Waste Isolation Pilot Plant

Compliance Certification Application

Reference 362

Kim, J.I., Ch. Apostolidis, G. Buckau, K. Bueppelmann, B. Kannellakopoulos, Ch. Lierse,
S. Magirius, R. Stumpe, I. Hedler, Ch. Rahner, and W. Stoewer. 1985.
Chemisches Verhalten von Np, Pu, and Am in verschiedenen knozentrieten
Salzloesunger, RCM 01085. Munich, Germany: Institut fuer Radiochemie der

Technische Universitaet Muenchen.

Submitted in accordance with 40 CFR §194.13, Submission of Reference Materials.

Institut für Radiochemie der Technischen Universität München

RCM 01085

ىرىغىدى بىيغاد كۇرۇرى دور. بەر. سىمەر كەسەر مۇكلى كۈرۈر بەرىي

Chemisches Verhalten von Np, Pu und Am in verschiedenen konzentrierten Salzlösungen

J. I. Kim, Ch. Apostolidis, G. Buckau,
K. Büppelmann, B. Kanellakopulos, Ch. Lierse,
S. Magirius, R. Stumpe,
I. Hedler, Ch. Rahner, W. Stöwer

Februar 1985

Abschlußbericht für das Vorhaben KWA 5312-1 (BMFT) und für das CEC-Projekt "Mirage", No. 359-83-7 WASD Berichtszeitraum: 01.02.83 - 31.01.85

RCM 01085 February 1985

Chemical Behaviour of Np, Pu and Am in Various Brine Solutions

J. I. Kim, Ch. Apostolidis, G. Buckau, K. Büppelmann, B. Kanellakopulos, Ch. Lierse, S. Magirius, R. Stumpe, I. Hedler, Ch. Rahner, W. Stöwer

Institut für Radiochemie, TU München, 8046 Garching, FRG

ABSTRACT

The chemical behaviour of Np, Pu and Am in various brine solutions has been investigated. The study deals with important basic chemical processes , i. e. solubility, hydrolysis reaction, complexation, redox reaction, colloid generation. The nuclides used are 237 Np, 238 Pu, 239 Pu and 241 Am in the form of oxide or/and hydroxide, whereas the saline solution comprises are NaCl-solution of different concentration (0.1 \sim 5 M), Na3y-salt solution, quinary solution (Q) and saline groundwaters from Gorleben.

This paper reports equilibrium solubilities of the nuclides under varying geochemical parameters, pH, Eh and CO_2 ; thermodynamic constants of hydrolysis reactions of NpO₂⁺, Pu⁴⁺, PuO₂²⁺, Am³⁺ and AmO₂⁺ ions; colloid generation and characterization; speciation; alpha radiolysis effect on dissolution. Complexation and kinetics of redox reactions are only being referred to earlier or on-going works. The speciation has been conducted for relativly higher concentrations by spectrophotometry (> 10⁻⁶ mole/L) and for very dilute solutions (< 10⁻⁶ mole/L) by laser induced photoacoustic spectroscopy (LPAS). Based on the results from this work and on the literature data, the speciation diagrams of pH-Eh correlation are produced for each element.

ZUSAMMENFASSUNG

Das chemische Verhalten der Aktinoide Np, Pu und Am in verschiedenen Salzlösungen wurde untersucht. Grundlegende Prozesse wie Löslichkeit, Hydrolyse, Komplexbildung, Redox-Reaktionen und die Bildung von Kolloiden wurden studiert. Die Nuklide ²³⁷Np, ²³⁸Pu ²³⁹Pu und ²⁴¹Am wurden in Form ihrer Oxide und/oder Hydroxide eingesetzt, während als wäßriges Medium NaCl-Lösungen unterschiedlicher Konzentrationen (0.1 \sim 5 M), Na3 γ -Salzlösung, quinäre Lösung (Q-Lauge) und reelle, saline Gorleben-Grundwässer verwendet wurden. Contract Reserves

Die vorliegende Arbeit präsentiert Gleichgewichtslöslichkeiten der oben genannten Nuklide in Abhängigkeit verschiedener geochemischer Parameter (pH, Eh, 0_2 -Partialdruck), thermodynamische Konstanten für die Hydrolysereaktionen von Np0⁺₂, Pu⁴⁺, Pu0²⁺₂, Am³⁺ und Am0⁺₂, Angaben zur Bildung und Charakterisierung von Kolloiden, Speciation sowie den Einfluß von α -Radiolyseeffekten auf die Löslichkeit. Die Speciation wurde bei vergleichsweise hohen Konzentrationen (> 10⁻⁶ mol/L) mit Hilfe der Spektrophotometrie und bei verdünnten Lösungen (< 10⁻⁶ mol/L) durch laserinduzierte photoakustische Spektroskopie (LPAS) durchgeführt. Auf der Basis der erhaltenen Ergebnisse sowie von Literaturwerten wurden die Eh-pH-Diagramme für jedes Element erstellt.

Sector States

INHALT

-			
Se	Ź	t	e

<u>1 EINLEITUNG</u>				
<u>2 08</u>	ERBLICK	2		
2.1	Löslichkeit	2		
2.2	Hydrolysereaktionen	2		
2.3	Komplexbildung	3		
2.4	Kinetik	3		
2.5	Kolloidbildung	4		
2.6	Speciation	5		
<u>3 CH</u>	EMISCHES VERHALTEN VON NEPTUNIUM	7		
3.1	Durchgeführte Untersuchungen	7		
3.2	Experimentelles	7		
3.3	Ergebnisse und Diskussion	7		
3.3.1	Hydrolyse von Np(V)	7		
3.3.2	Löslichkeit in Salzlösungen	10		
3.3.3	Speciation	12		
<u>4 CHE</u>	MISCHES VERHALTEN VON PLUTONIUM	16		
4.1	Durchgeführte Untersuchungen	16		
4.2	Experimentelles	16		
4.2.1	Pu(IV)~Hydrolyse	16		
4.2.2	Pu(VI)-Hydrolyse	17		
4.2.3	Löslichkeitsexperimente	17		
4.2.4	Radiolyse-Experiment	18		
4.2.5	Speciationsuntersuchungen	. 18		

÷Ì

ļ

		S
4.3	Ergebnisse und Diskussion	
4.3.1	Hydrolyse von Pu(IV) -	
4.3.2	Hydrolyse von Pu(VI)	
4.3.3	Löslichkeit in Salzlösungen	
4.3.4	Radiolyse-Effekte	
4.3.5	Speciation	
<u>5 CHI</u>	EMISCHES VERHALTEN VON AMERICIUM	
5.1	Durchgeführte Untersuchungen	
5.2	Experimentelles	
5.2.1	Am(III)-Hydrolyse	
5.2.2	Am(V)-Hydrolyse	
5.2.3	Löslichkeitsexperimente	
5.2.4	Radiolyse-Experiment	
5.2.5	Speciationsuntersuchungen	
5.3	Ergebnisse und Diskussion	
5.3.1	Hydrolyse von Am(III)	
5.3.2	Hydrolyse von Am(V)	
5.3.3	Löslichkeit in Salzlösungen	
5.3.4	Radiolyse-Effekte	
5.3.5	Speciation	!
6 ANH/	ANG	
6.1	Tabellen	
6.2	Verzeichnis der Tabellen	10
5.3	Verzeichnis der Abbildungen	11
5.4	Literaturverzeichnis	11

\$-1e**

5

1 EINLEITUNG

9147

Der vorliegende Bericht stellt eine Zusammenfassung der im Rahmen des BMFT-Forschungsvorhabens KWA 5312-1 sowie des CEC-Projekts "MIRAGE" (No. 359-83-7 WASD) durchgeführten Arbeiten dar.

1

Das Ziel der Untersuchungen war, das grundlegende Wissen über das geochemische Verhalten ausgewählter Aktinoide (Np, Pu, Am) unter den Bedingungen eines Endlagers in Gorleben, d. h. in konzentrierten Salzlösungen und in reellen, salinen Grundwässern zu erweitern. Die Arbeiten umfaßten deshalb die Bestimmung thermodynamischer und kinetischer Daten, die Messung von Löslichkeiten in den verschiedenen salinen Systemen (NaCl-Lösung, Na3y-Salzgruslösung, quinärer Lauge = Q-Lauge) und in salinen Grundwässern), die Identifizierung der gelösten Aktinoiden-Spezies (Speciation) und die Bildung von Kolloiden. Die Ergebnisse dieser Untersuchungen sollten einen Einblick in das Migrationsverhalten der Radionuklide in der Geosphäre gewähren und die Möglichkeit schaffen, ihr Verhalten in einem gegebenen System vorherzusagen.

Die folgenden Punkte sollen im Anschluß diskutiert und ihre Bedeutung für das Vorhabensziel herausgestellt werden:

- Löslichkeit
- Hydrolysereaktionen
- Komplexbildung
- Kolloidbildung
- Kinetik
- Speciation

Anschließend an den zusammenfassenden Überblick in Kapitel 2 beschreiben die Kapitel 3, 4 und 5 die durchgeführten Untersuchungen an den Elementen Neptunium, Plutonium und Americium und diskutieren die erhaltenen Ergebnisse.

2 OBERBLICK

2.1 Löslichkeit

Die Löslichkeiten der Aktinoiden-Verbindungen (Oxide, Hydroxide oder Carbonate) sind wichtige Kenngrößen für die Quellterm-Berechnungen des geplanten Endlagers in Gorleben. Ihre Bestimmung unter Variation verschiedener geochemischer Parameter wie pH-Wert, Eh-Wert, Ionenstärke, Temperatur, 0,- und CO,-Partialdruck ist Grundvoraussetzung für eine Quellterm-Beschreibung sowie für eine Verhaltensbeschreibung auf der Basis einer physikalisch-chemischen Modellberechnung. Eine präzise Kenntnis des Lösevorgangs und der ihn beeinflussenden Faktoren ist neben der Identifizierung der sich dabei bildenden Aktinoiden-Spezies von großer Wichtigkeit. Die Schwierigkeit bei Löslichkeitsbestimmungen in den konzentrierten Salzlösungen liegt außer in der anzuwendenden Arbeitstechnik (z. B. Phasentrennung) auch in der genauen Dokumentation aller möglichen Einflußgrößen in realen Aquifer-Systemen (Milieu-Charakterisierung) [1]. Die Kolloidbildung, der Einfluß der radioaktiven Strahlung und die damit verbundene Bildung reaktiver Spezies sowie die u. a. auch deshalb ablaufenden Redox-Reaktionen komplizieren sowohl die Messung als auch die spätere Interpretation von Löslichkeitsdaten [1,3]. Zwar ist eine direkte Messung der Löslichkeiten in realen aquatischen Lösungen sinnvoll, aber diese Daten sind nur von Bedeutung bei gleichzeitiger Milieu-Charakterisierung, d. h. wenn Angaben über die geochemischen Parameter des gegebenen Systems gemacht werden können.

2.2 Hydrolysereaktionen

Die Hydrolysereaktionen sind gerade im Falle der Aktinoide von besonderer Wichtigkeit. Sie bestimmen häufig nicht nur die Löslichkeit in praktisch neutralen Lösungen, sondern führen auch zur Bildung polynuklearer und kolloidaler Spezies [1-9]. Die Kenntnis der Hydrolysekonstanten als Funktion von Ionenstärke und Temperatur ist daher für sämtliche Aktinoiden-Oxidationsstufen erforderlich, um in Verbindung mit entsprechenden Komplexbildungskonstanten das chemische Verhalten in einem gegebenen Medium vorhersagen zu können.

2.3 Komplexbildung

Der Komplexbildung kommt in der Lösungs-Chemie der Aktinoide wohl die größte Bedeutung zu. Sie beeinflußt entscheidend die maximale Elementkonzentration sowie Thermodynamik und Kinetik möglicher Redoxprozesse. In den normalen aquatischen Systemen ist allerdings die Zahl der möglichen Komplexbildner stark eingeschränkt. Im wesentlichen sind Carbonat-, Humat-, Sulfat- und Chlorid-Komplexe zu erwarten. Da die zweiwertigen Carbonat-Ionen mit den Aktinoiden äußerst stabile Komplexe bilden und durch das praktisch allgegenwärtige CO_2 immer wieder nachgebildet werden können, wurden umfangreiche Studien über das Verhalten der Aktinoide, insbesondere des Plutoniums und des Americiums, in Carbonatlösung durchgeführt. Im Rahmen dieses Berichts wird allerdings nicht näher auf dieses Gebiet eingegangen und stattdessen auf entsprechende Publikationen und Reports hingewiesen [3,10-12].

3

2.4 Kinetik

Auf Grund ihrer Möglichkeit, in mehreren Oxidationsstufen nebeneinander vorzuliegen, spielt die Redoxkinetik der Aktinoide, und hier vor allem die des Plutoniums und Neptuniums, in der Chemie dieser Elemente eine wichtige Rolle. Deshalb sind auch die verschiedenartigen Redoxreaktionen, an denen Aktinoid-Ionen beteiligt sind und welche unter natürlichen Bedingungen ablaufen können, ein wesentliches gleichwie interessantes Aufgabengebiet [13,14]. In Verbindung mit Komplexbildung, Kolloidbildung und Radiolyseeinfluß ist besonders die Geschwindigkeit solcher thermodynamisch möglicher, aber vielleicht kinetisch gehemmter Reaktionen von Interesse [7]. Vor allem Redoxreaktionen sowie Disproportionierung der vier- und fünfwertigen Neptunium- und Plutoniumspezies, als auch die strahleninduzierten Oxidationen und Reduktionen gehören zu diesen wichtigen Prozessen. Die Arbeiten zu diesem Thema sind noch nicht abgeschlossen, so daß die erhaltenen Ergebnisse im Rahmen dieses Berichts nicht diskutiert wurden.

2.5 Kolloidbildung

In annähernd neutralen Lösungen ist die Bildung von Kolloiden ein entscheidender Prozess [2,15,16]. Diese Kolloide lassen sich dabei zweckmäßigerweise in drei Gruppen einteilen:

- Eigenkolloide (realcolloids), d. h. Aggregate von Spezies lediglich eines einzigen Radionuklids;
- Grundwasserkolloide, d. h. kolloidale Teilchen unterschiedlicher Komposition und Größe, wie sie in natürlichen Grundwässern vorkommen;
- Fremdkolloide (pseudocolloids), welche durch Sorption von monomeren oder auch polymeren Aktinoid-Spezies an Grundwasserkolloiden entstehen.

Die Größe der Kolloide wird mit ≤ 0.4 µm definiert, da solche Partikel erfahrungsgemäß im Grundwasser stabil bleiben und nicht sedimentieren.

Die Tendenz eines Metall-Ions zur Bildung von Eigen- oder Fremdkolloiden läuft in der Regel parallel mit seiner Neigung zu hydrolysieren. Aus diesem Grunde ist bei den drei- und vierwertigen Aktinoiden die Bildung von Kolloiden ausgeprägter als bei den fünf- oder sechswertigen, welche infolge der Koordination durch zwei Sauerstoffatome und der dadurch verminderten effektiven Ladungsdichte stabilisiert werden. Die Anwesenheit von Komplexbildnern, wie z. B. von Huminstoffen, kann allerdings diese Systematik durchbrechen.

Intensive radioaktive Strahlung, insbesondere α -Strahlung, ist in der Lage, die Größenverteilung von Kolloiden zu beeinflussen und zwar dahingehend, daß jene mit der Zeit immer kleiner werden und sogar eine Größe von ca. 1 nm (10 Å) unterschreiten [7,16]. Diese sogenannten "Mikrokolloide" sind selbst mit den zur Zeit verfügbaren Ultrafiltern kleinster Porengröße nicht filtrierbar und bleiben sogar oder vielleicht gerade in Lösungen hoher Ionenstärke stabil. Solche Mikrokolloide führen dann zu einer gegenüber thermodynamischen Abschätzungen stark erhöhten Löslichkeit des entsprechenden Radionuklids. Eine Charakterisierung und Quantifizierung von Kolloiden ist naturgemäß äußerst schwierig. Eine mögliche Untersuchungsmethode stellt die laserinduzierte photoakustische Spektroskopie (LPAS) dar, welche in Verbindung mit Ultrafiltration und/oder Ultrazentrifugation auf Grund ihrer hohen Nachweisempfindlichkeit eine qualitative Beurteilung der vorliegenden Aktinoid-Spezies erlaubt [16]. Die anorganischen Mikrobestandteile der Kolloide können mit Hilfe der Neutronenaktivierungsanalyse (NAA) bestimmt werden [15].

2.6 Speciation

Das Migrationsverhalten von Radionukliden in natürlichen, aquatischen Systemen ist primär bestimmt durch den physikalischen und chemischen Zustand des jeweiligen Elements, welcher seine Wechselwirkung mit der umgebenden, geochemischen Matrix beeinflußt. Die präzise Identifizierung der gelösten Aktinoid-Spezies (Speciation), d. h. die Bestimmung von Oxidations- und Komplex- bzw. Kolloidzustand ist deshalb ein wichtiges Kriterium bei allen Migrationsuntersuchungen. Auf Grund der in annähernd neutralen Lösungen wegen der Löslichkeitsbeschränkung äußerst geringen Metall-Ionenkonzentrationen ist der Einsatz konventioneller Analysenverfahren wie Absorptionsspektrometrie nur begrenzt möglich. Auch elektrochemische Methoden wie Polarographie [12] oder Elektromigration [17,18] können in vielen Fällen, häufig vor allem wegen der Fremdsalz-Effekte, nicht verwendet werden.

Die von uns entwickelte Methode der laserinduzierten photoakustischen Spektroskopie (LPAS), welche mit Hilfe eines piezoelektrischen Kristalls die infolge der Laseranregung auftretenden Druckänderungen eines Absorbenten registriert, macht auch noch Konzentrationsbereiche bis 10⁻⁸ mol/L einer spektroskopischen Untersuchung zugänglich. Eine detaillierte Beschreibung dieses Verfahrens ist in früheren Arbeiten gegeben [19-22]. Einige typische Eichkurven, welche die hohe Nachweisempfindlichkeit der LPAS demonstrieren, sind in Abb. 2.1 dargestellt.

5

C.

<u>Abb. 2.1:</u> Eichkurven für die laserinduzierte photoakustische Spektroskopie (LPAS) zur Demonstration der Nachweisempfindlichkeit

3 CHEMISCHES VERHALTEN VON NEPTUNIUM

3.1 Durchgeführte Untersuchungen

Im Rahmen dieser Arbeit wurden folgende Untersuchungen an Neptunium durchgeführt:

- Hydrolyse-Untersuchung von Np(V)
- Löslichkeitsexperimente mit ²³⁷NpO₂ und ²³⁷NpO₂OH in verschiedenen salinen Lösungen (NaCl, Na3y-Salzgrus, Q-Lauge) unter aeroben und anaeroben Bedingungen
- Speciation der gelösten Np-Spezies

3.2 Experimentelles

Die Durchführung der Löslichkeitsexperimente sowie die Präparation der notwendigen Ausgangssubstanzen sind ausführlich in einem früheren Bericht [23] beschrieben. Auf eine Darstellung an dieser Stelle wird deshalb verzichtet. Experimentelle Details zur Untersuchung der Hydrolyse von Np(V), welche mit Hilfe der radiometrischen pH-Titration bei einer Ionenstärke von $\mu = 1.0 \text{ mol/L} (\text{NaClO}_4)$ unter Argon-Atmosphäre durchgeführt wurde, finden sich in [4].

3.3 Ergebnisse und Diskussion

3.3.1 Hydrolyse von Np(V)

Da Np(V) unter natürlichen Bedingungen in aquatischen Systemen eine sehr stabile Oxidationsstufe dieses Elements darstellt, ist sein chemisches Verhalten von besonderem Interesse. In verdünnten und konzentrierten Salzlösungen wird dieses Verhalten erheblich vom Neptunyl(V)-Ion NpO₂⁺ und möglichen Chlorokomplexen bestimmt werden. Hydroxospezies wie NpO₂OH oder NpO₂(OH)⁻₂ können bei höheren pH-Werten zusätzlich eine Polle spielen.

Um zuverlässige Daten über die Hydrolyse des Neptunyl(V)-Ions zu erhalten, wurden deshalb Untersuchungen mit Hilfe der radiometrischen pH-Titration durchgeführt [4]. Abb. 3.1 zeigt die mit dieser Arbeitstechnik erhaltene Löslichkeitskurve. Aus den gemessenen Werten konnten das Löslichkeitsprodukt Ksp von NpO₂OH sowie die Bildungskonstanten β_1 und β_2 für den Monohydroxo- und den Dihydroxokomplex errechnet werden.

In Tab. 3.1 sind diese Daten den Literaturwerten gegenübergestellt. Mit Ausnahme der Daten von SEVOSTYANOVA [24] stimmen alle Löslichkeitsprodukte gut überein. Beträchtliche Unterschiede bestehen allerdings bei der ersten Hydrolysekonstanten β_1 . Die Werte von KRAUS [25,26] und SEVOSTYANOVA können nur als grobe Abschätzung angesehen werden, da diese Autoren bei ihrer Berechnung die Anwesenheit anionischer Np-Spezies vernachlässigen, wie sie in der Literatur beschrie-

<u>Abb. 3.1:</u> Löslichkeitskurve von $^{237}NpO_2OH$ bei 25 °C und einer Ionenstärke von $\mu = 1.0 \text{ mol}/L (NaClO_h)$

Methode	Bedingungen	- log Ksp	log β ₁	log B ₂	Lit.
Löslichkeit	μ = 0.1	-8.85	4.93	-	[25]
	25 °C				
Titration	$\mu = 0.1$	-9.2	-	-	[26]
	25 °C				
Löslichkeit	$\mu = 0.2$	-9.0	3.92	-	[28]
	20 °C				
Titration	μ = 0.02	-9.73	5.1	-	[24]
Löslichkeit	μ = 1.0	-	4.68	-	[29]
	25 °C				
radiometr.	μ = 1.0	-8.81	2.33	4.89	TUM [4]
oH-Titration	25 °C				

ben sind [27]. MOSKVIN [28] errechnete β_1 aus Ksp und nur einem Löslichkeitswert bei pH = 8.6 unter der Annahme, daß Np(V) hier bereits vollständig als NpO₂OH vorliegt. MAYA [29] bestimmte β_1 im Rahmen eines Carbonatkomplexierungs-Experiments und berücksichtigte bei seiner Materialbilanz ebenfalls nur NpO₂OH. Die von uns mit Hilfe der radiometrischen pH-Titration erhaltenen Hydrolyse-Konstanten beschreiben das chemische Verhalten von Np(V) in 1.0 M NaClO₄ am besten.

Auf der Basis dieser Daten und der Komplexbildungskonstanten für den Monochloro- bzw. Dichlorokomplex von Np(V) (log $\beta_1 = -2.5$, log $\beta_2 = -1.55$ [30]) läßt sich eine pH-abhängige, relative Verteilung der Np(V)-Spezies in 5 M NaCl näherungsweise berechnen (Abb. 3.2). Es zeigt sich dabei, daß unter den gewählten Bedingungen, d. h. bei Be- Marine Carlos

Abb. 3.3 sind die wichtigsten davon graphisch dargestellt. Die gefundenen Löslichkeiten liegen in allen Fällen um mehrere Größenordnungen niedriger als auf Grund der Np(V)-Hydrolysekurve (vgl. Abb. 3.1) zu erwarten wäre. Dieser Effekt ist bei den anaeroben Versuchen, d. h. unter einer Atmosphäre von 99 % Ar und 1 % CO_2 , noch ausgeprägter als bei den Experimenten, welche in Luftkontakt durchgeführt wurden. Der Grund dafür ist in der Bildung schwerlöslicher Np-Carbonatverbindun-

<u>Abb. 3.3:</u> Löslichkeit von $^{237}NpO_2$ und $^{237}NpO_2OH$ in verschiedenen Salzlösungen; SG = gesättigte Na3y-Salzgruslösung; Q = Q-Lauge

gen zu sehen, die besonders im neutralen pH-Bereich die niedrigsten Löslichkeiten zeigen [29].

Die höchsten Löslichkeiten wurden unter aeroben Versuchsbedingungen festgestellt, wobei nur eine geringe Abhängigkeit von der NaCl-Konzentration zu beobachten ist. NpO_2 und NpO_2OH zeigen in reinen NaCl-Lösungen (aerob) praktisch die gleichen Löslichkeiten, während in gesättigter Na3y-Salzgruslösung ein Unterschied von fast drei Größenordnungen besteht. Er kann teilweise auf die noch nicht erfolgte Gleichgewichtseinstellung zurückgeführt werden, die sich in den noch immer ansteigenden Np-Konzentrationen dokumentiert.

Ein vollständig anderes Löslichkeitsverhalten zeigt NpO_2 unter anaeroben Bedingungen. Hier liegt die Menge des gelösten Neptuniums weit unter der bei aeroben Verhältnissen, und die Zeitabhängigkeit der Löslichkeit weist darauf hin, daß das System noch weit vom Gleichgewichtszustand entfernt ist. Diese Tatsache kann auf die grundsätzlich niedrigeren Redoxpotentiale der Probenlösungen in Abwesenheit von Luftsauerstoff zurückgeführt werden, welche eine Oxidation des primär gebildeten und geringer löslichen Np(IV) zu Np(V) verhindern oder verzögern und damit die Lösekinetik entscheidend beeinflussen (vgl. Kap. 3.3.3). Unter der Annahme, daß diese Oxidation aber irreversibel verläuft, ist zu erwarten, daß für NpO_2 unter anaeroben Versuchsbedingungen die gleichen Löslichkeitswerte gefunden werden wie unter Luftkontakt, nur nach erheblich längeren Kontaktzeiten.

3.3.3 Speciation

Die Identifizierung der gelösten Np-Spezies wurde mit Hilfe der konventionellen Absorptionsspektroskopie durchgeführt. In keiner der Proben konnte neben dem erwarteten Np(V) noch eine andere Oxidationsstufe nachgewiesen werden. In den aerob gelagerten Lösungen stimmte die auf Basis des charakteristischen Absorptionspeaks (bei 983 nm) aus dem Spektrum berechnete Np(V)-Konzentration innerhalb der Fehlergrenzen mit der analytischen Np-Gesamtkonzentration überein. Daß Np(V) unter diesen Versuchsbedingungen (Eh = +300 bis +500 mV; pH = 4.8 bis 6.8) die dominierende Oxidationsstufe darstellt, läßt sich auch aus dem entsprechenden Eh-pH-Diagramm für dieses Element (Abb.
3.4) ableiten, welches allerdings nur als grobe Abschätzung betrach-

* 13

Abb. 3.4: Eh-pH-Diagramm für Neptunium

Folgende Redoxpotentiale und Hydrolysekonstanten wurden verwendet: Np(V1)/Np(V): 1.13 V; Np(V)/Np(1V): 0.75 V; Np(1V)/Np(111): 0.147 V; Np(111)/Np(0): -186 V Np(111): log β_1 = 6.6, log β_2 = 11.1, log β_3 = 15.1 Np(1V): log β_1 = 12.2, log β_2 = 24.8, log β_3 = 35.4, log β_4 = 43.7 Np(V): log β_1 = 2.3, log β_2 = 4.89 Np(V1): log β_1 = 8.9, log β_2 = 17.8, log β_3 = 21.8

7

tet werden darf; seiner Konstruktion liegen nämlich nicht die für hohe Ionenstärken gültigen Hydrolysekonstanten und Redoxpotentiale zugrunde, und eine Bildung von Chlorokomplexen wurde nicht berücksichtigt. Dennoch können daraus nützliche Anhaltspunkte über mögliche Np-Spezies gewonnen werden.

So läßt sich z. B. auch vorhersagen, daß bei Eh-Werten zwischen -200 mV und 0 mV, wie sie typischerweise unter anaeroben Bedingungen gemessen werden, Np(IV) stabilisiert werden kann. Mit der Anwesenheit von Np(IV) lassen sich auch die beobachteten Löslichkeitsunterschiede bei anaerober bzw. aerober Atmosphäre erklären sowie der Filtrationseffekt, welcher bei den anaeroben Proben bei der Filtration mit Sartorius-Filtern der Trenngrenze 5 kD (ca. 13 Å) im Gegensatz zu den entsprechenden aeroben Versuchen festgestellt werden konnte (vgl. Tab. 6.6). Extraktionsversuche mit TTA, welche an den anaeroben Proben unternommen wurden, untermauern die Anwesenheit von etwa 20 bis 60 % Np(IV), welches allerdings gegenüber einer Oxidation zu Np(V) sehr empfindlich ist. Erfolgt nämlich die Einstellung des zur TTA-Extraktion erforderlichen pH-Wertes durch Zugabe von HNO₃ (statt HCl), so ist praktisch kein extrahierbares, vierwertiges Np mehr vorhanden.

Die Auflösung von NpO_2 kann also durch folgende Reaktionsgleichungen beschrieben werden:

NpO ₁ +	2 H 0	‡	Np ⁴⁺ + 4 OH [−]	(3	.1	I))
--------------------	-------	---	--------------------------------------	----	----	----	---

$$Np^{4+} + 4 OH^{-} \neq NpO_{2}^{+} + 2 H_{2}O + e^{-}$$
 (3.2)

$$NpO_2$$
 $\ddagger NpO_2^+ + e^-$ (3.3)

Wird der gelöste Sauerstoff als einzig mögliches Oxidationsmittel angenommen, so läßt sich seine Reduktion

$$1/4 0_2 + e^- + 1/2 H_2 0 \ddagger 0H^-$$
 (3.4)

mit Gleichung (3.3) koppeln und man erhält als Bruttoreaktion:

$$NpO_2 + \frac{1}{4}O_2 + \frac{1}{2}H_2O \neq NpO_2^+ + OH^-$$
 (3.5)

Die Oxidation von Np(IV) nach Gleichung (3.2) wird durch den Eh-Wert der jeweiligen Lösung entweder verhindert oder begünstigt. Daher sollte die maximale Np-Konzentration bei Anwesenheit von Luftsauerstoff, d. h. unter oxidierenden Bedingungen, durch Np(V) und sein Hydrolysebzw. Chlorokomplexbildungsverhalten bestimmt werden, wohingegen in anaerobem Milieu Np(IV) stabilisiert wird und durch seine starke Neigung zur Hydrolyse die Löslichkeit deutlich erniedrigt. Allerdings steht hier zu erwarten, daß Reaktion (3.5) irreversibel verläuft und deshalb schon sehr geringe Sauerstoffmengen Np(IV) mit der Zeit oxidieren.

Eine direkte Oxidation des festen NpO₂ scheint in Abwesenheit von Oxidationsmitteln unwahrscheinlich und deshalb nur dann gegeben, wenn z. B. durch α -Radiolyse gebildete, oxidierende Chlorspezies in der Lösung vorliegen (vgl. Kap. 4.3.4). Dann wäre allerdings auch eine Bildung von Np(VI) denkbar, da die dazu notwendigen Eh-Werte von > 800 mV (vgl. Abb. 2.4) in ²³⁸Pu- und ²⁴¹Am-haltigen Systemen hoher spezifischer α -Aktivität (> 1 Ci/L) leicht erreicht und häufig deutlich überschritten werden.

Zusammenfassend kann festgehalten werden, daß Neptunium in annähernd neutralen, konzentrierten Salzlösungen als NpO₂⁺ und in geringem Umfang als NpO₂Cl₂⁻ vorliegen wird. Bei gleichzeitiger Abwesenheit von α -Strahlern hoher spezifischer Aktivität und von gelöstem Luftsauerstoff ist aber auch Np(IV) zu erwarten, welches dann analog dem vierwertigen Plutonium polynukleare und kolloidale Spezies zu bilden vermag. In oxidierendem Milieu kann Np(VI) gebildet werden und in Form von Hydrolyse- und Chlorospezies das chemische Verhalten des Neptuniums bestimmen.

4 CHEMISCHES VERHALTEN VON PLUTONIUM

4.1 Durchgeführte Untersuchungen

Die Experimente mit Plutonium wurden teils mit ²³⁹Pu-Chargen und teils mit ²³⁸Pu-Chargen durchgeführt, um den Einfluß der unterschiedlichen α -Aktivität auf die jeweiligen Ergebnisse feststellen zu können. Die genaue isotopische Zusammensetzung der beiden Pu-Chargen ist bereits in einem früheren Bericht [23] wiedergegeben worden.

Folgende Punkte wurden untersucht:

- Hydrolysereaktionen von Pu(IV)
- Hydrolysereaktionen von Pu(VI)
- Löslichkeit von ²³⁸PuO₂ und ²³⁹PuO₂ in verschiedenen salinen Lösungen (NaCl, Na3y-Salzgrus, Q-Lauge, salinem Gorleben-Grundwasser) unter aeroben und anaeroben Bedingungen
- Radiolysereaktionen mit ²³⁸PuO₂ in 5 M NaCl
- Speciation der gelösten Pu-Spezies

Ebenfalls untersucht wurde die Carbonatkomplexierung von Pu(IV) sowie die Kinetik der Pu(VI)-Autoreduktion und der Pu(V)-Disproportionierung in Carbonatlösung. Die dabei erhaltenen Ergebnisse werden an anderer Stelle wiedergegeben [13,14].

4.2 Experimentelles

4.2.1 Pu(IV)-Hydrolyse

Die Untersuchung des Hydrolyse-Verhaltens von Pu(IV) wurde mit Hilfe der radiometrischen pH-Titration unter einer Atmosphäre von 100 % Ar (99.999 %) bei einer Ionenstärke von $\mu = 1.0 \text{ mol/L} (\text{NaClO}_4)$ durchgeführt. Dazu wurde eine Lösung von ²³⁹Pu(IV) in HClO₄ durch Zugabe von CO₂-freier NaOH auf einen pH-Wert von ca. 11.2 eingestellt und nach Erreichen eines Gleichgewichtszustandes schrittweise durch HClO₄ wieder angesäuert. Dabei wurde jeweils die Konstanz von pH-Wert und Pu-

Konzentration abgewartet. Letztere wurde für jeden pH-Wert nach Phasentrennung mit Filtern unterschiedlicher Porenweite (220 nm, 30 nm und \sim 1.3 nm) durch Flüssigszintillationsmessung bestimmt. Der Anteil des aus dem Pu-241 nachgebildeten Am-241 wurde durch γ -Messung mit einem NaI(T1)-Detektor korrigiert.

Im Bereich von pH = 1 bis pH = 4, wo die Pu-Konzentration $\ge 10^{-5}$ mol/L betrug, wurden Absorptionsspektren aufgenommen, um die vorliegenden Pu-Spezies zu identifizieren. Hierzu wurde ein konventionelles Spektrophotometer eingesetzt, welches in Verbindung mit einer Analog-Digital-Umwandlung durch ein Vielkanalsystem eine kumulative Messung praktisch beliebig vieler Scans über den gewünschten Spektralbereich erlaubte (Multi-Scaling-Technik), was die Nachweisempfindlichkeit und die Qualität der Spektren deutlich verbesserte (vgl. Kap. 4.3.5).

4.2.2 <u>Pu(VI)-Hydrolyse</u>

Die Untersuchung der Pu(VI)-Hydrolyse, welche in Form von Batch-Löslichkeitsexperimenten mit ²³⁸PuO₂(OH)₂ durchgeführt wurde, ist in einer früheren Veröffentlichung [5] ausführlich beschrieben.

4.2.3 Löslichkeitsexperimente

Die Durchführung der Löslichkeitsexperimente mit ²³⁸PuO₂ und ²³⁹PuO₂ sowie die Präparation der notwendigen Ausgangssubstanzen ist in einem früheren Bericht [23] beschrieben. Dabei handelte es sich im wesentlichen um Versuche unter aerober Atmosphäre, d. h. in Kontakt mit Luftsauerstoff.

Um jedoch die anaeroben Bedingungen, wie sie im Grundwasser und in der betrachteten geochemischen Umgebung herrschen, möglichst gut zu simulieren, fand die Durchführung einer großen Zahl von Löslichkeitsuntersuchungen in einer Spezial-Box statt, deren Atmosphäre sauerstofffrei gehalten wurde und aus 99 % Ar mit 1 % CO₂ bestand. Die Probenflaschen wurden hier offen aufbewahrt, und der jeweilige Verdunstungsverlust konnte durch Zugabe von konditioniertem, bidestilliertem Was-----

ser ausgeglichen werden. Die Bestimmung der relevanten Parameter (Eh, pH und Pu-Konzentration) erfolgte ebenfalls unter anaeroben Bedingungen; die Boxenatmosphäre wurde in unregelmäßigen Abständen gaschromatographisch kontrolliert.

4.2.4 Radiolyse-Experiment

Um den Einfluß intensiver radioaktiver Strahlung auf Eh- und pH-Wert sowie auf den Oxidationszustand und die Löslichkeit des Plutoniums in 5 M NaCl zu studieren, wurde ein Radiolyseexperiment mit ²³⁸PuO₂ unter aeroben Versuchsbedingungen durchgeführt. In 100 mL-Glasflaschen wurden dazu eingewogene unterschiedliche Mengen des Oxids mit 100 mL 5 M NaCl aufgefüllt; in unterschiedlichen Zeitabständen erfolgte die Messung von Eh- und pH-Wert sowie der Löslichkeit des Plutoniums.

4.2.5 Speciationsuntersuchungen

Für die Interpretation der erhaltenen Meßdaten war die Bestimmung und Charakterisierung der jeweils vorliegenden Pu-Spezies in Lösung von besonderer Bedeutung. Hierzu wurden hauptsächlich spektroskopische Verfahren in Kombination mit Ultrafiltration und Ultrazentrifugation eingesetzt.

Meßprinzip und -technik der laserinduzierten photoakustischen Spektroskopie sind bereits detailliert beschrieben [19-22] (vgl. Kap. 2.6). Im Falle des Plutoniums wurden mit dieser Methode die Wellenlängen-Bereiche untersucht, in welchen normalerweise eine charakteristische Absorption der einzelnen Pu-Oxidationsstufen erfolgt. Da in vielen Fällen neutrale Lösungen zu vermessen waren, in denen sehr kleine Konzentrationen von Plutonium in hydrolisierter Form erwartet wurden, welches nur zu äußerst geringen Meßsignalen führt, mußte jedes Spektrum zweckmäßigerweise auch noch einmal nach Ansäuern auf pH ≤ 1 aufgenommen werden. Die so erhaltenen Spektren können häufig indirekte Hinweise auf ursprünglich vorhandene Pu-Spezies geben, z. B. Pu(IV-Kolloide, welche sich in Säure meist erheblich langsamer auflösen als menomere Hydrolyse-Produkte derselben Oxidationsstufe.

Lagen Proben vor, bei welchen die Pu-Konzentration ausreichend hoch für Messungen mit der konventionellen Spektrophotometrie war, so wurde natürlich überwiegend dieses Verfahren eingesetzt. Im Konzentrationsbereich zwischen 10^{-6} und 10^{-4} mol/L kam die bereits erwähnte Multi-Scaling-Technik zum Einsatz. Mit ihr konnte durch kumulative Messung vieler Einzel-Spektren ein und derselben Probe ein Gesamtspektrum erhalten werden, in welchem auch noch kleine Peaks deutlich zu erkennen und auszuwerten waren. Ein solches Ergebnis wurde durch kontinuierliches Übertragen des Photomultiplier-Meßsignals auf einen angeschlossenen Vielkanalanalysator erreicht [5]. Die so registierten Spektren, welche aus manchmal bis zu 100 Einzeldurchläufen resultierten, konnten darüberhinaus noch einem Zentralrechner zugeführt werden, über den dann eine schnelle Auswertung und graphische Ausgabe möglich war. Die Anwendung der Multi-Scaling-Technik erforderte zwar insgesamt einen erheblich höheren Zeitaufwand für die Durchführung der Messung, verbesserte dafür aber die Nachweisempfindlichkeit um den Faktor 5 bis 10.

4.3 Ergebnisse und Diskussion

4.3.1 Hydrolyse von Pu(IV)

Das Ergebnis der radiometischen pH-Titration von Pu(IV) ist in Abb. 4.1 in Form einer pH-abhängigen Löslichkeitskurve dargestellt. Untersuchungen mit der Absorptionsspektrometrie (Multi-Scaling-Technik) zeigten jedoch, daß es sich bei den gelösten Pu-Spezies nicht nur um Pu(IV), sondern vielmehr um andere, offensichtlich durch Disproportionierung und Oxidation entstandene Plutonium-Oxidationsstufen handelte. Monomeres, ionisches Pu⁴⁺ konnte erst bei einem pH-Wert von pH \approx 1 nachgewiesen werden. In allen anderen Fällen, d. h. bis pH \approx 4, lagen Pu(III), Pu(V) oder Pu(VI) vor, wobei allerdings die analytische Pu-Gesamtkonzentration deutlich von dem aus den Absorptionsspektren berechneten Wert abwich. Weiterhin war ein deutlicher Einfluß der α -Strahlung festzustellen, da in Proben mit ²³⁹Pu(OH)₄-Feststoff und solchen ohne Bodenkörper andere Anteile der verschiedenen Pu-Oxidationsstufen beobachtet wurden. Die Abbildunoen 4.2 und 4.3

<u>Abb. 4.1:</u> Ergebnis der radiometrischen pH-Titration von Pu(IV) und korrigierte Löslichkeitskurve von Th(IV) zur Beschreibung der Pu(IV)-Hydrolyse

demonstrieren diesen Effekt bei zwei ausgewählten pH-Werten. Während bei pH \cong 2.5 mit Bodenkörper eindeutig Pu(V) und Pu(VI) nachgewiesen werden können (Abb. 4.2.a), beobachtet man unter den gleichen Bedingungen, nur ohne den Bodenkörper, neben Pu(VI) auch noch Pu(III) (Abb. 4.2.b). Bei pH \cong 3.3 ist Pu(VI) nur noch in der Probe mit der hohen spezifischen α -Aktivität präsent (Abb. 4.3.a), ohne festes ²³⁹Pu(OH)₄ als Bodenkörper wird dagegen nur Pu(V) gefunden (Abb. 4.3.b).

Die festgestellte Differenz zwischen spektroskopisch ermittelter und radiometrisch gemessener Pu-Menge konnte auch durch Ansäuern der Probenlösungen und das damit verbundene Überführen der monomeren Hydrolyse-Spezies in das jeweilige freie Ion nicht erklärt werden. Filtrationsversuche schlossen dabei das Vorhandensein kolloidaler Teilchen ≥ 1.3 nm aus. Eine mehrstündige Behandlung der angesäuerten Probe im Ultraschallbad führte jedoch zum Erscheinen eines schwachen Pu(IV)-

<u>Abb. 4.3:</u> Absorptionsspektren von Plutonium im Rahmen der radiometrischen pH-Titration von Pu(IV) bei pH 3.3: (a) mit Pu(OH)₄-Bodenkörper, [Pu] = 2×10^{-4} mol/L und (b) ohne Bodenkörper, [Pu] = 6.7×10^{-5} mol/L

Absorptionspeaks bei 475 nm. Aus dieser Beobachtung wurde gefolgert, daß das Plutonium in der ursprünglichen Lösung in Form sehr kleiner "Mikrokolloide" vorlag, welche lediglich durch die oben erwähnten Maßnahmen – und dann auch nur teilweise – in das freie Pu⁴⁺-Ion zu überführen waren.

Die in Abb. 4.1 dargestellte Löslichkeitskurve repräsentiert also neben Pu(III), Pu(V) und Pu(VI)-Spezies auch eine erhebliche Menge an Pu(IV) in kolloidaler Form. Nur bei hohen pH-Werten (pH \cong 9.5) kann angenommen werden, daß praktisch ausschließlich monomeres Pu(OH)₄ vorliegt. Pu(III) wird bei solch hohen pH-Werten nämlich quantitativ zu Pu(IV) oxidiert, und Pu(V) bzw. Pu(VI) müßten eine erheblich höhere Pu-Gesamtlöslichkeit bewirken, wenn sie in nennenswerten Mengen vorhanden wären (vgl. Kap. 4.3.2).

Um aus den gemessenen experimentellen Daten Bildungskonstanten für die monomeren Pu(IV)-Hydrolyse-Spezies ableiten zu können, wurden die Ergebnisse eines Löslichkeitsexperiments mit 232ThO, zu Hilfe genommen. Dabei wurde unterstellt, daß die Hydrolyse von Th(IV) und Pu(IV) zu vergleichbaren Löslichkeitskurven führt, welche sich lediglich in der absoluten Lage, nicht aber hinsichtlich ihres charakteristischen Verlaufs unterscheiden. Unter dieser Voraussetzung wurden die ²³²Th-Löslichkeitsdaten so korrigiert, daß die resultierenden Konzentrations-Werte im pH-Bereich pH ≥ 10 mit denen des Pu(IV)-Titrationsexperiments übereinstimmten. Diese korrigierten 232Th-Werte sind ebenfalls in Abb. 4.1 dargestellt. Geht man davon aus, daß die ursprünglichen Th-Konzentrationen lediglich monomere Hydrolyse-Spezies repräsentieren, so kann die korrigierte Löslichkeitskurve als Hydrolysekurve von vierwertigem Plutonium angesehen werden. Unter dieser Voraussetzung wurden nun mit Hilfe eines nichtlinearen Computer-Fit-Programmes die Hydrolysekonstanten des Pu(IV) berechnet. Sie sind in Tab. 4.1 den von BAES und MESMER [32] abgeschätzten Werten gegenübergestellt. Bis auf die Tatsache, daß diese Autoren die Existenz eines anionischen Pu(OH) -Komplexes annehmen, für welchen es im vorliegenden Fall jedoch keine experimentellen Hinweise gibt, stimmen die Konstanten recht gut überein. Die Berechtigung der oben gemachten Annahmen

23

H. C. H. H.

		BAES + MESMER	[32] diese Arbeit
log	Ksp	-61.3	-54.2
log	β,	12.3	12.3
log	β	24.7	24.8
log	β,	34.8	35.4
log	β	44.4	43.7
log	β ₅	52.9	-

<u>Tabelle 4.1:</u> Vergleich der Hydrolysekonstanten von Pu(IV) bei 25 °C für eine Ionenstärke von $\mu = 1.0 \text{ mol/L}$

wird auch durch die Ergebnisse der Löslichkeitsexperimente von ²³⁹PuO₂ in NaCl-Lösungen gestützt, welche noch später diskutiert werden (Kap. 4.3.3).

Auf der Basis der erhaltenen Hydrolysekonstanten und den in der Literatur gegebenen Werten für die Chlorokomplexe [33] kann der relative Anteil der monomeren Pu(IV)-Spezies in 5 M NaCl berechnet werden (Abb. 4.4). Sie zeigt, daß mit dem Vorliegen von Chlorokomplexen nur bis pH \approx 2.5 gerechnet werden muß. Oberhalb dieses Wertes sollten, ohne Betrachtung der polymeren Pu(IV)-Hydrolyseprodukte vor, nur die reinen Hydroxo-Spezies relevant sein.

4.3.2 Hydrolyse von Pu(VI)

Die gemessene Löslichkeitskurve von ${}^{238}PuO_2(OH)_2$ bei 25 °C und einer Ionenstärke von $\mu = 0.1 \text{ mol/L}$ zeigt Abb. 4.5. Der Anstieg bei höheren pH-Werten belegt, da in Abwesenheit von CO₂ gearbeitet wurde und löslichere Carbonatkomplexe dadurch ausgeschlossen werden können, die Anwesenheit anionischer Hydroxokomplexe. Mathematische Modellansätze zur Beschreibung der experimentellen Kurve geben die gefundenen Verhältnisse dann am besten wieder, wenn außer den monomeren Hydrolyseprodukten auch noch polynukleare Pu(VI)-Spezies betrachtet werden. Ein eindeutiger Beweis für bestimmte Dimere bzw. Trimere ist allerdings nicht

<u>Abb. 4.4:</u> Relativer Anteil der Pu(IV)-Spezies in 5 M NaCl. Die Berechnung erfolgte auf der Basis folgender Hydrolyse- bzw. Chlorokomplexbildungskonstanten: log Ksp = -54.2, log β_1 = 12.2, log β_2 = 24.8, log β_3 = 35.4, log β_4 = 43.7, β_1 (PuCl³⁺) = 2.00, β_2 (PuCl²⁺) = 0.16

<u>Abb. 4.5:</u> Löslichkeitskurve von 238 pu0₂(OH)₂ bei 25 °C und einer Ionenstärke von $\mu = 0.1 \text{ mol}/L (NaClO_k)$

vorhanden. Dennoch wurden die Bildungskonstanten für die Pu(VI)-Hydrolysekomplexe berechnet unter der Annahme, daß die polynuklearen Spezies $(PuO_2)_2(OH)_2^{2+}$ und $(PuO_2)_3(OH)_5^+$ relevant sind, und unter Verwendung eines geschätzten Löslichkeitsprodukts von 10^{-23} für $PuO_2(OH)_2$. Tab. 4.2 vergleicht die so erhaltenen Konstanten mit den Werten aus der Literatur.

Mit diesen Daten und den Chlorokomplexbildungskonstanten für Pu(VI)aus [40] läßt sich wiederum die relative Speziesverteilung in 5 M NaCl berechnen (Abb. 4.6). Erwartungsgemäß dominieren auch im Falle des Pu(VI) die Chlorokomplexe im sauren Bereich, während ab pH = 7 nur noch die reinen Hydrolyse-Produkte eine Rolle spielen. Polynukleare Spezies wurden hierbei nicht berücksichtigt.

<u>Abb. 4.6:</u> Relativer Anteil der Pu(VI)-Spezies in 5 M NaCl. Die Berechnung erfolgte auf der Basis folgender Hydrolyse- bzw. Chlorokomplexbildungskonstanten: log Ksp = -23.0, log β_1 = 8.26, log β_2 = 14.91, log β_3 = 16.9, β_1 (Pu0₂Cl⁺) = 1.05, β_2 (Pu0₂Cl₂) = 0.17

Medium	log Ksp	log β ₁	log β ₂	log β ₃	log β ₂₂	log β ₂₃	log β ₂₅	log β ₃₅	log β ₄	, Lit.
0.1 M NaC104	-23.00	8.26	14.91	16.90	21.98	-	-	56.28	-	TUM [5]
3.0 M NaC104	-	-	-	-	19.83	•	-	-	70	[34]
0.1 M NaC104	-24.05	9.93	16.31	20.27	-	30.74	-	-	-	[35]
1.0 M NaC104	-	7.80	-	-	19.01	-	-	46.64	' –	[36]
NH ₄ C10 ₄	-22.74	10.62	19.36	23.85	-	35.72	47.90	-	-	[37]
0.01 M NaNO,	-	10.57	23.75	-	-	-	-	-	-	[38]
1.0 M NaC104	-	8.05	16.10	20.16	-	-		-	-	[39]

<u>Tabelle 4.2</u>: Stabilitätskonstanten zur Hydrolyse von Pu(VI), umgerechnet auf Ionenstärke μ = 0

4.3.3 Löslichkeit in Salzlösungen

Die wesentlichen Ergebnisse der Löslichkeitsexperimente mit ²³⁸PuO, und ²³⁹PuO, in Salzlösungen und salinen Gorleben-Grundwässern sind in den Tabellen 6.8 bis 6.31 im Anhang zusammengefaßt. Abb. 4.7 zeigt eine entsprechende graphische Darstellung der gefundenen Werte. Besonders augenfällig ist der große Unterschied zwischen den Experimenten mit ²³⁸PuO, und ²³⁹PuO,, der bei den Löslichkeiten in NaCl-Lösungen fast drei Größenordnungen beträgt. Er kann nur mit den Einfluß der radioaktiven Strahlung erklärt werden, da beide Versuchsreihen unter praktisch identischen Bedingungen durchgeführt worden waren. Pu-238 bildet offensichtlich auf Grund seiner deutlich höheren spezifischen Aktivität mehr kolloidale Teilchen als Pu-239, welches hinsichtlich seiner Löslichkeit ganz der in Abb. 4.1 wiedergegebenen Hydrolysekurve von Pu(IV) folgt (Abb. 4.8). Diese strahleninduzierte Kolloidbildung erhöht die Pu-Löslichkeit beträchtlich, wobei auch zusätzlich noch Oxidationsreaktionen überlagert sein können (vgl. Kap. 4.3.4). In Abb. 4.8 ist neben den Löslichkeitsdaten von ²³⁸PuO, und ²³⁹PuO, auch das Ergebnis eines Auslaugexperimentes mit ²³⁹Pu-dotiertem HLW-Glassimulat dargestellt. Hier zeigt sich, daß die gemessenen Löslichkeiten wieder erheblich höher liegen, als auf Grund der Hydrolysekonstanten zu erwarten gewesen wäre, und daß praktisch Pu-Konzentrationen wie bei früheren Experimenten in Carbonat/Hydrogencarbonat-Lösungen erreicht werden [16].

Unter anaeroben Bedingungen gemessene Löslichkeitsdaten von ²³⁸PuO₂ sind größenordnungsmäßig gleich denen unter Luftkontakt. Dies ist nicht überraschend, da durch die starke Radiolyse des Pu-238 und der damit verbundenen Zersetzung des Wassers ein anaerobes, sauerstofffreies Milieu auf Dauer gar nicht aufrecht erhalten werden kann.

Die Löslichkeit in den salinen Gorleben-Grundwässern ist nicht einheitlich. Im Falle des ²³⁸PuO₂ scheint sie mit der Ionenstärke des jeweiligen Mediums zuzunehmen ($\mu_{982} = 0.07$, $\mu_{324} = 0.19$, $\mu_{2221} = 1.72$, μ_{2122} = 2.56, $\mu_{944} = 4.49$ mol/L; die Indices geben die Nummer der Grundwässer an), während sie beim ²³⁹PuO₂ unabhängig davon ist.

Gorleben-Grundwässern unter aeroben und anaeroben Versuchsbedingungen. Konzentrationsangaben nach Filtration mit 220 nm; SG = gesättigte Na3γ-Salzgruslösung; Q = Q-Lauge; 982, 324, 2221, 2122, 944 = Kenn-Nummern der salinen Gorleben-Grundwässer (geordnet nach steigener Ionenstärke)

<u>Abb. 4.8:</u> Löslichkeiten von ²³⁹Pu0₂, ²³⁸Pu0₂ und ²³⁹Pu0₂ aus HLW-Glassimulat in Abhängigkeit vom pH-Wert. Zu Vergleichszwecken sind folgende Kurven eingezeichnet: (1) Löslichkeit von ²³⁸Pu0₂ in Carbonat/Bicarbonat-Lösung; (2) radiometrische pH-Titrationskurve von ²³⁹Pu(IV) (vgl. Abb. 4.1); (3) Löslichkeitskurve von Pu(IV) (vgl. Abb. 4.1)

Auf Grund der vorliegenden Daten kann für Pu-238 eine maximale Löslichkeit von etwa 10^{-5} mol/L angegeben werden, während sich 239 PuO₂ nur bis zu einer Konzentration von ca. 10^{-8} mol/L löst.

31

4.3.4 Radiolyse-Effekte

Neben dem erwähnten Einfluß der spezifischen Aktivität auf die Bildung kolloidaler Spezies wird bei praktisch allen Löslichkeitsversuchen auch eine Veränderung von pH- und Eh-Wert beobachtet, welche überwiegend auf Radiolyse-Effekte zurückgeführt werden muß. So nahmen im Rahmen des aeroben ²³⁸Pu-Löslichkeitsexperiments die pH-Werte der einzelnen Probenlösungen mit der Zeit drastisch ab (Abb. 4.9) und pendelten sich bei pH 3.0 bis pH 3.6 ein. Eine mögliche Erklärung

<u>Abb. 4.9:</u> pH-Abnahme der Probenlösungen im Rahmen des Löslichkeitsexperiments ²³⁸Pu0₂ in NaCl-Lösungen unter aeroben Bedingungen
für diese Tatsache ist die Bildung von HNO₃ aus Luftstickstoff und -sauerstoff, welche in der Literatur beschrieben ist [41]. Aber auch Reaktionen mit dem als Behältermaterial verwendeten Polyethylen bzw. dem in ihm immer vorhandenen Weichmacher sind nicht auszuschließen.

Besonders ausgeprägt sind Anderungen des Redoxpotentials, welche eindeutig der α -Strahlung zugeordnet werden können. In einem separaten Experiment wurde deshalb dieser Effekt untersucht. Dabei zeigte sich, daß in 5 M NaCl, welche in Kontakt mit unterschiedlichen Mengen ²³⁸PuO₂ stand, Redoxpotentiale im Bereich von +1000 mV erreicht wurden (Abb. 4.10, Tab. 6.32). Diese Eh-Werte stellen sich um so schnel-

Abb. 4.10: Änderung des Redoxpotentials mit der Zeit beim Radiolyse-Experiment mit ²³⁸PuO₂ in 5 M NaCl unter aeroben Bedingungen. Der Eh-Wert inaktiver Vergleichslösungen liegt zwischen +340 mV und +470 mV (gestrichelter Bereich)

32

le

ze

du

tr d

1

ż

ler ein, je höher die spezifische α -Aktivität in der Probe ist. Gleichzeitig wird beobachtet, daß auch die Kinetik der ²³⁸PuO₂-Auflösung durch die Menge an Bodenkörper beeinflußt wird (Abb. 4.11).

<u>Abb. 4.11:</u> Abhängigkeit der Pu-Löslichkeit von der α-Aktivität in Lösung nach verschiedenen Kontaktzeiten unter aeroben Bedingungen

Das Auftreten solcher extremen Eh-Werte ist aber eindeutig an die Anwesenheit hoher Chlorid-Konzentrationen gebunden. Bei Cl⁻-Konzentrationen ≤ 2 mol/L konnten nämlich gegenüber inaktiver Lösung lediglich geringfügig erhöhte Redoxpotentiale gemessen werden. Daraus läßt sich folgern, daß offensichtlich oxidierend wirkende Chlorspezies potentialbestimmend sind. Abb. 4.12 zeigt das Eh-pH-Diagramm für Chlor, welches auf der Basis 5 M NaCl berechnet wurde. Aus ihm geht hervor, daß bei den gemessenen hohen Eh-Werten das Hypochlorit-Ion ClO⁻ bzw. die hypochlorige Säure HClO stabil sind, welche beide ein außerordentlich hohes Oxidationsvermögen besitzen und sogar in der Lage sind, Wasser unter Bildung von O₂ zu zersetzen. Das Auftreten

<u>Abb. 4.12:</u> Eh-pH-Diagramm für Chlor. Folgende Redoxpotentiale und Gleichgewichtskonstanten wurden verwendet: $HC10/C1_2$: 1.59 V, $C1_2/C1$: 1.4 V, log K (HC10/C10) \approx -7.3, Gesamt-Chlorkonzentration: 5 mol/L

dieser und auch noch weiterer Chlorspezies wie z. B. Cl_2^- oder ClO[•] in NaCl-Lösungen hoher Strahlenbelastung wurde auch schon von anderen Autoren beobachtet [42-47]. Ihre Entstehung kann wie folgt erklärt werden:

Durch die Radiolyse des Wassers werden zunächst die äußerst reaktiven OH[•]-Radikale gebildet

 $H_{2}0 + 0H^{*} + H^{*}$ (4.1)

welche mit den Chlorid-Ionen unter Bildung von Chlor-Radikalen weiterreagieren:

$$OH^{\circ} + C1^{-} \ddagger C1^{\circ} + OH^{-}$$
 (4.2)

Diese Chlor-Radikale sind in der Lage, sich mit vorhandenen $Cl^--Ionen$ zu verbinden, wobei das Cl_2^--Ion entsteht:

 $C1^{\circ} + C1^{-} \ddagger C1^{-}_{2}$ (4.3)

Dieses Ion, dem eine formale Oxidationsstufe von +1/2 zugeordnet werden kann, disproportioniert in alkalischem Milieu unter Bildung des stark oxidierend wirkenden C10⁻-Ions

$$2 C1^{-}_{1} + 2 OH^{-}_{2} \neq H_{0} + 3 C1^{-}_{1} + C10^{-}_{1}$$
 (4.4)

welches seinerseits mit OH^{*}-Radikalen zum ebenfalls kräftigen Oxidationsmittel ClO^{*} reagieren kann:

 $C10^{-} + OH^{\circ} \ddagger C10^{\circ} + OH^{-}$ (4.5)

Ĵ

Reaktion (4.5) wird aber in alkalischer Lösung nur eine untergeordnete Rolle spielen.

Da alle oben erwähnten Chlorspezies letztlich mit gasförmigem Cl_2 im Gleichgewicht stehen, sollte das Ansteigen des Eh-Wertes in offenen

Gefäßen durch das ständige Entweichen von Cl_2 langsamer vonstatten gehen und auch zu geringeren Endwerten führen. Dies wird im Falle der ²³⁸Pu-Proben unter anaeroben Versuchsbedingungen auch tatsächlich beobachtet. Es zeigte sich sogar, daß der Eh-Wert einer dieser Proben, welche anfänglich dicht verschlossen gelagert worden war, nach dem öffnen und mehrtägigem Stehenlassen um mehr als 1000 mV (von +1220 mV auf +110 mV) absank. Dieser Befund stützt die Behauptung, daß Chlorspezies für die hohen Redoxpotentiale in konzentrierten Chlorid-Lösungen verantwortlich sind.

Gleichzeitig liegt es aber auch nahe, daß unter intensiver Strahlenbelastung in Salzlösungen höhere Pu-Oxidationsstufen (Pu(V) und Pu(VI)) auftreten, wie sie schon im Falle der radiometrischen pH-Titration von Pu(IV) zu beobachten waren (vgl. Kap. 4.3.1). Diese Erwartung steht auch im Einklang mit dem Eh-pH-Diagramm für Plutonium (Abb. 4.13), welches auf der Basis der ermittelten Hydrolysekonstanten (vgl. Kap. 4.3.1 und 4.3.2) sowie entsprechender Literaturdaten berechnet wurde. Bei einem pH-Wert von 7 und einem Redoxpotential von +1000 mV sollte demnach beispielsweise Pu quantitativ als Pu(VI) in hydrolisierter Form vorliegen.

4.3.5 Speciation

Bei der Identifizierung der gelösten Pu-Spezies in konzentrierten Salzlösungen stellt die Wahl der geeigneten Meßmethode ein großes Problem dar. Unter diesen chemischen Bedingungen (neutrales System!) liegen nämlich die einzelnen Pu-Oxidationsstufen außer Pu(V) praktisch quantitativ in hydrolysierter Form vor, so daß selbst die hochempfindliche LPAS-Methode an die Grenzen ihres Nachweisvermögens stößt, da niedrige Pu-Konzentrationen bei gleichzeitig äußerst kleinen Extinktionskoeffizienten der Hydrolysekomplexe eine Messung sehr schwierig und häufig unmöglich machen. Eine indirekte Möglichkeit besteht allerdings darin, die vorhandenen Oxidationsstufen durch Ansäuern in das entsprechende freie Ion zu überführen und so einer spektroskopischen Messung zugänglich zu machen. Dieses Verfahren versagt aber, wenn schwerlösliche Kolloid-Spezies, wie im Falle des vierwer-

<u>Abb. 4.13:</u> Eh-pH-Diagramm für Plutonium. Folgende Redoxpotentiale und Hydrolysekonstanten wurden verwendet: Pu(III)/Pu(0): -2.031 V, Pu(IV)/Pu(III): +0.982 V, Pu(V)/Pu(IV): +1.170 V, Pu(V)/Pu(III): +1.080 V, Pu(VI)/Pu(V): +0.916 V, Pu(VI)/Pu(IV): 1.043 V; Pu(III): log β_1 = 6.5, log β_2 = 11.0, log β_3 = 15.5, log β_4 = 19.0, Pu(IV): log β_1 = 12.2, log β_2 = 24.8, log β_3 = 35.4, log β_4 = 43.7, Pu(V): log β_1 = 4.3, Pu(V): log β_1 = 8.23, log β_2 = 14.9, log β_3 = 16.9 tigen Plutoniums vorliegen, oder wenn das entsprechende freie Ion in saurer Lösung in einer Redoxreaktion, wie Pu(V) durch Disproportionierung, weiterreagieren kann. Dennoch bietet das Messen einer Probe im Originalzustand und nach Ansäuern eine Möglichkeit, um Aussagen über die ursprünglich vorliegenden Pu-Spezies zu machen.

Das Ergebnis einer solchen Vorgehensweise ist in Abb. 4.14 in Form mehrerer Laserspektren wiedergegeben, welche von der Na3y-Salzgrus-Probe SG b (vgl. Tab. 6.24) in fünf verschiedenen Wellenlängenbereichen jeweils vor und nach dem Ansäuern aufgenommen wurden. Die Bereiche wurden dabei so ausgewählt, daß die charakteristischen Absorptionspeaks der freien Pu-Ionen sowie des polymeren Pu(IV) bei genügend hoher Konzentration hätten erfaßt werden müssen. Trotz einer analytischen Pu-Gesamtkonzentration von ca. 2.2 x 10^{-6} mol/L war in keinem Fall ein positiver Befund zu erhalten, obwohl diese Konzentration zum Nachweis bei der LPAS ausreichend ist.

Aus dieser Tatsache kann geschlossen werden, daß das in der Lösung vorhandene Plutonium überwiegend in einer chemischen Form vorliegen muß, welche selbst bei niedrigen pH-Werten kein spektroskopisches Signal liefert. Dabei kann es sich aber nur um mikrokolloidales Pu(IV) handeln, da lediglich diese Form einem Säureangriff standhält und sich nicht ohne weiteres in das freie Pu⁴⁺-Ion überführen läßt. Das in Abb. 4.13 wiedergegebene Eh-pH-Diagramm gibt also diesen Zustand des Plutoniums nicht korrekt wieder, da infolge fehlender thermodynamischer Beschreibungsmöglichkeiten für Pu(IV)-Kolloide solche Spezies bei seiner Konstruktion nicht mit einbezogen werden konnten. Der soeben geschilderte Befund, daß die analytische Pu-Gesamtkonzentration nur durch die Anwesenheit mikrokolloidaler Pu(IV)-Spezies erklärt werden kann, wurde in allen Untersuchungen von Probenlösungen mit einem Eh-Wert \leq +600 mV erhalten.

Um die in Kap. 4.3.4 ausgesprochene Erwartung, daß bei hoher Strahlenbelastung und damit auch hohem Redoxpotential andere Oxidationsstufen als Pu(IV) auftreten könnten, zu verifizieren, wurde die Probe 74/100 des Radiolyse-Experiments (vgl. Tab. 6.32) ausgewählt und mit Hilfe

der LPAS-Methode vermessen. Im Originalzustand war wiederum kein charakteristischer Peak nachzuweisen. Sofort nach Zugabe von wenig HCl und einer damit verbundenen Erniedrigung des pH-Wertes auf etwa pH 0.9 konnten im Bereich zwischen 820 nm und 850 nm zwei deutliche Peaks registriert werden (Abb. 4.15.a), die eindeutig Pu(VI) zuzuordnen waren. Eine zu Vergleichszwecken präparierte Pu(VI)-Lösung höherer Konzentration, aber in entsprechender Lösung, zeigte nämlich dieselben Peaks bei 830 nm und 836.5 nm sowie eine deutliche Schulter bei ca. 843 nm (Abb. 4.15.b). Ein Vergleich mit Abb. 4.6, wo der relative Anteil der zu erwartenden Pu(VI)-Spezies in Abhängigkeit vom pH-Wert dargestellt ist, zeigt, daß neben dem charakteristischen Peak für das PuO₂²⁺-Ion bei 830 nm auch noch Peaks für den Monochlorokomplex PuO₂Cl⁺ (836.5 nm) und den Dichlorokomplex PuO_2Cl_2 (843 nm) gemessen werden. Dies bedeutet, daß schon in der Original-Lösung Pu(VI) und zwar in hydrolysierter Form vorhanden gewesen sein muß, da bloßes Ansäuern mit HC1 nicht zu einer Bildung dieser Pu-Oxidationsstufe führen kann.

Das chemische Verhalten von Plutonium in konzentrierten Salzlösungen wird also stark vom Redoxpotential dieses Systems bestimmt. Unter normalen Bedingungen, d. h. bei Redoxpotentialen bis zu ca. +600 mV ist Pu(IV) in Form von nicht filtrierbaren Mikrokolloiden die stabilste Form, wobei seine Konzentration in der Lösung wesentlich von der spezifischen α -Aktivität des Pu-Nuklids beeinflußt wird (vgl. Abb. 4.8). Hohe Eh-Werte führen zur Bildung von Pu(VI), welches dann hydrolysiert oder auch polymerisiert vorliegt. Dadurch steigen Pu-Konzentration und Löslichkeit an und können Werte von 10⁻⁵ mol/L leicht übersteigen.

i

5 CHEMISCHES VERHALTEN VON AMERICIUM

5.1 Durchgeführte Untersuchungen

Im Rahmen dieser Arbeit wurden folgende Untersuchungen an Americium durchgeführt:

- Hydrolyse-Untersuchung von Am(III)
- Hydrolyse-Untersuchung von Am(V)
- Löslichkeitsexperimente mit ²⁴¹AmO₂ in verschiedenen salinen Lösungen (NaCl, Na3y-Salzgrus, Q-Lauge, saline Gorleben-Grundwässer) unter aeroben und anaeroben Bedingungen
- Untersuchung der radiolytischen Oxidation von Am(III) zu Am(V) in 5 M NaCl
- Speciation der gelösten Am-Spezies

Ebenfalls untersucht wurde die Carbonatkomplexierung von Am(III); die dabei erhaltenen Ergebnisse sind an anderer Stelle beschrieben [3,6].

5.2 Experimentelles

5.2.1 Am(III)-Hydrolyse

Die Untersuchung der Am(III)-Hydrolyse ist bereits in früheren Arbeiten [3,6] ausführlich beschrieben. Sie wurde analog den entsprechenden Experimenten mit Np(V) und Pu(IV) als radiometrische pH-Titration unter CO_2 -freier Atmosphäre bei konstanter Ionenstärke ($\mu = 0.1 \text{ mol}/L$; NaClO₄) durchgeführt. Um auch den Einfluß von Chlorid-Ionen auf das Hydrolyseverhalten zu studieren, wurde das Experiment in 0.1 M bzw. 0.6 M NaCl-Lösung wiederholt [8].

5.2.2 Am(V)-Hydrolyse

Die Versuche, welche letztendlich das Datenmaterial zur quantitativen Beschreibung des hydrolytischen Verhaltens von Am(V) lieferten [9], waren ursprünglich als Erweiterung der Experimente zur Am(III)-Hydro-

lyse mit 3 M und 5 M NaCl als Medium gedacht. Auch sie wurden als radiometrische pH-Titration durchgeführt. Oberraschenderweise konnte in den resultierenden Lösungen die unter diesen Bedingungen zunächst nicht erwartete fünfwertige Oxidationsstufe des Americiums festgestellt werden, ohne daß irgendwelche Spuren von Am(III) nachzuweisen waren. Eine Diskussion dieses Ergebnisses wird in Kap. 5.3.4 gegeben. Analog dem Am(III)-Experiment wurde die Titration bei hohem pH-Wert mit $^{241}Am(OH)_3$ als Bodenkörper begonnen. Die gesamte α -Aktivität im Titrationsgefäß betrug dabei etwa 1 Ci/L.

5.2.3 Löslichkeitsexperimente

Die Durchführung der Löslichkeitsexperimente mit ²⁴¹AmO₂ in Salzlösungen und in salinen Gorleben-Grundwässern, sowie die Präparation der erforderlichen Ausgangssubstanzen sind in einem früheren Bericht [23] beschrieben. Hinsichtlich der Simulation der anaeroben Versuchsbedingungen gilt das in Kap. 4.2.3 zu den Experimenten mit ²³⁸PuO₂ und ²³⁹PuO₂ Gesagte.

5.2.4 Radiolyse-Experiment

Das Radiolyse-Experiment mit Am-241 wurde analog der radiometrischen pH-Titration in einem thermostatischen Glasgefäß bei 25 °C unter Argon-Atmosphäre durchgeführt. Ausgehend von einer schwach sauren Am(III)-Lösung (ca. 1 Ci/L) der Ionenstärke $\mu = 5.0 \text{ mol/L}$ (NaCl) wurde durch Zugabe von CO₂-freier NaOH ein pH-Wert von 8.3 eingestellt, der während der Dauer des Versuchs praktisch konstant blieb. In unregelmäßigen Zeitabständen erfolgte nun eine pH-Messung sowie die Bestimmung der Am-Konzentration nach Filtration durch 220 nm Porenweite.

5.2.5 Speciationsuntersuchungen

Die Identifizierung der gelösten Am-Spezies erfolgte analog den Experimenten mit Plutonium im wesentlichen mit Hilfe der LPAS (vgl. Kap. 4.2.5). Im Falle des Americiums gestaltete sich dies allerdings

. 43

in der Praxis etwas einfacher, da die häufigste Oxidationsstufe, das dreiwertige Am, auf Grund seines vergleichsweise hohen molaren Extinktionskoeffizienten zumindest in schwach und stark saurer Lösung leicht nachgewiesen werden konnte. Wie bei den Proben mit Plutonium wurde auch beim Americium jede Lösung sowohl im Originalzustand (höchstens filtriert oder zentrifugiert) als auch nach Ansäuern vermessen, um direkt oder indirekt die ursprünglich vorhandenen Spezies ermitteln zu können.

5.3 Ergebnisse und Diskussion

5.3.1 Hydrolyse von Am(III)

Die Löslichkeitskurve von ²⁴¹Am(OH)₃ bei 25 °C und einer Ionenstärke von $\mu = 0.1 \text{ mol/L} (\text{NaClO}_4)$ zeigt Abb. 5.1. Deutlich ist darin zu erkennen, daß die gemessenen Daten die Existenz eines anionischen

<u>Abb. 5.1:</u> Löslichkeitskurve von ²⁴¹Am(OH)₃ bei 25 °C und einer lonenstärke von $\mu = 0.1$ mol/L (NaClO₄)

Medium	log Ksp	log β ₁	log β ₂	log β ₃	Literatur
0.1 M NaC10,	-27.49	5.85	12.79	16.63	TUM [3,6]
0.1 M NaCl	-25.2	6.5	12.6	14.8	TUM [8]
0.6 M NaCl	-24.9	5.3	11.8	13.9	TUM [8]
0.003 M CaC1,	-24.34	5.96	10.94	14.53	[48]
0.005 M KC1	-	11.3	-	-	' [49]
0.005 M NH_C10_	-	10.7	20.9	-	[50]
0.1 M LICIO	-	7.86	-		[51]
0.2 M NaC10	-	-	12.8	-	[52]
0.7 M NaCl	-	6.19	-	-	[53]
1.0 M NaCl0,	-	6.77	-	-	[54]
1.0 M NaC10	*	6.3	-	-	[55]

Silver history

Tabelle 5.1: Vergleich der Löslichkeitsprodukte und Bildungskonstanten zur Am(III)-Hydrolyse

Am(III)-Hydrolysekomplexes nicht unterstützen, sondern mit der Anwesenheit von Am³⁺, AmOH²⁺, Am(OH)⁺₂ und Am(OH)₃ allein erklärt werden können. Eine detaillierte Diskussion der Resultate auch hinsichtlich der Bildung dimerer und trimerer Am-Spezies findet sich in früheren Arbeiten [3,6]. Die aus der in Abb. 5.1 wiedergegebenen sowie aus den Ergebnissen analoger Untersuchungen in NaCl-Lösung errechneten Löslichkeitsprodukte und Hydrolysekonstanten sind in Tab. 5.1 den entsprechenden Werten aus der Literatur gegenübergestellt. Dabei finden sich zum Teil beträchtliche Unterschiede, zu deren Interpretation wieder auf [3,6] hingewiesen wird.

Aus den Hydrolysekonstanten und den Chlorokomplexbildungskonstanten für Am(III) [56,57] lassen sich die relativen Anteile der Am(III)-Spezies in 5 M NaCl abschätzen (Abb. 5.2). Bis zu pH \cong 7 dominieren

<u>Abb. 5.2:</u> Relativer Anteil der Am(III)-Spezies in 5 M NaCl. Die Berechnung erfolgte auf der Basis folgender Hydrolyse- bzw. Chlorokomplexbildungskonstanten: log Ksp = -28.9, log β_1 = 6.44, log β_2 = 13.80, log β_3 = 17.86, log β_1 (AmCl²⁺) = -0.25, log β_2 (AmCl²) = -0.85

demnach eindeutig die Chloro-Spezies $AmCl_2^+$ und $AmCl^{2+}$, während Am^{3+} als freies Ion nur von untergeordneter Bedeutung ist. Ab pH 7 spielen dann die Hydroxo-Komplexe $Am(OH)_2^+$ und $Am(OH)_3$ die Hauptrolle.

5.3.2 Hydrolyse von Am(V)

Die Hydrolyse von Am(V) ist in der Literatur bisher noch nicht beschrieben. Dies mag einerseits daran liegen, daß die Herstellung dieser Oxidationsstufe nicht ganz problemlos ist und den Einsatz starker Oxidationsmittel erfordert, und andererseits daran, daß ihr für die Betrachtung des Verhaltens von Americium in natürlichen, aquatischen Systemen wenig oder keine Bedeutung beigemessen wird.

In konzentrierten NaCl-Lösungen geht jedoch das dreiwertige Americium bei pH-Werten zwischen 8 und 13 unter dem Einfluß radioaktiver Strahlung praktisch quantitativ in Am(V) über, so daß dessen Hydrolyse- und Chlorokomplexbildungs-Reaktionen das Verhalten von Americium unter diesen Bedingungen beeinflussen. Verbunden damit ist ein signifikanter Löslichkeitsanstieg um mehrere Größenordnungen.

Die gemessene Löslichkeitskurve für ²⁴¹AmO₂OH in 5 M NaCl bei 25 °C ist in Abb. 5.3 zusammen mit den daraus ermittelten Daten für das Löslichkeitsprodukt und die erste Hydrolysekonstante dargestellt [9]. Diese wurden zu

> $\log \text{Ksp} = -9.2 \pm 0.2$ $\log \beta_1 = 1.0 \pm 0.5$

berechnet. Abb. 5.4 zeigt ein typisches Absorptionsspektrum von Am(V) in 5 M NaCl bei pH = 8.3. Die charakteristischen Absorptionspeaks bei 514, 648 und 716 nm haben die folgenden molaren Extinktionskoeffizienten [9]:

 $e_{514} = 41 \text{ L mol}^{-1} \text{ cm}^{-1}$ $\epsilon_{648} = 5 \text{ Lmol}^{-1} \text{ cm}^{-1}$ $e_{716} = 58 \text{ L mol}^{-1} \text{ cm}^{-1}$

-Sallered

<u>Abb. 5.4:</u> Absorptionsspektrum von Am(V) in 5 M NaCl bei pH = 8.3; die molaren Absorptionskoeffizienten betragen ε_{514} = 41, ε_{648} = 5 und ε_{716} = 58

Die wesentlichen Ergebnisse der Löslichkeitsexperimente mit ²⁴¹AmO₂ in Salzlösungen und salinen Gorleben-Grundwässern sind in den Tabellen 6.33 bis 6.46 im Anhang zusammengefaßt. Abb. 5.5 zeigt eine entsprechende graphische Darstellung der gemessenen Löslichkeiten.

49

Abb. 5.5: Löslichkeit von ²⁴¹AmO₂ in verschiedenen Salzlösungen und salinen Gorleben-Grundwässern unter aeroben und anaeroben Versuchsbedingungen. Konzentrationsangaben nach Filtration mit 220 nm; SG = gesättigte Na3y-Salzgruslösung; Q = Q-Lauge; 982, 324, 2221, 2122, 944 = Kenn-Nummern der salinen Gorleben-Grundwässer (geordnet nach steigender ionenstärke)

1

"P15 444

Analog dem Plutonium zeigt Americium in NaCl-Lösungen unter aeroben Bedingungen ein nur wenig von der Salzkonzentration beeinflußtes Löslichkeitsverhalten. Bei NaCl-Konzentrationen zwischen 0.5 und 1.0 mol/L scheint jedoch ein Löslichkeitsmaximum vorzuliegen, während mit steigender Salinität die gemessenen Am-Konzentrationen wieder abnehmen. Die in diesen Systemen ermittelte maximale Löslichkeit liegt bei ungefähr 10^{-4} mol/L. Eine entsprechende Am-Konzentration wird auch in Na3_Y-Salzgruslösung und in Q-Lauge gefunden, wobei zwischen anaerobem und aerobem Experiment kein signifikanter Löslichkeitsunterschied besteht.

Anders liegen die Verhältnisse bei den salinen Gorleben-Grundwässern, welche in Kontakt mit ²⁴¹AmO₂ als Bodenkörper lange Zeit gelagert wurden (vgl. Tab. 6.43 bis 6.46). Hier findet sich zwischen den Ergebnissen unter aeroben und anaeroben Versuchsbedingungen ein großer Unterschied, wobei die Am-Löslichkeiten in Abwesenheit von Luftsauerstoff bis zu drei Größenordnungen höher liegen als unter Ar/CO_2 -Atmosphäre. Für diesen experimentellen Befund eine schlüssige Erklärung zu geben ist äußerst schwierig. Mehrere Ursachen sind jedoch denkbar:

- Zum einen ist es auf Grund des Experimentansatzes möglich, daß hinsichtlich der eingesetzten ²⁴¹Am-Menge gewisse Unterschiede bestehen. Dadurch kann sowohl die Lösekinetik als auch die erreichbare Endkonzentration beeinflußt werden, vor allem wenn durch Radiolyse-Effekte die chemische Umgebung (pH und Eh) drastisch verändert wird.
- Des weiteren muß davon ausgegangen werden, daß die Zusammensetzung entsprechender anaerober und aerober Grundwässer nicht gleich ist, da in Kontakt mit Luftsauerstoff Grundwasserinhaltsstoffe (wie Fe²⁺) oxidiert und somit in eine andere chemische, unter Umständen filtrierbare Form, überführt werden können. Dies führt zu verschiedenen Ausgangsbedingungen beim Ansatz des Experiments und kann sich auch auf die Größenverteilung vorhandener Grundwasserkolloide auswirken, mit welchen die Am-Spezies unter Umständen Fremdkolloide bilden.

Alles in allem können die Löslichkeitsunterschiede nicht ohne weiteres der jeweiligen Atmosphäre zugeschrieben werden, obwohl auch von dieser Seite ein Effekt möglich ist. Vielmehr zeigen die gemessenen Eh-Werte in den anaeroben Probenlösungen (vgl. Tab. 6.46), daß sich die chemischen Verhältnisse durch die abgelaufenen Radiolyse-Reaktionen stark in Richtung eines oxidierenden, also eher aeroben Systems verändert haben. Das bedeutet aber auch, daß der spezifischen α -Aktivität der Probe in Verbindung mit ihrem Chloridgehalt wohl der größte Einfluß zukommt. Gerade im Falle des Grundwassers Gohy 944, wo zwischen aeroben und anaeroben Experimenten extreme Löslichkeitsunterschiede festgestellt wurden, spricht alles dafür, daß die Am-Konzentration in der aeroben Probe von der Hydrolyse des Am(III) bestimmt wird, während durch den hohen Eh-Wert der "anaeroben" Probenlösung die besser löslichen Am(V)-Spezies gebildet werden können.

5.3.4 Radiolyse-Effekte

Wie bereits in Kap. 4.3.4 beschrieben, ist der durch Radiolyse-Effekte hervorgerufene Anstieg des Redoxpotentials in Lösungen mit hohem Chloridgehalt von besonderer Bedeutung im Hinblick auf die jeweils stabilste Oxidationsstufe von Aktinoiden in Lösung. Das auf Basis der ermittelten Hydrolysekonstanten für Am(III) und Am(V) sowie weiteren Daten aus der Literatur berechnete Eh-pH-Diagramm für Americium (Abb. 5.6) läßt im Bereich von pH ≈ 5 bis pH ≈ 9 und bei Eh-Werten von über +1.1 V praktisch nur noch Am(V) in Form des freien AmO_2^+ -Ions erwarten. Das in Kap. 5.2.4 beschriebene Radiolyse-Experiment in 5 M NaCl bei pH = 8.3 sollte nun diese Annahme verifizieren. Schon der Verlauf der Gesamt-Americiumkonzentration in Abhängigkeit von der Kontaktzeit (Abb. 5.7) deutete darauf hin, daß es sich bei dem gelösten Am nicht mehr um Am(III) handeln konnte, da dessen auf Grund der Hydrolysekurve (vgl. Abb. 5.1) hier erwartete maximale Löslichkeit im vorliegenden Experiment um mehrere Größenordnungen überschritten wurde. Am(V) konnte dann auch mit Hilfe der LPAS eindeutig nachgewiesen werden. Abb. 5.8 zeigt das Laserspektrum der Probe nach 24 Stunden Kontaktzeit. Deutlich ist dabei der charakteristische Am(V)-Peak (514 nm) neben dem Am(III)-Peak (503 nm) zu erkennen; aus den Extinktionswerten die-

Ì

ser beiden Oxidationsstufen ließ sich ein Am(V)-Anteil von etwa 86 % abschätzen. Nach ca. 100 Stunden Kontaktzeit war dann kein Am(III) mehr nachzuweisen (vgl. Abb. 5.4). Abb. 5.7 repräsentiert also praktisch die Kinetik der Oxidation von Am(III) zu Am(V).

In diesem Zusammenhang ist noch anzumerken, daß eine deutliche Farbveränderung des Bodenkörpers im Verlauf des Experiments beobachtet wurde, die zu einem dunkelbraunen Feststoff führte. Offensichtlich waren die auch in Kap. 4.3.4 diskutieren Chlorspezies in der Lage, oxidativ

Abb. 5.8: Photoakustisches Laserspektrum von Americium im Rahmen des Radiolyse-Experiments in 5 M NaCl bei pH = 8.3. Kontaktzeit 24 Stunden, [Am-241] = 3.5 x 10⁻⁶ mol/L, Anteil von Am(V) = 86 %

auf das feste ²⁴¹Am(OH)₃ einzuwirken und es über Am(OH)₄ in das Am(V)-Hydroxid zu überführen. Auflösen des Bodenkörpers durch Ansäuern ergab in der Lösung nämlich Am(V), welches eine Oxidation des festen Am(OH)₃ bestätigt. Beim Stehenlassen der Am(V)Lösung ohne Kontakt mit dem α -strahlenden Hydroxid-Bodensatz war eine Reduktion des Am(V) zum Am(III) zu beobachten, ohne daß ein Hinweis auf eine Disproportionierungsreaktion vorlag. Dieses Verhalten, welches folgender Reaktionsgleichung entspricht

$$AmO_{2}^{+} + H_{2}O \ddagger Am(OH)_{2}^{+} + 1/2 O_{2}$$
 (5.1)

steht im Einklang mit dem Eh-pH-Diagramm (Abb. 5.6) des Americiums, wenn man eine Abnahme des Redoxpotentials durch entweichendes Cl_2 (vgl. Kap. 4.3.4) unterstellt.

5.3.5 Speciation

Entsprechend dem Eh-pH-Diagramm für Americium (Abb. 5.6) kann Americium in den salinen Proben der Löslichkeitsexperimente nur als Am(III) oder als Am(V) vorliegen. Bei geringer Strahlenbelastung bzw. geringer Cl⁻-Konzentration des Mediums ist nur Am(III) als freies Ion oder in Form von Hydroxo- und Chlorokomplexen zu erwarten. Dies wurde bereits in früheren Berichten nachgewiesen [20,23]. Es soll aber nochmals erwähnt werden, daß Am(III) in gewissem Umfang, abhängig von der Ionenstärke der Lösung, auch polynukleare und kolloidale Spezies bilden kann, was sich sowohl in den gemessenen photoakustischen Laserspektren, als auch in beobachteten Filtrationseffekten im Rahmen der Löslichkeitsexperimente mit ²⁴¹AmO₂ dokumentiert.

Von besonderem Interesse war nun, ob die radiolytische Oxidation von Am(III) zu Am(V), welche in reinen NaCl-Lösungen unter dem Einfluß der α -Strahlung zu beobachten war, auch in den experimentellen Proben des 241 AmO₂-Löslichkeitsexperiments nachzuweisen war. Aus diesem Grunde wurden verschiedene Probenlösungen mit hohem Eh-Wert ausgewählt und mit der LPAS untersucht. Abb. 5.9 zeigt ein gemessenes Spektrum von Americium in gesättigter Na3Y-Salzgruslösung, welche unter anaeroben Versuchsbedingungen gelagert worden war. Die Anwesenheit von Am(V) neben geringen Mengen Am(III) ist hier ganz eindeutig und belegt die auf Grund des Eh-pH-Diagramms postulierten Verhältnisse. Etwas schwieriger war die Interpretation der Spektren an anderen Salzgrusproben und

<u>Abb. 5.9:</u> Photoakustisches Laserspektrum von Americium in gesättigter Na3 γ -Salzgruslösung [Am] = 2.5 x 10⁻⁵ mol/L, pH = 6.36, Eh = +1200 mV

von Q-Laugen mit Am, von welchen jeweils die Ergebnisse der Messungen vor und nach dem Ansäuern mit HCl in den Abbildungen 5.10 und 5.11 dargestellt sind. Im Originalzustand, d. h. in der nicht angesäuerten, aber zentrifugierten Probe (Abb. 5.10.a und Abb. 5.11.a), kann man die charakteristischen Am(V)-Peaks nur undeutlich erkennen. Nach dem Ansäuern findet sich in allen Fällen Am(III), wobei aber auch hier ein Hinweis auf Am(V) gegeben ist. Obwohl das in saurer Lösung gemessene Am(III) sowohl durch das Oberführen von ursprünglich nicht meßbaren Am(III)-Spezies in das freie Am³⁺-Ion als auch durch Reduktion

Abb. 5.10: Photoakustische Laserspektren von Americium in gesättigter Na3y-Salzgruslösung. $[Am] = 6.5 \times 10^{-6} \text{ mol/L}, Eh = +1180 \text{ mV}$

- a) Original-Lösung (zentrifugiert), pH ≈ 6.67 (obere Reihe) pH = 0.6 (untere Reihe)
- b) nach Ansäuern mit HCl,

Abb. 5.11:Photoakustische Laserspektren von Americium in Q-Lauge $[Am] = 2 \times 10^{-5} \text{ mol/L},$ Eh = +1240 mVa) Original-Lösung,pH = 5.76 (obere Reihe)b) nach Ansäuern mit HCl, pH = 0.6 (untere Reihe)

von Am(V) entstanden sein kann (vgl. Reaktion 5.1), legen die gemessenen Laserspektren nahe, daß Am(V) schon in der Original-Lösung vorhanden war. Gleichzeitig läßt die Tatsache, daß in den nicht angesäuerten Proben nur ein so undeutlicher Am(V)-Peak im Vergleich mit Abb. 5.9 beobachtet wird, darauf schließen, daß noch ein gewisser Anteil polynuklearer bzw. kolloidaler Am(III)-Spezies vorliegt, welche durch direkte Streulichtanregung des piezoelektrischen Kristalls bei der LPAS hohe Untergrundsignale verursachen und dadurch die Identifizierung charakteristischer Absorptionspeaks erschweren und teilweise auch unmöglich machen.

Aus allen gewonnenen Ergebnissen läßt sich somit ableiten, daß das chemische Verhalten des Americiums in erster Linie vom Redoxpotential und vom pH-Wert des jeweiligen Systems abhängt. Bei hohen Eh-Werten, also z. B. im Nahbereich eines betrachteten Endlagers, liegt praktisch immer Am(V) als freies AmO_2^+ -Ion vor, aber auch kolloidale und polymere Am(III)-Spezies können unter bestimmten Bedingungen zunächst intermediär stabilisiert werden. In Systemen mit niedrigem Eh-Wert findet sich ausschließlich Am(III), welches je nach chemischer Komposition der Lösung monomer oder polymer vorliegt und dabei vor allem zur Bildung von Fremdkolloiden neigt.

60 6 ANHANG 6.1 Tabellen

		61				
en Bedingungen.	nach 50 Tagen	-4.61±0.004 -4.36±0.005	-4.38±0.003	-4.57±0.003 -4.09±0.003	-	
Kontaktzeiten unter <u>aerobe</u> og [Np-237] in mol/L	nach 20 Tagen	-4.71±0.003 -4.46±0.008	-4.49±0.004	-4.69±0.008 -4.41±0.007		
laugen nach verschiedenen Konzentrationsangaben: lo	nach 11 Tagen	-4.90±0.009 -4.65±0.009	-4.68±0.007	-4.91±0.010 -4.56±0.002		
ıkeit von ²³⁷ NpO ₂ OH in Salzl crennung mit Millex 220 nm.	nach 4 Tagen	-5.32±0.006 -5.11±0.008	-4.95±0.078	-5.25±0.006 -4.77±0.014	g (Na37)	
Tabelle 6.1: Löslich Phasent	Salzlauge	0.1 M NaCl 1.0 M NaCl	3.0 M NaCl	5.0 M NaCl ges. SG ¹⁾	¹⁾ SG: Salzgruslösunç	

Salzlauge	pH bei Ansatz	pH nach 14 Tagen	Millex 220 nm	Nuclepore 30 nm	Sartorius 5 kD ¹⁾
0.1 M NaCl	5.70 (23°C)	6.82 (22°C)	-4.90±0.009	-4.91±0.004	-5.01±0.004
1.0 M NaCl	5.99 (23°C)	6.44 (22°C)	-4.65±0.009	-4.66±0.004	-4.70±0.006
3.0 M NaC1	6.82 (23°C)	6.18 (22°C)	-4.68±0.007	-4.68±0.010	-4.67±0.006
5.0 M NaC1	6.89 (23°C)	6.07 (22°C)	-4.91±0.010	-4.94±0.011	-4.91±0.010
ges. SG)	5.85 (23°C)	6.00 (22°C)	-4.56±0.002	-4.60±0.009	-4.57±0.012

Tabelle 6.2: Löslichkeit von ²³⁷Np0₂OH in Salzlaugen unter <u>aeroben</u> Bedingungen (<u>Filtrationsvergleich</u>). Kontaktzeit 4 Tage. Konzentrationsangaben: log [Np-237] in mol/L

¹⁾Sartorius SM 145 29, entspricht einer Porenweite von ca. 1.3 nm ²⁾SG: Salzgruslösung (Na $_{\gamma}$)

Tabelle 6.3: Löslichkeit von ²³⁷NpO₂ in NaCl-Lösungen nach verschiedenen Kontaktzeiten unter <u>aeroben</u> Bedingungen. Phasentrennung mit Millex 220 nm. Konzentrationsangaben: log [Np-237] in mol/L

Probe	[NaCl] mol/L	pH bei Ansatz	nac pH 1	ch 6 Tagen log [Np-237]	nach pH lo	13 Tagen g [Np-237]	nach pH lo	49 Tagen g [Np-237]	nach pH lo	118 Tagen g [Np-237]
0/1	0.1	4,48		-4.70	4.76	-4.88	4.81	-4.87	4.86	-4.87
0/2	0.1	4.48	-	-4.47	5.26	-4.45	5.47	-4.45	5.52	-4.44
1/1	1.0	4.56	-	-4.51	5.45	-4.49	5.51	-4.47	5.40	-4.48
1/2	1.0	4.56	-	-4.66	5.18	-4.46	5.18	-4.63	5.08	-4.63
2/1	3.0	5.11	-	-4.48	5.95	-4.40	6.04	-4.31	5.85	-4.32
2/2	3.0	5.11	-	-4.47	5.70	-4.51	5.86	-4.47	5.65	-4.47
3/1	5.0	5.67	-	-4.73	5.79	-4.57	6.02	-4.53	5.82	-4.53
3/2	5.0	5.67	-	-4.97	5.70	-4.83	5.97	-4.77	5.72	-4.77

_

 Tabelle 6.4:
 Löslichkeit von ²³⁷Np02
 in NaCl-Lösungen unter aeroben
 Bedingungen (Filtrationsvergleich).

 Kontaktzeit 113
 Tage.
 Konzentrationsangaben:
 log
 [Np-237]
 in mol/L

Probe	LNaCIJ mol/L	рн bei Ansatz	nach 113 Tagen	unfiltriert	220 nm	30 nm	5 kD ¹⁾
1/0	0.1	4.48	4.86	-4.86±0.009	-4. 87±0.008	-4. 86±0.005	-4.87±0.010
1/1	1.0	4.56	5.41	-4.46±0.017	-4.48±0.003	-4.4 8±0.003	-4.48 ± 0.012
2/1	3.0	5.11	5.84	-4 .31±0.011	-4.32±0.008	-4.31±0.007	-4.32±0.005
3/1	5.0	5.67	5.81	-4.53±0.013	-4.53 ± 0.006	-4.49±0.007	•

ł

 Tabelle 6.5:
 Löslichkeit von ²³⁷Np02
 in NaCl-Lösungen nach verschiedenen Kontaktzeiten unter anaeroben
 Bedingungen.

 Phasentrennung mit Millex 220 nm. Konzentrationsangaben:
 log [Np-237]
 in mol/L

ø

Probe	[NaC1]	Нq	nach	5 Tagen	nach	8 Tagen	nach 7	2 Tagen
	mo]/L	bei Ansatz	Hq	log [Np-237]	Н	log [Np-237]	pH log	[Np-237]
0/1	0.1	8.54	1	-5.97	8.49	-5.98	8.30	-5.42
0/2	0.1	8.54	ı	-5.97	8.46	-5.84	8.30	-5.18
1/1	1.0	8.24	I	-6.58	8.21	-6.40	7.91	-5.83
1/2	1.0	8.24	I	-6.40	8.23	-6.26	66.7	-5.54
2/1	3.0	7.97	ı	-6.70	7.98	-6.45	7.77	-5.76
2/2	3.0	7.97	ı	-6.56	7.97	-6.31	87.83	-5.79
3/1	5.0	7.81	ı	-6.74	7.82	-6.62	7.69	-6.19
3/2	5.0	7.81	I	-6.58	7.84	-6.48	7.72	-6.07

65

<u>Tabelle 6.6:</u> Löslichkeit von ²³⁷NpO₂ in NaCl-Lösungen unter <u>anaeroben</u> Bedingungen (<u>Filtrationsvergleich</u>). Kontaktzeit 188 Tage. Konzentrationsangaben: log [Np-237] in mol/L

Probe	[NaCl] mol/L	pH bei Ansatz	pH nach 188 Tagen	unfiltriert	Millex 220 nm	Nuclepore 30 nm	, Sartorius 5 kD ¹⁾
0/1	0.1	8.54	8.17	-4.86±0.007	-4.87±0.001	-4.87±0.001	-5.35±0.003
0/2	0.1	8.54	8.07	-4.89±0.011	-4.89±0.009	-4.91±0.011	-5.25±0.010

1) Sartorius SM 145 29, entspricht einer Porenweite von ca. 1.3 nm

<u>Tabelle 6.7:</u> Löslichkeit von 237 NpO₂ in Na3_Y-Salzgruslösung (SG) und in Q-Lauge nach verschiedenen Kontaktzeiten unter aeroben Bedingungen. Phasentrennung mit Millex 220 nm. Konzentrationsabgaben: log [Np-237] in mol/L

Probe	nach 14 Tagen	nach 43 Tagen	nach 71 Tagen	nach 118 Tagen
SG, 50 g/L	-5.26±0.072	-5.23±0.063	-	<u>-</u>
SG, gesättigt, $pH = 5^{1}$	-5.04±0.010	-4.90±0.010	-	- -
SG, gesättigt, $pH = 7^{1}$	-4.90±0.068	-4.64±0.116	-	-
SG, gesättigt, $pH_{a}^{o} = 9^{1}$	-5.38±0.135	-5.07±0.145	-	-
$Q-Lauge (NaC1)^{2}$	-4.99±0.059	-4.91±0.060	-4.98±0.017	~5.01±0.057
Q-Lauge (SG) ³⁾	-4.78±0.081	-4.40±0.110	-	-

- 1)
- pH_o: pH-Wert bei Probenansatz mit festem NaCl nachgesättigt 2)
- ³⁾ mit festem Na3y-Salzgrus nachgesättigt
| | | Sartorius |
|--|--|-----------|
| , | | Nuclenore |
| j unter <u>aeroben</u> Bedingungen.
2 log FPu-2381 in mol/L | | v≏l l i M |
| ²³⁸ PuO ₂ in <u>0.1 M NaCl</u> -Lösung
Fage. Konzentrationsangaben: | | Ha |
| eit von ²
eit 120 1 | | H |
| 6.8: Löslichk
Kontaktz | | rNaC11 |
| Tabelle | | Prohe |

Probe	[NaCl] mol/L	pH bei Ansatz	pH nach 120 Tagen	unfiltriert	Millex 220 nm	Nuclepore 30 nm	Sartorius 5 kD ¹⁾
B/1/1	0.1	4.00 (24°C)	3.25 (21°C)	-5.66±0.018	-5.6 8±0.002	-5.68±0.010	-5.6 8±0.004
B/1/2	0.1	4.00 (24°C)	3.37 (21°C)	-6.5 4±0.022	-6.51 ± 0.002	·	ı
B/1/3	0.1	6.07 (24°C)	3.45 (21°C)	-5.45±0.002	-5.45±0.001	-5.46±0.003	-5.45±0.002
B/1/4	0.1	6.07 (24°C)	3.45 (21°C)	-6.41±0.008	-6.42±0.005	ı	I
B/1/5	0.1	7.01 (24°C)	3.37 (21°C)	-6. 21±0.022	-6.20±0.001	-6.22±0.001	-6.20±0.006
B/1/6	0.1	7.01 (24°C)	3.33 (21°C)	-5.59±0.0 22	-5.59 ± 0.004	ı	•
B/1/7	0.1	8.01 (24°C)	3.68 (21°C)	-6.91±0.028	-6.90±0.003	-6.90 <u>+</u> 0.003	-6.90±0.001
B/1/8	0.1	8.01 (24°C)	3.36 (21°C)	-5.72±0.002	-5.73±0.009	ı	ı
B/1/9	0.1	10.01 (24°C)	3.65 (21°C)	-6.18±0.018	-6.18±0.002	-6.18±0.003	-6.18±0.002
B/1/10	0.1	10.01 (24°C)	3.39 (21°C)	-6.12±0.006	-6.15±0.004	ŗ	ı
1)Sarto	irius SM 14	15 29, entspricht	: einer Porenweite	von ca. 1.3 mm			

68

Ì

Ĩ

<u>Tabelle 6.9:</u> Löslichkeit von 238 PuO₂ in <u>O.5 M NaCl</u>-Lösung unter <u>aeroben</u> Bedingungen. Kontaktzeit <u>120 Tage</u>. Konzentrationsangaben: log [Pu-238] in mol/L

			•				
Probe	[NaC1]	рН	pН		Millex	Nuclepore	Sartorius
	mol/L	bei Ansatz	nach 120 Tagen	unfiltriert	220 nm	30 nm	5 kD ¹⁾
B/2/1	0.5	4.00 (24°C)	3.32 (21°C)	-5.45±0.003	-5.46±0.003	-	-
B/2/2	0.5	4.00 (24°C)	3.46 (21°C)	-5.60±0.014	-5.59±0.001	-	-
B/2/3	0.5	5.07 (24°C)	3.45 (21°C)	-5.54±0.002	-5.54±0.002	-	-
B/2/4	0.5	6.07 (24°C)	3.34 (21°C)	-5.31±0.003	-5.21±0.002	-	-
B/2/5	0.5	7.01 (24°C)	3.34 (21°C)	-5.67±0.007	-5.68±0.001	-5.68±0.005	-5.67±0.008
B/2/6	0.5	7.01 (24°C)	3.32 (21°C)	-5.90±0.007	-5.90±0.009	-	· _
B/2/7	0.5	8.01 (24°C)	3.42 (21°C)	-5.75±0.028	-5.73±0.001	-	-
B/2/8	0.5	8.01 (24°C)	3.23 (21°C)	-6.18±0.020	-6.17±0.002	-	~
B/2/9	0.5	10.01 (24°C)	3.48 (21°C)	-4.95±0.025	-4.94±0.001	-	-
B/2/10	0.5	10.01 (24°C)	3.63 (21°C)	-6.21±0.015	-6.20±0.005	-	-

¹⁾Sartorius SM 145 29, entspricht einer Porenweite von ca. 1.3 nm

Tabelle 6.10:Löslichkeit von 238PuOin 1.0 M NaCl-Lösung unter aerobenBedingungen.Kontaktzeit 120 Tage.Konzentrationsangaben:log [Pu-238] in mol/L

Probe	[NaCl] mol/L	pH bei Ansatz	pH nach 120 Tagen	unfiltriert	Millex 220 nm	Nuclepore 30 nm	Sartorius 5 kD ¹⁾
						,	
B/3/1	1.0	4.00 (24°C)	3.28 (22°C)	-5.88±0.004	-5.88±0.003	-5.88±0.006	-5.90±0.002
B/3/2	1.0	4.00 (24°C)	3.44 (22°C)	-5.58±0.006	-5.58±0.002	. –	-
B/3/3	1.0	6.00 (24°C)	3.38 (22°C)	-6.03±0.018	-6.02±0.006	-	-
B/3/4	1.0	6.00 (24°C)	3.31 (22°C)	-6.23±0.008	-6.23±0.002	-	-
B/3/5	1.0	7.01 (24°C)	3.38 (22°C)	-5.82±0.016	-5.82±0.008	-5.81±0.000	-5.81±0.002
B/3/6	1.0	7.01 (24°C)	3.42 (22°C)	-5.68±0.012	-5.68±0.005	-	, —
B/3/7	1.0	8.01 (24°C)	3.38 (22°C)	-5.62±0.004	-5.63±0.007	-	-
B/3/8	1.0	8.01 (24°C)	3.45 (22°C)	-5.94±0.021	-5.92±0.001	-	-
B/3/9	1.0	10.01 (24°C)	3.59 (22°C)	-6.18±0.002	-6.19±0.011	-6.20±0.021	-6.18±0.001
B/3/10	1.0	10.01 (24°C)	4.27 (22°C)	-5.90±0.023	-5.90±0.001	-	-

¹⁾Sartorius SM 145 29, entspricht einer Porenweite von ca. 1.3 nm

<u>Tabelle 6.11:</u> Löslichkeit von 238 PuO₂ in <u>3.0 M NaCl</u>-Lösung unter <u>aeroben</u> Bedingungen Kontaktzeit <u>120 Tage</u>. Konzentrationsangaben: log [Pu-238] in mol/L

Probe	[NaC]]	рН	pН		Millex	Nuclepore	Sartorius
	mol/L	bei Ansatz	nach 120 Tagen	unfiltriert	220 nm	30 nm	5 kD ¹⁾
B/4/1	3.0	3.99 (25°C)	3.55 (21°C)	-6.43±0.007	-6.43±0.002		-
B/4/2	3.0	3.99 (25°C)	3.84 (21°C)	-5.90±0.005	-5.90±0.001	-	-
B/4/3	3.0	6.03 (25°C)	3.70 (21°C)	-6.26±0.005	-6.26±0.001	-	-
B/4/4	3.0	6.03 (25°C)	3.72 (21°C)	-6.34±0.005	-6.33±0.004	-	-
B/4/5	3.0	7.02 (25°C)	4.00 (21°C)	-5.92±0.004	-5.93±0.003	-5.92±0.001	-5.94±0.002
B/4/6	3.0	7.02 (25°C)	3.66 (21°C)	-6.29±0.005	-6.29±0.003	-	-
B/4/7	3.0	8.00 (25°C)	3.82 (21°C)	-6.00±0.001	-6.00±0.002	-	' -
B/4/8	3.0	8.00 (25°C)	3.81 (21°C)	-6.19±0.004	-6.19±0.001	-	-
B/4/9	3.0	10.01 (25°C)	4.33 (21°C)	-5.99±0.004	-5.98±0.003	-	-
B/4/10	3.0	10.01 (25°C)	4.04 (21°C)	-6.40±0.009	-6.40±0.001	-	~

¹⁾Sartorius SM 145 29, entspricht einer Porenweite von ca. 1.3 nm

· _ •

 Tabelle 6.12:
 Löslichkeit von ²³⁸Pu02
 in 5.0 M NaCl-Lösung unter aeroben
 Bedingungen

 Kontaktzeit
 120 Tage.
 Konzentrationsangaben:
 log [Pu-238]
 in mol/L

Probe	[NaCl] mol/L	pH bei Ansatz	pH nach 120 Tagen	unfiltriert	Millex 220 nm	Nuclepore 30 nm	Sartorius · 5 kD ¹⁾
8/5/1	5.0	4.00 (25°C)	3.65 (22°C)	-7.10±0.001	-7.10±0.003	-7.10±0.002	
8/5/2	5.0	4.00 (25°C)	3.86 (22°C)	-6.74±0.001	-6.74±0.001	·	I
B/5/3	5.0	6.01 (25°C)	3.97 (22°C)	-6.70±0.001	-6.70±0.003	·	1
8/5/4	5.0	6.01 (25°C)	4.20 (22°C)	-6.49±0.002	-6.50±0.001	ı	I
B/5/5	5.0	7.00 (25°C)	3.86 (22°C)	-6.90±0.002	-6.89±0.020	-6.90±0.002	ı
B/5/6	5.0	7.00 (25°C)	4.25 (22°C)	-6.51±0.008	-6.51±0.001	I	ı
8/5/7	5.0	8.00 (25°C)	4.43 (22°C)	-6.14±0.011	-6.15 ± 0.001	ı	1
B/5/8	5.0	8.00 (25°C)	4.08 (22°C)	-6.60±0.007	-6.59±0.011	ı	1
8/2/9	5.0	9.98 (25°C)	4.58 (22°C)	-6.34±0.011	-6.35±0.003	-6.35±0.006	ı
B/5/10	5.0	9.98 (25°C)	4.45 (22°C)	-6.87±0.024	-6.86±0.001		t

¹⁾Sartorius SM 145 29, entspricht einer Porenweite von ca. 1.3 nm

1

<u>Tabelle 6.13:</u> Löslichkeit von ²³⁸PuO₂ in <u>0.1 M NaCl</u>-Lösung unter <u>aeroben</u> Bedingungen. Kontaktzeit <u>210 Tage</u>. Konzentrationsangaben: log [Pu-238] in mol/L

Probe	[NaCl]	рН	pН		Millex	Nuclepore	Sartorius
	mol/L	bei Ansatz	nach 210 Tagen	unfiltriert	220 nm	30 nm	5 kD ¹)
B/1/1	0.1	4.00 (24°C)	3.09 (21°C)	-5.38±0.024	-	_ '	-
B/1/2	0.1	4.00 (24°C)	3.20 (20°C)	-6.15±0.019	-	-	-
B/1/3	0.1	6.07 (24°C)	3.24 (21°C)	-5.17±0.019	-	. -	-
B/1/4	0.1	6.07 (24°C)	3.25 (20°C)	-5.99±0.020	-	-	-
B/1/5	0.1	7.01 (24°C)	3.16 (21°C)	-5.75±0.005	-	-	-
B/1/6	0.1	7.01 (24°C)	3.13 (21°C)	-5.28±0.045	-	-	
B/1/7	0.1	8.01 (24°C)	3.36 (20°C)	-6.33±0.007	-	-	-
B/1/8	0.1	8.01 (24°C)	3.19 (21°C)	-5.39±0.009	-	-	-
B/1/9	0.1	10.01 (24°C)	3.40 (21°C)	-5.85±0.005	-	-	_
B/1/10	0.1	10.01 (24°C)	3.36 (20°C)	-5.82±0.010	-	-	-

¹⁾Sartorius SM 145 29, entspricht einer Porenweite von ca. 1.3 nm

73

ويروينك

5.

•

· P - mater Patrick

Probe	[NaCl]	рН	рН		Millex	Nuclepore	Sartorius
	mol/L	bei Ansatz	nach 210 Tagen	unfiltriert	220 nm	30 nm '	5 kD''
B/2 /1	0.5	4.00 (24°C)	3.20 (20°C)	-5.28±0.060	-	-	-
B/2/2	0.5	4.00 (24°C)	3.36 (20°C)	-5.39±0.006	-	-	-
B/2/3	0.5	6.07 (24°C)	3.29 (21°C)	-5.33±0.013	-	-	-
B/2/4	0.5	6.07 (24°C)	3.20 (20°C)	-5.06±0.015	-	-	-
B/2/5	0.5	7.01 (24°C)	3.20 (21°C)	-5.39±0.012	-	-	-
8/2/6	0.5	7.01 (24°C)	3.18 (20°C)	-5.60±0.021	-	-	-
8/2/7	0.5	8.01 (24°C)	3.26 (21°C)	-5.50±0.027	, -	-	–
B/2/8	0.5	8.01 (24°C)	3.10 (20°C)	-5.80±0.007	-	-	-
8/2/9	0.5	10.01 (24°C)	3.25 (21°C)	-4.89±0.005	-	-	-
5/2/10	0.5	10.01 (24°C)	3.39 (20°C)	-5,91±0,009	-	-	-

The second s

Tabelle 6.14: Löslichkeit von ²³⁸PuO₂ in <u>0.5 M NaCl</u>-Lösung unter <u>aeroben</u> Bedingungen. Kontaktzeit <u>210 Tage</u>. Konzentrationsangaben: log [Pu-238] in mol/L

÷.

"Sartorius SM 145 29, entspricht einer Porenweite von ca. 1.3 nm

FATTLE PARTY SALES Providence of the second s

<u>Tabelle 6.15:</u> Löslichkeit von ²³⁸PuO₂ in <u>1.0 M NaCl</u>-Lösung unter <u>aeroben</u> Bedingungen. Kontaktzeit <u>210 Tage</u>. Konzentrationsangaben: log [Pu-238] in mol/L

Probe	[NaCl] mol/L	pH bei Ansatz	pH nach 210 Tagen	unfiltriert	Millex 220 nm	Nuclepore 30 nm	Sartorius 5 kD ¹⁾
	1.0	4 00 (24°C)	3 15 (20°C)	-5 66+0 003			 , _
B/3/2	1.0	4.00 (24°C)	3.32 (20°C)	-5.42+0.023	-	-	-
B/3/3	1.0	6.00 (24°C)	3.24 (21°C)	-5.78±0.013	-	-	-
B/3/4	1.0	6.00 (24°C)	3.16 (20°C)	-5.93±0.004	-	-	-
B/3/5	1.0	7.01 (24°C)	3.21 (21°C)	-5.51±0.011	-	-	-
B/3/6	1.0	7.01 (24°C)	3.29 (20°C)	-5.47±0.019	-	-	-
B/3/7	1.0	8.01 (24°C)	3.25 (21°C)	-5.34±0.007	-	-	-
B/3/8	1.0	8.01 (24°C)	3.30 (20°C)	-5.68±0.039	-	-	-
B/3/9	1.0	10.01 (24°C)	3.36 (21°C)	-5.87±0.008	-	-	-
B/3/10	1.0	10.01 (24°C)	3.97 (20°C)	-5.64±0.004	-	-	-

¹⁾Sartorius SM 145 29, entspricht einer Porenweite von ca. 1.3 nm

Probe	[NaCl] mol/L	pH bei Ansatz	pH nach 210 Tagen	unfiltriert	Millex 220 nm	Nuclepore 30 nm	Sartorius 5 kD ¹⁾
B/4/1	3.0	3.99 (25°C)	3.46 (20°C)	-6.23±0.006			
B/4/2	3.0	3.99 (25°C)	3.77 (20°C)	-5.81±0.003	-	-	-
B/4/3	3.0	6.03 (25°C)	3.56 (20°C)	-6.08±0.009	-	-	-
B/4/4	3.0	6.03 (25°C)	3.57 (20°C)	-6.10±0.003	-	-	-
B/4/5	3.0	7.02 (25°C)	3.82 (20°C)	-5.78±0.003	-	-	-
B/4/6	3.0	7.02 (25°C)	3.57 (20°C)	-6.10±0.006	-	-	-
B/4/7	3.0	8.00 (25°C)	3.70 (20°C)	-5.85±0.004	-	-	· _
B/4/8	3.0	8.00 (25°C)	3.65 (20°C)	-6.03±0.004	-	-	-
B/4/9	3.0	10.01 (25°C)	3.90 (20°C)	-5.79±0.006	-	-	-
B/4/10	3.0	10.01 (25°C)	3.79 (20°C)	-6.24±0.012	-	-	-

<u>Tabelle 6.16:</u> Löslichkeit von ²³⁸PuO₂ in <u>3.0 M NaCl</u>-Lösung unter <u>aeroben</u> Bedingungen Kontaktzeit <u>210 Tage</u>. Konzentrationsangaben: log [Pu-238] in mol/L

¹⁾Sartorius SM 145 29, entspricht einer Porenweite von ca. 1.3 nm

Tabelle 6.17: Löslichkeit von ²³⁸PuO2in 5.0 M NaCl-Lösung unter aeroben BedingungenKontaktzeit 210 Tage. Konzentrationsangaben: log [Pu-238] in mol/L

1

ł

robe	LNACIJ mol/L	рн bei Ansatz	рН nach 210 Tagen	unfiltriert	220 nm	30 nm	5 kD ¹⁾
2/5/1		4 00 (25°C)	3 50 (20°C)	6 07+0 013			
3/5/2	5.0	4.00 (25°C)	3.84 (20°C)	-6.67±0.011	1		ı ı
8/5/3	5.0	6.01 (25°C)	3.90 (20°C)	-6.59±0.003	ı	ı	ł
8/5/4	5.0	6.01 (25°C)	4.21 (20°C)	-6.36±0.011	ı	ı	ł
8/5/5	5.0	7.00 (25°C)	3.76 (20°C)	-6.74±0.004	ı	ı	ı
B/5/6	5.0	7.00 (25°C)	4.17 (20°C)	-6.24±0.046	I	3	1
8/5/7	5.0	8.00 (25°C)	4.39 (20°C)	-5.75±0.027	ı	ð	J
B/5/8	5.0	8.00 (25°C)	4.12 (20°C)	-6.36±0.007	ı	1	ł
B/5/9	5.0	9.98 (25°C)	4.47 (20°C)	-5.97±0.008	ı	,	ı
8/5/10	5.0	9.98 (25°C)	4.20 (20°C)	-6.70±0.003	ı		5

Probe	[NaCl] mol/l	pH bei Ansatz	pH nach 250 Tagen	unfiltriert	Millex 220 nm	Nuclepore	Sartorius
A/1/1	0.1	4.00 (24°C)	3.97 (21°C)	-7.90±0.059	-7.88±0.088	-	-
A/1/2	0.1	4.00 (24°C)	3.94 (21°C)	-7.85±0.038	-7.83±0.057	-7.75±0.020	-7.87±0.081
A/1/3	0.1	6.07 (24°C)	4.51 (21°C)	-8.4 ± 0.15	-8.4 ± 0.84	-	-
A/1/4	0.1	6.07 (24°C)	4.46 (21°C)	-8.2 ± 0.19	-8.4 ± 0.58	-	-
A/1/5	0.1	7.01 (24°C)	4.94 (21°C)	-8.7 ± 0.66	-8.7 ± 0.98	-8.7 ± 0.63	-8.8 ± 0.71
A/1/6	0.1	7.01 (24°C)	5.69 (21°C)	-9.5 ± 0.17	-9.6 ± 0.36	-	-
A/1/7	0.1	8.01 (24°C)	4.85 (21°C)	-9.1 ± 0.13	-9.3 ± 0.10	-	-
A/1/8	0.1	8.01 (24°C)	4.95 (21°C)	-9.26±0.063	-9.34±0.079	-9 .25±0.070	-9.35±0.056
A/1/9	0.1	10.01 (24°C)	6.63 (21°C)	-9.9 ± 0.75	-10.1± 1.20	-	-
A/1/10	0.1	10.01 (24°C)	5.51 (21°C)	-9.6 ± 0.29	-9.6 ± 0.80	-	-

<u>Tabelle 6.18:</u> Löslichkeit von ²³⁹PuO₂ in <u>0.1 M NaCl</u>-Lösung unter <u>aeroben</u> Bedingungen. Kontaktzeit 250 Tage. Konzentrationsangaben: log [Pu-239] in mol/L

¹⁾Sartorius SM 145 29, entspricht einer Porenweite von ca. 1.3 nm

ы. --Н Tabelle 6.19:Löslichkeit von 239PuOin O.5 M NaCl-Lösung unter aeroben Bedingungen.Kontaktzeit 250 Tage.Konzentrationsangaben:log [Pu-239] in mol/L

Probe	[NaCl] mol/L	pH bei Ansatz	pH nach 250 Tagen	unfiltriert	Millex 220 nm	Nuclepore 30 nm	Sartorius 5 kD ¹⁾
A/2/1	0.5	4.00 (24°C)	3.71 (21°C)	-7.8 ± 0.10	-7.8 ± 0.10	~	. -
A/2/2	0.5	4.00 (24°C)	3.73 (21°C)	-7.9 ± 0.10	-7.9 ± 0.11	-	-
A/2/3	0.5	6.07 (24°C)	3.89 (21°C)	-8.4 ± 0.21	-8.2 ± 0.14	-	-
A/2/4	0.5	6.07 (24°C)	4.07 (21°C)	-8.5 ± 0.30	-8.5 ± 0.30	-	-
A/2/5	0.5	7.01 (24°C)	3.97 (21°C)	-8.3 ± 0.33	-8.4 ± 0.18	-8.4 ± 0.18	-8.5 ± 0.17
A/2/6	0.5	7.01 (24°C)	4.11 (24°C)	-8.4 ± 0.27	-8.3 ± 0.25	-	-
A/2/7	0.5	8.01 (24°C)	4.03 (24°C)	-8.6 ± 0.25	-8.4 ± 0.19	-	· _
A/2/8	0.5	8.01 (24°C)	4.09 (24°C)	-8.6 ± 0.34	-8.6 ± 0.28	-	-
A/2/9	0.5	10.01 (24°C)	6.67 (24°C)	-9.3 ± 0.96	-9.6 ± 0.30	-	-
A/2/10	0.5	10.01 (24°C)	5.98 (24°C)	-9.4 ± 0.43	-9.5 ± 0.53	-	-

¹⁾Sartorius SM 145 29, entspricht einer Porenweite von ca. 1.3 nm

79

[NaC1] mol/L	pH bei Ansatz	pH nach 250 Tagen	unfiltriert	Millex 220 nm	Nuclepore 30 nm	Sartorius 5 kD ¹⁾
				· · · · · · · · · · · · · · · · · · ·	· .	
1.0	4.00 (24°C)	3.75 (24°C)	-8.1 ± 0.26	-8.1 ± 0.19	-	-
1.0	4.00 (24°C)	3.75 (24°C)	-8.0 ± 0.10	-8.4 ± 0.30	-8.2 ± 0.15	-8.3 ± 0.16
1.0	6.00 (24°C)	3.89 (24°C)	-8.5 ± 0.22	-8.5 ± 0.18	-	-
1.0	6.00 (24°C)	4.21 (24°C)	-8.7 ± 0.43	-9.0 ± 0.81	-	-
1.0	7.01 (24°C)	3.94 (24°C)	-8.5 ± 0.28	-8.4 ± 0.26	-8.3 ± 0.24	-8.6 ± 0.14
1.0	7.01 (24°C)	3.96 (24°C)	-8.7 ± 0.41	-8.7 ± 0.23	-	-
1.0	8.01 (24°C)	4.07 (24°C)	-8.5 ± 0.24	-8.6 ± 0.37	-	-
1.0	8.01 (24°C)	4.23 (24°C)	-8.0 ± 0.46	-8.1 ± 0.40	-8.1 ± 0.77	-8.1 ± 0.50
1.0	10.01 (24°C)	5.84 (24°C)	~9.2 ± 0.10	-9.5 ± 0.10	-	-
1.0	10.01 (24°C)	6.75 (24°C)	-9.9 ± 0.64	-10.0± 0.86	-	-
	[NaC1] mol/L 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	[NaCl] pH mol/L bei Ansatz 1.0 4.00 (24°C) 1.0 4.00 (24°C) 1.0 6.00 (24°C) 1.0 6.00 (24°C) 1.0 7.01 (24°C) 1.0 7.01 (24°C) 1.0 8.01 (24°C) 1.0 8.01 (24°C) 1.0 10.01 (24°C)	[NaC1] pH pH mol/L bei Ansatz nach 250 Tagen 1.0 4.00 (24°C) 3.75 (24°C) 1.0 4.00 (24°C) 3.75 (24°C) 1.0 4.00 (24°C) 3.75 (24°C) 1.0 6.00 (24°C) 3.89 (24°C) 1.0 6.00 (24°C) 4.21 (24°C) 1.0 7.01 (24°C) 3.94 (24°C) 1.0 7.01 (24°C) 3.96 (24°C) 1.0 8.01 (24°C) 4.07 (24°C) 1.0 8.01 (24°C) 4.23 (24°C) 1.0 10.01 (24°C) 5.84 (24°C) 1.0 10.01 (24°C) 5.84 (24°C)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

<u>Tabelle 6.20:</u> Löslichkeit von ²³⁹PuO₂ in <u>1.0 M NaCl</u>-Lösung unter <u>aeroben</u> Bedingungen. Kontaktzeit 250 Tage. Konzentrationsangaben: log [Pu-239] in mol/L

¹⁾Sartorius SM 145 29, entspricht einer Porenweite von ca. 1.3 nm

80

.

<u>Tabelle 6.21:</u> Löslichkeit von ²³⁹PuO₂ in <u>3.0 M NaCl</u>-Lösung unter <u>aeroben</u> Bedingungen. Kontaktzeit 250 Tage. Konzentrationsangaben: log [Pu-239] in mol/L

Probe	[NaC1]	рН	рН		Millex	Nuclepore	Sartorius
	mol/L	bei Ansatz	nach 250 Tagen	unfiltriert	220 nm	30 nm	5 kD''
Δ/Δ/1	3.0	3 99 (25°C)	3 58 (24°C)	-8 07+0 013	-8 11+0 010	_	,
A/4/2	3.0	3.99 (25°C)	3.50 (24°C)	-7.90±0.012	-7.91±0.011	_	- , -
A/4/3	3.0	6.03 (25°C)	5.25 (24°C)	-9.22±0.048	-9.48±0.067	-	-
A/4/4	3.0	6.03 (25°C)	4.20 (24°C)	-8.64±0.076	-8.77±0.056	-	-
A/4/5	3.0	7.02 (25°C)	5.53 (24°C)	-9.5 ± 0.14	-9.6 ± 0.10	-9.6 ± 0.14	-9.5 ± 0.17
A/4/6	3.0	7.02 (25°C)	5.38 (24°C)	-9.7 ± 0.11	-9.6 ± 0.13	-	-
A/4/7	3.0	8.00 (25°C)	4.89 (24°C)	-9.3 ± 0.23	-9.5 ± 0.11	-	-
A/4/8	3.0	8.00 (25°C)	3.70 (24°C)	-9.6 ± 0.14	-9.5 ± 0.26	-	-
A/4/9	3.0	10.01 (25°C)	6.45 (24°C)	-10.1± 0.98	-10.0± 1.30	-	-
A/4/10	3.0	10.01 (25°C)	6.81 (24°C)	-9.9 ± 0.37	-10.4± 1.20	-	-

¹⁾Sartorius SM 145 29, entspricht einer Porenweite von ca. 1.3 nm

8

- Harris and Server

_·

Probe	[NaC1]	рН	рН		Millex	Nuclepore	Sartorius
	mol/L	bei Ansatz	nach 250 Tagen	unfiltriert	220 nm	30 nm '	5 kD ¹
A/5/1	5.0	4.00 (25°C)	3.76 (24°C)	-8.46±0.018	-8.53±0.010	_	-
A/5/2	5.0	4.00 (25°C)	3.72 (24°C)	-8.47±0.029	-8.47±0.054	-8.46±0.014	-8.49±0.038
A/5/3	5.0	6.01 (25°C)	3.85 (24°C)	-8.86±0.025	-8.95±0.074	-	. –
A/5/4	5.0	6.01 (25°C)	3.58 (24°C)	-8.47±0.011	-8.58±0.013	-	-
A/5/5	5.0	7.00 (25°C)	4.31 (24°C)	-9.43±0.092	-9.48±0.077	-9.48±0.095	-9.48±0.14 0
A/5/6	5.0	7.00 (25°C)	4.42 (24°C)	-9.74±0.064	-9.51±0.083	-	-
A/5/7	5.0	8.00 (25°C)	4.05 (24°C)	-8.94±0.042	-8.98±0.130	-	-
A/5/8	5.0	8.00 (25°C)	3.84 (24°C)	-8.80±0.049	-8.86±0.065	-8.94±0.055	-
A/5/9	5.0	9.98 (25°C)	6.49 (24°C)	-10.3± 0.80	-10.5± 1.22	-	· _
A/5/10	5.0	9.98 (25°C)	6.44 (24°C)	-10.2 ± 0.38	-10.2± 0.71		

Tabelle 6.22: Löslichkeit von ²³⁹PuO₂ in <u>5.0 M NaCl</u>-Lösung unter <u>aeroben</u> Bedingungen. Kontaktzeit 250 Tage. Konzentrationsangaben: log [Pu-239] in mol/L

¹⁾Sartorius SM 145 29, entspricht einer Porenweite von ca. 1.3 nm

82

 $\sqrt{2}$

Tabelle 6.23: Löslichkeit von ²³⁸PuO₂ in gesättigter Na3Y-Salzgruslösung (SG) unter <u>aeroben</u> Bedingungen. Kontaktzeit 77 Tage. Konzentrationsangaben: log [Pu-238] in mol/L

3

Probe	pH bei Ansatz	pH nach 77 Tagen	unfiltriert	Millex 220 nm	Nuclepore 30 nm	Sartorius 20 kD ¹⁾
SG/1	6.54 (22°C)	6.89 (21°C)	-5.60±0.001	-5.61±0.006	-5.68±0.008	-5.42±0.008
SG/2	6.54 (22°C)	7.18 (21°C)	-5.43 ± 0.015	-5.45±0.001	-5.52 ± 0.010	-5.67±0.02 3

¹⁾Sartorius SM 145 49, entspricht einer Porenweite von ca. 2 nm

83

j,

- Avail - A

Tabelle 6.24: Löslichkeit von ²³⁸PuO₂ in gesättigter Na3v-Salzgruslösung (SG) unter <u>anaeroben</u> Bedingungen. Kontaktzeit 133 Tage. Konzentrationsangaben: log [Pu-238] in mol/L

Sartorius	-5.85±0.002
20 kD ¹¹	-5.69±0.004
Nuclepore	-5.84±0.003
30 nm	-5.69±0.022
Millex	-5.84±0.001
220 nm	-5.66±0.002
unfiltriert	-5.79±0.011 -5.65±0.003
pH	5.35 (19°C)
nach 133 Tagen	5.60 (19°C)
pH	5.66 (25°C)
bei Ansatz	5.58 (25°C)
Probe	SGa SGb

¹⁾Sartorius SM 145 49, entspricht einer Porenweite von ca. 2 nm

84

A CONTRACTOR OF A CONTRACTOR O

Tabelle 6.25: Löslichkeit von ²³⁸PuO₂ in Q-Lauge unter <u>aeroben</u> Bedingungen. Kontaktzeit <u>120 Tage</u>. Konzentrationsangaben: log [Pu-238] in mol/L

Probe	pH bei Ansa	atz	pH nach 120 Tagen	unfiltriert	Millex 220 nm	Nuclepore 30 nm	Sartorius 20 kD ¹⁾
B/0/1	4,40 (20	°C)	4. 80 (21 °C)	-6.29±0.057	-6.38±0.003		-6.30±0.005
B/Q/2	4.40 (20	°C)	4.75 (21 °C)	-6.58±0.007	-6.60±0.003	-	-6.56±0.008
B/Q/3	6.77 (20	°C)	6.60 (21 °C)	-6.45±0.004	-6.47±0.001	-	-6.39±0.005
B/Q/4	6.77 (20	°C)	6.60 (21 °C)	-6.31±0.001	-6.32±0.001	-6.32±0.002	-6.34±0.004
B/Q/5	6.07 (20	°C)	4.89 (21 °C)	-6.25±0.027	-6.30±0.003	-	-
B/Q/6	6.07 (20	°C)	4.89 (21 °C)	-6.59±0.004	-6.62±0.008	-6.59±0.007	-6.59±0.004
B/Q/7	4.03 (20	°C)	4.85 (21 °C)	-6.26±0.015	-6.29±0.001	-	-
B/Q/8	4.03 (20	°C)	4.75 (21 °C)	-6.52±0.002	-6.54±0.007	-	-

¹⁾Sartorius SM 145 49, entspricht einer Porenweite von ca. 2 nm

Probe	рH	рН		Millex	Nuclepore	Sartorius
	bei Ansatz	nach 450 Tagen	unfiltriert	220 nm	30 nm '	20 kD ¹
B/Q/1	4.40 (20°C)	2.95 (21°C)	-5.64±0.018	~5.79±0.005	-	-
B/Q/2	4.40 (20°C)	2.76 (21°C)	-5.70±0.099	-5.93±0.004	-	-
B/Q/3	6.77 (20°C)	5.26 (21°C)	-5.72±0.007	-5.77±0.010	-	· -
B/Q/4	6.77 (20°C)	5.20 (21°C)	-5.55±0.048	-5.68±0.005	-	-
B/Q/5	6.07 (20°C)	2.87 (21°C)	-5.73±0.002	-5.85±0.001	-	-
B/Q/6	6.07 (20°C)	2.92 (21°C)	-6.24±0.042	-6.40±0.009	-	-
B/Q/7	4.03 (20°C)	3.11 (21°C)	-5.82±0.091	-5.92±0.004	-	-
B/Q/8	4.03 (20°C)	3.06 (21°C)	-6.08±0.002	-6.21±0.003	-	-

Tabelle 6.26: Löslichkeit von ²³⁸PuO₂ in Q-Lauge unter <u>aeroben</u> Bedingungen. Kontaktzeit <u>450 Tage</u>. Konzentrationsangaben: log [Pu-238] in mol/L

1) Sartorius SM 145 49, entspricht einer Porenweite von ca. 2 nm

in a la seg

α σ

<u>}</u>___

<u>Tabelle 6.27:</u> Löslichkeit von ²³⁹PuO₂ in Q-Lauge unter <u>aeroben</u> Bedingungen. Kontaktzeit 120 Tage. Konzentrationsangaben log [Pu-239] in mol/L

рН	рН		Millex	Nuclepore	Sartorius
bei Ansatz	nach 120 Tagen	unfiltriert	220 nm	30 nm	20 kD ¹⁾
4.03 (26°C)	4.58 (22°C)	-8.3 ± 0.1	-8.7 ± 0.25		
4.03 (26°C)	4.32 (22°C)	-8.2 ± 0.10	-8.2 ± 0.11	-	~
4.40 (20°C)	4.37 (22°C)	-8.6 ± 0.11	-9.2 ± 1.10	-	-
4.40 (20°C)	4.11 (22°C)	-8.3 ± 0.26	-8.4 ± 0.12	-	-
6.07 (26°C)	5.67 (22°C)	-8.8 ± 0.20	-9.1 ± 0.39	-	-
6.07 (26°C)	5.61 (22°C)	-9.0 ± 0.44	-9.5 ± 1.00	-	-
6.77 (20°C)	6.72 (22°C)	-8.5 ± 0.26	-9.0 ± 0.17	-	-
6.77 (20°C)	6.84 (22°C)	-8.8 ± 0.39	-9.3 ± 0.32	-	-

¹⁾Sartorius SM 145 49, entspricht einer Porenweite von ca. 2 nm

a subscription of the second second

Probe	bei	pH Ansatz	pH nach 133 Tagen	unfiltriert	Millex 220 nm	Nuclepore 30 nm	Sartorius 20 kD ¹⁾
Q4a	4.56	(25°C)	5.37 (19°C)	-5.56±0.002	-5.56±0.001	-5.56±0.003	-5.62±0.005
Q4b	4.72	(25°C)	4.92 (19°C)	-5.77±0.002	-5.76±0.003	-5.76±0.004	-5.79±0.008
QOa	4.63	(25°C)	5.13 (19°C)	-5.61±0.001	-5.62±0.001	-5.61±0.005	-5.64±0.007
Q0b	4.81	(25°C)	4.55 (19°C)	-6.01±0.001	-6.02±0.001	-6.02±0.002	-6.05±0.001
Q6a	5.02	(25°C)	5.05 (19°C)	-5.83±0.004	-5.83±0.003	-5.83±0.003	-5.85±0.001
Q6b	4.99	(25°C)	5.09 (19°C)	-5.84±0.002	-5.85±0.006	-5.85±0.001	-5.87±0.002
Q7a	5.83	(25°C)	5.71 (19°C)	-5.89±0.001	-5.90±0.004	-5.89±0.003	-5.94±0.001
Q7b	5.83	(25°C)	5.71 (19°C)	-5.65±0.001	-5.66±0.003	-5.66±0.003	-5.77±0.001

<u>Tabelle 6.28:</u> Löslichkeit von ²³⁸PuO₂ in Q-Lauge unter <u>anaeroben</u> Bedingungen. Kontaktzeit 133 Tage. Konzentrationsangaben: log [Pu-238] in mol/L

Tabelle 6.29: Löslichkeit von ²³⁸PuO₂ in salinem Gorleben-Grundwasser unter <u>aeroben</u> Bedingungen. Kontaktzeit 195 Tage¹⁾. Konzentrationsangaben: log [Pu-238] in mol/L

9

Probe	pH	p ^H	unfiltriert	Millex	Nuclepore	Sartorius
Gohy	bei Ansatz	nach 195 Tagen ¹⁾		220 nm	30 nm	20 kD ²⁾
324/1	7.73 (22°C)	8.46 (22°C)	-8.60±0.010	-8.63±0.016	-8.60±0.013	-8.62±0.010
324/2	8.24 (22°C)	8.50 (22°C)	-8.39±0.008	-8.64±0.012	-8.58±0.010	-8.62±0.010
944/1	7.22 (24°C)	6.45 (22°C)	-6.48±0.001	-6.50±0.002	-6.51±0.001	-6.50±0.004
944/2	7.22 (24°C)	6.85 (22°C)	-6.61±0.001	-6.64±0.007	-6.64±0.007	-6.63±0.001
982/1	7.70 (22°C)	8.30 (22°C)	-7.03±0.004	-7.63±0.002	-7.62±0.003	-7.63±0.004
982/2	7.69 (22°C)	8.28 (22°C)	-7.30±0.003	-7.32±0.005	-7.34±0.001	-7.35±0.001
2122/1	7.36(24°C)	4.84 (22°C)	-6.74±0.013	-6.78±0.005	-6.79±0.008	-6.76±0.001
2122/2	7.36(24°C)	6.15 (22°C)	-6.38±0.009	-6.36±0.007	-6.37±0.003	-6.37±0.009
2221/1	7.36 (22°C)	7.70 (22°C)	-7.33±0.001	-7.34±0.006	-7.36±0.006	-7.36±0.003
2221/2	7.15 (22°C)	7.59 (22°C)	-7.85±0.002	-7.87±0.004	-7.88±0.010	-7.86±0.006

¹⁾Die Kontaktzeit für die Proben Gohy 944 und Gohy 2122 beträgt 600 Tage ²⁾Sartorius SM 145 49, entspricht einer Porenweite von ca. 2 nm

Tabelle 6.30: Löslichkeit von ²³⁹PuO₂ in salinem Gorleben-Grundwasser unter <u>aeroben</u> Bedingungen. Kontaktzeit 330 Tage. Konzentrationsangaben: log [Pu-239] in mol/L

Probe Gohy	рН bei Ansatz	pH nach 330 Tagen	unfiltriert	Millex 220 nm	Nuclepore . 30 nm
944a	7.22 (24°C)	7.05 (24°C)	-9.0 ± 1.00	-9.1 ± 1.20	-9.1 ± 1.50
944b	7.22 (24°C)	7.35 (24°C)	-8.8 ± 0.72	-9.4 ± 1.20	-9.3 ± 1.20
2122a	7.36 (24°C)	7.47 (24°C)	-8.3 ± 0.21	-8.9 ± 0.75	-8.8 ± 0.56
2122b	7.36 (24°C)	7.47 (24°C)	-7.6 ± 0.10	-8.8 ± 0.63	-8.5 ± 0.36

Sertemius Sti 145 49 . CERTSPETERT BERGER BECKEN AND ALCOND

Tabelle 6.31: Löslichkeit von ²³⁸PuO₂ in salinem Gorleben-Grundwasser unter <u>anaeroben</u> Bedingungen. Kontaktzeit 86 Tage. Konzentrationsangaben: log [Pu-238] in mol/L

Probe Gohy	pH bei Ansatz	pH nach 86 Tagen	unfiltriert	Millex 220 nm	Nuclepore 30 nm	Sartorius 20 kD ¹⁾
944/1	7.30 (21°C)	6.56 (19°C)	-6.56±0.001	-6.57±0.003	-6.56±0.002	-6.58±0.002
944/2	7.27 (21°C)	6.78 (19°C)	-6.07±0.001	-6.07±0.001	-6.06±0.002	-6.07±0.003
982/1	7.22 (21°C)	7.28 (19°C)	-6.96±0.001	-7.37±0.019	-7.35±0.003	-7.47±0.100
982/2	7.22 (21°C)	6.83 (19°C)	-7.39±0.003	-7.58±0.033	-7.55±0.006	-7.56±0.002
2221/1	6.87 (21°C)	7.08 (19°C)	-7.12±0.005	-7.15±0.003	-8.04±0.360	-8.30±0.310
2221/2	6.99 (21°C)	7.07 (19°C)	-6.68±0.002	-6.77±0.001	-7.09±0.170	-7.51±0.130

¹⁾Sartorius SM 145 49, entspricht einer Porenweite von ca. 2 nm

Tabelle 6.32: Ergebnisse eines Radiolyseexperiments mit ²³⁸PuO₂ in 5 M NaCl nach verschiedenen Kontaktzeiten unter aeroben Bedingungen bei 22 °C. Phasentrennung mit Millex 220 nm. Konzentrationsangaben: log [Pu-238] in mol/L

Probe	Pu-Einwaage	nach O	Tagen	nac	ch 6 Tag	jen	na	ch 13 Ta	agen	, na	ch 56 1	Tagen
						log			log			log
	mg/L ¹⁾	Eh/mV	рН	Eh/mV	рН	[Pu-238]	Eh∕mV	ρН	[Pu-238]	Eh/mV	рH	[Pu-238]
											<u></u>	
74/0	0	+335	7.42	+480	8.10	-	+430	8.17	-	+ 445	8.12	-
74/5	49	+335	7.42	+290	7.58	- 7.89	+460	7.94	- 7.55	+1010	7.41	-7.06
74/10	103	+335	7.42	+360	8.06	- 7.12	+955	7.77	- 6.81	+1010	7.50	-6.17
74/20	209	+335	7.42	+330	8.10	- 7.11	+920	7.94	- 6.80	+ 990	7.62	-5.99
74/50	518	+335	7.42	+920	8.02	- 6.42	+935	7.83	- 6.18	+1025	7.53	-5.21
74/100	999	+335	7.42	+905	8.09	- 6.22	+945	7.84	- 5.95	+ 970	7.94	-5.09

¹⁾1000 mg/L entspricht einer spezifischen α -Aktivität von 15.32 Ci/L

92

.....

<u>Tabelle 6.33:</u> Löslichkeit von ²⁴¹AmO₂ in NaCl-Lösungen unter <u>aeroben</u> Bedingungen. Kontaktzeit <u>45 Tage</u>. Konzentrationsangaben: log [Am-241] in mol/L

[NaCl]	pH	pH	unfiltriert	Millex	Nuclepore	Sartorius
mol/L	bei Ansatz	nach 45 Tagen		220 nm	30 nm	5 kD ¹⁾
0.1	4.02 (21°C)	4.31 (22°C)	-4.65±0.029	-4.66±0.024	-4.64±0.025 .	-4.64±0.026
	5.99 (21°C)	5.28 (22°C)	-5.10±0.029	-5.12±0.023	-5.12±0.024	-5.24±0.020
	9.99 (21°C)	6.19 (22°C)	-5.11±0.030	-5.14±0.018	-5.15±0.024	-5.40±0.027
0.5	3.99 (21°C)	4.07 (22°C)	-5.03±0.024	-5.03±0.021	~5.03±0.016	-5.04±0.031
	6.01 (21°C)	5.12 (22°C)	-4.44±0.020	-4.44±0.022	-4.44±0.019	-4.45±0.024
	10.00 (21°C)	6.25 (22°C)	-4.99±0.022	-4.99±0.020	-5.01±0.022	-5.13±0.028
1.0	4.00 (21°C)	5.06 (22°C)	-4.46±0.024	-4.45±0.020	-4.45±0.031	-4.49±0.020
	8.01 (21°C)	5.50 (22°C)	-4.77±0.025	-4.79±0.025	-4.77±0.020	-4.80±0.018
	10.00 (21°C)	5.93 (22°C)	-5.16±0.020	-5.18±0.022	-5.18±0.019	-5.29±0.030
3.0	6.01 (21°C)	4.50 (22°C)	-4.80±0.018	-4.80±0.019	-4.81±0.025	-4.84±0.019
	8.01 (21°C)	4.92 (22°C)	-4.61±0.024	-4.62±0.020	-4.62±0.021	-4.69±0.020
	10.00 (21°C)	6.34 (22°C)	-5.24±0.025	-5.30±0.021	-5.29±0.022	-6.44±0.031
5.0	4.00 (21°C)	4.28 (22°C)	-5.19±0.019	-5.20±0.021	-5.22±0.018	-5.24±0.018 ²⁾
	7.00 (21°C)	5.23 (22°C)	-5.06±0.023	-5.06±0.023	-5.08±0.020	-5.08±0.022 ²⁾
	10.00 (21°C)	5.95 (22°C)	-5.26±0.020	-5.28±0.018	-5.30±0.028	-5.41±0.023 ²⁾

¹⁾Sartorius SM 145 29, entspricht einer Porenweite von ca. 1.3 nm ²⁾Sartorius SM 145 49, entspricht einer Porenweite von ca. 2 nm ÷ وو

[NaCl]	рH	pH		Millex	Nuclepore	Sartorius
mo1/L	Dei Ansatz	nach 90 lagen	unfiltriert	220 nm	30 nm	5 kU''
0.1	4.02 (21°C)	3.94 (21°C)	-4.50±0.032	-4.50±0.015	-4.50±0.015	-4.52±0.027
	8.00 (21°C)	4.57 (21°C)	-4.62±0.028	-4.62±0.020	-4.62±0.014	-4.64±0.026
	9.99 (21°C)	5.18 (21°C)	-4.47±0.028	-4.48±0.019	-4.48±0.018	-4.60±0.024
0.5	3.99 (21°C)	3.81 (21°C)	-4.91±0.030	-4.91±0.017	-4.90±0.017	-4.91±0.021
	8.00 (21°C)	4.75 (21°C)	-4.58±0.029	-4.37±0.022	-4.38±0.021	-4.38±0.022
	8.00 (21°C)	5.57 (21°C)	-4.31±0.021	-4.22±0.013	-4.23±0.032	-4.25±0.022
1.0	7.03 (21°C)	4.29 (21°C)	-4.67±0.018	-4.64±0.021	-4.64±0.025	-4.65±0.029
	7.03 (21°C)	4.34 (21°C)	-4.86±0.025	-4.86±0.018	-4.86±0.023	-4.90±0.017
	8.01 (21°C)	5.00 (21°C)	-4.31±0.026	-4.33±0.019	-4.36±0.022	-4.40±0.031
3.0	6.01 (21°C)	3.90 (22°C)	-4.60±0.030	-4.67±0.015	-4.68±0.016	-4.74±0.025
	6.01 (21°C)	4.06 (22°C)	-4.72±0.020	-4.72±0.013	-4.72±0.019	-4.79±0.021
	10.00 (21°C)	4.79 (22°C)	-4.50±0.025	-5.50±0.017	-4.51±0.020	-4.55±0.024
5.0	4.00 (21°C)	3.75 (22°C)	-5.04±0.028	-5.07±0.020	-5.06±0.028	-5.07±0.024 ²
	8.00 (21°C)	4.34 (22°C)	-4.79±0.023	-4.80±0.017	-4.79±0.025	-4.82±0.018 ²
	10.00 (21°C)	4.82 (22°C)	-5.02±0.021	-5.03±0.012	-5.04±0.012	-5.06±0.022 ²

<u>Tabelle 6.34:</u> Löslichkeit von ²⁴¹AmO₂ in NaCl-Lösungen unter <u>aeroben</u> Bedingungen. Kontaktzeit <u>90 Tage</u>. Konzentrationsangaben: log [Am-241] in mol/L

¹⁾Sartorius SM 145 29, entspricht einer Porenweite von ca. 1.3 nm ²⁾Sartorius SM 145 49, entspricht einer Porenweite von ca. 2 nm

<u>Tabelle 6.35:</u> Löslichkeit von ²⁴¹AmO₂ in NaCl-Lösungen unter <u>aeroben</u> Bedingungen. Kontaktzeit <u>160 Tage</u>. Konzentrationsangaben: log [Am-241] in mol/L

[NaCl]	pH	pH	unfiltriert	Millex	Nuclepore	Sartorius
mol/L	bei Ansatz	nach 160 Tagen		220 nm	30 nm	5 kD ¹⁾
0.1	4.02 (21°C)	4.00 (22°C)	-4.48±0.030	-4.51±0.020	-4.51±0.019	-4.52±0.021
	8.00 (21°C)	4.42 (22°C)	-4.52±0.029	-4.53±0.021	-4.53±0.018	-4.54±0.022
	9.99 (21°C)	4.88 (22°C)	-4.05±0.029	-4.06±0.025	-4.06±0.021	-4.06±0.031
0.5	3.99 (21°C)	3.69 (22°C)	-4.92±0.035	-4.94±0.019	-4.94±0.024	-4.96±0.025
	8.00 (21°C)	4.36 (22°C)	-4.25±0.032	-4.26±0.018	-4.25±0.021	-4.27±0.018
	8.00 (21°C)	5.26 (22°C)	-4.03±0.033	-4.03±0.012	-4.03±0.023	-4.09±0.015
1.0	7.03 (21°C)	3.97 (22°C)	-4.50±0.025	-4.61±0.013	-4.60±0.023	-4.62±0.025
	7.03 (21°C)	3.95 (22°C)	-4.83±0.024	-4.83±0.017	-4.83±0.018	-4.85±0.034
	8.01 (21°C)	4.49 (22°C)	-4.13±0.027	-4.19±0.013	-4.19±0.016	-4.27±0.027
3.0	6.01 (21°C)	3.53 (22°C)	-4.77±0.028	-4.77±0.028	-4.76±0.032	-4.78±0.027
	6.01 (21°C)	3.75 (22°C)	-4.67±0.028	-4.70±0.026	-4.72±0.022	-4.71±0.025
	10.00 (21°C)	4.25 (22°C)	-4.31±0.021	-4.30±0.021	-4.30±0.020	-4.32±0.026
5.0	4.00 (21°C)	3.39 (22°C)	-5.16±0.015	-5.08±0.022	-5.09±0.018	-4.97±0.020 ²⁾
	8.00 (21°C)	4.12 (22°C)	-4.54±0.032	-4.49±0.024	-4.45±0.017	-4.51±0.031 ²⁾
	10.00 (21°C)	3.99 (22°C)	-5.02±0.029	-4.95±0.021	-5.01±0.020	-5.12±0.018 ²⁾

¹⁾Sartorius SM 145 29, entspricht einer Porenweite von ca. 1.3 nm ²⁾Sartorius SM 145 49, entspricht einer Porenweite von ca. 2 nm

22 - 2 X

<u>Tabelle 6.36:</u> Löslichkeit von ²⁴¹AmO₂ in gesättigter Salzgruslösung (Na3v) unter <u>aeroben</u> Bedingungen. Kontaktzeit 124 Tage. Konzentrationsangaben: log [Am-241] in mol/L

Sartorius	-4.33±0.012
20 kD ¹⁾	-3.96±0.005
Nuclepore	-4.32±0.008
30 nm	-3.92±0.040
Millex	-4.32±0.003
220 nm	-3.96±0.001
unfiltriert	-4.29±0.008 -3.94±0.001
pH	3.79 (20°C)
nach 124 Tagen	4.71 (20°C)
pH	6.54 (20°C)
bei Ansatz	6.54 (20°C)
Probe	SGa SGb

¹⁾Sartorius SM 145 49, entspricht einer Porenweite von ca. 2 nm

ういい しつてい かん

Tabelle 6.37: Löslichkeit von ²⁴¹AmO₂ in gesättigter Salzgruslösung (Na3y) unter <u>anaeroben</u> Bedingungen. Kontaktzeit 80 Tage. Konzentrationsangaben: log [Am-241] in mol/L

Probe	pH bei Ansatz	pH nach 80 Tagen	unfiltriert	220 nm	Nuclepore 30 nm	Sartorius 20 kD ¹⁾
SGa	5.92 (20°C)	6.37 (20°C)	-4.76±0.026	-4.81±0.002	-4.82±0.003	I
SGb	6.10 (20°C)	6.36 (20°C)	-4.48±0.003	-4.51±0.001	-4.52±0.003	١

¹⁾Sartorius SM 145 49, entspricht einer Porenweite von ca. 2 nm

 Tabelle 6.38:
 Löslichkeit von ²⁴¹AmO₂ in Q-Lauge unter <u>aeroben</u> Bedingungen. Kontaktzeit <u>45 Tage</u>.

 Konzentrationsangaben:
 log [Am-241] in mol/L

٠

Probe	pH bei Ansatz	pH nach 45 Tagen	unfiltriert	Millex 220 nm	Nuclepore 30 nm	Sartorius 20 kD ¹⁾
Q4a	4.00 (21°C)	5.10 (22°C)	-5.11±0.028	-5.26±0.018	-5.15±0.021	-5.17±0.020
Q4b	4.00 (21°C)	5.10 (22°C)	-5.40±0.028	-5.67±0.030	-5.41±0.018	-5.56±0.029
00a	4.38 (21°C)	5.09 (22°C)	-5.18±0.032	-5.07±0.020	-5.06±0.030	-5.06±0.024
qob	4.38 (21°C)	5.04 (22°C)	-5.05±0.034	-5.14±0.021	-5.07±0.024	-5.08±0.019
Q6a	6.02 (21°C)	5.26 (22°C)	-5.24±0.029	-5.37±0.016	-5.37±0.016	-5.40±0.021
q6b	6.02 (21°C)	5.35 (22°C)	-5.49±0.021	-5.71±0.023	-5.51±0.032	-5.4 9±0.025
Q7 a	6.99 (21°C)	7.02 (22°C)	-5.12±0.031	-5.14±0.019	-5.13±0.019	-5.13±0.018
q7b	6.99 (21°C)	7.01 (22°C)	-5.42±0.020	-5.49±0.023	-5.48 ± 0.017	-5.49 ± 0.018

¹⁾Sartorius SM 145 49. entspricht einer Porenweite von ca. 2 nm

Tabelle 6.39: Löslichkeit von ²⁴¹AmO₂ in Q-Lauge unter <u>aeroben</u> Bedingungen. Kontaktzeit <u>90 Tage</u>. Konzentrationsangaben: log [Am-241] in mol/L

Probe	рН	рН		Millex	Nuclepore	Sartorius
	bei Ansatz	nach 90 Tagen	unfiltriert	220 nm	30 nm	20 kD1)
Q4a	4.00 (21°C)	5.04 (21°C)	-4.91±0.027	-4.93±0.027	-4.93±0.020	-4.93±0.016
Q4b	4.00 (21°C)	5.09 (21°C)	-5.12±0.025	-5.20±0.020	-5.14±0.024	-5.14±0.028
QOa	4.38 (21°C)	4.83 (21°C)	-4.81±0.032	-4.83±0.021	-4.83±0.018	-4.82±0.022
Q 0 b	4.38 (21°C)	5.00 (21°C)	-4.82±0.014	-4.84±0.018	-4.84±0.022	-4.86±0.023
Q6a	6.02 (21°C)	5.00 (21°C)	-4.92±0.031	-5.00±0.026	-5.00±0.023	-5.00±0.017
Q6b	6.02 (21°C)	4.94 (21°C)	-5.24±0.021	-5.28±0.026	-5.27±0.020	-5.27±0.016
Q7a	6.99 (21°C)	6.97 (21°C)	-5.05±0.026	-5.06±0.021	-5.05±0.019	-5.06±0.025
Q7b	6.99 (21°C)	6.96 (21°C)	-5.37±0.019	-5.41±0.013	-5.38±0.018	-5.40±0.023

¹⁾Sartorius SM 145 49, entspricht einer Porenweite von ca. 2 nm

66

<u>Tabelle 6.40:</u> Löslichkeit von ²⁴¹AmO₂ in Q-Lauge unter <u>aeroben</u> Bedingungen. Kontaktzeit <u>160 Tage</u>. Konzentrationsangaben: log [Am-241] in mol/L

Probe	pH bei Ansatz	pH nach 160 Tagen	unfiltriert	Millex 220 nm	Nuclepore 30 nm	Sartorius 20 kD ¹⁾
Q4a	4.00 (21°C)	4.34 (22°C)	-4.73±0.027	-4.74±0.021	-4.75±0.022	-4.77±0.014
Q4b	4.00 (21°C)	4.49 (22°C)	-4.87±0.0 32	-4.96±0.020	-4 .94±0.021	-5.15 ± 0.019
QOa	4.38 (21°C)	4.89 (22°C)	-4.55±0.031	-4.62±0.013	-4.61 ± 0.017	-4.62±0.016
qoþ	4.38 (21°C)	4.86 (22°C)	-4.63±0.025	-4.65±0.01 9	-4.65±0.014	-4.66±0.015
06a	6.02 (21°C)	4.75 (22°C)	-4 .72±0.024	-4.80±0.025	-4.7 8±0.018	-4.81 ± 0.018
Q6b	6.02 (21°C)	4.75 (22°C)	-5.03±0.022	-5.08±0.022	-5.07±0.017	-5.11±0.020
Q7a	6.99 (21°C)	6.63 (22°C)	-5.13±0.033	-5.13±0.013	- 5.13±0.013	-5.16±0.015
q7b	6.99 (21°C)	6.60 (22°C)	-5.28±0.023	-5.31 ± 0.025	-5.30 ± 0.016	-5.36±0.017

Kontaktzeit <u>370 Tage</u> .	
aeroben Bedingungen.	o1/L
unter] in mc
Q-Lauge	[Am-241]
in	log
^{2 4 1} Am0 ²	gaben:
von	nsar
Löslichkeit	Konzentratic
.41:	
1e 6	
Tabel	

Probe	pH bei Ansatz	pH nach 370 Tagen	unfiltriert	Millex 220 nm	Nuclepore 30 nm	Sartorius 20 kD ¹⁾
Q4a	4.00 (21°C)	3.77 (20°C)	-4.38±0.001	-4.38±0.001	-4.38±0.004	-4.40±0.056
Q4b	4.00 (21°C)	3.00 (20°C)	-4.56±0.001	-4.56±0.001	-4.56±0.003	-4.57±0.010
იე ის ის	4.38 (21°C) 4.38 (21°C)	2.96 (20°C) 3.66 (20°C)	-4.14±0.001 -4.18±0.004	-4.21±0.003 -4.21±0.001	-4.21±0.001 -4.22±0.002	-4.22±0.010 -4.21±0.020
Q6a	6.02 (21°C)	4.35 (20°C)	-4.32±0.001	-4.32±0.002	-4.32±0.002	-4.34±0.014
Q6b	6.02 (21°C)	2.49 (20°C)	-4.67±0.001	-4.67±0.001	-4.67±0.001	-4.69±0.021
Q7a	6.99 (21°C)	6.55 (20°C)	-5.01±0.009	-5.01±0.003	-5.00±0.008	-5.02±0.022
Q7b	6.99 (21°C)	6.56 (20°C)	-5.35±0.002	-5.35±0.005	-5.36±0.003	-5.36±0.015

¹⁾Sartorius SM 145 49, entspricht einer Porenweite von ca. 2 nm

Probe	pH bei Ansatz	pH nach 80 Tagen	unfiltriert	Millex 220 nm	Nuclepore 30 nm	Sartorius 20 kD ¹⁾
04Ь	5.32 (20°C)	4.93 (20°C)	-4.42±0.006	-4.42±0.003	-4.42±0.005	-4.43±0.006
QOa	5.58 (20°C)	5.69 (20°C)	-4.36±0.003	-4.36±0.003	-4.37±0.003	. -
QOЬ	5.53 (20°C)	5.61 (20°C)	-4.18±0.001	-4.18±0.001	-4.19±0.002	-
Q6a	5.87 (20°C)	5.82 (20°C)	-4.92±0.005	-4.93±0.009	-4.93±0.005	-4.95±0.004
Q6b	4.87 (20°C)	5.86 (20°C)	-5.02±0.003	-5.02±0.003	-5.01±0.003	-5.05±0.004
Q7a	6.97 (20°C)	6.71 (20°C)	-5.32±0.004	-5.48±0.003	-5.48±0.004	-5.58±0.003
Q7b	6.23 (20°C)	6.04 (20°C)	-5.35±0.019	-5.40±0.005	-5.40±0.004	-5.47±0.002

<u>Tabelle 6.42:</u> Löslichkeit von ²⁴¹AmO₂ in Q-Lauge unter <u>anaeroben</u> Bedingungen. Kontaktzeit 80 Tage. Konzentrationsangaben: log [Am-241] in mol/L

¹⁾Sartorius SM 145 49, entspricht einer Porenweite von ca. 2 nm

Probe	pH bei Ansatz	pH nach 88 Tagen	unfiltriert	Millex 220 nm	Nuclepore 30 nm	Sartorius 20 kD ¹⁾
324b	7.85 (20°C)	8.40 (20°C)	-6.89±0.004	-7.14±0.001	-6.98±0.003	-6.94±0.020
944a	7.22 (24°C)	7.27 (22°C)	-6.88±0.011	-8.24±0.005	-	-8.60±0.025
9 4 4b	7.22 (24°C)	7.07 (22°C)	-6.11±0.009	-8.15±0.007		-8.53±0.017
982a	7.59 (20°C)	8.16 (20°C)	-6.58±0.001	-7.05±0.001	-6.73±0.001	-7.49±0.060
982b	7.59 (20°C)	8.23 (20°C)	-6.70±0.003	-7.02±0.004	-6.84±0.002	-7.61±0.020
2122a	7.36 (24°C)	7.27 (22°C)	-7.16±0.008	-7.33±0.004	-	-7.39±0.012
2122b	7.36 (24°C)	7.07 (22°C)	-7.26±0.015	-7.58±0.006	-	-7.56±0.011
2221a	6.86 (20°C)	7.80 (20°C)	-6.49±0.007	-6.64±0.005	-6.55±0.001	~6.53±0.019
2221b	6.86 (20°C)	7.82 (20°C)	-6.47±0.008	-6.60±0.001	-6.61±0.009	-6.52±0.003

<u>Tabelle 6.43:</u> Löslichkeit von ²⁴¹AmO₂ in salinem Gohy-Grundwasser unter <u>aeroben</u> Bedingungen. Kontaktzeit <u>88 Tage</u>. Konzentrationsangaben: log [Am-241] in mol/L

¹⁾Sartorius SM 145 49, entspricht einer Porenweite von ca. 2 nm

103

an an an an the state
, 						
Probe	pH bei Ansatz	pH nach 126 Tagen ¹⁾	unfiltriert	Millex 220 nm	Nuclepore 30 nm	Sartorius '20 kD ²⁾
324a	7.85 (20°C)	8.42 (20°C)	-6.82±0.001	-7.29±0.032	-6.94±0.006	-6.95±0.009
324b	7.85 (20°C)	8.44 (20°C)	-6.82±0.009	-7.32±0.001	-6.93±0.006	-6.98±0.017
944a	7.22 (20°C)	6.90 (20°C)	-7.02±0.028	-7.96±0.011	-8.01±0.015	-7.92±0.007
944b	7.22 (24°C)	6.94 (22°C)	-6.59±0.031	-7.59±0.011	-7.68±0.015	-7.66±0.030
982a	7.59 (20°C)	8.28 (20°C)	-6.31±0.036	-7.23±0.013	-6.85±0.006	-6.82±0.005
982b	7.59 (20°C)	8.31 (20°C)	-6.27±0.011	-7.03±0.050	-6.92±0.003	-6.88±0.036
2122a	7.36 (24°C)	6.37 (22°C)	-7.52±0.025	-7.62±0.015	-7.60±0.017	-8.07±0.030
2122b	7.36 (24°C)	6.32 (22°C)	-7.51±0.037	-7.72±0.013	-7.70±0.018	-8.14±0.026
2221a	6.86 (20°C)	7.65 (20°C)	-6.17±0.012	-6.44±0.003	-6.26±0.003	-6.24±0.019
2221b	6.86 (20°C)	7.83 (20°C)	-6.26±0.008	-6.54±0.003	-6.32±0.002	-6.32±0.011

<u>Tabelle 6.44:</u> Löslichkeit von ²⁴¹AmO₂ in salinem Gohy-Grundwasser unter <u>aeroben</u> Bedingungen. Kontaktzeit <u>126 Tage¹⁾</u>. Konzentrationsangaben: log [Am-241] in mol/L

¹⁾Die Kontaktzeit bei den Grundwässern 944 und 2122 betrug 280 Tage

²⁾Sartorius SM 145 49, entspricht einer Porenweite von ca. 2 nm

h. —•

. .. .

<u>Tabelle 6.45</u>: Löslichkeit von ²⁴¹AmO₂ in salinem Gohy-Grundwasser unter <u>anaeroben</u> Bedingungen. Kontaktzeit <u>63 Tage</u>. Konzentrationsangaben: log [Am-241] in mol/L

Probe	pH bei Ansatz	pH - nach 63 Tagen	unfiltriert	Millex 220 nm	Nuclepore 30 nm	Sartorius 20 kD ¹⁾
	7 01 (0000)	c 7c (000c)	5. 60. 0. 010		5 77 0 001	<u> </u>
944a	7.31 (20°C)	6. /6 (20°C)	-5.69±0.010	-0.01±0.020	-5.7/±0.001	-5.85±0.011
944b	7.35 (20°C)	7.03 (20°C)	-5.33±0.007	-5.38±0.003	-5.36±0.005	-5,36±0.006
982a	7.16 (20°C)	7.94 (20°C)	-6.70±0.048	-7.11±0.038	-6.96±0.016	-6.79±0.030
982b	7.18 (20°C)	8.04 (20°C)	-6.81±0.003	-7.10±0.003	-6.93±0.006	-6.90±0.026
2221a	6.93 (20°C)	7.32 (20°C)	-6.01±0.008	-6.08±0.008	-6.08±0.005	-6.05±0.007
2221b	6.93 (20°C)	7.34 (20°C)	-5.94±0.003	-6.10±0.001	-6.04±0.007	-6.00±0.011

¹⁾Sartorius SM 145 49, entspricht einer Porenweite von ca. 2 nm

Kontaktzeit <u>132 Tage</u> .	
Bedingungen.	
anaeroben	
unter	
Gohy-Grundwasser	l in mol/L
salinem	[Am-241]
in	log
1 ²⁴¹ Am0 ₂	angaben:
Löslichkeit voi	Konzentrations
Tabelle 6.46:	

Probe	pH bei Ansatz	pH nach 132 Tagen	unfiltriert	Millex 220 nm	Nuclepore 30 nm	Sartorius 20 kD ¹⁾
944a	7.31 (20°C)	6.79 (20°C)	-4.57±0.008	-4.65±0.001	-4.66±0.005	-4.67±0.003
944b	7.35 (20°C)	6.70 (20°C)	-4.68±0.006	-4.82±0.001	-4.82±0.003	-4.83±0.003
982a	7.16 (20°C)	7.23 (20°C)	-6.30±0.003	-6.69±0.003	-6.35±0.003	-6.26±0.013
982b	7.18 (20°C)	7.25 (20°C)	-6.20±0.012	-6.46±0.001	-6.29±0.003	-6.22±0.008
2221a	6.93 (20°C)	7.03 (20°C)	-5.77±0.001	-5.92±0.002	-5.81±0.004	1 1
2221b	6.93 (20°C)	7.03 (20°C)	-5.69±0.003	-5.84±0.002	-5.73±0.003	

¹⁾Sartorius SM 145 49, entspricht einer Porenweite von ca. 2 nm

「ないのである」をないていていていたいとうないです。 いいろう

1. A. A.

1

Probe	pH	Eh/mV	Kontakt- zeit/Tage
QOa	5.69	+1240	80
Q0b	5.61	+1240	80
Q4a	5.75	+1240	80
Q4b	4.93	+1235	80
Q6a	5.82	+1240	80
Q6b	5.86	+1240	80
Q7a	6.71	+1015	80
Q7b	6.04	+1230	80
SGa	6.37	+1190	80
SGb	6.36	+1200	80
Gohy 944a	6.79	+1135	132
Gohy 944b	6.70	+1140	132
iohy 982a	7.23	+ 520	132
Sohy 982b	7.25	+ 520	132
iohy 2221a	7.03	+ 535	132
ohy 2221b	7.03	+ 540	132

<u>Tabelle 6.47:</u> Redoxpotentiale einiger saliner Probenlösungen mit ²⁴¹AmO₂ unter anaeroben Bedingungen bei 20 °C

, i

CALLER OF CALLER OF CALL

		Seite
<u>Tab. 3.1:</u>	Vergleich der Hydrolysekonstanten für Np(V) mit Literaturwerten	9
<u>Tab. 4.1:</u>	Vergleich der Hydrolysekonstanten von Pu(IV) bei 25 °C für eine Ionenstärke von µ = 1.0 mol/L	24
<u>Tab. 4.2:</u>	Stabilitätskonstanten zur Hydrolyse von Pu(VI), umgerechnet auf Ionenstärke µ = 0 mol/L	27
<u>Tab. 5.1:</u>	Vergleich der Löslichkeitsprodukte und Bildungs- konstanten zur Am(III)-Hydrolyse	45
<u>Tab. 6.1:</u>	Löslichkeit von ²³⁷ NpO ₂ OH in Salzlaugen nach verschiedenen Kontaktzeiten unter <u>aeroben</u> Bedingungen.	61
<u>Tab. 6.2:</u>	Löslichkeit von ²³⁷ NpO ₂ OH in Salzlaugen unter <u>aeroben</u> Bedingungen (<u>Filtrationsvergleich</u>) nach 4 Tagen.	62
<u>Tab. 6.3:</u>	Löslichkeit von ²³⁷ NpO ₂ in NaCl-Lösungen nach verschiedenen Kontaktzeiten unter <u>aeroben</u> Be- dingungen.	63
<u>Tab. 6.4:</u>	Löslichkeit von ²³⁷ NpO ₂ in NaCl-Lösungen unter <u>aeroben</u> Bedingungen (<u>Filtrationsvergleich</u>) nach 113 Tagen.	64
<u>Tab. 6.5:</u>	Löslichkeit von ²³⁷ NpO ₂ in NaCl-Lösungen nach verschiedenen Kontaktzeiten unter <u>aeroben</u> Be- dingungen.	65

Seite Tab. 6.6: Löslichkeit von ²³⁷NpO₂ in NaCl-Lösungen unter anaeroben Bedingungen (Filtrationsvergleich) nach 188 Tagen. 66 Tab. 6.7: Löslichkeit von ²³⁷NpO, in Na3y-Salzgruslösung (SG) und in Q-Lauge nach verschiedenen Kontaktzeiten unter aeroben Bedingungen. 67 Tab. 6.8: Löslichkeit von ²³⁸PuO₂ in <u>0.1 M NaCl</u>-Lösung unter aeroben Bedingungen nach 120 Tagen. 68 Löslichkeit von ²³⁸PuO₂ in <u>0.5 M NaCl</u>-Lösung Tab. 6.9: unter aeroben Bedingungen nach 120 Tagen. 69 11 Tab. 6.10: Löslichkeit von ²³⁸PuO, in <u>1.0 M NaCl</u>-Lösung 70 unter aeroben Bedingungen nach 120 Tagen. Tab. 6.11: Löslichkeit von ²³⁸PuO, in <u>3.0 M NaCl</u>-Lösung 71 unter aeroben Bedingungen nach 120 Tagen. Tab. 6.12: Löslichkeit von ²³⁸PuO, in <u>5.0 M NaCl</u>-Lösung unter aeroben Bedingungen nach 120 Tagen 72 Tab. 6.13: Löslichkeit von ²³⁸PuO, in <u>0.1 M NaCl-Lösung</u> 73 unter aeroben Bedingungen nach 210 Tagen. Tab. 6.14: Löslichkeit von ²³⁸PuO, in <u>0.5 M NaCl</u>-Lösung unter aeroben Bedingungen nach 210 Tagen. 74 Tab. 6.15: Löslichkeit von ²³⁸PuO₂ in <u>1.0 M NaCl</u>-Lösung unter aeroben Bedingungen nach 210 Tagen. 75 Tab. 6.16: Löslichkeit von ²³⁸PuO₂ in <u>3.0 M NaCl</u>-Lösung unter aeroben Bedingungen nach 210 Tagen. 76

109

) · '

Seite Tab. 6.17: Löslichkeit von ²³⁸PuO₂ in <u>5.0 M NaCl-Lösung</u> unter aeroben Bedingungen nach 210 Tagen. 77 Tab. 6.18: Löslichkeit von ²³⁹PuO, in 0.1 M NaCl-Lösung unter aeroben Bedingungen nach 250 Tagen. 78 Tab. 6.19: Löslichkeit von ²³⁹PuO₂ in <u>0.5 M NaCl</u>-Lösung unter aeroben Bedingungen nach 250 Tagen. 79 Tab. 6.20: Löslichkeit von ²³⁹PuO, in 1.0 M_NaCl-Lösung unter aeroben Bedingungen nach 250 Tagen. . 80 Tab. 6.21: Löslichkeit von ²³⁹PuO, in <u>3.0 M NaCl-Lösung</u> unter aeroben Bedingungen nach 250 Tagen. 81 Tab. 6.22: Löslichkeit von ²³⁹PuO, in 5.0 M NaCl-Lösung unter aeroben Bedingungen nach 250 Tagen. 82 Tab. 6.23: Löslichkeit von ²³⁸PuO, in gesättigter Na3y-Salzgruslösung (SG) unter aeroben Bedingungen nach 77 Tagen. 83 Tab. 6.24: Löslichkeit von ²³⁸PuO, in gesättigter Na3_Y-Salzgruslösung (SG) unter anaeroben Bedingungen nach 133 Tagen. 84 Tab. 6.25: Löslichkeit von ²³⁸PuO₂ in O-Lauge unter <u>aeroben</u> Bedingungen nach 120 Tagen. 85 Tab. 6.26: Löslichkeit von 238 PuO₂ in Q-Lauge unter <u>aeroben</u> Bedingungen nach 450 Tagen. 86 Tab. 6.27: Löslichkeit von 239 PuO₂ in Q-Lauge unter <u>aeroben</u> Bedingungen nach 120 Tagen. 87

tana ing

÷.

	Seite
<u>Tab. 6.28:</u> Löslichkeit von ²³⁸ PuO ₂ in	Q-Lauge unter <u>anaeroben</u>
Bedingungen nach 133 Tagen.	88
<u>Tab. 6.29:</u> Löslichkeit von ²³⁸ PuO ₂ in	salinem Gorleben-Grund-
wasser unter <u>aeroben</u> Beding	ungen nach 195 Tagen. 89
<u>Tab. 6.30:</u> Löslichkeit von ²³⁹ PuO ₂ in	salinem Gorleben-Grund-
wasser unter <u>aeroben</u> Beding	ungen nach 330 Tagen. 90
<u>Tab. 6.31:</u> Löslichkeit von ²³⁸ PuO ₂ in s	salinem Gorleben-Grund-
wasser unter <u>anaeroben</u> Bedin	ngungen nach 86 Tagen. 91
<u>Tab. 6.32:</u> Ergebnis eines Radiolyseexpe	eriments mit ²³⁸ PuO ₂ in
5 M NaCl nach verschiedenen	Kontaktzeiten unter
<u>aeroben</u> Bedingungen.	92
<u>Tab. 6.33:</u> Löslichkeit von ²⁴¹ AmO ₂ in M	laCl-Lösungen unter
<u>aeroben</u> Bedingungen nach <u>45</u>	<u>Tagen</u> . 93
<u>Tab. 6.34:</u> Löslichkeit von ²⁴¹ AmO ₂ in M	laC1-Lösungen unter
<u>aeroben</u> Bedingungen nach <u>90</u>	Tagen. 94
<u>Tab. 6.35:</u> Löslichkeit von ²⁴¹ AmO ₂ in N	laCl-Lösungen unter
<u>aeroben</u> Bedingungen nach <u>160</u>	1 Tagen. 95
<u>Tab. 6.36:</u> Löslichkeit von ²⁴¹ AmO ₂ in g	lesättigter Salzgrus-
lösung (Na3 _Y) unter <u>aeroben</u>	Bedingungen nach
<u>124 Tagen</u> .	96
<u>Tab. 6.37:</u> Löslichkeit von ²⁴¹ AmO ₂ in g	esättigter Salzgrus-
lösung (Na3 _Y) unter <u>anaerobe</u>	<u>n</u> Bedingungen nach
<u>80 Tagen</u> .	97
<u>Tab. 6.38:</u> Löslichkeit von ²⁴¹ AmO ₂ in Q	-Lauge unter <u>aeroben</u>
Bedingungen nach <u>45 Tagen</u> .	98

į

	Seite
<u>Tab. 6.39:</u> Löslichkeit von ²⁴¹ AmO ₂ in Q-Lauge unter <u>aeroben</u> Bedingungen nach <u>90 Tagen</u> .	99
<u>Tab. 6.40:</u> Löslichkeit von ²⁴¹ AmO ₂ in Q-Lauge unter <u>aeroben</u> Bedingungen nach <u>160 Tagen</u> .	100
<u>Tab. 6.41:</u> Löslichkeit von ²⁴¹ AmO ₂ in Q-Lauge unter <u>aeroben</u> Bedingungen nach <u>370 Tagen</u> .	101
<u>Tab. 6.42:</u> Löslichkeit von ²⁴¹ AmO ₂ in Q-Lauge unter <u>anaeroben</u> Bedingungen nach 80 Tagen.	102
Tab. 6.43: Löslichkeit von ²⁴¹ AmO ₂ in salinem Gohy-Grundwasser unter <u>aeroben</u> Bedingungen nach <u>88 Tagen</u> .	r 103
<u>Tab. 6.44:</u> Löslichkeit von ²⁴¹ AmO ₂ in salinem Gohy-Grundwasser unter <u>aeroben</u> Bedingungen nach <u>126 Tagen</u> .	r 104
<u>Tab. 6.45</u> : Löslichkeit von ²⁴¹ AmO ₂ in salinem Gohy-Grundwasser unter <u>anaeroben</u> Bedingungen nach <u>63 Tagen</u> .	r 105
Tab. 6.46: Löslichkeit von ²⁴¹ AmO ₂ in salinem Gohy-Grundwassen unter <u>anaeroben</u> Bedingungen nach <u>132 Tagen</u> .	r 106
<u>Tab. 6.47</u> : Redoxpotentiale einiger saliner Probenlösungen mit $^{241}\text{AmO}_2$ unter anaeroben Bedingungen.	107

ļ

6

のない

「「小田」と言いていた。

「大学生のことをある

大学のないの

6.3 Verzeichnis der Abbildungen

		Seite
<u>Abb. 2.1:</u>	Eichkurven für die laserinduzierte photoaku- stische Spektroskopie (LPAS) zur Demonstration der Nachweisempfindlichkeit	6
<u>Abb. 3.1:</u>	Löslichkeitskurve von ²³⁷ NpO ₂ OH bei 25 °C und einer Ionenstärke von µ ≈ 1.0 mol/L (NaClO ₄)	8
<u>Abb. 3.2:</u>	Relativer Anteil der Np(V)-Spezies in 5 M NaCl	10
<u>Abb. 3.3:</u>	Löslichkeit von ²³⁷ NpO ₂ OH und ²³⁷ NpO ₂ in ver- schiedenen Salzlösungen	11
<u>Abb. 3.4:</u>	Eh-pH-Diagramm für Neptunium	13
<u>Abb. 4.1:</u>	Ergebnis der radiometrischen pH-Titration von Pu(IV) und korrigierte Löslichkeitskurve von Th(IV) zur Beschreibung der Pu(IV)-Hydrolyse	20
<u>Abb. 4.2:</u>	Absorptionsspektren von Plutonium im Rahmen der radiometrischen pH-Titration von Pu(IV) bei pH ≅ 2.5	21
<u>Abb. 4.3:</u>	Absorptionsspektren von Plutonium im Rahmen der radiometrischen pH-Titration von Pu(IV) bei pH ≅ 3.3	22
<u>Abb. 4.4:</u>	Relativer Anteil der Pu(IV)-Spezies in 5 M NaCl	25
<u>Abb. 4.5:</u>	Löslichkeitskurve von $^{238}PuO_2(OH)_2$ bei 25 °C und einer Ionenstärke von μ = 0.1 mol/L (NaClO ₄)	25
Abb. 4.6:	Relativer Anteil der Pu(VI)-Spezies in 5 M NaCl	26

113

1.1.1

Abb. 4.7: Löslichkeit von ²³⁸Pu0, und ²³⁹Pu0, in verschiedenen Salzlösungen und salinen Gorleben-Grundwässern unter aeroben und anaeroben Versuchsbe-29 dingungen Abb. 4.8: Löslichkeiten von ²³⁹PuO₂, ²³⁸PuO₂ und ²³⁹PuO₂ aus HLW-Glassimulat in Abhängigkeit vom pH-Wert 30 Abb. 4.9: pH-Abnahme der Probenlösungen im Rahmen des Löslichkeitsexperiments ²³⁸PuO, in NaCl-Lösungen unter aeroben Bedingungen 31 Abb. 4.10: Anderung des Redoxpotentials mit der Zeit beim Radiolyse-Experiment mit ²³⁸PuO₂ in 5 M NaCl unter aeroben Bedingungen 32 Abb. 4.11: Abhängigkeit der Pu-Löslichkeit von der a-Aktivität in Lösung nach verschiedenen Kontaktzeiten unter aeroben Bedingungen 33 Abb. 4.12: Eh-pH-Diagramm für Chlor 34 Abb. 4.13: Eh-pH-Diagramm für Plutonium 37 Abb. 4.14: Laserinduzierte photoakustische Spektren einer Na3y-Salzgruslösung mit Pu-238 im Originalzustand und nach Ansäuern mit HCl 39 Abb. 4.15: Photoakustisches Laserspektrum und Absorptionsspektrum (Multi-Scaling-Technik) von Pu(VI) in 5 M NaCl-Lösung bei pH ≅ 0.9 41 Abb. 5.1: Löslichkeitskurve von ²⁴¹Am(OH), bei 25 °C und einer Ionenstärke von $\mu = 0.1 \text{ mol/L} (\text{NaClO}_{A})$ 44

Seite

三十二 二十二 二十二

大学の日本の

「金を用い

÷,

115

artis a 🏘

		Seite
Abb. 5.2:	Relativer Anteil der Am(III)-Spezies in 5 M NaCl	46
Abb. 5.3:	Löslichkeitskurve von ²⁴¹ AmO ₂ OH in 5 M NaCl bei 25 °C	48
<u>Abb. 5.4:</u>	Absorptionsspektrum von Am(V) in 5 M NaCl bei pH = 8.3	48
<u>Abb. 5.5:</u>	Löslichkeit von ²⁴¹ AmO ₂ in verschiedenen Salzlö- sungen und salinen Gorleben-Grundwässern unter aeroben und anaeroben Versuchsbedingungen	49
Abb. 5.6:	Eh-pH-Diagramm für Americium	52
<u>Abb. 5.7:</u>	Löslichkeit von ²⁴¹ Am(OH) ₃ in 5 M NaCl in Abhän- gigkeit von der Kontaktzeit im Rahmen des Radio- lyse-Experiments bei ca. 1 Ci/L	53
<u>Abb. 5.8:</u>	Photoakustisches Laserspektrum von Americium im Rahmen des Radiolyse-Experiments in 5 M NaCl bei pH = 8.3	54
<u>Abb. 5.9:</u>	Photoakustisches Laserspektrum von Americium in gesättigter Na3γ-Salzgruslösung	56
<u>Abb. 5.10:</u>	Photoakustische Laserspektren von Americium in gesättigter Na3γ-Salzgruslösung vor und nach dem Ansäuern mit HCl	57
<u>Abb. 5.11:</u>	Photoakustische Laserspektren von Americium in Q-Lauge vor und nach dem Ansäuern mit HC1	58

- 1 - 1

6.4 Literaturverzeichnis

870.

[1] J.I. Kim et al., RCM-02984, Juli 1984. [2] J.I. Kim, 3. Planary Meeting, CEC-Projekt "MIRAGE", 19./20. März 1985. J.I. Kim, M. Bernkopf, RCM-02884, Okt. 1984. [3] [4] Ch. Lierse, W. Treiber, J.I. Kim, Radiochim. Acta, im Druck. [5] J.I. Kim, M. Bernkopf, Ch. Lierse, F. Koppold, ACS-Symp. Ser., 246 (1984) 115. [6] M. Bernkopf, Dissertation, Technische Universität, München 1984. [7] K. Büppelmann, Diplomarbeit, TU München 1984. [8] S. Magirius, Diplomarbeit, TU München 1985. S. Magirius, W.T. Carnall, J.I. Kim, Radiochim. Acta, im Druck. [9] [10] J.I. Kim, Ch. Lierse, F. Baumgärtner, ACS-Symp. Ser., 216, (1983) 317. [11] M. Eiswirth, J.I. Kim, Ch. Lierse, Radiochim. Acta, im Druck. [12] Ch. Lierse, J.I. Kim, J. Radiochem. Nucl. Chem. Lett., 86 (1984) 37. [13] Y.X. Xia, Ch. Lierse, J.I. Kim, in Vorbereitung. [14] Ch. Lierse, J.I. Kim, in Vorbereitung. [15] J.I. Kim, G. Buckau, F. Baumgärtner, H.C. Moon, D. Lux, Mat. Res. Soc. Symp. Proc., 26 (1984) 31. [16] J.I. Kim, W. Treiber, Ch. Lierse, P. Offermann, MRS-Symp., Boston 1984, P-N3,6. [17] G. Bidoglio, A. Chatt, A. De Plano, F. Zorn, J. Radioanal. Chem., 79 (1983) 153. [18] A. Chatt, G. Bidoglio, A. De Plano, Anal. Chim. Acta, 151 (1983) 203. [19] J.I. Kim et al., RCM-00684, Feb. 1984. [20] R. Stumpe, J.I. Kim, RCM-02084, Juli 1984. [21] W. Schrepp, R. Stumpe, J.I. Kim, H. Walther, Appl. Phys., B32 (1983) 207. [22] R. Stumpe, J.I. Kim, W. Schrepp, H. Walther, Appl. Phys., B34 (1984) 203. [23] J.I. Kim et al., RCM-01484, Juli 1984. [24] E.P. Sevostyanova, G.V. Khalturin, Radiokhimiya, 18 (1976)

116

「あるちないないない

のないというであるので、「ないないない」

「三大」を見かない

[25] K.A. Kraus, F. Nelson, Report AECD-1864, 1948.

- [26] K.A. Kraus, Proc. Int. Conf. Peaceful Uses At. Energy, Geneva 1955 (1956), A/Conf. 8, P-73.
- [27] D. Cohen, S. Fried, <u>Inorg. Nucl. Chem. Lett.</u>, 5 (1969) 653.
- [28] A.I. Moskvin, <u>Radiokhimiya</u>, 13 /1971) 681.
- [29] L. Maya, Inorg. Chem., 22 (1983) 2093.
- [30] P.R. Danesi, R. Chiarizia, G. Scibona, G. D'Alessandro, J. Inorg. Nucl. Chem., 33 (1971) 3503.
- [31] P.R. Danesi, R. Chiarizia, G. Scibona, G. D'Alessandro, J. Inorg. Nucl. Chem., 36 (1974) 2396.
- [32] C.F. Baes, R.E. Mesmer: <u>The Hydrolysis of Cations</u>. John Wiley + Sons, New York 1976, S. 190.
- [33] P.R. Danesi, F. Orlandini, G. Scibona, <u>J. Inorg. Nucl. Chem.</u>, 28 (1966) 1047.
- [34] U. Schedin, <u>Acta Chem. Scand.</u>, A29 (1975) 333.
- [35] Y. Musante, M. Porthault, <u>Radiochem. Radioanal. Lett.</u>, 15 (1973) 299.
- [36] A. Cassol, L. Magon, R. Portanova, E. Tondello, <u>Radiochim. Acta</u>, 17 (1972) 28.
- [37] A.I. Moskvin, V.P. Zaitseva, Radiokhimiya, 4 (1962) 73.
- [38] Y.Ye. Krevinskaia, V.D. Nikolski, B.G. Pozharski, Ye.Ye. Zastenker, <u>Radiokhimiya</u>, 1 (1960) 238.
- [39] K.A. Kraus, J.R. Dam, <u>USAEC Report CN-2831</u>, Okt. 1946; <u>USAEC</u> <u>Report CI-P-449</u>, Okt. 1945.
- [40] T.W. Newton, F.B. Baker, <u>J. Phys. Chem.</u>, 61 (1957) 934.
- [41] D. Rai, R.G. Strickert, J.L. Ryan, <u>Inorg. Nucl. Chem. Lett.</u>, 16 (1980) 551.
- [42] G.H. Jenks, E. Sonder, C.D. Bopp, J.R. Walton, <u>J. Phys. Chem.</u>, 79 (1975) 871.
- [43] S.A. Kabakchi, A.A. Zansokhova, A.K. Pikaev, <u>Dok1. Akad. Nauk</u> <u>SSSR</u>, 254 (1980) 923.
- [44] E. Bjergbakke, S. Navaratnam, B.J. Parsons, <u>J. Am. Chem. Soc.</u>, 103 (1981) 5926.
- [45] C.S. MacDougall, <u>Report ORNL-TM-7568</u>, Jan. 1981.
- [46] H. Ogura, W.H. Hamill, J. Phys. Chem., 77 (1973) 2952.
- [47] G.G. Hayson, B.J. Parsons, <u>J. Chem. Soc., Farad. Trans.</u>, 1,68 (1973) 1597.

117

[48] D. Rai, R.G. Strickert, D.A. Moore, J.L. Ryan, Radiochim. Acta, 33 (1983) 201. [49] B. Marin, T. Kinkindai, C.R. Acad. Sci. Ser., C268 (1969) 1. [50] A.B. Shalinets, A.V. Stepanov, Radiokhimiya, 14 (1972) 280. [51] B. Desire, M. Hussonnois, R. Guillaumont, C.R. Acad. Sci. Ser., C269 (1969) 448.

- [52] G. Bidoglio, Radiochem. Radioanal. Lett., 53 (1982) 45.
- [53] M.S. Caceci, G.R. Choppin, Radiochim. Acta, 33 (1983) 101.
- [54] G.M. Nair, K. Chander, J.K. Joski, <u>Radiochim. Acta</u>, 30 (1982) 37.
- [55] R. Lundquist, Acta Chem. Scand., A36 (1982) 741.
- [56] T. Sekine, Acta Chem. Scand., 19 (1965) 1435.
- [57] I. Grenthe, Acta Chem. Scand., 16 (1962) 2300.