
Analysis Report
Task 3 of AP-088

Conditioning of Base T Fields to Steady-State Heads

(AP-088: Analysis Plan for Evaluation of the Effects of
Head Changes on Calibration of Culebra Transmissivity Fields)

3,L 3
Task Number 1.3.5.- ?sf &9/O3

Report Date: May 13,2003

Authors: qr3-a Date: ~/2@/~3
seah A. McKenna
PMTS, Geohydmlogy Depar!ki!kit (61 15)

Student Intern, Geohydrology ~eyartment (61 15)

Technical Review: a- , m: 5b g/O
Scott ames
SMTS, Geohydrology Department (61 15)

QA Review:
~ a r i b . Chavez

Date: ?/Z ?/a 3
Carlsbad Programs Group (6820

Management Review c 2 ? - k T , u ~ate:Q(lZ?/u
Paul Shoemaker
Manager, Carlsbad Programs Group (6820)

FORMATION ONLY

Table of Contents

Table of Contents .. 2
Table of Figures .. 4
Table of Tables ... 6
Introduction ... 7
Available Data .. 8

Model Domain and Discretization ... 9
Particle Tracking ... 12

Computing Platform .. 13
Subtask 1 : Analysis of Pilot Point geometry .. 14
Subtask 2: Estimation of Boundary Conditions and Construction of Seed Realizations . 15

Fixed-Head Boundary Conditions .. 15
Fixed-Head Boundary And Initial Condition Results ... 22 . . .
Creation of Seed Transmlsslvlty Fields .. 25
Forward Simulations on Base Transmissivity Fields .. 33
Forward Simulation Results .. 33

Subtask 4: Steady-State Inverse Modeling ... 36
Stochastic Inverse Calibration ... 37

... Inverse Modeling Results 44
Summary ... 46
References ... 47
Appendix 1: Guidelines for Pilot Point Selection ... 48

Introduction .. 48
Number ofPilot Points .. 49
Model Domain Heterogeneity ... 50
Placement in Relation to Measurement Wells .. 50
Placement in Relation to Hydruulically Tested Wells ... 51
Placement in Relation to Model Boundaries .. 51
Areas ofSpecial Interest ... 52
Filling In ... 53

... The Value for PHIMLIM 53
... Parameter Bounds 54

.. Variogram 54
Troubleshooting .. 55

..................................... Poor Fit Between Model Outputs and Field Measurements 55
Out-of-Range Parameter Values .. 55

... Spurious Model Outputs 56
.. Inability to Lower the Objective Function 56

Appendix 2: S . u p p , ~ e r n a ~ ~ y M$ty@al for Estimation of the Fixed Head Boundary Values
: : .. 6 . . $!$

' :$;.i...~..;:.i!~ j.4.d , '. ,:,. +.; 58
............................... Results of Fitting the Gaussian Trend Surface to the 1980 Heads 58
............................... Results of Fitting the Gaussian Trend Surface to the 1990 Heads 60
............................... Results of Fitting the Gaussian Trend Surface to the CCA Heads 62
............................... Results of Fitting the Gaussian Trend Surface to the 2000 Heads 65

Appendix 3 .. 69
Example Source for add- trend.^ .. 69

Appendix 4: xform source code .. 72
Program Listings: xf0rm.c .. 72

Appendix 5: Example Shell Script for Forward Runs .. 75
Appendix 6: Source code for get-heads program ... 76 . .

Program L~sting: Grab Heads.c .. 76 -
Appendix 7: Source code for the get-data program .. 78

Input File: Pilot.points.coord .. 78
Output File: pilot.points.dat .. 80 . .
Program Llstmg: Grab-XYD.c ... 83 . .
Program L~stmg: Check-F1ags.c ... 83

Appendix 8: ppk2fac program .. 88
Input File: ppk2fac.in .. 88
Input File: culebra.spc ... 89
Input File: files . fig .. 89
Input File: settings.fig ... 89
Input File: variogram.str ... 89
Input File: zones.inf .. 90
Output File: factor.inf ... 90
Output File: regular.dat ... 90

Appendix 9: fac2real program .. 91
... Input Files 91

Output Files ... 91
Input File: fac2real.in ... 91
Input File: 1ower.inf .. 92
Input File: upperhf ... 92
Output File: residT.log.mod .. 92

Appendix 10: Source Code for the addmods program .. 93
Program Listing: addm0ds.c ... 93 . . Program Listmg: inc1udes.h .. 94

.. Program Listing: boo1.h 94

.. Program Listing: boo1.c 94
Program Listing: G1obals.h ... 95

.. Program Listing: Grid-Uti1.h 95
Program Listing: Grid-Uti1.c .. 95
Program Listing: Check-F1ags.h .. 96 . .
Program Listing: Read-Fi1es.h ... 96 . .
Program Listmg: Read-Fi1es.c .. 96
Program Listing: Write-Fi1es.h .. 100 . .
Program Listmg: Write-Fi1es.c ... 100

... Appendix 1 I : The modelsh shell 106
Program Listing: model.sh .. 106

.. Appendix 12: The pest-setup.sh shell 108 Program L~stmg: pest-setup.sh 108

. % I . INFORIMATION A : 1 / . .: . ' a , ONLY
.. . . , . ! li

3
. . f

Table of Figures
Figure 1. Locations of the pilot points and other features within the Culebra flow model

domain ... 1 I
Figure 2. David Hart and Lane Yarrington with the 61 15 linux cluster used to generate . .

and optlmlze the Culebra T-fields. .. 13
Figure 3. Locations and values of the head measurements for each of the four sets of

heads considered in the steady-state calibrations. The approximate extent of the
numerical model domain is shown by the black rectangle in each image. 17

Figure 4. Gaussian trend surface fits to the observed data for the four different sets of
heads. .. 18

Figure 5. Locations and values of the residuals between the Gaussian trend surface
model and the observed head data for each of the four sets of heads. The
approximate boundary of the flow model is shown as a black rectangle in each
image ... 19

Figure 6. Omnidirectional experimental (straight-line segments) and model variograms
of the head residuals (curves) for the four sets of heads: 1980 (upper left), 1990
(upper right), CCA (lower left) and 2000 (lower right). The numbers indicate the
number of pairs of values that were used to calculate each point and the horizontal
dashed line denotes the variance of each residual data set. 21

Figure 7. Initial heads for the four differentsets of heads. These four images show the
extent of the model domain only. ... 22

Figure 8. Values of the fixed-head boundary conditions across the northern (upper
image) and eastern (lower image) of the model domain. Note that not all locations
along the model boundary are active cells .. 23

Figure 9. Values of the fixed-head boundary conditions across the southern (upper
image) and western (lower image) of the model domain. Note that not all locations
along the model boundary are active cells. ... 24

Figure 10. Conceptual cross section showing the updating of the residual field and the
... base T field into the seed T field 26

Figure 1 1. Locations of log1 0 T and residual data before (left) and after (right)
........... translation to a temporary new coordinate system for variograrn modeling. 27

Figure 12. Experimental normal-score variogram of the transmissivity residuals. The
numbers indicate the number of pairs of data compared to calculated each point of

... the variogram. 30
Figure 13. Omindirectional variogram model fit to the experimental variogram of the

... transmissivity residuals 30
Figure 14. Experimental and model variograms for the raw-space (not normal-score

.. transformed) transmissivity residual data. 31
Figure 15. An example of the initial steps in creation of the calibrated transmissivity

field. The base transmissivity field (left image) is combined with the initial residual
field created through geostatistical simulation (center image) to produce the
transmissivity field (right image). All three color scales denote the log10 (n12/s) transm~ss~vity value. 32

Figure 16. Results of the forward simulations foreach data set. The particle travel times
to the WIPP boundary are shown in the upper image and the RMSE values between

............................ the measured and modeled heads are shown in the lower image. 34

Figure 17. Conceptual cross section showing the addition of pilot points to the . . . optirnizat~on process. .. 37
Figure 18. Flow chart of the steady-state stochastic inverse process used to create the . . .

calibrated transm~ss~v~ty fields. .. 39
Figure 19. Flow chart of the core of the inversion process highlighting the connection

between PEST and MODFLOW 2000 ... 40
Figure 20. Example final steps in the creation of a calibrated transmissivity field. The

calibrated residual field (left image) is added to the base transmissivity field (middle
image) to get the final calibrated transmissivity field (right image). All color scales

2 ... are in units of log10 (m Is) transmissivity. 43
Figure 21. Results of the inverse simulations for the four different data sets. The particle

travel times to the WIPP boundary are shown in the upper image and the adjusted
RMSE values between the measured and modeled heads are shown in the lower

.. image. 45
Figure 22. Particle travel time to the WIPP boundary as a function of the adjusted RMSE

for all four data sets ... 46

Table of Tables
Table 1 . Data feed descriptions for the Culebra T-field analysis. 9
Table 2. The coordinates of the comers of the numerical model domain 10
Table 3. UTM Coordinates of the WIPP Site boundary. .. 12
Table 4. Parameters for the Gaussian trend surface model fit to the four sets of heads. 16
Table 5. Model variograrn parameters for the head residuals 20
Table 6 . Log10 transmissivity data used in inverse calibration for all fourdata sets 28
Table 7. Statistical parameters describing the distributions of the raw and normal-score

transformed residual data. ... 29
Table 8. Target and acceptable SSE values for the four different data sets. The number

of observation wells are only those wells within the modeling domain and therefore
they are not the same as the numbers of wells uscd to create the boundary
conditions. .. 42

INFORMATI

Introduction
This analysis report describes the activities of Task 3 of AP-088, "Analysis Plan for
Evaluation of the Effects of Head Changes on Calibration of Culebra Transmissivity
Fields" (Beauheim, 2002b). The purpose of this task is calibrate a set of mean
transmissivity fields created in Task 2 (see Holt and Yarbrough, 2002) to fit observed
steady-state, or equilibrium, heads measured at three different time periods as well as to
the steady-state heads used for CCA model calibration.

Task 3 of Analysis Plan 088 is divided into four subtasks and the work done on these four
subtasks makes up the following sections of this report:

1) Analysis of Pilot Point Geometry
Developments in the field of stochastic inverse modeling in the past six to eight
years have caused some fundamental changes in the way that stochastic inverse
models are created. During the CCA calculations, pilot points were located
sequentially during the inversion process at locations that would have the
maximum impact on the ability of the inverse model to fit the observed data (see
Lavenue, 1996). In the CCA calculations, the location of each pilot point was
determined, this point was used to calibrate the model, and then the location of the
next point was determined and so on until the maximum number of pilot points
was reached.

Current approaches to stochastic inverse modeling with pilot points (e.g., Gomez-
Hernandez et al., 1997; Capilla et al., 1998) locate all pilot points at the start of . .
the modeling and then simultaneously adjust all of thein to match the observed
heads better. Subtask 1 describes how to locate these pilot points at the start of
the modeling procedure.

2) Estimation of Boundary Conditions and Construction of Seed Realizations
The boundary conditions used in this model are either fixed-head or no-flow
boundaries. The no-flow boundarv is alone Nash Draw and the fixed-head
boundaries are estimated on the rest of the Lode1 domain boundary with kriging.
Kriging is based on the head measurements within the model domain. For each of - -
1980, 1990,2000, and the CCA, a unique head data set is available. These data
display a relatively strong trend for each time period and must be detrended
before kriging. The detrending is done by fitting a bivariate normal distribution to
the data from each time period. The residuals between these bivariate normal
distributions and the observed data are used to build variograms. The residual
data and the variograms provide the basis for kriging the residual values across
the domain. When these kriged residuals are added back to the bivariate trend
model, the results are the initial heads. The initial heads estimated at the constant-
head boundary locations are held fixed throughout the groundwater flow
modeling.

INFORMATION ONLY 7

The base transmissivity (T) fields created in Task 2 of this analysis (see Holt and
Yarbrough, 2002) are based on multiple regression and therefore only fit the
transmissivity measurements in the mean sense. It is necessary to update these
base T fields to match the T at the measurement locations. This updating is done
through simulation of residuals between the base T field and the measured T data.
The updated fields are known as "seed" T fields.

3) Forward Modeling
To test all of the techniques and the soha re prior to the actual inverse modeling
and to develop a baseline set of travel times, the seed fields are used as input to
the groundwater flow and particle-tracking routines for forward (uncalibrated)
calculations.

4) Steady-State Inverse Modeling
The last step in this analysis is to use PEST (Doherty, 1998) and MODFLOW
(Harbaugh et al., 2000) to calibrate the seed fields independently to four different
sets of "steady-state" heads. These heads include measurements made in 1980,
1990, and 2000, and the heads used for CCA model calibration

Descriptions of the activities associated with each of these subtasks make up the major
sections of this report. Prior to these descriptions, a number of data feeds to this analysis
are discussed along with a description of the computational hardware used for this
analysis. The source of each type of data used in the analysis is documented. The final
sections of this report compare the calibration and travel time results for the four sets of
forward and inverse models.

Available Data
Calibration of the Culebra transmissivity fields to four sets of steady-state heads requires
a variety of input data as well as some modeling decisions (e.g., size and discretization of
the model domain) that must be made. Each modeling decision and each type of input
data, the original source of this data, and any modifications to the original data are
documented in this section.

Table 1. Data feed descriptions for the Culebra T-field analysis.

Transmissivity r
Transmissivity
Fields

Description

Equilibrated
(steady-state) heads
measured at the
wells for the 1980,
1990, and 2000 time
periods and
estimated for the
CCA (fluid densities
are also included in
this data set, but are
not used in this
analysis)
Well locations,
transmissivity and
residuals between
measured
transmissivity and
base transmissivity
at well locations
100 Realizations of
the base
transmissivity field
xeated through
multiple regression
md indicator
geostatistical
iimulation

ERMS #

522580

523889

i23889

Reference

Beauheim,
2002

Holt and
Yarbrough,
2002

jolt and
farbrough,
LO02

File Name

TFieldHeads.xl
S

MODEL DOMAIN AND DISCRETIZATION

The north-south and east-west extent of the model domain were specified by Richard
Beauheim, Robert Holt and Sean McKenna. This determination considered several
factors including: 1) hydrogeological features in the vicinity of the WIPP site that could
serve as groundwater flow boundaries (e.g. Nash Draw); 2) the areas to the north of the
WIPP site that might create additional recharge to the Culebra due to water applied to
potash tailings piles; and, 3) the limits imposed on the domain size by the available
computational resources and the desired fine-scale discretization of the domain within the
groundwater model. The final model domain is rectangular and aligned with the north-

INFORMATION ONLY 9

south and east-west directions. The coordinates of each comer of the domain are given in
Table 2 in UTM coordinates.

Table 2. The coordinates of the comers of the numerical model domain.

A no-flow boundary corresponding roughly to the center of Nash Draw is shown in
Figure 1 as a purple line extending from the northem to southern boundaries in the
western one-third of the model domain. Model cells falling to the west of this boundary
are considcrcd to be inactive in the groundwater flow calculations. Within MOIIFLOW
2000 (MFZK), the status of all the cells in the model (active, inactive, or constant head)
is controlled by an array of integers - the IBND array. The no-flow boundary was
provided by Holt and Yarbrough (2002) and the IBND array was specified by setting
array entries corresponding to cells west of the no-flow boundary equal to "0 , which
defines them as inactive. The cells on the domain boundary to the east of the no-flow
boundary are fixed-head cells with corresponding values of "-1" in the IBND array.

Domain Corner
Northeast
Northwest
Southeast
Southwest

X Coordinate (meters)
624,025.0
601,675.0
624,025.0
601,675.0

Y Coordinate
3,597,125.0
3,597,125.0
3,566,475.0
3,566,475.0

- Sample Baundary -Nc-Flow Bounds - LOWT B ~ n d a v
- Hlgh T Bwndery Fixed Pilot Point. Variable Pllol Paido

0 Drop P M I t Folward Run Exit X Delred Pdnlr (DOE)

Figure 1. Locations of the pilot points and other features within the Culebra flow model
domain.

The flow model is discretized into 274,011 regular, orthogonal cells each of which is
50x50 meters. Details of the grid generation can be found in Appendix C of Holt and
Yarbrough (2002). A constant Culebra thickness of 7.75 meters is used (U.S. DOE,
1996, Appendix TFIELD.4. I. I). The 50-meter grid discretization was selected to make
the finite-difference grid cell sizes considerably finer than those used in the CCA
calculations, but still computationally tractable. In the CCA calculations, a telescoping
finite-difference grid was used with the smallest cell being approximately lOOxlOO
meters near the center of the domain. The largest cells in the CCA flow model grid were
approximately 800x800 meters near the edges of the domain (Lavenue, 1996).

The elevation of the top of the Culebra was specified in an ascii text file, culebra-top.txt,
generated by Lance Yarbrough (University of Mississippi). The calculations done for the
top of the Culebra elevation surface are discussed in Appendix D of Holt and Yarbrough
(2002).

The discretization of the flow model domain into 50x50 meter cells leads to a total of
274,011 cells (447 east-west by 613 north-south). However, 62,118 of these cells lie to
the west of the no-flow boundary, so the total number of active cells in the model is
21 1,893. This number is more than a factor of 20 larger than the 10,800 (108x100) cells
used in the CCA calculations.

PARTICLE TRACKING

For the particle-tracking calculations, a single particle is tracked from a starting location
of X = 613,602 meters, Y = 3,581,425 meters until it exits the WIPP site boundary. The
starting location corresponds to the center of the repository footprint, the "drop point" in
Figure 1, and is the same location used to start particles in the CCA calculations. The
coordinates of the comer points defining the WIPP site boundary are given in Table 3.
The particle-tracking calculations use a constant advective porosity of 0.16 - the same
value used in the CCA calculations.

i INFORMATION 0

Table 3. UTM Coordinates of the WIPP Site boundary.

Y Coordinate
3,585,109
3,585,068
3,578,681
3,578,623

Domain Corner
Northeast
Northwest
Southeast
Southwest

X Coordinate (meters)
616,941
6 10,495
617,015
610,567

Computing Platform
For these analyses, a parallel computing platform was constructed by creating a cluster of
linked PC's. This platform consists of 16 PC's that serve as computational nodes and
two servers. The configuration and the files on the two servers are identical and they
serve as redundant backups of each other. All of the computational nodes contain a
1.9GHz equivalent AMD microprocessor with IGB of RAM and a 40GB hard drive. The
computational nodes are connected to each other and to the servers with 100MbIsec
ethernet switches. The linux, version 7.2 operating system is installed on all machines
facilitating the use of the entire cluster as a single parallel computer. A picture of the
computing platform, known as the "61 15 linux cluster" is shown in Figure 2.

Figure 2. David Hart and Lane Yarrington with the 61 15 linux cluster used to generate
and optimize the Culebra T-fields.

The computing platform was designed for parallel processing. However, for this work, it
turned out that the speed of the forward MF2K runs was so fast (10-15 seconds each) that
the wait cycle programmed into the parallel version of PEST was not able to keep up
efficiently with 16 jobs running simultaneously and the nearly constant communications
across the ethernet connections. The approach used to solve this problem dedicated each
processor in the parallel cluster to a single realization and all calculations for that
realization were completed on the single processor. When those calculations were
complete, a ne6 fi%di&&6e , .: ,. .%&j'fa$C&ye$@:& , , . waiting processor until all 100 realizations

" , , ; ;: ,,, < ,. > " , . .

~ N F O R M A T ~ ~

were complete. The time to do one set of 100 steady-state inverse calibrations with all 16
computational nodes running simultaneously was approximately 80 hours (3+ days).

Subtask I : Analysis of Pilot Point geometry
A major development in the field of stochastic inverse modeling that has occurred since
the T fields were constructed for the CCA in 1996 is that inverse techniques are now
capable of simultaneously determining optimal T values at a large number of pilot points.
In the T fields constructed for the CCA, pilot points were added one at a time and each
point was calibrated prior to the addition of the next pilot point. Furthermore, the total
number of pilot points was limited to less than or equal to the total number of
observations to avoid numerical instabilities in the solution of the inverse problem. With
the techniques now available and implemented in PEST, it is possible to use many more
~ i l o t points than there are head observations and to calibrate these ~ i l o t ~o in ts
simultaneously. However, locating the pilot points still requires technical judgement.

The original plan for this subtask (AP-088) was to conduct a series of calculations on a
hypothetical site to determinine the optimal locations for pilot points. Results of these
calculations would be used to develop a heuristic algorithm that could be applied to
locating pilot points within the Culebra. However, after several discussions with John
Doherty (the author of PEST), it was determined that locating pilot points is a problem
and goal specific activity and cannot be easily coded into an algorithm. A strong element
of expert judgment goes into determining pilot point locations. The deliverable €or this
subtask was changed from a memo documenting the calculations done to determine the
best pilot point locations to a more general memo documenting issues that need to be
considered when locating pilot points. This memo was written by John Doherty under
contract to Sandia and is attached to this status report as Appendix 1.

Delivery of the memo in Appendix 1 of this status report fulfills the deliverable for
subtask 3.1. Pilot points were located according to the guidance put forth in the
Appendix 1 memo and are shown in Figure 1. Pilot points located at the transmissivity
measurement locations are held as fvted values during the optimization (fixed pilot points
shown in magenta in Figure 1). The variable pilot points (dark blue in Figure 1) are those
where the transmissivity value is adjusted during the calibration procedure. A total of 43
fixed and 115 variable pilot points was used in the steady-state Culebra calibration
process.

Subtask 2: Estimation of Boundary Conditions and
Construction of Seed ~ealizations-
Within the indicator zonation provided by Robert Holt in Task 2 (see Analysis Plan 088,
Beauheim, 2002) and using the T values estimated through multiple regression as
secondary information, a series of T fields is generated with geostatistical simulation.
These are the seed T fields that will be used as input to the stochastic inverse modeling.
Prior to the stochastic inverse modeling, these seed T-fields are not conditioned to the
head measurements. During the stochastic inverse modeling, each of these seed fields
will be conditioned to available T measurements and the best estimate of the T value
provided by the multiple regression.

For each of the sets of measured or estimated heads (1980,1990, CCA and 2000), a set of
initial heads values is estimated across the flow model domain. The head values
estimated for the fixed-head cells along the north, east and south boundaries of the model
domain remain constant for the groundwater flow calculation. The head values estimated
at the cells in the interior of the domain are used as initial values of the heads and are
subsequently updated by the groundwater flow model until the final solution is achieved.
The estimation of the initial and boundary heads is done by kriging. Observed heads both
within and outside of the flow model domain (Figure 3) are used in the kriging process.

Kriging is a geostatistical estimation technique that uses a variogram model to estimate
values of a sampled property at unsampled locations. Kriging is designed for the
estimation of stationary fields (see Goovaerts, 1997); however, the available head data for
all four sets show significant trends (non-stationary behavior) from high head in the
northern part of the domain to low head in the southern part of the domain. This behavior
is typical of groundwater head values measured across a large area with a head gradient.
To use kriging with this type of non-stationary data, a polynomial function is fit to the
data, and the differences between the polynomial and the measured data, the "residuals,"
are calculated and a variogram of the residuals is constructed. This variogram and a
kriging algorithm are then used to estimate the value of the residual at all locations within
a domain. The final step in the process is to add the trend from the previously defined
polynomial to the estimated residuals to get the final head estimates. This head
estimation process is similar to that used in the Culebra calculations done for the CCA
(Lavenue, 1996). However, here, there are four different sets of heads and therefore four
different functions fit to the data and finally four sets of initial and boundary heads.

The available head data for each of the four sets are shown in Figure 3. There are 16,28,
34 and 37 head measurements for the 1980,1990, CCA and 2000 sets, respectively. In
general, these head measurements show a trend from high head in the north to lower head
in the south. For each set of heads, the trend is modeled with a bivariate Gaussian
function. The use of this Gaussian function with five estimated parameters allows
considerable flexibility in the shape of the trend that can be fit through the observed data.
The value of the Gaussian function, Z, is:

1 X - X ,
= a exp[- + (qr]]

where Xo and Yo are the coordinates of the center of the function and b and c are the
standard deviations of the function in the X(east-west) and Y (north-south) directions,
respectively. The parameter, a, controls the height of the function. The Gaussian
function is fit to each set of measurements using the regression wizard tool in the
Sigmaplot 2001 graphing software. The parameters estimated for the Gaussian function
for each set of head measurements are presented in Table 4. Detailed results and
diagnostics of fitting the Gaussian trend surface to the 1980 data are provided in
Appendix 2.

Table 4. Parameters for the Gaussian trend surface model fit to the four sets of :heads.

Trend Surface
Parameters

xo
yo
a
b
c -

1980

626195.36
4149817.94
1323.29
163929.49
674926.86

1990

615691.51
39271 77.23
1 155.98
124127.33
517624.71

CC A

497048.41
3712731.95
1024.16
4378431.60
287104.56

3780891 S O

LO, -

Figure 3. Locations and values of the head measurements for each of the four sets of
heads considered in the steady-state calibrations. The approximate extent of the
numerical model domain is shown by the black rectangle in each image.

The fit of the Gaussian trend surface to each set of heads is shown in Figure 4. From
Figure 4, the fits to the different data sets are all similar with the exception of the CCA
head data where the Gaussian trend surface resembles a planar function.

INFORMATION ONLY l 7

0 Gauul." Trend surrara
CCA OhParvsd Head Data

Figure 4. Gaussian trend surface fits to the observed data for the four different sets of
heads.

The locations and values of the residuals (observed value -trend surface estimate) are
shown in Figure 5.

-
E w

2-.
B
5
Z

*mam. .
.

1-.

-m. -. mom. 01- *-. -. ,
Easting (m)

Eating (m) Easting (m)

Figure 5. Locations and values of the residuals between the Gaussian trend surface
model and the observed head data for each of the four sets of heads. The approximate
boundary of the flow model is shown as a black rectangle in each image.

The next step in estimating the initial head values is to calculate an experimental
variogram for each set of residuals and then fit a variogram model to each experimental
variogram. Due to the rather limited number of data points, anisotropy in the spatial
correlation of the residuals was not examined and an omnidirectional variogram was
calculated for each set of residuals. These calculations were done using the VarioWin
(version 2.21) software (Pannatier, 1996). To maintain consistency across the different
time periods, a Gaussian variogram model was used to fit all of the experimental
variograms. The Gaussian variogram model is:

INFORMATION ONLY l9

[(-"I f',rh>O y(h) = C 1 - exp

where Cis the sill of the variogram , h is the distance between any two samples, or the
lag spacing, and a is the practical range of the variogram, or the distance at which the
model reaches 95 percent of the value of C. In addition to the sill and range, the
variogram model may also have a non-zero intercept with the gamma (Y) axis of the
variogram plot known as the nugget. Due to numerical instabilities in the kriging process
associated with the Gaussian model without a nugget value, a small nugget was used in
fitting each of the variogram models. The model variograms were fit to the experimental
data (Figure 6) and the parameters of these models are given in Table 5.

Table 5. Model variogram parameters for the head residuals.

Parameter 1980 1990 CCA
Sill 26.0 38.0 29.0
Range (meters) 4800 5100.0 4100.0
Nugget 2.0 1 .O 1.5 4.5
Number of Data 16 28 34

Figure 6. Omnidirectional experimental (straight-line segments) and model variograms
of the head residuals (curves) for the four sets of heads: 1980 (upper left), 1990 (upper
right), CCA (lower left) and 2000 (lower right). The numbers indicate the number of
pairs of values that were used to calculate each point and the horizontal dashed line
denotes the variance of each residual data set.

Figure 6 shows that the experimental variograms are well approximated by the Gaussian
model for the 1990 and CCA data. The 1980 data set does not have enough data (16) to
yield a good fit using any type of model. The experimental variogram calculated on the
2000 data shows a number of points between lags 2000 and 7000 meters that are above
the variance of the data set (the horizontal dashed line). This behavior indicates that the
Gaussian trend surface model used to calculate the residuals from the measured data did
not remove the entire trend inherent in the observed data. A higher order trend surface
model could be applied to these data to remove more of the trend, but we have chosen to
keep the trend surface model consistent across all four data sets and feel that the Gaussian
trend surface model provides a reasonable estimate of the trend in the data across all four
sets.

The GSLIB kriging program kt3d is used to estimate the residual values at all points on
the grid within the model domain. The results of this kriging program are then used as
input to the code add-trend. The add-trend code adds the Gaussian trend surface to the

I'NFORMATION ONLY 21

estimated residual values to produce the final estimates of the initial head field. A
slightly different version of the add-trend code was used for each time period, where the
Gaussian trend surface parameters in Table 4 are hard-coded variables for each different
time period. The add-trend source code for the 1980 calculations is included as
Appendix 3.

FIXED-HEAD BOUNDARY AND INITIAL CONDITION RESULTS

The results of this kriging process with consideration of the trend are four sets of initial
heads for use in MF2K. The values of the initial heads that correspond to the fixed
boundary condition locations provide the boundary conditions for the calibration models.
The initial (starting) head fields are shown in Figure 7 and the head values along each
boundary of the model domain are shown in Figures 8 and 9. Note that these final head
 lots are for the model domain and do not represent heads along the no-flow boundary
that is imposed on the problem later.

Figure 7. Initial heads for the four differentsets of heads. These four images show the
extent of the model domain only.

Eastern Boundary

1-1984 -1990 -2WO -CCAI

Figure 8. Values of the fixed-head boundary conditions across the northern (upper
image) and eastern (lower image) of the model domain. Note that not all locations along
the model boundary are active cells.

" lNFORMATlON ONLY 23

Western Boundary

/-19~(1-1980 -2WO -CCAI

Figure 9. Values of the fixed-head boundary conditions across the southern (upper
image) and western (lower image) of the model domain. Note that not all locations along
the model boundary are active cells.

The base transmissivity fields created in Task 2 (Holt and Yarbrough, 2002) rely on a
regression model to estimate transmissivity at every location. By the nature of regression
models, the estimated transmissivity values will not honor the measured transmisiivity
values at the measurement locations. Therefore, before usina these base transmissivitv
fields in a flow model, they must be conditioned to the measured transmissivity values.
This conditioning is performed with a Gaussian geostatistical simulation algorithm to
generate a series of 100 spatially correlated residual fields where each field has a mean
value of zero. These fields are conditional such that the residual value at each
measurement location is the same in each realization and the residual value plus the base
transmissivity field is equal to the known transmissivity value at all measurement
locations. The result of adding the simulated residual field to the base transmissivity
field is the "seed" realization.

This process is shown conceptually along a west to east cross section of the Culebra in
Figure 10. The upper image shows the value of the residuals at five T measurement
locations across the cross section. These residuals are calculated as the observed
(measured) T value minus the base field T value at the same locations. Postive residuals
are where the measured T value is greater than that of the base T field. To create a
transmissivity field from these residuals, there needs to be a way to tie the base field to
the measured transmissivity values. This tie is accomplished by creating a spatial
simulation of the residual values, a "residual field". The middle image of Figure 10 is an
example residual field as a red dashed line along the cross-section. This residual field is
constructed through geostatistical simulation using a variogram model fit to the residual
data. The residual field honors the measured residuals at their measurement locations and
returns to a mean value of zero at distances far away from the measurement locations.
Finally, this residual field is added to the base transmissivity field to create the seed
transmissivity field. The base T field is represented by the solid blue line in the bottom
image of Figure 10 and the seed T field is shown by the dotted line. The seed T field
corresponds to the base T field except at those locations where it must deviate to match
the measured T data. The large discontinuity shown in the base T field at the bottom of
Figure 10 is due to the stochastic simulation of high-T zones within the Culebra (Holt and
Yarbrough, 2002).

INFORMATION ONLY 25

Residual values at

Simulated Residual field

Base T field (solid
line) and Seed T field

V) (dashed line)

3
9 V)

B

I

Easting (m)

conditioned to residual values
.a. .a*.

*,.- *.* . .
:.** *.. .,.*@t

- -%, ,.**. --s..**
.'

Figure 10. Conceptual cross section showing the updating of the residual field and the
base T field into the seed T field.

A total of 46 measured transmissivity values and corresponding residual data, both in
units of log10 (m2/s), are available (Holt and Yarbrough, 2002, ERMS# 523889). These
data are shown in Table 6. For each pair of log10 T and residual data, the well name and
the eating (X) and northing (Y) coordinates in UTM are also given. These data are
contained in the Excel file residuals.xls (converted from the residuals.dat file from Holt
and Yarbrough, 2002) included on the CD-ROM as part of this analysis package. Note
that the number and locations of the transmissivity data are not the same as the number
and location of head data for any of the four data sets.

The process of creating the residual fields is to use the residual data to generate
variograms in the VarioWin software package and to then create conditional stochastic
Gaussian geostatistical simulations of the residual field within the GSLIB program sgsim.
To render the data set amenable to the variogram calculations in VarioWin, the data
coordinates were translated by subtracting a value of 600,000 from each Easting
coordinate and a value of 3,500,000 from each Northing coordinate. This translation was
accom~lished in the residuals.xls file and the locations of the well data both before and
after t ie translation are shown in Figure 1 1.

INFORMATION ONLY 27

-
rn

1-
f,-

$se+x

56(4m

685(m m m smm m r n ern
-*mOn..m

I-

eom

asm

f r
mm

mm - D 6 m) m m m m m m
e.*wVn..m

Figure 11. Locations of log10 T and residual data before (left) and after (right)
translation to a temporary new coordinate system for variogram modeling.

Table 6. Log10 transmissivity data used in inverse calibration for all four data sets.

INFORMATION 0

To use the data in a Gaussian simulation algorithm, it is first necessary to transform the
distribution of the raw residual data to a standard normal distribution. This is
accomplished through a process called the "normal-score transform" where each
transformed residual value is the "normal-score" of each original datum. The normal-
score transform is a relatively simple two-step process. First the cumulative frequency of
each original residual value, cdf((i), is determined as:

R(i) - 0.5
cdf (i) =

N

where R(9 is the rank (smallest to largest) of the ith residual value and N is the total
number of data (46 in this case). Then for each cumulative frequency value, the
corresponding normal-score value is calculated from the inverse of the standard normal
distribution. By definition, the standard normal distribution has a mean of 0.0 and a
standard deviation of 1.0. Further details of the normal-score transform process can be
found in Deutsch and Joumel(1998).

The two-step normal-score transformation process is conducted in the Microsoft Excel
spreadsheet file residuals.xls. First, the residual data are rank-ordered (smallest to
largest) using the Sort command in Excel. Then the cumulative frequency of each datum
is calculated from the preceding equation and fmally the Excel NORMSINV() function is
used to determine the normal-score of the datum. The resulting normal-score values are
the distance from the mean as measured in standard deviations. The parameters
describing the residual and normal-score transformed distributions are presented in Table
7.

Table 7. Statistical parameters describing the distributions of the raw and normal-score
transformed residual data.

I Parameter I Raw Residual Data I Normal-Score Transformed I

The normal-score residual data in the residual.xls file are copied into a text file used as
input to the VarioWin variogram modeling software (Pannatier, 1996). The text file
contains the translated Easting and Northing coordinates, the log10 T data, the log10
residual data and the normal-score transform of the log10 residual data. This new text
file, resid-ns.dat, is also included on the CD-ROM as part of this analysis package. A
five-line text header is added to this file to put it into the format required by VarioWin.

Mean
Median
Standard Deviation
Minimum
Maximum

0.000
-0.015
0.330
-0.959
0.732

Residual Data
0.000
0.000
0.997
-2.295
2.295

The omnidirection variogram is calculated with a 250-meter lag spacing. The
experimental variogram is shown in Figure 12:

Figure 12. Experimental normal-score variogram of the transmissivity residuals. The
numbers indicate the number of pairs of data compared to calculated each point of the
variogram.

The model fit to this experimental variogram is Gaussian with a nugget of 0.2, a sill of
0.8 and a range of 1050 meters (Figure 13). The sum of the nugget and sill values is
constrained to equal the theoretical variance of 1.0 by the sgsim(~eutsch and Joumel,
1998) software that is used to create the spatially correlated residual fields.

Y U~I) Omnidirectional
46

1.4 -
1.2 -

Figure 13. Omindirectional variogram model fit to the experimental variogram of the
transmissivity residuals

The initial residual field is created through a stochastic geostatistical simulation process
using the variogram calculated on the normal-score transformed residual values (Figure
13). Updates to this initial residual field are performed in the inverse modeling with an
estimation (kriging) algorithm. Therefore it is necessary to calculate and model a
variogram on the raw, not normal-score transformed, residuals for use in this kriging
process. This variogram was also calculated with a 250-meter lag and is omnidirectional.
A doubly nested spherical variogram model is fit to the experimental variogram. The
variogram parameters are a nugget of 0.008, a first sill and range of 0.033 and 500 meters
and a second sill and range of 0.067 and 1500 meters (Figure 14). This variogram model
is used by PEST to propagate any pertubation to the original residual field made at the
pilot point locations to the neighboring model grid cells.

Figure 14. Experimental and model variograms for the raw-space (not normal-score
transformed) transmissivity residual data.

The variogram parameters for the normal-score transformed residuals are used directly in
the sgsim program to create 100 conditional realizations of the residual field. Each of
these 100 residual fields is used as an initial residual field and each one is assigned to an
individual base transmissivity field. An example of a realization of the residual field and
its combination with a base transmissivity field is shown in Figure 15. From Figure 15,
the effect of the residual field on the base transmissivity field can be seen. The residual
field perturbs the transmissivities to match the measured transmissivities at the well
locations. The discrete features that are part of the original base transmissivity field (e.g.,
high-transmissivity zones in the middle of the domain) are retained when the residual
field is added to the base field.

INFORMATION 0
3 1

Figure 15. An example of the initial steps in creation of the calibrated transmissivity
field. The base transmissivity field (left image) is combined with the initial residual field
created through geostatistical simulation (center image) to produce the transmissivity
field (right image). All three color scales denote the log10 (m2/s) transmissivity value.

Subtask 3: Forward Modeling
As an initial test of the available data, boundary conditions, and the flow model setup, the
seed realizations (combination of a base transmissivity field with an initial residual field)
were used in a set of forward models. These forward models are not calibrated to the
observed head data. Heads, fluxes, and particle travel times from these forward models
are retained for comparison with the results obtained after the inverse modeling step.

FORWARD SIMULATIONS ON BASE TRANSMISSIVITY FIELDS

The initial and boundary head values generated in the previous step are used as input to
MPZK for simulation of groundwater flow in the original base transmissivity fields
created by Holt and Yarbrough (2002). These simulations are forward runs only and
there is no calibration of the fields to match observed heads.

The first step in the forward modeling process is to create 100 subdirectories with the
naming convention: /real### with 'W ranging from 001 to 100. These subdirectories
are created from a base directory containing the generic input files for MF2K and the
streamline particle-tracking code DTRKMF. The code xform (Appendix 4) is used to
reformat each of the base transmissivity fields from the four-column ascii format supplied
by Holt and Yarbrough (2002) to the MFZK format and these files are copied to each
realization subdirectory and named: base-~eld-name. trans where "base-t zeld name" is "f T . the file name of the base transmissivity field (e.g., b01r02, which is the 2 realuat~on for
the first set of ten fields).

The forward modeling is performed for a single mean transmissivity field using a shell
script that runs MFZK and DTRKMF with all four initial heads and boundary conditions
(1980, 1990, CCA and 2000). There are 100 shell scripts needed for the forward
simulations - one for each base transmissivity field. An example shell script for
realization number three is given in Appendix 5. The only differences between the 100
shell scripts are the names of the input and output files and the subdirectories in which
they reside.

The modeling process begins by setting up MFZK for each of the four different data sets
with the appropriate initial and fixed-head boundary values. For each of thedata sets, the
same base transmissivity field is input to MF2K resulting in a single flow solution for
each data set for each base transmissivity field. The resulting heads are saved to the *./st
file and DTRKMF is run to track a single particle from the starting location (shown in
Figure I) to the WIPP boundary. The DTRKMF output is reformatted using the intrinsic
UNIX command language "awk" for visualization in the UNCERT program and saved to
the *.lbl file. The get-heads program (Appendix 6) is used to extract the modeled heads
at the well locations from the *./st file. The modeled and observed heads are written to
an output file (e.g., calc-heads-bOIr03.out).

For each of the 400 forward runs, there are two results that are saved to files: the
. , , il' d heads ..: ,,% at each, of QF observed head locations, and the information on the
.! ,*;;* ;, . 1: >;' t,,;. ,,:$ z, , ; , ,< . , . - 4 : $ * '

r' i . . , , + , : . , '." :; . - "
:? ' . % ' # ;; , . , , : y Q O,

INFORMATION 0

particle track from the starting point to the point where it exits the WIPP boundary.
These results are summarized in Figure 16.

Figure 16. Results of the forward simulations foreach data set. The particle travel times
to the WIPP boundary are shown in the upper image and the RMSE values between the
measured and modeled heads are shown in the lower image.

INFORMATION ONLY

The cumulative distribution function (cdf) of the particle travel times to the WIPP
boundary is shown for each data set in Figure 16 (upper image). These cdfs are
compared to the cdf of particle travel times from the calibrated transmissivity fields
calculated for the CCA (Wallace, 1996). The cdf resulting from the calculations done for
the CCA are shown as the "certified" times in Figure 16 to distinguish them from the
results of the forward calculations made with the heads used in the CCA calculations.
For comparison with the travel times calculated for the CCA (Figure 16, upper image),
the travel times calculated as part of the current analysis have been reduced by a factor of
4.017.75 = 0.516. The current analysis used a thickness of 7.75 m (full Culebra
thickness) because that is the average thickness contributing to T over the entire model
domain. Results were scaled to a 4-meter thick Culebra to be consistent with the
conservatism used in the CCA calculations. That conservatism was based on data from
H-19 and elsewhere suggesting that most flow in high-T areas (but not necessarily low-T
areas) is concentrated in the lower 4 m of Culebra.

In general. the heads collected at later time ~eriods ~roduce faster travel times with the
2000 heads producing significantly faster Gavel timks than the other time periods. All of
the times from the fonvard models are significantly longer than the times calculated as
part of the CCA. However, the travel t&es for the CCA calculations are based on
transmissivity fields calibrated to both steady-state and transient head data.

The heads resulting from the forward (uncalibrated) solution of the groundwater flow
model are summarized for each realization as the root mean squared error (RMSE)
between the calculated heads and the observed heads for all head observation points for
that data set. The RMSE is:

where n,b, is the number of head observations for the data set and HbS and H""" are the
values of the observed head and calculated head, respectively. The cdfs of the RMSE
values for each of the four different data sets are shown in Figure 16 (lower image). For
these forward runs, mismatch between the observed and calculated heads is expected and
found to be quite high and the results in Figure 16 show a considerable amount of error.
The RMSE values increase with time. The vertical line in Figure 16 (lower image) at an
RMSE of 2.0 meters is given as a reference value based on the CCA calculations where
the majority of the calibrated Tfields had heads that deviated from the observed heads by
5 2 meters.

MATION ONLY

Subtask 4: Steady-State Inverse Modeling
-

The base realizations created in Subtask 2 are input to the inverse model using the pilot
point method. The number of pilot points and their locations are based on the results of
Subtask 1 (Figure 1). The same 100 seed realizations are calibrated to each of the four
different sets of steady-state head measurements. Results of this task include the T fields
along with the heads and fluxes calculated on those T fields and data comparing the
modeled and measured heads at the observation wells. The flow path and groundwater
travel time for a particle released from a point above the center of the WIPP disposal
panels to the WIPP site boundary has also been calculated for each T field. Ensemble
average T fields show how the transmissivities vary across the four sets of steady-state
calibrations. The cumulative distribution functions (cdfs) of travel times for each set of
realizations and the cdfs of the head calibrations evaluated by the RMSE between
observed and calculated heads are compared across the different time periods and to the
CCA results.

The residuals and the T field calculations are done in log10 space so that a unit change in
the residual equates to a one order of magnitude change in the value of the transmissivity.
The initial values of the pilot points are equal to the value of the initial residual field at
each pilot point location. The pilot points are constrained to have a maximum
perturbation o f f 3.0 from the initial value except for those pilot points within the high-T
zone in Nash Draw (Figure 1) (see Holt and Yarbrough, 2002) that are limited to
perturbations of + 1 .O.

Figure 10 is updated as Figure 17 to show, conceptually, how the addition of two pilot
points along the cross section can modify the residual field and then update the
transmissivity field. The pilot points are shown as the open circles in Figure 17 and are
used to modify the residual field before it is added to the base T field. Compare the
shape of the dashed red and blue lines in Figure 17 to the same lines in Figure 10. The
values of the residuals at the observation points are held futed so any adjacent pilot points
cannot modify them.

Easting (m)

Figure 17. Conceptual cross section showing the addition of pilot points to the
optimization process.

The stochastic inverse calibration process uses multiple pre- and post-processor codes in
addition to PEST and MFZK. The overall approach to the transmissivity field
calibration is shown in Figure 18. The preprocessing steps from the top to the middle of
Figure 18 are:

1) The conditional residual fields are created using the program sgsim (Deutsch and
Joumel, 1998).

2) The get-data code (Appendix 7) is used to specify the initial pilot point values by
extracting the initial values of the residuals at the pilot point locations from the
simulated residual field.

3) The initial pilot point values and the measured heads and transmissivities as well
as the locations of these measurements are all entered into the PEST control file.

4) The code ppk2fac (Appendix 8) is part of the PEST software package that
provides the transmissivity weighting factors for the locations surrounding each of
the pilot points. These weighting factors are calculated from the variogram model
information by invoking an assumption of second-order stationarity that specifies
the spatial covariance as being the complement of the variogram. The covariance

INFORMATION 0 37

function acts as a weight for updating transmissivity values surrounding a pilot
point. For this analysis, the variogram of the raw residuals is used in ppk2fac to
calculate the weighting factors. These weighting factors are stored in the file
factor.inf and only need to be calculated once for each combination of pilot point
locations, variograms, and grid size. The ppk2fac code also generates a table of
standard deviations, and the algebraic regularization equations dcscribing the
relationship between pilot points. These equations are set up to minimize the
weighted squared differences between pilot points where the weights are again
based on the variograrn model. The outputs of ppk2fac are the regularization
equations that go into the control file and the kriging weight factors that are used
by PEST in the optimization of the pilot points. More details on the mathematics
used in ppk2fac are given in the PEST user's manual (Doherty, 2000).

Calibution RmssRepatr Until PESTGnnot Rrd a Bma.b%trb

Figure 18. Flow chart of the steady-state stochastic inverse process used to create the
calibrated transmissivity fields.

INF 39

At the heart of the calibration process is the iterative adjustment of the residual field at
the pilot points by PEST and the subsequent updates of the residual field at the locations
surrounding the pilot points based on the shape of the variogram modeled on the raw
residuals. The updated residual field is then combined with the base transmissivity field
(see Figure 17) and then used in MF2K to calculate the current set of modeled heads.
These modeled heads are then input to PEST for the next iteration. This process is
shown as the "Model Process" within Figure 18 and is shown in detail in Figure 19.

Pilot Point
Vales

Figure 19. Flow chart of the core of the inversion process highlighting the connection
between PEST and MODFLOW 2000.

I 4

Using Figure 18 as a guide, the steps in the calibration process are described as:
1) The initial pilot point values are obtained from the initial residual field. The value

of the pilot points at locations that correspond to the actual transmissivity
measurement locations are held as fixed values throughout the calibration process.
The remaining 115 pilot point values will be adjusted by PEST. Forward from

Head Outputs
LogTmr6oimd Updated Edd 1

t

the 2"a iteration, these initial pilot point values are those updated by PEST in the
previous iteration.

The objective function minimized by PEST is a combination of the weighted sum
of the squared residuals between the measured and observed head data and a
second weighted sum of the squared differences in the estimated T value between
pairs of pilot points.

The first weighted sum of squares is the measure of the difference between the
measured, H,"~", and modeled, H,'"", head values. For this work, the weights on
the head observations, ~ i ~ , are constant. The second weighted sum of squares in
the objective function is the regularization portion of the objective function. This
weighted sum of squares is the difference in values between each pair of pilot
points (PPj - PPk) and is designed to keep the transmissivity field as homogeneous
as possible and to provide numerical stability when estimating more parameters
than there are data. In this second weighted sum of squares, the weights, Fi$kR, are
defined by the kriging factors and are a function of the distance between any two
pilot points. Details on the formulation of the objective function can be found in
Doherty (1998) and McKenna et al. (in press).

2) The kriging factors used to spread the influence of the pilot point values are
calculated in the preprocessing step using ppk2fac (Appendix 8) and remain
constant throughout the calibration process.

3) The pilot point values and the kriging factors are input into the fac2real program
(Appendix 9). The factreal code uses these inputs to generate an MF2K
readable array of the residual field. At this step, this field is in log10 space. Note
that the initial residual field created by the sgsim program will be considerably
smoothed in the fac2real program. The fac2real code uses a kriging algorithm to
spread the influence of the pilot points and kriging is an interpolator and therefore
a smoothing process.

4) The updated residual field is then added to the base transmissivity field using the
addmods program (Appendix 10) to create the updated log10 transmissivity field.

5) The program xform (Appendix 4) takes the log10 transmissivity field and
converts it to raw space values that can be read by MF2K. MFZK does not read
in log-transformed transmissivity values.

6) MF2K is run in forward mode and the resulting heads and the cell-by-cell
volumetric fluxes, the "flow budget", are saved.

The final step in this process is to run the get-heads code (Appendix 6) on the MF2K
output head file to get the calculated heads at the observation locations. These calculated
heads are then compared to the observed heads within PEST.

maximum allowable number of 30; 2) the objective function reaches a predefined
minimum value; or 3) there is less than a one-percent change in the value of the objective
function across three consecutive iterations.

For these calibrations, the predefined minimum value of the objective function is
determined using the measurement error of the heads for each time period. For each time
period, the number of observation wells, the target Sum of Squared Errors (SSE) and the
acceptable SSE are given in Table 8. Internally, PEST uses the SSE rather than the
previously defined RMSE as a measure of how close the calculated heads are to the
observed heads. The SSE is calculated as:

PEST requires both a target value of the SSE and an acceptable value of the RMSE.
Each measured head value also has an associated measurement error value (Beauheim,
2002a). The target SSE was set equal to the sum of these squared head measurement
errors across the observation wells for each of the four data sets. The acceptable SSE
was set to be 4 meters times the number of observation wells (No6J. This acceptable SSE
limit corresponds to a two-meter average error across all wells. Recall that a two-meter
error encompassed the majority of the errors in the CCA calibration models (Lavenue,
1996).

Table 8. Target and acceptable SSE values for the four different data sets. The numbers
of observation wells are only those wells within the modeling domain and therefore they
are not the same as the numbers of wells used to create the boundary conditions.

r ~ z ~ e t I Number of I Target SSE I Acceptable SSE /
2- I Observations (m) I (m2) '

19811 117 1 47.0 1 47 n

For the CCA head data runs, the target SSE and acceptable SSE values were set to 1.00
and 1.10. These values were set in the default PEST input file and were not changed to
the respective Culebra values of 143.85 and 128.0 prior to running the inverse models.
By setting the target and acceptable values at 1.0 and 1.1, meeting an objective function
value will not play a role in stopping the optimization process and the process will
continue until the objective function can no longer be decreased or until the maximum
number of iterations is reached. Nevertheless, results show that the RMSE values
calculated for the CCA data set are consistent with those calculated for the other time
periods.

, . , , , , ' . , ,
, , .. ,

INFORMATION ,.. ..:: ONLY
, ', ,

a , . . , , : /

>I 42

The final piece of the calibration process is to do some post-processing on the results and
to create and save the necessary files. The post-processing steps are shown in the bottom
portion of Figure 18 and are as follows:

1) PEST writes the final calibrated pilot point values. These values are not
necessarily the pilot point values that result from the final iteration of the PEST
optimization, but are the set of pilot point values that created the lowest value of
the objective function.

2) The final calibrated pilot point values are used in one last forward run through the
model process to produce the ground water heads and budgets (cell by cell flux
values) needed for the particle-tracking software (DTRK).

3) A particle track is calculated from the center of the repository area to the WIPP
boundary and the time of the particle transport is recorded as the calibrated travel
time for each T field.

4) Additional outputs from PEST that are saved for each realization are the
sensitivity coefficient file and the record file.

All of the steps in the calibration process shown in Figures 18 and 19 are run using the
pest-setup.sh shell (Appendix 12). This shell allows for initiation of the calibration
process with a single command and this shell also calls the model.sh shell (Appendix 11)
as part of the calibration process. An example of the final step in the creation of a
calibrated transmissivity field is shown in Figure 20.

Figure 20. Example final steps in the creation of a calibrated transmissivity field. The
calibrated residual field (left image) is added to the base transmissivity field (middle
image) to get the final calibrated transmissivity field (right image). All color scales are in
units of log10 (m2is) transmissivity.

For each of the 400 calibration runs, there are two results saved to files: the calculated
heads at each of the observed head locations and the particle-tracking information. These
results are summarized in Figure 21.

The inverse calibration process creates a significant change in the travel times modeled
across the WlPP site. In general, the median travel times are reduced by a factor of
almost 50,000 between uncalibrated and calibrated results (compare the upper images of
Figures 21 and 16). The order of the travel time distributions seen in the uncalibrated
results showed that, in general, the later the year, the shorter the travel times (Figure 16,
upper image). This relation between the time period of the head measurements and the
travel times is not apparent in the calibrated results (upper image of Figure 21).

The cdfs of the RMSE values shown in the lower image of Figure 21 are the "adjusted
RMSE" values. The results demonstrated that for each of the four data sets, the
calibration process was not able to reduce the fit to the measured heads at one of'the
wells in the data set. This problem occurred at well H-lob for the time periods where it
is included in the data set and at well H-9b for the time periods when the H-lob well is
not present. The coordinates of H-lob are (622975,3572473) and the coordinates of the
H-9b well are (613989,3568261). Both of these wells are close to the boundary of the
model domain and both of them had high residual values between the measured heads
and the trend surfaces fit to the measured heads during the creation of the fixed-head
boundary conditions (see Figures 4 and 5). The kriging process, in the creation of the
boundary condition heads, forces the estimated head to match the observed head at all
locations, but it does this with a relatively local perturbation to the total head field. The
nearby boundary heads, that are fixed for all calculations, can be considerably different
from the head assigned to the well location if that well location is not a good fit to the
trend surface estimate. This situation causes conflict between the fixed-head boundary
and the ability of PEST to fit the measured head at the nearby well. This conflict causes
wells located near the model boundaries, such as H-lob and H-9b, to have anomalously
high residuals at the end of the calibration process - PEST is unable to both fit the
measured heads at these locations and meet the nearby fixed-head boundary conclition.
For this reason, the "adjusted RMSE" value is the RMSE calculated across all wells
minus the one well, H-lob or H-9b that displayed this type of behavior for the time
period being considered. The H-lob well is removed from the adjusted RMSE
calculations forthe 1980, 1990 and CCA data sets and the H-9b well is removed for the
2000 data set. It is stressed that the calculations for the steady-state calibrations include
the measured heads at wells H-9b or H-lob; it is only the summary value of the adjusted
RMSE that does not.

The adjusted RMSE cdfs in the lower image of Figure 21 show that the majority of the T
fields for the 1990, CCA and 2000 data sets are calibrated to an adjusted RMSE of less
than 2.0 meters. These values are either at or very close to the average head
measurement errors for those data sets indicating that a better calibration cannot be
achieved. The 1980 adjusted RMSE values show that the majority of the RMSE values
are greater than 2.0 but less than 3.0 meters. The adjusted RMSE values show that for all

data sets there is a small proportion, 6 percent or less, of the realizations for which an
adjusted RMSE of less than 3.0 meters cannot be obtained.

-CCA Timeslo WIPP bunds -2WO Times lo WIPP Bound8 - 1980 Timas to WIPP Bounds
-198OTlmw D WIPP Bounds - C M e d Times

10,WO 1OO.WO

Travel Tima (years)

Figure 21. Results of the inverse simulations for the four different data sets. The
particle travel times to the WIPP boundary are shown in the upper image and the adjusted
RMSE values between the measured and modeled heads are shown in the lower image.

INFORMATION ONLY

The variation in the adjusted RMSE values begs the question: What is the relationship
between the adjusted RMSE and the calculated travel time for any given realization? For
example do poor fits to the head data (large RMSE values) allow for significantly faster
travel times? This relationship is shown in Figure 22 for all four data sets. Figure 22
shows that there is no relationship between the adjusted RMSE and the travel time for
any of the four data sets and that those realizations with relatively high RMSE values do
not produce extreme travel time results.

Figure 22. Particle travel time to the WIPP boundary as a function of the adjusted
RMSE for all four data sets.

Summary

This analysis has shown that it is possible to develop T fields calibrated to heads

measured at different time periods.

Points

1) Calibration yields a drastic change in the travel time distributions and generally

reduces the median travel time by a factor of approximately 50,000 relative to the

uncalibrated case.

2) Calibration also makes a major change in the fit of the modeled heads to the

measured heads and can reduce the difference between measured and modeled

heads to within the range of the head measurement error.

3) A calibrated solution is not a unique solution. These results indicate that the same

level of calibration can produce travel times that range over an order of

magnitude. As an example, for an adjusted RMSE of 1.80 meters, the travel times

range from roughly 5000 to over 100,000 years (Figure 20).

References
Beauheim, R.L., 2002a, Calculation of Culebra Freshwater Heads in 1980, 1990, and

2000 for Use in T-Field Calibration, ERMS 522580.
Beauheim, R.L., 2002b, Analysis Plan for Evaluation of the Effects of Head Changes on

Calibration of Culebra Transmissivity Fields, AP-088, Rev.1, 12/6/02, 11 pp.
Capilla, J.E., J.J. Gomez-Hernandez and A. Sahuquillo, 1998, Stochastic Simulation of

Transmissivity Fields Conditional to Both Transmissivity and Piezometric Data- 3.
Application to the Culebra Formation at the Waste Isolation Pilot Plant, New Mexico,
U.S.A., Journal ofHydrology 207, pp. 254-269.

Deutsch, C.V. and A.G. Journel, 1998, GSLIB: Geostatistical Software Library and
User's Guide, Second Edition, Oxford University Press, New York, 369 pp.

DOE (U.S. Department of Energy). 1996. Title 40 CFR Part 191 Compliance
CertiJcation Application for the Waste Isolation Pilot Plant. DOEICAO- 1996-2 184.
Carlsbad, NM: U.S. DOE, Carlsbad Area Office.

Doherty, J., 1998, PEST-Model independentparameter estimation, 2"d Edition,
Watermark Numerical Computing, Brisbane, Australia, 191 pp.,
htt~://membcrs.ozema~l.com.au/-wnc/wnc.htm.

Gomez-Hernandez, J.J, A. Sahuquillo and J.E. Capilla, 1997, Stochastic Simulation of
Transmissivity Fields ~ondi ional to Both ~ r a k n i s s i v i t ~ and Piezometric Data - I.
Theory, Journal of Hydrology, 203, pp. 162-1 74.

Harbaugh, A.W., E.R. Banta, M.C. Hill and M.G. McDonald, 2000, MODFLOW 2000:
The U.S. Geological Survey Modular Ground-Water Model - User Guide to
Modularization Concepts and the Ground-Water Flow Process, Open File Report 00-
92, U.S. Geological Survey, Reston, Virginia, 121 pp.

Holt, R.M and L. Yarbrough, 2002, Analysis Report: Task 2 of AP-088: Estimating Base
Transmissivity Fields, 69 pp., ERMS 523889.

Lavenue, A.M., 1996, Analysis of the Generation of Transmissivity Fields for the
Culebra Dolomite, ERMS 240517.

McKenna, S.A., J. Doherty and D.B. Hart (in press) Non-Uniqueness of Inverse
Transmissivity Field Calibration and Predictive Transport Modeling, accepted for
publication in: Journal of Hydrology, Special Issue on Stochastic Inverse Methods, to
be published summer of 2003.

Pamatier, Y., 1996, VarioWin: Software Spatial Analysis in 2 0 , Springer, New York, 91
PP.

Wallace, M.G., 1996, Records Package For Screening Effort NS11: Subsidence
Associated with Mining Inside or Outside the ControlledArea. ERMS 41 291 8.

ION ONLY 47

Appendix 1: Guidelines for Pilot Point Selection
John Doherty, Watermark Numerical Computing

Doherty (2001; 2003) describes a methodology for the use of pilot points in groundwater
model calibration. Using that method, the values of aquifer hydraulic properties are
estimated at the locations of a number of points spread throuehout the model domain.
Hydraulic properties are then assigned toihe model grid throigh spatial interpolation
Erom those points. In the software described by Doherty (2001), spatial interpolation is
implemented through kriging on the basis of a user-specified varibgram. ~ h ; same
variogram is then used to enforce a type of "uniformity condition" on the values assigned
to pilot points. The uniformity condition is applied more strongly to points that are closer
together, than to those that are further apart (the "strength" of this application being
determined by the variogram). This condition is then used by the regularization
functionality of PEST-ASP (Doherty, 2002) to achieve a numerically stable solution to
the inverse problem of model calibration. It is because of the regularization algorithm
implemented by PEST-ASP that so many parameters can be estimated through the model
calibration process. In implementing this algorithm, PEST enforces parameter uniformity
constraints as strongly as it can without violating the necessity for model outputs to
match field data.

In an alternative calibration methodology, pilot points can be used in the estimation of
"hydraulic property multipliers". Spatial interpolation from pilot points to the finite
difference grid then allows the construction of a "warping array". A hydraulic property
array (normally built by a stochastic field generator) is multiplied by this warping array
on a cell-by-cell basis. Use of PEST'S regularization functionality guarantees that
departures Erom uniformity of the warping array are only as great as they need to be for
the resulting warped property array to ensure a calibrated model.

When using pilot points to characterize the spatial variation of some hydraulic property
(or property multiplier) prior to estimation of this property (or multiplier) through model
calibration, the modeller must choose the locations of these points himherself. While,
ostensibly, this can introduce a certain amount of subjectivity into the calibration process,
the proper placement of these points can, in fact, reduce the affects of this subjectivity in
comparison to other methods of spatial parameterisation (for example those based on
user-specified zonation patterns in situations were geological mapping is unable to
provide much assistance in specification of zone boundaries). Furthermore, the more pilot
points that are used to define spatial heterogeneity, the less pronounced is the element of
subjectivity in the calibration process. However, as there will always be computational
and numerical limits to the number of points that can be used, there will be occasions
when the modeller must choose the locations of pilot points judiciously. This document is
intended to act as a guide in this selection process.

INFORMATION ONLY

Other methods of using pilot points in conjunction with PEST'S regularization
fimctionality are under continued development. It is possible that the following guidelines
will be expanded somewhat as experience is gained in the development and
implementation of these methods.

Conventional wisdom in environmental model calibration dictates adherence to a policy
of parameter parsimony. This wisdom is based on the fact that if attempts are made to
estimate too many parameters, the inverse problem becomes numerically unstable as
parameter estimates are plagued by nonuniqueness resulting from parameter correlation
and insensitivity. Use of a parameter set estimated on the basis of an improperly posed
inverse problem can then lead to erroneous model predictions because of the tendency for
spurious heterogeneity to be introduced into such an over-parameterized calibration
process.

Limitations on the number of parameters which can be estimated through model
calibration can be revised radically upwards when regularization is introduced to the
parameter estimation process. This is because the regularization process is
mathematically a "constrained minimization process" whereby parameter values are
constrained to adhere as closely as possible to a "preferred system condition" described
by the regularization equations. As implemented in the software described in Doherty
(2001), the preferred system condition is one of uniformity of parameters or multipliers
within one or a number of user-defined zones. However other regularization methods are
possible with PEST-ASP such as adherence of parameters (or multipliers) to preferred
values (which can be the same or different for different parameters). Hence if the
calibration dataset does not possess the information content required for estimation of a
 articular ~arameter, that ~arameter will be assiened a value that is in accordance with -
the "preferred system state" as it pertains to that parameter. Thus, properly applied
regularization ensures that, no matter how many parameters require simultaneous
estimation through the calibration process, each of them can beassigned a unique value
because none of them is insensitive, and none of them is excessively correlated with any
other parameter.

In general, the more pilot points that are used to characterize the distribution of a spatially
varying hydraulic property, the better will be the outcome of the calibration process. The
principal advantage of using a multitude of pilot points is that they are more likely to be
placed at locations "where they are needed" if there are many of them than if there are
just a few of them. As is discussed below, the closer pilot points are situated to the
locations at where hydraulic property heterogeneity exists within the model domain, the
more likely it is that such points will be assigned realistic parameter or multiplier values.
Improper placement of pilot points with respect to heterogeneity can result in out-of-
range parameters as the latter are endowed with extreme values to compensate for the
limited "leverage" they have in affecting properties at those locations within the model
domain where property adjustment is most urgently needed.

In practice, the number of pilot points that can be used in the parameter estimation
process is limited by CPU time, and by internal numerical noise within PEST itself.

I lNF,ORMATlON ONLY 49

Experience has shown that once the number of parameters rises above 220, PEST'S
performance begins to suffer as result of the latter phenomenon. The former problem (i.e.
excessive CPU times) results from the fact that a numerical derivative must be calculated
for each parameter adjusted through the calibration process. Thus, during each
optimization iteration, PEST must run the model at least as many times as there are
adjustable parameters (sometimes twice this number). While overall PEST run times can
be lowered significantly through parallelisation (and through other devices such as the
use of the MODFLOW-2000 AMG solver), the fact still remains that the estimation of a
large number of parameters is a computationally expensive process.

Experience has demonstrated that for a single-layer model in which only the hydraulic
conductivity is estimated, use of 100 pilot points seems to provide a suitable compromise
between thd competing needs of pilotpoint density and adequate execution speed

MODEL DOMAIN HETEROGENEITY

As documented by Doherty (2001), pilot points can be combined with the use of zones in
model calibration, to accommodate mapped heterogeneity. The following discussion
pertains only to the use of pilot points in accommodating intra-zonal or unmapped
heterogeneity.

As was mentioned above, one of the great advantages of using pilot points for spatial
parameterization is that the modeller does not need to guess where unmapped
heterogeneity might exist within a model domain ahead of the calibration process.
Instead, the calibration process can itself determine where such heterogeneity exists, or
where stochastic fields are best warped to accommodate this heterogeneity to achieve an
optimal model fit to field data. Nevertheless, this gain in the robustness and efficiency of
is possible if a few simple steps are taken.

If there are any indications of the existence of heterogeneity within a model domain, then
it is best to place a number of points within suspected anomalous zones; the number of
such points will depend on the spatial extent of each suspected anomalous region. The
existence of heterogeneity can often be inferred from the patterns of piezometric
contours. For example, one or a number of points should be placed in regions of locally
high hydraulic gradient; if such a region is elongate, points should be placed at regular
intervals along its strike.

Similar considerations apply to regions where piezometric contours are widely spaced.
However, by their nature, such regions will tend to be defined over broader areas and will
not require as great a pilot point density as narrower zones of high piezometric gradient.
If possible a point should be placed at the centre of such a region, and at regular intervals
along its inferred boundary.

Where there is a greater density of piezometric measurement points within a model
domain, there is a greater potential for inferring hydraulic property heterogeneity from
measured head data. Hence, to reflect the locally enhanced resolving power of the

calibration dataset, pilot points can be placed with greater density in such information-
rich areas.

Where the line joining a pair of measurement wells is roughly in the down-gradient
direction, consideration should be given to placing a pilot point somewhere on, or close
to, this line based on the premise that it is the hydraulic conductivity between the points
that determines the observed head differential between them. Based on this same
argument, a good pilot points placement strategy would be to position pilot points as
much as possible between measurement wells (rather than coincident with them), with
particular emphasis being placed on pairs of wells that are aligned in the direction of the
local hydraulic gradient.

If independent hydraulic property estimates are available at certain points within the
model domain, then these estimates should be used in the calibration process. The
manner in which hydraulic test data is best incorporated into the parameterization of a
regional aquifer is the subject of current research. However, for the moment it will be
assumed that hydraulic properties determined through hydraulic test analysis will be used
in the calibration process either through the direct assignment of local hydraulic
properties, or as "prior information" by which local hydraulic property estimation will be
guided.

For implementation of either of these methods, a pilot point should be placed at the site
of each tested well. In the former method, the parameter pertaining to each such pilot
point should be fixed at a constant value (equal to that determined through hydraulic test
analysis) throughout the inversion process. In the latter case, the pilot point located at the
hydraulic test site will assume its normal role; that is, the parameter value with which it is
associated will be estimated through the inversion process. Just like other pilot points, the
parameter associated with this point will suffer constraints imposed by the regularization
process. However, this parameter will also feature in an additional item of prior
information, in which it is linked to the hydraulic property value determined through
hydraulic test analysis. Deviations of this parameter value fiom the independent estimate
will then incur a penalty in the overall objective function. The weight assigned to this
prior information equation, and hence the penalty incurred by deviation of the parameter
from its independently estimated value, should be carefully chosen by the user.

Unless observation wells are very close to outflow boundaries marking the lower end of a
model domain, pilot points should be placed between each such boundary and the closest
up-gradient wells. Furthermore, the longer is an outflow boundary, the more pilot points
may need to be placed sub-parallel to this boundary, along a line forming the rough mid-
position between the boundary and the first row of measurement points. Whatever the
geometry of the system, enough pilot points should be placed between outflow points and
head measurement points to allow the calibration process to calculate conductivity values
that account for the piezometric drop between these two model entities.

Similar considerations apply to uphill inflow boundaries were the boundary condition is
of the prescribed or general head type. The principal is the same; that is, it is the
hydraulic conductivity of the material between the boundary and the closest observation
well along any pathline that determines the potential drop along that pathline. Hence,
enough pilot points must be placed between the boundary and the up-gradient set of
observation points (with placement parallel or sub-parallel to the boundary) to allow
PEST to assign hydraulic conductivity values to this part of the model domain, and to
account for any lateral conductivity variations that may exist in a direction that is roughly
parallel to the boundary.

In many modeling applications, up-gradient model boundaries are of the prescribed
inflow type (including, possibly, no inflow). Also, such boundaries are sometimes placed
at a considerable distance from the nearest set of observation wells to minimize their
effect on that part of the model domain that is of most interest for predictive purposes. In
cases such as this, the hydraulic properties pertaining to those parts of the model domain
that lie beyond the outer set of observation wells will be virtually indeterminable from the
calibration dataset alone (especially in a steady-state model). Fortunately, in many cases
their effect on model predictions will be minor. Nevertheless some thought should be
given to the characterization of hydraulic properties within such areas, and to the effect of
pilot point placement on the representation of these properties in the model. If no pilot
points are placed in such areas, then the kriging process by which hydraulic property
values are assigned to model cells in these areas will be such that, the further such cells
are removed from the nearest pilot point, the closer will their hydraulic property value be
to the mean property value prevailing within the model domain. However, if a few pilot
points are sprinkled in such areas, and if "smoothing regularization" is used (i.e.
regularization which attempts to minimize hydraulic property differences between
neighboring pilot points - see Doherty, 2001), then the hydraulic property values
assigned to these uphill areas will tend to be more like those that prevail in the closest
parts of the model domain for which hydraulic property values can be assigned on the
basis of the calibration dataset. Hence it is often good practice to place a few pilot points
in the "back blocks" of the model domain between the most up-gradient observation
wells and the inflowlno-flow boundaries that form the uphill end of the model.

Similar considerations apply to areas at the sides of the model domain that may be far
removed from observation wells.

Consideration should be given to increasing pilot point density at locations within the
model domain at which key predictions are to be made. Of particular interest in many
instances of model usage are the paths taken by contaminants (or potential contaminants)
from their points of entry into the model domain. The regularization process implemented
by PEST-ASP will ensure that spurious heterogeneity will not be introduced into the
model domain as a result of locally increased pilot-point density. However the
introduction of extra pilot points to critical areas allows the calibration dataset to have
"full sway" in detecting any heterogeneities which may exist at those places within the
model domain where enhanced spatial resolution may be most important for the making
of key model predictions, or of exploring the uncertainty associated with those

INFORMATION 0 52

predictions (especially those predictions that depend on "system fine detail" as do
contaminant pathways).

If, after all of the above suggestions have been followed, there are areas in the model
domain which are devoid of pilot points, then points should be added to fill in the gaps.
This process should continue until there are no remaining gaps, or until the maximum
number of pilot points has been reached. However, as is further discussed below, the
variogram should not be ignored when deciding on how many points are sufficient in any
parameterisation context. After all pilot points have been assigned, the average distance
between pilot points should be considerably less than the variogram range (a factor of 3
or 4 is suggested).

Figure A1 illustrates many of
w Piezometric contour

o Observation well

Greater point density

nearest downhill
measurement wells Fixed head boundary

Figure Al . Some examples of the rationale governing the placement of pilot points.

THE VALUE FOR PHZMLZM

PEST allows the user to set the "calibration threshold" for a particular model though
choice of a value for the control variable PHIMLIM. This variable resides in the
"regularization" section of the PEST control file. It is the objective function below which
the model is deemed to be calibrated. PEST will not seek to reduce the objective function
below this level during a regularized inversion process.

Care must be exercised in choosing a suitable value for PHIMLIM. If it is set too low,
PEST will give little importance to regularization constraints as it attempts to create a
perfect fit between model outputs and field data. While the assignment of a low value to
PHIMLIM may result in a spectacular fit between model outputs and field measurements,
it may also result in unbelievable parameter estimates as the calibration process "bends
parameters to fit the noise". This, in turn, can lead to unrealistic model predictions that
defy credibility. Alternatively, if PHIMLIM is set too high, PEST may calculate a
hydraulic property field that is too smooth, or too close to the "default system condition"
encapsulated in the regularization equations; in some situations this may give rise to
model predictions that are too conservative.

In many instances of model deployment, it will not be possible to assign a suitable value
to PHIMLIM until some calibration runs have been carried out to determine the extent to
which the model is capable of fitting field measurements, given its present conceptual
basis. When undertaking runs for this purpose, PEST is able to select an appropriate
value for PHIMLIM itself on the basis of the user-supplied value for another control
variable, viz. FRACPHIM. However this will often result in a PHIMLIM value that is too
low. Thus, once PEST has been used in this manner in early calibration runs, the
calibration process may need to be repeated with a more appropriate (higher) user-
specified PHIMLIM setting.

The occurrence of wild and aberrant parameter values can be precluded through the use
of PEST'S parameter bounds functionality. However, unless there is a good reason to do
so, it is best to refrain from applying bounds to parameters when undertaking rebwhrized
parameter estimation. This is because the regularization process itself should ensure that
parameters stay within a reasonable range. If they do not, then PHIMLIM may have to be
increased, or some other measure may need to be taken to ensure that parameter values
stay within realistic ranges. If parameters are kept within these ranges "artificialXy" by the
imposition of bounds, this might prevent the user from gaining valuable insights into
possible model inadequacy that may be forthcoming from the calibration process.
(Having stated this however, it cannot be denied that there may be occasions when the
imposition of bounds is important; no rule is universally applicable.)

In the regularized calibration process described by Doherty (2001), the variogram
performs two roles. The first is the determination of !&inn factors by which model grid - - -
property values are calculated from pilot point property values. The second is the
assignment of relative weights to the equations that encapsulate the regularization
constraints. In neither of these roles is the assignment of variogram parameters critical.
Furthermore, the more pilot points that are used for the characterization or spatial
heterogeneity, the less critical do the variogram parameters become.

In spite of this, some care should be taken in choosing a suitable variogram. Experience
suggests that use of the power and Gaussian variograms should be avoided, as kriging
based on these variograms can lead to spurious hydraulic property values at grid cells
after interpolation from pilot points, especially if the latter are placed too close together.

In many groundwater modelling contexts information available for variogram
construction is very limited. Nevertheless, the modeller will often have some idea of the
length scale of hydraulic property continuity, and hence of the variogram range. On some
occasions it may be possible to estimate the range of the variogram as part of the
inversion process. However, bounds should be placed on variogram range estimates made
through the inversion process; in particular, it is important that its lower bound be such
that the average inter-pilot-point distance is significantly less than the variogram range.
Another issue to consider when estimating the variogram range is that kriging factors will
need to be re-computed on every occasion that the range is altered by PEST. Efticiencies
in this process can be gained through use of PEST'S multiple-command-line
functionality.

As is discussed in Doherty (2001), if a single variogram is used to characterise
geostatistical structure within a model area, its sill has no effect on the pilot point
parameterisation process. If multiple variograms are use to characterise a structure, then
only the relative values of the individual sills are important, not their absolute values.

The section briefly outlines problems that may occur in a regularized calibrationlwarping
process based on pilot points, and suggests steps that may be taken to rectify them.

Poor Fit Between Model Outputs and Field Measurements
This can result from flaws in the concevtual model that undemins the numerical model.
Experience has shown that use of pilot points in a regularized calibration process allows
such errors to be detected more quickly than would otherwise be possible, for this
methodology allows rapid explo~ation~of the effects of potential spatial heterogeneity on
model outputs. Failure to achieve a better fit through enhanced heterogeneity necessitates
a revision of other aspects of model design.

If the conceptual model is judged to be correct and a poor fit between model outcomes
and field measurements remains, the user should consider using a greater number of pilot
points, or shifting certain points to different locations. Areas of greatest model-to-
measurement misfit are prime candidates for the introduction of new pilot points.

If the occurrence of a poor fit between model outcomes and field data is accompanied by
the estimation of hydraulic property field that is too smooth, consideration should be
given to lowering PHIMLIM.

Out-ojRange Parameter Values
This can be caused by flaws in the conceptual basis of the model (for example if the
occurrence of broad areas of low piezometric gradient is attributed to high hydraulic
conductivity rather than to enhanced recharge). However out-of-range parameter values
can also be the result of improper placement of pilot points. If heterogeneity needs to
exist at a certain location in order for the model to replicate measured heads in nearby
wells, but the nearest pilot point is relatively far away, PEST will have no option but to

adjust the property value assigned to the far-away point in an attempt to fit the heads;
however it would be much better to adjust the value assigned to a voint which is located -
within the actual heterogeneity. If there are few or no observation wells near the far-away
pilot point, then there may be only weak calibration-imposed restraints on the parameter
value assigned to that point. It may thus be assigned a value that is outside the normal
value range for that parameter type.

Out-of-range parameter values can also result from "chasing noise" in field data. This
occurs when PEST adjusts parameter values in order to fit every nuance of the calibration
dataset, even when a component of each field measurement results from processes other
than those simulated by the model. Before accepting any pilot-point based calibration, it
is extremely important that the hydraulic property field (after interpolation from pilot
points to the grid), and a complete set of model-generated heads over the entire model
domain, be carefully inspected. Anomalies in either of these could indicate the
assignment of spurious parameter values to one or more pilot points.

Problems associated with out-of-range parameter values can be rectified in a number of
ways, including:

adjustment of the conceptual basis for the model;
assignment of more pilot points to areas of possible heterogeneity within the
model domain;
shifting offending pilot points to places where they are most needed;
increasing the value of PHIMLIM;
placing bounds on parameters (but see the above discussion on parameter
bounds).

If using the Gaussian or power variogram (not suggested), it is possible for values
interpolated to the model grid to be lowerhigher than values assigned to pilot points.
Utility software supplied for the implementation of pilot-point-based calibration using
PEST allows the user to "clip" interpolated hydraulic fields at reasonable values. If using
this functionality, be careful of its interaction with PEST'S parameter bounds
functionality. However it is best to avoid the problem altogether by using the exponential
or spherical variogram.

Spurious Model Outputs
I t sometimes occurs that while the fit between model outputs and field measurements is
exceptionally good, the model may produce spurious heads (or other outputs) at locations
within the model domain where there are no calibration targets. This is mostly a direct
outcome of the occurrence of out-of range parameter values and can be rectified using
one or a number of the measures discussed above.

Inability to Lower the Objective Function
A common occurrence in umegularized parameter estimation in an over-parameterized
system is an inability on the part of PEST to lower the objective function. Meanwhile,
one or more parameters may change by large amounts during each optimisation iteration
(often limited by the factor or relative change limits FACPARMAX and RELPARMAX),
and the Marquardt lambda may progressively rise as the optimisation process progresses.

Furthermore, an inspection of PEST'S parameter sensitivity file (this has an extension of
.sen) andlor its matrix file (which has an extension of .mtt) reveals a high degree of
parameter correlation and/or insensitivity.

The same problems can occur in some instances of regularized inversion - especially in
the final stages of a parameter estimation run in which the value selected for PHIMLIM
is too low. In such a case, PEST may neglect regularization information and, in doing
this, lose the numerical advantages of regularization. Fortunately, this problem is easily
overcome by increasing PHIMLIM.

References
Doherty, J., 2001. PEST Groundwater Data Utilities. Watermark Numerical Computing,
Australia.
Doherty, J., 2002. Manual for PEST; 51h Edition. Watermark Numerical Computing,
Australia.
Doherty, J., 2003. "Ground Water Model Calibration using Pilot Points and
Regularization". Ground Wafer. Vol. 41, no. 2, 170-177.

ORMATION ONLY

Appendix 2: Supplementary Material for Estimation of
the Fixed Head Boundary Values

RESULTS OF FITTING THE GAUSSIAN TREND SURFACE TO THE 1980 HEADS

Nonlinear Regression

[Variables]
x = col(l)
y = col(2)
z = col(3)
[Parameters]
xO = xatymax(x,z) "Auto {{previous: 626195))
yO = xatymax(y,z) "Auto {{previous: 4.14982e+006))
a = max(z) "Auto {{previous: 1323.29))
b = fwhm(x,z)/2.2 "Auto {{previous: 163929))
c = fwhm(y,z)/2.2 "Auto {{previous: 674927))
[Equation]
f=a*exp(-.5*(((~-xO)/b)~2 + ((y-y0)/~)~2))
f i t f toz
[Constraints]
[Options]
tolerance=O.OOO1OO
stepsize=100
iterations=lOO

R = 0.86434538 Rsqr = 0.74709293 Adj Rsqr = 0.65512672

Standard Error of Estimate = 6.3707

Coefficient Std. Error t P
x0 626195.361 1 30694.8879 20.4006 <0.0001
yo 4149817.9394 9178912.7528 0.4521 0.6600
a 1323.2916 7416.9448 0.1784 0.8616
b 163929.4859 147739.8589 1.1096 0.2908
c 674926.8586 5645329.6128 0.1 196 0.9070

Analysis of Variance:
DF SS MS F P

Regression 4 1318.8112 329.7028 8.1236 0.0027
Residual I I 446.4460 40.5860
Total 15 1765.2572 1 17.6838

PRESS = 2378.1 747

Durbin-Watson Statistic = 2.0941

Normality Test: Passed (P = 0.1570)

Constant Variance Test: Passed (P = 0.2922)

Power of performed test with alpha = 0.0500: 0.9971

Regression Diagnostics:
Row Predicted
1 925.7026
2 924.9243
3 921 S283
4 930.6170
5 928.1497
6 914.7788
7 902.2684
8 910.3936
9 917.6483
10 923.8082
I I 920.9487
12 924.4544
I3 919.4562
14 933.4058
15 939.6096
16 910.4777

Residual
-2.7895 -
-8.3480 -
-8.8928 -
3.351 1
4.7473
-2.4295
8.3891
-1.8616
3.3026
3.6774
-2.8235
3.7356
-3.1933
8.9989
-3.9958
-4.7834

Influence Diagnostics:
Row Cook'sDist Leverage
1 0.0065 0.1285 -0.1735
2 0.0594 0.1308 -0.5739
3 0.0673 0.1305 -0.6196
4 0.0189 0.2122 0.2981
5 0.0169 0.1185 0.2858
6 0.0066 0.1594 -0.1740
7 2.9924 0.7126 5.4888
8 0.0085 0.2673 -0.1976
9 1.0899 0.8012 2.3767
10 0.0108 0.1240 0.2252
11 0.0070 0.133 1 -0.1797
12 0.0112 0.1251 0.2302
13 0.0122 0.1677 -0.2385
14 0.4956 0.4191 1.8098
15 0.2366 0.5661 -1.0826
16 2.3573 0.8039 -3.8087

95% Confidence:
Row Predicted
1 925.7026
2 924.9243
3 921.5283
4 930.6170
5 928.1497
6 914.7788
7 902.2684
8 910.3936
9 917.6483
10 923.8082
1 1 920.9487
12 924.4544
13 919.4562
14 933.4058
I5 939.6096

Regr. 5%
920.6762
919.8534
9 16.463 1
924.1574
923.3228
909.1813
890.43 17
903.1444
905.097 1
918.8706
915.8332
919.4949
913.7140
924.3285
929.0595

Std. Res. Stud. Res.
0.4379 -0.4690 -0.4517
1.3104 -1.4055 -1.4795
1.3959 -1.4970 -1.5995
0.5260 0.5927 0.5743
0.7452 0.7937 0.7794
-0.3814 -0.4159 -0.3997
1.3168 2.4564 3.4856
-0.2922 -0.3414 -0.3272
0.5184 1.1628 1.1838
0.5772 0.6167 0.5985
-0.4432 -0.4760 -0.4586
0.5864 0.6269 0.6087
-0.5013 -0.5494 -0.5312
1.4125 1.8533 2.1307
-0.6272 -0.9522 -0.9478
-0.7508 -1.6956 -1.881 1

DFPITS

Regr. 95% Pop. 5%
930.7289 910.8070
929.9953 910.0137
926.5934 906.6196
937.0766 915.1787
932.9767 913.3203
920.3763 899.6810
914.1052 883.9185
917.6428 894.6087
930.1994 898.8296
928.7458 908.9424
926.0643 906.0229
929.4138 909.5813
925.1985 904.3042
942.483 1 916.7022
950.1597 922.0621

Stud. Del. Res.

Pop. 95%
940.5981
939.8350
936.4369
946.0552
942.9791
929.8766
920.6184
926.1785
936.4670
938.6740
935.8746
939.3274
934.6083
950.1094
957.1571

RESULTS OF FITTING THE GAUSSIAN TREND SURFACE TO THE 1990 HEADS
Nonlinear Regression

[Variables]
x = col(1)
y = col(2)
z = col(3)
[Parameters]
xO = xatymax(x,z) "Auto {{previous: 615692))
yo = xatymax(y,z) "Auto {{previous: 3.92718e+006))
a = max(z) "Auto {{previous: 1155.98))
b = fwhm(x,z)R.2 "Auto {{previous: 124127))
c = fwhm(y,z)/2.2 "Auto {{previous: 517625))
[Equation]
f=a*exp(-.5*(((x-xO)h)"2 + ((y-yO)/c)Y))
fit f to z
[Constraints]
[Options]
tolerance=O.OOO 100
stepsize=lOO
iterations=100

R = 0.78629497 Rsqr = 0.61 825978 Adj Rsqr =0.55187017

Standard Error of Estimate = 6.4936

Coemcient Std. Error t P
x0 615691.51 12 6208.8006 99.1643 <0.0001
yo 3927177.2298 3469314.6321 1.1320 0.2693
a 1155.9754 2562.6688 0.451 1 0.6562
b 124127.3319 57104.2611 2.1737 0.0403
c 517624.7100 2694099.9615 0.1921 0.8493

Analysis of Variance:
DP SS MS P P

Regression 4 1570.7405 392.6851 9.3126 0.0001
Residual23 969.8428 42.1671
Total 27 2540.5833 94.0957

PRESS = 3524.8490

Durbin-Watson Statistic = 1.7968

Normality Test: Passed (P = 0.1370)

Constant Variance Test: Passed (P = 0.3971)

Power of performed test with alpha = 0.0500: 0.9996

Regression Diagnostics:
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.
1 933.3732 -1,3462 -0.2073 -0.2736 -0.2680
2 920.6080 -7.9509 -1.2244 -1.2659 -1.2836

INFORMATION O 60

Influence Diagnostics:
Row
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

~ o o k ' s ~ i s t Leverage DPPITS
0.01 11 0.4257 -0.2307
0.0221 0.0644 -0.3368
0.01 17 0.0822 -0.2399
0.0201 0.0615 -0.3206
0.0130 0.0705 0.2543
0.0119 0.0652 -0.2433
0.0138 0.0912 0.2604
0.0054 0.0743 0.1625
0.0021 0.1063 -0.0995
5.3325 0.6994 7.1301
0.0153 0.2396 0.2717
0.7306 0.5184 2.0246
0.0204 0.0649 -0.3229
0.0019 0.0977 -0.0967
0.0182 0.0603 -0.3044
0.0262 0.0607 -0.3709
0.0141 0.0721 -0.2646
0.0163 0.0593 0.2872
0.0044 0.0723 0.1464
0.0039 0.0717 -0.1375
0.0132 0.0656 -0.2570
0.0099 0.0583 0.2215
0.0125 0.0626 0.2493
0.0132 0.0962 0.2552
0.0004 0.1430 -0.0445
0.2144 0.5261 1.0346
2.6828 0.7900 -3.8968

INFORMATION 0

28 0.0010 0.2004 0.0708

95% Confidence:
Row
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Predicted Regr. 5%
933.3732 924.6089
920.6080 917.1983
920.3274 916.4767
923.5232 920.1916
929.3160 925.7490
920.9876 917.5575
928.8107 924.7540
928.3153 924.6543
915.0014 910.6219
901.7762 890.5425
908.8775 902.3024
912.5035 902.83 14
922.0596 918.6363
917.6198 913.4206
923.2190 919.9191
925.3482 922.0373
920.1514 916.5444
926.5562 923.2858
924.1817 920.5696
920.864 1 917.2660
920.0019 916.5603
927.2173 923.9745
927.9152 924.5548
925.3302 921.1640
920.4386 915.3592
934.7525 925.0093
911.1579 899.2182
934.5272 928.5133

Regr. 95%
942.1375
924.0177
924.1781
926.8547
932.8830
924.4176
932.8674
93 1.9763
919.3810
913.0100
91 5.4525
922.1757
925.4830
921.8189
926.5 190
928.6591
923.7585
929.8267
927.7937
924.4623
923.4435
930.4602
931.2756
929.4965
925.5179
944.4957
923.0975
940.541 1

Pop. 5%
917.3339
906.7489
906.3533
909.683 1
915.4174
907.1235
914.7785
914.3923
900.8725
884.2650
893.9216
895.9507
908.1972
903.5457
909.3866
91 1.5131
906.2425
912.7308
910.2714
906.9575
906.1350
913.3984
914.0682
91 1.2659
906.0773
918.1580
893.1856
919.8094

Pop. 95%
949.4125
934.4670
934.3015
937.3632
943.2146
934.85 16
942.8430
942.2383
929.1304
919.2875
923.8334
929.0564
935.9221
93 1.6939
937.0515
939.1833
934.0603
940.3817
938.0919
934.7707
933.8689
94 1.0363
941.7622
939.3945
934.7999
951.3470
929.1301
949.245 1

RESULTS OF FITTING THE GAUSSIAN TREND SURFACE TO THE CCA HEADS
Nonlinear Regression

[Variables]
x = col(1)
y = col(2)
z = col(3)
[Parameters]
xO = xatymax(x,z) "Auto {(previous: 497048)l
yO = xatymax(y,z) "Auto {(previous: 3.71273e+006))
a = max(z) "Auto {(previous: 1024.17))
b = fwhm(x,z)/2.2 "Auto ({previous: 4.37843e+006))
c = fwhm(y,z)/2.2 "Auto ({previous: 287105))
[Equation]
f=a*exp(-.5*(((x-xO)/b)"2 + ((y-yO)/c)"2))
fit f to z
[Constraints]
[Options]
tolerance=0.000100
stepsize=IOO
iterations=lOO

R = 0.82414590 Rsqr = 0.67921646 Adj Rsqr = 0.63497045

Standard Error of Estimate = 5.9760

Coefficient Std. Error t P
x0 497048.4153 143182271.7998 0.0035 0.9973
yo 3712731.9513 505763.5357 7.3408 <0.0001
a 1024.1661 619.7038 1.6527 0.1092
b 4378431.6009 2306530015.0373 0.0019 0.9985
c 287104.5604 552804.8242 0.5194 0.6075

Analysis of Variance:
DP SS MS P P

Regression 4 2192.8705 548.2176 15.3509 <0.0001
Residual 29 1035.6592 35.7124
Total 33 3228.5297 97.8342

PRESS = 2205.3919

Durbin-Watson Statistic = 1.6163

Normality Test: Passed (P = 0.1576)

Constant Variance Test: Passed (P = 0.7521)

Power of performed test with alpha = 0.0500: 1.0000

Remession Diamostics:
Residual Std. Res. Stud. Res. Stud. Del. Res.
-1.4974 -0.2506 -0.3223 -0.3172
-6.0318 -1.0093 -1.0359 -1.0372
-3.1941 -0.5345 -0.5569 -0.5502
-6.2204 -1.0409 -1.0681 -1.0708
6.9451 1.1622 1.1979 1.2073
-0.9199 -0.1539 -0.1577 -0.1550
2.3272 0.3894 0.3989 0.3930
-6.5582 -1.0974 -1.1238 -1.1291
-6.5746 -1.1002 -1.1266 -1.1320
-6.3858 -1.0686 -1.0964 -1.1004
7.1716 1.2001 1.2530 1.2660
4.6385 0.7762 0.7999 0.7948
0.6872 0.1150 0.1225 0.1204
4.3479 0.7276 1.0166 1.0172
12.7136 2.1274 3.4111 4.3316
-6.3002 -1.0543 -1.0824 -1.0858
-6.3362 -1,0603 -1.0885 -1.0921
0.3106 0.0520 0.0544 0.0535
-3.6674 -0.6137 -0.6287 -0.6220
-6.6657 -1.1154 -1.1461 -1.1525
-5.3131 -0.8891 -0.9159 -0.9133
7.7098 1.2901 1.3231 1.3412
3.9284 0.6574 0.6815 0.6751
-0.3897 -0.0652 -0.0671 -0.0660
-6.9526 -1.1634 -1.1956 -1.2048
8.3982 1.4053 1.4422 1.4708
7.4460 1.2460 1.2798 1.2946

Influence Diagnostics:
Row Cook'sDist Leverage
1 0.0136 0.3954 -0.2566
2 0.01 14 0.0506 -0.2394
3 0.0053 0.0789 -0.1610
4 0.0121 0.0503 -0.2465
5 0.0179 0.0588 0.3018
6 0.0002 0.0467 -0.0343
7 0.0016 0.0469 0.0872
8 0.0123 0.0463 -0.2488
9 0.0123 0.0463 -0.2494
10 0.0127 0.0502 -0.2529
I I 0.0283 0.0827 0.3801
12 0.0080 0.0585 0.1981
13 0.0004 0.1 192 0.0443
14 0.1968 0.4878 0.9926
15 3.6557 0.61 10 5.4290
16 0.0127 0.0514 -0.2527
17 0.0128 0.051 1 -0.2534
18 0.0001 0.0875 0.0166
19 0.0039 0.0471 -0.1384
20 0.0146 0.0528 -0.2720
2 1 0.0103 0.0577 -0.2260
22 0.0181 0.0492 0.3052
23 0.0070 0.0697 0.1848
24 0.0001 0.0560 -0.0161
25 0.0160 0.0530 -0.2851
26 0.0221 0.0505 0.3391
27 0.0180 0.0521 0.3035
28 0.0103 0.0496 0.2272
29 0.0096 0.1618 0.2162
30 0.0691 0.4030 -0.5827
3 1 0.0028 0.4438 -0.1 171
32 0.1364 0.5158 -0.8205
33 0.0000 0.1425 0.0082
34 0.1829 0.3758 0.9653

95% Confidence:
Row Predicted Regr. 5%
1 933.4974 925.81 15
2 917.1318 914.3834
3 918.3941 914.961 1
4 920.5204 917.7785
5 927.7549 924.7912
6 922.5199 919.8788
7 922.4728 919.8265
8 92 1.3582 918.7277
9 921,3746 918.7445

Regr. 95%
941.1833
919.8802
921.8270
923.2622
930.7185
925.1609
925.1 190
923.9888
924.0047

Pop. 5%
919.0593
904.6043
905.6988
907.9943
915.1785
910.0155
909.9673
908.8561
908.8726

Pop. 95%
947.9354
929.6592
93 1.0893
933.0464
940.33 I3
935.0242
934.9782
933.8604
933.8766

RESULTS OF FITTING THE GAUSSIAN TREND SURFACE TO THE 2000 HEADS

Nonlinear Regression

[Variables]
x = col(l)
y = col(2)
z = col(3)
[Parameters]
xO = xatymax(x,z) "Auto {{previous: 61 1012))
yO = xatymax(y,z) "Auto {{previous: 3.78089et006))
a = max(z) "Auto {{previous: 1134.61))
b = fwhm(x,z)/2.2 "Auto {{previous: 73559.4))
c = fwhm(y,z)/2.2 "Auto {{previous: 313474))

f i t f toz
[Constraints]
[Options]
tolerance=0.000100
stepsize=IOO
iterations=100

R = 0.84940930 Rsqr = 0.72 149616 Adj Rsqr = 0.68668318

Standard Error of Estimate = 5.5471

Coefficient Std. Error ^ t P
x0 61 101 1.8967 3480.3846 412.7386 <O 0001

Analysis of Variance:
DF SS MS F P

Regression 4 2550.83 16 637.7079 20.7249 <0.0001
Residual 32 984.6434 30.7701
Total 36 3535.4750 98.2076

PRESS = 22345.6338

Durbin-Watson Statistic = 1.9526

Normality Test: Passed (P = 0.2217)

Constant Variance Test: Passed (P = 0.7532)

Power of performed test with alpha = 0.0500: 1.0000

Regression Diagnostics:
Row Predicted
1 932.6014
2 923.1 180
3 933.2947
4 927.0594
5 926.6641
6 926.8633
7 925.0796
8 920.9577
9 930.037 1
10 933.3632
11 913.0971
12 900.7080
13 920.7787
14 912.2902
15 924.5063
16 925.9052
17 917.3946
18 929.8066
19 924.2918
20 918.4636
21 929.9850
22 931.7313
23 929.3286
24 928.5840
25 927.7147
26 928.3424
27 929.71 11
28 921.9985
29 944.4095

Residual Std. Res. Stud. Res. Stud. Del. Res.
0.5934 0.1070 0.2710 0.2670

Influence Diagnostics:
Row Cook'sDist Leverage DPPlTS
1 0.0796 0.8442 0.6215
2 0.0531 0.1399 -0.5204
3 0.0727 0.1698 0.6106
4 0.0308 0.1222 -0.3932
5 0.0003 0.1238 0.0377
6 0.0001 0.1289 -0.0176
7 0.0684 0.1277 -0.5979
8 0.0535 0.1866 -0.5 186
9 0.0767 0.1967 0.6250
10 0.0013 0.1903 0.0803
11 0.0057 0.4540 0.1664
12 -3.6351 1.5771 (+in0
13 0.0436 0.1656 -0.4676
14 0.0375 0.3861 0.4279
15 0.0230 0.1430 -0.3377
16 0.0401 0.1286 -0.4502
17 0.0102 0.2286 -0.2230
18 0.0661 0.1375 0.5850
19 0.0572 0.1299 -0.5431
20 0.0247 0.2179 -0.3484
2 1 0.0320 0.13 16 0.4003
22 0.0160 0.1501 0.2804
23 0.0497 0.1276 0.5042
24 0.0175 0.1244 0.2942
25 0.0005 0.1224 -0.0503
26 0.0072 0.1236 0.1869
27 0.0192 0.2078 0.3069
28 0.0022 0.2262 -0.1023
29 -138.0564 1.0236 (+in0
30 0.0650 0.8657 0.5614
31 0.1965 0.4488 -0.9945
32 0.0353 0.1376 0.4208
33 0.0778 0.1381 0.6384
34 0.0474 0.1319 0.4911
35 0.0513 0.1303 -0.5122
36 0.0545 0.1345 -0.5286
37 0.0312 0.1358 -0.3950

95% Confidence:
Row Predicted
I 932.6014
2 923.1 180
3 933.2947
4 927.0594
5 926.6641
6 926.8633
7 925.0796
8 929.9577
9 ho.0371'

Regr. 5%
922.2201
918.8917
928.6391
923.1093
922.6887
922.8069
92 1.0422

Regr. 95%
942.9827
927.3444
937.9502
93 1.0095
930.6394
930.9196
929.1 170
925.8381
935.0482

pop. 5%
917.2573
91 1.0544
921.0741
915.0898
914.6861
914.8582
913.0809
908.6496
917.6767

Pop. 95%
947.9454
935.1816
945.5152
939.0290
938.6420
938.8683
937.0783
933.2657
942.3975

1NFORMATlON ONLY 67

INFORMATION Y

Appendix 3

/ *
Sean A. McKenna
Geohydrology Department
Sandia National Laboratories
Albuquerque, NM 87185-0735

June 2002

ph: 505 844-2450
em: samcken8sandia.gov

Code to read in a single GeoEAS Formatted output file from kt3d
where the

first column is a kriged residual field and the second column is the
kriging variance. This file then adds a trend surface to the

residuals
and writes a new file of the trend+residuals and the kriging

variance in
GeoEAS format.

static char string[256];

/ * This routine reads in a line of data from the given
inout stream. It however returns only lines that do
not start with an ! this symbol is used to denote a
comment line. The maximum line length is 256 characters.*/

string[Ol = '\0';
do
fgets (string, 256, fp);
while ((stringIO1 == I ! ') && !feof (fp));

return (string);
1

main ()

{
FILE *streaml,*stream2;
char string[256] ,title[80] ,value_title[80] ,file1[801 ,file2 t801 ;
int i,j,nx,ny,data-col;

INIFORMATION ONLY 69

double resid,krig~var.currx,curry,yO.xO,coeff~a,coeff~b,coeff~c;
double delx,dely.o~x,o_y,trend,first,second;

/ * set constants * /
nx = 447;
ny = 613;
delx = 50.0;
dely = 50.0;
0-x = 601700.0;
o y = 3566500.0;

/ * open input and output files * /
printf ("Enter the name of the GeoEAS formatted residual file

\n") ;
gets (filel) ;
streaml = fopen(file1,"r");

printf ("Enter the name of the GeoEAS formatted output file \n");
gets (file2) ;
stream2 = fopen(file2,"w");

/ * Read and Write file header information * /
sprintf (string, "Bs" , reacline (streaml));

sscanf (string, "Bs", &title);
sprintf (string, "Bs", read-line (streaml)) ;
sscanf (string, "Bd", &data-col);
sprintf (string, "Bs", read-line (streaml)) ;

sscanf (string, "Bs", &value-title);
sprintf (string, "Bs", read-line (streaml)) ;

sscanf (string. "Bs", &value-title);

fprintf (stream2,"Starting Head Field\n");
fprintf (streamZ,"Z\n");
fprintf (stream2,"Trend plus residual\n");
fprintf (stream2,"Kriging Variance\n");

/ * read in residuals, calculate and add trend surface, write
output * /

for (j = l ; j<=ny; j++) {
curry = (o_y+(float)j*dely)-(dely/2.O);
for (i=l;i<=nx;i++) {
currx = (0-x+(float)i*delx)-(delx/2.0);

fscanf (streaml,"$lf %lf",&resid, &krig-var);
if (resid < 1.OE-09) resid = 0.0;
first = ((currx-xO)/coeff-b)*((currx-xO)/coeff-b);
second = ((curry-yO)/coeff-c)*((curry-yO)/coeff-c);

trend = coeff-a*exp(-0.5*(first+second));
if ((i==l)&&(j<=lO))

printf ("j = %3d, trend = %7.2£ X = %9.lf
Y = %9.1f\nn,

j, trend,currx,curry);
fprintf (stream2,"%7.21£ %7.31f\n",

(trend+resid),krig-var):
1

1

fclose (streaml);
fclose (stream2);

*
a 1 '

INFORMATION ONLY 7 1

Appendix 4: xform source code

Description:
The program xform was written to log transform a MODFLOW formatted array. It has
the ability to transform between formats or to perfom simple log-I0 transforms on the
array, moving the array in and out of log-space. This last function is what was used in
the model process.

input:
A MODFLOW formatted array (typically hydraulic conductivity or transmissivity)

Output:
A MODFLOW formatted array after transform

Platform:
1.9 GHz AMD Athlon, Red Hat Linux 7.2

Program Execution:
xform <filel> [mod] <file2> [mod] [log (none 1 real]

Source Files:
xf0rm.c (Attached) . inc1udes.h (See addmods) . boo1.h (See addmods) . boo1.c (See addmods) . G1obals.h (See addmods) . Grid-Uti1.h (See addmods) . Grid-Uti1.c (See addmods) . Check-F1ags.h (See addmods) . Read-Fi1es.h (See addmods) . Write-Fi1es.h (See addmods) . Read-Fi1es.c (See addmods)
Write-Fi1es.c (See addmods)

Program Listings: xf0rm.c

void printErr(void)
1

printf("P1ease enter: xform <infile> <format> <outfile> <format>
<xform> [--head nl\n");

exit (-1) ; INFORMATION

int main (int argc, char *argv[l)
(
int i,nHead;
double data[274011] ;
char inType, outType, XForm;
char *inFile, *outFile;
nx = 447;
ny = 613;
nz = 1;
delx = 50.0;
dely = 50.0;
delz = 7.75;
x0 = 601700.0;
yO = 3566500.0;
20 = 900.0;
if (argc < 6) printErr0;
for (i = 0; i < 274011; i++) data[i] = 0;
if (strcmp(argv[21. "gs")==O) inType = 'G';
else if (strcmp(argv[ZI, "mod") ==O) inType = 'M' ;
else if (strcmp(argv[21,"srf")==O) inType = 'S';
else if (strcmp(argv[21,"ai")==O) inType = ,A,;
else if (strcmp(argv[21. "xyzdw)==O) inType = ' L o ;
else printErr();
if (strcmp(argv[4l,"mod")==O) outType = 'M';
else if (strcmp(argv[41,~rff")==0) outType = IS';
else if (strcmp(argv[4l,"ai")==O) outType = 'A';
else if (strcmp(argv[4l,"gs')==O) outType = 'G';
else printErr0;
if (strcmp(argv[5l,"log")==O) XForm = 'L';
else if (strcmp(argv[51,"real*)==O) XForm = 'P';
else if (strcmp(argv[5l,"pow")==O) XForm = ' P o ;
else if (strcmp(argv[5]. "n0neV)==O) XForm= 'N';
else printErr0;
inFile = argv[lI;
outFile = argvL31 ;
if (inFile == NULL I (outFile == NULL) printErr0;
if (inType == 'GO I I in~ype == ' A ' 1 1 outType == 'G') {
if (strcmp(argv[61,"--head") != 0) printErr0;
if (argc < 8) printErr0;
nHead = atoi(argv[71);

J

switch (inType) {
case 'G' :
Read-GS (inFile, data, 1,1, nHead) ;
break;

case 'M' :
Read-MOD(inFile,data);
break;

case 'S':
Read-SRF(inFile,data);
break;

case 'A' :
Read-AI(inFile,data,l,l,nHead);

INFORMATION ONLY

Read-XYZD(inFile,data);
break ;

1
switch (XForm) {
case ' L' :

for (i = 0: i < 274011; i++) data[il = loglO(data[il);
break;

case ' P ' :
for (i = 0; i < 274011: i++) data[il = pow(lO,data[i]);
break:

switch (outType) {
case 'M' :
Write-MOD(outFile,data):
break;

case 'S':
Write-SRF(outFile,data);
break;

case 'G' :
Write-GS(outFile,data,nHead) ;
break;

case 'A' :
Write-AI(outFile,data,l);
break;

1
1

INFORMATION

Appendix 5: Example Shell Script for Forward Runs

This is the bOlr03.sh shell used to accomplish the forward runs using base T field
number 3.

echo STARTING TO PROCESS
time mf2k b01r03-1980
mv -f bOlr03.lst b01r03-1980.lst
time dtrkcdb control.inp b01r03-1980.bud b01r03-1980.trk dtrkl980.dbg
time cat *1980.trk I awk '(printf("%8.2f\t%8.2f\t%8.2E years\t%E.ZE

m\n".(601700+(50.0*$2)),(3597100-(50.0*$3)),$1,$6) >
part-b01r03-1980.lbl

time get-heads heads-b01r03-1980.out measured-head-l980.xyz
calc-heads-bOlr03.1980

time mod2srf heads-bOlr03_198O.out heads-b01r03-198O.srf
time mf2k b01r03-1990
mv -f bOlr03.lst b01r03-1990.lst
time dtrkcdb control.inp b01r03-1990.bud b01r03-1990.trk dtrkl990.dbg
time cat *1990.trk I awk '(printf("%8.2f\t%8.2f\t%8.2E years\t%E.ZE

m\n",(601700+(50.0*$2)).(3597100-(50.0*$3)),$1,$6))' >
part-b01r03-1990.lbl

time get-heads heads-b01r03-1990.out measured-head-l990.xyz
cab-heads-bOlr03.1990

time mod2srf heads-b01r03-1990.out heads-bOlr03_1990.srf
time mf2k b01r03-2000
mv -f bOlr03.lst b01r03-2000.lst
time dtrkcdb control.inp b01r03-2000.bud b01r03-2000.trk dtrk2000.dbg
time cat *2000.trk (awk '(printf("%8.2f\t%8.2f\t88.2E years\t%8.2E

m\n",(601700+(50.0*$2)),(3597100-(50.0*$3,$1,$6)' >
part~b01r03~200O.lbl

time get-heads heads~b01r03~2000.out measured-head-2000.xyz
calc-heads-bOlr03.2000

time mod2srf heads~b01r03~2000.out heads-b01r03-2000.srf
time mf2k b01r03-CCA
mv -f bOlr03.lst bOlr03-CCA.lst
time dtrkcdb control.inp b01r03-CCA.bud b01r03-CCA.trk dtrkCCA.dbg
time cat *CCA.trk 1 awk '(printf("%8.2f\t%8.2f\t%8.2E years\t%8.2E

m\n",(601700+(50.0'$2)),(3597100-(50.0*$3)),$1,$6))' >
part-bOlrO3-CCA.lb1

time get-heads heads-b01r03-CCA.out measured-hea&CCA.xyz
calc-heads-b01r03.CCA

time mod2srf heads-b01r03-CCA.out heads-bOlr03-CCA.srf

INFORMATION ONLY ,,

Appendix 6: Source code for get-heads program

The get-heads program is used to extract the necessary head information from
MODFLOW output for comparison with measured heads.

Input Files: . Tupdate.hed . headsmeasured

Output Files: . heads.out

Platform:
1.9 GHz AMD Athlon, Red Hat Linux 7.2

Program Execution:
get-heads Tupdate.hed heads.measured headsout

Source Files: . Grab-Heads.c (Attached) . inc1udes.h (See addmods) . boo1.h (See addmods) . boo1.c (See addmods) . G1obals.h (See addmods)
Grid-Uti1.h (See addmods) . Grid-Uti1.c (See addmods) . Read-Fi1es.h (See addmods) . Write-Fi1es.h (See addmods) . Read-Fi1es.c (See addmods) . Write-Fi1es.c (See addmods)

Program Listing: Grab-Heads.c
#include <stdio.h>
#include <stdlib.h>
#include "boo1.h"
#include "G1obals.h"
#include "GriLUti1.h"
#include "Read-Files.hn
#include "Check-Flags. h"

int main(int argc, char *argv[l)

char *gridFile,*headFile,*outFile;
FILE *£OUT:

double headsl501 [4l,data[2740111,newHeads[
int i,llnes;
nx = 447;

ny = 613;
nz = 1;
delx = 50.0;
dely = 50.0;
delz = 7.75;
x0 = 601700.0;
yo = 3566500.0;
z0 = 900.0;
gridFile = argv[ll ;
headFile = argv121;
outFile = argv[31;
if (gridFile == NULL 1 1 headFile == NULL I I outFile == NULL) {
printf("P1ease use the format: getHeads <mf-out-file>

<head-loc-file> <out-file>\nV);
return;

)
Read-MOD(gridFile,data):
lines = Read-XYZD-Array(headFile,heads);
£OUT = fopen(outFile,"w");
fprintf(fOUT,"#X\t\tY\t\tZ\t\tMeasured\tCalculated\n");
for (i = 0; i < lines; i++) {
newHeads[il = GetLData(headsli1 lO1,headslil 111,headslil [2l,data);

Appendix 7: Source code for the get-data program

Description:
get-data was written to extract data values fiom a MODFLOW readable array by x y z
location data. The data it returns is in generic format, where the program get-heads is
specifically looking for head data.

Input Piles: . Pilot-points.coord (attached)
Modflow array

Output Files:
Pilot-points.dat (attached)

Platform:
1.9 GHz AMD Athlon, Red Hat Linux 7.2

Program Execution:
get-data pilot-points.coord <filel> pilot-points.dat

Source Piles:
Grab-XYD.c (Attached)
inc1udes.h (See addrnods)
boo1.h (See addrnods)
boo1.c (See addmods)
Globa1s.h (See addmods)
Check-F1ags.h (See addmods)
Check-F1ags.c (Attached)
Grid Uti1.h (See addmods)
CiridVtil.c (See addmods)
~ead1~i les .h (See addmods)
Write-Fi1es.h (See addmods)
Read Fi1es.c (See addmods)
~r i te r~ i1es .c (See addmods)

Input File: Pilot-points.coord
612658 3567490 1 1 P P O O ~
610600 3568940 1 1 ~ ~ 0 0 2
612300 3569660 1 1 ~ ~ 0 0 3
609977 3572370 1 1 ~ ~ 0 0 4
606576 3578170 1 1 ~ ~ 0 0 5

INFORMATION ONLY 79

Output File: pilot-points.dat
ppOOl 612658 3567490
pp002 610600 3568940
pp003 612300 3569660
pp004 609977 3572370
pp005 606576 3578170

pp063 609681
pp064 614377
pp065 613641
pp066 612395
pp067 610770
pp068 615574
pp069 614469
pp070 611620
pp071 613064
pp072 614068
pp073 613667
pp074 609056
pp075 615449
pp076 613285
pp077 607600
pp078 610610
pp079 612647
pp080 614877
pp081 613713
pp082 614167
pp083 613081
pp084 611600
pp085 614690
pp086 615676
pp087 612911
pp088 617020
pp089 610000
pp090 614154
pp091 608460
pp092 615752
pp093 611427
pp094 613425
pp095 618741
pp096 615660
pp097 613640
pp098 611050
pp099 609100
ppl00 620720
pplOl 619020
pp102 613700
pp103 616143
pp104 610832
pp105 618620
pp106 618693
pp107 621050
pp108 617090
pp109 615620
ppll0 613800
pplll 617000
pp112 615140
pp113 612000
pp114 613700
pp115 615380

Program Listing: Grab-XYD..c
#include cstdio.h>
#include cstdlib.h>
#include "boo1.h"
#include "G1obals.h"
#include "Grid-Uti1.h"
#include "Read-Fi1es.h"
#include "Check-F1ags.h"

int main(int argc, char *argv[l)
(
char *coordFile,*modFile,*outFile;
FILE *£OUT:
double info[5001[41,data[2740111,new1nfo[5001;
int i,lines;
Check-Flags(argc,argv);
coordFile = argv[ll :
modFile = argv[21;
outFile = argvr31;
if (coordFile == NULL I I modFile == NULL I I outFile == NULL) (
printf("P1ease use the format: get-data <coord-file> <mod-file>

<out-file>\n");
return;

Read-MOD(modFile,data);
lines = Read-XYZD-Array(coordFile,info);
fOUT = fopen(outFile,"w");
for (i = 0; i < lines; i++) {
newInfoLi1 = Get-Data(info[il [OI,info[il [lI,info[il L21,data);

Program Listing: Check-F1ags.c
#include <stdio.h>
#include cstdlib.h>
#include "boo1.h"
#include "Globa1s.h"

int Check-For-Flag(char *sz-arg, int argc, char *argv[l)
{
int arg-num;
for (arg-num = 1: arg-num < argc; arg-num++)
if (strcmp(argv[arg-num1,sz-arg) == 0) return arg-num;

return false;
>
char *szGet-Flag-Arg(int flag-num, int argc, char *argv[l)
{
if (flag-num > argc) return NULL;
return argv[flag-num+ll;

1

int iGet-Flag-Arg(int flag-num, int argc, char *argv[l)

if (flag-num > argc) return -9999999;
return atoi(argv[flag-num+lI);

I

double £Get-Flag-Arg(int flag-num, int argc, char *argvIl)
(
if (flag-num > argc) return -9999999.9999;
return atof(argv[flag-num+ll);

void Check-Flags(int argc, char *argv[l)
(
int flag;

if ((flag = check- or- lag("--pcg" ,argc,argv)) != 0) {
bPCG = true;
bAMG = false;

1 else (
bPCG = false;

1

if ((flag = Check-For-Flag("--amg",argc,arqv)) != 0) {
bAMG = true;
bPCG = false;

1 else {
bAMG = false;

>
bUserGrid = true;
if ((flag = Check-For-Flag("--nx",argc,argv)) != 0) {
nx = iGet-FlagArg(flag,argc,argv);

1 else I
nx = 447;
bUserGrid = false;

1

if ((flag = Check-For-Flag("--nym,argc,argv)) != 0) {
ny = iGet-Flag-Arg(flag,argc,ar'gv);

I else (
ny = 613;
bUserGrid = false;

I

if ((flag = Check-For-Flag("--nz",argc,argv)) != 0) {
nz = iGet-Flag-Arg(flag,argc,argv);

1 else {

nz = 1;
bUserGrid = false;

1

if ((flag = Check-For-Flag("-delx",argc,argv)) != 0) (
delx = £Get-Flag-Arg(flag,argc,argv);

1 else (
delx = 50.0;
bUserGrid = false;

1

if ((flag = Check-For-Flag("--dely",argc,argv)) != 0) {

dely = fGet-Flag-Arg(flag,argc,argv);
1 else
dely = 50.0;
bUserGrid = false:

1

if ((flag = Check-For-Flag("--de1zn,argc,argv)) != 0) (
delz = £Get-Flag-Arg(flag,argc,argv):
else (
delz = 7.75;
bUserGrid = false;

1

if ((flag = Check-For-Flag("--xO" , argc, argv)) != 0) (
xO = £Get-Flagprg(flag,argc,argv);

1 else (
x0 = 601700.0;
bUserGrid = false;

)

if ((flag = Check-For-Flag(u--yO",argc,argv)) != 0) (
yo = £Get-Flag-Arg(flag,argc,argv);

) else (
yo = 3566500.0;
bUserGrid = false;

)

if ((flag = Check-For-Flag("--zO",argc,argv)) != 0) {
z0 = £Get-Flag-Arg(flag,argc,argv);

) else (
z0 = 800.0;
bUserGrid = false;

1

if ((flag = Check-For-Flag("--problem-name",argc,argv != 0) (
szproblem = szGet-Flag-Arg(flag,argc,argv);
if (szproblem != NULL) bAskProblem = false;
else f
bAskProblern = true;
szproblern = calloc(256,sizeof(char));
sprintf(szProblem,"problem");

1
) else f
bAskProblem = true:
szproblem = calloc(256,sizeof(char));
sprintf(szProblem,'problem"):

1

if ((flag = Check-For-Flag("--ibound-file",argc,argv != 0) (
szIBound = szGet-Flag-Arg(flag,argc,argv);
if (szIBound != NULL) bUserIBound = true:
else (
buserIBound = false;
szIBound = calloc('256,sizeof(char));
sprintf(szIBound,"%s.ibd",szProblem);

I
I else (
bUserIBound = false;
szIBound = calloc(256,sizeof(char));
sprintf(szIBound,"%s.ibdsprintfo:sprintfo:,szProblem);

I

if ((flag = Check-For-Flag("--initial-heads",argc,argv != 0) {
szIHeads = szGet-Flag-Arg(flag,argc,argv);
if (szIHeads != NULL) bUserIHeads = true;
else (
bUserIHeads = false;
szIHeads = calloc(256,sizeof(char));
sprintf(szIHeads,"%s.ihead".szProblern);

I
} else {
bUserIHeads = false;
szIHeads = calloc(256,sizeof(char));
sprintf(szIHeads,"%s.ihead",szProblem);

I

if ((flag = Check-For-Flag("--trans-file",argc,argv) != 0) (
szTrans = szGet-Flag-Arg(flag,argc,argv);
if (szTrans != NULL) bUserTrans = true;
else
bUserTrans = false;
szTrans = calloc(256,sizeof(char));
sprintf(szTrans,"%s.trans",szProblem);

I
else (
bUserTrans = false;
szTrans = calloc(256,sizeof(char));
sprintf(szTrans,"%s.trans",szProblem);

if ((flag = CheckFor-Flag("--aq-top",argc,argv)) ! = 0) {

szAQTOp = szGet-Flag-Arg(flag,argc,argv);
if (szIHeads == NULL) {
szAQTOP = calloc(256,sizeof(char));
sprintf(szAQTop,"%s.top",szProblem);

I
I else (
szAQTop = calloc(256,sizeof(char));
sprintf(szAQTop,"%s.top",szProblem);

1

if ((flag = Check-For-Flag("--aq-botV,argc,argv)) != 0) (
szAQBot = szGet-Flag-Arg(flag,argc,argv);
if (szAQBot == NULL) (
szAQBot = calloc(256,sizeof(char));
sprintf(szAQBot,"%s.bot",szProblern);

I

if ((flag = Check-For-Flag("--flow-file",argc,argv)) != 0) (
szFlow = szGet-Flag-Arg(flag,argc,argv);
if (szFlow == NULL) (

szFlow = calloc(256,sizeof(char));
sprintf(szFlow,"/h/dbhart/wipp/data/flow.ai");

1
) else (
szFlow = calloc(256,sizeof(char));
sprintf(szFlow,~/h/dbhart/wipp/data/flow.ai~);

I

if ((flag = Check-For-Flag("--budget-file",argc,argv)) != 0) (
szBudget = =Get-Flag-Arg(flag,argc,argv);
if (szBudget == NULL) (
szBudget = calloc(256,sizeof(char));
sprintf(szBudget,'%s.bud",szProblem);

I
) else (
'%Budget = calloc(256,sizeof(char));
sprintf(szBudget,"%s.bud");

if ((flag = Check-For-Flag("--heads-out",argc,argv)) != 0) (
szOHeads = szGet-Flag_Arg(flag,argc,argv);
if (szOHeads == NULL) {
szOHeads = calloc(256,sizeof(char));
sprintf(szOHeads,"%s-out.hed",szProblem);

I
I else (
szOHeads = calloc(256,sizeof(char)) ;
sprintf(szOHeads,"%s-out.hed");

1

if ((flag = Check-For-Flag("--defaults",argc,argv)) != 0) (
if (!bPCG && !bAMG) bAMG = true;
bAskSolver = false;
bAskProblem = false;
bUserTrans = true;
bUserIBound = true;
bUserIHeads = true;
bUserGrid = true;

>
1

Appendix 8: ppk2fac program

Description:
The program ppk2fac is a standard utility that comes with PEST. It takes the grid data
along with a variogram structure and a list of pilot points to produce a kriging table for
other PEST utilities. As defined by the variogram and the pilot points, the algebraic
formula determining the hydraulic conductivity (K) for every point in the model grid is
developed. This table, stored in factor.inf; only needs to be calculated once for each
combination of pilot point locations, variograms, and grid size. ppkZfac also generates a
table of standard deviations, and the algebraic regularization equations describing the
relationship between pilot points.

The ppk2fac program is one of the utility codes tested as part of the software
qualification of the PEST code. Therefore, the source code is not provided here for
additional review.

Input: . ppk2fac.in (attached) . pilot-pointsdat (See Pilot Points) . files.fig (attached) . settingdig (attached)
culebra.spc (attached) . zones.inf (attached) . variogramstr (attached)

Output:
factor.inf (attached) . stdevhf (unused)
regular.inf (attached)

Data Sources:
See Pilot Points.

Platform:
1.9 GHz AMD Athlon, Red Hat Linux 7.2

Program Execution:
ppk2fac < ppk2fac.h

Znpur File: ppk2fac.in

pilot-points.dat
0
zones. inf

INF ATI

culebra
0

3000
1
9 9
culebra
0

3000
I

9 9
factor.inf
f
stdev. in£
f
regular.inf

Input File: culebra.spc
613 447
601700 3597100 0.0
447*50.0
613*50.0

Input File: files.&
grid-specification-file=culebra.spc
pilotqoints-file=points.dat

Input File: settings.$g
date=yyyy/mm/dd
colrow=no

Input File: variogram.sh
STRUCTURE culebra
NUGGET 8.OE-3
TRANSFORM none
NUMVARIOGRAM 2
VARIOGRAM varl 3.33-2
VARIOGRAM var2 6.73-2

END STRUCTURE

VARIOGRAM varl
VARTYPE 1
BEARING 0.0
A 500
ANISOTROPY 1.0

END VARIOGRAM

VARIOGRAM var2
VARTYPE 2
BEARING 0.0
A 1500
ANISOTROPY 1.0

END VARIOGRAM

Input File: zones.inf
Please see attachment

Output File: factor.inf
Please see attachment

Output File: regular.dat
Please see attachment

Appendix 9: fac2real program

The ppk2fac program is one of the standard utility programs that comes with the PEST
software package. The program fac2real is used to take the output of ppk2fac and
transform it into a MODPLOW readable array. This uses both the factor.inf file output
from ppk2fac and thepointxdat file generated by PEST to assign actual values to every
point in the grid. This process is repeated each time the pilot points are updated.

The ppk2fac program is one of the utility codes tested as part of the software
qualification of the PEST code. Therefore, the source code is not provided here for
additional review.

Input Files . factor.inf (See ppk2fac) . points.dat (See Pilot Points) . lowerinf (Attached) . upperinf (Attached) . settings.fig (See ppk2fac) . files.fig (See ppk2fac)

Output Files . residT.log.mod

Data Sources:
See Pilot Points.

Platform:
1.9 GHz AMD Athlon, Red Hat Linux 7.2

Program Execution:
fac2real < fac2real.h

Input File: fac2real.in

factor.inf
f
points.dat
a
lower. in£
f
a
upper. in£
f

Input File: 1ower.inf
Please see Attached

Input File: upper.inf
Please see Attached

Output File: residT.log.mod
Please see attached electronic files

Appendix 10: Source Code for the addmods program
Description:
The addrnods program is a short C code written to add two MODFLOW formatted
arrays together. It is used in the model process to add together the true and residual
fields. The program addmods reads in two MODFLOW formatted arrays, adds them
together, and outputs the final values to another MODFLOW readable array. The grid
dimensioning variables relating to the culebra transmissivity field grid were hard-coded
into the program.

Input:
Two MODFLOW-readable files.

Ouput:
A MODFLOW-readable array.

Platform:
1.9 GHz AMD Athlon, Red Hat Linux 7.2

Program Execution:
addmods inputfilel inputfile2 outputfile

Source Piles:
addm0ds.c (Attached)
inc1udes.h (Attached)
boo1.h (Attached)
boo1.c (Attached)
G1obals.h (Attached)
Grid-Uti1.h (Attached)
Grid-Uti1.c (Attached)
Check-F1ags.h (Attached)
Read-Fi1es.h (Attached)
Write-Fi1es.h (Attached)
Read Fi1es.c (Attached)
writ; - Fi1es.c (Attached)

Program Listing: addmods.c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "inc1udes.h"

void printErr(void)
(

printf("P1ease enter: addmods <infilel> <infile2> <outfile>\n");
exit (-1) ;

INFORMATION ON 93

int main (int argc, char *argv[])
(
int i,nHead;
double data1[2740111, data2[274011];
char inType, outType, XForm;
char *inFilel, *inFile2, 'outFile;
nx = 447;
ny = 613;
nz = 1;
delx = 50.0;
dely = 50.0;
delz = 7.75:
x0 = 601700.0;
yo = 3566500.0;
z0 = 900.0;
if (argc < 4) printErr0;
for (i = 0; i < 274011; i++) datal[il = data2fi.l = 0;
inFilel = argv[ll ;
inFile2 = argv[21;
outFile = argvL31;
if (inFilel == NULL 1) inFile2 == NULL I / outFile == NULL)

printErr () ;
~ead-MOD(inFile1,datal);
Read-MOD(inFile2,data2);
for (i = 0; i < 274011; i++) datal[i] += data2[il;
Write-MOD(outFile.data1);

1

Program Listing: inc1udes.h
#include "bool.hW
#include "Globa1s.h"
#include "Grid-Uti1.h"
#include "Check-F1ags.h"
#include "Read-Fi1es.h"
#include "Write-Fi1es.h"

Program Listing: boo1.h
typedef unsigned short bool;
const bool true, false;

Program Listing: boo1.c
#include "boo1.h"
const bool true = 1;
const bool false = 0;

Program Listing: G1obals.h
#define BOOL unsigned short
int nx, ny, nz; / / These are the gloabl variables for grid
size
double delx, dely, delz; / / . .. grid spacing
double xO, YO, 20; / / ... grid origins capital 0, not 0.

/ / These are MF2K specific variables
char *szProblem, *szIBound, *szTrans, *szIHeads, *szAQTop;
char *szAQBot. *szFlow, *szBudget, *szOHeads;
BOOL bPCG, bAMG;
BOOL bAskSolver, bAskProblem, bUserTrans, bUserIBound;
BOOL bUserIHeads, bUserGrid;

Program Listing: Grid-Uti1.h
int V2D(int x, int y);
int V3D(int x, int y, int z);
double Get-Data(doub1e x, double y, double z, double Data[]);
void Put-Data(doub1e x, double y, double z , double d, double Data[]);

Program Listing: Grid-Uti1.c

#include "boo1.h"
#include "Globa1s.h"

int V2D(int x, int
I
return ((IY) *

1

int V3D(int x, int
I
return (I (z) *

1

Y)

n x) + x) ;

y, int z)

(nx * ny)) + (((Y) * n x) + x)) ;

double Get-Data(doub1e x, double y, double z, double Data[])
(
int xid, yid, zid;
xid = (x - xO + (delx/2))/delx; / / calculate the nearest grid point
yid = ly - y0 + (dely/2))/dely; / / the g_delD/2 allows for round-up
zid = (z - 20 + (delz/2))/delz; / / for floats above .5, instead of

down
if (nz < 2) zid = 0;
if (xid > nx I I yid > ny I I zid > nz) return -99999999999.99999;
if (xid < 0 I (yid < 0 I I zid < 0) return -99999999999.99999;
return Data[V3D(xid,yid,zid)I;

1

void Put-Data(doub1e x, double y, double 2 , double d, double Data[])
{
int xid, yid, zid;
xid = (x - xO + (delx/Z))/delx; / / calculate the nearest grid point
yid = (y - yo + (dely/Z))/dely; / / the g-delD/2 allows for round-up

INFORMATION ONLY 95

zid = (z - z0 + (delz/Z))/delz; / / for floats above .5, instead of
down
if (nz < 2) zid = 0;
if (xid > nx I I yid > ny I I zid > nz) return;
if (xid < 0 1 I yid < 0 (I zid < 0) return;
Data[V3D(xid8yid,zid)1 = d;

1

Program Listing: Check-F1ags.h
int Check-For-Flag(char *sz-arg, int argc, char *argv[l);
char *szGet-Flag-Arg(int flag-num, int argc, char *argv[]);
int iGet-Flag-Arg(int flag-nun, int argc, char *argv(l);
double £Get-Flag-Arg(int flag-nun, int argc, char *argv[]);
void Check-Flags(int argc, char *argv[l);

Program Listing: Read-Files. h
bool Read-GS(char *sz-F-in, double data[], int ncol, int datacol, int
nhead) ;
bool Read-AI(char *sz-F-in, double data[], int ncol, int datacol, int
nhead) ;
bool Read-MOD(char *sz-F-in, double data[]) ;
bool Read-SRF(char *sz-F-in, double data[]);
bool Read-XYZD(char *sz-F-in, double data[]) ;
int Read-XYZD-Array(char *sz-F-in, double dataL4l (1) ;

Program Listing: Read-Fi1es.c
#include <stdio.h>
#include <stdlib.h>
#include "Grid-Uti1.h"
#include "boo1.h"
#include "Globa1s.h"
#define BUFFSIZE 512

.
/ / / / / /
.
/ / / / / /
/ / The array of data that is read in is mapped in such a way that the
array
/ / matrix looks as below, with increasing z out of screen.

//(O.O) 1 2 3 4 . . x-2 x-1 x
.
/ /
/ /
/ This is the array format after data extraction. The reason for
this
/ / orientation is so that an cell can be indexed by (x,y,z),
regardless of
/ / the order the data that was read in. Also, indexing starts with 0

bool Read-GS(char *sz-F-in, double data[], int ncol, int datacol, int
nhead)
{
FILE '£IN, 'fOUT;
int i, j. k,n;
char buffer[2561;
£IN = fopen(sz-F-in,"r"):
if (£IN == NULL I I data == NULL) return false; / / Error Reporting

/ / header deletion
if (nhead > 0) for (n = 0; n < nhead ; n++) fgets(buffer,

sizeof (buffer), fIN) ;

/ / data loading
for (k = 0; k < nz; k++) {
for (j = 0; j < ny; j++)
for (i = 0; i < nx; i++) I
for (n = 1; n <= ncol; n++) I
fscanf(fIN, '8s" &buffer);
if (n == datacol) data[V3D(i,j,k)l = atof(buffer); 1)))

fclose (£IN) ;
return true;

1

bool Read-AI(char *sz-F-in, double data[], int ncol, int datacol, int
nhead)

FILE *fIN, *£OUT;
int i, j, k,n;
char bufferL2561;
£IN = fopen(sz-f-in,"r");
if (£IN == NULL I I data == NULL) return false; / / Error Reporting

/ / header deletion
if (nhead > 0) for (n = 0; n < nhead ; n++) fgets(buffer,

sizeof(buffer), fIN);

/ / data loading
for (k = 0; k < nz; k++) {
for (j = ny-1; j >= 0; j--) {
for (i = 0; i < nx; i++) {
for (n = 1; n <= ncol; n++) I
fscanf(fIN, "Bs", &buffer);
if (n == datacol) data[V3D(i,j,k)l = atof(buffer); 1)))

INFORMATION ON1 97

return true;
1

bool Read-MOD(char *sz-F-in, double data[])
1
FILE *£IN, *fOUT;
int i,j,k,n;
char buffer[2561;
£IN = fopen(sz-F-in,"r");
if (fIN == NULL 1 1 data == NULL) return false; / / Error Reporting

/ / data loading
for (k = 0; k < nz; k++) (
for (j = ny-1; j >= 0; j--) {
for (i = 0; i < nx; i++) {
fscanf(fIN, "%sn, &buffer);
data[V3D(i,j,k)l = atof(buffer);)))

fclose(f1N) ;
return true;

1

bool ~ead-SRF(char *szF-in, double data[])
{
FILE *£IN, *£OUT;
int i,j,k.n;
char buffer[256] ;
FIN = fopen(s2-F-in,"r");
if (£IN == NULL I I data == NULL) return false; / / Error Reporting

/ / read in x/y/z information
fgets(buffer, sizeof(buffer), FIN); //erase top line header
fscanf(f1N. "8s". &buffer);
nx = atoi(buffer);
fscanf(fIN, "%sn, &buffer);
ny = atoi(buffer);
fscanf(fIN, "%s", &buffer);
nz = atoi(buffer);
fscanf(f1N. "%s", &buffer);
delx = atof(buffer) / nx;
fscanf(fIN, "%s", &buffer);
dely = atof(buffer) / ny:
fscanf(fIN, "%sup &buffer);
delz = atof(buffer) / nz;
fscanf(fIN, "%s", &buffer);
xo = atof(buffer);
fscanf (fIN, "%sl', &buffer);
yo = atof(buffer);
fscanf(f1N. "%sM, &buffer);
z0 = atof(buffer);

/ / data loading
for (k = 0; k < nz; k++) {
for (j = ny-1; j >= 0; j--) {
for (i = 0; i < nx; i++) {
fscanf(fIN, "%s", &buffer);
datalV3D(i,j,k)l = atof(buffer); 1))

INFO

fclose (f IN) ;
return true;

1

boo1 Read-XYZD(char *sz-F-in, double data[])
(
FILE *£IN, *£OUT;
double X.Y. z. d;
char buffer[BUFFSIZEl, *strdata;
£IN = fopen(sz-F-in,"r");
if (£IN == NULL (1 data == NULL) return false; / / Error Reporting

while (fgets(buffer, sizeof(buffer), £IN) != NULL) (
if (buffer[OI != ' # ') {
strdata = (char*)strtok(buffer,'\t , ; ") ;
x = atof(strdata);
strdata = (char*)strtok(NULL,"\t , ; ") ;
y = atof(strdata);
strdata = (char*)strtok(NULL,"\t ,;"I;
z = atof(strdata);
strdata = (char*)strtok(NULL,"\t , ; " I ;
d = atof(strdata);
Put-Data(x,y, z,d,data) ;

>
1
fclose (£IN) ;

1

int Read-XYZD-Array(char *sz-F-in, double data[] [dl)
(
FILE *£IN, *fOUT;
double x,y,z,d;
int lines;
char buffer[BUFFSIZEl, *strdata;
FIN = fopen(sz-pin,"r");
if (£IN == NULL I I data == NULL) return false; / / Error Reporting
lines = 0;
while (fgets(buffer, sizeof(buffer), FIN) != NULL) {
if (buffer[Ol != ' # ') {
strdata = (char*)strtok(buffer,"\t , ; " I ;
x = atof(strdata);
strdata = (char*)strtok(NULL,"\t , ; ") ;
y = atof(strdata);
strdata = (char*)strtok(NULL,"\t , ; " I ;
z = atof(strdata);
strdata = (char*)strtok(NULL, D\t , ; *) ;
d = atof(strdata);
dataclines1 [OI = x;
datallinesl [ll = y;
data[linesl I 2 1 = z;
dataclines1 131 = d;
lines++;

1
I
fclose(f1N) ;
return lines;

INFORMATION ON1 99

Program Listing: Write-Files. h
bool Write-MOD(char *sz-Out-File, double data11) ;
bool Write-SRF(char *sz-Out-File, double data[]) ;
void Write-NAM(void);
void Write-DIS(void);
void Write-OC(void):
void WriteJiAS6(void):
void Write-BCF6 (void) ;
void Write-LMG(void);
void Write-PCG(void) ;
void Write-HED(f1oat top-head, float gradient. float bottom-head);
void Write-IBD(void);
bool Write-GS(char *sz-Out-File, double data[], int nHead);
bool Write-AI(char *sz-Out-File, double data[], int nHead):

Program Listing: Write-Fi1es.c
#include <stdio.h>
#include <stdlib.h>
#include "boo1.h"
#include "Globa1s.h"

bool Write-MOD(char *sz-Out-File, double data[])
(
FILE *£OUT;
int i,j,k;
£OUT = fopen(sz-Out-File, "w");
for (k = 0; k < nz; kt+) (
for (j = ny-1; j >= 0; I--) (
for (i = 0; i < nx; i++) (
Eprintf(fOUT,"%10.4E ",data[V3D(i,j,k)l); I
fprintf(fOUT,"\n"); 1)

fclose(f0UT);
1

bool Write-SRF(char *sz-Out-File, double data[])
(
FILE *£OUT;
int i,j.k;
£OUT = fopen(sz-Out-File, "wn);
fprintf(fOUT,"NODE CENTERED GRID\n");
fprint£(fOUT," 85d 85d %5d %10.2f %10.2f %10.2f %10.2f %10.2f

%10.2f\nN,
nx, ny, nz,
(nx*delx), (ny*dely), (nz*delz),
x0-(delx/2), yo-(dely/2), 20-(delz/2));

for (k = 0; k < nz; k++) (
for (j = ny-1; j >= 0; j--) (
for (i = 0: i < nx; i++) {
fprintf(fOUT,"%lO.IE ",data[V3D(i,j,k)l); 1
fprintf(fOUT,w\n"); 1)

INFORMdfTlON- ONLY

bool Write-GS(char *sz-Out-File, double data[], int nHead)
(
FILE *£OUT;
int i, j,k;
£OUT = fopen(sz-Out-File, "w");
for (i = 0; i < nHead; i++) fprintf(fOUT,"GSLIB Header: nx=%d ny=%d

nz=%d\n" ,nx, ny, nz) ;
for (k = 0; k < nz; k++) (
for (j = 0; j < ny; j++) (
for (i = 0; i < nx; i++) (
fprintf(fOUT,u %10.4E\n",data[V3D(i,j.k)]); 1

11
fclose(f0UT) ;

1

bool Write-AI(char *sz-Out-File, double data[], int nHead)
(
FILE *£OUT;
int i,j,k;
£OUT = fopen(sz-Out- file,"^");
for (i = 0; i < nHead; i++) fprintf(fOUT,"X, .Y, Data\nV);
for (k = 0; k < nz; k++) (
for (j = ny-1; j >= 0; j--) (
for (i = 0; i < nx; i++) (
fprintf(fOUT,'%.2f, %.2f,

%10.4E\n".xO+(delx*i),yO+(dely*j),data[V3D(i,j,k)l);)
11

fclose (£OUT) ;
1

void Write-NAM(void)
(
char szNAMfile[2561 ;
FILE* fpNAM;
sprintf (szNAMfile,"%s.nm",szProblem);
fpNAM = fopen(szNAMfile,"w");

fprintf (fpNAM,"LIST 40 %s.lst\n", szproblem); / * listing file
* /
fprintf ifpNAM,"DIS 41 %s.dis\n", szproblem); / *

discretization file * /
fprintf (fpNAM,"BAS6 1 %s.ba6\n", szproblem); I* basic file * /
fprintf (fpNAM,"BCF6 11 %s.bc6\n", szproblem); / * block

centered flow * /
fprintf (fpNAM,"OC 42 %s.oc\n", szproblem); / * output

control * /

if (bPCG) fprintf (fpNAM,"PCG 9 %s.pcg\n", szproblem); / *
preconditioned conjugate gradients * /
if (bAMG) fprintf (fpNAM, "LMG 8 %s.lmg\n", szproblem); / * AMG

Solver Routine * /

fprintf (fpNAM, "data 4 5 % s \ n " , szIHeads); / * starting heads * /
fprintf (fpNAM,"data 47 %s\n", szIBound); / * IBOUND Array * /

fprintf (fpNAM,"data 30 %s\nV, szTrans); / * transmissivit:y
field * /
fprintf (fpNAM, "data 33 %s\nH, szAQTop); / / top of aquifer
fprintf (fpNAM,"data 34 %s\nm, szAQBot); / / bottom of aquifer
fprintf (fpNAM,"data 17 %s\n", szOHeads); / * OUTPUT heads * /
fprintf (fpNAM, "data (binary) 15 %s\n" , szBudget) ; / * budget

file for paths * /
fclose (fpNAM) ;

1

void Write-DIS(void)
(

/ * open and write the DIS array file * /
char szDISfile[2561;
FILE* fpDIS;
sprintf (szDISfile,"%s.dis",szProblem);
fpDIS = fopen(szDISfile,"w");
£print£ (fpDIS,"# Discretization file for example problem\n");
fprintf (fpDIS," 1 %3d %3d 1 1 Z\n",ny,nx); / * num

rows, num columns * /
fprintf (fpDIS," O\n") ; / * LAYCBD Flag for bottom

layer * /
fprintf (fpDIS,"CONSTANT %7.2f\nN, dely); / * DELR * /
fprintf (fpDIS,"CONSTANT %7.2f\n", delx); / * DELC * /
fprintf (fpDIS,"EXTERNAL 33 1.0 (FREE) -l\nV); / * "T0p"topof

aquifer * /
fprintf (fpDIS,"EXTERNAL 34 1.0 (FREE) -l\n8'); / * "BOTM"

bottom of aquifer * /
fprintf (fpDIS," 1.0 1 l.OE+OO SS\n"); / * PERLEN NSTP TSMULT

and Ss/tr * /
fclose (fpDIS) ;

1

void Write-OC(void)
I
char szOCfile[56];
FILE* fpOC;
sprintf (szOCfile,"%s.oc~szProblem);
fpOC = fopen(szOCfile,"w");
fprintf (fpOC."head print format O\n");
fprintf (fpOC,"head save format (%dFlO.Z)\n",nx);
fprintf (fpOC,"head save unit 17\n");
fprintf (fpOC,"compact budget files\n\n");
fprintf (fpOC, "period 1 step l\nw) ;
fprintf (fpOC," save head\n");
fprintf (fpOC," save budget\n");
fclose(fp0C);

1

void Write_BAS6(void)
(

/ * open and write the BASIC file * /
char szBAS6file[256];
FILE* fpBAS6;
sprintf (szBAS6file,"%s.ba6",szProblem);
fpBAS6 = fopen(szBAS6file,"w");

lNFORMATI NLY

fprintf (fpBAS6,"# Basic file for heterogeneous transmissivity
field\n") ;
fprintf (fpBAS6,"# Initial file for 447x613 grid\n");
fprintf (fpBAS6,"FREE\n");
fprintf (fpBAS6,"EXTERNAL 47 1 (FREE) -l\nV); / * IBOUND ARRAY

* /
fprintf (fpBAS6,"-999.00\n"); / * HNOFLO * /
fprintf (fpBAS6,"EXTERNAL 45 1.0 (FREE) -l\n"); / * STRT Head

ARRAY * /
fclose (fpBAS6);

1

void Write_BCF6(void)
f

/ * open and write the BCF file * /
char szBCF6file[256];
FILE* fpBCF6;
sprintf (szBCF6file,"%s.b~6'~,szProblem);
fpBCF6 = fopen(szBCF6file,"w");
fprintf (fpBCF6,n15 999.0 0 1.0 1 O\n") ;
fprintf (fpBCF6."OO\n");
fprintf (fpBCF6,"constant l.O\n"); / / anisotropy
fprintf (fpBCF6,"EXTERNAL 30 1.0 (FREE) -l\n"); //transmissivity

field
fclose(fpBCF6);

1

void Write-LMG (void)

/ * open and write the LMG file * /
char szLMGfile[256];
FILE* fpLMG;
sprintf (szLMGfile,"%s.lmg",szProblem);
fpLMG = fopen(szLMGfi1e. ww") ;
fprintf (fpLMG, "3.0 2.2 5.4 0 \n");
fprintf (fpLMG, "20 5 0 1.OE-13 1.0 1 \n");
fclose(fpLMG);

void Write-PCG(void)
(

/ * open and write the PCG file * /
char szPCGfile[2561;
FILE* fpPCG;
sprintf (szPCGfile,"%s.pcg",szProblem);
fpPCG = fopen(szPCGfile,"w");
fprintf (fpPCG, " 5 0 30 l\n" ;
fprintf (fpPCG," 5.00E-06 1.00E-13 1.0 0 15

O\n") ;
fclose(fpPCG);

1

void Write-HED(f1oat top-head, float gradient, float bottom-head)
{

/ * open and write the starting heads file * /
char szHEDfileI2561;
FILE* fpHED;

float current-head;
int i, j:
sprintf (szHEDfile, "%s.hedu, szproblem) ;
fpHED = fopen(szHEDfile, "w") ;

for (i=l; ienx; i++)
fprintf (fpHED," %7.3f", top-head);

fprintf (fpHED, "\nV);

for (j=l;jc=(ny-2);j++) (
current-head = top-head - gradient*((float)j*dely);
for (i=l;i<=nx;i++) {
fprintf (fpHED," %7.3f",current-head);

1
fprintf(fpHED,"\nn);

for (i=l;i<=nx;i++)
fprintf (fpHED,"% 7.3f", bottom-head);

fprintf(fpHED,"\nu);

fclose (fpHED) ;
1

void write-IBD(void)
(

/ * open and write the IBOUND array file * /
char szIBDfile[2561;
FILE *fpIBD, *fpFLOW;
int cell-f1ag.i.j;
float flow-flag;
sprintf (szIBDfile,"%s.ibd",szProblem);
fpIBD = fopen(szIBDfile,"w"):

fpFLOW = fopen(szFlow,"r");

/ * top line is all -1 for fixed head along top of model * /
cell-flag = -1;
for (i=l;i<=nx;i++) {
fscanf (fpFLOW,"%f", &flow-flag);
fprintf (fpIBD,"%3d", cell-flag*(int)flow-flag);

1

/ * top-1 to bottom+l lines are all "l" for active cells * /
/ / except for edges edge -- dbhart 02
for (j=l;j<=(ny-2);j++) {
cell-flag = -1;
fscanf (fpFLOW, "%f", &flow-flag) ;
fprintf (fpIBD,"%3d", cell-flag*(int)flow-flag);
for (i=2;i<nx;i++)
(
cell-flag = 1;
fscanf (fpFLOW,"%f", &flow-flag);
fprintf (fpIBD,"%3dM, cell-flag*(int)flow-flag);

)
cell-flag = -1;
fscanf (fpFLOW,"%$fD, &flow-flag);
fprintf (fpIBD,'%3dU, cell-flag*(int)flow-flag);
fprintf(fpIBD,"\nU);

1

/ * bottom line is -1 for fixed head * /
cell-flag = -1;
for (i=l;i<=nx;i++) (

fscanf (fpFLOW, "%f" , &flow-flag) ;
fprintf (fpIBD,"$3dw, cell-flag*(int)flow-flag);

I

fprintf(fpIBD,N\n");

fclose(fpFL0W);
fclose (fpIBD) ;

1
1

INFORMATION ONLY 105

Appendix 11: The model.sh shell

Description:
The model process as called by PEST needs to be a single command. Because of this, a
shell script was written to call all steps of the model process. It is conveniently
unnecessary to change to model script since all files are named the same once they are in
different directories.

Platform:
1.9 GHz AMD Athlon, Red Hat Linux 7.2

Program Execution:
model. sh

Program Listing: modehh
#!/bidbash

runMFZK0 {
trap "echo ' S "' SEGV

Step 1: Run FACZREAL to get the field
echo -n 'F'
fac2real < fac2real.in > /dev/null

Step 2: Add the residual field to the 1oglOOTransmissivity
field

to get the t-update field
echo -n 'A'
addmods meanT.log.mod residT.log.mod Tupdate.log.mod

Step 3: Transform t-update field back into real space from log10
space

echo -n 'X'
xform Tupdate.log.mod mod Tupdate.mod mod real

Step 4: Run modflow2k on the updated field
echo -n 'M'
mf2k Tupdate.nam > /dev/null

Step 5: Strip out the heads
echo -n 'G'
get-heads Tupdate.hed heads.measured heads.out

)

if [! -e "heads.outU I
then

echo -n 'E'
runMF2K

f i

if [! -e "heads.out"
then

echo -e '\n' "MAJOR MAJOR MAJOR ERRORS!!!!! EXITINGN
PStOP
exit

fi

echo -n ' .

Appendix 12: The pest-setup.sh shell

Description:
The program pest-setup.sh is used to run all the pre-processing directives, the PEST
calibration model, and then the post-processing. This allows the entire sequence to be
run with one command, and the output from all results can be piped to the same i'lle. It is
re-named as the realization number in each directory, allowing each directory to contain
its own copy of all commands executed.

Platform:
1.9 GHz AMD Athlon, Red Hat Linux 7.2

Program Execution:
pest-setup.sh

Program Listing: pesr-serup.sh
#!/bin/bash

xform b*r*T.mod mod meanT.log.mod mod log

get-data pilot-points.coord sgsim.'.mod pilot-points.dat

cat pilot-points.dat (awk ' [if ($4 == 2) printf("8s none factor
8.4f 0.01 6.00 zone2 1.00 -3.00 l\n",$1,$5+3.0); else printf("8s
none factor %.4f 2.00 4.00 zone1 1.00 -3.00 l\n",$1,$5+3.0); 1 '
> pcf .vpp

cat fixed-points.dat >> pilot-points.dat

cat pcf.top pcf.vpp pcf.fpp pcf.bot > pestmf2k.ps.t

pest pestmf2k

echo "STARTING IN DIRECTORY SSTARTDIR"
echo "ROOT DIRECTORY IS SROOTDIR"
echo "TF THIS IS WRONG, YOU HAVE 30s TO STOP RUN"
sleep 30s

if [! -d $(RUNDIR) I
then
mkdir ${RUNDIR)

fi

then
echo '"MAJOR ERRORS IN RUN!!!! ! '
echo "NO DIRECTORY"
echo "RUNNING PEST OVER THE NETWORK"
RUNDIR=${STARTDIR)

fi

if [SRUNDIR != SSTARTDIR]
then

cp -f $(STARTDIR)/*.mod ${RUNDIR)
CP -f ${STARTDIR)I*.S~ ${RUNDIR)

fi

CURDIR= ' pwd'
if [SRUNDIR != SCURDIR I

then
echo "MAJOR ERRORS IN RUN!!!! ! "
echo "EXITING WITH ERRORS"
echo " I AM LOST ! ! ! "
echo
exit

f i

tempchek points.tp1 points.dat pestmf2k.par
./model.sh
cp -f ${ROOTDIR)/def-dtrk/* $(RUNDIR)
./model.sh
mv -f culebra.top fort.33
mv -f culebra.bot fort.34
dtrkcdb control.inp Tupdate.bud 1980.trk dtrk.dbg
dtrkcdb wippctrl.inp Tupdate.bud 1980-wipp.trk dtrk.dhg

echo "ALL FINISHED!"

INFORMATION ONLY

Chavez, Mario Joseph
L

From:
Sent:
To:
Subject:

James, &on C
Tuesday, May 20,2003 10:02 AM
Chavez, Mario Joseph
RE: Task 3 AP-88 Conditioning of Base T-Fields to Steady State Heads

Hi Mario,
I give you signature authority for Task 3 AP-88 Conditioning of Base T-Fields to Steady State Heads.
Thanks,
Scon James
Scott C. James, Ph.D.
Sandia National Laboratories
Geohydrology Department
P.O. Box 5800
Albuquerque, NM 87185-0735
Phone: (505) 845-7227
Fax: (505) 844-7354

-----Original Message-----
From: Chavez, Mario loseph
Sent: Tuewlay, May 20,2003 11x46 AM
To: James, Scott C
Subject: Task 3 AP-88 Conditioning of Base T-Fields to Steady State Heads

Would you please send me signature authority on the subject document--thanks.

Mario

JNFORMATION ONLY

Chavez, Mario Joseph

From:
Sent:
To:
Subject:

McKenna, Sean A
Monday, May 19,2003 1 :55 PM
Chavez, Mario Joseph
Task 3 Analysis Package

Mario, I hereby grant you authority to sign for me on the Task 3 Analysis Package.

Sean

Sean A. McKenna Ph.D.
Geohydrology Department
Sandia National Laboratories
PO Box 5800 MS 0735
Albuquerque, NM 87185-0735
ph: 505 844-2450

Chavez, Mario Joseph
I \

From:
Sent:
To:
Subject:

Hart, David Blaine u
Monday, May 19,2003 2:13 PM
Chavez, Mario Joseph
Analysis Package

Mario, I hereby grant you authority to sign for me on the Task 3 Analysis Package

David

David Hart
dbhart@sandia.gov
dbhart@cc.usu.edu

