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Introduction 
This analysis report describes the activities of Task 3 of AP-088, "Analysis Plan for 
Evaluation of the Effects of Head Changes on Calibration of Culebra Transmissivity 
Fields" (Beauheim, 2002b). The purpose of this task is calibrate a set of mean 
transmissivity fields created in Task 2 (see Holt and Yarbrough, 2002) to fit observed 
steady-state, or equilibrium, heads measured at three different time periods as well as to 
the steady-state heads used for CCA model calibration. 

Task 3 of Analysis Plan 088 is divided into four subtasks and the work done on these four 
subtasks makes up the following sections of this report: 

1) Analysis of Pilot Point Geometry 
Developments in the field of stochastic inverse modeling in the past six to eight 
years have caused some fundamental changes in the way that stochastic inverse 
models are created. During the CCA calculations, pilot points were located 
sequentially during the inversion process at locations that would have the 
maximum impact on the ability of the inverse model to fit the observed data (see 
Lavenue, 1996). In the CCA calculations, the location of each pilot point was 
determined, this point was used to calibrate the model, and then the location of the 
next point was determined and so on until the maximum number of pilot points 
was reached. 

Current approaches to stochastic inverse modeling with pilot points (e.g., Gomez- 
Hernandez et al., 1997; Capilla et al., 1998) locate all pilot points at the start of . . 
the modeling and then simultaneously adjust all of thein to match the observed 
heads better. Subtask 1 describes how to locate these pilot points at the start of 
the modeling procedure. 

2) Estimation of Boundary Conditions and Construction of Seed Realizations 
The boundary conditions used in this model are either fixed-head or no-flow 
boundaries. The no-flow boundarv is alone Nash Draw and the fixed-head 
boundaries are estimated on the rest of the Lode1 domain boundary with kriging. 
Kriging is based on the head measurements within the model domain. For each of - - 
1980, 1990,2000, and the CCA, a unique head data set is available. These data 
display a relatively strong trend for each time period and must be detrended 
before kriging. The detrending is done by fitting a bivariate normal distribution to 
the data from each time period. The residuals between these bivariate normal 
distributions and the observed data are used to build variograms. The residual 
data and the variograms provide the basis for kriging the residual values across 
the domain. When these kriged residuals are added back to the bivariate trend 
model, the results are the initial heads. The initial heads estimated at the constant- 
head boundary locations are held fixed throughout the groundwater flow 
modeling. 
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The base transmissivity (T) fields created in Task 2 of this analysis (see Holt and 
Yarbrough, 2002) are based on multiple regression and therefore only fit the 
transmissivity measurements in the mean sense. It is necessary to update these 
base T fields to match the T at the measurement locations. This updating is done 
through simulation of residuals between the base T field and the measured T data. 
The updated fields are known as "seed" T fields. 

3) Forward Modeling 
To test all of the techniques and the soha re  prior to the actual inverse modeling 
and to develop a baseline set of travel times, the seed fields are used as input to 
the groundwater flow and particle-tracking routines for forward (uncalibrated) 
calculations. 

4) Steady-State Inverse Modeling 
The last step in this analysis is to use PEST (Doherty, 1998) and MODFLOW 
(Harbaugh et al., 2000) to calibrate the seed fields independently to four different 
sets of "steady-state" heads. These heads include measurements made in 1980, 
1990, and 2000, and the heads used for CCA model calibration 

Descriptions of the activities associated with each of these subtasks make up the major 
sections of this report. Prior to these descriptions, a number of data feeds to this analysis 
are discussed along with a description of the computational hardware used for this 
analysis. The source of each type of data used in the analysis is documented. The final 
sections of this report compare the calibration and travel time results for the four sets of 
forward and inverse models. 

Available Data 
Calibration of the Culebra transmissivity fields to four sets of steady-state heads requires 
a variety of input data as well as some modeling decisions (e.g., size and discretization of 
the model domain) that must be made. Each modeling decision and each type of input 
data, the original source of this data, and any modifications to the original data are 
documented in this section. 



Table 1. Data feed descriptions for the Culebra T-field analysis. 

Transmissivity r 
Transmissivity 
Fields 

Description 

Equilibrated 
(steady-state) heads 
measured at the 
wells for the 1980, 
1990, and 2000 time 
periods and 
estimated for the 
CCA (fluid densities 
are also included in 
this data set, but are 
not used in this 
analysis) 
Well locations, 
transmissivity and 
residuals between 
measured 
transmissivity and 
base transmissivity 
at well locations 
100 Realizations of 
the base 
transmissivity field 
xeated through 
multiple regression 
md indicator 
geostatistical 
iimulation 

ERMS # 

522580 

523889 

i23889 

Reference 

Beauheim, 
2002 

Holt and 
Yarbrough, 
2002 

jolt and 
farbrough, 
LO02 

File Name 

TFieldHeads.xl 
S 

MODEL DOMAIN AND DISCRETIZATION 

The north-south and east-west extent of the model domain were specified by Richard 
Beauheim, Robert Holt and Sean McKenna. This determination considered several 
factors including: 1) hydrogeological features in the vicinity of the WIPP site that could 
serve as groundwater flow boundaries (e.g. Nash Draw); 2) the areas to the north of the 
WIPP site that might create additional recharge to the Culebra due to water applied to 
potash tailings piles; and, 3) the limits imposed on the domain size by the available 
computational resources and the desired fine-scale discretization of the domain within the 
groundwater model. The final model domain is rectangular and aligned with the north- 
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south and east-west directions. The coordinates of each comer of the domain are given in 
Table 2 in UTM coordinates. 

Table 2. The coordinates of the comers of the numerical model domain. 

A no-flow boundary corresponding roughly to the center of Nash Draw is shown in 
Figure 1 as a purple line extending from the northem to southern boundaries in the 
western one-third of the model domain. Model cells falling to the west of this boundary 
are considcrcd to be inactive in the groundwater flow calculations. Within MOIIFLOW 
2000 (MFZK), the status of all the cells in the model (active, inactive, or constant head) 
is controlled by an array of integers - the IBND array. The no-flow boundary was 
provided by Holt and Yarbrough (2002) and the IBND array was specified by setting 
array entries corresponding to cells west of the no-flow boundary equal to "0 ,  which 
defines them as inactive. The cells on the domain boundary to the east of the no-flow 
boundary are fixed-head cells with corresponding values of "-1" in the IBND array. 

Domain Corner 
Northeast 
Northwest 
Southeast 
Southwest 

X Coordinate (meters) 
624,025.0 
601,675.0 
624,025.0 
601,675.0 

Y Coordinate 
3,597,125.0 
3,597,125.0 
3,566,475.0 
3,566,475.0 



- Sample Baundary -Nc-Flow Bounds - LOWT B ~ n d a v  
- Hlgh T Bwndery Fixed Pilot Point. Variable Pllol Paido 

0 Drop P M I  t Folward Run Exit X Delred Pdnlr (DOE) 

Figure 1. Locations of the pilot points and other features within the Culebra flow model 
domain. 



The flow model is discretized into 274,011 regular, orthogonal cells each of which is 
50x50 meters. Details of the grid generation can be found in Appendix C of Holt and 
Yarbrough (2002). A constant Culebra thickness of 7.75 meters is used (U.S. DOE, 
1996, Appendix TFIELD.4. I. I). The 50-meter grid discretization was selected to make 
the finite-difference grid cell sizes considerably finer than those used in the CCA 
calculations, but still computationally tractable. In the CCA calculations, a telescoping 
finite-difference grid was used with the smallest cell being approximately lOOxlOO 
meters near the center of the domain. The largest cells in the CCA flow model grid were 
approximately 800x800 meters near the edges of the domain (Lavenue, 1996). 

The elevation of the top of the Culebra was specified in an ascii text file, culebra-top.txt, 
generated by Lance Yarbrough (University of Mississippi). The calculations done for the 
top of the Culebra elevation surface are discussed in Appendix D of Holt and Yarbrough 
(2002). 

The discretization of the flow model domain into 50x50 meter cells leads to a total of 
274,011 cells (447 east-west by 613 north-south). However, 62,118 of these cells lie to 
the west of the no-flow boundary, so the total number of active cells in the model is 
21 1,893. This number is more than a factor of 20 larger than the 10,800 (108x100) cells 
used in the CCA calculations. 

PARTICLE TRACKING 

For the particle-tracking calculations, a single particle is tracked from a starting location 
of X = 613,602 meters, Y = 3,581,425 meters until it exits the WIPP site boundary. The 
starting location corresponds to the center of the repository footprint, the "drop point" in 
Figure 1, and is the same location used to start particles in the CCA calculations. The 
coordinates of the comer points defining the WIPP site boundary are given in Table 3. 
The particle-tracking calculations use a constant advective porosity of 0.16 - the same 
value used in the CCA calculations. 
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Table 3. UTM Coordinates of the WIPP Site boundary. 

Y Coordinate 
3,585,109 
3,585,068 
3,578,681 
3,578,623 

Domain Corner 
Northeast 
Northwest 
Southeast 
Southwest 

X Coordinate (meters) 
616,941 
6 10,495 
617,015 
610,567 



Computing Platform 
For these analyses, a parallel computing platform was constructed by creating a cluster of 
linked PC's. This platform consists of 16 PC's that serve as computational nodes and 
two servers. The configuration and the files on the two servers are identical and they 
serve as redundant backups of each other. All of the computational nodes contain a 
1.9GHz equivalent AMD microprocessor with IGB of RAM and a 40GB hard drive. The 
computational nodes are connected to each other and to the servers with 100MbIsec 
ethernet switches. The linux, version 7.2 operating system is installed on all machines 
facilitating the use of the entire cluster as a single parallel computer. A picture of the 
computing platform, known as the "61 15 linux cluster" is shown in Figure 2. 

Figure 2. David Hart and Lane Yarrington with the 61 15 linux cluster used to generate 
and optimize the Culebra T-fields. 

The computing platform was designed for parallel processing. However, for this work, it 
turned out that the speed of the forward MF2K runs was so fast (10-15 seconds each) that 
the wait cycle programmed into the parallel version of PEST was not able to keep up 
efficiently with 16 jobs running simultaneously and the nearly constant communications 
across the ethernet connections. The approach used to solve this problem dedicated each 
processor in the parallel cluster to a single realization and all calculations for that 
realization were completed on the single processor. When those calculations were 
complete, a ne6 fi%di&&6e , .: ,. .%&j'fa$C&ye$@:& , ,  . waiting processor until all 100 realizations 

" , , ; ;: ,,, < ,. > " , . .  
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were complete. The time to do one set of 100 steady-state inverse calibrations with all 16 
computational nodes running simultaneously was approximately 80 hours (3+ days). 

Subtask I :  Analysis of Pilot Point geometry 
A major development in the field of stochastic inverse modeling that has occurred since 
the T fields were constructed for the CCA in 1996 is that inverse techniques are now 
capable of simultaneously determining optimal T values at a large number of pilot points. 
In the T fields constructed for the CCA, pilot points were added one at a time and each 
point was calibrated prior to the addition of the next pilot point. Furthermore, the total 
number of pilot points was limited to less than or equal to the total number of 
observations to avoid numerical instabilities in the solution of the inverse problem. With 
the techniques now available and implemented in PEST, it is possible to use many more 
~ i l o t  points than there are head observations and to calibrate these ~ i l o t  ~o in ts  
simultaneously. However, locating the pilot points still requires technical judgement. 

The original plan for this subtask (AP-088) was to conduct a series of calculations on a 
hypothetical site to determinine the optimal locations for pilot points. Results of these 
calculations would be used to develop a heuristic algorithm that could be applied to 
locating pilot points within the Culebra. However, after several discussions with John 
Doherty (the author of PEST), it was determined that locating pilot points is a problem 
and goal specific activity and cannot be easily coded into an algorithm. A strong element 
of expert judgment goes into determining pilot point locations. The deliverable €or this 
subtask was changed from a memo documenting the calculations done to determine the 
best pilot point locations to a more general memo documenting issues that need to be 
considered when locating pilot points. This memo was written by John Doherty under 
contract to Sandia and is attached to this status report as Appendix 1. 

Delivery of the memo in Appendix 1 of this status report fulfills the deliverable for 
subtask 3.1. Pilot points were located according to the guidance put forth in the 
Appendix 1 memo and are shown in Figure 1. Pilot points located at the transmissivity 
measurement locations are held as fvted values during the optimization (fixed pilot points 
shown in magenta in Figure 1). The variable pilot points (dark blue in Figure 1) are those 
where the transmissivity value is adjusted during the calibration procedure. A total of 43 
fixed and 115 variable pilot points was used in the steady-state Culebra calibration 
process. 



Subtask 2: Estimation of Boundary Conditions and 
Construction of Seed ~ealizations- 
Within the indicator zonation provided by Robert Holt in Task 2 (see Analysis Plan 088, 
Beauheim, 2002) and using the T values estimated through multiple regression as 
secondary information, a series of T fields is generated with geostatistical simulation. 
These are the seed T fields that will be used as input to the stochastic inverse modeling. 
Prior to the stochastic inverse modeling, these seed T-fields are not conditioned to the 
head measurements. During the stochastic inverse modeling, each of these seed fields 
will be conditioned to available T measurements and the best estimate of the T value 
provided by the multiple regression. 

For each of the sets of measured or estimated heads (1980,1990, CCA and 2000), a set of 
initial heads values is estimated across the flow model domain. The head values 
estimated for the fixed-head cells along the north, east and south boundaries of the model 
domain remain constant for the groundwater flow calculation. The head values estimated 
at the cells in the interior of the domain are used as initial values of the heads and are 
subsequently updated by the groundwater flow model until the final solution is achieved. 
The estimation of the initial and boundary heads is done by kriging. Observed heads both 
within and outside of the flow model domain (Figure 3) are used in the kriging process. 

Kriging is a geostatistical estimation technique that uses a variogram model to estimate 
values of a sampled property at unsampled locations. Kriging is designed for the 
estimation of stationary fields (see Goovaerts, 1997); however, the available head data for 
all four sets show significant trends (non-stationary behavior) from high head in the 
northern part of the domain to low head in the southern part of the domain. This behavior 
is typical of groundwater head values measured across a large area with a head gradient. 
To use kriging with this type of non-stationary data, a polynomial function is fit to the 
data, and the differences between the polynomial and the measured data, the "residuals," 
are calculated and a variogram of the residuals is constructed. This variogram and a 
kriging algorithm are then used to estimate the value of the residual at all locations within 
a domain. The final step in the process is to add the trend from the previously defined 
polynomial to the estimated residuals to get the final head estimates. This head 
estimation process is similar to that used in the Culebra calculations done for the CCA 
(Lavenue, 1996). However, here, there are four different sets of heads and therefore four 
different functions fit to the data and finally four sets of initial and boundary heads. 

The available head data for each of the four sets are shown in Figure 3. There are 16,28, 
34 and 37 head measurements for the 1980,1990, CCA and 2000 sets, respectively. In 
general, these head measurements show a trend from high head in the north to lower head 
in the south. For each set of heads, the trend is modeled with a bivariate Gaussian 
function. The use of this Gaussian function with five estimated parameters allows 
considerable flexibility in the shape of the trend that can be fit through the observed data. 
The value of the Gaussian function, Z, is: 



1 X - X ,  
= a exp[- + (qr]] 

where Xo and Yo are the coordinates of the center of the function and b and c are the 
standard deviations of the function in the X(east-west) and Y (north-south) directions, 
respectively. The parameter, a, controls the height of the function. The Gaussian 
function is fit to each set of measurements using the regression wizard tool in the 
Sigmaplot 2001 graphing software. The parameters estimated for the Gaussian function 
for each set of head measurements are presented in Table 4. Detailed results and 
diagnostics of fitting the Gaussian trend surface to the 1980 data are provided in 
Appendix 2. 

Table 4. Parameters for the Gaussian trend surface model fit to the four sets of :heads. 

Trend Surface 
Parameters 

xo 
yo 
a 
b 
c - 

1980 

626195.36 
4149817.94 
1323.29 
163929.49 
674926.86 

1990 

615691.51 
39271 77.23 
1 155.98 
124127.33 
517624.71 

CC A 

497048.41 
3712731.95 
1024.16 
4378431.60 
287104.56 

3780891 S O  



LO, - 

Figure 3. Locations and values of the head measurements for each of the four sets of 
heads considered in the steady-state calibrations. The approximate extent of the 
numerical model domain is shown by the black rectangle in each image. 

The fit of the Gaussian trend surface to each set of heads is shown in Figure 4. From 
Figure 4, the fits to the different data sets are all similar with the exception of the CCA 
head data where the Gaussian trend surface resembles a planar function. 
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0 Gauul." Trend surrara 
CCA OhParvsd Head Data 

Figure 4. Gaussian trend surface fits to the observed data for the four different sets of 
heads. 

The locations and values of the residuals (observed value -trend surface estimate) are 
shown in Figure 5. 
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Figure 5. Locations and values of the residuals between the Gaussian trend surface 
model and the observed head data for each of the four sets of heads. The approximate 
boundary of the flow model is shown as a black rectangle in each image. 

The next step in estimating the initial head values is to calculate an experimental 
variogram for each set of residuals and then fit a variogram model to each experimental 
variogram. Due to the rather limited number of data points, anisotropy in the spatial 
correlation of the residuals was not examined and an omnidirectional variogram was 
calculated for each set of residuals. These calculations were done using the VarioWin 
(version 2.21) software (Pannatier, 1996). To maintain consistency across the different 
time periods, a Gaussian variogram model was used to fit all of the experimental 
variograms. The Gaussian variogram model is: 
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where Cis  the sill of the variogram , h is the distance between any two samples, or the 
lag spacing, and a is the practical range of the variogram, or the distance at which the 
model reaches 95 percent of the value of C. In addition to the sill and range, the 
variogram model may also have a non-zero intercept with the gamma (Y) axis of the 
variogram plot known as the nugget. Due to numerical instabilities in the kriging process 
associated with the Gaussian model without a nugget value, a small nugget was used in 
fitting each of the variogram models. The model variograms were fit to the experimental 
data (Figure 6) and the parameters of these models are given in Table 5. 

Table 5. Model variogram parameters for the head residuals. 

Parameter 1980 1990 CCA 
Sill 26.0 38.0 29.0 
Range (meters) 4800 5100.0 4100.0 
Nugget 2.0 1 .O 1.5 4.5 
Number of Data 16 28 34 



Figure 6. Omnidirectional experimental (straight-line segments) and model variograms 
of the head residuals (curves) for the four sets of heads: 1980 (upper left), 1990 (upper 
right), CCA (lower left) and 2000 (lower right). The numbers indicate the number of 
pairs of values that were used to calculate each point and the horizontal dashed line 
denotes the variance of each residual data set. 

Figure 6 shows that the experimental variograms are well approximated by the Gaussian 
model for the 1990 and CCA data. The 1980 data set does not have enough data (16) to 
yield a good fit using any type of model. The experimental variogram calculated on the 
2000 data shows a number of points between lags 2000 and 7000 meters that are above 
the variance of the data set (the horizontal dashed line). This behavior indicates that the 
Gaussian trend surface model used to calculate the residuals from the measured data did 
not remove the entire trend inherent in the observed data. A higher order trend surface 
model could be applied to these data to remove more of the trend, but we have chosen to 
keep the trend surface model consistent across all four data sets and feel that the Gaussian 
trend surface model provides a reasonable estimate of the trend in the data across all four 
sets. 

The GSLIB kriging program kt3d is used to estimate the residual values at all points on 
the grid within the model domain. The results of this kriging program are then used as 
input to the code add-trend. The add-trend code adds the Gaussian trend surface to the 
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estimated residual values to produce the final estimates of the initial head field. A 
slightly different version of the add-trend code was used for each time period, where the 
Gaussian trend surface parameters in Table 4 are hard-coded variables for each different 
time period. The add-trend source code for the 1980 calculations is included as 
Appendix 3. 

FIXED-HEAD BOUNDARY AND INITIAL CONDITION RESULTS 

The results of this kriging process with consideration of the trend are four sets of initial 
heads for use in MF2K. The values of the initial heads that correspond to the fixed 
boundary condition locations provide the boundary conditions for the calibration models. 
The initial (starting) head fields are shown in Figure 7 and the head values along each 
boundary of the model domain are shown in Figures 8 and 9. Note that these final head 
 lots are for the model domain and do not represent heads along the no-flow boundary 
that is imposed on the problem later. 

Figure 7. Initial heads for the four differentsets of heads. These four images show the 
extent of the model domain only. 
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Figure 8. Values of the fixed-head boundary conditions across the northern (upper 
image) and eastern (lower image) of the model domain. Note that not all locations along 
the model boundary are active cells. 

" lNFORMATlON ONLY 23 



Western Boundary 

/-19~(1-1980 -2WO -CCAI  

Figure 9. Values of the fixed-head boundary conditions across the southern (upper 
image) and western (lower image) of the model domain. Note that not all locations along 
the model boundary are active cells. 



The base transmissivity fields created in Task 2 (Holt and Yarbrough, 2002) rely on a 
regression model to estimate transmissivity at every location. By the nature of regression 
models, the estimated transmissivity values will not honor the measured transmisiivity 
values at the measurement locations. Therefore, before usina these base transmissivitv 
fields in a flow model, they must be conditioned to the measured transmissivity values. 
This conditioning is performed with a Gaussian geostatistical simulation algorithm to 
generate a series of 100 spatially correlated residual fields where each field has a mean 
value of zero. These fields are conditional such that the residual value at each 
measurement location is the same in each realization and the residual value plus the base 
transmissivity field is equal to the known transmissivity value at all measurement 
locations. The result of adding the simulated residual field to the base transmissivity 
field is the "seed" realization. 

This process is shown conceptually along a west to east cross section of the Culebra in 
Figure 10. The upper image shows the value of the residuals at five T measurement 
locations across the cross section. These residuals are calculated as the observed 
(measured) T value minus the base field T value at the same locations. Postive residuals 
are where the measured T value is greater than that of the base T field. To create a 
transmissivity field from these residuals, there needs to be a way to tie the base field to 
the measured transmissivity values. This tie is accomplished by creating a spatial 
simulation of the residual values, a "residual field". The middle image of Figure 10 is an 
example residual field as a red dashed line along the cross-section. This residual field is 
constructed through geostatistical simulation using a variogram model fit to the residual 
data. The residual field honors the measured residuals at their measurement locations and 
returns to a mean value of zero at distances far away from the measurement locations. 
Finally, this residual field is added to the base transmissivity field to create the seed 
transmissivity field. The base T field is represented by the solid blue line in the bottom 
image of Figure 10 and the seed T field is shown by the dotted line. The seed T field 
corresponds to the base T field except at those locations where it must deviate to match 
the measured T data. The large discontinuity shown in the base T field at the bottom of 
Figure 10 is due to the stochastic simulation of high-T zones within the Culebra (Holt and 
Yarbrough, 2002). 
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Figure 10. Conceptual cross section showing the updating of the residual field and the 
base T field into the seed T field. 



A total of 46 measured transmissivity values and corresponding residual data, both in 
units of log10 (m2/s), are available (Holt and Yarbrough, 2002, ERMS# 523889). These 
data are shown in Table 6. For each pair of log10 T and residual data, the well name and 
the eating (X) and northing (Y) coordinates in UTM are also given. These data are 
contained in the Excel file residuals.xls (converted from the residuals.dat file from Holt 
and Yarbrough, 2002) included on the CD-ROM as part of this analysis package. Note 
that the number and locations of the transmissivity data are not the same as the number 
and location of head data for any of the four data sets. 

The process of creating the residual fields is to use the residual data to generate 
variograms in the VarioWin software package and to then create conditional stochastic 
Gaussian geostatistical simulations of the residual field within the GSLIB program sgsim. 
To render the data set amenable to the variogram calculations in VarioWin, the data 
coordinates were translated by subtracting a value of 600,000 from each Easting 
coordinate and a value of 3,500,000 from each Northing coordinate. This translation was 
accom~lished in the residuals.xls file and the locations of the well data both before and 
after t ie  translation are shown in Figure 1 1. 
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Figure 11. Locations of log10 T and residual data before (left) and after (right) 
translation to a temporary new coordinate system for variogram modeling. 



Table 6. Log10 transmissivity data used in inverse calibration for all four data sets. 
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To use the data in a Gaussian simulation algorithm, it is first necessary to transform the 
distribution of the raw residual data to a standard normal distribution. This is 
accomplished through a process called the "normal-score transform" where each 
transformed residual value is the "normal-score" of each original datum. The normal- 
score transform is a relatively simple two-step process. First the cumulative frequency of 
each original residual value, cdf((i), is determined as: 

R(i) - 0.5 
cdf (i) = 

N 

where R(9 is the rank (smallest to largest) of the ith residual value and N is the total 
number of data (46 in this case). Then for each cumulative frequency value, the 
corresponding normal-score value is calculated from the inverse of the standard normal 
distribution. By definition, the standard normal distribution has a mean of 0.0 and a 
standard deviation of 1.0. Further details of the normal-score transform process can be 
found in Deutsch and Joumel(1998). 

The two-step normal-score transformation process is conducted in the Microsoft Excel 
spreadsheet file residuals.xls. First, the residual data are rank-ordered (smallest to 
largest) using the Sort command in Excel. Then the cumulative frequency of each datum 
is calculated from the preceding equation and fmally the Excel NORMSINV() function is 
used to determine the normal-score of the datum. The resulting normal-score values are 
the distance from the mean as measured in standard deviations. The parameters 
describing the residual and normal-score transformed distributions are presented in Table 
7. 

Table 7. Statistical parameters describing the distributions of the raw and normal-score 
transformed residual data. 

I Parameter I Raw Residual Data I Normal-Score Transformed I 

The normal-score residual data in the residual.xls file are copied into a text file used as 
input to the VarioWin variogram modeling software (Pannatier, 1996). The text file 
contains the translated Easting and Northing coordinates, the log10 T data, the log10 
residual data and the normal-score transform of the log10 residual data. This new text 
file, resid-ns.dat, is also included on the CD-ROM as part of this analysis package. A 
five-line text header is added to this file to put it into the format required by VarioWin. 

Mean 
Median 
Standard Deviation 
Minimum 
Maximum 

0.000 
-0.015 
0.330 
-0.959 
0.732 

Residual Data 
0.000 
0.000 
0.997 
-2.295 
2.295 



The omnidirection variogram is calculated with a 250-meter lag spacing. The 
experimental variogram is shown in Figure 12: 

Figure 12. Experimental normal-score variogram of the transmissivity residuals. The 
numbers indicate the number of pairs of data compared to calculated each point of the 
variogram. 

The model fit to this experimental variogram is Gaussian with a nugget of 0.2, a sill of 
0.8 and a range of 1050 meters (Figure 13). The sum of the nugget and sill values is 
constrained to equal the theoretical variance of 1.0 by the sgsim(~eutsch and Joumel, 
1998) software that is used to create the spatially correlated residual fields. 

Y U~I )  Omnidirectional 
46 

1.4 - 
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Figure 13. Omindirectional variogram model fit to the experimental variogram of the 
transmissivity residuals 



The initial residual field is created through a stochastic geostatistical simulation process 
using the variogram calculated on the normal-score transformed residual values (Figure 
13). Updates to this initial residual field are performed in the inverse modeling with an 
estimation (kriging) algorithm. Therefore it is necessary to calculate and model a 
variogram on the raw, not normal-score transformed, residuals for use in this kriging 
process. This variogram was also calculated with a 250-meter lag and is omnidirectional. 
A doubly nested spherical variogram model is fit to the experimental variogram. The 
variogram parameters are a nugget of 0.008, a first sill and range of 0.033 and 500 meters 
and a second sill and range of 0.067 and 1500 meters (Figure 14). This variogram model 
is used by PEST to propagate any pertubation to the original residual field made at the 
pilot point locations to the neighboring model grid cells. 

Figure 14. Experimental and model variograms for the raw-space (not normal-score 
transformed) transmissivity residual data. 

The variogram parameters for the normal-score transformed residuals are used directly in 
the sgsim program to create 100 conditional realizations of the residual field. Each of 
these 100 residual fields is used as an initial residual field and each one is assigned to an 
individual base transmissivity field. An example of a realization of the residual field and 
its combination with a base transmissivity field is shown in Figure 15. From Figure 15, 
the effect of the residual field on the base transmissivity field can be seen. The residual 
field perturbs the transmissivities to match the measured transmissivities at the well 
locations. The discrete features that are part of the original base transmissivity field (e.g., 
high-transmissivity zones in the middle of the domain) are retained when the residual 
field is added to the base field. 
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Figure 15. An example of the initial steps in creation of the calibrated transmissivity 
field. The base transmissivity field (left image) is combined with the initial residual field 
created through geostatistical simulation (center image) to produce the transmissivity 
field (right image). All three color scales denote the log10 (m2/s) transmissivity value. 



Subtask 3: Forward Modeling 
As an initial test of the available data, boundary conditions, and the flow model setup, the 
seed realizations (combination of a base transmissivity field with an initial residual field) 
were used in a set of forward models. These forward models are not calibrated to the 
observed head data. Heads, fluxes, and particle travel times from these forward models 
are retained for comparison with the results obtained after the inverse modeling step. 

FORWARD SIMULATIONS ON BASE TRANSMISSIVITY FIELDS 

The initial and boundary head values generated in the previous step are used as input to 
MPZK for simulation of groundwater flow in the original base transmissivity fields 
created by Holt and Yarbrough (2002). These simulations are forward runs only and 
there is no calibration of the fields to match observed heads. 

The first step in the forward modeling process is to create 100 subdirectories with the 
naming convention: /real### with 'W ranging from 001 to 100. These subdirectories 
are created from a base directory containing the generic input files for MF2K and the 
streamline particle-tracking code DTRKMF. The code xform (Appendix 4) is used to 
reformat each of the base transmissivity fields from the four-column ascii format supplied 
by Holt and Yarbrough (2002) to the MFZK format and these files are copied to each 
realization subdirectory and named: base-~eld-name. trans where "base-t zeld name" is "f T . the file name of the base transmissivity field (e.g., b01r02, which is the 2 realuat~on for 
the first set of ten fields). 

The forward modeling is performed for a single mean transmissivity field using a shell 
script that runs MFZK and DTRKMF with all four initial heads and boundary conditions 
(1980, 1990, CCA and 2000). There are 100 shell scripts needed for the forward 
simulations - one for each base transmissivity field. An example shell script for 
realization number three is given in Appendix 5.  The only differences between the 100 
shell scripts are the names of the input and output files and the subdirectories in which 
they reside. 

The modeling process begins by setting up MFZK for each of the four different data sets 
with the appropriate initial and fixed-head boundary values. For each of thedata sets, the 
same base transmissivity field is input to MF2K resulting in a single flow solution for 
each data set for each base transmissivity field. The resulting heads are saved to the *./st 
file and DTRKMF is run to track a single particle from the starting location (shown in 
Figure I) to the WIPP boundary. The DTRKMF output is reformatted using the intrinsic 
UNIX command language "awk" for visualization in the UNCERT program and saved to 
the *.lbl file. The get-heads program (Appendix 6) is used to extract the modeled heads 
at the well locations from the *./st file. The modeled and observed heads are written to 
an output file (e.g., calc-heads-bOIr03.out). 

For each of the 400 forward runs, there are two results that are saved to files: the 
. , , il' d heads ..: ,,% at each, of QF observed head locations, and the information on the 
.! ,*;;* ;, . 1: >;' t,,;. ,,:$ z, , ; ,  ,< . , . - 4  : $ * '  
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particle track from the starting point to the point where it exits the WIPP boundary. 
These results are summarized in Figure 16. 

Figure 16. Results of the forward simulations foreach data set. The particle travel times 
to the WIPP boundary are shown in the upper image and the RMSE values between the 
measured and modeled heads are shown in the lower image. 
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The cumulative distribution function (cdf) of the particle travel times to the WIPP 
boundary is shown for each data set in Figure 16 (upper image). These cdfs are 
compared to the cdf of particle travel times from the calibrated transmissivity fields 
calculated for the CCA (Wallace, 1996). The cdf resulting from the calculations done for 
the CCA are shown as the "certified" times in Figure 16 to distinguish them from the 
results of the forward calculations made with the heads used in the CCA calculations. 
For comparison with the travel times calculated for the CCA (Figure 16, upper image), 
the travel times calculated as part of the current analysis have been reduced by a factor of 
4.017.75 = 0.516. The current analysis used a thickness of 7.75 m (full Culebra 
thickness) because that is the average thickness contributing to T over the entire model 
domain. Results were scaled to a 4-meter thick Culebra to be consistent with the 
conservatism used in the CCA calculations. That conservatism was based on data from 
H-19 and elsewhere suggesting that most flow in high-T areas (but not necessarily low-T 
areas) is concentrated in the lower 4 m of Culebra. 

In general. the heads collected at later time ~eriods ~roduce faster travel times with the 
2000 heads producing significantly faster Gavel timks than the other time periods. All of 
the times from the fonvard models are significantly longer than the times calculated as 
part of the CCA. However, the travel t&es for the CCA calculations are based on 
transmissivity fields calibrated to both steady-state and transient head data. 

The heads resulting from the forward (uncalibrated) solution of the groundwater flow 
model are summarized for each realization as the root mean squared error (RMSE) 
between the calculated heads and the observed heads for all head observation points for 
that data set. The RMSE is: 

where n,b, is the number of head observations for the data set and HbS and H""" are the 
values of the observed head and calculated head, respectively. The cdfs of the RMSE 
values for each of the four different data sets are shown in Figure 16 (lower image). For 
these forward runs, mismatch between the observed and calculated heads is expected and 
found to be quite high and the results in Figure 16 show a considerable amount of error. 
The RMSE values increase with time. The vertical line in Figure 16 (lower image) at an 
RMSE of 2.0 meters is given as a reference value based on the CCA calculations where 
the majority of the calibrated Tfields had heads that deviated from the observed heads by 
5 2 meters. 
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Subtask 4: Steady-State Inverse Modeling 
- 

The base realizations created in Subtask 2 are input to the inverse model using the pilot 
point method. The number of pilot points and their locations are based on the results of 
Subtask 1 (Figure 1). The same 100 seed realizations are calibrated to each of the four 
different sets of steady-state head measurements. Results of this task include the T fields 
along with the heads and fluxes calculated on those T fields and data comparing the 
modeled and measured heads at the observation wells. The flow path and groundwater 
travel time for a particle released from a point above the center of the WIPP disposal 
panels to the WIPP site boundary has also been calculated for each T field. Ensemble 
average T fields show how the transmissivities vary across the four sets of steady-state 
calibrations. The cumulative distribution functions (cdfs) of travel times for each set of 
realizations and the cdfs of the head calibrations evaluated by the RMSE between 
observed and calculated heads are compared across the different time periods and to the 
CCA results. 

The residuals and the T field calculations are done in log10 space so that a unit change in 
the residual equates to a one order of magnitude change in the value of the transmissivity. 
The initial values of the pilot points are equal to the value of the initial residual field at 
each pilot point location. The pilot points are constrained to have a maximum 
perturbation o f f  3.0 from the initial value except for those pilot points within the high-T 
zone in Nash Draw (Figure 1) (see Holt and Yarbrough, 2002) that are limited to 
perturbations of + 1 .O. 

Figure 10 is updated as Figure 17 to show, conceptually, how the addition of two pilot 
points along the cross section can modify the residual field and then update the 
transmissivity field. The pilot points are shown as the open circles in Figure 17 and are 
used to modify the residual field before it is added to the base T field. Compare the 
shape of the dashed red and blue lines in Figure 17 to the same lines in Figure 10. The 
values of the residuals at the observation points are held futed so any adjacent pilot points 
cannot modify them. 
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Figure 17. Conceptual cross section showing the addition of pilot points to the 
optimization process. 

The stochastic inverse calibration process uses multiple pre- and post-processor codes in 
addition to PEST and MFZK. The overall approach to the transmissivity field 
calibration is shown in Figure 18. The preprocessing steps from the top to the middle of 
Figure 18 are: 

1) The conditional residual fields are created using the program sgsim (Deutsch and 
Joumel, 1998). 

2) The get-data code (Appendix 7) is used to specify the initial pilot point values by 
extracting the initial values of the residuals at the pilot point locations from the 
simulated residual field. 

3) The initial pilot point values and the measured heads and transmissivities as well 
as the locations of these measurements are all entered into the PEST control file. 

4) The code ppk2fac (Appendix 8) is part of the PEST software package that 
provides the transmissivity weighting factors for the locations surrounding each of 
the pilot points. These weighting factors are calculated from the variogram model 
information by invoking an assumption of second-order stationarity that specifies 
the spatial covariance as being the complement of the variogram. The covariance 
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function acts as a weight for updating transmissivity values surrounding a pilot 
point. For this analysis, the variogram of the raw residuals is used in ppk2fac to 
calculate the weighting factors. These weighting factors are stored in the file 
factor.inf and only need to be calculated once for each combination of pilot point 
locations, variograms, and grid size. The ppk2fac code also generates a table of 
standard deviations, and the algebraic regularization equations dcscribing the 
relationship between pilot points. These equations are set up to minimize the 
weighted squared differences between pilot points where the weights are again 
based on the variograrn model. The outputs of ppk2fac are the regularization 
equations that go into the control file and the kriging weight factors that are used 
by PEST in the optimization of the pilot points. More details on the mathematics 
used in ppk2fac are given in the PEST user's manual (Doherty, 2000). 



Calibution RmssRepatr Until PESTGnnot Rrd a Bma.b%trb 

Figure 18. Flow chart of the steady-state stochastic inverse process used to create the 
calibrated transmissivity fields. 
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At the heart of the calibration process is the iterative adjustment of the residual field at 
the pilot points by PEST and the subsequent updates of the residual field at the locations 
surrounding the pilot points based on the shape of the variogram modeled on the raw 
residuals. The updated residual field is then combined with the base transmissivity field 
(see Figure 17) and then used in MF2K to calculate the current set of modeled heads. 
These modeled heads are then input to PEST for the next iteration. This process is 
shown as the "Model Process" within Figure 18 and is shown in detail in Figure 19. 

Pilot Point 
Vales 

Figure 19. Flow chart of the core of the inversion process highlighting the connection 
between PEST and MODFLOW 2000. 

I 4 

Using Figure 18 as a guide, the steps in the calibration process are described as: 
1) The initial pilot point values are obtained from the initial residual field. The value 

of the pilot points at locations that correspond to the actual transmissivity 
measurement locations are held as fixed values throughout the calibration process. 
The remaining 115 pilot point values will be adjusted by PEST. Forward from 
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the 2"a iteration, these initial pilot point values are those updated by PEST in the 
previous iteration. 

The objective function minimized by PEST is a combination of the weighted sum 
of the squared residuals between the measured and observed head data and a 
second weighted sum of the squared differences in the estimated T value between 
pairs of pilot points. 

The first weighted sum of squares is the measure of the difference between the 
measured, H,"~", and modeled, H,'"", head values. For this work, the weights on 
the head observations, ~ i ~ ,  are constant. The second weighted sum of squares in 
the objective function is the regularization portion of the objective function. This 
weighted sum of squares is the difference in values between each pair of pilot 
points (PPj - PPk) and is designed to keep the transmissivity field as homogeneous 
as possible and to provide numerical stability when estimating more parameters 
than there are data. In this second weighted sum of squares, the weights, Fi$kR, are 
defined by the kriging factors and are a function of the distance between any two 
pilot points. Details on the formulation of the objective function can be found in 
Doherty (1998) and McKenna et al. (in press). 

2) The kriging factors used to spread the influence of the pilot point values are 
calculated in the preprocessing step using ppk2fac (Appendix 8) and remain 
constant throughout the calibration process. 

3) The pilot point values and the kriging factors are input into the fac2real program 
(Appendix 9). The factreal code uses these inputs to generate an MF2K 
readable array of the residual field. At this step, this field is in log10 space. Note 
that the initial residual field created by the sgsim program will be considerably 
smoothed in the fac2real program. The fac2real code uses a kriging algorithm to 
spread the influence of the pilot points and kriging is an interpolator and therefore 
a smoothing process. 

4) The updated residual field is then added to the base transmissivity field using the 
addmods program (Appendix 10) to create the updated log10 transmissivity field. 

5) The program xform (Appendix 4) takes the log10 transmissivity field and 
converts it to raw space values that can be read by MF2K. MFZK does not read 
in log-transformed transmissivity values. 

6) MF2K is run in forward mode and the resulting heads and the cell-by-cell 
volumetric fluxes, the "flow budget", are saved. 

The final step in this process is to run the get-heads code (Appendix 6) on the MF2K 
output head file to get the calculated heads at the observation locations. These calculated 
heads are then compared to the observed heads within PEST. 



maximum allowable number of 30; 2) the objective function reaches a predefined 
minimum value; or 3) there is less than a one-percent change in the value of the objective 
function across three consecutive iterations. 

For these calibrations, the predefined minimum value of the objective function is 
determined using the measurement error of the heads for each time period. For each time 
period, the number of observation wells, the target Sum of Squared Errors (SSE) and the 
acceptable SSE are given in Table 8. Internally, PEST uses the SSE rather than the 
previously defined RMSE as a measure of how close the calculated heads are to the 
observed heads. The SSE is calculated as: 

PEST requires both a target value of the SSE and an acceptable value of the RMSE. 
Each measured head value also has an associated measurement error value (Beauheim, 
2002a). The target SSE was set equal to the sum of these squared head measurement 
errors across the observation wells for each of the four data sets. The acceptable SSE 
was set to be 4 meters times the number of observation wells (No6J. This acceptable SSE 
limit corresponds to a two-meter average error across all wells. Recall that a two-meter 
error encompassed the majority of the errors in the CCA calibration models (Lavenue, 
1996). 

Table 8. Target and acceptable SSE values for the four different data sets. The numbers 
of observation wells are only those wells within the modeling domain and therefore they 
are not the same as the numbers of wells used to create the boundary conditions. 

r ~ z ~ e t  I Number of I Target SSE I Acceptable SSE / 
2- I Observations (m ) I (m2) ' 

19811 117 1 47.0 1 47 n 

For the CCA head data runs, the target SSE and acceptable SSE values were set to 1.00 
and 1.10. These values were set in the default PEST input file and were not changed to 
the respective Culebra values of 143.85 and 128.0 prior to running the inverse models. 
By setting the target and acceptable values at 1.0 and 1.1, meeting an objective function 
value will not play a role in stopping the optimization process and the process will 
continue until the objective function can no longer be decreased or until the maximum 
number of iterations is reached. Nevertheless, results show that the RMSE values 
calculated for the CCA data set are consistent with those calculated for the other time 
periods. 
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The final piece of the calibration process is to do some post-processing on the results and 
to create and save the necessary files. The post-processing steps are shown in the bottom 
portion of Figure 18 and are as follows: 

1) PEST writes the final calibrated pilot point values. These values are not 
necessarily the pilot point values that result from the final iteration of the PEST 
optimization, but are the set of pilot point values that created the lowest value of 
the objective function. 

2) The final calibrated pilot point values are used in one last forward run through the 
model process to produce the ground water heads and budgets (cell by cell flux 
values) needed for the particle-tracking software (DTRK). 

3) A particle track is calculated from the center of the repository area to the WIPP 
boundary and the time of the particle transport is recorded as the calibrated travel 
time for each T field. 

4) Additional outputs from PEST that are saved for each realization are the 
sensitivity coefficient file and the record file. 

All of the steps in the calibration process shown in Figures 18 and 19 are run using the 
pest-setup.sh shell (Appendix 12). This shell allows for initiation of the calibration 
process with a single command and this shell also calls the model.sh shell (Appendix 11) 
as part of the calibration process. An example of the final step in the creation of a 
calibrated transmissivity field is shown in Figure 20. 

Figure 20. Example final steps in the creation of a calibrated transmissivity field. The 
calibrated residual field (left image) is added to the base transmissivity field (middle 
image) to get the final calibrated transmissivity field (right image). All color scales are in 
units of log10 (m2is) transmissivity. 



For each of the 400 calibration runs, there are two results saved to files: the calculated 
heads at each of the observed head locations and the particle-tracking information. These 
results are summarized in Figure 21. 

The inverse calibration process creates a significant change in the travel times modeled 
across the WlPP site. In general, the median travel times are reduced by a factor of 
almost 50,000 between uncalibrated and calibrated results (compare the upper images of 
Figures 21 and 16). The order of the travel time distributions seen in the uncalibrated 
results showed that, in general, the later the year, the shorter the travel times (Figure 16, 
upper image). This relation between the time period of the head measurements and the 
travel times is not apparent in the calibrated results (upper image of Figure 21). 

The cdfs of the RMSE values shown in the lower image of Figure 21 are the "adjusted 
RMSE" values. The results demonstrated that for each of the four data sets, the 
calibration process was not able to reduce the fit to the measured heads at one of'the 
wells in the data set. This problem occurred at well H-lob for the time periods where it 
is included in the data set and at well H-9b for the time periods when the H-lob well is 
not present. The coordinates of H-lob are (622975,3572473) and the coordinates of the 
H-9b well are (613989,3568261). Both of these wells are close to the boundary of the 
model domain and both of them had high residual values between the measured heads 
and the trend surfaces fit to the measured heads during the creation of the fixed-head 
boundary conditions (see Figures 4 and 5). The kriging process, in the creation of the 
boundary condition heads, forces the estimated head to match the observed head at all 
locations, but it does this with a relatively local perturbation to the total head field. The 
nearby boundary heads, that are fixed for all calculations, can be considerably different 
from the head assigned to the well location if that well location is not a good fit to the 
trend surface estimate. This situation causes conflict between the fixed-head boundary 
and the ability of PEST to fit the measured head at the nearby well. This conflict causes 
wells located near the model boundaries, such as H-lob and H-9b, to have anomalously 
high residuals at the end of the calibration process - PEST is unable to both fit the 
measured heads at these locations and meet the nearby fixed-head boundary conclition. 
For this reason, the "adjusted RMSE" value is the RMSE calculated across all wells 
minus the one well, H-lob or H-9b that displayed this type of behavior for the time 
period being considered. The H-lob well is removed from the adjusted RMSE 
calculations forthe 1980, 1990 and CCA data sets and the H-9b well is removed for the 
2000 data set. It is stressed that the calculations for the steady-state calibrations include 
the measured heads at wells H-9b or H-lob; it is only the summary value of the adjusted 
RMSE that does not. 

The adjusted RMSE cdfs in the lower image of Figure 21 show that the majority of the T 
fields for the 1990, CCA and 2000 data sets are calibrated to an adjusted RMSE of less 
than 2.0 meters. These values are either at or very close to the average head 
measurement errors for those data sets indicating that a better calibration cannot be 
achieved. The 1980 adjusted RMSE values show that the majority of the RMSE values 
are greater than 2.0 but less than 3.0 meters. The adjusted RMSE values show that for all 



data sets there is a small proportion, 6 percent or less, of the realizations for which an 
adjusted RMSE of less than 3.0 meters cannot be obtained. 

-CCA Timeslo WIPP bunds -2WO Times lo WIPP Bound8 - 1980 Timas to WIPP Bounds 
-198OTlmw D WIPP Bounds - C M e d  Times 

10,WO 1OO.WO 

Travel Tima (years) 

Figure 21. Results of the inverse simulations for the four different data sets. The 
particle travel times to the WIPP boundary are shown in the upper image and the adjusted 
RMSE values between the measured and modeled heads are shown in the lower image. 
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The variation in the adjusted RMSE values begs the question: What is the relationship 
between the adjusted RMSE and the calculated travel time for any given realization? For 
example do poor fits to the head data (large RMSE values) allow for significantly faster 
travel times? This relationship is shown in Figure 22 for all four data sets. Figure 22 
shows that there is no relationship between the adjusted RMSE and the travel time for 
any of the four data sets and that those realizations with relatively high RMSE values do 
not produce extreme travel time results. 

Figure 22. Particle travel time to the WIPP boundary as a function of the adjusted 
RMSE for all four data sets. 

Summary 

This analysis has shown that it is possible to develop T fields calibrated to heads 

measured at different time periods. 

Points 

1) Calibration yields a drastic change in the travel time distributions and generally 

reduces the median travel time by a factor of approximately 50,000 relative to the 

uncalibrated case. 

2) Calibration also makes a major change in the fit of the modeled heads to the 

measured heads and can reduce the difference between measured and modeled 

heads to within the range of the head measurement error. 



3) A calibrated solution is not a unique solution. These results indicate that the same 

level of calibration can produce travel times that range over an order of 

magnitude. As an example, for an adjusted RMSE of 1.80 meters, the travel times 

range from roughly 5000 to over 100,000 years (Figure 20). 
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Appendix 1: Guidelines for Pilot Point Selection 
John Doherty, Watermark Numerical Computing 

Doherty (2001; 2003) describes a methodology for the use of pilot points in groundwater 
model calibration. Using that method, the values of aquifer hydraulic properties are 
estimated at the locations of a number of points spread throuehout the model domain. 
Hydraulic properties are then assigned toihe model grid throigh spatial interpolation 
Erom those points. In the software described by Doherty (2001), spatial interpolation is 
implemented through kriging on the basis of a user-specified varibgram. ~ h ;  same 
variogram is then used to enforce a type of "uniformity condition" on the values assigned 
to pilot points. The uniformity condition is applied more strongly to points that are closer 
together, than to those that are further apart (the "strength" of this application being 
determined by the variogram). This condition is then used by the regularization 
functionality of PEST-ASP (Doherty, 2002) to achieve a numerically stable solution to 
the inverse problem of model calibration. It is because of the regularization algorithm 
implemented by PEST-ASP that so many parameters can be estimated through the model 
calibration process. In implementing this algorithm, PEST enforces parameter uniformity 
constraints as strongly as it can without violating the necessity for model outputs to 
match field data. 

In an alternative calibration methodology, pilot points can be used in the estimation of 
"hydraulic property multipliers". Spatial interpolation from pilot points to the finite 
difference grid then allows the construction of a "warping array". A hydraulic property 
array (normally built by a stochastic field generator) is multiplied by this warping array 
on a cell-by-cell basis. Use of PEST'S regularization functionality guarantees that 
departures Erom uniformity of the warping array are only as great as they need to be for 
the resulting warped property array to ensure a calibrated model. 

When using pilot points to characterize the spatial variation of some hydraulic property 
(or property multiplier) prior to estimation of this property (or multiplier) through model 
calibration, the modeller must choose the locations of these points himherself. While, 
ostensibly, this can introduce a certain amount of subjectivity into the calibration process, 
the proper placement of these points can, in fact, reduce the affects of this subjectivity in 
comparison to other methods of spatial parameterisation (for example those based on 
user-specified zonation patterns in situations were geological mapping is unable to 
provide much assistance in specification of zone boundaries). Furthermore, the more pilot 
points that are used to define spatial heterogeneity, the less pronounced is the element of 
subjectivity in the calibration process. However, as there will always be computational 
and numerical limits to the number of points that can be used, there will be occasions 
when the modeller must choose the locations of pilot points judiciously. This document is 
intended to act as a guide in this selection process. 
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Other methods of using pilot points in conjunction with PEST'S regularization 
fimctionality are under continued development. It is possible that the following guidelines 
will be expanded somewhat as experience is gained in the development and 
implementation of these methods. 

Conventional wisdom in environmental model calibration dictates adherence to a policy 
of parameter parsimony. This wisdom is based on the fact that if attempts are made to 
estimate too many parameters, the inverse problem becomes numerically unstable as 
parameter estimates are plagued by nonuniqueness resulting from parameter correlation 
and insensitivity. Use of a parameter set estimated on the basis of an improperly posed 
inverse problem can then lead to erroneous model predictions because of the tendency for 
spurious heterogeneity to be introduced into such an over-parameterized calibration 
process. 

Limitations on the number of parameters which can be estimated through model 
calibration can be revised radically upwards when regularization is introduced to the 
parameter estimation process. This is because the regularization process is 
mathematically a "constrained minimization process" whereby parameter values are 
constrained to adhere as closely as possible to a "preferred system condition" described 
by the regularization equations. As implemented in the software described in Doherty 
(2001), the preferred system condition is one of uniformity of parameters or multipliers 
within one or a number of user-defined zones. However other regularization methods are 
possible with PEST-ASP such as adherence of parameters (or multipliers) to preferred 
values (which can be the same or different for different parameters). Hence if the 
calibration dataset does not possess the information content required for estimation of a 
 articular ~arameter, that ~arameter will be assiened a value that is in accordance with - 
the "preferred system state" as it pertains to that parameter. Thus, properly applied 
regularization ensures that, no matter how many parameters require simultaneous 
estimation through the calibration process, each of them can beassigned a unique value 
because none of them is insensitive, and none of them is excessively correlated with any 
other parameter. 

In general, the more pilot points that are used to characterize the distribution of a spatially 
varying hydraulic property, the better will be the outcome of the calibration process. The 
principal advantage of using a multitude of pilot points is that they are more likely to be 
placed at locations "where they are needed" if there are many of them than if there are 
just a few of them. As is discussed below, the closer pilot points are situated to the 
locations at where hydraulic property heterogeneity exists within the model domain, the 
more likely it is that such points will be assigned realistic parameter or multiplier values. 
Improper placement of pilot points with respect to heterogeneity can result in out-of- 
range parameters as the latter are endowed with extreme values to compensate for the 
limited "leverage" they have in affecting properties at those locations within the model 
domain where property adjustment is most urgently needed. 

In practice, the number of pilot points that can be used in the parameter estimation 
process is limited by CPU time, and by internal numerical noise within PEST itself. 
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Experience has shown that once the number of parameters rises above 220, PEST'S 
performance begins to suffer as result of the latter phenomenon. The former problem (i.e. 
excessive CPU times) results from the fact that a numerical derivative must be calculated 
for each parameter adjusted through the calibration process. Thus, during each 
optimization iteration, PEST must run the model at least as many times as there are 
adjustable parameters (sometimes twice this number). While overall PEST run times can 
be lowered significantly through parallelisation (and through other devices such as the 
use of the MODFLOW-2000 AMG solver), the fact still remains that the estimation of a 
large number of parameters is a computationally expensive process. 

Experience has demonstrated that for a single-layer model in which only the hydraulic 
conductivity is estimated, use of 100 pilot points seems to provide a suitable compromise 
between thd competing needs of pilotpoint density and adequate execution speed 

MODEL DOMAIN HETEROGENEITY 

As documented by Doherty (2001), pilot points can be combined with the use of zones in 
model calibration, to accommodate mapped heterogeneity. The following discussion 
pertains only to the use of pilot points in accommodating intra-zonal or unmapped 
heterogeneity. 

As was mentioned above, one of the great advantages of using pilot points for spatial 
parameterization is that the modeller does not need to guess where unmapped 
heterogeneity might exist within a model domain ahead of the calibration process. 
Instead, the calibration process can itself determine where such heterogeneity exists, or 
where stochastic fields are best warped to accommodate this heterogeneity to achieve an 
optimal model fit to field data. Nevertheless, this gain in the robustness and efficiency of 
is possible if a few simple steps are taken. 

If there are any indications of the existence of heterogeneity within a model domain, then 
it is best to place a number of points within suspected anomalous zones; the number of 
such points will depend on the spatial extent of each suspected anomalous region. The 
existence of heterogeneity can often be inferred from the patterns of piezometric 
contours. For example, one or a number of points should be placed in regions of locally 
high hydraulic gradient; if such a region is elongate, points should be placed at regular 
intervals along its strike. 

Similar considerations apply to regions where piezometric contours are widely spaced. 
However, by their nature, such regions will tend to be defined over broader areas and will 
not require as great a pilot point density as narrower zones of high piezometric gradient. 
If possible a point should be placed at the centre of such a region, and at regular intervals 
along its inferred boundary. 

Where there is a greater density of piezometric measurement points within a model 
domain, there is a greater potential for inferring hydraulic property heterogeneity from 
measured head data. Hence, to reflect the locally enhanced resolving power of the 



calibration dataset, pilot points can be placed with greater density in such information- 
rich areas. 

Where the line joining a pair of measurement wells is roughly in the down-gradient 
direction, consideration should be given to placing a pilot point somewhere on, or close 
to, this line based on the premise that it is the hydraulic conductivity between the points 
that determines the observed head differential between them. Based on this same 
argument, a good pilot points placement strategy would be to position pilot points as 
much as possible between measurement wells (rather than coincident with them), with 
particular emphasis being placed on pairs of wells that are aligned in the direction of the 
local hydraulic gradient. 

If independent hydraulic property estimates are available at certain points within the 
model domain, then these estimates should be used in the calibration process. The 
manner in which hydraulic test data is best incorporated into the parameterization of a 
regional aquifer is the subject of current research. However, for the moment it will be 
assumed that hydraulic properties determined through hydraulic test analysis will be used 
in the calibration process either through the direct assignment of local hydraulic 
properties, or as "prior information" by which local hydraulic property estimation will be 
guided. 

For implementation of either of these methods, a pilot point should be placed at the site 
of each tested well. In the former method, the parameter pertaining to each such pilot 
point should be fixed at a constant value (equal to that determined through hydraulic test 
analysis) throughout the inversion process. In the latter case, the pilot point located at the 
hydraulic test site will assume its normal role; that is, the parameter value with which it is 
associated will be estimated through the inversion process. Just like other pilot points, the 
parameter associated with this point will suffer constraints imposed by the regularization 
process. However, this parameter will also feature in an additional item of prior 
information, in which it is linked to the hydraulic property value determined through 
hydraulic test analysis. Deviations of this parameter value fiom the independent estimate 
will then incur a penalty in the overall objective function. The weight assigned to this 
prior information equation, and hence the penalty incurred by deviation of the parameter 
from its independently estimated value, should be carefully chosen by the user. 

Unless observation wells are very close to outflow boundaries marking the lower end of a 
model domain, pilot points should be placed between each such boundary and the closest 
up-gradient wells. Furthermore, the longer is an outflow boundary, the more pilot points 
may need to be placed sub-parallel to this boundary, along a line forming the rough mid- 
position between the boundary and the first row of measurement points. Whatever the 
geometry of the system, enough pilot points should be placed between outflow points and 
head measurement points to allow the calibration process to calculate conductivity values 
that account for the piezometric drop between these two model entities. 



Similar considerations apply to uphill inflow boundaries were the boundary condition is 
of the prescribed or general head type. The principal is the same; that is, it is the 
hydraulic conductivity of the material between the boundary and the closest observation 
well along any pathline that determines the potential drop along that pathline. Hence, 
enough pilot points must be placed between the boundary and the up-gradient set of 
observation points (with placement parallel or sub-parallel to the boundary) to allow 
PEST to assign hydraulic conductivity values to this part of the model domain, and to 
account for any lateral conductivity variations that may exist in a direction that is roughly 
parallel to the boundary. 

In many modeling applications, up-gradient model boundaries are of the prescribed 
inflow type (including, possibly, no inflow). Also, such boundaries are sometimes placed 
at a considerable distance from the nearest set of observation wells to minimize their 
effect on that part of the model domain that is of most interest for predictive purposes. In 
cases such as this, the hydraulic properties pertaining to those parts of the model domain 
that lie beyond the outer set of observation wells will be virtually indeterminable from the 
calibration dataset alone (especially in a steady-state model). Fortunately, in many cases 
their effect on model predictions will be minor. Nevertheless some thought should be 
given to the characterization of hydraulic properties within such areas, and to the effect of 
pilot point placement on the representation of these properties in the model. If no pilot 
points are placed in such areas, then the kriging process by which hydraulic property 
values are assigned to model cells in these areas will be such that, the further such cells 
are removed from the nearest pilot point, the closer will their hydraulic property value be 
to the mean property value prevailing within the model domain. However, if a few pilot 
points are sprinkled in such areas, and if "smoothing regularization" is used (i.e. 
regularization which attempts to minimize hydraulic property differences between 
neighboring pilot points - see Doherty, 2001), then the hydraulic property values 
assigned to these uphill areas will tend to be more like those that prevail in the closest 
parts of the model domain for which hydraulic property values can be assigned on the 
basis of the calibration dataset. Hence it is often good practice to place a few pilot points 
in the "back blocks" of the model domain between the most up-gradient observation 
wells and the inflowlno-flow boundaries that form the uphill end of the model. 

Similar considerations apply to areas at the sides of the model domain that may be far 
removed from observation wells. 

Consideration should be given to increasing pilot point density at locations within the 
model domain at which key predictions are to be made. Of particular interest in many 
instances of model usage are the paths taken by contaminants (or potential contaminants) 
from their points of entry into the model domain. The regularization process implemented 
by PEST-ASP will ensure that spurious heterogeneity will not be introduced into the 
model domain as a result of locally increased pilot-point density. However the 
introduction of extra pilot points to critical areas allows the calibration dataset to have 
"full sway" in detecting any heterogeneities which may exist at those places within the 
model domain where enhanced spatial resolution may be most important for the making 
of key model predictions, or of exploring the uncertainty associated with those 
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predictions (especially those predictions that depend on "system fine detail" as do 
contaminant pathways). 

If, after all of the above suggestions have been followed, there are areas in the model 
domain which are devoid of pilot points, then points should be added to fill in the gaps. 
This process should continue until there are no remaining gaps, or until the maximum 
number of pilot points has been reached. However, as is further discussed below, the 
variogram should not be ignored when deciding on how many points are sufficient in any 
parameterisation context. After all pilot points have been assigned, the average distance 
between pilot points should be considerably less than the variogram range (a factor of 3 
or 4 is suggested). 

Figure A1 illustrates many of 
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nearest downhill 
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Figure Al .  Some examples of the rationale governing the placement of pilot points. 

THE VALUE FOR PHZMLZM 

PEST allows the user to set the "calibration threshold" for a particular model though 
choice of a value for the control variable PHIMLIM. This variable resides in the 
"regularization" section of the PEST control file. It is the objective function below which 
the model is deemed to be calibrated. PEST will not seek to reduce the objective function 
below this level during a regularized inversion process. 



Care must be exercised in choosing a suitable value for PHIMLIM. If it is set too low, 
PEST will give little importance to regularization constraints as it attempts to create a 
perfect fit between model outputs and field data. While the assignment of a low value to 
PHIMLIM may result in a spectacular fit between model outputs and field measurements, 
it may also result in unbelievable parameter estimates as the calibration process "bends 
parameters to fit the noise". This, in turn, can lead to unrealistic model predictions that 
defy credibility. Alternatively, if PHIMLIM is set too high, PEST may calculate a 
hydraulic property field that is too smooth, or too close to the "default system condition" 
encapsulated in the regularization equations; in some situations this may give rise to 
model predictions that are too conservative. 

In many instances of model deployment, it will not be possible to assign a suitable value 
to PHIMLIM until some calibration runs have been carried out to determine the extent to 
which the model is capable of fitting field measurements, given its present conceptual 
basis. When undertaking runs for this purpose, PEST is able to select an appropriate 
value for PHIMLIM itself on the basis of the user-supplied value for another control 
variable, viz. FRACPHIM. However this will often result in a PHIMLIM value that is too 
low. Thus, once PEST has been used in this manner in early calibration runs, the 
calibration process may need to be repeated with a more appropriate (higher) user- 
specified PHIMLIM setting. 

The occurrence of wild and aberrant parameter values can be precluded through the use 
of PEST'S parameter bounds functionality. However, unless there is a good reason to do 
so, it is best to refrain from applying bounds to parameters when undertaking rebwhrized 
parameter estimation. This is because the regularization process itself should ensure that 
parameters stay within a reasonable range. If they do not, then PHIMLIM may have to be 
increased, or some other measure may need to be taken to ensure that parameter values 
stay within realistic ranges. If parameters are kept within these ranges "artificialXy" by the 
imposition of bounds, this might prevent the user from gaining valuable insights into 
possible model inadequacy that may be forthcoming from the calibration process. 
(Having stated this however, it cannot be denied that there may be occasions when the 
imposition of bounds is important; no rule is universally applicable.) 

In the regularized calibration process described by Doherty (2001), the variogram 
performs two roles. The first is the determination of !&inn  factors by which model grid - - - 
property values are calculated from pilot point property values. The second is the 
assignment of relative weights to the equations that encapsulate the regularization 
constraints. In neither of these roles is the assignment of variogram parameters critical. 
Furthermore, the more pilot points that are used for the characterization or spatial 
heterogeneity, the less critical do the variogram parameters become. 

In spite of this, some care should be taken in choosing a suitable variogram. Experience 
suggests that use of the power and Gaussian variograms should be avoided, as kriging 
based on these variograms can lead to spurious hydraulic property values at grid cells 
after interpolation from pilot points, especially if the latter are placed too close together. 



In many groundwater modelling contexts information available for variogram 
construction is very limited. Nevertheless, the modeller will often have some idea of the 
length scale of hydraulic property continuity, and hence of the variogram range. On some 
occasions it may be possible to estimate the range of the variogram as part of the 
inversion process. However, bounds should be placed on variogram range estimates made 
through the inversion process; in particular, it is important that its lower bound be such 
that the average inter-pilot-point distance is significantly less than the variogram range. 
Another issue to consider when estimating the variogram range is that kriging factors will 
need to be re-computed on every occasion that the range is altered by PEST. Efticiencies 
in this process can be gained through use of PEST'S multiple-command-line 
functionality. 

As is discussed in Doherty (2001), if a single variogram is used to characterise 
geostatistical structure within a model area, its sill has no effect on the pilot point 
parameterisation process. If multiple variograms are use to characterise a structure, then 
only the relative values of the individual sills are important, not their absolute values. 

The section briefly outlines problems that may occur in a regularized calibrationlwarping 
process based on pilot points, and suggests steps that may be taken to rectify them. 

Poor Fit Between Model Outputs and Field Measurements 
This can result from flaws in the concevtual model that undemins the numerical model. 
Experience has shown that use of pilot points in a regularized calibration process allows 
such errors to be detected more quickly than would otherwise be possible, for this 
methodology allows rapid explo~ation~of the effects of potential spatial heterogeneity on 
model outputs. Failure to achieve a better fit through enhanced heterogeneity necessitates 
a revision of other aspects of model design. 

If the conceptual model is judged to be correct and a poor fit between model outcomes 
and field measurements remains, the user should consider using a greater number of pilot 
points, or shifting certain points to different locations. Areas of greatest model-to- 
measurement misfit are prime candidates for the introduction of new pilot points. 

If the occurrence of a poor fit between model outcomes and field data is accompanied by 
the estimation of hydraulic property field that is too smooth, consideration should be 
given to lowering PHIMLIM. 

Out-ojRange Parameter Values 
This can be caused by flaws in the conceptual basis of the model (for example if the 
occurrence of broad areas of low piezometric gradient is attributed to high hydraulic 
conductivity rather than to enhanced recharge). However out-of-range parameter values 
can also be the result of improper placement of pilot points. If heterogeneity needs to 
exist at a certain location in order for the model to replicate measured heads in nearby 
wells, but the nearest pilot point is relatively far away, PEST will have no option but to 



adjust the property value assigned to the far-away point in an attempt to fit the heads; 
however it would be much better to adjust the value assigned to a voint which is located - 
within the actual heterogeneity. If there are few or no observation wells near the far-away 
pilot point, then there may be only weak calibration-imposed restraints on the parameter 
value assigned to that point. It may thus be assigned a value that is outside the normal 
value range for that parameter type. 

Out-of-range parameter values can also result from "chasing noise" in field data. This 
occurs when PEST adjusts parameter values in order to fit every nuance of the calibration 
dataset, even when a component of each field measurement results from processes other 
than those simulated by the model. Before accepting any pilot-point based calibration, it 
is extremely important that the hydraulic property field (after interpolation from pilot 
points to the grid), and a complete set of model-generated heads over the entire model 
domain, be carefully inspected. Anomalies in either of these could indicate the 
assignment of spurious parameter values to one or more pilot points. 

Problems associated with out-of-range parameter values can be rectified in a number of 
ways, including: 

adjustment of the conceptual basis for the model; 
assignment of more pilot points to areas of possible heterogeneity within the 
model domain; 
shifting offending pilot points to places where they are most needed; 
increasing the value of PHIMLIM; 
placing bounds on parameters (but see the above discussion on parameter 
bounds). 

If using the Gaussian or power variogram (not suggested), it is possible for values 
interpolated to the model grid to be lowerhigher than values assigned to pilot points. 
Utility software supplied for the implementation of pilot-point-based calibration using 
PEST allows the user to "clip" interpolated hydraulic fields at reasonable values. If using 
this functionality, be careful of its interaction with PEST'S parameter bounds 
functionality. However it is best to avoid the problem altogether by using the exponential 
or spherical variogram. 

Spurious Model Outputs 
I t  sometimes occurs that while the fit between model outputs and field measurements is 
exceptionally good, the model may produce spurious heads (or other outputs) at locations 
within the model domain where there are no calibration targets. This is mostly a direct 
outcome of the occurrence of out-of range parameter values and can be rectified using 
one or a number of the measures discussed above. 

Inability to Lower the Objective Function 
A common occurrence in umegularized parameter estimation in an over-parameterized 
system is an inability on the part of PEST to lower the objective function. Meanwhile, 
one or more parameters may change by large amounts during each optimisation iteration 
(often limited by the factor or relative change limits FACPARMAX and RELPARMAX), 
and the Marquardt lambda may progressively rise as the optimisation process progresses. 



Furthermore, an inspection of PEST'S parameter sensitivity file (this has an extension of 
.sen) andlor its matrix file (which has an extension of .mtt) reveals a high degree of 
parameter correlation and/or insensitivity. 

The same problems can occur in some instances of regularized inversion - especially in 
the final stages of a parameter estimation run in which the value selected for PHIMLIM 
is too low. In such a case, PEST may neglect regularization information and, in doing 
this, lose the numerical advantages of regularization. Fortunately, this problem is easily 
overcome by increasing PHIMLIM. 
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Appendix 2: Supplementary Material for Estimation of 
the Fixed Head Boundary Values 

RESULTS OF FITTING THE GAUSSIAN TREND SURFACE TO THE 1980 HEADS 

Nonlinear Regression 

[Variables] 
x = col(l) 
y = col(2) 
z = col(3) 
[Parameters] 
xO = xatymax(x,z) "Auto {{previous: 626195)) 
yO = xatymax(y,z) "Auto {{previous: 4.14982e+006)) 
a = max(z) "Auto {{previous: 1323.29)) 
b = fwhm(x,z)/2.2 "Auto {{previous: 163929) ) 
c = fwhm(y,z)/2.2 "Auto {{previous: 674927)) 
[Equation] 
f=a*exp(-.5*( ((~-xO)/b)~2 + ((y-y0)/~)~2 )) 
f i t f toz 
[Constraints] 
[Options] 
tolerance=O.OOO1OO 
stepsize=100 
iterations=lOO 

R = 0.86434538 Rsqr = 0.74709293 Adj Rsqr = 0.65512672 

Standard Error of Estimate = 6.3707 

Coefficient Std. Error t P 
x0 626195.361 1 30694.8879 20.4006 <0.0001 
yo 4149817.9394 9178912.7528 0.4521 0.6600 
a 1323.2916 7416.9448 0.1784 0.8616 
b 163929.4859 147739.8589 1.1096 0.2908 
c 674926.8586 5645329.6128 0.1 196 0.9070 

Analysis of Variance: 
DF SS MS F P 

Regression 4 1318.8112 329.7028 8.1236 0.0027 
Residual I I 446.4460 40.5860 
Total 15 1765.2572 1 17.6838 

PRESS = 2378.1 747 

Durbin-Watson Statistic = 2.0941 

Normality Test: Passed (P = 0.1570) 

Constant Variance Test: Passed (P = 0.2922) 

Power of performed test with alpha = 0.0500: 0.9971 



Regression Diagnostics: 
Row Predicted 
1 925.7026 
2 924.9243 
3 921 S283 
4 930.6170 
5 928.1497 
6 914.7788 
7 902.2684 
8 910.3936 
9 917.6483 
10 923.8082 
I I 920.9487 
12 924.4544 
I3 919.4562 
14 933.4058 
15 939.6096 
16 910.4777 

Residual 
-2.7895 - 
-8.3480 - 
-8.8928 - 
3.351 1 
4.7473 
-2.4295 
8.3891 
-1.8616 
3.3026 
3.6774 
-2.8235 
3.7356 
-3.1933 
8.9989 
-3.9958 
-4.7834 

Influence Diagnostics: 
Row Cook'sDist Leverage 
1 0.0065 0.1285 -0.1735 
2 0.0594 0.1308 -0.5739 
3 0.0673 0.1305 -0.6196 
4 0.0189 0.2122 0.2981 
5 0.0169 0.1185 0.2858 
6 0.0066 0.1594 -0.1740 
7 2.9924 0.7126 5.4888 
8 0.0085 0.2673 -0.1976 
9 1.0899 0.8012 2.3767 
10 0.0108 0.1240 0.2252 
11 0.0070 0.133 1 -0.1797 
12 0.0112 0.1251 0.2302 
13 0.0122 0.1677 -0.2385 
14 0.4956 0.4191 1.8098 
15 0.2366 0.5661 -1.0826 
16 2.3573 0.8039 -3.8087 

95% Confidence: 
Row Predicted 
1 925.7026 
2 924.9243 
3 921.5283 
4 930.6170 
5 928.1497 
6 914.7788 
7 902.2684 
8 910.3936 
9 917.6483 
10 923.8082 
1 1  920.9487 
12 924.4544 
13 919.4562 
14 933.4058 
I5 939.6096 

Regr. 5% 
920.6762 
919.8534 
9 16.463 1 
924.1574 
923.3228 
909.1813 
890.43 17 
903.1444 
905.097 1 
918.8706 
915.8332 
919.4949 
913.7140 
924.3285 
929.0595 

Std. Res. Stud. Res. 
0.4379 -0.4690 -0.4517 
1.3104 -1.4055 -1.4795 
1.3959 -1.4970 -1.5995 
0.5260 0.5927 0.5743 
0.7452 0.7937 0.7794 
-0.3814 -0.4159 -0.3997 
1.3168 2.4564 3.4856 
-0.2922 -0.3414 -0.3272 
0.5184 1.1628 1.1838 
0.5772 0.6167 0.5985 
-0.4432 -0.4760 -0.4586 
0.5864 0.6269 0.6087 
-0.5013 -0.5494 -0.5312 
1.4125 1.8533 2.1307 
-0.6272 -0.9522 -0.9478 
-0.7508 -1.6956 -1.881 1 

DFPITS 

Regr. 95% Pop. 5% 
930.7289 910.8070 
929.9953 910.0137 
926.5934 906.6196 
937.0766 915.1787 
932.9767 913.3203 
920.3763 899.6810 
914.1052 883.9185 
917.6428 894.6087 
930.1994 898.8296 
928.7458 908.9424 
926.0643 906.0229 
929.4138 909.5813 
925.1985 904.3042 
942.483 1 916.7022 
950.1597 922.0621 

Stud. Del. Res. 

Pop. 95% 
940.5981 
939.8350 
936.4369 
946.0552 
942.9791 
929.8766 
920.6184 
926.1785 
936.4670 
938.6740 
935.8746 
939.3274 
934.6083 
950.1094 
957.1571 



RESULTS OF FITTING THE GAUSSIAN TREND SURFACE TO THE 1990 HEADS 
Nonlinear Regression 

[Variables] 
x = col(1) 
y = col(2) 
z = col(3) 
[Parameters] 
xO = xatymax(x,z) "Auto {{previous: 615692)) 
yo = xatymax(y,z) "Auto {{previous: 3.92718e+006)) 
a = max(z) "Auto {{previous: 1155.98)) 
b = fwhm(x,z)R.2 "Auto {{previous: 124127)) 
c = fwhm(y,z)/2.2 "Auto {{previous: 517625)) 
[Equation] 
f=a*exp(-.5*( ((x-xO)h)"2 + ((y-yO)/c)Y )) 
fit f to  z 
[Constraints] 
[Options] 
tolerance=O.OOO 100 
stepsize=lOO 
iterations=100 

R = 0.78629497 Rsqr = 0.61 825978 Adj Rsqr =0.55187017 

Standard Error of Estimate = 6.4936 

Coemcient Std. Error t P 
x0 615691.51 12 6208.8006 99.1643 <0.0001 
yo 3927177.2298 3469314.6321 1.1320 0.2693 
a 1155.9754 2562.6688 0.451 1 0.6562 
b 124127.3319 57104.2611 2.1737 0.0403 
c 517624.7100 2694099.9615 0.1921 0.8493 

Analysis of Variance: 
DP SS MS P P 

Regression 4 1570.7405 392.6851 9.3126 0.0001 
Residual23 969.8428 42.1671 
Total 27 2540.5833 94.0957 

PRESS = 3524.8490 

Durbin-Watson Statistic = 1.7968 

Normality Test: Passed (P = 0.1370) 

Constant Variance Test: Passed (P = 0.3971) 

Power of performed test with alpha = 0.0500: 0.9996 

Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res. 
1 933.3732 -1,3462 -0.2073 -0.2736 -0.2680 
2 920.6080 -7.9509 -1.2244 -1.2659 -1.2836 

INFORMATION O 60 



Influence Diagnostics: 
Row 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

~ o o k ' s ~ i s t  Leverage DPPITS 
0.01 11 0.4257 -0.2307 
0.0221 0.0644 -0.3368 
0.01 17 0.0822 -0.2399 
0.0201 0.0615 -0.3206 
0.0130 0.0705 0.2543 
0.0119 0.0652 -0.2433 
0.0138 0.0912 0.2604 
0.0054 0.0743 0.1625 
0.0021 0.1063 -0.0995 
5.3325 0.6994 7.1301 
0.0153 0.2396 0.2717 
0.7306 0.5184 2.0246 
0.0204 0.0649 -0.3229 
0.0019 0.0977 -0.0967 
0.0182 0.0603 -0.3044 
0.0262 0.0607 -0.3709 
0.0141 0.0721 -0.2646 
0.0163 0.0593 0.2872 
0.0044 0.0723 0.1464 
0.0039 0.0717 -0.1375 
0.0132 0.0656 -0.2570 
0.0099 0.0583 0.2215 
0.0125 0.0626 0.2493 
0.0132 0.0962 0.2552 
0.0004 0.1430 -0.0445 
0.2144 0.5261 1.0346 
2.6828 0.7900 -3.8968 

INFORMATION 0 



28 0.0010 0.2004 0.0708 

95% Confidence: 
Row 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

Predicted Regr. 5% 
933.3732 924.6089 
920.6080 917.1983 
920.3274 916.4767 
923.5232 920.1916 
929.3160 925.7490 
920.9876 917.5575 
928.8107 924.7540 
928.3153 924.6543 
915.0014 910.6219 
901.7762 890.5425 
908.8775 902.3024 
912.5035 902.83 14 
922.0596 918.6363 
917.6198 913.4206 
923.2190 919.9191 
925.3482 922.0373 
920.1514 916.5444 
926.5562 923.2858 
924.1817 920.5696 
920.864 1 917.2660 
920.0019 916.5603 
927.2173 923.9745 
927.9152 924.5548 
925.3302 921.1640 
920.4386 915.3592 
934.7525 925.0093 
911.1579 899.2182 
934.5272 928.5133 

Regr. 95% 
942.1375 
924.0177 
924.1781 
926.8547 
932.8830 
924.4176 
932.8674 
93 1.9763 
919.3810 
913.0100 
91 5.4525 
922.1757 
925.4830 
921.8189 
926.5 190 
928.6591 
923.7585 
929.8267 
927.7937 
924.4623 
923.4435 
930.4602 
931.2756 
929.4965 
925.5179 
944.4957 
923.0975 
940.541 1 

Pop. 5% 
917.3339 
906.7489 
906.3533 
909.683 1 
915.4174 
907.1235 
914.7785 
914.3923 
900.8725 
884.2650 
893.9216 
895.9507 
908.1972 
903.5457 
909.3866 
91 1.5131 
906.2425 
912.7308 
910.2714 
906.9575 
906.1350 
913.3984 
914.0682 
91 1.2659 
906.0773 
918.1580 
893.1856 
919.8094 

Pop. 95% 
949.4125 
934.4670 
934.3015 
937.3632 
943.2146 
934.85 16 
942.8430 
942.2383 
929.1304 
919.2875 
923.8334 
929.0564 
935.9221 
93 1.6939 
937.0515 
939.1833 
934.0603 
940.3817 
938.0919 
934.7707 
933.8689 
94 1.0363 
941.7622 
939.3945 
934.7999 
951.3470 
929.1301 
949.245 1 

RESULTS OF FITTING THE GAUSSIAN TREND SURFACE TO THE CCA HEADS 
Nonlinear Regression 

[Variables] 
x = col(1) 
y = col(2) 
z = col(3) 
[Parameters] 
xO = xatymax(x,z) "Auto {(previous: 497048)l 
yO = xatymax(y,z) "Auto {(previous: 3.71273e+006)) 
a = max(z) "Auto {(previous: 1024.17)) 
b = fwhm(x,z)/2.2 "Auto ({previous: 4.37843e+006)) 
c = fwhm(y,z)/2.2 "Auto ({previous: 287105)) 
[Equation] 
f=a*exp(-.5*( ((x-xO)/b)"2 + ((y-yO)/c)"2 )) 
fit f to  z 
[Constraints] 
[Options] 
tolerance=0.000100 
stepsize=IOO 
iterations=lOO 



R =  0.82414590 Rsqr = 0.67921646 Adj Rsqr = 0.63497045 

Standard Error of Estimate = 5.9760 

Coefficient Std. Error t P 
x0 497048.4153 143182271.7998 0.0035 0.9973 
yo 3712731.9513 505763.5357 7.3408 <0.0001 
a 1024.1661 619.7038 1.6527 0.1092 
b 4378431.6009 2306530015.0373 0.0019 0.9985 
c 287104.5604 552804.8242 0.5194 0.6075 

Analysis of Variance: 
DP SS MS P P 

Regression 4 2192.8705 548.2176 15.3509 <0.0001 
Residual 29 1035.6592 35.7124 
Total 33 3228.5297 97.8342 

PRESS = 2205.3919 

Durbin-Watson Statistic = 1.6163 

Normality Test: Passed (P = 0.1576) 

Constant Variance Test: Passed (P = 0.7521) 

Power of performed test with alpha = 0.0500: 1.0000 

Remession Diamostics: 
Residual Std. Res. Stud. Res. Stud. Del. Res. 
-1.4974 -0.2506 -0.3223 -0.3172 
-6.0318 -1.0093 -1.0359 -1.0372 
-3.1941 -0.5345 -0.5569 -0.5502 
-6.2204 -1.0409 -1.0681 -1.0708 
6.9451 1.1622 1.1979 1.2073 
-0.9199 -0.1539 -0.1577 -0.1550 
2.3272 0.3894 0.3989 0.3930 
-6.5582 -1.0974 -1.1238 -1.1291 
-6.5746 -1.1002 -1.1266 -1.1320 
-6.3858 -1.0686 -1.0964 -1.1004 
7.1716 1.2001 1.2530 1.2660 
4.6385 0.7762 0.7999 0.7948 
0.6872 0.1150 0.1225 0.1204 
4.3479 0.7276 1.0166 1.0172 
12.7136 2.1274 3.4111 4.3316 
-6.3002 -1.0543 -1.0824 -1.0858 
-6.3362 -1,0603 -1.0885 -1.0921 
0.3106 0.0520 0.0544 0.0535 
-3.6674 -0.6137 -0.6287 -0.6220 
-6.6657 -1.1154 -1.1461 -1.1525 
-5.3131 -0.8891 -0.9159 -0.9133 
7.7098 1.2901 1.3231 1.3412 
3.9284 0.6574 0.6815 0.6751 
-0.3897 -0.0652 -0.0671 -0.0660 
-6.9526 -1.1634 -1.1956 -1.2048 
8.3982 1.4053 1.4422 1.4708 
7.4460 1.2460 1.2798 1.2946 



Influence Diagnostics: 
Row Cook'sDist Leverage 
1 0.0136 0.3954 -0.2566 
2 0.01 14 0.0506 -0.2394 
3 0.0053 0.0789 -0.1610 
4 0.0121 0.0503 -0.2465 
5 0.0179 0.0588 0.3018 
6 0.0002 0.0467 -0.0343 
7 0.0016 0.0469 0.0872 
8 0.0123 0.0463 -0.2488 
9 0.0123 0.0463 -0.2494 
10 0.0127 0.0502 -0.2529 
I I 0.0283 0.0827 0.3801 
12 0.0080 0.0585 0.1981 
13 0.0004 0.1 192 0.0443 
14 0.1968 0.4878 0.9926 
15 3.6557 0.61 10 5.4290 
16 0.0127 0.0514 -0.2527 
17 0.0128 0.051 1 -0.2534 
18 0.0001 0.0875 0.0166 
19 0.0039 0.0471 -0.1384 
20 0.0146 0.0528 -0.2720 
2 1 0.0103 0.0577 -0.2260 
22 0.0181 0.0492 0.3052 
23 0.0070 0.0697 0.1848 
24 0.0001 0.0560 -0.0161 
25 0.0160 0.0530 -0.2851 
26 0.0221 0.0505 0.3391 
27 0.0180 0.0521 0.3035 
28 0.0103 0.0496 0.2272 
29 0.0096 0.1618 0.2162 
30 0.0691 0.4030 -0.5827 
3 1 0.0028 0.4438 -0.1 171 
32 0.1364 0.5158 -0.8205 
33 0.0000 0.1425 0.0082 
34 0.1829 0.3758 0.9653 

95% Confidence: 
Row Predicted Regr. 5% 
1 933.4974 925.81 15 
2 917.1318 914.3834 
3 918.3941 914.961 1 
4 920.5204 917.7785 
5 927.7549 924.7912 
6 922.5199 919.8788 
7 922.4728 919.8265 
8 92 1.3582 918.7277 
9 921,3746 918.7445 

Regr. 95% 
941.1833 
919.8802 
921.8270 
923.2622 
930.7185 
925.1609 
925.1 190 
923.9888 
924.0047 

Pop. 5% 
919.0593 
904.6043 
905.6988 
907.9943 
915.1785 
910.0155 
909.9673 
908.8561 
908.8726 

Pop. 95% 
947.9354 
929.6592 
93 1.0893 
933.0464 
940.33 I3 
935.0242 
934.9782 
933.8604 
933.8766 



RESULTS OF FITTING THE GAUSSIAN TREND SURFACE TO THE 2000 HEADS 

Nonlinear Regression 

[Variables] 
x = col(l) 
y = col(2) 
z = col(3) 
[Parameters] 
xO = xatymax(x,z) "Auto {{previous: 61 1012)) 
yO = xatymax(y,z) "Auto {{previous: 3.78089et006)) 
a = max(z) "Auto {{previous: 1134.61)) 
b = fwhm(x,z)/2.2 "Auto {{previous: 73559.4)) 
c = fwhm(y,z)/2.2 "Auto {{previous: 313474)) 

f i t f toz 
[Constraints] 
[Options] 
tolerance=0.000100 
stepsize=IOO 
iterations=100 

R = 0.84940930 Rsqr = 0.72 149616 Adj Rsqr = 0.68668318 

Standard Error of Estimate = 5.5471 

Coefficient Std. Error ^ t P 
x0 61 101 1.8967 3480.3846 412.7386 <O 0001 



Analysis of Variance: 
DF SS MS F P 

Regression 4 2550.83 16 637.7079 20.7249 <0.0001 
Residual 32 984.6434 30.7701 
Total 36 3535.4750 98.2076 

PRESS = 22345.6338 

Durbin-Watson Statistic = 1.9526 

Normality Test: Passed (P = 0.2217) 

Constant Variance Test: Passed (P = 0.7532) 

Power of performed test with alpha = 0.0500: 1.0000 

Regression Diagnostics: 
Row Predicted 
1 932.6014 
2 923.1 180 
3 933.2947 
4 927.0594 
5 926.6641 
6 926.8633 
7 925.0796 
8 920.9577 
9 930.037 1 
10 933.3632 
11 913.0971 
12 900.7080 
13 920.7787 
14 912.2902 
15 924.5063 
16 925.9052 
17 917.3946 
18 929.8066 
19 924.2918 
20 918.4636 
21 929.9850 
22 931.7313 
23 929.3286 
24 928.5840 
25 927.7147 
26 928.3424 
27 929.71 11 
28 921.9985 
29 944.4095 

Residual Std. Res. Stud. Res. Stud. Del. Res. 
0.5934 0.1070 0.2710 0.2670 



Influence Diagnostics: 
Row Cook'sDist Leverage DPPlTS 
1 0.0796 0.8442 0.6215 
2 0.0531 0.1399 -0.5204 
3 0.0727 0.1698 0.6106 
4 0.0308 0.1222 -0.3932 
5 0.0003 0.1238 0.0377 
6 0.0001 0.1289 -0.0176 
7 0.0684 0.1277 -0.5979 
8 0.0535 0.1866 -0.5 186 
9 0.0767 0.1967 0.6250 
10 0.0013 0.1903 0.0803 
11 0.0057 0.4540 0.1664 
12 -3.6351 1.5771 (+in0 
13 0.0436 0.1656 -0.4676 
14 0.0375 0.3861 0.4279 
15 0.0230 0.1430 -0.3377 
16 0.0401 0.1286 -0.4502 
17 0.0102 0.2286 -0.2230 
18 0.0661 0.1375 0.5850 
19 0.0572 0.1299 -0.5431 
20 0.0247 0.2179 -0.3484 
2 1 0.0320 0.13 16 0.4003 
22 0.0160 0.1501 0.2804 
23 0.0497 0.1276 0.5042 
24 0.0175 0.1244 0.2942 
25 0.0005 0.1224 -0.0503 
26 0.0072 0.1236 0.1869 
27 0.0192 0.2078 0.3069 
28 0.0022 0.2262 -0.1023 
29 -138.0564 1.0236 (+in0 
30 0.0650 0.8657 0.5614 
31 0.1965 0.4488 -0.9945 
32 0.0353 0.1376 0.4208 
33 0.0778 0.1381 0.6384 
34 0.0474 0.1319 0.4911 
35 0.0513 0.1303 -0.5122 
36 0.0545 0.1345 -0.5286 
37 0.0312 0.1358 -0.3950 

95% Confidence: 
Row Predicted 
I 932.6014 
2 923.1 180 
3 933.2947 
4 927.0594 
5 926.6641 
6 926.8633 
7 925.0796 
8 929.9577 
9 ho.0371' 

Regr. 5% 
922.2201 
918.8917 
928.6391 
923.1093 
922.6887 
922.8069 
92 1.0422 

Regr. 95% 
942.9827 
927.3444 
937.9502 
93 1.0095 
930.6394 
930.9196 
929.1 170 
925.8381 
935.0482 

pop. 5% 
917.2573 
91 1.0544 
921.0741 
915.0898 
914.6861 
914.8582 
913.0809 
908.6496 
917.6767 

Pop. 95% 
947.9454 
935.1816 
945.5152 
939.0290 
938.6420 
938.8683 
937.0783 
933.2657 
942.3975 
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Appendix 3 

/ *  
Sean A.  McKenna 
Geohydrology Department 
Sandia National Laboratories 
Albuquerque, NM 87185-0735 

June 2002 

ph: 505 844-2450 
em: samcken8sandia.gov 

Code to read in a single GeoEAS Formatted output file from kt3d 
where the 

first column is a kriged residual field and the second column is the 
kriging variance. This file then adds a trend surface to the 

residuals 
and writes a new file of the trend+residuals and the kriging 

variance in 
GeoEAS format. 

static char string[256]; 

/ *  This routine reads in a line of data from the given 
inout stream. It however returns only lines that do 
not start with an ! this symbol is used to denote a 
comment line. The maximum line length is 256 characters.*/ 

string[Ol = '\0'; 
do 
fgets (string, 256, fp); 
while ((stringIO1 == I ! ' )  && !feof (fp)); 

return (string); 
1 

main ( )  

{ 
FILE *streaml,*stream2; 
char string[256] ,title[80] ,value_title[80] ,file1[801 ,file2 t801 ; 
int i,j,nx,ny,data-col; 
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double resid,krig~var.currx,curry,yO.xO,coeff~a,coeff~b,coeff~c; 
double delx,dely.o~x,o_y,trend,first,second; 

/ *  set constants * /  
nx = 447; 
ny = 613; 
delx = 50.0; 
dely = 50.0; 
0-x = 601700.0; 
o y  = 3566500.0; 

/ *  open input and output files * /  
printf ("Enter the name of the GeoEAS formatted residual file 

\n") ; 
gets (filel) ; 
streaml = fopen(file1,"r"); 

printf ("Enter the name of the GeoEAS formatted output file \n"); 
gets (file2) ; 
stream2 = fopen(file2,"w"); 

/ *  Read and Write file header information * /  
sprintf (string, "Bs" , reacline (streaml)); 

sscanf (string, "Bs", &title); 
sprintf (string, "Bs", read-line (streaml) ) ;  
sscanf (string, "Bd", &data-col); 
sprintf (string, "Bs", read-line (streaml) ) ;  

sscanf (string, "Bs", &value-title); 
sprintf (string, "Bs", read-line (streaml) ) ;  

sscanf (string. "Bs", &value-title); 

fprintf (stream2,"Starting Head Field\n"); 
fprintf (streamZ,"Z\n"); 
fprintf (stream2,"Trend plus residual\n"); 
fprintf (stream2,"Kriging Variance\n"); 

/ *  read in residuals, calculate and add trend surface, write 
output * /  

for ( j = l ;  j<=ny; j++) { 
curry = (o_y+(float)j*dely)-(dely/2.O); 
for (i=l;i<=nx;i++) { 
currx = (0-x+(float)i*delx)-(delx/2.0); 

fscanf (streaml,"$lf %lf",&resid, &krig-var); 
if (resid < 1.OE-09) resid = 0.0; 
first = ((currx-xO)/coeff-b)*((currx-xO)/coeff-b); 
second = ((curry-yO)/coeff-c)*((curry-yO)/coeff-c); 

trend = coeff-a*exp(-0.5*(first+second)); 
if ((i==l)&&(j<=lO) ) 



printf ("j = %3d, trend = %7.2£ X = %9.lf 
Y = %9.1f\nn, 

j, trend,currx,curry); 
fprintf (stream2,"%7.21£ %7.31f\n", 

(trend+resid),krig-var): 
1 

1 

fclose (streaml); 
fclose (stream2); 

* 
a 1  ' 
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Appendix 4: xform source code 

Description: 
The program xform was written to log transform a MODFLOW formatted array. It has 
the ability to transform between formats or to perfom simple log-I0 transforms on the 
array, moving the array in and out of log-space. This last function is what was used in 
the model process. 

input: 
A MODFLOW formatted array (typically hydraulic conductivity or transmissivity) 

Output: 
A MODFLOW formatted array after transform 

Platform: 
1.9 GHz AMD Athlon, Red Hat Linux 7.2 

Program Execution: 
xform <filel> [mod] <file2> [mod] [ log ( none 1 real ] 

Source Files: 
xf0rm.c (Attached) . inc1udes.h (See addmods) . boo1.h (See addmods) . boo1.c (See addmods) . G1obals.h (See addmods) . Grid-Uti1.h (See addmods) . Grid-Uti1.c (See addmods) . Check-F1ags.h (See addmods) . Read-Fi1es.h (See addmods) . Write-Fi1es.h (See addmods) . Read-Fi1es.c (See addmods) 
Write-Fi1es.c (See addmods) 

Program Listings: xf0rm.c 

void printErr(void) 
1 

printf("P1ease enter: xform <infile> <format> <outfile> <format> 
<xform> [--head nl\n"); 

exit (-1) ; INFORMATION 



int main (int argc, char *argv[l) 
( 
int i,nHead; 
double data[274011] ; 
char inType, outType, XForm; 
char *inFile, *outFile; 
nx = 447; 
ny = 613; 
nz = 1; 
delx = 50.0; 
dely = 50.0; 
delz = 7.75; 
x0 = 601700.0; 
yO = 3566500.0; 
20 = 900.0; 
if (argc < 6) printErr0; 
for (i = 0; i < 274011; i++) data[i] = 0; 
if (strcmp(argv[21. "gs")==O) inType = 'G'; 
else if (strcmp(argv[ZI, "mod") ==O) inType = 'M' ; 
else if (strcmp(argv[21,"srf")==O) inType = 'S'; 
else if (strcmp(argv[21,"ai")==O) inType = ,A,; 
else if (strcmp(argv[21. "xyzdw)==O) inType = ' L o  ; 
else printErr(); 
if (strcmp(argv[4l,"mod")==O) outType = 'M'; 
else if (strcmp(argv[41,~rff")==0) outType = IS'; 
else if (strcmp(argv[4l,"ai")==O) outType = 'A'; 
else if (strcmp(argv[4l,"gs')==O) outType = 'G'; 
else printErr0; 
if (strcmp(argv[5l,"log")==O) XForm = 'L'; 
else if (strcmp(argv[51,"real*)==O) XForm = 'P'; 
else if (strcmp(argv[5l,"pow")==O) XForm = ' P o ;  
else if (strcmp(argv[5]. "n0neV)==O) XForm= 'N'; 
else printErr0; 
inFile = argv[lI; 
outFile = argvL31 ; 
if (inFile == NULL I (  outFile == NULL) printErr0; 
if (inType == 'GO I  I  in~ype == ' A '  1 1  outType == 'G') { 
if (strcmp(argv[61,"--head") != 0) printErr0; 
if (argc < 8) printErr0; 
nHead = atoi(argv[71); 

J 

switch (inType) { 
case 'G' : 
Read-GS (inFile, data, 1,1, nHead) ; 
break; 

case 'M' : 
Read-MOD(inFile,data); 
break; 

case 'S': 
Read-SRF(inFile,data); 
break; 

case 'A' : 
Read-AI(inFile,data,l,l,nHead); 
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Read-XYZD(inFile,data); 
break ; 

1 
switch (XForm) { 
case ' L' : 

for (i = 0: i < 274011; i++) data[il = loglO(data[il); 
break; 

case ' P ' :  
for (i = 0; i < 274011: i++) data[il = pow(lO,data[i]); 
break: 

switch (outType) { 
case 'M' : 
Write-MOD(outFile,data): 
break; 

case 'S': 
Write-SRF(outFile,data); 
break; 

case 'G' : 
Write-GS(outFile,data,nHead) ; 
break; 

case 'A' : 
Write-AI(outFile,data,l); 
break; 

1 
1 
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Appendix 5: Example Shell Script for Forward Runs 

This is the bOlr03.sh shell used to accomplish the forward runs using base T field 
number 3. 

echo STARTING TO PROCESS 
time mf2k b01r03-1980 
mv -f bOlr03.lst b01r03-1980.lst 
time dtrkcdb control.inp b01r03-1980.bud b01r03-1980.trk dtrkl980.dbg 
time cat *1980.trk I awk '(printf("%8.2f\t%8.2f\t%8.2E years\t%E.ZE 

m\n".(601700+(50.0*$2)),(3597100-(50.0*$3)),$1,$6) > 
part-b01r03-1980.lbl 

time get-heads heads-b01r03-1980.out measured-head-l980.xyz 
calc-heads-bOlr03.1980 

time mod2srf heads-bOlr03_198O.out heads-b01r03-198O.srf 
time mf2k b01r03-1990 
mv -f bOlr03.lst b01r03-1990.lst 
time dtrkcdb control.inp b01r03-1990.bud b01r03-1990.trk dtrkl990.dbg 
time cat *1990.trk I awk '(printf("%8.2f\t%8.2f\t%8.2E years\t%E.ZE 

m\n",(601700+(50.0*$2)).(3597100-(50.0*$3)),$1,$6))' > 
part-b01r03-1990.lbl 

time get-heads heads-b01r03-1990.out measured-head-l990.xyz 
cab-heads-bOlr03.1990 

time mod2srf heads-b01r03-1990.out heads-bOlr03_1990.srf 
time mf2k b01r03-2000 
mv -f bOlr03.lst b01r03-2000.lst 
time dtrkcdb control.inp b01r03-2000.bud b01r03-2000.trk dtrk2000.dbg 
time cat *2000.trk ( awk '(printf("%8.2f\t%8.2f\t88.2E years\t%8.2E 

m\n",(601700+(50.0*$2)),(3597100-(50.0*$3,$1,$6)' > 
part~b01r03~200O.lbl 

time get-heads heads~b01r03~2000.out measured-head-2000.xyz 
calc-heads-bOlr03.2000 

time mod2srf heads~b01r03~2000.out heads-b01r03-2000.srf 
time mf2k b01r03-CCA 
mv -f bOlr03.lst bOlr03-CCA.lst 
time dtrkcdb control.inp b01r03-CCA.bud b01r03-CCA.trk dtrkCCA.dbg 
time cat *CCA.trk 1 awk '(printf("%8.2f\t%8.2f\t%8.2E years\t%8.2E 

m\n",(601700+(50.0'$2)),(3597100-(50.0*$3)),$1,$6))' > 
part-bOlrO3-CCA.lb1 

time get-heads heads-b01r03-CCA.out measured-hea&CCA.xyz 
calc-heads-b01r03.CCA 

time mod2srf heads-b01r03-CCA.out heads-bOlr03-CCA.srf 
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Appendix 6: Source code for get-heads program 

The get-heads program is used to extract the necessary head information from 
MODFLOW output for comparison with measured heads. 

Input Files: . Tupdate.hed . headsmeasured 

Output Files: . heads.out 

Platform: 
1.9 GHz AMD Athlon, Red Hat Linux 7.2 

Program Execution: 
get-heads Tupdate.hed heads.measured headsout 

Source Files: . Grab-Heads.c (Attached) . inc1udes.h (See addmods) . boo1.h (See addmods) . boo1.c (See addmods) . G1obals.h (See addmods) 
Grid-Uti1.h (See addmods) . Grid-Uti1.c (See addmods) . Read-Fi1es.h (See addmods) . Write-Fi1es.h (See addmods) . Read-Fi1es.c (See addmods) . Write-Fi1es.c (See addmods) 

Program Listing: Grab-Heads.c 
#include <stdio.h> 
#include <stdlib.h> 
#include "boo1.h" 
#include "G1obals.h" 
#include "GriLUti1.h" 
#include "Read-Files.hn 
#include "Check-Flags. h" 

int main(int argc, char *argv[l) 

char *gridFile,*headFile,*outFile; 
FILE *£OUT: 

double headsl501 [4l,data[2740111,newHeads[ 
int i,llnes; 
nx = 447; 



ny = 613; 
nz = 1; 
delx = 50.0; 
dely = 50.0; 
delz = 7.75; 
x0 = 601700.0; 
yo = 3566500.0; 
z0 = 900.0; 
gridFile = argv[ll ; 
headFile = argv121; 
outFile = argv[31; 
if (gridFile == NULL 1 1  headFile == NULL I I outFile == NULL) { 
printf("P1ease use the format: getHeads <mf-out-file> 

<head-loc-file> <out-file>\nV); 
return; 

) 
Read-MOD(gridFile,data): 
lines = Read-XYZD-Array(headFile,heads); 
£OUT = fopen(outFile,"w"); 
fprintf(fOUT,"#X\t\tY\t\tZ\t\tMeasured\tCalculated\n"); 
for (i = 0; i < lines; i++) { 
newHeads[il = GetLData(headsli1 lO1,headslil 111,headslil [2l,data); 



Appendix 7: Source code for the get-data program 

Description: 
get-data was written to extract data values fiom a MODFLOW readable array by x y z 
location data. The data it returns is in generic format, where the program get-heads is 
specifically looking for head data. 

Input Piles: . Pilot-points.coord (attached) 
Modflow array 

Output Files: 
Pilot-points.dat (attached) 

Platform: 
1.9 GHz AMD Athlon, Red Hat Linux 7.2 

Program Execution: 
get-data pilot-points.coord <filel> pilot-points.dat 

Source Piles: 
Grab-XYD.c (Attached) 
inc1udes.h (See addrnods) 
boo1.h (See addrnods) 
boo1.c (See addmods) 
Globa1s.h (See addmods) 
Check-F1ags.h (See addmods) 
Check-F1ags.c (Attached) 
Grid Uti1.h (See addmods) 
CiridVtil.c (See addmods) 
~ead1~i les .h  (See addmods) 
Write-Fi1es.h (See addmods) 
Read Fi1es.c (See addmods) 
~r i te r~ i1es .c  (See addmods) 

Input File: Pilot-points.coord 
612658 3567490 1 1 P P O O ~  
610600 3568940 1 1 ~ ~ 0 0 2  
612300 3569660 1 1 ~ ~ 0 0 3  
609977 3572370 1 1 ~ ~ 0 0 4  
606576 3578170 1 1 ~ ~ 0 0 5  
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Output File: pilot-points.dat 
ppOOl 612658 3567490 
pp002 610600 3568940 
pp003 612300 3569660 
pp004 609977 3572370 
pp005 606576 3578170 





pp063 609681 
pp064 614377 
pp065 613641 
pp066 612395 
pp067 610770 
pp068 615574 
pp069 614469 
pp070 611620 
pp071 613064 
pp072 614068 
pp073 613667 
pp074 609056 
pp075 615449 
pp076 613285 
pp077 607600 
pp078 610610 
pp079 612647 
pp080 614877 
pp081 613713 
pp082 614167 
pp083 613081 
pp084 611600 
pp085 614690 
pp086 615676 
pp087 612911 
pp088 617020 
pp089 610000 
pp090 614154 
pp091 608460 
pp092 615752 
pp093 611427 
pp094 613425 
pp095 618741 
pp096 615660 
pp097 613640 
pp098 611050 
pp099 609100 
ppl00 620720 
pplOl 619020 
pp102 613700 
pp103 616143 
pp104 610832 
pp105 618620 
pp106 618693 
pp107 621050 
pp108 617090 
pp109 615620 
ppll0 613800 
pplll 617000 
pp112 615140 
pp113 612000 
pp114 613700 
pp115 615380 



Program Listing: Grab-XYD..c 
#include cstdio.h> 
#include cstdlib.h> 
#include "boo1.h" 
#include "G1obals.h" 
#include "Grid-Uti1.h" 
#include "Read-Fi1es.h" 
#include "Check-F1ags.h" 

int main(int argc, char *argv[l) 
( 
char *coordFile,*modFile,*outFile; 
FILE *£OUT: 
double info[5001[41,data[2740111,new1nfo[5001; 
int i,lines; 
Check-Flags(argc,argv); 
coordFile = argv[ll : 
modFile = argv[21; 
outFile = argvr31; 
if (coordFile == NULL I I modFile == NULL I I outFile == NULL) ( 
printf("P1ease use the format: get-data <coord-file> <mod-file> 

<out-file>\n"); 
return; 

Read-MOD(modFile,data); 
lines = Read-XYZD-Array(coordFile,info); 
fOUT = fopen(outFile,"w"); 
for (i = 0; i < lines; i++) { 
newInfoLi1 = Get-Data(info[il [OI,info[il [lI,info[il L21,data); 

Program Listing: Check-F1ags.c 
#include <stdio.h> 
#include cstdlib.h> 
#include "boo1.h" 
#include "Globa1s.h" 

int Check-For-Flag(char *sz-arg, int argc, char *argv[l) 
{ 
int arg-num; 
for (arg-num = 1: arg-num < argc; arg-num++) 
if (strcmp(argv[arg-num1,sz-arg) == 0) return arg-num; 

return false; 
> 
char *szGet-Flag-Arg(int flag-num, int argc, char *argv[l) 
{ 
if (flag-num > argc) return NULL; 
return argv[flag-num+ll; 

1 

int iGet-Flag-Arg(int flag-num, int argc, char *argv[l) 



if (flag-num > argc) return -9999999; 
return atoi(argv[flag-num+lI); 

I 

double £Get-Flag-Arg(int flag-num, int argc, char *argvIl) 
( 
if (flag-num > argc) return -9999999.9999; 
return atof(argv[flag-num+ll); 

void Check-Flags(int argc, char *argv[l) 
( 
int flag; 

if ( (flag = check- or-  lag("--pcg" ,argc,argv) ) !=  0 ) { 
bPCG = true; 
bAMG = false; 

1 else ( 
bPCG = false; 

1 

if ( (flag = Check-For-Flag("--amg",argc,arqv)) !=  0 ) { 
bAMG = true; 
bPCG = false; 

1 else { 
bAMG = false; 

> 
bUserGrid = true; 
if ( (flag = Check-For-Flag("--nx",argc,argv)) != 0 ) { 
nx = iGet-FlagArg(flag,argc,argv); 

1 else I 
nx = 447; 
bUserGrid = false; 

1 

if ( (flag = Check-For-Flag("--nym,argc,argv)) !=  0 ) { 
ny = iGet-Flag-Arg(flag,argc,ar'gv); 

I else ( 
ny = 613; 
bUserGrid = false; 

I 

if ( (flag = Check-For-Flag("--nz",argc,argv)) != 0 ) { 
nz = iGet-Flag-Arg(flag,argc,argv); 

1 else { 

nz = 1; 
bUserGrid = false; 

1 

if ( (flag = Check-For-Flag("-delx",argc,argv)) !=  0 ) ( 
delx = £Get-Flag-Arg(flag,argc,argv); 

1 else ( 
delx = 50.0; 
bUserGrid = false; 

1 



if ( (flag = Check-For-Flag("--dely",argc,argv)) != 0 ) { 

dely = fGet-Flag-Arg(flag,argc,argv); 
1 else 
dely = 50.0; 
bUserGrid = false: 

1 

if ( (flag = Check-For-Flag("--de1zn,argc,argv)) !=  0 ) ( 
delz = £Get-Flag-Arg(flag,argc,argv): 
else ( 
delz = 7.75; 
bUserGrid = false; 

1 

if ( (flag = Check-For-Flag("--xO" , argc, argv) ) !=  0 ) ( 
xO = £Get-Flagprg(flag,argc,argv); 

1 else ( 
x0 = 601700.0; 
bUserGrid = false; 

) 

if ( (flag = Check-For-Flag(u--yO",argc,argv)) !=  0 ) ( 
yo = £Get-Flag-Arg(flag,argc,argv); 

) else ( 
yo = 3566500.0; 
bUserGrid = false; 

) 

if ( (flag = Check-For-Flag("--zO",argc,argv)) !=  0 ) { 
z0 = £Get-Flag-Arg(flag,argc,argv); 

) else ( 
z0 = 800.0; 
bUserGrid = false; 

1 

if ( (flag = Check-For-Flag("--problem-name",argc,argv != 0 ) ( 
szproblem = szGet-Flag-Arg(flag,argc,argv); 
if (szproblem !=  NULL) bAskProblem = false; 
else f 
bAskProblern = true; 
szproblern = calloc(256,sizeof(char)); 
sprintf(szProblem,"problem"); 

1 
) else f 
bAskProblem = true: 
szproblem = calloc(256,sizeof(char)); 
sprintf(szProblem,'problem"): 

1 

if ( (flag = Check-For-Flag("--ibound-file",argc,argv != 0 ) ( 
szIBound = szGet-Flag-Arg(flag,argc,argv); 
if (szIBound !=  NULL) bUserIBound = true: 
else ( 
buserIBound = false; 
szIBound = calloc('256,sizeof(char)); 
sprintf(szIBound,"%s.ibd",szProblem); 



I 
I else ( 
bUserIBound = false; 
szIBound = calloc(256,sizeof(char)); 
sprintf(szIBound,"%s.ibdsprintfo:sprintfo:,szProblem); 

I 

if ( (flag = Check-For-Flag("--initial-heads",argc,argv != 0 ) { 
szIHeads = szGet-Flag-Arg(flag,argc,argv); 
if (szIHeads != NULL) bUserIHeads = true; 
else ( 
bUserIHeads = false; 
szIHeads = calloc(256,sizeof(char)); 
sprintf(szIHeads,"%s.ihead".szProblern); 

I 
} else { 
bUserIHeads = false; 
szIHeads = calloc(256,sizeof(char)); 
sprintf(szIHeads,"%s.ihead",szProblem); 

I 

if ( (flag = Check-For-Flag("--trans-file",argc,argv) !=  0 ) ( 
szTrans = szGet-Flag-Arg(flag,argc,argv); 
if (szTrans != NULL) bUserTrans = true; 
else 
bUserTrans = false; 
szTrans = calloc(256,sizeof(char)); 
sprintf(szTrans,"%s.trans",szProblem); 

I 
else ( 
bUserTrans = false; 
szTrans = calloc(256,sizeof(char)); 
sprintf(szTrans,"%s.trans",szProblem); 

if ( (flag = CheckFor-Flag("--aq-top",argc,argv)) ! =  0 ) { 

szAQTOp = szGet-Flag-Arg(flag,argc,argv); 
if (szIHeads == NULL) { 
szAQTOP = calloc(256,sizeof(char)); 
sprintf(szAQTop,"%s.top",szProblem); 

I 
I else ( 
szAQTop = calloc(256,sizeof(char)); 
sprintf(szAQTop,"%s.top",szProblem); 

1 

if ( (flag = Check-For-Flag("--aq-botV,argc,argv)) !=  0 ) ( 
szAQBot = szGet-Flag-Arg(flag,argc,argv); 
if (szAQBot == NULL) ( 
szAQBot = calloc(256,sizeof(char)); 
sprintf(szAQBot,"%s.bot",szProblern); 

I 



if ( (flag = Check-For-Flag("--flow-file",argc,argv)) !=  0 ) ( 
szFlow = szGet-Flag-Arg(flag,argc,argv); 
if (szFlow == NULL) ( 

szFlow = calloc(256,sizeof(char)); 
sprintf(szFlow,"/h/dbhart/wipp/data/flow.ai"); 

1 
) else ( 
szFlow = calloc(256,sizeof(char)); 
sprintf(szFlow,~/h/dbhart/wipp/data/flow.ai~); 

I 

if ( (flag = Check-For-Flag("--budget-file",argc,argv)) !=  0 ) ( 
szBudget = =Get-Flag-Arg(flag,argc,argv); 
if (szBudget == NULL) ( 
szBudget = calloc(256,sizeof(char)); 
sprintf(szBudget,'%s.bud",szProblem); 

I 
) else ( 
'%Budget = calloc(256,sizeof(char)); 
sprintf(szBudget,"%s.bud"); 

if ( (flag = Check-For-Flag("--heads-out",argc,argv)) != 0 ) ( 
szOHeads = szGet-Flag_Arg(flag,argc,argv); 
if (szOHeads == NULL) { 
szOHeads = calloc(256,sizeof(char)); 
sprintf(szOHeads,"%s-out.hed",szProblem); 

I 
I else ( 
szOHeads = calloc(256,sizeof(char) ) ;  
sprintf(szOHeads,"%s-out.hed"); 

1 

if ( (flag = Check-For-Flag("--defaults",argc,argv)) !=  0 ) ( 
if (!bPCG && !bAMG) bAMG = true; 
bAskSolver = false; 
bAskProblem = false; 
bUserTrans = true; 
bUserIBound = true; 
bUserIHeads = true; 
bUserGrid = true; 

> 
1 



Appendix 8: ppk2fac program 

Description: 
The program ppk2fac is a standard utility that comes with PEST. It takes the grid data 
along with a variogram structure and a list of pilot points to produce a kriging table for 
other PEST utilities. As defined by the variogram and the pilot points, the algebraic 
formula determining the hydraulic conductivity (K) for every point in the model grid is 
developed. This table, stored in factor.inf; only needs to be calculated once for each 
combination of pilot point locations, variograms, and grid size. ppkZfac also generates a 
table of standard deviations, and the algebraic regularization equations describing the 
relationship between pilot points. 

The ppk2fac program is one of the utility codes tested as part of the software 
qualification of the PEST code. Therefore, the source code is not provided here for 
additional review. 

Input: . ppk2fac.in (attached) . pilot-pointsdat (See Pilot Points) . files.fig (attached) . settingdig (attached) 
culebra.spc (attached) . zones.inf (attached) . variogramstr (attached) 

Output: 
factor.inf (attached) . stdevhf (unused) 
regular.inf (attached) 

Data Sources: 
See Pilot Points. 

Platform: 
1.9 GHz AMD Athlon, Red Hat Linux 7.2 

Program Execution: 
ppk2fac < ppk2fac.h 

Znpur File: ppk2fac.in 

pilot-points.dat 
0 
zones. inf 

INF ATI 



culebra 
0 

3000 
1 
9 9 
culebra 
0 

3000 
I 

9 9 
factor.inf 
f 
stdev. in£ 
f 
regular.inf 

Input File: culebra.spc 
613 447 
601700 3597100 0.0 
447*50.0 
613*50.0 

Input File: files.& 
grid-specification-file=culebra.spc 
pilotqoints-file=points.dat 

Input File: settings.$g 
date=yyyy/mm/dd 
colrow=no 

Input File: variogram.sh 
STRUCTURE culebra 
NUGGET 8.OE-3 
TRANSFORM none 
NUMVARIOGRAM 2 
VARIOGRAM varl 3.33-2 
VARIOGRAM var2 6.73-2 

END STRUCTURE 

VARIOGRAM varl 
VARTYPE 1 
BEARING 0.0 
A 500 
ANISOTROPY 1.0 



END VARIOGRAM 

VARIOGRAM var2 
VARTYPE 2 
BEARING 0.0 
A 1500 
ANISOTROPY 1.0 

END VARIOGRAM 

Input File: zones.inf 
Please see attachment 

Output File: factor.inf 
Please see attachment 

Output File: regular.dat 
Please see attachment 



Appendix 9: fac2real program 

The ppk2fac program is one of the standard utility programs that comes with the PEST 
software package. The program fac2real is used to take the output of ppk2fac and 
transform it into a MODPLOW readable array. This uses both the factor.inf file output 
from ppk2fac and thepointxdat file generated by PEST to assign actual values to every 
point in the grid. This process is repeated each time the pilot points are updated. 

The ppk2fac program is one of the utility codes tested as part of the software 
qualification of the PEST code. Therefore, the source code is not provided here for 
additional review. 

Input Files . factor.inf (See ppk2fac) . points.dat (See Pilot Points) . lowerinf (Attached) . upperinf (Attached) . settings.fig (See ppk2fac) . files.fig (See ppk2fac) 

Output Files . residT.log.mod 

Data Sources: 
See Pilot Points. 

Platform: 
1.9 GHz AMD Athlon, Red Hat Linux 7.2 

Program Execution: 
fac2real < fac2real.h 

Input File: fac2real.in 

factor.inf 
f 
points.dat 
a 
lower. in£ 
f 
a 
upper. in£ 
f 



Input File: 1ower.inf 
Please see Attached 

Input File: upper.inf 
Please see Attached 

Output File: residT.log.mod 
Please see attached electronic files 



Appendix 10: Source Code for the addmods program 
Description: 
The addrnods program is a short C code written to add two MODFLOW formatted 
arrays together. It is used in the model process to add together the true and residual 
fields. The program addmods reads in two MODFLOW formatted arrays, adds them 
together, and outputs the final values to another MODFLOW readable array. The grid 
dimensioning variables relating to the culebra transmissivity field grid were hard-coded 
into the program. 

Input: 
Two MODFLOW-readable files. 

Ouput: 
A MODFLOW-readable array. 

Platform: 
1.9 GHz AMD Athlon, Red Hat Linux 7.2 

Program Execution: 
addmods inputfilel inputfile2 outputfile 

Source Piles: 
addm0ds.c (Attached) 
inc1udes.h (Attached) 
boo1.h (Attached) 
boo1.c (Attached) 
G1obals.h (Attached) 
Grid-Uti1.h (Attached) 
Grid-Uti1.c (Attached) 
Check-F1ags.h (Attached) 
Read-Fi1es.h (Attached) 
Write-Fi1es.h (Attached) 
Read Fi1es.c (Attached) 
writ; - Fi1es.c (Attached) 

Program Listing: addmods.c 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <math.h> 
#include "inc1udes.h" 

void printErr(void) 
( 

printf("P1ease enter: addmods <infilel> <infile2> <outfile>\n"); 
exit (-1) ; 
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int main (int argc, char *argv[] ) 
( 
int i,nHead; 
double data1[2740111, data2[274011]; 
char inType, outType, XForm; 
char *inFilel, *inFile2, 'outFile; 
nx = 447; 
ny = 613; 
nz = 1; 
delx = 50.0; 
dely = 50.0; 
delz = 7.75: 
x0 = 601700.0; 
yo = 3566500.0; 
z0 = 900.0; 
if (argc < 4) printErr0; 
for (i = 0; i < 274011; i++) datal[il = data2fi.l = 0; 
inFilel = argv[ll ; 
inFile2 = argv[21; 
outFile = argvL31; 
if (inFilel == NULL 1 )  inFile2 == NULL I / outFile == NULL) 

printErr ( ) ; 
~ead-MOD(inFile1,datal); 
Read-MOD(inFile2,data2); 
for (i = 0; i < 274011; i++) datal[i] += data2[il; 
Write-MOD(outFile.data1); 

1 

Program Listing: inc1udes.h 
#include "bool.hW 
#include "Globa1s.h" 
#include "Grid-Uti1.h" 
#include "Check-F1ags.h" 
#include "Read-Fi1es.h" 
#include "Write-Fi1es.h" 

Program Listing: boo1.h 
typedef unsigned short bool; 
const bool true, false; 

Program Listing: boo1.c 
#include "boo1.h" 
const bool true = 1; 
const bool false = 0; 



Program Listing: G1obals.h 
#define BOOL unsigned short 
int nx, ny, nz; / /  These are the gloabl variables for grid 
size 
double delx, dely, delz; / /  . .. grid spacing 
double xO, YO, 20; / /  ... grid origins capital 0, not 0. 

/ /  These are MF2K specific variables 
char *szProblem, *szIBound, *szTrans, *szIHeads, *szAQTop; 
char *szAQBot. *szFlow, *szBudget, *szOHeads; 
BOOL bPCG, bAMG; 
BOOL bAskSolver, bAskProblem, bUserTrans, bUserIBound; 
BOOL bUserIHeads, bUserGrid; 

Program Listing: Grid-Uti1.h 
int V2D(int x, int y); 
int V3D(int x, int y, int z); 
double Get-Data(doub1e x, double y, double z, double Data[]); 
void Put-Data(doub1e x, double y, double z ,  double d, double Data[]); 

Program Listing: Grid-Uti1.c 

#include "boo1.h" 
#include "Globa1s.h" 

int V2D(int x, int 
I 
return ( ( IY) * 

1 

int V3D(int x, int 
I 
return ( I (z) * 

1 

Y) 

n x )  + x  ) ;  

y, int z) 

(nx * ny) ) + ( ( (Y) * n x )  + x )  ) ;  

double Get-Data(doub1e x, double y, double z, double Data[]) 
( 
int xid, yid, zid; 
xid = ( x  - xO + (delx/2) )/delx; / /  calculate the nearest grid point 
yid = ly - y0 + (dely/2) )/dely; / /  the g_delD/2 allows for round-up 
zid = (z - 20 + (delz/2) )/delz; / /  for floats above .5, instead of 

down 
if (nz < 2) zid = 0; 
if (xid > nx I  I  yid > ny I I  zid > nz) return -99999999999.99999; 
if (xid < 0 I (  yid < 0 I  I  zid < 0) return -99999999999.99999; 
return Data[V3D(xid,yid,zid)I; 

1 

void Put-Data(doub1e x, double y, double 2 ,  double d, double Data[]) 
{ 
int xid, yid, zid; 
xid = (x - xO + (delx/Z))/delx; / /  calculate the nearest grid point 
yid = (y - yo + (dely/Z))/dely; / /  the g-delD/2 allows for round-up 
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zid = (z - z0 + (delz/Z))/delz; / /  for floats above .5, instead of 
down 
if (nz < 2) zid = 0; 
if (xid > nx I I yid > ny I I zid > nz) return; 
if (xid < 0 1 I yid < 0 ( I zid < 0) return; 
Data[V3D(xid8yid,zid)1 = d; 

1 

Program Listing: Check-F1ags.h 
int Check-For-Flag(char *sz-arg, int argc, char *argv[l); 
char *szGet-Flag-Arg(int flag-num, int argc, char *argv[]); 
int iGet-Flag-Arg(int flag-nun, int argc, char *argv(l); 
double £Get-Flag-Arg(int flag-nun, int argc, char *argv[]); 
void Check-Flags(int argc, char *argv[l); 

Program Listing: Read-Files. h 
bool Read-GS(char *sz-F-in, double data[], int ncol, int datacol, int 
nhead) ; 
bool Read-AI(char *sz-F-in, double data[], int ncol, int datacol, int 
nhead) ; 
bool Read-MOD(char *sz-F-in, double data[] ) ;  
bool Read-SRF(char *sz-F-in, double data[]); 
bool Read-XYZD(char *sz-F-in, double data[] ) ;  
int Read-XYZD-Array(char *sz-F-in, double dataL4l (1 ) ;  

Program Listing: Read-Fi1es.c 
#include <stdio.h> 
#include <stdlib.h> 
#include "Grid-Uti1.h" 
#include "boo1.h" 
#include "Globa1s.h" 
#define BUFFSIZE 512 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/ / / / / /  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/ / / / / /  
/ /  The array of data that is read in is mapped in such a way that the 
array 
/ /  matrix looks as below, with increasing z out of screen. 



//(O.O) 1 2 3 4 .  . x-2 x-1 x 
. . . . . . . . . . . . . . . . . . . . . . . . . .  
/ / 
/ / 
/ This is the array format after data extraction. The reason for 
this 
/ /  orientation is so that an cell can be indexed by (x,y,z), 
regardless of 
/ /  the order the data that was read in. Also, indexing starts with 0 

bool Read-GS(char *sz-F-in, double data[], int ncol, int datacol, int 
nhead) 
{ 
FILE '£IN, 'fOUT; 
int i, j. k,n; 
char buffer[2561; 
£IN = fopen(sz-F-in,"r"): 
if (£IN == NULL I I data == NULL) return false; / /  Error Reporting 

/ /  header deletion 
if (nhead > 0) for (n = 0; n < nhead ; n++) fgets(buffer, 

sizeof (buffer), fIN) ; 

/ /  data loading 
for (k = 0; k < nz; k++) { 
for (j = 0; j < ny; j++) 
for (i = 0; i < nx; i++) I 
for (n = 1; n <= ncol; n++) I 
fscanf(fIN, '8s" &buffer); 
if (n == datacol) data[V3D(i,j,k)l = atof(buffer); 1 ) ) )  

fclose (£IN) ; 
return true; 

1 

bool Read-AI(char *sz-F-in, double data[], int ncol, int datacol, int 
nhead) 

FILE *fIN, *£OUT; 
int i, j, k,n; 
char bufferL2561; 
£IN = fopen(sz-f-in,"r"); 
if (£IN == NULL I I data == NULL) return false; / /  Error Reporting 

/ /  header deletion 
if (nhead > 0) for (n = 0; n < nhead ; n++) fgets(buffer, 

sizeof(buffer), fIN); 

/ /  data loading 
for (k = 0; k < nz; k++) { 
for ( j  = ny-1; j >= 0; j--) { 
for (i = 0; i < nx; i++) { 
for (n = 1; n <= ncol; n++) I 
fscanf(fIN, "Bs", &buffer); 
if (n == datacol) data[V3D(i,j,k)l = atof(buffer); 1 ) ) )  
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return true; 
1 

bool Read-MOD(char *sz-F-in, double data[]) 
1 
FILE *£IN, *fOUT; 
int i,j,k,n; 
char buffer[2561; 
£IN = fopen(sz-F-in,"r"); 
if (fIN == NULL 1 1  data == NULL) return false; / /  Error Reporting 

/ /  data loading 
for (k = 0; k < nz; k++) ( 
for (j = ny-1; j >= 0; j--) { 
for (i = 0; i < nx; i++) { 
fscanf(fIN, "%sn, &buffer); 
data[V3D(i,j,k)l = atof(buffer); ) ) )  

fclose(f1N) ; 
return true; 

1 

bool ~ead-SRF(char *szF-in, double data[]) 
{ 
FILE *£IN, *£OUT; 
int i,j,k.n; 
char buffer[256] ; 
FIN = fopen(s2-F-in,"r"); 
if (£IN == NULL I I data == NULL) return false; / /  Error Reporting 

/ /  read in x/y/z information 
fgets(buffer, sizeof(buffer), FIN); //erase top line header 
fscanf(f1N. "8s". &buffer); 
nx = atoi(buffer); 
fscanf(fIN, "%sn, &buffer); 
ny = atoi(buffer); 
fscanf(fIN, "%s", &buffer); 
nz = atoi(buffer); 
fscanf(f1N. "%s", &buffer); 
delx = atof(buffer) / nx; 
fscanf(fIN, "%s", &buffer); 
dely = atof(buffer) / ny: 
fscanf(fIN, "%sup &buffer); 
delz = atof(buffer) / nz; 
fscanf(fIN, "%s", &buffer); 
xo = atof(buffer); 
fscanf (fIN, "%sl', &buffer); 
yo = atof(buffer); 
fscanf(f1N. "%sM, &buffer); 
z0 = atof(buffer); 

/ /  data loading 
for (k = 0; k < nz; k++) { 
for (j = ny-1; j >= 0; j--) { 
for (i = 0; i < nx; i++) { 
fscanf(fIN, "%s", &buffer); 
datalV3D(i,j,k)l = atof(buffer); 1 ) )  

INFO 



fclose ( f IN) ; 
return true; 

1 

boo1 Read-XYZD(char *sz-F-in, double data[]) 
( 
FILE *£IN, *£OUT; 
double X.Y. z. d; 
char buffer[BUFFSIZEl, *strdata; 
£IN = fopen(sz-F-in,"r"); 
if (£IN == NULL ( 1  data == NULL) return false; / /  Error Reporting 

while ( fgets(buffer, sizeof(buffer), £IN) !=  NULL) ( 
if ( buffer[OI != ' # '  ) { 
strdata = (char*)strtok(buffer,'\t , ; " ) ;  
x = atof(strdata); 
strdata = (char*)strtok(NULL,"\t , ; " ) ;  
y = atof(strdata); 
strdata = (char*)strtok(NULL,"\t ,;"I; 
z = atof(strdata); 
strdata = (char*)strtok(NULL,"\t , ; " I ;  
d = atof(strdata); 
Put-Data(x,y, z,d,data) ; 

> 
1 
fclose ( £IN) ; 

1 

int Read-XYZD-Array(char *sz-F-in, double data[] [dl) 
( 
FILE *£IN, *fOUT; 
double x,y,z,d; 
int lines; 
char buffer[BUFFSIZEl, *strdata; 
FIN = fopen(sz-pin,"r"); 
if (£IN == NULL I I data == NULL) return false; / /  Error Reporting 
lines = 0; 
while ( fgets(buffer, sizeof(buffer), FIN) != NULL) { 
if ( buffer[Ol !=  ' # '  ) { 
strdata = (char*)strtok(buffer,"\t , ; " I ;  
x = atof(strdata); 
strdata = (char*)strtok(NULL,"\t , ; " ) ;  
y = atof(strdata); 
strdata = (char*)strtok(NULL,"\t , ; " I ;  
z = atof(strdata); 
strdata = (char*)strtok(NULL, D\t , ; * )  ; 
d = atof(strdata); 
dataclines1 [OI = x; 
datallinesl [ll = y; 
data[linesl I 2 1  = z; 
dataclines1 131 = d; 
lines++; 

1 
I 
fclose(f1N) ; 
return lines; 
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Program Listing: Write-Files. h 
bool Write-MOD(char *sz-Out-File, double data11 ) ;  
bool Write-SRF(char *sz-Out-File, double data[] ) ;  
void Write-NAM(void); 
void Write-DIS(void); 
void Write-OC(void): 
void WriteJiAS6(void): 
void Write-BCF6 (void) ; 
void Write-LMG(void); 
void Write-PCG(void ) ;  
void Write-HED(f1oat top-head, float gradient. float bottom-head); 
void Write-IBD(void); 
bool Write-GS(char *sz-Out-File, double data[], int nHead); 
bool Write-AI(char *sz-Out-File, double data[], int nHead): 

Program Listing: Write-Fi1es.c 
#include <stdio.h> 
#include <stdlib.h> 
#include "boo1.h" 
#include "Globa1s.h" 

bool Write-MOD(char *sz-Out-File, double data[]) 
( 
FILE *£OUT; 
int i,j,k; 
£OUT = fopen(sz-Out-File, "w"); 
for (k = 0; k < nz; kt+) ( 
for (j = ny-1; j >= 0; I--) ( 
for (i = 0; i < nx; i++) ( 
Eprintf(fOUT,"%10.4E ",data[V3D(i,j,k)l); I 
fprintf(fOUT,"\n"); 1) 

fclose(f0UT); 
1 

bool Write-SRF(char *sz-Out-File, double data[]) 
( 
FILE *£OUT; 
int i,j.k; 
£OUT = fopen(sz-Out-File, "wn); 
fprintf(fOUT,"NODE CENTERED GRID\n"); 
fprint£(fOUT," 85d 85d %5d %10.2f %10.2f %10.2f %10.2f %10.2f 

%10.2f\nN, 
nx, ny, nz, 
(nx*delx), (ny*dely), (nz*delz), 
x0-(delx/2), yo-(dely/2), 20-(delz/2)); 

for (k = 0; k < nz; k++) ( 
for (j = ny-1; j >= 0; j--) ( 
for (i = 0: i < nx; i++) { 
fprintf(fOUT,"%lO.IE ",data[V3D(i,j,k)l); 1 
fprintf(fOUT,w\n"); 1 )  
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bool Write-GS(char *sz-Out-File, double data[], int nHead) 
( 
FILE *£OUT; 
int i, j,k; 
£OUT = fopen(sz-Out-File, "w"); 
for (i = 0; i < nHead; i++) fprintf(fOUT,"GSLIB Header: nx=%d ny=%d 

nz=%d\n" ,nx, ny, nz) ; 
for (k = 0; k < nz; k++) ( 
for (j = 0; j < ny; j++) ( 
for (i = 0; i < nx; i++) ( 
fprintf(fOUT,u %10.4E\n",data[V3D(i,j.k)]); 1 

11 
fclose(f0UT) ; 

1 

bool Write-AI(char *sz-Out-File, double data[], int nHead) 
( 
FILE *£OUT; 
int i,j,k; 
£OUT = fopen(sz-Out- file,"^"); 
for (i = 0; i < nHead; i++) fprintf(fOUT,"X, .Y, Data\nV); 
for (k = 0; k < nz; k++) ( 
for (j = ny-1; j >= 0; j--) ( 
for (i = 0; i < nx; i++) ( 
fprintf(fOUT,'%.2f, %.2f, 

%10.4E\n".xO+(delx*i),yO+(dely*j),data[V3D(i,j,k)l); ) 
11 

fclose (£OUT) ; 
1 

void Write-NAM(void) 
( 
char szNAMfile[2561 ; 
FILE* fpNAM; 
sprintf (szNAMfile,"%s.nm",szProblem); 
fpNAM = fopen(szNAMfile,"w"); 

fprintf (fpNAM,"LIST 40 %s.lst\n", szproblem); / *  listing file 
* / 
fprintf ifpNAM,"DIS 41 %s.dis\n", szproblem); / *  

discretization file * /  
fprintf (fpNAM,"BAS6 1 %s.ba6\n", szproblem); I* basic file * /  
fprintf (fpNAM,"BCF6 11 %s.bc6\n", szproblem); / *  block 

centered flow * /  
fprintf (fpNAM,"OC 42 %s.oc\n", szproblem); / *  output 

control * /  

if (bPCG) fprintf (fpNAM,"PCG 9 %s.pcg\n", szproblem); / *  
preconditioned conjugate gradients * /  
if (bAMG) fprintf (fpNAM, "LMG 8 %s.lmg\n", szproblem); / *  AMG 

Solver Routine * /  

fprintf (fpNAM, "data 4 5 % s \ n " ,  szIHeads); / *  starting heads * /  
fprintf (fpNAM,"data 47 %s\n", szIBound); / *  IBOUND Array * /  



fprintf (fpNAM,"data 30 %s\nV, szTrans); / *  transmissivit:y 
field * /  
fprintf (fpNAM, "data 33 %s\nH, szAQTop); / /  top of aquifer 
fprintf (fpNAM,"data 34 %s\nm, szAQBot); / /  bottom of aquifer 
fprintf (fpNAM,"data 17 %s\n", szOHeads); / *  OUTPUT heads * /  
fprintf ( fpNAM, "data (binary) 15 %s\n" , szBudget) ; / *  budget 

file for paths * /  
fclose (fpNAM) ; 

1 

void Write-DIS(void) 
( 

/ *  open and write the DIS array file * /  
char szDISfile[2561; 
FILE* fpDIS; 
sprintf (szDISfile,"%s.dis",szProblem); 
fpDIS = fopen(szDISfile,"w"); 
£print£ (fpDIS,"# Discretization file for example problem\n"); 
fprintf (fpDIS," 1 %3d %3d 1 1 Z\n",ny,nx); / *  num 

rows, num columns * /  
fprintf (fpDIS," O\n") ; / *  LAYCBD Flag for bottom 

layer * /  
fprintf (fpDIS,"CONSTANT %7.2f\nN, dely); / *  DELR * /  
fprintf (fpDIS,"CONSTANT %7.2f\n", delx); / *  DELC * /  
fprintf (fpDIS,"EXTERNAL 33 1.0 (FREE) -l\nV); / *  "T0p"topof 

aquifer * /  
fprintf (fpDIS,"EXTERNAL 34 1.0 (FREE) -l\n8'); / *  "BOTM" 

bottom of aquifer * /  
fprintf (fpDIS," 1.0 1 l.OE+OO SS\n"); / *  PERLEN NSTP TSMULT 

and Ss/tr * /  
fclose (fpDIS) ; 

1 

void Write-OC(void) 
I 
char szOCfile[56]; 
FILE* fpOC; 
sprintf (szOCfile,"%s.oc~szProblem); 
fpOC = fopen(szOCfile,"w"); 
fprintf (fpOC."head print format O\n"); 
fprintf (fpOC,"head save format (%dFlO.Z)\n",nx); 
fprintf (fpOC,"head save unit 17\n"); 
fprintf (fpOC,"compact budget files\n\n"); 
fprintf (fpOC, "period 1 step l\nw) ; 
fprintf (fpOC," save head\n"); 
fprintf (fpOC," save budget\n"); 
fclose(fp0C); 

1 

void Write_BAS6(void) 
( 

/ *  open and write the BASIC file * /  
char szBAS6file[256]; 
FILE* fpBAS6; 
sprintf (szBAS6file,"%s.ba6",szProblem); 
fpBAS6 = fopen(szBAS6file,"w"); 
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fprintf (fpBAS6,"# Basic file for heterogeneous transmissivity 
field\n") ; 
fprintf (fpBAS6,"# Initial file for 447x613 grid\n"); 
fprintf (fpBAS6,"FREE\n"); 
fprintf (fpBAS6,"EXTERNAL 47 1 (FREE) -l\nV); / *  IBOUND ARRAY 

* /  
fprintf (fpBAS6,"-999.00\n"); / *  HNOFLO * /  
fprintf (fpBAS6,"EXTERNAL 45 1.0 (FREE) -l\n"); / *  STRT Head 

ARRAY * /  
fclose (fpBAS6); 

1 

void Write_BCF6(void) 
f 

/ *  open and write the BCF file * /  
char szBCF6file[256]; 
FILE* fpBCF6; 
sprintf (szBCF6file,"%s.b~6'~,szProblem); 
fpBCF6 = fopen(szBCF6file,"w"); 
fprintf (fpBCF6,n15 999.0 0 1.0 1 O\n") ; 
fprintf (fpBCF6."OO\n"); 
fprintf (fpBCF6,"constant l.O\n"); / /  anisotropy 
fprintf (fpBCF6,"EXTERNAL 30 1.0 (FREE) -l\n"); //transmissivity 

field 
fclose(fpBCF6); 

1 

void Write-LMG (void) 

/ *  open and write the LMG file * /  
char szLMGfile[256]; 
FILE* fpLMG; 
sprintf (szLMGfile,"%s.lmg",szProblem); 
fpLMG = fopen(szLMGfi1e. ww") ; 
fprintf (fpLMG, "3.0 2.2 5.4 0 \n"); 
fprintf (fpLMG, "20 5 0 1.OE-13 1.0 1 \n"); 
fclose(fpLMG); 

void Write-PCG(void ) 
( 

/ *  open and write the PCG file * /  
char szPCGfile[2561; 
FILE* fpPCG; 
sprintf (szPCGfile,"%s.pcg",szProblem); 
fpPCG = fopen(szPCGfile,"w"); 
fprintf (fpPCG, " 5 0 30 l\n" ; 
fprintf (fpPCG," 5.00E-06 1.00E-13 1.0 0 15 

O\n") ; 
fclose(fpPCG); 

1 

void Write-HED(f1oat top-head, float gradient, float bottom-head) 
{ 

/ *  open and write the starting heads file * /  
char szHEDfileI2561; 
FILE* fpHED; 



float current-head; 
int i, j: 
sprintf (szHEDfile, "%s.hedu, szproblem) ; 
fpHED = fopen(szHEDfile, "w") ; 

for (i=l; ienx; i++) 
fprintf (fpHED," %7.3f", top-head); 

fprintf (fpHED, "\nV); 

for (j=l;jc=(ny-2);j++) ( 
current-head = top-head - gradient*((float)j*dely); 
for (i=l;i<=nx;i++) { 
fprintf (fpHED," %7.3f",current-head); 

1 
fprintf(fpHED,"\nn); 

for (i=l;i<=nx;i++) 
fprintf (fpHED,"% 7.3f", bottom-head); 

fprintf(fpHED,"\nu); 

fclose (fpHED) ; 
1 

void write-IBD(void) 
( 

/ *  open and write the IBOUND array file * /  
char szIBDfile[2561; 
FILE *fpIBD, *fpFLOW; 
int cell-f1ag.i.j; 
float flow-flag; 
sprintf (szIBDfile,"%s.ibd",szProblem); 
fpIBD = fopen(szIBDfile,"w"): 

fpFLOW = fopen(szFlow,"r"); 

/ *  top line is all -1 for fixed head along top of model * /  
cell-flag = -1; 
for (i=l;i<=nx;i++) { 
fscanf (fpFLOW,"%f", &flow-flag); 
fprintf (fpIBD,"%3d", cell-flag*(int)flow-flag); 

1 

/ *  top-1 to bottom+l lines are all "l" for active cells * /  
/ /  except for edges edge -- dbhart 02 
for (j=l;j<=(ny-2);j++) { 
cell-flag = -1; 
fscanf (fpFLOW, "%f", &flow-flag) ; 
fprintf (fpIBD,"%3d", cell-flag*(int)flow-flag); 
for (i=2;i<nx;i++) 
( 
cell-flag = 1; 
fscanf (fpFLOW,"%f", &flow-flag); 
fprintf (fpIBD,"%3dM, cell-flag*(int)flow-flag); 



) 
cell-flag = -1; 
fscanf (fpFLOW,"%$fD, &flow-flag); 
fprintf (fpIBD,'%3dU, cell-flag*(int)flow-flag); 
fprintf(fpIBD,"\nU); 

1 

/ *  bottom line is -1 for fixed head * /  
cell-flag = -1; 
for (i=l;i<=nx;i++) ( 

fscanf (fpFLOW, "%f" , &flow-flag) ; 
fprintf (fpIBD,"$3dw, cell-flag*(int)flow-flag); 

I 

fprintf(fpIBD,N\n"); 

fclose(fpFL0W); 
fclose ( fpIBD) ; 

1 
1 
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Appendix 11: The model.sh shell 

Description: 
The model process as called by PEST needs to be a single command. Because of this, a 
shell script was written to call all steps of the model process. It is conveniently 
unnecessary to change to model script since all files are named the same once they are in 
different directories. 

Platform: 
1.9 GHz AMD Athlon, Red Hat Linux 7.2 

Program Execution: 
model. sh 

Program Listing: modehh 
#!/bidbash 

runMFZK0 { 
trap "echo ' S "' SEGV 

# Step 1: Run FACZREAL to get the field 
echo -n 'F' 
fac2real < fac2real.in > /dev/null 

# Step 2: Add the residual field to the 1oglOOTransmissivity 
field 

# to get the t-update field 
echo -n 'A' 
addmods meanT.log.mod residT.log.mod Tupdate.log.mod 

# Step 3: Transform t-update field back into real space from log10 
space 

echo -n 'X' 
xform Tupdate.log.mod mod Tupdate.mod mod real 

# Step 4: Run modflow2k on the updated field 
echo -n 'M' 
mf2k Tupdate.nam > /dev/null 

# Step 5: Strip out the heads 
echo -n 'G' 
get-heads Tupdate.hed heads.measured heads.out 

) 

if [ ! -e "heads.outU I 
then 



echo -n 'E' 
runMF2K 

f i 

if [ ! -e "heads.out" 
then 

echo -e '\n' "MAJOR MAJOR MAJOR ERRORS!!!!! EXITINGN 
PStOP 
exit 

fi 

echo -n ' . 



Appendix 12: The pest-setup.sh shell 

Description: 
The program pest-setup.sh is used to run all the pre-processing directives, the PEST 
calibration model, and then the post-processing. This allows the entire sequence to be 
run with one command, and the output from all results can be piped to the same i'lle. It is 
re-named as the realization number in each directory, allowing each directory to contain 
its own copy of all commands executed. 

Platform: 
1.9 GHz AMD Athlon, Red Hat Linux 7.2 

Program Execution: 
pest-setup.sh 

Program Listing: pesr-serup.sh 
#!/bin/bash 

xform b*r*T.mod mod meanT.log.mod mod log 

get-data pilot-points.coord sgsim.'.mod pilot-points.dat 

cat pilot-points.dat ( awk ' [  if ($4 == 2) printf("8s none factor 
8.4f 0.01 6.00 zone2 1.00 -3.00 l\n",$1,$5+3.0); else printf("8s 
none factor %.4f 2.00 4.00 zone1 1.00 -3.00 l\n",$1,$5+3.0); 1 '  
> pcf .vpp 

cat fixed-points.dat >> pilot-points.dat 

cat pcf.top pcf.vpp pcf.fpp pcf.bot > pestmf2k.ps.t 

pest pestmf2k 

echo "STARTING IN DIRECTORY SSTARTDIR" 
echo "ROOT DIRECTORY IS SROOTDIR" 
echo "TF THIS IS WRONG, YOU HAVE 30s TO STOP RUN" 
sleep 30s 

if [ ! -d $(RUNDIR) I 
then 
mkdir ${RUNDIR) 

fi 



then 
echo '"MAJOR ERRORS IN RUN!!!! ! '  
echo "NO DIRECTORY" 
echo "RUNNING PEST OVER THE NETWORK" 
RUNDIR=${STARTDIR) 

fi 

if [ SRUNDIR != SSTARTDIR ] 
then 

cp -f $(STARTDIR)/*.mod ${RUNDIR) 
CP -f ${STARTDIR)I*.S~ ${RUNDIR) 

fi 

CURDIR= ' pwd' 
if [ SRUNDIR != SCURDIR I 

then 
echo "MAJOR ERRORS IN RUN!!!! ! "  
echo "EXITING WITH ERRORS" 
echo " I AM LOST ! ! ! "  
echo 
exit 

f i 

tempchek points.tp1 points.dat pestmf2k.par 
./model.sh 
cp -f ${ROOTDIR)/def-dtrk/* $(RUNDIR) 
./model.sh 
mv -f culebra.top fort.33 
mv -f culebra.bot fort.34 
dtrkcdb control.inp Tupdate.bud 1980.trk dtrk.dbg 
dtrkcdb wippctrl.inp Tupdate.bud 1980-wipp.trk dtrk.dhg 

echo "ALL FINISHED!" 
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Chavez, Mario Joseph 
L 

From: 
Sent: 
To: 
Subject: 

James, &on C 
Tuesday, May 20,2003 10:02 AM 
Chavez, Mario Joseph 
RE: Task 3 AP-88 Conditioning of Base T-Fields to Steady State Heads 

Hi Mario, 
I give you signature authority for Task 3 AP-88 Conditioning of Base T-Fields to Steady State Heads. 
Thanks, 
Scon James ....................... ....................... 
Scott C. James, Ph.D. 
Sandia National Laboratories 
Geohydrology Department 
P.O. Box 5800 
Albuquerque, NM 87185-0735 
Phone: (505) 845-7227 
Fax: (505) 844-7354 ........................ ........................ 

-----Original Message----- 
From: Chavez, Mario loseph 
Sent: Tuewlay, May 20,2003 11x46 AM 
To: James, Scott C 
Subject: Task 3 AP-88 Conditioning of Base T-Fields to Steady State Heads 

Would you please send me signature authority on the subject document--thanks. 

Mario 
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Chavez, Mario Joseph 

From: 
Sent: 
To: 
Subject: 

McKenna, Sean A 
Monday, May 19,2003 1 :55 PM 
Chavez, Mario Joseph 
Task 3 Analysis Package 

Mario, I hereby grant you authority to sign for me on the Task 3 Analysis Package. 

Sean 

Sean A. McKenna Ph.D. 
Geohydrology Department 
Sandia National Laboratories 
PO Box 5800 MS 0735 
Albuquerque, NM 87185-0735 
ph: 505 844-2450 





Chavez, Mario Joseph 
I \ 

From: 
Sent: 
To: 
Subject: 

Hart, David Blaine u 
Monday, May 19,2003 2:13 PM 
Chavez, Mario Joseph 
Analysis Package 

Mario, I hereby grant you authority to sign for me on the Task 3 Analysis Package 

David 

David Hart 
dbhart@sandia.gov 
dbhart@cc.usu.edu 




