/18/87	10:15		728.000 794.427 898.375		0.42		Covered with muck, not able to sample. Floor may have been watered for dust control.
BTPB2	09/10/87	13:45	0.15	982.573	84.198	1.13	0.002	Hole is contaminated with PVC pieces. Possible contamination by water spread to control dust.
BTPB2 BTPB2 BTPB2 BTPB2 BTPB2 BTPB2 BTPB2 BTPB2	10/20/87 11/19/87 01/04/88 02/09/88 03/29/88 07/12/88 09/27/88	09:30 09:50 10:25 09:53 11:25	0.14 0.06 0.00 0.14 0.01	1022.40 1052.40 1098.41 1134.43 1183.41 1288.48 1365.51	36.020	1.27 1.33 1.33 1.47 1.48	0.005 0.001 0.000 0.003 0.003	Dry. No suction.

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	per	
BTPB3 BTPB3	09/04/85 08/01/86			0.000	0.000	0.00	0.000	Alcove at \$1620/W170 excavated. Downhole drilled 7/17/86 to 8/01/86, open from 10.0 to 13.3 ft.
BTPB3 BTPB3 BTPB3	08/12/86 08/19/86 08/26/86	12:10	Trace	588.510 595.507 602.476	1.000 7.997 14.966	0.00 0.00 0.00	0.000 0.000 0.000	1. 1.
BTPB3 BTPB3 BTPB3 BTPB3 BTPB3 BTPB3 BTPB3	09/04/86 09/09/86 09/16/86 09/23/86 10/01/86 10/08/86	13:31 11:05 11:16 09:00 13:32	00.01 00.02 00.02 00.01 00.02	611.486 616.563 623.462 630.469 638.375 645.564	23.976 5.077 6.899 7.007 7.906 7.189	0.12 0.14 0.15 0.17	0.000 0.002 0.003 0.003 0.001 0.001 0.003 0.003	in foce.
BTPB3 BTPB3 BTPB3 BTPB3	10/14/86 11/05/86 11/20/86 12/12/86	12:42 NA: 00:00	NA NA NA	651.553 673.529 688.000 0.000	5.989 21.976 36.447 0.000	0.19 0.19 0.00	0.000 0.000 0.000	Probe removed, not sampled. Not sampled. W170 drift extended southward from this alcove on 12/12/86. Drift completed to S1950 on 1/10/87. Not sampled.
BTPB3 BTPB3 BTPB3	12/30/86 03/06/87 06/18/87	10:15		728.000 794.427 898.368	142.874	0 19	0.000	Covered with muck, not sampled. Floor may have been watered for dust control. Hole is contaminated with PVC pieces.
BTPB3	09/10/87	13:35	0.12	982.566	84.198	0.53	0.001	Possible contamination by water spread to control dust.
BTPB3 BTPB3 BTPB3 BTPB3 BTPB3 BTPB3 BTPB3	10/20/87 11/19/87 01/04/88 02/09/88 03/29/88 07/12/88 09/27/88	09:35 09:50 10:30 09:55 11:25	0.04 0.01 0.01 0.03 0.05	1022.40 1052.40 1098.41 1134.44 1183.41 1288.48 1365.51	39.834 30.000 46.010 36.030 48.970 105.070 77.030		0.000 0.001 0.000	Dry. Last time sampled for BSEP.

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks
BTPB4 BTPB4	09/04/85 08/05/86			0.000	0.000 0.000	0.00 0.00		Alcove at \$1620/W170 excavated. Uphole drilled 7/02/86 to 8/05/86, open from 6.8 to 9.75 ft.
8TP84 8TP84 8TP84 8TP84 8TP84 8TP84 8TP84 8TP84 8TP84 8TP84 8TP84 8TP84 8TP84 8TP84	08/12/86 08/19/86 08/26/86 09/04/86 09/09/86 09/16/86 09/23/86 10/01/86 10/08/86 10/08/86 11/05/86 11/20/86 12/12/86	12:10 11:25 11:32 13:17 10:59 11:01 08:41 13:21 13:00 12:43 NA:	NA NA NA NA NA NA NA NA NA	588.510 595.507 602.476 611.481 616.553 623.458 630.459 638.362 645.556 651.542 673.530 688.000 0.000	50.852 58.046 64.032	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.000 0.003 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Dry. Salt crystals forming, dry. Dry. Some droplets at collar. Dry. Dry. Dry. Dry. Dry.
BTPB4 BTPB4 BTPB4 BTPB4 BTPB4 BTPB4 BTPB4 BTPB4 BTPB4 BTPB4 BTPB4 BTPB4 BTPB4 BTPB4 BTPB4	12/30/86 03/06/87 03/30/87 05/07/87 06/17/87 07/28/87 09/01/87 10/20/87 11/19/87 01/04/88 02/09/88 03/29/88 07/12/88 09/27/88	10:15 10:35 12:48 09:32 09:35 09:40 09:13 09:05 10:00 10:35 09:55 11:30	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	794.427 818.441 856.533 897.397 938.399 973.403 1022.38 1052.38 1052.38 1058.42 1134.44 1183.41 1288.48	62.106 102.970 143.972 76.006 48.977 30.000 46.040	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Dry. Dry, moisture in casing. Dry. Damp. Trace, not collected. Damp. Dry. Dry. Dry. Dry. Dry. Dry.

~

Location .	Date	Time	Liters Removed	Days Since 1/01/85		Cumulative Liters Collected	Liters per Day	
BTPB5 BTPB5	09/04/85 08/05/86			0.000 0.000	0.000	0.00		Alcove at \$1620/W170 excavated. Uphole drilled 7/02/86 to 8/05/86, open from
BTPB5 BTPB5 BTPB5 BTPB5 BTPB5	08/12/86 08/19/86 08/26/86 09/04/86 09/09/86 09/16/86	12:10 11:25 11:32 13:18 10:59	NA NA NA NA	588.510 595.507 602.476 611.481 616.554 623.458	7.997 14.966 23.971 29.044 35.948	0.00 0.00 0.00 0.00 0.00 0.00	0.000 0.000 0.000 0.000 0.000 0.000	Dry. Dry. Dry. Dry. Dry.
BTPB5 BTPB5 BTPB5 BTPB5 BTPB5	09/23/86 10/01/86 10/08/86 10/14/86 11/05/86 11/20/86	08:42 13:21 13:00 12:42 NA:	NA NA NA NA	673.529 688.000	86.019 100.490	0.00	0.000 0.000 0.000 0.000 0.000 0.000	Drý. Dry. Dry.
BTPB5	12/12/86	NA:	NA	0.000	0.000	0.00		W170 drift extended southward from this alcove on 12/12/86. Drift completed to S1950 on 1/10/87.
BTP85 BTP85 BTP85	03/06/87 03/30/87 05/07/87 06/17/87 07/28/87	10:30 12:49 09:33	0.00 0.00 0.00	794.427 818.438 856.534 897.398 938.398	24.011 62.107 102.971	0.00	0.000 0.000 0.000	
BTPB5 BTPB5 BTPB5 BTPB5 BTPB5 BTPB5	09/01/87 10/20/87 11/19/87 01/04/88 02/09/88 03/29/88 07/12/88 09/27/88	09:17 09:10 10:05 10:45 09:55 11:30	0.02 0.00 0.00 0.00 0.00 0.00 0.05	973.399 1022.39 1052.38 1098.42 1134.45 1183.41 1288.48 1365.51		0.03	0.000 0.000 0.000 0.000 0.000 0.000 0.000	Dry. Dry.

Locat	on Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks -
BTPC1 BTPC1	09/04/85 07/18/86			0.000 0.000	0.000 0.000			Alcove at \$1620/W170 excavated. Downhole drilled 7/18/86, open from 0 to 5.0 ft.
BTPC1 BTPC1 BTPC1 BTPC1 BTPC1 BTPC1 BTPC1 BTPC1 BTPC1 BTPC1 BTPC1 BTPC1	08/12/86 08/19/86 09/04/86 09/09/86 09/16/86 09/23/86 10/01/86 10/08/86 10/14/86 11/05/86 11/20/86	12:10 11:27 11:33 13:19 11:01 11:07 08:42 13:26 13:26 13:05 12:45 NA:	NA NA NA NA NA NA NA NA NA	588.514 595.507 602.477 611.481 616.555 623.459 630.463 638.363 645.560 651.545 673.531 688.000 0.000	35.945 42.949 50.849 58.046 64.031 86.017	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Dry. Dry. Dry. Dry. Dry. Dry. Dry. Dry.
BTPC1 BTPC1 BTPC1 BTPC1	12/30/86 03/06/87 06/18/87 09/10/87	10:10 10:15	0.28	794.424 898.427	140.486 206.910 246.882 84.132	0.00	0.000	on 1/10/87. Not collected. Covered with muck, not collected. Floor may have been watered for dust control. Possible contamination by water spread to control dust.
BTPC1 BTPC1 BTPC1 BTPC1 BTPC1 BTPC1 BTPC1 BTPC1	10/20/87 11/19/87 01/04/88 02/09/88 03/29/88 07/12/88 09/15/88 09/27/88	09:40 09:55 10:45 10:00 11:35 10:30	0.91 0.69 0.77 0.57 0.67 0.17	1052.40 1098.41 1134.45 1183.42 1288.48 1353.44		4.11 4.88 5.45 6.12 6.29	0.030 0.015 0.021 0.012 0.006 0.000	Not fully evacuated. Don't use for calculation. Sampled for bacteriology. Used 0.92 Liters for calculation (0.17 on 9/15 + 0.75 on 9/27). Last time sampled for

Location	Date	Time	Liters Removed	Days Since 1/01/85		Cumulative Liters Collected	per	
BTPC2 BTPC2	09/04/85 08/01/86			0.000 0.000	0.000 0.000			Alcove at \$1620/W170 excavated. Downhole drilled 7/18/86 to 8/01/86, open from 5.5 to 9.8 ft.
BTPC2 BTPC2	08/12/86 08/19/86			588.514 595.507	1.000 7.993	0.00		Not evacuated, installed lysimeter. Lysimeter did not hold vacuum, some brine left in hole.
BTPC2 BTPC2 BTPC2 BTPC2 BTPC2 BTPC2 BTPC2 BTPC2 BTPC2 BTPC2 BTPC2 BTPC2 BTPC2	08/26/86 09/04/86 09/09/86 09/16/86 09/23/86 10/01/86 10/08/86 10/14/86 11/05/86 11/20/86 12/12/86	11:33 13:35 11:08 11:18 09:04 13:36 13:20 12:45 NA:	00.01 00.04 00.04 00.03 00.02 00.01 00.02 NA NA	602.478 611.481 616.566 623.464 630.471 638.378 645.567 651.556 673.531 688.000 0.000	14.964 9.003 5.085 6.898 7.007 7.907 7.189 5.989 21.975 36.444 0.000	0.09 0.10 0.14 0.23 0.24 0.26 0.26 0.20	0.001 0.008 0.006 0.004 0.003 0.001 0.003 0.000 0.000	First time sampled. Some fluid left in hole. Probe removed, not collected. Not collected. W170 drift extended southward from this alcove on 12/12/86. Drift completed to \$1950 on 1/10/87.
BTPC2 BTPC2 BTPC2	12/30/86 03/06/87 06/18/87	10:10		728.000 794.424 898.361	142.868		0.000	Not collected. Covered with muck, not collected. Floor may have been watered for dust control. Hole is contaminated with PVC pieces.
BTPC2 BTPC2 BTPC2	09/10/87 10/20/87 11/19/87 01/04/88 02/09/88 03/29/88 07/12/88 09/27/88	09:27 09:43 09:55 11:00 10:02 11:35	0.19 0.29 0.06 0.07 0.10 0.07	982.552 1022.39 1052.40 1098.41 1134.46 1183.42 1288.48 1365.52		1.16 1.45 1.51 1.58	0.003 0.005 0.010 0.001 0.002 0.002 0.002	Last time sampled for BSEP.

.

A-31

Locátion Date	Time Liter Remov	ed Since 1/01/85	Days (Used For alc.	Cumulative Liters Collected	Liters per Day	Remarks
	00:00 NA 00:00 NA		0.000	0.00 0.00		Alcove at \$1620/W170 excavated. Downhole drilled 7/18/86 to 8/01/86, open from 10.0 to 14.4 ft.
BTPC3 08/19/86	12:20 NA 12:10 Trace 11:27 NA	595.507 7	.000	0.00 0.00 0.00	0.000	
BTPC3 09/04/86 BTPC3 09/09/86	11:30 NA 13:38 NA 11:10 NA	611.479 23 616.568 29	.965	0.00		No vacuum, some brine left in hole. Dry.
BTPC3 09/23/86 BTPC3 10/01/86	11:25 00.18 09:06 Trace 13:38 00.01	630.476 42 638.379 7	.962	0.18 0.18 0.19		First time collected.
BTPC3 10/14/86	13:21 00.02 12:45 NA	651.556 5 673.531 21	.988	0.21	0.003	Probe removed, not collected. Not collected.
	00:00 NA		.000	0.00		W170 drift extended southward from this alcove on 12/12/86. Drift completed to \$1950 on 1/10/87.
	NA: NA 10:10 NA 08:30 0.15	728.000 76 794.424 142 898.354 246	. 868		0.000	Not collected. Covered with muck, not collected. Floor may have been watered for dust control.
BTPC3 11/19/87 BTPC3 01/04/88	09:30 0.00 09:45 0.03 09:55 0.01		0.010	0.39 0.40	0.000	Hole contaminated with PVC pieces. Dry.
BTPC3 03/29/88 BTPC3 07/12/88	11:00 Trace 10:02 0.00 11:35 Trace	1183.42 48 1288.48 105		0.40 0.40 0.40	0.000	
	13:07 0.03 12:25 0.02	1348.55 60 1365.52 16).070 5.970	0.43 0.45		Installed lysimeter. Last time sampled for BSEP.

Location	Date	Time	Liters Removed	Days Since 1/01/85	Used	Cumulative Liters Collected	Liters per Day	
BTPC4 BTPC4	09/04/85 08/05/86			0.000	0.000	0.00 0.00		Alcove at \$1620/W170 excavated. Uphole drilled 7/02/86 to 8/05/86, open from 13.9 to 17.6 ft.
BTPC4 BTPC4 BTPC4 BTPC4	08/12/86 08/19/86 08/26/86 09/04/86 09/09/86 09/16/86 09/16/86 10/01/86 10/08/86 10/08/86 11/05/86 11/20/86 12/12/86	12:09 11:25 11:29 13:20 10:57 10:57 08:46 13:24 13:00 12:45 NA:	00.20 00.11 00.15 00.07 00.07 00.08 00.09 00.10 00.08 0.22 NA	588.517 595.506 602.476 611.478 616.556 630.456 638.365 645.558 645.558 645.5531 673.531 688.000 0.000	$\begin{array}{c} 1.000\\ 6.989\\ 6.970\\ 9.002\\ 5.078\\ 6.900\\ 7.000\\ 7.909\\ 7.193\\ 5.984\\ 21.989\\ 14.469\\ 0.000\\ \end{array}$	0.32 0.47 0.54 0.61 0.69 0.78 0.88 0.88 0.96 1.18 1.18	0.029 0.016 0.017 0.014 0.010 0.011 0.011 0.011 0.014 0.013 0.010 0.000	W170 drift extended southward from this alcove on 12/12/86. Drift completed to \$1950 on 1/10/87.
BTPC4 BTPC4 BTPC4 BTPC4 BTPC4 BTPC4 BTPC4 BTPC4 BTPC4 BTPC4 BTPC4 BTPC4 BTPC4 BTPC4 BTPC4 BTPC4	12/30/86 02/04/87 03/06/87 05/07/87 05/07/87 07/01/87 07/28/87 09/01/87 10/20/87 11/19/87 01/04/88 02/08/88 03/29/88 03/29/88 07/12/88 09/15/88	10:15 10:15 10:30 12:50 09:34 11:20 09:35 09:40 09:20 09:20 09:20 09:20 10:05 11:00 10:05 11:40 10:30	00.20 0.41 0.14 0.29 0.35 0.12 0.15 0.27 0.30 0.13 0.15 0.18 0.25 0.50 0.18	728.422 764.427 794.427 818.438 856.535 897.399 971.472 938.399 973.403 1052.39 1052.39 1052.39 1058.42 1133.46 1183.42 1288.49 1353.44 1365.52	0.000	1.93 2.34 2.48 2.77 3.12 3.24 3.39 3.66 3.96 4.09 4.24 4.42 4.67 5.17 5.35	0.010 0.006 0.014 0.008 0.009 0.009 0.009 0.006 0.008 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.005	Not fully evacuated. Don't use for calculation. Sampled for bacteriology. Used 0.25 liters for calculation (0.18 on 9/15 + 0.07 on 9/27). Last time sampled for BSEP.

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	per	Remarks
	09/04/85 08/05/86			0.000 0.000	0.000 0.000			Alcove at \$1620/W170 excavated. Uphole drilled 6/30/86 to 8/05/86, open from 14.0 to 18.2 ft.
BTPC5 BTPC5	08/12/86 08/19/86 08/26/86 09/04/86	12:10 11:25	NA NA	588.517 595.507 602.476 611.479		0.00 0.00	0.000 0.000 0.000 0.000	Dry.
BTPC5 BTPC5	09/09/86 09/16/86 09/23/86 10/01/86	10:58 10:58	Trace NA	616.556 623.457 630.457 638.365	35.940 42.940	0.00 0.00	0.000 0.000 0.000	Dry. Drops missing cup. 4" stalactite on SE corner of collar - from
BTPC5	10/08/86	13:22	NA	645.557 651.542	58.040	0.00	0.000	outside casing. Stalactite on outside of casing, damp inside of casing. Two L/4 mm drops.
BTPC5 BTPC5	11/05/86 11/20/86 12/12/86	12:41 NA:	Trace NA	673.528 688.000 0.000	86.011	0.00	0.000	Few drops in cup. Stalactite on cup bottom. W170 drift extended southward from this
BTPC5	12/30/86 03/06/87	10:15		728.000 794.427	206.910	0.00	0.000	alcove on 12/12/86. Drift completed to \$1950 on 1/10/87. Dry, salt buildup outside cup.
BTPC5 BTPC5 BTPC5	03/30/87 05/07/87 06/17/87 07/28/87	12:51 09:35 09:31	0.00 0.00 0.00	818.438 856.535 897.399 938.397	62.108 102.972 143.970	0.00 0.00 0.00	0.000 0.000 0.000	Damp. Trace, not collected.
BTPCS BTPCS BTPC5	09/01/87 10/20/87 11/19/87 01/04/88	09:18 09:10 10:05	Trace 0.00 0.00	973.399 1022.39 1052.38 1098.42	48.991 29.990 46.040	0.01	0.000 0.000 0.000	Dry.
BTPC5	02/08/88 03/29/88 07/12/88 09/27/88	10:05 11:45	0.00 0.05	1133.46 1183.42 1288.49 1365.52	49.960	0.01 0.06	0.000	

.

Location .	Date	Time	Liters Removed	Days Since 1/01/85	Used	Cumulative Liters Collected	per Day	
BTRO1 BTRO1	01/31/86 02/27/86			0.000	0.000	0.00	0.000 0,000	Drift excavated. Hole drilled in north rib, 1 ft deep, ab
						0.00	0.000	clay seam near back. Installed suction probe and sealed openin
BTRO1	02/28/86			0.000	1 000	0.00	0 000	Dev
BTRO1 BTRO1	03/04/86			100 104	7 097	0.00	0 000	Slightly wet
BTROI	03/13/86		N1A	176 158	10 059	0.00	0.000	Wet
BTRO1	03/26/86		NA	449.469	23.070	0.00	0.000	Wet.
BTRO1	04/02/86		NA	456.441	30.042	0.00	0.000	Slightly wet.
BTRO1	04/08/86		NA	462.448	36.049	0.00 0.00 0.00 0.00 0.00 0.00	0.000	Dry.
BTRO1	04/16/86 04/24/86		NA	470.542	52 063	0.00	0.000	
BTRO1 BTRO1	04/30/86		NA	410.402	58.087	0.00	0.000	Dry.
BTRO1	05/06/86		NA	490.458	64.059	0.00	0.000	Dry.
BTRO1	05/13/86	10:20	NA	497.431	71.032	0.00	0.000	Dry.
BTR01	05/20/86		NA	504.479	78.080	0.00	0.000	Dry. Salt crust developing in bottom of hole.
BTRO1	05/27/86		NA	511 5111	85 111		U.U.U	Sall Clust developing in boccom of notes
BTRO1 BTRO1	06/03/86 06/10/86			525 510	99 111	0.00	0.000	Dry.
BTRO1	06/17/86			532.476	106.077	0.00	0.000	Dry.
BTRO1	06/24/86	11:50	NA	539.493	113.094	0.00	0.000	Moist.
BTRO1	07/01/86	11:30	NA	516 179	120 080	0.00	0.000	DFY.
BTRO1	07/08/86	44.10	T	E41 /07	127.080	0.00	0 000	Wet clay in hole.
BTRO1 BTRO1	07/22/86	11.40	NA	567.458	141.059	0.00	0.000	Damp.
BTRO1	07/29/86	11:30	NA	574.479	148.080	0.00	0.000	Dry.
BTRO1	08/05/86	12:01	NA	581.501	155.102	0.00	0.000	Dry.
BTRO1	08/12/86	09:00	NA	588.375	161.976	0.00	0.000	Dry.
BTRO1	08/19/86	12:27	NA	595.519	176 101	0.00	0.000	Dry.
BTRO1 BTRO1	09/04/86	12:00	NA	611 506	185,107	0.00	0.000	Damp.
BTRO1	09/09/86	12:30	NA	616.521	190.122		0.000	Dry.
BTRO1	09/16/86	11:16	NA	623.469	197.070	0.00	0.000	Dry.
BTRO1	09/23/86	11:35	NA	630.483	204.084	0.00	0.000	Dry.
BTRO1	10/01/86	08:25	NA	638.351	211.952	0.00	0.000	Not pumped last week.
	10/14/86		NA	651 417	225.018	0.00	0.000	Pumped only, no collection.
BTRO1	11/05/86		NA	673.538	247.139	0.00	0.000	Dry. Dry. Not pumped last week. Pumped only, no collection. Dry. Dry. Dry. po vacuum.
BTRO1	11/20/86	14:49	NA	688.617	262.218	0.00	0.000	Dry.
BTRO1	12/30/86		NA	120.401	302.002	0.00		Dry, no vacuum. Dry, salt buildup outside cup. No vacuum
	03/06/87		NA 0.00	918 400	368.007	0.00	0.000	Dry
BTRO1 BTRO1	03/30/87 06/17/87	09.00	0.00	818.417 897.375	102.969	0.00	0.000	Dry.
	07/28/87		0.00	938.408	144.002	0.00	0.000	Dry.
BTRO1	09/01/87			973.382	34.974	0.00	0.000	Dry.
BTRO1	10/20/87	08:50	0.00	1022.37	48.988		0.000	Dry.
BTRO1 BTRO1	11/19/87 01/04/88	00-10	0.00	1000 70	29.980 46.030	0.00	0 000	Dry
	02/09/88			1134.40	36,020	0.00	0.000	Dry.
BTRO1	03/29/88	09:15	0.00	1183.39	48.990	0.00	0.000	Dry.
BTRO1	07/12/88	10:30	0.00	1288.44	105.050	0.00	0.000	Dry. Dry. Last time sampled for BSEP.
BTRO1	09/27/88	11:15	0.00	1565.47	77.030	0.00	0.000	ury. Last time sampted for both.

Location Da	te Time	Liters Day Removed Sinc	e Used		per	Remarks
	x	1/01/8	5 For Calc.	Collected	Day	
	1/86 00:00 7/86 00:00					Drift excavated. Hole drilled in north rib, 3.2 ft deep, above
BTR02 03/0	3/86 00:00 4/86 09:35 5/86 11:40	NA 427.39	9 1.000	0.00	0.000	clay seam near back. Installed suction probe and sealed opening. Wet at bottom. Slight brine accumulation.
BTR02 03/2 BTR02 04/0	3/86 11:00 5/86 11:30 2/86 10:35	00.05 449.47 00.01 456.44	9 13.021 1 6.962	0.06 0.07	0.004 0.001	Clay squeezing into hole. Lots of clay squeezing into hole. Clay squeezing into hole.
BTR02 04/1 BTR02 04/2 BTR02 04/3	3/86 10:45 5/86 13:00 4/86 11:05 0/86 11:40	00.01 470.54 00.01 478.46 Trace 484.48	2 8.094 2 7.920 6 6.024	0.17 0.18 0.18	0.015 0.001 0.001 0.000	
BTRO2 05/1 BTRO2 05/2	5/86 11:00 3/86 10:20 2/86 11:30	Trace 497.43 Trace 504.47	1 18.969 9 26.017	0.18	0.000	Approximate 0.005 liters.
BTR02 06/0 BTR02 06/1	7/86 12:15 3/86 11:05 0/86 12:15	Trace 518.46 Trace 525.51	2 6.952 0 14.000	0.19	0.000	
BTR02 06/2 BTR02 07/0	7/86 11:25 4/86 11:50 1/86 11:30 8/86 11:32	NA 539.49	3 27.983 9 34.969	0.19	0.000	Approximate 0.05 Liters.
BTR02 07/1 BTR02 07/2	6/86 11:32 6/86 11:49 2/86 11:00 9/86 11:31	00.01 561.49	2 8.011 8 5.966	0.22	0.001	Wet clay.
BTRO2 08/0 BTRO2 08/1	5/86 12:02 2/86 09:00 9/86 12:28	00.01 581.50 Trace 588.37	1 7.021 5 6.874	0.25	0.001 0.000 0.001	
BTR02 09/0 BTR02 09/0	6/86 12:01 4/86 12:08 9/86 12:30	Trace 611.50 00.01 616.52	6 9.005 1 14.020	0.27	0.001	
BTR02 09/2 BTR02 10/0	6/86 11:17 3/86 11:36 1/86 08:26 8/86 13:47	Trace 630.48	3 13.962 1 21.830	0.28 0.29	0.000	Up to 0.005 liters.
BTR02 10/1 BTR02 11/0	4/86 10:00 5/86 12:56 0/86 14:29	NA 651.41	7 13.066 9 35.188	0.29 0.30	0.000	Pumped only, no collection. Blocked by vent pipe, not sampled. Blocked by vent pipe, not sampled.
BTRO2 12/3 BTRO2 03/0 BTRO2 03/3	0/86 09:39 6/87 09:45 0/87 10:01	00.02 728.40 0.01 794.40 0.00 818.4	2 54.863 6 66.004 7 24.011	0.32 0.33 0.33	0.000 0.000 0.000	Vacuum. Trace.
BTR02 07/2 BTR02 09/0	7/87 09:01 8/87 09:50 1/87 09:12 0/87 08:51	0.01 938.4′ 0.01 973.38	3 34.97	0.35	0.000	i i i i i i i i i i i i i i i i i i i
BTR02 11/1 BTR02 01/0	9/87 08:31 9/87 08:31 4/88 09:10 9/88 09:30	0.01 1052.3 0.01 1098.3	5 29.980 8 46.030	0.38 0.39	0.000	i
BTR02 03/2 BTR02 07/1 BTR02 09/2	9/88 09:17 2/88 10:30 7/88 11:15	0.01 1183.3 Trace 1288.4 0.01 1365.4	9 48.99 4 105.05 7 77.03	0.41 0.41 0.42	0.000 0.000 0.000	
BTR02 12/0	2/88 12:40	1431.9	3 66.060	0.42	0.000) Dry. Sampler removed. Last time sampled for BSEP.

-364 B

WIPP BRINE SAMPLING AND EVALUATION PROGRAM Appendix A for the 1988 BSEP Report Data through December 31, 1988

					Data th	rough Decer	mber 31	, 1988
Locatio	n Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks
BTRO3 BTRO3	01/31/86 02/27/86			0.000 0.000	0.000 0.000			Drift excavated. Hole drilled in north rib, 3.3 ft deep, above clay seam near back.
BTR03 BTR03	G3/04/86 G3/06/86 G3/25/86 G3/25/86 O4/02/86 O4/02/86 O4/02/86 O4/02/86 O4/02/86 O5/05/86 O5/05/86 O5/05/86 O5/22/86 O7/08/86 O7/08/86 O7/08/86 O7/22/86 O7/22/86 O7/22/86 O7/22/86 O7/22/86 O7/22/86 O7/22/86 O7/22/86 O7/22/86 O7/04/86 O9/09/86 O9/09/86 O9/04/86 O9/023/86 O9/023/86 O1/14/86 O1/14/86 O1/14/86 O1/14/86 O1/14/86 O1/14/86 O1/14/86 O1/14/86 O1/14/86 O1/14/86 O1/14/86	11:40 11:40 11:305 13:05 13:05 11:02 11:02 11:12:15 11:12:15 11:12:15 11:12:15 11:12:15 11:15 11:12:15 11:15 11:12:15 11:15 11:12:12:15 11:12:12:15 11:12:12:12:15 11:12:12:12:12:12:12:12:12:12:12:12:12:1	NA NA NA NA NA NA NA NA NA NA MO.02 OO.05 Trace Trace Trace Trace Trace Trace Trace Trace Trace Trace Trace Trace Trace NA OO.01 Trace Trace Trace NA NA NA NA NA NA NA NA NA NA NA NA NA	456.441 462.448 470.542 478.462 484.486 490.458 497.431 504.479 511.510 518.465 525.510 532.479 553.482 553.482 553.482 553.481 553.481 553.481 553.520 602.501 611.506 616.521 633.471 633.484 638.351 645.575 651.417 673.540 688.562	$\begin{array}{c} 1.000\\ 3.087\\ 10.059\\ 23.080\\ 30.042\\ 36.049\\ 44.143\\ 52.063\\ 58.087\\ 64.059\\ 71.032\\ 78.080\\ 85.111\\ 6.955\\ 7.045\\ 14.014\\ 21.032\\ 28.014\\ 5.965\\ 12.988\\ 20.009\\ 6.873\\ 14.018\\ 20.999\\ 30.004\\ 35.019\\ 41.969\\ 48.982\\ 56.849\\ 7.224\\ 13.066\\ 13.066\\ 35.189\\ 50.211\\ 90.052\\ \end{array}$	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		Installed suction probe. No vacuum. Approximate 0.005 liters.
8TR03 8TR03 8TR03 8TR03 8TR03 8TR03 8TR03 8TR03 8TR03 8TR03 8TR03 8TR03 8TR03 8TR03	03/06/87 03/30/87 06/17/87 07/28/87 09/01/87 10/20/87 11/19/87 01/04/88 02/09/88 03/29/88 07/12/88 09/27/88 12/02/88	10:02 09:02 09:50 09:12 08:52 08:35 09:15 09:30 09:18 10:30 11:15	0.01 0.02 0.02 0.03 0.03 0.02 0.02 0.02 0.02	794.406 818.418 897.376 938.410 973.383 1022.37 1052.36 1098.39 1134.40 1183.39 1288.44 1365.47 1431.53	24.012 78.958 41.034 34.973 48.987 29.990 46.030 36.010 48.990 105.050 77.030	0.15 0.17 0.19 0.22 0.25 0.27 0.29 0.31	0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.001	

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks
BTRO4 BTRO4	01/31/86 02/27/86			0.000 0.000	0.000 0.000			Drift excavated. Hole drilled in north rib, 0.95 ft deep, in
BTRO4 BTRO4	02/27/86 02/28/86 03/04/86 03/06/86 03/26/86 03/26/86 04/102/86 04/02/86 04/16/86 04/24/86 04/24/86 05/20/86 05/20/86 05/20/86 05/27/86 05/27/86 05/27/86 05/27/86 05/20/86 05/20/86 07/28/86 07/22/86 07/22/86 07/22/86 08/12/86 08/12/86 08/12/86 08/26/86 09/04/86 09/04/86	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NA NA NA N	0.000 0.000 427.399 429.486 436.458 449.479 452.488 470.542 470.542 478.462 484.486 490.458 497.434 504.479 511.510 518.469 525.514 532.479 533.500 546.479 533.483 567.458 574.481 581.503 588.375 595.521 602.502 616.521	0.000 1.000 3.087 10.059 23.080 30.042 36.049 44.143 52.063 58.087 64.059 71.035 78.080 85.111 92.070 99.115 106.080 113.101 120.080 127.084 135.099 148.082 155.104 161.976 161.			Hole drilled in north rib, 0.95 ft deep, in halite in upper third of rib. Installed suction probe and sealed opening. Dry. Dry. Dry. salt incrustations forming. Dry. Dry. Dry. Dry. Dry. Dry. Damp inside of lysimeter. Dry. Dry. Dry. Dry. Dry. Dry. Dry. Dr
BTR04 BTR04	09/09/86 09/23/86 10/01/86 10/08/86 11/05/86 11/20/86 12/30/86 03/06/87 03/06/87 03/06/87 03/08/87 03/08/87 07/28/87 09/01/87 10/20/87 11/19/87 01/04/88 03/29/88 03/29/88 09/27/88 12/02/88	11:16 11:38 08:26 13:48 12:58 14:29 07:41 09:50 10:03 09:45 00 000 00:45 00000000000000000000000	NA NA NA NA NA NA NA NA NA O.CO O.CO O.CO O.CO O.CO O.CO O.CO O.C	623.469 630.485 638.351 645.575 673.540 688.603 728.320 794.410 818.419 897.377 938.406 973.385 1022.37 1052.36 1098.39 1134.40 1183.39 1288.44 1365.47	190.122 197.070 204.086 211.952 219.176 247.141 262.204 368.011 24.009 102.967 143.996 34.979 48.985 29.990 46.030 36.010 48.995 105.050 77.030 66.060		0.000 0.000 0.000 0.000 0.000 0.000 0.000	Dry. Dry. Not pumed last week. No clamp. No clamp, installed new clamp today. Dry, no vacuum. Dry, no vacuum. Dry. Dry. Dry. Dry. Dry. Dry. Dry. Dry

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks
BTR05	01/31/86	∞∙œ	NA	0.000	0.000	0.00	0.000	Drift excavated.
BTR05	02/27/86			0.000	0.000			Hole drilled in north rib, 3.0 ft deep, in halite in upper third of rib.
BTR05	03/04/86	09:35	NA	427.399	1.000	0.00	0.000	Salt knobs forming L.6' from collar, slightly wet.
BTR05	03/06/86	11:40	NA	429.486	3.087	0.00	0.000	Dry.
BTR05	03/13/86				10.059	0.00	0.000	Dry.
BTR05	03/26/86			449.479			0.000	
BTR05	04/02/86				30.042			Salt knobs.
BTR05	04/08/86			462.448	36.049			Little accumulation.
BTRO5	04/16/86			470.542	44.143			Installed suction probe.
BTRO5 BTRO5	04/24/86			478.462 484.486	52.003	0.00	0.000	
BTRO5	04/30/86 05/06/86			490.458	20.007	0.00	0.000	
BTROS	05/13/86			490.436	71 035			A few drops.
BTR05	05/20/86			504.479	78 080	0.00	0.000	A few drops.
BTRO5	05/27/86			511.510		0.00	0.000	
BTR05	06/03/86			518.472	92.073	0.00	0.000	
BTR05	06/10/86	12:20	Trace	525.514	99,115	0.00	0.000	
BTR05	06/17/86	11:30	Trace	532.479	106.080	0.00	0.000	
BTRO5	06/24/86	12:00	Trace	539.500	113.101	0.00	0.000	
BTR05	07/01/86	11:30	00.01	546.479	6.979		0.001	
BTR05	07/08/86			553.485	7.006	0.01	0.000	
BTR05	07/16/86	11:54	00.01	561.496	15.017		0.001	
BTRO5	07/22/86	11:00	Trace	567.458	5.962		0.000	
BTR05	07/29/86	11:34	00.01		12.986	0.03		
BTR05	08/05/86			581.503	7.021	0.03	0.000	
BTR05	08/12/86			588.375	13.893	0.03	0.000	A few drops.
BTR05	08/19/86			595.522	21.040	0.03	0.000	A few drops.
BTR05	08/26/86			602.503		0.05	0.000	A few drops.
BTR05 BTR05	09/04/86 09/09/86		Trace	611.506	12 030	0.03	0.000	
BTROS	09/16/86		Trace	623.472	42.007	0.03		
BTR05	09/23/86		Trace	630.485	56 003	0.03	0.000	
BTR05	10/01/86		Trace	638.352	63.870		0.000	
BTR05	10/08/86		Trace	645.576	71.094	0.03	0.000	Inside tube slightly damp.
BTRO5	10/14/86			651.417		0.03	0.000	Pumped only, no collection.
BTRO5	11/05/86		0.02	673.541	99.059	0.05	0.000	
BTRO5	11/20/86	14:30	NA	688.604	114.122	0.05	0.000	Trace.
BTR05	12/30/86	09:42	00.01	728.404	54.863	0.06		No vacuum.
BTR05	03/06/87	09:50	0.01	794.410	66.006		0.000	a de
	03/30/87			818.419			0.000	Trace.
BTR05	06/17/87	09:04	0.01	897.378	102.968	0.08	0.000	
BTRO5	07/28/87	09:51	0.02	938.410 973.385	41.032	0.10	0.000	
BTRO5 BTRO5	09/01/87 10/20/87	09:15	0.02	1022.37	34.913	0.12	0.001	
	11/19/87		Teace	1052.36	20 000	0.13		
	01/04/88		Damp	1098.39	46.030	0.13	0.000	Water standing in back of hole, 3 stalactites in hole.
BTRO5	00,00,255	00.35	0.00	113/ /0	36 010	0 13		
	02/09/88 03/29/88	09.33	0.00	1134.40 1183.39	48 990		0.000	
	07/12/88		Trace	1288.44	105.050	0.13		
	09/27/88			1365.47	77.030		0.000	
	12/02/88			1431.53			0.000	Dry. Sampler removed. Last time sampled fo
	,,		-					BSEP.

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks
BTRO6 BTRO6	01/31/86 02/27/86			0.000	0.000	0.00 0.00		Drift excavated. Hole drilled in north rib, 3.0 ft deep, in
BTRO6 BTRO6 BTRO6 BTRO6 BTRO6 BTRO6 BTRO6 BTRO6 BTRO6 BTRO6 BTRO6 BTRO6 BTRO6 BTRO6 BTRO6 BTRO6 BTRO6 BTRO6 BTRO6	03/04/86 03/06/86 03/13/86 03/26/86 04/02/86 04/02/86 04/08/86 04/16/86 04/30/86 05/06/86 05/06/86 05/20/86 05/20/86 05/27/86 06/10/86 06/10/86 06/10/86	09:35 11:40 11:00 10:45 10:45 13:00 11:50 11:40 11:00 10:25 11:30 12:15 11:20 12:20	NA NA NA OD.01 NA OD.01 Trace Trace Trace Trace Trace Trace Trace Trace Trace	427.399 429.486 436.458 449.479 456.448 440.542 470.542 478.462 478.462 484.486 490.458 497.434 504.479 511.510 518.472 525.514	$\begin{array}{c} 1.000\\ 3.087\\ 10.059\\ 23.080\\ 6.969\\ 12.969\\ 8.094\\ 16.014\\ 22.038\\ 28.010\\ 34.986\\ 42.031\\ 49.062\\ 56.024 \end{array}$	0.00 0.01 0.02 0.02 0.02 0.02 0.02 0.02	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	halite in upper third of rib. Salt incrustation forming 0.6'from collar. Wet at the bottom. Brine, installed suction probe. Trace. Trace, estimated 0.005 liter. Trace. A few drops. Salt knobs on side of hole. A few drops.
BTRO6 BTRO6 BTRO6 BTRO6 BTRO6 BTRO6 BTRO6 BTRO6 BTRO6 BTRO6 BTRO6 BTRO6 BTRO6 BTRO6 BTRO6 BTRO6 BTRO6 BTRO6	06/24/86 07/01/86 07/08/86 07/22/86 07/22/86 08/05/86 08/12/86 08/12/86 08/26/86 09/04/86 09/04/86 09/09/86 09/16/86 09/16/86 10/01/86 10/01/86	12:05 11:30 11:40 11:55 11:00 11:35 12:06 09:00 12:32 12:05 12:05 12:05 12:05 12:05 12:30 11:20 11:39 08:28 13:50	Trace Trace Trace Trace 00.01 00.01 Trace Trace Trace Trace Trace Trace Trace Trace Trace	539.503 546.479 553.486 561.497 567.458 574.483 581.504 588.375 595.522 602.503 611.506 616.521 623.472 630.485	77.055 84.031 91.038 99.049 105.010 112.035 7.021 14.018 20.999 35.017 41.968 48.989 56.849 64.072	0.02 0.02 0.02 0.02 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	A few droplets. A few drops. A few drops. A few drops. Small amount poured out. Pumped only, no collection.
BTROG BTROG BTROG BTROG BTROG BTROG BTROG BTROG BTROG BTROG BTROG BTROG BTROG BTROG BTROG BTROG BTROG BTROG BTROG	11/05/86 11/20/86 12/30/86 03/06/87 06/17/87 07/28/87 09/01/87 10/20/87 11/19/87 01/04/88 02/09/88 03/29/88 07/12/88 09/27/88 12/02/88	13:00 14:30 09:43 09:50 10:05 09:52 09:52 09:52 09:52 09:52 09:15 09:35 09:35 09:23 10:30 11:25	0.01 NA Trace 0.00 0.00 0.01 Trace Damp 0.00 0.00 0.00 0.00 Trace	673.542 688.604 728.405 794.410 818.420 897.378 938.411 973.387 1022.37 1052.36 1098.39 1134.40 1183.39	92.038 15.062 54.863 120.868 24.010 102.968 144.001 34.976 48.983 29.990 46.030 36.010 48.990 105.050 77.040	0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Trace. No vacuum. Inside of tube wet. Trace in tube. Dry. 4-5 stalactites at end of hole. Dry. Dry. Dry.

Location	Date	Time	Liters Removed	Days Since 1/01/85	Used	Cumulative Liters Collected	Liters per Day	Remarks
	01/31/86 02/27/86			0.000 0.000	0.000 0.000			Drift excavated. Hole drilled in north rib, 1.1 ft deep, just
BTR07 BTR07	02/28/86 03/04/86 03/04/86 03/05/86 04/02/86 04/02/86 04/02/86 05/05/86 05/03/86 05/13/86 05/13/86 05/13/86 05/13/86 05/13/86 05/13/86 05/13/86 05/13/86 05/13/86 05/13/86 07/16/86 07/16/86 07/16/86 07/22/86 07/16/86 07/22/86 07/29/86 08/10/86 08/12/86 09/05/86 09/05/86 09/05/86 09/05/86 09/05/86 09/05/86 09/05/86 09/05/86 09/05/86 09/16/86 09/23/86 10/01/86 11/20/86 11/20/86 11/20/87 07/28/87 00/00000000000000000000000000000000	01111100111111111111111111111111111111	NA NA NA NA NA NA NA NA NA NA NA NA NA N	449.479 456.448 462.448 470.542 478.462 484.486 490.458 497.438 504.479 511.510 518.476 525.517 532.483 539.503 546.479 553.488 561.499 567.458 574.486 581.505 588.396 567.458 581.505 588.396 611.506 616.521 623.476 630.489 651.417 673.542 688.608 645.579 651.417 673.542 688.608 728.406 794.410 818.421 897.379 937.387 1022.38 1052.36 1052.36 1052.36	36.049 44.143 52.063 58.087 64.059 71.039 78.080 85.111 92.077 99.118 106.084 113.104 127.089 135.100 141.059 148.087 155.106 141.059 148.087 155.106 169.124 176.105 185.107 190.122 197.077 204.090 211.954 225.018 247.143 262.209 302.007 368.011 24.011 102.969 143.996 143.996 143.996 143.990 105.050 77.040			<pre>Wet, some brine at the bottom. Brine at the end of hole. Brine in small hole in end. Trace in hole. Salt knobs. Wet. Wet. Wet. Wet. lots of salt knobs. Wet. Moist. Moist. Damp inside of lysimeter. Salt knobs. Dry. Damp. Damp. Two drops in probe. Trace. Damp. Moist inside probe. Dry. Dry. Dry. Dry. Dry. Dry. Dry. A few drops. Moisture in lysimeter. Damp. Damp. Damp. Damp. nothing pours out. Pumped only, no collection. Damp. Dry. Dry. Dry. Dry. Dry. Dry. Dry. Dry</pre>
								BSEP.

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks
STROS BTROS	01/31/86 02/27/86			0.000	0.000 0.000			Drift excavated. Hole drilled in north rib, 3.1 ft deep, just
BTR08 BTR08	02/28/86 03/04/86 03/06/86 03/06/86 03/13/86 03/26/86 04/02/86 04/02/86 04/02/86 04/02/86 04/02/86 05/27/86 05/27/86 05/06/86 05/27/86 05/27/86 05/27/86 05/27/86 05/27/86 05/27/86 05/27/86 07/16/86 07/16/86 07/16/86 07/22/86 07/16/86 07/22/86 07/16/86 07/22/86 07/16/86 07/22/86 07/01/86 08/12/86 09/16/86 09/16/86 09/16/86 09/16/86 09/04/86 09/04/86 09/04/86 10/01/86 10/01/86 10/01/86 10/01/86 10/01/86 10/01/86 10/01/86 10/01/86 10/01/86 10/01/86 10/01/86 10/01/86 10/01/86 10/01/86 10/01/86 10/01/86 10/01/86 10/01/86 10/01/87 10/20/87 11/19/87 07/22/88 07/12/88 07/22/88 07/22/88 07/22/88 07/22/88 07/22/88 07/22/88 07/22/88 07/22/88 07/22/88 07/22/88 07/22/88 07/22/88	$\begin{array}{c} 009\\ 111\\ 101\\ 103\\ 105\\ 100\\ 101\\ 101\\ 101\\ 101\\ 101\\ 101$	NA NA 0.080 FR 0.050	0.000 427.399 429.486 436.458 449.479 456.448 449.479 456.448 449.479 456.448 448.514 490.458 497.441 504.479 511.510 518.476 525.517 532.483 539.503 546.479 553.489 561.499 567.458 574.487 581.506 588.396 595.524 602.505 611.503 616.521 623.476 630.490 638.354 663.435 794.417 818.422 897.380 938.419 973.389 1022.38 1052.36 1098.39 1134.40 1183.39 1288.45	0.000 1.000 3.087 6.972 13.021 6.969 6.052 5.944 6.983 7.031 6.966 7.031 6.966 7.041 6.966 7.041 6.966 7.041 6.966 7.041 6.966 7.041 6.966 7.041 6.966 7.041 6.966 7.041 6.966 7.041 6.966 7.041 6.966 7.041 6.976 7.041 8.997 7.041 6.966 7.041 6.976 7.041 8.997 7.041 6.976 7.041 6.976 7.041 6.976 7.041 6.976 7.041 6.976 7.041 6.976 7.010 8.010 5.959 7.019 6.9981 8.9981 8.9983 5.018 6.955 7.014 7.226 5.837 27.963 35.029 24.005 78.958 41.039 34.970 48.991 29.980 46.030 36.0100 48.991 29.980 46.030 36.0100 48.991 29.980 36.970 48.991 29.980 36.970 48.991 29.980 36.970 48.991 29.980 36.970 48.991 29.980 36.970 48.991 29.980 36.970 48.991 29.980 36.970 48.991 29.980 36.970 37.97	$\begin{array}{c} 0.00\\ 0.00\\ 0.12\\ 0.25\\ 0.25\\ 0.27\\ 0.28\\ 0.31\\ 0.35\\ 0.43\\ 0.45\\ 0.57\\ 0.40\\ 0.53\\ 0.56\\ 0.59\\ 0.62\\ 0.96\\ 1.07\\ 1.27\\ 1.37\\ 1.69\\ 1.27\\ 2.82\\ 3.46\\ 3.78\\ 3.89\\ 4.07\\ 4.16\\ 4.16\\ 4.16\\ \end{array}$	0.000 0.000 0.039 0.004 0.003 0.003 0.003 0.003 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.004 0.003 0.004 0.004 0.003 0.004 0.004 0.003 0.004 0	above the orange band. Installed suction probe and sealed opening. Trace removed. Estimated 0.022 liters.
BTR08	12/02/88	12:45	0	1431.53	66.050	4.16	0.000	Dry. Sampler removed. Last time sampled for BSEP.

 \mathcal{R}

					pata ti	nough beech		,
Locatio	n Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	
BTRO9 BTRO9	01/31/86 02/27/86			0.000	0.000	0.00 0.00	0.000 0.000	Drift excavated. Hole drilled in north rib, 3.1 ft deep, just above the grange band.
BTR09 BTR09	02/28/86 03/04/86 03/05/86 03/13/86 03/26/86 04/02/86 04/02/86 04/02/86 04/02/86 04/02/86 05/27/86 05/27/86 05/27/86 05/27/86 05/27/86 05/27/86 05/27/86 05/27/86 05/27/86 05/27/86 05/22/86 07/01/86 07/16/86 07/22/86 07/16/86 07/22/86 07/16/86 07/22/86 07/22/86 09/04/86 09/04/86 09/01/86 10/01/87 10/20/87 11/19/87 12/16/87	$\begin{array}{c} 0.05\\ 0.05\\ 1.1\\ 1.0\\ 1.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	NA 00.02 00.08 00.19 00.06 00.08 00.07 00.06 00.07 00.06 00.07 00.06 00.07 00.06 00.07 00.06 00.07 00.08 00.09 00.13 00.25 00.11 0.12 0	0.000 427.399 429.486 436.458 449.479 456.448 449.479 456.448 449.479 484.514 490.484 497.448 504.479 511.510 518.479 525.517 532.486 539.507 539.507 532.486 533.507 546.488 533.490 567.458 574.488 574.477 575.581 574.488 574.477 575.474 575.581 576.475 576.475 576.475 576.475 576.475 576.475 576.475 576.475 576.475 576.475 576.475 576.475 576.475 576.475 576.475 576.475 576.475 576.475 577.575 576.475 576.475 576.475 576.475 576.575 576.575 576.575 576.575 577.575 576.575 576.575 576.575 576.575 576.575 576.575 576.575 576.575 576.575 576.575 576.5755 576.575555555555	0.000 1.000 2.087 6.972 13.021 6.969 6.055 8.089 7.937 6.035 5.970 6.964 7.038 6.969 7.038 6.969 7.038 6.969 7.038 6.969 7.038 6.969 7.038 6.969 7.038 6.969 7.038 6.969 7.038 6.969 7.038 6.969 7.038 6.979 7.038 6.979 7.038 6.979 7.038 6.979 7.038 6.979 7.038 6.979 7.038 6.979 7.038 6.979 7.038 6.979 7.038 6.979 7.038 6.979 7.038 6.979 7.038 6.979 7.038 7.038 6.979 7.038 7.038 6.979 7.038 7.038 7.038 7.038 7.038 7.038 7.266 5.8366 27.963 15.064 39.799 35.027 30.9833 24.025 78.939 41.0372 48.990	0.00 0.01 0.03 0.37 0.43 0.51 0.59 0.66 0.79 0.84 0.90 1.09 1.24 1.31 1.39 1.45 1.60 1.67 1.61 1.60 1.67 1.60 1.61 1.93 2.26 2.51 2.26 2.51 2.26 2.51 3.65 3.76 3.87 3.99 3.99 3.68 3.76 3.87 3.99 3.99 3.90	0.000 0.011 0.015 0.010 0.012 0.007 0.007 0.010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	<pre>above the orange band. Installed suction probe and sealed opening. First time sampled. Some brine left in hole. Brine left in hole. One weeks collection. Brine left in hole. Pumped only, no collection. Hose and clamp for lysimeter are missing. Probably happened late 12/14/87 or on</pre>
BTR09	01/04/88	09:20	0.00	1098.39	46.030	4.08	0.000	12/16/87. Dry. Installed new plug, old plug gone 12/13/87.
BTR09 BTR09 BTR09 BTR09 BTR09	02/09/88 03/29/88 07/12/88 09/27/88 12/02/88	09:27 10:50 11:35	0.07 0.06 0.00	1134.41 1183.39 1288.45 1365.48 1431.53	48.980 105.060 77.030	4.18 4.24 4.24	0.001 0.001 0.001 0.000 0.000	Dry.

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks -
BTR10 BTR10	01/31/86 02/27/86			0.000	0.000			Drift excavated. Hole drilled in north rib, 1.2 ft deep,
BTR10 BTR10	02/28/86 03/04/86 03/04/86 03/13/86 03/26/86 04/02/86 04/02/86 04/02/86 04/02/86 04/02/86 04/02/86 04/02/86 05/03/86 05/03/86 05/03/86 05/27/86 05/03/86 05/22/86 07/01/86 07/01/86 07/02/86 07/16/86 07/22/86 07/16/86 07/22/86 07/16/86 07/22/86 07/16/86 07/22/86 07/16/86 07/22/86 07/16/86 07/22/86 07/16/86 07/22/86 07/16/86 07/22/86 07/16/86 07/22/86 07/16/86 07/22/86 07/16/86 07/22/86 07/16/86 07/22/86 07/16/86 07/22/86 07/16/86 07/23/86 07/16/86 07/02/87 11/10/186 03/06/87 07/28/87 07/28/87 07/02/87 11/19/87 01/02/87 11/19/87 01/02/87 11/19/87 01/02/88 03/22/88 07/12/88 07/12/88 07/12/88 07/12/88 07/12/88 07/12/88 07/12/88 07/12/88 07/12/88 07/12/88	00911111111111111111111111111111111111	x x x x x x x x x x x x x x x x x x x	0.000 427.399 429.486 436.458 449.479 456.458 462.453 470.542 478.479 484.514	0.000 1.000 3.087 10.059 23.080 30.059 36.054 44.143 52.080 58.115 64.085 71.049 78.080 99.122 106.087 13.985 21.994 27.951 42.000 48.889 56.018 62.999 77.014 83.970 90.984 90.984 91.995 134.037 113.985 21.994 27.951 42.000 48.889 56.018 62.999 77.014 83.970 90.984 90.984 91.995 34.985 24.995 111.990 124.037 129.984 90.984 90.984 90.984 92.999 102.968 143.975 34.985 24.901 122.968 134.037 149.101 138.901 254.906 24.010 102.968 143.975 34.985 29.980 46.030 36.020 102.050 77.030			approximately 2.5 ft above floor. Installed suction probe and sealed opening. Dry. Damp. Dry. Dry. Dry. Wet. Dry. No clamp.

.

•

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks -
BTR11 BTR11	01/31/86 02/27/86			0.000	0.000	0.00 0.00		Drift excavated. Hole drilled in north rib, 3.05 ft deep,
BTR11 BTR11	02/27/86 02/27/86 03/04/86 03/04/86 03/06/86 03/26/86 04/02/86 04/02/86 04/02/86 05/05/06/86 05/05/06/86 05/02/86 05/02/86 06/03/86 06/03/86 07/01/86 07/01/86 07/01/86 07/01/86 07/16/86 07/22/86 07/22/86 07/22/86 07/22/86 09/04/86 09/04/86 09/04/86 10/04/	00:00 09:350 11:400 11:300	NA NA NA OO.01 OO.01 Trace OO.05 Trace TraCO T TraCO T T T T T T T T T T T T T T T T T T T	0.000 427.399 429.486 436.458 449.479 456.458 449.479 484.514 490.484 497.444 504.479 511.510 518.483 525.521 532.486 539.507 546.486 539.507 546.485 553.493 561.501 567.458 588.396 574.489 581.508 588.396 595.526 602.507 611.503 616.521 623.478 630.492 638.356 645.582 630.492 638.356 645.582 645.582 631.417 673.545 688.609 728.408 774.413 818.424 897.382 938.417 973.392 938.417 973.392	0.000 1.000 3.087 10.059 13.021 6.979 12.979 8.084 16.021 22.056 28.026 42.021 49.052 6.973 14.011 27.997 34.976 41.983 49.991 55.948 62.979 7.019 13.907 28.018 37.014 5.018 11.975 28.026 42.021 49.991 5.019 37.019 13.907 28.018 37.014 5.018 11.975 18.9893 34.079 34.075 182.910 24.011 102.969 44.025 34.075 182.910 24.011 102.969 44.925 34.075 182.910 24.011 102.969 44.925 48.988 29.990 44.020 36.020 48.990 05.050	0.00 0.00 0.02 0.03 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.010 0.00 0.0		approximately 2.5 ft above floor. Installed suction probe and sealed opening. Some brine accumulation at bottom. Trace, estimated 0.005 liters. First time sampled. Trace. Small accumulation of brine at bottom. A few drops. Plug missing from collecting device. Trace. Trace. A few drops. Inside tube is damp. Pumped only, no collection. Estimated 0.005 liters. Trace. Damp, no vacuum. Dry. no vacuum. Dry
					10		1	BSEP.

A-45

WP:WIP:R-1625-1

Loci	ation	Date	Time	Liters Removed	Days Since 1/01/85	Used	Cumulative Liters Collected	Liters per Day	Remarks
BTR BTR		01/31/86 02/27/86			0.000	0.000 0.000			Drift excavated. Hole drilled in north rib, 3.05 ft deep, approximately 2.5 ft above floor.
BTR BTR BTR BTR	12 12	02/28/86 03/04/86 03/06/86 03/13/86	10:30 11:40	NA NA	0.000 427.438 429.486 436.479	0.000 1.000 3.048 10.041	0.00	0.000 0.000	Installed suction probe and sealed opening. Some brine accumulation at bottom of hole. Some brine accumulation. Suction probe installed and sealed opening.
	12 121212121212121212121212121212121212		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NA NA NA NA NA NA NA Trace Trace Trace Trace Trace Trace NA Trace NA Trace NA NA NA NA Trace Trace NA Trace Trace NA Trace Trace NA Trace Trace NA Trace Trace NA Trace NA Trace Trace NA Trace NA Trace NA Trace NA Trace NA Trace NA Trace NA Trace NA Trace NA Trace NA Trace NA Trace NA NA NA NA NA NA C Trace NA Trace NA Trace NA NA NA NA NA NA NA NA NA Trace Trace NA NA Trace Trace NA NA NA NA NA NA NA NA NA NA	436.479 449.479 456.458 462.453 470.566 478.479 484.514 490.472 497.444 504.479 511.510 518.483 525.521 532.486 553.494 553.494 561.502 567.458 574.490 581.508 574.490 581.508 575.526 602.508 611.503 568.357 645.583 651.477 645.583 651.417 673.546 688.610 728.408 79.383 7.383	10.041 23.041 6.979 12.974 21.087 29.000 35.035 40.993 47.965 55.000 62.031 69.004 76.042 83.007 90.028 97.007 104.015 112.023 117.979 125.011 132.029 125.011 132.029 125.011 132.029 125.011 132.029 125.011 132.029 125.011 138.917 146.047 153.029 167.042 173.999 181.013 188.878 196.104 201.938 224.067 239.131 39.798 224.067 239.131	0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01		Suction probe installed and sealed opening. Some brine in bottom of hole. First time sampled. Trace. Small accumulation at bottom. Brine at the bottom. Left brine in hole. Wet. Three droplets only. A few drops. Dry, plug had been removed. A few drops. Dry. Wet. Small pool at been removed. Small pool at end of hole. Damp. Small pool at back. Small pool at back. Small pool at back. Dry, not sealed. Dry, not sealed. Dry, not sealed. Dry, no vacuum. Not sealed, dry. A few drops. A few drops. Inside of tube is damp. Pumped only, no collection. Estimated 0.001 Liters. Trace. Damp, no vacuum. Dry, no vacuum. Dry, no vacuum. Dry, no vacuum. Dry, no vacuum. Dry, no vacuum.
BTR BTR BTR BTR BTR BTR BTR BTR	12 12 12 12 12 12 12	09/01/87 10/20/87 11/19/87 01/04/88 02/09/88 03/29/88 07/12/88 09/27/88 12/02/88	09:06 08:50 09:25 09:50 09:30 10:50 11:35	0.00 0.00 0.00 0.00 0.00 0.00 0.00	1098.39 1134.41 1183.40 1288.45 1365.48		0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Dry. Dry. Dry. Dry. Dry. Dry.

Location Date	Time Liters Removed	Since Used	Collected D	rs Remarks er ay
	00:00 NA 00:00 NA	0.000 0.000 0.000 1.000		D0 Room B completed. D0 Downhole drilled 1/24/85 to 1/27/85. Wet core and brine encountered 1/26/85 at 35 to 36.5 feet.
BX01 02/11/85 BX01 02/19/85 BX01 02/26/85 BX01 03/07/85 BX01 03/12/85 BX01 03/26/85 BX01 03/26/85 BX01 03/26/85 BX01 03/26/85 BX01 04/02/85 BX01 04/10/85 BX01 04/17/85	11:00 00.39 12:00 00.72 13:00 00.70 12:45 00.61 09:15 00.61 12:45 00.41 12:50 00.61 10:45 00.45 11:44 00.51 11:44 00.51 11:38 00.55 11:00 00.45	35.458 11.044 41.500 6.042 49.542 8.042 56.531 6.983 65.385 8.854 70.490 5.105 78.535 8.044 84.448 5.913 91.489 7.044 99.485 7.994 106.458 6.973 112.420 5.966	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87 87 79 80 76 76 72
BX01 05/01/85 BX01 06/04/85 BX01 07/16/85	6 11:40 00.46 6 09:30 02.00 6 10:15 02.34 6 13:56 02.38	122.420 3.900 120.486 8.060 154.396 33.910 196.427 42.031 237.581 41.154	6.94 0.0 8.94 0.0 11 28 0.0	
BX01 11/21/85 BX01 12/04/85 BX01 01/31/86 BX01 02/12/86 BX01 04/16/86 BX01 04/30/86 BX01 05/06/86 BX01 05/06/86 BX01 06/10/86 BX01 08/19/86	12:00 02.27 10:05 02.42 13:35 00.69 10:25 02.95 09:30 00.80 11:00 03.45 09:45 00.73 09:18 00.30 10:20 01.85 10:50 03.21	280.500 42.919 324.420 43.920 337.566 13.144 395.434 57.868 407.396 11.962 470.458 63.062 484.406 13.948 490.387 5.981 525.431 35.044 595.451 70.020	18.35 0.0 19.04 0.0 21.99 0.0 22.79 0.0 26.24 0.0 26.97 0.0 27.27 0.0 29.12 0.0 32.33 0.0	53 55 52 51 57 55 52 50 50 53 53 54 54
BX01 10/01/86 BX01 11/05/86 BX01 11/20/86 BX01 12/30/86 BX01 02/03/87	11:00 01.30 11:08 01.16 10:00 NA 10:39 02.40 14:10 01.75 11:00 01.67 11:50 NA	616.458 21.007 638.464 22.000 673.417 34.953 688.444 49.980 728.590 40.146 763.458 34.866 794.493 31.035 1022.00 0.000	34.79 0.0 34.79 0.0 37.19 0.0 38.94 0.0 40.61 0.0 40.61 0.0	2 33 30 Not collected. Save a start of a start 48 44
BX01 01/04/88 BX01 02/08/88 BX01 03/29/88 BX01 05/12/88 BX01 05/12/88 BX01 07/12/88 BX01 09/27/88	11:10 12.86 12:35 3.71 12:00 2.30 10:44 1.67 09:50 2.23 08:00 2.61 09:00 0	1049.47 286.012 1098.00 0.000 1133.52 84.050 1183.50 49.980 1227.45 43.950 1288.41 60.960 1365.33 76.920 1442.38 0.000	53.47 0.0 57.18 0.0 59.48 0.0 61.15 0.0 63.38 0.0 65.99 0.0	5 10 Could not sample. Room closed. 14 16 18 18

Location	Date	Time	Liters Removed	Days Since 1/01/85	Used	Cumulative Liters Collected	Liters per Day	
BX02 BX02 BX02 BX02 BX02 BX02 BX02 BX02	06/02/84 02/01/85 02/05/85 02/19/85 03/20/85 03/26/85 04/02/85 04/10/85 04/10/85 04/17/85 04/23/85	00:00 11:00 13:00 11:45 12:50 10:45 11:44 11:38 11:00	NA NA NA 00.10 00.12 00.10 00.21 00.21 00.13	0.000 35.458 49.542 70.490 78.535 84.448 91.489 99.485 106.458 112.420	0.000 1.000 15.084 36.032 44.077 5.913 7.041 7.996 6.973 5.962	0.00 0.00 0.00 0.10 0.22 0.32 0.53 0.66	0.000 0.000 0.000 0.000 0.002 0.020 0.014 0.026 0.019	Room B completed. Uphole drilled 1/29/85 to 2/01/85. No drips noticed. Tubing plugged. Trace, few drops in jug.
BX02	05/01/85			12.420	8.060		0.002	Room B heaters turned on 4/23/85. Low reading probably due to partial blockage of collecting tube.
BX02 BX02 BX02 BX02 BX02	06/04/85 07/16/85 10/08/85 01/17/86	09:25 10:00 12:00	00.50 00.16 00.04	154.392 196.417	33.912 42.025 84.083	1.29 1.45 1.49	0.015 0.004 0.000	First check in several weeks. Changed funnel. Changed funnel.
BX02 BX02	01/31/86 04/16/86	10:15	NA	395.427 470.458	14.052	1.75	0.000	Trace in plastic tube, salt buildup in tube and container.
BX02 BX02 BX02 BX02 BX02 BX02 BX02 BX02	08/19/86 10/01/86 11/05/86 11/20/86 12/30/86 02/03/87 03/06/87 10/20/87	11:05 10:00 10:37 14:05 NA:	00.00 NA NA NA NA	595.451 638.462 673.417 688.442 728.587 763.000 794.493 1022.00	257.087 34.955 49.980 90.125 125.538	1.75 1.75 1.75 1.75 1.75 1.75 1.75	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Drý. Dry. Dry. Dry. Room closed, bad back, not sampled. Room closed, could not sample. No
BX02	11/16/87	11:10		1049.47	0.000	1.75	0.000	calculation. Funnel not hooked up. No collection, no calculation.
BX02 BX02 BX02 BX02 BX02 BX02 BX02	01/04/88 02/08/88 03/30/88 07/12/88 09/27/88 12/13/88	12:00 09:55 08:10	0.00 0.00 0.00	1098.00 1133.52 1184.50 1288.41 1365.34 1442.38	50.980 103.910	1.75 1.75 1.75 1.75	0.000 0.000 0.000 0.000	Could not sample. Room closed. Dry. Dry. Dry.

.

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks
DH15 DH15 DH15 DH15 DH15 DH15	03/13/84 03/21/84 05/20/86 05/27/86 06/03/86 06/10/86 06/17/86 06/24/86	00:00 00:00 15:00 09:15 10:40 09:45	NA NA 00.02 00.04 00.03	0.000 0.000 511.625 518.385 525.444 532.406 539.417	0.000 0.000 1.000 7.760 7.059 6.962 7.011	0.00 0.00 0.02 0.06 0.09	0.000 0.000 0.000 0.003 0.006 0.004	Drift excavated at N1104/E1688.5. Uphole drilled 3/20/84 to 3/21/84. Collecting funnel and container installed. Trace of brine. First time collected. Lots of clay has fallen down hole and accumulated in collecting container.
DH15 DH15 DH15 DH15 DH15 DH15 DH15 DH15	07/01/86 07/08/86 07/16/86 07/22/86 08/05/86 08/12/86 08/12/86 08/26/86 09/04/86 09/04/86 09/04/86 09/05/86 10/01/86 11/05/86 11/20/86 12/31/86 03/30/87 05/07/87 05/07/87 09/01/87 09/01/87	09:50 09:40 09:55 09:55 10:20 10:25 09:55 10:20 10:25 09:50 10:25 09:50 11:29 11:29 11:28 11:27 12:22 11:20	00.05 00.06 00.05 00.22 00.118 0.117 0.214 0.13 0.13	546.521 553.410 561.403 567.385 574.413 581.431 588.406 595.431 602.417 611.410 616.458 623.392 630.396 638.478 729.484 818.501 856.432 897.472 938.505 973.483 988.417	7.104 6.889 7.993 5.982 7.028 7.018 6.975 7.025 6.986 8.993 5.048 6.934 7.004 8.082 34.949 15.051 41.006 89.017 37.931 41.040 41.033 34.978 0.000	0.24 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.66 0.69 0.74 0.80 0.86 1.08 1.15 1.33 1.74 1.91 2.12	0.007 0.007 0.007 0.007 0.007 0.007 0.006 0.007 0.009 0.007 0.006 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005	Clay in collecting container. 0.05 liter in jar not removed. No
DH15 (DH15 (DH15 (DH15 (DH15 (DH15 (DH15 (10/20/87 11/19/87 01/04/88 02/08/88 03/30/88 07/12/88 09/27/88 12/13/88	10:15 11:00 12:40 12:10 09:50 08:20	0.15 0.23 0.09 0.15 0.21 0.00	1022.45 1052.43 1098.46 1133.53 1184.51 1288.41 1365.35 1442.39	29.980 46.030 35.070 50.980 103.900 76.940	2.83 3.06	0.006 0.005 0.005 0.003 0.003	

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks	(
DH35	11/21/84	00:00	NA	0.000	0.000	0.00	0.000	Approximate date this part of Room G was excavated.	
DH35 DH35 DH35	01/27/85 02/05/85 03/05/85	11:15	NA	0.000 35.469 63.417	0.000 1.000 28.948	0.00	0.000	Uphole drilled 1/26/85 to 1/27/85. Started to drip. Salt crystals in container. First time	
DH35 DH35 DH35 DH35 DH35 DH35 DH35 DH35	03/12/85 03/20/85 03/26/85 04/02/85 04/02/85 04/23/85 05/14/85 05/21/85 05/21/85 07/16/85 07/16/85 07/16/85 07/30/85 07/30/85 08/06/85 08/20/85 08/20/85 08/20/85 08/20/85 09/04/85 09/10/85 09/10/85	$\begin{array}{c} 10:26\\ 09:45\\ 10:15\\ 10:14\\ 11:09\\ 09:53\\ 10:48\\ 10:00\\ 11:48\\ 10:00\\ 11:10\\ 10:37\\ 10:53\\ 10:53\\ 10:53\\ 10:53\\ 10:53\\ 10:38\\ 09:40\\ \end{array}$	00.19 00.13 00.15 00.15 00.12 00.16 00.14 00.16 00.14 00.16 00.15 00.02 00.06 00.13 00.02 00.06 00.13 00.09 00.11 00.09 00.11 00.12	70.417 78.435 84.406 91.427 99.426 112.490 119.465 126.412 133.450 140.446 148.417 161.424 189.465 196.492 204.442 210.428 217.442 225.453 231.462 239.417 246.438 252.443 252.443	7.000 8.018 5.971 7.021 7.999 13.064 6.975 6.947 7.038 6.996 7.971 13.007 28.041 7.027 7.950 5.986 7.014 8.011 6.009 7.955 7.014 8.011 6.005 6.960	0.83 1.02 1.14 1.30 1.44 1.60 1.75 1.90 1.92 1.98 2.11 2.23 2.31 2.39 2.50 2.59 2.73 2.85 2.73 2.85 3.07	0.024 0.022 0.021 0.024 0.029 0.023 0.029 0.023 0.021 0.029 0.021 0.029 0.021 0.029 0.021 0.029 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.023 0.021 0.023 0.021 0.023 0.021 0.023 0.021 0.023 0.021 0.023 0.021 0.023 0.021 0.023 0.021 0.023 0.021 0.023 0.021 0.023 0.023 0.021 0.023 0.021 0.023 0.021 0.023 0.021 0.023 0.021 0.023 0.021 0.023 0.021 0.023 0.021 0.021 0.023 0.021 0.023 0.021 0.021 0.021 0.023 0.021 0.021 0.021 0.023 0.021 0.011 0.015 0.011 0.015 0.018 0.016 0.018 0.018 0.018 0.018	collected. Salt crystals in container. Salt crystals in container. Clay in container. Clay in container. Clay chunks in container.	
DH35 DH35 DH35 DH35 DH35 DH35 DH35 DH35	09/24/85 10/08/85 10/15/85 10/29/85 11/05/85 11/05/85 11/13/85 11/21/85 11/26/85 01/23/86	10:44 10:17 09:42 09:24 10:06 11:32 11:25	00.08 00.06 00.06 00.08 00.11 00.07 00.07	266.408 280.447 287.428 301.404 308.392 316.421 324.481 329.476 387.444	7.005 14.039 6.981 13.976 6.988 8.029 8.060 4.995 57.968	3.22 3.28 3.34 3.42 3.53 3.60		Changed collecting container. Clay in collecting container. Entry has been restricted since 12/10/85 due to mining activities.	(
DH35 DH35 DH35 DH35 DH35 DH35 DH35 DH35	01/31/86 02/12/86 02/19/86 02/28/86 03/06/86 03/13/86 03/26/86	10:55 11:45 13:20 10:45 10:10	00.09 00.07 00.06 00.03 00.07	395.511 407.455 414.490 423.556 429.448 436.424 449.431	8.067 11.944 7.035 9.066 5.892 6.976 13.007	3.86 3.93 3.99 4.02 4.09		Funnel broken, 5 inch stalactite formed from	
DH35 DH35 DH35 DH35 DH35 DH35 DH35 DH35	04/02/86 05/27/86 06/03/86 06/10/86 06/17/86 06/24/86 07/01/86 07/08/86 07/16/86 07/22/86	15:45 10:08 11:35 10:58 10:57 14:03 10:37 10:36	NA 00.01 00.02 00.02 00.02 00.02 00.02 00.02 00.02	456.403 511.656 518.422 525.483 532.457 539.456 546.585 553.442 561.442 567.420	19.979 75.232 81.998 7.061 6.974 6.999 7.129 6.857 8.000 5.978	4.09 4.10 4.12 4.13 4.15 4.15 4.17 4.19 4.22	0.000 0.003 0.003 0.001 0.003 0.003 0.003 0.004		
DH35 DH35 DH35 DH35 DH35 DH35 DH35 DH35	07/29/86 08/05/86 08/12/86 08/26/86 09/04/86 09/04/86 09/16/86 09/16/86 09/23/86 10/01/86 11/05/86 11/20/86	11:13 10:35 11:35 10:38 10:40 10:10 10:13 10:11 12:16 11:28	00.03 00.03 00.01 NA 00.01 NA NA NA NA NA NA NA		6.953 28.014	4.26 4.29 4.30 4.31 4.31 4.31 4.31 4.31 4.31 4.31 4.31	0.004 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000		

				196.5				
DH35	12/30/86	12:15	NA	728.510	83.046	4.31	0.000	
DH35	02/03/87	NA:	NA	763.000	117.536	4.31	0.000	
DH35	03/06/87	11:25	NA	794.476	149.012	4.31	0.000	Dry.
DH35	03/30/87	11:20	0.00	818.472	23.9%	4.31	0.000	Dry.
DH35	05/07/87	11:35	0.00	856.483	62.007	4.31	0.000	Dry.
DH35	06/18/87	12:10	0.00	898.507	104.031	4.31	0.000	Dry.
DH35	07/28/87	11:15	0.00	938.469	143.993	4.31	0.000	Dry.
DH35	09/01/87	10:50	0.00	973.451	34.982	4.31	0.000	Dry.
DH35	10/20/87	11:56	0.00	1022.50	49.049	4.31	0.000	
DH35	11/19/87	11:30	0.00	1052.48	29.980	4.31	0.000	Dry.
DH35	01/04/88	12:00	0.00	1098.50	46.020	4.31	0.000	Dry.
DH35	02/08/88	11:55	0.00	1133.50	35.000	4.31	0.000	Dry.
DH35	03/29/88	11:40	0.00	1183.49	49.990	4.31	0.000	Dry.
DH35	07/12/88	08:50	0.00	1288.37	104.880	4.31	0.000	
DH35	09/27/88	10:50	0.00	1365.45	77.080	4.31	0.000	Dry.

1111111

Location	n Date	Time Lite Remo		Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks	0
DH36	11/21/84	00:00 NA	0.000	0.000	0.00	0.000	Approximate date this part of Room G excavated.	
DH36 DH36 DH36	01/26/85 01/28/85 02/05/85		0.000 27.375 0 35.469	0.000 1.000 9.094	0.00	0.000	Downhole drilled 1/26/85. Moist muck at the bottom. About 1 ft. muck, brine and hydraulic fluid. First time bailed.	
0H36 0H366 0	02/19/85 02/26/85 03/05/85 03/12/85 03/20/85 04/10/85 04/10/85 04/10/85 04/10/85 04/10/85 04/10/85 04/30/85 05/14/85 05/21/85 05/21/85 05/21/85 05/21/85 05/21/85 05/21/85 05/21/85 05/21/85 05/21/85 05/21/85 05/21/85 05/21/85 07/09/85 07/16/85 07/16/85 07/16/85 07/30/85 07/30/85 07/30/85 07/30/85 07/30/85 07/30/85 07/30/85 07/30/85	$\begin{array}{c} 11:00 & 01.5\\ 12:10 & 01.7\\ 10:45 & 01.4\\ 10:00 & 01.7\\ 10:26 & 01.5\\ 09:45 & 01.3\\ 10:15 & 01.5\\ 09:45 & 01.3\\ 10:15 & 01.5\\ 10:25 & 01.7\\ 13:30 & 01.4\\ 11:21 & 01.4\\ 09:58 & 01.5\\ 10:35 & 01.6\\ 11:33 & 01.4\\ 11:15 & 01.5\\ 10:17 & 01.5\\ 10:17 & 01.5\\ 10:15 & 01.5\\ 10:15 & 01.5\\ 11:15 & 01.5\\ 11:15 & 01.5\\ 11:15 & 01.5\\ 11:15 & 01.5\\ 10:46 & 01.7\\ 10:20 & 01.3\\ 11:20 & 01.3\\ 11:20 & 01.5\\ 10:43 & 01.7\\ 10:20 & 01.3\\ 10:43 & 01.7\\ 11:20 & 01.5\\ 10:40 & 01.5\\ 10:40 & 01.5\\ 10:40 & 01.5\\ 10:40 & 01.5\\ 10:40 & 01.5\\ 10:40 & 01.5\\ 10:40 & 01.5\\ 10:40 & 01.5\\ 10:40 & 01.5\\ 11:20 & 01.5\\ 10:40 & 01.5\\ 11:20 & 01.5\\ 10:40 & 01.5\\ 11:20 & 0$	8 49.507 8 56.448 6 63.417 7 78.435 5 84.406 8 91.427 9 146.562 5 112.490 9 106.562 5 126.415 7 133.454 1 140.448 0 148.417 0 154.481 1 140.448 0 148.417 1 140.448 1 140.448 1 140.448 2 154.481 5 161.469 8 175.444 9 182.458 9 182.458 2 204.449 9 210.431 0 217.447	5.989 8.049 6.941 6.969 7.000 8.018 5.971 7.021 8.007 7.128 5.928 6.983 6.942 7.039 6.994 7.039 6.994 7.039 6.964 6.988 6.959 7.016 7.011 7.024 7.956 5.982 7.016 8.013	7.27 9.03 10.58 12.17 13.52 15.10 16.81 18.30 19.75 21.24 22.79 24.56 26.17 29.07 30.62 32.20 33.63 35.22 36.76 38.34 40.15 41.51	0.221 0.213 0.253 0.225 0.225 0.225 0.225 0.214 0.205 0.245 0.213 0.223 0.221 0.231 0.231 0.231 0.231 0.222 0.227 0.220 0.225 0.224 0.222 0.225 0.224 0.225	Brine, muck, hydraulic fluid. Some muck. Brine and muck. Brine effervesces.	
H3666666666666666666666666666666666666	08/20/85 09/04/85 09/10/85 09/10/85 09/17/85 09/24/85 10/01/85 10/25/85 10/25/85 10/29/85 11/05/85 11/21/85 11/21/85 11/21/85 11/26/85 12/10/85 12/10/85 01/31/86 02/12/86 02/12/86 02/19/86 02/12/86 03/06/86 03/08/86 04/08/86 04/08/86 04/08/86 04/08/86 04/24/86 05/20/86 05/20/86 05/20/86 05/27/86	$\begin{array}{c} 11:11 & 01.4 \\ 10:00 & 01.9 \\ 10:32 & 01.6 \\ 10:35 & 01.4 \\ 09:42 & 01.5 \\ 09:50 & 01.5 \\ 09:55 & 01.5 \\ 10:23 & 01.8 \\ 09:51 & 01.3 \\ 09:51 & 01.3 \\ 09:51 & 01.3 \\ 09:51 & 01.3 \\ 09:51 & 01.3 \\ 09:51 & 01.3 \\ 11:30 & 01.0 \\ 11:35 & 01.5 \\ 11:30 & 01.0 \\ 11:45 & 01.5 \\ 11:20 & 01.3 \\ 11:00 & 03.0 \\ 11:45 & 01.5 \\ 11:20 & 01.3 \\ 11:00 & 03.0 \\ 11:45 & 01.5 \\ 11:20 & 01.3 \\ 11:00 & 03.0 \\ 11:45 & 01.5 \\ 11:20 & 01.3 \\ 11:00 & 03.0 \\ 11:45 & 01.5 \\ 11:20 & 01.3 \\ 11:00 & 03.0 \\ 11:45 & 01.5 \\ 11:20 & 01.3 \\ 11:00 & 03.0 \\ 11:45 & 01.5 \\ 10:20 & 02.5 \\ 09:40 & 01.7 \\ 09:45 & 01.9 \\ 11:13 & 01.4 \\ 11:10 & 01.5 \\ 15:45 & 01.4 \\ 11:10 & 01.5 \\ 15:45 & 01.4 \\ 11:10 & 01.3 \\ 10:10 & 01.3 \\$	2 231.466 4 239.417 9 246.439 1 252.441 3 266.410 3 280.453 8 287.438 2 295.433 6 301.410 3 308.394 6 301.410 3 308.394 6 301.410 3 308.394 6 301.410 3 308.394 9 316.426 9 336.566 2 343.510 0 387.458 8 395.514 2 407.458 8 395.514 2 407.458 8 395.514 2 407.458 8 395.514 2 407.458 5 423.556 0 429.448 0 436.424 6 449.431 5 470.517 0 478.431 1	6.006 7.951 7.022 6.963 7.006 7.003 7.006 7.003 7.040 6.985 7.995 5.977 6.984 8.032 8.057 6.984 8.057 6.944 43.948 8.056 11.944 7.032 9.066 5.892 6.976 13.007 6.972 6.974 7.041 7.041 6.924 5.971 7.041 6.924	46.21 48.15 49.84 51.25 52.78 54.31 55.89 57.52 59.10 60.92 62.28 63.91 65.70 67.61 68.62 70.12 71.64 80.94 82.32 85.34 86.89 88.74 90.04 91.54 94.10 95.85	0.236 0.244 0.241 0.235 0.220 0.218 0.222 0.226 0.228 0.228 0.223 0.237 0.202 0.212 0.217 0.212 0.219 0.212 0.219 0.212 0.219 0.212 0.219 0.212 0.221 0.215 0.225 0.225 0.225 0.225 0.225 0.225 0.221 0.211 0.255 0.220 0.212 0.225 0.225 0.225 0.212 0.212 0.225 0.255	Entry restricted since 12/10/85 due to mining activities. Volume was estimated.	
DH36		11:35 01.2		7.059	109.82	0.176	Valve leaked, some brine drained back down hole.	0

DH36 DH36 DH36 DH36 DH36 DH36 DH36 DH36	06/17/86 11:00 01.65 06/24/86 11:00 01.45 07/01/86 14:05 01.55 07/08/86 10:45 01.40 07/16/86 10:45 01.40 07/12/86 10:07 01.29 07/29/86 10:40 01.45 08/05/86 11:20 01.46 08/12/86 10:37 01.50 08/19/86 10:38 01.49 09/04/86 10:15 01.20 09/09/86 10:15 01.20 09/16/86 10:20 01.37 09/23/86 10:18 01.40 10/01/86 12:18 01.76 10/08/86 11:10 01.44 10/14/86 11:57 01.21 11/05/86 11:38 4.28 11/20/86 12:35 03.12 12/30/86 12:25 01.72 12/31/86 12:38 6.54 02/03/87 13:35 06.84 03/06/87 11:20 5.84 03/06/87 11:23 5.84 03/06/87 11:27 4.95 05/07/87 11:33 6.62 06/18/87 12:10 0.49	532.458 6.975 539.458 7.000 546.587 7.129 553.448 6.861 561.448 8.000 567.422 5.974 574.444 7.022 581.472 7.028 588.442 6.970 595.483 7.041 602.443 6.960 611.445 9.002 616.427 4.982 623.431 7.004 630.429 6.998 638.513 8.084 645.465 6.952 651.498 6.033 673.485 21.987 688.524 15.039 728.517 0.000 729.526 41.002 763.566 34.040 794.472 30.906 818.477 24.005 856.481 38.004 897.448 0.000 898.507 42.026	<pre>111.47 0.237 112.92 0.207 114.47 0.217 115.87 0.204 117.63 0.220 118.92 0.216 120.37 0.206 121.83 0.208 123.33 0.215 124.71 0.196 126.20 0.214 Static level not measured. 127.90 0.189 129.10 0.241 130.47 0.196 131.63 0.218 135.07 0.207 Brine efferveces as it is poured into beaker. 136.28 0.201 Static level not measured. 140.56 0.195 143.68 0.207 143.68 0.207 143.68 0.200 Partial evacuation. No calculation. Do not plot or use zero value. 151.94 0.201 Calculated using 8.26 liters in 41.002 days (1.72 L. 12/30/86 plus 6.54 L. 12/31/86). 158.78 0.201 154.62 0.189 175.41 0.198 182.03 0.174 189.28 0.000 Some brine left in hole, no calculation. 189.77 0.184 Original L/day calculation too high due to residual brine left in hole. Recalculated using 7.74 L (7.25 L 6/17/87 plus 0.49 L </pre>
DH36 DH36 DH36 DH36 DH36 DH36 DH36 DH36	07/28/87 11:27 7.76 09/01/87 10:50 6.99 10/20/87 11:56 8.58 11/19/87 11:30 4.19 01/04/88 11:50 6.74 02/08/88 11:50 4.90 03/29/88 11:35 7.25 05/05/88 09:45 5.01 05/12/88 09:50 1.30 07/12/88 08:50 7.90 07/28/88 10:25 1.50 08/11/88 10:30 3.66 08/25/88 09:24 2.05 09/08/88 14:50 09/14/88 08:40 2.36 09/27/88 10:45 1.30 12/13/88 10:00 10.63	938.477 39.970 973.451 34.974 1022.50 49.049 1052.48 29.980 1098.49 46.010 1133.49 35.000 1183.48 49.990 1220.41 36.930 1227.41 7.000 1288.37 60.960 1318.44 14.010 1332.39 13.950 1346.62 0.000 1352.36 19.970 1365.45 13.090 1442.42 76.970	6/18/87). 197.53 0.194 204.52 0.200 213.10 0.175 217.29 0.140 224.03 0.146 228.93 0.140 236.18 0.145 241.19 0.136 242.49 0.186 250.39 0.130 251.89 0.093 255.55 0.261 257.60 0.000 Did not sample. 259.96 0.118 Slight orange color. 261.26 0.099 271.89 0.138

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks
DH37	12/05/84	00:00	NA	0.000	0.000	0.00	0.000	Approximate date this part of Room G
DH 37 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	12/05/84 01/26/85 02/05/85 03/05/85 03/26/85 04/17/85 04/23/85 05/07/85 05/07/85 05/11/85 05/29/85 05/11/85 05/29/85 05/11/85 05/21/85 07/02/85 07/02/85 08/24/85 09/10/85 09/24/85 09/24/85 09/24/85 09/24/85	0:00 11:15 10:00 13:30 11:50 10:33 11:50 10:33 11:50 10:33 11:50 10:33 11:50 10:33 11:50 10:33 11:50 10:33 11:50 10:33 11:50 10:35 10:35 10 10:35 10 10:35 10 10:35 10 10:35 10 10:35 10 10:35 10 10 10:35 1	8888888888888888888888888888888888888		Caic.	0.00 0.00 0.06 0.12 0.18 0.225 0.31 0.38 0.55 0.60 0.68 0.73 0.55 0.60 0.68 0.77 0.80 0.92 0.94 0.95 0.97 1.00 1.04 1.06 1.09 1.11	0.000 0.000 0.002 0.007 0.004 0.009 0.010 0.009 0.010 0.009 0.010 0.009 0.008 0.007 0.004 0.009 0.008 0.007 0.004 0.009 0.008 0.007 0.004 0.009 0.008 0.009 0.008 0.007 0.004 0.009 0.008 0.009 0.008 0.009 0.008 0.009 0.008 0.009 0.008 0.009 0.009 0.008 0.009 0.008 0.009 0.008 0.009 0.008 0.009 0.008 0.009 0.008 0.009 0.008 0.009 0.008 0.009 0.008 0.009 0.008 0.009 0.008 0.007 0.008 0.009 0.008 0.007 0.008 0.007 0.008 0.009 0.008 0.007 0.008 0.008 0.007 0.008 0.007 0.008 0.008 0.007 0.008 0.008 0.007 0.008 0.	Approximate date this part of Room G excavated. Uphole drilled 1/25/85 to 1/26/85. Started to drip. Stalactite in collecting container. Salt crystals in collecting container. Trace, none collected. Stalactites in collecting container.
DH37 DH37 DH37 DH37 DH37 DH37 DH37 DH37	10/23/85 10/29/85 07/01/86 11/20/86 11/20/86 12/30/86 02/03/87 03/06/87 03/06/87 05/07/87 06/18/87 07/28/87 09/01/87 10/20/87 11/19/87 01/04/88 02/08/88 03/29/88 03/29/88 07/12/88 09/27/88 12/13/88	10:17 09:35 14:00 11:22 12:25 12:00 NA: 11:05 11:10 11:27 12:05 11:35 11:35 11:35 11:35 11:35 11:35 11:35 11:35 10:45	00.02 00.02 00.02 00.02 NA NA NA 0.00	295.428 301.399 546.583 673.474 688.517 728.500 763.000 794.462 818.465 856.477 898.503 973.448 1052.46 1098.48 1052.46 1098.48 1133.49 1183.48 1288.37 1365.45 1442.41	8.004 5.971 245.184 126.891 141.934 181.917 216.417 247.879 24.003 62.015 104.041 143.991 34.995 29.980 46.020 35.010 49.932 29.980 46.020 35.010 49.990 104.890 077.080	1.17 1.21 1.21 1.21 1.21 1.21 1.21 1.21	200.0 20	Dry. Dry. Dry. Dry. Dry. Dry. Dry. Dry.

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	
DH38	12/05/84	00:00	NA .	0.000	0.000	0.00	0.000	Approximate date this part of Room G excavated.
DH38 DH38 DH38 DH38 DH38 DH38 DH38 DH38	01/26/85 01/28/85 02/05/85 02/19/85 02/26/85 03/05/85 03/05/85 03/20/85 03/20/85 03/20/85 04/02/85 04/02/85	09:00 11:15 12:10 10:45 10:00 10:00 10:37 09:50 10:25 10:31	NA NA 00.80 01.26 00.45 00.39 00.45 00.36 00.41 00.44	0.000 27.375 35.469 49.507 56.448 63.417 70.417 78.442 84.410 91.434 99.438	0.000 1.000 9.094 23.132 6.941 6.969 7.000 8.025 5.968 7.024 8.004 8.004	0.00 0.80 2.06 2.51 2.90 3.35 3.71 4.12 4.56	0.000 0.000 0.035 0.182 0.065 0.056 0.056 0.060	Downhole drilled 1/25/85 to 1/26/85. Dry. Wet at bottom. Brine and fine muck. Brine and fine muck. Some muck.
DH38 DH38 DH38 DH38 DH38 DH38 DH38 DH38	04/17/85 04/23/85 04/30/85 05/07/85 05/14/85 05/21/85 05/29/85 06/04/85 06/11/85 06/18/85	11:41 11:05 09:50 10:45 10:35 11:35 11:25 10:35	00.34 00.39 00.42 00.41 00.41 00.47 00.35 00.40	106.562 112.487 119.462 126.410 133.448 140.441 148.483 154.476 161.441 168.423	7.124 5.925 6.975 6.948 7.038 6.993 8.042 5.993 6.965 6.982	5.31 5.70 6.12 6.53 6.94 7.41 7.76 8.16	0.057 0.056 0.060 0.058 0.059 0.058 0.058 0.058 0.057 0.056	
DH38 DH38 DH38 DH38 DH38 DH38 DH38 DH38	06/25/85 07/02/85 07/09/85 07/16/85 07/24/85 07/30/85 08/06/85 08/14/85 08/20/85 08/28/85	10:50 11:00 11:05 11:45 10:35 10:14 10:34 10:51 11:02	00.42 00.44 00.43 00.43 00.43 00.43 00.49 00.38 00.42 00.49 00.37	175.451 182.458 189.462 196.490 204.441 210.426 217.440 225.452 231.460 239.417	7.028 7.007 7.004 7.028 7.951 5.985 7.014 8.012 6.008 7.957	8.97 9.41 9.84 10.27 10.76 11.14 11.56 12.05 12.42	0.060 0.063 0.061	Brine effervesces.
0H38 0H38 0H38 0H38 0H38 0H38 0H38 0H38	09/04/85 09/10/85 09/24/85 10/01/85 10/08/85 10/15/85 10/23/85 10/23/85 11/05/85 11/05/85 11/26/85 11/26/85 12/03/85 12/10/85 01/23/86	10:23 10:19 09:37 09:45 09:53 10:38 10:15 10:20 09:40 09:41 10:00 11:29 11:20 13:30 12:30 11:20	8.44 88.39 88.444 88.444 88.444 88.444 88.444 88.444 88.444 88.444 88.444 88.444 88.444 88.444 88.444 88.444 88.444 88.444 88.44444 88.44444 88.44444 88.44444 88.44444 88.44444 88.444444 88.44444444	246.433 252.430 259.401 266.406 273.412 280.443 287.427 295.431 301.403 308.385 316.417 324.478 329.472 336.562 343.521 387.472	7.016 5.997 6.971 7.005 7.006 7.031 6.984 8.004 5.972 8.032 8.061 4.994 7.090 6.959 43.951	13.37 13.76 14.20 14.64 15.08 15.54 15.98 16.47 16.86 17.29 17.81 18.28 18.61 19.03 19.44 22.14	0.063 0.065 0.063 0.063 0.063 0.065 0.065 0.065 0.065 0.058 0.058 0.059 0.059	Entry restricted since 12/10/85 due to mining activities.
0H38 DH38 DH38 DH38 DH38	01/31/86 02/12/86 02/19/86 02/28/86	10:50 11:40	00.75 00.43	395.507 407.451 414.486 423.552	8.035 11.944 7.035 9.066	23 85	0.063	Lost substantial volume due to break in suction line. Brine flowed back down into hole.
DH38 DH38 DH38 DH38 DH38 DH38 DH38 DH38	03/06/86 03/13/86 03/26/86 04/02/86 04/08/86 04/16/86 04/24/86 05/06/86 05/13/86 05/20/86 05/21/86 06/10/86 06/17/86 06/24/86	10:05 10:10 09:35 09:40 12:10 10:12 10:50 10:14 11:05 15:40 10:05 11:22 10:50	00.43 00.59 00.58 00.50 00.47 00.35 00.41 00.41 00.41 00.48 00.44 00.38 00.43 00.43 00.43 00.43 00.43 00.43	429.441 436.420 449.424 456.399 462.403 470.507 478.425 484.451 490.426 497.462 504.462 511.653 518.420 525.474 532.451 539.453	5.889 6.979 13.004 6.975 6.004 8.104 7.918 6.026 5.975 7.036 7.000 7.191 6.767 7.054 6.977 7.002	25.10 25.69 26.27 27.12 27.59 27.94 28.25 28.66 29.04 29.44 29.88 30.31 30.68	0.058 0.062	

DH38 DH38 DH38 DH38 DH38 DH38 DH38 DH38	07/01/86 14:01 00.40 07/08/86 10:30 00.38 07/16/86 10:34 00.43 07/22/86 09:58 00.35 07/29/86 10:40 00.38 08/05/86 11:10 00.39 08/12/86 10:32 00.40 08/19/86 11:30 00.41 08/26/86 10:32 00.36 09/04/86 10:35 00.49 09/09/86 10:00 00.30 09/16/86 10:10 00.37 10/01/86 12:07 00.43 10/08/86 11:30 00.36 10/14/86 11:26 1.10 11/20/86 12:27 00.82 12/30/86 12:27 00.82 12/30/86 12:15 01.87 02/03/87 11:15 01.58 03/30/87 11:10 1.58 03/30/87 11:20 1.89 06/17/87 10:45 1.91 06/18/87 10:53 1.88 09/01/87 10:45 1.70	553.438 6 567.415 5 567.415 5 574.444 7 581.465 7 588.438 6 595.479 7 602.439 6 611.441 9 616.417 4 630.424 7 638.505 8 645.479 6 638.505 8 645.479 6 638.505 8 645.479 6 638.505 8 645.479 6 638.505 8 645.479 6 638.519 15 728.510 35 794.462 36 897.448 0 898.503 42 938.453 35 973.448 34	7.131 31.58 6.854 31.96 8.002 32.39 5.975 32.74 7.029 33.51 6.973 33.91 7.021 33.51 6.973 33.91 7.041 34.32 6.960 34.68 9.002 35.17 7.007 35.85 7.000 36.22 8.081 36.65 6.974 37.01 6.011 37.36 6.974 37.01 6.013 38.46 5.043 39.28 9.991 41.15 5.042 42.87 0.910 44.45 44.005 45.62 88.005 47.51 0.000 49.42 2.031 49.58 99.950 51.46 99.950 51.46 99.950 51.46	056 055 054 059 054 056 057 058 052 054 060 054 053 052 053 052 058 051 055 047 049 051 047 049 049 049 049	e, no calculation. iters (1.91 L. 6/17/87
DH38 DH38 DH38 DH38 DH38 DH38 DH38 DH38	10/20/87 11:40 2.29 11/19/87 11:05 1.42 01/04/88 11:35 2.05 02/08/88 11:40 1.48 03/29/88 11:30 2.10 05/05/88 09:55 1.70 05/12/88 11:20 0.31 07/12/88 08:45 2.44 07/28/88 10:20 0.88 09/27/88 10:30 1.92 12/13/88 09:55 3.45	1022.49 49 1052.46 29 1098.48 46 1133.49 35 1183.48 49 1220.41 36 1227.47 7 1288.36 66 1304.43 16 1365.44 67	9.042 55.45 9.970 56.87 4.020 58.92 5.010 60.40 9.990 62.50 6.930 64.20 7.060 64.51 6.070 67.83 1.010 69.75 '6.970 73.20	047 047 045 042 042 046 044 040 055 031 045	

-

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulativ Liter Collecte	s per	
DH39	12/13/84	00:00	NA	0.000	0.000	0.0	0 0.000	Approximate date that part of Room G was
DH39 DH39 DH39 DH39 DH39 DH39 DH39 DH39	01/24/85 02/05/85 02/26/85 03/12/85 05/29/85 05/29/85 11/05/86 11/20/86 12/30/86 02/03/87 03/00/87 03/30/87 05/07/87 06/18/87	11:15 10:25 10:00 09:55 09:37 11:30 11:10 NA: 11:45 NA: 11:05 11:20 11:20	NA NA NA OO.01 OO.03 NA NA NA NA NA NA NA NA O.00 O.00 O.00	0.000 35.469 56.434 70.417 84.413 126.401 148.479 673.465 688.000 728.490 763.000 794.458 818.462 856.472 898.500	49.944 91.932 22.078 524.986 539.521 580.011 614.521 645.979 24.004 62.014 104.042		0 0.000 0 0.000 0 0.000 1 0.000 4 0.001 4 0.000 4 0.000 4 0.000 4 0.000 4 0.000 4 0.000 4 0.000 4 0.000 4 0.000	Dry, not collected. Dry. Dry. Dry. Dry.
DH39 DH39 DH39 DH39 DH39 DH39 DH39 DH39	07/28/87 09/01/87 10/20/87 11/19/87 01/04/88 02/08/88 03/29/88 07/12/88 09/27/88 12/13/88	10:21 11:33 11:00 11:35 11:35 11:30 08:45 10:30	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	938.460 973.431 1022.48 1052.46 1098.48 1133.48 1183.48 1288.36 1365.44 1442.41	34.971 49.049 29.980 46.020 35.000 50.000	0.0	4 0.000 4 0.000 4 0.000 4 0.000 4 0.000 5 0.000 5 0.000 5 0.000 5 0.000 5 0.000	Drý. Dry. Dry. Dry. Dry. Dry. Dry.

-

10

Location	Date	Time	Liters Removed	Days Since 1/01/85	Used	Cumulative Liters Collected	Liters per Day	
DH40	12/13/84	00:00	NA	0.000	0.000	0.00	0.000	Approximate date this part of Room G
H40 H40 H40 H40 H40 H400	12/13/84 01/25/85 01/28/85 02/05/85 03/26/85 03/26/85 04/17/85 04/23/85 05/11/85 05/21/85 05/11/85 05/21/85 05/11/85 05/21/85 05/11/85 05/29/85 06/11/85 06/11/85 06/28/85 07/02/85 07/02/85 07/10/85 08/20/85 08/20/85 08/20/85 09/04/85 09/04/85 09/04/85 09/04/85 09/04/85 09/04/85 09/04/85 09/04/85 09/04/85 09/04/85 09/04/85 09/04/85 10/01/85 10/01/85 10/23/85 10/23/85 11/05/85 11/21/85 12/10/85 01/23/	$\begin{array}{c} 0.00\\ 0.11\\ 0.15\\ 0.11\\ 0.10\\ 0.11\\ 0.10\\ 0.11\\ 0.10\\ 0.11\\ 0.10\\ 0.11\\ 0.10\\ 0.11\\ 0.10\\ 0.11\\ 0.10\\$	NA NA NA NA 0.98600000000000000000000000000000000000	0.000 27.375 35.469 70.424 84.413 106.562 112.481 119.451 126.404 133.444 140.435 148.479 154.469 164.438 168.477 175.458 182.458 189.448 204.438 210.422 217.431 225.447 231.451 225.447 231.451 225.442 246.429 252.424 259.397 264.439 273.408 280.439 287.420 295.426 301.397 308.382 316.413 324.475 336.556 343.528 387.476	$\begin{array}{c} 0.000\\ 1.000\\ 9.094\\ 42.049\\ 58.038\\ 80.187\\ 5.919\\ 6.973\\ 7.040\\ 6.953\\ 7.040\\ 6.969\\ 6.979\\ 7.041\\ 7.000\\ 6.969\\ 6.979\\ 7.041\\ 7.007\\ 7.953\\ 5.984\\ 7.007\\ 8.016\\ 6.979\\ 8.016\\ 7.037\\ 7.953\\ 5.984\\ 7.007\\ 8.004\\ 7.961\\ 7.017\\ 5.995\\ 6.971\\ 6.981\\ 8.006\\ 5.971\\ 6.981\\ 8.031\\ 8.005\\ 12.081\\ 8.031$	0.00 0.00 0.00 0.98 1.24 1.35 1.45 1.54 1.61 1.69 1.79 1.84 1.93 2.01 2.10 2.22 2.31 2.38 2.45 2.51 2.58 2.51 2.58 2.63 2.71 2.78 2.93 2.97 3.06 3.10 3.17 3.21 3.28 3.30 3.38 3.38	0.000 0.000 0.000 0.000 0.000 0.012 0.014 0.013 0.013 0.017 0.013 0.017 0.013 0.017 0.013 0.012 0.009 0	excavated. Downhole drilled 1/24/85 to 1/25/85. Dry. Moist at bottom. Moist muck. Brine, muck, and oil. Brine and muck. Feel something spongy in bottom of hole. Contained a lot of salt muck.
DH40 DH40 DH400 DH	01/31/86 02/19/86 02/28/86 03/13/86 05/20/86 05/20/86 09/16/86 11/20/86 11/20/86 11/20/86 12/30/87 03/06/87 03/06/87 03/06/87 05/18/87 09/01/87 10/20/87 11/19/87 01/04/88 03/29/88 05/12/88 05/12/88 09/27/88 12/13/88	11:20 13:10 10:00 10:05 11:05 09:58 10:05 11:18 NA: 12:00 10:55 11:05 11:05 11:30 10:25 11:30 11:35 11:30 11:35 11:30 11:30 11:30 10:25 11:30 11:25 11:30 10:25 11:30 11:25 11:20 10:25 11:20 11:25 11:20 11:25 11:20 11:25 11:20 11:25 11:20 11:25 11:20 11:25 11	00.14 00.05 00.02 00.13 00.20 00.34 0.27 NA 00.25 00.13 0.09 0.10 0.19 0.16 0.55 0.14 0.20 0.21 0.21	395.507 414.472 423.549 436.417 478.420 504.462 518.415 623.420 673.471 688.000 763.542 794.455 818.462 898.500 763.542 794.455 818.462 898.500 973.434 1052.46 1058.48 1133.48 1133.48 1127.49 1288.36 1365.43 1442.41	9.077 12.868 42.003 13.953 105.005 50.051 14.529 55.029 35.042 30.913 24.007 80.038 74.934 0.000 0.000 0.000 160.046 50.000 44.010 60.870 77.070	3.82 3.87 3.89 4.02 4.32 4.66 4.93 5.18 5.31 5.40 5.50 5.69 5.85 5.85 5.85 5.85 5.85 5.85 5.85 5.8	0.005 0.000 0.005 0.004 0.003 0.004 0.002 0.002 0.002 0.002 0.000	Did not collect for several months. Not sampled. Not sampled. No calculation. Did not collect. No calculation. Did not sample.

Location	Date	Time	Liters Removed	Days Since 1/01/85		Cumulative Liters Collected	Liters per Day	
DH41	12/30/84	00:00	NA	0.000	0.000	0.00	0.000	Approximate date this part of Room G excavated.
DH41 DH41 DH41 DH41 DH41 DH41 DH41 DH41	01/24/85 02/05/85 03/26/85 05/07/85 05/29/85 07/24/85 08/20/85 08/20/85 09/17/85 02/19/86 11/05/86 11/20/86 12/30/86 02/03/87 03/30/87 03/30/87 03/30/87 05/07/87 05/07/87 06/18/87 07/28/87 09/01/87 07/28/87 09/01/87 11/19/87 01/04/88 02/08/88	11:15 10:05 09:20 10:13 12:00 09:35 09:20 11:20 09:35 09:20 11:20 11:25 NA: 09:55 11:00 11:28 11:00 11:28 11	NA NA NA 00.01 00.01 00.01 00.01 00.02 00.05 NA NA NA NA NA NA NA NA 0.00 0.00 0.00	0.000 35.469 84.420 126.390 148.417 204.426 231.500 239.399 259.389 414.472 673.458 688.505 728.535 763.000 793.455 818.458 856.465 898.497 938.460 973.427 1022.48 1052.45 1098.48 1133.47	91.921 22.027 56.009 27.074 7.899 19.990 155.083 258.986 274.033 314.063 348.528 378.983 25.003 63.010 105.042 145.005 34.967 49.053 29.970 46.030 34.990	0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Crusty. Dry. Dry. Dry. Dry. Dry. Dry. Dry. Dr
DH41 DH41	03/29/88 07/12/88 09/27/88 12/13/88	08:40	0.00		50.000 104.890 77.070 76.980	0.12	0.000 0.000 0.000 0.000	Dry. Dry.

,

Location	Date	Time	Liters R e moved	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	
DH42	12/30/84	00:00	NA	0.000	0.000	0.00	0.000	Approximate date this part of Room G
DH42 DH42 DH42 DH42 DH42 DH42 DH42 DH42	01/23/85 01/28/85 02/05/85 02/11/85 02/19/85 02/26/85 03/05/85 03/12/85 03/20/85	09:00 11:15 11:00 13:10 10:45 10:00 10:20	NA 00.27 00.30 00.33 00.26 00.28 00.25	0.000 27.375 35.469 41.458 49.549 56.448 63.417 70.431 78.454	0.000 1.000 9.094 5.989 8.091 6.899 6.969 7.014 8.023	0.00 0.27 0.57 0.90 1.16 1.44 1.69	0.000 0.030 0.050 0.041 0.038 0.040 0.036	
DH42 DH42 DH42 DH42 DH42 DH42	03/26/85 04/02/85 04/10/85 04/17/85 04/23/85	10:45 10:45 13:30	00.26 00 <i>.2</i> 9 00.24	84.421 91.448 99.448 106.562 112.558	5.967 7.027 8.000 7.114 5.996	2.48 2.77 3.01	0.047 0.037 0.036 0.034 0.007	
DH42 DH42 DH42 DH42 DH42 DH42 DH42 DH42	04/30/85 05/07/85 05/14/85 05/21/85 05/21/85 05/21/85 05/21/85 06/04/85 06/04/85 06/11/85 07/02/85 07/02/85 07/02/85 07/02/85 07/16/85 07/24/85 07/24/85 07/24/85 08/28/85 09/04/85 09/04/85 09/10/85 09/10/85 09/10/85 10/01/85 10/01/85 10/02/85 10/02/85 11/13/85 11/22/85 01/23/85 12/008/85 12/008/85 11/21/85 12/03/85 12/10/85 01/23/85 0	09:25 10:17 10:171 10:153 11:109:53 11:109:57 10:199:57 10:11	0.33 0.25 0.26 0.27 0.28 0.25 0.26 0.27 0.27 0.28 0.29 0.20 0.20 0.21 0.22 0.23 0.24 <t< td=""><td>119.438 126.392 133.438 140.428 148.424 154.448 161.424 168.412 175.469 182.458 189.438 196.464 204.430 210.415 217.426 225.458 231.448 239.406 246.425 252.414 259.393 266.401 273.406 280.434 287.417 295.422 301.386 308.378 316.407 324.453 329.458 336.549 333.535 387.479</td><td>6.880 6.954 7.046 6.990 7.996 6.980 7.057 6.989 7.057 7.057 7.057 7.057 7.057 7.057 7.059 7.011 8.032 5.985 7.011 8.032 5.985 7.019 5.989 6.983 8.005 5.964 6.983 8.005 5.964 6.983 8.005 5.964 6.992 8.029</td><td>3.76 4.01 4.27 4.57 5.04 5.29 5.54 5.78 6.03 6.28 6.56 6.78 7.04 7.31 7.52 7.81 8.06 8.27 7.81 8.06 8.27 8.79 9.03 9.26 9.49 9.75 9.99 10.21 10.47 10.73 10.89 11.09 11.31 12.63</td><td>0.035 0.037 0.034 0.035 0.036 0.035 0.036 0.036 0.035 0.036 0.033 0.033 0.033 0.033 0.033 0.032 0.032 0.032 0.032 0.032 0.032 0.032</td><td>Brine effervesces. Entry restricted since 12/10/85 due to mining activities.</td></t<>	119.438 126.392 133.438 140.428 148.424 154.448 161.424 168.412 175.469 182.458 189.438 196.464 204.430 210.415 217.426 225.458 231.448 239.406 246.425 252.414 259.393 266.401 273.406 280.434 287.417 295.422 301.386 308.378 316.407 324.453 329.458 336.549 333.535 387.479	6.880 6.954 7.046 6.990 7.996 6.980 7.057 6.989 7.057 7.057 7.057 7.057 7.057 7.057 7.059 7.011 8.032 5.985 7.011 8.032 5.985 7.019 5.989 6.983 8.005 5.964 6.983 8.005 5.964 6.983 8.005 5.964 6.992 8.029	3.76 4.01 4.27 4.57 5.04 5.29 5.54 5.78 6.03 6.28 6.56 6.78 7.04 7.31 7.52 7.81 8.06 8.27 7.81 8.06 8.27 8.79 9.03 9.26 9.49 9.75 9.99 10.21 10.47 10.73 10.89 11.09 11.31 12.63	0.035 0.037 0.034 0.035 0.036 0.035 0.036 0.036 0.035 0.036 0.033 0.033 0.033 0.033 0.033 0.032 0.032 0.032 0.032 0.032 0.032 0.032	Brine effervesces. Entry restricted since 12/10/85 due to mining activities.
DH42 DH42 DH42 DH42 DH42 DH42 DH42 DH42	02/19/86 02/28/86 03/06/86 03/26/86 03/26/86 04/02/86 04/02/86 04/02/86 04/16/86 04/30/86 05/06/86 05/03/86 05/27/86 06/03/86 06/10/86 06/10/86	11:10 13:00 10:30 09:53 10:00 09:25 09:30 11:55 09:51 10:11 10:00 11:00 11:00 11:00 11:35 09:50 11:13	0.22 0.31 0.27 0.21 0.39 0.20 0.20 0.24 0.24 0.24 0.27 0.20 0.20 0.20 0.20 0.20 0.20 0.20	414.465 423.542 429.438 436.412 449.417 456.392 462.396 470.497 478.413 484.445 490.424 497.417 504.458 511.649 518.410 525.467 532.444	7.024 9.077 5.896 6.974 13.005 6.975 6.004 8.101 7.916 6.975 5.979 6.993 7.041 7.191 6.761 7.057 6.977	13.53 13.84 14.01 14.22 14.61 14.81 15.05 15.46 15.63 15.82 16.02 16.22 16.22 16.62 16.79	0.031 0.034 0.029 0.030 0.029 0.033 0.030 0.029 0.033 0.030 0.027 0.028 0.028 0.028 0.028 0.028 0.028 0.028	

E E E E E E E E E E E E E E E E E E E	06/24/86 10:40 00.18 07/01/86 13:45 00.20 07/08/86 10:22 00.20 07/16/86 10:15 00.30 07/22/86 09:50 00.16 07/29/86 10:25 00.20 08/05/86 11:00 00.22 08/12/86 10:20 00.20 08/9/86 11:20 00.20 09/04/86 10:25 00.20 09/04/86 10:25 00.20 09/04/86 10:25 00.20 09/23/86 09:58 00.15 10/01/86 12:03 00.36 10/08/86 10:55 00.15 10/01/86 11:19 00.15 11/05/86 11:19 00.15 11/05/86 11:45 00.78 02/03/87 12:50 00.85 03/06/87 10:45 0.68 03/30/87 11:00 0.53 05/07/87 11:15 0.90	539.444 7.000 546.573 7.129 553.432 6.859 561.427 7.995 567.410 5.983 574.434 7.024 581.458 7.024 581.458 7.024 581.458 7.024 581.472 7.041 602.434 6.962 611.431 8.997 616.407 4.976 623.411 7.004 630.415 7.004 633.502 8.087 645.455 6.953 651.472 6.017 673.463 21.991 688.507 15.044 728.490 39.983 763.535 35.045 794.448 30.913 818.458 30.11 897.441 0.000	17.17 0.026 17.37 0.028 17.57 0.029 17.87 0.038 18.03 0.027 18.23 0.028 18.45 0.031 18.65 0.029 19.28 0.028 19.62 0.029 19.77 0.021 20.13 0.045 20.28 0.022 20.43 0.025 20.95 0.024 21.28 0.022 22.06 0.020 22.91 0.024 23.59 0.022 24.12 0.021 25.02 0.024 Brine effervesces. 25.93 0.000 Wood fragments in hole. Some brine left in
DH42	06/18/87 11:56 0.10	898.497 42.028	hole, no calculation. 26.03 0.024 Calculated using 1.01 liters (0.91 l. 6/17/87 plus 0.10 l. 6/18/87).
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	07/28/87 11:10 0.94 09/01/87 10:15 0.79 10/20/87 11:31 1.29 11/19/87 10:55 0.75 01/04/88 11:30 1.13 02/08/88 11:20 0.75 03/29/88 11:20 1.10 05/05/88 09:30 0.75 05/12/88 09:45 0.13 07/12/88 08:35 1.15 07/28/88 10:10 0.34 09/27/88 10:20 0.66 12/13/88 09:38 1.71	938.465 39.968 973.427 34.962 1022.48 49.053 1052.45 29.970 1098.48 46.030 1133.47 34.990 1183.47 50.000 1220.40 36.930 1227.41 7.010 1288.36 60.950 1304.42 16.060 1365.43 61.010 1442.40 76.970	26.97 0.024 27.76 0.023 29.05 0.026 29.80 0.025 31.68 0.021 32.78 0.022 33.56 0.019 33.66 0.019 34.81 0.019 35.15 0.021 35.81 0.011 37.52 0.022

•

.

					Data tr	rougn vecer	nder 31	, 1968
Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks
DH42A	12/30/84	00:00	NA	0.000	0.000	0.00	0.000	Approximate date this part of Room G
DH42A	01/25/85	:00	NA	0.000	0.000	0.00		excavated. Downhole drilled (re-drill of DH42) to
DH42A	01/28/85			27.375	1.000			recover core from 20 to 40 ft. Brine in hole.
DH42A DH42A	02/05/85 02/11/85	11:00	00.99	35.469	9.094	1.84	0.165	First time collected.
DH42A DH42A	02/19/85 02/26/85	10:45	01.18	49.507 56.448	8.049 6.941		0.170	
DH42A DH42A	03/05/85 03/12/85	10:20	01.29	63.417 70.431	6.969 7.014	5.71 7.00		
DH42A DH42A	03/20/85 03/26/85	10:10	01.07	78.458 84.424	8.027 5.9 66	9.52		
DH42A DH42A	04/02/85 04/10/85	10:45	01.45	91.448 99.448	7.024 8.000	12.12	0.164 0.181	
DH42A DH42A	04/17/85 04/23/85	13:23	01.07	106.562 112.558	7.114 5.996	13.44 14.51	0.178	
DH42A DH42A	04/30/85 05/07/85	09:23	01.39	119.433 126.391	6.875 6.958	17.25	0.200	
DH42A DH42A	05/14/85	10:14	01.29	133.434	7.043 6.992	19.88	0.190 0.184	
DH42A DH42A	05/29/85 06/04/85	10:50	01.03	148.438 154.451	8.012 6.013	22.19	0.160 0.171	
DH42A DH42A	06/11/85	09:51	01.18	161.427 168.410	6.976 6.983	24.56	0.171 0.169	
DH42A DH42A	06/25/85 07/02/85	11:00	01.12	175.462 182.458	7.052 6.9%		0.164 0.160	
DH42A DH42A	07/09/85 07/16/85	11:10	01.11	189.434 196.465	6.976 7.031		0.158	Gas effervescing from sample. Brine effervesces.
DH42A DH42A	07/24/85 07/30/85	09:54	00.94	204.434 210.412	7.969 5.978	31.24	0.154 0.157	
DH42A DH42A	08/06/85	10:33	01.11	217.424 225.440	7.012 8.016	33.40	0.150 0.138	
DH42A DH42A	08/20/85 08/28/85	09:40	01.17	231.426 239.403	5.986 7.977	35.49	0.154 0.147	
DH42A DH42A	09/04/85	09:55	00.83	246.424	7.021	37.31	0.141	
DH42A DH42A	09/17/85	09:25	00.94	259.392	6.979 7.000	39.17	0.134	
DH42A DH42A	10/01/85	10:24	00.%	273.403	7.011 7.030	41.06	0.133	
DH42A DH42A	10/15/85	10:10	01.02	287.427	6.994 7.997	42.89	0.128	
DH42A DH42A	10/29/85	09:00	00.86	301.389	5.965	44.50	0.126	
DH42A DH42A DH42A	11/13/85 11/21/85 11/26/85	10:50	00.94	316.406 324.451 329.455	8.031 8.045 5.004		0.128	
DH42A DH42A	12/03/85 12/10/85	13:05	00.78	336.545	7.090	47.86	0.122 0.110 0.123	
DH42A	01/23/86	11:40	05.13	387.486	43.951			Entry restricted since 12/10/85 due to mining activities.
DH42A DH42A	01/31/86 02/12/86			395.500 407.444	8.014 11.944		0.115 0.114	activities.
DH42A DH42A	02/19/86 02/28/86	11:15	00.80	414.469 423.538	7.025	56.93	0.114	
DH42A DH42A	03/06/86 03/13/86	10:25	00.70	429.434 436.408	5.896 6.974	58.53	0.119	
DH42A DH42A	03/26/86 04/02/86	09:40	01.39	449.403	12.995	60.65	0.107	
DH42A DH42A	04/08/86 04/16/86			462.394 470.493	6.005 8.099	62.08	0.105	
DH42A DH42A	04/24/86 04/30/86			478.410 484.442	7.917 6.032	63.64	0.085	
DH42A DH42A	05/06/86 05/13/86	10:00	00.55	490.417 497.417	5.975 7.000	64.95	0.092	
DH42A DH42A	05/20/86 05/27/86	11:00	00.70	504.458 511.649	7.041 7.191	66.38	0.099	
DH42A DH42A	06/03/86 06/10/86	09:50	00.66	518.410 525.469	6.761 7.059	67.69	0.098	
DH42A DH42A	06/17/86 06/24/86	10:31	00.65	532.438 539.448	6.969 7.010	68.88	0.093	

.

.

DH42A DH42A DH42A DH42A DH42A DH42A DH42A DH42A	07/01/86 13:50 00.71 07/08/86 10:25 00.63 07/16/86 10:00 00.66 07/22/86 09:48 00.61 07/29/86 10:25 00.71 08/05/86 10:55 00.66 08/12/86 10:23 00.63 08/19/86 11:22 00.68	546.576 7.128 553.434 6.858 561.417 7.983 567.408 5.991 574.434 7.026 581.455 7.021 588.433 6.978 595.474 7.041	70.22 0.100 70.85 0.092 71.51 0.083 72.12 0.102 72.83 0.101 73.49 0.094 74.12 0.090 74.80 0.097
DH42A DH42A	08/26/86 10:28 00.68 09/04/86 10:25 00.71	602.436 6.962 611.434 8.998	75.48 0.098 Static level not measured. 76.19 0.079 Valve broke off and left in hole after collecting most of brine. Some brine left in hole.
DH42A DH42A DH42A DH42A DH42A DH42A DH42A DH42A DH42A DH42A DH42A DH42A DH42A DH42A	09/09/86 09:40 00.07 09/16/86 09:59 00.95 09/23/86 10:02 00.60 10/01/86 11:57 00.43 10/08/86 10:55 00.81 10/14/86 11:24 00.56 11/05/86 11:04 1.94 11/20/86 12:08 01.40 12/31/86 11:30 02.91 02/03/87 12:35 03.15 03/06/87 10:56 2.52 05/07/87 11:10 3.17 06/17/87 10:30 2.94	616.403 4.969 623.416 7.013 630.418 7.002 638.498 8.080 645.455 6.957 651.475 6.020 673.461 21.986 688.506 15.045 729.479 40.973 763.524 34.045 794.448 30.924 818.456 24.008 856.465 38.009 897.438 0.000	76.26 0.014 Bottom obstructed by object in hole. 77.21 0.135 77.81 0.086 78.24 0.053 79.05 0.116 79.61 0.093 81.55 0.088 82.95 0.093 85.86 0.071 89.01 0.093 91.62 0.084 94.14 0.101 97.31 0.083 100.25 0.000 Approx. 0.01 Liter spilled. Some brine left in hole, no calc. 100.36 0.072 Calculated using 3.05 Liters (2.94 L 6/17/87
DH42A DH42A DH42A DH42A	06/18/87 11:54 0.11 07/28/87 11:03 3.07 09/01/87 10:08 2.69 10/20/87 11:28 3.73	898.496 42.031 938.460 39.964 973.422 34.962 1022.48 49.058	plus 0.11 L. 6/18/87). 103.43 0.077 106.12 0.077 Samples effervesce. 109.85 0.076
DH42A DH42A DH42A DH42A DH42A DH42A DH42A DH42A DH42A DH42A DH42A DH42A	11/19/87 10:55 2.17 11/19/87 10:55 2.17 01/04/88 11:25 3.28 02/08/88 11:10 2.47 03/29/88 11:15 3.57 05/05/88 09:00 2.38 05/12/88 09:00 2.38 05/12/88 09:00 2.38 07/12/88 08:30 4.06 07/28/88 10:15 1.25 09/14/88 08:45 3.00 09/27/88 10:10 1.07 12/13/88 09:35 7.95	1052.45 29.970 1098.48 46.030 1133.47 34.990 1183.47 50.000 1220.38 36.910 1227.40 7.020 1288.35 60.950 1304.43 16.080 1352.36 47.930 1365.42 13.060 1442.40 76.980	112.02 0.072 115.30 0.071 117.77 0.071 121.34 0.071 123.72 0.064 124.22 0.071 128.28 0.067 129.53 0.063 132.60 0.082 141.55 0.103

,

					vala li	rougn becen	iber 31	, 1900
Location	Date		Liters Removed	Days Since 1/01/85	Used	Cumulative Liters Collected	Liters per Day	Remarks
DH215	, 01/02/83		NA	0.000	0.000	0.00	0.000	Approximate date E140 drift was excavated at
	01/06/83 04/20/84			0.000 0.000	0.000 0.000	0.00 0.00	0.000 0.000	S1950. Uphole drilled 1/05/83 to 1/06/83. Experimental brine collection device
DH215	01/15/85	11:00	00.05	14.458	1.000	0.05	0.000	installed. First data entry in BSEP Phase I collecting
0H215 0H215	01/22/85 01/29/85 02/05/85 02/11/85 02/11/85 02/19/85 02/19/85 02/19/85 02/10/85 03/20/85 03/20/85 03/20/85 03/20/85 03/20/85 05/11/85 05/21/85 05/	$\begin{array}{c} 12:00\\ 12:00\\ 11:02:10\\ 12:10\\$	8.88 8.86 8.65 8.65 8.65 8.65 8.65 8.65	$\begin{array}{c} 21.500\\ 28.500\\ 35.500\\ 41.542\\ 44.458\\ 49.441\\ 56.507\\ 65.438\\ 70.521\\ 78.583\\ 84.479\\ 91.542\\ 99.542\\ 99.542\\ 99.542\\ 99.542\\ 99.542\\ 126.451\\ 126.451\\ 126.451\\ 123.546\\ 140.510\\ 148.458\\ 154.552\\ 161.549\\ 168.474\\ 175.538\\ 189.527\\ 210.465\\ 224.588\\ 189.527\\ 210.465\\ 227.472\\ 225.553\\ 231.540\\ 237.608\\ 252.503\\ 259.417\\ 266.466\\ 273.455\\ 280.500\\ 287.480\\ 295.496\\ 301.496\\ 316.471\\ \end{array}$	7.042 7.000 6.042 2.916 3.066 8.931 5.083 8.003 7.041 6.021 6.021 6.021 6.041 6.021 7.065 6.964 7.948 6.094 6.997 7.064 6.997 7.064 6.997 8.001 5.938 7.069 8.001 5.938 7.068 8.875 6.020 6.914 7.049 6.925 7.064 6.925 7.064 6.925 7.064 6.925 7.064 6.925 7.064 6.925 7.064 6.925 7.064 6.925 7.064 6.925 7.064 6.925 7.064 6.925 7.064 6.925 7.064 6.925 7.064 6.925 7.064 6.925 7.064 6.925 7.064 6.925 7.064 6.925 7.066 8.001 5.938 7.045 6.924 6.924 7.045 6.925 6.924 6.924 6.925 6.925 6.924 6.925 6.925 6.925 6.925 6.925 6.926 6.925 6.925 6.926 6.927 6.928 6.926 6.927 6.928 6.928 6.929 8.001 5.938 6.020 6.924 6.924 6.925 6.925 6.925 6.925 6.925 6.926 6.925 6.926 6.927 6.927 6.927 6.928 6.927 6.928 6.929 7.045 6.928 6.929 7.045 6.929 6.929 7.045 6.929 7.045 6.929 7.045 6.920 7.045	0.21 0.25 0.31 0.34 0.41 0.50 0.62 0.72 0.83 0.88 0.93 1.05 1.15 1.23 1.32 1.43 1.51 1.60 1.69 1.82 2.077 2.17 2.26 2.37 2.51 3.34 3.46 3.59 3.71 3.25 3.34 4.01 4.34 4.46	0.010 0.010 0.014 0.013 0.020 0.014 0.013 0.020 0.014 0.020 0.014 0.007 0.012 0.012 0.013 0.011 0.012 0.013 0.011 0.012 0.013 0.014 0.015 0.019 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.020 0.016 0.017 0.020 0.016 0.017 0.020 0.016 0.017 0.020 0.016 0.017 0.020 0.016 0.017 0.020 0.016 0.017 0.020 0.016 0.017 0.020 0.016 0.017 0.020 0.016 0.017 0.020 0.016 0.017 0.020 0.016 0.017 0.020 0.016 0.020 0.017 0.020 0.016 0.020 0.017 0.020 0.016 0.020 0.017 0.020 0.017 0.020 0.017 0.020 0.017 0.020 0.017 0.020 0.0017 0.0016 0.0016	Salt crystals in container. Salt crystals in container. Floor lowered in E140 north of this location.
	11/19/85 11/20/85			0.000 0.000	0.000 0.000			Floor of E140 drift excavated, collar of downhole DH216 destroyed. Crossdrift excavation at S1950 initiated
DH215 DH215	12/04/85 12/10/85 12/17/85 01/03/86	13:05 14:20	00.11 00.40	337.625 343.545 350.597 367.458	21.154 5.920 7.052 16.861	5.10 5.50	0.017 0.019 0.057 0.059	Brine overflowing container, unknown amount
DH215 DH215	01/08/86 01/16/86 01/23/86 01/29/86	11:00 12:00	00.70 00.63	372.476 380.458 387.500 0.000	5.018 7.982 7.042 0.000		0.072 0.088 0.089 0.000	not collected. Crossdrift excavation at \$1950 initiated toward west.
DH215 DH215 DH215 DH215 DH215 DH215 DH215	01/31/86 02/12/86 02/19/86 02/28/86 03/06/86 03/13/86 03/26/86 04/02/86	12:25 13:15 00:00 12:20 11:30 11:15	00.27 00.26 NA 00.96 00.40 00.72	395.576 407.517 414.552 0.000 429.514 436.479 449.469 456.438	7.035 0.000 14.962 6.965	8.91 9.17	0.037 0.000 0.064 0.057 0.055	

0H215 DH215 DH215 DH215 DH215 DH215 DH215 DH215 DH215 DH215 DH215 DH215 DH215 DH215 DH215 DH215 DH215 DH215	04/08/86 11:00 00.15 04/16/86 13:00 00.40 04/24/86 11:00 00.26 04/30/86 11:35 00.16 05/06/86 11:05 00.21 05/13/86 10:10 00.29 05/20/86 11:45 00.20 05/27/86 16:00 00.20 06/03/86 11:65 00.27 06/10/86 12:10 00.33 06/17/86 11:47 00.23 06/24/86 11:50 00.10 07/01/86 14:32 00.15 07/08/86 11:30 00.14	470.542 8.084 12.10 478.458 7.916 12.36 484.483 6.025 12.52 490.462 5.979 12.73 497.424 6.962 13.02 504.490 7.066 13.22 518.462 6.795 13.69 525.507 7.045 14.02 532.491 6.984 14.25 539.493 7.002 14.35 546.676 7.113 14.50	0.025 0.049 0.033 0.027 0.035 0.042 0.028 0.042 0.028 0.040 0.047 0.033 0.014 0.021 0.020 About 1 lb. of salt encrustation removed from funnet on 1/07/86.
DH215 DH215	07/16/86 11:45 00.10 07/22/86 10:31 00.06 07/29/86 11:27 00.13 08/05/86 11:59 00.14 08/12/86 11:59 00.04 08/26/86 11:55 00.02 09/04/86 11:55 NA 09/23/86 11:55 NA 09/23/86 11:35 00.00 10/01/86 08:23 00.02 10/08/86 13:41 NA 10/14/86 13:47 00.00 11/05/86 12:50 0.16 11/20/86 NA: NA 12/30/86 09:51 00.14	567.438 5.948 14.80 574.477 7.039 14.93 581.499 7.022 15.07 588.486 6.987 15.20 595.500 7.014 15.24 602.497 6.097 15.26 611.497 9.000 15.26 630.483 18.986 15.28 643.570 7.221 15.28 645.570 7.221 15.28 651.574 13.225 15.28 673.535 35.186 15.44	0.012 0.010 0.018 0.020 0.019 0.006 0.003 0.000 Trace of brine. 0.000 Dry. 0.003 0.000 Trace, none collected. 0.000 Dry. 0.000 0.000 0.000 Dry. 0.000 0.000
DH215 DH215 DH215 DH215 DH215 DH215 DH215 DH215 DH215 DH215 DH215 DH215 DH215	02/04/87 10:06 00.50 03/06/87 09:42 0.29 03/30/87 09:45 0.33 05/07/87 13:10 0.09 06/17/87 09:15 0.18 07/28/87 10:11 0.28 09/01/87 09:05 0.20 10/20/87 08:46 0.00 11/19/87 08:31 0.00 12/11/87 11:00 01/04/88 10:05 02/09/88 09:25 02/09/88 09:25	818.406 24.002 16.70 856.549 38.143 16.79 897.385 40.836 16.97 938.424 41.039 17.25 973.378 34.954 17.45 1022.37 48.992 17.45 1052.35 29.980 17.45 1098.42 0.000 17.45 1098.42 0.000 17.45	0.014 0.010 0.013 0.002 0.004 0.007 0.006 0.000 Dry. 1/2-inch salt crust in container. 0.000 Dry. 0.000 Dry. 0.000 Container is dry. Funnel was removed and the back was trimmed.
DH215 DH215 DH215 DH215 DH215 DH215	03/29/88 09:15 07/12/88 13:50 09/27/88 13:00 0.00 10/13/88 11:00 12/13/88 10:45 0	1288.58 0.000 17.45 1365.54 0.000 17.45 1381.46 0.000 17.45	0.000 No funnel. 0.000 No funnel. 0.000 None collected. 0.000 Installed funnel and collection bottle. 0.000 Dry.

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	per	Remarks
DHP401	10/29/86			0.000	0.000			Drift excavated at S1950/E1320.
DHP401	01/06/87	00:00	NA	0.000	0.000	0.00	0.000	Uphole drilling initiated 12/08/86, stopped on 12/09/86 at 27.9 ft. Drilling resumed 1/02/87 and completed 1/06/87.
DHP401	03/06/87			794.385	1.000	0.12		First time collected.
DHP401	03/30/87			818.385	24.000	0.18		
DHP401	04/22/87			841.465	23.080	0.35		Stalactite growth beside funnel.
DHP401	06/11/87			891.417	49.952	0.73		
DHP401	07/28/87			938.427	47.010	1.00		Clay accumulation in container.
DHP401	09/01/87		0.32	973.372	34.945	1.32		
DHP401	09/16/87	09:15		988.385	0.000	1.32	0.000	0.01 liter in jar, not removed. No calculation.
DHP401	11/16/87	08:50	0.59	1049.37	75.998	1.91	0.008	
DHP401	02/09/88	09:00	0.43	1134.38	85.010	2.34		
DHP401	03/07/88	10:00	0.02	1161.42	27.040	2.36		Removed collecting device.
DHP401	03/29/88	09:00		1183.38	0.000	2.36	0.000	No collecting device.
DHP401	07/12/88	13:50		1288.58	0.000	2.36	0.000	No funnel.
DHP401	09/27/88			1365.54	0.000	2.36		None collected.
DHP401	10/13/88	10:00		1381.42	0.000	2.36	0.000	Installed funnel and collection bottle.
DHP401	12/13/88	10:50	0	1442.45	281.030	2.36	0.000	Dry.

Location	Date	Time	Liters Removed	Days Since 1/01/85	Used	Cumulative Liters Collected	per	and the state
DHP402A DHP402A DHP402A	10/29/86 12/05/86 03/06/87 03/30/87 04/22/87	00:00 09:40 09:15	NA 0.14 0.00	0.000 0.000 794.403 818.385 841.475	0.000	0.00 0.14 0.14	0.000	Drift excavated at \$1950/E1320. Downhole completed. First time sampled. Bailer stuck in hole. Hole appers offset or blocked at the 45 foot level. There may be a
DHP402A	07/08/87	00:00	NA	0.000	0.000	0.00	0.000	rock bolt or piece of rod in hole. Horizontal pilot hole for Room 7 of the first Waste Storage Panal started just north of
DHP402A	07/16/87	09:20	0.00	926.389	0.000	0.17	0.000	this location, drilled with brine. Hole entirely filled with brine from drilling the pilot /gas release hole for the last room
DHP402A	07/28/87	10:20	17.50	938.431	0.000	17.67	0.000	of the first panel. Removed 17.5 liters of brine from hole, mostly drilling fluid. No calculation.
DHP402A	07/29/87	09:10	15.00	939.382	0.000	32.67	0.000	Drilling brine removed from hole. Partial evacuation, brine left in hole, no calculation.
DHP402A	08/16/87		NA	0.000	0.000	0.00	0.000	Brine from the AIS sump spread in Panel 1 to assist in the reconstitution of Loose muck on floor.
DHP402A	08/20/87		NA	0.000	0.000	0.00	0.000	Brine from the AIS sump spread in Panel 1 to assist in the reconstitution of loose muck on floor.
DHP402A	10/01/87	00:00	NA	0.000	0.000	0.00	0.000	Approximate date the salt muck stockpile was placed at the east end of \$1950, covering the collar of this hole.
	07/12/88 08/19/88		57.25	1288.58 1326.42	0.000 484.945		0.185	Muck piled over hole, could not collect. Used 72.25 liters for calculation (15.0 on 7/29 + 57.25 on 8/19).
DHP402A	08/30/88	11:00	42.75	1337.46	11.040	132.67	3.872	Depth of water 28.8 feet below floor. Bottom of hole at 44.3 feet. 5.7 feet of salt on bottom of hole.
DHP402A	09/15/88	10:00	0.24	1353.42	0.000	132.91	0.000	Not fully evacuated. Don't use for calculation. Sampled for bacteriology.
DHP402A DHP402A DHP402A		13:00		1360.38 1365.54 1386.57	0.000	196.66	0.000	Hole evacuated to 44.2' level. None collected. Some moisture could have entered hole due to water spread for dust control.
DHP402A	11/15/88	10:30	40.65	1414.44	27.870	282.31	1.459	Evacuated to 43.75 foot level. Lip or obstruction near bottom of hole prevents additional evacuation.
DHP402A	12/13/88	10:50	6.0	1442.45	0.000	288.31	0.000	Not fully evacuated, some brine left in hole. Don't use for calculation.
DHP402A	12/29/88	12:00	43.60	1458.50	44.060	331.91	1.126	Used 49.6 liters for calculation (6.0 on 12/13 + 43.6 on 12/29).

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	per	Remarks
EES12B	02/17/83	00:00	NA	-684.00	0.000	0.00	0.000	Approximate date drift at N1420/E140 excavated.
EES12B	06/05/86	00:00	NA	520.000	0.000	0.00	0.000	Excavation effects downhole drilled to 9.3 ft
EES12B EES12B	06/12/86 06/12/86			527.406 527.431	527.406 0.025		0.019 60.000	High liters per day results from high initial inflow rate through fractures after bailing.
EES128 EES128 EES128 EES128 EES128 EES128 EES128 EES128 EES128 EES128	07/10/86 07/10/86 07/10/86 07/10/86 07/10/86 07/29/86 08/05/86 08/12/86 08/12/86	11:29 11:40 11:48 12:33 09:40 10:30 09:30 10:15	1.6 1.0 0.5 0.4 9.75 07.17 06.00 05.40	555.469 555.478 555.486 555.492 555.523 574.403 581.438 588.396 595.427	0.009 0.008 0.006 0.031 18.880 7.035 6.958 7.031	23.60 24.60 25.10 25.50 35.25 42.42 48.42 53.82	125.00 83.330 12.900 0.516 1.019 0.862 0.768	See above, high liters per day. See above, high liters per day. See above, high liters per day. See above, high liters per day. Pumped to 8.0' level (total length of suction hose).
EES12B EES12B EES12B EES12B EES12B EES12B	08/26/86 09/04/86 09/09/86 09/16/86 09/23/86 10/01/86	09:25 12:30 09:08 09:12	05.39 04.50 04.33 04.58	602.403 611.392 616.521 623.381 630.383 638.449	6.976 8.989 5.129 6.860 7.002 8.066	64.05 68.55 72.88 77.46	0.694 0.600 0.877 0.631 0.654 0.979	Brine left in hole although more evacuated than usual. Brine level at 7.95, top of muck
EES12B	10/08/86	09:49	05.14	645.409	6.960	90.50	0.739	at 8.80. After total evacuation - rapid brine inflow with gas. Connects with holes 3.8' W and 4.3' E. Hole 8.9' deep. 0.64 L taken 5 min. later.
EES12B	10/08/86	09:54	00.64	645.413	0.004	91.14	160.00	High liters per day results from high initial inflow rate after bailing.
EES12B EES12B EES12B EES12B EES12B	10/08/86 10/14/86 11/05/86 11/20/86 12/31/86	10:26 09:40 NA:	02.29 8.18 NA	645.615 651.435 673.403 688.000 729.432	14.597	94.74 102.92 102.92	0.393 0.372 0.000	See above. Complete evacuation.

Location	Date	Time	Liters Removed	Days Since 1/01/85	Used	Cumulative Liters Collected	per	
EES21B EES21B	07/26/85 07/09/86		• •		0.000 554.000			Approximate date drift at S700/E66 excavated. Excavation effects downhole drilled 7/08/86 to 7/09/86.
EES21B	07/09/86	09:17	4.5	554.387	0.387	4.50	11.630	High liters per day results from high initial inflow through fractures after bailing.
	07/09/86			554.507 561.470	0.120		13.330	See above, high liters per day.
EES21B EES21B EES21B EES21B	07/16/86 07/18/86 07/22/86 07/28/86 07/29/86	11:15 19:55 08:45 11:20	4.6 4.6 4.5 3.65	561.517 563.469 567.830 573.365 574.472	0.047 1.952 4.361 5.535 1.107	15.85 20.45 24.95 28.60	2.357 1.055 0.813 3.297	See above, high liters per day.
	08/05/86 08/12/86			581.491 588.479	7.019 6.988	33.30 38.05	0.670	Pumped to 8'level (total length of suction hose).
EES21B EES21B EES21B EES21B	08/19/86 08/26/86 09/04/86 09/09/86 09/16/86	11:20 11:25 12:30 10:51	04.78 04.85 04.86 04.84	595.493 602.472 611.476 616.521 623.452	7.014 6.979 9.004 5.045 6.931	52.48 57.34 62.18	0.685 0.539 0.963 0.698	Bottom of muck.
	09/23/86 10/01/86			630.451 638.385	6.999 7.934	67.10 71.49		Full to bottom of muck. Full, moisture overflowing, bubbling violently at bottom. Approximately 1 ft. brine still in hole.
EES21B	10/08/86	12:52	05.49	645.536	7.151	76.98	0.768	Brine level right at salt-muck interface 0.20 feet below floor.
EES21B EES21B EES21B	10/08/86 10/14/86 11/05/86 11/20/86 12/30/86	12:55 12:28 NA:	04.94 4.98 NA	645.607 651.538 673.519 688.000 728.000	0.071 5.931 21.981 14.481 54.481	77.34 82.28 87.26 87.26 87.26	0.833 0.227 0.000	Last time checked for BSEP.

Location	Date	Time Liters Removed	Days d Since 1/01/85	Used	Cumulative Liters Collected	Liters per Day	
GSEEP	11/21/84	۰.	0.000	0.000	0.00	0.000	Approximate date this part of Room G
GSEEP GSEEP	08/28/85 11/12/85	1	0.000 0.000	0.000 0.000			excavated. Noticed damp area on floor at this location. Damp area on floor near S. rib approx. E1140 (45 ft. E. of DH35) and at E1149. Crusted moist area is about 4 ft. by 4 ft., has
GSEEP	11/12/85	2	0.000	0.000	0.00	0.000	increased noticeably in size over last two months. Damp area covers 16 ft. E-W, 13 ft. N-S across width of Room G.
GSEEP	11/12/85	3	0.000	0.000	0.00	0.000	Many weeps on lower 3 ft. of S. rib. Brine is
GSEEP GSEEP GSEEP GSEEP GSEEP GSEEP GSEEP GSEEP GSEEP	12/03/85 12/04/85 12/10/85 01/23/86 01/31/86 02/12/86 02/19/86	$\begin{array}{c} 12:00 & 03.00 \\ 12:00 & 01.50 \\ 12:00 & 01.13 \\ 12:00 & 01.60 \\ 12:00 & 00.50 \\ 12:00 & 00.94 \\ 12:00 & 02.23 \\ 12:00 & 02.14 \\ 12:00 & 01.95 \end{array}$	329.500 336.500 337.500 343.500 387.500 395.500 407.500 414.500 423.500	8.000	4.50 5.63 7.43 7.93 8.87 11.10 13.24	0.214 1.130 0.300 0.011 0.117 0.186 0.306	Lots of salt in pool. Pumped twice. Partial removal. No pump, scooped with
GSEEP GSEEP	03/06/86 (3/13/86 03/26/86 04/02/88 04/02/88 04/08/86 04/24/86 05/27/86 05/05/86 05/27/86 05/27/86 05/27/86 05/27/86 05/27/86 05/27/86 05/27/86 05/27/86 05/27/86 05/27/86 05/27/86 05/27/86 05/27/86 05/27/86 05/27/86 05/27/86 05/21/86 07/01/86 05/25/86 05/16/86 05/12/	$\begin{array}{c} 11:20 & 02.62 \\ 10:50 & 02.07 \\ 11:46 & 03.23 \\ 10:20 & 02.08 \\ 000 & 02.68 \\ 10:00 & 02.68 \\ 10:00 & 02.44 \\ 10:30 & 02.49 \\ 11:20 & 02.40 \\ 10:30 & 02.49 \\ 11:20 & 02.40 \\ 10:30 & 02.49 \\ 11:20 & 02.40 \\ 10:30 & 03.31 \\ 11:38 & 03.21 \\ 11:15 & 03.11 \\ 11:38 & 03.21 \\ 11:15 & 03.11 \\ 11:38 & 03.21 \\ 11:15 & 03.11 \\ 11:38 & 03.21 \\ 11:15 & 03.11 \\ 11:38 & 03.21 \\ 11:50 & 03.31 \\ 11:38 & 03.21 \\ 11:50 & 03.31 \\ 11:50 & 03.31 \\ 11:38 & 03.21 \\ 11:50 & 03.31 \\ 11:50 & 03.31 \\ 11:50 & 03.31 \\ 11:00 & 04.60 \\ 14:00 & 05.43 \\ 10:50 & 03.32 \\ 10:50 & 04.60 \\ 11:00 & 05.43 \\ 10:50 & 03.32 \\ 10:50 & 04.60 \\ 11:00 & 05.51 \\ 10:00 & 03.70 \\ 10:25 & 03.82 \\ 10:20 & 04.29 \\ 10:25 & 03.82 \\ 10:20 & 04.29 \\ 10:25 & 03.82 \\ 10:20 & 04.29 \\ 10:25 & 03.82 \\ 10:20 & 04.29 \\ 10:25 & 03.82 \\ 10:20 & 04.29 \\ 11:20 & 04.29 \\ 10:25 & 03.82 \\ 10:20 & 04.29 \\ 11:20 & 04.29 \\ 10:25 & 03.82 \\ 11:20 & 04.29 \\ 10:25 & 04.44 \\ 10:20 & 04.29 \\ 10:45 & 4.44 \\ 10:20 & 05.28 \\ 11:20 & 05.28 \\ 11:20 & 04.29 \\ 10:25 & 04$	427.472 429.451 436.490 449.431 456.417 462.417 470.500 478.438 484.458 497.472 504.472 511.646 518.444 525.485 532.469 539.458 546.583 553.451 561.451 567.427 574.448 581.472 588.448 595.486 602.458 511.455 616.417 623.434 630.431 638.517 645.448 651.465 673.448	6.986 6.000 8.083 7.938 6.020 5.980 7.034 7.004 7.004 6.989 7.125 6.868 8.000 5.976 7.021 7.024 6.976 7.021 7.024 6.977 8.987 6.977 8.086 6.977 8.086 6.977 8.086 6.972 8.087 1.763 8.086 6.972 8.087 21.983	$\begin{array}{c} 19.88\\ 25.11\\ 26.79\\ 31.29\\ 33.53\\ 35.88\\ 38.28\\ 40.77\\ 43.43\\ 45.87\\ 48.98\\ 52.29\\ 55.50\\ 58.61\\ 63.21\\ 68.64\\ 72.78\\ 76.10\\ 78.39\\ 81.07\\ 83.67\\ 87.34\\ 91.24\\ 94.97\\ 100.12\\ 103.82\\ 107.64\\ 111.93\\ 115.63\\ 121.30\\ 122.54\\ 124.73\\ 129.17\\ \end{array}$	$\begin{array}{c} 0.232\\ 0.384\\ 0.417\\ 0.277\\ 0.296\\ 0.399\\ 0.446\\ 0.379\\ 0.434\\ 0.487\\ 0.445\\ 0.658\\ 0.445\\ 0.658\\ 0.382\\ 0.382\\ 0.382\\ 0.554\\ 0.535\\ 0.555\\ 0.572\\ 0.766\\ 0.535\\ 0.554\\ 0.613\\ 0.458\\ 0.548\\ 0.548\\ 0.548\\ 0.548\\ 0.569\\ 0.537\\ 0.202\\ 0.202\\ 0.$	Second collection for this day.
GSEEP GSEEP GSEEP GSEEP GSEEP GSEEP GSEEP GSEEP GSEEP GSEEP GSEEP GSEEP	12/30/86 02/03/87 03/30/87 05/07/87 06/30/87 07/16/87 07/23/87 07/28/87 08/07/87 08/12/87	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	688.501 728.535 763.573 794.479 818.482 856.492 910.417 926.438 933.389 938.483 948.385 953.425 965.365	40.034 35.038 30.906 24.003 38.010 53.925 16.021 6.951 5.094 9.902 5.040	133.01 137.45 140.90 143.90 144.41 149.72 161.96 173.62 177.49 179.85 185.18 187.98 194.51	0.111 0.098 0.097 0.100 0.087 0.227 0.728 0.557 0.463 0.558	

GSEEP GSEEP GSEEP GSEEP	09/01/87 11:00 5.26 09/11/87 09:00 5.03 09/16/87 09:33 2.42 09/25/87 08:55 4.12	973.458 983.375 988.398 997.372	8.093 9.917 5.023 8.974	199.77 204.80 207.22 211.34	0.650 0.507 0.482 0.459	Sump drilled to facilitate accumulation of
		997.372 1003.51 1010.43 1018.45 1022.50 1045.45 1052.48 1070.53 1098.51 1114.48 1133.51 1150.44 1163.43 1171.47 1183.49 1200.46 1220.42	8.974 6.138 6.920 8.020 4.050 22.950 7.030 18.050 27.980 15.970 19.030 16.930 12.990 8.040 12.020 16.970 19.960	211.34 214.15 217.12 220.49 222.55 232.76 235.66 242.68 258.79 267.47 277.05 288.92 296.27 300.72 300.72 306.14 313.57 322.91	0.459 0.458 0.429 0.420 0.509 0.445 0.509 0.546 0.546 0.553 0.701 0.566 0.553 0.458 0.458 0.458 0.458 0.458 0.458	Sump drilled to facilitate accumulation of brine.
GSEEP GSEEP	05/12/88 09:30 3.55 06/09/88 08:45 12.00	1227.40 1255.36	6.980 27.960	326.46 338.46	0.509	
GSEEP	06/16/88 09:43 4.13	1262.40	7.040	342.59	0.587	
GSEEP	06/30/88 08:30 6.00	1276.35	13.950	348.59	0.430	
GSEEP	07/12/88 09:00 6.40	1288.38	12.030	354.99	0.532	
GSEEP	07/28/88 10:30 11.35	1304.44	16.060	366.34	0.707	
GSEEP	08/11/88 10:00 12.02	1318.42	13.980	378.36	0.860	the state of the disation becausing
GSEEP	08/25/88 09:07 6.72	1332.38	13.960	385.08	0.481	Hole covered with tight fitting brattice cloth.
GSEEP	09/08/88 14:48 7.31	1346.62	14.240	392.39	0.513	š
GSEEP	09/14/88 08:30 3.00	1352.35	5.730	395.39	0.524	
GSEEP	09/27/88 10:50 6.45	1365.45	13,100	401.84	0.492	
GSEEP	10/18/88 10:22 10.20	1386.43	20,980	412.04	0.486	Sector and the sector
GSEEP	11/10/88 09:08 12.62	1409.38	22.950	424.66	0.550	Smell of urine in sample and coming from
GSEEP	11/10/00 07:00 12:02	407.30		121.00		hole.
GSEEP	12/13/88 10:20 17.81	1442.43	33.050	442.47	0.539	Sample effervesces and brine feels warmer than usual.

-

Location	Date		Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks -
IG201	03/16/83			0.000	0.000	0.00	0.000	Approximate date the west side of SPDV Test
IG201	03/20/83			0.000	0.000	0.00	0.000	Room 2 excavated. Approximate date hole drilled, inclinometer guide tube partially grouted into hole 3/28/83.
16201 16201 16201	11/30/84 01/08/85 01/09/85	12:00	01.52	-31.500 7.500 8.417	1.000 39.000 0.917	64.62	0.000	First time collected, 63.10 liters removed. Partialy evacuated, some brine left in hole. Some fluid was lost. Should add 1.52 liters from partial evacuation day before to this volume for liters/day calculation. Volume high
IG201	01/15/85	09:10	00.33	14.382	5.965	67.43	0.055	for 1/09/85 because some brine was stored behind the liner and drained into hole after
IG201 IG201	01/22/85 01/29/85 02/05/85 02/05/85 02/05/85 02/05/85 02/11/85 02/26/85 03/05/85 03/05/85 03/20/85 05/21/85 05/21/85 05/21/85 05/21/85 05/21/85 05/21/85 05/21/85 05/21/85 05/21/85 05/21/85 05/21/85 05/21/85 05/21/85 07/09/85 07/09/85 07/10/85 07/10/85 07/10/85 07/10/85 07/10/85 07/10/85 07/10/85 07/10/85 08/04/85 09/10/85 09/11/85 09/04/85 09/04/85 09/04/85 09/04/85 09/04/85 09/04/85 09/04/85 09/04/85 09/04/85 09/04/85 09/04/85 09/04/85 09/04/85 09/10/85 09/11/85 09/11/85 09/12/85 01/02/85 11/25/85 11/25/85 11/25/85 11/21/85 01/03/86 01/23/86 01/	109011099099999991121110111109111110112111001211101110	5594326557774488737344596277344488716125161318779149455153734286151725173998 8888888888888888888888888888888888	$\begin{array}{c} 21.4247\\ 35.389\\ 49.6496\\ 63.3751\\ 49.563\\ 70.3751\\ 8491\\ 99.6590\\ 8491\\ 99.6590\\ 8491\\ 99.6590\\ 8491\\ 99.6590\\ 8491\\ 99.6590\\ 8491\\ 99.6590\\ 8491\\ 99.6590\\ 8491\\ 99.6590\\ 8491\\ 99.6590\\ 8491\\ 99.6590\\ 8491\\ 89.650\\$	$\begin{array}{c} 7.042\\ 7.042\\ 6.017\\ 8.063\\ 6.984\\ 6.985\\ 8.026\\ 5.984\\ 6.985\\ 8.026\\ 5.987\\ 7.020\\ 7.020\\ 7.020\\ 7.023\\ 7.023\\ 7.023\\ 7.023\\ 7.023\\ 7.023\\ 7.023\\ 7.023\\ 7.023\\ 8.055\\ 5.987\\ 7.023\\ 8.055\\ 5.988\\ 6.953\\ 8.048\\ 9.099\\ 8.055\\ 5.989\\ 6.953\\ 8.048\\ 9.095\\ 8.055\\ 5.989\\ 6.953\\ 8.048\\ 9.095\\ 8.055\\ 5.989\\ 6.953\\ 8.048\\ 9.095\\ 8.055\\ 5.989\\ 6.953\\ 8.048\\ 9.095\\ 8.055\\ 5.989\\ 6.953\\ 8.048\\ 9.055\\ 7.021\\ 7.021\\ 7.021\\ 7.025\\ 8.055\\ 5.989\\ 8.055\\ 5.989\\ 8.055\\ 5.989\\ 8.055\\ 5.989\\ 8.055\\ 5.989\\ 8.055\\ 5.989\\ 8.055\\ 5.989\\ 8.055\\ 5.989\\ 8.055\\ 5.989\\ 8.055\\ 5.989\\ 8.055\\ 5.989\\ 8.055\\ 5.989\\ 8.055\\ 5.989\\ 8.055\\ 5.989\\ 8.055\\ 5.989\\ 8.055\\ 5.985\\ 5.989\\ 8.055\\ 5.985\\ 5.989\\ 8.055\\ 5.985\\ 5.$	$\begin{array}{c} 68.36\\ 68.60\\ 69.88\\ 69.88\\ 69.88\\ 70.36\\ 71.32\\ 71.35\\ 71.77\\ 72.32\\ 72.72\\ 72.77\\ 72.32\\ 77.33\\ 73.36\\ 74.42\\ 74.94\\ 75.57\\ 75.69\\ 76.613\\ 76.61\\ 77.024\\ 79.92\\ 79.57\\ 79.56\\ 80.43\\ 80.43\\ 80.43\\ \end{array}$	0.036 0.043 0.040 0.043 0.040 0.037 0.036 0.031 0.033 0.032 0.032 0.032 0.024 0.0223 0.024 0.022 0.024 0.024 0.022 0.032 0.030 0.024 0.032 0.032 0.024 0.032	Initial draining. Brine effervesces. Brine effervesces.

.

.

IG201 06/17/86 11:22 NA 532.474 48.006 81.41 0.000 IG201 06/24/86 11:20 NA 539.472 55.004 81.41 0.000 IG201 07/01/86 14:20 NA 539.472 55.004 81.41 0.000 IG201 07/08/86 10:55 NA 553.455 68.987 81.41 0.000 IG201 07/16/86 11:00 NA 561.458 76.990 81.41 0.000 IG201 07/22/86 10:25 NA 567.431 82.963 81.41 0.000 IG201 07/22/86 10:25 NA 567.431 82.963 81.41 0.000 IG201 07/04/86 11:00 NA 514.58 76.990 81.41 0.000 IG201 09/04/86 10:28 NA 623.436 138.968 81.41 0.000 IG201 10/08/86 11:25 02.57 645.476 161.008 83.98 0.016 Solvent odor, fluid "frothy" in container. IG201 10/08/86 11:25 <th>IG201 IG201 IG201 IG201 IG201 IG201 IG201 IG201 IG201 IG201 IG201 IG201 IG201 IG201 IG201 IG201</th> <th>06/24/86 11:20 NA 07/01/86 14:20 NA 07/08/86 10:55 NA 07/16/86 10:55 NA 07/16/86 10:55 NA 07/22/86 10:55 NA 09/04/86 10:55 NA 09/04/86 11:00 NA 09/09/86 09:15 NA 09/16/86 10:28 NA 10/01/86 12:31 NA 10/08/86 11:25 02.57 10/14/86 12:14 00.19 11/05/86 11:55 NA 11/20/86 NA: NA 12/30/86 01:13 00.53 02/04/87 09:30 00.44 03/06/87 13:00 0.37</th> <th>462.427 6.007 81.00 470.521 8.094 81.11 478.441 7.920 81.33 484.468 6.027 81.44 490.444 5.976 81.44 504.479 20.011 81.44 511.674 27.206 81.44 511.674 27.206 81.44 511.674 27.206 81.44 532.470 48.006 81.44 539.472 55.004 81.44 532.474 48.006 81.44 532.475 68.987 81.44 533.455 68.987 81.44 546.597 62.129 81.44 553.455 68.987 81.44 561.458 76.990 81.44 561.458 182.963 81.44 611.458 126.990 81.44 611.458 126.990 81.44 613.522 154.054 81.44 638.522 154.054 81.44 645.476</th> <th>0.019 0.016 0.017 0.000 Not collected, sampler left in hole. 0.000 0.001 0.012</th>	IG201 IG201 IG201 IG201 IG201 IG201 IG201 IG201 IG201 IG201 IG201 IG201 IG201 IG201 IG201 IG201	06/24/86 11:20 NA 07/01/86 14:20 NA 07/08/86 10:55 NA 07/16/86 10:55 NA 07/16/86 10:55 NA 07/22/86 10:55 NA 09/04/86 10:55 NA 09/04/86 11:00 NA 09/09/86 09:15 NA 09/16/86 10:28 NA 10/01/86 12:31 NA 10/08/86 11:25 02.57 10/14/86 12:14 00.19 11/05/86 11:55 NA 11/20/86 NA: NA 12/30/86 01:13 00.53 02/04/87 09:30 00.44 03/06/87 13:00 0.37	462.427 6.007 81.00 470.521 8.094 81.11 478.441 7.920 81.33 484.468 6.027 81.44 490.444 5.976 81.44 504.479 20.011 81.44 511.674 27.206 81.44 511.674 27.206 81.44 511.674 27.206 81.44 532.470 48.006 81.44 539.472 55.004 81.44 532.474 48.006 81.44 532.475 68.987 81.44 533.455 68.987 81.44 546.597 62.129 81.44 553.455 68.987 81.44 561.458 76.990 81.44 561.458 182.963 81.44 611.458 126.990 81.44 611.458 126.990 81.44 613.522 154.054 81.44 638.522 154.054 81.44 645.476	0.019 0.016 0.017 0.000 Not collected, sampler left in hole. 0.000 0.001 0.012
--	--	--	---	---

A-73

					vata tr	rougn becen	ber 31	, 1988
Locatio	on Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks
1G202	04/08/83			0.000	0.000	0.00	0.000	Approximate date west side of SPDV Test Room
IG202	04/10/83			0.000	0.000	0.00	0.000	1 excavated. Approximate date hole drilled, inclinometer guide tube partially grouted into hole
1G2O2 1G2O2	11/30/84 01/08/85			-31.500 7.500	1.000 39.000	52.00 64.58	0.000 0.323	4/21/83. First time collected. Volume high because some brine was stored behind the liner and drained into hole after initial draining.
IG202 IG202	01/15/85 01/22/85 02/05/85 02/11/85 02/19/85 02/26/85 03/05/85 03/20/85 03/20/85 03/20/85 03/20/85 03/20/85 03/20/85 03/20/85 04/02/85 04/02/85 04/17/85 05/07/85 05/12/85 05/29/85 06/04/85 06/11/85	$\begin{array}{c} 12:00\\ 12:00\\ 10:17\\ 09:30\\ 12:00\\ 09:03\\ 09:16\\ 09:00\\ 09:19\\ 13:56\\ 12:12\\ 13:00\\ 10:40\\ 11:16\\ 11:30\\ 10:21\\ 10:21\\ 10\\ 12:10\\ \end{array}$	00.34 00.33 00.41 00.22 00.32 00.25 00.23 00.25 00.23 00.23 00.21 00.21 00.21 00.21 00.21 00.21 00.21 00.21 00.21 00.21 00.21 00.21 00.21 00.21 00.21 00.21 00.21 00.21 00.25 00.23 00.21 00.25 00.25 00.21 00.25 00.25 00.21 00.25 00.21 00.25 00.25 00.21 00.25 00.25 00.21 00.25 0000000000	14.392 21.500 28.500 35.428 41.396 49.500 56.500 63.377 70.374 78.386 84.375 91.382 99.388 106.581 112.508 119.542 126.444 133.469 140.479 148.417 154.507 161.486	6.892 7.108 7.000 6.928 5.968 8.104 7.000 6.877 6.997 8.006 7.193 5.989 7.007 8.006 7.193 5.927 7.034 6.902 7.034 6.902 7.038 6.990 6.979	66.84 67.09 67.52 67.52 67.77 67.95 68.14 68.35 68.53 68.53 68.67 68.82 68.66 69.10 69.24 69.39	0.048 0.047 0.059 0.039 0.036 0.029 0.033 0.031 0.030 0.027 0.026 0.024 0.021 0.020 0.020 0.020 0.020 0.020 0.020	Hole entry becoming tight due to shear
IG202 IG202	06/18/85 06/25/85 07/02/85 07/09/85 07/16/85 08/06/85 08/06/85 08/06/85 08/28/85 08/06/85 08/28/85 09/04/85 09/10/85 09/10/85 09/10/85 09/10/85 09/10/85 09/10/85 09/10/85 09/10/85 09/24/85 06/03/86 05/20/86 05/20/86 05/20/86 05/20/86 05/20/86 05/20/86 05/20/86 05/20/86 05/20/86 05/20/86 05/20/86 05/20/86 05/20/86 05/20/86 05/20/86 05/20/86 05/20/86 05/20/86	09:50 11:30 11:15 12:19 11:15 11:08 12:17 11:00 10:00 10:00 10:00 10:35 11:15 11:00 10:00 10:35 11:15 11:50 11:50 11:50 12:45 11:50 12:23 12:10 NA:	00.11 00.007 00.111 00.007 00.118 00.007 00.008 00.009 00.13 000.009 00.108 00.009 00.108 00.009 00.110 00.009 00.110 00.009 00.110 00.007 00.011 00.007 00.011 00.007 00.011 00.007 00.011 00.007 00.011 00.007 00.011 00.007 00.011 00.007 00.011 00.009 00.011 00.009 00.011 00.009 00.011 00.009 00.011 00.009 00.011 00.009 00.011 00.009 00.011 00.009 00.011 00.009 00.011 00.009 00.011 00.009 00.011 00.009 00.011 00.009 00.011 00.009 00.009 00.011 00.009 00.011 00.009 00.011 00.009 00.011 00.009 00.011 00.009 00.000 00.009 00.009 00.000 00.009 00.000 00.000 00.009 00.0000 00.0000 00.0000 00.000000	$\begin{array}{c} 168.455\\ 175.410\\ 182.479\\ 189.469\\ 196.513\\ 204.469\\ 217.464\\ 225.512\\ 231.458\\ 225.512\\ 231.458\\ 239.417\\ 252.483\\ 259.417\\ 252.483\\ 259.417\\ 252.483\\ 259.417\\ 266.417\\ 273.441\\ 280.469\\ 462.458\\ 478.451\\ 490.458\\ 574.463\\ 5532.485\\ 574.463\\ 653.511\\ 645.493\\ 651.516\\ 673.507\\ 688.000\\ 728.000\\ \end{array}$	181.989 197.982 209.989 224.010 237.986 252.016 293.994 331.024 358.062 365.024 6.023 21.991 14.493 54.493	69.85 69.96 70.05 70.12 70.23 70.41 70.50 70.56 70.69 70.78 70.87 71.00 71.10 71.18 71.28	0.010 0.014 0.014 0.011 0.016 0.013 0.015 0.013 0.015 0.014 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000	closure of guide tube. Brine effervesces. Brine effervesces. Not sampled last week. Guide tube badly distorted, not collected. Not collected. First time collected in a year.
IG202 IG202	02/04/87	13:10	0.36	764.406	30.143	78.10	0.012	Paint chips in brine, smelled like paint thinner. Last time sampled for BSEP.
IG202 IG202	07/28/87 09/01/87	10:00	0.00	938.417 973.000	143.868 0.000	78.10 78.10		Hole pinched shut by shear closure. Unable to get sampler down hole. Did not evacuate, no calculation.

						5		
Location	Date	Time	Liters Removed	Days Since 1/01/85	Used	Cumulative Liters Collected		Remarks
	04/21/84 06/28/85 08/20/85 09/17/85 12/10/85 12/17/85 01/08/86 01/16/86 01/16/86 01/16/86 02/12/86 02/12/86 02/12/86 02/12/86 02/12/86 02/12/86 02/12/86 02/12/86 02/12/86 03/06/86 03/06/86 04/02/86 04/02/86 04/02/86 04/02/86 04/02/86 04/02/86 04/02/86 04/02/86 04/02/86 05/13/86 05/20/86 05/20/86 05/20/86 05/20/86	09:00 09:00 09	00.18 00.25 00.10 00.13 00.11 00.13 00.12 00.12 00.12 00.10 00.10 00.10 00.10 00.10 00.10 00.10 00.10 00.10 00.10 00.10 00.10 00.10 00.13 00.10 00.13 00.10 00.13 00.10 00.10 00.12 00.10 00.12 00.10 00.12 00.10 00.12 00.10 00.12 00.10 00.12 00.10 00.12 00.10 00.12 00.10 00.12 00.10 00.12 00.10 00.12 00.10 00.12 00.10 00.12 00.10 00.12 00.10 00.12 00.10 00.000 000000	0.000 0.000 0.000 343.375 350.375 367.375 387.375 387.375 387.375 395.375 414.375 423.375 429.385 436.358 449.361 456.347 462.354 470.378 470.378 420.378 440.378 440.378 440.378 450.372 484.392 490.378 497.375 504.389 511.597 518.372	0.000 0.000 1.000 1.000 1.000 5.000 8.000 7.000 8.000 7.000 8.000 7.000 6.010 6.973 13.003 6.986 6.020 5.986 6.020 7.014 7.208 6.775 7.014	0.00 0.00 2.84 3.02 3.27 3.37 3.50 3.61 3.74 4.05 4.20 4.30 4.40 4.40 4.40 4.40 4.40 5.03 5.13 5.22 5.32 5.52 5.62	0.000 0.000 0.000 0.026 0.015 0.020 0.016 0.016 0.016 0.016 0.017 0.017 0.017 0.017 0.017 0.017 0.015 0.016 0.015 0.014 0.014 0.014 0.014	
1525 1525 1525 1525 1525 1525 1525 1525	06/10/86 06/17/86 07/01/86 07/01/86 07/01/86 07/16/86 07/16/86 07/22/86 08/05/86 08/12/86 08/12/86 08/12/86 08/12/86 09/04/86 09/04/86 09/04/86 09/04/86 09/04/86 09/04/86 09/04/86 10/14/86 10/01/86 11/20/86 11/20/86 11/20/86 11/20/86 12/31/86 05/07/87 07/28/87 07/28/87 09/01/87 11/19/87 01/04/88 02/08/88 02/30/88 07/12/88 07/12/88 09/27/88 12/13/88	09:24 09:23 09:23:08 09:24:39 09:25:27 09:26:27 09:27 09:27 09:28:27 09:29 09:29 09:20 09:24:39 09:27 09:28:27 09:29 09:29 09:29 09:29 09:29 09:29 09:29 09:29 09:29 09:29 109:29 1109:29 121:29 121:21 <td>$\begin{array}{c} 00.10\\ 00.10\\ 00.10\\ 00.12\\ 00.09\\ 00.10\\ 00.12\\ 00.09\\ 00.10\\ 00.27\\ 00.18\\ 00.41\\ 00.33\\ 0.42\\ 0.38\\$</td> <td>525.398 532.392 539.398 546.506 553.385 561.392 567.374 574.394 574.394 574.394 575.419 602.400 611.385 616.485 623.376 630.381 638.415 645.392 651.423 673.397 688.426 729.446 729.446 729.446 729.446 729.446 729.446 1052.51 1052.51 1052.51 1052.51 1052.51 1052.51 1052.51 1052.51 1052.51 1052.51 1052.51 1052.51 1052.51 1052.51 1184.51 1288.49 1365.37 1442.48</td> <td>41.020 65.068 24.920 61.844 42.159 40.031 34.988 48.974 30.000 46.010 35.050 50.940 103.980 76.880</td> <td>5.82 5.92 6.02 6.12 6.24 6.33 6.43 6.62 6.62 6.62 6.82 6.94 7.01 7.31 7.41 7.41 7.41 7.41 7.41 7.41 7.41 7.4</td> <td>0.014 0.014 0.013 0.016 0.013 0.014 0.012 0.014 0.012 0.012 0.012</td> <td>Suction Lysimeter removed. Dry.</td>	$\begin{array}{c} 00.10\\ 00.10\\ 00.10\\ 00.12\\ 00.09\\ 00.10\\ 00.12\\ 00.09\\ 00.10\\ 00.27\\ 00.18\\ 00.41\\ 00.33\\ 0.42\\ 0.38\\$	525.398 532.392 539.398 546.506 553.385 561.392 567.374 574.394 574.394 574.394 575.419 602.400 611.385 616.485 623.376 630.381 638.415 645.392 651.423 673.397 688.426 729.446 729.446 729.446 729.446 729.446 729.446 1052.51 1052.51 1052.51 1052.51 1052.51 1052.51 1052.51 1052.51 1052.51 1052.51 1052.51 1052.51 1052.51 1052.51 1184.51 1288.49 1365.37 1442.48	41.020 65.068 24.920 61.844 42.159 40.031 34.988 48.974 30.000 46.010 35.050 50.940 103.980 76.880	5.82 5.92 6.02 6.12 6.24 6.33 6.43 6.62 6.62 6.62 6.82 6.94 7.01 7.31 7.41 7.41 7.41 7.41 7.41 7.41 7.41 7.4	0.014 0.014 0.013 0.016 0.013 0.014 0.012 0.014 0.012 0.012 0.012	Suction Lysimeter removed. Dry.

						-		
Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks
L1S26 L1S26	04/21/84 06/28/85 08/20/85 09/17/85 12/17/85 12/17/85 12/17/85 04/02/86 05/20/86 05/20/86 05/20/86 06/10/86 07/08/86 07/16/86 07/29/86 07/16/86 07/29/86 09/09/86 09/09/86 09/09/86 09/09/86 09/09/86 09/09/86 03/01/87 05/07/87 05/07/87 05/07/87 05/07/87 05/07/87 05/07/87 05/07/87 05/07/87 05/07/87 05/07/87 05/07/87 05/07/87 05/07/87 05/07/87 05/07/87 05/07/87 05/07/87 05/07/87 09/01/87 01/04/88 03/30/88 03/30/88 03/30/88 03/27/88 12/13/88	08:55 09:240 09:240 09:25 00:25 00 00:25 00 00:25 00 00 00 00 00 00 00 00 00 00 00 00 00	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	602.392 616.477 630.372 638.408 673.378 688.416 729.446 794.517 819.436 856.359 898.519 973.538 1022.52 1052.51 1098.53 1133.57 1184.51 1288.49 1365.37	24.919 61.842 42.160 40.032 34.987 48.982 29.990 46.020 35.040 50.940	0.00 0.00 0.00 0.09 0.14 0.29 0.33 0.35 0.39 0.47 0.55 0.58 0.55 0.58 0.64 0.69 0.69 0.71 0.78 0.88 0.69 0.78 0.88 1.05 1.08	0.000 0.0000 0.000000	Drý. Dry. First time collected. Dry.

.

Locatio	on Date	Time Liters Day Removed Sinc 1/01/8	e Uséd	Cumulative Liters Collected	Liters Rem per Day	arks
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 7 \\ 1 \\ 1 \\ 2 \\ 7 \\ 1 \\ 1 \\ 2 \\ 7 \\ 1 \\ 1 \\ 2 \\ 7 \\ 1 \\ 1 \\ 2 \\ 7 \\ 1 \\ 1 \\ 2 \\ 7 \\ 1 \\ 1 \\ 2 \\ 7 \\ 1 \\ 1 \\ 2 \\ 7 \\ 1 \\ 1 \\ 2 \\ 7 \\ 7 \\ 7 \\ 1 \\ 1 \\ 2 \\ 7 \\ 7 \\ 7 \\ 1 \\ 1 \\ 2 \\ 7 \\ 7 \\ 7 \\ 1 \\ 1 \\ 2 \\ 7 \\ 7 \\ 7 \\ 1 \\ 1 \\ 2 \\ 7 \\ 7 \\ 1 \\ 1 \\ 2 \\ 7 \\ 7 \\ 7 \\ 1 \\ 2 \\ 7 \\ 7 \\ 7 \\ 1 \\ 2 \\ 7 \\ 7 \\ 7 \\ 1 \\ 2 \\ 7 \\ 7 \\ 7 \\ 1 \\ 2 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$	12/17/85 01/03/86 02/12/86 02/12/86 02/19/86 02/28/86 03/13/86 05/26/86 05/06/86 05/27/86 05/13/86 05/17/86 05/27/86 05/17/86 05/27/86 05/17/86 05/27/86 07/01/86 07/01/86 07/01/86 07/08/86 07/08/86 07/08/86 09/04/86 09/09/86 09/04/86 09/09/86 09/04/86 09/09/86 09/04/86 09/09/86 09/04/86 09/05/87 05/07/87 07/28/87 07/28/87 07/28/87 07/28/87 07/28/87 07/28/87 07/28/87 07/28/87	$\begin{array}{c} 0.00\\$	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5 13.000 5 27.000 5 13.007 6 9.000 8 12.983 5 13.007 4 12.983 5 13.007 4 12.983 5 13.007 4 12.983 5 13.007 4 12.983 5 13.077 4 12.983 5 6.993 7 7.107 8 6.993 9 3.037 9 3.037 9 3.037 9 3.037 9 3.037 9 3.037 9 3.037 9 3.037 9 3.037	0.00 0.03 0.93 0.98 1.06 1.16 1.24 1.30 1.37 1.45 1.50 1.51 1.61 1.61 1.61 1.61 1.61 1.61 1.61 1.61 1.75 1.79 1.837 1.94 2.005 2.09 2.142 2.258 2.388 2.381 2.512 2.58 2.58 2.58 2.58 2.58 2.511 3.211 3.211 3.221 3.221 3.522 4.05	0.000 Dow 0.000 Wet 0.000 Wet 0.000 Wet 0.004 0.004 0.005 0.	<pre>st time collected. , partial pool in bottom, none collected. weeks collection. , but not enough to remove.</pre>

Location	Date	Time	Liters Removed	Days Since 1/01/85	Used	Cumulative Liters Collected	Liters per Day	Remarks
L1S28 L1S28	04/21/84 07/12/85 08/20/85 09/17/85 12/10/85 12/17/85 11/05/86 11/20/86 12/31/86 05/07/87 05/07/87 05/07/87 05/07/87 05/07/87 05/07/87 05/07/87 05/00/87 11/19/87 01/04/88 02/08/88 07/12/88 07/12/88 07/12/88 12/13/88	NA: 10:42 12:30 10:31 08:39 12:35 13:24 12:55 12:26 12:26 12:42 12:42 12:49 12:55 12:49 12:55 12:49 12:50 12:49 12:50 12:50 12:50 12:50 12:50 12:50 12:55 12:50 12:555 12:55 1	NA NA 0.00 0.00 0.09 0.01 0.00 0.01 Trace 0.00 0.50 0.40	0.000 0.000 0.000 0.000 673.381 688.000 729.446 794.521 819.438 856.360 898.524 938.558 973.538 1022.52 1052.52 1052.52 1058.53 1133.58 1184.51 1288.50 1365.37 1442.48	121.140 24.917 61.839 104.003 144.037 34.980 48.982 30.000 46.010 35.050 50.930 103.990 76.870	0.00 0.00 0.00 0.11 0.11 0.11 0.11 0.11	0.000 0.000	Dry. Dry. Dry. Dry. Dry. Dry. Dry. Dry.

-

-

Location .	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks
L1529 L1529 L1529 L1529 L1529 L1529 L1529 L1529 L1529 L1529 L1529 L1529 L1529 L1529	04/21/84 07/15/85 08/20/85 09/17/85 12/10/85 12/17/85 01/03/86 01/08/86 01/23/86 01/23/86 01/23/86 01/23/86 02/19/86 02/19/86 02/28/86 03/06/86 03/06/86 03/06/86 04/02/86 04/02/86 04/16/86 04/24/86	09:00 09:00 09:00 09:00 09:00 09:00 09:00 09:00 09:00 09:00 09:20 09:20 09:20 09:20 08:35 08:50 08:30 08:40 10:35	00.30 00.71 00.24 00.40 00.32 00.34 00.41 00.25 00.23 00.13 00.16 00.27 00.15 00.11 00.13	0.000 0.000 343.375 350.375 367.375 380.375 380.375 387.375 407.375 407.375 423.375 423.375 423.375 429.389 436.358 449.368 456.354 462.361 470.441 478.382	0.000 0.000 1.000 7.000 5.000 8.000 7.000 8.000 7.000 9.000 6.014 6.969 13.010 6.986 6.007 8.080 7.941	0.00 0.00 2.20 2.50 3.21 3.45 4.17 4.51 4.92 5.17 5.40 5.53 5.69 5.96 6.11 6.22 6.35	0.000 0.000 0.000 0.043 0.042 0.048 0.048 0.048 0.048 0.044 0.044 0.036 0.044 0.036 0.024 0.022 0.023 0.021	Room L1 excavated 4/19/84 to 4/21/84. Downhole drilled. Wet. Wet. First time collected.
L1529 L1529	04/24/08 05/06/86 05/06/86 05/06/86 05/27/86 05/27/86 06/10/86 06/10/86 06/11/86 07/01/86 07/08/86 07/08/86 07/08/86 07/16/86 07/22/86 08/05/86 09/04/86 09/04/86 09/04/86 09/04/86 09/04/86 09/04/86 10/01/86 10/01/86 10/01/86 10/01/86 11/20/86	09:35 09:00 08:55 09:20 09:21 09:25 09:25 09:25 09:25 09:25 09:25 09:25 09:25 09:25 09:24 09:25 00 00 00 00 00 00 00 00 00 00 00 00 00	00.12 00.12 00.12 00.11 00.13 00.13 00.14 00.13 00.14 00.13 00.14 00.13 00.14 00.13 00.14 00.13 00.14 00.13 00.14 00.13 00.14 00.13 00.14 00.13 00.14 00.13 00.14 00.13 00.14 00.13 00.14 00.13 00.14 00.13 00.14 00.13 00.14 00.13 00.14 00.13 00.14 00.13 00.14 00.14 00.13 00.14 00.14 00.13 00.14 00.14 00.14 00.14 00.14 00.15 00.14 00.15 00.14 00.15 00.14 00.15 00.14 00.15 00.14 00.15 00.14 00.15 00.16 00.17 00.16 00.17 00.16 00.17 00.16 00.17 00.17 00.17 00.17 00.14 00.13 00.14 00.13 00.14 00.15 00.14 00.15 00.14 00.15 00.16 00.17 00.16 00.17 00.16 00.17 00.600	476.302 484.3999 490.375 497.372 504.389 511.597 518.370 525.401 532.390 539.396 546.504 553.392 561.390 567.375 574.392 581.408 588.388 595.417 602.399 611.382 616.484 623.386 630.379 638.417 645.394 651.425 673.399 688.435	7.941 6.017 5.976 6.997 7.017 7.208 6.771 6.989 7.006 7.108 6.989 7.006 7.108 6.989 7.006 7.108 6.989 7.017 7.016 6.989 7.017 7.016 6.989 7.017 7.016 6.989 5.985 7.017 7.016 6.989 7.017 7.016 6.989 7.017 7.016 6.989 7.017 7.016 6.989 7.017 7.016 6.989 7.017 7.016 6.989 7.017 7.017 7.018 6.989 7.006 7.017 7.018 6.989 7.006 7.017 7.018 6.989 7.006 7.018 6.989 7.017 7.016 6.989 7.017 7.016 6.989 7.017 7.016 6.989 7.017 7.016 6.989 7.017 7.016 6.989 7.017 7.016 6.989 7.017 7.016 6.989 7.017 7.016 6.989 7.017 7.016 6.989 7.017 7.016 6.989 7.017 7.016 6.989 7.017 7.016 6.989 7.017 7.016 6.989 7.017 7.016 6.989 7.017 7.016 6.989 7.017 7.016 6.989 7.017 7.016 6.989 6.982 8.983 5.102 6.902 6.902 6.903 8.038 8.038 8.038 8.038 8.038 8.038	6.59 6.71 6.83 6.94 7.07 7.20 7.34 7.47 7.61 7.76 7.89 8.05 8.16 8.28 8.41 8.55 8.73 8.99 9.59 10.07 10.83 11.60 12.34 13.03 13.70 14.50	0.020 0.020 0.017 0.016 0.018 0.019 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.026 0.026 0.026 0.026 0.026 0.026 0.027 0.020 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.037 0.099 0.099 0.099 0.099 0.099 0.099 0.037 0.099 0.037 0.099 0.0370 0.0370 0.0370 0.0370000000000	
L1s29 L1s29 L1s29 L1s29 L1s29 L1s29	12/31/86 03/06/87 03/31/87 05/07/87 05/08/87	12:40 10:30 08:45	10.32 4.19 18.82	729.439 794.528 819.438 856.365 857.365	41.004 65.089 24.910 36.927 0.000	36.90 41.09 59.91	0.159 0.162 0.510	Not pumped dry, brine left in hole, no
L1S29 L1S29	06/17/87 06/18/87			897.590 898.525	0.000 42.160	89.59 93.23	0.000 0.790	calculation. Partial removal, no calculation. Used 33.32 liters in 42.16 days for calculation (5/08/87, 6/17/87, and 6/18/87).
L1s29 L1s29 L1s29 L1s29 L1s29	07/28/87 09/01/87 10/20/87 11/19/87 01/04/88 02/08/88 03/30/88 07/12/88 09/27/88 12/13/88	12:55 12:28 12:35 12:45 13:49 12:20 11:58 08:58	2.43 2.61 1.43 2.85 2.43 3.00 7.14 14.23	1133.58 1184.51 1288.50	34.979 48.982 30.000 46.010 35.050 50.930 103.990 76.870	104.55 106.98 109.59 111.02 113.87 116.30 119.30 126.44 140.67 150.64	0.069 0.053 0.048 0.062 0.069 0.059 0.069 0.185	

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks
L1S30 L1S30 L1S30 L1S30 L1S30 L1S30 L1S30 L1S30 L1S30 L1S30 L1S30 L1S30 L1S30	04/21/84 07/15/85 08/20/85 09/17/85 12/17/85 01/23/86 02/12/86 03/26/86 04/28/86 05/13/86 05/05/86 05/13/86 05/13/86 07/10/86 07/10/86 07/29/86 09/02/86 09/02/86 09/02/86 10/01/86 10/01/86 10/01/86 10/14/86 11/20/86 11/20/86 12/31/86 03/06/87 03/31/87 05/07/87 05/08/87 06/17/87 06/18/87	09:00 08:45 09:10 09:00 09:00 09:00 09:17 109:19 09:53 09:00 11:58 09:51 10:05 10:05 10:05 10:05 09:51 10:05 09:51 10:05 09:55 10:05 09:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 00:55 0	00.09 00.32 00.13 00.05 00.05 00.05 00.05 00.05 00.05 00.05 00.05 00.04 00.04 00.04 00.04 00.04 00.04 00.02 00.02 00.02 00.05 00.21 0.15 22.87 16.28 17.42	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 387.375\\ 449.365\\ 449.365\\ 449.375\\ 449.375\\ 449.375\\ 449.375\\ 449.375\\ 449.375\\ 459.412\\ 611.375\\ 616.478\\ 630.374\\ 638.410\\ 651.417\\ 673.399\\ 688.000\\ 729.422\\ 794.531\\ 819.440\\ 856.401\\ 857.358\\ 897.608\\ 898.528\\ \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 1.000\\ 20.000\\ 41.990\\ 12.993\\ 16.024\\ 11.993\\ 16.024\\ 11.993\\ 14.229\\ 20.790\\ 14.122\\ 14.883\\ 13.006\\ 21.024\\ 15.963\\ 5.103\\ 13.896\\ 8.036\\ 8.036\\ 91.012\\ 65.109\\ 91.012\\ 65.109\\ 936.961\\ 0.000\\ 42.127\end{array}$	0.00 0.00 0.00 0.00 0.07 0.16 0.48 0.61 0.71 0.76 0.89 0.96 1.01 1.04 1.04 1.08 1.22 1.22 1.225 1.271 1.272 1	0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.005 0.002 0.005 0.0000 0.000 0.000000	Dry. First time collected. Dry. Dry. Dry.
L1S30 L1S30 L1S30 L1S30 L1S30 L1S30 L1S30 L1S30 L1S30 L1S30 L1S30	07/28/87 09/01/87 10/20/87 11/19/87 01/04/88 02/08/88 03/30/88 07/12/88 09/27/88 12/13/88	13:00 12:36 12:40 12:47 13:50 12:30 12:05 09:15	2.09 1.59 0.43 0.28 0.03 5.07 1.64 7.55	938.562 973.542 1022.52 1052.53 1098.53 1133.58 1184.52 1288.50 1365.39 1442.49	103.980 76.890	64.48 66.07 66.50 66.78 66.81 71.88 73.52 81.07	0.095 0.060 0.032 0.014 0.006 0.001 0.100 0.016 0.098 0.019	One ear plug found in hole.

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	
L1S31 L1S31	04/21/84 07/24/85 08/20/85 09/17/85 12/17/85 12/17/85 11/05/86 11/20/86 12/31/86 03/06/87 05/07/87 05/07/87 05/07/87 05/07/87 07/28/87 07/28/87 01/04/88 02/08/88 03/30/88 03/30/88 03/27/88 12/13/88	NA: 10:08 12:50 10:33 09:41 12:42 13:32 13:05 12:35 12:45 13:55 12:35 12:38 12:38 12:38 12:38 12:38 12:38 12:38 12:38 12:38	NA NA 0.00 0.73 3.39 0.37 0.21 0.27 0.21 0.20 0.26 0.30 2.83 8.08	1052.53 1098.53	24.905 61.868 42.126 40.035 34.981 48.985 30.000 46.000 35.050 50.940 103.990	0.00 0.73 4.12 4.49 4.70 4.97 5.18 5.38 5.64 5.94 8.77	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.080 0.009 0.006 0.009 0.006 0.007 0.004 0.007 0.004 0.007 0.004 0.007 0.004	Drý. Dry. Dry. Installed vacuum probe. Dry. Dry.

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks
L1532 L1532	04/21/84 07/24/85 08/20/85 09/17/85 12/10/85 12/17/85 04/16/86 05/20/86 06/03/86 07/29/86 08/12/86 07/29/86 08/12/86 09/04/86 09/04/86 09/04/86 09/04/86 09/04/86 09/04/86 09/04/86 10/01/86 10/01/86 10/01/86 10/08/86 10/01/86 10/08/86 10/08/86 10/08/86 10/08/86 10/08/86 10/08/86 10/08/86 10/08/86 10/08/86 10/08/86 10/08/87 05/07/87 05/07/87 05/07/87 05/07/87 07/28/87 00/28/80 07/28/87 00/28/80 00/28/80 00/28/80 00/28/80 00/28/80 00/28/80 00/28/80 00/28/80 00/28/80 00/28/80 00/28/80 00/	8:45 8:45	$\begin{array}{c} 0.02\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.011\\ 0.12\\ 0.011\\ 0.022\\ 0.011\\ 0.022\\ 0.011\\ 0.022\\ 0.016\\ 0.57\\ 0.56\\ 2.33\\ 1.27\\ 5.89\\ 9.34\\ 4.32\\ 6.98\\ 6.11\\ 7.84\\ 4.32\\ 6.98\\ 6.11\\ 7.84\\ 4.32\\ 6.98\\ 1.4\\ 12.64\\ 13.03\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5$	0.000 0.000 0.000 0.000 0.000 470.438 504.389 518.365 539.392 561.383 574.389 583.382 595.413 602.394 611.377 616.479 623.371 630.376 638.411 645.395 651.419 651.419 651.419 653.420 729.427 794.535 819.442 841.444 856.406 898.531 938.568 973.550 1022.53 1052.53 1098.54 11365.39 1288.51 1365.39 1288.51 1365.39 1442.49	0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.001 13.976 21.991 13.976 21.991 13.06 8.983 5.1027 21.991 13.06 6.981 8.983 5.055 6.984 21.963 15.038 41.007 65.108 24.902 14.962 42.125 40.037 34.980 30.000 46.010 35.040 50.980 7.031 15.038 41.007 65.038 43.980 30.000 46.010 35.040 50.980 76.880 77.100	0.00 0.00 0.00 0.07 0.09 0.14 0.26 0.31 0.42 0.64 0.33 1.55 1.91 2.48 3.04 4.66 7.97 9.54 10.81 12.06 19.50 25.37 37.90 24.220 55.31 5.51	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.002 0.003 0.004 0.002 0.003 0.004 0.002 0.002 0.003 0.004 0.002 0.022 0.027 0.029 0.027 0.029 0.027 0.029 0.027 0.026 0.027 0.029 0.027 0.029 0.027 0.029 0.027 0.029 0.027 0.029 0.027 0.029 0.027 0.029 0.027 0.029 0.027 0.029 0.027 0.029 0.027 0.029 0.027 0.029 0.027 0.029 0.027 0.029 0.027 0.029 0.027 0.029 0.027 0.029 0.027 0.026 0.037 0.040 0.051 0.044 0.144 0.144 0.152 0.147 0.147 0.146 0.169	Moist. Dry.

Location	Date	Time 、	Liters Removed	Days Since 1/01/85	Used	Cumulative Liters Collected	Liters per Day	Remarks
$\begin{array}{c} 1833\\ 118333\\ 31333\\ 1183333\\ 1183333\\ 1183333\\ 1183333\\ 1183333\\ 1183333\\ 1183333\\ 1183333\\ $	04/21/84 07/23/85 08/20/85 09/17/85 12/10/85 12/17/85 12/17/85 01/03/86 01/08/86 01/16/86 01/23/86 02/12/86 02/12/86 02/12/86 03/26/86 04/02/86 04/02/86 03/26/86 04/02/86 03/26/86 04/02/86 05/03/86 05/20/86 07/10/86 07/10/86 07/10/86 07/10/86 07/10/86 09/09/86 09/09/86 09/09/86 09/00/86 01/01/86 01/01/86 01/01/86 01/01/86 01/01/86 01/01/86 01/01/86 01/01/87 01/01/87 01/01/87 01/01/87 01/02/87 01/12/87 09/01/87 01/20/87 01/	80000000000000000000000000000000000000	0.11 0.21 0.00 0.00 0.00 0.15 12 10 0.00 0.00 0.15 12 12 0.00 0.00 0.15 12 12 12 12 12 12 12 12 12 12 12 12 12	0.000 0.000 0.000 343.375 350.375 372.375 380.375 372.375 380.375 372.375 414.375 429.389 436.361 449.368 456.354 449.368 456.354 449.368 470.438 456.354 449.375 477.375 547.375 547.375 547.375 547.375 575.387.375 547.375 429.389 511.597 518.368 525.394 522.388 539.392 545.394 525.394 525.389 557.369 574.390 574.390 574.390 574.390 574.390 574.390 574.390 574.390 574.395 613.385	65.110 24.906 36.963 42.128 40.038 34.978 48.989 30.000 46.000 35.050 50.940 103.990 76.880	0.00 0.00 1.12 1.33 1.39 1.48 1.65 1.92 2.22 2.52 2.62 2.62 2.62 2.62 2.62 2.6	0.000 0.000 0.000 0.000 0.016 0.012 0.012 0.012 0.011 0.011 0.011 0.012 0.012	

Location	Date	Time	Liters Removed	Days Since 1/01/85	Used	Cumulative Liters Collected	Liters per Day	Remarks
L1534 L1534	04/21/84 07/18/85 08/20/85 09/17/85 12/10/85 12/17/85 11/05/86 11/20/86 12/31/86 03/06/87 05/07/87 05/07/87 05/07/87 05/07/87 05/07/87 05/07/87 05/07/87 05/07/87 05/07/87 05/07/87 05/07/87 01/04/88 03/30/88 03/30/88 07/12/88 09/27/88 12/13/88	NA: 10:17 13:00 09:46 12:51 13:38 13:53 13:53 13:53 13:53 14:15 12:45 12:45 12:45 12:45 12:45 12:45	NA NA NA 0.00 0.00 0.00 0.00 0.00 0.00 0	0.000 0.000 0.000 0.000 673.385 688.000 729.428 794.542 819.444 856.407 898.535 938.568 973.551 1022.54 1052.54 1052.54 1052.54 1133.59 1184.53 1288.52 1365.40 1442.50	57.043 122.157 24.902 61.865 103.993 144.026 34.983 48.989 30.000 46.000 0.000 85.990 103.990 76.880	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Dry. Dry. Dry. Dry. Dry. Dry. Dry. Dry.

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks
L1835 L1835	04/21/84 07/17/85 08/20/85 12/10/85 12/10/85 12/17/85 11/05/86 11/20/86 03/06/87 03/31/87 05/07/87 05/07/87 05/07/87 07/28/87 09/01/87 10/20/87 11/19/87 01/04/88 03/30/88 03/30/88 07/12/88 09/27/88 12/13/88	NA: 10:17 13:00 09:46 12:52 13:38 13:13 12:55 12:55 14:25 12:58 14:25 12:45 12	NA NA 0.000000	0.000 0.000 0.000 0.000 673.389 688.000 729.428 794.542 819.444 856.407 898.536 938.568 973.551 1022.54 1052.55 1098.54 1133.60 1184.53 1288.52 1365.40 11442.52	24.902 61.865 103.994 144.026 34.983 48.989 30.010 45.990 0.000 85.990 103.990	0.00 0.00 0.09 0.09 0.09 0.09 0.09 0.09	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Dry. Dry. Dry. Dry. Dry. Dry. Dry. Dry.

-

•

Location	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks -
L1536 L1536	04/21/84 07/22/85 08/20/85 09/17/85 12/17/85 12/17/85 12/17/85 01/03/86 01/08/86 01/16/86 02/28/86 02/12/86 02/12/86 02/12/86 02/12/86 05/13/86 05/13/86 05/27/86 05/13/86 05/27/86 05/27/86 05/27/86 07/01/86 07/01/86 07/01/86 07/01/86 07/01/86 07/01/86 07/02/86 08/12/86 08/12/86 09/04/86 09/04/86 09/04/86 09/04/86 09/04/86 11/05/86 11/05/86 11/05/86 11/05/86 11/05/86 11/05/86 11/05/87 05/07/88 05/07/88 00/01/88 00/01/88 00/01/88 00/01/88 00/01/88 00/01/88 00/01/88 00/01/88 00/01/88 00/01/88 00/01/88 00/	0900000000000000000000000000000000000	0.09 0.09 0.02 0.05 0.15 11.06 11.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0	0.000 0.000 0.000 343.375 350.375 357.375 357.375 367.375 3423.375 423.375 423.375 436.358 470.438 446.358 470.438 447.374 511.597 525.396 539.394 546.502 553.390 567.372 553.390 567.372 574.391 588.385 595.416 602.396 611.378 616.481 623.377 638.413 645.372 638.413 645.372 638.413 645.372 638.413 645.372 638.413 645.372 638.413 645.372 638.413 645.372 638.413 645.372 638.413 645.372 794.542 899.448 856.408 858.537 938.574 973.552 1022.55 1022.55 1022.55 1022.55 1022.55 1022.55 1038.54 1133.60 1184.53 1288.52 1336.40 1134.53 1288.52 1355.40 1442.52	36.960 42.129 40.037 34.978 48.988 30.010 45.990 35.060 50.930 103.990 76.880	0.00 0.28 1.37 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54	0.000 0.000 0.000 0.007 0.013 0.007 0.005 0.005 0.005 0.006 0.006 0.006 0.006 0.006 0.006 0.007	Wet. First time collected. Yellow color.

•

--

Location .	Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks
L1X00 L1X00	04/21/84 05/13/84		•	0.000	0.000 0.000	0.00	0.000	Room L1 excavated 4/19/84 to 4/21/84. Downhole drilled 5/10/84 to 5/13/84. Brine entered hole over weekend during drilling.
L1X00 L1X00	11/27/84 05/14/85		11 11.46	-34.417 133.475	0.000 1.000	11.00 22.46	0.000	First time collected. Brine and salt muck. Hole looked dry due to floating salt dust on surface of brine. Salt muck removed with brine. Volume high due to near-hole storage.
L1X00 L1X00 L1X00 L1X00	05/21/85 05/29/85 06/04/85 06/11/85	10:00 09:25	00.23 00.17	140.523 148.417 154.392 161.375	7.048 7.894 5.975 6.983	23.17	0.029	Removed 1 lb. of salt muck with brine. 2 lbs. salt removed with brine during
L1X00 L1X00	06/18/85 06/25/85 07/02/85 07/02/85 07/09/85 07/24/85 07/24/85 07/24/85 08/06/85 08/06/85 08/06/85 08/28/85 09/10/85 10/01/85 10/01/85 10/23/85 10/23/85 10/23/85 11/21/85 11/21/85 11/21/85 11/21/85 12/17/85 01/03/86 01/23/86 02/12/86 03/13/86 05/20/86 05/20/86 05/20/86 05/21/86 05/22/86 05/21/86 05/22/86 05/21/86 05/22/86 05/21/86 05/21/86 05/22/86 05/21/86 05/22/86 05/22/86 05/22/86 05/22/86 05/22/86 05/22/86 05/22/86 05/22/86 05/22/86 05/22/86 05/22/86 05/22/86 05/22/86 05/22/86 05/22/86 05/22/86 05/22/86 05/22/86 05/22/86 05/26 05/26 05/26 05/26 05/26 05/26 05/2	055500028205352055500520255402052025550052025550205202555020028205255502025550202555020525550205255502052025550205202555020520255502052025550205205	8.23 8.21 8.22 8.21 8.22 8.22 8.22 8.22 8.22	168.378 175.372 182.458 189.382 196.383 204.395 210.363 217.380 225.370 231.374 239.351 266.361 273.369 280.413 287.365 295.381 301.479 308.345 316.366 324.417 329.392 336.608 343.538 350.543 350.543 350.543 350.543 350.543 357.378 372.392 380.375 387.385 395.406 407.368 414.403 423.472 429.382 446.354 449.358 447.368 447.368 449.358 456.344 449.358 456.344 449.358 456.344 449.358 456.344 449.358 456.344 449.358 456.344 449.358 535.389 532.389 532.385 546.495 553.382 557.381 557.387 557.381 557.382 557.381 557.381 557.381 557.381 557.381 557.382 557.381 557.382 557.381 557.382 557.381 557.382 557.381 557.382 557.381 557.382 557.381 557.382 557.382 557.382 557.381 557.382 557.381 557.382 557.382 557.381 557.382 557.382 557.382 557.382 557.382 557.382 557.382 557.383 557.382 557.382 557.382 557.382 557.382 557.382 557.382 557.382 557.383 557.382 557.383 557.383 557.385 557.383 557.385 557.383 557.385 557.383 557.385 557.38	7.003 6.994 7.063 6.924 7.001 8.012 5.968 7.010 7.030 5.989 7.010 7.030 5.981 7.010 7.008 6.964 6.952 8.016 6.952 8.016 6.998 6.968 6.952 8.016 6.993 7.010 7.028 7.010 7.030 5.977 7.030 5.977 7.030 5.977 7.030 5.975 7.010 7.038 7.010 7.038 7.010 7.038 7.010 7.038 7.010 7.038 7.010 7.038 7.010 7.039 6.9921 7.035 9.069 5.912 7.035 9.069 5.972 13.004 6.986 6.076 7.022 7.026 6.766 7.022 7.026 6.702 7.010 6.887 7.026 7.026 7.027 7.026 6.702 7.010 6.887 7.026 7.026 7.026 7.027 7.026 6.702 7.010 6.887 7.026 7.026 7.026 7.026 7.026 7.027 7.026 7.026 7.027 7.026 7.026 7.027 7.026 7.027 7.026 7.027 7.026 7.027 7.026 7.027 7.026 7.027 7.026 7.027 7.026 7.027 7.026 7.027 7.026 7.027 7.026 7.027 7.026 7.027 7.026 7.027 7.026 7.027 7.028 7.027 7.026 7.027 7.028 7.027 7.028 7.027 7.028 7.027 7.028 7.027 7.028 7.027 7.028 7.027 7.028 7.027 7.028 7.028 7.027 7.028 7.028 7.028 7.027 7.039 7.031 6.980 7.031 7.031 7.031 7.035 7.031 7.035 7.031 7.035 7.031 7.035 7.031 7.035 7.035 7.031 7.035 7.035 7.031 7.035 7.035 7.035 7.035 7.036 7.031 7.035 7.035 7.035 7.036 7.031 7.035 7.035 7.035 7.036 7.035 7.036 7.037 7.037 7.036 7.037 7.037 7.036 7.037	23.63 23.84 24.07 24.28 24.49 25.07 25.30 25.46 25.69 25.88 26.46 26.63 26.82 27.70 27.87 27.52 27.70 27.87 27.52 27.70 27.87 27.52 27.70 27.87 28.42 28.80 29.23 29.41 29.71 29.71 29.87 30.12 30.23 30.39 30.68 31.00 31.19 31.35 31.51 31.66 31.84	0.033 0.030 0.032 0.030 0.030 0.027 0.030 0.027 0.030 0.029 0.027 0.029 0.029 0.027 0.029	bailing.

WP:WIP:R-1625-1

L1X00 L1X00 L1X00	09/04/86 08:55 00.25 09/09/86 11:25 00.16 09/16/86 08:50 00.19	611.372 8.983 616.476 5.104 623.368 6.892	35.11	0.028 0.031 0.028	
L1X00	09/23/86 08:53 00.20	630.370 7.002		0.029	
L1X00	10/01/86 09:46 00.22	638.407 8.037		0.027	
L1X00	10/08/86 09:17 00.18	645.387 6.980		0.026	
L1X00 L1X00	10/14/86 10:00 00.14 11/05/86 09:02 0.52	651.417 6.030 673.376 21.959		0.023	
L1X00	11/20/86 09:47 00.36	688.408 15.032		0.024	
L1X00	12/31/86 10:00 00.88	729.417 41.009		0.021	
L1X00	02/03/87 10:45 00.61	763.448 34.031		0.018	
L1X00	03/06/87 09:45 0.58	794.406 30.958			Hole looked dry due to floating salt dust on
					surface of brine.
L1X00	04/10/87 09:30 0.68	829.396 34.990		0.019	
L1X00	06/17/87 14:00 0.83	897.583 0.000			Brine left in hole, no calculation.
L1X00	07/28/87 13:07 1.09	938.547 1.000	41.50		Calculated using 1.92 liters in 109.151 days
14200	00/04/07 40-15 0.05	077 574 7/ 00/	12 15		(6/17/87 and 7/28/87).
L1X00 L1X00	09/01/87 12:45 0.95	973.531 34.984 982.440 8.909	42.45 42.70		Installed lysimeter.
L1X00	09/10/87 10:34 0.25 10/20/87 12:18 0.09	982.440 8.909 1022.51 40.070		0.002	Instatted tystmeter.
L1X00	11/19/87 12:15 1.35	1052.51 30.000		0.045	
L1X00	01/04/88 12:30 0.43	1098.52 46.010		0.009	
L1X00	02/08/88 13:45 0.93	1133.57 35.050		0.027	
L1X00	03/30/88 12:20 1.00	1184.51 50.940	46.50	0.020	
L1X00	07/12/88 12:25 2.33	1288.52 104.010	48.83	0.022	
L1X00	09/27/88 08:45 2.07	1365.36 76.840		0.027	
L1X00	12/13/88 11:30 1.85	1442.48 77.120	52.75	0.024	

Location	. Date	Time	Liters Removed	Days Since 1/01/85	Days Used For Calc.	Cumulative Liters Collected	Liters per Day	Remarks	
L2C03 L2C03	04/25/84 03/26/85			0.000 0.000	0.000 0.000	0.00 0.00	0.000 0.000	Room L2 excavated 4/22/84 t Hole L2C25, a 5" overcore o grouted hole, drilled at th blew into hole L2C29, 4 ft.	f a previously is location. Brine
L2C03	04/02/85			0.000	0.000	0.00	0.000	Approximate date hole L2C03 overcore of L2C25.	drilled, a 16"
1,203	12/17/85	12:39	05.15	350.527	1.000	5.15	0.000	First time collected. Brine fracture, connects to L2C29	enters through 4 ft. north.
ក្តត្តតុក្តតុក្តតុក្តតុក្តតុក្តតុក្តតុក	01/03/86 01/08/86 01/16/86 02/12/86 02/12/86 05/05/86 05/03/86 05/20/86 05/20/86 05/20/86 05/13/86 05/13/86 05/10/86 05/10/86 07/10/86 07/01/86 07/03/86 07/22/86 07/05/86 08/12/86 08/12/86 09/04/86 09/04/86 09/04/86 09/04/86 09/04/86 09/04/86 09/04/86 09/04/86 09/04/86 09/04/86 10/01/86 10/01/86 10/08/86 11/20/86 11/20/86 12/31/86	09:20 08:50 09:40 09:41 08:45 08:40 09:40 09:40 09:40 09:40 09:45 09:40 09:40 09:45 09:40 00:400000000	00.01 00.04 00.03 00.10 00.10 00.16 00.12 00.12 00.12 00.12 00.12 00.14 00.12 00.14 00.12 00.23 00.14 00.23 00.31 00.30 00.25 00.30 00.25 00.30 00.25 00.42 00.49 00.49 00.50 00.48 00.25 00.49 00.25 00.49 00.25 00.49 00.25 00.49 00.25 00.49 00.25 00.25 00.30 00.30 00.30 00.30 00.30 00.10 00.10 00.10 00.10 00.10 00.12 00.25 00.25 00.31 00.25 00.30 00.30 00.30 00.25 00.25 00.25 00.30 00.30 00.30 00.25 00.25 00.30 00.30 00.25 00.25 00.30 00.25 00.25 00.25 00.30 00.25	367.372 372.389 380.368 387.382 407.361 470.427 478.365 490.361 497.361 504.389 518.361 525.382 539.378 546.486 553.375 561.372 567.360 574.375 581.394 588.374 595.403 602.385 611.364 630.365 638.402 645.384 651.410 673.375 688.406 729.403	$\begin{array}{c} 16.845\\ 5.017\\ 7.979\\ 7.014\\ 19.979\\ 63.060\\ 7.938\\ 11.996\\ 7.000\\ 7.028\\ 13.972\\ 7.021\\ 7.000\\ 6.996\\ 7.108\\ 6.889\\ 7.997\\ 5.988\\ 7.015\\ 7.015\\ 7.015\\ 7.015\\ 7.015\\ 7.015\\ 8.889\\ 7.997\\ 5.988\\ 5.124\\ 6.869\\ 7.004\\ 8.037\\ 6.982\\ 6.026\\ 15.031\\ 40.997\\ \end{array}$	5.57 6.17 6.27 6.43 6.49 6.61 6.86 7.00 7.15 7.32 7.53 7.76 8.07 8.31 8.62 8.92 9.22 9.47 9.75 10.43 10.85 11.34 11.84 12.32 12.60 13.59 13.97	0.060 0.040 0.033 0.036 0.025	Last time sampled for BSEP.	

WARROR SRINE SAMPLING AND EVALUATION PROGRAM FOR A for the 1888 8800 A for the 1888 8800 A for the 1880 8800 (To 1900 December J1)

Brine degassing in collecting container. Brine effervesces. Brine effervesces. 10 days after brine was removed from 36" hole in SPDV Test Room 3. Pole in SPDV Test Room 3. Pole in SPDV Test Room 3. Fertial removal only. Fertial removal only.	00000000000000000000000000000000000000	22.22.22.22.22.22.22.22.22.22.22.22.22.	8 9 020 9 020	L22779577795777755755252525257777575755555555		0,0,08,86 0,0,08,86 0,0,02,86 0,0,00,86 0,0,00,86 0,0,00,86 0,0,00,86 0,0,00,86 0,0,0,	25229N 25229N
nocc. Installed PVC casing for BSEP observations. Partial removal. First time collected. Pumped dry. Inflow rate about Z cc/hr. Pumped dry. Pole. hole.	027°0 00000 00000	29'52 71'21 56'8 09'7 00'0	166°22 020°61 228°0 000°1 000°0	22°209 27'702 229`11- 229`21- 00000	87.80 05:60 61.80 05:60 62.40 00:61 09.40 00:51	01/08/87	NESSS NESSS NESSS NESSS NESSS
Brine 7" below west edge of collar. Cleaned hole.	000.0	00.00	000.0	000.0		78/LZ/LL	NG252
<pre>(Koom excavated 5/09/62 to 5/20/56). (Koom excavated downhole drilled. Overcored non-functional stress meter with 6" hole (to 1.5 ft.).</pre>		00.0	000.0	000.0		02/07/87 02/50/82	NESSS
West side of SPDV Test Room 2 excavated. (Room excavated 3/09/83 to 3/20/83).	000.0	00.0	000.0	000.0	•	58/91/50	NG252
Semarks	anstij neq Veû	evitslumuJ satil betsellol	0ays Used For Gå{c.	syed 28/10/1 28/10/1	Time Liters Removed	ອງຣປ	norteod

.

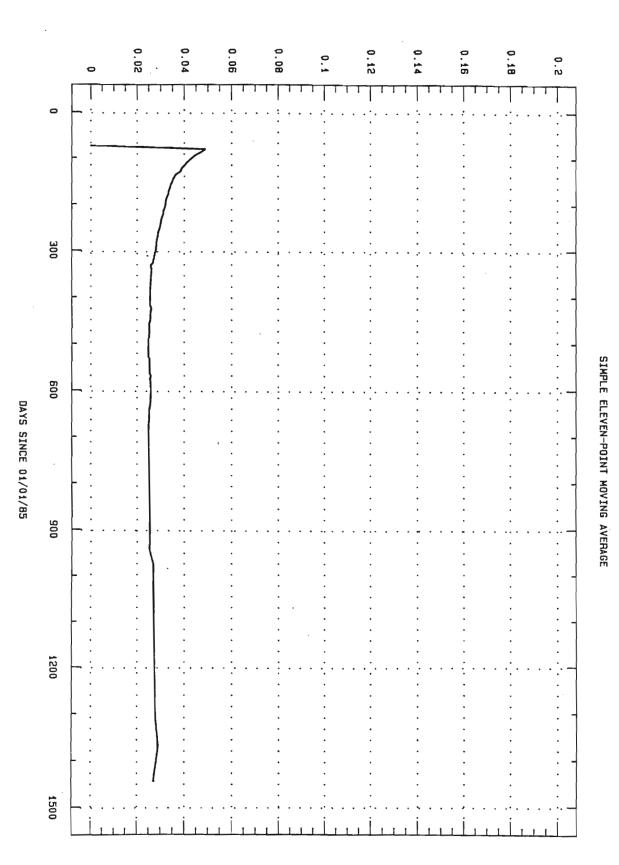
NG252 NG252	04/24/86 10:40 01.93 04/30/86 11:20 02.10 05/06/86 10:45 01.33 05/20/86 11:25 01.22 05/27/86 16:10 01.60 06/03/86 10:45 01.49 06/10/86 11:45 02.18 06/17/86 11:21 02.65 06/24/86 11:15 01.77 07/01/86 11:25 01.50 07/16/86 10:55 01.50 07/16/86 11:15 01.77 07/01/86 10:55 02.16 08/05/86 11:33 01.92 08/12/86 10:55 02.16 08/05/86 11:35 01.92 08/12/86 10:55 02.16 08/05/86 11:30 01.92 08/12/86 10:50 01.90 08/19/86 11:45 01.82 09/04/86 11:00 02.15 09/06/86 10:27 01.81 09/23/86 10:30 01.65 10/01/86 12:30 02.67 10/08/86 11:30 01.61 10/14/86 12:10 01.72 11/05/86 11:157 3.45 11/20/86 13:13 03.54 01/26/87 13:05 02.81 02/03/87 09:15 03.93 12/30/86 13:35 4.2 04/22/87 09:17 4.83 05/07/87 11:59 4.24	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	204.26 0.244 206.36 0.348 208.16 0.301 209.49 0.189 210.71 0.174 212.31 0.220 213.80 0.220 215.98 0.310 218.63 0.379 220.40 0.253 227.52 0.325 227.52 0.325 227.52 0.325 233.50 0.273 233.50 0.273 233.50 0.273 235.32 0.259 237.17 0.265 239.23 0.230 241.17 0.330 244.63 0.236 247.30 0.330 244.63 0.236 254.08 0.157 258.01 0.261 261.55 0.090 263.93 0.318 270.74 1.141 276.7 1.152 283.70 0.101 276.7 0.281	
NG252 NG252	06/17/87 14:10 4.63 06/30/87 10:20 4.10	897.590 0.000 910.431 12.841	292.57 0.000 296.67 0.162	collections. Some brine left in hole, no calc. Calculation used 8.73 liters in 53.932 days
NG252 NG252	07/16/87 10:50 3.77 07/23/87 09:53 2.32 07/29/87 09:54 2.07 08/07/87 09:00 1.89 08/12/87 10:00 1.28 08/24/87 08:57 1.89 09/01/87 13:41 1.75 09/11/87 08:35 2.04 09/16/87 09:45 1.45 09/25/87 09:05 1.64 10/01/87 12:25 1.22 10/08/87 10:36 1.12 10/08/87 10:36 1.12 10/08/87 10:54 2.47 11/12/87 10:54 2.47 11/19/87 11:50 1.84 12/07/87 13:15 3.00 01/04/88 12:23 2.80 01/20/88 11:33 2.96 02/08/88 13:30 2.87 02/25/88 10:53 3.09 03/09/88 10:30 2.92 03/17/88 11:30 2.28 03/29/88 12:30 1.91 04/15/88 11:10 2.37 05/05/88 10:30 1.95 05/12/88 11:00 1.38 06/09/88 09:00 2.88 06/16/88 10:00 1.95 07/12/88 10:00 2.37 09/08/88 14:55 2.64 09/27/88 11:00 2.40 10/18/88 10:51 1.33 11/10/88 09:23 1.98 12/13/88 10:30 3.34	926.451 16.020 933.399 6.948 939.413 6.014 948.375 8.962 953.417 5.042 953.417 5.042 953.417 5.042 965.373 11.956 973.570 8.197 983.358 9.788 988.406 5.048 997.378 8.972 1003.52 6.142 1010.44 6.920 1025.50 4.050 1045.45 82.010 1022.50 4.050 1045.45 22.950 1052.49 7.040 1070.55 18.060 108.52 27.970 1114.48 15.960 1133.56 19.080 1150.45 16.890 1163.44 12.990 1171.48 8.040 1183.52 12.040 1200.47 16.950 1220.44 19.970 1227.46 7.020 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(6/17/87 and 6/30/87). Smell of paint thinner. Sample effervesces.

APPENDIX B

GRAPHS OF BRINE ACCUMULATION DATA

-

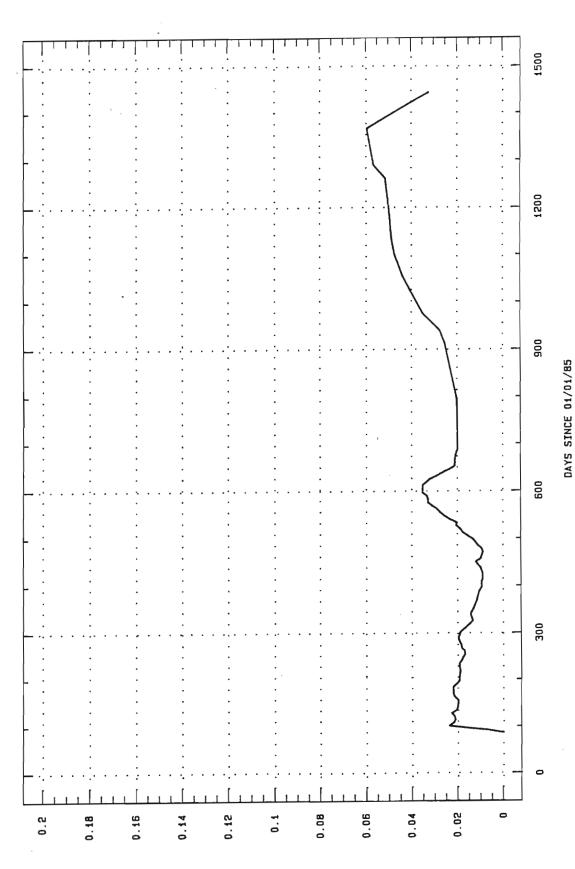
APPENDIX B

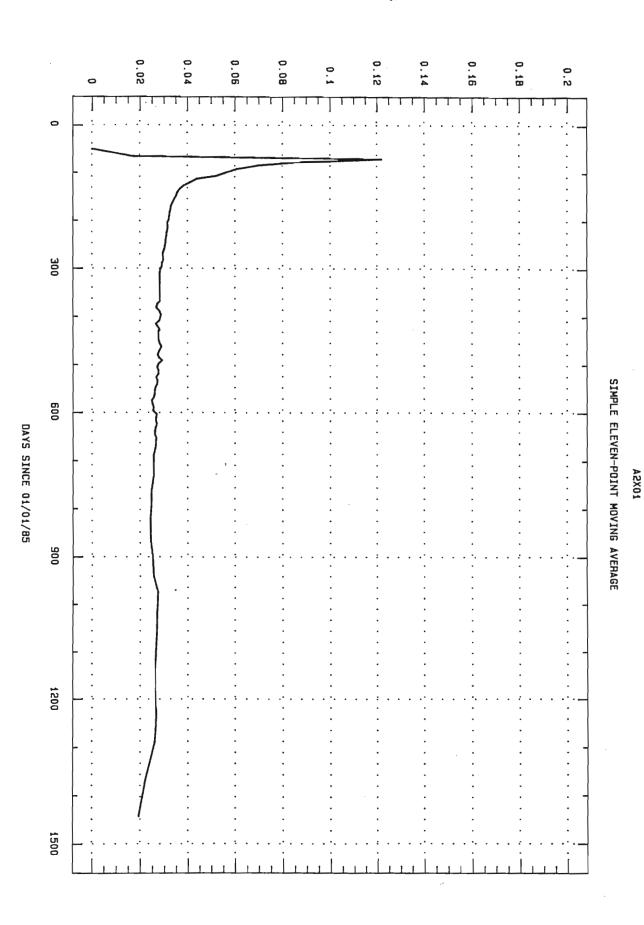

GRAPHS OF BRINE ACCUMULATION DATA

This appendix contains graphs of data presented in Appendix A for selected locations. As described in Deal and Case (1987), much of the variability in the quantity of brine collected resulted from limitations of the collecting techniques rather than variations in the actual inflow of brine from bedrock into the collecting locations. As a result, plotting of the inflow data from the data tables (Appendix A) results in an irregular plot that implies variations in inflow that, in fact, do not exist. The graphed data included in this report were processed and plotted by a standard software program (STSC Statgraphics)¹ on an IBM XT microcomputer, using a simple moving average to smooth the curve. Unless otherwise stated, an 11-point moving average was used for the graphs. The smoothed result reflects trends in the body of the curve that are representative of the brine seepage rates while still showing variations that are probably the result of collecting techniques.

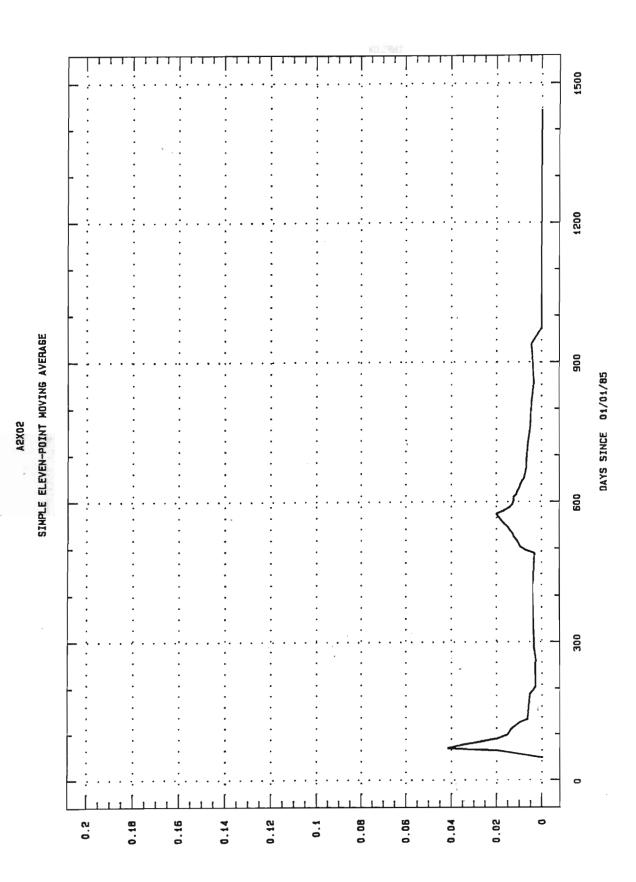
At the beginning and end of each curve, where there are not enough data points, the smoothing program projects the calculated trend. As a result, initial and ending real values, usually zero, and maximum inflow values within the first few data points, tend to be distorted by the smoothing program.

In order to present a graph of the data presented in Appendix A that provides the best visual representation of actual data, end-point data and maximum flow rates within a few points of the origin of the curves has been manually reinserted prior to plotting. Additional discussion of the collection and data handling is provided in Deal and Case (1987).


¹Statgraphics, 1989, Version 4.0, Statistical Graphics Corporation, Rockville, Maryland.


A1X01

A1X02

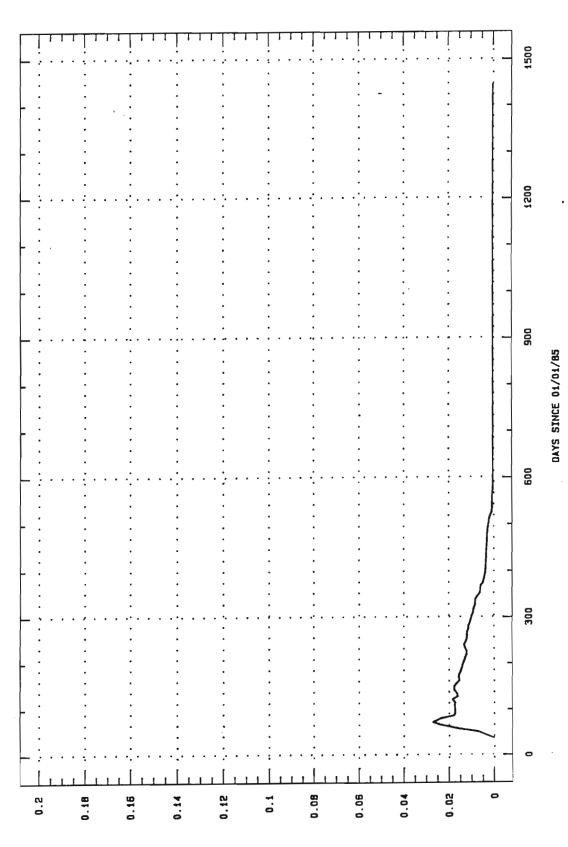

SIMPLE ELEVEN-POINT MOVING AVERAGE

INFLOW RATE (Liters/Day)

WP:WIP:R-1625-AppB

0.02 0.04 0.06 0.08 0,12 0.14 0.16 0.18 0.1 0.2 0 Т Т Т TT 11 Т Т TTT τ Т Т 0 . • . • • . • . • 00E • . • . • . • ٠ 600 . . • • • . • • • 006 • •• .. . • • • • 1200 . • : • . . 1500

SIMPLE ELEVEN-POINT MOVING AVERAGE


A 3X01

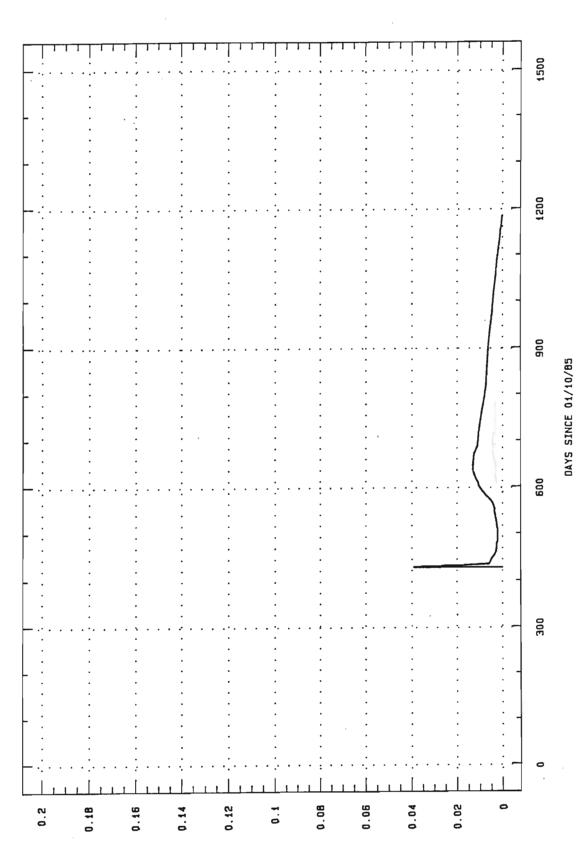
INFLOW RATE (Liters/Day)

DAYS SINCE 01/01/85

SOXEA

SIMPLE ELEVEN-POINT MOVING AVERAGE

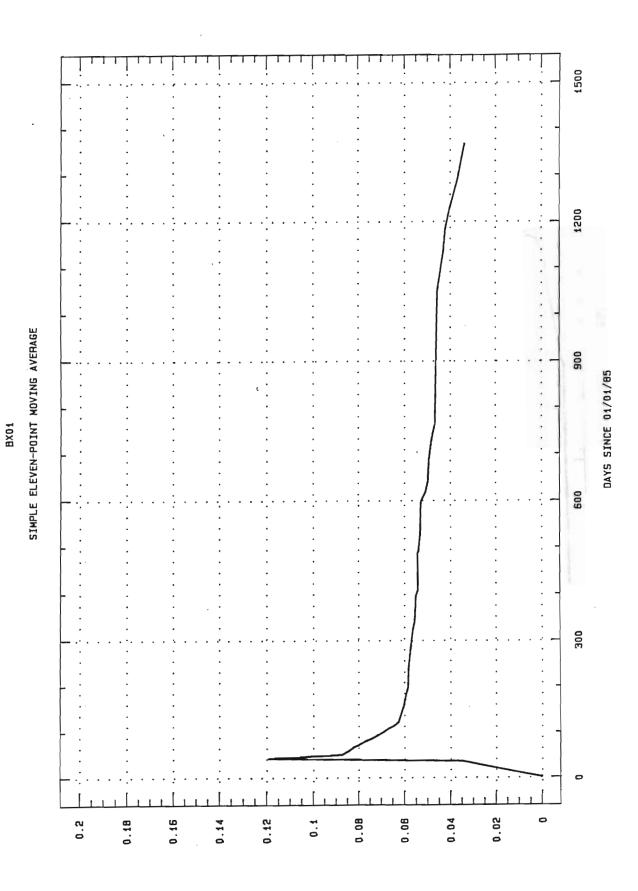
(Yed/arsit) STAR WOLTHI


0.02 0.04 0.06 0.08 0.12 0.14 0.16 0.18 0.1 0.2 0 Т Т 11 Т Т Т Т Т П Т Т 1 Т 111 Т Т т Т T Т Т 1 1 0 300 600 ; DAYS SINCE 01/01/85 . 900 • 1200 : • . . • • • • 1500

SIMPLE ELEVEN-POINT MOVING AVERAGE

BTCP4

BTR08


SIMPLE ELEVEN-POINT MOVING AVERAGE

0.02 0.04 0.06 0.08 0.14 0.12 0.16 0.18 0.1 0,2 0 Ţ Т Т Т Ŧ н 0 . . 300 . . • • . • . 600 DAYS SINCE 01/01/85 . • . • . • 900 ••• . • . . . ٠ • • • • 1200 • . • • . • . . 1500

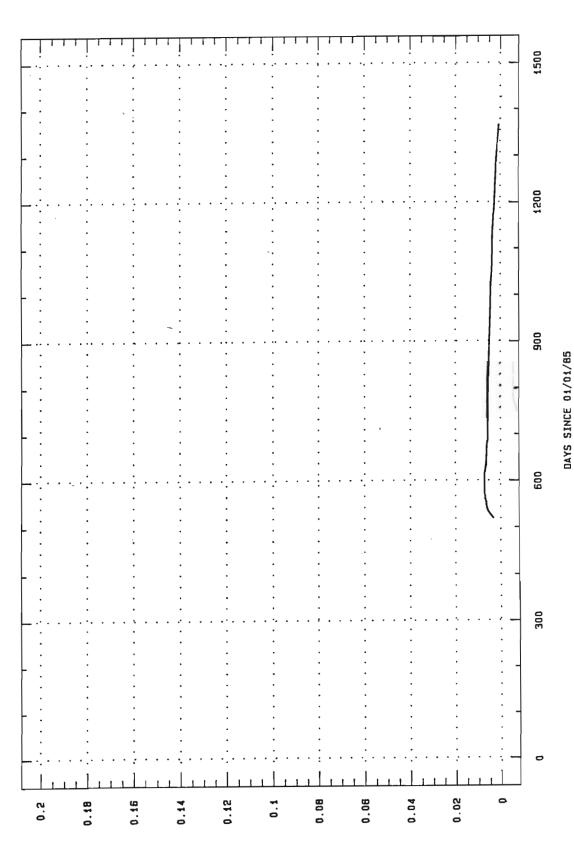
SIMPLE ELEVEN-POINT MOVING AVERAGE

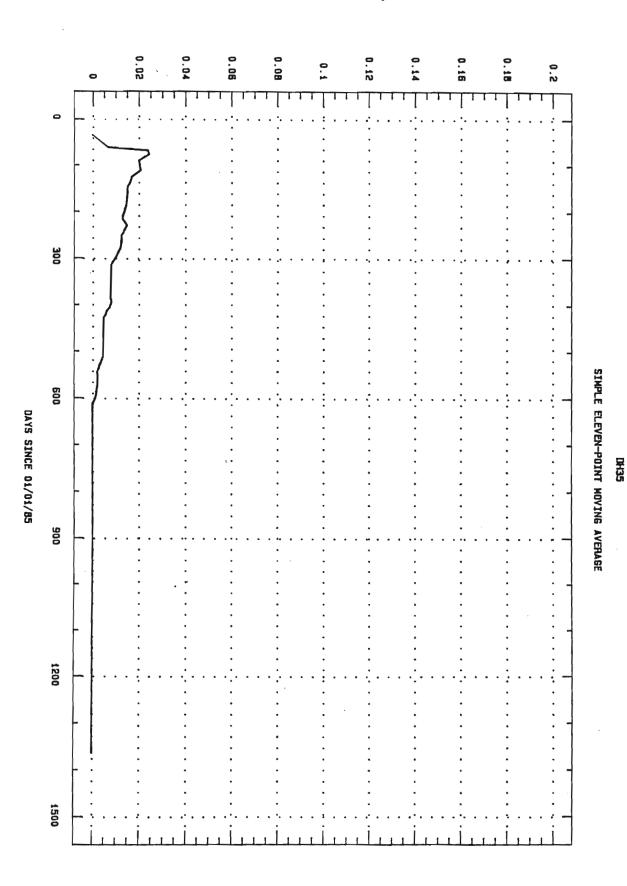
BTROS

WP:WIP:R-1625-AppB

BX02

SIMPLE FIVE-POINT MOVING AVERAGE

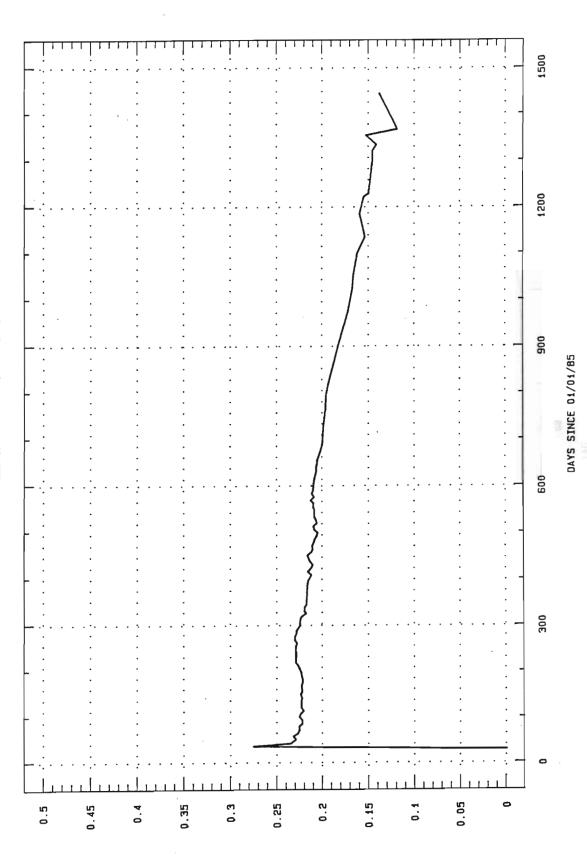

0		0.02	0.04	0.06	0.0B	0.1	0.12	0.14	0.16	0.18	0.2
, [T				1111				111-			
	• • •	· · · ·	• • • •	· · · · ·	· · · · · ·	· · · · · ·	· · · · ·	· · · · ·	• • • • • •	• • • •	••••
			•	•					•	•	
[.	~		:	•		:	:	•			· -
	ſ		:			:	:	:	•	•	:
ſ:	1	:	•	•	•	:	:	•		:	: 1
	1	•	•	•			:	:	•	•	: [
5 [.	[· · ·			•••••	••••	•	• • • •	••••	••••••	•••••	· · · ·
ļ	(•	•	•	•	•	:	•	•	•	•
		•		•	•	•	•	•	•	•	: -
		•		•			•	•			
			1	•	•	•	•	•	•	•	: -
"		• .	•					•	•		:
500	• • •	· · ·	••••••	•••••	•••••••	•••••••	· · · · ·	•••••••	•••••••••••••••••••••••••••••••••••••••	• • • • •	••••
	_	:	:	•	:	•	•				,
		:	:			:	•	•	•	•	: -
		:		· ·	•		:	•	•	:	:
		:		•	•		:		•	:	: -
			:	•	•		:			:	2
		- · ·	· ··· · ·	· · · · · ·	· · · · · ·	· · · · ·	• • • • •	· · - ·	••••••	• ••• • •	•••••
			•	•		:			•		:
		:	• :	•	•	•	:	•	•	:	: -
			•	•		•	:	•	•	•	:
				•	,			:	•	:	: -
.				•		•	•	•	•	:	:
	•••	÷ · ·	• • • • •	••••••	• • : • •	•••••••	· •	• • 🗄 •	••••	••••••••	· · :
		:		•			•		•		:
				•	•				•		: -
		•	•	•	•	•	•		•		:
		•	•	•	•	•	•	•	•		: -
			•	•	•	•	•	•	•	•	
	·	••••	• • • • •	•	••••		• • • •	•	· · · · ·		
ĺĺ	1 1 1	L.ı		, i,	· · ·	i		İ. ı	بال		ii

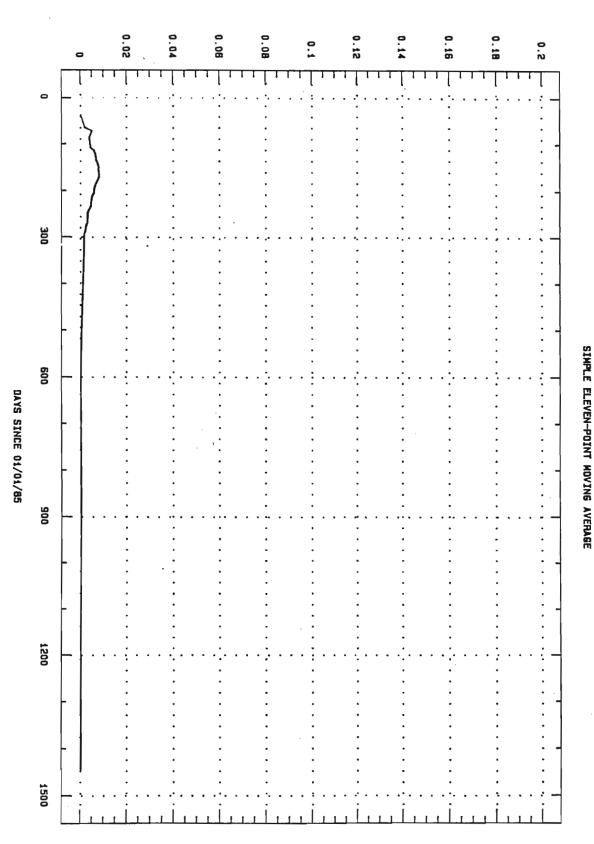

INFLOW RATE (Liters/Day)

DAYS SINCE 01/01/85

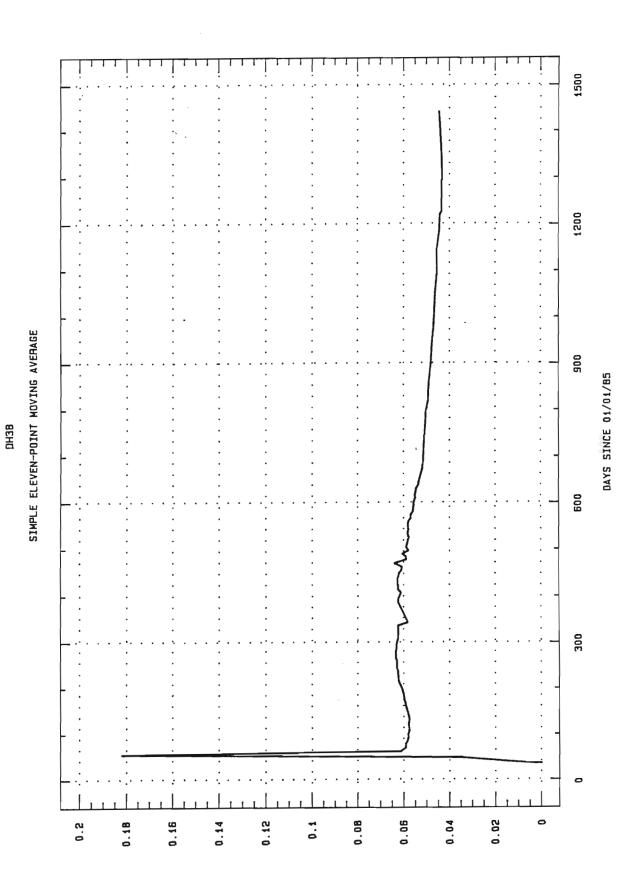
DH15

SIMPLE ELEVEN-PDINT MOVING AVERAGE



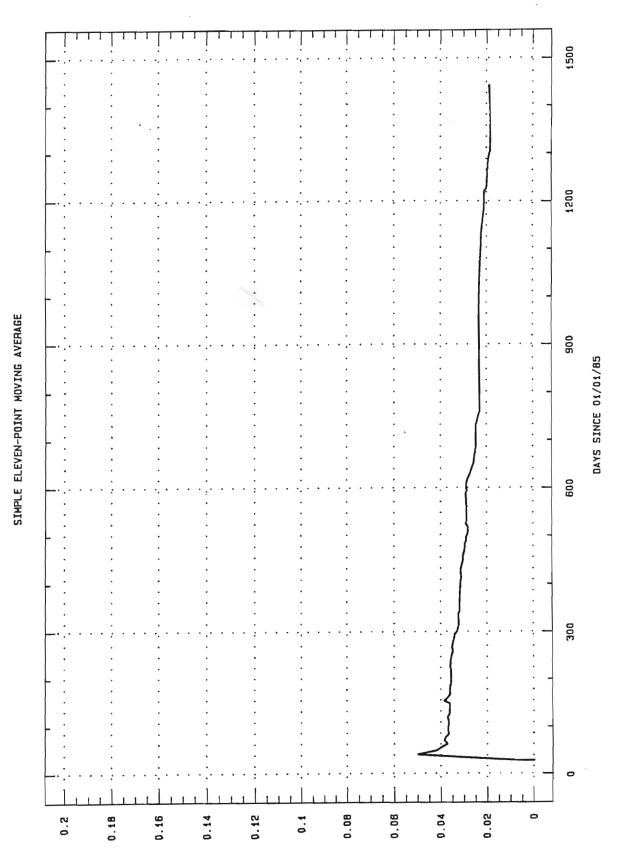

WP:WIP:R-1625-AppB

0H36


SIMPLE ELEVEN-POINT MOVING AVERAGE

(VED/STE (Liters/Day)

DH37


WP:WIP:R-1625-AppB

0.02 0.04 0.05 0.08 0.12 0.14 0.16 0.18 0.1 0.2 0 0 300 ۰. . 600 : DAYS SINCE 01/01/85 900 ٠ 1200 . : • 1500

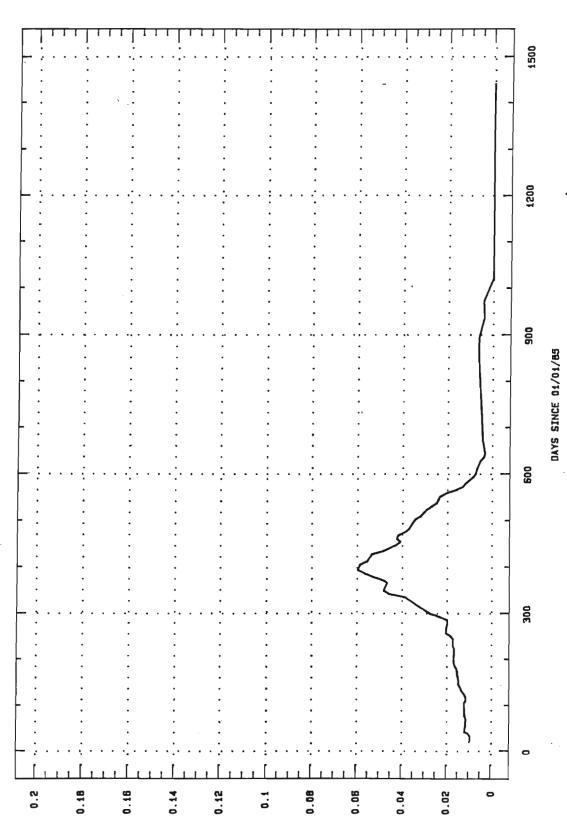
SIMPLE ELEVEN-POINT MOVING AVERAGE

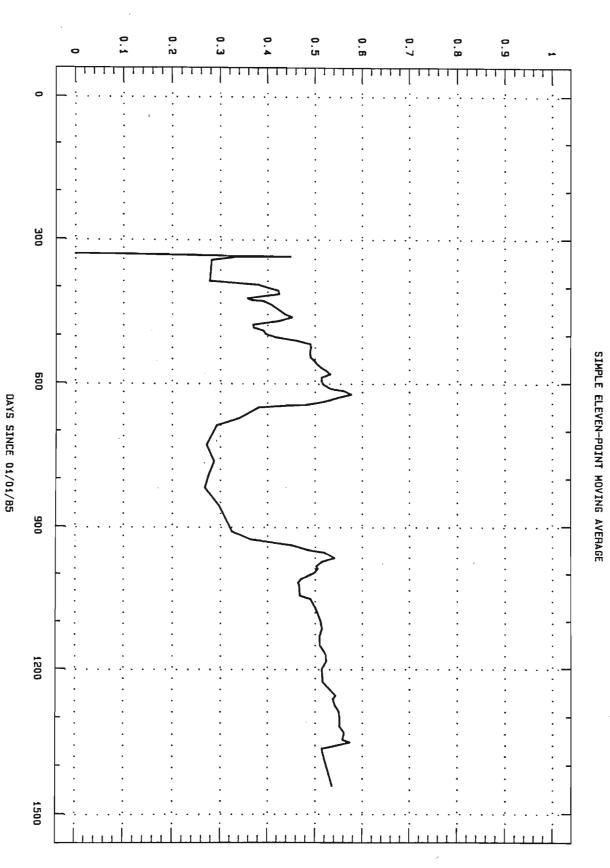
DH40

DH42

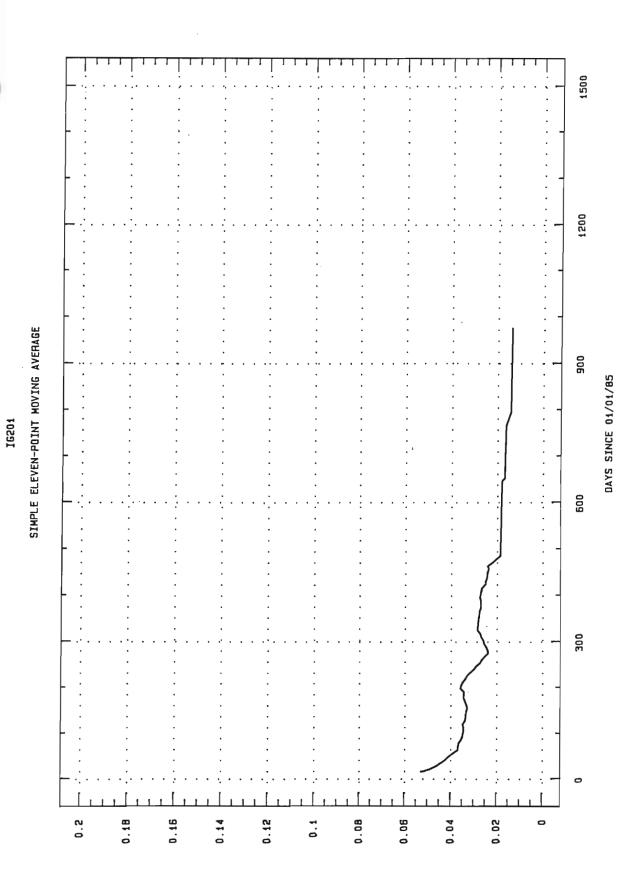
INFLOW RATE (Liters/Day)

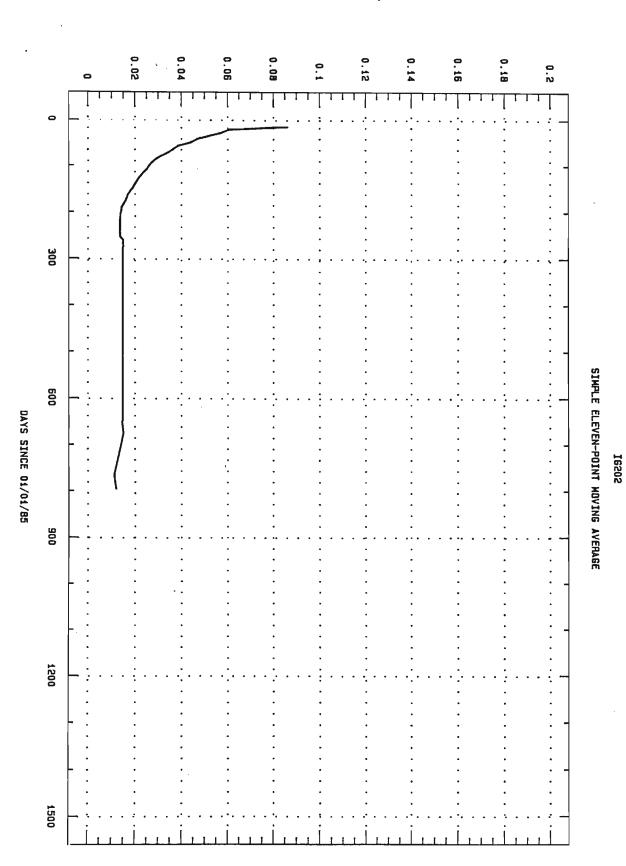
0.02 0.04 0.06 0.08 0.12 0.16 0.14 0.1B 0.1 0.2 0 Τ Т Т Т Т Т Т ł ı 1 3 Т o 00E SIMPLE ELEVEN-POINT MOVING AVERAGE 600 : . 006 : : ٠. 2 . 1200 1 : 1500

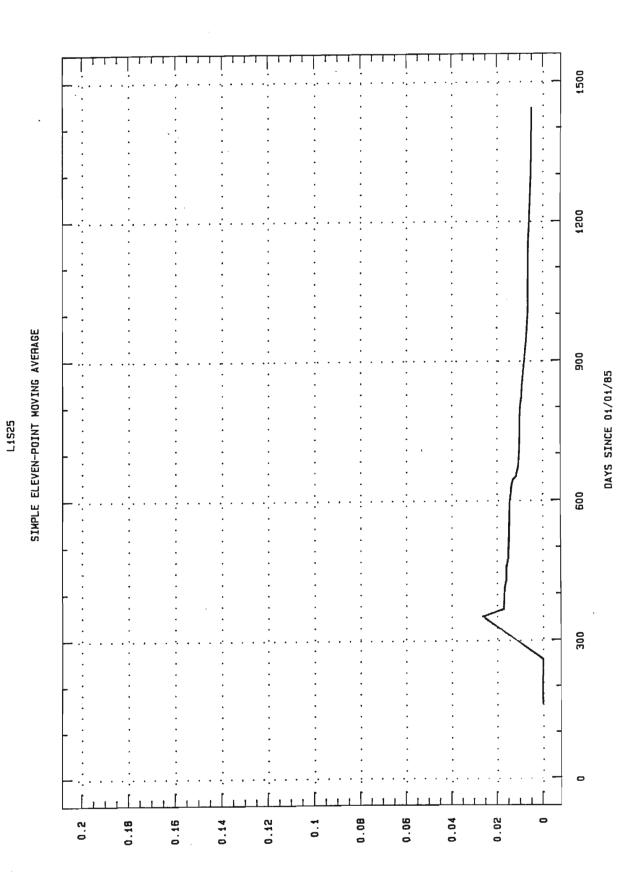

DH42A


INFLOW RATE (Liters/Days)

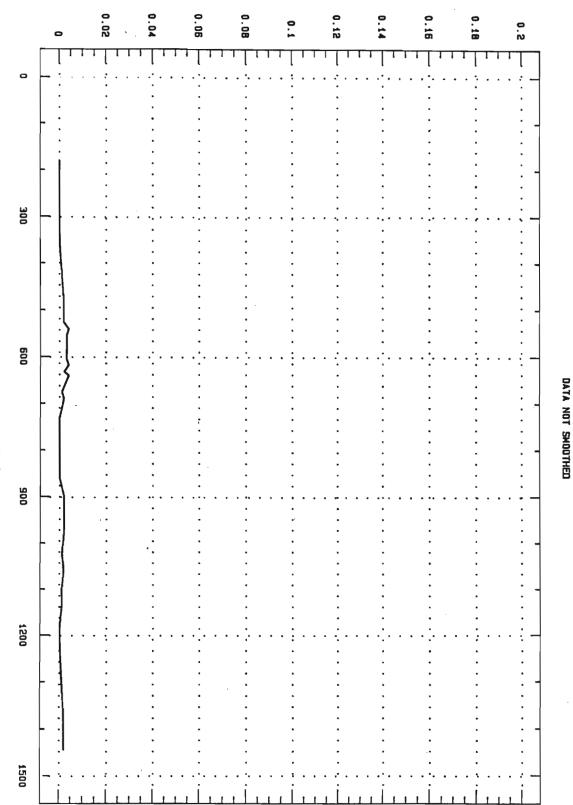
DAYS SINCE 01/01/85

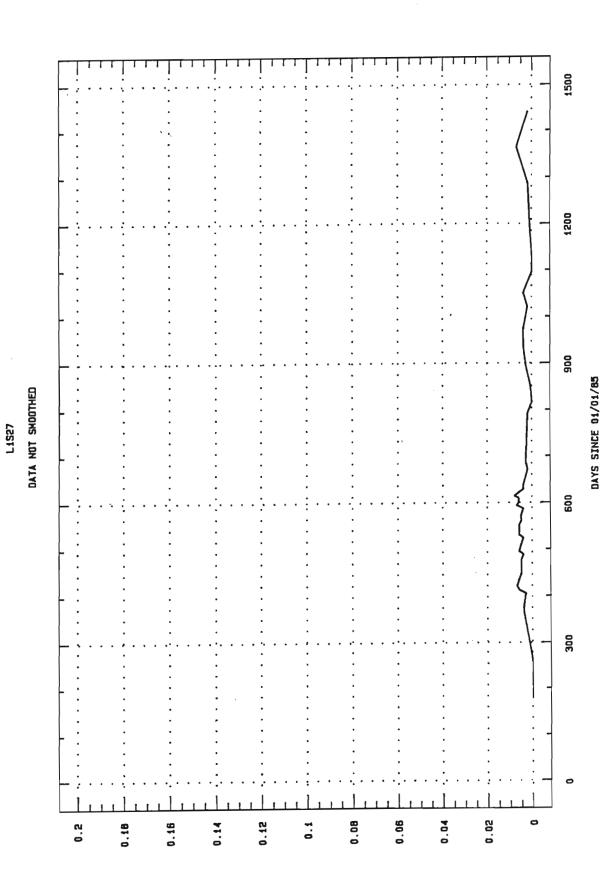

DH215

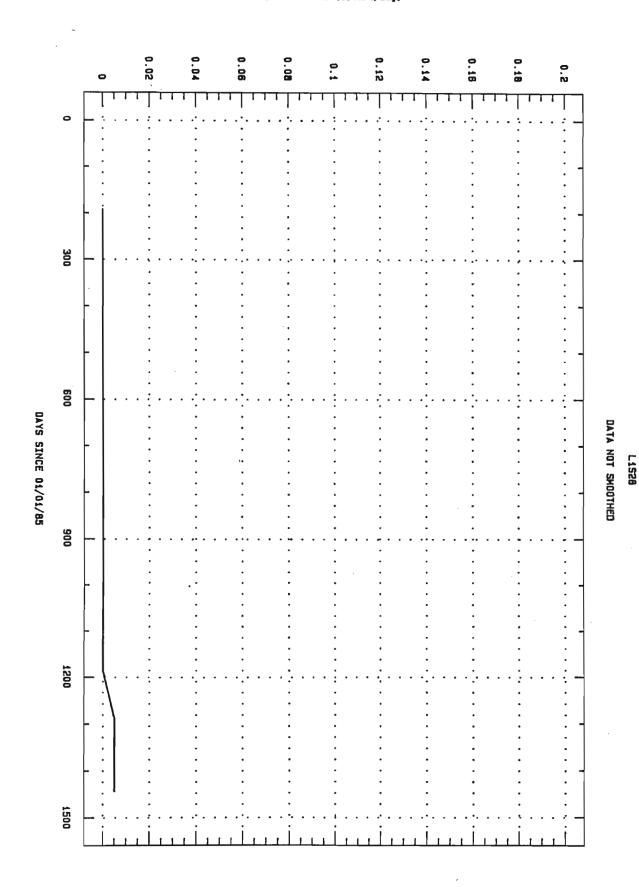


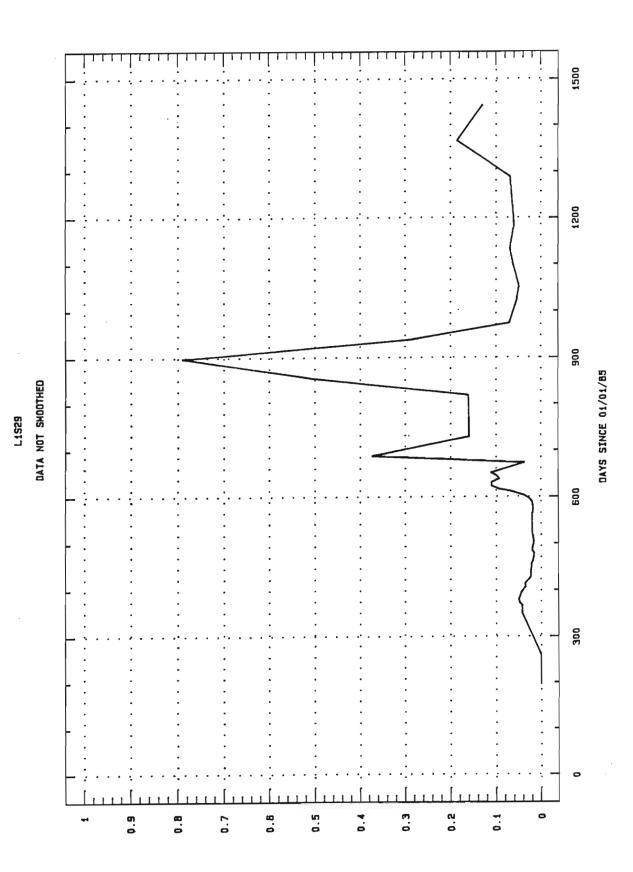


GSEEP

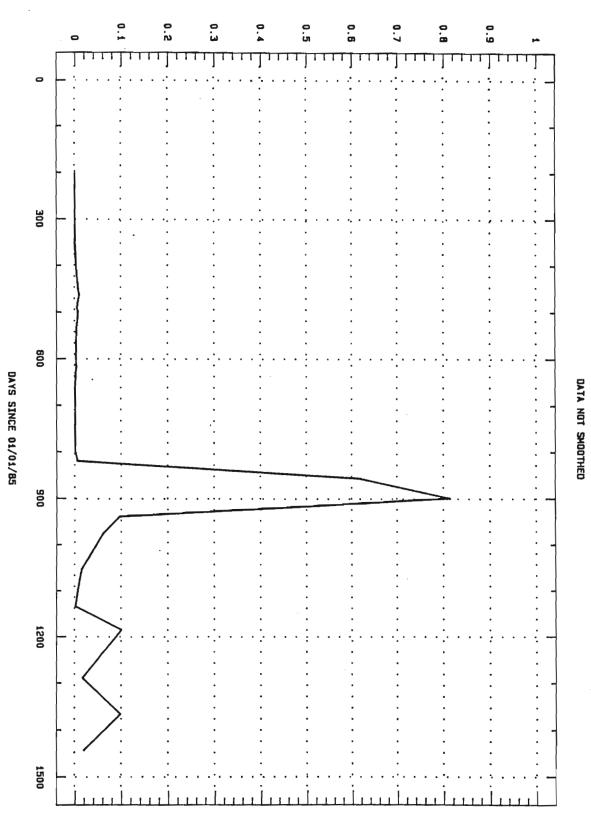



WP:WIP:R-1625-AppB

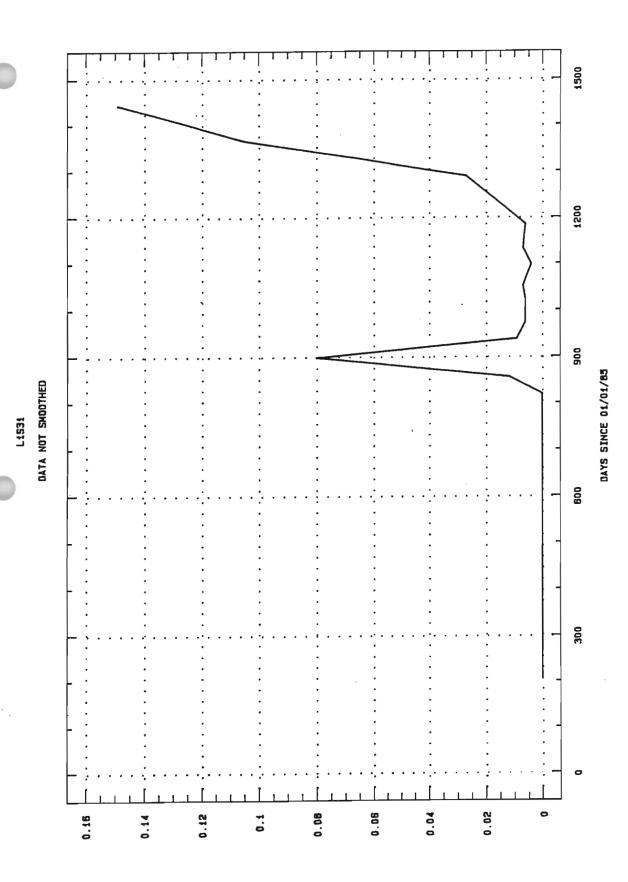

B-25


L1526

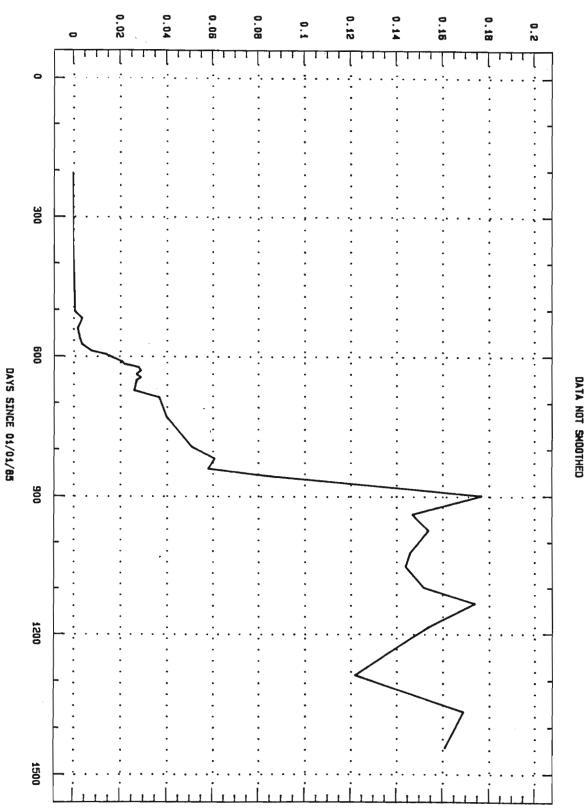
DAYS SINCE 01/01/85



B-28

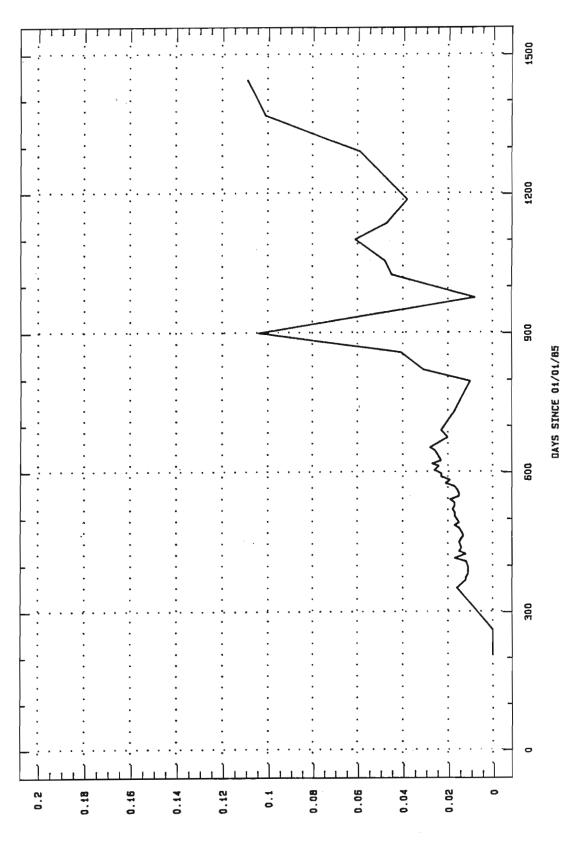


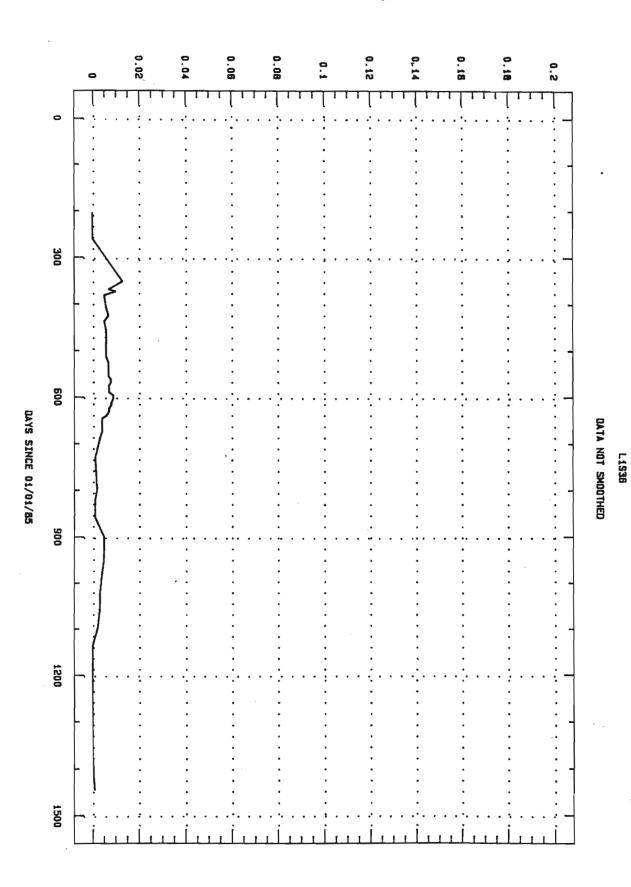
INLION BATE (LIFELS/Day)



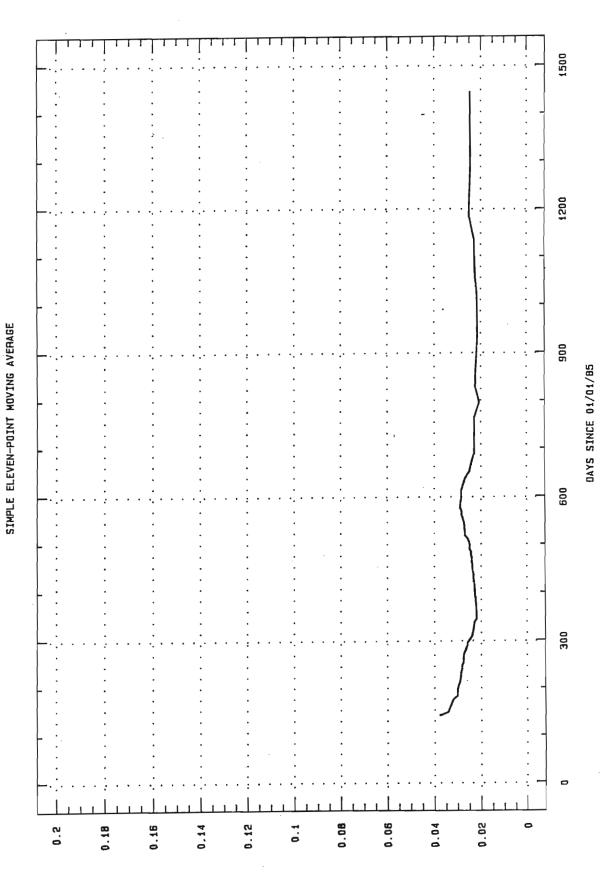
L1530

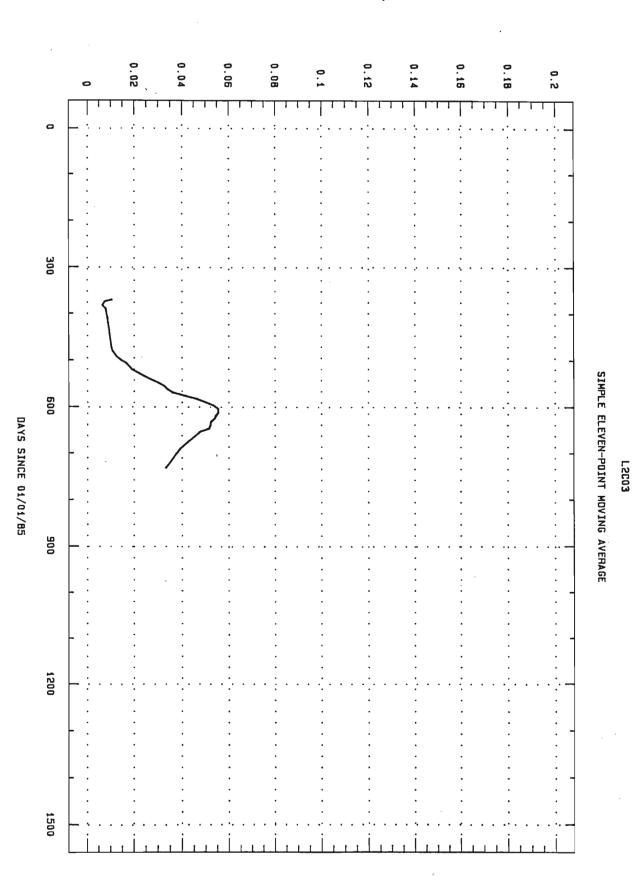
B-30


(VECLOW RATE (Liters/Day)


L1532

L1533


DATA NOT SHOOTHED



(VECON RATE (LITER WOUTHNI

L1X00

0.35 0.05 0.25 0.45 0.15 0.1 0.2 0.3 0.4 0.5 0 Т 0 **00E** SIMPLE ELEVEN-POINT MOVING AVERAGE 600 DAYS SINCE 01/01/85 006 1200 1500 1111 11 1111

INFLOW RATE (Liters/Day)

NG252

APPENDIX C

-

۰.

ANALYTICAL RESULTS FOR BRINE SAMPLES

ANALYTICAL RESULTS

SAMPLE NUMBER	HOLE N		LAB	DATE	рН	S.G.	TDS mg/L	EXT ALK ¹ mg/L	ALK ² mg/L	TIC ³ mg/L	Br mg/L	Cl mg/L	F mg/L	l mg/L	NO ₃ mg/L	PO, ³ mg/L	SO₄² mg/L	NH,⁺ mg/L
000																		
223	A1X01	DN	UNC	11/87	5.9	1.21	369000	945		5.6	1590	191000	8.0	12.0	<10	<1	18400	144
303	A1X01	DN	UNC	2/8/88	6.9	1.24	377000	975	'	6.1	1390	194000	5.1	14.8	<20	<1	18500	148
390	A1X01	DN	UNC	3/30/88	6.0	1.23	373000	963		2.5	1360	192000	4	13	<10	<10	18700	150
522	A1X01	DN	UNC	9/27/88	6.2	1.23	374000	975		30	1470	194000	7.8	11.5	2	<10	16900	136
349	A1X02	UP	IT	3/29/88	5.7	1.23	341000	719		<5	1600	187000	8	<20	<0.04		23000	110
351	A1X02	UP	IT	3/29/88	5.7	1.22	337000	701		<5	1900	189000	6	<20	< 0.04		19100	100
405	A1X02	UP	IT	6/14/88	5.6	1.24	346000	680		<5	2300	195000	8	<20	< 0.04		23200	150
406	A1X02	UP	IT	6/14/88	5.6	1.23	346000	670		<5	2200	192000	6	<20	< 0.04		18500	110
226	A1X02	UP	UNC	11/87	5.5	1.22	393000	908			2120	197000	9.7	12.8	14	<1	22300	188
299	A1X02	UP	UNC	2/8/88	6.7	1.24	386000	768		2.0	1660	194000	5.0	12.6	22	<1	21700	150
343	A1X02	UP	UNC	3/29/88	5.6	1.23	391000	768		<0.5	1870	197000	6	12	<10	<10	23000	158
345	A1X02	UP	UNC	3/29/88	5.6	1.23	394000	768		<0.5	1860	198000	4	13	<10	<10	22900	154
347	A1X02	UP	UNC	3/29/88	5.6	1.23	392000	768		<0.5	1880	197000	<4	13	<10	<10	22900	163
402	A1X02	UP	UNC	6/14/88	5.5	1.24	402000	852		<5	2050	203000	5.0	12.4	1	<3	21200	141
403	A1X02	UP	UNC	6/14/88	5.6	1.24	400000	849		<5	2070	204000	5.0	11.5		<3	21200	146
404	A1X02	UP	UNC	6/14/88	5.6	1.24	400000	934		<5	2060	203000	5.2	11.9	i a	<3	21200	140
458	A1X02	UP	UNC	7/12/88	5.3	1.23	393000	879		9.7	2120	200000	8.5	14.7	1 2	12	20300	140
514	A1X02	UP	UNC	9/27/88	5.5	1.24	398000	860		<5	1900	199000	7.2	9.9	2	<10	20300	145
516	A1X02	UP	UNC	9/27/88	5.5	1.23	397000	853		<5	1900	198000	7.1	12.0	2	<10	21400	
517	A1X02	UP	UNC	9/27/88	5.4	1.24	399000	857		<5	1900	198000	7.3	10.5	2	<10 <10	21200	142 140
214	A2X01	DN	UNC	11/87	6.0	1.21	470000	975		54.4	1440	194000	8.7	12.2	<10	<1	16400	
386	A2X01	DN	UNC	3/30/88	6.0	1.22	381000	1183		58.4	1490	196000	5	14	<10	<10	19000	144
453	A2X01	DN	UNC	7/12/88	5.8	1.22	376000	951		67.6	1450	197000	8.2	15.3	2	<10		157
512	A2X01	DN	UNC	9/27/88	5.7	1.23	380000	912		61.0	1430	195000	7.6	12.3	4		16200	195
295	A2X02	UP	UNC	2/8/88	6.9	1.24	374000	927		8.1	1310	194000	5.8	14.3	4 <20	<10	17000	135
220	A3X01	DN	UNC	11/87	6.0	1.20	395000	914		88.9	1340	184000	8.1	14.3	<20 <10	<1	18500	142
297	A3X01	DN	UNC	2/8/88	6.9	1.24	381000	927		7.1	1400	192000	6.0	14.7	<10	<1	15300	138
388	A3X01	DN	UNC	3/30/88	6.0	1.22	373000	951		6.1	1400	192000	5	14.7		<1	18600	148
456	A3X01	DN	UNC	7/12/88	5.8	1.22	372000	938		138.7	1400	196000	8.5	15.6	<10	<10	18400	149
232	BTP-A2	DN	IT	11/87	7.1	1.20	341000	2926		130.7	1200	180000	8.5 5		1	<5	15800	160
187	BTP-B1	DN	IT	11/87	7.2	1.20	338000	171			280		-	44	<1		14300	102
	5.1 51	211	••	11/0/	1.6	1.20	330000	171			200	172000	2	<20	6		14400	2.8

¹Reported as equivalent HCO_3^- , solutions titrated to end point pH of 2.5. ²Reported as equivalent HCO_3^- , solutions titrated to end point pH of 4.5. ³Reported as equivalent HCO_3^- .

WP:WIP:R-1625-AppC

TABLE C-1

ANALYTICAL RESULTS (CONTINUED)

SAMPLE NUMBER	HOLE NO & DIREC		LAB	DATE	Al mg/L	As mg/L	Ba mg/L	B mg/L	Ca mg/L	Fe mg/L	K mg/L	Mg. mg/L	Mn mg/L	Na mg/L	Si mg/L	Sr mg/L	% CHARGE BALANCE
				11/07	0.083	0.016	0.040	1610	330	<0.38	15500	24500	1.40	79500	1.39	1.86	0.68
223	A1X01	DN DN	UNC UNC	11/87 2/8/88	0.083	0.016	0.040	1410	300	<0.38 0,90	16700	22300	1.38	81400	1.56	1.75	-0.63
304	A1X01		UNC	3/30/88	0.280	0.002	0.022	1410	290	0.44	16100	22500	1.36	78700	1.31	1.62	-1.19
391	A1X01	DN	UNC	9/27/88	1.33	0.003	0.019	1440	283	0.85	16500	23300	1.43	78500	4.82	1.49	-0.79
521	A1X01	DN		3/29/88	<10	0.003	< 0.5	1410	260	3	15800	30600	4.9	68300	0.4	6.8	1.02
350	A1X02	UP UP	IT	3/29/88	<10	0.008	<0.5 <0.5	1500	270	3	16100	31000	5.0	70100	0.4	6.9	2.21
352	A1X02		IT	3/29/88 6/14/88	<10 <10	<0.008	<0.5 <0.5	1700	260	2	16000	33500	5.1	66200	0.3	6.9	0.26
405	A1X02	UP UP	IT IT	6/14/88 6/14/88	<10	<0.025 <0.5	<0.5 <0.5	1800	270	2	16600	35000	5.4	65500	0.3	6.9	2.70
406	A1X02	UP	UNC	11/87	0.105	0.002	0.050	1900	360	< 0.38	17100	39000	4.84	59300	1.57	6.39	1.46
226	A1X02		UNC	2/8/88	0.060	0.002	0.039	1340	290	<0.44	15300	29000	4.79	70600	1.11	5.96	-0.80
300	A1X02	UP	UNC			0.002	0.035	1440	290	<0.29	15000	31600	4.59	66000	1.08	5.83	-1.70
344	A1X02	UP		3/29/88	0.061	0.002	0.034	1440	290	<0.29	14700	31100	4.59	64200	1.02	5.75	-3.01
346	A1X02	UP	UNC	3/29/88	0.063		0.033	1430	290	<0.29	15300	32100	4.73	65800	1.02	5.95	-1.34
348	A1X02	UP	UNC	3/29/88	0.063	0.002	0.034	1600	290	0.12	14900	34600	4.58	62200	1.20	5.84	-2.14
402	A1X02	UP	UNC	6/14/88	0.081	0.002			292	0.12	14800	34600	4.53	62500	1.18	5.87	-2.28
403	A1X02	UP	UNC	6/14/88	0.077	0.002	0.039	1610		0.12	14800	34600	4.62	61500	1.10	5.89	-2.37
404	A1X02	UP	UNC	6/14/88	0.080	0.002	0.038	1470	293		14900	32600	4.76	60000	1.69	5.68	-3.69
459	A1X02	UP	UNC	7/12/88	0.362	0.002	0.040	1470	267	0.89	15000	32000	4.70	67300	1.18	5.83	-1.09
515	A1X02	UP	UNC	9/27/88	0.110	0.002	0.039	1490	286	<0.03			4.75	67200	1.18	5.85	-0.97
518	A1X02	UP	UNC	9/27/88	0.111	0.002	0.040	1500	289	< 0.03	15100	31900	4.75	67400	1.17	5.85	-0.71
519	A1X02	UP	UNC	9/27/88	0.133	0.002	0.040	1480	287	< 0.03	15000	32200				1.29	0.74
214	A2X01	DN	UNC	11/87	0.049	0.001	0.060	1550	360	2.74	15700	24800	1.83	79900	<1 3.66	1.02	-0.47
385	A2X01	DN	UNC	3/30/88	0.119	<0.001	0.152	1440	400	2.99	16500	23700	1.72	80800	3.00	0.85	-3.87
454	A2X01	DN	UNC	7/12/88	0.724	0.001	0.047	1270	288	18.7	16300	20000	1.92	78400		0.85	-0.92
513	A2X01	DN	UNC	9/27/88	0.649	<0.001	0.038	1420	285	38.0	16200	23500	1.77	78600	2.00	0.97	-1.04
296	A2X02	UP	UNC	2/8/88	0.054	<0.001	0.039	1430	310	13.90	16200	22800	1.84	79600	<0.89	3.85	2.24
220	A3X01	DN	UNC	11/87	0.132	0.002	0.050	1520	340	1.80	14800	24500	1.61	77800	1.61		
298	A3X01	DN	UNC	2/8/88	0.156	0.002	0.024	1440	310	1.90	16000	22800	1.58	81100	1.32	2.13	-0.07
387	A3X01	DN	UNC	3/30/88	0.217	0.002	0.030	1460	310	1.26	16100	23700	1.45	79500	1.77	2.04	-0.46
457	A3X01	DN	UNC	7/12/88	1.74	0.002	0.037	1250	287	1.53	16200	20200	1.57	76600	6.32	2.06	-4.14
232	BTP-A2	DN	IT	11/87	<10	0.030	<0.5	1000	460	2	15400	18300	0.8	76200	1.1	11.0	-1.89
187	BTP-B1	DN	IT	11/87	<10	0.031	<0.5	120	400	1	13900	8000	<0.5	106000	<0.2	39.0	4.50

ANALYTICAL RESULTS (CONTINUED)

SAMPLE NUMBER	HOLE NUM & DIRECT		LAB	DATE	рΗ	S,G.	TDS mg/L	EXT ALK ¹ mg/L	ALK² mg/L	TIC ³ mg/L	Br mg/L	Cl mg/L	F mg/L	l mg/L	NO ₃ - mg/L	PO₄ ⁻³ mg/L	SO₄ ⁻² mg/L	NH₊⁺ mg/L
218	BTP-B1	DN	UNC	11/87	7.5	1.21	359000	414		88.9	400	100000	1.0		05		17000	
244	BTP-B1	DN	UNC	2/8/88	7.9	1.24	358000	402		124.5	483	188000	1.9	<1	25	<1	17900	12.0
215	BTP-B2	DN	UNC	11/87	6.9	1.21	431000	2438		124.5	476	191000	23.7	1.8	26	<1	20000	22.9
212	BTP-B3	DN	UNC	11/87	8.6	1.18	311000	829		518	1240 446	187000	5.3	11.1	<10	<1	13900	120
178	BTP-C1	DN	UNC	09/87	7.2	1.21	354000	500	414	510		170000	0.7	2.2		<1	15700	13.4
209	BTP-C1	DN	UNC	11/87	7.7	1.20	345000	402	414	91.4	498 371	188000	1.9		4.0		12400	
236	BTP-C1	DN	UNC	11/87	8.9	1.19	323000	402 99				205000	1.7	1.4	12	<1	12200	13.9
247	BTP-C1	DN	UNC	2/8/88	8.1	1.22	347000	390		9.1 100.6	193	184000	0.3	<1	10	<1	6950	3.2
206	BTP-C2	DN	UNC	11/87	7.2	1.20	376000	1804		247.4	370	191000	15.1	1.5	22	<1	14700	17.3
227	BTP-C4	UP	UNC	11/87	7.5	1.21	343000	2517		144.3	912	189000	4.3	7.3	11	<1	12900	84.2
235	BTP-C4	UP	UNC	11/87	7.5	1.21	349000	2682			1010	189000	2.6	6.6	11	<1	16100	78.7
476	BTP-C4	UP	UNC	7/12/88	7.4	1.22	349000	2636		148.8	1080	191000	2.9	6.8	<10	<1	10000	78.7
225	BTR-8&9	Hor.	UNC	11/87	5.9	1.22	378000	762		133.1 3.0	1080	189000	8.0	7.1	2	20	19000	97.4
207	BX-01	DN	IT	11/87	6.3	1.23	346000	817		3.0	1600	195000	7.4	11.1	<10	<1	16800	144
210	BX-01	DN	IT	11/87	6.0	1.23	352000	817			1400	188000	9	<20	<1		17400	127
287	BX-01	DN	IT	2/8/88	5.9	1.20	342000	805			1400	184000	8	<20	<1		17000	117
379	BX-01	DN	IT	3/29/88	5.9	1.21	332000	793		<5	1300	183000	9	<20	0.12		16700	100
449	BX-01	DN	IT	7/12/88	6.0	1.21	332000	805		<5 5	1300	184000	9	<20	<0.02		17800	96
198	BX-01	DN	UNC	11/87	5.8	1.21	396000	835		-	1600	175000	7	<20	0.02		16000	120
201	BX-01	DN	UNC	11/87	5.9	1.21	406000	835		11.7 16.3	1440	193000	7.9	13.3	<10	<1	16700	145
204	BX-01	DN	UNC	11/87	5.9	1.22	399000	829		23.4	1430	193000	8.0	13.7	<10	<1	17100	144
289	BX-01	DN	UNC	2/8/88	6.8	1.23	367000	817		7.6	1460 1350	193000	8.2	13.0	<10	<1	16800	148
291	BX-01	DN	UNC	2/8/88	6.8	1.23	373000	817		7.6	1350	195000	6.1	14.5	<20	<1	18500	151
383	BX-01	DN	UNC	3/29/88	5.9	1.23	375000	841		1.5		196000	5.0	14.7	25	<1	18300	145
451	BX-01	DN	UNC	7/12/88	5.8	1.22	376000	907		138.7	1390 1460	194000	6	14	<10	<10	18600	154
504	BX-01	DN	UNC	9/27/88	6.2	1.23	382000	880		30	1460	198000 195000	10.0	15.7	1	<5	16400	180
397	DHP-401	UP	IT	3/29/88	6.1	1.21	325000	902		5	1460	180000	8	14.0	3	<10	17000	135
196	DHP-401	UP	UNC	11/87	5.4	1.23	380000	1134		0.5	2380	200000	13.1	<20	0.02		17800	110
238	DHP-401	UP	UNC	2/8/88	6.6	1.26	398000	1170		5.1	2380	203000		13.6	<10	<1	25600	185
492	DHP-402A	- •	UNC	8/22/88	6.2	1.23	368000	449		20.3	2430 95	192000	8.7 6.6	15.0 5.0	21 <2	<1 <2	30200 14800	210 71.9

¹Reported as equivalent HCO_3^- , solutions titrated to end point pH of 2.5. ²Reported as equivalent HCO_3^- , solutions titrated to end point pH of 4.5. ³Reported as equivalent HCO_3^- . K K

TABLE C-1

ANALYTICAL RESULTS (CONTINUED)

SAMPLE NUMBER	HOLE NUM & DIRECTI		LAB	DATE	Al mg/L	As mg/L	Ba mg/L	B mg/L	Ca mg/L	Fe mg/L	K mg/L	Mg mg/L	Mn mg/L	Na mg/L	Si mg/L	Sr mg/L	% CHARGE BALANCE
218	BTP-B1	DN	UNC	11/87	0.049	0.004	0.050	143	450	<0.38	13200	8180	0.14	108000	1.95	38.5	0.37
245	BTP-B1	DN	UNC	2/8/88	<0.03	0.002	0.019	127	400	<0.44	13900	8030	.0.16	108000	1.67	35.4	^{-0.73}
215	BTP-B2	DN	UNC	11/87	0.148	0.008	0.110	1340	560	0.77	14500	21100	0.84	83700	3.71	14.7	1.36
212	BTP-B3	DN	UNC	11/87	0.070	0.002	0.209	143	470	<0.38	11600	3980	<0.07	102000	1.17	19.0	-0.56
178	BTP-C1	DN	UNC	9/87	<0.100	0.001	<0.3		504	<0.38	10000	8000	2.40	93000	<4.0	49.0	-5.60
209	BTP-C1	DN	UNC	11/87	<0.02	0.003	0.190	118	590	<0.38	9310	6320	0.19	111000	1.89	54.0	-3.70
236	BTP-C1	DN	UNC	11/87	0.048	0.005	0.340	128	620	<0.38	8550	6260	0.20	110000	3.13	51.9	1.93
247	BTP-C1	DN	UNC	2/8/88	<0.03	0.002	0.019	101	500	<0.44	10900	5950	0.24	111000	1.63	48.4	-0.74
206	BTP-C2	DN	UNC	11/87	0.034	0.012	0.170	817	620	<0.38	13200	15400	1.31	91700	3.94	28.1	-0.15
227	BTP-C4	UP	UNC	11/87	0.066	0.002	0.200	1030	420	1.02	11200	18300	0.08	90100	1.51	17.0	0.10
235	BTP-C4	UP	UNC	11/87	0.022	0.002	0.400	1010	910	0.50	10900	16500	<0.07	92200	1.29	37.4	0.34
481	BTP-C4	UP	UNC	7/12/88	0,039	0.001	0.100	740	386	0.63	10100	13800	<0.10	89800	1.18	14.1	-4.19
225	BTR-8&9	Hor.	UNC	11/87	0.062	0.016	0.070	1470	290	<0.38	14800	26500	2.90	75300	2.38	0.83	-0.30
207	BX-01	DN	IT	11/87	<10	0.026	<0.5	1400	250	2	16900	22200	1.4	84200	0.5,	3.3	2.04
210	BX-01	DN	IT	11/87	<10	0.024	<0.5	1400	250	2	16800	22000	1.4	82200	0.5	2.8	2.21
288	BX-01	DN	IT	2/8/88	<10	<0.5	<0.5	1500	270	5	17000	21000	1.7	77500	0.4	2.6	0.07
380	BX-01	DN	IT	3/29/88	<10	0.01	<0.5	1500	260	з	17400	21600	1.5	80700	0.8	2.5	1.37
450	BX-01	DN	IT	7/12/88	<10	<0.12	<0.5	1600	280	4	18700	23700	1.5	79500	0.2	2.8	5.33
198	BX-01	DN	UNC	11/87	0.092	0.003	0.030	1570	280	0.97	16400	22800	1.32	81000	1.75	2.11	0.07
201	BX-01	DN	UNC	11/87	0.071	0.002	0.040	1740	330	0.38	16300	25000	1.38	80500	1.69	2.30	1.35
204	BX-01	DN	UNC	11/87	0.067	0.002	0.040	1710	340	<0.38	16400	25200	1.36	80000	1.80	2.32	1.38
290	BX-01	DN	UNC	2/8/88	0.284	0.002	0.025	1580	310	3.16	16900	23200	1.44	82400	1.54	2.37	0.21
292	BX-01	DN	UNC	2/8/88	0.208	0.002	0.026	1480	290	3.78	16100	21500	1.41	79700	1.96	2.34	-2.40
382	BX-01	DN	UNC	3/29/88	0.244	0.001	0.021	1480	290	1.69	16900	22500	1.38	82000	1.35	2.06	-0.22
452	BX-01	DN	UNC	7/12/88	1.88	0.001	0.026	1350	277	2.35	16500	19800	1.50	79700	6.36	1.49	-3.73
505	BX-01	DN	UNC	9/27/88	1.02	0.002	0.024	1460	266	3.23	16500	23300	1.33	81400	3.57	1.85	0.05
398	DHP-401	UP	IT	3/29/88	<10	0.012	<0.5	1500	320	2	19700	17000	1.2	88200	0.4	1.2	2.44
196	DHP-401	UP	UNC	11/87	<0.02	0.008	0.070	2000	300	<0.38	15100	46400	7.33	51200	1.62	4.96	1.75
238	DHP-401	UP	UNC	2/8/88	0.033	0.006	0.030	1570	240	2.48	16500	42100	8.65	50400	1.91	5.53	-2.52
493	DHP-402A	DN	UNC	8/22/88	0.054	0.002	0.074	640	469	23.3	10700	12900	2.24	94600	<0.9	20.0	-2.32

ANALYTICAL RESULTS (CONTINUED)

SAMPLE NUMBER	HOLE NUN & DIRECTI		LAB	DATE	ρН	S.G.	TDS mg/L	EXT ALK ¹ mg/L	ALK ² mg/L	TIC ³ mg/L	Br mg/L	CI mg/L	F mg/L	l mg/L	NO ₃ - mg/L	PO₄³ mg/L	SO₄² mg/L	NH,⁺ mg/L
494	DHP-402A	DN	UNC	8/22/88	6.2	1.23	369000	447		20.8	94	193000	6.0	4.6		<2	14000	74.0
496	DHP-402A	DN	UNC	8/22/88	6.2	1.23	369000	456		20.8	96	192000	5.6	4.8	<2 <2	<2 <2	14800 14800	74.8
498	DHP-402A	DN	UNC	9/27/88	5.6	1.24	399000	677		10	1370	194000	5.5	10.1	<2 1	<2 . <10	17700	77.8 115
500	DHP-402A	DN	UNC	9/27/88	5.9	1.23	378000	538		5	1380	194000	7.2	11.1	1	<10 <10	17800	
502	DHP-402A	DN	UNC	9/27/88	5.9	1.23	376000	660		5	1390	194000	6.9	10.2	2	<10		110
217	DH-15	UP	UNC	11/87	5.7	1.22	393000	1018		11.2	2010	196000	. 8.6	11.8	<10	<10	17900 21500	113
208	DH-36	DN	IT	11/87	6.1	1.23	353000	853		11.6	1300	187000	6	22	2	<1		168
211	DH-36	DN	IT	11/87	6.1	1.22	341000	853			1300	178000	6	21	2		15600	138
261	DH-36	DN	IT	2/8/88	6.0	1.22	341000	829		<5	1200	208000	7	<20			15200	127
267	DH-36	DN	IT	2/8/88	6.0	1.19	348000	829		<5	1300	179000	6	<20 <20	<0.04 0.05		16400	120
374	DH-36	DN	IT	3/29/88	6.0	1.22	374000	793		5	1600	184000	6	<20	<0.05		16800	115
377	DH-36	DN	IT	3/29/88	6.0	1.21	350000	793		<5	1700	187000	5	<20	<0.02		17400	110
422	DH-36	DN	IT	7/12/88	6.0	1.22	340000	756		<5	1400	173000	5	<20	0.02		17200	110
424	DH-36	DN	IT	7/12/88	6.0	1.20	345000	756		5	1400	169000	<1	<20	0.05		15200 15700	130
426	DH-36	DN	IT	7/12/88	6.0	1.22	341000	758		5	1400	170000	4	<20	0.05			140
114	DH-36	DN	UNC	6/87	6.2	1.22	379000	988	810	Ŭ	2150	196000	6.1	<20	0.05		15900	130
127	DH-36	DN	UNC	6/87	6.1	1.22	372000	994	815		1900	192000	5.4				16100	
153	DH-36	DN	UNC	9/87	5.6	1.23	375000	830	790		1400	192000	5.0	1.112			15600	
158	DH-36	DN	UNC	9/87	5.8	1.23	375000	830	782		1370	194000	5.1				15800	
167	DH-36	DN	UNC	9/87	5.8	1.22	374000	842	796		1420	196000	5.1				15300	
199	DH-36	DN	UNC	11/87	6.0	1.21	442000	841		6.1	1400	195000	5.5	14.3	12	.1	16000	150
205	DH-36	DN	UNC	11/87	6.0	1.21	381000	835		5.1	1370	193000	5.5	15.0	<10	<1	16300	159
263	DH-36	DN	UNC	2/8/88	6.9	1.24	365000	829		6.1	1340	195000	3.4	15.9	<20	<1	15700	145
269	DH-36	DN	UNC	2/8/88	6.9	1.24	366000	829		46.2	1300	195000	3.4	16.3	<20	<1 <1	17600	159
368	DH-36	DN	UNC	3/29/88	5.8	1.24	376000	866		3.6	1370	194000	<4	15	<10	<10	17800 17900	166
370	DH-36	DN	UNC	3/29/88	5.9	1.23	375000	866		3.0	1370	194000	<4	16	<10	<10	17900	164
372	DH-36	DN	UNC	3/29/88	6.0	1.23	375000	841		3.6	1370	194000	<4	15	<10	<10 <10	17800	170
428	DH-36	DN	UNC	7/12/88	5.8	1.22	373000	807		134.1	1370	196000	7.0	16.6	<10	<5	15300	169 168
430	DH-36	DN	UNC	7/12/88	5.8	1.22	374000	790		132.6	1380	196000	6.3	17.5	3	<5 <5	15300	163
432	DH-36	DN	UNC	7/12/88	5.8	1.22	374000	796		134.1	1380	196000	6.3	17.6	1	<5 <5	15300	172

4590

and the second s

.

¹Reported as equivalent HCO_3^- , solutions titrated to end point pH of 2.5. ²Reported as equivalent HCO_3^- , solutions titrated to end point pH of 4.5. ³Reported as equivalent HCO_3^- .

TABLE C-1

ANALYTICAL RESULTS (CONTINUED)

								(0	CONTINUE	D)							
SAMPLE NUMBER	HOLE NUM		LAB	DATE	Al mg/L	As mg/L	Ba mg/L	B mg/L	Ca mg/L	Fe mg/L	K mg/L	Mg mg/L	Mn mg/L	Na mg/L	Si mg/L	Sr mg/L	% CHARGE BALANCE
495	DHP-402A	DN	UNC	8/22/88	0.054	0.002	0.067	640	469	22.6	10700	12900	2.26	94300	<0.9	20.0	-2.68
497	DHP-402A		UNC	8/22/88	0.053	0.004	0.072	640	469	24.8	10700	12800	2.26	94100	<0.9	20.1	-2.59
499	DHP-402A		UNC	9/27/88	<0.03	0.001	0.064	1180	377	25.2	14300	23400	2.02	82200	<0.07	7.36	0.14
501	DHP-402A		UNC	9/27/88	< 0.03	0.002	0.064	1170	378	19.5	14400	23300	2.01	82100	<0.07	7.55	0.05
503		DN	UNC	9/27/88	< 0.03	0.002	0.065	1180	375	18.0	14200	23100	2.04	81600	<0.07	7.24	-0.36
217		UP	UNC	11/87	0.106	0.012	0.030	1960	270	<0.38	18900	42500	5.26	52300	1.84	2.27	2.03
208		DN	IT	11/87	<10	0.024	<0.5	1600	320	2	20200	20200	1.1	86300	0.71	0.7	2.75
211		DN	IT	11/87	-	0.025	<0.5	1400	290	2	18600	18200	1.0	85800	0.7	1.9	3.17
262	DH-36	DN	IT	2/8/88	<10	<0.5	<0.5	1600	330	2	19300	17900	1.3	76700	0.8	1.5	-7.95
268	DH-36	DN	łT	2/8/88	<10	<0.5	<0.5	1600	320	3	19000	18000	1.3	75700	0.9	1.5	-1.43
375	DH-36	DN	IT	3/29/88	<10	0.009	<0.5	1500	310	2	19200	17800	1.1	90600	0.8	1.5	2.84
378	DH-36	DN	IT	3/29/88	<10	0.011	<0.5	1500	310	2	19400	17909	1.0	86700	0.8	1.5	0.77
423	DH-36	DN	IT	7/12/88	<10	<0.12	<0.5	1600	340	1	20200	191 00	1.1	88000	0.5	1.7	6.33
425	DH-36 i	DN	IT	7/12/88	<10	<0.12	<0.5	1500	340	1	20000	18800	1.0	87200	0.5	1.8	6.77
427	DH-36	DN	IT	7/12/88	<10	<0.12	<0.5	1500	340	2	19900	18600	1.0	88200	0.5	1.8	6.66
114	DH-36	DN	UNC	6/87	0.039	0.009	<0.07		325	<0.42	18200	19100	0.96	84300	2.19	1.36	-1.61
127	DH-36	DN	UNC	6/87	0.087	0.011	<0.07		320	<0.42	18300	19300	1.00	84300	2.12	1.41	-0.37
153	DH-36	DN	UNC	9/87	<0.100	0.015	<0.3		341	0.04	18000	18100	1.00	89000	<4	1.30	-0.20
158	DH-36	DN	UNC	9/87	<0.100	0.014	<0.3		329	0.06	18200	19000	1.00	89000	<4	1.30	0.81
167	DH-36	DN	UNC	9/87	<0.100	0.015	<0.3		320	0.04	17800	18200	1.00	88000	<4	1.20	-0.83
199	DH-36	DN	UNC	11/87	0.062	0.002	0.030	1800	380	<0.38	18000	20600	1.00	86200	2.19	1.36	0.44
205	DH-36	DN	UNC	11/87	0.199	0.016	0.020	1720	370	<0.38	18600	20400	1.03	86900	2.70	1.38	1.28
264	DH-36	DN	UNC	2/8/88	0.150	0.014	0.030	1520	340	<0.44	18500	18400	1.05	87500	2.37	1.40	-0.75
270	DH-36	DN	UNC	2/8/88	0.158	0.012	0.043	1500	340	<0.44	18500	18000	1.02	88000	3.01	1.45	-0.87
369		DN	UNC	3/29/88	0.222	0.013	0.017	1560	340	<0.29	18700	18900	1.00	87100	2.05	1.30	-0.32
371	DH-36	DN	UNC	3/29/88	0.217	0.014	0.018	1530	340	<0.29	18500	19000	1.03	87600	2.18	1.36	-0.09
373		DN	UNC	3/29/88	0.226	0.014	0.019	1510	340	<0.29	18500	18700	1.00	88400	2.35	1.34	-0.02
429		DN	UNC	7/12/88	1.48	0.012	0.033	1320	334	0.69	18200	15800	1.01	85100	5.85	1.55	-3.47
431		DN	UNC	7/12/88	1.432	0.012	0.032	1310	336	0.60	17700	16300	1.01	89100	5.80	1.49	-1.66
433	DH-36	DN	UNC	7/12/88	0.932	0.011	0.030	1310	332	0.30	17200	16400	1.02	86700	3.87	1.47	-2.64

ANALYTICAL RESULTS (CONTINUED)

TABL C-1

· HN mg/L 110 $\begin{array}{c} 171 \\ 162 \\ 163 \\ 153 \\ 176 \\ 176 \\ 176 \\ 176 \\ 176 \\ 172 \\$ 163 165 172 174 178 178 177 15300 15500 17200 15600 15500 15500 17500 17800 15200 15400 17500 14800 17100 17500 15300 15200 16700 12700 15400 15300 15600 15500 15600 15200 17700 17900 18000 15000 5000 so,² PO, ² ² ² <10 ŝ <10 <10 10 ŝ 10 9 <10 °°. °° 7 7 ī \overline{v} ī 7 <0.02 0.06 <0.02 0.05 0.05 0.04 NO. °20 - v 10 <10 S -10 <20 ო 4 <10 10 2 20 ŝ 80 17.5 17.0 21 20 20 20 20 20 20 mg/L 12.8 12.3 14.3 16.4 17.4 16.2 14.3 16.5 14.5 14 17.0 16.7 16.7 17.1 8 8 15 9 14 <4 6.5 10.3 5.5 3.3 3.5 6.8 5.2 10.8 ⊒ ng/L 5.7 3.4 5.6 5.0 3.6 6.1 5.3 5.1 6.1 44 6.1 ດທຸທຸດ ŝ ~ 4 4 189000 195000 193000 192000 180000 190000 175000 173000 196000 193000 197000 193000 196000 82000 192000 95000 193000 80000 93000 69000 195000 96000 96000 193000 196000 197000 95000 193000 mg/L 2710 1360 1370 1270 1340 390 1200 1600 1400 1370 1600 1400 1350 1320 1350 1360 1330 1400 2270 2160 1340 1370 1360 1350 850 1360 1340 1320 1350 mg/L TIC³ 138.2 40.1 4.6 39.6 25 91.4 75.2 9.1 263.1 5.1 12.7 4.1 6.6 6.1 6.1 8.1 6.1 ഗഗ ដ տ Դ ŝ ALK² mg/L 856 820 845 824 EXT ALK¹ mg/L 803 862 866 829 |219 |573 902 927 912 906 853 853 853 878 853 878 878 878 878 878 890 890 896 902 914 840 894 805 805 817 377000 374000 376000 357000 360000 370000 362000 364000 366000 371000 373000 368000 339000 344000 341000 341000 343000 376000 371000 377000 377000 338000 322000 378000 377000 364000 374000 367000 374000 374000 TDS mg/L S.G. 8 8 6.2 6.1 6.9 6.0 5.7 6.3 7.1 6.5 6.5 6.1 5.9 6.3 6.5 6.0 6.0 6.1 6.3 6.1 6.1 6.0 6.0 5.8 5.9 6.3 7.0 펍 6.1 6.1 6.1 6.1 7/12/88 9/27/88 2/8/88 11/87 2/8/88 3/29/88 9/27/88 11/87 2/8/88 3/29/88 7/12/88 7/12/88 DATE 7/12/88 9/27/88 3/29/88 7/12/88 6/87 11/87 2/8/88 3/29/88 6/87 6/87 9/87 11/87 2/8/88 7/12/88 7/12/88 3/29/88 3/29/88 UNC UNC UNC UNC UNC UNC UNC SNC NC NC NC NC SNC UNC LAB UNC N HOLE NUMBER & DIRECTION DH-42A DH-42 DH-42 DH-42 DH-38 DH-38 DH-40 DH-42 DH-42 DH-38 DH-38 DH-38 DH-38 DH-36 DH-36 DH-38 DH-38 SAMPLE NUMBER 434 538 365 417 411 413

WP:WIP:R-1625-AppC

Reported as equivalent HCO₃

'Reported as equivalent HCO_3 ' solutions titrated to end point pH of 2.5. ²Reported as equivalent HCO_3 ', solutions titrated to end point pH of 4.5.

0-7

TABLE C-1

ANALYTICAL RESULTS (CONTINUED)

SAMPLE NUMBER	HOLE NU & DIREC		LAB	DATE	Al mg/L	As mg/L	Ba mg/L	B mg/L	Ca mg/L	Fø mg/L	K mg/L	Mg mg/L	Min mg/L	Na mg/L	Si mg/L	Sr mg/L	% CHARGE
435	DH-36	DN	UNC	7/12/88	0.812	0.010	0.031	1310	341	0.62	17900	16400	1.03	92200	4.23	1.51	-0.61
537	DH-36	DN	UNC	9/27/88	0.316	0.012	0.038	1430	344	0.44	18100	18200	0.98	83500	5.01	1.54	-1.66
366	DH-38	DN	IT	3/29/88	<10	0.006	<0.5	1600	320	2	19800	17900	1.1	89300	0.8	1.0	3.10
418	DH-38	DN	IT	7/12/88	<10	<0.12	<0.5	1500	340	2	20300	18800	1.1	87500	0.5	1.1	6.95
109	DH-38	DN	UNC	6/87	0.148	0.004	<0.07		322	<0.42	18200	18600	0.95	84300	2.28	0.87	-0.21
230	DH-38	DN	UNC	11/87	0.076	0.005	0.030	1650	360	<0.38	17800	19500	0,99	86400	2.35	0.85	0.56
259	DH-38	DN	UNC	2/8/88	0.484	0.004	0.025	1460	330	<0.44	18700	17500	1.07	88200	2.97	1.00	-1.07
364	DH-38	DN	UNC	3/29/88	0.386	0.004	0.022	1530	340	<0.29	18300	18300	1.00	85900	2.51	0.89	-1.75
420	DH-38	DN	UNC	7/12/88	0.442	0.004	0.027	1340	334	0.36	18100	15700	1.02	84500	3.49	0.82	-3.79
535	DH-38	DN	UNC	9/27/88	0.944	0.004	0.026	1440	330	0.39	18000	18200	0.97	85300	2.67	0.90	-0.98
257	DH-40	DN	UNC	2/8/88	0.206	0.002	0.070	1510	380	<0.44	18400	17700	1.25	88000	3.62	0.98	-1.10
229	DH-42	DN	UNC	11/87	0.118	0.009	0.170	1680	510	<0.38	17600	19000	1.07	88900	9.61	1.51	0.95
256	DH-42	DN	UNC	2/8/88	0.286	0.007	0.022	1460	330	0.68	18900	17400	1.20	87700	2.37	0.92	-0.49
324	DH-42	DN	UNC	3/29/88	0.752	0.007	0.024	1460	350	1.25	18300	17600	1.08	85500	2.96	1.02	-1.39
416	DH-42	DN	UNC	7/12/88	2.27	0.005	0.039	1320	363	1.23	18100	15600	1.26	87900	4.56	0.92	-2.31
531	DH-42	DN	UNC	9/27/88	2.72	0.006	0.032	1430	354	1.38	18200	17700	1.09	86000	6.22	1.02	-0.98
233	DH-42A	DN	IT	11/87	<10	0.025	<0.5	1400	280	2	18800	17000	1.0	87200	0.7	1.1	2.24
251	DH-42A	DN	IT	2/8/88	<10	<0.5	<0.5	1600	320	2	19900	17100	1.3	81900	0.9	1.1	0.36
321	DH-42A	DN	IT	3/29/88	<10	0.014	<0.5	1600	320	2	20000	17300	1.2	89900	1.0	0.9	1.76
408	DH-42A	DN	IT	7/12/88	<10	<0.12	<0.5	1500	3 30	2	20600	18000	1.0	89100	0.7	1.0	5.47
410	DH-42A	DN	IT	7/12/88	<10	<0.12	<0.5	1800	400	2	24900	21800	1.3	88700	0.7	1.1	9.35
115	DH-42A	DN	UNC	6/87	0.107	0.003	<0.07		324	<0.42	19100	18900	0.98	85600	2.29	0.91	-9.97
118	DH-42A	DN	UNC	6/87	0.182	0.003	<0.07		334	<0.42	18200	18400	0.96	84300	2.14	0.87	-1.27
154	DH-42A	DN	UNC	9/87	<0.100	0.004	<0.3		328	0.04	18800	18000	1.00	90000	<4	1.00	-0.18
228	DH-42A	DN	UNC	11/87	0.070	0.004	<0.020	1620	360	<0.38	18000	19000	0.99	88200	2.43	0.85	0.74
253	DH-42A	DN	UNC	2/8/88	0.246	0.005	0.018	1210	350	<0.44	19500	18200	1.09	89200	2.99	0.97	-0.29
317	DH-42A	DN	UNC	3/29/88	0.124	0.005	0.020	1540	340	<0.29	18400	18800	1.04	86000	2.56	0.89	-1.58
319	DH-42A	DN	UNC	3/29/88	0.118	0.004	0.019	1570	340	<0.29	18300	18400	1.00	85400	2.61	0.85	-1.90
412	DH-42A	DN	UNC	7/12/88	0.125	0.004	0.018	1330	332	0.32	18400	15600	0.99	84200	2.56	0.78	-3.64
414	DH-42A	DN	UNC	7/12/88	0.179	0.004	0.020	1320	338	0.38	18200	15400	0.98	87800	2.55	0.80	-1.92

C-1

•

.

ANALYTICAL RESULTS (CONTINUED)

	& DIREC	TION	LAB	DATE	рН	S.G.	TDS mg/L	EXT ALK ¹ mg/L	ALK ² mg/L	TIC ³ mg/L	Br mg/L	CI mg/L	F mg/L	l mg/L	NO <u>,</u> mg/L	PO₄³ mg/L	SO₄² mg/L	NH ,⁺ mg/L
528	DH-42A	DN	UNC	9/27/88	6.3	1.23	364000	853		<5	1330	190000	4.9	13.7	3	<10	15100	148
231	G-SEEP	DN	IT	11/87	6.1	1.24	370000	1012		~~	1300	175000	6	24.0	<1	<10	32600	
271	G-SEEP	DN	IT	2/8/88	6.0	1.22	350000	1024		<5	1300	181000	7	20	0.13		32000	170 160
277	G-SEEP	DN	IT	2/8/88	6.0	1.23	356000	1000		<5	1300	179000	8	20	0.13		34700	
283	G-SEEP	DN	IT	2/8/88	6.0	1.21	357000	1000		<5	1400	177000	7	20	0.03		36900	150
333	G-SEEP	DN	IT	3/29/88	6.0	1.23	342000	927		<5	1600	177000	4	<20	0.03			150
335	G-SEEP	DN	IT	3/29/88	6.0	1.23	351000	939		<5	1400	173000	5	<20	0.02		30900	145
437	G-SEEP	DN	IT	7/12/88	6.1	1.21	330000	805		<5	1400	164000	4	<20	0.02		31300	140
439	G-SEEP	DN	IT	7/12/88	6.1	1.19	354000	805		<5	1300	167000	1	<20 <20	0.06		31700	150
441	G-SEEP	DN	IT	7/12/88	6.1	1.20	338000	817		<5	1300	164000	5	<20			32600	150
165	G-SEEP	DN	UNC	9/87	5.9	1.23	383000	952	890		1430	188000	4.8	<20	0.06		31900	140
168	G-SEEP	DN	UNC	9/87	6.0	1.23	384000	940	932		1520	188000	4.8				29800	
202	G-SEEP	DN	UNC	11/87	6.0	1.22	433000	1012	302	2.0	1650	184000	4.0	18.6	10		29500	•••
219	G-SEEP	DN	UNC	11/87	6.0	1.22	383000	1000		2.0	1540	190000	5.6	17.9		<1	32100	203
273	G-SEEP	DN	UNC	2/8/88	6.9	1.25	386000	1024		3.6	1570	186000	3.8	22.5	<10 <20	<1	32000	199
279	G-SEEP	DN	UNC	2/8/88	6.9	1.24	382000	1036		3.6	1430	187000	3.8	22.5	<20	<1	36300	213
285	G-SEEP	DN	UNC	2/8/88	6.9	1.24	382000	1049		3.0	1550	186000	3.9	22.2	<20	<1	35900	217
327	G-SEEP	DN	UNC	3/29/88	6.0	1.24	390000	975		1.0	1540	187000	4	17	13	<1	36200	217
329	G-SEEP	DN	UNC	3/29/88	6.0	1.24	390000	963		<0.5	1500	187000	<4	17	<10	<10	34700	202
331	G-SEEP	DN	UNC	3/29/88	6.0	1.24	386000	975		<0.5	1520	187000	4	16	<10	<10	34800	202
443	G-SEEP	DN	UNC	7/12/88	6.0	1.23	378000	879		5.1	1400	187000	6.1	20.4	<10	<10	34800	212
445	G-SEEP	DN	UNC	7/12/88	6.0	1.23	378000	846		4.1	1400	188000	6.2	20.4		<5	29700	204
447	G-SEEP	DN	UNC	7/12/88	5.9	1.23	380000	884		4.6	1400	188000	6.1	18.2	<1	<5	29600	193
552	G-SEEP	DN	UNC	9/27/88	6.4	1.23	376000	888		<5	1360	185000	4.9		2	<5	29300	195
553	G-SEEP	DN	UNC	9/27/88	6.3	1.23	377000	900		<5 <5	1360	186000		12.7	3	<10	27800	170
554	G-SEEP	DN	UNC	9/27/88	6.3	1.23	376000	902		<5 <5	1300		4.8	11.3	5	<10	27700,	168
463	L1X00	DN	IT	7/12/88	5.8	1.23	367000	1079		<5 <5	1800	185000 178000	5.0 5	13.5	2	<10	28000	173
200	L1X00	DN	UNC	11/87	5.8	1.21	388000	1097		2.5	1620	194000	5	20	0.05		18700	180
311	L1X00	DN	UNC	2/8/88	6.7	1.25	413000	1646		2.5 4.1	2280	201000	7.0	15.8	<10	<1	18800	168
392	L1X00	DN	UNC	3/30/88	5.7	1.23	398000	1329		0.5	2000	197000	5	25.3 19	<20 <10	<1 <10	27100 24700	260 234

201 22203

Las lines of the

MINNER & DIRE, TION

¹Reported as equivalent HCO_3 , solutions titrated to end point pH of 2.5. ²Reported as equivalent HCO_3 , solutions titrated to end point pH of 4.5. ³Reported as equivalent HCO_3 .

TABLE C-1

ANALYTICAL RESULTS (CONTINUED)

SAMPLE NUMBER	HOLE NUMBI		B DAT	E AI mg/L	As mg/L	Ba mg/L	B mg/L	Ca mg/L	Fe mg/L	K mg/L	Mg mg/L	Mn mg/L	Na mg/L	Si mg/L	Sr mg/L	% CHARGE BALANCE
529	DH-42A DN	UN	C 9/27/8	8 0.502	0.004	0.023	1420	322	<0.3	18400	16400	0.94	83800	3.72	0.82	-2.00
231	G-SEEP DN	IT	11/8	7 <10	0.023	<0.5	1800	240	2	16500	16700	0.7	96400	0.4	3.6	3.03
272	G-SEEP DN	IT	2/8/8	8 [.] <10	<0.5	<0.5	2000	250	2	17600	16900	1.0	81500	0.5	3.0	-4.17
278	G-SEEP DN	IT	2/8/8	8 <10	<0.5	<0.5	2000	260	2	17700	16900	1.0	105000	0.5	3.0	5.06
284	G-SEEP DN	IT	2/8/8	8 <10	<0.5	<0.5	2000	250	2	17900	17100	1.0	124000	0.5	3.0	11.29
334	G-SEEP DN	IT	3/29/8	8 <10	0.008	<0.5	1900	250	2	16700	16100	0.8	95700	0.5	3.4	2.20
336	G-SEEP DN	IT	3/29/8	8 <10	0.012	<0.5	1900	250	2	16900	16300	0.8	96600	0.5	3.3	3.66
438	G-SEEP DN	IT	7/12/8	8 <10	<0.12	<0.5	1700	280	1	16000	15500	0.7	95600	0.3	3.0	4.83
440	G-SEEP DN	IT	7/12/8	8 <10	<0.12	<0.5	1700	280	1	16300	15800	0.7	978 00	0.3	3.0	4.96
442	G-SEEP DN	п	7/12/8	8 <10	<0.12	<0.5	1700	280	1	16300	15900	0.7	95900	<0.2	3.0	5.26
165	G-SEEP DN	UN	C 9/8	7 <0.100	0.002	<0.3		277	0.40	14800	15900	0.70	98000	<4	3.00	0.05
168	G-SEEP DN	UN	C 9/8	7 <0.100	0.002	<0.3		278	0.40	14800	15800	0.60	99000	<4	3.00	0.39
202	G-SEEP DN	UN	C 11/8	7 0.413	0.003	<0.020	2140	310	0.45	16000	19100	0.71	93700	2.55	2.57	1.47
219	G-SEEP DN	UN	Ç 11/8	7 0.360	0.002	<0.020	2080	300	0.38	15400	18700	0.70	97100	2.51	2.58	0.89
274	G-SEEP DN	UN	C 2/8/8	8 0.433	0.002	0.013	1970	270	<0.44	17600	17800	0.73	94400	2.74	2.78	-0.04
280	G-SEEP DN	UN	C 2/8/8	8 0.180	0.003	0.012	1880	280	<0.44	17200	17700	0.68	93400	1.84	2.63	-0.70
286	G-SEEP DN	UN	C 2/8/8	8 0.290	0.002	0.013	1990	260	<0.44	17100	18200	0.72	94100	2.28	2.76	0.03
328	G-SEEP DN	UN	C 3/29/8	8 <0.04	0.002	0.016	1840	280	<0.29	15700	16800	0.66	91800	1.31	2.96	-2.05
330	G-SEEP DN	UN	C 3/29/8	8 0.047	0.002	0.015	1890	270	<0.29	15800	17100	0.67	93000	1.40	2.98	-1.38
332	G-SEEP DN	UN	C 3/29/8	8 <0.04	0.002	0.015	1820	280	<0.29	16200	17000	0.69	92100	1.34	2.99	-1.70
444	G-SEEP DN	UN	C 7/12/8	8 0.119	0.002	0.016	1580	286	0.30	14600	13400	0.69	93300	1.68	2.27	-3.29
446	G-SEEP DN	UN	C 7/12/8	8 0.145	0.002	0.018	1490	290	0.36	14600	13600	0.70	96500	1.67	2.38	-2.12
448	G-SEEP DN	UN	C 7/12/8	8 0.132	0.003	0.016	1510	292	0.34	14800	13000	0.68	96600	1.64	2.46	-2.42
551	G-SEEP DN	UN	C 9/27/8	8 <0.03	0.004	0.016	1590	274	<0.3	13800	14800	0.59	97900	1.12	2.45	0.12
555	G-SEEP DN	UN	C 9/27/8	8 <0.03	0.004	0.016	1570	273	<0.3	13900	14300	0.57	97100	1.15	2.41	-0.74
556	G-SEEP DN	UN	C 9/27/8	8 <0.03	0.004	0.016	1570	273	<0.3	13700	14700	0.57	86500	1.12	2.43	-4.45
464	L1X00 DN	IT	7/12/8	8 <10	<0.12	<0.5	1900	340	2	24600	27700	1.3	74600	0.7	2.1	6.19
200	L1X00 DN	UN	C 11/8	7 1.53	0.002	0.040	2070	380	0.93	20800	27100	1.25	74200	7.22	1.76	0.89
312	L1X00 DN	UN	C 2/8/8	8 1.57	0.002	0.016	2050	270	1.08	27000	30900	1.66	65800	6.85	0.09	-1.46
393	L1X00 DN	UN	C 3/30/8	8 0.331	0,001	0.017	2100	320	<0.29	24600	29100	1.31	68100	3.56	1.44	-0.96

ANALYTICAL RESULTS (CONTINUED)

SAMPLE NUMBER	HOLE NU & DIREC		LAB	DATE	рΗ	S.G.	TDS mg/L	EXT ALK ¹ mg/L	ALK ² mg/L	TIC ³ mg/L	Br mg/L	Ci mg/L	F mg/L	t mg/L	NO, mg/L	PO₄³ mg/L	SO ₄ -2 mg/L	NH ,⁺ mg/L
465	L1X00	DN	UNC	7/12/88	5.4	1.23	388000	1183		3.6	1810	198000	8.4	16.2	2	<5	19700	209
525	L1X00	DN	UNC	9/27/88	6.1	1.23	372000	1008		30	1550	195000	6.6	14.8	5	<10	17600	152
234	NG252	DN	IT	11/87	6.2	1.23	347000	841			1300	180000	7	<20	<1		16600	117
305	NG252	DN	IT	2/8/88	6.0	1.22	328000	817		<5	1300	183000	7	<20	0.04		16500	100
340	NG252	DN	IT	3/29/88	6.1	1.21	333000	805		<5	1300	181000	6	<20	<0.02		16500	98
467	NG252	DN	IT	7/12/88	6.0	1.19	343000	744		<5	1200	173000	з	<20	<0.02		14700	115
102	NG252	DN	UNC	04/87	6.0	1.22	377000		781		1150	195000					16800	
103	NG252	DN	UNC	4/87	6.1	1.22	377000		666		871	197000					16200	
104	NG252	DN	UNC	4/87	6.1	1.22	377000		793		1140	197000					17300	
116	NG252	DN	UNC	6/87	6.2	1.22	379000		784		2020	193000	7.5				16100	
131	NG252	DN	UNC	6/87	6.1	1.22	376000		895		2100	190000	7.0				16700	
171	NG252	DN	UNC	9/87	5.9	1.22	380000	830	776		1430	195000	5.6				16300	
221	NG252	DN	UNC	11/87	6.0	1.21	390000	823		5.6	1360	193000	6.2	13.4	11	<1	15800	149
307	NG252	DN	UNC	2/8/88	6.9	1.23	373000	829		8.6	1310	194000	4.2	15.5	<20	<1	17700	146
338	NG252	DN	UNC	3/29/88	5.9	1.23	374000	817		5.1	1390	195000	<4	13	<10	<10	18400	151
469	NG252	DN	UNC	7/12/88	5.7	1.22	368000	789		9.7	1360	195000	6.9	13.4	2	<5	15500	160
543	NG252	DN	UNC	9/27/88	6.2	1.22	370000	823		5	1400	194000	5.8	12.2	3	<10	16100	137
238	STANDA	RD	IT	11/87	7.1	1.17	245000	41			32	137000	2	<20	<1		2070	1.3
314	STANDA	RD	IT	2/8/88	8.0	1.15	239000	24		27.9	30	140000	2	<20	<0.2		2100	3.6
399	STANDA	RD	IT	3/29/88	7.9	1.15	241000	30		30	81	79000	<1	<20	0.05		2200	1.2
477	STANDA	RD	IT	7/12/88	7.8	1.14	259000	28		36	28	132000	<1	<20	0.11		1800	3.2
401	STANDA	RD	UNC	3/30/88	8.0	1.16	251000	46		18.3	<10	148000	<2	<1	<10	<10	2010	<0.10
482	AIS WA	TER+	UNC	7/29/88	7.1	1.21	330000	122		94.0	37	190000	4	<0.1	5	<1	6150	4.3
484	AIS WA	TER+	UNC	7/29/88	7.1	1.21	333000	116		94.5	44	188000	<1	<0.1	6	<1	6180	4.0
486	AIS WA	TER+	UNC	7/29/88	7.1	1.21	333000	128		91. 9	44	187000	<1	<0.1	6	<1	6170	4.5
479	BLIND		UNC	7/12/88	7.6	1.16	250000	39		26.4	10	148000	<1	<0.1	9	<5	1890	0.06

¹Reported as equivalent HCO_3^- , solutions titrated to end point pH of 2.5. ²Reported as equivalent HCO_3^- , solutions titrated to end point pH of 4.5. ³Reported as equivalent HCO_3^- .

.

TABLE C-1

ANALYTICAL RESULTS (CONTINUED)

SAMPLE NUMBER	HOLE NU & DIREC		LAB	DATE	Al mg/L	As mg/L	Ba mg/L	B mg/L	Ca mg/L	Fe mg/L	K mg/L	Mg mg/L	Mn mg/L	Na mg/L	Si mg/L	Sr mg/L	% CHARGE BALANCE
466	L1X00	DN	UNC	7/12/88	0.978	0.002	0.017	1670	333	0.58	22000	23300	1.33	71400	4.21	1.76	-3.74
524	L1X00	DN	UNC	9/27/88	0.537	0.002	0.032	1520	398	0.35	19300	23700	1.14	79400	3.68	2.20	, 0.12
234	NG252	DN	IT	11/87	<10	0.023	<0.5	1400	270	2	17600	20000	1.1	84800	0.4	1.9	3.06
306	NG252	DN	IT	2/8/88	<10	<0.5	<0.5	1500	310	4	18200	19700	1.4	77300	0.6	2.0	-0.65
341	NG252	DN	IT	3/29/88	<10	0.01	< 0.5	1500	300	4	18200	19800	1.3	85100	0.6	1.8	2.94
468	NG252	DN	IT	7/12/88	<10	<0.12	<0.5	1500	310	4	18800	20800	1.1	82000	0.4	1.9	5.11
102	NG252	DN	UNC	4/87					302		16900	21000		82400	<2	1.67	-1.02
103	NG252	DN	UNC	4/87					302		16900	20600		82400	<2	1.78	-1.63
104	NG252	DN	UNC	4/87					302		16900	20900		81800	<2	1.72	-1.88
116	NG252	DN	UNC	6/87	0.582	<0.001	<0.07		299	17.6	16800	20400	1.39	79400	<1.1	1.65	-2.12
131	NG252	DN	UNC	6/87	<0.03	<0.001	<0.07		307	49.2	16900	20000	1.37	79400	<1.1	1,65	-1.79
171	NG252	DN	UNC	9/87	<0.100	<0.001	<0.3		302	2.20	16800	19800	1.10	87000	<4	1.60	-0.12
221	NG252	DN	UNC	1 1/87	0.125	0.002	0.020	1660	350	3.55	16900	22400	1.08	86000	2.15	1.69	1.94
308	NG252	DN	UNC	2/8/88	0.033	0.002	0.025	1400	320	2.66	17800	19800	1.13	84800	1.61	1.83	-0.70
339	NG252	DN	UNC	3/29/88	0.043	0.002	0.024	1440	320	2.20	17400	20400	1.14	81300	1.55	1.71	-2.06
470	NG252	DN	UNC	7/12/88	0.176	0.002	0.029	1330	300	2.54	16600	18200	1.07	81800	2.01	1.62	-3.16
542	NG252	DN	UNC	9/27/88	0.034	0.002	0.032	1420	304	2.47	17200	20300	1.02	82900	1.39	1.59	-0.93
238	STANDA	RD	IT	11/87	<10	0.025	<0.5	5	380	<1	455	170	<0.5	96000	<0.19	14	3.84
315	STANDA	RD	IT	2/8/88	<10	<0.5	<0.5	5	420	<1	455	165	<0.5	93700	<0.2	12	1.58
400	STANDA	RD	IT	3/29/88	<10	0.026	<0.5	7	420	<1	460	170	<0.5	97100	<0.2	12	30.47
478	STANDA	RD	IT	7/12/88	<10	<0.12	<0.5	7	440	<1	460	180	<0.5	94400	<0.2	11.7	4.97
402	STANDA		UNC	3/30/88	<0.04	<0.001	0.163	2	440	<0.29	342	165	<0.13	96400	<0.84	9.96	0.24
483	AIS WAT		UNC	7/29/88	0.167	0.002	0.236	13	950	0.13	1720	1040	0.39	118000	3.32	30.7	-1.67
485	AIS WAT	ER+	UNC	7/29/88	0.163	0.002	0.239	12	950	0.12	1720	1040	0.39	118000	3.33	30.5	-1.16
487	AIS WAT		UNC	7/29/88	0.169	0.002	0.215	13	960	0.12	1720	1040	0.4	118000	3.26	30.5	-0.89
480	BLIND		UNC	7/12/88	<0.02	<0.001	0.143	3	454	<0.3	352	166	<0.1	94000	<0.9	10.1	-0.97

C-1

.

APPENDIX D

۰.

STATISTICAL RESULTS FOR BRINE SAMPLES

PART I - SIMPLE STATISTICS

PART II - MULTIVARIATE ANALYSIS

.

* . .

.

.

.

. .

APPENDIX D

STATISTICAL RESULTS FOR BRINE SAMPLES

PART I - SIMPLE STATISTICS

•

WP:WIP:R-1625-AppD

STATISTICAL RESULTS •

Simple Statistics, UNC C	Geotech												
	рН	S.G. g/cc	TDS mg/L	EALK mg/L	ALK mg/L	TIC mg/L	Br mg/L	Cl mg/L	F mg/L	l mg/L	NO ₃ ⁻ mg/L	SO₄ ⁻² mg/L	NH₊ mg/L
HOLE: A1X01-DN													
N X S MIN MAX	4 6.3 0.4 5.9 6.9	4 1.23 0.01 1.21 1.24	4 373000 3000 369000 377000	4 965 13 945 975	NA	4 11.2 11.2 2.5 30.5	4 1450 90 1360 1590	4 193000 1000 191000 194000	4 6.2 1.7 4.0 8.0	4 12.8 1.3 11.5 14.8	1 2	4 18100 700 16900 18700	4 145 5 136 150
HOLE: A1X02-UP													
N X S MIN MAX	12 5.6 0.3 5.3 6.7	12 1.23 0.01 1.22 1.24	12 395000 4000 386000 402000	12 839 55 768 934	NA	2 5.8 3.8 2.0 9.7	12 1950 130 1660 2120	12 199000 3000 194000 204000	11 6.4 1.7 4.0 9.7	12 12.2 1.2 9.9 14.7	9 5 7 1 22	12 21700 800 20300 23000	12 152 13 140 188
HOLE: A2X01-DN													
N X S MIN MAX	4 5.9 0.1 5.7 6.0	4 1.22 0.01 1.21 1.23	4 402000 39000 376000 470000	4 1005 105 912 1183	NA	4 60.3 4.8 54.4 67.6	4 1460 20 1440 1490	4 196000 1000 194000 197000	4 7.4 1.4 5.0 8.7	4 13.5 1.3 12.2 15.3	2 3 1 2 4	4 17200 1100 16200 19000	4 158 23 135 195

ζ.

EALK, ALK and TIC reported as HCO_3^{-1} . N = Number of samples; X = Sample mean; BDL = Below detection limit; NA = Not analyzed

S = Sample standard deviation;

WP:WIP:R-1625-AppD.Even

STATISTICAL RESULTS (CONTINUED)

	Al mg/L	As mg/L	B mg/L	Ba mg/L	Ca mg/L	Fe mg∕L	K mg/L	Mg mg/L	Mn mg/L	Na mg/L	Si mg/L	Sr mg/L	%CHARGE BALANCE
	•												
HOLE: A1X01-DN													
N	4	4	4	4	4	3	4	4	4	4	4	4	4
X	0.137	0.006	1470	0.026	301	0.73	16200	23200	1.39	79500	2.27	1.68	-0.34
S	0.106	0.006	80	0.008	18	0.21	500	900	0.03	1100	1.48	0.14	0.70
MIN	0.000	0.002	1410	0.019	283	0.44	15500	22300	1.36	78500	1.31	1.49	-1.05
MAX	0.280	0.016	1610	0.040	330	0.90	16700	24500	1.43	81400	4.82	1.86	0.81
HOLE: A1X02-UP				•				in the					
NOTES THE SHORE	12	12	12	12	12	4	12	12	12	12	12	12	12
X	0.109	0.002	1510	0.039	294	0.31	15100	22000	4.69	64500	1.22	5.89	-1.26
S	0.080	0.000	140	0.004	21	0.34	700	2000	0.10	3300	0.20	0.17	1.37
MIN	0.060	0.002	1340	0.033	267	0.10	14300	29000	4.53	59300	1.02	5.68	-3.49
MAX	0.362	0.002	1900	0.050	360	0.89	17100	39000	4.84	70600	1.69	6.39	1.65
HOLE: A2X01-DN													
N	4	2	4	4	4	4	4	4	4	4	4	4	4
X	0.385	0.001	1420	0.074	333	15.6	16200	23000	1.81	79400	2.95	1.03	-0.99
S	0.303	0.000	100	0.046	49	14.5	300	1800	0.07	1000	0.70	0.16	1.69
MIN	0.049	0.001	1270	0.038	285	2.7	15700	20000	1.72	78400	2.00	0.85	-3.73
MAX	0.724	0.001	1550	0.152	400	38.0	16500	24800	1.92	80800	3.66	1.29	0.87

EALK, ALK and TIC reported as HCO_3 . N = Number of samples; BDL = Below detection limit;

X = Sample mean; NA = Not analyzed

S = Sample standard deviation;

WP:WIP:R-1625-AppD.Odd

STATISTICAL RESULTS (CONTINUED)

Simple Statistics, UNC C	Geotech												
	рН	S.G. g/cc	TDS mg/L	EALK mg/L	ALK mg/L	TIC mg/L	Br mg/L	CI mg/L	F mg/L	l mg/L	NO ₃ mg/L	SO₄ ⁻² mg/L	NH,⁺ mg/L
HOLE: A3X01-DN													
N X S MIN MAX	4 6.2 0.4 5.8 6.9	4 1.22 0.01 1.20 1.24	4 380000 9000 372000 395000	4 932 14 914 951	NA	4 60.2 56.4 6.1 138.7	4 1390 30 1340 1430	4 192000 5000 184000 196000	4 6.9 1.5 5.0 8.5	4 13.7 1.6 11.5 15.6	1 1	4 17000 1500 15300 18600	4 149 8 138 160
HOLE: BX-01-DN													
N X S MIN MAX	8 6.1 0.4 5.8 6.8	8 1.22 0.01 1.21 1.23	8 384000 13000 367000 406000	8 845 30 817 907	NA	8 29.7 42.1 1.5 138.7	8 1420 50 1350 1460	8 195000 2000 193000 198000	8 7.4 1.5 5.0 10.0	8 14.1 0.8 13.0 15.7	3 10 11 1 25	8 17400 800 16400 18600	8 150 12 135 180
HOLE: DHP-401-UP													
N X S MIN MAX	2 6.0 0.6 5.4 6.6	2 1.25 0.01 1.23 1.26	2 389000 9000 380000 398000	2 1152 18 1134 1170	NA	2 2.8 2.3 0.5 5.1	2 2410 30 2380 2430	2 202000 2000 200000 203000	2 10.9 2.2 8.7 13.1	2 14.3 0.7 13.6 15.0	1 21	2 27900 2300 25600 30200	2 198 13 185 210

EALK, ALK and TIC reported as HCO_3^- . N = Number of samples; X = Sample mean; BDL = Below detection limit; NA = Not analyzed

S = Sample standard deviation;

WP:WIP:R-1625-AppD.Even

STATISTICAL RESULTS (CONTINUED)

Simple Statistics, UNC G	eotech													
	Al mg/L	As mg/L	B mg/L	Ba mg/L	Ca mg/L	Fe mg/L	K mg/L	Mg mg/L	Mn mg/L	Na mg/L	Si mg/L	Sr mg/L	%CHARGE BALANCE	
HOLE: A3X01-DN													,	
N X S MIN MAX	4 0.561 0.681 0.132 1.740	4 0.002 0.000 0.002 0.002	4 1420 100 1250 1520	4 0.035 0.010 0.024 0.050	4 312 19 287 340	4 1.62 0.25 1.26 1.90	4 15800 600 14800 16200	4 22800 1600 20200 24500	4 1.55 0.06 1.45 1.61	4 78800 1700 76600 81100	4 2.76 2.06 1.32 6.32	4 2.52 0.77 2.04 3.85	4 -0.47 2.28 -4.00 2.37	
HOLE: BX-01-DN			·											
N X S MIN MAX	8 0.483 0.603 0.067 1.880	8 0.002 0.001 0.001 0.003	8 1550 120 1350 1740	8 0.029 0.007 0.021 0.040	8 298 25 266 340	7 2.22 1.17 0.38 3.78	8 16500 300 16100 16900	8 22900 1600 19800 25200	8 1.39 0.06 1.32 1.50	8 80800 1000 79700 82400	8 2.50 1.59 1.35 6.36	8 2.11 0.29 1.49 2.37	8 -0.28 1.66 -3.60 1.51	
HOLE: DHP-401-UP														
N X S MIN MAX	1 0.033	2 0.007 0.001 0.006 0.008	2 1790 220 1570 2000	2 0.050 0.020 0.030 0.070	270 30 240	1 2.48	2 15800 700 15100 16500	2 44300 2200 42100 46400	2 7.99 0.66 7.33 8.65	2 50800 400 50400 51200	2 1.77 0.14 1.62 1.91	2 5.25 0.29 4.96 5.53	2 -0.15 2.13 -2.28 1.97	

EALK, ALK and TIC reported as HCO_3 . N = Number of samples; BDL = Below detection limit;

X = Sample mean; NA = Not analyzed

S = Sample standard deviation;

WP:WIP:R-1625-AppD.Odd

STATISTICAL RESULTS (CONTINUED)

Simple Statistics, UNC Geo	otech												
	рН	S.G. g/cc	TDS mg/L	EALK mg/L	ALK mg/L	TIC mg/L	Br mg/L	Cl mg/L	F mg/L	I mg/L	NO₃ [°] mg/L	SO₄ ⁻² mg/L	NH,⁺ mg/L
HOLE: DHP-402A-DN 8/22/88													
N X S MIN MAX	3 6.2 0.0 6.2 6.2	3 1.23 0.00 1.23 1.23	3 369000 <1000 3680000 399000	3 451 4 447 456	NA	3 20.5 0.2 20.3 20.8	3 95 1 94 96	3 192000 <1000 192000 193000	3 6.1 0.4 5.6 6.6	3 4.8 0.2 4.6 5.0	BDL	3 14800 0 14800 14800	3 75 2 72 78
HOLE: DHP-402A-DN 9/27/88													
N X S MIN MAX	3 5.8 0.1 5.6 5.9	3 1.23 <0.01 1.23 1.24	3 384000 10000 376000 399000	3 625 62 538 677	NA	3 6.8 2.4 5.1 10.2	3 1380 10 1370 1390	3 194000 0 194000 194000	3 6.5 0.7 5.5 7.2	3 10.5 0.4 10.1 11.1	BDL 1 <1 1 2	3 17800 100 17700 17900	3 113 2 110 115
HOLE: DH-36-DN													
N X S MIN MAX	17 6.0 0.3 5.6 6.9	17 1.22 0.01 1.20 1.24	17 377000 21000 322000 442000	15 831 23 790 866	5 799 12 782 15	12 59.9 60.0 3.0 138.2	17 1450 300 1300 2150	17 195000 9000 169000 197000	14 5.4 1.5 3.2 7.0	12 15.7 1.4 12.3 17.6	5 4 1 12	17 16300 1000 15200 17900	12 164 20 110 172

EALK, ALK and TIC reported as HCO_3^- . N = Number of samples; X = Sample mean; BDL = Below detection limit; NA = Not analyzed

S = Sample standard deviation;

WP:WIP:R-1625-AppD.Even

STATISTICAL RESULTS (CONTINUED)

	Al mg/L	As mg/L	B mg/L	Ba mg/L	Ca mg/L	Fe mg/L	K mg/L	Mg mg/L	Mn mg/L	Na mg/L	Si mg/L	Sr mg/L	%CHARGE BALANCE
HOLE: DHP-402A-DN 9/27/88													
MIN MAX	3 0.054 <0.001 0.053 0.054	3 0.003 0.001 0.002 0.004	3 640 0 640 640	3 0.071 0.003 0.067 0.074	3 469 0 469 469	3 23.57 0.92 22.60 24.80	3 10700 0 10700 10700	3 12900 <100 12800 12900	3 2.25 0.01 2.24 2.26	3 94300 200 94100 94600	BDL	3 20.03 0.05 20.00 20.10	3 -2.45 0.16 -2.60 -2.23
HOLE: DHP-402A-DN												-	
N X S MIN MAX	BDL	3 0.002 <0.001 0.001 0.002	3 1180 10 1170 1180	3 0.064 <0.001 0.064 0.065	3 377 1 375 378	3 20.9 3.1 18.0 25.2	3 14300 100 14200 14400	3 23300 100 23100 23400	3 2.02 0.01 2.01 2.04	3 82000 300 81600 82200	BDL	3 7.38 0.13 7.24 7.55	3 0.08 0.21 -0.22 0.27
HOLE: DH-36-DN													
N X S MIN MAX	14 0.452 0.439 0.039 1.480	17 0.012 0.004 0.002 0.016	12 1490 130 1310 1800	12 0.028 0.007 0.017 0.043	17 340 15 310 380	8 0.35 0.75 0.04 0.69	17 18200 800 17200 18700	17 18300 1100 15800 20600	17 1.01 0.04 0.95 1.05	17 87200 1900 83500 92200	14 3.28 1.35 1.00 5.85	17 1.40 0.25 0.85 1.55	17 -0.62 2.83 -3.36 1.38

N = Number of samples; BDL = Below detection limit;

X = Sample mean; NA = Not analyzed

S = Sample standard deviation;

WP:WIP:R-1625-AppD.Odd

STATISTICAL RESULTS (CONTINUED)

Simple Statistics, UNC Geotech SO4-2 F NH,* pН S.G. TDS EALK ALK TIC Br CI E NO₃ mg/L mg/L mg/L mg/L g/cc mg/L mg/L mg/L mg/L mg/L mg/L mg/L HOLE: DH-38-DN Ν 6 6 5 5 6 5 5 3 5 6 1 6 6 5 Х 6.2 889 856 23.2 1580 194000 6.3 15.2 16200 1.23 369000 165 s 3000 2.3 1.6 4 1100 7 8000 26 15.5 510 0.4 0.01 MIN 189000 1 15200 153 5.7 1.21 357000 840 4.6 1320 3.4 12.8 17800 1.24 378000 914 40.1 2710 196000 10.3 17.4 10 171 MAX 6.9 HOLE: DH-42-DN 5 5 5 NA 5 5 5 5 3 5 5 Ν 5 4 6 Х 368000 1044 95.1 1340 193000 5.3 15.9 16000 165 6.4 1.22 S 0.01 3000 265 94.5 40 1000 1.2 1.4 3 1100 7 0.4 MIN 364000 902 1270 192000 3.5 14.0 4 14800 152 5.9 1.21 6.1 373000 1573 263.1 1390 195000 6.8 17.5 10 17500 172 MAX 7.0 1.23 HOLE: DH-42A-DN 10 8 3 6 10 10 8 7 10 7 Ν 10 10 4 373000 15.5 5 Х 6.2 1.23 856 830 7.1 1520 195000 5.9 16100 171 S 5000 30 11 2.8 300 2000 2.0 1.3 4 1200 10 0.3 0.01 MIN 5.8 1.21 364000 801 820 4.1 1320 190000 3.6 13.7 1 15000 148 845 2270 197000 17.0 18000 178 MAX 7.0 1.24 377000 890 12.7 10.8 11

EALK, ALK and TIC reported as HCO_3 . N = Number of samples; X = BDL = Below detection limit; NA=

X = Sample mean; NA = Not analyzed

S = Sample standard deviation;

WP:WIP:R-1625-AppD.Even

•

STATISTICAL RESULTS (CONTINUED)

	AI	As	В	Ba	Ca	Fe	к	Mg	Mn	Na	Si	Sr	%CHARGE
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	BALANCE
HOLE: DH-38-DN													
N	6	6	6	6	6	2	6	6	6	6	6	6	6
X	0.413	0.004	1480	0.026	336	0.38	18200	18000	1.00	85800	2.71	0.89	-1.11
S	0.281	< 0.001	100	0.003	12	0.02	300	1200	0.04	1300	0.41	0.06	1.35
MIN MAX	0.076 0.944	0.004 0.005	1340 1650	0.022 0.030	322 360	0.36 0,39	17800 18700	15700 19500	0.95 1.07	84300 88200	2.28 3.49	0.82 1.00	-3.68 0.66
	0.944	0.005	1650	0.030	360	0.39	18700	19500	1.07	66200	3.49	1.00	0.66
HOLE: DH-42-DN													
N	5	5	5	5	5	4	5	5	5	5	5	5	5
Х	0.685	0.007	1470	0.057	381	1.14	18200	17500	1.14	87200	5.14	1.08	-0.73
S	0.833	0.001	120	0.057	65	0.27	400	1100	0.08	1300	2.60	0.22	1.07
MIN MAX	0.000 2.270	0.005 0.009	1320 1680	0.022	330 510	0.68 1.38	17600 18900	15600 19000	1.07 1.26	85500 88900	2.37 9.61	0.92 1.51	-2.20
MAA	2.270	0.009	1000	0.170	510	1.30	18900	19000	1.20	88900	9.01	1.51	1.05
HOLE: DH-42A-DN													
Ν	9	10	7	6	10	3	10	10	10	10	9	10	10
Х	0.184	0.004	1430	0.020	337	0.25	18500	17700	1.00	86500	2.65	0.87	-1.19
S	0.123	0.001	140	0.002	11	0.15	400	1300	0.04	2100	0.44	0.07	1.15
MIN MAX	0.070 0.502	0.003 0.005	1210 1620	0.018 0.023	322 360	0.04 0.38	18000 19500	15400 19000	0.94 1.09	83800 90000	2.14 3.72	0.78 1.00	-3.53 0.84

ALK	and	TIC	reported	as	HCO₃ ⁻ .	

N = Number of samples; BDL = Below detection limit;

X = Sample mean; NA = Not analyzed

S = Sample standard deviation;

WP:WIP:R-1625-AppD.Odd

D-9

STATISTICAL RESULTS (CONTINUED)

Simple Statistics, UNC Geo	otech												
	pН	S.G. g/cc	TDS mg/L	EALK mg/L	ALK mg/L	TIC mg/L	Br mg/L	CI mg/L	F mg/L	l mg/L	NO₃ [°] mg/L	SO₄ ⁻² mg/L	NH₄⁺ mg/L
HOLE: G-SEEP-DN													
N X S MIN MAX	16 6.2 0.4 5.9 6.9	16 1.23 0.01 1.22 1.25	16 385000 13000 376000 433000	16 952 61 846 1049	2 911 21 890 932	9 3.2 1.2 1.0 5.1	16 1470 90 1360 1650	16 187000 1000 184000 190000	15 4.9 0.8 3.8 6.2	14 17.9 3.4 11.3 22.5	7 5 4 1 13	16 31800 3100 27700 36300	14 198 16 168 217
HOLE: L1X00-DN													
N X S MIN MAX	5 5.9 0.4 5.4 6.7	5 1.23 0.01 1.21 1.25	5 392000 13000 372000 413000	5 1253 233 1008 1646	NA	5 8.2 11.2 0.5 30.5	5 1850 270 1550 2280	5 197000 2000 194000 201000	5 6.8 1.1 5.0 8.4	5 15.0 8.3 15.8 25.3	2 4 2 5	5 21600 3700 17600 27100	5 205 40 152 260
HOLE: NG252-DN													
N X S MIN MAX	11 6.1 0.3 5.7 6.9	11 1.22 0.01 1.21 1.23	11 376000 6000 368000 390000	6 818 14 789 830	6 783 66 666 895	5 6.8 1.9 5.1 9.7	11 1410 340 870 2100	11 194000 2000 190000 197000	7 6.2 1.0 4.2 7.5	5 13.5 1.1 12.2 15.5	3 5 4 2 11	11 16600 800 15500 18400	5 149 7 137 160

· .

EALK, ALK and TIC reported as HCO_3^- . N = Number of samples; X = Sample mean; BDL = Below detection limit; NA = Not analyzed

S = Sample standard deviation;

WP:WIP:R-1625-AppD.Even

D-10

STATISTICAL RESULTS (CONTINUED)

Simple Statistics, UNC G	eotech												
	Al mg/L	As mg/L	B mg/L	Ba mg/L	Ca mg/L	Fe mg/L	K mg/L	Mg mg/L	Mn mg/L	Na mg/L	Si mg/L	Sr mg/L	%CHARGE BALANCE
HOLE: G-SEEP-DN													
N X S MIN MAX	9 0.235 0.133 0.047 0.433	16 0.003 0.001 0.002 0.004	14 1780 220 1490 2140	12 0.015 0.002 0.012 0.018	16 281 12 260 310	7 0.38 0.04 0.30 0.45	16 15400 1200 13700 17600	16 16200 1910 13000 19100	16 0.67 0.05 0.57 0.73	16 94700 3000 86500 99000	14 1.74 0.54 1.12 2.74	16 2.67 0.25 2.27 3.00	16 -0.87 1.54 -4.35 1.56
HOLE: L1X00-DN													
N X S MIN MAX	5 0.989 0.504 0.331 1.570	5 0.002 <0.001 0.001 0.002	5 1880 240 1520 2100	5 0.024 0.010 0.016 0.040	5 340 45 270 398	4 0.74 0.29 0.35 1.08	5 22700 2700 19300 27000	5 26800 3000 23300 30900	5 1.34 0.17 1.14 1.66	5 71800 4800 65800 79400	5 5.10 1.60 3.56 7.22	5 1.61 0.43 0.90 2.20	5 -0.87 1.58 -3.59 1.03
HOLE: NG252-DN													
N X S MIN MAX	6 0.165 0.194 0.033 0.582	5 0.002 0.000 0.002 0.002	5 1450 110 1330 1660	5 0.026 0.004 0.020 0.032	15 299	8 10.3 15.5 2.2 49.2	11 17000 300 16600 17800	11 20300 1000 18200 22400	8 1.16 0.13 1.02 1.39	11 82700 2300 79400 87000	5 1.74 0.29 1.39 2.15	11 1.68 0.07 1.59 1.83	11 -1.11 1.27 -3.04 2.05

EALK, ALK and TIC reported as HCO_3 . N = Number of samples; X = Sample mean; BDL = Below detection limit; NA = Not analyzed

S = Sample standard deviation;

WP:WIP:R-1625-AppD.Odd

1	
Ċ	נ
u	J
~	5
α <	
F	

STATISTICAL RESULTS (CONTINUED)

Geotech
UNC
Statistics,
Simple

3 4 3 3 3 4 3 3 4 3 3 1 10 0 3 3 3 3 4 3 4 3 4 3 4 3 4 4 3 4
332000 122 93.5 42 188000 4.0 6 6170 1000 6 1.4 3 1000 1 10 332000 116 91.9 37 187000 5 6150 333000 128 94.5 44 190000 6 6180
1000 6 1.4 3 1000 1 10 330000 116 91.9 37 187000 5 6150 333000 128 94.5 44 190000 6 6180
330000 116 91.9 37 187000 5 6150 333000 128 94.5 44 190000 6 6180
333000 128 94.5 44 190000 6 6180

EALK, ALK and TIC reported as HCO_3 . N = Number of samples; X = Sample mean; BDL = Below detection limit; NA = Not analyzed

WP:WIP:R-1625-AppD.Even

•.

D-12

S = Sample standard deviation;

STATISTICAL RESULTS (CONTINUED)

	Al mg/L	As mg/L	B mg/L	Ba mg/L	Ca mg/L	Fe mg/L	K mg/L	Mg mg/L	Mn mg/L	Na mg/L	Si mg/L	Sr mg/L	%CHARGE BALANCE
HOLE: AIS WATER													
 N	3	3	3	3	3	3	3	3	3	3	3	3	3
X	0.166	0.002	13	0.230	953	0.12	1720	1040	0.39	118000	3.30	30.6	-1.23
S	0.002	0.000	<1	0.011	5	< 0.01	0	0	< 0.01	0	0.03	0.1	0.32
MIN	0.163	0.002	12	0.215	950	0.12	1720	1040	0.39	118000	3.26	30.5	-1.66
MAX	0.169	0.002	13	0.239	960	0.13	1720	1040	0.40	118000	3.33	30.6	-0.88

|--|--|--|--|

EALK, ALK and TIC reported as HCO_3^{-1} . N = Number of samples; BDL = Below detection limit;

Υ.

X = Sample mean; NA = Not analyzed

S = Sample standard deviation;

WP:WIP:R-1625-AppD.Odd

STATISTICAL RESULTS (CONTINUED)

Simple Statistics, IT-Export SO₄-2 pН S.G. TDS EALK ALK TIC Br CI F L NO[°]. NH. mg/L g/cc mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/Ľ mg/L HOLE: A1X02-UP N X S NA BDL BDL BDL 4 4 4 4 4 4 4 4 4 5.7 1.23 343000 693 7 21000 2000 191000 118 0.1 0.01 4000 19 270 3000 1 2200 20 MIN 337000 5.6 1.22 670 1600 187000 6 18500 100 MAX 5.7 1.24 8 346000 719 2300 195000 23200 150 HOLE: BX-01-DN Ν 5 5 5 NA BDL 2 5 1 5 5 5 5 5 807 Х 5 6.0 1.22 342000 1400 183000 8 0.07 17000 112 s 0.1 0.01 7000 9 4000 1 110 0.07 600 12 MIN 1.20 332000 793 175000 7 5.9 1300 16000 0.02 96 MAX 6.3 1.23 352000 1600 188000 9 817 0.12 17800 127 HOLE: DH-36-DN N 9 9 9 NA 9 3 9 9 8 2 6 9 9 Х 6.0 1.21 802 5 5 348000 1400 182000 22 16000 0.70 125 s 0.01 10000 38 0 2 <0.1 150 11000 1 1.01 800 10 MIN 5 2 6.0 1.19 340000 756 1200 169000 21 0.05 15200 110 MAX 6.1 1.23 374000 853 5 1700 208000 7 22 2.00 17400 140

EALK, ALK and TIC reported as HCO3-.

Υ.

N = Number of samples; BDL = Below detection limit;

es; X = Sample mean; mit; NA = Not analyzed S = Sample standard deviation;

WP:WIP:R-1625-AppD.Even

D-14

STATISTICAL RESULTS (CONTINUED)

mg/L mg/L <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>														
HOLE: A1X02-UP BDL 2 4 BDL 4									Mg mg/l					%CHARGE
N BDL 2 4 BDL 4 <th></th> <th></th> <th>ing/c</th> <th>ing/L</th> <th>ing/L</th> <th></th> <th><u> </u></th> <th>mg/L</th> <th><u>mg/L</u></th> <th>ing/c</th> <th>ing/L</th> <th></th> <th>ing/L</th> <th>BALANCE</th>			ing/c	ing/L	ing/L		<u> </u>	mg/L	<u>mg/L</u>	ing/c	ing/L		ing/L	BALANCE
X 0.009 1600 265 3 16100 32500 5.1 67500 0.4 6.9 1.78 S 0.001 160 5 1 300 1800 0.2 1800 0.1 0.1 0.1 0.57 MIN 0.008 1400 260 2 15800 30600 4.9 65500 0.3 6.8 1.20 MAX 0.010 1800 270 3 16600 15000 5.4 70100 0.4 6.9 2.35 HOLE: BX-01-DN BDL 3 5 BDL 5	HOLE: A1X02-UP													*
X 0.009 1600 265 3 16100 32500 5.1 67500 0.4 6.9 1.78 S 0.001 160 5 1 300 1800 0.2 1800 0.1 0.1 0.1 0.57 MIN 0.008 1400 260 2 15800 30600 4.9 65500 0.3 6.8 1.20 MAX 0.010 1800 270 3 16600 15000 5.4 70100 0.4 6.9 2.35 HOLE: BX-01-DN N BDL 3 5 BDL 5	Ν	BDL	2	4	BDL	4	4	4	4	4	4	4	4	4
MIN MAX 0.008 0.010 1400 1800 260 270 2 3 15800 16600 30600 15000 4.9 5.4 65500 70100 0.3 6.8 6.8 1.20 MAX N BDL 3 5 BDL 5 0.010 10.00 1 <td>Х</td> <td></td> <td>0.009</td> <td></td>	Х		0.009											
MAX 0.010 1800 270 3 16600 15000 5.4 70100 0.4 6.9 2.35 HOLE: BX-01-DN BDL 3 5 BDL 5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							1							
HOLE: BX-01-DN N BDL 3 5 BDL 5 0.0 5 2.8														
N BDL 3 5 BDL 5 <td>МАХ</td> <td></td> <td>0.010</td> <td>1800</td> <td></td> <td>270</td> <td>3</td> <td>16600</td> <td></td> <td>5.4</td> <td>70100</td> <td>0.4</td> <td>6.9</td> <td>2.35</td>	МАХ		0.010	1800		270	3	16600		5.4	70100	0.4	6.9	2.35
X 0.020 1480 262 3 17400 22100 1.5 80800 0.5 2.8 2.47 S 0.010 80 12 1 700 900 0.1 2300 0.2 0.3 1.74 MIN 0.010 1400 250 2 16800 21000 1.4 77500 0.2 2.5 0.20 MAX 0.026 1600 280 5 18700 23700 1.7 84200 0.8 3.3 5.47 HOLE: DH-36-DN BDL 9	HOLE: BX-01-DN													
X 0.020 1480 262 3 17400 22100 1.5 80800 0.5 2.8 2.47 S 0.010 80 12 1 700 900 0.1 2300 0.2 0.3 1.74 MIN 0.010 1400 250 2 16800 21000 1.4 77500 0.2 2.5 0.20 MAX 0.026 1600 280 5 18700 23700 1.7 84200 0.8 3.3 5.47 HOLE: DH-36-DN BDL 9	N	BDL	3	5	BDL	5	5	5	5	5	5	5	5	5
MIN 0.010 1400 250 2 16800 21000 1.4 77500 0.2 2.5 0.20 MAX 0.026 1600 280 5 18700 23700 1.7 84200 0.8 3.3 5.47 HOLE: DH-36-DN N BDL 4 9 BDL 9	X					262	з			1.5		0.5		
MAX 0.026 1600 280 5 18700 23700 1.7 84200 0.8 3.3 5.47 HOLE: DH-36-DN N BDL 4 9 BDL 9 1.6 2.41 1.1 85000 0.1 0.1 4.46 S 0.010 70 16 </td <td>S</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	S						•							
HOLE: DH-36-DN N BDL 4 9 BDL 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	MIN						2							0.20
N BDL 4 9 BDL 9 7 1.6 2.41 5 0.010 70 16 1 500 700 0.1 4.46	MAX		0.026	1600		280	5	18700	23700	1.7	84200	0.8	3.3	5.47
X0.01715303222195001.85000.71.62.41S0.010701615007000.149000.10.14.46	HOLE: DH-36-DN													
X0.01715303222195001.85000.71.62.41S0.010701615007000.149000.10.14.46	Ν	BDL	4	9	BDL	9	9	9	9	9	9	9	9	9
S 0.010 70 16 1 500 700 0.1 4900 0.1 0.1 4.46	X						2			1.1				
	S						1							
MAX 0.025 1600 340 3 20200 20200 1.3 90600 0.9 1.9 6.89	MIN		0.009	1400		290	1	18600	17800	1.0	75700	0.5	1.5	-7.83

EALK, ALK and TIC reported as HCO_3 . N = Number of samples; BDL = Below detection limit;

X = Sample mean; NA = Not analyzed

S = Sample standard deviation;

WP:WIP:R-1625-AppD.Odd

.

STATISTICAL RESULTS (CONTINUED)

Simple Statistics, IT-Export

	рН	S.G. g/cc	TDS mg/L	EALK mg/L	ALK mg/L	TIC mg/L	Br mg/L	CI mg/L	F mg/L	l mg/L	NO ₃ ° mg/L	SO₄ ⁻² mg/L	NH,⁺ mg/L
HOLE: DH-38-DN												*	
N X S MIN MAX	2 6.1 0.0 6.1 6.1	2 1.21 <0.01 1.20 1.21	2 330000 8000 322000 338000	2 847 18 829 866	NA	2 5 0 5 5	2 1500 100 1400 1600	2 176000 7000 169000 182000	2 5 1 4 5	BDL	1 0.04	2 16400 800 15600 17200	2 120 10 110 125
HOLE: DH-42A-DN													
N X S MIN MAX	5 6.1 0.2 6.0 6.5	5 1.21 0.02 1.17 1.23	5 342000 2000 339000 344000	5 834 24 805 853	NA	1 5	5 1290 250 850 1600	5 180000 6000 173000 190000	5 5 1 3 7	1 21	4 0.29 0.47 0.05 1.00	5 15200 1400 12700 16700	5 140 20 120 170
HOLE: G-SEEP-DN													
N X S MIN MAX	9 6.0 0.1 6.0 6.1	9 1.22 0.02 1.19 1.24	9 350000 11000 330000 370000	9 925 88 805 1024	NA	BDL.	9 1370 100 1300 1600	9 173000 6000 164000 181000	9 5 2 1 8	4 21 20 24	8 0.06 0.04 0.02 0.13	9 33100 1900 30900 36900	9 150 10 140 170

EALK, ALK and TIC reported as HCO_3^- . N = Number of samples; X = Sample mean; BDL = Below detection limit; NA = Not analyzed

· · ·

S = Sample standard deviation;

WP:WIP:R-1625-AppD.Even

D-16

STATISTICAL RESULTS (CONTINUED)

	A 1	A =	В	De	6.	Г	к	M-	14-	Na	Si	Sr	%CHARGE
	Al mg/L	As mg/L	в mg/L	Ba mg/L	Ca mg/L	Fe mg/L	к mg/L	Mg mg/L	Mn mg/L	Na mg/L	mg/L	sr mg/L	BALANCE
HOLE: DH-38-DN													
N	BDL	1	2	BDL	2	2	2	2	2	2	2	2	2
Х		0.006	1550		330	2	20100	18400	1.1	88400	0.7	1.1	5.15
S			50		10	0	300	500	0.0	900	0.2	0.1	1.92
MIN			1500		320	2 2	19800	17900 18800	1.1 1.1	87500 89300	0.5 0.8	1.0 1.1	3.22 7.07
MAX			1600		340	2	20300	18800	1.1	69300	0.8	1.1	7.07
HOLE: DH-42A-DN													
N	BDL	2	5	BDL	5	5	5	5	5	5	5	5	5
X		0.020	1580		330	2	20800	18200	1.2	87400	0.8	1.0	4.05
S		0.010	130		39	0	2100	1800	0.1	2900	0.1	0.1	3.18
MIN		0.014	1400		280	2	18800	17000	1.0	81900	0.7	0.9	0.48
MAX		0.025	1800		400	2	24900	21800	1.3	89900	1.0	1.1	9.48
HOLE: G-SEEP-DN													
N	BDL	3	9	BDL	9	9	9	9	9	9	9	9	9
X S		0.014	1860		260	2	16900	16400	0.8	98700	0.4	3.1	4.20
		0.008	130		15	0	700	500	0.1	10600	0.1	0.2	3.76
MIN		0.008	1700		240	1	16000	15500	0.7	81500	0.3	3.0	-4.05
MAX		0.023	2000		280	2	17900	17100	1.0	12400	0.5	3.6	11.39

EALK, ALK and TIC reported as HCO_3 . N = Number of samples; BDL = Below detection limit;

X = Sample mean; NA = Not analyzed

S = Sample standard deviation;

STATISTICAL RESULTS (CONTINUED)

Simple Statistics, IT-Export

	pH	S.G. g/cc	TDS mg/L	EALK mg/L	ALK mg/L	TIC mg/L	Br mg/L	CI mg/L	F mg/L	l mg/L	NO ₃ mg/L	SO ₄ -2 mg/L	NH ₄ mg
HOLE: NG252-DN													
N	4	4	4	4	NA	BDL	4	4	4.	BDL	2	4	4
X	6.1	1.21	338000	802			1280	179000	6		0.03	16100	108
S	0.1	0.01	8000	36			40	4000	2		0.01	800	9
MIN	6.0	1.19	328000	744			1200	173000	3		0.02	14700	98
MAX	6.2	1.23	347000	841			1300	183000	7		0.04	16600	117
HOLE: STANDARD													
N	4	4	4	4	NA	3	4	4	2	BDL	2	4	4
x	7.7	1.15	246000	31		31	43	122000	2		0.08	2000	2.3
5	0.4	0.01	8000	6		3	22	25000	0		0.04	150	1.1
MIN	7.1	1.14	239000	24		28	28	79000	2		0.05	1800	1.2
MAX	8.0	1.17	259000	41		36	81	140000	2		0.11	2200	3.6

EALK, ALK and TIC reported as HCO_3 . N = Number of samples; X = BDL = Below detection limit; NA =

X = Sample mean; NA = Not analyzed

S = Sample standard deviation;

WP:WIP:R-1625-AppD.Even

D-18

STATISTICAL RESULTS (CONTINUED)

	Al mg/L	As mg/L	B mg/L	Ba mg/L	Ca mg/L	Fe _mg/L	K mg/L	Mg mg/L	Mn _mg/L	Na mg/L	Si _mg/L_	Sr mg/L	%CHARGE BALANCE
HOLE: NG252-DN													
N X S MIN MAX	BDL	2 0.017 0.009 0.010 0.023	4 1480 40 1400 1500	BDL	4 298 16 270 310	4 4 1 2 4	4 18200 400 17600 18800	4 20100 400 19700 20800	4 1.2 0.1 1.1 1.4	4 82300 3100 77300 85100	4 0.5 0.1 0.4 0.6	4 1.9 0.1 1.8 2.0	4 2.83 2.10 -0.52 5.24
HOLE: STANDARD													
N X S MIN MAX	BDL	2 0.026 0.001 0.025 0.026	4 6 1 5 7	BDL	4 415 22 380 440	BDL	4 458 3 455 460	4 170 5 165 180	BDL	4 95300 1300 93700 97100	BDL	4 12.4 0.9 11.7 14.0	4 10.21 11.75 1.58 30.45

EALK, ALK and TIC reported as HCO_3 . N = Number of samples; BDL = Below detection limit;

X = Sample mean; NA = Not analyzed

S = Sample standard deviation;

APPENDIX D

STATISTICAL RESULTS FOR BRINE SAMPLES

PART II - MULTIVARIATE ANALYSIS

Multivariate-analysis-of-variance calculations were carried out on analytical results obtained from WIPP brines sampled over the period November 1987 through July 1988. For each analytical group, the GLM procedure evaluates the model hypothesis that significant differences exist in the mean parameter concentrations among the holes - that is, some linear function of the parameter means is different from zero. The null hypothesis states there is no significant difference in the mean parameter concentrations between holes. Rejection of the null hypothesis occurs when the calculated F value (alpha = 0.05) exceeds that predicted for the indicated degrees of freedom. A small significance probability (e.g., Pr > F = 0.0001) indicates that some linear function of the parameter means is significantly different from zero (i.e. at the 99.99% confidence level when Pr > F = 0.0001). R-square can range from 0 to 1 and, in general, the larger the value of R-square, the better the model's fit. Duncan's multiple-range test groups those holes which do not have significantly different parameter means.

Statistical Analysis Software (SAS), General-Linear-Model (GLM) Procedure (SAS Institute, Inc., 1985).

Abbreviations as follows: DF = degrees of freedom; CV = coefficient of variation; MSE = mean square for error.

STATISTICAL RESULTS (CONTINUED)

MULTIVARIATE ANALYSIS OF VARIANCE, UNC GEOTECH

Class	Levels	Values							
HOLE	13	a1x01 a1x02 a2x01 a3x01 bx01 dh36 dh38 dh42 dh42a dhp401 gseep l1x00 ng252							
		Number of observations in data set = 72							
	Critical value for the F distribution: F0.05(12,59)								
Dependent Variable:	pH	ELE	100						
Source	DF	Sum of Squares	Mean Square	F Value	Pr >F				
		100							
Model	12	2.6	0.2	1.02	0.4428				
Error	59	12.5	0.2		••••=•				
Corrected Total	71	15.1							
		R-Square	<u>C.V.</u>	Root_MSE	pH Mean				
		0.1716	7.58	0.5	6.1				
Dependent Variable:	Br								
		Sum of	Mean						
Source	DF	Squares	Square	F Value	Pr >F				
Model	12	5008290	417360	42.92	0.0001				
Error	59	573660	9720						
Corrected Total	71	5581950							
		R-Square	<u>C.V.</u> 6.44	Root MSE	Br_Mean				
		0.8972	6.44	100	1530				
Dependent Variable:	CI								
•		Sum of	Mean						
Source	DF	Squares	Square	F Value	Pr >F				
Model	12	1012008000	84334000	16.12	0.0001				
Error	59	308603000	5231000						
Corrected Total	71	1320611000							
		R-Square	<u>C.V.</u> 1.17	Root MSE	<u>CI Mean</u>				
		0.7663	1 17	2000	194000				

STATISTICAL RESULTS (CONTINUED)

۰.

MULTIVARIATE ANALYSIS OF VARIANCE, UNC GEOTECH

Dependent Variable: SC	J₄ ⁻²				
		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr >F
Model	10	2536470600	211372600	60.00	0.0001
	12			60.99	0.0001
Error	59	204459300	3465400		
Corrected Total	71	2740929900			
		R-Square	C.V.	Root MSE	SO ⁻² Mean
		0.9254	<u>C.V.</u> 9.03	1900	20600
Dependent Variable: NI	H ₄	Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr >F
Model	12	33774	2814	15.49	0.0001
Error	59	10717	182		
Corrected Total	71	44491			
	, ,				
		R-Square	<u>C.V.</u>	Root_MSE	NH ⁺ Mean
		0.7591	<u>C.V.</u> 7.88	13	171
Dependent Variable: B					
		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr >F
Model	12	2012070	167670	5.66	0.0001
Error	F 0				
	59	1746440	29600		
Corrected Total	59 71	1746440 3758510	29600		
Corrected Total		3758510		Boot MSE	
Corrected Total		3758510 <u>R-Square</u>		Root MSE	<u>B Mean</u>
Corrected Total		3758510	29600 <u>C.V.</u> 10.93	Root MSE 170	
	71	3758510 <u>R-Square</u>			<u>B Mean</u>
Corrected Total Dependent Variable: C	71	3758510 <u>R-Square</u>			<u>B Mean</u>
	71	3758510 <u>R-Square</u> 0.5353	<u>C.V.</u> 10.93		<u>B Mean</u>
Dependent Variable: C Source	71 a DF	3758510 <u>R-Square</u> 0.5353 Sum of Squares	<u>C.V.</u> 10.93 Mean Square	170 F Value	<u>B Mean</u> 1570 Pr >F
Dependent Variable: C Source Model	71 a DF 12	3758510 <u>R-Square</u> 0.5353 Sum of Squares 60964	<u>C.V.</u> 10.93 Mean Square 5080	170	<u>B Mean</u> 1570
Dependent Variable: C Source Model Error	71 a DF 12 59	3758510 <u>R-Square</u> 0.5353 Sum of Squares 60964 52501	<u>C.V.</u> 10.93 Mean Square	170 F Value	<u>B Mean</u> 1570 Pr >F
Dependent Variable: C Source Model	71 a DF 12	3758510 <u>R-Square</u> 0.5353 Sum of Squares 60964	<u>C.V.</u> 10.93 Mean Square 5080	170 F Value	<u>B Mean</u> 1570 Pr >F
Dependent Variable: C Source Model Error	71 a DF 12 59	3758510 <u>R-Square</u> 0.5353 Sum of Squares 60964 52501	<u>C.V.</u> 10.93 Mean Square 5080	170 F Value	<u>B Mean</u> 1570 Pr >F

STATISTICAL RESULTS (CONTINUED)

MULTIVARIATE ANALYSIS OF VARIANCE, UNC GEOTECH

۰.

Dependent Variable: Mg		0 /			
Source	DF	Sum of Squares	Mean Square	F Value	Pr >F
Model Error Corrected Total	12 59 71	3044750700 266407100 3311157800	253729200 4515400	56.19	0.0001
		<u>R-Square</u> 0.9195	<u>C.V.</u> 9.59	Root MSE 2100	<u>Mg Mean</u> 22200
Dependent Variable: Mn		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr >F
Model Error Corrected Total	12 59 71	18317 1.29 184.46	15.26 0.02	697.66	0.0001
		<u>R-Square</u> 0.9930	<u>C.V.</u> 8.37	Root_MSE 0.15	<u>Mn Mean</u> 1.77
Dependent Variable: K					
Source	DF	Sum of Squares	Mean Square	F Value	Pr >F
Model Error Corrected Total	12 59 71	271739500 48570400 320309900	22645000 823200	27.51	0.0001
		<u>R-Square</u> 0.8484	<u>C.V.</u> 5.28	Root MSE 900	<u>K Mean</u> 17200
Dependent Variable: Si		Sum of	Mean		
Source	DF	Sum of Squares	Square	F Value	Pr >F
Model Error Corrected Total	12 59 71	91.02 107.13 198.15	7.58 1.82	4.18	0.0001
		<u>R-Square</u> 0.4593	<u>C.V.</u> 51.55	Root MSE 1.35	<u>Si Mean</u> 2.61

WP:WIP:R-1625-AppD.Multi

.•

STATISTICAL RESULTS (CONTINUED)

MULTIVARIATE ANALYSIS OF VARIANCE, UNC GEOTECH

.

Dependent Variable: N	la				
		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr >F
Model Error Corrected Total	12 59 71	7983015600 279244300 8262259900	665251300 4733000	140.56	0.0001
		<u>R-Square</u> 0.9662	<u>C.V.</u> 2.67	Root MSE 2200	<u>Na Mean</u> 81400
Dependent Variable: S	Sr	2			
Source	DF	Sum of Squares	Mean Square	F Value	Pr >F
Model Error Corrected Total	12 59 71	181.08 5.24 186.32	15.09 0.09	170.02	0.0001
·		<u>R-Square</u> 0.9719	<u>C.V.</u> 12.71	Root MSE 0.30	<u>Sr Mean</u> 2.34

STATISTICAL RESULTS

MULTIVARIATE ANALYSIS OF VARIANCE DUNCAN'S MULTIPLE-RANGE TEST, UNC GEOTECH

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

> WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes = 4.305891

> > Alpha = 0.05 df = 59

Means with the same letter are not significantly different. Asterisk indicates group used to calculate composite chemistry in Table 3-5.

Ph		
Duncan Grouping	Mean	N HOLE
*A	6.4	4 dh42
Α	6.3	3 a1x01
Α	6.2	11 gseep
A	6.2	4 a3x01
А	6.2	4 dh38
A	6.2	6 dh42a
А	6.1	7 bx01
А	6.1	4 ng252
А	6.1	11 dh36
А	6.0	2 dhp401
Α	5.9	3 a2x01
А	5.9	4 l1x00
A	5.7	9 a1x02
Br Duncan Grouping	Mean	N HOLE
А	2410	2 dhp401
В	1970	9 a1x02
В	1930	4 l1x00
C	1500	11 gseep
*D C D C D C D C	1460	3 a2x01
D C	1450	3 a1x01
D C	1410	7 bx01
D C	1390	4 a3x01
D C	1360	11 dh36
D C .	1360	4 ng252
DC. DC DC	1350	6 dh42a
	1350	4 dh38
D	1330	4 dh42

WP:WIP:R-1625-AppD.Multi

STATISTICAL RESULTS (CONTINUED)

CI Duncan Groupi	ing		Mean	N	HOLE
В В *D	A A C C		202000 199000 198000 196000	2 9 4 3	dhp401 a1x02 l1x00 a2x01
ם ם ם	0000	E E E E	195000 195000 195000 195000	6 11 4 7	dh42a dh36 dh38 bx01
D D D	C F	E E E	194000 193000 192000 192000 187000	4 4 3 4 11	ng252 dh42 a1x01 a3x01 gseep
SO4 ⁻² Duncan Group	ing		Mean	N	HOLE
A B C C D D D D D D D			33200 27900 22600 21800 18500 17500 17200 17000 16900	11 2 4 9 3 7 3 4 4	gseep dhp401 l1x00 a1x02 a1x01 bx01 a2x01 a3x01 ng252
			16500 16500 16500 16200	11 4 6 4	dh36 dh38 dh42a dh42

STATISTICAL RESULTS (CONTINUED)

NH4 ⁺			
Duncan Group	bing	Mean	N HOLE
	Α	218	4 l1x00
В	Α	205	11 gseep
В		198	2 dhp401
	С	175	6 dh42a
*D		168	4 dh42
D	с с с с	168	4 dh38
D	С	165	3 a2x01
D	С	163	11 dh36
D	C	155	9 a1x02
D		152	7 bx01
D		152	4 ng252
D		149	4 a3x01
D		147	3 a1x01
В			
Duncan Group	bing	Mean	N HOLE
	Α	1970	4 l1x00
	Α	1840	11 gseep
В	Α	1790	2 dhp401
В		1560	7 bx01
	С	1520	9 a1x02
	С	1500	4 dh38
	С	1490	11 dh36
	С	1490	3 a1x01
	С	1480	4 dh42
	С	1460	4 ng252
	С	1430	6 dh42a
	•	1420	3 a2x01
	С	1420	4 a3x01

STATISTICAL RESULTS (CONTINUED)

Ca Duncan Gr	ouping				Mean	N	HOLE
*B B B B B B B B B	AAEEEEE	0000000	D D D D D D D		388 349 345 343 341 326 323 312 307 302 296 283	4 3 11 6 4 4 4 3 7 9 11	a2x01 dh36 dh42a dh38 11x00 ng252 a3x01 a1x01 bx01 a1x02 gseep
Mg Duncan Gr	E				270 Mean	2 N	HOLE
FE EE EE		ABCDDDDFFFFF		•	44300 33200 27600 23100 22900 22800 22800 20200 18100 17800 17600 17400 16600	9 4 3 7 3 4 4 1 1 4 4 1 1 4 4 4 4 4 4 4 4 4 4 4	 I1x00 a1x01 bx01 a2x01 a3x01 ng252 dh36 dh38 dh42a

STATISTICAL RESULTS (CONTINUED)

MULTIVARIATE ANALYSIS OF VARIANCE DUNCAN'S MULTIPLE-RANGE TEST, UNC GEOTECH

۰.

Mn Duncan Grouping	Mean	N HOLE
А	8.00	2 dhp401
В	4.67	9 a1x02
c	1.80	3 a2x01
D	1.58	4 a3x01
D .	1.40	7 bx01
D	1.40	4 l1x00
D	1.40	3 a1x01
*E	1.18	4 dh42
E	1.10	4 ng252
E	1.03	4 dh38
E	1.02	6 dh42a
E	1.00	11 dh36
F	0.70	11 gseep
к		
Duncan Grouping	Mean	N HOLE
А	23600	4 (1x00
*B	18500	6 dh42a
В	18200	4 dh38
В	18200	4 dh42
В	18200	11 dh36
СВ	17200	4 ng252
C D	16500	7 bx01
C D	16200	3 a2x01
C D	16100	3 a1x01
C D	15900	11 gseep
C D	15800	2 dhp401
C D	15800	4 a3x01
D	15100	9 a1x02

...

STATISTICAL RESULTS (CONTINUED)

Si Dupopp Grou	ning	Mean	N		
Duncan Grou	ping	Mean	N	HOLE	
	А	5.48	4	l1x00	
В	Α	4.90	4	dh42	
В	*C	3.35	11	dh36	
	С	2.85	4	dh38	
	С	2.75	4	a3x01	
	0000	2.63	6	dh42a	
	C	2.63	3	a2x01	
	С	2.37	7	bx01	
	С	1.90	11	gseep	
	С	1.85	4	ng252	
	С	1.75	2	dhp401	
	C	1.43	3	a1x01	
	Ċ	1.23	9	a1x02	
Na Duncan Grou	ping	Mean	N	HOLE	(
	А	94200	11	gseep	
	*B	87700	11	dh36	
	B	87500	4	dh42	
	B	86800	6	dh42a	
С	B	86300	4	dh38	
C	*D	83500	4	ng252	
E	D	80800	7	bx01	
E		79900	3	a1x01	
E		79700	3	a2x01	
E E E		78800	4	a3x01	
	F	69900	4	l1x00	
	G	63600	9	a1x02	
	н	50800	2	dhp401	

STATISTICAL RESULTS (CONTINUED)

.

Sr		2.51.11E	
Duncan Grouping		Mean	N HOLE
	А	5.92	9 a1x02
	В	5.25	2 dhp401
	С	2.69	11 gseep
D	с .	2.53	4 a3x01
D	E	2.14	7 bx01
*F	E	1.77	3 a1x01
F		1.70	4 ng252
F	G	1.48	4 l1x00
F	G	1.44	11 dh36
*H	G	1.08	4 dh42
н	G	1.07	3 a2x01
н	1	0.90	4 dh38
Н		0.88	6 dh42a

STATISTICAL RESULTS

MULTIVARIATE ANALYSIS OF VARIANCE, IT- EXPORT

Class	Levels						
HOLE	7	a1x02 bx01 dh36	a1x02 bx01 dh36 dh38 dh42a gseep ng252				
		Number of obser	vations in data	a set = 38			
		Critical value for	the F distribut	tion: F0.05(6,31)	= 2.41		
Dependent Variable:	рН						
Source	DF	Sum of Squares	Mean Square	F Value	Pr >F		
Model	6	0.6	0.1	9.43	0.0001		
Error	31	0.4	0.01				
Corrected Total	37	1.0					
		<u>R-Square</u> 0.6459	<u>C.V.</u> 1.78	Root MSE 0.1	<u>pH_Mean</u> 6.0		
Dependent Variable:	Br						
Source	DF	Sum of Squares	Mean Square	F Value	Pr >F		
Model	6	1551880	258650	8.10	0.0001		
Error Corrected Total	31 37	989500 2541380	31920				
		<u>R-Square</u> 0.6106	<u>C.V.</u> 12.59	Root MSE 180	<u>Br Mean</u> 1430		

STATISTICAL RESULTS (CONTINUED)

٠.

MULTIVARIATE ANALYSIS OF VARIANCE, IT-EXPORT

Dependent Variable:	CI					
Source		DF	Sum of Squares	Mean Square	F Value	Pr >F
Model Error Corrected Total		6 31 37	1010342000 1924000000 2934342000	168390000 62065000	2.71	0.0310
			<u>R-Square</u> 0.3443	<u>C.V.</u> 4.38	Root MSE 8000	<u>CI Mean</u> 180000
Dependent Variable:			Sum of	Mean		
Source Model Error Corrected Total	-	0F 6 31 37	Squares 1903252900 71839700 1975092600	Square 317208800 2317400	F Value 136.88	Pr >F 0.0001
			<u>R-Square</u> 0.9636	<u>C.V.</u> 7.37	Root MSE 1500	<u>SO⁻² Mean</u> 20700
Dependent Variable:	${\rm NH_4}^+$		Sum of	Mean		
Source			Squares	Square	F Value	Pr >F
Model Error Corrected Total		6 31 37	8987 5740 14728	1498 185	8.09	0.0001
			<u>R-Square</u> 0.6102	<u>C.V.</u> 10.62	Root MSE 14	<u>NH₄⁺ Mean</u> 128
Dependent Variable:	В			Meer		
Source	[DF	Sum of Squares	Mean Square	F Value	Pr >F
Model Error Corrected Total		6 31 37	765070 410720 1175790	127510 13250	9.62	0.0001
			<u>R-Square</u> 0.6507	<u>C.V.</u> 7.15	Root MSE 120	<u>B Mean</u> 1610

STATISTICAL RESULTS (CONTINUED)

MULTIVARIATE ANALYSIS OF VARIANCE, IT-EXPORT

۰.

Dependent Variable: Ca					
Source	DF	Sum of Squares	Mean Square	F Value	Pr >F
Model Error Corrected Total	6 31 37	35076 14011 49087	5846 452	12.96	0.0001
· · · ·		<u>R-Square</u> 0.7146	<u>C.V.</u> 7.27	Root MSE 21	<u>Ca Mean</u> 292
Dependent Variable: Mg)	Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr >F
Model Error Corrected Total	6 31 37	810131300 42234200 852365500	135021900 1362400	99.11	0.0001
		<u>R-Square</u> 0.9505	<u>C.V.</u> 5.82	Root MSE 1200	<u>Mg Mean</u> 20100
Dependent Variable: Mr	n	Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr >F
Model Error Corrected Total	6 31 37	58.6 0.6 59.2	9.8 0.02	476.62	0.0001
		<u>R-Square</u> 0.9893	<u>C.V.</u> 9.36	Root MSE 0.1	Mn Mean 1.5
Dependent Variable: K		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr >F
Model Error Corrected Total	6 31 37	93645000 32372100 126017100	15607500 1044300	14.95	0.0001
		<u>R-Square</u> 0.7431	<u>C.V.</u> 5.58	Root MSE 1000	<u>K Mean</u> 18300

STATISTICAL RESULTS (CONTINUED)

MULTIVARIATE ANALYSIS OF VARIANCE, IT-EXPORT

۰.

Dependent Variable: Si		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr >F
Model	6	0.9	0.1	6.83	0.0001
Error	31	0.7	0.02		
Corrected Total	37	1.6			
		R-Square	C.V.	Root MSE	Si Mean
		0.5695	<u>C.V.</u> 26.42	0.1	0.6
Dependent Variable: Na					
		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr >F
Model	6	3040099500	506683300	11.64	0.0001
Error	31	1349718600	43539300		
Corrected Total	37	4389818200			
		R-Square	C.V.	Root MSE	<u>Na Mean</u>
		0.6925	<u>C.V.</u> 7.67	6600	86100
Dependent Variable: Sr					
		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr >F
Madal	6	103.1	17.2	498.37	0.0001
Model	6 31	1.1	0.03	490.07	0.0001
Error	31	1.1	0.03		
Corrected Total	37	104.2			
		<u>R-Square</u>	<u>C.V.</u> 7.09	Root MSE	Sr Mean
		0.9897	7.00	0.2	2.6

.*

STATISTICAL RESULTS

MULTIVARIATE ANALYSIS OF VARIANCE DUNCAN'S MULTIPLE-RANGE TEST, IT-EXPORT

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

> WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes = 4.315068

> > Alpha = 0.05 df = 31

Means with the same letter are not significantly different. Asterisk indicates group used to calculate composite chemistry in Table 3-5.

pH Duncan Grouping	Mean	N HOLE	
*A	6.1	5 dh42a	
A	6.1	2 dh38	
Â	6.1	4 ng252	
A	6.0	9 gseep	
A	6.0	9 dh36	
A	6.0	5 bx01	6
В	5.7	4 a1x02	
Br			
Duncan Grouping	Mean	N HOLE	
А	2000	4 a1x02	
*B	1500	2 dh38	
В	1400	9 dh36	
В	1400	5 bx01	
В	1370	9 gseep	
В	1290	5 dh42a	
В	1280	4 ng252	
CI			
Duncan Grouping	Mean	N HOLE	.*
*A	191000	4 a1x02	
B A	183000	5 bx01	
B A	182000	9 dh36	
B A	180000	5 dh42a	
B A	179000	4 ng252	
В	176000	2 dh38	
В	173000	9 gseep	

STATISTICAL RESULTS (CONTINUED)

SO ₄ -2		
Duncan Grouping	Mean	N HOLE
А	33100	9 gseep
В	21000	4 a1x02
*C	17000	5 bx01
C C	16400	2 dh38
С	16200	9 dh36
С	16100	4 ng252
C	15200	5 dh42a
NH₄⁺		
Duncan Grouping	Mean	N HOLE
А	151	9 gseep
B A	140	5 dh42a
В *С	124	9 dh36
C . C C	118	2 dh38
С	118	4 a1x02
С	112	5 bx01
С	108	4 ng252
В		
Duncan Grouping	Mean	N HOLE
Α	1860	9 gseep
*B	1600	4 a1x02
В	1580	5 dh42a
В	1550	2 dh38
В	1530	9 dh36
В	1480	5 bx01
<u> </u>	1480	4 ng252
Ca		
Duncan Grouping	Mean	N HOLE
*A	330	5 dh42a
A	330	2 dh38
B A	322	9 dh36
В	398	4 ng252
C	265	4 a1x02
C C C	262	5 bx01
С	260	9 gseep

STATISTICAL RESULTS (CONTINUED)

MULTIVARIATE ANALYSIS OF VARIANCE DUNCAN'S MULTIPLE-RANGE TEST, IT-EXPORT

Mg Duncan Grouping		Mean	N HOLE
*D (D D		32500 22100 20100 18500 18400 18200 16400	4 a1x02 5 bx01 4 ng252 9 dh36 2 dh38 5 dh42a 9 gseep
Mn Duncan Grouping		Mean	N HOLE
A B *C C C C D		5.1 1.5 1.2 1.2 1.1 1.1 0.8	4 a1x02 5 bx01 4 ng252 5 dh42a 2 dh38 9 dh36 9 gseep
K Duncan Grouping	· .	Mean	N HOLE
B B D D D	A A C C C	20800 20100 19500 18200 17400 16900 16100	5 dh42a 2 dh38 9 dh36 4 ng252 5 bx01 9 gseep 4 a1x02
Si Duncan Grouping	1	Mean	N HOLE
*B B B B	A A A C C C	0.8 0.7 0.7 0.5 0.5 0.4 0.4	5 dh42a 9 dh36 2 dh38 4 ng252 5 bx01 9 gseep 4 a1x02

.

STATISTICAL RESULTS (CONTINUED)

MULTIVARIATE ANALYSIS OF VARIANCE DUNCAN'S MULTIPLE-RANGE TEST, IT-EXPORT

Na Duncon Crowning	Mean	N HOLE
Duncan Grouping	Mean	N HOLE
А	98700	9 gseep
*B	88400	2 dh38
В	87400	5 dh42a
В	85000	9 dh36
В	82300	4 ng252
В	80800	5 bx01
С	67500	4 a1x02
Sr		
Duncan Grouping	Mean	N HOLE
А	6.9	4 a1x02
В	3.1	9 gseep
С	2.8	5 bx01
*D	1.9	4 ng252
D	1.6	9 dh36
*E	1.1	2 dh38
E	1.0	5 dh42a

D-39

APPENDIX E

s .

DUSSAULT'S STAIN PROCEDURE

.*

APPENDIX E

DUSSAULT'S STAIN PROCEDURE

Apply loopful of 0.75% formalin in 20% brine to a clean glass slide.

Place colony in drop.

Air dry.

Immerse in 2% acetic acid (5 minutes).

Pat dry.

Add a drop of crystal violet solution (3 minutes).

Rinse with iodine.

Rinse with 95% ethyl alcohol.

Rinse with tap water.

Apply a drop of basic fuchsin solution (1 minute).

Rinse with tap water.

Air dry.

Examine under Phase Contrast Microscope.

E-1

APPENDIX F

BACTERIA ISOLATES

- PART I ISOLATE CHARACTERISTICS
- PART II ISOLATES PER SAMPLE ON HIGH SALT MEDIA
- PART III DESCRIPTION OF ISOLATES ON MEDIA SELECTIVE FOR SPECIAL ORGANISMS

TABLE F-1 BACTERIA ISOLATES PART I -ISOLATE CHARACTERISTICS

.*

TABLE F-1

ISOLATE CHARACTERISTICS

•

MICROSCOPIC EXAMINATION^a MACROSCOPIC APPEARANCE ON AGAR

flat

^

W-1	Small curved bacilli*	Pinpoint, grey, transparent, flat
W-2	Streptococci [®] (all greater than 4 individual cells)	Small, while, opaque, not circular, raised
W-3	Single cocci ^d , cocci in pairs and streptococci	Pinpoint, white, opaque, convex
W-4*	Long thin bacilli in chains/ streptococci	Pinpoint, off-white/grey, opaque, raised
W-5*	Streptococci (all less than 6 individual cells)/large cocci	Large, yellow, not circular, raised
W-6	Staphylococci*	Pinpoint, yellow, opaque, raised
W-7	Long, fat bacilli in chains	Small, off-white, opaque, flat
W-8	Streptococci (all greater than 6 individual cells)	Pinpoint, off-white, opaque, convex
W-9	Cocci, diplococci ⁴	Pinpoint, blue/grey, transparent, flat
W-10	Streptococci (large)	Minute, yellow, transparent, flat
W-11	Small streptococci (chains of 3 individual cells)	Pinpoint, yellow, transparent, flat
W-12	Large streptococci (chains of 3-6 individual cells)	Small, white, opaque, convex
W-13	Cocci, diplococci, streptococci	Pinpoint, pink, transparent, convex
W-14	Small, short bacilli, paired	Pinpoint, grey/yellow, transparent, iregular,
W-15	Small staphylococci	Very pinpoint, fiery red, transparent, flat
W-16	Cocci (chains of 6-8 individual cells)	Pinpoint, peach, opaque, raised
W-17	Small individual cocci	Large, amber, flat
W-18	Small Staphylococci	White/pink, liquified agar
W-19	Large cocci (single cells)	Small pink, transparent, convex
W-20*	Small individual cocci/large staphylococci	Pinpoint, orange/red, transparent, flat
W-21	Large staphylococci	Pinpoint, off-white, opaque, raised
W-22	Small streptococci	Off-white, opaque, raised/convex
W-23*	Large cocci/small streptococci	Off-white, opaque, raised/convex

WP:WIP:R-1625-AppF

F-2

ISOLATE CHARACTERISTICS (CONTINUED)

	MICROSCOPIC EXAMINATION*	MACROSCOPIC APPEARANCE ON AGAR
W-24	Small diplococci	Off-white, opaque, flat
W- 25	Small streptococci (chains of greater than 8 individual cells)	Small, grey/yellow, transparent, raised
W-26	Small cocci (single cells)	Pinpoint, pink/white, transparent, flat
W-27	Small cocci	Very pinpoint, pink, transparent
W-28	Large staphylococci, aggregates	Pinpoint, pink/grey, transparent, flat
W-29	Small cocci (groups of cells greater than 4 individual cells)	Small, off-white, opaque, flat
W-30	Very long curved bacilli in chains	Small, yellow centers with grey edges, raised
W-31	Very small single bacilli	Pinpoint, grey, transparent, flat
W-32*	Short bacilli chains (spores)	Large, yellow/orange, irregular edges, flat
W-33	Bacilli in chains of 2-6	Yellow/orange, opaque irregular edges
W-34	Small streptococci	Small, peach, opaque, convex
W- 35	Very small single bacilli	Pinpoint, orange/pink, convex
W-36	Streptococci in chains (4-6 cells)	Grey/orange, transparent, raised
W -37	Streptococci in chains (4-6 cells)	Small, peach/orange, opaque, convex
W-38	Very small streptococci in chains (2-6 cells)	Very pinpoint, grey, transparent, flat
W-39	Long curved bacilli, chains of greater than 4 individual cells	Off-white, opaque, raised
W-40	Cocci	Orange, opaque, convex
W-41	Very small bacilli in chains	Yellow, opaque, irregular, flat
W-42	Streptococci in chains of greater than 20 individual cells	Large, peach, opaque, irregular, convex
W-43	Very small single bacilli	Small, grey/blue, transparent, raised
W-44	Very small bacilli (chains of 3-6 individual cells)	Very pinpoint, off-white, transparent, raised
.W-45	Cocci	Small, pink, opaque, raised

ISOLATE CHARACTERISTICS (CONTINUED)

	MICROSCOPIC EXAMINATION	MACROSCOPIC APPEARANCE ON AGAR
W-4 6	Single bacilli	Yellow/grey, transparent, raised
W-47	Streptococci of 4-10 individual cells	Large, orange, irregular edges, flat
W-48	Bacilli chains of 2-4 individual cells	Large, grey/blue, opaque, irregular edges, flat

 ^(a)The terms used here are general.
 ^(b)"Bacilli" means rod-like cells.
 ^(o)"Streptococci" means long chains of cocci.
 ^(d)"Cocci" means spherical cells.
 ^(e)"Staphylococci" means grape-like clusters.
 ^(m)"Diplococci" means cocci in pairs.
 *Organisms that could not be separated -- probably symbionts.

BACTERIA ISOLATES

PART II - ISOLATES PER SAMPLE ON HIGH SALT MEDIA

ISOLATES PER SAMPLE ON HIGH SALT MEDIA

SAMPLE #/ LOCATION	ISOLATES	ISOLATION MEDIUM	CELL COUNTS*
BRINES			
AIS Brine - 1 ^(a) S90/W200	W-1	1176 974	15 125
	W-2	1176	1
	W-3	974	2
	W-8	1176 974	36 22
	W-10	213	40
AIS Brine - 2 ^(b) S90/W200	W-1	974	220
	W-2	974 1176	2 6
	W-3	974	35
	W-4	974	20
	W-5	974	23
	W-6	974	100
	W-7	1176	250
	W-8	1176 974	41 20
	W-9	1176 974	55 110
	W-11	1176	6
	W-12	974	4
	W-13	1176	300
	W-21	974	15
I	W-22	1176 974	30 15

.

۰.

F-6

.^

ISOLATES PER SAMPLE ON HIGH SALT MEDIA (CONTINUED)

۰.

SAMPLE #/ LOCATION	ISOLATES	ISOLATION MEDIUM	CELL COUNTS*
	W-23	1176 974	30 15
	W-24	1176 974	500 225
	W-25	1176	175
DHP-402A (floor) S1950/E1320	W-13	1176 974	6 6
	W-14	1176	20
	W-15	1176 974	14 20
	W-17	974	**
	W-18	213	1140
	W-26	1176 974 213	100 150 540
BTP-C1 (floor)	W-13	1176	100
S1600/W170	W-14	1176	35
	W-18	213	4500
	W-19	974	150
	W-20	974	100
BTP-C4 (roof) S1600/W170	W-16	1176 974	75 570
	W-17	974	**
A1X02 (roof)	W-15	974	3600
N1130/E1220	W-16	974	250
BTP-A2 (floor) S1600/W170	W-13	1176 974	22 50

.

ISOLATES PER SAMPLE ON HIGH SALT MEDIA (CONTINUED)

SAMPLE #/ LOCATION	ISOLATES	ISOLATION MEDIUM	CELL COUNTS*
	W-15	1176	33
	W-17	974	**
MUCK			
S1620/W170	W-27	974	**
(floor)	W-28	974	40
S2200/W30 (floor)	W-29	974	10
Surface Muck Pile	W-48	MORS	30
S90/W200 ^(c)	W-29	974	15
(floor)	W-30	MORS	5
-	W-31	1176 974	1500 5
	W-32	213	5
	W-33	213	5
	W-34	974	750
	W-35	974	450
	W-36	974	125
	W-37	974	**
	W-38	1176	4000
	W-39	1176	425
	W-40	974	40
	W-41	974	20
	W-42	974	40
	W-43	974	50

.^

ISOLATES PER SAMPLE ON HIGH SALT MEDIA (CONTINUED)

SAMPLE #/ LOCATION	ISOLATES	ISOLATION MEDIUM	CELL COUNTS*
	W-44	974	**
	W-45	1176	2500
	W-46	1176	250
	W-47	213	1750

ALL RIB SURFACE AND RIB CORE SAMPLES SHOWED NO GROWTH

- * = Counts are CFU per 100 ml of liquid sample, or per gram of salt. CFU = Colony Forming Units (1 CFU = 1 microorganism).
 ** = Too many to count (complete overgrowth).
 ^(a)Sampled 7-25-88 (WIPP sample No. 93).
 ^(b)Sampled 8-15-88 (WIPP sample No. 93-B).
 ^(c)Sampled 9-8-88 (AIS Brine saturated muck).

.

۰.

BACTERIA ISOLATES

PART III - DESCRIPTION OF ISOLATES ON MEDIA SELECTIVE FOR SPECIAL ORGANISMS

.-

DESCRIPTION OF ISOLATES ON MEDIA SELECTIVE FOR SPECIAL ORGANISMS

λ.

SAMPLE	ISOLATION	MACROMORPHOLOGY ON AGAR_PLATES	
NUMBER	MEDIUM	COLONY TYPE	GRAM STAIN REACTION
AIS Brine-1 ^(a)	SDA ^(b)	White, round, irregular edges	cocci; gram indeterminate
		White, round, smooth edges	cocci; stained black
	•	Yellow, small, round edges	gram (+) rods and cocci
	S-110 ^(e)	Light yellow, round edges, flat	cocci; gram indeterminate
		Red, round edges, raised	cocci; gram indeterminate
N.		Yellow, round edges, flat	cocci; stained black
		Large, white, round edges, raised	cocci; stained black
		White, round edges, flat	cocci; gram indeterminate
		Yellow, irregular edges, flat	cocci; stained black
AIS Brine-2 ⁽⁴⁾	SDA	White, round edges, raised	cocci; gram indeterminate
		Yellow-white, round irregular edges, small	cocci; gram indeterminate
		Yellow, round, irregular edges	cocci; stained black
	S-110	Yellow, round edges, raised	cocci; gram indeterminate
		Yellow-white, round edges, flat	cocci; stained black

DESCRIPTION OF ISOLATES ON MEDIA SELECTIVE FOR SPECIAL ORGANISMS (CONTINUED)

۰.

MACROMORPHOLOGY ON AGAR PLATES

0.000		- Advirt BATEO	
SAMPLE NUMBER	ISOLATION MEDIUM	COLONY TYPE	GRAM STAIN REACTION
	S-110 (cont'd)	White, round edges, raised	cocci; stained black
		Large, white, irregular edges	cocci; gram indeterminate
	Blood agar	Large, white, round edges, -hemolysis	rods; gram indeterminate
		White, opaque, irreg- ular edges, medium	cocci; stained black
		White, round edges, small, flat, -hemolysis	rods; stained black
		Yellow, wrinkled, irregular edges, small	cocci; gram indeterminate
		Orange, round edges raised, medium	cocci; gram indeterminate
	EMB ^(e)	Purple, round edges, small (no metallic sheen)	short rods; gram indeterminate
	TSA ^(†) + 2% cellulose	White, round edges, small	large rods; stained black
		Yellow-white, round edges, small	large rods; gram indeterminate
		Brown, round edges, small	rods; stained black
Muck Pile	SDA	White, swarming	rods; gram (-)
	S-110	White, swarming	rods; gram indeterminate
	Blood agar	Large, opaque, irreg- ular edges, -hemolysis	large rods; indeterminate

DESCRIPTION OF ISOLATES ON MEDIA SELECTIVE FOR SPECIAL ORGANISMS (CONTINUED)

		MACROMORPHOLOGY ON AGAR PLATES	
SAMPLE NUMBER	ISOLATION MEDIUM	COLONY TYPE	GRAM STAIN REACTION
Muck Pile (cont'd)	* EMB	Large, white colonies with small dark indi- vidual colonies inside	large rods/cocci; stained black
	TSA + 2% cellulose	Large, white, swarming	rods; gram indeterminate
AIS Brine [@] Saturated	S110	White, large, round edges, raised	cocci; gram indeterminate
Muck S90/W 200		Peach, round edges, raised	cocci; gram indeterminate
		Brown, round edges, flat	cocci; gram indeterminate
	Blood agar	Red, round edges, raised	rods; stained black
		Brown, irregular edges, flat	rods; gram indeterminate
	TSA + 2% cellulose	Brown, mucoid, irregular edges	cocci; stained black
		Orange, round edges, flat	gram (-) rods
		Peach, round edges, raised	gram (-) cocci
BTP-C4	1090 Marine Methanol agar	White, very small, round edges	short rods; stained black
	NOTE:	This same organism grew on EMB, TSA + 2% cellulose, SDA, Blood agar, and McConkey's agar.	

* - organisms that could not be separated - probable symbionts.
^(a)Sampled 7-25-88 (WIPP sample No. 93).
^(b)SDA = Sabouraud's Dextrose Agar.
^(c)S-110 = Staphylococcus 110 Medium Agar.
^(c)Sampled 8-15-88 (WIPP sample No. 93-B).
^(e)EMB = Eosine Methylene Blue Agar.
^(f)TSA = Tryptocase Soy Agar.

.^

^(a)Sampled 9-8-88 (AIS Brine saturated muck).

APPENDIX G

SUMMARY OF CURRENT MOISTURE CONTENT ANALYSES

.^

SUMMARY OF CURRENT MOISTURE CONTENT ANALYSES

·	•				
		GEOLOGICAL	SAMPLED	CUMUL	ATIVE
SAMPLE NO.	LOCATION		DAYS AFTER PE EXCAVATION	95°C	HT LOSS AT 150°C
MCR 01A	W170/S1957	UNIT 0	37	0.28	0.33
MCR 01B	W170/S1957	UNIT 0	37	0.25	0.29
MCR 02A	W176/S1900	UNIT 0	96	1.10	1.20
MCR 02B	W176/S1900	UNIT 0	96	1.20	1.20
MCR 03A	E310/S2065	UNIT 0	287	0.41	0.45
MCR 03B	E310/S2065	UNIT 0	287	0.63	0.70
MCR 04A	E310/S2140	UNIT 0	287	0.12	0.12
MCR 04B	E310/S2140	UNIT 0	287	0.54	0.57
MCR 05A	E630/S1920	UNIT 0	287	0.37	0.48
MCR 05B	E630/S1920	UNIT 0	395	0.34	0.38
MCR 06A	E1180/S1940	UNIT 0	223	0.65	0.71
MCR 06B	E1180/S1940	UNIT 0	223	0.26	0.26
MCR 07A	E250/S1620	UNIT 0	972	0.99	1.00
MCR 07B	E250/S1620	UNIT 0	972	0.31	0.32
MCR 08A	W176/S1900	UNIT 0	201	0.35	0.38
MCR 08B	W176/S1900	UNIT 0	201	2.36	2.53
MCR 09A	W176/S1880	UNIT 0	201	0.67	0.74
MCR 09B	W176/S1880	UNIT 0	201	0.68	0.74
MCR 10A	W176/S1875	UNIT 0	202	2.15	2.30
MCR 10B	W176/S1875	UNIT 0	202	0.35	0.40
MCR 11A	E922/S1600	UNIT 0	561	0.46	0.51
MCR 11B	E922/S1600	UNIT 0	561	0.66	0.71
MCR 12A	E790/S1600	UNIT 0	596	0.75	0.80
MCR 12B	E790/S1600	UNIT 0	596	0.65	0.69
MCR 13A	E656/S1600	UNIT 0	615	0.86	0.94
MCR 13B	E656/S1600	UNIT 0	615	0.21	0.24
MCR 14A	E790/S1620	UNIT 0	207	0.35	0.38
MCR 14B	E790/S1620	UNIT 0	207	0.71	0.78
MCR 15A	E790/S1720	UNIT 0	215	0.33	0.36
MCR 15B	E790/S1720	UNIT 0	215	0.25	0.27
MCR 16A	E790/S1820	UNIT 0	225	0.35	0.38
MCR 16B	E790/S1820	UNIT 0	225	0.47	0.51
MCR 17A	E790/S1920	UNIT 0	231	0.22	0.26
MCR 17B	E790/S1920	UNIT 0	231	0.73	0.79

SUMMARY OF CURRENT MOISTURE CONTENT ANALYSES

.

.^

		(CONTINU	/			
			SAMPLED	CUMULATIVE		
SAMPLE NO.	LOCATION	GEOLOGICAL UNIT	DAYS AFTER P EXCAVATION	ERCENT WEIG 95°C	HT LOSS AT 150°C	
<u>OAMI LL NO.</u>	200/(110/1					
MCR 18A	E790/S1960	UNIT O	427	0.37	0.41	
MCR 18B	E790/S1960	UNIT 0	427	0.21	0.23	
MCR 19A	E922/S1960	UNIT 0	426	0.59	0.63	
MCR 19B	E922/S1960	UNIT 0	426	0.71	0.74	
MCR 20A	E656/S1960	UNIT 0	430	0.50	0.52	
MCR 20B	E656/S1960	UNIT 0	430	0.58	0.61	
MCR 21A	E712/S1960	UNIT 0	429	0.61	0.64	
MCR 21B	E712/S1960	UNIT 0	429	2.76	2.88	
MCR 22A	E852/S1960	UNIT 0	427	0.33	0.36	
MCR 22B	E852/S1960	UNIT 0	427	0.81	0.83	
MCR 23A	E1022/S1590	UNIT 0	567	0.90	0.93	
MCR 23B	E1022/S1590	UNIT 0	567	0.65	0.68	
MCR 24A	E972/S1590	UNIT 0	568	0.44	0.47	
MCR 24B	E972/S1590	UNIT 0	568	0.30	0.31	
MCR 25A	E860/S1590	UNIT 0	589	0.60	0.64	
MCR 25B	E860/S1590	UNIT 0	589	0.22	0.24	
MCR 26A	E729/S1590	UNIT 0	622	0.67	0.69	
MCR 26B	E729/S1590	UNIT 0	622	0.41	0.44	
MCR 27A	E800/S1670	UNIT 0	232	0.76	0.78	
MCR 27B	E800/S1670	UNIT 0	232	0.57	0.60	
MCR 28A	E800/S1770	UNIT 0	235	0.57	0.59	
MCR 28B	E800/S1770	UNIT O	235	0.78	0.81	
MCR 29A	E800/S1870	UNIT O	247	0.52	0.54	
MCR 29B	E800/S1870	UNIT O	247	0.34	0.36	
MCR 30A	W225/S92	UNIT O	0	0.15	0.16	
MCR 30B	W225/S92	UNIT O	0	0.60	0.62	
MCR 31A	E650/S1620	UNIT O	260	0.27	0.28	
MCR 31B	E650/S1620	UNIT O	260	0.33	0.34	
MCR 32A	E650/S1670	UNIT O	261	0.56	0.58	
MCR 32B	E650/S1670	UNIT 0	261	0.55	0.57	
MCR 33A	E650/S1720	UNIT 0	262	0.44	0.45	
MCR 33B	E650/S1720	UNIT 0	262	0.48	0.50	
			265		0.93	

SUMMARY OF CURRENT MOISTURE CONTENT ANALYSES (CONTINUED)

.

			JED)		
	· .		SAMPLED	CUMUL	_ATIVE
SAMPLE NO.	LOCATION	GEOLOGICAL UNIT	DAYS AFTER <u>F</u> EXCAVATION	<u>PERCENT WEIG</u> 95°C	HT LOSS AT
				00_0	150.0
MCR 34B	E650/S1770	UNIT 0	265	1.13	1.17
MCR 35A	W225/S88	UNIT 0	0	0.35	0.39
MCR 35B	W225/S88	UNIT O	0	0.91	0.96
MCR 36A	W268/S88	UNIT 0	0	2.99	3.13
MCR 36B	W268/S88	UNIT O	0	1.61	1.67
MCR 37A	W268/S92	UNIT O	0	0.52	0.56
MCR 37B	W268/S92	UNIT 0	0	1.59	1.64
MCR 38A	E650/S1820	UNIT 0	268	0.62	0.64
MCR 39A	E650/S1870	UNIT 0	269	0.46	0.47
MCR 39B	E650/S1870	UNIT 0	269	1.31	1.34
MCR 40A	E650/S1920	UNIT 0	270	0.38	0.59
MCR 40B	E650/S1920	UNIT 0	270	0.81	0.85
MCR 41A	W295/S88	UNIT O	0	0.36	0.39
MCR 41B	W295/S88	UNIT 0	0	0.96	0.99
MCR 42A	W295/S92	UNIT 0	0	1.12	1.17
MCR 42B	W295/S92	UNIT O	0	0.65	0.68
MCR 43A	E165/N974	UNIT 0	56	0.54	0.59
MCR 43B	E165/N974	UNIT 0	56	0.28	0.31
MCR 44A	E165/N964	UNIT 0	56	1.30	1.36
MCR 44B	E165/N964	UNIT O	56	1.58	1.64
MCR 44C	E165/N964	UNIT O	56	0.30	0.33
MCR 45A	E165/N954	UNIT 0	56	0.29	0.34
MCR 45B	E165/N954	UNIT O	56	0.59	0.63
MCR 46A	E165/N944	UNIT O	56	0.14	0.16
MCR 46B	E165/N944	UNIT O	56	0.40	0.46
MCR 46C	E165/N944	UNIT 0	56	0.30	0.34
MCR 50B	E160/N936	UNIT O	56	0.23	0.26
MCR 54A	E143/N949	UNIT 0	56	0.46	0.53
MCR 54B	E143/N949	UNIT O	56	0.52	0.55
MCR 55A	E145/N959	UNIT O	56	0.22	0.23
MCR 55B	E145/N959	UNIT 0	56	0.53	0.53
MCR 56A	E145/N969	UNIT 0	56	6.67	6.85
MCR 56B	E145/N969	UNIT 0	56	0.36	0.36

SUMMARY OF CURRENT MOISTURE CONTENT ANALYSES (CONTINUED)

.-

		(0011111	020/		
	٠.		SAMPLED		
SAMPLE NO.	LOCATION	GEOLOGICAL UNIT	DAYS AFTER <u>PI</u> EXCAVATION	95°C	150°C
OAM LL NO.	200/1101				
MCR 57A	E145/N979	UNIT O	56	0.57	0.59
MCR 57B	E145/N979	UNIT 0	56	0.94	0.98
MCR 61A	E140/N996	UNIT 0	57	0.26	0.26
MCR 61B	E140/N996	UNIT O	57	0.44	0.45
MCR 62A	E140/N1030	UNIT 0	1744	0.24	0.27
MCR 62B	E140/N1030	UNIT O	1744	0.70	0.74
MCR 63A	E140/N1040	UNIT 0	1744	0.39	0.43
MCR 63B	E140/N1040	UNIT O	1744	0.58	0.60
MCR 64A	E140/N1050	UNIT 0	1744	0.57	0.61
MCR 64B	E140/N1050	UNIT 0	1744	0.59	0.62
MCR 65A	W610/S72	UNIT O	34	0.38	0.41 80 8
MCR 65B	W610/S72	UNIT 0	34	0.51	0.53
MCR 68A	W615/S2	UNIT 0	1	0.37	0.40
MCR 68B	W615/S2	UNIT O	1	0.51	0.54
MCR 69A	W615/N17	UNIT 0	1	0.17	0.20
MCR 69B	W615/N17	UNIT 0	1	0.42	0.45
MCR 72A	W630/S115	UNIT 0	34	0.35	0.36
MCR 72B	W630/S115	UNIT 0	34	1.09	1.11 35
MCR 73A	W620/S125	UNIT 0	34	0.41	0.43
MCR 73B	W620/S125	UNIT O	34	0.92	0.96
MCR 74A	W570/S90	UNIT O	43	0.32	0.35
MCR 74B	W570/S80	UNIT 0	43	0.79	0.82
MCR 75A	W560/S80	UNIT 0	43	0.41	0.45
MCR 75B	W560/S80	UNIT 0	43	0.20	0.22
MCR 76A	W550/S80	UNIT 0	43	0.45	0.47
MCR 76B	W550/S80	UNIT 0	43	0.38	0.40
MCR 77B	W198/N310	UNIT 0	2	0.32	0.35
MCR 78A	W208/N305	UNIT 0	1	0.47	0.52
MCR 78B	W208/N305	UNIT 0	1	0.17	0.23
MCR 79A	W333/N305	UNIT 0	1	0.53	0.57
MCR 79B	W333/N305	UNIT 0	1	0.08	0.09
MCR 83A	W632/S115	UNIT 0	3	0.83	0.88
MCR 83B	W632/S115	UNIT 0	3	1.59	1.65

	· .				
			SAMPLED	CUMUL	ATIVE
SAMPLE NO.	LOCATION		DAYS AFTER <u>P</u> EXCAVATION	PERCENT WEIG 95°C	HT LOSS AT 150°C
			LANATION		150°C
MCR 84B	W600/N150	UNIT 0	1	0.51	0.58
MCR 85A	E586/N1410	UNIT 0	145	10.71	0.80
MCR 85B	E586/N1410	UNIT 0	145	10.49	0.55
					0.00
MCR 01C	W170/S1957	UNIT 1	37	0.03	0.03
MCR 02C	W176/S1900	UNIT 1	96	0.05	0.07
MCR 03C	E310/S2065	UNIT 1	287	0.09	0.12
MCR 04C	E310/S2140	UNIT 1	287	0.18	0.21
MCR 05C	E630/S1920	UNIT 1	395	0.19	0.25
MCR 07C	E250/S1620	UNIT 1	972	0.17	0.22
MCR 08C	W176/S1900	UNIT 1	201	0.13	0.15
MCR 10C	W176/S1875	UNIT 1	202	0.18	0.20
MCR 11C	E922/S1600	UNIT 1	561	0.27	0.30
MCR 12C	E790/S1600	UNIT 1	596	0.39	0.43
MCR 13C	E656/S1600	UNIT 1	615	0.21	0.24
MCR 14C	E790/S1620	UNIT 1	207	0.19	0.22
MCR 15C	E790/S1720	UNIT 1	215	0.10	0.11
MCR 16C	E790/S1820	UNIT 1	225	0.71	0.74
MCR 17C	E790/S1920	UNIT 1	231	0.41	0.44
MCR 18C	E790/S1960	UNIT 1	427	0.16	0.17
MCR 20C	E656/S1960	UNIT 1	430	0.35	0.36
MCR 21C	E712/S1960	UNIT 1	429	0.30	0.31
MCR 23C	E1022/S1590	UNIT 1	567	0.94	0.99
MCR 24C	E972/S1590	UNIT 1	568	0.19	0.19
MCR 25C	E860/S1590	UNIT 1	589	0.14	0.14
MCR 26C	E729/S1590	UNIT 1	622	0.28	0.29
MCR 27C	E800/S1670	UNIT 1	232	0.30	0.31
MCR 28C	E800/S1770	UNIT 1	235	0.18	0.18
MCR 29C	E800/S1870	UNIT 1	247	0.19	0.19
MCR 30C	W225/S92	UNIT 1	0	0.08	0.09
MCR 31C	E650/S1620	UNIT 1	260	0.31	0.32
MCR 32C	E650/S1670	UNIT 1	261	0.33	0.35
MCR 33C	E650/S1720	UNIT 1	262	0.21	0.22

.

		(CONTIN			
	· .		SAMPLED	CUMUL PERCENT WEIG	
SAMPLE NO.	LOCATION	GEOLOGICAL UNIT	EXCAVATION	95°C	150°C
<u>o, ,,,,, , , , , , , , , , , , , , , , </u>					
MCR 34C	E650/S1770	UNIT 1	265	0.43	0.45
MCR 35C	W225/S88	UNIT 1	0	0.06	0.08
MCR 36C	W268/S88	UNIT 1	0	0.07	0.08
MCR 37C	W268/S92	UNIT 1	0	0.10	0.12
MCR 38C	E650/S1820	UNIT 1	268	0.19	0.19
MCR 39C	E650/S1870	UNIT 1	269	0.13	0.13
MCR 40C	E650/S1920	UNIT 1	270	0.42	0.44
MCR 41C	W295/S88	UNIT 1	0	0.07	0.08
MCR 42C	W295/S92	UNIT 1	0	0.17	0.19
MCR 43C	E165/N974	UNIT 1	56	0.16	0.19
MCR 45C	E165/N954	UNIT 1	56	0.06	0.08
MCR 47C	E163/N942	UNIT 1	56	0.18	0.19
MCR 48C	E162/N940	UNIT 1	56	0.36	0.40
MCR 49C	E161/N938	UNIT 1	56	0.17	0.19
MCR 51C	E160/N865	UNIT 1	1744	0.16	0.20
MCR 53C	E160/N845	UNIT 1	1744	0.14	0.16
MCR 54C	E143/N949	UNIT 1	56	0.14	0.16
MCR 55C	E145/N959	UNIT 1	56	0.18	0.18
MCR 56C	E145/N969	UNIT 1	56	0.16	0.16
MCR 57C	E145/N979	UNIT 1	56	0.10	0.10
MCR 58C	E144/N984	UNIT 1	56	0.15	0.16
MCR 59C	E143/N988	UNIT 1	56	0.24	0.24
MCR 60C	E142/N992	UNIT 1	56	0.19	0.19
MCR 61C	E140/N996	UNIT 1	57	0.10	0.11
MCR 62C	E140/N1030	UNIT 1	1744	0.19	0.22
MCR 63C	E140/N1040	UNIT 1	1744	0.19	0.20
MCR 65C	W610/S72	UNIT 1	34	0.16	0.17
MCR 68C	W615/S2	UNIT 1	1	0.08	0.10
MCR 69C	W615/N17	UNIT 1	1	0.06	0.07
MCR 72C	W630/S115	UNIT 1	34	0.15	0.15
MCR 73C	W620/S125	UNIT 1	34	0.14	0.18
MCR 74C	W570/S80	UNIT 1	43	0.22	0.23
MCR 75C	W560/S80	UNIT 1	43	0.12	0.13

		(00111110			
	۰.		SAMPLED	CUMUL	
SAMPLE NO.	LOCATION	GEOLOGICAL UNIT	DAYS AFTER P EXCAVATION	ERCENT WEIG 95°C	HT LOSS AT 150°C
					150*0
MCR 76C	W550/S80	UNIT 1	43	0.11	0.12
MCR 77C	W198/N310	UNIT 1	2	0.17	0.12
MCR 78C	W208/N305	UNIT 1	- 1	0.10	0.13
MCR 79C	W333/N305	UNIT 1	1.	0.09	0.12
MCR 83C	W632/S115	UNIT 1	3	0.06	0.09
MCR 84C	W600/N150	UNIT 1	1	0.20	0.25
MCR 85C	E586/N1410	UNIT 1	1451	0.26	0.32
				0.20	0.02
MCR 01D	W170/S1957	UNIT 2	37	1.20	1.20
MCR 06C	E1180/S1940	UNIT 2	223	1.70	1.80
MCR 08D	W176/S1900	UNIT 2	201	0.60	0.64
MCR 10D	W176/S1875	UNIT 2	202	0.51	0.56
MCR 12D	E790/S1600	UNIT 2	596	0.63	0.67
MCR 14D	E790/S1620	UNIT 2	207	0.34	0.38
MCR 17D	E790/S1920	UNIT 2	231	0.39	0.42
MCR 18D	E790/S1960	UNIT 2	427	0.22	0.23
MCR 19C	E922/S1960	UNIT 2	426	0.51	0.53
MCR 19D	E922/S1960	UNIT 2	426	0.39	0.41
MCR 20D	E656/S1960	UNIT 2	430	0.36	0.38
MCR 22C	E852/S1960	UNIT 2	427	1.20	1.25
MCR 23D	E1022/S1590	UNIT 2	567	1.17	1.23
MCR 24D	E972/S1590	UNIT 2	569	0.73	0.77
MCR 25D	E860/S1590	UNIT 2	589	0.91	0.94
MCR 28D	E800/S1770	UNIT 2	235	0.72	0.75
MCR 29D	E800/S1870	UNIT 2	247	1.47	1.52
MCR 30D	W225/S92	UNIT 2	0	1.11	1.17
MCR 31D	E650/S1620	UNIT 2	260	0.98	1.01
MCR 32D	E650/S1670	UNIT 2	261	1.21	1.23
MCR 33D	E650/S1720	UNIT 2	262	0.42	0.43
MCR 34D	E650/S1770	UNIT 2	265	0.30	0.30
MCR 35D	W225/S88	UNIT 2	0	0.51	0.54
MCR 36D	W268/S88	UNIT 2	0	0.72	0.76
MCR 37D	W268/S92	UNIT 2	0	0.78	0.81

SUMMARY OF CURRENT MOISTURE CONTENT ANALYSES (CONTINUED)

.•

		(CONTINUED)					
	۰.		SAMPLED	CUMULATIVE			
SAMPLE NO.	LOCATION	GEOLOGICAL UNIT	EXCAVATION	PERCENT WEIG 95°C	150°C		
SAMILL NO.		Unit					
MCR 38D	E650/S1820	UNIT 2	268	0.94	0.97		
MCR 39D	E650/S1870	UNIT 2	269	0.31	0.32		
MCR 40D	E650/S1920	UNIT 2	270	0.42	0.43		
MCR 41D	W295/S88	UNIT 2	0	1.65	1.71		
MCR 42D	W295/S92	UNIT 2	0	0.48	0.51		
MCR 43D	E165/N974 ⁻	UNIT 2	56	0.49	0.52		
MCR 44D	E165/N964	UNIT 2	56	0.49	0.52		
MCR 45D	E165/N954	UNIT 2	56	0.87	0.92		
MCR 52D	E160/N855	UNIT 2	1744	1.40	1.47		
MCR 53D	E160/N845	UNIT 2	1744	1.15	1.25		
MCR 54D	E143/N949	UNIT 2	56	0.43	0.45		
MCR 57D	E145/N979	UNIT 2	56	1.33	1.37		
MCR 61D	E140/N996	UNIT 2	57	0.58	0.59		
MCR 62D	E140/N1030	UNIT 2	1744	0.59	0.62		
MCR 63D	E140/N1040	UNIT 2	1744	0.89	0.93		
MCR 65D	W610/S72	UNIT 2	34	0.68	0.70		
MCR 68D	W615/S2	UNIT 2	1	0.52	0.56		
MCR 69D	W615/N17	UNIT 2	1	0.27	0.30		
MCR 72D	W630/S115	UNIT 2	34	0.79	0.81		
MCR 73D	W620/S125	UNIT 2	34	0.97	1.01		
MCR 75D	W560/S80	UNIT 2	43	0.52	0.54		
MCR 76D	W550/S80	UNIT 2	43	0.67	0.69		
MCR 77D	W198/N310	UNIT 2	. 2	0.79	0.84		
MCR 78D	W208/N305	UNIT 2	1	0.45	0.52		
MCR 79D	W333/N305	UNIT 2	1	0.39	0.41		
MCR 83D	W632/S115	UNIT 2	3	1.09	1.14		
MCR 84D	W600/N150	UNIT 2	1	0.75	0.82		
MCR 85D	E586/N1410	UNIT 2	1451	0.45	0.52		
MCR 01E	W170/S1957	UNIT 3	37	0.01	0.04		
MCR 02E	W176/S1900	UNIT 3	96	0.04	0.04		
MCR 03E	E310/S2065	UNIT 3	287	0.06	0.10		
MCR 03D	E310/S2065	UNIT 3	287	0.20	0.24		

SUMMARY OF CURRENT MOISTURE CONTENT ANALYSES (CONTINUED)

(001111025)					
	•		SAMPLED	CUMUL	
SAMPLE NO.	LOCATION	GEOLOGICAL UNIT	DAYS AFTER P EXCAVATION	ERCENT WEIG 95°C	HT_LOSS_AT 150°C
					100 0
MCR 04D	E310/S2140	UNIT 3	287	0.34	0.38
MCR 05D	E630/S1920	UNIT 3	395	0.24	0.29
MCR 05E	E630/S1920	UNIT 3	395	0.14	0.17
MCR 06E	E1180/S1940	UNIT 3	223	0.12	0.14
MCR 06D	S1180/S1940	UNIT 3	223	0.13	0.14
MCR 07D	E250/S1620	UNIT 3	972	0.16	0.17
MCR 08E	W176/S1900	UNIT 3	201	0.15	0.18
MCR 09D	W176/S1880	UNIT 3	201	0.23	0.27
MCR 10E	W176/S1875	UNIT 3	202	0.20	0.22
MCR 11D	E922/S1600	UNIT 3	561	0.33	0.36
MCR 12E	E790/S1600	UNIT 3	596	0.24	0.26
MCR 13D	E656/S1600	UNIT 3	615	0.51	0.57
MCR 14E	E790/S1620	UNIT 3	207	0.30	0.32
MCR 15D	E790/S1720	UNIT 3	215	0.22	0.24
MCR 16D	E790/S1820	UNIT 3	225	0.54	0.57
MCR 16E	E790/S1820	UNIT 3	225	0.11	0.12
MCR 17E	E790/S1920	UNIT 3	231	0.22	0.25
MCR 18E	E790/S1960	UNIT 3	427	0.21	0.24
MCR 21D	E712/S1960	UNIT 3	429	0.16	0.17
MCR 21E	E712/S1960	UNIT 3	429	0.26	0.27
MCR 24E	E972/S1590	UNIT 3	569	0.12	0.12
MCR 26E	E729/S1590	UNIT 3	622	0.19	0.19
MCR 27D	E800/S1670	UNIT 3	232	0.39	0.39
MCR 27E	E800/S1670	UNIT 3	232	0.30	0.31
MCR 29E	E800/S1870	UNIT 3	247	0.27	0.29
MCR 34E	E650/S1770	UNIT 3	265	0.23	0.24
MCR 39E	E650/S1870	UNIT 3	268	0.15	0.16
MCR 43E	E165/N974	UNIT 3	56	0.22	0.25
MCR 46D	E165/N944	UNIT 3	56	0.30	0.33
MCR 47E	E163/N942	UNIT 3	56	0.11	0.12
MCR 51D	E160/N865	UNIT 3	1744	0.20	0.23
MCR 51E	E160/N865	UNIT 3	1744	0.30	0.34
MCR 52E	E160/N855	UNIT 3	1744	0.26	0.29

SUMMARY OF CURRENT MOISTURE CONTENT ANALYSES (CONTINUED)

.

SUMMARY OF CURRENT MOISTURE CONTENT ANALYSES (CONTINUED)

	· · ·					
				CUMULATIVE PERCENT WEIGHT LOSS AT		
SAMPLE NO.	LOCATION	UNIT	EXCAVATION	95°C	150°C	
MCR 53E	E160/N845	UNIT 3	1744	0.20	0.23	
MCR 55D	E145/N959	UNIT 3	56	0.77	0.78	
MCR 57E	E145/N979	UNIT 3	56	0.46	0.46	
MCR 58E	E144/N984	UNIT 3	56	0.28	0.29	
MCR 59E	E143/N988	UNIT 3	56	0.31	0.32	
MCR 60E	E142/N992	UNIT 3	56	0.21	0.21	
MCR 61E	E140/N996	UNIT 3	57	0.35	0.35	
MCR 62E	E140/N1030	UNIT 3	1744	0.63	0.67	
MCR 63E	E140/N1040	UNIT 3	1744	0.13	0.14	
MCR 64E	E140/N1050	UNIT 3	1744	0.21	0.23	
MCR 65E	W610/S72	UNIT 3	34	0.24	0.26	
MCR 68E	W615/S2	UNIT 3	1	0.13	0.16	
MCR 69E	W615/N17	UNIT 3	1	0.13	0.15	
MCR 72E	W630/S115	UNIT 3	34	0.84	0.85	
MCR 74D	W570/S80	UNIT 3	43	0.17	0.18	
MCR 74E	W570/S80	UNIT 3	43	0.24	0.26	
MCR 75E	W560/S80	UNIT 3	43	0.21	0.23	
MCR 76E	W550/S80	UNIT 3	43	0.30	0.32	
MCR 78E	W208/N305	UNIT 3	1	0.11	0.14	
MCR 79E	W333/N305	UNIT 3	1	0.09	0.11	
MCR 83E	W632/S115	UNIT 3	3	0.23	0.26	
MCR 84E	W600/N150	UNIT 3	1	0.13	0.17	
MCR 85E	E586/N1410	UNIT 3	1451	0.12	0.17	
MCR 86F	E626/N1410	UNIT 3	1449	0.23	0.30	
MCR 86E	E626/N1410	UNIT 3	1449	0.15	0.21	
MCR 01F	W170/S1957	UNIT 4	37	0.25	0.29	
MCR 02F	W176/S1900	UNIT 4	96	0.56	0.66	
MCR 03F	E310/S2065	UNIT 4	287	1.60	1.70	
MCR 04E	E310/S2140	UNIT 4	287	0.04	0.06	
MCR 04F	E310/S2140	UNIT 4	287	0.42	0.49	
MCR 05F	E630/S1920	UNIT 4	395	2.00	2.10	
MCR 06F	E1180/S1940	UNIT 4	223	0.54	0.55	

(CONTINCED)							
	۰.		SAMPLED	CUMUL	ATIVE		
SAMPLE NO.	LOCATION	GEOLOGICAL UNIT	EXCAVATION	PERCENT WEIG 95°C	HT LOSS AT 150°C		
					100 0		
MCR 07E	E250/S1620	UNIT 4	972	0.39	0.42		
MCR 07F	E250/S1620	UNIT 4	972	1.70	1.70		
MCR 08F	W176/S1900	UNIT 4	201	0.36	0.39		
MCR 09E	W176/S1880	UNIT 4	201	0.34	0.40		
MCR 09F	W176/S1880	UNIT 4	201	0.35	0.41		
MCR 10F	W176/S1875	UNIT 4	202	1.21	1.30		
MCR 11E	E922/S1600	UNIT 4	561	0.36	0.39		
MCR 11F	E922/S1600	UNIT 4	561	2.30	2.48		
MCR 12F	E790/S1600	UNIT 4	596	0.72	0.78		
MCR 13E	E656/S1600	UNIT 4	615	0.91	0.98		
MCR 14F	E790/S1620	UNIT 4	207	3.75	4.01		
MCR 15E	E790/S1720	UNIT 4	215	0.78	0.84		
MCR 15F	E790/S1720	UNIT 4	215	0.85	0.90		
MCR 16F	E790/S1820	UNIT 4	225	3.12	3.35		
MCR 17F	E790/S1920	UNIT 4	231	0.42	0.47		
MCR 18F	E790/S1960	UNIT 4	427	0.59	0.65		
MCR 19E	E922/S1960	UNIT 4	426	0.47	0.49		
MCR 20E	E656/S1960	UNIT 4	430	0.24	0.25		
MCR 20F	E656/S1960	UNIT 4	430	0.96	1.01		
MCR 21F	E712/S1960	UNIT 4	429	0.61	0.64		
MCR 22D	E852/S1960	UNIT 4	427	0.64	0.68		
MCR 22E	E852/S1960	UNIT 4	427	0.38	0.40		
MCR 22F	E852/S1960	UNIT 4	427	2.33	2.47		
MCR 23E	E1022/S1590	UNIT 4	567	0.45	0.47		
MCR 23F	E1022/S1590	UNIT 4	567	1.41	1.47		
MCR 24F	E972/S1590	UNIT 4	569	3.47	3.60		
MCR 25E	E860/S1590	UNIT 4	589	0.45	0.48		
MCR 25F	E860/S1590	UNIT 4	589	2.49	2.65		
MCR 26F	E729/S1590	UNIT 4	622	1.67	1.73		
MCR 27F	E800/S1670	UNIT 4	232	1.18	1.22		
MCR 28E	E800/S1770	UNIT 4	235	0.32	0.33		
MCR 28F	E800/S1770	UNIT 4	235	1.60	1.65		
MCR 29F	E800/S1870	UNIT 4	247	0.62	0.66		

SUMMARY OF CURRENT MOISTURE CONTENT ANALYSES (CONTINUED)

.^

			SAMPLED	SAMPLED CUMULATIVE DAYS AFTER PERCENT WEIGHT LOSS		
SAMPLE NO.	LOCATION	GEOLOGICAL	EXCAVATION	95°C	150°C	
MCR 30E	W225/S92	UNIT 4	0	0.20	0.24	
MCR 30F	W225/S92	UNIT 4	0	0.21	0.23	
MCR 31E	E650/S1620	UNIT 4	260	0.60	0.63	
MCR 31F	E650/S1620	UNIT 4	260	0.76	0.78	
MCR 32E	E650/S1670	UNIT 4	261	0.30	0.30	
MCR 32F	E650/S1670	UNIT 4	261	1.61	1.66	
MCR 33E	E650/S1720	UNIT 4	262	0.43	0.44	
MCR 33F	E650/S1720	UNIT 4	262	3.40	3.51	
MCR 34F	E650/S1770	UNIT 4	265	1.07	1.11	
MCR 35E	W225/S88	UNIT 4	0	0.23	0.27	
MCR 35F	W225/S88	UNIT 4	0	0.26	0.27	
MCR 36E	W268/S88	UNIT 4	0	0.35	0.37	
MCR 36F	W268/S88	UNIT 4	0	0.41	0.43	
MCR 37E	W268/S92	UNIT 4	0	0.34	0.39	
MCR 37F	W268/S92	UNIT 4	0	0.43	0.47	
MCR 38E	E650/S1820	UNIT 4	268	0.60	0.62	
MCR 38F	E650/S1820	UNIT 4	268	1.40	1.44	
MCR 39F	E650/S1870	UNIT 4	268	3.51	3.66	
MCR 40E	E650/S1920	UNIT 4	270	0.29	0.31	
MCR 40F	E650/S1920	UNIT 4	270	2.06	2.13	
MCR 41E	W295/S88	UNIT 4	0	0.24	0.29	
MCR 41F	W295/S88	UNIT 4	0	0.63	0.67	
MCR 42E	W295/S92	UNIT 4	0	0.22	0.25	
MCR 42F	W295/S92	UNIT 4	0	0.58	0.62	
MCR 43F	E165/N974	UNIT 4	56	1.22	1.27	
MCR 44E	E165/N964	UNIT 4	56	0.26	0.29	
MCR 44F	E165/N964	UNIT 4	56	0.53	0.56	
MCR 45E	E165/M954	UNIT 4	56	0.36	0.39	
MCR 46E	E165/N944	UNIT 4	56	0.27	0.31	
MCR 46F	E165/N944	UNIT 4	56	1.05	1.12	
MCR 48E	E162/N940	UNIT 4	56	0.35	0.38	
MCR 49E	E161/N938	UNIT 4	56	0.23	0.26	
MCR 50E	E160/N936	UNIT 4	56	0.35	0.39	

	*	GEOLOGICAL	SAMPLED	CUMULATIVE ERCENT WEIGHT LOSS AT	
SAMPLE NO.	LOCATION		EXCAVATION	95°C	150°C
MCR 50F	E160/N936	UNIT 4	56	0.40	0.44
MCR 52F	E160/N855	UNIT 4	1744	0.57	0.62
MCR 53F	E160/N845	UNIT 4	1744	1.16	1.22
MCR 54E	E143/N949	UNIT 4	56	0.66	0.71
MCR 55E	E145/N959	UNIT 4	56	0.37	0.38
MCR 55F	E145/N959	UNIT 4	56	0.46	0.46
MCR 56E	E145/N969	UNIT 4	56	0.48	0.49
MCR 56F	E145/N969	UNIT 4	56	1.12	1.14
MCR 57F	E145/N979	UNIT 4	56	2.23	2.27
MCR 61F	E140/N996	UNIT 4	57	2.79	2.82
MCR 62F	E140/N1030	UNIT 4	1744	1.37	1.42
MCR 63F	E140/N1040	UNIT 4	1744	0.31	0.34
MCR 64F	E140/N1050	UNIT 4	1744	0.58	0.62
MCR 65F	W610/S72	UNIT 4	34	0.69	0.72
MCR 66F	W615/S25	UNIT 4	24	1.23	1.29
MCR 68F	W615/S2	UNIT 4	1	0.39	0.42
MCR 69F	W615/N1	UNIT 4	1	0.44	0.47
MCR 72F	W630/S115	UNIT 4	34	0.43	0.44
MCR 73E	W620/S125	UNIT 4	34	0.12	0.13
MCR 73F	W620/S125	UNIT 4	34	0.32	0.34
MCR 74F	W570/S80	UNIT 4	43	0.88	0.92
MCR 75F	W560/S80	UNIT 4	43	0.59	0.60
MCR 76F	W550/S80	UNIT 4	43	0.70	0.76
MCR 77E	W198/N310	UNIT 4	2	0.41	0.46
MCR 77F	W198/N310	UNIT 4	2	0.37	0.41
MCR 78F	W208/N305	UNIT 4	1	0.25	0.26
MCR 79F	W333/N305	UNIT 4	1	0.46	0.50
MCR 83F	W635/SS115	UNIT 4	3	1.28	1.34
MCR 84F	W600/N150	UNIT 4	1	1.25	1.35
MCR 85F	E586/N1410	UNIT 4	1451	0.75	0.87
MCR 86X	E626/N1410	UNIT 4	1449	0.78	0.86
MCR 19F	E922/S1960	UNIT 5	426	2.76	2.92

SUMMARY OF CURRENT MOISTURE CONTENT ANALYSES (CONTINUED)

		(CONTINUED)					
	۰.	SAME	SAMPLED				
SAMPLE NO.	LOCATION	GEOLOGICAL	DAYS AFTER PE	95°C	150°C		
SAMFLE NO.	LOOAHON		Extortinitie				
MCR 45F	E165/N954	UNIT 5	56	0.86	0.91		
	2100/1004	chin c					
MCR 66G	W615/S25	UNIT 6	24	0.12	0.13		
MCR 67G	W615/S2	UNIT 6	24	0.09	0.10		
MCR 67H	W615/S2	UNIT 6	24	0.09	0.10		
MCR 671	W615/S2	UNIT 6	24	0.10	0.11		
MCR 68G	W615/N9	UNIT 6	24	0.20	0.22		
MCR 68H	W615/N9	UNIT 6	24	0.02	0.02		
MCR 68I	W615/N9	UNIT 6	24	0.05	0.06		
MCR 68J	W615/N9	UNIT 6	24	0.27	0.28		
MCR 69G	W615/N17	UNIT 6	1	0.32	0.36		
MCR 69H	W615/N17	UNIT 6	24	0.07	0.08		
MCR 691	W615/N17	UNIT 6	24	0.13	0.13		
MCR 701	W620/N38	UNIT 6	23	0.05	0.08		
MCR 86G	E626/N1410	UNIT 6	1449	0.24	0.30		
MCR 86H	E626/N1410	UNIT 6	1449	0.07	0.11		
MCR 86I	E626/N1410	UNIT 6	1449	0.07	0.11		
MCR 87G	E669/N1410	UNIT 6	1445	0.45	0.53		
MCR 87H	E699/N1410	UNIT 6	1445	0.08	0.12		
MCR 871	E699/N1410	UNIT 6	1445	0.11	0.15		
MCR 87J	E699/N1410	UNIT 6	1445	0.59	0.65		
MCR 88H	E732/N1410	UNIT 6	1444	0.16	0.21		
MCR 881	E732/N1410	UNIT 6	1444	0.19	0.23		
MCR 88J	E732/N1410	UNIT 6	1444	0.14	0.18		
MCR 67J	W615/S2	UNIT 7	24	0.14	0.15		
MCR 67K	W615/S2	UNIT 7	24	0.66	0.69		
MCR 68K	W615/N9	UNIT 7	24	0.42	0.43		
MCR 68L	W615/N9	UNIT 7	24	0.38	0.39		
MCR 69J	W615/N17	UNIT 7	24	0.30	0.30		
MCR 69K	W615/N17	UNIT 7	24	0.33	0.34		
MCR 69L	W615/N17	UNIT 7	24	0.27	0.29		
MCR 70J	W620/N38	UNIT 7	23	1.64	1.65		
	11020/1100	0		/	-		

.*

		(CONTINC	JED)		
			SAMPLED	CUMUL	ATIVE
SAMPLE NO.	LOCATION	GEOLOGICAL UNIT	DAYS AFTER PI EXCAVATION	<u>95°C</u>	<u>HT LOSS AT</u> 150°C
	•				
MCR 70K	W620/N38	UNIT 7	23	0.13	0.15
MCR 70L	W620/N38	UNIT 7	23	0.27	0.27
MCR 80L	E1490/N1530	UNIT 7	1395	0.46	0.51
MCR 81L	E1480/N1525	UNIT 7	1395	0.27	0.29
MCR 82L	E1480/N1515	UNIT 7	1395	0.31	0.34
MCR 86J	E626/N1410	UNIT 7	1449	0.25	0.31
MCR 86K	E626/N1410	UNIT 7	1170	0.27	0.33
MCR 87K	E699/N1410	UNIT 7	1445	0.39	0.45
MCR 88K	E732/N1410	UNIT 7	1444	0.33	0.38
MCR 88L	E732/N1410	UNIT 7	1443	0.40	0.47
MCR 89K	E777/N1410	UNIT 7	1442	0.21	0.27
MCR 89L	E777/N1410	UNIT 7	1442	0.92	0.97
MCR 800	E1490/N1530	UNIT 9	1395	0.09	0.12
MCR 80P	E1490/N1530	UNIT 9	1395	0.07	0.09
MCR 80Q	E1490/N1530	UNIT 9	1395	0.06	0.09
MCR 80R	E1490/N1530	UNIT 9	1395	0.11	0.14
MCR 81Q	E1480/N1525	UNIT 9	1395	0.08	0.11
MCR 81R	E1480/N1525	UNIT 9	1395	0.06	0.08
MCR 810	E1480/N1525	UNIT 9	1395	0.08	0.11
MCR 81P	E1480/N1525	UNIT 9	1395	0.08	0.10
MCR 82Q	E1480/N1515	UNIT 9	1395	0.05	0.07
MCR 82R	E1480/N1515	UNIT 9	1395	0.06	0.08
MCR 820	E1480/N1515	UNIT 9	1395	0.05	0.06
MCR 82P	E1480/N1515	UNIT 9	1395	0.05	0.07
MCR 880	E732/N1410	UNIT 9	1443	0.06	0.10
MCR 88P	E732/N1410	UNIT 9	1443	0.07	0.09
MCR 88Q	E732/N1410	UNIT 9	1443	0.06	0.09
MCR 88R	E732/N1410	UNIT 9	1170	0.10	0.14
MCR 890	E777/N1410	UNIT 9	1442	0.08	0.11
MCR 89P	E777/N1410	UNIT 9	1442	0.08	0.11
MCR 89Q	E777/N1410	UNIT 9	1442	0.08	0.10
MCR 89R	E777/N1410	UNIT 9	1442	0.09	0.12

SUMMARY OF CURRENT MOISTURE CONTENT ANALYSES (CONTINUED)

•

.

	,	(/		
		0501001041	SAMPLED	CUMUL	
SAMPLE NO.	LOCATION	GEOLOGICAL	DAYS AFTER P EXCAVATION	95°C	150°C
<u></u>			2000		1.1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990
MCR 900	E827/N1410	UNIT 9	1440	0.07	0.09
MCR 90P	E827/N1410	UNIT 9	1440	0.08	0.10
MCR 90Q	E827/N1410	UNIT 9	1440	0.07	0.86
MCR 90R	E827/N1410	UNIT 9	1440	0.10	0.14
MCR 910	E875/N1410	UNIT 9	1438	0.09	0.11
MCR 91P	E875/N1410	UNIT 9	1438	0.10	0.19
MCR 91Q	E875/N1410	UNIT 9	1438	0.09	0.11
MCR 91R	E875/N1410	UNIT 9	1438	0.08	0.11
MCR 80S	E1490/N1530	UNIT 11	1395	0.98	1.07
MCR 81S	E1480/N1525	UNIT 11	1395	0.23	0.26
MCR 82S	E1480/N1515	UNIT 11	1395	0.16	0.18
MCR 89S	E777/N1410	UNIT 11	1442	0.76	0.83
MCR 90S	E827/N1410	UNIT 11	1440	0.42	0.48
MCR 91S	E875/N1410	UNIT 11	1438	0.94	1.03
MCR 80T	E1490/N1530	UNIT 12	1395	0.14	0.18
MCR 80U	E1490/N1530	UNIT 12	1395	0.10	0.14
MCR 81T	E1480/N1525	UNIT 12	1395	0.14	0.16
MCR 81U	E1480/N1525	UNIT 12	1395	0.07	0.08
MCR 82T	E1480/N1515	UNIT 12	1395	0.17	0.20
MCR 82U	E1480/N1515	UNIT 12	1395	0.16	0.18
MCR 89T	E777/N1410	UNIT 12	1442	0.11	0.14
MCR 90T	E827/N1410	UNIT 12	1440	0.05	0.06
MCR 90U	E827/N1410	UNIT 12	1440	0.16	0.19
MCR 91T	E875/N1410	UNIT 12	1438	0.17	0.21
MCR 91U	E875/N1410	UNIT 12	1438	0.11	0.14
MCR 80V	E1490/N1530	UNIT 13	1395	0.10	0.13
MCR 81V	E1480/N1525	UNIT 13	1395	0.05	0.07
MCR 82V	E1480/N1515	UNIT 13	1395	0.21	0.24
MCR 80W	E1490/N1530	UNIT 14	1395	0.31	0.34

SUMMARY OF CURRENT MOISTURE CONTENT ANALYSES (CONTINUED)

.

		(CONTINC	JED)		
			SAMPLED	CUMULATIVE	
SAMPLE NO.	LOCATION		EXCAVATION	PERCENT WEIG 95°C	HT LOSS AT 150°C
					100 0
MCR 80W	E1490/N1530	UNIT 14	1395	0.31	0.34
MCR 81W	E1480/N1525	UNIT 14	1395	0.15	0.18
MCR 82W	E1480/N1515	UNIT 14	1395	0.23	0.27
MCR 68N	W615/N9	ANHYD "b"	24	0.07	0.09
MCR 69N	W615/N17	ANHYD "b"	24	0.15	0.18
MCR 88N	E732/N1410	ANHYD "b"	1443	1.44	1.54
MCR 70N	W620/N38	ANHYD "b"	23	0.53	0.58
MCR 71N	W630/N17	ANHYD "b"	24	0.14	0.16
MCR 68M	W615/N9	CLAY G	24	1.56	1.81
MCR 69M	W615/N17	CLAY G	24	2.44	2.64
MCR 70M	W620/N38	CLAY G	23	1.56	1.70
MCR 71M	W630/N17	CLAY G	24	1.42	1.52
MCR 80M	E1490/N1530	CLAY G	1395	1.34	1.43
MCR 81M	E1480/N1525	CLAY G	1395	2.06	2.20
MCR 82M	E1480/N1515	CLAY G	1395	1.82	1.92
MCR 89M	E777/N1410	CLAY G	1442	1.74	1.81
					-
MCR 13F	E656/S1600	CLAY F	615	3.94	4.29
MCR 51F	E160/N865	CLAY F	1744	1.89	2.05
MCR 54F	E143/N949	CLAY F	56	0.87	0.92
MCR 02D	W176/S1900	SOL PIT	96	0.24	0.28
MCR 09C	W176/S1880	SOL PIT	201	0.11	0.13
MCR 26D	E729/S1590	SOL PIT	622	0.40	0.42
MCR 38B	E650/S1820	SOL PIT	268	0.59	0.61
MCR 50C	E160/N936	SOL PIT	56	0.52	0.55
MCR 50D	E160/N936	SOL PIT	56	0.71	0.76
MCR 52C	E160/N855	SOL PIT	1744	0.29	0.33
MCR 56D	E145/N969	SOL PIT	56	0.65	0.65
MCR 64C	E140/N1050	SOL PIT	1744	0.12	0.14
MCR 64D	E140/N1050	SOL PIT	1744	0.29	0.31

SUMMARY OF CURRENT MOISTURE CONTENT ANALYSES (CONTINUED)

...

APPENDIX H

۰.

-

STRATIGRAPHY, INDUCTION LOGS, CONDUCTIVITIES AND MOISTURE CONTENT OF SELECTED BOREHOLES AT WIPP

DESCRIPTION OF GENERALIZED STRATIGRAPHY

APPROXIMATE DISTANCE FROM CLAY G m (ft)	STRATIGRAPHIC UNIT	DESCRIPTION
20.12 to 21.21 (66.0 to 69.6)	Polyhalitic Halite (PH-7)	Clear to moderate reddish orange/brown, fine to coarsely crystalline, <1-3% polyhalite.
19.29 to 20.12 (63.3 to 66.0)	Halite (H-9)	Clear to light moderate reddish orange, medium to coarsely crystalline, $\leq 1\%$ polyhalite. May contain $\leq 1\%$ brown and gray clay.
17.47 to 19.29 (57.3 to 63.3)	Polyhalitic Halite (PH-6)	Clear to moderate reddish orange/brown, medium to coarsely crystalline, <1-3% polyhalite. May contain traces of gray clay and/or scattered anhydrite.
16.82 to 17.47 (55.2 to 57.3)	Argillaceous Halite (AH-4)	Clear to moderate brown, medium to coarsely crystalline. <1-3% brown clay. Intercrystalline and discontinuous breaks. In one core hole, consists of a one-inch thick clay seam. Unit can vary up to four feet in thickness. Contact with lower unit is gradational.
14.17 to 16.82 (46.5 to 55.2)	Halite (H-8)	Clear to moderate reddish orange and moderate brown, coarsely crystalline, some medium. F1% brown clay, locally argillaceous (clays M-1 and M-2). Scattered anhydrite stringers locally.
13.05 to 14.17 (42.8 to 46.5)	Polyhalitic Halite (PH-5)	Clear to moderate reddish orange, some moderate brown, coarsely crystalline. <1-3% polyhalite. 0-1% brown and some gray clay. Scattered anhydrite locally. Contact with unit below is fairly sharp.
11.58 to 13.05 (38.0 to 42.8)	Argillaceous Halite (AH-3)	Clear to moderate brown, medium to coarsely crystalline, some fine. <1-5% brown clay. Locally contains 10% clay. Intercrystalline and scattered breaks. Locally contains partings and seams. Contact with lower unit is gradational based on increased clay content. Average range of unit is 38.0 to 42.8 feet above Clay G, but does vary from 33.8 to 46 feet.

TABLE H-1

DESCRIPTION OF GENERALIZED STRATIGRAPHY (CONTINUED)

APPROXIMATE DISTANCE FROM CLAY G m (ft)	STRATIGRAPHIC UNIT	DESCRIPTION
10.36 to 11.58 (34.0 to 38.0)	Halite (H-7)	Clear to moderate brown, some moderate reddish brown, coarsely crystalline, some fine and medium. \leq 1% brown clay; trace gray clay locally. Scattered breaks. Locally argillaceous. \leq 1% polyhalite. Contact with unit below is gradational based on clay and polyhalite content.
9.17 to 10.36 (30.1 to 34.0)	Halite (H-6)	Clear to moderate reddish orange, coarsely crystalline. <1-3% polyhalite. Commonly polyhalitic. Scattered anhydrite stringers with anhydrite layers up to one-half inch thick locally. Scattered brown clay locally. Contact with MB-138 below is sharp.
8.96 to 9.17 (29.4 to 30.1)	Anhydrite (MB-138)	Light to medium gray, microcrystalline. Partly laminated. Scattered halite growths. Clay seam K found at base of unit.
7.62 to 8.96 (25.0 to 29.4)	Argillaceous Halite (AH-2)	Clear to moderate brown, some light moderate reddish orange. Medium to coarsely crystalline. <1-3% brown clay, some gray. Locally up to 5% clay. Clay is intercrystalline with scattered breaks and partings present. <1/2% dispersed polyhalite. Contact with lower unit is gradational based on clay content. Upper contact with clay K is sharp.
7.01 to 7.62 (23.0 to 25.0)	Halite (H-5)	Clear, some light moderate brown, coarsely crystalline. <1/2% brown clay. Contact with clay J below varies from sharp to gradational depending if clay J is a distinct seam or merely an argillaceous zone.
6.40 to 7.01 (21.0 to 23.0)	Argillaceous Halite (AH-1) (clay J)	Usually consists of scattered breaks or argillaceous zone containing <1-3% brown clay. In C&SH shaft, it is a one-half inch thick brown clay seam.
5.09 to 6.40 (16.7 to 21.0)	Halite (map unit 15)	Clear, coarsely crystalline, scattered medium. Up to 1% dispersed polyhalite and brown clay. Scattered anhydrite. Lower contact is sharp with clay I.

\$

TAB H-1 DESCRIPTION OF GENERALIZED STRATIGRAPHY (CONTINUED)

APPROXIMATE DISTANCE FROM CLAY G		
m (ft)	STRATIGRAPHIC UNIT	DESCRIPTION
4.82 to 5.09 (15.8 to 16.7)	Halite (map unit 14)	Clear to grayish orange/pink, coarsely crystalline, some medium. <1/2% dispersed polyhalite. Scattered discontinuous gray clay stringers. Clay I is along upper contact. Contact with lower unit is diffuse.
3.51 to 4.82 (11.5 to 15.8)	Halite (map unit 13)	Clear to moderate reddish orange and moderate brown, medium to coarsely crystalline, some fine. \leq 1% brown clay, locally up to 3%. Trace of gray clay. Scattered discontinuous breaks. <1% dispersed polyhalite and polyhalite blebs. Contact with unit below is gradational based
		on clay and polyhalite content.
2.29 to 3.51 (7.5 to 11.5)	Polyhalitic Halite (map unit 12)	Clear to moderate reddish orange, coarsely crystalline. \leq -3% disperse polyhalite and polyhalite blebs. Scattered anhydrite stringers. Contact i sharp with unit below.
2.07 to 2.29 (6.8 to 7.5)	Anhydrite ("a"-map unit 11)	Light to medium gray, light brownish gray and sometimes light moderat reddish orange. Microcrystalline. Halite growths within. Partly laminated Clear, coarsely crystalline halite layer up to two inches wide, found withi exposures in waste experimental area. Thin gray clay seam H at base of unit.
1.68 to 2.07 (5.5 to 6.8)	Halite (map unit 10)	Clear to moderate reddish orange/brown, fine to coarsely crystalline. \leq 1% brown and/or gray clay and dispersed polyhalite. Discontinuous cla stringers locally. Contact with lower unit is diffuse based on crystal size an varying amounts of clay and polyhalite.
0.06 to 1.68 (0.2 to 5.5)	Halite (map unit 9)	Clear to light moderately reddish orange, coarsely crystalline, some medium 0-<1% polyhalite. Trace of gray clay locally. Scattered anhydrite stringers Contact with unit below is sharp.

٠,

H-3 ALIZED JIRATIGRAPHY DNUTEDI

TABLE H-1 DESCRIPTION OF GENERALIZED STRATIGRAPHY (CONTINUED)

APPROXIMATE DISTANCE FROM CLAY G m (ft)	STRATIGRAPHIC UNIT	DESCRIPTION
0.00 to 0.06 (0.0 to 0.2)	Anhydrite ("b"-map unit 8)	Light to medium gray, microcrystalline anhydrite. Scattered halite growths. Thin gray clay seam G at base of unit.
0.00 to -0.67 (0.0 to -2.2)	Halite (map unit 7)	Clean to light/medium gray, some moderate reddish orange/brown. Coarsely crystalline, some fine and medium. $\leq 1\%$ brown and gray clay. Locally up to 2% clay. <1% dispersed polyhalite. Upper contact is sharp with clay G. Contact with lower unit is gradational.
-0.67 to -2.13 (-2.2 to -7.0)	Halite (map unit 6)	Clear, some moderate reddish orange, coarsely crystalline, some fine to medium locally. <1/2% gray clay and polyhalite. Contact with lower unit gradational and/or diffuse.
-2.13 to -2.74 (-7.0 to -9.0)	Halite (map unit 5)	Clear coarsely crystalline. <1/2% gray clay. Contact with lower unit usually sharp with clay F.
-2.74 to -3.47 (-9.0 to -11.4)	Argillaceous Halite (map unit 4)	Clear to moderate brown and moderate reddish brown, coarsely crystalline. <1% polyhalite. <1-5% argillaceous material; predominantly brown, some gray, locally. Intercrystalline and discontinuous breaks and partings common in upper part of unit. Decreasing argillaceous content downward. Contact with lower unit is gradational.
-3.47 to -4.18 (-11.4 to -13.7)	Halite (map unit 3)	Clear to moderate reddish orange, coarsely crystalline. $\leq 1\%$ dispersed polyhalite and polyhalite blebs. Locally polyhalitic. Scattered gray clay locally. Contact with lower unit is sharp.
-4.18 to -4.27 (-13.7 to -14.0)	Argillaceous Halite (map unit 2)	Moderate reddish brown to medium gray, medium to coarsely crystalline. <1-3% argillaceous material. Contact with lower unit is usually sharp.
-4.27 to -4.42 (-14.0 to -14.5)	Halite (map unit 1)	Light to reddish orange to moderate reddish orange, medium to coarsely crystalline. \leq 1% dispersed polyhalite. Contact with lower unit is sharp.
WP:WIP:R-1625-AppH	1. N.	H-4

0

TAB H-1 DESCRIPTION OF GENERALIZED STRATIGRAPHY (CONTINUED)

APPROXIMATE DISTANCE FROM CLAY G m (ft)	STRATIGRAPHIC UNIT	DESCRIPTION
-4.42 to -6.71 (-14.5 to -22.0)	Halite (map unit 0)	Clear to moderate reddish orange/brown, moderate brown and grayish brown. Medium to coarsely crystalline. <1-5% argillaceous material. Predominantly brown, some gray, intercrystalline argillaceous material and discontinuous breaks and partings. Upper two feet of unit is argillaceous halite decreasing in argillaceous material content downward. 0-<1% polyhalite. Contact with lower unit is gradational based on polyhalite content.
-6.71 to -7.71 (-22.0 to -25.3)	Polyhalitic Halite (PH-4)	Clear to moderate reddish orange. Coarsely crystalline, some medium to locally. <1-3% polyhalite. Scattered anhydrite. Scattered gray clay locally. Contact with lower unit (MB-139) is sharp, but commonly irregular and undulating. Trace of gray locally present along this contact.
-7.71 to -8.60 (-25.3 to -28.2)	Anhydrite (MB-139)	Moderate reddish orange/brown to light and medium gray, microcrystalline anhydrite. "Swallow tail" pattern, consisting of halite growths within anhydrite, common in upper part of unit. Locally, hairline, clay-filled, low- angle fractures found in lower part of unit. Thin halite layer common close to lower contact. Clay seam E found at base of unit. Upper contact is irregular, undulating and sometimes contains <1/16-inch gray clay.
-8.60 to -9.51 (-28.2 to -31.2)	Halite (H-4)	Clear to moderate reddish orange, and light gray. Coarsely crystalline, some fine and medium. $\leq 1\%$ polyhalite and intercrystalline gray clay. Contact with lower unit is gradational based on increased polyhalite content.
-9.51 to -10.97 (-31.2 to -36.0)	Polyhalitic Halite (PH-3)	Clear to moderate reddish orange, coarsely crystalline. <1-3% polyhalite. Contact with lower unit is usually sharp along clay D.

W OF GENERALIZED STRATIGRAPHY (LONTINUED)

WP:WIP:R-1625-AppH

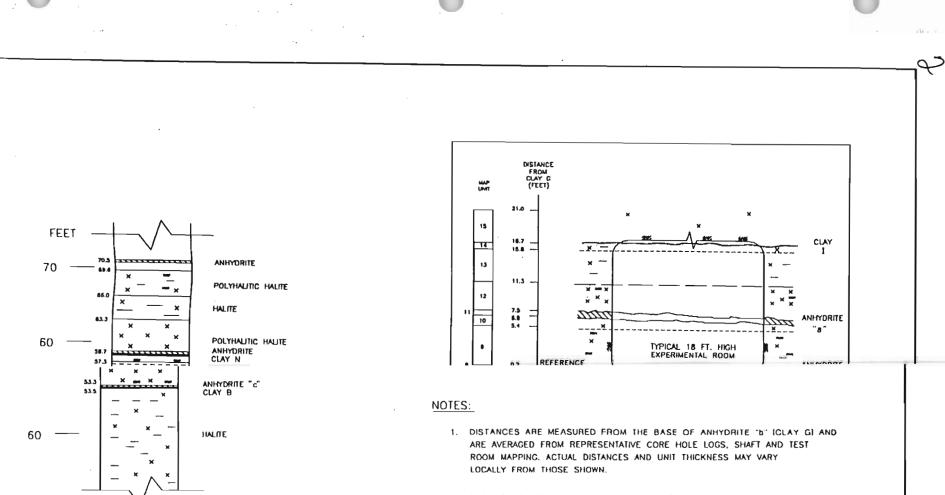

٠,

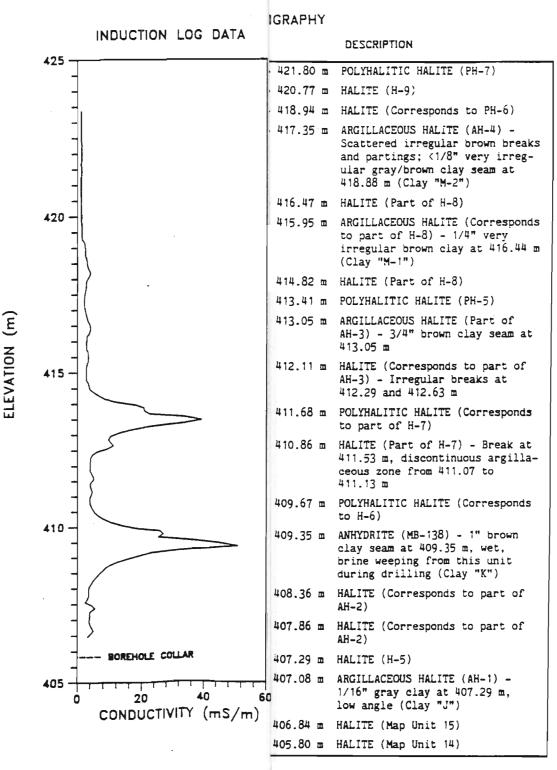
TABLE H-1 DESCRIPTION OF GENERALIZED STRATIGRAPHY (CONTINUED)

APPROXIMATE DISTANCE FROM CLAY G m (ft)	STRATIGRAPHIC UNIT	DESCRIPTION
-10.97 to -11.52 (-36.0 to -37.8)	Halite (H-3)	Clear to moderate reddish orange, some light gray. Medium to coarsely crystalline. $\leq 1\%$ polyhalite and gray clay. Contact with lower unit is gradational based on increased polyhalite content.
-11.52 to -13.01 (-37.8 to -42.7)	Polyhalitic Halite (PH-2)	Clear to moderate reddish orange/brown, coarsely crystalline. <1-3% polyhalite. Trace of clay locally. Scattered anhydrite locally. Contact with lower unit is gradational, based on decreased polyhalite content.
-13.01 to -14.42 (-42.7 to -47.3)	Halite (H-2)	Clear to moderate reddish orange, medium to coarsely crystalline. <1% dispersed polyhalite. <1% brown and/or gray clay. Contact with lower unit is gradational and/or diffuse.
-14.42 to -16.25 (-47.3 to -53.3)	Polyhalitic Halite (PH-1)	Clear to moderate reddish orange. Coarsely crystalline with some medium sometimes present close to lower contact. <1-3% polyhalite. Scattered anhydrite especially common close to anhydrite "c." Lower contact is sharp with anhydrite "c."
-16.25 to -16.31 (-53.3 to -53.5)	Anhydrite ("c")	Light to medium gray, microcrystalline anhydrite. Scattered halite growths. Faintly laminated locally. Clay seam B found at base of unit.
-16.31 to -20.03 (-53.5 to -65.7)	Halite (H-1)	Clear to medium gray and moderate brown. Medium to coarsely crystalline, some fine locally. $\leq 1\%$ polyhalite, locally polyhalitic. $<1-3\%$ clay, both brown and gray. Intercrystalline clay with discontinuous breaks and partings. Zones of argillaceous halite found within unit. Seams of clay mixed with halite crystals present locally. Upper contact of this unit is sharp with clay B.

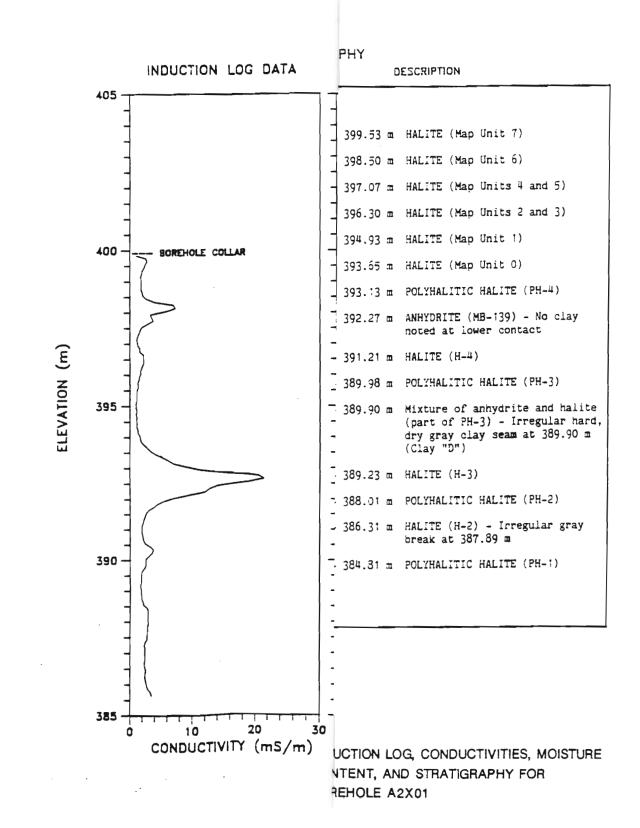
\$

H-6

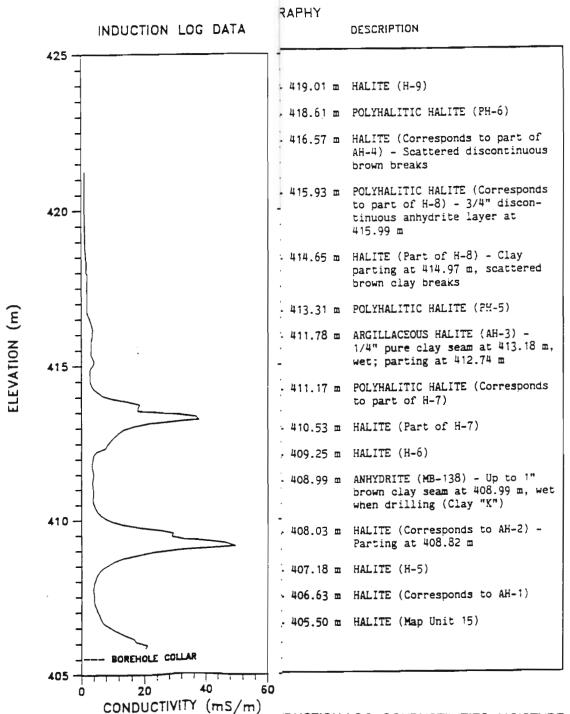
2. DESCIPTIONS OF UNITS ARE BASED ON CORE HOLE DATA, SHAFT MAPPING AND VISUAL INSPECTION OF EXPOSURES IN UNDERGROUND DRIFTS AND ROOMS.


301407 03 01

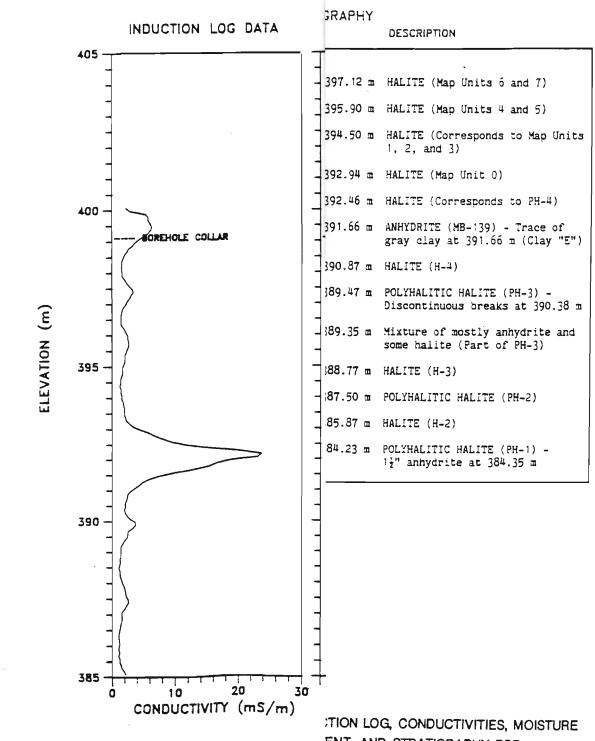
GENERALIZED STRATIGRAPHIC COLUMN


RAPHY INDUCTION LOG DATA DESCRIPTION 405 - 398.88 m HALITE (Map Unit 7) - 397.53 m HALITE (Map Unit 6) - Break at 398.71 . - 396.85 m HALITE (Map Unit 5) - 396.79 m ARGILLACEOUS HALITE (Map Unit 4) BOREHOLE COLLAR - Irregular break at 396.85 m 400 - 396.68 m HALITE (Map Unit 3) - 396.48 m HALITE - Clear/medium bluish gray, coarsely X-talline, 15 gray clay, < 17 polyhalite - 395.92 m ARGILLACEOUS HALITE (Map Unit 2) ELEVATION (m) - 394.09 m HALITE (Map Units 1 and 0) - 393.50 m POLYHALITIC HALITE (PH-4) 395 - 392.72 m ANHYDRITE (MB-139) - Trace of gray clay at 392.72 m (Clay "E") - 391.80 m HALITE (H-4) - 390.51 m POLYHALITIC HALITE (PH-3) -Break at 391.44 m - 390.42 m Mixture of mostly anhydrite and some polyhalitic halite (part of PH-3) - Discontinuous gray clay 390 seam at 390.42 m (Clay "D") - 389.79 m HALITE (H-3) - 388.30 m POLYHALITIC HALITE (PH-2) -Irregular gray clay break at 388.30 m - 386.90 m HALITE (H-2) - 385.34 m POLYHALITIC HALITE (PH-1) 385 10 20 0 30 CONDUCTIVITY (mS/m)

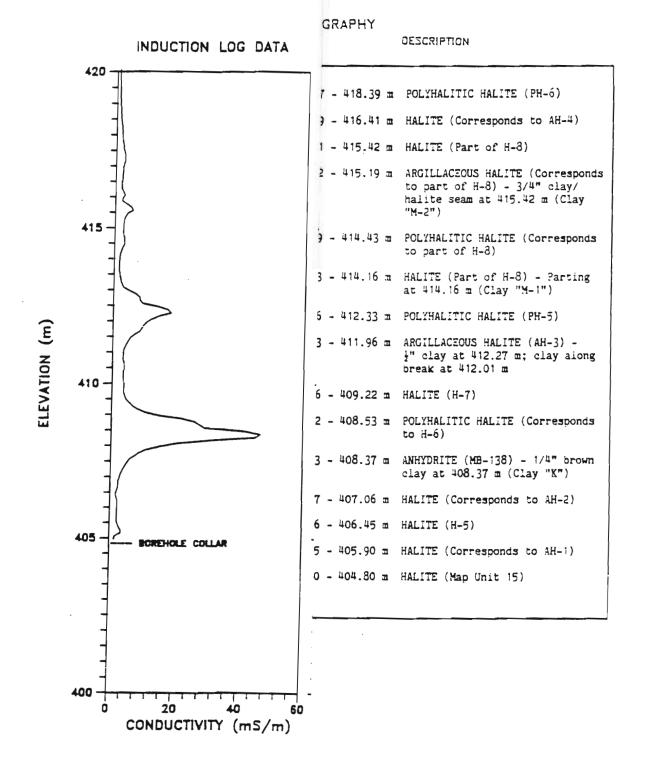
> NDUCTION LOG, CONDUCTIVITIES, MOISTURE CONTENT, AND STRATIGRAPHY FOR COREHOLE A1X01


 \mathcal{F}

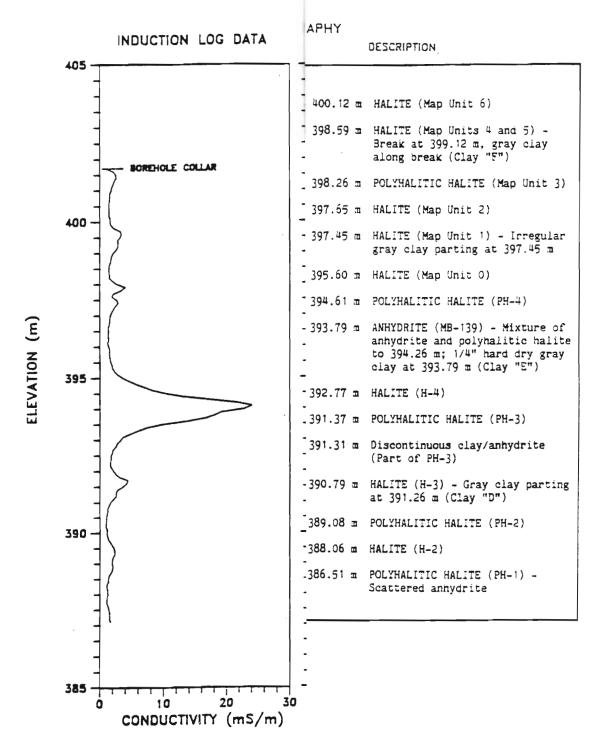
UCTION LOG, CONDUCTIVITIES, MOISTURE NTENT, AND STRATIGRAPHY FOR REHOLE A1X02 30132 1.01 B13



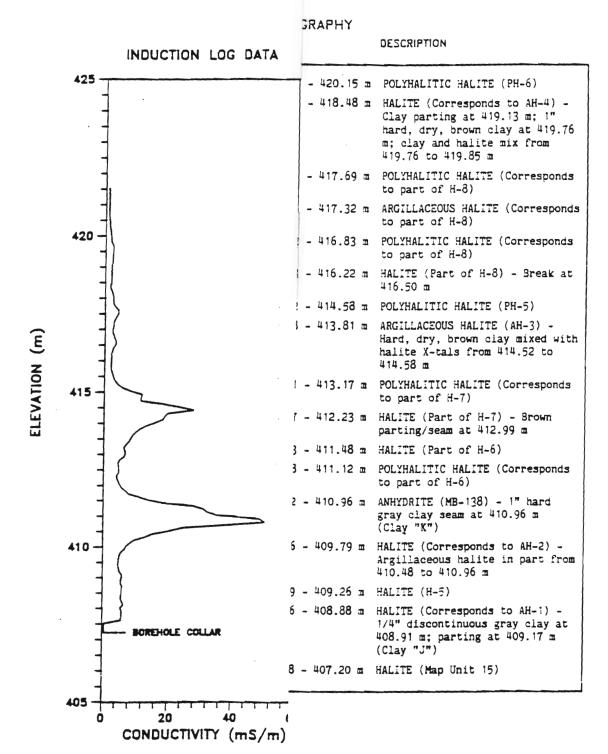
Ъ


IDUCTION LOG, CONDUCTIVITIES, MOISTURE ONTENT, AND STRATIGRAPHY FOR OREHOLE A2X02 301329.01.01 B11

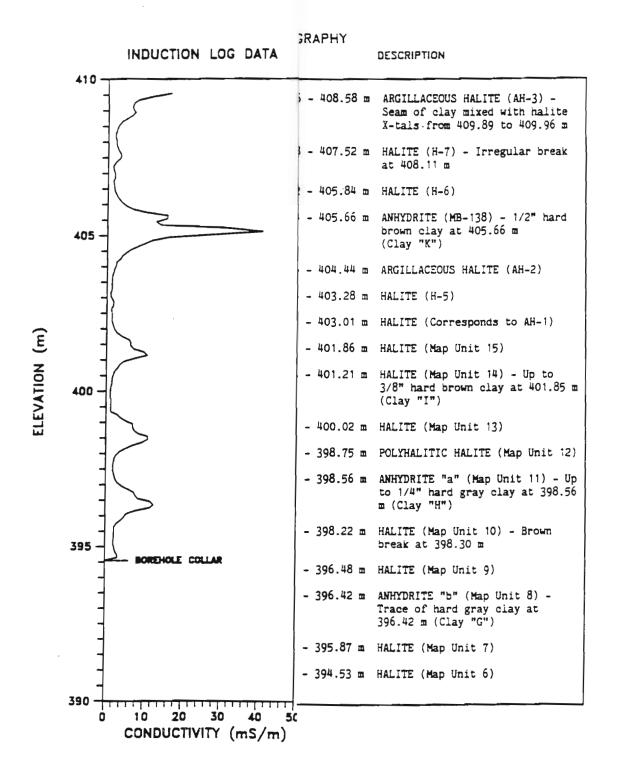
3


ENT, AND STRATIGRAPHY FOR HOLE A3X01 30 9.01.01 B10

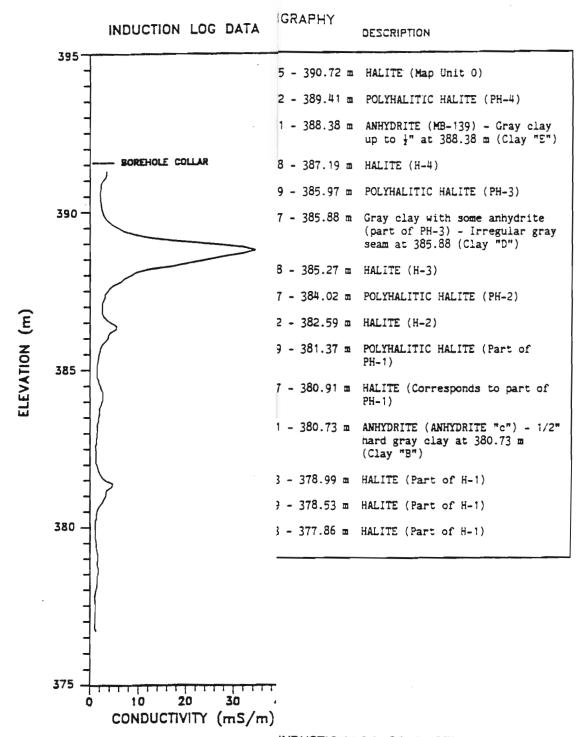
 \mathcal{F}


INDUCTION LOG, CONDUCTIVITIES, MOISTURE CONTENT, AND STRATIGRAPHY FOR BOREHOLE A3X02 301329.01.01 89

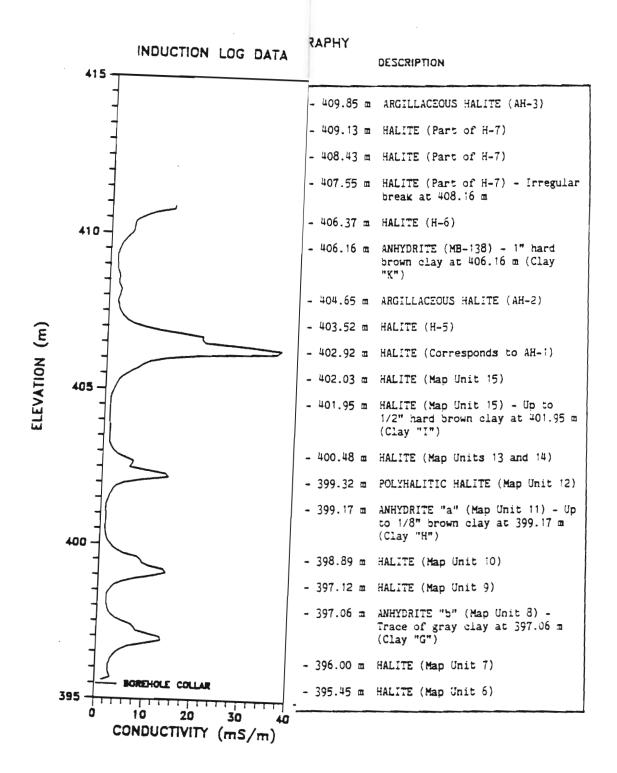
. :


UCTION LOG, CONDUCTIVITIES, MOISTURE NTENT, AND STRATIGRAPHY FOR REHOLE BX01 30.01.01 88

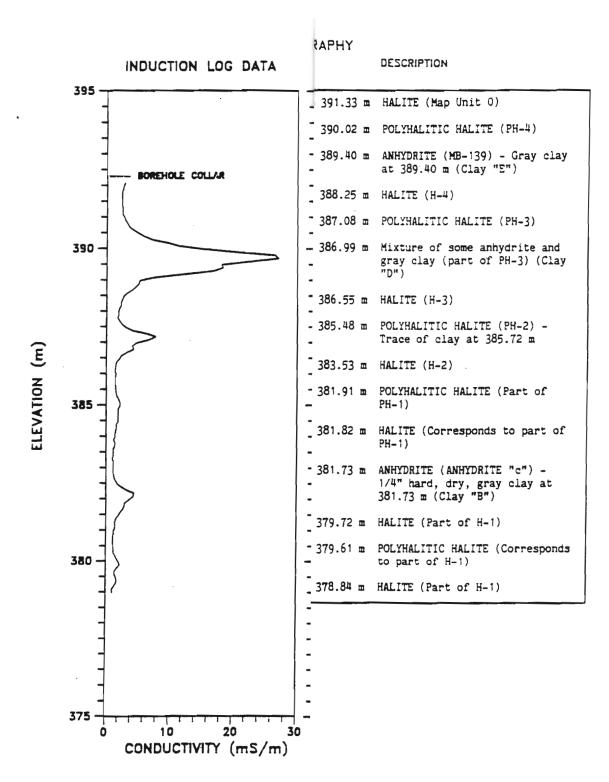
the state of the state


INDUCTION LOG, CONDUCTIVITIES, MOISTURE CONTENT, AND STRATIGRAPHY FOR BOREHOLE BX02 30132 ... U1.01 B7

2


IDUCTION LOG, CONDUCTIVITIES, MOISTURE ONTENT, AND STRATIGRAPHY FOR OREHOLE DH-35 301329.01.01 B6

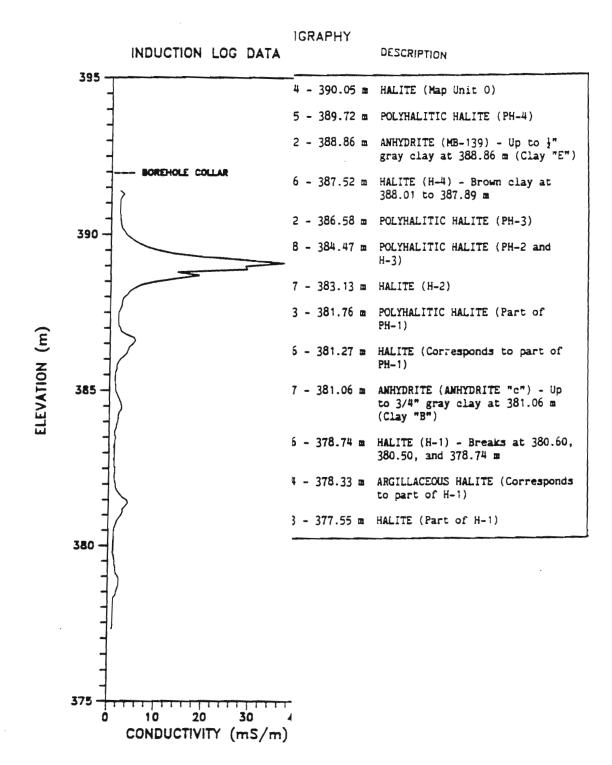
J


INDUCTION LOG, CONDUCTIVITIES, MOISTURE CONTENT, AND STRATIGRAPHY FOR BOREHOLE DH-36 30 9.01.01 85

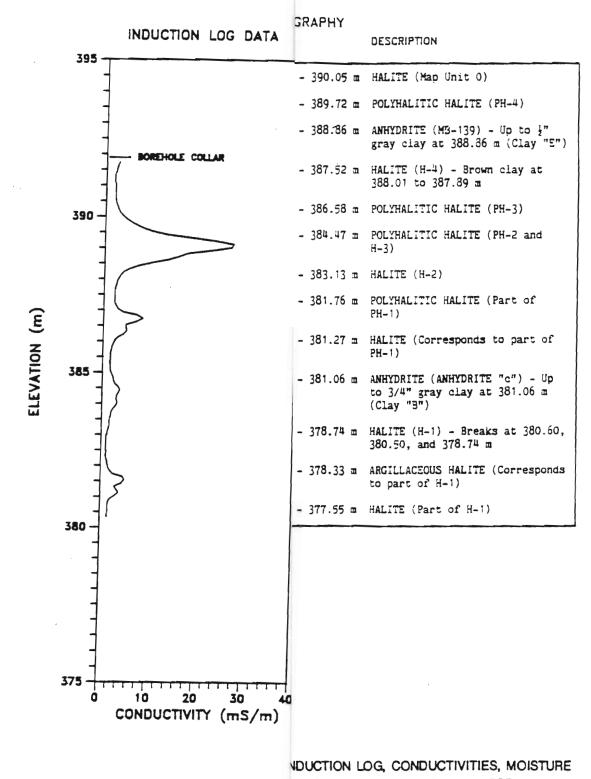
ጉ

NDUCTION LOG, CONDUCTIVITIES, MOISTURE CONTENT, AND STRATIGRAPHY FOR 30REHOLE DH-37 30 9.01.01 B4

1



DUCTION LOG, CONDUCTIVITIES, MOISTURE INTENT, AND STRATIGRAPHY FOR IREHOLE DH-38


ጉ 3012 .01.01 83 RAPHY INDUCTION LOG DATA DESCRIPTION 410 - 409.29 m ARGILLACEOUS HALITE (AH-3)) - 407.93 m HALITE (H-7) 3 - 406.31 m HALITE (H-6) ANHYDRITE (MB-138) - Up to 1 - 406.08 m 1/4" brown clay at 406.08 m (Clay "K") 3 - 404.53 m ARGILLACEOUS HALITE (AH-2) 405 3 - 403.92 m HALITE (H-5) 2 - 403.40 m HALITE (Corresponds to AH-1) 0 - 402.58 m HALITE (Map Unit 15) ELEVATION (m) 3 - 402.52 m HALITE (Map Unit 15) - Irregular low-angle brown clay seam at 402.52 m (Clay "I") 2 - 400.69 m HALITE (Map Units 13 and 14) 400 9 - 399.35 m POLYHALITIC HALITE (Map Unit 12) 5 - 399.17 m ANHYDRITE "a" (Map Unit 11) -Trace of brown clay at 399.17 m (Clay "H") 7 - 398.89 m HALITE (Map Unit 10) 9 - 397.18 m HALITE (Map Unit 9) 8 - 397.09 m ANHYDRITE "b" (Map Unit 8) -395 BOREHOLE COLLAR 2" gray clay at 397.09 m (Clay "G") 9 - 396.76 m HALITE (Map Unit 7) 6 - 395.87 m HALITE (Map Unit 6) 7 - 394.96 m HALITE (Map Unit 5) 390 10 20 0 30 CONDUCTIVITY (mS/m)

> NDUCTION LOG, CONDUCTIVITIES, MOISTURE CONTENT, AND STRATIGRAPHY FOR COREHOLE DH-41

29.01.01 82

INDUCTION LOG, CONDUCTIVITIES, MOISTURE CONTENT, AND STRATIGRAPHY FOR BOREHOLE DH-42 301329.01.01 81

ONTENT, AND STRATIGRAPHY FOR OREHOLE DH-42A

APPENDIX I

.

FEATURES OBSERVED WITH VIDEO CAMERA CORRELATED WITH THE LITHOLOGIC DRILL LOG

FEATURES OBSERVED WITH THE VIDEO CAMERA CORRELATED WITH THE LITHOLOGIC DRILL LOG Distances are in meters

HOLE NO. DIRECTION LOCATION		O LOG (THIS REPORT)	DRILL	LOG (FROM GALLERANI, 1985)
L1X00 Down Room L1	1.70 2.00 3.50	Salt buildup starts Looks wet End of hole - Salt crust extends to bottom	2.30	Top of anhydrite- MB-139 Bottom of anhydrite- MB-139 End of hole
BX01 Down Room B	2.65 6.71 7.92 12.89	Salt crust begins Top of anhydrite- MB-139 Bottom of anhydrite- MB-139 End of survey	7.09 7.91	Break in the core Top of anhydrite- MB-139 Bottom of anhydrite- MB-139 End of hole
BX02 Up Room B	0.00 1.34 3.87 4.05 4.30 10.64	Start salt crust End salt crust Bottom of anhydrite- MB-138 Top of anhydrite- MB-138 Clay/anhydrite - <3 mm Clay/anhydrite - <13 mm	1.96 3.76 3.92	Small gray clay Small fracture Bottom of anhydrite- MB-138 Gray clay - <25 mm Top of anhydrite -MB-138 Brown clay stringer
	11.22	Salt knobs		Bottom of anhydrite Top of anhydrite
A1X01 Down Room A1	2.16 6.89 7.01 7.74 12.86	Small salt knobs Top of anhydrite -MB-139 Bottom of anhydrite Bottom of anhydrite -MB-139 Upper contact gradational End of survey	3.55 6.90 7.68 9.97	Break in the core Break in the core Top of MB-139 Bottom of MB-139 Small clay stringer End of hole
A1X02 Up Room A1	0.46 3.51 4.02 4.21 7.56	Anhydrite/clay - <3 mm Bottom of anhydrite - MB-138 -clay seam - <19 mm Top of anhydrite -MB-138 Clay/anhydrite - <6 mm Clay/anhydrite - <2 mm Clay squeezing into hole	3.55 3.87 5.27- 5.33	Clay - <2 mm Bottom of anhydrite- MB-138 Top of anhydrite- MB-138 Discontinuous clay Brown clay - 19 mm
A2X01	10.64 13.66 1.60	Clay/anhydrite - <19 mm End of survey Salt knobs on west and		Brown clay - 6 mm End of hole
Down Room A2	2.00	northwest sides Slat knobs, Appears wet, crust not continuous on all sides	2.00	Fracture

.

FEATURES OBSERVED WITH THE VIDEO CAMERA CORRELATED WITH THE LITHOLOGIC DRILL LOG (CONTINUED)

HOLE NO. DIRECTION LOCATION		D LOG (THIS REPORT)	וואס	OC (EDOM CALLEDANIL 1005)
	VIDE	JEGG (THIS REPORT)		LOG (FROM GALLERANI, 1985)
		A B B B B B B B B B B		
	6.70	Salt crust starts - No abrupt end, just fades out by 8.0m	6.80 7.60	Top of anhydrite- MB-139 Bottom of anhydrite- MB-139
	13.40	End of survey	15.30	End of hole
A2X02	0.00	Start salt crust		
Up Room A2	0.79 1.58	Clay/anhydrite - <2 mm End salt crust		
NUUIII AZ	3.60	Bottom of anhydrite- MB-138 - Clay at contact	3.49	Bottom of anhydrite- MB-138
	3.72 4.08	Top of anhydrite - MB-138 Clay/anhydrite - <10 mm	3.75	Top of anhydrite- MB-138
	4.24			
	7.71		7.68	Gray clay - 6 mm
	7.77	Clay/anhydrite - <3 mm	10.49	Anhydrite - 19 mm
	13.62	End of survey		End of hole
A3X01	2.38	Salt knobs/crust		
Down Room A3	6.10	Top of anhydrite- MB-139- Bottom gradational		
	6.80	Top of anhydrite	6.64	Top of anhydrite- MB-139
	7.53	Bottom of anhydrite- MB-139 -gradational	7.44	Bottom of anhydrite- MB-139
	12.28	End of survey	15.36	End of hole
A3X02	0.00	Start salt crust	0.00-	Scattered anhydrite
Up	0.30		1.10	Stringers
Room A3	0.52	End salt crust		·
	3.54	Bottom of anhydrite- MB-138		Bottom of anhydrite- MB-138
	3.69	Top of anhydrite- MB-138		Top of anhydrite- MB-138
	3.99	Anhydrite- <10 mm		Clay - <2 mm
				Brown clay - 13 mm
				Clay - 19 mm
	13.75	End of survey	15.47	End of hole
DH-15	0.00	Slat crust starts		
Up	0.49	Salt crust ends		
Room D	0.79	Visible fracture		
	2.80	Offset at Clay I-small anhy-		Clay - 3 mm
	_	drite just above the offset	2.79	Anhydrite - 25 mm
	3.08	Clay/anhydrite - <13 mm		
	5.82	Clay K squeezing into the	5.97	Clay - 13 mm
		hole on all sides- Bottom		
	E 04	of anhydrite- MB-139	6.00	Clove lower Bottom of
	5.94	Top of anhydrite- MB-138	0.30	Clay layer - Bottom of

FEATURES OBSERVED WITH THE VIDEO CAMERA CORRELATED WITH THE LITHOLOGIC DRILL LOG (CONTINUED)

LOCATION	VIDE	O LOG (THIS REPORT)	DRILL	DRILL LOG (FROM GALLERANI, 1985)		
	6.19 6.46	Anhydrite/clay - <13 mm Anhydrite/clay - <3 mm	6.51	anhydrite- MB-138 Top of anhydrite- MB-138		
	9.97 10.73	Light orange band- anhydrite	11.35	Anhydrite - 25 mm		
	13.53	(?) - <25 mm End of survey	15.54	End of hole		
DH-35 Up Room G	0.00 0.21 1.77 1.98	Begin salt crust End salt crust Begin salt crust End salt crust				
	2.16	Bottom on anhydrite "b" definitely wet	1.89	Bottom of anhydrite "b"		
	2.35 2.41	Top of anhydrite "b" Anhydrite - <2 mm	1.95	Top of anhydrite "b"		
	2.41 2.59 2.87 3.02 3.17 3.26 4.15	Anhydrite - 2 mm - 3 mm Anhydrite - 3 mm Anhydrite - 3 mm Anhydrite/clay - 2 mm Anhydrite/clay - 3 mm Begin salt crust	1.95-	Anhydrite stringers		
	4.33	End salt crust- bottom of anhydrite "a"	4.02	Bottom of anhydrite "a"		
	4.51 4.85 4.94 5.97 6.40	Top of anhydrite "a" Anhydrite - <13 mm Anhydrite - <25 mm Begin salt crust End salt crust	4.22	Top of anhydrite "a"		
	7.50 7.53 7.86	Anhydrite/clay I- <50 mm Anhydrite- <3 mm Anhydrite- <6 mm	7.32	Clay layer- < 10 mm		
•	11.40 11.58 11.64	Bottom of anhydrite- MB-138 Top of anhydrite- MB-138 Anhydrite/clay - <13 mm		Bottom of anhydrite- MB-138 Top of anhydrite- MB-138		
	11.86 14.63	Anhydrite/clay <13 mm End of survey		Clay layer - <50 mm End of hole		
DH-36 Down Room G	2.13 3.05	Top of anhydrite- MB-139 Bottom of anhydrite- MB-139	2.13 3.17 5.58 5.67	Top of anhydrite- MB-139 Bottom of anhydrite- MB-139 Top clay/anhydrite Bottom clay/anhydrite		
	9.85	Top of anhydrite "c"- visible fracture at top of unit- <3 mm wide and 50 mm long	10.64	Top of anhydrite "c"		

HOLE NO. DIRECTION

.-

FEATURES OBSERVED WITH THE VIDEO CAMERA CORRELATED WITH THE LITHOLOGIC DRILL LOG (CONTINUED)

HOLE NO. DIRECTION LOCATION	VIDEO	D LOG (THIS REPORT)		LOG (FROM GALLERANI, 1985)	
	9.94 12.34	Bottom of anhydrite "c" End of survey	10.82 15.70	Bottom of anhydrite "c" End of hole	
DH-37 Up Room G	0.67 1.46 1.77	Bottom of salt crust Top of salt Salt knobs			
	1.92 1.98 1.99	Bottom of anhydrite "b" Top of anhydrite "b" Clay - < 2 mm		Bottom of anhydrite "b" Top of anhydrite "b"	
	2.10 2.23 2.62	Clay - <3 mm Clay - <3 mm 2 clay layers <25 mm apart both <2 mm thick		Scattered white anhydrite stringers	
	2.96 4.02 4.15 4.42 4.51	Clay layer - <2 mm Bottom of anhydrite "a" Top of anhydrite "a" Bottom of anhydrite bed Top of anhydrite bed		Bottom of anhydrite "a" Top of anhydrite "a"	(
	7.10 7.50 8.72 8.90	Anhydrite - <25 mm Clay - <6 mm Bottom of salt crust Top of salt crust	6.51	Clay - <13 mm	
	11.00 11.22 11.49	Bottom of anhydrite- MB-138 Top of anhydrite MB-138 Anhydrite/clay - <3 mm		Bottom of anhydrite- MB-138 Top of anhydrite - MB 138	
	11.64 11.70 11.86 12.04	Anhydrite/clay - <3 mm Clay - <2 mm Clay - <2 mm Anhydrite/clay - <2 mm		Scattered white anhydrite with anhydrite stringers	
	14.20	End of survey	15.70	End of hole	
DH-38 Down Room G	10.48 10.55 13.40	Top of anhydrite "c" Bottom of anhydrite "c" End of survey	2.90 10.45 10.55	Top of anhydrite- MB-139 Bottom of anhydrite- MB-139 Top of anhydrite "c" Bottom of anhydrite "c" End of hole	<u>,</u>
DH-39 Up Room G	0.67 0.98 1.25 2.10 2.16 2.65 2.93	Salt knobs Start of salt crust End of salt crust Bottom on anhydrite "b" Top of anhydrite "b" Clay - <3 mm Clay - <3 mm	2.01 2.07	Bottom of anhydrite "b" Top of anhydrite "b"	

FEATURES OBSERVED WITH THE VIDEO CAMERA CORRELATED WITH THE LITHOLOGIC DRILL LOG (CONTINUED)

HOLE NO. DIRECTION LOCATION VIDEO LOG (THIS REPO

VIDEO LOG (THIS REPORT) DRILL LOG (FROM GALLERANI, 1985)

۰.

	2.99	Clay - <2 mm		
	3.08	Clay - <2 mm	4.04	
	4.11	Bottom of anhydrite "a"		Bottom of anhydrite "a"
	4.30	Top of anhydrite "a"	4.31	
	4.57 4.63	Anhydrite/clay - <25 mm	4.82	Anhydrite - <3 mm
	6.40	Anhydrite/clay - <25 mm		
	7.18	Clay <2 mm Bottom of anhydrite/clay I		
	7.25	Top of anhydrite/clay I		
	7.32	Clay - <3 mm		
	7.47	Clay - <3 mm		
	7.65	2 clay layers <25 mm apart	7.65	Clay - <6 mm-bottom of
	7.00	both <6 mm thick	7.00	anhydrite
	8.66	Bottom possible salt crust	7.67	Top of anhydrite
	8.93	Top of possible salt crust		· · · · · · · · · · · · · · · · · · ·
	11.25	Bottom on anhydrite- MB-138	10.94	Bottom of anhydrite- MB-138
		clay K squeezing into hole		
	11.49	Top of anhydrite- MB-138	11.13	Top of anhydrite- MB-138
	11.70	Clay anhydrite - <25 mm		
	11.77	Clay/anhydrite - 50 mm		
	14.63	End of survey	15.45	End of hole
DH-40	1.90	Small salt knobs		
Down	2.70	Salt crust begins	2.10	Top of anhydrite- MB-139
Room G	3.10	End of salt crust		
	3.30	Begin salt crust	3.30	Bottom of anhydrite- MB-139
	3.70	End salt crust		
	4.30	Salt knobs		
	10.40	Top of anhydrite "c"		Top of anhydrite "c"
	10.50	Bottom of anhydrite "c"	10.80	,
	13.40	End of survey	15.54	End of hole
DH-41	0.34	Bottom of salt crust		
Up	0.94	Top of salt crust		
Room G	2.16	Bottom of anhydrite "b"	2.13	
	2.59	Top of anhydrite "b"	2.23	
	4.05	Bottom of anhydrite "a"	4.21	Bottom of anhydrite "a"
	4.24	Top of anhydrite "a"	4.39	Top of anhydrite "a"
	4.57	Bottom of anhydrite		
	4.63	Top of anhydrite		
	7.16	Anhydrite/clay (?)	7.56	
	7.80	Clay I/anhydrite - <2 mm		anhydrite
	11.22	Bottom of anhydrite- MB-138	7.62	Top of anhydrite- MB-138
	11.37	Top of anhydrite	11.13	Bottom of anhydrite

FEATURES OBSERVED WITH THE VIDEO CAMERA CORRELATED WITH THE LITHOLOGIC DRILL LOG (CONTINUED)

HOLE NO. DIRECTION LOCATION	VIDEC	D LOG (THIS REPORT)	DRILL	OG (FROM GALLERANI, 1985)	
	11.58 11.77 14.20	Clay/anhydrite - 25 mm Clay/anhydrite - 25 mm End of survey	14.93	End of hole	
DH-42 Down Room G	2.70 3.00 10.70 10.80 11.30	Solid salt crust starts Solid salt crust ends Top of anhydrite "c" Bottom of anhydrite "c" End of survey	3.10 8.60- 12.10	Top of anhydrite- MB-139 Bottom of anhydrite- MB-139 Unable to log - see log for DH-42A End of hole	
DH-42A Down Room G	0.90 2.40	Small sait crust ends by 1.1m Salt crust starts	0.00- 6.60	Not logged - see log for DH-42	
	2.70 11.90	Salt crust ends End of Survey	10.90	Top of Anhydrite "c" Bottom of Anhydrite "c" End of hole	
DHP-401 Up Panel 1	1.80 1.89 4.60 4.78 4.94 5.03 7.16 7.53	Bottom of anhydrite "b" Top of anhydrite "b" Bottom of anhydrite "a" Top of anhydrite "a" Clay/anhydrite - <2 mm Clay/anhydrite - <25 mm Clay - <2 mm	2.65 4.39 4.60	Bottom of anhydrite "b" Top of anhydrite "b" Bottom of anhydrite "a" Top of anhydrite "a" Anhydrite - 13 mm	
	11.61	Clay/anhydrite - <13 mm Bottom of anhydrite- MB-138 clay squeezing into hole at contact	11.37	Bottom of anhydrite- MB-138	
	11.67 11.76 11.86 12.07	Top of anhydrite- MB-138 Clay/anhydrite - <3 mm Clay/anhydrite - <51 mm Clay/anhydrite - <6 mm	11.64	Top of anhydrite- MB-138	.*
	12.13	End of survey	15.03	End of hole	
DHP-402A Down Panel 1	1.13 1.80 1.89	Top of anhydrite- MB-139 Fracture in MB-139- <13 mm Bottom of anhydrite- MB-139	2.13 4.54 9.45 9.63	Top of anhydrite Bottom of anhydrite- MB-139	
	8.53	End of survey	15.21		

I-6

APPENDIX J

MATHEMATICAL FORMULATION OF THE COUPLED SALT CREEP/BRINE FLOW PHENOMENA

APPENDIX J:

MATHEMATICAL FORMULATION OF THE COUPLED SALT-CREEP/BRINE FLOW PHENOMENA

This appendix provides background information on mathematical formulations, solution methods, and verification results to support the brine modeling work. Sections J.1 through J.6 present the comprehensive formulations for rock deformation and brine flow. This background information supports Section 5.3 in the text. To describe the flow system, three equations are required: conservation of mass, conservation of momentum, and conservation of energy. The governing equations derived in Sections J.1 through J.3 are the mass conservation equations. The general time dependent relations for rock salt are discussed in Section J.4. Section J.5 discusses heat transfer equations. Section J.6 discusses proposed solution methods. To assist the reader in interpreting these relations, Table J-1 presents the nomenclature used in this appendix and Chapter 5.0.

Section J.7 provides background information for the implementation of a preliminary analysis by utilizing modifications to two existing codes that model rock mechanics and fluid flow. These modifications provide an initial estimate of the effects of salt deformation on the flow of brine to a 1.8-meter-radius shaft at a depth of 655 meters, as described in Sections 5.4 through 5.11 of the text.

J.1 SINGLE PHASE FLOW THROUGH DEFORMABLE ROCKS

Considering a control volume saturated with a fluid, the continuity equation (derived from Freeze and Cherry, 1979) may be written as:

$$(\rho, u_1), i - \frac{D(\rho, \theta)}{Dt} = 0$$
 (J.1)

where

 p_f = fluid density, u_i = fluid flux rate in the "i" direction, θ = rock porosity, and t = time.

۰.

A'	=	Constant
А	=	Activation Energy
B,	=	$\frac{V_{, at reservoir condition}}{V_{, at standard condition}} = \frac{P_{, at standard condition}}{P_{, at reservoir condition}}$
C,	=	Fluid compressibility
C ₁ ,C ₂	`Ξ	Shear strength constants
C ₃ ,C ₄	8	·Viscous constants
CE	=	Effective solubility of salt in water
D _E	=	Effective diffusivity of salt in brine
E	=	Heat dispensivity of fluid or Young's modulus [M/LT ²]
E1,E2	=	Young's moduli
F	=	Body force
G	2	Shear modulus
G1,G2	=	Shear moduli
$H(\tau_o - \tau_s)$	=	Step function = 0 when $\tau_o \leq \tau_s$
		= 1 when $\tau_o > \tau_s$
l _h	=	Heat generation rate
J _b	=	Conductive heat flux of fluid per unit area
J _r	=	Conductive heat flux of rock per unit area
M _a	=	Molecular weight of gas
P	=	Pressure
P _a	=	Air pressure
P _b	==	Brine pressure
P _c	=	Capillary pressure
P。	=	Farfield hydrostatic stress
P₀	=	Initial pressure
Q	=	Constant pumping rate
0	=	Source term
Q_d	_	Source term

J-2

.*

-

(continued)

• .

	Qp	=	Fluid mass source
	R	=	Universal gas constant
	S _a	=	Air saturation
	S₅	=	Brine saturation
	S′	=	Storage coefficient
	S ₁	=	Saturation ratio of phase 1
	S _w	÷	Water saturation
	Т	=	Temperature
	Τ′	=	Fluid tramsmissivity
	T _o	=	Initial temperature
	T _a	=	Air temperature
	T₀	=	Brine temperature
	Т,	=	Rock temperature
C	U₀	=	Internal energy of fluid per unit mass
	U,	=	Internal energy of rock per unit mass
	V	=	Viscous factor
	V ₁	=	Volume of phase 1
	V _b	=	Volume of brine
	V_2 , V_3 , V_p	=	Viscous factors
	V,	=	Volume of rock element
	Vs	=	Volume of solids in rock element
	V _v	=	Void volume of rock element
	W (u)	=	Well function
	Z	=	Compressibility factor
	а	-	Area fraction of grain boundaries that is dry or radius of circular opening or gas phase identifier
	b	=	Brine phase identifier
	b _o	=	Boltzmann's constant
	d	=	Grain size
0	g	=	Gravitational constant

(continued)

۰.

h	=	Specific heat capacity
k	=	Rock permeability
k _{ri}	=	Relative permeability
n	=	Stress exponent
0	=	Initial state
q ₁	= `	Fluid production (or injection)
r	=	Rock phase identifier or radius
S	=	Drawdown
t	=	Time
th	=	Thermal identifier
u	=	Displacement matrix or fluid flow data
u	=	Fluid flux rate in the "i" direction
u,	=	Relative radial displacement
<u>v</u>	. =	Average fluid velocity vector
V _b	=	Velocity of fluid with respect to a fixed coordinate
V _i	=	Velocity of a moving coordinate system
ve	=	Viscoelastic identifier
vp	=	Viscoelastic identifier
x	=	Direction identifier
у	=	Direction identifier
z	=	Elevation from reference plane
ι	=	Phase 1
ΔT		Change in temperature
Φ	=	Fluid potential = P + pgz
Ω	=	Atomic volume of salt
α	=	Compressibility of porous matrix or thermal expansion coefficient
βь	=	Brine thermal expansion coefficient
β _f	=	Volumetric thermal expansion coefficient
γ	=	Shear strain
γ_{\circ}	=	Octahedral shear strain

J-4

.^

(continued)

•

	γ _{xy}	=	Engineering shear strain
	3	=	Strain
	ε _m	=	Dilational strain
	ε _D	=	Diffusional creep rate
	ε _r	=	Strain coefficient in the radial direction
	ε _x	=	Strain in the x direction
	εγ	=	Strain in the y direction
	² 1, ² 2, ² 3	=	Principal strains
	ζ	=	Heat transfer coefficient
	θ	=	Rock porosity
	λ	=	$\frac{\mu_{R}}{\mu_{R}}$ or coefficient of heat conduction
	μ	=	Fluid viscosity
0	μ_{a}	=	Air viscosity
	μ	=	Brine viscosity
	щ	=	Fluid viscosity
	ν	=	Velocity
	ρ	=	Density
	ρь	=	Brine density
	ρ _t	=	Fluid density
	ρ ₉	=	Gas density
	ρο	=	Density at $T=T_0$ and $P=P_0$
	ρ°	=	Initial density at T=constant temperature and P=P _o
•	σ	=	Stress
	σ_{h}	=	Farfield hydrostatic stress
	σ_{l}	=	Normal stress
	σ_{m}	=	Mean stress = $1/3 (\sigma_x + \sigma_y + \sigma_z)$
	σ_r	=	Radial stress
	σ_{x}	=	Normal stress
	σ _y	=	Normal stress
0	σz	=	Normal stress

.^

(concluded)

$\sigma_{_{\!$	=	Tangential stress
τ	=	Shear stress
τ_{c}	=	Reference shear stress
τ_{o}	=	Octahedral shear stress
τ _s	=	Shear strength
υ	z	Poisson's ratio
<u>v</u>	=	Del operator

٠.

...

Note that tensor notations are adopted in Equation (J.1).

 $D~(\rho_{t}\,\theta)/D$ t is called the material derivative that accounts for the motion of the reference coordinate, and

$$(\rho_{1} u_{1}), = \frac{\partial(\rho_{1} \theta)}{\partial t} + (\rho_{1} \theta), v_{1}$$
(J.2)

where

 v_i = velocity of moving coordinate (rock element).

To express u in/terms of pressure, Darcy's Law is introduced.

$$u_{j} = \frac{-\kappa_{ij}}{\mu} \phi_{,j}$$
(J.3)

where

 ϕ = fluid potential = P + $\rho_1 gz$,

k_{ii} = component of intrinsic permeability tensor for rock,

 μ = fluid viscosity,

g = gravitational constant,

z = elevation above reference plane, and

P = fluid pressure.

The assumptions behind this law are:

- Hydraulic gradient is the driving force for fluid flow.
- Fluid acceleration is negligible.
- Both the fluid and the flow media are homogeneous.

Darcy's Law is assumed to apply at the very low fluid velocities encountered in salt. For slightly compressible materials, the variation of density as a function of confining pressure under isothermal conditions (Bear, 1972) is:

$$\rho = \rho_0^{T} \exp \left[C_t (P - P_0) \right]$$
 (J.4)

where

 C_{t} = compressibility, ρ_{0}^{T} = initial density at T = constant temperature and P = P₀, and P₀ = initial pressure.

Thermal expansion under isobaric conditions (Bear, 1972) is given by:

$$\rho_0^{\mathsf{T}} = \frac{\rho_0}{[1 - \beta_t (\mathsf{T} - \mathsf{T}_0)]} \tag{J.5}$$

where

 $\begin{array}{l} \beta = \mbox{volumetric thermal expansion coefficient,} \\ T = \mbox{temperature,} \\ T_o = \mbox{initial temperature, and} \\ \rho_o = \mbox{density at } T = T_o \mbox{ and } P = P_o. \end{array}$

Both β and C are functions of confining pressure and temperature. Both are assumed to be constant in this study for simplification. A literature review did not find any state relationship for liquids and White (1986) indicates that he does not know of a "perfect-liquid law" comparable to that for gases. Therefore, to consider changes in density as pressure and temperature are varied simultaneously, based on Equations J.4 and J.5, the following relationship is proposed:

$$\rho = \rho_0 \frac{\exp[C_t (P - P_0)]}{[1 + \beta_t (T - T_0)]}$$
(J.6)

J-8

Knowing

$$\frac{\partial \rho_1}{\partial P} = C_1 \rho_1$$
 and $\frac{\partial \rho_1}{\partial T} = -\frac{\rho_1 \beta}{1 + \beta_1 (T - T_0)}$

the partial differential of ρ_t with respect to any arbitrary variable can be defined as:

$$\frac{\partial \rho_{t}}{\partial \cdot} = \frac{\partial \rho_{t}}{\partial P} \frac{\partial P}{\partial \cdot} + \frac{\partial \rho_{t}}{\partial T} \frac{\partial T}{\partial \cdot}$$

$$= \rho_{t} \left\{ C_{t} \frac{\partial P}{\partial \cdot} - \frac{\beta}{[1 + \beta_{t} (T - T_{0})]} \frac{\partial T}{\partial \cdot} \right\}$$
(J.7)

Changes in rock porosity are generally expressed as a function of total stress, pore pressure, and temperature. (Detailed expansions of $\partial \theta / \partial t$ and θ , i are shown in the following sections rather than here because of the complexity involved in rock stress-strain constitutive relationships.) These two terms are left intact throughout this appendix.

Fluid viscosity is a function of pressure, temperature, and brine concentration. Among these factors, brine concentration and temperature have much more influence on fluid viscosity than pressure has. If the concentration of the saturated brine remains constant, it is assumed that:

$$\mu = \mu(\mathsf{T})$$

and

$$\frac{\partial \mu}{\partial t} = \frac{\partial \mu}{\partial t} \frac{\partial T}{\partial t}$$
(J.8)

Combining Equations (J.2) through (J.8), yields:

$$\frac{k_{ij}}{\mu} \phi_{,i} \left(C_{t} P_{,i} - \frac{\beta_{t}}{1 + \beta_{t} (T - T_{0})} T_{,i}\right) + \frac{1}{\mu} k_{ij,i} \phi_{,j} - \frac{1}{\mu^{2}} k_{ij} \frac{\partial \mu}{\partial T} T_{,i} \phi_{,j} + \frac{k_{ij}}{\mu} \phi_{,ji}$$

$$= \theta \left[C_{t} \frac{\partial P}{\partial t} - \frac{\beta_{t}}{1 + \beta_{t} (T - T_{0})} \frac{\partial T}{\partial t}\right]$$

$$+ \frac{\partial \theta}{\partial t} + \left\{\theta \left[C_{t} P_{,i} - \frac{\beta_{t}}{1 + \beta_{t} (T - T_{0})} T_{,i}\right] + \theta_{,i}\right\} v_{i}$$
(J.9)

Note that $\phi = P + \rho gz$, therefore:

$$\phi_{,i} = P_{,i} + \rho_{,i}gz + \rho gz_{,i}$$
 (J.10)

and

$$\phi_{,ji} = P_{,ji} + \rho_{,ji}gz + \rho_{,j}gz_{,i} + \rho_{,i}gz_{,j} + \rho gz_{,ji}$$

As variations in ρ_t and z are much smaller than pressure variations, ρ_{ij} and z_{ij} are both negligible. Thus:

$$\phi_{,ji} = P_{,ji} + g(\rho_{,j}z_{,i} + \rho_{,i}z_{,j})$$
 (J.11)

.•

Substituting Equations (J.10) and (J.11) into Equation (J.9), the governing equation for singlephase fluid flow through a heterogeneous, nonisothermal, and compressible porous media is:

$$\frac{1}{\mu} \left[P_{,j} (1 + \rho_{f} C_{f} gz) - \frac{\beta_{f} T_{,j} gz}{[1 + \beta_{f} (T - T_{0})]} + \rho_{f} gz_{,j} \right] \cdot \left[k_{ij} (C_{f} P_{,i} - \frac{\beta_{f}}{1 + \beta_{f} (T - T_{0})} T_{,i}) + k_{ij,i} - \frac{1}{\mu} k_{ij} \frac{\partial \mu}{\partial T} T_{,i} \right] \\ + \frac{k_{ij}}{\mu} \left[P_{,ji} + g C_{f} \rho_{f} (P_{,i} z_{,j} + P_{,j} z_{,i}) - g\rho_{f} \frac{\beta_{f} (T_{,j} Z_{,i} + T_{,i} Z_{,j})}{[1 + \beta_{f} (T - T_{0})]} \right]$$

$$= \theta \left[C_{f} \frac{\partial P}{\partial t} - \frac{\beta_{f}}{1 + \beta_{f} (T - T_{0})} \frac{\partial T}{\partial t} \right] + \frac{\partial \theta}{\partial t} + \left\{ \theta \left[C_{f} P_{,i} - \frac{\beta_{f}}{1 + \beta_{f} (T - T_{0})} T_{,i} \right] + \theta_{,i} \right\} v_{i}$$
(J.12)

J.2 TWO-PHASE FLUID FLOW THROUGH DEFORMABLE ROCKS

A typical set of two-phase flow equations (Aziz and Settari, 1979) is:

$$(\lambda_{\mathbf{b}} \phi_{\mathbf{b},\mathbf{l}})_{,\mathbf{j}} = \frac{\mathbf{D}}{\mathbf{D}\mathbf{t}} \left(\theta \; \frac{\mathbf{S}_{\mathbf{b}}}{\mathbf{B}_{\mathbf{b}}} \right) + \mathbf{q}_{\mathbf{b}}$$
(J.13)

$$(\lambda_a \phi_{a,i})_{,j} = \frac{D}{Dt} (\theta \frac{S_a}{B_a}) + q_a$$
 (J.14)

$$P_{c} = P_{a} - P_{b} = f(S_{b})$$

$$(J.15)$$

$$S_{b} + S_{a} = 1$$
 (J.16)

where

$$\begin{split} &S_{a} = \text{air saturation,} \\ &S_{b} = \text{brine saturation,} \\ &\lambda_{1} = \frac{k_{n}}{\mu_{1}B_{1}} k_{ij}, \text{ fix for either air or brine,} \\ &k_{r1} = \text{relative permeability of phase 1 as a function of } \\ &S_{1} = \text{saturation ratio of phase 1} = \frac{V_{1}}{V_{v}}, \\ &B_{1} = \frac{V_{1} \text{ reservoir}}{V_{1} \text{ at standard condition}} = \frac{\rho_{1} \text{ at standard condition}}{\rho_{1} \text{ of reservoir fluid}} \\ &q_{1} = \text{fluid production rate (or injection) of phase 1,} \\ &P_{c} = \text{capillary pressure,} \\ &V_{1} = \text{volume of phase 1 in a fixed volume rock element,} \\ &V_{v} = \text{void volume of a rock element,} \\ &V_{r} = \text{volume of a rock element,} \\ &P_{g} = \text{gas density 1.25 kg/m^{3} at 15^{\circ}\text{C} and 1 atm (for nitrogen), and} \\ &\rho_{b} = \text{brine density 1,200 kg/m^{3} at 15^{\circ}\text{C} and 1 atm.} \end{split}$$

The equation of state for the gas is:

$$\frac{P_a}{\rho_a} = \frac{ZRT}{M_a}$$
(J.17)

where

 P_a = air pressure Z = compressibility factor R = universal gas constant M_a = molecular weight of gas.

Taking a derivative of gas density and utilizing Equation (J.17) produces:

$$\frac{\partial \rho_{a}}{\partial \cdot} = \frac{\partial \rho_{a}}{\partial P_{a}} \frac{\partial P_{a}}{\partial \cdot} + \frac{\partial \rho_{a}}{\partial T_{a}} \frac{\partial T_{a}}{\partial \cdot} = \rho_{a} \left(\frac{1}{P_{a}} \frac{\partial P_{a}}{\partial \cdot} - \frac{1}{T_{a}} \frac{\partial T_{a}}{\partial \cdot}\right)$$
(J.18)

The fluid potential is defined previously. When density is small, as for air, the equation used is:

۰.

$$\phi_a = P_a + \rho_a gz \approx P_a \tag{J.19}$$

In flow problems with solution gas, free gas is released from the liquid phase when pressure is reduced. (Isothermal conditions are assumed for contact handled transuranic (CH-TRU) waste environments.) Mobilized gas may occupy space in rock pores, keeping pore pressure higher than expected. To account for this effect, it is proposed to approximate gas solubility data explicitly and estimate the amount of exsolved gas as a function of pressure and the pressure history. The term q_n is used to quantify the rate of gas exsolution. However, no liquid production or injection is expected in nuclear repository environments and consequently q_w is zero. Combining Equations (J.6), (J.7), (J.8), and (J.13) through (J.19), the flow equation for the brine is obtained:

$$\frac{k_{rb}}{\mu_{b}} \left[C_{b} P_{b,i} - \frac{\beta_{b}}{1 + \beta_{b} (T - T_{0})} T_{,j} \right] k_{ij} \phi_{b,i} - \frac{k_{rb}}{\mu_{b}^{2}} \frac{\partial \mu_{b}}{\partial T} T_{,j} k_{ij} \phi_{b,i} + \frac{(k_{rb} k_{ij,j})}{\mu_{b}} \phi_{b,i} + \frac{k_{rb}}{\mu_{b}} k_{ij} \phi_{b,ij} = \frac{V_{b}}{1200 V_{r}} \left[C_{b} \frac{\partial P_{b}}{\partial t} - \frac{\beta_{b}}{1 + \beta_{b} (T - T_{0})} \frac{\partial T}{\partial t} \right] + \frac{1}{V_{r}} \frac{\partial V_{b}}{\partial t} - \frac{V_{b}}{V_{r}^{2}} \frac{\partial V_{r}}{\partial t} + \frac{V_{i}}{1200 V_{r}} \left\{ V_{b} \left[C_{b} P_{b,i} - \frac{\beta_{b}}{1 + \beta_{b} (T - T_{0})} T_{,i} \right] + V_{b,i} - \frac{V_{b}}{V_{r}} V_{r,i} \right\}$$

where subscript b stands for brine. The flow equation of gas is:

$$\frac{k_{ra}}{\mu_{a}} \left(\frac{1}{P_{a}} P_{a,j} - \frac{1}{T} T_{,j} \right) k_{ij} P_{a,i} - \frac{k_{ra}}{\mu_{a}} \frac{\partial \mu_{a}}{\partial T} k_{ij} T_{,j} P_{a,i} + \frac{k_{ra}}{\mu_{a}} \frac{\partial \mu_{a}}{\partial T} k_{ij} T_{,j} P_{a,i} + \frac{k_{ra}}{\mu_{a}} k_{ij} P_{a,ij}$$

$$= \frac{V_{a}}{V_{r}} \left(\frac{1}{P_{a}} \frac{\partial P_{a}}{\partial t} - \frac{1}{T} \frac{\partial T}{\partial t} \right) + \frac{1}{V_{r}} \frac{\partial V_{a}}{\partial t} - \frac{V_{a}}{V_{r}^{2}} \frac{\partial V_{r}}{\partial t} + \frac{1}{V_{r}} \left[V_{a} \left(\frac{1}{P_{a}} P_{a,i} - \frac{1}{T} T_{,i} \right) + V_{a,i} - \frac{V_{a}}{V_{r}} V_{r,i} \right] + \frac{q_{a}}{\rho_{a}} \rho_{gas}$$

$$(J.21)$$

In deriving these equations, it is assumed that gas temperature, brine temperature, and rock temperature are all equal at any given point in the rock.

$$T_a = T_b = T_r = T$$

Local thermal equilibrium is assumed. The governing equations for two-phase fluid flow through porous media are Equations (J.15), (J.16), (J.20), and (J.21).

J.3 SIMPLIFICATIONS OF THE GOVERNING EQUATIONS

At the Waste Isolation Pilot Plant (WIPP) site, it is assumed that (CH-TRU) nuclear wastes (rather than RH wastes) will be stored underground. The heat that may be generated by the nuclear waste may then be ignored and the temperature is assumed to be constant.

Thus, Equation (J.12) is simplified as:

$$\frac{1}{\mu_{1}} \{ [P_{,j}(1 + g\rho_{f}C_{,}z) + g\rho_{f}z_{,j}] (C_{f}k_{ij}P_{,i} + k_{ij,i}) \\ + k_{ij}[P_{,ji} + g\rho_{f}C_{f}(P_{,j}z_{,i} + P_{,i}z_{,j})] \}$$

$$= \theta C_{f} \frac{\partial P}{\partial t} + \frac{\partial \theta}{\partial t} + (\theta C_{f}P_{,i} + \theta_{,i})v_{i}$$
(J.22)

Further simplification can be made to other relationships by eliminating the temperature terms.

J.4 <u>TIME-DEPENDENT DEFORMATION OF ROCK SALT AROUND EXCAVATION</u> <u>ROOMS</u>

Rock salt is a rheologic material. Deformation of rock salt around underground excavations is dependent on time, stress, and temperature. Part of the roof-floor convergence of the excavations at the WIPP can be attributed to fracture development. Induced fractures in the vicinity of excavated rooms complicate the stress-deformation analysis. Deformation of fractured salt is attributed to the propagation of fractures as well as the plastic flow of salt grains. Unfortunately, it is nearly impossible to predict the initiation and propagation of fractures in the field. As a simplification, salt is analyzed as a continuum that follows the stress equilibrium states and displacement continuity conditions. This approach tends to underestimate the induced porosity of salt in the fractured zone and overestimates the same porosity away from the fractured zone.

Three sets of equations describe the deformation process: the equations of equilibrium, the displacement-compatibility equations, and the stress-strain constitutive equations. The effects of time and temperature on salt deformation will be discussed in detail when the stress-strain equations are derived.

J.4.1 The Equations of Equilibrium and Displacement Compatibility

The equation of equilibrium states that in the absence of external forces and in the case of very slow deformation, such as creep in salt, the equation of equilibrium can be stated as:

$$\sigma_{i|,j} + F_j = 0 \tag{J.23}$$

or

$$\dot{\sigma}_{||,|} = 0$$
 (J.24)

where σ_{ij} is the stress tensor and F_i is the body force (which acts only in the z direction for this study).

The equation of displacement compatibility (Fung, 1965) is:

$$\varepsilon_{ij,kl} + \varepsilon_{kl,ij} = \varepsilon_{ik,jl} + \varepsilon_{jl,ik}$$
(J.25)

.....

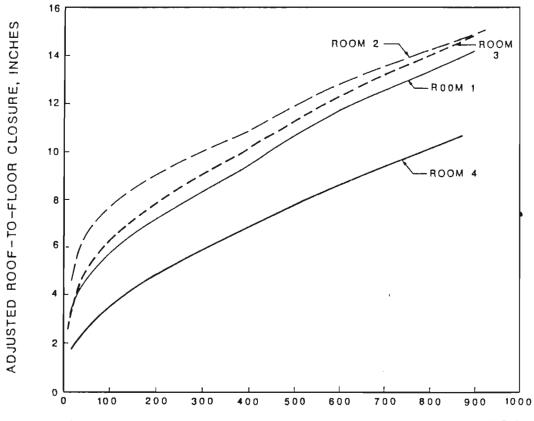
For two-dimensional problems (x, y plane), Equation (J.25) reduces to:

$$\frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{\partial^2 \gamma_{xy}}{\partial x \partial y}$$
(J.26)

where

$$\begin{split} \epsilon_{ij,k1} &= \text{strain in tensor notation,} \\ \epsilon_x &= \text{strain in the x direction,} \\ \epsilon_y &= \text{strain in the y direction,} \\ \gamma_{xy} &= \text{engineering shear strain.} \end{split}$$

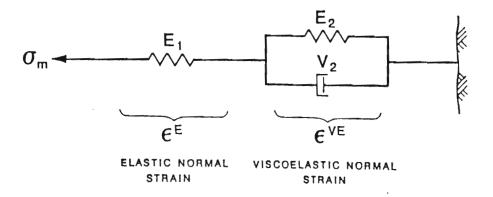
J.4.2 Constitutive Equations for Deformation of Salt


Typical room convergence curves are illustrated in Figure J-1. In the figure, the room first shows a relatively rapid initial displacement, followed by transient movements as displacement rates decrease until the rates become constant. Thus it is assumed that:

total strain	=	elastic strain	+	viscoelastic strain	+	viscoplastic strain
and						
total strain rate	=	elastic strain rate	+	viscoelastic strain rate	+	viscoplastic strain rate

The viscoplastic strain is used here to approximate the steady-state creep of salt and the viscoelastic strain is used to model the transient creep. There are many constitutive relationships proposed for modeling the creep of salt; this model was chosen for its simplicity and reasonable accuracy. Modification of this model may be required.

Figure J-2 illustrates the model.


301329.01.01 A25

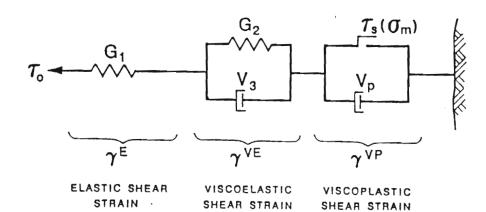

ELAPSED DAYS SINCE EXCAVATION AT INSTRUMENT LOCATION

FIGURE J-1 TYPICAL ROOM CLOSURE MEASURED RATES (MODIFIED FROM BETCHEL NATIONAL, INC., 1986)

DILATATIONAL MODEL

DISTORTIONAL MODEL

where

$$E_{1}, E_{2} = Young's moduli$$

$$G_{1}, G_{2} = Shear moduli$$

$$V_{2}, V_{3}, V_{p} = Viscous factors$$

$$\tau_{s} = Shear strength of rock = C_{1}\sigma_{m} + C_{2}$$

$$\sigma_{i} = Normal stresses$$

$$\tau_{r} = Shear stress$$

$$\sigma_{m} = Octahedral normal stress = 1/3 (\sigma_{x} + \sigma_{y} + \sigma_{z})$$

FIGURE J-2 PROPOSED CONSTITUTIVE MODELS FOR DEFORMATION OF ROCK SALT (MODIFIED FROM SERATA AND OTHERS, 1985)

The models are mathematically expressed as (modified from Serata and others, 1985):

$$\epsilon_{m} = \sigma_{m} \left\{ \frac{1}{E_{1}} + \frac{1}{E_{2}} \left[1 - \exp(\frac{-E_{2}}{V_{2}}t) \right] \right\}$$
(J.27)

$$\gamma_{0} = \tau_{0} \left\{ \frac{1}{G_{1}} + \frac{1}{G_{2}} [1 - \exp(-\frac{G_{2}}{V_{3}} t)] + \frac{1}{V_{p}} t H(\tau_{0} - \tau_{s}) \right\}$$
(J.28)

where

$$\begin{array}{l} { { E} }_{1}, { { E} }_{2} \ = \ Young's \ modulus, \\ { { G} }_{1}, { { G} }_{2} \ = \ shear \ modulus, \\ { V} _{2}, { V} _{3}, { V} _{p} \ = \ viscous \ factor, \\ { \tau} _{s} \ = \ shear \ strength \ of \ rock \ = \ C_{1} \sigma _{m} \ + \ C_{2}, \\ { \sigma} _{m} \ = \ mean \ stress \ = \ 1/3 \ (\sigma _{x} \ + \ \sigma _{y} \ + \ \sigma _{z}), \\ { C} _{1}, { C} _{2} \ = \ shear \ strength \ constants, \\ H \left(\tau _{0} \ - \ \tau _{s} \right) \ = \ step \ function \ \left\{ \begin{array}{c} = \ 0 \ when \ \tau _{0} \le \tau _{s} \\ = \ 1 \ when \ \tau _{0} > \ \tau _{s} \\ \tau _{0} \ = \ octahedral \ shear \ stress, \\ t \ = \ time, \\ { \gamma} _{o} \ = \ octahedral \ strain, \\ { \epsilon} _{m} \ = \ dilational \ strain, \ and \\ { V} _{p} \ = \ viscous \ factor \ of \ viscoplasticity. \end{array} \right.$$

The strain rates are:

$$\dot{\varepsilon}_{m} = \dot{\varepsilon}_{m_{o}} + \frac{\sigma_{m}}{V_{2}} \exp(-\frac{E_{2}}{V_{2}}t)$$
(J.29)

.*

$$\dot{\gamma}_{0} = \dot{\tau}_{0} \left[\frac{1}{G_{1}} + \frac{1}{G_{2}} \left(1 - \exp(-\frac{G_{2}}{V_{3}}t) \right) + \frac{1}{V_{p}} tH(\tau_{0} - \tau_{s}) \right] + \tau_{0} \left[\frac{1}{V_{3}} \exp(-\frac{G_{2}}{V_{3}}t) + \frac{1}{V_{p}} H(\tau_{0} - \tau_{s}) \right]$$
(J.30)

 $\dot{\epsilon}_{m_0} = \dot{\sigma}_m \{ \frac{1}{E_1} + \frac{1}{E_2} [1 - \exp(-\frac{E_2}{V_2}t)] \}$

Equations (J.27) through (J.30) are generalized constitutive equations and can be modified for all stress and strain components.

J.4.3 Thermal Effects on Deformation of Salt

The steady-state creep of salt has previously been expressed (Herrman and others, 1980) as:

$$\dot{\gamma}_0^{\text{vp}} = A \left(\frac{\tau_0}{\tau_c}\right)^n \exp\left(-\frac{Q}{RT}\right)$$
(J.31)

where

A = a constant,

$$\tau_c$$
 = a constant for normalizing shear stress,
n = stress exponent,
Q = activation energy,
R = universal gas constant,
T = temperature, and
 $\dot{\gamma}_0^{vp}$ = viscoplastic shear strain rate.

An examination of Equation (J.31) suggests the following modifications for the viscoelastic strains:

$$\varepsilon_{m}^{ve} = \frac{\sigma_{m}}{E_{2}} \left[1 - \exp(-\frac{E_{2}}{C_{3}T}t) \right]$$
(J.32)

$$\gamma_{0}^{v_{0}} = \frac{\tau_{0}}{G_{2}} [1 - \exp(-\frac{G_{2}}{C_{4}T}t)]$$
 (J.33)

where

 $\begin{array}{l} C_3,\ C_4=constants\\ \epsilon_m{}^{ve}=equivalent\ "viscoelastic"\ strain,\ and\\ \gamma_0{}^{ve}=equivalent\ "viscoelastic"\ shear\ strain. \end{array}$

Heat will accelerate the deformation of salt in Equations (J.32) and (J.33). Because heat also causes instantaneous volumetric changes in rocks, it is further assumed that thermal deformation is elastic and has only dilatational effects:

$$\varepsilon_{m}^{TH} = -\alpha(T) \Delta T \qquad (J.34)$$

$$\gamma_0^{\mathsf{TH}} = 0 \tag{J.35}$$

where

α = thermal expansion coefficient,	
ϵ_{m}^{TH} = thermal dilational strain, and	
γ_0^{TH} = thermal shear strain.	

Combining the above equations, it can be shown that:

-

$$\dot{\varepsilon}_{m} = \dot{\varepsilon}_{m_{o}} + \frac{\sigma_{m}}{V_{2}} \exp\left(-\frac{E_{2}}{C_{3}T}t\right)$$
(J.36)

for
$$\tau_0 > \tau_s$$
:
 $\dot{\gamma}_0 = A \left(\frac{\tau_0}{\tau_c}\right)^n \exp(\frac{-Q_p}{RT}) + \dot{\tau}_0 \left[\frac{1}{G_1} + \frac{1}{G_2} \left(1 - \exp(-\frac{G_2}{C_4T} t)\right)\right]$ (J.37)
 $+ \frac{\tau_0}{C_4T} \exp(-\frac{G_2}{C_4T} t)$

(J.38)
$$\dot{\gamma}_{o} = \dot{\tau}_{o} \left[\frac{1}{G_{1}} + \frac{1}{G_{2}}(1 - \exp(-\frac{G_{2}}{C_{a}T}t))\right] + \frac{\tau_{o}}{C_{a}T}\exp(-\frac{G_{2}}{C_{a}T}t)$$

These are the complete stress-strain-temperature constitutive equations.

J.4.4 Effects of Moisture on Rock Deformation

Water or brine is known to have a weakening effect on rock salt (Spiers and others, 1986). Water-salt interactions may fall into the following categories:

- Interaction between brine and crack surfaces.
- Intracrystalline effects.
- Interaction between brine and grain boundaries.

Fluids in solids reduce the internal frictional coefficient of solids. As a result, a wet creeping material, such as salt in a mine, may have a higher creep rate under deviatoric stresses than dry salts. Very little experimental work has been done on either the interaction between brine and crack surfaces or intracrystalline effects, but theories exist for predicting the effects of water or brine between grain boundaries. A typical equation to describe the fluid-assisted diffusional creep (Spiers and others, 1986) is:

$$\dot{\varepsilon}_{\rm D} = \frac{A'C_{\rm E}D_{\rm E}\Omega(1-a)}{ab_{\rm D}Td^3}\sigma$$
(J.39)

where

- $\dot{\epsilon}_{\rm D}$ = diffusional creep rate,
- A' = a constant,
- C_{F} = effective solubility of salt in water,
- D_F = effective diffusivity of salt in brine,
- Ω = atomic volume of salt,
- a = area fraction that is dry of grain boundaries,
- d = grain size,
- σ = stress,
- b_0 = Boltzmann's constant, and
- T = temperature.

Among these parameters, A', C_E , D_E , Ω , d, and b_0 are properties of the material and may be viewed as constants for a specific rock. The ratio (1 - a) / a is a function of saturation. The modification of Equations (J.37) and (J.38) through the application of Equation (J.39) presents a problem, because of the ratio (1 - a) / a. Comparing the case in which the area of grain

boundaries is covered completely by brine to the case which grain boundaries are completely dry, (1 - a) / a changes from infinity to zero. Thus, according to Equation (J.39), the diffusional creep rate $\hat{\epsilon}_{D}$ should also vary from infinity to zero, which is not reasonable. It is thus proposed that:

$$\dot{\varepsilon} = (aS_b + b)\dot{\varepsilon}_{wet}$$

 $\dot{\gamma} = (aS_b + b)\dot{\gamma}_{wet}$
(J.40)

where

a,b = constants and $S_b = saturation of brine in salt.$

The modified stress-strain constitutive equations are thus:

$$\dot{\varepsilon}_{m} = (aS_{b} + b) \{\dot{\varepsilon}_{m_{o}} + \frac{\sigma_{m}}{V_{2}} \exp(-\frac{E_{2}}{C_{3}T}t)\}$$
 (J.41)

for
$$\tau_0 \le \tau_s$$
:
 $\dot{\gamma}_0 = (aS_b + b) \{\dot{\tau}_0(\frac{1}{G_1} + \frac{1}{G_2} [1 - exp(-\frac{G_2 t}{C_4 T})] + \frac{\tau_0}{C_4 T} exp(-\frac{G_2 t}{C_4 T})\}$

and for
$$\tau_0 > \tau_s$$
:
 $\dot{\gamma}_o = (aS_b + b) \{A(\frac{\tau_0}{\tau_c})^n exp(\frac{Q_p}{RT}) + \dot{\tau}_0 \frac{1}{G_1} + \frac{1}{G_2} [1 - exp(-\frac{G_2 t}{C_4 T})] + \frac{\tau_0}{C_4 T}exp(\frac{G_2 t}{C_4 T})]\}$
(J.42)

J.5 HEAT TRANSFER THROUGH THE SYSTEM

Unsaturated brine flow involves three different materials: salt, brine, and gas. Heat generated from nuclear wastes may propagate out via conduction through rocks and convection through brine and air. By assuming that heat transfer through radiation and convection through air is negligible, the energy balance equation is obtained as:

Mathematically expressed, the energy balance equation for the rock is:

$$\frac{D(\rho_{r}U_{r})}{Dt} = (\sigma_{ij}v_{rj})_{,i} - J_{r_{i,i}} + \zeta_{r}(T_{b} - T_{r})$$
(J.43)

where

- r = rock,
- U_r = internal energy of rock per unit mass = $h_r T_r$
- h = specific heat capacity,
- $J_r = conductive heat flux of rock per unit area = -(\lambda_{rij}T_r)_{,j}$
- ζ = heat transfer coefficient, $\lambda_{r_{\eta}}$ = coefficient of heat conduction of rock, and

 v_r = velocity of the rock element with respect to a fixed coordinate.

The energy balance equation for the brine is:

$$\frac{D(\rho_{b}U_{b})}{Dt} = -J_{b_{u}} - (E_{ij}T_{b})_{,i} + (\phi v_{b})_{,i} + \zeta_{b}(T_{r} - T_{b}) + I_{b}$$
(J.44)

where

- U = internal energy of fluid = $h_b T_b$,
- = heat generation rate, l_n
- E, = heat dispersivity of fluid,
- = conductive heat flux of fluid per unit area J

$$= -(\lambda_{\rm f} T_{\rm b}), i$$

- λ = coefficient of heat conduction of fluid, and
- = velocity of the fluid with respect to a fixed coordinate. V_b

To combine Equations (J.43) and (J.44), the volumetric fractions of rock solids and brine in a rock element are required. Volume of rock solids in a rock element of volume V_r is

 $V_{s} = V_{r}(1 - \theta) \tag{J.45}$

(J.46)

where

 $V_s =$ volume of solids.

In the same rock element, volume of brine (V_b) is:

$$V_{b} = V_{r} \theta S_{b}$$

The overall energy balance equation is:

$$(1 - \theta) \left[\frac{\partial(\rho_{r} U_{r})}{\partial t} + (\rho_{r} U_{r})_{,j} v_{rj}\right] + S_{b} \theta \left[\frac{\partial(\rho_{b} U_{b})}{\partial t} + (\rho_{b} U_{b})_{,j} v_{bi}\right]$$

$$= (1 - \theta)(\lambda_{rij} T_{r})_{,ji} + S_{b} \theta(\lambda_{b} T_{b})_{,ji} + (1 - \theta)(\sigma_{ij} v_{rj})_{,i} - (E_{ij} T_{b})_{,ji}$$

$$+ S_{b} \theta(\phi u_{i})_{,i} + (1 - \theta)\zeta_{r} (T_{b} - T_{r}) + S_{b} \theta \zeta_{b} (T_{r} - T_{b}) + I_{b}$$

$$(J.47a)$$

Because the permeability of salt is low, local thermal equilibrium is assumed:

 $T_r = T_b = T$

and Equation (J.47a) becomes:

$$(1 - \theta)\left[\frac{\partial(\rho_{r}U_{r})}{\partial t} + (\rho_{r}U_{r})_{,j}v_{rj}\right] + S_{b}\theta\left[\frac{\partial(\rho_{b}U_{b})}{\partial t} + (\rho_{b}U_{b})_{,i}v_{bi}\right]$$

$$= (1 - \theta)(\lambda_{r_{ij}}T_{i})_{,ji} + S_{b}\theta(\lambda_{b}T_{i})_{,ji} + (1 - \theta)(\sigma_{ij}v_{rj})_{,i} - (E_{ij}T_{i})_{,ji}$$

$$+ S_{b}\theta(\phi u_{i})_{,i} + I_{b}$$

$$(J.47b)$$

J.6 DISCUSSION OF EQUATIONS AND SUGGESTIONS ON SOLUTION METHODS

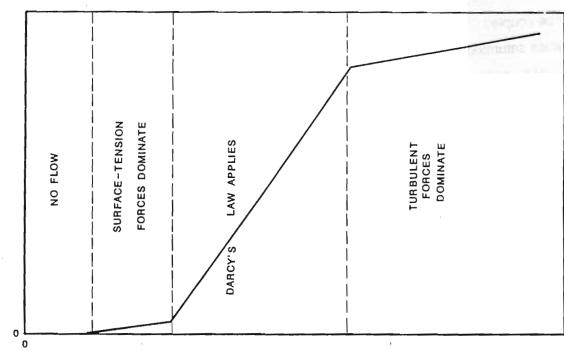
Consider a small volume of low permeability rock with fluid included in its pores. Changes in rock stress will change the shape and volume of the rock pores and thus change the pressure

of fluid stored in the rock pores. The two processes, fluid flow and rock deformation, are coupled through pore pressure and rock porosity. The combined effects of stress and pore pressure determine the deformation of rock pores. The sizes and shapes of rock pores thus control rock permeability, which in turn describes fluid flow paths and the flow rates.

In this section, the derived equations are regrouped and coupling is discussed. Suggestions on solution methods are provided as guidelines for future development.

J.6.1 Discussion of the Fluid-Flow Equations

This study formulates the mechanism of brine inflow and suggests a method of solution to estimate the brine inflow rate into excavated rooms at the WIPP repository level. The equations for mass conservation are the main equations for pressure distribution in the salt.


In deriving the relations Darcy's Law is applied, although the applicability of Darcy's Law for rocks of very low permeability is questionable. The use of piece-wise linear relationships between the pressure gradient and fluid flow rate would avoid this problem. Figure J-3 illustrates this concept. At very low pressure gradients, fluid cannot flow because of the static resistance. At higher pressure gradients, a line with a low slope appears to account for the surface adsorption effects. At even higher pressure gradients, the regular slope representing Darcy's flow exists; at very high pressure gradients, turbulent effects come into play and the slope flattens.

The equations require relations for permeability, fluid, density, fluid solutions, and rock porosity as a function of pressure to solve the equations in space and time. Through consideration of two-phase flow conditions, the apparent rock permeability is lowered because of the factor k (relative permeability), which is a function of fluid saturation. As a result, the actual brine flow rate estimated by these equations is lower than that estimated by assuming saturated flow conditions. Equation (J.15) defines capillary pressure (P_c) as the difference between gas and brine pressures. The capillary pressure is a function of saturation of the wetting fluid (brine) and is sometimes referred to as suction or tension. When the nonwetting fluid (gas) pressure stays at 1 atm, brine pressure is negative (gage pressure) while P_c is still positive.

۰.

PRESSURE GRADIENT

FIGURE J-3 PIECE-WISE APPLICATION OF LINEAR RELATIONSHIPS BETWEEN PRESSURE GRADIENT AND THE RATE OF FLUID FLOW. .*

Equation (J.48) states that rock pores are filled with mixtures of gas and brine. Through application of Equations (J.15) and (J.16), the governing equations of brine and gas flow can then be coupled to solve the two-phase problem. As discussed previously, the analysis assumes saturated fluid flow due to the absence of the constitutive properties required for evaluating unsaturated fluid flow.

 $P_c = -P_w$

(J.48)

J.6.2 Concluding Remarks

A set of equations was derived to describe the flow of brine and gas through creeping salt under the influence of stress and temperature changes. The equations include:

- Mass conservation equations for two-phase flow of fluids through a porous media
- Stress equilibrium and displacement compatibility equations
- Stress-strain constitutive relations
- Energy balance equation.

Derivations are carried out based on:

- Darcy's Law and a piece-wise application of linear relationships between pressure gradient and fluid flow rate
- The concept of mass and energy balance
- A proposed constitutive model for salt deformation.

J.7 COMPUTER CODE DESCRIPTIONS

A broad description of the coupled computer code is presented in Figure J-4. The computer code VISCOT (Intera, 1983) is capable of solving salt creep by either implicit or explicit techniques. The explicit method (initial stiffness method or the modified Newton-Raphson method) was used in this analysis.

The <u>Saturated-Unsaturated</u> <u>TRAnsport</u> (SUTRA) model (Voss, 1984) is capable of simulating variable density, variable saturation, ground-water flow. It solves either steady-state or transient problem formulations in one or two dimensions. Flow fields can be either areal or cross-sectional. Both direct or iterative solution schemes are available.

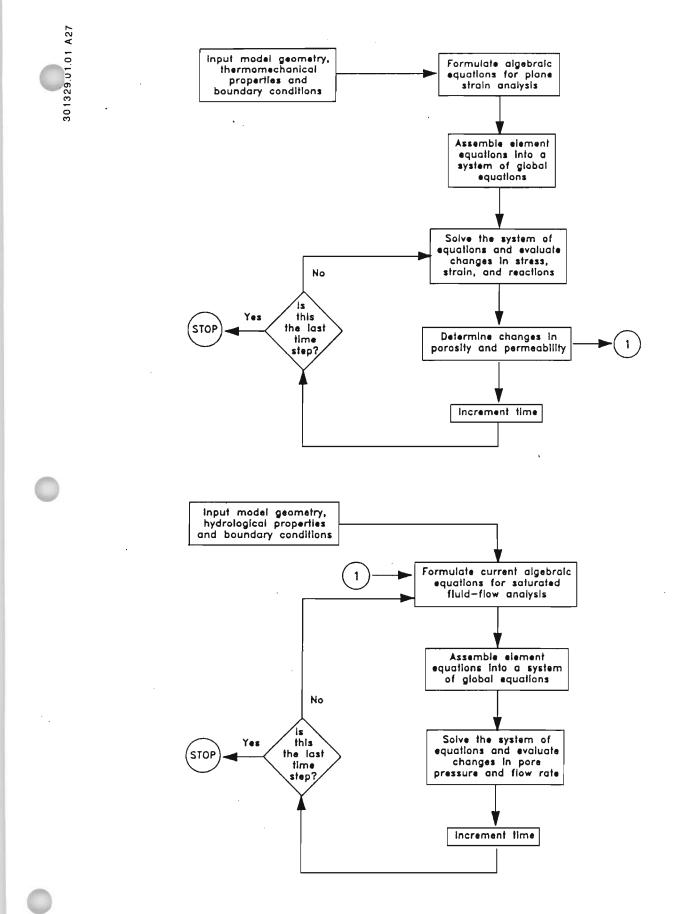


FIGURE J-4 FLOWCHARTS FOR THE SALT CREEP AND FLUID FLOW MODELS

1

The governing ground-water flow equation (Voss, 1984 Eqn. 2.22) is:

$$\frac{\partial(\Theta S_{w} \rho)}{\partial t} = \nabla \cdot (\Theta S_{w} \rho \underline{v}) + Q_{p} + T$$
 (J.49)

where

 $\underline{v}(x,y,t)$ = average fluid velocity vector.

The time derivative term on the left-hand side of the equation can be expressed as:

$$\frac{\partial(\Theta S_{w} \rho)}{\partial t} = (S_{w} \rho S_{op} + \theta \rho \frac{\partial S_{w}}{\partial t}) \frac{\partial P}{\partial t}$$
(J.50)

where

$$S_{op} = \theta\beta + (1 - \theta)\alpha$$
, and
 $\alpha =$ compressibility of porous matrix.

Substituting Darcy's Law into the velocity vector (v) term, the equation becomes:

$$(S_w \rho S_{op} + \theta \rho \frac{\partial S_w}{\partial p}) \frac{\partial P}{\partial t} = \underline{\nabla} \cdot [\frac{k\rho}{\mu} \cdot (\underline{\nabla} p - \rho \underline{g})] + Q_p \qquad (J.51)$$

The output from the modified version of VISCOT, consisting of regularly updated permeabilities, strain rates, and porosities, is generated on an element-by-element basis. For SUTRA to incorporate this data, it must function as a fully developed finite element program with all parameters appropriately discretized. The governing algorithms were thus rewritten to implement these changes.

The code was manipulated to discretize all parameters except pressure on an element-wise basis. Only the terms pertinent to this analysis were utilized. Also, the strain term was substituted as an equivalent Q_p term.

J.7.1 Salt-Creep Module Verification

The salt-creep module was verified against calculations for several closed-form solutions or problems. These include:

- · Elastic Kirsch solution under external hydrostatic loading,
- Elastic Kirsch solution under external hydrostatic loading with stress relief at the circular boundary,
- A cylindrical laboratory specimen of salt with viscoplastic constitutive relations (Sandia Creep Law) subject to triaxial compression.

J.7.1.1 Elastic Kirsch Solution Under External Hydrostatic Loading

This problem was developed to verify the correct assemblage of the structural stiffness matrix for structures subject to external load and displacement boundary conditions. This problem verifies certain aspects of the finite-element formulation against closed-form solutions presented below.

Under a uniform hydrostatic loading, the radial and tangential stresses distributions (Goodman, 1980 - p. 215) are given by:

$$\sigma_{\rm r} = {\sf P}_0 \left(1 - \frac{{\sf a}^2}{{\sf r}^2} \right) \tag{J.52}$$

$$\sigma_{\theta} = P_0(1 + \frac{a^2}{r^2})$$
 (J.53)

The relative displacement is given by:

$$u_r = P_0(\frac{1+v}{E})\frac{a^2}{r}$$
 (J.54)

where

 $\begin{aligned} \sigma_r &= \text{radial stress at radius r,} \\ \sigma_\theta &= \text{tangential stress at radius r,} \\ P_0 &= \text{far-field hydrostaic stress (15 MPa),} \\ a &= \text{radius of the circular opening (1.8 m),} \\ r &= \text{radius,} \\ u_r &= \text{relative radial displacement,} \end{aligned}$

E = Young's modulus for the material (31,000 MPa), and

$$v =$$
 Poisson's ratio (0.25).

The Equation (J.54) solution for relative radial displacement corresponds to the displacement induced due to excavation, whereas the problem described above considers an additional component of hydrostatic compression. Along the x-x axis, the radial strains and displacement may be compared:

$$\varepsilon_{rr} \approx \varepsilon_{xx} = \frac{1}{E} \left[\sigma_{xx} - \nu (\sigma_{yy} + \sigma_{zz}) \right]$$
 (J.55)

Under hydrostatic loading and plane strain conditions, the strain ϵ_{xx} is given by:

$$\varepsilon_{xx} = \frac{(1 - v - v^2)}{E} P_0 \qquad (J.56)$$

and the displacement, δ_x is given by:

$$\delta_{x} = \frac{X}{E} (1 - v - v^{2}) P_{0}$$
 (J.57)

The approximate closed-form solution is given by:

$$u_r \approx \left[\frac{(1+\nu)a^2}{r} + (1-\nu-\nu^2)r\right] \frac{P_o}{E}$$
 (J.58)

The results of these calculations are presented in Figures J-5 and J-6. There is good agreement in the stress solutions with the predicted boundary stress concentration factor of

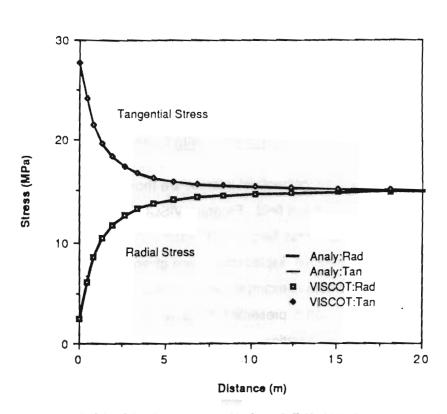
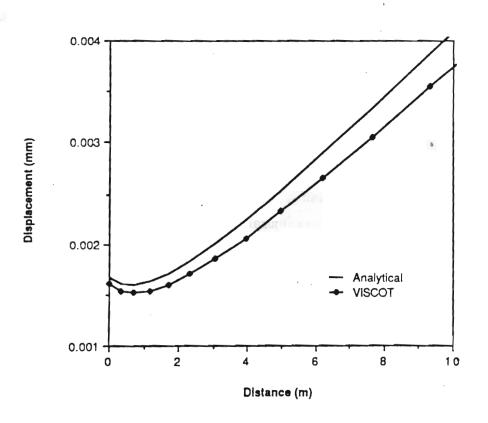



FIGURE J-5 KIRSCH SOLUTION FOR A CIRCULAR EXCAVATION AND VISCOT SOLUTION

3.01.01 A28

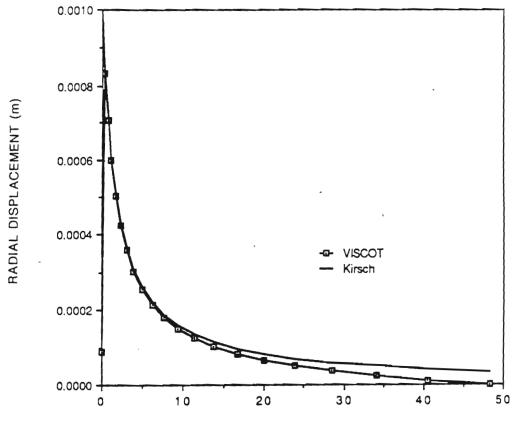
3

301329.01.01 A29

2.0 at the radius of the opening. The predicted radial displacement reaches a minimum at 2.4 meters, which can be calculated by differentiating Equation (J.58) and setting the differential to zero.

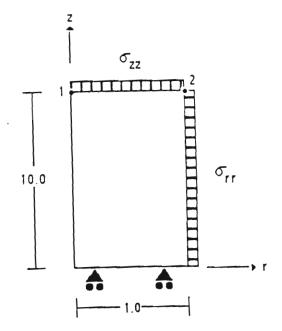
J.7.1.2 Kirsch Solution Under an Initial Stress Field With Stress Relief at the Excavation Boundary

In underground excavations, the displacements of interest are those developed from excavation with an existing or initial stress field. Program VISCOT models displacements due to excavation by specifying an initial stress field and relaxation of the stresses along the boundary of the excavation. The relative displacements are given by Equation (J.54), which the stress field is identical to the previous example. A comparison of this solution for radial displacement with the VISCOT solution is presented in Figure J-7. Good agreement is indicated near the boundary of the excavation.


J.7.1.3 Cylindrical Salt Specimen Subject to Triaxial Compression

In order to test the incorporation of the Sandia Creep Law into the viscoplastic constitutive relations for rock salt, a simple problem for creep deformation of a cylindrical specimen of salt was evaluated under various loadings as shown in Figure J-8. The figure shows the assumed secondary creep parameters. This problem verifies the incorporation of the viscoplastic creep law. For each of the loading conditions evaluated, the imposed loading state of stress is known; the deviatoric stress components can be calculated and substituted directly into the creep law to determine strain rates.

The results of the calculations are presented in Figures J-9 through J-12. For a problem in which loadings are specified, the results are identical between the closed-form solution or hand calculations and the VISCOT analysis.


J.7.2 Fluid-Flow Module Verification

The SUTRA finite element code was modified to solve the governing equation for fluid flow for a deformable medium. The modifications included changing the discretization scheme for the time derivative term from a cell-wise (node-centered) to an element-wise basis, so that changes in porosity obtained from the salt-creep analysis could be incorporated. An additional 301001 89 0° 02 A25

DISTANCE (m)

FIGURE J-7 KIRSCH AND VISCOT RADIAL DISPLACEMENTS

Loading Conditions

case no. j	σ _{zz}	o _{rr}
1	-5.0	0.0
2	0.0	-5.0
3	-5.0	-2.0

Summary of Properties Used Q/R = 3468.0 A = .154E-6 (MPa - secs) n = 1.39 T = 373 K E = 10,000.0 v = 0.3

FIGURE J-8 CYLINDRICAL SALT SPECIMEN SUBJECT TO TRIAXIAL COMPRESSION

301329.01.01 A32

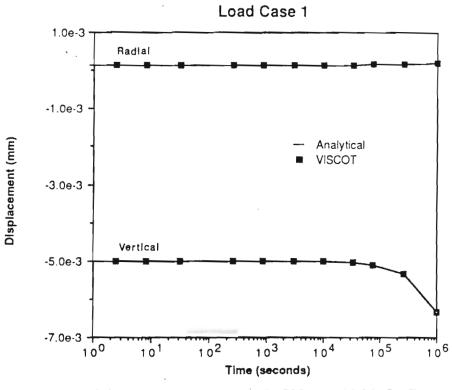
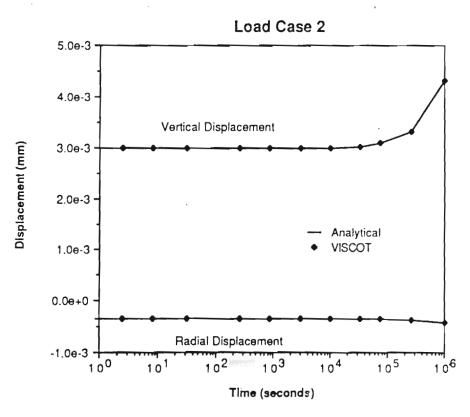
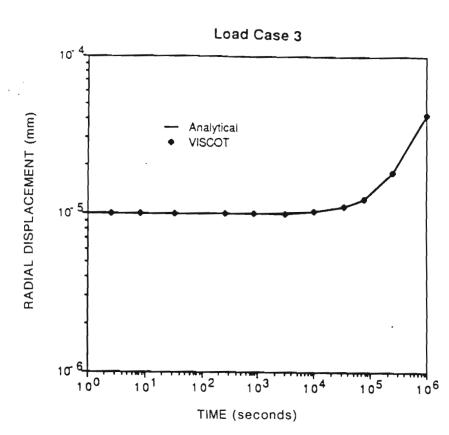




FIGURE J-9 UNIAXIAL COMPRESSION OF ROCKSALT

FIGURE J-10 RADIAL COMPRESSION OF SALT

301329.01.01 A33

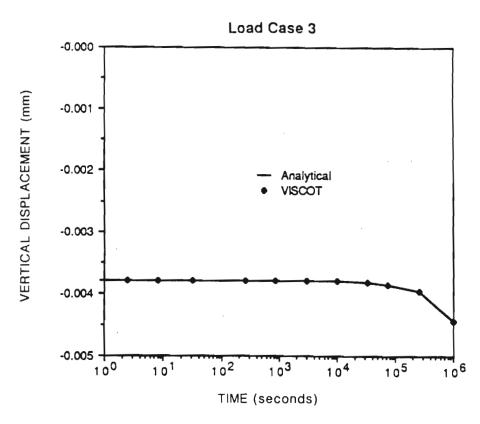
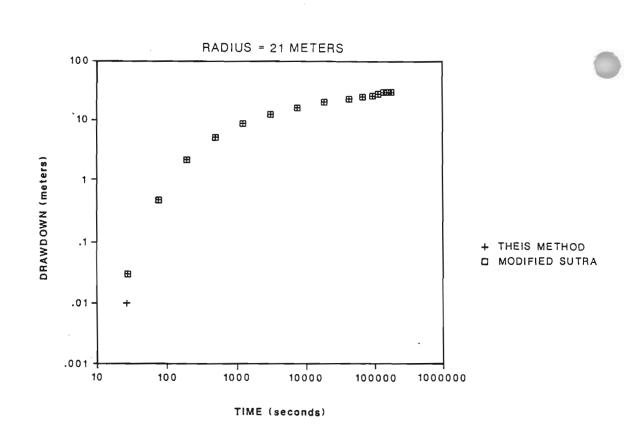


FIGURE J-12 TRIAXIAL COMPRESSION OF SALT, VERTICAL DISPLACEMENT

PC:WP51\TEMP:R-1625-J

change was the inclusion of the strain term that describes the contribution of fluid from the compaction or expansion of the rock matrix. The strain term is a sum of the elastic strains. It is passed to the fluid-flow module from the salt-creep module. The modifications to the code were verified to the extent possible through comparison with hand calculations. The code was verified against the Theis solution for drawdown versus radius and time. A problem involving a single well pumping within an infinite confined aquifer of constant thickness was evaluated. The aquifer was assigned an isotropic, homogeneous permeability distribution and screened portions of the well fully penetrated the aquifer.

The Theis method was applied to this aquifer system to calculate drawdown at any point in the aquifer at any time. The following two relations (Freeze and Cherry, 1979) were employed:


$$s = \frac{Q}{4\pi T'} W(u)$$
 (J.59)

$$u = \frac{r^2 S'}{T'}$$
 (J.60)

where

and

Values of W(u) versus u can be found in a table provided by Lohman (1972). The verification involved using the same parameters to run the modified SUTRA code as those used to calculate drawdown by the Theis method. The comparisons between solutions are summarized in Figures J-13 and J-14.

È

.

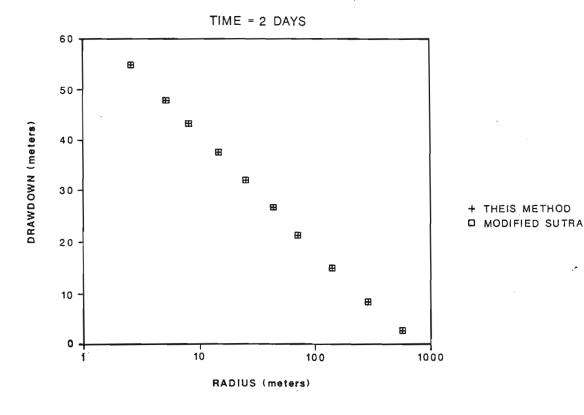


FIGURE J-14 THEIS COMPARISON VERSUS DISTANCE

J.8 REFERENCES

Aziz, K., and A. Settari, 1979, <u>Petroleum Reservoir Simulation</u>, Applied Science Publishing, Ltd., London.

Bear, J., 1972, <u>Dynamics of Fluids in Porous Media</u>, American Elsevier Publishing Co., New York, New York.

Bechtel National, Inc., 1986, "Waste Isolation Pilot Plant, Design Validation, Final Report," <u>DOE-WIPP-86-010</u>, prepared for the U.S. Department of Energy by Bechtel National, Inc., San Francisco, California.

Freeze, A., and J. Cherry, 1979, <u>Groundwater</u>, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Fung, Y. C., 1965, <u>Foundations of Solid Mechanics</u>, Prentice-Hall, Englewood Cliffs, New Jersey.

Goodman, R. E., 1980, Introduction to Rock Mechanics, John Wiley & Sons, New York, New York.

Herrman, W., W. R. Wawersik, and H. S. Lauson, 1980, "Analysis of Steady State Creep of Southeastern New Mexico Bedded Salt," <u>SAND 80-0558</u>, Sandia National Laboratories, Albuquerque, New Mexico.

INTERA Environmental Consultants, Inc., 1983, "VISCOT: A Two-Dimensional and Axisymmetric Nonlinear Transient Thermoviscoelastic and Thermoviscoplastic Finite-Element Code for Modeling Time-Dependent Viscous Mechanical Behavior of a Rock Mass," <u>ONWI-437</u>, Office of Nuclear Waste Isolation, Battelle Memorial Institute, Columbus, Ohio.

Lohman, S. W., 1972, <u>Ground-Water Hydraulics</u>, U.S.G.S. Professional Paper 708, U.S. Geological Survey, Washington, D.C.

Serata, S., C. Chern, M. Foglia, and T. Nakamara, 1985, "Finite Element Analysis of the Stress Control Method," <u>Proceedings of the 26th U.S. Symposium on Rock Mechanics</u>, Rapid City, South Dakota.

Spiers, C. J., J. L. Urai, G. S. Lister, J. N. Borland, and H. J. Zwart, 1986, "The Influence of Fluid-Rock Interaction on the Rheology of Salt Rock," Commission of the European Communities, <u>EUR10399en</u>, State University of Utrecht, the Netherlands.

Voss, C. I., 1984, "SUTRA Saturated-Unsaturated Transport: A Finite Element Simulation Model for Saturated-Unsaturated, Fluid-Density Dependent Ground Water Flow with Energy Transport or Chemically Reactive Single-Species Solute Transport," U.S. Geological Survey Water Resources Investigations <u>Report 84-4369</u>, prepared in cooperation with U.S. Air Force Engineering and Services Center, Washington, D.C.

White, F. M., 1986, Fluid Mechanics, Second Edition, McGraw-Hill, New York, New York.