Sandia National Laboratories Waste Isolation Pilot Plant ## Calculation of MgO Safety Factors for the WIPP Compliance Recertification Application and for Evaluating Assumptions of Waste Homogeneity in WIPP PA BOE 1.3.5.4.3 A | Author: | Anna C. Snider, 6822 | $\frac{9/11/63}{\text{Date}}$ | |----------------------|---|----------------------------------| | Technical Reviewer: | L.H. Brush
Laurence H. (Larry) Brush, 6822 | 9/11/02
Date | | Technical Reviewer: | Mathalie A. Wall, 6822 | 9/11/03
Date | | QA Reviewer: | Marie J. Chavez, 6820 | $\frac{9/11/0^{2}}{\text{Date}}$ | | Management Reviewer: | Mark J. Rigali 6822 | $\frac{9/n/03}{\text{Date}}$ | WIPP: 1.3.5. 4.3: PA10A-L: 530218 on Only ### **TABLE OF CONTENTS** | 1 ABBREVIATIONS, ACRONYMS, ETC. | | |---|----| | 2 REVISION HISTORY | | | 3 BACKGROUND | | | 4 CALCULATIONS | | | 5 RESULTS | | | 6 REFERENCES | | | APPENDIX A: MgOsafetyfactorEPAleigh.XLS | 14 | | APPENDIX B: MgOsafetyfactorSNLleigh.XLS | | | APPENDIX C: MgOsafetyfactorEPAleigh8panel.XLS | | | APPENDIX D: MgOsafetyfactorSNLleigh8panel.XLS | | | APPENDIX E: EPA13.5CPRpanelXupdate.XLS | 18 | | APPENDIX F: SNL13.5CPRpanelXupdate.XLS | | | APPENDIX G: EPA54CPRpanelX.XLS | 20 | | APPENDIX H: SNL54CPRpanelX.XLS | | | APPENDIX I: MgOsafetyfactorSNLPAcalcs.XLS | | ### 1 ABBREVIATIONS, ACRONYMS, ETC. Table 1 defines the abbreviations, acronyms, etc., used in this report. | Abbreviation,
Acronym, Etc. | Definition | |--------------------------------|--| | AMWTP | Advanced Mixed Waste Treatment Project | | BRAGFLO | Brine and Gas Flow, a WIPP PA code | | brucite | $Mg(OH)_2$ | | С | carbon | | CCA | (WIPP) Compliance Certification Application | | СН | contact-handled (transuranic waste) | | CPR | cellulosics, plastics, and rubbers | | CO_2 | carbon dioxide | | CRA | (WIPP) Compliance Recertification Application | | DOE | (U.S.) Department of Energy | | EPA | (U.S.) Environmental Protection Agency | | ERDA-6 | Energy Research and Development Administration (WIPP Well) 6, | | | a synthetic brine representative of fluids in Castile brine reservoirs | | g | gram(s) | | gal | gallon(s) | | GWB | Generic Weep Brine, a synthetic brine representative of | | | intergranular Salado brines | | H, H^{+} | hydrogen, hydrogen ion | | hydromagnesite | $Mg_4(CO_3)_3(OH)_2 \cdot 3H_2O$ or $Mg_5(CO_3)_4(OH)_2 \cdot 4H_2O$ | | IN-BN-510 | the AMWTP supercompacted waste stream | | INEEL | Idaho National Engineering and Environmental Laboratory | | kg | kilogram(s) | | lb | pound(s) | | m^3 | cubic meter(s) | | MgO | magnesium oxide, used to refer to the WIPP engineered barrier, | | | which includes periclase as the primary constituent and | | _ | ~5-10 wt % impurities | | mol | mole(s) | | N | nitrogen | | NO_3 | nitrate ion, nitrate | | | | | Abbreviation, Acronym, or Initialism | Definition | |--------------------------------------|---| | О | oxygen | | PA | performance assessment | | periclase | pure, crystalline MgO, the primary constituent of the WIPP engineered barrier | | RH | remote-handled (transuranic waste) | | S | sulfur | | SNL | Sandia National Laboratories | | SO ₄ ² | sulfate ion, sulfate | | SWB(s) | standard waste box(es) | | TDOP(s) | ten-drum overpack(s) | | TRU | transuranic | | WIPP | (U.S. DOE) Waste Isolation Pilot Plant | #### 2 REVISION HISTORY This analysis report has three objectives: (1) correction of the MgO safety factors for contact-handled (CH) and remote-handled (RH) transuranic (TRU) waste emplaced homogeneously in all 10 panels of the Waste Isolation Pilot Plant (WIPP); (2) correction of the safety factors calculated previously for supercompacted waste (waste stream IN-BN-510) from the Advanced Mixed Waste Treatment Project (AMWTP) at the Idaho National Engineering and Environmental Laboratory (INEEL) in a single panel for the analysis by Hansen et al. (2003), and the first calculation of additional single-panel safety factors for that analysis; (3) the first calculation of a safety factor for IN-BN-510 emplaced homogeneously in eight panels of the repository. In this report, the MgO safety factor is defined as the total quantity of MgO to be emplaced in a panel or the repository divided by the quantity of CO₂ that would be produced by complete microbial degradation of cellulosics, plastics, and rubbers (CPR) in the waste or waste containers in a panel or the repository. Correction of the MgO safety factors for a homogeneous, 10-panel repository is necessary because Lott (2003) corrected Crawford's (2003) estimates of the quantities of CPR in the CH- and RH-TRU waste and waste containers to be emplaced in the WIPP; and because Leigh and Sparks-Roybal (2003) corrected the estimates by Leigh and Crawford (2003) of the quantities of NO₃ and SO₄² to be emplaced in the WIPP. The safety factors for a homogeneous, 10-panel repository reported herein replace those of Snider (2003), which were based on the Crawford's (2003a) estimates of CPR and on Leigh and Crawford's estimates of NO₃ and SO₄² in the inventory. Meanwhile, Leigh (2003a, b) estimated the quantities organic ligands in a hypothetical "Panel X" for the analysis by Hansen et al. (2003). The objective of this analyses are to assess the impact of emplacing 100-gal drums of IN-BN-510 on the validity of using assumptions of waste homogeneity in WIPP PA. Leigh (2003a, b) defined two cases for this analysis: (1) a realistic case, in which the portion of the total volume of the CH TRU waste in Panel X occupied by IN-BN-510 is equal to the portion of the total volume of the CH waste in Panel 1 occupied by the largest waste stream in Panel 1, incinerator ash and process residue (waste stream RF 118.01) from the Rocky Flats Environmental Technology Site (RFETS); (2) a conservative case, in which the portion of CH waste containers in Panel X from INEEL is equal to the portion of the containers in Panel 1 from RFETS, the site that shipped the most containers to Panel 1. For both the realistic and the conservative cases, Leigh (2003a, b) assumed that the ratio of each type of CH waste container with INEEL waste in Panel X to the total quantity of INEEL CH waste containers in Panel X is equal to the ratio of the total quantity of that type of CH waste container to be shipped from INEEL to the total quantity of all the CH waste containers to be shipped from INEEL. Finally, Leigh (2003b) assumed that the total volume of CH waste in Panel X is equal to 1.685×10^5 m³ $\times 0.1044 = 17,590$ m³, in which 1.685×10^5 m³ is the total volume of CH waste to be emplaced in the WIPP and 0.1044 is the portion of the total WIPP inventory in a seven-room, PA panel (Lappin et al., 1989, Table 4-7). Leigh (2003a, 2003b) used the assumptions described above to calculate the following for a realistic and a conservative Panel X: (1) the quantities of INEEL waste containers with IN-BN-510 and with uncompacted waste, and the quantity of containers with waste from all of the other sites; (2) the quantities of CPR and of NO_3 and SO_4^2 in each type of container; (3) the total quantities of CPR and of NO_3 and SO_4^2 in Panel X. This report includes calculation of MgO safety factors for a homogeneous, 10-panel repository; a realistic Panel X, a conservative Panel X (Leigh, 2003a; 2003b), and other loadings of IN-BN-510 for the analysis by Hansen et al. (2003); and for IN-BN-510 emplaced homogeneously in eight panels. This work was carried out under the task entitled "Chemical Conditions in the Repository" in Table 2 of Hansen et al. (2003). This report supercedes Snider (2003). #### 3 BACKGROUND CPR are present in the contact handled (CH) and remote-handled (RH) TRU waste that is being or will be emplaced in the WIPP. If significant microbial activity occurs in the repository, microorganisms would degrade CPR by the following, sequential reactions (Brush, 1990; Brush 1995; Wang and Brush, 1996; Francis et al., 1997): $$C_6H_{10}O_5 + 4.8H^+ + 4.8NO_3^- \rightarrow 7.4H_2O + 6CO_2 + 2.4N_2;$$ (1) $$C_6H_{10}O_5 + 6H^+ + 3SO_4^{2-} \rightarrow 5H_2O + 6CO_2 + 3H_2S;$$ (2) $$C_6H_{10}O_5 + H_2O \rightarrow 3CH_4 + 3CO_2.$$ (3) Microbial degradation of CPR according to Reaction 1 (denitrification) and Reaction 2 (SO₄²⁻ reduction) would produce 1.00 mol of CO₂ per mol of organic C consumed; Reaction 3 (methanogenesis) would produce 0.500 mol of CO₂ per mol of organic C. For the CCA, Wang and Brush (1996) calculated that Reaction 3 would account for over 95% of the (possible) microbial gas generation in the WIPP. They concluded that methanogenesis would be much more important than denitrification and SO₄²⁻ reduction because the quantity of CPR greatly exceeded those of NO₃⁻ and SO₄²⁻ at the time of the CCA (U.S. DOE, 1996a). Based on a total quantity of 77,640 metric tons of MgO to be emplaced in the repository in supersacks and minisacks (U.S. DOE, 1996b, Chapter 3) and an effective CO₂ yield consistent with the quantities of CPR, NO₃⁻, and SO₄²⁻ estimated by U.S. DOE (1996a), the MgO safety factor was 3.73 at the time of the CCA (Brush et al., 2002). The U.S. Environmental Protection Agency (EPA), however, calculated an MgO safety factor of 1.95 at the time of the CCA by assuming that microbial degradation of 1.00 mol of organic C would yield 1.00 mol of CO₂ (Brush et al., 2002). In July 2000, the DOE proposed the elimination of the MgO minisacks to reduce the risk of injury associated with manual emplacement of the minisacks, and to further reduce worker exposure to radiation. The EPA approved this change in January 2001 (Marcinowski, 2001). Elimination of the minisacks has resulted in a 15% reduction in the total mass of MgO to be emplaced in the repository (from 77,640 to about 67,123
metric tons), and has reduced the safety factor from 3.73 to 3.23 assuming the proportions of CPR degraded by Reactions 1, 2, and 3 calculated by Brush and Wang (1996), or from 1.95 to 1.67 assuming that microbial degradation of 1.00 mol of organic C would yield 1.00 mol of CO₂ (Brush et al. 2002). Since then, the DOE has not requested any further reductions in the MgO to be emplaced in the WIPP. ### **4 CALCULATIONS** All calculations were done using the Microsoft EXCEL 2000 spreadsheet program running Windows 2000. **EXCEL** files are entitled The "MgOsafetyfactorEPAleigh.XLS," "MgOsafetyfactorEPAleigh8panel.XLS," MgOsafetyfactorSNLleigh.XLS," "MgOsafetyfactorSNLleigh8panel.XLS," EPA13.5CPRpanelX.XLS," "SNL13.5CPRpanel.XLS," "EPA54CPRpanelX.XLS," "SNL54panelX.XLS," and "MgOsafetyfactorSNLPAcalcs.XLS." All of the files with "SNL" in the title assume that methanogenesis, which yields 0.50 mol of CO₂ per mol of C degraded (see Reaction 3 in Section 3, Introduction), is the dominant microbial respiratory pathway. The first four files listed above are used to calculate the MgO safety factor for a homogeneous repository with either 10 panels or 8 panels. The safety factor is calculated for a homogeneous 10-panel repository because this is the basis for "baseline" PA calculations such as those used for the CCA and the CRA; it is also calculated for a homogeneous, 8-panel repository because emplacement of waste in Panel 1 has been completed and because it is unlikely that any AMWTP waste will be shipped to WIPP prior to filling Panel 2. The next four files calculate safety factors for the realistic and the conservative Panel X defined by Leigh (2003a, 2003b) (see Section 2, Revision History, above). The final file calculates safety factors for Panel X with a range of AMWTP waste that varies from 0 to 100%. The EXCEL files MgOsafetyfactorEPAleigh.XLS (Appendix A) MgOsafetyfactorSNLleigh.XLS (Appendix B) each contain four sheets. The sheet tabs in each file are labeled "MgO Dissolved in Brine," "CH CPR," "RH CPR," and "Safety The files MgOsafetyfactorEPAleigh8panel.XLS (Appendix C) and MgOsafetyfactorSNLleigh8panel.XLS (Appendix D) each contain five sheets. The tabs are labeled "MgO Dissolved in Brine," "CPR Calcs," "CH CPR," "RH CPR," and The files EPA13.5CPRpanelX.XLS (Appendix SNL13.5CPR panelX.XLS (Appendix F), EPA54CPR panelX.XLS (Appendix G), SNL54panelX.XLS (Appendix H) each contain five sheets: "MgO Dissolved in Brine," "PA Supersack Ratio," "CH CPR," "RH CPR," and "Safety Factor." The final file, MgOsafetyfactorSNLPAcalcs (Appendix I), contains eight sheets. The sheet tabs are labeled "MgO Dissolved in Brine," "Conservative Case," "CH CPR," "INEEL CPR," "RH CPR," "Safety Factors," "PA Request (EPA)," and "PA Request (DOE)." Detailed descriptions of each of the four sheets present in all nine of these files (MgO Dissolved in Brine, CH CPR, RH CPR, and Safety Factor) are contained in Snider (2003). This report contains brief descriptions of each of these sheets. The first sheet in all of the files calculates the number of moles of MgO that would dissolve in GWB and ERDA-6. This is critical to the calculations because in the event of a borehole intrusion, MgO would be lost by dissolution and transport up the borehole, thus reducing the amount available to consume CO2. Therefore, additional moles of MgO must be added to the final calculated amount in order to account for this possibility. To begin with, the initial and final concentrations of MgO were determined in both GWB and ERDA-6 from EQ3NR calculations performed by Yongliang Xiong. (These input and output files are contained in Snider, 2003.) The second sheet in files MgOsafetyfactorEPAleigh.XLS and MgOsafetyfactorSNLleigh.XLS and the third sheet in all of the other files determines the number of moles of CO₂ that could be produced from complete microbial degradation of the CPR in CH TRU waste. Lott (2003) provided the average densities of CPR per drum of CH waste. In the file with SNL in the title, the second half of this sheet calculates the effects of including the total amounts of NO₃ and SO₄² in the corrected, updated inventory (Leigh and Sparks-Roybal, 2003). The relative amounts of CPR, NO₃, and SO_4^{2-} in the inventory determine the proportions of CPR degraded by denitrification, SO_4^{2-} reduction, and methanogenesis; see Reactions 1, 2, and 3 in Section 3, Introduction. To determine the percentages of the total moles of CO_2 produced by Reactions 1, 2, and 3, the total moles of NO_3^- and SO_4^{2-} are divided by the total moles of CO_2 produced from the CPR multiplied by the stoichiometric ratio of C to NO_3^- or SO_4^{2-} , which is finally multiplied by 100. The moles left over are produced by methanogenesis. The final moles of CO_2 that could be produced from the CPR is equal to ((the molar % of cellulosics degraded by sulfate reduction) + (the molar % of cellulosics degraded by methanogenesis/2)) x total moles of organic carbon (C). The second sheet in files MgOsafetyfactorEPAleigh8panel.XLS and MgOsafetyfactorSNLleigh8panel.XLS, is entitled "CPR Calcs." This sheet takes the total CPR in kilograms for a 10-panel repository and determines the mass of CPR that will fill an 8-panel repository, assuming that Panels 1 and 2 are sealed by the time WIPP starts to emplace AMWTP waste. All INEEL waste will be distributed evenly throughout the eight remaining panels. Row 13 is the mass of CPR in INEEL waste determined by adding the 100-gal drums of supercompacted AMWTP waste + the ten-drum overpacks (TDOPs) of uncompacted AMWTP waste + the standard waste boxes (SWBs) of uncompacted AMWTP waste. Row 16 displays the mass of non-INEEL waste from all other DOE sites that will be distributed in an eight panel repository by subtracting the two seven-room panels in which waste emplacement has been completed (Panels 1 and 2) from the inventory. These numbers were calculated by taking the mass of CPR from Row 10 (55-gal drums from INEEL and all other sites) × CPR (row 10) × the proportion of the total WIPP inventory in tow seven-room panels (2 × 0.1044). Row 18 is the total mass of CPR that will be distributed amongst the eight panels. The second half of the sheet, only present in MgOsafetyfactorSNLleigh.XLS, repeats the same arithmetic steps just described for the CPR throughout eight panels for the masses of NO₃ and SO₄². The second sheet, PA Supersack Ratio, in files EPA13.5CPRpanelX.XLS, SNL13.5CPRpanelX.XLS, EPA54CPRpanelX.XLS, and SNL54CPRpanelX.XLS determines the ratio of the number of MgO supersacks in a seven-room panel as defined for PA calculations to the number of MgO supersacks expected in a seven-room panel based on the total amount of MgO approved by the EPA when it allowed the DOE to eliminate MgO minisacks (Marcinowski, 2001). A seven-room panel as defined for PA contains 0.1044 × the total CH and RH TRU waste inventory (Lappin et al., 1989, Table 4-7). This implies that there are $0.1044 \times 169{,}000 \text{ m}^3 = 17{,}591 \text{ m}^3 \text{ of CH}$ waste in a seven-room, PA panel (Leigh 2003b). This in turn implies that there are $17,591 \text{ m}^3 \div 0.208 \text{ m}^3/55 \text{ gal drum} = 84,574 55\text{-gal drums of CH waste in a seven-room}$ PA panel; that there are 12,081 seven-packs of 55-gal drums in a seven-room, PA panel; and that there are 4027 MgO supersacks in a seven-room, PA panel. (One MgO supersack is emplaced atop each stack of three seven-packs of 55-gal drums, each stack of three three-packs of 100-gal drums, each stack of three SWBs, or each TDOP.) Because each MgO supersack contains 4200 lb or 1905 kg of MgO (WTS, 2002), there are 7671 metric tons of MgO in a seven-room, PA panel. On the other hand, a total of 66,000 metric tons of MgO in the WIPP implies that there are 0.1044 × 67,132.8 = 7008.7 metric tons of MgO or 3679 MgO supersacks in a seven-room panel based on the mass of MgO approved by the EPA (Marcinowski, 2001). Therefore, a factor of 1.095 (Row 16 in the sheet entitled "Safety Factor") was obtained from the ratio of 4027 MgO supersacks in a seven-room, PA panel to 3679 MgO supersacks in a seven-room panel based on Marcinowski (2001). This factor of 1.095 is used to scale up the mass of MgO based on Marcinowski (2001) (Row 15 in Safety Factor) for the calculations involving the realistic and the conservative Panel X defined by Leigh (2003a, 2003b). The third sheet in the files MgOsafetyfactorEPAleigh.XLS and MgOsafetyfactorSNLleigh.XLS, and the fourth sheet in all of the other files (except MgOsafetyfactorSNLPAcalcs.XLS), lists the CPR inventory for RH waste and the total moles of CO₂ that could be produced from possible microbial degradation of this CPR. The final sheet in all of the files (except file MgOsafetyfactorSNLPAcalcs.XLS) shows how the safety factors were determined. A different safety factor was determined for each file based on the previously stated assumptions of CO₂ yields and the definition of Panel X (realistic or conservative). The safety factors were determined by adding the total possible moles of CO₂ that could be produced by complete degradation of CPR to the total moles of MgO dissolved in the ERDA-6 brine. The final result is divided into the total moles of MgO in Panel X or the WIPP. The final file, MgOsafetyfactorSNLPAcalcs.XLS, fulfills a request by the PA personnel for information to be used in the computer code Brine and Gas Flow (BRAGFLO). This file contains sheets that carry out calculations that have not been described previously. However, the file does contain the four sheets that are present in all the previously mentioned EXCEL files. The second sheet in the file, labeled Conservative Case, contains two parts. The top half of the sheet contains the total mass of CPR in Panel X, the mass of CPR per container type, and the total mass of CPR present in Panel X for each container. The total 55-gal mass represents all the CH waste from all the waste
generation and storage sites, excluding INEEL. The three other waste containers (100-gal, SWBs and TDOPs) added together give the total mass of waste in Panel X from INEEL. To the right of the CPR table are additional columns containing such information as the emplaced waste volume, the percentage of each type of container, and the percentage by volume that each type of waste occupies in Panel X. The number of containers and container volumes are from Leigh (2003a, 2003b). The numbers of containers are multiplied by the mass of CPR per container to get the total mass of CPR in Panel X. The waste volume was determined by taking the number of containers and multiplying by individual container volumes. The lower half of the spreadsheet lists the masses of NO₃⁻ and SO₄²⁻ in Panel X, as total, per container, and total for the containers in the repository. Again, the total masses in 55-gal drums represent all the NO₃⁻ and SO₄²⁻ present in the CH waste excluding INEEL. The masses in 100-gal drums, SWBs, and TDOPS were added together to obtain the total masses of NO₃⁻ and SO₄²- present in INEEL waste. The fourth sheet, INEEL CPR, is calculated in the same fashion as the third (CH CPR) and fifth (RH CPR) sheets, which have been previously described. The masses of CPR used in the fourth sheet come from masses calculated from the sheet Conservative Case. The sixth and seventh sheets, PA Request (EPA) and PA Request (DOE) contain a table of data to be used in BRAGFLO. The table is based on 1.00 m³ of waste starting from the conservative case where 54% of containers in panel X contain INEEL supercompacted and nondebris waste. As the non-INEEL waste is removed from 1.00 m³ the INEEL waste is emplaced in the resulting void volume. The safety factor is obtained for each waste:INEEL waste ratio. The table is presented in the following manner: - 1. Columns A and C are volumetric proportions of both CH waste from all sites except INEEL and waste from INEEL. Each row adds up to 1.00 m³. - 2. Columns B and D are scaled percent of the volume for each waste group starting from the conservative case. - 3. Columns E and F are the number of moles of non-INEEL CH waste or INEEL waste present in each volume. The initial moles of CPR in non-INEEL CH waste, starting from the conservative case, was obtained from the sheet CH CPR (E37), whereas the initial moles of INEEL waste were obtained from sheet INEEL CPR (E40). The moles in both cases were scaled up or down accordingly. - 4. For sheet PA Request (DOE), columns G through K and columns L through P are calculations that determine the percent degradation from the three possible pathways, denitrification, SO_4^{2-} reduction, and methanogenesis, and are scaled accordingly for the changes in volume for each waste type. Column G is the original moles of CO₂ produced for non-INEEL waste before correction for denitrification, SO_4^{2-} reduction, and methanogenesis. The original moles are found in sheet CH CPR, Column I, Row 9. The moles are multiplied by Column B (the scaled vol %). Column H, fraction % of denitrification is computed by: (moles of nitrate/original moles of CO₂ produced from CPR) x the stoichiometeric ratio (6/4.8) x 100. Column I, fraction % of sulfate reduction is calculated as above, except the stoichiometeric ratio is 2. The fraction % or methanogenesis (column J) subtracts the total of column H and I from 100. Column K calculates the total moles of CO₂ produced from CH waste accounting for denitrification, sulfate reduction and methanogenesis by: (fraction % denitrification/100) + (fraction % SO₄² reduction/100) + (fraction % methanogensis/100/2) x column G. Methanogenesis is divided by 2 because 1.00 mole of C produces 0.50 mole CO2. Columns L through P are calculated in the same way except the moles of CO₂ are from INEEL waste only. - 5. Column Q from sheet PA Request (DOE) and column G from sheet PA Request (EPA) displays how many moles of MgO will be emplaced in one panel of the repository (the current design-basis quantitiy of MgO). - 6. Column R from PA Request (DOE) and column H from PA Request (EPA) is the total moles of CO₂ that will be produced from all the CPR in Panel X. The column is an addition of columns K and P and the amount of dissolved MgO that could be lost up a borehole and the amount of CO₂ produced from RH waste. 7. The safety factors are listed in Column S in the PA Request (DOE) sheet and Column I in the PA Request (EPA) sheet. ### **5 RESULTS** The corrected, updated quantities of CPR, NO₃⁻, and SO₄²⁻ used in these current calculations are listed in Table 1 below. Table 1. Densities and Masses of CPR, Nitrate, and Sulfate. | - | Cellulosics | Plastics | Rubbers | Plastic liner | Nitrates | Sulfates | Waste Volume | |---------------------------------|--|---|---|--|---|--|--| | | | | Homog | eneous | | | | | CH
RH | <u>kg/m³</u>
5.80E+01
4.50E+00 | <u>kg/m³</u>
1.40 E +01
4.90E+00 | kg/m ³
4.20E+01
3.10E+00 | kg/m³
1.60E+01
1.40E+00 | <u>kg</u>
2.50E+06
0.00E+00 | <u>kg</u>
4.21E+05
0.00E+00 | <u>m³</u>
1.69E+05
7.08E+03 | | | | | Pan | el X | | | | | Realistic
Conservative
RH | kg
9.34E+05
1.56E+06
4.50E+00 | kg
6.38E+05
1.08E+06
4.90E+00 | kg
2.23E+05
4.02E+05
3.10E+00 | kg
2.86E+05
2.32E+05
1.40E+00 | <u>kg</u>
2.31E+05
1.56E+06
0.00E+00 | kg
1.20E+04
1.08E+06
0.00E+00 | <u>m³</u>
1.76E+04
1.76E+04
7.39E+02 | The MgO safety factors and other results obtained from these calculations are described briefly below. In the following discussion, "DOE safety factor" refers to an MgO safety factor calculated using the quantity of CO_2 that would be produced by complete microbial degradation of CPR in a panel or the repository by dentirification, SO_4^{2-} reduction, and methanogenesis (see Reactions 1, 2, and 3 in Section 3, Background) in proportion to the molar quantities of NO_3^- , SO_4^{2-} , and $CPR + (NO_3^- + SO_4^{2-})$, respectively in a panel or the repository; and "EPA safety factor" refers to a safety factor calculated by assuming a quantity of CO_2 that would be produced by complete degradation of the CPR by denitrification and/or SO_4^{2-} reduction. For a homogeneous, 10-panel repository, 4.72% of the total mass of CPR would be degraded by denitrification, 0.82% by $SO_2^{2^2}$ reduction, and 94.46% by methanogenesis; and the DOE safety factor is 2.45. The EPA safety factor is 1.30. For a realistic Panel X, 4.48% of the total mass of CPR would be degraded by denitrification, 0.66% by SO_2^{2} reduction, and 94.86% by methanogenesis; and the DOE safety factor is 2.66. The EPA safety factor is 1.39. These safety factors are higher than those calculated for a homogeneous, 10-panel repository (see above) because the amount of MgO assumed to be emplaced in Panel X in this report, 7670 metric tons, is 10.9% higher than the amount consistent with a 10-panel repository that contains 74,000 short tons of MgO, the amount cited by the EPA when it approved the removal of MgO minisacks (Marcinowski, 20001, MgO Mini-sack Review, Table 1). For a conservative Panel X, 3.00% of the total mass of CPR would be degraded by denitrification, 0.16% by SO_2^{2-} reduction, and 96.84% by methanogenesis; and the DOE safety factor is 2.02. The EPA safety factor is 1.05. For an eight-panel, homogeneous repository, 4.87% of the total mass of CPR would be degraded by denitrification, 0.90% by $SO_2^{2^2}$ reduction, and 94.23% by methanogenesis; and the DOE safety factor is 2.14. The EPA safety factor is 1.14. ### **6 REFERENCES** - Brush, L.H. 1990. Test Plan for Laboratory and Modeling Studies of Repository and Radionuclide Chemistry for the Waste isolation Pilot Plant. SAND90-0266. Albuquerque, NM: Sandia National Laboratories. - Brush, L.H. 1995. "Systems Prioritization Method Iteration 2 Baseline Position Paper: Gas Generation in the Waste Isolation Pilot Plant." Unpublished report, March 17, 1995. Albuquerque, NM: Sandia National Laboratories. - Brush, L.H., A.C. Snider, C.R. Bryan, and Y. Wang. 2002. "The Use of MgO as an Engineered Barrier in the WIPP," Sixth International Workshop on Design and Construction of Final Repositories: Backfilling in Radioactive Waste Disposal, Brussels, 11-13 March 2002. Brussels, Belgium: Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS). - Crawford, B.A. 2003. "Waste Material Parameters Deliverable in Support of WIPP CRA." Unpublished letter to C.D. Leigh, April 2, 2003. Carlsbad, NM: Los Alamos National Laboratory. ERMS 527270. - Francis, A.J., J.B. Gillow, and M.R. Giles. 1997. *Microbial Gas Generation under Expected Waste Isolation Pilot Plant Repository Conditions*. SAND96-2582. Albuquerque, NM: Sandia National Laboratories. - Gross, M.B. 2002. "Assessments of Impacts on Long-Term Performance from Supercompacted Wastes Produced by the Advanced Mixed Waste Treatment Project." Unpublished report, December 6, 2002. Carlsbad, NM: U.S. Department of Energy Carlsbad Field Office. - Hansen, C.W., L.H. Brush, F.D. Hansen, G.R. Kirkes, and J.S. Stein. 2003. "Analysis Plan for Evaluating Assumptions of Waste Homogeneity in WIPP Performance Assessment." Unpublished analysis plan, AP-107, Rev. 1. Carlsbad, NM: Sandia National Laboratories. ERMS 531067. - Lappin, A.R., R.L. Hunter, D.R. Garber, and P.B. Davies, eds. 1989. Systems Analysis, Long-Term Radionuclide Transport, and Dose Assessments, Waste Isolation Pilot Plant (WIPP), Southeastern New Mexico; March 1989. SAND89-0462. Albuquerque, NM: Sandia National Laboratories. - Leigh, C.D. 2003a. "Estimate of
Cellulosics, Plastics, and Rubbers in a Single Panel in the WIPP Repository in Support of AP-107, Supercedes ERMS #530959." Unpublished analysis report, September 4, 2003. Carlsbad, NM: Sandia National Laboratories. ERMS 531324. - Leigh, C.D. 2003b. "Estimate of Oxyanion Masses in a Single Panel in the WIPP Repository in Support of AP-107, supercedes ERMS #530988." Unpublished analysis report, September 4, 2003. Carlsbad, NM: Sandia National Laboratories. ERMS 531332. - Leigh, C.D., and B.A. Crawford. 2003. "Final Estimate of Oxyanion Mass in TRU Waste for Disposal in WIPP for the Compliance Recertification Application. Supercedes ERMS #529604 and ERMS #529592." Unpublished analysis report, June 13, 2003. Carlsbad, NM: Sandia National Laboratories. ERMS 529856. - Leigh, C.D., and L. Sparks-Roybal. 2003. "Final Estimate of Oxyanion Mass in TRU Waste for Disposal in WIPP for the Compliance Recertification Application, Supercedes ERMS 529856," Rev. 1. Unpublished analysis report, August 22, 2003. Carlsbad, NM: Sandia National Laboratories. ERMS 530984. - Lott, S. 2003. "Response to the Request for Waste Material and Container Material Densities from TWBID Revision 2.1, Version3.12, Data Version D.4.08." Unpublished letter to C.D. Leigh, August 15, 2003. Carlsbad, NM: Los Alamos National Laboratory. ERMS 530767. - Marcinowski, F. 2001. Untitled letter with attachments from F. Marcinowski to I.R. Triay approving the DOE's proposal to eliminate MgO minisacks from the WIPP, January 11, 2001. Washington, DC: U.S. Environmental Protection Agency Radiation Protection Division. ERMS 519362. - Peterson, A.C. 1996. "Mass of MgO That Could Be Added as Backfill in the WIPP and the Mass of MgO Required to Saturate the Brine and React with the CO₂ Generated by Microbial Processes". Albuquerque, NM: Sandia National Laboratories. ERMS 236214. - Snider, A.C. 2002. "MgO Studies: Experimental Work Conducted at SNL/Carlsbad. Efficacy of Premier Chemicals MgO as an Engineered Barrier," "Sandia National Laboratories Technical Baseline Reports, WBS 1.3.5.3, Compliance Monitoring; - WBS 1.3.5.4, Repository Investigations, Milestone RI110, January 31, 2002." Carlsbad, NM: Sandia National Laboratories. ERMS 520467. 3.1-1 to 3.1-18. - Snider, A.C. 2003. "Calculation of the Quantities of MgO Required for Consumption of CO₂ for the WIPP Compliance Recertification Application." Unpublished analysis report, July 3, 2003. Carlsbad, NM: Sandia National Laboratories. ERMS 530220. - U.S. DOE. 1996a. Transuranic Waste Baseline Inventory Report, Rev. 3. DOE/CAO-95-1121. Carlsbad, NM: U.S. Department of Energy Carlsbad Area Office. - U.S. DOE. 1996b. Title 40 CFR Part 191 Compliance Certification Application for the Waste isolation Pilot Plant, Vol. 1-21. Carlsbad, NM: U.S. Department of Energy Carlsbad Area Office. - Wang, Y. and L.H. Brush. 1996. "Estimates of Gas-Generation Parameters for the Long-Term WIPP Performance Assessment." Unpublished memorandum to M.S. Tierney, January 26, 1996. Albuquerque, NM: Sandia National Laboratories. ERMS 231943. - WTS. 2002 "Specification for Prepackaged MgO Backfill." Unpublished specification, D-0101, Rev. 4. Carlsbad, NM: Westinghouse Electric Corp. TRU Solutions. ## APPENDIX A: MgOsafetyfactorEPAleigh.XLS # MgO Dissolved in brink | | A | В | С | D | E | F | G | Н | |----------------------------|--------------------------------|-------------------|----------------------|---------------------|-------------------|--|-------------|-------| | 1_ | | , | | | | | | | | 2 | | | | | | | | | | 3_ | | | | | | | | | | 5 | GWB | Moles of MaC | dissolved in brine | | | | | | | 6 | I GWD | Moles of MgC | dissolved in brine | ; 5
 | <u> </u> | | | - | | 7 | | Initial and final | conce by | EQ3 | done by | Yongliang Xiong | | | | 8 | Concentration of Mg in brine | mila and ma | COLICG DY | | done by | Torigilarig Xiorig | | | | 9 | Concentration of the art State | | | | Molality to mo | larity ratio factor | | 1.146 | | 10 | | Initial Conc | Final Conc in equil | Final Conc | 1 | | | 1 | | 11 | | Mol/L | with MgO, mol/Kg | mol/L | | | | | | 12 | Mg | 1.000 | 7.8996E-01 | 6.89E-01 | | | | | | 13 | | | | | | | | | | 14 | | GWB ends up | with less Mg++ in so | olution and will be | e neglected for f | urther calcs | 45. | | | 15 | | <u></u> | | | | | | | | 16 | | | | | Molality to mo | larity ratio factor | | 1.137 | | | ERDA-6 | Calculated by | EQ3 | | ļ | 1 | | | | 18 | | | | | | ra Pari Nilinano con a recentinga | | | | 19 | | Initial Conc | Final Conc in equil | Final Conc | _ Volume | Moles of MgO | | ·
 | | 20 | | Mol/L | with MgO, mol/Kg | mol/L | m3 * | dissolved | | | | | INAC | 0.019 | 1 OOAAE-O1 | | | | | | | 21 | Mg | 0.010 | 1.0044E-01 | 8.83E-02 | 1.46E+05 | 1.01 E#07 | | | | 22 | IVIS | 0.010 | 1.004412-01 | 6.63E-02 | 1.40=+03 | | | | | 22 | living . | 0.010 | 1.0044101 | 6.83E-02 | 1.46E+05 | | | | | 22
23
24 | living . | 0.010 | 1.00442-01 | 0.03E-U2 | 1.40E+03 | | | | | 22
23
24
25 | l vig | 0.010 | 1.00442-01 | 6.63E-U2 | 1.40E+03 | | | | | 22
23
24
25
26 | | 0.010 | 1.00442-01 | 6.63E-U2 | 1.40E+U3 | | | | | 22
23
24
25 | | 0.010 | 1.0044L-01 | 6.63E-U2 | 1.40E+U3 | | | | # CH CPR | | Α | В | С | D | Е | F | G | Н | 1 | J | K | |----|--|--------------------------|----------------|--------------|-------------|------------------|------------------|----------------|-------------|-----------|----------| | 1 | Letter 2003, Waste | Material Pa | arameter Disp | osal Invento | ry | Average d | rum of CH wa | aste | | | | | 2 | | | | | | | | | | | · [| | 3 | | Formula | Avg Density | Cellulosic | volume | weight | Total moles | Total moles | | | | | 4 | | Wt (g/mol) | (Kg/m3) | equivalent | m3 | kg | of C | of CO2 | | | | | 5 | Cellulosics | 162 | 58 | _ 58 | | l | | | | _ | | | 6 | Rubber | 162 | 14 | 14 | | | | | | | | | 7 | Plastics | 162 | 42 | 71.4 | | | | | | | | | 8 | Container plastic | 162 | 16 | _27.2 | | | | | | | | | 9 | Total Cellulosics | | | 170.6 | 1.7E+05 | 2.9E+07 | 1.1E+09 | 1.1E409 | | | | | 10 | | | | | | <u> </u> | | | | | | | 11 | | . <u> </u> | | | | | | <u></u> | | | | | 12 | | | <u> </u> | | | | | | | | | | | Wang and Brush (| 1 <u>996)</u> | | | | | | Ì | · | | | | 14 | | | | | | !
 | | | | | | | | P kg of plastics and | d R kilogram | s of rubbers a | re equivale | nt to the Q | kilograms o | f cellulosics, b | ased on carbon | equivalence | <u>e:</u> | Q=1.7P+R | | 16 | | | | | | | | ! | | | | | | 162 g/mol was use | d for all cell | ulosics | | | | | | | | | | 18 | ······································ | 31. 10.00 (48 b. 48 c.) | | | | | | | | | | | _ | Assume 1 mole of | C = 1 mole | o CO2 | <u> </u> | | | | | | - · | | | 20 | | | | | | ļ | | | | | | | _ | PA parameter data | | | | | | | | | | | | 22 | Total volume of Ch | waste | 1.69E+05 | | | | | | | | | # RH CPR | | Α | В | С | D | Ε | F | G | Н | 1 | J | K | |----|----------------------------------|--|-----------------|----------------|-----------------|--------------------------|----------------|--------------|---------|---|----------| | 1 | Letter 2003, Waste Ma | aterial Parame | ter Disposal Ir | ventory | | Average drum of CH waste | | | | | | | 2 | | | | | | | i | | | | | | 3 | | Formula | Avg Density | Cellulosic | volume | weight | Total moles | Total moles | | | | | 4 | | Wt (g/mol) | (Kg/m3) | equvialent | m3 | kg | of C | of CO2 | | | | | 5 | Cellulosics | 162 | 4.5 | 4.5 | | <u> </u> | | | | | | | 6 | Rubber | 162 | 3.1 | 3.1 | | | | | | | | | 7 | Plastics | 162 | 4.9 | 8.33 | | | | | | | | | 8 | Plastic liners | 162 | 1.4 | 2.38 | | | | | | | | | 9 | Total Cellulosics | | | 18.31 | 7.1E+03 | 1.3E+05 | 4.8E+06 | 4.8E+06 | | | | | 10 | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | Wang and Brush (1990 | <u>6)</u> |
 | | | | | | | | | 13 | | <u> </u> | | | | | | | | | | | - | P kg of plastics and R | kilograms of ru | ubbers are equ | uivalent to th | ne Q kilogran | ns of cellulo: | sics, based or | carbon equiv | alence: | | Q=1.7P+R | | 15 | | | <u> </u> | | | | | | | | | | | 162 g/mol was used for | r all cellulosics | 3 | | | | | | | | <u> </u> | | 17 | - 10 CTESTER PROFESS (175 1) 10 | Who was a second of the control t | | | · <u>···</u> ·· | | | | | | | | | Assume 1 mole of C = | 1 mole fo CO | 2 | | | <u>.</u> | | | | | | | 19 | | <u> </u> | | | | · | | | | | | | - | PA parameter data bas | | | | | | | | | | | | 21 | Total volume of RH wa | aste | 7.08E+03 | | | | | | | | <u>l</u> | # Safety Factor | | A | В | С | D | Е | F | G | Н | <u></u> | J | |----|---|-------------------|--|-----------------------|------------|--|----------------|---------------------------------------|-------------|-----------| | 1 | | | - | | | | | | | | | 2 | Total MgO required for | r dissolving in b | rine and re | acting with | CO2 gener | ated by mici | robial activit | у. | | | | 3 | | | | | | | ! | | | | | 4 | | | | | | | | | | | | 5 | | | Volume | | | | | | | | | 6 | | Moles | m3 | | | | | | | : | | 7 | Mg dissolved | 1.01E+07 | | | | | | | | <u> </u> | | 8 | Max CO2 generated | 1.07E+09 | | | | | | | :
 | | | | Max CO2 (RH) | 4.80E+06 | 00000000000000000000000000000000000000 | | | | | | | | | 10 | Total MgO required | 1.08E+09 | | | | | | | | | | 11 | | | | | | · | · | i | | <u> </u> | | 12 | | | | | | | | /IgO is from | Marcinows | ski, 2001 | | 13 | Total MgO currently be | eing emplaced i | n WIPP | | | | short tons | | | | | 14 | | <u> </u> | | | | | conversion | | | · | | 15 | , | 2001 MgO mi | nisack elim | nation repo | rt. | 6.71E+04 | metric tons | | | | | 16 | | | | | | | | | | | | 17 | | | | | | | | | | | | 18 | | Tons | kg | g | moles | 85% react | | | | | | 19 | | 6.71E+04 | 67132800 | 6.71E+10 | 1.67E+09 | 1.41E+09 | | · · · · · · · · · · · · · · · · · · · | | <u></u> | | 20 | | | | | | | | | | | | 21 | | | | | | <u> </u> | | , | | | | 22 | | | | | | | | | | | | 23 | | Safety Factor | r with new | inventory (| data assun | ning one m | ole of C pro | oduces one | mole CO | 2 | | 24 | | | 18118811881184 | 44-944-944-944-94-00° | ~ | | | | | <u> </u> | | 25 | | Safety Factor | | 1.30E+00 | | | | | | | ## APPENDIX B: MgOsafetyfactorSNLleigh.XLS # Mgo Dissolved in Brine | | Α | В | C | D | E | F | G | Н | I | |----------------|---------------------------------|--|----------------------|----------------|--------------|---------------------------------------|------------------|-------------|---------------------------------------| | 1 | | | | | | | | | | | 2 | | | | | | | | | | | <u>3</u> | · | | | <u> </u> | | | | | <u> </u> | | | GWB | Moles of Mai | dissolved in brine | <u></u> | | · · · · · · · · · · · · · · · · · · · | | | - | | 6 | | moles of mg | dissorted in Brille | | | | | | | | 7 | | Initial and fina | Lones by | EQ3 | done by | Yongliang Xiong | 1 | | | | 8 | Concentration of Mg in brine | The state of s | | | 400.0) | Toriginality Paloting | <u> </u> | | | | 9 | | | | | | <u> </u> | | | | | 10 | | Initial Conc | Final Conc in equil | Final Conc | · | | | | | | 11 | | Mol/L | with MgO, mol/Kg | mol/L | | Molality to mola | rity ratio facto | r | 1.146 | | 12 | Mg | 1.000 | 7.8996E-01 | 0.6893194 | | | · | | - | | 13 | | | | | | | | | | | 14 | | GWB ends up | with less Mg++ in se | olution and wi | ll be negled | cted for further ca | lles | | | | 15 | | | | | | | [| | | | 16 | | | | \ <u>\</u> | | | <u> </u> | | · · · · · · · · · · · · · · · · · · · | | | Castile | Calculated by | EQ3 | | | Molality to mola | rity ratio facto | <u> </u> | 1.137 | | 18 | | | | | | "S. 1951" Physiological action (1951) | ļ | | | | 19 | | Initial Conc | Final Conc in equil | | Volume | Moles of MgO | | | | | 20 | | Mol/L | with MgO, mol/Kg | mol/L | _m3† | dissolved | | | | | 21 | Mg | 0.019 | 1.0044E-01 | 8.8338E-02 | 1.46E+05 | 1.01E+07 | ļ | | | | 22 | <u> </u> | ļ | | | | | | | | | 23 | | | | : | | | | | | | 23
24
25 | | <u> </u> | | | | | | | | | 25 | | | | | | | | | | | 26
27 | | | | | | | | | | | 28 | | | | | | | | | <u> </u> | | | * Max brine flow up the bore he | | DB7 S9 Boshada (F | ൂ അവരം പ | e' in RRAC | SFLO | | | · · · · · · · · · · · · · · · · · · · | # CH CPR | | Α | В | C | D | E | F | G | H | <u> </u> | J | К | |----------|--|------------------------|----------------|-----------------------|--------------------|---------------|------------------|---------------|--------------|--------------|--------------| | 1 | Letter 2003, Waste | Material Pa | arameter Disp | osal Invento | ory | Average d | rum of CH wa | aste | | - | <u> </u> | | 2 | | | | | <u> </u> | | | | | | | | 3 | | Formula | Avg Density | Cellulosic | volume | weight | Total moles | Total moles | | | | | 4 | | Wt (g/mol) | (Kg/m3) | equivalent | m3 | kg | of C | of CO2 | | | | | 5 | Cellulosics | 162 | 58 | 58 | | | | | | <u> </u> | | | 6 | Rubber | 162 | 14 | 14 | | | | T | | | | | 7 | Plastics | 162 | 42 | 71.4 | | | | | | | | | 8 | Container plastic | 162 | 16 | 27.2 | | | | | | | | | 9 | Total Cellulosics | | | 170.6 | 1.7E+05 | 2.9E+07 | 1.1E+09 | 1.1E+09 | | | | | 10 | | | | | | | | | | | | | [11] | | | | | | į | | | | -· | | | 12 | Wang and Brush (| 1996) | | | ! | | _ | | | | | | 13 | | | | | <u> </u> | 1 | | | | | | | | P kg of plastics an | d R kilogram | ns of rubbers | are equivale | nt to the Q I | kilograms of | cellulosics, ba | ased on carbo | n equivale | nce: | Q=1.7P+R | | 15 | | | | | | | | i | | | | | |
162 g/mol was use | ed for all cell | ulosics | !
 | | | | | <u> </u> | | | | 17 | | | | <u></u> | | <u> </u> | | | | | | | | PA parameter data | | | | !
 : | | | | | | | | 19 | Total volume of Ch | l waste | | 1.69E+05 | | | | | | | | | 20 | | | | | | | | | | | | | 21 | | | | | | | | | | | | | 22 | | | | L | <u></u> | | <u></u> | | | | | | | Moles of Nitrate a | ind Sulfate | Initially Pres | ent in the W | /aste | | I Estimate of (| | | | | | 24 | | | | | | for Disposa | al in WIPP for t | he Compliand | e Recertifi | cation". | | | 25 | · · · · · · · · · · · · · · · · · · · | kg* | g | <u>fw</u> | <u>moles</u> | , | | | | | | | 26 | Nitrate (NO3) | 2.50E+06 | 2.50E+09 | 62.01 | 4.03E+07 | | | | | | ! | | 27 | Sulfate (SO4) | 4.21E+05 | 4.21E+08 | 96.06 | 4.38E+06 | | | | | | | | 28 | | | | | | | | | | | | | 29 | | | <u> </u> | | <u>:</u> | fraction % | | | | | | | | Molar fraction of co | ell <u>ulosics bic</u> | odegraded via | <u>denitriticatio</u> | <u>n</u> | 4.72 | · | i - | - | | | | 31 | B4-12 | - 11: 1 1 : 1 : | | - 16-1 | <u></u> | | | | | | | | | Molar fraction of co | eliulosics bio | odegraded via | sultate redu | ICTION | 0.82 | <u> </u> | | | | | | 33 | Note that the second se | . 111 | | | | | L | | | | | | | Molar fraction of ce | ellulosics tro | m metnanoge | enisis
T | | 94,46 | | | | } | | | 35
36 | | | | <u> </u> | | | | | | | | | | T-1-1 000 : | Alam F | | | moles | | | | | | | | 3/ | Total CO2 produc | ction for the | repository | <u> </u> | 5.63E+08 | <u> </u> | | | | <u> </u> | | # RH CPR | \sqcap | Α | В | С | D | E | F | G | H | | J | K | |----------|------------------------|---------------|--------------|--------------|---------------------------------------|-------------|----------------|--------------|-------------|-------|----------| | 1 | Letter 2003, Waste M | laterial Para | ameter Dispo | sal Inventor | У | Average d | Irum of RH v | vaste | | | | | 2 | | | | | | | | | | | | | 3 | | Formula | Avg Density | Cellulosic | volume | weight | Total moles | Total moles | | | | | 4 | | Wt (g/mol) | (Kg/m3) | equvialent | m3 | kg | of C | of CO2 | | | | | 5 | Cellulosics | 162 | 4.5 | 4.5 | | | | | | | | | 6 | Rubber | 162 | 3.1 | 3.1 | | ļ | | | | | | | 7 | Plastics | 162 | 4.9 | 8.33 | | | | | | | | | 8 | Plastic liners | 162 | 1.4 | 2.38 | · · · · · · · · · · · · · · · · · · · | | | | | | | | 9 | Total Cellulosics | | - | 18.31 | 7.1E+03 | 1.3E+05 | 4.8E+06 | 2.4E+06 | | | | | 10 | | | | | | | | | | | | | 11 | Wang and Brush (199 | <u>96)</u> | | | | | ļ | | | | | | 12 | | L <u></u> | | <u>:</u> | | | L | | | | | | 13 | P kg of plastics and F | R kilograms | of rubbers a | re equivalen | t to the Q k | ilograms of | cellulosics, b | ased on carb | on equivale | ence: | Q=1.7P+R | | 14 | | | | | | | | | | | | | | 162 g/mol was used t | or all cellul | osics | | | | | | | | | | 16 |
 | | | | | | | | | | | | | PA parameter data ba | | | | | | | | | | | | 18 | Total volume of RH w | /aste | 7.08E+03 | | | | | | | | | SAFETY FACTOR | A | В | С | D | E | F | G | Н | | J | K | |---------------------------|--|--|-------------|--------------|---------|-----------------|---------------|-------------|--------------|----------| | 1 | | | · | | | | | | | | | 2 Total MgO required for | dissolving in b | rine and re | acting with | CO2 generat | ed by m | icrobial activi | ty. | | | | | 3 | | | | | | | | | | | | 4 | | Volume | | | | | | | | | | 5 | Moles | m3 | | | | | | | | | | 6 Mg dissolved | 1.01E+07 | | | | | | | | | | | 7 Max CO2 generated | 5.63E+08 | | | | | | | | | | | 8 Max CO2 (RH) | 2.40E+06 | | | | | | | | | | | 9 Total MgO required | 5.76E+08 | 1.45E+04 | | ·
ii | | | | | | | | 10 | | | | | | | ric Tons of N | IgO is from | n Marcinows | ki, 2001 | | 11 | | | | | | ···· | short tons | |
 | | | 12 | | | | | | 9.07E-01 | conversion | factor | | | | 13 Total MgO currently be | ing emplaced | n WIPP | | | | 6.71E+04 | metric tons | | | | | 14 | ! | | | | | | | | | | | 15 Tons | Kg | g | moles | 85% react | | | <u> </u> | | | | | 16 6.71E+04 | 67132800 | 6.71E+10 | 1.67E+09 | 1.41E+09 | | | | | | | | 17 | <u>i </u> | | | | | | | | | | | 18 | | | | | | | | | · | | | 19 | | | | | | | | | | | | 20 Safety Factor with ne | w inventory d | ata assumi | ng one mo | le of C prod | uces or | ne mole CO2 | | | | · | | 21 | | and the state of t | | | | | · | | | | | 22 Safety Factor | | 2.45E+00 | | | | | i | | | | ## APPENDIX C: MgOsafetyfactorEPAleigh8panel.XLS # MgO Dissolved in Bring | | A | В | С | D | E | F_ | G | Н | |----------|--------------------------------|---------------------|----------------------|--------------------------|--------------------|--|-------------|----------| | 1 | | | , | | | | | | | 2 | | | | | | <u> </u> | | | | 3 | | | | - | | | | | | 4 | CWP | Malas at U = 0 | | | | | | | | 5 | GWB | moles of MgC | dissolved in brine | ?S | | | | - | | 7 | | Initial and final | aanaa hu | EQ3 | done by | Vanaliana Viene | | | | 8 | Concentration of Mg in brine | illinai ariu illiai | concs by | ⊑Q3 | done by | Yongliang Xiong | | | | 9 | Concentration of Mg in brine | | | | Malality to ma | plarity ratio factor | | 1.146 | | 10 | | Initial Conc | Final Conc in equil | Final Conc | iviolatity to file | namy rano ractor | | 1.140 | | 11 | | Mol/L | with MgO, mol/Kg | mol/L | | | | | | | Mg | 1.000 | 7.8996E-01 | 6.89E-01 | - | | · · | ! | | 13 | <u></u> | | 7.00002 01 | 0.002 01 | | | | · · | | 14 | | GWB ends up | with less Mg++ in so | l
Diution and will be | nealected for t | further cales | | | | 15 | |] | | | | | | 1 | | 16 | | 1 | | | Molality to mo | larity ratio factor | | 1.137 | | 17 | ERDA-6 | Calculated by | EQ3 | | | | | - | | 18 | | |
 | | | | | | | 19 | | Initial Conc | Final Conc in equil | Final Conc | Volume | Moles of MgO | - | | | 20 | | Mol/L | with MgO, mol/Kg | mol/L | im3 * | dissolved | | | | | Mg | 0.019 | 1.0044E-01 | 8.83E-02 | 1.46E+05 | 1.01E+07 | | | | 22 | | | | | | | | | | 23 | | | | | | | | | | 24 | | | | | :
 | | | | | 25 | | | | | <u>i</u> | , | | | | 26
27 | | | | | | | | | | | | | | | | <u> </u> | | <u> </u> | | 28 | | | | | | 1999 THE PERSON OF THE SECOND CONTRACTOR TH | | | | 29 | * Max brine flow up the bore I | noie at the uppe | PILLHZ 53 scenario | (ET @ 1000+ yrs |) in Bragtlow | | | | ## CPR Calcs | A | В | С | D | E | F | G | Н | |--|----------------|---|---------------|---|--|---|--------| | 1 | | | | | | , , , , , , , , , , , , , , , , , , , | | | 2 From Leigh 2003 "Estimate of Cellulosi | cs, Plastic, a | and Rubber in | a Singel Pane | el in the WIPF | Repository in S | upport of A | P-107" | | 3 | | | | | | | | | 4 | | | | | | | | | 5 | Vol (m3) | Cell (kg) | Plastic (kg) | Rubber (kg) | Plastic liner (kg) | | | | 6 Whole repository | 1.69E+05 | 9.77E+06 | 7.08E+06 | 2.36E+06 | 2.70E+06 | | | | 7 100 gal supercompacted INEEL | 1.99E+04 | 6.02E+06 | 4.07E+06 | 1.59E+06 | 0.00E+00 | | | | 8 TDOPS non-debris INEEL | 3.42E+04 | 9.18E+04 | 1.21E+05 | 3.14E+02 | 6.53E+05 | | | | 9 SWBs from INEEL | 6.75E+03 | | 2.40E+04 | 6.83E+01 | 1.08E+05 | | | | 10 55-gal from INEEL and all sites | 1.08E+05 | 3.64E+06 | 2.87E+06 | 7.70E+05 | 1.94E+06 | | | | 11 | | | | | | | | | 12 | | | | | | | | | 13 1) INEEL; all distributed over 8 panels | 1.34E+05 | 6.13E+06 | 4.22E+06 | 1.59E+06 | 7.61E+05 | | | | 14 | | | | | | | | | 15 55-gal from INEEI and all sites | | 3.64E+06 | | | | | | | 16 2) non-INEEL; for 8 panel | 1.34E+05 | 2.88E+06 | 2.27E+06 | 6.09E+05 | 1.53E+06 | | ļ | | 17 [| | *************************************** | | *************************************** | A A STATE OF THE S | | ļ
 | | 18 Total for an eight panel repository | 1.34E+05 | 9.01E+06 | 6.49E+06 | 2.20E+06 | 2.30E+06 | | | ## CH CPR | | Α | В | С | D | Е | F | G | Н. | $\overline{1}$ | J | TK | |----|---|----------------------|-----------------|-----------------|-------------|--|-----------------|----------------|--|---|----------| | 1 | Letter 2003, Waste | e Material Pa | arameter Disp | osal Invento | ry | Average d | rum of CH wa | aste | | - | | | 2 | | | | | | T - | | | | | | | 3 | | Formula | Avg Density | Cellulosic | volume | weight | equivalent | Total moles | Total moles | | | | 4 | | Wt (g/mol) | (Kg/m3) | equivalent | m3 | kg | kg | of C | of CO2 | | | | 5 | Cellulosics | 162 | 6.72E+01 | 67.2 | | 9.01E+06 | | | | | | | 6 | Rubber | 162 | 1.64E+01 | 16.4 | | 2.20E+06 | | | | | | | 7 | Plastics | 162 | 4.84E+01 | 82.3 | | 6.49E+06 | | | | | | | 8 | Container plastic | 162 | 1.71E+01 | 29.1 | | 2.30E+06 | | | | | | | 9 | Total Cellulosics | | | 195 | 1.3E+05 | 2.00E+07 | 2.6E+07 | 9.7E+08 | 9.7E+08 | | | | 10 | | | | | . | | | | | _ | | | 11 | <u> </u> | 1 | | | |] | | | | | | | 12 | | | | | | | | | | | | | | Wang and Brush (| <u>1996)</u> | | | | | | ! | | | : | | 14 | | | | | | <u> </u> | | <u> </u> | | | | | | P kg of plastics an | d R kilogram | is of rubbers a | are equivaler | nt to the Q | kilograms of | cellulosics, ba | ased on carbon | equivalence: | | Q=1.7P+R | | 16 | | ۱ <u>.</u> | <u> </u> | l | | ļ | | | <u> </u> | | <u> </u> | | 17 | 162 g/mol was use | ed for all cell | ulosics | | | | | | <u> </u> | | | | 18 | BEGIN TO THE SERVICE OF | j
Nadisarahari 7. | | <u> </u> | | | | | | | | | | Assume 1 mole of | C = 1 mole | o CO2 | | | | | | | | | | 20 | DA | <u></u> | | | | | | | | | ! | | - | PA parameter data | - | 1.005.05 | ļ - | | | | : | | | <u> </u> | | 22 | Total volume of Cl | i waste | 1.69E+05 | | | | | | | _ | | # RA CPR | | Α | В | С | D | E | F | G | Н | | J | K | |----|---|------------------------------|---------------------------------------|----------------|---------------|---------------|---------------------------------------|--------------|---------|-----|----------| | 1 | Letter 2003, Waste M | aterial Parame | ter Disposal Ir | ventory | | Average dr | rum of RH wa | ste | | | į į | | 2 | | | | i | | | · · · · · · · · · · · · · · · · · · · | | | | | | 3 | | Formula | Avg Density | Cellulosic | volume | weight | Total moles | Total moles | | | | | 4 | | Wt (g/mol) | (Kg/m3) | equvialent | m3 | kg | of C | of CO2 | | | | | 5 | Cellulosics | 162 | 4.5 | 4.5 | | | | | | | | | 6 | Rubber | 162 | 3.1 | 3.1 | | | | | | | | | 7 | Plastics | 162 | 4.9 | 8.33 | | | | | | | | | 8 | Plastic liners | 162 | 1.4 | 2.38 | | | | | | | | | 9 | Total Cellulosics | | | 18.31 | 7.1E+03 | 1.3E+05 | 4.8E+06 | 4.8E+06 | | | | | 10 | | | | ' | | | | | | | | | 11 | | | | | | | | | | | | | 12 | Wang and Brush (199 | <u>6)</u> | | | | | | | | | | | 13 | | : | <u> </u> | | | | | | | | | | | P kg of plastics and R | kilograms of r | ubbers are eq | uivalent to th | ne Q kilograr | ns of cellulo | sics, based or | carbon equiv | alence: | | Q=1.7P+R | | 15 | | | | | | | | | | | | | 16 | 162 g/mol was used for | or all cellulosic | S | | | | | | | | | | 17 | ELECTRICATE CONTRACTOR SAME CONTRACTOR SAME | March Company of the Company | i i i i i i i i i i i i i i i i i i i | | | | | | | | | | | Assume 1 mole of C = | 1 mole fo CO | 2 | | | | | | | | | | 19 | | | | | | - | | | | *** | | | | PA parameter data ba | | | | | | | | | | | | 21 | Total volume of RH wa | aste | 7.08E+03 | | | | | | | | | Safety Factor | | A | В | С | D
 E | F | G | Н | ļ | J | K | |----|------------------------|-------------------|---------------------------|---|-------------|-------------|---------------|--------------|--------------|---------------|---------| | 1 | | | | | | | | | | | | | 2 | Total MgO required for | r dissolving in b | orine and re | acting with | CO2 gener | ated by mic | robial activi | ly. | | | | | 3 | | | | | | | | | | | | | 4 | | | | | | | | | | actor for a 8 | | | 5 | | | Volume | | | | | actor is the | ratio of the | volume of 8 p | anels | | 6 | | Moles | m3 | <u> </u> | to the volu | me of 10 pa | nels. | | | | | | 7 | Mg dissolved | 8.00E+06 | | | Volume of | 8 panels | | 1.34E+05 | | | | | | Max CO2 generated | 9.68E+08 | | | Volume of | 10 panels | | 1.69E+05 | | | | | | Max CO2 (RH) | 3.80E+06 | | <u> </u> | Ratio | | | 7.93E-01 | | | | | 10 | Total MgO required | 9.80E+08 | odanie zastali | | | | | | | | | | 11 | | ! | | | Row 8 has | | | d for 8 pane | ls. See she | et CH CPR. | Note | | 12 | | | | | volume is | 1.34E+05 | | | | | | | 13 | Total MgO currently be | eing emplaced | in WIPP | | | | | | | <u> </u> | | | 14 | | | | <u></u> | | | | | | | | | 15 | | 2001 MgO mi | inisack elim | ination repo | ort. | | | | MgO is from | Marcinowski | , 2001 | | 16 | | <u></u> | | | | | 7.40E+04 | short tons | | | | | 17 | | | | | | | | | | | | | 18 | | | | | | · | | conversion | | | <u></u> | | 19 | | Tons | kg | g | moles | 85% react | | metric tons | | - | | | 20 | | 53115.4714 | 53115471 | 5.31E+10 | 1.32E+09 | 1.12E+09 | | | | | | | 21 | | | | | | | | | | | | | 22 | | | | | | | | | | | | | 23 | | | | | | | | | | | | | 24 | | Safety Facto | r with new | inventory | data assur | ning one m | ole of C pr | oduces one | mole CO2 | | | | 25 | | | the fit is a space to the | *************************************** | | | | | | | | | 26 | | Safety Factor | | 1.14E+00 | | | | | | | | ## APPENDIX D: MgOsafetyfactorSNLleigh8panel.XLS # M30 Dissolved in Brins | | Α | В | С | D | Ē | F | G | Н | l I | |--|------------------------------|----------------------------------|--|----------------------|----------------|--|------------------|---|-------| | 1 | | | | | | | | | | | 2 | | _ | | | | | | | | | 3 | | | | | | | <u> </u> | | | | 4 | OWD | M-1 |
 | <u></u> | | | | | | | 5
6 | GWB | Moles of MgC | dissolved in brine | 25 | | | | | | | 7 | | Initial and final | Loopon bu | EQ3 | done by | Vanaliana Viana | | | | | | Concentration of Mg in brine | Initial and final | cones by | EU3 | done by | Yongliang Xiong | <u> </u> | | | | 9 | Concentration of Mg in brine | - | ···· | | | | | | | | 10 | | Initial Conc | Final Conc in equil | Final Conc | | | | | | | 11 | | Mol/L | with MgO, mol/Kg | mol/L | | Molality to molar | ity ratio factor | | 1.146 | | | Mg | 1.000 | 7.8996E-01 | 0.6893194 | | iviolality to molal | ity ratio lactor | | 1,146 | | 13 | ivig | 1.000 | 7.0990E-01 | 0.0093194 | | | | | | | 14 | | _
_CMP ondo un | i
 | | | | l | | | | | | | | Alution and wi | II ha naala | | ^^ | | | | | | Gvvb ends up | with less Mg++ in s | olution and wi | II be negle | cted for further ca | lcs: | | | | 15 | | GVVB ends up | with less Mg++ in s | olution and wi | II be negle | cted for further ca | ICS:- | | | | 15
16 | Castila | | | olution and wi | III be negled | | i | | 1 127 | | 15
16
17 | Castile | Calculated by | | olution and wi | II be negled | Molality to molar | i | | 1.137 | | 15
16
17
18 | Castile | Calculated by | EQ3 | | | Molality to molar | i | | 1.137 | | 15
16
17
18 | Castile | Calculated by | EQ3 Final Conc in equil | Final Conc | Volume | Molality to molar | i | | 1.137 | | 15
16
17
18
19
20 | | Calculated by Initial Conc Mol/L | EQ3 Final Conc in equil with MgO, mol/Kg | Final Conc
mol/L | Volume
m3 * | Molality to molar Moles of MgO dissolved | i | | 1.137 | | 15
16
17
18
19
20
21 | | Calculated by | EQ3 Final Conc in equil | Final Conc | Volume | Molality to molar Moles of MgO dissolved | i | | 1.137 | | 15
16
17
18
19
20
21
22 | | Calculated by Initial Conc Mol/L | EQ3 Final Conc in equil with MgO, mol/Kg | Final Conc
mol/L | Volume
m3 * | Molality to molar Moles of MgO dissolved | i | | 1.137 | | 15
16
17
18
19
20
21
22
23 | | Calculated by Initial Conc Mol/L | EQ3 Final Conc in equil with MgO, mol/Kg | Final Conc
mol/L | Volume
m3 * | Molality to molar Moles of MgO dissolved | i | | 1.137 | | 15
16
17
18
19
20
21
22
23
24 | | Calculated by Initial Conc Mol/L | EQ3 Final Conc in equil with MgO, mol/Kg | Final Conc
mol/L | Volume
m3 * | Molality to molar Moles of MgO dissolved | i | | 1.137 | | 15
16
17
18
19
20
21
22
23
24
25 | | Calculated by Initial Conc Mol/L | EQ3 Final Conc in equil with MgO, mol/Kg | Final Conc
mol/L | Volume
m3 * | Molality to molar Moles of MgO dissolved | i | | 1.137 | | 15
16
17
18
19
20
21
22
23
24
25 | | Calculated by Initial Conc Mol/L | EQ3 Final Conc in equil with MgO, mol/Kg | Final Conc
mol/L. | Volume
m3 * | Molality to molar Moles of MgO dissolved | i | | 1.137 | | 15
16
17
18
19
20
21
22
23
24 | | Calculated by Initial Conc Mol/L | EQ3 Final Conc in equil with MgO, mol/Kg | Final Conc
mol/L. | Volume
m3 * | Molality to molar Moles of MgO dissolved | i | | 1.137 | # CPR Calcs | Γ | A | В | C | D | Ε | F | G | Н | |----|--|--|---------------------------------------|--|--|--------------------|---------------|--------| | 1 | | | | | | | | | | 2 | From Leigh 2003 "Estimate of Cellulosia | cs, Plastic, a | and Rubber in | a Singel Pane | el in the WIPF | Repository in S | Support of A | P-107" | | 3 | | | | | | | | | | 4 | | ; | | i | | | | | | 5 | | Vol (m3) | Cell (kg) | Plastic (kg) | Rubber (kg) | Plastic liner (kg) | | ĺ | | 6 | Whole repository | 1.69E+05 | | | | | | | | 7 | 100 gal supercompacted INEEL | 1.99E+04 | 6.02E+06 | 4.07E+06 | 1.59E+06 | 0.00E+00 | . | 1 | | 8 | TDOPS non-debris INEEL | 3.42E+04 | 9.18E+04 | 1.21E+05 | 3.14E+02 | 6.53E+05 | | | | 9 | SWBs from INEEL | 6.75E+03 | 1.85E+04 | 2.40E+04 | 6.83E+01 | 1.08E+05 | | | | 10 | 55-gal from INEEL and all sites | 1.08E+05 | 3.64E+06 | 2.87E+06 | 7.70E+05 | 1.94E+06 | | | | 11 | | : | | | | | | | | 12 | | | · · · · · · · · · · · · · · · · · · · | | | | | ļ | | 13 | 1) INEEL; all distributed over 8 panels | 1.34E+05 | 6.13E+06 | 4.22E+06 | 1.59E+06 | 7.61E+05 | | | | 14 | | | | | | | | | | 15 | 55-gal from INEEI and all sites | | 3.64E+06 | 2.87E+06 | 7.70E+05 | 1.94E+06 | | | | 16 | 2) non-INEEL; for 8 panel | 1.34E+05 | 2.88E+06 | 2.27E+06 | 6.09E+05 | 1.53E+06 | | , | | 17 | | | | | | | | | | 18 | Total for an eight panel repository | 1.34E+05 | 9.01E+06 | 6.49E+06 | 2.20E+06 | 2.30E+06 | | | | 19 | Министине вымерания выполняющего выполняющего выполняющего выполняющего выполняющего выполняющего выполняющего | - John William Ballatin in mark in micro 2 ikusa | , , , , , , , , , , , , , , , , , , , | MANAGE SEEST | onen en | | | | | 20 | | | | | | | ·· | | | 21 | | | | | | | | | | 22 | From Leigh 2003 "Estimate of Oxyanion | Masses in | a Single Pane | el in the WIPP | Repository in | Support of AP- | 107" | | | 23 | | | | | | - | | | | 24 | | Vol | Nitrates (kg) | Sulfate (kg) | | | | | | 25 | Whole repository | | 2.50E+06 | 4.21E+05 | | | | | | | 100 gal supercompacted INEEL | | 0 | 0 | | | | | | | TDOPS non-debris INEEL | | 6.51E+05 | 8.70E+03 | | | | | | 28 |
SWBs from INEEL | | 1.29E+05 | 2.16E+03 | | | | | | 29 | 55-gal from INEEL and all sites | | 1.72E+06 | 4.10E+05 | | - | | | | 30 | | | | | | | | | | 31 | 1) INEEL; all distributed over 8 panels | | 7.80E+05 | 1.09E+04 | | | | | | | volume | | | | | | | | | 33 | | | | | | | | | | | 2) non-INEEL; for 8 panel | | 1.56E+06 | 4.08E+05 | | | | | | 35 | | | | | | | | | | 36 | Total for an eight panel repository | | 2.34E+06 | 4. 19E+ 05 | | | | | # CH CPR | | Α - | В | С | D | T E | F | | П | 1 1 | | Τκ | |----|----------------------|---------------------------------------|----------------|-----------------|--|--------------|-----------------|---------------|--------------|---------------------------------------|--| | | Letter 2003, Waste | | | | | | rum of CH wa | | - | | | | 2 | Letter 2000, Waste | - Waterial I | arameter Dist | Joseffic | <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u> | Average u | uni oi oii wa | 1916 | | | | | 3 | | Formula | Avg Density | Cellulosic | volume | weight | Equivalent | Total moles | Total moles | | | | 4 | | Wt (g/mol) | (Kg/m3) | equivalent | m3 | kg | wt | of C | of CO2 | | | | 5 | Cellulosics | 162 | 6.72E+01 | 6.7E+01 | 1110 | 9.01E+06 | | 0.0 | 0.002 | | | | 6 | Rubber | 162 | 1.64E+01 | 1.6E+01 | | 2.20E+06 | | | | | | | 7 | Plastics | 162 | 4.84E+01 | 8.2E+01 | | 6.49E+06 | | | | | | | 8 | Container plastic | 162 | 1.71E+01 | 2.9E+01 | | 2.30E+06 | | | - | | | | 9 | Total Cellulosics | 102 | 1.7 (6101 | 195 | 1.3E+05 | 2.00E+07 | 2.6E+07 | 9.7E+08 | 9.7E+08 | | | | 10 | Total Celidiosics | | | 193 | 1.3L+03 | 2.00L+07 | 2.0LT07 | 3.7 L+00 | | | | | 11 | | | | | | | | | ļ <u>!</u> | | | | | Wang and Brush (| 1996) | | | | i | | | | | | | 13 | vialig and brasil (| 10001 | | | | | | | | | | | | P kg of plastics an | d B kilogram | es of rubbers | are equivale | nt to the O k | ilograms of | cellulosics ha | sed on carbo | on equivalen | co. | Q=1.7P+R | | 15 | rig or placettoo art | a () talogram | io or rabboro | Oquitaio | lik to ino q. | inegramie of | Condicion, De | acca on carbo | i oquitaion | · · · · · · · · · · · · · · · · · · · | Q=1.71 111 | | | 162 g/mol was use | ed for all cell | ulosics | | | | | | | | | | 17 | to girilo trae dec | | | | | | | | ·· | | | | 18 | PA parameter data | base | | | | | | | | (- | | | | Total volume of Ch | | n 8 panel rec | ository | 1.34E+05 | | | | | | | | 20 | | | | T | | : | | | | | | | 21 | | | | | | | | | | | | | 22 | | | | | | | | | | | | | 23 | Moles of Nitrate a | ind Sulfate | Initially Pres | ent in the W | aste | *from "Final | Estimate of (| Oxvanion Ma | ss in TRU W | aste | | | 24 | | | | : | | | I in WIPP for t | | | | | | 25 | | kg* | а | fw | moles | | | | | | | | 26 | Nitrate (NO3) | 2.34E+06 | 2.34E+09 | 62.01 | 3.77E+07 | | | | | | | | 27 | Sulfate (SO4) | 4.19E+05 | 4.19E+08 | 96.06 | 4.36E+06 | | | | | | | | 28 | | | | | | | | | | | | | 29 | | | | | | fraction % | | | | | | | 30 | Molar fraction of ce | ellulosics bio | degraded via | denitrification | ภา | 4.87 | | | | | | | 31 | | | | | | | | | | | | | 32 | Molar fraction of ce | ellulosics bio | degraded via | sulfate redu | ction | 0.90 | | | | | | | 33 | | | | | | | | | T | | | | 34 | Molar fraction of ce | ellulosics fro | m methanoge | enisis | | 94.23 | | | | | | | 35 | | · · · · · · · · · · · · · · · · · · · | | | | | | : | | | | | 36 | | | | | moles | | | | | | | | 37 | Total CO2 produc | tion for the | repository | | 5.12E+08 | | | | | | | # RH CPR | | Α | В | C | D | E | F | G | Н | 1 | J | K | |----|------------------------|----------------------|--------------|--------------|--------------|-------------|----------------|---------------|---------------|------|----------| | 1 | Letter 2003, Waste N | <u>faterial Para</u> | ameter Dispo | sal Inventor | Υ | Average d | rum of RH v | vaste | | | | | 2 | | | | | | | | | | | | | 3 | | Formula | Avg Density | Cellulosic | volume | weight | Total moles | Total moles | | | | | 4 | | Wt (g/mol) | (Kg/m3) | equvialent | m3 | kg | of C | of CO2 | | | | | 5 | Cellulosics | 162 | 4.5 | 4.5 | | | | | | | | | 6 | Rubber | 162 | 3.1 | 3.1 | | | | | | | | | 7 | Plastics | 162 | 4.9 | 8.33 | | | 1 | | | | | | 8 | Plastic liners | 162 | 1.4 | 2.38 | | | | | | _ | | | 9 | Total Cellulosics | | | 18.31 | 7.1E+03 | 1.3E+05 | 4.8E+06 | 2.4E+06 | | | | | 10 | | | | | | | | | | | | | 11 | Wang and Brush (199 | 96) | | | | | | | | | | | 12 | | | | | | | L | | | | | | 13 | P kg of plastics and F | Rkilograms | of rubbers a | re equivalen | t to the Q k | ilograms of | cellulosics, b | ased on carbo | on equivalend | ce: | Q=1.7P+R | | 14 | | <u> </u> | | | | | ! | | | | | | 15 | 162 g/mol was used | for all cellulo | osics | <u> </u> | | | <u> </u> | | | | | | 16 | | | · | | | <u></u> | | <u>-</u> | | | | | | PA parameter data b | | | | | | | | | | | | 18 | Total volume of RH w | /aste | 7.08E+03 | | | | | | | 19.1 | | Safety Factor | | Α | В | С | D | E | F | G | Н | | J | K | |----|---------------------------------------|-------------------|--------------|-------------|---|-------------|--|-----------------|-------------|-----------------|--| | 1 | | l | | | | | | | | ļ <u></u> - | | | 2 | Total MgO required for | r dissolving in t | rine and rea | acting with | CO2 genera | ated by mic | crobial activit | ty. | | | | | 3 | | | V-1 | | D | D 0 | The state of s | | | L., | | | 4 | | NACTOR . | Volume | | | | | y a volume c | | | | | 5 | | Moles | m3 | | | | | actor is the ra | atio of the | volume of 8 | paneis | | 6 | Mg dissolved | 8.00E+06 | | | to the volur | | anels | ! | | | | | 7 | Max CO2 generated | 5.12E+08 | ! | | Volume of | | | 1.34E+05 | | | | | 8 | Mas CO2 (RH) | 1.90E+06 | | | Volume of | 10 panels | İ | 1.69E+05 | | | | | 9 | Total MgO required | 5.22E+08 | 1.31E+04 | | Ratio | | | 7.93E-01 | | | | | 10 | | | | | | | | | | _ | | | 11 | | | | | Row 7 has | already be | en corrected | for 8 panels | . See she | et CH CPR | . Note | | 12 | | | | | volume is | 1.34E+05 | 5 | | | | | | 13 | | | | | | | | | | | | | 14 | | | | | | | | | | | | | 15 | | | | | | | | | | | | | 16 | Total MgO currently be | ing emplaced | n WIPP | TAMES . | | | | | | | | | 17 | · · · · · · · · · · · · · · · · · · · | | : | | ! | | Total Metri | c Tons of Mg | O is from | ,
Marcinowsk | i. 2001 | | 18 | Tons | Kg | g | moles | 85% react | | | short tons | | | <u>• </u> | | 19 | 53115.47136 | 53115471.4 | 5.31E+10 | 1.32E+09 | 1.12E+09 | | 9.07E-01 | conversion f | actor | | | | 20 | | : | | | , 7 11 11 11 11 11 11 11 11 11 11 11 11 1 | | 6.71E+04 | metric tons | | | | | 21 | | | | | | | | | | | | | 22 | | | | | | | | | | | | | 23 | Safety Factor with ne | w inventory d | ata assumi | ng one mo | ole of C pro | duces one | e mole CO2 | | | | | | 24 | , | | | | • | | | | | | | | | Safety Factor | | 2.14E+00 | | | | | | | - | | #### APPENDIX E: EPA13.5CPRpanelXupdate.XLS Mgo Dissolved in Bring | | | ТВ | С | D | E | F | G | Н | 1 | |----------|--------------------------------|--|----------------------|----------------|--------------|--|-----------------|---|----------| | 1 | | | | L | | <u>'</u> | <u> </u> | | <u> </u> | | 2 | | | | | | <u>!</u> | | | | | 3 | | | | <u>.</u> | | | | _ | | | 4 | | | | | | | | | | | 5 | GWB | Moles of MaC | dissolved in brine |)
S | | | | | | | 6 | | | | | | † | | _ | | | 7 | | Initial and fina | concs by | EQ3 | done by | Yongliang Xiong | | | | | 8 | Concentration of Mg in brine | | | | | <u> </u> | | | | | 9 | | | | Ī | | T | | | | | 10 | | Initial Conc
 Final Conc in equil | Final Conc | - | | | | | | 11 | | Mol/L | with MgO, mol/Kg | mol/L | | Molality to molari | ty ratio factor | | 1.146 | | 12 | Mg | 1.000 | 7.8996E-01 | 0.6893194 | | | | | | | 13 | | | | | | | | | | | 14 | | GWB ends up | with less Mg++ in se | olution and wi | ill be negle | cted for further calc | cs | | | | 15 | | | | <u> </u> | | | | | | | 16 | | | | | | | | | | | | Castile | Calculated by | EQ3 | | | Molality to molari | ty ratio factor | | 1.137 | | 18 | | | | ! | | | | | | | 19 | | Initial Conc | Final Conc in equil | | Volume | Moles of MgO | | | | | 20 | | Mol/L | with MgO, mol/Kg | mol/L | m3 * | dissolved | | | | | | Mg | 0.019 | 1.0044E-01 | 8.8338E-02 | 1.46E+05 | 1.01E+07 | | | | | 22 | | | | | _ | | | | | | 23 | | | | | | | | | | | 24 | | <u> </u> | | | | | | | | | 25 | | | | | | : | i | | | | 26
27 | | | | | | | | | | | 28 | | | | | | | | | | | 28
29 | | | | | | | | | | | 29 | * Max brine flow up the bore h | nie ar me abbet | DHZ 53 SCENARO (E | ii 🕹 TUUU+ y | is) in Rhyr | | | | | # PA Supersack Ratio | | A | В | - | D | Е | F | G | Н | |----|--------------|-------------------|--------------|----------------|-------------|---------------|------------|-------------| | 1 | | | | | | | | | | 2 | | PER PANEL | | | | | | | | 3 | Case 1 | PA | | | | | | operational | | 4 | | 12082 | se | ven packs | | | | 10908 | | 5 | | 3 | se | ven packs | per availab | le space | | | | 6 | | 4027.333 | Su | persacks | | ļ | | 3636 | | 7 | | 16914800 | M | ass of MgO | (lb) per pa | nel | | | | 8 | | 7672425 | M | ass of MgO | (kg) per pa | anel | | | | 9 | | | | | | | | | | 10 | Case 2 | operational | | | | | | | | 11 | | 67132800 | | | | ntly schedule | d to be er | nplaced | | 12 | | 0.1044 | | atio factor fo | | | | | | 13 | | 7008664 | | | | aced in one p | anel | | | 14 | | 3678.919 | su | persacks o | f MgO in or | ne PA panel | | | | 15 | | | ! | | | | | | | 16 | Ratio | 1.094706 | i | | | | | | | | # supersacks | | | | | | | | | 18 | | | | | | : | | | | 19 | | supersack | | 4200 | lb | | | | | 20 | | number in one pa | anel | 1905 | kg | <u> </u> | | | | 21 | | | | | | | | | | 22 | | | | | · | | | | | 23 | | | | | | | | | | 24 | | | | | | | | | | 25 | | Safety Factor cor | rrespond | ls to one su | persack pe | r stack. | | | ## CH CPR | | Α | В | С | D | Е | F | G | Н | 1 | | K | |----|----------------------|---------------------------------------|----------------|---------------|--------------|------------|-------------------|-------------|--------------|-----|----------| | 1 | | Average di | um of CH wa | ste for pane | I X assum | ng 13.5% c | of the volume is | AMWTP sup | percompact | ed. | | | 2 | Cellulosic numbers | given by C | . Léigh | Peals noa | Se Se | | | | | | | | 3 | | Formula | Avg Density | Cellulosic | volume | weight | weight (kg) | Total moles | Total moles | | | | 4 | | Wt (g/mol) | (Kg/m3) | equivalent | _m3 | kg | cell equivalent | of C | of CO2 | | | | 5 | Cellulosics | 162 | 6.1E+01 | 6.06E+01 | | 1.07E+06 | | | | | | | 6 | Rubber | 162 | 1.5E+01 | 1.48E+01 | | 2.62E+05 | | | | | | | 7 | Plastics | 162 | 4.4E+01 | 7.43E+01 | | 7.71E+05 | | | | | | | 8 | Container plastic | 162 | 1.6E+01 | 2.64E+01 | | 2.74E+05 | | | | | | | 9 | Total Cellulosics | | | 176.18287 | 1.8E+04 | 2.4E+06 | 3.11E+06 | 1.15E+08 | 1.15E#08 | | | | 10 | | | | | | | | | | | | | 11 | | | | | | | | | - | | | | | Wang and Brush (| <u>1996)</u> | | | | | | | | | | | 13 | | | | | | | | | | | | | | P kg of plastics and | d R kilogram | s of rubbers a | are equivalen | t to the Q k | lograms of | cellulosics, base | d on carbon | equivalence: | | Q=1.7P+R | | 15 | | | | | | | · | ***** | | | | | - | 162 g/mol was use | d for all cell | ulosics | | | | | | | | | | 17 | | | | | | | | | | | | | | PA parameter data | | | | | • | | | | | | | | Total volume of Ch | | | 1.69E+05 | | | | | | | | | | Ratio factor for one | · · · · · · · · · · · · · · · · · · · | | 0.1044 | | | | | | | | | 21 | Total volume of Ch | l waste for C | ONE panel | 1.76E+04 | | | | | | | | # PH CPR | | Α | В | C | D | E | F | G | H | | J | K | |-----|------------------------|----------------|--------------|--------------|--------------|------------|----------------|--------------|--------------|-------|----------| | 1 | Letter 2003, Waste M | laterial Para | ameter Dispo | sal Inventor | Υ | Average d | rum of RH w | aste for on | e panel | | | | 2 | L | | | | | | | | | | | | 3 | | Formula | Avg Density | Cellulosic | volume | weight | weight for | Total moles | Total moles | | | | 4 | | Wt (g/mol) | (Kg/m3) | equvialent | m3 | kg | one panel | of C | of CO2 | | | | 5 | Cellulosics | 162 | 6.1 | 6.1 | , | | | | İ | | | | 6 | Rubber | 162 | 3.6 | 3.6 | | · | | | | | | | [7] | Plastics | 162 | 7 | 11.9 | | | | | | | | | 8 | Total Cellulosics | | | 2.25504 | 7.4E+02 | 1.7E+03 | 174.01573 | 6.4E+03 | 6.45E+03 | | | | 9 | | | | | |] | | | | | | | 10 | | ! | | | | | | | | | | | 11 | Wang and Brush (199 | <u>96)</u> | i | | | | | | | | | | 12 | | | | | | | | | | | | | 13 | P kg of plastics and F | R kilograms | of rubbers a | e equivalen | t to the Q k | lograms of | cellulosics, b | ased on carl | bon equivale | ence: | Q=1.7P+R | | 14 | | <u>L</u> | | | | | | | | | | | 15 | 162 g/mol was used f | or all cellulo | osics | | | <u> </u> | <u> </u> | | | | | | 16 | | | | 1 | | ·
 | | | | | | | - | PA parameter data ba | | <u> </u> | | | | | | | | | | 18 | Total volume of RH w | aste | 7.08E+03 | <u> </u> | .,- | | | | | | | Safety Factor | A | В | С | D | E | F | G | H | | J | K | |--------------------------|-------------------|-------------|-------------|--------------|-------------|---------------|---------------|-------------|-------------|----------| | 1 | | | | | | | | | | | | 2 Total MgO required for | r dissolving in b | rine and re | acting with | CO2 genera | ted by micr | robial activi | ty. | | | | | 3 | | | | | | | | | | | | 4 | | Volume | | | | | | | | | | 5 | Moles | m3 | | | | | | | | | | 6 Mg dissolved | 1.06E+06 | | | | | | | | | | | 7 Max CO2 generated | 1.15E+08 | | | | | | | | | | | 8 Max CO2 (RH) | 6.45E+03 | | | | | | | | | | | 9 Total MgO required | 1.16E+08 | 2.92E+03 | | Ratio factor | from sheet | t "PA super | sack ratio" r | ow 16: | 1.095 | | | 10 | | | | | | | | | | | | 11 | | | | | | | | | | | | 2 Total MgO currently be | eing emplaced i | n WIPP | | | | _ | İ | | | | | 13 | <u></u> | | | ! | | | | MgO is from | n Marcinows | ki, 2001 | | 4 Tons | Kg | g | moles | 85% react | | 7.40E+04 | short tons | | | | | 5 7.67E+03 | 7674487.43 | 7.67E+09 | 1.90E+08 | 1.61E+08 | | 9.07E-01 | conversion | factor | | | | 6 | | | | | | 6.71E+04 | metric tons | | | | | 17 | | | | | | | | | | | | 18 | | | | | | | | | | | | Safety Factor with ne | w inventory d | ata assumi | ng one mo | ole of C pro | duces one | mole CO2 | | | | | | 20 | | | | | | | | | | | | 21 Safety Factor | | 1.39E+00 | | | | | | | | - | #### APPENDIX F: SNL13.5CPRpanelXupdate.XLS MgO Dissolved in Brine | | A | В | С | D | E | F | G | H | 1 | |----------|--------------------------------|-----------------------|---------------------|----------------|---------------|--|---|------|--------------| | 1 | - | | ! | | | | | | | | 2 | | | | | | | | | | | 3 | | | | | | | | | | | 4 | | <u> </u> | | | | | | | | | 5 | GWB | Moles of MgC | dissolved in brine | s | | | | | | | 6 | | <u> </u> | ļ | 500 | | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 | | · | | | 7 | | Initial and final | concs by | EQ3 | done by | Yongliang Xiong | <u>L. </u> | | | | 8 | Concentration of Mg in brine | | | | | | | ···· | | | 9 | | <u> </u> | | | | | | | | | 10 | | Initial Conc | Final Conc in equil | | | | | | <u></u> | | 11 | | Mol/L | with MgO, mol/Kg | | | Molality to molar | rity ratio factor | | 1.146 | | | Mg | 1.000 | 7.8996E-01 | 0.6893194 | | | | | | | 13 | | <u>.</u> . | | | | | | | | | 14 | | GWB ends up | with less Mg++ in s | olution and wi | ill be negled | cted for further ca | ics | | | | 15 | | | | | | | | | | | 16 | 0111- | 0-1 | F00 | | | | | | | | | Castile | Calculated by | EQ3 | | | Molality to molar | rity ratio factor | | 1.137 | | 18
19 | | Initial Comp | Final Cons in an il | Final Care | Mali | | | | | | 20 | | Initial Conc
Mol/L | Final Conc in equil | | Volume | Moles of MgO | | | | | | B.A. | | with MgO, mol/Kg | mol/L | m3* | dissolved | <u> </u> | | | | 21
22 | ıvıg | 0.019 | 1.0044E-01 | 8.8338E-02 | 1.46E+05 | 1.01E+07 | | | | | 23 | | | | : | | | · · · · · · · · · · · · · · · · · · · | | | | 24 | | | | · | | | | | | | 25 | | | | | | | | | | | 26 | | | | | | | | | · | | 27 | | | | | | | | | | | 28 | | . | | | | | | | | | 29 | | | MDZ G2 OSSNAJA /E | 1 6 1000 | шуш обаг | | | | | | 29 | * Max brine flow up the bore h | ole at the upper | uhz 53 scenario (E | 1 @ 1000+y | rs) in BHA(| SPLU ULI I | | | | # PA Supersack Ratio | Γ | I A | ВС | ; D | E | F | G | H | |----|--------------|-------------------|--------------------|---------------|-------------|-----------|-------------| | 1 | | | | | | | | | 2 | | PER PANEL | | | | | | | 3 | Case 1 | PA | | | | | operational | | 4 | | 12082 | seven packs | İ | | | 10908 | | 5 | | 3 | seven packs | per availab | le space | | | | 6 | | 4027.333 | supersacks | | | | 3636 | | 7 | | 16914800 | Mass of MgC |) (lb) per pa | ınel | | | | 8 | | 7672425 | Mass of MgC | (kg) per pa | anel | | <u> </u> | | 9 | | <u> </u> | | | | | | | 10 | Case 2 | operational | | | <u> </u> | | | | 11 | | 67132800 | Mass of MgC | | | d to be e | mplaced | | 12 | | 0.1044 | Ratio factor f | | | | | | 13 | | 7008664 | Mass of MgC | | | anel | | | 14 | | 3678.919 | supersacks of | f MgO in or | ne PA panel | | <u> </u> | | 15 | | | | | | | | | | Ratio | 1.094706 | | | | | | | 17 | # supersacks | | | | | | | | 18 | | | | | | | | | 19
 - ·-·· | supersack | 4200 | lb | | | | | 20 | | number in one pa | nel 1905 | kg | <u> </u> | | | | 21 | | | | ·
 | | | | | 22 | | : | | | | | | | 23 | | | | | | | | | 24 | ··· | | | | <u> </u> | | | | 25 | <u></u> | Safety Factor cor | responds to one su | ipersack pe | r stack. | | | # CH CPR | | Α | В | C | D | É | F | G | | I | | T K | |---------------|----------------------|-----------------|---------------------|----------------|-------------|--------------------|---------------------------------------|--|----------------|----------|--| | 1 | | | _ | | | | of the volume is | | nercompacto | | | | 2 | Cellulosic number | s aiven by C | . Leigh | | Redistic 0 | ase The | , t | | | | | | 3 | | Formula | Avg Density | | volume | weight | weight (kg) | Total moles | Total moles | | | | 4 | | Wt (g/mol) | (Kg/m3) | equivalent | m3 | kg | cell equivalent | of C | of CO2 | , | | | 5 | Cellulosics | 162 | 6.1E+01 | 6.06E+01 | | 1.07E+06 | · | | | · | | | 6 | Rubber | 162 | 1.5E+01 | 1.48E+01 | | 2.62E+05 | | | | | | | 7 | Plastics | 162 | 4.4E+01 | 7.43E+01 | | 7.71E+05 | | | | | _ | | 8 | Container plastic | 162 | 1.6E+01 | 2.64E+01 | | 2.74E+05 | | _ | _ | | | | 9 | Total Cellulosics | | | 176.18287 | 1.8E+04 | 2.4E+06 | 3.11E+06 | 1.15E+08 | 1.15E+08 | | | | 10 | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | Wang and Brush (| 1996) | | | | | | | | | | | 13 | | | | | ··· | <u> </u> | <u>.</u> | | | | | | 14 | P kg of plastics an | d R kilogram | ns of rubbers | are equivaler | nt to the Q | dograms of | cellulosics, base | ed on carbon | equivalence: | | Q=1.7P+R | | 15 | 160 -/ | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | 17 | 162 g/mol was use | ed for all cell | liosics | | | | | ········ | | <u>.</u> | - | | \rightarrow | PA parameter data | hasa | | | | | | | | | | | | Total volume of Ch | | | 1.69E+05 | nu | | | | | | | | | Ratio factor for one | | | 0.1044 | | | | | ! | | | | | Total volume of Ch | | NF nanel | 1.76E+04 | | | | · · · · · · · · · · · · · · · · · · | | | | | 22 | 10.0.1.0 0, 01 | T TV COLO TOT C | one panor | 11/02/01 | | | | ······································ | | | . | | | Moles of Nitrate a | nd Sulfate | Initially Pres | ent in the W | aste | *from "Estir | nate of Oxyanior | n in a Single | Panel in the V | NIPP Re | pository | | 24 | | | | | | | of AP-107 Super | | | | | | 25 | | kg* | g | <u>fw</u> | moles | · · · · · | · · · · · · · · · · · · · · · · · · · | | | | | | 26 | Nitrate (NO3) | 2.56E+05 | 2.56E+08 | 62.01 | 4.13E+06 | | | | | | i | | 27 | Sulfate (SO4) | 3.63E+04 | 3.63E+07 | 96.06 | 3.78E+05 | | | | | | | | 28 | | | | | | | | | | | | | 29 | | | | | | fraction % | | | | | | | | Molar fraction of co | ellulosics bio | degraded via | denitrificatio | <u>n</u> | 4.48 | | | | | | | 31 | | | | | | MANAGARAN W. M. V. | | | | | | | | Molar fraction of co | ellulosics bio | <u>degraded via</u> | sulfate redu | ction | 0.66 | | | - | | <u> </u> | | 33 | 1.4.1 | | | | | 9125 C | | | | | | | | Molar fraction of co | ellulosics fro | m metnanoge | nisis | | 94.86 | | | | | | | 35
36 | | | | | | | | | | | | | | Total CO2 produc | tion for the | ropositor | | moles | | | | | | | | 3/ | Total CO2 produc | LION IOF THE | repository | <u> </u> | 6.05E+07 | | <u></u> | | | | | # 2H CPR | | Α | В | C | D | E | F | G | Н | ı | J | K | |----|------------------------|-----------------------------|--------------|--------------|--------------|-------------|----------------|--------------|--------------|------|----------| | 1 | Letter 2003, Waste N | <mark>/laterial Para</mark> | ameter Dispo | sal Inventor | Υ | Average d | rum of RH v | vaste for on | e panel | | | | 2 | | | | | | | | | | | | | 3 | | Formula | Avg Density | Cellulosic | volume | weight | weight for | Total moles | Total moles | | | | 4 | - | Wt (g/mol) | (Kg/m3) | equvialent | m3 | kg | one panel | of C | of CO2 | | | | 5 | Cellulosics | 162 | 6.1 | 6.1 | | | | | | | | | 6 | Rubber | 162 | 3.6 | 3.6 | | | | | | | | | 7 | Plastics | 162 | 7 | 11.9 | | | | | | | | | 8 | Total Cellulosics | | | 2.25504 | 7.4E+02 | 1.7E+03 | 174.01573 | 6.4E+03 | 3.2E+03 | | | | 9 | | | | | | | | | | | | | 10 | | | | | | | - | | | | | | 11 | Wang and Brush (19 | 96) | | | | | | | | | | | 12 | | | | | | | | | | | | | 13 | P kg of plastics and F | R kilograms | of rubbers a | re equivalen | t to the Q k | ilograms of | cellulosics, b | ased on car | bon equivale | nce: | Q=1.7P+R | | 14 | | | <u></u> | | | | | | | | | | | 162 g/mol was used | for all cellulo | osics | | | | |] | | | | | 16 | | J | | | | | | | | | | | - | PA parameter data b | | | | | | | | | | | | 18 | Total volume of RH w | vaste | 7.08E+03 | | | | <u></u> | | | | ! | Safety Factor | | Α | В | С | D | E | F | G | Н | | J | Κ | |----|------------------------|-----------------|---------------------------------------|-------------|--------------|--------------|----------------|---------------|-------------|-------------|----------| | 1 | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | 2 | Total MgO required for | dissolving in b | rine and re | acting with | CO2 genera | ated by mici | robial activit | ty. | | | | | 3 | | | | | | | | | | | | | 4 | | | Volume | | | | | | | | | | 5 | | Moles | m3 | | | | | | ·
 | | | | | Mg dissolved | 1.06E+06 | | |] | | <u> </u> | <u> </u> | | | | | | Max CO2 generated | 6.05E+07 | | | | | | | | | | | | Max CO2 (RH) | 3.22E+03 | | | | | | L | | | | | 9 | Total MgO required | 6.16E+07 | 1.55E+03 | | Ratio factor | r from shee | t "PA super | sack ratio" r | ow 16: | 1.095 | | | 10 | | | | | | | | | | į | | | 11 | | | | | | | | | | | | | 12 | Total MgO currently be | ing emplaced | in WIPP | | | | | | MgO is fror | n Marcinows | ki, 2001 | | 13 | | |] | | | | | short tons | | | | | 14 | Tons | Kg | g | moles | 85% react | | 9.07E-01 | conversion | factor | | | | 15 | 7.67E+03 | 7674487.43 | 7.67E+09 | 1.90E+08 | 1.61E+08 | | 6.71E+04 | metric tons | | | | | 16 | | | | | | | | | | i | | | 17 | | | | | | | | | | | | | 18 | | | | | | | | | | | | | | Safety Factor with ne | w inventory d | ata assumi | ing one mo | ole of C pro | duces one | mole CO2 | | | | | | 20 | | | | | | | | | | | | | 21 | Safety Factor | | 2.62E+00 | | | | | | | | | APPENDIX G: EPA54CPRpaneIX.XLS MgO Dissolved in Brine | | | В | С | D | E | F | G | Н | 1 | |----|---------------------------------|-------------------|-------------------------------|---------------|---------------|---------------------|------------------|----|-------| | 1 | | | | | | | | | | | 2 | | | | | | | | | | | 3 | | | | | | | | | | | 4 | · | | | | | | | | | | | GWB | Moles of MgC | dissolved in brine | es | | | | | | | 6 | | | !
 | | | | | | | | 7 | | Initial and final | concs by | EQ3 | done by | Yongliang Xiong | | | | | | Concentration of Mg in brine | | | | | | | | | | 9 | | | | | | | | | | | 10 | | Initial Conc | Final Conc in equil | | | | | | | | 11 | | Mol/L | with MgO, mol/Kg | | | Molality to molar | rity ratio facto | or | 1.146 | | 12 | Mg | 1.000 | 7.8996E-01 | 0.6893194 | | | | | | | 13 | | _j | | | | | | | | | 14 | | _GWB ends up | with less Mg++ in s | olution and w | ill be negled | cted for further ca | lcs | | | | 15 | | | | | | | | | | | 16 | | | | <u> </u> | | | | | | | | Castile | Calculated by | EQ3 | | | Molality to molar | ity ratio facto | r | 1.137 | | 18 | | | | | | <u>j</u> | | | | | 19 | | Initial Conc | Final Conc in equil | Final Conc | Volume | Moles of MgO | | | | | 20 | | Mol/L | with MgO, mol/Kg | mol/L | m3 * | dissolved | | | | | 21 | Mg | 0.019 | 1.0044E-01 | 8.8338E-02 | 1.46E+05 | 1.0†E±07 | | | | | 22 | | | | | | | | | | | 23 | | | | | | | | | | | 24 | | | | | | | | | | | 25 | | | | l i | | | | | | | 26 | | | | | | | | | | | 27 | | | | | | <u> </u> | | | | | 28 | | | | | | | | | | | 29 | * Max brine flow up the bore he | ole at the upper | DRZ S3 scenario (E | 1 @ 1000+ y | rs) in BRA(| SFLO | | | | # PA Superpack Ratio | | A | В | С | D | E | F | G | Н | |----|--------------|--------------|-----------|--|-------------|-----------|------------|-------------| | 1 | | | | 1 | | | | | | 2 | | PER PANEL | | | | | | | | 3 | Case 1 | PA | | | | | | operational | | 4 | | 12082 | | seven packs | | | | 10908 | | 5 | | 3 | | seven packs | per availab | le space | | | | 6 | | 4027.333 | | supersacks | ! | | | 3636 | | 7 | | 16914800 | | Mass of MgC | | | | | | 8 | | 7672425 | | Mass of MgC | (kg) per p | anel | | | | 9 | | | | <u> </u> | | | | | | 10 | Case 2 | operational | | <u> </u> | | | | | | 11 | | 67132800 | | Mass of MgC | | | ed to be e | mplaced | | 12 | | 0.1044 | | Ratio factor f | | | | | | 13 | | 7008664 | | Mass of MgC | | | | | | 14 | | 3678.919 | | supersacks c | | | | | | 15 | | | | | | | | | | | Ratio | 1.094706 | | | | | | | | 17 | # supersacks | | | | | | | | | 18 | | | | | | <u> </u> | | | | 19 | | supersack | | 4200 | <u>lb</u> | | | | | 20 | | number in or | ie panel | 1905 | kg | | | | | 21 | | 1 | | | | | | | | 22 | | | | | | <u> </u> | | | | 23 | | | | | | | | | | 24 | | | | | <u> </u> | | | | | 25 | | Safety Facto | r corresp | onds to one su | ipersack pe | er stack. | | | ## CH CPR | | Α | B | С | D | E | F | G _ | Н | I | J | K | |---------------|----------------------|----------------|-----------------|---------------|--------------|-------------|-------------------|---------------|--------------|---|----------| | 1 | | Average di | rum of CH wa | ste for pane | l X assumi | ing 54% of | the containers | originated fr | om INEEL | | | | 2 | Cellulosic numbers | s given by C | . Leigh | i | | | | | | | | | 3 | | Formula | Avg Density | Cellulosic | volume | weight | weight (kg) | Total moles | Total moles | | | | 4 | | Wt (g/mol) | (Kg/m3) | equivalent | m3 |
kg | cell equivalent | of C | of CO2 | | | | 5 | Cellulosics | 162 | 8.8E+01 | 8.84E+01 | | 1.56E+06 | | | | | | | 6 | Rubber | 162 | 2.3E+01 | 2.28E+01 | | 4.02E+05 | | | | | | | 7 | Plastics | 162 | 6.1E+01 | 1.04E+02 | | 1.08E+06 | | | | | | | 8 | Container plastic | 162 | 1.3E+01 | 2.24E+01 | | 2.32E+05 | | | | | | | 9 | Total Cellulosics | | | 237.61591 | 1.8E+04 | 3.3E+06 | 4.19E+06 | 1.6E+08 | 1.55E408 | | | | 10 | | | | | | | | | | | | | 11 | | | | | | | | | | | | | 12 | Wang and Brush (| 1996) | | | | | | | | | | | 13 | | | | | | | | | | | | | | P kg of plastics and | d R kilogram | is of rubbers a | are equivalen | t to the Q k | ilograms of | cellulosics, base | d on carbon (| equivalence: | | Q=1.7P+R | | 15 | | | <u></u> | | | | | | | | <u></u> | | 16 | 162 g/mol was use | d for all cell | ulosics | | | | | =:: | | | | | 17 | | | · | | | | | | | | | | $\overline{}$ | PA parameter data | | | | | | | | | | | | 19 | Total volume of Ch | | | 1.69E+05 | | | | | | | | | - | Ratio factor for one | | | 0.1044 | | | | | | | | | 21 | Total volume of Ch | I waste for C | ONE panel | 1.76E+04 | | | | | | | | ## PH CPR | | Α | В | C | D | E | F | G | Н | , <u> </u> | J | K | |----|------------------------|--------------------------------|--------------|--------------|-----------------|-------------|----------------|--------------|--------------|------|----------| | 1 | Letter 2003, Waste N | <u> laterial Para</u> | ameter Dispo | sal Inventor | Υ | Average d | rum of RH w | vaste for on | e panel | | | | 2_ | | | | | | | | | | | | | 3_ | | Formula | Avg Density | Cellulosic | volume | weight | weight for | Total moles | Total moles | | | | 4 | | Wt (g/mol) | (Kg/m3) | equvialent | m3 | kg | one panel | of C | of CO2 | | | | 5 | Cellulosics | 162 | 6.1 | 6.1 | | | | | | _ | | | 6 | Rubber | 162 | 3.6 | 3.6 | | | | _ | | | | | 7_ | Plastics | 162 | 7 | 11.9 | | | | | | | | | 8 | Total Cellulosics | 1 | | 2.25504 | 7.4E+02 | 1.7E+03 | 174.01573 | 6.4E+03 | 6.4E+03 | | | | 9 | | | | | | | | | | | | | 10 | | | | | | | | | | | | | 11 | Wang and Brush (19 | <u>96)</u> | | | | | | | | | | | 12 | | <u> </u> | | ll | | l | | | | | | | 13 | P kg of plastics and I | R kilograms | of rubbers a | re equivalen | t to the Q k | ilograms of | cellulosics, b | ased on carl | oon equivale | nce: | Q=1.7P+R | | 14 | | <u> </u> |
 | | | | | | | | | | 15 | 162 g/mol was used | for a <mark>ll cellui</mark> c | sics | | | | | | | | | | 16 | | | | | · · · <u></u> - | | | | | | | | 17 | PA parameter data b | <u>ase</u> | | | | | | | | | | | 18 | Total volume of RH v | vaste | 7.08E+03 | | | | | | | | | Safety Factor | | A | В | С | D | E | F | T G | Н | | ī | Τκ | |----|--|-----------------|--------------|-------------|-----------------|-------------|-----------------|--|---------------|----------|--------------| | 1 | | <u> </u> | | | <u> </u> | J" | G | | <u> </u> | J | | | - | Total MgO required for | dissolving in h | rine and rea | acting with | CO2 genera | ated by mi | icrobial activi | tv | | | | | 3 | Total ingo roquirou ior | | mio una ro | doming with | OOE gonore | atod by tin | Didi dolivi | | - | | | | 4 | | | Volume | | | | ! | | | | | | 5 | | Moles | m3 | |
 | | - | | | | | | 6 | Mg dissolved | 1.06E+06 | | | ··· | _ | - | | | - | | | | Max CO2 generated | 1.55E+08 | | | - | | | | | | | | 8 | Max CO2 (RH) | 6.45E+03 | | | | | | | · . | | | | 9 | Total MgO required | 1.56E+08 | 3.93E+03 | | | | Ţ | 1. | | | | | 10 | | | | | | | | | | | | | 11 | | | | | | Ratio fact | tor from shee | t "PA supers | sack ratio" r | ow 16: | 1.095 | | 12 | Total MgO currently be | ing emplaced i | in WIPP | | | | | | | | | | 13 | | | | | | | | ric Tons of N | IgO is from | Marcinow | /ski, 2001 | | 14 | Tons | Kg | _ g | moles | 85% react | | 7.40E+04 | short tons | | | | | 15 | 7.67E+03 | 7674487.43 | 7.67E+09 | 1.90E+08 | 1.61E+08 | | 9.07E-01 | conversion | factor | | | | 16 | | <u> </u> | | | | · | 6.71E+04 | metric tons | | | | | 17 | | | | | | | | | | | | | 18 | | 1 | | | <u> </u> | | <u> </u> | | | | | | | Safety Factor with ne | w inventory d | ata assumi | ng one mo | ple of C pro | duces on | e mole CO2 | | | | | | 20 | THE RESERVED AND ADDRESS OF THE PROPERTY TH | | | | | | | | | | | | 21 | Safety Factor | | 1.03E+00 | | | | | | | | | #### APPENDIX H: SNL54CPRpaneIX.XLS MgO Dissolved in Brine | | | В | С | D | E | F | G | Н | T T | |----|---------------------------------|---|---------------------|---------------|---------------|----------------------|------------------|----------|-------| | 1 | | | | | | | | | | | 2 | | | | | | | | | | | 3_ | | | | | | | | |
 | | 4 | | |
 | <u></u> | | | <u> </u> | | | | 5_ | GWB | Moles of MgC | dissolved in brine |)s | | | | | | | 6_ | | | | | <u> </u> | | | | | | 7 | | Initial and fina | concs by | EQ3 | done by | Yongliang Xiong | | | | | | Concentration of Mg in brine | | | | | | | | | | 9 | | | | | | | | | | | 10 | | Initial Conc | Final Conc in equil | | | | | | | | 11 | | Mol/L | with MgO, mol/Kg | mol/L | <u></u> | Molality to molar | ity ratio factor | <u> </u> | 1.146 | | | Mg | 1.000 | 7.8996E-01 | 0.6893194 | | | | | | | 13 | | | l | l i | | <u>.</u> , | | | | | 14 | | _GWB ends up | with less Mg++ in s | olution and w | ill be negled | cted for further cal | ics | | | | 15 | | | <u> </u> | | | | | | | | 16 | | <u> </u> | | | | | | | | | | Castile | Calculated by | EQ3 | | | Molality to molar | ity ratio factor | · | 1.137 | | 18 | | T 1 711 1 A | <u> </u> | | | January : January | | | | | 19 | | Initial Conc | Final Conc in equil | | Volume | Moles of MgO | | | | | 20 | | Mol/L | with MgO, mol/Kg | mol/L | m3.4 | dissolved | | | | | | Mg | 0.019 | 1.0044E-01 | 8.8338E-02 | 1.46E+05 | 1.01E+07 | |
-· · | | | 22 | | | | | | ! | | | | | 23 | | | | | | | | | | | 24 | | | <u> </u> | - | | <u> </u> | | | · | | 25 | | <u> </u> | | | | | _ | | | | 26 | - | | | | | | | | | | 27 | | | | | | | | | | | 28 | | E. J. J. P. S. P. M. M. G. S. D. S. M. | | | | | | | | | 29 | * Max brine flow up the bore ho | ole at the upper | umz 53 scenario (E | :1 @ 1000+ y | rs) in BRAC | STLO - | | | | ### PA supersack Raho | | А | ВС | | D | Е | F | G | Н | |------------|--------------|-------------------|-------------|----------|-------------|---------------|------------|-------------| | 1 | | | 1 | | | | = | | | 2 | | PER PANEL | L | | | i | | | | 3 | Case 1 | PA | | | | | | operational | | 4 | | 12082 | sever | packs | | | | 10908 | | 5 | | 3 | | | oer availab | e space | | | | 6 | | 4027.333 | | sacks | | | | 3636 | | 7_ | | 16914800 | | | (lb) per pa | | | | | 8 | | 7672425 | Mass | of MgO | (kg) per pa | inel | | | | 9_ | <u></u> | | | | | | | | | 10 | Case 2 | operational | | | | | | | | 11 | | 67132800 | | | | itly schedule | ed to be e | mplaced | | 12 | | 0.1044 | | | r one PA p | | | | | 13 | | 7008664 | | | | ced in one p | panel | | | 14 | | 3678.919 | super | sacks of | MgO in or | e PA panel | | | | 15 | | | | | | | | | | | Ratio | 1.094706 | | | | | | | | <u> 17</u> | # supersacks | | | | v | | <u> </u> | | | 18 | | | <u> </u> | | | | | | | 19 | | supersack | | 200 | lb | ·
 | | | | 20 | | number in one pa | ınel 19 | 905 | kg | | | | | 21 | | | | | | | | | | 22 | | <u> </u> | | | | | | | | 23 | | | | | | | | | | 24 | | | | | |] | | | | 25 | | Safety Factor cor | responds to | one su | persack pe | r stack. | | | ## CH CPR | Γ | A | В | C | D | E | F | G | Н | | J | K | |----------|---|-----------------|----------------|--------------------|--|-------------------|-------------------|---------------|--|-------------|---------------| | 1 | Average drum of | | | | | | | | | | | | 2 | Cellulosic numbers | | | | | | i | - | | | | | 3 | | Formula | Avg Density | Cellulosic | volume | weight | weight (kg) | Total moles | Total moles | | | | 4 | | Wt (g/mol) | (Kg/m3) | equivalent | m3 | kg | cell equivalent | of C | of CO2 | | | | 5 | Cellulosics | 162 | 8.8E+01 | 8.84E+01 | | 1.56E+06 | | | | | | | 6 | Rubber | 162 | 2.3E+01 | 2.28E+01 | | 4.02E+05 | | | | | | | 7 | Plastics | 162 | 6.1E+01 | 1.04E+02 | | 1.08E+06 | | | | | | | 8 | Container plastic | 162 | 1.3E+01 | 2.24E+01 | | 2.32E+05 | _ | | | · . | | | 9 | Total Cellulosics | | | 237.61591 | 1.8E+04 | 3.3E+06 | 4.19E+06 | 1.6E+08 | 1.6E+08 | | | | 10 | | | | | | | | | | | | | 11 | | <u></u> | | | | | | | | | | | | Wang and Brush (| 1996) | | | | | | | | | | | 13 | | | | | | | | | | | | | 14 | P kg of plastics an | d R kilogran | ns of rubbers | are equivaler | nt to the Q | ilograms of | cellulosics, base | ed on carbon | equivalence: | | Q=1.7P+R | | 15 | | | | | | | | | <u> </u> | | | | | 162 g/mol was use | ed for all cell | ulosics | | | | | | | | | | 17 | | | | | | | | | | | | | | PA parameter data | | | 1 005 05 | | · | | | | | | | | Total volume of Cl-
Ratio factor for one | | | 1.69E+05
0.1044 | | | | | <u> </u> | | <u> </u> | | 21 | Total volume of Ch | | ONE panal | 1.76E+04 | | | | | | | · | | 22 | Total volume of Cr | 1 waste for C | JINE parier | 1.700+04 | | | | | | | | | | Moles of Nitrate a | and Sulfate | Initially Pres | ent in the W | aeta | *from "Fetir | mate of Oxyanio | n in a Single | Panel in the \ | MIDD D |
enository | | 24 | Moles of Middle | ilia Saliate | inidally i ica | | | | of AP-107 Super | | | | epository | | 25 | <u> </u> | ka* | <u> </u> | <u>fw</u> | moles | in Capport | 01711 107 Capel | ocace Emili | <u> </u> | · | | | 26 | Nitrate (NO3) | 2.31E+05 | 2.31E+08 | 62.01 | 3.73E+06 | L | | | | | | | 27 | Sulfate (SO4) | 1.20E+04 | 1.20E+07 | 96.06 | 1.25E+05 | | | | | | | | 28 | | | | | :::::::::::::::::::::::::::::::::::::: | | | | · | | | | 29 | | | | | | fraction % | | | | | | | 30 | Molar fraction of co | ellulosics bio | degraded via | denitrificatio | n | 3.00 | | | | | | | 31 | | | | - | | BRANCE CONTRACTOR | | | | | | | 32 | Molar fraction of co | ellulosics bio | degraded via | sulfate redu | ction | 0.16 | · | | | | | | 33 | | | | | | ACRES | | | | | | | | Molar fraction of co | ellulosics fro | m methanoge | nisis | | 96.84 | | | | | | | 35 | | | | | | | | | | | | | 36 | | | | | moles | | | | | | | | 37 | Total CO2 produc | ction for the | repository | | 8.01E+07 | | | | | · | | RH CPR | | A | В | С | D | E | F | G | Н | | | K | |----|------------------------|-----------------|--------------|--------------|--------------|-------------|--|--------------|--------------|---------|----------| | 1 | Letter 2003, Waste N | /laterial Para | ameter Dispo | sal Inventor | У | Average d | rum of RH w | aste for one | e panel | | | | 2 | | | | | | | | | | | | | 3 | | Formula | Avg Density | Cellulosic | volume | weight | weight for | Total moles | Total moles | | | | 4 | | Wt (g/mol) | (Kg/m3) | equvialent | m3 | kg | one panel | of C | of CO2 | | | | 5 | Cellulosics | 162 | 6.1 | 6.1 | | | | | | | | | 6 | Rubber | 162 | 3.6 | 3.6 | | | | | | | | | 7 | Plastics_ | 162 | 7 | 11.9 | | | | | | | | | 8 | Total Cellulosics | | | 2.25504 | 7.4E+02 | 1.7E+03 | 174.01573 | 6.4E+03 | 3.2E+03 | | | | 9 | | | | | | | | | | | | | 10 | | | ! | | | <u> </u> | | | | | | | 11 | Wang and Brush (19 | <u>96)</u> | | | | | | | | | | | 12 | " - | | <u> </u> | | · | | <u>. </u> | | | | | | 13 | P kg of plastics and I | R kilograms | of rubbers a | re equivalen | t to the Q k | ilograms of | cellulosics, b | ased on carl | oon equivale | nce: | Q=1.7P+R | | 14 | | <u> </u> | | | | | | | | | | | 15 | 162 g/mol was used | for all cellulo | osics | | | | | | | | | | 16 | | <u></u> | | ! | | | | | | | | | | PA parameter data b | | <u> </u> | | | | | | | | | | 18 | Total volume of RH v | vaste | 7.08E+03 | | | | | L <u>-</u> | | | | Safety Factor | _ | 32210 1170 | | | | | | 1 | | | | 16 | |----|------------------------|-----------------|--------------|-------------|--|------------|------------------|-----------------|-------------|-------------|---------------| | | Α | B | <u> </u> | D | <u>E</u> | F | G | Н | l | J | K | | 1 | | | | | | | | | | | | | 2 | Total MgO required for | dissolving in b | rine and rea | acting with | CO2 genera | ated by mi | icrobial activit | ty. | | | 1 | | 3 | | ļ | | | | | | | | | | | 4 | | | Volume | | | | | | | | | | 5 | | Moles | m3 | | | | | | | | | | 6 | Mg dissolved | 1.06E+06 | - | | | | | | | | | | 7 | Max CO2 generated | 8.01E+07 | | | | | | | | | | | 8 | Max CO2 (RH) | 3.22E+03 | | | | | | | | | | | 9 | Total MgO required | 8.11E+07 | 2.04E+03 | | | | | | | | | | 10 | | | | | | | | | | | | | 11 | | | | _ | | | | | | | | | 12 | Total MgO currently be | ing emplaced i | n WIPP | | | Ratio fact | tor from shee | t "PA super | sack ratio" | row 16: | 1.095 | | 13 | | | | | | | | | i | | | | 14 | Tons | Kg | g | moles | 85% react | | Total Mete | ric Tons of | MgO is from | n Marcinows | ki, 2001 | | 15 | 7.78E+03 | 7776113.06 | 7.78E+09 | 1.93E+08 | 1.63E+08 | | 7.40E+04 | short tons | | 1 | | | 16 | | | | | THE STATE OF S | | 9.07E-01 | conversion | factor | T | - | | 17 | | | | | | | 6.71E+04 | metric tons | | | | | 18 | | | | | | | | ; · | | | - | | 19 | Safety Factor with new | w inventory da | ata assumi | ng one mo | ole of C pro | duces on | e mole CO2 | | : | | | | 20 | | | | | | | i | · | | T | | | 21 | Safety Factor | | 2.01E+00 | | | | | | | | | #### APPENDIX
I: MgOsafetyfactorSNLPAcalcs.XLS Mgo Dissolved in Brine | | | В | С | D | Ē | F | G | H | 1 | |----|--|---|--|--|---------------|--------------------|------------------|----|-------| | 1 | | | | | | 1 | | | | | 2 | | | | | | | | | | | 3 | | | | | | | | | | | 4 | | | | | | | | | | | - | GWB | Moles of MgC | dissolved in brine | es | | | | | | | 6 | | | | | | | | | | | 7 | | Initial and final | concs by | EQ3 | done by | Yongliang Xiong | | | | | | Concentration of Mg in brine | | | | | | | | | | 9 | | | | | | | | | | | 10 | | Initial Conc | Final Conc in equil | | | ! | | | | | 11 | | Mol/L | with MgO, mol/Kg | mol/L | | Molality to molar | rity ratio facto | or | 1.146 | | 12 | Mg | 1.000 | 7.8996E-01 | 0.6893194 | | | | | | | 13 | | .j | | | | | | | | | 14 | | GWB ends up | with less Mg++ in se | plution and w | ill be negled | ted for further ca | lcs | | | | 15 | | | | | | | | | | | 16 | | | | | | | | | | | | Castile | Calculated by | EQ3 | | 77-70-4 | Molality to molar | rity ratio facto | or | 1.137 | | 18 | | | | | | | | | | | 19 | | Initial Conc | Final Conc in equil | | Volume | Moles of MgO | | | | | 20 | | Mol/L | with MgO, mol/Kg | mol/L | * m3 * | dissolved | | | | | | Mg | 0.019 | 1.0044E-01 | 8.8338E-02 | 1.46E+05 | 1.01E+07 | | | | | 22 | | | | | | | | | | | 23 | | | | | | | | | | | 24 | | | | | | | | | | | 25 | | | | | · | | | | | | 26 | | | | | | | | | | | 27 | | | | | | | | | | | 28 | TO SELECT THE TO SELECT THE SELEC | 000000000000000000000000000000000000000 | TÄYE BENGANNAN MANANGAN ANGAN AN | DESCRIPTION OF A PROPERTY OF A STANDARD OF THE | | | | | | | 29 | Max brine flow up the bore ho | ole at the upper | DRZ S3 scenario (E | 1 @ 1000+ y | rs) in BRAC | :FLO | | | | # Conservative Case | | Α | В | С | D | E | F | G | Н | i | J | κ | L | М | |----------------------|--------------|-----------------------------|-----------------|-----------------|----------|----------------|----------|--|---------------|----------|-------------|---------------|---------------------------------------| | 1 | | | | | | | | | | | ! | | | | 2 | | | | | | | | | | | | | | | 3 | | <u> </u> | | | | | ļ | :
 | | | | - · | | | 4 | Conserva | tive Case | | | <u> </u> | | | | | <u></u> | <u> </u> | | | | 5 | | | | | grams | | | number | m3 | m3 | % | % | | | 6 | Total | | Cellulosics | <u>Plastics</u> | Rubber | Plastic Liners | ·
 | containers waste | | | of total | of total | | | 7 | Panel X | | 1.56E+06 | 1.08E+06 | 4.02E+05 | 2.32E+05 | ļ | for panel X | <u>volume</u> | volume | containers | <u>volume</u> | | | 8 | | | | | | <u>.</u> | | | | | ļ! | | | | | Per conta | iner | | | | <u> </u> | | | | | | | | | | SC | <u>-</u> | 114.71 | 77.52 | 30.29 | 00 | i | ! | 0.379 | | | | | | | TDOP | <u> </u> | 12.86 | 16.99 | 0.04 | 91.55 | | | 4.79 | | | | | | | SWB | <u> </u> | 5.17 | 6.72 | 0.02 | 30.24 | | | 1.89 | | | | | | | 55 gal | - | 7 | 5.51 | 1.48 | 3.73 | <u>!</u> | | 0.208 | | ļ | | · · · · · · · · · · · · · · · · · · · | | 14 | | - | <u>]</u> | 1 | | ļ | | | | <u> </u> | | | ļ | | | Total | IN CET | 4 455 00 | 0 | 0.00= 0= | 0.00= 0= | | 10000 | | 1776 757 | 4, = | | | | _ | SC | INEEL | 1.45E+06 | 9.77E+05 | 3.82E+05 | 0.00E+00 | | 12603 | | 4776.537 | 44.3 | 27.5 | 84.2 | | 17 | | INEEL | 2.17E+04 | 2.87E+04 | 6.76E+01 | 1.55E+05 | | 1691 | | 8099.89 | 5.95 | 46.6 | | | | SWB | INEEL | 4.77E+03 | 6.20E+03 | | 2.79E+04 | | 922 | | 1742.58 | 3.24 | 10.0 | | | | 55 gal | | 9.25E+04 | 7.28E+04 | 1.95E+04 | 4.93E+04 | | 13208 | | 2747.264 | 46.5 | 15.8 | 15.8 | | 20 | <u> </u> | | | | | | | | | | i | | | | 21 | Check | Total | 1.56E+06 | 1.08E+06 | 4.01E+05 | 2.32E+05 | | 2.84E+04 | | 17366.27 | | | | | 22 | | | ! | | | | | | | | | | | | 23 | Total | INEEL | 1.47E+06 | 1.01E+06 | 3.82E+05 | 1.83E+05 | | | | | | | | | 24 | | with the bear of the second | | | | | | | Al Aurana | | | | | | 25 | | | | | | | | | | | | | | | 26 | | | | | | | | | | | | | | | 27 | | | Kilogi | | | | | number | | | | | | | 28 | | ! | <u>Nitrates</u> | Sulfates | | | | containers waste | | | <u>,</u> | | | | 29 | Panel X | <u>:</u> | 2.31E+05 | 1.20E+04 | | | | for panel X | | | | | | | 30 | | <u>i</u> | | | | | | | | | | | | | | Per conta | iner | | | | | | | | | | | | | | SC | | 0 | 0 | | | | | | <u></u> | | | | | | TDOP | | 91.16 | 1.22 | | | | | | <u></u> | | | <u> </u> | | | SWB | | 36.08 | 0.6 | | | | | | | ļ | | <u> </u> | | | 55 gal | ļ | 3.31 | 0.71 | | | | ļ <u>.</u> | | | | | | | 36 | <u> </u> | | | | | | | ļ | | | | | | | | Total | ļ | | l | | | | | | | | | | | | SC | INEEL | 0.00E+00 | 0.00E+00 | | <u> </u> | | 12603 | | | | | | | 30 | TDOP | INEEL | 1.54E+05 | 2.06E+03 | | | | 1691 | · | | | | | | | SWB | INEEL | 3.33E+04 | 5.53E+02 | | | | 922 | | | | | | | 40 | | _ | 4.075.04 | 9.38E+03 | | | | 13208 | | | | | | | 40
41 | 55 gal | | 4.37E+04 | 8.30E+03 | | | | | | | | | | | 40
41
42 | | | | | | | | | . , | | | | | | 40
41
42
43 | | Total | 2.31E+05 | 1.20E+04 | | | | 2.84E+04 | | | | | | | 40
41
42 | | Total | | | | | | 2.84E+04 | | | | | | # CH CPR | | A | В | С | Г | E | F | G | Н | | J | K | |----|---|-----------------|---|----------------|---|--|-----------------------|------------------|--|-------------|--| | | Average drum of | | | | | | | ' ' ' | <u>'</u> | | | | 2 | | <u> </u> | 10 11121, 10 | | | |
 | | | | | 3 | | Formula | Avg Density | Cellulosic | volume | weight | equivalent cell wt | Total moles | Total moles | | | | 4 | | Wt (g/mol) | (Kg/m3) | equivalent | m3 | kg | Kg | of C | of CO2 | | | | 5 | Cellulosics | 162 | 5.24E+00 | 5.24E+00 | | 9.25E+04 | | | | | | | 6 | Rubber | 162 | 1.11E+00 | 1.11E+00 | | 1.95E+04 | | | | | | | 7 | Plastics | 162 | 4.13E+00 | 7.01E+00 | | 7.28E+04 | i | · | ĺ | | | | 8 | Container plastic | 162 | 2.79E+00 | 4.75E+00 | | 4.93E+04 | | | | | | | 9 | Total Cellulosics | | | 18.112517 | 1.8E+04 | 3.2E+05 | 3.20E+05 | 1.2E+07 | 1.2E+07 | | | | 10 | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | Wang and Brush (| <u>1996)</u> | | | | | | | <u> </u> | | | | 13 | | | | | | | | | | | | | | P kg of plastics and | d R kilogran | ns of rubbers | are equivale | nt to the Q I | kilograms of | cellulosics, based of | on carbon eq | uivalence: | | Q=1.7P+R | | 15 | 100 | | · • • • • • • • • • • • • • • • • • • • | | | | | | | | <u> </u> | | 16 | 162 g/mol was use | od for all cell | ulosics | | – | | | | | | | | - | DAi | | | <u>-</u> | <u> </u> | <u> </u> | | | | | | | | PA parameter data
Total volume of CH | | | 1.69E+05 | | | | | | | | | 20 | Total volume of CF | ı wasıe | | 1.09E+05 | · - | | | | | | | | 21 | , | | | | | | | | | | | | 22 | | | <u> </u> | | | | <u> </u> | | | | | | | Moles of Nitrate a | nd Sulfate | Initially Pres | ent in the W | aete | | | | | | | | 24 | | a canate | | | | | | | | | | | 25 | · · · · · · · · · · · · · · · · · · · | kg* | g | <u>fw</u> | moles | | | | | | | | 26 | Nitrate (NO3) | 4.37E+04 | 4.37E+07 | 62.01 | 7.05E+05 | l | | | | | | | 27 | Sulfate (SO4) | 9.38E+03 | 9.38E+06 | 96.06 | 9.76E+04 | | | | | | | | 28 | | | | | TO COMPANY OF THE PARTY | | | | | | | | 29 | | | | 1 | | fraction % | | | | | | | | Molar fraction of ce | ellulosics bio | degraded via | denitrificatio | <u>on</u> | 7,44 | | | | | | | 31 | | | | | | | | | | | | | | Molar fraction of ce | ellulosics bio | degraded via | sulfate redu | ction | 1.65 | | | | | | | 33 | | | | | | | | | | | | | 34 | Molar fraction of ce | ellulosics fro | m methanoge | nisis | | 90.91 | | | | | | | 35 | | | | | | | | | | | | | 36 | | L | | | <u>moles</u> | <u> </u> | | | | | | | 37 | Total CO2 produc | tion for the | repository | | 6.5E+06 | | | | | | | # INEEL CPP | | Α | В | С | П | E | F | G | Н | ı | J | Τκ | |----------|------------------------|-----------------|------------------|--------------------|--|-------------|------------------|--------------|---------------------------------------|--------------|--| | 1 | Average drum of | _ | _ | _ | | . ' | | • • • | ' | | | | 2 | - | | | | | | | | | | | | 3 | | Formula | Avg Density | Cellulosic | volume | weight | equil cell wt | Total moles | Total moles | | | | 4 | | Wt (g/mol) | (Kg/m3) | equvialent | m3 | kg | Kg | of C | of CO2 | | | | 5 | Cellulosics | 162 | 8.33E+01 | 8.33E+01 | | 1.47E+06 | | | | | = | | 6 | Rubber | 162 | 2.17E+01 | 2.17E+01 | | 3.82E+05 | | | | | | | 7 | Plastics | 162 | 5.72E+01 | 9.73E+01 | | 1.01E+06 | | | | | i | | 8 | Container plastic | 162 | 1.04E+01 | 1.76E+01 | | 1.83E+05 | | | | | | | 9 | Total Cellulosics | | | 2.20E+02 | 1.8E+04 | 3.9E+06 | 3.88E+06 | 1.4E+08 | 1.4E+08 | | | | 10 | | | | | | | | | 3 | | | | 11 | | | | | | | | | | | | | 12 | Wang and Brush (| 1996) | | | | | | | | | | | 13 | | | | | | | | | | | | | | P kg of plastics and | d R kilogram | ns of rubbers a | are equivaler | nt to the Q k | ilograms of | cellulosics, bas | sed on carbo | n equivalence | 9: | Q=1.7P+R | | 15 | | | <u></u> | | | | | | | | | | | 162 g/mol was use | d for all cell | ulosics | | | | | | | | | | 17 | | | | | | | | | | | | | | PA parameter data | | | | | | | | | | | | 19 | Total volume of Ch | l waste | . , | 1.69E+05 | | | | | | | | | 20 | | | | | | | | | | | | | 21 | re nomas laust nganuga | . 0 4 6 0 0 0 0 | |
 | | | | | | | | | 22 | one mole of C ⊨ or | ne half mole | of CO2 | | | | | | | | | | 23 | | | | | | | | | | | | | 24 | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | Moles of Nitrate a | ind Sulfate | Initially Pres | ent in the W | aste | | | | | | | | 27 | | 1 | | c | | | | | | | | | 28 | Nitrata (NICO) | <u>kg*</u> | <u>g</u> | <u>fw</u> | moles
3.02E+06 | | | | | | | | 29
30 | Nitrate (NO3) | 1.87E+05 | 1.87E+08 | 62.01 | at transfer to a tradition of the second | | | | | | | | 31 | Sulfate (SO4) | 2.62E+03 | 2.62E+06 | 96.06 | 2.73E+04 | | | | | | | | 32 | | | | | | fraction % | | | | | ļ | | | Malay frantism of a | allulaaiss kis |
 | alamitulfiaali- | | | | | <u> </u> | | | | 34 | Molar fraction of ce | enulosics Dio | uegraded Via | denitrincatio | <u>[]</u> | 2.62 | | | ;
 | | | | | Molar fraction of ce | allulaaisa bis | dograded : !- | j
Audiota nadin | otion | 0.04 | | | | | - | | 36 | INDIAL HACTION OF CO | HUIOSICS DIC | inegraded via | sunate redu | CHOIL | 0.04 | | | | | 1 | | | Molar fraction of a | allulasias fra | i
m mathanasa | L | | 97.34 | | | | | | | | Molar fraction of ce | enulosics fro | m memanoge
 | <u>1111515</u> | | | | | · · · · · · · · · · · · · · · · · · · | | | | 38
39 | | | | | malac | | | | | | | | | Total CO2 made: | stian far the | rongelter: | | moles
7.4E+07 | , | | | | | | | 40 | Total CO2 produc | tion for the | repository | <u> </u> | /.4E+U/ | | | | | | | # PH CPTC | | Α | В | С | D | E | F | G | Н | j j | J | K | |----|------------------------|----------------|--------------|--------------|--------------|-------------|----------------|--------------|------------|-------|----------| | 1 | Letter 2003, Waste M | Material Para | ameter Dispo | sal Inventor | Υ | Average d | lrum of RH v | vaste | | | | | 2 | | | | | | | | | • | | · | | 3 | | Formula | Avg Density | Cellulosic | volume | weight | Total moles | Total moles | | | | | 4 | | Wt (g/mol) | (Kg/m3) | equvialent | m3 | kg | of C | of CO2 | | İ | | | 5 | Cellulosics | 162 | 4.5 | 4.5 | | | | | | | | | 6 | Rubber | 162 | 3.1 | 3.1 | | | | | | | | | 7 | Plastics | 162 | 6.3 | 10.71 | | | | | | | | | 8 | Total Cellulosics | | | 18.31 | 7.4E+02 | 1.4E+04 | 5.0E+05 | 2.5E+05 | | | | | 9 | | | | | | | | | | | | | 10 | | | | | | | | | | | | | 11 | Wang and Brush (19 | <u>96)</u> | | | | | | | | | | | 12 | | | | | | | | | | | | | 13 | P kg of plastics and F | R kilograms | of rubbers a | re equivalen | t to the Q k | ilograms of | cellulosics, b | ased on carb | on equival | ence: | Q=1.7P+R | | 14 | | : | | : | | | , | | | | | | 15 | 162 g/mol was used t | for all celluk | osics | : | | | <u> </u> | | | | | | 16 | | | | | | | 1 | | | | | | | PA parameter data b | | | | | | | | | | | | 18 | Total volume of RH v | vaste | 7.08E+03 | | | | | | | | | Safety Factor | | A | В | С | D | E | F | G | " Н | 1 | |-----------|--|----------------|---|-------------|-------------|---------------|--------------|-------------|-------------| | 1 | | - | | | | | | | | | 2 | Total MgO required for dissolving | in brine and r | eacting with | CO2 gene | rated by mi | crobial activ | ity. | ! | | | 3 | | | | | | | | | | | 4 | | | Volume | | | | | | | | 5 | | Moles | m3 | | | | | | | | 6 | Mg dissolved | 1.06E+06 | | | | | | | | | 7 | Max CO2 without INEEL (46%) | 6.46E+06 | | | · | | | | | | 8 | Max CO2 INEEL (54%) | 7.38E+07 | | | | | MgO is fro | m Marcinows | ki, 2001 | | 9 | Mas CO2 (RH) | 2.51E+05 | 5 (5 (5 (5 (NCT) PEC L L L RECTORISMONISMO 1000 | | | short tons | | | | | | Total MgO required | 8.15E+07 | 2.05E+03 | | | conversion | | | | | 11 | | | | | 6.71E+04 | metric tons | ;
, | | | | 12 | | | | | | | | | | | 13 | | ced in WIPP | | | | | | | | | 14 | | <u> </u> | | | | | | | | | 15 | | Tons | Kg | g | moles |
85% react | | | | | 16 | <u> </u> | 6.71E+04 | 67132800 | | | 1.41E+09 | / | | | | | Panel X | 7008.66432 | 7008664 | 7.01E+09 | 1.74E+08 | 1.47E+08 | | | | | 18 | | | | | | r | | | | | 19 | | | _ | | <u> </u> | | l <u>-</u> | | | | 20 | Safety Factor with new invento | ry data assun | ning one m | ole of C pr | oduces on | e/half mole | CO2 | | , | | <u>21</u> | TOTAL TERMINE THE THE CHARGE SON THOU THE CAREE OF CA | | in <u>Samundi</u> na <u>se</u> a, | | | | | | | | 22 | Safety Factor | | 1.80E+00 | | | | | | | PA Request (EPA) | | | U | | | | | | | | |----------|------------------------------------|-----------------------|--|---------------------|---------------------|--|---------------|-------------|---| | | Α | В | C | D | E | F | G | H | | | 1 | | | | | | | | 1 | · | | _ | PER ONE PA PANEL | | | | | | | | | | 3 | ,, | | | | | | | | | | 4 | | | | | | | | | | | | Total MacO required for allered | ling in bring and | noting with CO2 ===== | d bu migrabial = -4 | l | - | | | | | 12 | Total MgO required for dissolv | ring in prine and rea | acting with CO2 generate | o by microbial acti | IVIÇY. | | | | | | | Asumes one mole of $C = 1/2$ | mole of CO2 | | | | | | | | | 7 | | | | | | | | | | | 8 | | | Volume | | | | | | | | 9 | | Moles | m3 | | | | | | | | 10 | Mg dissolved | 1.06E+06 | | | | ' | | | | | 11 | Max CO2 without INEEL (46% | 1.18E+07 | | | | | | | | | | Max CO2 INEEL (54%) | 1.44E+08 | | | | | | | | | 13 | Max CO2 RH | 2.51E+05 | | | | i | | | | | | Total MgO required | 1.57E+08 | | | | | - | | | | 15 | Total MgO required | Indicator | | Topo | len . | - | moles | males #059/ | | | | Total Mac augus all the la | l
nlesset in 14455 | F | Tons | kg | g
0.715.40 | moles | moles *85% | | | | Total MgO currently being em | placed in WIPP | ļ | 6.71E+04 | 67132800 | 6.71E+10 | 1.67E+09 | 1.41E+09 | | | 17 | | ļ | | | | <u> </u> | · | | | | | Total MgO for one PA panel | | | 7008.66432 | 7008664.32 | 7.01E+09 | 1.74E+08 | 1.47E+08 | | | 19 | | J | | ĺ | | | | | | | 20 | | Safety Factor | | 9.38E-01 | | | | : | | | 21 | |] | | | | | | ! | | | 22 | | | | | | 1 | | | | | 23 | Data for following table calcula | ations | | - | | ÷ | | | | | 24 | Detail of following Labor ballouis | | | | | : | | + | | | | Given | | | | | | | | | | 150 | cellulosis descit | | | 00.40 | 1, a / 0 | + | | | | | | cellulosic density | : | | 36.42 | kg/m3 | | | | | | 27 | Super sack volume | : | | 47.60 | ft3 | 1.35E+00 | <u>m</u> 3 | | | | 28 | MgO mass per sack | | | 4200.00 | lb | 1.91E+06 | g | | | | | Super sack density | | | 1413395.25 | g/m3 | | | | | | 30 | panel CH volume | | | 17643.60 | m3 | | | 1 | | | 31 | | | | | | | | | | | 32 | | | | | | | | | | | 32
33 | | | | | | | | | | | 34 | | | | | | | | | | | 35 | | | | | | + | | | | | 00 | | | I
******* **** ** *** *** * *** * * * * | | | | | | | | 36 | | | | | | | | | | | 37 | | | | | | | | | | | 38 | | | ·
- | | | | | | | | 39 | | | | | | | | | | | 40 | | | | | | i | | | | | 41 | | | | | | | | | - 1 | | 42 | | | | | | | | | | | 43 | | | | | | | | | | | 44 | | | | | | 1 | Currently | Total | | | 45 | | Scaled % | INEEL | Scaled % | Waste without INEEL | INEEL | emplaced | MgO | | | | Waste without INEEL m3 | OCAIRU 76 | ma ma | ocaled % | | | | MIGU | | | 46 | | | | | moles | molės | MgO mol | moles | E. G. C. M. D. C. M. GORGE CONTROL OF CONTROL SANCES OF CONTROL NO. | | 47 | 1 | 6.33 | 0 | 0 | 7.49E+07 | 0.00E+00 | 1.47E+08 | 7.62E+07 | 1.93E+00 | | 48 | 0.99 | 6.27 | 0.01 | 0.01 | 7.42E+07 | 1.71E+06 | 1.47E+08 | 7.72E+07 | 1.91E+00 | | 49 | 0.98 | 6.20 | 0.02 | 0.02 | 7.34E+07 | 3.41E+06 | 1.47E+08 | 7.81E+07 | 1.88E+00 | | 49
50 | 0.97 | 6.14 | 0.03 | 0.04 | 7.27E+07 | 5.12E+06 | 1.47E+08 | 7.91E+07 | 1.86E+00 | | 51 | 0.96 | 6.08 | 0.04 | 0.05 | 7.19E+07 | 6.83E+06 | 1.47E+08 | 8.00E+07 | 1.84E+00 | | 52 | 0.95 | 6.01 | 0.05 | 0.06 | 7.12E+07 | 8.53E+06 | 1.47E+08 | 8.10E+07 | 1.82E+00 | | | 5.55 | | 0.00 | 0.00 | 7.756,07 | 0.002.00 | 7. Y/ C (V C | V. 1V-1V! | 1.000 | # PA Request (EPA) continued | | A | В | С | D | É | F | G | Н | I | |-----|---------------------|----------|-------|----------|---------------------|----------|----------|----------|-------------| | 45 | Waste without INEEL | Scaled % | INEEL | Scaled % | Waste without INEEL | INEEL | emplaced | MgO | Safety | | 46 | Em lilling | | m3 s | | moles | moles | MgO mol | moles | Factor IIII | | 53 | 0.94 | 5.95 | 0.06 | 0.07 | 7.04E+07 | 1.02E+07 | 1.47E+08 | 8.20E+07 | 1.80E+00 | | 54 | 0.93 | 5.89 | 0.07 | 0.08 | 6.97E+07 | 1.19E+07 | 1.47E+08 | 8.29E+07 | 1.77E+00 | | 55 | 0.92 | 5.82 | 0.08 | 0.10 | 6.89E+07 | 1.37E+07 | 1.47E+08 | 8.39E+07 | 1.75E+00 | | 56 | 0.91 | 5.76 | 0.09 | 0.11 | 6.82E+07 | 1.54E+07 | 1.47E+08 | 8.48E+07 | 1.73E+00 | | 57 | 0.9 | 5.70 | 0.1 | 0.12 | 6.74E+07 | 1.71E+07 | 1.47E+08 | 8.58E+07 | 1.71E+00 | | 58 | 0.89 | 5.63 | 0.11 | 0.13 | 6.67E+07 | 1.88E+07 | 1.47E+08 | 8.68E+07 | 1.70E+00 | | 59 | 0.88 | 5.57 | 0.12 | 0.14 | 6.59E+07 | 2.05E+07 | 1.47E+08 | 8.77E+07 | 1.68E+00 | | 60 | 0.87 | 5.51 | 0.13 | 0.15 | 6.52E+07 | 2.22E+07 | 1.47E+08 | 8.87E+07 | 1.66E+00 | | 61 | 0.86 | 5.44 | 0.14 | 0.17 | 6.44E+07 | 2.39E+07 | 1.47E+08 | 8.96E+07 | 1.64E+00 | | 62 | 0.85 | 5.38 | 0.15 | 0.18 | 6.37E+07 | 2.56E+07 | 1.47E+08 | 9.06E+07 | 1.62E+00 | | 63 | 0.84 | 5.32 | 0.16 | 0.19 | 6.29E+07 | 2.73E+07 | 1.47E+08 | 9.15E+07 | 1.61E+00 | | 64 | 0.83 | 5.25 | 0.17 | 0.20 | 6.22E+07 | 2.90E+07 | 1.47E+08 | 9.25E+07 | 1.59E+00 | | 65 | 0.82 | 5.19 | 0.18 | 0.21 | 6.14E+07 | 3.07E+07 | 1.47E+08 | 9.35E+07 | 1.57E+00 | | 66 | 0.81 | 5.13 | 0.19 | 0.23 | 6.07E+07 | 3.24E+07 | 1.47E+08 | 9.44E+07 | 1.56E+00 | | 67 | 0.8 | 5.06 | 0.2 | 0.24 | 5.99E+07 | 3.41E+07 | 1.47E+08 | 9.54E+07 | 1.54E+00 | | 68 | 0.79 | 5,00 | 0.21 | 0.25 | 5.92E+07 | 3.58E+07 | 1.47E+08 | 9.63E+07 | 1.53E+00 | | 69 | 0.78 | 4.94 | 0.22 | 0.26 | 5.84E+07 | 3.75E+07 | 1.47E+08 | 9.73E+07 | 1.51E+00 | | 70 | 0.77 | 4.87 | 0.23 | 0.27 | 5.77E+07 | 3.93E+07 | 1.47E+08 | 9.82E+07 | 1.50E+00 | | 71 | 0.76 | 4.81 | 0.24 | 0.29 | 5.69E+07 | 4.10E+07 | 1.47E+08 | 9.92E+07 | 1.48E+00 | | 72 | 0.75 | 4.75 | 0.25 | 0.30 | 5.62E+07 | 4.27E+07 | 1.47E+08 | 1.00E+08 | 1.47E+00 | | 73 | 0.74 | 4.68 | 0.26 | 0.31 | 5.54E+07 | 4.44E+07 | 1.47E+08 | 1.01E+08 | 1.46E+00 | | 74 | 0.73 | 4.62 | 0.27 | 0.32 | 5.47E+07 | 4.61E+07 | 1.47E+08 | 1.02E+08 | 1.44E+00 | | 75 | 0.72 | 4.56 | 0.28 | 0.33 | 5.39E+07 | 4.78E+07 | 1.47E+08 | 1.03E+08 | 1.43E+00 | | 76 | 0.71 | 4,49 | 0.29 | 0.34 | 5.32E+07 | 4.95E+07 | 1.47E+08 | 1.04E+08 | 1.41E+00 | | 77 | 0.7 | 4,43 | 0.3 | 0.36 | 5.24E+07 | 5.12E+07 | 1.47E+08 | 1.05E+08 | 1.40E+00 | | 78 | 0.69 | 4.37 | 0.31 | 0.37 | 5.17E+07 | 5.29E+07 | 1.47E+08 | 1.06E+08 | 1.39E+00 | | 79 | 0.68 | 4.30 | 0.32 | 0.38 | 5.09E+07 | 5.46E+07 | 1.47E+08 | 1.07E+08 | 1.38E+00 | | 80 | 0.67 | 4,24 | 0.33 | 0.39 | 5.02E+07 | 5.63E+07 | 1.47E+08 | 1.08E+08 | 1.36E+00 | | 81 | 0.66 | 4,18 | 0.34 | 0.40 | 4.94E+07 | 5.80E+07 | 1.47E+08 | 1.09E+08 | 1.35E+00 | | 82 | 0.65 | 4,11 | 0.35 | 0.42 | 4.87E+07 | 5.97E+07 | 1.47E+08 | 1.10E+08 | 1.34E+00 | | 83 | 0.64 | 4.05 | 0.36 | 0.43 | 4.79E+07 | 6.14E+07 | 1.47E+08 | 1.11E+08 | 1.33E+00 | | 84 | 0.63 | 3.99 | 0.37 | 0.44 | 4.72E+07 | 6.31E+07 | 1.47E+08 | 1.12E+08 | 1.32E+00 | | 85 | 0.62 | 3.92 | 0.38 | 0.45 | 4.64E+07 | 6.49E+07 | 1.47E+08 | 1.13E+08 | 1.31E+00 | | 86 | 0.61 | 3.86 | 0.39 | 0.46 | 4.57E+07 | 6.66E+07 | 1.47E+08 | 1.14E+08 | 1.30E+00 | | 87 | 0.6 | 3.80 | 0.4 | 0.48 | 4.49E+07 | 6.83E+07 | 1.47E+08 | 1.15E+08 | 1,28E+00 | | 88 | 0.59 | 3.73 | 0.41 | 0.49 | 4.42E+07 | 7.00E+07 | 1.47E+08 | 1.15E+08 | 1.27E+00 | | 89 | 0.58 | 3.67 | 0.42 | 0.50 | 4.34E+07 | 7.17E+07 | 1.47E+08 | 1.16E+08 | 1.26E+00 | | 90 | 0.57 | 3.61 | 0.43 | 0.51 | 4.27E+07 | 7.34E+07 | 1.47E+08 | 1.17E+08 | 1.25E+00 | | 91 | 0.56 | 3,54 | 0.44 | 0.52 | 4.20E+07 | 7.51E+07 | 1.47E+08 | 1.18E+08 | 1.24E+00 | | 92 | 0.55 | 3.48 | 0.45 | 0.53 | 4.12E+07 | 7.68E+07 | 1.47E+08 | 1.19E+08 | 1.23E+00 | | 93 | 0.54 | 3.42 | 0.46 | 0.55 | 4.05E+07 | 7.85E+07 | 1.47E+08 | 1.20E+08 | 1.22E+00 | | 94 | 0.53 | 3.35 | 0.47 | 0.56 | 3.97E+07 | 8.02E+07 | 1.47E+08 | 1.21E+08 | 1.21E+00 | | 95 | 0.52 | 3.29 | 0.48 | 0.57 | 3.90E+07 | B.19E+07 | 1.47E+08 | 1.22E+08 | 1.20E+00 | | 96 | 0.51 | 3.23 | 0.49 | 0.58 | 3.82E+07 | 8.36E+07 | 1.47E+08 | 1.23E+08 | 1.19E+00 | | 97 | 0.5 | 3.16 | 0.5 | 0.59 | 3.75E+07 | 8.53E+07 | 1.47E+08 | 1.24E+08 | 1.19E+00 | | 98 | 0.49 | 3.10 | 0.51 | 0.61 | 3.67E+07 | 8.70E+07 | 1.47E+08 | 1.25E+08 | 1.18E+00 | | 99 | 0.48 | 3.04 | 0.52 | 0.62 | 3.60E+07 | 8.88E+07 | 1.47E+08 | 1.26E+08 | 1.17E+00 | | 100 | 0.47 | 2.97 | 0.53 | 0.63 | 3.52E+07 | 9.05E+07 | 1.47E+08 | 1.27E+08 | 1.16E+00 | | 101 | 0.46 | 2.91 | 0.54 | 0.64 | 3.45E+07 | 9.22E+07 | 1.47E+08 | 1.28E+08 | 1.15E+00 | | 102 | 0.45 | 2.85 | 0.55 | 0.65 | 3.37E+07 | 9.39E+07 | 1.47E+08 | 1.29E+08 | 1.14E+00 | # PA Request (EPA) continued | | Α | В | T c T | D | E | F | G | Н | 1 | |------------
--|----------|-------|----------|---------------------|----------|----------|----------|----------| | 45 | Waste without INEEL | Scaled % | INEEL | Scaled % | Waste without INEEL | INEEL | emplaced | MgO | | | 46 | Light in the state of | | m3 | | moles | moles | MgO mol | moles | | | 103 | 0.44 | 2.78 | 0.56 | 0.67 | 3.30E+07 | 9.56E+07 | 1.47E+08 | 1.30E+08 | 1.13E+00 | | 104 | 0.43 | 2.72 | 0.57 | 0.68 | 3.22E+07 | 9.73E+07 | 1.47E+08 | 1.31E+08 | 1.12E+00 | | 105 | 0.42 | 2.66 | 0.58 | 0.69 | 3.15E+07 | 9.90E+07 | 1.47E+08 | 1.32E+08 | 1.12E+00 | | 106 | 0.41 | 2.59 | 0.59 | 0.70 | 3.07E+07 | 1.01E+08 | 1.47E+08 | 1.33E+08 | 1.11E+00 | | 107 | 0.4 | 2.53 | 0.6 | 0.71 | 3.00E+07 | 1.02E+08 | 1.47E+08 | 1.34E+08 | 1.10E+00 | | 108 | 0.39 | 2.47 | 0.61 | 0.72 | 2.92E+07 | 1.04E+08 | 1.47E+08 | 1.35E+08 | 1.09E+00 | | 109 | 0.38 | 2.41 | 0.62 | 0.74 | 2.85E+07 | 1.06E+0B | 1.47E+08 | 1.36E+08 | 1.09E+00 | | 110 | 0.37 | 2.34 | 0.63 | 0.75 | 2.77E+07 | 1.08E+08 | 1.47E+08 | 1.37E+08 | 1.08E+00 | | 111 | 0.36 | 2.28 | 0.64 | 0.76 | 2.70E+07 | 1.09E+08 | 1.47E+08 | 1.38E+08 | 1.07E+00 | | 112 | 0.35 | 2.22 | 0.65 | 0.77 | 2.62E+07 | 1.11E+08 | 1.47E+08 | 1.38E+08 | 1.06E+00 | | 113 | 0.34 | 2.15 | 0.66 | 0.78 | 2.55E+07 | 1.13E+08 | 1.47E+08 | 1.39E+08 | 1.06E+00 | | 114 | 0.33 | 2.09 | 0.67 | 0.80 | 2.47E+07 | 1.14E+08 | 1.47E+08 | 1.40E+08 | 1.05E+00 | | 115 | 0.32 | 2.03 | 0.68 | 0.81 | 2.40E+07 | 1.16E+08 | 1.47E+08 | 1.41E+08 | 1.04E+00 | | 116 | 0.31 | 1.96 | 0.69 | 0.82 | 2.32E+07 | 1.18E+08 | 1.47E+08 | 1.42E+08 | 1.03E+00 | | 117 | 0.3 | 1.90 | 0.7 | 0.83 | 2.25E+07 | 1.19E+08 | 1.47E+08 | 1.43E+08 | 1.03E+00 | | 118 | 0.29 | 1.84 | 0.71 | 0.84 | 2.17E+07 | 1.21E+08 | 1.47E+08 | 1.44E+08 | 1.02E+00 | | 119 | 0.28 | 1.77 | 0.72 | 0.86 | 2.10E+07 | 1.23E+08 | 1.47E+08 | 1.45E+08 | 1.01E+00 | | 120 | 0.27 | 1.71 | 0.73 | 0.87 | 2.02E+07 | 1.25E+08 | 1.47E+08 | 1.46E+08 | 1.01E+00 | | 121 | 0.26 | 1.65 | 0.74 | 0.88 | 1.95E+07 | 1.26E+08 | 1.47E+08 | 1.47E+08 | 1.00E+00 | | 122 | 0.25 | 1.58 | 0.75 | 0.89 | 1.87E+07 | 1.28E+08 | 1.47E+08 | 1.48E+08 | 9.94E-01 | | 123 | 0.24 | 1.52 | 0.76 | 0.90 | 1.80E+07 | 1.30E+08 | 1.47E+08 | 1.49E+08 | 9.87E-01 | | 124 | 0.23 | 1.46 | 0.77 | 0.91 | 1.72E+07 | 1.31E+08 | 1.47E+08 | 1.50E+08 | 9.81E-01 | | 125 | 0.22 | 1.39 | 0.78 | 0.93 | 1.65E+07 | 1.33E+08 | 1.47E+08 | 1.51E+08 | 9.75E-01 | | 126 | 0.21 | 1.33 | 0.79 | 0.94 | 1.57E+07 | 1.35E+08 | 1.47E+08 | 1.52E+08 | 9.69E-01 | | 127 | 0.2 | 1.27 | 0.8 | 0.95 | 1.50E+07 | 1.37E+08 | 1.47E+08 | 1.53E+08 | 9.63E-01 | | 128 | 0.19 | 1.20 | 0.81 | 0.96 | 1.42E+07 | 1.38E+08 | 1.47E+08 | 1.54E+08 | 9.57E-01 | | 129 | 0.18 | 1.14 | 0.82 | 0.97 | 1.35E+07 | 1.40E+08 | 1.47E+08 | 1.55E+08 | 9.51E-01 | | 130 | 0.17 | 1.08 | 0.83 | 0.99 | 1.27E+07 | 1.42E+08 | 1.47E+08 | 1.56E+08 | 9.45E-01 | | 131 | 0.158 | 1 | 0.842 | 1 | 1.18E+07 | 1.44E+08 | | 1.57E+08 | 9.38E-01 | | 132 | 0.15 | 0.95 | 0.85 | 1.01 | 1.12E+07 | 1.45E+08 | 1.47E+08 | 1.58E+08 | 9.33E-01 | | 133 | 0.14 | 0.89 | 0.86 | 1.02 | 1.05E+07 | 1.47E+08 | 1.47E+08 | 1.59E+08 | 9.28E-01 | | 134 | 0.13 | 0.82 | 0.87 | 1.03 | 9.74E+06 | 1.48E+08 | 1.47E+08 | 1.60E+08 | 9.22E-01 | | 135 | 0.12 | 0.76 | 0.88 | 1.05 | 8.99E+06 | 1.50E+08 | 1.47E+08 | 1.60E+08 | 9.17E-01 | | 136 | 0.11 | 0.70 | 0.89 | 1.06 | 8.24E+06 | 1.52E+08 | 1.47E+08 | 1.61E+08 | 9.11E-01 | | 137 | 0.1 | 0.63 | 0.9 | 1.07 | 7.49E+06 | 1.54E+08 | 1.47E+08 | 1.62E+08 | 9.06E-01 | | 138 | 0.09 | 0.57 | 0.91 | 1.08 | 6.74E+06 | 1.55E+08 | 1.47E+08 | 1.63E+08 | 9.01E-01 | | 139 | 0.08 | 0.51 | 0.92 | 1.09 | 5.99E+06 | 1.57E+08 | 1.47E+08 | 1.64E+08 | 8.95E-01 | | 140 | 0.07 | 0.44 | 0.93 | 1.10 | 5.24E+06 | 1.59E+08 | 1.47E+08 | 1.65E+08 | 8.90E-01 | | 141 | 0.06 | 0.38 | 0.94 | 1.12 | 4.49E+06 | 1.60E+08 | 1.47E+08 | 1.66E+08 | 8.85E-01 | | 142 | 0.05 | 0.32 | 0.95 | 1.13 | 3.75E+06 | 1.62E+08 | 1.47E+08 | 1.67E+08 | 8.80E-01 | | 143 | 0.04 | 0.25 | 0.96 | 1.14 | 3.00E+06 | 1.64E+08 | 1.47E+08 | 1.68E+08 | 8.75E-01 | | 144 | 0.03 | 0.19 | 0.97 | 1.15 | 2.25E+06 | 1.66E+08 | 1.47E+08 | 1.69E+08 | 8.70E-01 | | 145
146 | 0.02 | 0.13 | 0.98 | 1.16 | 1.50E+06 | 1.67E+08 | 1.47E+08 | 1.70E+08 | 8.65E-01 | | 146 | 0.01 | 0.06 | 0.99 | 1.18 | 7.49E+05 | 1.69E+08 | 1.47E+08 | 1.71E+08 | 8.60E-01 | | [[47] | V | υ | 1 | 1.19 | 0.00E+00 | 1.71E+08 | 1.47E+08 | 1.72E+08 | 8.56E-01 | PA Request (DOE) | A | В | C | ٥ | E | F | G | н | ; | | K K | L | I M I N | 0 | I P I | <u> </u> | A | |--
--|--|---|--
---|--|--|--
---|--|---
--|--|---|--
--| ER ONE PA PANEL | r | | | ļ | | | | | | | | | | | | | | | * | **************** | | ļ | | | | <u> </u> | | | | į | | | | | | tal MgO required for disso | Ning in bidge and re | acting with CO2 gener | ated by microbial | icivity | | <u> </u> | | į | | <u> </u> | | · | | | | | | umes one male of C = 1/2 | mole of CO2 | | | | | 1 | *************************************** | | | | | † | | - | | | | | 1 | | | | | | | | | | k | <u> </u> | | | | | | | | Volume | | i | | i | | 1 | | 1 | | | | 1 | | | | | Moles : | m3 | | | | | | | | | | | | | | | | i dissolved | 1.06E+06 | | | | , | ļ | | | | | | | | | | | | ax CO2 without INEEL (46° | 6.46E+06 | | | | | | | | | <u> </u> | | | | | | | | ex CO2 INEEL (54%)
ex CO2 RH | 7.38E+07
2.51E+05 | | g | · · · · · · · · · · · · · · · · · · · | | ļ | | | | <u> </u> | | | | | | | | ntal MgO required | 8.15E+07 | | · · · · · · · · · · · · · · · · · · · | į | | | | | | | | | | | | | | mings is juiced | 1 | | Tona | ka | а | moles | moles *65% | | | | | | | | | | | tal MgO currently being en | nolaced in WIPP | *************************************** | 6.71E+04 | 67132800 | 6.71E+10 | 1.67E+09 | 1.41E+09 | | | | | f | | | ., | | | | î i | | | | | | | | | | | | | | | | | tal MgO for one PA panel | | | 7008.65432 | 7008864.32 | 7.01E+09 | 1.74E+08 | 1.47E+08 | : | | | | | | | | | | | J | | · <u>-</u> | | | <u> </u> | | <u> </u> | | | | ļ <u> </u> | | | | | | | Selety Factor | | .1.80E+00 | ., | | <u> </u> | | | | | CARACTER SECTION AND ADDRESS OF THE ADDRESS OF THE SECTION ADDRESS OF THE SECTION AND ADDRESS OF THE SECTION SE | | | | | | | | + | | | | | ļ | | · | | [| | <u> </u> | | | | | | ta for following table calcul | detione : | | | | | ···· | | å, | | · · · · · · · · · · · · · · · · · · · | | ļ | | | | | | | T | | | | | | *************************************** | | | | | | | | | | | MD. | *************************************** | | Ĭ | | | ?i | | | | | | | | | | | | lulosic density | i i | | 36.42 | kg/m3 | | iI | | [| | | | | | 1 | | | | per sack volume | | | 47,60 | #3 | 1.35E+00 | m3 | | | | | | | | <u> </u> | | | | O masa bet sack | ļ | | 4200.00 | jb_ | 1.91E+06 | 9 | | | | | | | | | | | | per sack density | ļ | | 1413396.26 | g/m3 | | | | | | | | <u></u> | | | | | | nel CH volume | ļ | | 17643.60 | m3 | | | | | | | | | | | | | | iss of Nitrate and Suffate | a faithally Present le | the Weste | | · | | | | | | | | | | | | | | | | //// | | | | | | , | | | | | | + | | | | CH without INEEL | ka* | <u> </u> | be | moles | | INEEL | kg* | 9 | b¥ | moles | | | | T | | | | Nitrate (NO3) | 4.37E+04 | 4.37E+07 | 52.01 | 7.056(05 | | Nitrate (NOS) | 1.87E+05 | 1.87E+08 | 62.01 | 3.02E+00 | | | | | | | | Sulfate (SO4) | 9,38€+03 | 9.38E+06 | 96.06 | 9.76E+04 | | Sulfate (SO4) | 2.82E+03 | 2.62E+06 | 96.08 | 2785-04 | | | | ļ | | | | | | | | | | | | | | | | | | ļ | | | | | | | ļ | | | | | | | | | | | + | | | | Table | h | | ! | | | | | | | | | | | + | | | | | † | | t | | | | | | | | | | | + | | | | | † | | 1 | | | original moles | muu uuse ei | hati vi | | Alerete A | original moles | Amerikany fisian | rariaeu | Nitrote & | | | | | 1 | | 1 | | | of CO2 produced | | # 434 154 | 8 M. M. | Allerene &
Sudese | of CO2 produced | 化化多氯化二基 [4] | H . 75:11 | Sullate | | | | Tagger of the control of the con- | , | **************** | L | 104601010222 | | before Nitrale, | Harata a tirdi. | 有有益性 医抗发病 | 8 <u>3</u> 8 5 8 7 8 | A Book on | Defore Nitrale, | La Committee of | | affect on | Currently | Total | | Waste delpoint INEEL | Scaled % | INEEL
ms | Scaled % | Waste villions INEEL | INESL
moles | Sullate, and | Fraction % | Fraction %
suifate reduction | Fraction % methanogenesis: | waste wilkout 19675.
mai | Sulfate, and | Fraction % Fraction denitrification suitate red | | | emplaced
MaO mol | MgC 1 | | november (III) | 6.98 | m3
- 9 m - 4 m - 1 | | CTIVE A COST SOUTH OF THE | H DEGELOO II | methanogenises | dentification | Bullate reduction. | methanogeneak | mo
S S F C | Methanogeniese | denitrification suitate rac | uotionethenogene | Will Hill (MACA) | | moles *** | | 6.09 | 627 | 0.011177,010 | | The Decision of the | | | | | | Ulti-No a sector | 0.00E400 | 220.86 | I to a too | | | .175407 S | | 6.88° (4.38) | 8.20 | 50g | | | | 4 5 5 6 6 F 1 | | | 96.63 | ATEUT | 4 NEIDS | 110.48 | 12.03 | 3.6E+06 | 1,5765-08 | 225+07 3 | | 0.97 | 6.14 | 0.03 | 0.04 | 3.96E+07 | 2.63E+06 | 7.27E+07 | 1.21 | 0.27 | 98.52 | 3.7E+07 | 5.12E+06 | 73.62 1.07 | | 4.5E+06 | 1.47E+08 4 | | | 0.96 | 80.6 | | 0.05 | 3.92E+07 | 3.50E+06 | 7.19E+07 | 1.22 | 0.27 | | 3.6E+07 | | | | | 1.47E+08 4 | l.31E+07 3. | | 0.95 | | 0.04 | | | | | | | 98.50 | | 6.83E+06 | 55.22 0.80 | | | | | | | 6.01
E 96 | 0.05 | 0.06 | 3.88E+07 | 4.38E+06 | 7.12E+07 | 1.24 | 0.27 | 95.49 | 3.6E+07 | 5.53E+06 | 44.17 0.64 | 55.19 | 6.2E+06 | 1.47E+08 4 | | | 0.94
D.93 | 5.95 | 0.05
0.08 | 0.06
0.07 | 3.88E+07
3.84E+07 | 4.38E+06
5.26E+06 | 7.12E+07
7.04E+07 | 1.25 | 0.28 | 98.49
98.47 | 3.6E+07
3.6E+07 | 8.53E+06
1.02E+07 | 44.17 0.64
38.61 0.53 | 55.19
62.66 | 6.2E+06
7.0E+06 | 1.47E+08 4
1.47E+08 4 | .41E+07 3. | | D.94
D.93
D.92 | | 0.05 | 0.06 | 3.88E+07 | 4.38E+06 | 7.12E+07 | | | 95.49 | 3.6E+07 | 5.53E+06
1.02E+07
1.13E+07 | 44.17 0.64
36.61 0.53
31.55 0.46 | 55.19
62.66
67.99 | 6.2E+06
7.0E+06
7.9E+08 | 1.47E+08 4
1.47E+08 4
1.47E+08 4 | l.41E+07 3.
l.46E+07 3. | | D.93 | 5.95
5.89 | 0.05
0.06
0.07 | 0.06
0.07
0.08 | 3.88E+07
3.84E+07
3.80E+07 | 4.38E+06
5.26E+06
6.13E+06 | 7.12E+07
7.04E+07
6.97E+07 | 1.25
1.26 | 0.28
0.28 | 98,49
98,47
98,46 | 3.6E+07
3.6E+07
3.5E+07 | 8.53E+06
1.02E+07
1.13E+07
1.37E+07 | 44.17 0.64
38.61 0.53 | 55.19
62.66
67.99
71.99 | 6.2E+06
7.0E+06
7.9E+06
8.7E+06 | 1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4 | k.41E+07 3
k.46E+07 3
k.50E+07 3 | | 0.93
0.92
0.91
0.9 | 5,95
5,89
6,82
5,78
5,70 | 0.05
0.06
0.07
0.08
0.09
0.09 | 0.06
0.07
0.08
0.10
0.11
0.12 | 3.84E+07
3.84E+07
3.80E+07
3.76E+07
3.72E+07
3.68E+07 | 4.38E+06
5.26E+06
6.13E+06
7.01E+06
7.88E+06
8.76E+06 | 7.12E407
7.04E407
6.97E407
6.89E407
6.89E407
6.82E407 | 1.25
1.26
1.28
1.28
1.23 | 0.28
0.28
0.28
0.28
0.29 | 98.43
98.47
98.45
98.44
98.42
98.42 | 3.6E+G7
3.6E+G7
3.6E+G7
3.6E+G7
3.6E+G7
3.6E+G7 | 8.53E+06
1.02E+07
1.19E+07
1.37E+07
1.54E+07
1.71E+07 | 44.17 0.64
36.81 0.53
31.55 0.48
27.61 0.40
24.54 0.36
22.09 0.32 | 55.19
62.66
67.99
71.99
75.10
77.59 | 6.2E+06
7.0E+06
7.9E+06
8.7E+06 | 1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4 | 1.41E+07 3
1.46E+07 3
1.50E+07 3
1.55E+07 3
1.60E+07 3 | | 0.93
0.92
0.91
0.9
0.89 | 5.95
5.89
6.82
5.76
5.70
5.63 | 0.05
0.08
0.07
0.08
0.08
0.08
0.1 | 0.06
0.07
0.08
0.10
0.11
0.12
0.13 | 3.88E+07
3.84E+07
3.80E+07
3.76E+07
3.72E+07
3.68E+07
3.64E+07 |
4.38E+06
5.26E+06
6.13E+06
7.01E+06
7.88E+06
8.76E+06
9.64E+06 | 7.12E407
7.04E407
6.97E407
6.69E407
6.69E407
6.74E407
8.67E407 | 1.25
1.26
1.28
1.29
1.31
1.32 | 0.28
0.28
0.28
0.29
0.29
0.29 | 98.43
98.47
98.45
98.44
96.42
96.40
96.39 | 3.65-47
3.65-47
3.55-407
3.55-407
3.55-407
3.45-407 | 8.53E+08
1.02E+07
1.19E+07
1.37E+07
1.54E+07
1.71E+07
1.88E+07 | 44.17 0.64
36.81 0.53
31.55 0.46
27.51 0.40
24.54 0.30
22.09 0.32
20.08 0.29 | 55.19
62.66
67.99
71.99
75.10
77.59
79.63 | 6.2E+06
7.0E+06
7.9E+06
8.7E+06
9.6E+06
1.0E+07
1.1E+07 | 1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4 | 1.41E+07 3
1.46E+07 3
1.50E+07 3
1.55E+07 3
1.66E+07 3 | | 0.93
0.92
0.91
0.9
0.89 | 5.95
5.89
6.82
5.78
5.70
5.63
6.67 | 0.05
0.06
0.07
0.08
0.09
0.09
0.1
0.11 | 0.06
0.07
0.08
0.10
0.11
0.12
0.13 | 3.885-07
3.845-07
3.805-07
3.765-07
3.725-07
3.585-07
3.645-07
3.605-07 | 4.38E+06
5.26E+06
6.13E+06
7.01E+06
7.88E+06
8.76E+06
9.64E+06
1.05E+07 | 7.12E+07
7.04E+07
6.97E+07
6.69E+07
6.62E+07
6.74E+07
8.67E+07
6.69E+07 | 1,25
1,26
1,28
1,29
1,31
1,31
1,32
1,34 | 0.28
0.28
0.28
0.28
0.29
0.29
0.29 | 98.49
98.47
98.45
98.44
96.42
96.40
98.39 | 3.65-07
3.65-07
3.55-07
3.55-07
3.45-07
3.45-07
3.45-07
3.35-07 | 5.53E406
1.02E407
1.19E407
1.37E407
1.54E407
1.71E407
1.88E407
2.05E407 | 44.17 0.64
38.81 0.55
51.55 0.48
27.61 0.40
24.54 0.36
22.09 0.32
20.08 0.29
18.44 0.27 | 55.19
62.66
67.99
71.99
75.10
77.59
79.63
81.33 | 6.2E+06
7.0E+06
7.9E+06
8.7E+06
9.5E+06
1.0E+07
1.1E+07 | 1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4 | .41E+07 3
.46E+07 3
.50E+07 3
.55E+07 3
.60E+07 3
.65E+07 3
.70E+07 3 | | 0.93
0.92
0.91
0.9
0.89
0.89
0.85 | 5.95
5.89
5.82
5.76
5.70
5.63
5.67
5.61 | 0.05
0.06
0.07
0.08
0.09
0.1
0.11
0.12
0.13 | 0.06
0.07
0.08
0.10
0.12
0.12
0.13
0.14 | 3.84E-07
3.84E-07
3.80E-07
3.76E-07
3.72E-07
3.88E-07
3.64E-07
3.65E-07 | 4.38E+05
5.26E+06
6.13E+06
7.01E+06
7.88E+06
8.76E+06
9.64E+06
1.05E+07
1.14E+07 | 7.12E-07
7.04E-07
6.97E-07
6.89E-07
6.02E-07
6.74E-07
6.67E-07
6.69E-07
6.59E-07 | 1,25
1,26
1,28
1,28
1,31
1,32
1,34
1,36 | 0.20
0.28
0.28
0.29
0.29
0.29
0.30 | 98.49
98.47
98.46
98.44
96.42
98.40
98.39
98.37
98.35 | 3.65-07
3.65-07
3.55-07
3.55-07
3.55-07
3.45-07
3.45-07
3.35-07
3.35-07 | 5.53E408
1,02E407
1,19E407
1,37E407
1,37E407
1,54E407
1,71E407
1,86E407
2,05E407
2,25E407 | 44.17 0.64 36.61 0.53 31.55 0.46 27.61 0.40 24.54 0.56 22.99 0.32 20.08 0.29 18.41 0.27 16.99 0.55 | 55.19
62.66
67.99
71.99
75.10
77.59
79.63
81.33 | 6.2E+06
7.0E+06
7.9E+06
8.7E+06
9.5E+06
1.0E+07
1.1E+07
1.2E+07
1.5E+07 | 1.47E+06 4
1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4 | .41E+07 3
3.46E+07 3
3.50E+07 3
3.55E+07 3
3.66E+07 3
3.65E+07 3
3.70E+07 3 | | 0.93
0.92
0.91
0.9
0.89
0.86
0.87 | 5.95
5.89
5.78
5.78
5.70
5.53
6.57
6.57 | 0.05
0.06
0.07
0.08
0.08
0.1
0.11
0.12
0.13
0.14 | 0.06
0.07
0.08
0.10
0.11
0.12
0.19
0.14
0.16 | 3.885-47
3.845-47
3.805-47
3.765-47
3.725-47
3.885-47
3.645-47
8.655-47
3.515-47 | 4.38E-06
5.26E-06
6.13E-06
7.01E-06
7.88E-06
8.76E-06
9.64E-06
1.05E-07
1.14E-07 | 7.12E-07
7.04E-07
6.97E-07
6.88E-07
6.02E-07
6.74E-07
6.67E-07
5.59E-07
6.52E-07 | 1.25
1.26
1.28
1.29
1.31
1.32
1.34
1.36
1.37 | 0.28
0.28
0.28
0.29
0.29
0.29
0.30
0.30 | 98.49
98.47
98.45
98.44
96.42
98.40
98.39
96.37
96.35 | 3.65-07
3.65-07
3.55-07
3.55-07
3.55-07
3.45-07
3.45-07
3.35-07
3.35-07 | 5.53E-06
1.02E-07
1.19E-07
1.37E-07
1.54E-07
1.54E-07
1.86E-07
2.05E-07
2.22E-07
2.39E-07 | 44.17 0.54
36.81 0.55
31.55 0.44
27.61 0.40
24.54 0.36
20.00 0.32
20.00 0.23
18.41 0.27
16.99 0.22 | 55.19
62.66
67.99
71.99
75.10
77.59
79.63
81.33
82.76
84.00 | 6.2E+08
7.0E+06
7.9E+06
8.7E+06
9.6E+06
1.0E+07
1.1E+07
1.2E+07
1.3E+07 | 1.47E+06 4
1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4 | .41E+07 3
.46E+07 3
.50E+07 3
.55E+07 3
.66E+07 3
.70E+07 3
.70E+07 3
.79E+07 3 | | 0.93
0.92
0.93
0.9
0.9
0.89
0.86
0.87
0.86 | 5.95
5.89
6.82
5.76
5.70
6.53
6.57
5.51
5.44 | 0.05
0.06
0.07
0.00
0.08
0.1
0.11
0.12
0.13
0.14 | 0.06
0.07
0.08
0.10
0.11
0.12
0.13
0.14
0.16
0.17 | 3.845-47
3.845-47
3.805-47
3.765-47
3.725-47
3.845-97
3.845-97
3.855-47
3.815-47
3.815-47 | 4.38E-06
5.26E-06
6.13E-06
7.01E-06
7.89E-06
8.76E-06
9.64E-06
1.05E-07
1.14E-07
1.23E-07 | 7.12E-07
7.04E-07
6.97E-07
6.97E-07
6.62E-07
6.74E-07
6.76E-07
5.59E-07
5.52E-07
6.37E-07
6.37E-07 | 1.25
1.26
1.28
1.29
1.31
1.32
1.34
1.36
1.37 | 0.50
0.28
0.28
0.28
0.29
0.29
0.29
0.30
0.30
0.30 | 98.49
98.47
98.45
98.44
96.42
96.40
98.39
98.37
96.35
96.33
96.33 | 3.65-07
3.65-07
3.55-07
3.58-07
5.55-07
3.48-07
3.48-07
3.48-07
3.58-07
3.58-07
3.58-07
3.58-07 | 8.53E-08
1.02E-07
1.19E-07
1.37E-07
1.37E-07
1.54E-07
1.71E-07
1.88E-07
2.05E-07
2.22E-07
2.39E-07
2.56E-07 | 94.17 0.64
95.61 0.53
31.55 0.46
27.51 0.40
24.54 0.25
20.08 0.25
20.08 0.25
16.41 0.27
16.99 0.25
15.78 0.25
14.72 0.21 | 55.19
62.66
67.99
71.99
75.10
77.59
79.63
81.33
82.76
84.00
85.06 | 6.2E+06
7.0E+06
7.0E+06
8.7E+06
9.EE+06
1.0E+07
1.1E+07
1.2E+07
1.3E+07
1.4E+07
1.5E+07
1.5E+07 | 1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4
1.47E+08 4 | .41E+07 3
.46E+07 3
.50E+07 3
.55E+07 3
.60E+07 3
.65E+07 3
.70E+07 3
.79E+07 3
.84E+07 3 | | 0.98
0.92
0.91
0.9
0.89
0.88
0.67
0.85
0.85 | 5.95
5.99
6.92
5.76
5.70
6.65
6.57
6.51
5.44
6.38
5.32 | 0.05
0.06
0.07
0.08
0.09
0.1
0.1
0.12
0.13
0.14
0.15
0.16 | 0.06
0.07
0.08
0.10
0.11
0.12
0.13
0.14
0.16
0.17
0.19 | 3.845-07
3.845-07
3.805-07
3.765-07
3.725-07
3.885-07
3.845-07
3.855-07
3.815-07
3.475-07
3.435-07 | 4.38E-06
5.26E-06
6.13E-06
7.01E-06
7.88E-06
8.76E-06
1.05E-07
1.14E-07
1.23E-07
1.31E-07
1.40E-07 | 7.12E-07
7.04E-07
6.97E-07
6.89E-07
6.82E-07
6.74E-07
6.67E-07
5.59E-07
5.59E-07
5.44E-07
5.37E-07
5.37E-07 | 1.25
1.26
1.28
1.29
1.31
1.32
1.34
1.36
1.37 | 0.28
0.28
0.28
0.29
0.29
0.29
0.30
0.30
0.30
0.30
0.31 | 98.49
98.47
98.46
98.44
98.42
98.40
98.39
98.37
96.35
98.35
98.31 | 3.65-07
3.65-07
3.51-07
3.51-07
3.51-07
3.48-07
3.48-07
9.58-07
9.58-07
9.58-07
9.28-07
9.28-07
9.28-07 | 5.53E-08
1.02E-07
1.19E-07
1.3E-07
1.54E-07
1.71E-07
1.71E-07
1.88E-07
2.05E-07
2.22E-07
2.39E-07
2.56E-07
2.56E-07
2.73E-07 | 44.17 0.64
38.61 0.53
31.55 0.46
27.61 0.40
24.54 0.35
22.99 0.32
20.08 0.22
16.41 0.27
15.78 0.25
14.72 0.21
13.80 0.20 | 55.19
62.66
57.99
71.99
75.10
77.59
79.63
81.33
82.76
84.00
85.06 | 6.2E+06
7.0E+06
7.0E+06
8.7E+06
9.EE+06
1.0E+07
1.1E+07
1.3E+07
1.3E+07
1.4E+07
1.5E+07
1.5E+07
1.5E+07 | 1.47E-08 4
1.47E-08 4 | .41E+07 | | 0.93
0.92
0.93
0.9
0.9
0.89
0.86
0.87
0.85 | 5.96
5.99
5.76
5.76
5.73
6.63
6.67
5.61
5.44
5.38
5.32
5.32 | 0.05
0.06
0.07
0.00
0.08
0.1
0.11
0.12
0.13
0.14 | 0.06
0.07
0.08
0.10
0.11
0.12
0.13
0.14
0.16
0.17 | 3.845-47
3.845-47
3.805-47
3.765-47
3.725-47
3.845-97
3.845-97
3.855-47
3.815-47
3.815-47 | 4.38E-06
5.26E-06
6.13E-06
7.01E-06
7.89E-06
8.76E-06
9.64E-06
1.05E-07
1.14E-07
1.23E-07 | 7.12E-07
7.04E-07
6.97E-07
6.97E-07
6.62E-07
6.74E-07
6.76E-07
5.59E-07
5.52E-07
6.37E-07
6.37E-07 | 1,25
1,26
1,28
1,28
1,31
1,31
1,92
1,94
1,95
1,37
1,38
1,40 | 0.50
0.28
0.28
0.28
0.29
0.29
0.29
0.30
0.30
0.30 | 98.49
98.47
98.45
98.44
96.42
96.40
98.39
98.37
96.35
96.33
96.33 | 3.65-07
3.65-07
3.55-07
3.58-07
3.58-07
3.48-07
3.48-07
3.28-07
3.28-07
3.28-07
3.28-07
3.28-07
3.28-07 |
8.53E-08
1.02E-07
1.19E-07
1.37E-07
1.37E-07
1.54E-07
1.71E-07
1.88E-07
2.05E-07
2.22E-07
2.39E-07
2.56E-07 | 94.17 0.64
95.61 0.53
31.55 0.46
27.51 0.40
24.54 0.25
20.08 0.25
20.08 0.25
16.41 0.27
16.99 0.25
15.78 0.25
14.72 0.21 | 55.19
62.66
67.99
71.99
75.10
77.55
79.63
81.33
82.76
84.00
85.06
85.06
86.00 | 6.2E+06
7.0E+06
7.9E+06
8.7E+06
9.EE+06
1.0E+07
1.1E+07
1.2E+07
1.5E+07
1.5E+07
1.5E+07
1.6E+07
1.6E+07 | 1.47E+08 4
1.47E+08 4 | .41E+07 3
.46E+07 3
.50E+07 3
.50E+07 3
.60E+07 3
.70E+07 3
.70E+07 3
.74E+07 3
.79E+07 3
.49E+07 3 | | 0.93
0.92
0.93
0.9
0.89
0.85
0.67
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0.86
0 | 5.96
5.90
5.76
5.70
5.70
5.53
5.57
5.51
5.44
5.38
5.32
5.25
5.19 | 0.05
0.06
0.07
0.08
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18 | 0.06
0.07
0.08
0.10
0.11
0.12
0.13
0.14
0.15
0.17
0.19
0.19
0.20
0.21 | 3.88E-607
3.80E-607
3.90E-607
5.76E-607
5.72E-607
3.84E-607
3.85E-607
3.85E-607
3.47E-607
3.48E-607
3.39E-607
3.35E-607 | 4.38E-05
5.25E-06
6.13E-06
7.01E-06
7.01E-06
8.76E-06
9.64E-06
105E-07
1.14E-07
1.3E-07
1.40E-07
1.40E-07
1.40E-07 | 7.12E-07
7.04E-07
6.97E-07
6.82E-07
6.82E-07
6.74E-07
6.74E-07
6.52E-07
6.52E-07
6.44E-07
6.37E-07
6.22E-07
6.14E-07
6.14E-07 | 1.25
1.26
1.28
1.29
1.31
1.32
1.32
1.34
1.35
1.37
1.38
1.40 | 0.28 0.28 0.28 0.28 0.28 0.29 0.29 0.30 0.30 0.30 0.30 0.31 0.31 0.31 | 55.45
55.47
58.46
58.44
56.42
56.40
56.30
56.35
56.35
66.35
66.31
56.29
56.27
56.27
56.27 | 3.65-07
3.65-07
3.51-07
3.51-07
3.51-07
3.41-07
3.31-07
3.31-07
3.31-07
3.21-07
3.21-07
3.21-07
3.21-07
3.21-07
3.21-07
3.21-07
3.21-07
3.21-07 | 5.58E.06
1.02E.07
1.19E.07
1.19E.07
1.37E.07
1.54E.07
1.71E.07
1.88E.07
2.05E.07
2.29E.07
2.29E.07
2.56E.07
2.39E.07
2.39E.07 | 44.17 0.64
35.81 0.55
31.55 0.49
27.51 0.40
24.51 0.55
20.06 0.32
16.41 0.27
16.59 0.55
15.78 0.29
14.72 0.21
13.80 0.20
12.99 0.10 | 55, 19 62,65 67,99 71,99 75,10 77,51 77,63 81,33 82,76 84,00 85,06 86,00 86,02 86,62 87,55 | 6.2E+06
7.0E+06
7.0E+06
8.7E+06
9.0E+06
1.0E+07
1.1E+07
1.2E+07
1.4E+07
1.4E+07
1.5E+07
1.6E+07
1.6E+07
1.6E+07
1.6E+07
1.6E+07
1.6E+07 | 1.47E+08 4
1.47E+08 4 | .41E+07 3
.46E+07 3
.50E+07 3
.55E+07 3
.65E+07 3
.65E+07 3
.70E+07 3
.74E+07 3
.74E+07 3
.84E+07 3
.84E+07 3
.84E+07 3
.84E+07 2
1 98E+07 2 | | 0.93 0.92 0.51 0.9 0.86 0.86 0.87 0.87 0.86 0.85 0.05 0.04 0.83 0.85 0.65 0.64 0.83 | 5.96
5.96
5.76
5.70
5.53
6.53
6.51
5.44
6.38
5.32
5.32
5.15
6.15
6.15 | 0.05
0.06
0.07
0.00
0.00
0.1
0.11
0.12
0.13
0.14
0.15
0.15
0.15
0.15 | 0.06
0.07
0.08
0.10
0.11
0.12
0.13
0.14
0.15
0.17
0.19
0.19
0.20
0.21
0.23 | 3.88E-607
3.84E-607
3.76E-67
3.76E-67
3.88E-607
3.86E-607
3.86E-607
3.56E-607
3.51E-607
3.47E-607
3.39E-607
3.35E-607
3.35E-607
3.31E-607
3.31E-607 | 4.38E-06
6.18E-06
6.18E-06
7.01E-06
7.78E-08
8.76E-08
8.76E-08
1.95E-07
1.14E-07
1.31E-07
1.49E-07
1.58E-07
1.58E-07
1.58E-07 | 7. 125-07
7.045-07
6.975-07
6.805-07
6.805-07
6.745-07
6.755-07
6.755-07
6.755-07
6.755-07
6.755-07
6.755-07
6.755-07
6.755-07
6.755-07
6.755-07
6.755-07
6.755-07
6.755-07
6.755-07
6.755-07
6.755-07
6.755-07
6.755-07
6.755-07
6.755-07
6.755-07
6.755-07
6.755-07
6.755-07
6.755-07
6.755-07
6.755-07 | 1.25
1.26
1.26
1.28
1.23
1.31
1.32
1.34
1.35
1.37
1.38
1.40
1.42
1.43
1.43 | 0.28 0.28 0.28 0.29 0.29 0.29 0.29 0.29 0.30 0.30 0.30 0.31 0.31 0.31 0.32 0.32 0.32 | 98.49
98.47
98.46
98.42
98.42
98.30
98.37
96.37
96.37
96.35
98.31
98.23
98.27
98.25
98.25
98.25 | 3.65-07 3.65-07 3.65-07 3.55-07 3.55-07 5.55-07 3.45-07 3.55-07 3.55-07 3.55-07 3.55-07 3.55-07 3.55-07 3.55-07 3.55-07 3.55-07 3.55-07 3.55-07 3.55-07 3.55-07 3.55-07 3.55-07 3.55-07 3.55-07 3.55-07 3.55-07 | 5.53E-06 1.02E-07 1.02E-07 1.02E-07 1.07E-07 1.07E-07 1.08E-07 1.08E-07 2.05E-07 2.09E-07 2.06E-07 2.06E-07 2.06E-07 3.07E-07 3.07E-07 3.14E-07 3.14E-07 | 44.17 054-64
30.91 053-75
31.55 044-75
27.51 040
24.54 035-75
20.08 029-75
16.41 027
16.89 029-75
14.72 021-75
15.80 020-75
14.72 021-75
15.80 020-75
15.80 02 | 55.19
62.65
67.99
71.99
75.10
77.59
79.65
81.33
82.76
84.00
85.06
86.02
86.82
86.82
86.82
86.82
86.82
86.82
86.82
86.82
86.82
86.82
86.82
86.82 | 6.2E-06
7.0E-06
8.7E-06
8.7E-06
9.5E-06
1.0E-07
1.1E-07
1.2E-07
1.3E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07 | 1.47E+08 4 5 1.47E+08 5 | .41E+07 348E+07 350E+07 350E+07 350E+07 360E+07 370E+07 374E+07 348E+07 384E+07 384E+07 384E+07 284E+07 284E+07 2. | | 0.93 0.92 0.91 0.9 0.89 0.66 0.67 0.065 0.055 0.04 0.83 0.83 0.85 0.81 0.81 | 5.95
5.92
5.76
5.70
6.63
6.67
5.67
5.44
5.32
5.25
5.19
6.13 | 0.05
0.06
0.07
0.08
0.08
0.1
0.11
0.12
0.13
0.14
0.15
0.16
0.16
0.17
0.17 | 0.06
0.07
0.00
0.10
0.11
0.12
0.14
0.15
0.17
0.18
0.19
0.20
0.21
0.21 | 3.885-67
3.905-67
3.905-67
5.726-67
5.726-67
5.956-67
3.965-67
3.956-67
3.956-67
3.956-67
3.956-67
3.956-67
3.956-67
3.956-67
3.956-67
3.956-67 | 4.38E-05
5.28E-06
6.13E-06
7.01E-06
7.08E-06
8.76E-06
9.64E-06
1.05E-07
1.14E-07
1.23E-07
1.40E-07
1.49E-07
1.58E-07
1.58E-07
1.58E-07 | 7,
125-07
7,045-07
6,975-07
6,975-07
6,985-07
6,925-07
6,755-07
6,955-07
6,955-07
6,445-07
6,755-07
6,255-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275-07
6,275 | 1.25
1.26
1.26
1.29
1.29
1.31
1.32
1.34
1.36
1.36
1.49
1.49
1.42
1.45
1.47 | 0.28 0.28 0.28 0.29 0.29 0.29 0.29 0.30 0.30 0.30 0.31 0.31 0.31 0.32 0.32 0.33 0.33 0.33 0.33 | 95.49
95.47
98.46
98.44
96.40
96.39
96.37
96.37
96.35
96.35
98.35
98.35
98.31
98.27
98.27
98.27
98.27
98.27
98.23 | 3.65-07 3.65-07 3.55-07 3.55-07 3.55-07 3.45-07 3.45-07 3.85-07 | 5.53E-00
1.02E-07
1.19E-07
1.37E-07
1.57E-07
1.77E-07
1.77E-07
1.88E-07
2.32E-07
2.39E-07
2.78E-07
2.30E-07
2.30E-07
3.24E-07
3.24E-07
3.24E-07
3.24E-07
3.24E-07
3.24E-07 | 44.17 054
56.81 053
31.55 044
27.61 046
2.54 055
2.50 052
50.68 022
16.40 027
16.50 025
16.78 025
14.72 021
13.80 020
12.99 018
12.27 018
11.62 017
11.64 017
11.64 016 | 55.19 52.65 67.99 71.99 75.10 77.55 79.63 81.33 82.76 84.00 85.06 86.00 86.02 86.82 87.86 88.80 88.80 | 6.2E-05
7.0E-06
8.7E-06
8.7E-06
9.5E-06
1.0E-07
1.1E-07
1.2E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-07
1.5E-0 | 1.47E+08 4 5 1.47E+08 5 1.47E+09 5 | .41E+07 348E+07 348E+07 355E+07 365E+07 365E+07 370E+07 370E+07 370E+07 344E+07 349E+07 349E+07 349E+07 349E+07 349E+07 349E+07 349E+07 249E+07 249E+07 249E+07 249E+07 249E+07 249E+07 249E+07 249E+07 249E+07 2. | | 0.93 0.92 0.97 0.99 0.89 0.86 0.87 0.85 0.85 0.85 0.85 0.84 0.83 0.85 0.84 0.83 0.84 0.83 0.84 0.83 0.85 0.84 0.85 0.85 0.86 0.86 0.86 0.87 | 5.95
5.96
5.92
5.76
5.70
5.63
5.67
5.61
5.44
5.38
5.32
5.25
5.10
6.13 | 0.05
0.07
0.08
0.07
0.08
0.1
0.11
0.12
0.14
0.15
0.16
0.16
0.17
0.16 | 0.06
0.07
0.08
0.10
0.11
0.12
0.13
0.14
0.15
0.17
0.19
0.20
0.21
0.21
0.22 | 3.885-407
3.846-407
3.906-407
3.726-407
3.726-407
3.868-407
3.868-407
3.858-407
3.478-407
3.478-407
3.358-407
3.358-407
3.358-407
3.358-407
3.358-407
3.358-407
3.358-407
3.358-407
3.358-407
3.358-407
3.358-407 | 4.38E-05
6.18E-06
6.18E-06
7.01E-06
7.01E-06
8.76E-06
8.76E-06
1.05E-07
1.14E-07
1.31E-07
1.40E-07
1.49E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07 | 7. 125-07 7. 045-07 6. 075-07 6. 085 | 125
1.26
1.26
1.29
1.31
1.32
1.34
1.35
1.37
1.39
1.40
1.42
1.43
1.43
1.44
1.43
1.45
1.47 |
0.20
0.28
0.28
0.29
0.29
0.29
0.29
0.30
0.30
0.30
0.31
0.31
0.31
0.32
0.32
0.32
0.33
0.33 | 58.49
58.47
58.46
58.42
58.42
58.42
58.30
58.37
58.37
58.37
58.37
58.37
58.37
58.37
58.33
58.31
58.29
58.27
58.25
58.25
58.25
58.25
58.25
58.25
58.25
58.25
58.25
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58.35
58 | 3.65-07 3.65-07 3.55-07 3.55-07 3.55-07 3.55-07 3.45-07 3.55-07 | 5-53E-00
102E-07
1.15E-07
1.17E-07
1.3FE-07
1.3FE-07
1.8BE-07
2.05E-07
2.22E-07
2.39E-07
2.7SE-07
2.7SE-07
2.7SE-07
3.0FE-07
3.48E-07
3.88E-07
3.58E-07 | 44.17 054-64-65-65-65-65-65-65-65-65-65-65-65-65-65- | 55.19 52.65 57.99 71.99 75.10 77.59 79.63 79.63 81.33 82.76 82.76 84.00 85.06 86.02 86.02 86.02 86.02 86.03 86.03 | 6.22-08 7.02-08 7.02-08 9.72-08 9.72-08 9.72-08 1.02-07 | 1.47E-08 4 5 1.47E-08 5 1.47E-08 5 | .41E+07 3
.48E+07 3
.48E+07 3
.50E+07 3
.50E+07 3
.50E+07 3
.70E+07 3
.74E+07 3
.74E+07 3
.74E+07 3
.44E+07 3
.84E+07 3
.84E+07 3
.84E+07 2
.50E+07 2
.50E+07 2
.50E+07 2
.50E+07 2
.50E+07 2 | | 0.93 0.92 0.91 0.9 0.89 0.66 0.67 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 | 5.95
5.92
5.76
5.70
6.63
6.67
5.67
5.44
5.32
5.25
5.19
6.13 | 0.05
0.06
0.07
0.08
0.08
0.11
0.12
0.13
0.14
0.15
0.16
0.16
0.17
0.16
0.17
0.19
0.2 | 0.06
0.07
0.00
0.10
0.11
0.12
0.13
0.14
0.15
0.17
0.18
0.19
0.20
0.20
0.21
0.21
0.25
0.25 | 3.885-607
3.905-607
3.705-607
5.726-607
5.726-607
5.966-607
5.966-607
3.966-607
3.976-607
3.986-607
3.986-607
3.986-607
3.986-607
3.986-607
3.986-607
3.986-607
3.986-607
3.986-607
3.986-607
3.986-607 | 4.38E-05
5.26E-06
6.13E-06
7.01E-06
7.01E-06
8.76E-06
8.76E-06
1.05E-07
1.14E-07
1.23E-07
1.40E-07
1.40E-07
1.40E-07
1.40E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07 | 7. 125-07
7. 045-07
6. 075-07
6. 085-07
6. 085-07
6. 085-07
6. 075-07
6. 085-07
6. 085 | 1.25
1.26
1.23
1.23
1.31
1.32
1.34
1.35
1.39
1.40
1.42
1.45
1.47
1.47
1.49
1.49 | 0.20
0.28
0.28
0.29
0.29
0.29
0.30
0.30
0.30
0.30
0.31
0.31
0.31
0.31 | 58.49
58.47
59.46
58.44
56.42
56.42
56.42
56.39
56.37
56.35
56.35
66.33
68.29
58.27
58.25
58.25
58.25
58.20
59.16
59.16
59.17
59.18 | 3.65-67 3.55-67 | 5.53E-00
1.02E-07
1.19E-07
1.37E-07
1.37E-07
1.57E-07
1.77E-07
1.86E-07
2.55E-07
2.96E-07
2.78E-07
2.96E-07
3.76E-07
3.16E-07
3.56E-07
3.56E-07
3.56E-07
3.56E-07
3.56E-07
3.56E-07
3.56E-07
3.56E-07
3.56E-07
3.56E-07
3.56E-07 | 44.17 05-5 50.81 0.53 31.55 0.44 27.61 0.52 27.61 0.47 2.54 0.52 2.50 0.52 2 | 55.19 52.59 57.39 71.59 77.59 77.55 81.33 82.76 84.00 85.06 86.00 86.00 86.00 86.00 86.00 86.00 86.00 86.00 86.00 |
6.25-05
7.05-08
7.05-08
9.76-06
9.76-06
9.56-06
1.05-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-07
1.56-0 | 1.47E-08 4 1.47E-08 1 1.47E-08 4 6 1.47E-08 6 1.47E-08 5 | .41E-07 3 .46E-07 3 .46E-07 3 .45E-07 3 .45E-07 3 .45E-07 3 .45E-07 3 .47E-07 3 .74E-07 3 .47E-07 3 .47E-07 3 .47E-07 3 .47E-07 3 .47E-07 3 .47E-07 2 .47E-07 2 .47E-07 2 .47E-07 2 .47E-07 2 .47E-07 2 | | D.93 D.92 D.91 D.90 D.90 D.90 D.80 D.88 D.86 D.87 D.86 D.85 D.85 D.85 D.85 D.85 D.85 D.85 D.85 | 5.95
5.99
6.92
5.70
5.63
5.67
6.81
5.32
5.32
5.25
5.13
5.06
6.00
4.94 | 0.05
0.07
0.08
0.07
0.08
0.1
0.11
0.12
0.14
0.15
0.16
0.16
0.17
0.16 | 0.06
0.07
0.08
0.10
0.11
0.12
0.13
0.14
0.15
0.17
0.19
0.20
0.21
0.21
0.22 | 3.885-407
3.846-407
3.906-407
3.726-407
3.726-407
3.868-407
3.868-407
3.858-407
3.478-407
3.478-407
3.358-407
3.358-407
3.358-407
3.358-407
3.358-407
3.358-407
3.358-407
3.358-407
3.358-407
3.358-407
3.358-407 | 4.30E-05
5.26E-05
6.3E-05
7.01E-06
7.01E-06
8.76E-06
8.76E-06
1.05E-07
1.14E-07
1.23E-07
1.40E-07
1.40E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
2.01E-07 | 7. 125-07 7. 045-07 6. 075-07 6. 085-07 | 1,25
1,26
1,28
1,28
1,31
1,31
1,32
1,34
1,35
1,47
1,49
1,49
1,45
1,47
1,47
1,49
1,49
1,53
1,53 | 0.20
0.28
0.28
0.29
0.29
0.29
0.29
0.30
0.30
0.30
0.31
0.31
0.31
0.32
0.32
0.32
0.33
0.33
0.33 | 98.49
98.47
98.46
98.44
98.42
98.40
98.39
98.37
98.35
98.31
98.27
98.27
98.25
98.25
98.25
98.31
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98 | 3.65-07 3.65-07 3.55-07 3.55-07 5.55-07 5.55-07 3.45-07 3.45-07 3.45-07 3.25-07 3.25-07 3.25-07 3.25-07 3.25-07 3.25-07 3.25-07 3.25-07 3.25-07 3.25-07 3.25-07 3.25-07 3.25-07 3.25-07 3.25-07 3.25-07 3.25-07 3.25-07 | 8.53E-00
1.02E-07
1.19E-07
1.37E-07
1.54E-07
1.54E-07
1.71E-07
1.88E-07
2.25E-07
2.25E-07
2.39E-07
2.39E-07
2.39E-07
3.05E-07
3.05E-07
3.48E-07
3.55E-07
3.55E-07
3.39E-07
4.10E-07 | 44.17 054-64-65-65-65-65-65-65-65-65-65-65-65-65-65- | 55.19 67.39 71.39 77.50 77.50 77.50 81.33 82.76 84.00 85.00 86.02 96.82 97.55 98.67 98.67 98.67 99.33 | 6.25-05 7.05-05 7.05-05 7.05-05 0.75-05 0.75-05 0.75-05 0.75-05 0.75-05 0.75-07 1.15-07 1.25-07 1.55-0 | 1.47E-06 4 1.47E-08 1 1.47E-08 4 5 | .41E-07 346E-07 350E-07 350E-07
355E-07 355E-07 355E-07 370E-07 370E-07 370E-07 370E-07 384E-07 3. | | 0.93 0.92 0.91 0.9 0.89 0.66 0.67 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 | 5.95
5.99
5.99
5.82
5.76
5.53
5.57
5.51
5.51
5.52
5.32
5.32
5.32
5.19
6.13
6.06
5.06
5.06
5.06
5.06
5.06
5.06
5.06 | 0.05
0.06
0.07
0.09
0.09
0.1
0.11
0.12
0.13
0.14
0.16
0.16
0.17
0.19
0.19
0.2
0.2
0.2
0.2
0.2
0.2
0.2 | 0.06
0.07
0.00
0.10
0.12
0.13
0.14
0.15
0.17
0.18
0.19
0.20
0.20
0.21
0.22
0.21 | 3.885-807
3.805-807
3.905-807
3.725-807
3.956-807
3.956-807
3.956-807
3.956-807
3.956-807
3.956-807
3.956-807
3.956-807
3.956-97
3.956-97
3.956-97
3.956-97
3.956-97
3.956-97
3.956-97
3.956-97 | 4.38E-05
5.26E-06
6.13E-06
7.01E-06
7.01E-06
8.76E-06
8.76E-06
1.05E-07
1.14E-07
1.23E-07
1.40E-07
1.40E-07
1.40E-07
1.40E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07
1.58E-07 | 7. 12±07
7.04±07
6.97±07
6.85±07
6.02±07
6.07±07
6.05±07
6.05±07
6.42±07
6.42±07
6.42±07
6.42±07
6.42±07
6.22±07
6.12±07
6.22±07
6.42±07
6.42±07
6.42±07
6.42±07
6.42±07
6.42±07
6.42±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07
6.52±07 | 1.25
1.26
1.23
1.23
1.31
1.32
1.34
1.35
1.39
1.40
1.42
1.45
1.47
1.47
1.49
1.49 | 0.20 0.28 0.28 0.29 0.29 0.29 0.29 0.29 0.30 0.30 0.30 0.30 0.31 0.31 0.31 0.32 0.32 0.32 0.33 0.35 0.35 0.35 0.35 0.35 0.35 0.35 | 58.49
58.47
59.46
58.44
56.42
56.42
56.40
56.33
56.35
56.35
66.35
66.35
68.27
58.27
58.25
58.25
58.25
58.25
58.25
58.25
58.31
59.11
59.11
59.11
59.11 | 3.65-67 3.55-67 | 5.53E-00
1.02E-07
1.19E-07
1.37E-07
1.37E-07
1.57E-07
1.77E-07
1.86E-07
2.02E-07
2.29E-07
2.29E-07
2.29E-07
2.29E-07
2.29E-07
3.24E-07
3.24E-07
3.44E-07
3.58E-07
3.58E-07
3.58E-07
3.58E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.00E-07
4.0 | 44.17 05-5 50.81 0.53 31.55 0.44 27.61 0.52 27.61 0.47 2.54 0.52 2.50 0.52 2 | 55.19
52.59
57.39
71.59
77.51
77.55
81.53
82.76
84.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
89.05
89.05
89.05
90.05 | 6.25-05 7.05-08 7.05-08 7.05-08 9.76-06 9.76-06 9.76-06 9.76-06 9.76-06 9.76-06 9.76-07 9.76-07 1.56-07 | 1.47E-08 | .41E-07 346E-07 350E-07 355E-07 255E-07 2. | | 0.93 0.92 0.91 0.9 0.89 0.86 0.66 0.67 0.06 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.87 0.87 0.87 0.77 0.76 0.76 | 5.95
5.99
5.99
5.70
5.70
5.53
5.67
5.61
5.44
5.39
5.32
5.25
5.19
5.19
5.06
4.94
4.87
4.81
4.87
4.86
4.82 | 0.05
0.06
0.07
0.09
0.09
0.1
0.11
0.12
0.13
0.14
0.15
0.16
0.16
0.17
0.16
0.17
0.12
0.22
0.21
0.22
0.23 | 0.06
0.07
0.08
0.10
0.11
0.12
0.19
0.14
0.16
0.17
0.18
0.20
0.21
0.24
0.24
0.25
0.25
0.25
0.27 | 3.885-607 3.805-607 3.905-607
5.726-607 5.958-607 5.968-607 5.968-607 5.968-607 5.968-607 5.968-607 5.968-607 5.968-607 5.968-607 5.968-607 5.968-607 5.968-607 5.968-607 5.968-607 5.968-607 5.968-607 5.968-607 5.968-607 | 4.38E-905
5.26E-905
6.18E-906
7.91E-908
7.98E-906
8.76E-906
1.96E-97
1.31E-97
1.31E-97
1.49E-97
1.49E-97
1.58E-97
1.58E-97
1.58E-97
1.58E-97
1.58E-97
1.58E-97
2.91E-97
2.10E-97
2.10E-97
2.10E-97
2.28E-97
2.28E-97 | 7. 125-07 7. 045-07 6. 075-07 6. 085-07 | 1.25
1.26
1.26
1.28
1.29
1.39
1.39
1.34
1.39
1.39
1.40
1.47
1.45
1.45
1.47
1.49
1.49
1.51
1.51 | 0.20 0.28 0.28 0.29 0.29 0.29 0.29 0.29 0.30 0.30 0.30 0.30 0.31 0.31 0.31 0.32 0.32 0.32 0.35 0.35 0.35 0.35 0.35 0.35 | 98.49
98.47
98.46
98.46
98.40
98.39
98.37
98.37
98.37
98.27
98.27
98.27
98.27
98.23
98.11
98.11
99.11
99.10
99.06 | 3.65-07 3.55-07 3.55-07 3.55-07 3.55-07 3.45-07 3.45-07 3.55-0 | 8.53E-00
1.02E-07
1.19E-07
1.37E-07
1.54E-07
1.54E-07
1.71E-07
1.88E-07
2.25E-07
2.25E-07
2.39E-07
2.39E-07
2.39E-07
3.05E-07
3.05E-07
3.48E-07
3.55E-07
3.55E-07
3.39E-07
4.10E-07 | 44.17 05-5 50.81 0.55 31.55 0.44 27.61 0.55 27.61 0.47 2.54 0.55 50.68 0.25 50.68 0.25 16.41 0.27 16.40 0.27 17.70 0.21 1 | 55.19 62.69 67.99 71.92 75.10 77.59 79.63 81.93 82.76 84.00 86.92 86.92 96.93 99.93 99.93 | 6.25+06 7.05+06 7.05+06 7.05+06 8.75+06 9.55+06 9.55+06 9.55+06 9.55+06 9.55+06 9.55+06 9.55+07 9.55+0 | 1.47E-08 4 1.47E-08 1 1.47E-08 1 1.47E-08 4 1.47E-08 4 1.47E-08 4 1.47E-08 4 1.47E-08 4 1.47E-08 4 1.47E-08 5 1.47E-08 5 1.47E-08 6 | .41E-07 346E-07 350E-07 355E-07 355E-07 355E-07 355E-07 355E-07 355E-07 376E-07 376E-07 384E-07 384E-07 384E-07 384E-07 384E-07 286E-07 2. | | D.93 0.92 0.91 0.90 0.80 0.88 0.86 0.87 0.86 0.85 0.85 0.85 0.84 0.82 0.84 0.82 0.81 0.77 0.76 0.77 0.76 0.77 | 5.95
5.99
5.99
5.82
5.70
5.53
5.51
5.51
5.54
5.52
5.32
5.25
5.19
6.13
6.05
5.06
5.06
5.06
5.06
5.06
5.06
5.06 | 0.05
0.06
0.07
0.09
0.09
0.1
0.11
0.12
0.13
0.14
0.16
0.16
0.16
0.17
0.19
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2 | 0.06
0.07
0.08
0.10
0.11
0.12
0.14
0.16
0.17
0.18
0.19
0.20
0.21
0.23
0.24
0.24
0.24
0.25
0.25
0.25
0.25
0.25 |
3.885-607
3.805-607
3.765-607
3.765-607
3.765-607
3.865-607
3.865-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856-607
3.856- | 4.93E-60
5.20E-60
6.19E-60
7.01E-60
7.01E-60
7.00E-60
7.00E-60
7.00E-60
7.00E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.05E-60
1.0 | 7. 12±407 7. 04±407 6. 977±407 6. 977±407 6. 625±407 6. | 1,25
1,26
1,28
1,29
1,31
1,31
1,32
1,32
1,34
1,35
1,40
1,40
1,40
1,40
1,41
1,45
1,47
1,49
1,15
1,15
1,15
1,15
1,15
1,15
1,15
1,1 | 0.20 0.23 0.23 0.23 0.23 0.23 0.23 0.23 |
98.49
98.47
98.46
98.46
98.44
98.42
98.37
98.37
98.37
98.37
98.37
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.27
98.29
98.27
98.27
98.27
98.27
98.29
98.31
98.29
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31
98.31 | 3.65-07 3.65-07 3.55-07 3.55-07 3.55-07 3.55-07 3.45-07 3.55-0 | 8.53E-00 1.02E-07 1.19E-07 1.19E-07 1.54E-07 1.5 | 44.17 054-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6 | 55. 19 52.50 57.59 77.59 77.59 77.50 77.50 18 1.33 12 76 84.00 86.00 86.00 86.80 86.80 86.80 86.80 90.00 90.70 | 6.22+06 7.05+08 7.05+08 7.05+08 8.75+06 9.55+06 9.55+06 9.55+06 9.55+06 9.55+06 9.55+06 9.55+07 9.55+07 1.55+07 1.55+07 1.55+07 1.55+07 1.55+07 2.55+07 | 1.47E-08 | .41E-07 3 .44E-07 3 .44E-07 3 .44E-07 3 .50E-07 3 .55E-07 3 .65E-07 3 .75E-07 .75E-0 | | 0.93 0.92 0.91 0.90 0.80 0.85 0.65 0.67 0.65 0.61 0.61 0.62 0.63 0.65 0.67 0.67 0.77 0.76 0.76 | 5.95
5.99
5.99
5.70
5.70
5.53
6.67
5.65
5.32
5.32
5.32
5.13
5.06
5.00
4.94
4.87
4.87
4.87
4.87
4.87
4.87
4.87
4.8 | 0.05
0.07
0.09
0.09
0.01
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.17
0.19
0.2
0.2
0.2
0.2
0.2
0.2
0.3
0.4
0.15
0.15
0.16
0.17
0.16
0.17
0.17
0.18
0.19
0.2
0.2
0.2
0.2
0.2
0.2
0.3
0.4
0.4
0.5
0.6
0.7
0.7
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8 | 0.06
0.07
0.08
0.10
0.11
0.12
0.19
0.14
0.16
0.17
0.19
0.19
0.20
0.21
0.24
0.24
0.25
0.24
0.25
0.27 | 3.88E-607 3.90E-607 3.90E-607 5.72E-607 5.98E-607 | 4.98(±00
5.05(±00
6.18(±00
7.08(±00
7.08(±00
8.76(±00
9.66(±00
9.66(±00
1.05(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01
1.16(±01 | 7. 128-07 7. 048-07 6. 075-07 6. 0825-07 6. 0825-07 6. 0825-07 6. 085-07 6.
085-07 6. | 1.25
1.26
1.26
1.28
1.29
1.39
1.39
1.39
1.39
1.39
1.49
1.42
1.42
1.44
1.45
1.47
1.49
1.55
1.55
1.55
1.55
1.55
1.55
1.55
1.5 | 0.20 0.28 0.28 0.29 0.29 0.29 0.29 0.30 0.30 0.30 0.30 0.31 0.31 0.31 0.31 | 98.47
98.46
98.47
98.46
98.42
98.49
98.49
98.35
98.35
98.37
98.27
98.27
98.27
98.17
98.18
98.19
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98.10
98 | 3.65-07 3.55-07 3.55-07 3.55-07 3.55-07 3.45-07 3.45-07 3.45-07 3.55-0 | 5.53E-00 1.02E-07 1.19E-07 1.3F-07 1.3F-07 1.3F-07 1.3F-07 1.3F-07 1.3F-07 1.3F-07 2.3E-07 2.3E-07 2.3E-07 3.3F-07 3.1E-07 3.1S-07 3.1S-07 4.10E-07 | 44.17 05-5 50.81 0.53 51.55 0.44 2.54 0.55 51.55 0.44 2.54 0.55 50.68 0.22 50 | 55. 19 52.50 67.93 77.93 77.50 77.50 77.50 77.50 82.77 84.50 86.00
86.00 | 6.25-05 7.05-05 7.05-05 8.76-05 8.76-05 9.56-06 9.56-06 9.56-07 1.66-07 1.66-07 1.66-07 1.66-07 1.76-07 | 1.47E-08 | .46E-07 3
.50E-07 3
.55E-07 3
.65E-07 3
.75E-07 3
.75E-07 3
.75E-07 3
.84E-07 2
.84E-07 2
.98E-07 2
.98E-07 2
.98E-07 2
.75E-07 2
.75E-0 | | 0.93 0.92 0.91 0.90 0.80 0.80 0.85 0.85 0.85 0.85 0.85 0.8 | 5.95
5.99
5.99
5.70
5.70
5.53
6.57
5.51
5.44
6.53
5.52
5.25
5.25
5.25
5.19
6.13
6.13
6.14
6.13
6.14
6.14
6.15
6.14
6.15
6.14
6.15
6.14
6.15
6.15
6.15
6.15
6.15
6.15
6.15
6.15 | 0.05
0.06
0.07
0.09
0.09
0.1
0.11
0.12
0.13
0.14
0.16
0.16
0.17
0.16
0.17
0.19
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.3
0.3
0.4
0.4
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1 | 0.06
0.07
0.08
0.10
0.11
0.12
0.14
0.15
0.17
0.18
0.20
0.21
0.23
0.23
0.24
0.25
0.27
0.20
0.30
0.30
0.30
0.30
0.30
0.30
0.30 | 3.88E-607 3.80E-607 3.90E-607 3.76E-607 3.76E-607 3.86E-607 3.86E-607 3.85E-607 | 4.33E-06 5.26E-06 6.13E-06 6.13E-06 6.13E-06 7.08E-06 7.08E-06 8.76E-06 8.76E-06 8.76E-06 1.3E-07 1.4E-07 1.3E-07 1.4E-07 1.5E-07 1.5E-07 1.5E-07 1.5E-07 1.5E-07 2.0E-07 2.1E-07 2.1E | 7. 12±407 7. 04±407 6. 977±407 6. 977±407 6. 625±407 6. | 1,25
1,26
1,28
1,29
1,31
1,31
1,32
1,34
1,35
1,40
1,40
1,40
1,42
1,45
1,47
1,49
1,49
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53 | 0.20 0.23 0.23 0.23 0.23 0.23 0.23 0.23 | 58.47
58.46
58.47
58.46
68.42
68.42
68.43
69.37
69.35
69.37
69.35
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69.37
69 | 3.65-07 3.65-07 3.55-07 3.55-07 3.55-07 3.67-07 3.67-07 3.87-0 | 8.53E-00 1.02E-07 1.19E-07 1.19E-07 1.47E-07 1.54E-07 1.54E-07 1.71E-07 1.88E-07 1.88E-07 2.05E-07 2.05E-07 2.09E-07 2.09E-07 2.09E-07 2.09E-07 2.09E-07 2.09E-07 3.07E-07 3.0 | 44.17 054-64 50.91 0.53 51.55 0.64 27.61 0.52 27.61 0.52 20.08 0.22 20.08 0.22 20.08 0.22 18.41 0.27 15.89 0.22 15.89 0.22 15.80 0.22 15.80 0.22 15.80 0.22 15.80 0.22 15.80 0.22 15.80 0.22 15.80 0.22 15.80 0.22 15.80 0.22 15.80 0.22 15.80 0.22 15.80 0.22 15.80 0.22 15.80 0.22 15.80 0.22 15.80 0.22 15.80 0.44 15.70 15.70 15.70 15.70 15.70 15.70 15.70 15.70 15.70 15.70 15.70 15.70 15.70 | 55. 19
50.06
67.99
77.99
75. 10
77.
5.9
10.53
10.53
10.53
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50
10.50 | 6.22+06 7.05+06 7.05+06 7.05+06 8.75+06 9.55+06 9.55+06 9.55+06 9.55+06 9.55+06 9.55+07 1.55+07 1.55+07 1.55+07 1.55+07 1.55+07 1.55+07 1.55+07 2.55+07 2.25+07 2.35+0 | 1.47E-08 | .415407 34465407 34465407 34465407 34565407 36555407 36555407 36555407 37565407 37565407 37565407 37565407 38465407 38465407 38465407 38465407 28465407 28565407 2. | | 0.93 0.92 0.91 0.96 0.89 0.86 0.65 0.67 0.65 0.61 0.83 0.83 0.83 0.83 0.83 0.87 0.77 0.76 0.77 0.72 0.72 0.71 0.72 0.71 0.72 0.71 0.72 0.71 0.72 0.71 0.72 0.71 0.72 0.72 0.71 0.72 0.71 0.72 0.71 0.72 0.72 0.71 0.71 0.72 0.72 0.71 0.72 0.72 0.73 0.72 0.74 0.75 0.74 0.76 0.74 0.76 0.76 0.71 0.76 0.76 0.71 0.76 0.88 | 5.95
5.99
5.99
5.70
5.70
5.53
5.57
5.65
5.44
5.39
5.32
5.25
5.19
5.13
5.06
5.00
4.94
4.87
4.87
4.88
4.89
4.49
4.43 | 0.05
0.07
0.09
0.09
0.11
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.16
0.17
0.19
0.2
0.2
0.2
0.2
0.2
0.3
0.3
0.4
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1 | 0.06
0.07
0.08
0.10
0.10
0.12
0.13
0.14
0.15
0.17
0.19
0.19
0.21
0.21
0.21
0.22
0.24
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25 | 3.88E-607 3.90E-607 3.90E-607 3.72E-607 3.98E-607 | 4.93E-90
5.20E-90
6.13E-90
7.01E-90
8.70E-90
9.64E-90
9.64E-90
9.64E-90
1.05E-97
1.23E-97
1.24E-97
1.25E-97
1.25E-97
1.25E-97
1.25E-97
1.25E-97
1.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.25E-97
2.2 | 7. 128-07
7. 048-07
6. 975-07
6. 985-07
6. 985-07
6. 985-07
6. 974-07
6. 978-07
6. 988-07
6. 988-07 | 1.25
1.26
1.26
1.28
1.29
1.39
1.39
1.39
1.39
1.39
1.49
1.47
1.45
1.47
1.45
1.47
1.49
1.51
1.51
1.51
1.53
1.55
1.55
1.55
1.55 | 0.20 0.28 0.28 0.28 0.29 0.29 0.29 0.29 0.30 0.30 0.30 0.31 0.31 0.31 0.31 0.32 0.32 0.32 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 |
98.47
98.46
98.47
98.46
98.44
98.42
98.42
98.35
98.35
98.35
98.37
98.27
98.27
98.25
98.10
99.11
99.11
99.10
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
90.00
90.00
90.00
90.00
90.00
90.00
90 | 3.65-07 3.55-07 3.55-07 3.55-07 3.55-07 3.45-07 3.45-07 3.45-07 3.55-0 | 5.53E-00 1.02E-07 1.19E-07 1.3F-07 1.3F-07 1.5F-07 1.5F-07 1.5F-07 1.7F-07 1.5F-07 2.5E-07 2.5E-07 2.5E-07 2.5E-07 3.0F-07 3.11E-07 3.0F-07 3. | 44.17 05-5 50.81 0.53 51.55 0.44 27.51 0.55 52.54 0.55 52.54 0.55 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.22 52.5 | 55. 19 26.26 27. 39 27. 10 27. 20 27. | 6.25-05 7.05-05 7.05-05 7.05-05 9.75-105 9.75-105 9.75-105 9.75-105 9.75-105 9.75-105 9.75-105 9.75-105 9.75-107
9.75-107 9.75-10 | 1.47E-08 | .415.07 3 .446E-07 3 .446E-07 3 .456E-07 3 .556E-07 3 .656E-07 3 .756E-07 | | 0.93 0.92 0.91 0.90 0.80 0.80 0.85 0.85 0.85 0.85 0.85 0.8 | 5.95
5.99
5.99
5.70
5.70
5.53
6.57
5.51
5.44
6.53
5.52
5.25
5.25
5.25
5.19
6.13
6.13
6.14
6.13
6.14
6.14
6.15
6.14
6.15
6.14
6.15
6.14
6.15
6.15
6.15
6.15
6.15
6.15
6.15
6.15 | 0.05
0.06
0.07
0.09
0.09
0.1
0.11
0.12
0.13
0.14
0.16
0.16
0.17
0.16
0.17
0.19
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.3
0.3
0.4
0.4
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1 | 0.06
0.07
0.08
0.10
0.11
0.12
0.14
0.15
0.17
0.18
0.20
0.21
0.23
0.23
0.24
0.25
0.27
0.20
0.30
0.30
0.30
0.30
0.30
0.30
0.30 | 3.88E-607 3.80E-607 3.90E-607 3.76E-607 3.76E-607 3.86E-607 3.86E-607 3.85E-607 | 4.33E-06 5.26E-06 6.13E-06 6.13E-06 6.13E-06 7.08E-06 7.08E-06 8.76E-06 8.76E-06 8.76E-06 1.3E-07 1.4E-07 1.3E-07 1.4E-07 1.5E-07 1.5E-07 1.5E-07 1.5E-07 1.5E-07 2.0E-07 2.1E-07 2.1E | 7. (2±-407
7. (0±-407
6. 97E-407
6. 97E-407
6. 92E-407
6. 92E | 1,25
1,26
1,28
1,29
1,31
1,31
1,32
1,34
1,37
1,48
1,49
1,49
1,45
1,47
1,49
1,49
1,49
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53 | 0.20 0.23 0.23 0.23 0.23 0.23 0.23 0.23 | 58.47
58.46
58.47
58.46
68.42
68.42
68.43
68.35
68.35
68.35
68.37
68.35
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68.31
68 | 3.65-07 3.65-07 3.55-07 3.55-07 3.55-07 3.55-07 3.45-07 3.45-07 3.45-07 3.55-0 | 8.53E-00 1.02E-07 1.19E-07 1.19E-07 1.47E-07 1.54E-07 1.5 | 44.17 0.64-6.17 0.65-6.17 | 55. 19 50.06 67.99 77.99 77.90 75. 10 77.50 18.53 18.276 40.00 66.00
66.00 66. | 6.25-06 7.05-08 7.05-08 7.05-08 0.75-06 0.55-06 0.55-06 0.55-06 0.55-06 0.55-06 0.55-07 1.55-0 | 1.47E-08 | .415.07 3 .405.07 3 .505.07 3 .505.07 3 .505.07 3 .505.07 3 .505.07 3 .705.07 3 .505.0 | | 0.93 0.92 0.91 0.90 0.80 0.86 0.86 0.86 0.86 0.86 0.86 0.8 | 5.95
5.99
5.99
5.02
5.76
5.70
5.65
5.65
5.44
5.39
5.32
5.25
5.19
5.19
5.06
4.94
4.87
4.87
4.87
4.89
4.89
4.89
4.89
4.89
4.89
4.89
4.89 | 0.05
0.06
0.07
0.09
0.09
0.1
0.11
0.12
0.13
0.14
0.16
0.16
0.17
0.16
0.17
0.19
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.3
0.3
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4 | 0.06
0.07
0.08
0.10
0.11
0.12
0.13
0.14
0.15
0.17
0.18
0.20
0.21
0.23
0.21
0.24
0.24
0.27
0.30
0.32
0.32
0.32
0.32 | 3.88E-607 3.80E-607 3.90E-607 3.90E-607 5.72E-607 5.86E-607 5.86E- | 4.33E-06 5.26E-06 6.13E-06 6.13E-06 6.13E-06 7.08E-06 7.08E-06 8.76E-06 8.76E-06 8.76E-06 1.3E-07 1.4E-07 1.3E-07 1.4E-07 1.3E-07 1.4E-07 1.5SE-07 1.5SE-07 1.5SE-07 1.5SE-07 2.0E-07 2.1E-07 | 7. 128-07 7. 048-07 6. 977-07 6. 987-07 6. 982-07 6. 982-07 6. 982-07 6. 974-07 6. 975-07 6. 982 | 1.25
1.26
1.26
1.28
1.29
1.39
1.39
1.39
1.39
1.39
1.49
1.47
1.45
1.47
1.45
1.47
1.49
1.51
1.51
1.51
1.53
1.55
1.55
1.55
1.55 | 0.20 0.28 0.28 0.28 0.29 0.29 0.29 0.29 0.30 0.30 0.30 0.31 0.31 0.31 0.31 0.32 0.32 0.32 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 | 98. 47 98. 46 98. 47 98. 46 98. 42 98. 42 98. 40 98. 37 98. 35 98. 37 98. 37 98. 37 98. 37 98. 37 98. 37 98. 37 98. 37 98. 77 98. 27 98. 77
98. 77 98 | 3.65-07 3.55-07 3.55-07 3.55-07 3.55-07 3.45-07 3.45-07 3.45-07 3.55-0 | 5.53E-00 1.02E-07 1.19E-07 1.3F-07 1.3F-07 1.3F-07 1.3F-07 1.3F-07 1.3F-07 1.3F-07 1.3F-07 2.3E-07 2.3E-07 2.3F-07 3.1F-07 3.1F-07 3.1F-07 3.1F-07 4.10E-07 4.10E-07 4.10E-07 4.10E-07 4.10E-07 4.10E-07 4.10E-07 4.10E-07 5.12E-07 | 44.17 05-5 50.81 0.53 51.55 0.44 27.51 0.55 52.54 0.55 52.54 0.55 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.68 0.22 52.55 0.22 52.5 | 55. 19 26.26 27. 39 27. 50 27. 50 27. 50 27. 50 27. 50 27. 50 27. 50 27. 50 27. 50 27. 50 28. 70 28. 70 28. 70 28. 70 28. 70 28. 80 29. 70 20. 70 20. | 6.25-05 7.05-05 7.05-05 7.05-05 8.76-05 9.56-06 9.56-06 9.56-06 1.56-07 | 1.47E-08 | .441E-07 3 .50E-07 3 .50E-07 3 .50E-07 3 .50E-07 3 .50E-07 3 .50E-07 3 .70E-07 | | 0.93 0.92 0.91 0.91 0.80 0.86 0.86 0.87 0.85 0.85 0.83 0.82 0.82 0.83 0.87 0.77 0.76 0.76 0.73 0.72 0.70 0.70 0.88 0.88 0.88 0.88 0.86 0.67 0.66 | 5.95
5.99
5.99
5.92
5.76
5.70
5.65
5.65
5.52
5.32
5.19
5.06
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9 | 0.05 0.06 0.07 0.09 0.09 0.01 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.16 0.17 0.19 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 | 0.06 0.07 0.08 0.10 0.11 0.12 0.13 0.14 0.15 0.17 0.19 0.20 0.21 0.21 0.22 0.22 0.22 0.22 0.22 | 3.885-07 3.905-07 3.905-07 3.905-07 3.725-07 3.885-07 3.885-07 3.855-07 3.515-07 3.475-07 3.355-07 3.375-07 3.395-07 3.315-07 3.395-07 3.315-07
3.315-07 3.3 | 4.381-00 5.001-00 6.131-00 7.081-00 7.0 | 7. 128-07 7. 048-07 6. 977-07 6. 987-07 6. 982 | 1.25 1.26 1.26 1.28 1.29 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.3 | 0.20 0.28 0.28 0.28 0.29 0.29 0.29 0.29 0.30 0.30 0.30 0.31 0.31 0.31 0.31 0.32 0.32 0.32 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 | 98.47 98.46 98.47 98.46 98.42 98.47 98.56 98.57 98.57 98.57 98.57 98.57 98.57 98.77 | 3.65-07 3.65-07 3.65-07 3.55-07 3.55-07 3.45-07 3.45-07 3.55-0 | 8.53E-00 1.02E-07 1.19E-07 1.19E-07 1.47E-07 1.54E-07 1.5 | #4.17 04-6 96.81 0.53 31.55 0.44 24.54 0.55 27.61 0.40 24.54 0.55 20.08 0.29 20.08 0.29 20.08 0.29 20.08 0.29 20.08 0.29 20.08 0.29 20.08 0.29 20.08 0.29 20.08 0.29 20.08 0.29 20.08 0.29 20.08 0.29 20.08 0.29 20.08 0.29 20.08 0.29 20.08 0.29 20.08 0.29 20.08 0.29 20.08 0.39 20.08 0.39
20.08 0.39 | 55. 19 25.06 67.99 17.92 17.92 17.93 17.93 17.93 18.33 18.27 18.33 18.276 18.00 65.00 66.82 66.00 66.82 66.00 66.82 67.555 68.21 68.82 69.33 19.38 19. | 6.22+05 7.06+08 7.06+08 0.76+06 0.26+06 0.26+06 0.26+06 0.26+06 0.26+07 1.16+07 1.26+0 | 1.47E-08 | .415-07 9 4.465-07 9 5.505-07 9 5.505-07 9 6.555-07 3 6.555-07 3 6.555-07 3 7.748-07 3 6.455-07 9 6 | | 0.93 0.92 0.91 0.90 0.80 0.86 0.86 0.86 0.86 0.86 0.86 0.8 | 5.95
5.99
5.99
5.92
5.70
5.53
6.67
5.61
5.44
5.99
5.32
5.19
5.13
5.00
4.94
4.61
4.64
4.64
4.64
4.64
4.64
4.64
4.6 | 0.05 0.06 0.07 0.09 0.09 0.01 0.11 0.11 0.12 0.13 0.14 0.16 0.16 0.17 0.18 0.17 0.18 0.19 0.22 0.23 0.24 0.25 0.25 0.25 0.26 0.27 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 | 0.06
0.07
0.08
0.10
0.11
0.12
0.14
0.16
0.17
0.18
0.20
0.21
0.23
0.23
0.24
0.25
0.25
0.25
0.25
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.3 | 3.885-607 3.805-607
3.805-607 3.805- | 4.32E-06 5.26E-06 6.13E-06 6.13E-06 6.13E-06 7.08E-06 6.13E-06 7.08E-06 7.08E-06 7.08E-06 7.08E-07 1.45E-07 1.45E-07 1.45E-07 1.45E-07 1.45E-07 1.55E-07 1.55E-07 1.55E-07 1.55E-07 2.15E-07 2.1 | 7. (22-407
7. (042-407
6. 977-407
6. 987-407
6. 982-407
6. 98 | 1,25
1,26
1,28
1,28
1,29
1,31
1,32
1,34
1,35
1,46
1,47
1,49
1,47
1,49
1,47
1,49
1,47
1,49
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,53
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75
1,75 | 0.26 0.28 0.28 0.28 0.28 0.29 0.29 0.30 0.30 0.30 0.30 0.31 0.31 0.31 0.31 | 58.47
58.46
58.46
58.46
58.46
58.42
58.45
58.55
68.55
68.55
68.55
68.55
68.55
68.55
68.57
68.55
68.57
68.59
68.77
68.59
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68.79
68 | 3.65-07 3.65-07 3.55-07 3.55-07 3.55-07 3.55-07 3.45-07 3.45-07 3.45-07 3.45-07 3.25-07 3.25-07 3.25-07 3.25-07 3.25-07 3.25-07 3.25-07 3.25-07 3.25-07 3.25-07 3.25-07 3.25-07 3.25-07 3.25-07 3.25-07 | 8.53E-00 1.02E-07 1.19E-07 1.37E-07 1.47E-07 1.47E-07 1.48E-07 1.4 | 44.17 054-64 50.91 0.53 51.55 0.64 24.54 0.55 22.59 0.52 20.08 0.25 20.08 0.25 18.41 0.27 18.69 0.25 18.72 0.21 18.90 0.25 18.90 0.25 18.90 0.25 18.90 0.25 18.90 0.25 18.90 0.25 18.90 0.25 18.90 0.44 18.90 0.44 18.90 0.45 | 55. 19 56.06 67.99 77.99 77.51 77.59 18.33 18.33 18.276 18.33 18.33 18.276 18.33 18.33 18.276 18.33 18.33 18.276 18.33 18.33 18.276 18.33 19.35 | 6.22+06 7.05+06 7.05+06 7.05+06 8.75+06 9.55+06 9.55+06 9.55+06 9.55+06 9.55+06 9.55+06 9.55+06 9.55+06 9.55+07 | 1.47E-06 1.4 | .441E-07 3 .50E-07 .70E-07 .70E- | | 0.93 0.92 0.91 0.90 0.80 0.86 0.86
0.87 0.86 0.86 0.86 0.86 0.87 0.83 0.87 0.87 0.77 0.77 0.76 0.76 0.77 0.77 0.76 0.76 | 5.95
5.99
5.99
5.02
5.76
5.70
5.53
5.57
5.55
5.32
5.32
5.13
5.06
5.39
5.32
5.13
5.00
4.94
4.87
4.87
4.87
4.87
4.87
4.87
4.87
4.8 | 0.05
0.06
0.07
0.09
0.01
0.11
0.12
0.13
0.14
0.16
0.16
0.17
1.18
0.19
0.22
0.21
0.22
0.23
0.24
0.25
0.25
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.30 | 0.06 0.07 0.08 0.10 0.11 0.12 0.13 0.14 0.15 0.17 0.19 0.20 0.21 0.23 0.24 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 | 3.885-97 3.905-97 3.905-97 3.905-97 3.905-97 3.985-97 3.985-97 3.985-97 3.955-97 3.9 | 4.381-00 5.001-00 6.131-00 7.081-00 7.0 | 7. 128-07 7. 048-07 6. 977-07 6. 982 | 1.25 1.26 1.26 1.28 1.29 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.49 1.40 1.47 1.45 1.47 1.49 1.51 1.55 1.55 1.55 1.57 1.59 1.66 1.66 1.68 1.77 1.78 1.78 1.78 | 0.20 0.28 0.28 0.28 0.29 0.29 0.29 0.30 0.30 0.30 0.31 0.31 0.31 0.31 0.32 0.32 0.33 0.33 0.33 0.35 0.35 0.35 0.35 0.35 | 98.47 98.46 98.47 98.46 98.47 98.46 98.47 98.57 98.57 98.57 98.57 98.57 98.57 98.57 98.77 98.77 98.77 98.77 98.77 98.77 98.77 98.77 98.77 98.77 | 3.65-07 3.65-07 3.65-07 3.55-07 3.55-07 3.45-07 3.45-07 3.35-07 3.35-07 3.35-07 3.25-07
3.25-07 | 5.53E-00 1.02E-07 1.19E-07 1.3FE-07 1.3FE-07 1.3FE-07 1.3FE-07 1.25E-07 2.3E-0-07 2.3E-0-07 2.3FE-07 2.3FE-07 3.4FE-07 3.4FE-07 3.4FE-07 3.4FE-07 4.1FE-07 4.1FE-07 4.1FE-07 4.1FE-07 5.2E-07 5.3E-07 | 44.17 054 55.81 0.53 51.55 0.44 2.54 0.55 27.61 0.40 2.54 0.55 16.58 0.25 17.59 0.11 17.62 0.16 17.62 0.17 17.62 0.17 17.62 0.17 17.62 0.17 17.62 0.17 17.62 0.17 17.62 0.17 17.62 0.17 17.62 0.17 17.62 0.17 17.62 0.17 17.62 0.17 17.62 0.17 17.62 0.17 17.63 0.17 17.65 0.17 17. | 55. 19 52.06 57.93 77.93 77.50 | 6.22+05 7.06+08 7.06+08 7.06+08 0.76+06 0.56+06 0.56+06 1.06+07 1.16+07 1.26+0 | 1.47E-08 | .441E-07 3 .50E-07 5 .50E- | | D.93 0.92 0.91 0.90 0.80 0.86 0.86 0.86 0.86 0.86 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 | 5.36
5.39
5.99
5.92
5.70
5.70
5.65
5.65
5.44
5.32
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15
5.15 | 0.05 0.06 0.07 0.09 0.09 0.01 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.16 0.17 0.18 0.17 0.22 0.23 0.24 0.25 0.25 0.25 0.25 0.25 0.25 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 |
0.06
0.07
0.08
0.10
0.11
0.12
0.14
0.16
0.17
0.18
0.20
0.21
0.23
0.24
0.23
0.24
0.25
0.21
0.25
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.3 | 3.88E-607 3.80E-607 3.90E-607 3.90E- | 4.32E-06 5.26E-06 6.13E-06 6.13E-06 6.13E-06 7.08E-06 6.13E-06 7.08E-06 7.08E-06 7.08E-06 7.08E-06 7.08E-07 1.14E-07 1.14E-07 1.14E-07 1.15E-07 1.15E-07 1.15E-07 1.15E-07 1.15E-07 1.15E-07 1.15E-07 1.15E-07 2.15E-07 2.1 | 7. 12±407 7. 04±407 6. 977±407 6. 977±407 6. 625±407 6. | 1.25
1.26
1.26
1.28
1.28
1.31
1.32
1.34
1.35
1.39
1.40
1.42
1.43
1.44
1.45
1.47
1.49
1.55
1.55
1.55
1.55
1.55
1.55
1.55
1.5 | 0.28 0.28 0.28 0.28 0.28 0.29 0.29 0.30 0.30 0.30 0.30 0.31 0.31 0.31 0.31 | 58.47 58.46 58.47 58.46 58.47 58.46 58.47 58.46 58.47 58.47 58.47 58.57 58.57 58.57 58.57 58.57 58.57 58.57 58.57 58.57 58.57 58.57 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 58.77 | 3.65-07 3.65-07 3.55-07 3.55-07 3.55-07 3.55-07 3.45-07 3.45-07 3.45-07 3.15-0 | 8.53E-00 1.02E-07 1.19E-07 1.37E-07 1.37E-07 1.38E-07 1.38E-07 1.38E-07 1.38E-07 1.38E-07 2.05E-07 2.05E-07 2.05E-07 2.05E-07 2.05E-07 3.07E-07 3.0 | 44.17 0.64-6. 96.91 0.53-6. 97.51 0.40 24.54 0.55-6. 24.54 0.55-6. 25.00 0.52-6. 18.41 0.27 18.69 0.25-6. 18.72 0.21 18.69 0.25-6. 18.72 0.21 18.90 0.20 18.90 0.10 18.90 0.11 | 55. 19 56.06 67.99 77.99 77.51 77.59 18.33 18.33 18.35 | 6.22+05 7.05+06 7.05+06 7.05+06 8.75+06 9.55+06 9.55+06 9.55+06 9.55+06 9.55+06 9.55+06 9.55+06 9.55+06 9.55+07 | 1.47E-06 | .4.41E-0/7 3 .50E-0/7 .70E-0/7 | | D.\$3 0.92 0.91 0.90 0.80 0.86 0.86 0.87 0.86 0.86 0.86 0.87 0.83 0.83 0.84 0.83 0.84 0.83 0.84 0.87 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 | 5.95
5.99
5.99
5.02
5.70
5.53
5.57
5.51
5.32
5.25
5.19
5.06
4.94
4.87
4.87
4.87
4.87
4.87
4.87
4.87
4.8 | 0.05
0.06
0.07
0.08
0.1
0.11
0.12
0.13
0.14
0.16
0.16
0.17
1.18
0.19
0.2
0.2
0.2
0.2
0.2
0.3
0.3
0.3
0.14
0.16
0.17
0.18
0.19
0.19
0.2
0.2
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3 | 0.06 0.07 0.08 0.10 0.11 0.12 0.13 0.14 0.16 0.17 0.18 0.20 0.21 0.23 0.24 0.25 0.25 0.25 0.26 0.30 0.30 0.30 0.37 0.38 0.39 0.40 0.40 0.45 0.45 | 3.88E-807 3.80E-807 3.90E-807 3.72E-807 3.86E-807 3.86E-807 3.86E-807 3.85E-807 3.47E-807 3.35E-807 3.35E- | 4.381-00 5.001-00 6.138-00 7.381-00
7.381-00 7.3 | 7. 128-07 7. 048-07 6. 977-07 6. 982 | 1.25 1.26 1.26 1.26 1.28 1.29 1.31 1.32 1.32 1.34 1.35 1.39 1.39 1.40 1.47 1.45 1.47 1.45 1.47 1.49 1.51 1.51 1.55 1.55 1.55 1.55 1.55 1.5 | 0.20 0.28 0.28 0.28 0.29 0.29 0.29 0.29 0.30 0.30 0.30 0.31 0.31 0.31 0.31 0.32 0.32 0.32 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 | 88.47 88.46 88.47 88.46 88.42 88.42 88.42 88.42 88.43 88.35 88.35 88.35 88.35 88.35 88.35 88.36 89.37 88.26 89.27 | 3.65-07 3.65-07 3.65-07 3.95-07 3.95-07 3.45-07 3.45-07 3.95-0 | 8.53E-00 1.02E-07 1.19E-07 1.37E-07 1.36E-07 1.37E-07 1.48E-07 1.71E-07 1.88E-07 2.53E-07 2.53E-07 2.50E-07 2.50E-07 2.50E-07 3.54E-07 3.54E-07 3.54E-07 3.55E-07 3.5 | #4.17 04-6 96.81 0.53 31.55 0.44 24.54 0.55 27.61 0.40 24.54 0.55 20.08 0.29
20.08 0.29 20.08 0.29 20.08 0.29 20.08 0.29 | 55. 19 25.266 67.799 17.929 17.929 17.939 17.939 18.333 18.276 14.000 65.000 65.000 66.82 66.000 66.82 66.000 66.82 67.555 68.21 68.82 69.33 100.56 1 | 6.22+05 7.06+08 7.06+08 1.76+06 9.56+06 9.56+06 1.06+07 1.16+07 1.26+0 | 1.47E-008 1.47E- | | | 0.93 0.92 0.91 0.90 0.80 0.86 0.86 0.86 0.86 0.86 0.86 0.8 | 5.95
5.99
5.99
5.92
5.70
5.53
5.57
5.51
5.44
5.92
5.32
5.19
5.19
5.00
4.94
4.11
4.15
4.15
4.15
4.15
4.15
4.15
4.1 | 0.05 0.06 0.07 0.09 0.09 0.01 0.11 0.13 0.14 0.16 0.16 0.17 0.18 0.17 0.18 0.17 0.19 0.22 0.23 0.24 0.25 0.25 0.27 0.26 0.27 0.28 0.29 0.30 0.31 0.33 0.34 | 0.06
0.07
0.08
0.10
0.11
0.12
0.13
0.14
0.16
0.17
0.18
0.20
0.21
0.23
0.24
0.23
0.24
0.25
0.21
0.25
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.3 | 3.88E-807 3.80E-807 3.80E-807 3.90E-807 3.90E- | 4.32E-06 5.26E-06 6.13E-06 6.13E-06 6.13E-06 7.86E-06 6.13E-06 7.86E-06 8.76E-06 8.76E-06 8.76E-06 8.76E-06 1.3E-07 1.4E-07 1.3E-07 1.4E-07 1.3E-07 1.4E-07 1.3E-07 1.4E-07 1.55E-07 1.55E-07 1.55E-07 1.55E-07 2.15E-07 2. | 7. (22-407 7. (044-07 6. 977-407 6. 977-407 6. 982-407 | 1.25 1.26 1.26 1.28 1.29 1.31 1.32 1.32 1.34 1.35 1.39 1.49 1.40 1.41 1.42 1.43 1.45 1.47 1.49 1.51 1.53 1.55 1.55 1.55 1.55 1.55 1.55 | 0.28 0.28 0.28 0.28 0.28 0.29 0.29 0.30 0.30 0.30 0.31 0.31 0.31 0.31 0.32 0.32 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 | 58.47 58.46 58.47 58.46 58.47 58.46 58.47 58.46 58.47 58.47 58.47 58.57 58.57 58.57 58.57 58.57 58.57 58.57 58.57 58.57 58.57 58.57 58.57 58.77 | 3.65-07 3.65-07 3.55-07 3.55-07 3.55-07 3.55-07 3.45-07 3.45-07 3.45-07 3.45-07 3.15-07 3.25-07
3.25-07 | 8.53E-00 1.02E-07 1.19E-07 1.37E-07 1.37E-07 1.38E-07 1.38E-07 1.38E-07 1.38E-07 1.38E-07 2.05E-07 2.05E-07 2.05E-07 2.05E-07 2.05E-07 3.07E-07 3.0 | 44.17 0.64-6.17 0.65-6.17 | 55. 19 56.06 67.99 77.99 77.99 75. 10 77.59 18.33 18.276 18.33 18.276 18.38 19.39 19 | 6.25-06 7.05-06 7.05-06 7.05-06 7.05-06 8.75-06 9.55-06 9.55-06 9.55-06 9.55-06 9.55-06 9.55-06 9.55-06 9.55-06 9.55-07 1.55-0 | 1.47E-06 | .41EAU 3 3.46EAU 3 4.46EAU 3 3.50EAU | | 0.93 0.92 0.91 0.90 0.80 0.86 0.86 0.87 0.86 0.86 0.86 0.87 0.88 0.82 0.83 0.82 0.87 0.77 0.78 0.77 0.77 0.77 0.77 0.77 | 5.95
5.99
5.99
5.02
5.76
5.70
5.53
5.57
5.55
5.32
5.32
5.13
5.06
5.39
5.32
5.13
5.06
4.14
4.17
4.17
4.17
4.17
4.17
4.18
4.19
4.19
4.19
4.19
4.19
4.19
4.19
4.19 | 0.05
0.06
0.07
0.09
0.01
0.11
0.12
0.13
0.14
0.16
0.17
0.18
0.17
0.18
0.19
0.2
0.2
0.2
0.2
0.3
0.3
0.14
0.15
0.16
0.17
0.18
0.19
0.2
0.2
0.3
0.3
0.4
0.5
0.5
0.5
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7 | 0.06 0.07 0.08 0.10 0.11 0.12 0.13 0.14 0.16 0.17 0.18 0.20 0.21 0.23 0.24 0.24 0.25 0.25 0.25 0.30 0.30 0.30 0.37 0.38 0.39 0.40 0.46 0.46 | 3.885-807 3.905-607 3.905-607 3.725-607 3.986- | 4.381-06 5.302-06 6.138-06
7.381-06 7.381-06 7.381-06 7.381-06 7.381-06 7.381-06 7.381-06 7.381-06 7.381-07 7.3 | 7. 128-407 7. 048-407 6. 977-407 6. 982-407 | 1.25 1.26 1.26 1.26 1.26 1.28 1.29 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.49 1.47 1.45 1.47 1.49 1.51 1.55 1.55 1.55 1.55 1.55 1.55 1.5 | 0.20 0.28 0.28 0.28 0.29 0.29 0.29 0.29 0.30 0.30 0.30 0.31 0.31 0.31 0.31 0.32 0.32 0.32 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 | 98.49 98.47 98.46 98.47 98.46 98.47 98.46 98.47 98.50 98.50 98.50 98.50 98.10 98.60 98.70 | 3.65-07 3.65-07 3.65-07 3.95-07 3.95-07 3.45-07 3.45-07 3.35-07 3.35-07 3.35-07 3.25-07 | 8.53E-00 1.02E-07 1.19E-07 1.49E-07 1.49E-07 1.49E-07 1.49E-07 1.49E-07 1.49E-07 2.53E-07 2.53E-07 2.53E-07 2.53E-07 2.53E-07 2.53E-07 3.07E-07 3.41E-07 3.45E-07 3.45E-07 4.75E-07 4.75E-07 4.75E-07 4.75E-07 6.46E-07 | 44.17 044. 56.91 0.33 31.55 0.44 24.54 0.32 20.08 0.29 20.08 0.29 20.08 0.29 20.08 0.29 16.41 0.27 16.59 0.25 14.72 0.21 15.78 0.22 11.82 0.17 11.92 0.11 15.90 0.10 10.52 0.16 10.52 0.16 10.52 0.16 10.52 0.17 20.50 0.19 20.50 | 55. 19 25.266 67.799 17.292 17.529 17.550 17.550 18.333 18.276 14.000 65.000 65.000 66.82 67.555 68.271 68.000 69.33 100.26 00.565 00.565 00.565 00.565 00.565 00.570 00.587
00.587 00.5 | 6.22+05 7.06+08 7.06+08 7.06+08 0.76+06 0.56+06 0.56+06 0.56+06 0.56+07 1.56+0 | 1.47E-008 1.47E- | | | 0.93 0.92 0.91 0.90 0.80 0.86 0.86 0.87 0.86 0.85 0.86 0.85 0.85 0.84 0.83 0.82 0.84 0.85 0.87 0.77 0.76 0.77 0.76 0.77 0.79 0.71 0.71 0.68 0.66 0.66 0.66 0.66 0.63 0.62 0.64 0.62 0.64 | 5.95
5.99
5.99
5.92
5.70
5.53
5.57
5.51
5.44
5.92
5.32
5.19
5.19
5.00
4.94
4.11
4.15
4.15
4.15
4.15
4.15
4.15
4.1 | 0.05 0.06 0.07 0.09 0.09 0.01 0.11 0.13 0.14 0.16 0.16 0.17 0.18 0.17 0.18 0.17 0.19 0.22 0.23 0.24 0.25 0.25 0.27 0.26 0.27 0.28 0.29 0.30 0.31 0.33 0.34 | 0.06
0.07
0.08
0.10
0.11
0.12
0.13
0.14
0.16
0.17
0.18
0.20
0.21
0.23
0.24
0.23
0.24
0.25
0.21
0.25
0.30
0.30
0.30
0.30
0.30
0.30
0.30
0.3 | 3.88E-807 3.80E-807 3.80E-807 3.90E-807 3.90E- | 4.32E-06 5.26E-06 6.13E-06 6.13E-06 6.13E-06 7.86E-06 6.13E-06 7.86E-06 8.76E-06 8.76E-06 8.76E-06 8.76E-06 1.3E-07 1.4E-07 1.3E-07 1.4E-07 1.3E-07 1.4E-07 1.3E-07 1.4E-07 1.55E-07 1.55E-07 1.55E-07 1.55E-07 2.15E-07 2. | 7. (22-407 7. (044-07 6. 977-407 6. 977-407 6. 982-407 | 1.25 1.26 1.26 1.28 1.29 1.31 1.32 1.32 1.34 1.35 1.39 1.49 1.40 1.41 1.42 1.43 1.45 1.47 1.49 1.51 1.53 1.55 1.55 1.55 1.55 1.55 1.55 | 0.28 0.28 0.28 0.28 0.28 0.29 0.29 0.30 0.30 0.30 0.31 0.31 0.31 0.31 0.32 0.32 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 | 58.47 58.46 58.47 58.46 58.47 58.46 58.47 58.46 58.47 58.47 58.47 58.57 58.57 58.57 58.57 58.57 58.57 58.57 58.57 58.57 58.57 58.57 58.57 58.77 | 3.65-07 3.65-07 3.55-07 3.55-07 3.55-07 3.55-07 3.45-07 3.45-07 3.45-07 3.45-07 3.15-07 3.25-07 | 8.53E-00 1.02E-07 1.19E-07 1.37E-07 1.37E-07 1.38E-07 1.38E-07 1.38E-07 1.38E-07 1.38E-07 2.05E-07 2.05E-07 2.05E-07 2.05E-07 2.05E-07 3.07E-07 3.0 | 44.17 0.64-6.17 0.65-6.17 0.65-6.17 0.65-6.17 0.65-6.17
0.65-6.17 | 55. 19 56.06 67.99 77.99 77.99 75. 10 77.59 18.33 18.276 18.33 18.276 18.33 18.276 18.33 18.33 18.276 18.33 18.376 18.33 18.376 | 6.25-06 7.05-06 7.05-06 7.05-06 7.05-06 8.75-06 9.55-06 9.55-06 9.55-06 9.55-06 9.55-06 9.55-06 9.55-06 9.55-06 9.55-07 1.55-0 | 1.47E-06 | 4.41E.07 3 4.46E.07 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | # PAREQUEST (DUE) continued | | A | В | C | _ D | E | F | | н | 1 | | K | i | М | N D | Р | 9 | 8 | 8 | |----------|---------------------|-------------------|--------------|--------------|----------------------|----------------------|-----------------------------------|---------------------|--------------------|------------------------|------------------------|-----------------------------------|-------------------------|--|--------------------|----------------------|-------------------|----------------------| | 143 | | | | ļ | | | original moles
of CG2 produced | | | 11 4 4 4 3 | Mitraio &
Sulfate | original moles
of CO2 produced | | | Nitrate & | | ····· | | | 44 | | f | <u> </u> | f | † | | before Nitrate | | | | affect on | belore Nitrale | | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | affect on | Currently | Total | | | 45 | Waste without INEEL | Scaled % | INÉÉL
IMS | Scaled % | Waste William INCEL | INEEL | Sustate, and | Fraction % | Fraction % | Praction % | MANUS AND COLUMN NEED. | Sulfinte, and | Fraction % | Fraction % Fragtion % | INESL. | emplaced | MgO | | | 46
92 | 0.55 | 3.48 | 0.46 | 0.63 | 2.25E+07 | moles
3.94E+07 | methanogeniani
4.12E+07 | denitriBoation 2.14 | guillate reduction | methanogeneek
97.39 | 2.1E+07 | methaeogenisse:: | denilrification
4,91 | outsie reductioneitherogene: | mol 4.0E+07 | 1,47E+08 | moles
6.28E+07 | 2.34E+00 | | 93 | 0.64 | 3.42 | 0.46 | 0.56 | 2.21E+07 | 4.03E+07 | 4.06E+07 | 2 16 | 0.4B | 97.34 | 2.16+07 | 7 85E+07 | 4.80 | 0.07 95.02
0.07 95.13 | 4.1E+07 | | | 2.34E+00 | | 94 | 0.63 | 3.35 | 0.47 | 0.56 | 2.17E+07 | 4.12E+07 | 3.97E+07 | 2.22 | 0.49 | 97.29 | 2.0E+07 | 8 02E+07 | 4.70 | 0.07 96.29 | 4.2E+07 | 1.47E+08 | | 2.31E+00 | | 95 | 0.62
0.61 | 3.29
3.23 | 0.48 | 0.57
0.58 | 2.12E+07
2.08E+07 | 4.21E+07
4.29E+07 | 3.90E+07
3.82E+07 | 2.26
2.31 | 0.50 | 97.24
97.16 | 2.0E+07
2.0E+07 | 8 19E+07
8 36E+07 | 4.60
4.51 | 0.07 95.39
0.07 95.49 | 4.8E+07
4.4E+07 | 1.47E+08
1.47E+08 | | 2.29E+00
2.27E+00 | | 137 | 0.5 | 3.16 | D.5 | 0.59 | 2.04E+07 | 4.38E+D7 | 3.75E+07 | 2.35 | 0.52 | 97.13 | 1.95+07 | 8.63E+07 | 4.42 | D.05 95.52 | 4.5E+07 | 1.47E+08 | | 2.25E+00 | | 98 | 0.49 | 3.10 | 0.51 | 0.61 | 2.00E+07 | 4.47E+07 | 3.67E+07 | 2.40 | 0.63 | 97.07 | 1.9E+07 | 8.70E+07 | 4.33 | D.06 95.61 | 4.5E+07 | 1.47E+Q8 | 6.66E+07 | 2.24E+00 | | 100 | 0.48
0.47 | 3.04
2.97 | 0.52
0.53 | 0.62 | 1.96E+07
1.92E+07 | 4.56E+07
4.64E+07 | 3.60E+07
3.52E+07 | 2.45 | 0.54
0.55 | 97.01
96.94 | 1.9E+07
1.8E+07 | 8.86E+07
9.06E+07 | 4.25
4.17 | D.Q5 95.69
D.Q6 95.77 | 4.6E+07
4.7E+07 | | | | | 101 | 0.45 | 2.91 | 0.54 | 0.64 | 1.88E+07 | 4.73E+07 | 3.45E+07 | 2.56 | 0.57 | 96.66 | 1.8E+07 | 9.22E+07 | 4,08 | 0.06 25.65 | 4.6E+07 | 1.47E+08 | 6.71E+07 | | | 102 | | 2.85 | 0.56 | 0.85 | 1.84E+07 | 4.82E+07 | 3.37E+07 | 2.61 | 0.58 | 96.61 | 1.7É+07 | 9.39E+07 | 4.02 | 0.06 26.93 | 4.9E+07 | | 6.75E+07 | 2.18E+00 | | 103 | 0.44 | 2.78
2.72 | 0.56
0.57 | 0.57
0.68 | 1.80E+07 | 4.91E+07
4.99E+07 | 3.80E+07
3.22E+07 | 2.67
2.73 | 0.69 | 96.73
96.66 | 1.7E+07
1.7E+07 | 9.56E+07 | 3.94 | 0.06 96.00
0.06 96.07 | 5.0E+07 | | | 2.16E+00 | | 105 | 0.42 | 2.66 | 0.60 | 0.69 | 1.76E+07
1.72E+07 | 6.08E+07 | 3.15E+07 | 2.80 | G.61
G.62 | 96.68 | 1.6E+07 | 9.73E+07
9.90E+07 | 3.67
3.81 | 0.08 96.07
0.06 96.14 | 5.1E+07
5.1E+07 | | | 2.15E+00
2.13E+00 | | 106 | D.41 | 2.59 | 0.59 | 0.70 | 1.68E+07 | 5.17E+07 | 3.07E+07 | 2.87 | Q.B4 | 96.60 | 1.6E+07 | 1.DIE+D8 | 3.74 | 0.05 96.20 | 5.2E+07 | 1.47E+0B | 6.95E+07 | 2.12E+00 | | 107 | 0.4 | 2.53 | 0.6 | 0.71 | 1.63E+07 | 5.26E+07 | 3.00E+07 | 2.94 | 0.65 | 96.41 | 1.6E+07 | 1.02E+08 | 3.68 | 0.05 96.27 |
5.3E+07 | | | 2.10E+00 | | 108 | 0.39 | 2.47 | 0.61 | 0.72 | 1.59E+07
1.55E+07 | 5.34E+07
5.43E+07 | 2.92E+07
2.85E+07 | 3.02 | 0.67 | 96.82
96.22 | 1.6E+07
1.6E+07 | 1.04E+08
1.06E+08 | 3.62 | 0.05 96.39
0.05 96.39 | 5.4E+07
5.5E+07 | | | 2.09E+00
2.08E+00 | | 110 | 0.37 | 2.34 | 0.63 | 0.75 | 1.51E+07 | 5.52E+07 | 2.77E+07 | 3.18 | 0.70 | 96.12 | 1.4E+07 | 1.08E+08 | 3.51 | 0.05 96.44 | 5.6E+07 | | | 2.06E+00 | | 111 | 0.96 | 2.28 | 0.64 | 0.76 | 1.47E+07 | 5.61E+07 | 2.70E+07 | 3.27 | 0.72 | 96.01 | 1.4E+07 | 1.09E+08 | 3.45 | 0.05 96.50 | 5.7E+07 | | | 2.05E+00 | | 112 | 0.35 | 2.22 | 0.66 | 0 77
0 76 | 1.43E+07
1.39E+07 | 5.69E+07
5.78E+07 | 2.62E+07
2.66E+07 | 3,36
3,46 | 0.74 | 95.90
95.77 | 1.4E+07
1.3E+07 | 1.11E+08
1.13E+08 | 3.40
3.35 | 0.05 96.66
0.05 96.61 | 5.7E+07
5.8E+07 | 1.47E+08 | | 2.03E+00
2.02E+00 | | 114 | 0.33 | 2.09 | 0.67 | 0.80 | 1.35E+07 | 5.87E+07 | 2,47E+07 | 3,56 | 0.79 | 95.65 | 1.3E+07 | 1.14E+08 | 3.30 | 0.05 96.66 | 5.9E+07 | 1.47E+08 | | 2.01E+00 | | 116 | 0.32 | 2.03 | 0.68 | 081 | 1.31E+07 | 5.98E+07 | 2.40E+07 | 3,67 | 0.61 | 95.51 | 1.3E+07 | 1.16E+08 | 3.25 | 0.05 96.71 | 6 0E+07 | 1.47E+08 | | 1.99E+00 | | 116 | 0.31 | 1.96
1.90 | 0.69
0.7 | 0.62 | 1.27E+07
1.23E+07 | 6.04E+07
6.13E+07 | 2.92E+07
2.26E+07 | 3.79 | 0.84
0.87 | 95.87
95.21 | 1.2E+07
1.2E+07 | 1.18E+08
1.19E+08 | 3.20
3.16 | 0.05 96.76
0.05 96.80 | 6 1E+07
6.2E+07 | 1.47E+08 | | 1.98E+00 | | 118 | 0.29 | 1.84 | 0.71 | 0.84 | 1.18E+07 | 6.22E+07 | 2.17E+07 | 4.05 | 0.90 | 95.05 | 1.1E+07 | 1.21E+08 | 3.11 | 0.05 96.84 | 6.3E+07 | 1.47E+0B | 7.52E+07 | 1.95E+00 | | 118 | 0.28 | 1.77 | 0.72 | 0.66 | 1.14E+07 | 6.31E+07 | 2.10E+07 | 4.20 | 0.93 | 94.87 | 1.1E+07 | 1.23E+08 | 3.07 | 0.04 96.89 | 6 3E+07 | | 7.57E+07 | 1.94E+00 | | 120 | 0.27
0.26 | 1.71
1.65 | 0.73
0.74 | 0.67 | 1.10E+07
1.06E+07 | 6.40E+07
6.48E+07 | 2.02E+07
1.96E+07 | 4.36
4.52 | 0.97
1.00 | 94.68
94.47 | 1.1E+07
1.0E+07 | 1.25E+08
1.26E+08 | 3.03
2.98 | 0.04 96.93
0.04 96.97 | 6.4E+07
6.5E+07 | | | 1.93E+00
1.92E+00 | | 122 | 0.25 | 1.58 | 0.75 | 0.89 | 1.02E+07 | 6.67E+07 | 1.87E+07 | 4.70 | 1.04 | 94.25 | 9.9E+06 | 1.28E+08 | 2.94 | 0.04 97.01 | 6.6E+07 | | | 1.92E+00 | | 123 | 0.24 | 1.52 | 0.76 | 0.90 | 9.81E+08 | 6.66E+07 | 1.80E+07 | 4.90 | 1.09 | 94.01 | 9.5E+08 | 1.3GE+08 | 2.91 | 0.04 97.06 | 6.7E+07 | | 7.76E+07 | 1.90E+00 | | 븲 | 0.23
0.22 | 1.46 | 0.77
0.78 | 0.91 | 9.40E+08
8.99E+08 | 6.75E+07
6.83E+07 | 1.72E+07
1.65E+07 | 5.11 | 1.13 | 93.76 | 9.2E+06
9.8E+06 | 1.31E+08
1.33E+08 | 2.87 | 0.04 97.09
0.04 97.13 | 6.BE+07 | | | 1.B8E+00 | | 123 | 0.21 | 1.33 | 0.79 | 0.94 | B.58E+06 | 8.92E+07 | 1.67E+07 | 6.60 | 1.19 | 93.47
93.16 | 8.4E+06 | 1,35E+08 | 2.83
2.80 | 0.04 97.13
0.04 97.16 | 6.6E+07
6.9E+07 | 1.47E+08 | 7.86E+07 | 1.87E+00 | | 127 | 0.2 | 1.27 | 0.8 | 0.95 | B.17E+06 | 7.01E+07 | 1.50E+07 | 6.88 | 1.30 | 92.82 | 8.0E+06 | 1.37E+08 | 2.76 | 0.D4 97.20 | 7.0E+07 | 1.47E+08 | 7.95E+07 | 1.85E+00 | | 128 | 0.19
0.18 | 1.20
1.14 | 0.81 | 0.96 | 7.76E+06 | 7.10E+07 | 1.42E+07 | 6.19 | 1,97 | 92.44 | 7.7E+06 | 1.38E+08 | 2.73 | 0.04 97.23 | 7.1E+07 | | | 1.B4E+00 | | 133 | 0.18 | 1.14 | D.82
D.83 | 0.97
0.99 | 7.36E+06
6.96E+06 | 7.18E+07
7.27E+07 | 1.35E+07
1.27E+07 | 6.53
6.92 | 1.45
1.63 | 92.02
91.55 | 7.3E+06
6.9E+06 | 1.40E+08
1.42E+08 | 2.69
2.66 | 0.04 97.27
0.04 97.30 | 7.2E+07
7.3E+07 | | | 1.63E+00
1.82E+00 | | 131 | 0.158 | 1 | G 842 | 1 | 8.48E+08 | 7.38E+07 | 1.18E+07 | 7.44 | 1.66 | 90.91 | 6.5E+05 | 1.44E+08 | 2.62 | 0,04 97.34 | 7.4E+07 | 1.47E+08 | 8.15E+07 | 1.80E+00 | | 132 | 0.16 | 0.95 | D.85 | 1.01 | 6.13E+06 | 7.45E+07 | 1.12E+07 | 7.84 | 1.74 | 90.42 | 6.2E+08 | 1.46E+08 | 2.60 | 0.04 97.36 | 7.4E+07 | | | 1.80E+00 | | 134 | 0.14
0.13 | 0.89
0.82 | D.87 | 1.02 | 6.72E+06
6.31E+08 | 7.53E+07
7.62E+07 | 1.05E+07
9.74E+06 | 8.40
9.05 | 1.96
2.01 | 89.74
88.95 | 5.8E+05
5.4E+06 | 1.47E+08
1.48E+08 | 2.67
2.64 | 0.04 97.39
0.04 97.42 | 7.5E+07
7.6E+07 | | | 1.79E+00
1.78E+00 | | 136 | 0.12 | 0.76 | 0.86 | 1.05 | 4.90E+06 | 7.71E+07 | 6.99E+06 | 9.50 | 2.17 | 66.03 | 5.0E+06 | 1.50E+08 | 2.61 | 0.04 97.45 | 7.7E+07 | | | 1.77E+00 | | 136 | 0.11 | 0.70 | 0.89 | 1.05 | 4.49E+06 | 7.80E+07 | 6.24E+06 | 16.69 | 2.37 | 86.94 | 4.7E+06 | 1.52E+08 | 2.48 | 0.04 97.48 | 7.8E+07 | | | 1.76E+00 | | 137 | D.1
0.09 | 0.63
0.57 | 0.9
0.91 | 1.07 | 4.09E+06
3.68E+06 | 7.88E+07
7.97E+07 | 7.49E+06
6.74E+06 | 11.76
13.07 | 2.61
2.90 | 85.53
64.04 | 4.9E+06
3.9E+06 | 1.54E+08
1.55E+08 | 2,46
2,43 | 0.04 97.51
0.04 97.54 | 7.9E+07
8.0E+07 | | | 1.75E+00 | | 132 | 0.08 | 0.51 | 0.92 | 1.09 | 3.27E+06 | 8.08E+07 | 5 99E+06 | 14.70 | 3.26 | 82.04 | 3.5E+06 | 1.57E+0B | 2.40 | 0.03 97.56 | B.0E+07 | | | 1.73E+00 | | 140 | 0.07 | 0.44 | 0.99 | 1.10 | 2.86E+06 | 8.16E+07 | 5.24E+06 | 16.60 | 3.72 | 79.48 | 3.2E+06 | 1.59E+08 | 2.37 | 0.03 97.59 | 8.1E+07 | | | 1.72E+00 | | 141 | 0.06
0.05 | 0.36
0.32 | 0.94
0.95 | 1.12 | 2.45E+06
2.04E+06 | 8.24E+07
8.32E+07 | 4.49E+06
3.75E+06 | 19.60
23.52 | 4.35
5,21 | 76.06
71.27 | 2.8E+06
2.4E+06 | 1.50E+08
1.52E+08 | 2.35
2.32 | 0.03 97.62
0.03 97.64 | 8.2E+07
8.3E+07 | | | 1.71E+00 | | 143 | 0.04 | 0.25 | 0.96 | 114 | 1.63E+06 | 8.41E+07 | 3.00E+06 | 29.40 | 6.52 | 64.08 | 2.0E+06 | 1.64E+08 | 2.30 | 0.03 97.67 | 8.4E+07 | | | 1.70E+00
1.69E+00 | | 144 | 0.03 | Q.19 | 0.97 | 1.15 | 1.23E+06 | 8.60E+07 | 2.25E+06 | 39.20 | 9,69 | 52.11 | 1.7E+06 | 1.66E+08 | 2.28 | 0.03 97.69 | 8.5E+07 | 1.47E+08 | 8.77E+07 | 1.68E+00 | | 145 | D.02
D.01 | 0.13
0.06 | 0.98 | 1.16 | B.17E+05 | 8.69E+07
8.67E+07 | 1.50E+06
7.49E+05 | 58.80
117.59 | 13.04 | 28.17
-43.66 | 1,3E+06
9,1E+06 | 1.67E+08 | 2.25 | 0.03 97.71
0.03 97.74 | 8.6E+07 | | | 1.67E+00 | | 147 | 0 | 0 | 1 0.88 | 1.19 | 4.09E+05
0.00E+00 | 8.67E+07 | 0.00E+00 | 0.00 | 26.07
0.00 | 0.00 | 0.05+00 | 1.69E+08
1.71E+08 | 2.23 | 0.03 97.74
0.03 97.76 | 8.6E+07
8.7E+07 | | B.86E+07 | 1.66E+00 | | / | | · · · · · · · · · | · | | . STATESTO : | J., VLTO | 0.000 | 5.00 | | : | . 0,00,100 | 1.7 12400 | | 1 0.00 ; 57,10 | 0.74.707 | 1.47LTD0 | V.W. 107 | 1.000.400 |