Holdings
Send article only if in the Library collection

ARTICLE INFORMATION

RADIOLYTIC OXIDATION OF AM(III) TO AM(V) IN NAACL SOLUTIONS
Send article only if in the Library collection

This document is protected by U.S. and International copyright laws. No additional reproduction is authorized. Complete credit should be given to the original source.
Results and Discussion

Comparisons of the absorbance of the solutions of different concentrations and the absorbance of the NACO model show that the absorbance of the solution is higher after 2 weeks. After 2 weeks, the absorbance of the solution is lower than the absorbance of the NACO model. The absorbance of the solution increases with the concentration of the NACO model. The absorbance of the solution increases with the concentration of the NACO model.

Conclusion

The results show that the absorbance of the solution is higher after 2 weeks. After 2 weeks, the absorbance of the solution is lower than the absorbance of the NACO model. The absorbance of the solution increases with the concentration of the NACO model. The absorbance of the solution increases with the concentration of the NACO model.

Introduction

The absorbance of the solution is measured by the absorbance spectrophotometer. The absorbance of the solution is measured by the absorbance spectrophotometer. The absorbance of the solution is measured by the absorbance spectrophotometer. The absorbance of the solution is measured by the absorbance spectrophotometer.
A solution prepared from the reagent grade stock and used in the present work was found to be free from the influence of any impurities. The presence of 0.1 M NaCl was found to have a negligible effect on the absorption spectra of the solutions. The spectra were recorded using a spectrophotometer. The absorption bands at 510, 550, and 710 nm were observed in the spectrum of the solution. The absorption bands were observed to be at 510, 550, and 710 nm, respectively.

The concentration of the anions in the solution was determined by measuring the absorbance at 510 nm. The absorbance was found to be linearly dependent on the concentration of the anions. The absorbance was found to increase with an increase in the concentration of the anions. The absorbance was found to be linearly dependent on the concentration of the anions. The absorbance was found to increase with an increase in the concentration of the anions.
(9)
\[[\text{HO}^{-} + \text{H}_2\text{O}] + [\text{O}^{-} + \text{H}_2\text{O}] = [\text{H}_3\text{O}^+] \]

Species are assumed to be present in the solution as a function of pH, based on the equilibrium of the reaction of H and O. The reaction is shown to be reversible with respect to the concentration of O. The presence of \(\text{HO}^- \) with varying pH as well as pH 10 shows the equilibrium of \(\text{H}_2\text{O}^- \) and \(\text{H}_3\text{O}^+ \), with the former being the dominant species in alkaline solutions.

In solution, the equilibrium of pH, concentration of O, and concentration of HO are shown to be important in determining the equilibrium of the solution. The results are shown in the diagram below.

The graph shows the relationship between the concentration of O and the pH of the solution. The equilibrium of O and HO is shown to be dependent on the pH, with HO being the dominant species at lower pH values and O being the dominant species at higher pH values.

(4)
\[\text{HCO}_3^- + \text{H}_2\text{O}^- \rightarrow \text{H}_2\text{O}^- + \text{CO}_3^{2-} \]

(3)
\[2\text{HCO}_3^- + \text{H}_2\text{O}^- \rightarrow 2\text{H}_2\text{O}^- + 2\text{CO}_3^{2-} \]

(2)
\[\text{HCO}_3^- + \text{H}_2\text{O}^- \rightarrow \text{H}_2\text{O}^- + \text{CO}_3^{2-} \]

(1)
\[\text{HO}^- + \text{CO}_3^{2-} \rightarrow \text{H}_2\text{O}^- + \text{CO}_3^{2-} \]

The graph shows the relationship between the concentration of OH and the pH of the solution. The equilibrium of OH and CO is shown to be dependent on the pH, with OH being the dominant species at lower pH values and CO being the dominant species at higher pH values.

A comparison of the graphite electrode potentials with the theoretical predictions is shown in the diagram below.

The graph shows the comparison of the graphite electrode potentials with the theoretical predictions. The results are shown to be in agreement with the theoretical predictions, with the graphite electrode potentials showing a linear relationship with the theoretical predictions.

The graph shows the relationship between the concentration of O and the pH of the solution. The equilibrium of O and HO is shown to be dependent on the pH, with HO being the dominant species at lower pH values and O being the dominant species at higher pH values.

The graph shows the relationship between the concentration of O and the pH of the solution. The equilibrium of O and HO is shown to be dependent on the pH, with HO being the dominant species at lower pH values and O being the dominant species at higher pH values.

The graph shows the relationship between the concentration of O and the pH of the solution. The equilibrium of O and HO is shown to be dependent on the pH, with HO being the dominant species at lower pH values and O being the dominant species at higher pH values.
The disproportionation reaction of AM (I) in acid
is as follows (eq 1): [1]

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (II) with
may be expressed as follows (eq 2):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (III), which is
supposed to show disproportionation of O atoms, is as follows (eq 3):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (IV), which is
supposed to show disproportionation of O atoms, is as follows (eq 4):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (V), which is
supposed to show disproportionation of O atoms, is as follows (eq 5):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (VI), which is
supposed to show disproportionation of O atoms, is as follows (eq 6):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (VII), which is
supposed to show disproportionation of O atoms, is as follows (eq 7):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (VIII), which is
supposed to show disproportionation of O atoms, is as follows (eq 8):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (IX), which is
supposed to show disproportionation of O atoms, is as follows (eq 9):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (X), which is
supposed to show disproportionation of O atoms, is as follows (eq 10):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (XI), which is
supposed to show disproportionation of O atoms, is as follows (eq 11):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (XII), which is
supposed to show disproportionation of O atoms, is as follows (eq 12):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (XIII), which is
supposed to show disproportionation of O atoms, is as follows (eq 13):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (XIV), which is
supposed to show disproportionation of O atoms, is as follows (eq 14):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (XV), which is
supposed to show disproportionation of O atoms, is as follows (eq 15):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (XVI), which is
supposed to show disproportionation of O atoms, is as follows (eq 16):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (XVII), which is
supposed to show disproportionation of O atoms, is as follows (eq 17):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (XVIII), which is
supposed to show disproportionation of O atoms, is as follows (eq 18):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (XIX), which is
supposed to show disproportionation of O atoms, is as follows (eq 19):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (XX), which is
supposed to show disproportionation of O atoms, is as follows (eq 20):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (XXI), which is
supposed to show disproportionation of O atoms, is as follows (eq 21):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (XXII), which is
supposed to show disproportionation of O atoms, is as follows (eq 22):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (XXIII), which is
supposed to show disproportionation of O atoms, is as follows (eq 23):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (XXIV), which is
supposed to show disproportionation of O atoms, is as follows (eq 24):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (XXV), which is
supposed to show disproportionation of O atoms, is as follows (eq 25):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (XXVI), which is
supposed to show disproportionation of O atoms, is as follows (eq 26):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (XXVII), which is
supposed to show disproportionation of O atoms, is as follows (eq 27):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (XXVIII), which is
supposed to show disproportionation of O atoms, is as follows (eq 28):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (XXIX), which is
supposed to show disproportionation of O atoms, is as follows (eq 29):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]

The disproportionation reaction of AM (XXX), which is
supposed to show disproportionation of O atoms, is as follows (eq 30):

\[\text{[AM]} + \text{HO}^{-} \rightarrow \text{A}^{-} + \text{H}_2 \text{O} \]