Page 1 of 32

527505

Sandia National Laboratories Waste Isolation Pilot Plant

Verification of the **Definition of Generic Weep Brine and the Development of a Recipe for this Brine**

BOE 1.3.5.1.2

Effective Date:

Notapplicable L.H. Brush 4/22/03 4/8/03 Date

Author:

Technical Reviewer:

QA Reviewer:

Management Reviewer:

Anna C. Snider, 6822

athalie A. Wall, 6822

o J. Chavez, 6820

10/03

<u>4/8/03</u> Date

David S. Kessel, 6821

WIPP: 1.3.5.1.2: PA. GA-L: 52-12

TABLE OF CONTENTS

1 ABBREVIATIONS, ACRONYMS, AND INITIALISMS	3
2 INTRODUCTION AND OBJECTIVES	4
3 DEFINITION OF GWB	5
	_
4 DEVELOPMENT OF A RECIPE FOR GWB	7
5 REFERENCES1	1
APPENDIX A: "DEFINITION OF GW BRINE," BY J.L. KRUMAHNSL 1	2
APPENDIX B: "WEEPSNEW.XLS"2	20

1 ABBREVIATIONS, ACRONYMS, AND INITIALISMS

Table 1 defines the abbreviations, acronyms, and initialisms used in this report.

<u></u>	
Abbreviation,	
Acronym, or	
Initialism	Definition
ACS	Anna C. Snider
aq	aqueous
ASTP	(WIPP) Actinide Source Term Program
B, $B(OH)_3(aq)$	boron, boric acid
Br, Br	bromine, bromide (ion)
Brine A	a synthetic brine representative of intergranular Salado brines
Ca, Ca ²⁺	calcium, calcium ion
Cl, Cl ⁻	chlorine, chloride ion
DOE	(U.S.) Department of Energy
ERDA-6	Energy Research and Development Administration (WIPP Well) 6,
	a synthetic brine representative of fluids in Castile brine reservoirs
Fm.	Formation or formation, depending on usage
g	gram(s)
GGP	(WIPP) Gas Generation Program
GWB	Generic Weep Brine, a synthetic brine representative of
	intergranular Salado brines
H ₂ O	water
K, K ⁺	potassium, potassium ion
kg	kilogram(s)
L	liter(s)
Li, Li ⁺	lithium, lithium ion
М	molar
Mg, Mg ²⁺	magnesium, magnesium ion
MgO	magnesium oxide, the WIPP engineered barrier
mol	mole(s)
Na, Na ⁺	sodium, sodium ion
OH.	hydroxide ion
PAB-1	(WIPP) Performance Assessment Brine-1
ppm	parts per million
ppt	parts per thousand
SB-1	(WIPP) Standard Brine-1
SNL	Sandia National Laboratories

Information Only

Table 1. Abbreviations, Acronyms, and Initialisms.

Abbreviation, Acronym, or Initialism	Definition
SO ₄ ²⁻	sulfate ion
WIPP	(U.S. DOE) Waste Isolation Pilot Plant

Table 1. Abbreviations, Acronyms, and Initialisms (cont.).

2 INTRODUCTION AND OBJECTIVES

This report describes the independent verification of: (1) the calculations used to define Generic Weep Brine (GWB), and (2) the calculations used to develop a recipe for this brine.

GWB is a synthetic Waste Isolation Pilot Plant (WIPP) brine representing the average composition of intergranular fluids from the Salado Formation at or near the stratigraphic horizon of the WIPP underground workings. The work described in this memo was carried out according to the specifications of Brush and Xiong (2003, Subsection 7.1, Documentation of GWB).

Well-defined, quality-assured brines and recipes for these brines are needed for laboratory and modeling studies of WIPP chemistry. Brush (1990) compared several such brines, and specified the use of two synthetic solutions to simulate brines that could be present in the repository after filling and sealing: (1) Brine A, representative of intergranular (grain-boundary) brines from the Salado Formation at or near the stratigraphic horizon of the repository (Molecke, 1983); and (2) ERDA-6, typical of fluids in brine reservoirs in the underlying Castile Fm. (Popielak et al., 1983). These brines were used for most of the lab and modeling studies carried out for the WIPP Gas Generation Program (Brush, 1990). The WIPP Actinide Source Term Program also used these brines (Brush and Xiong, 1993).

Krumhansl et al. (1991) carried out chemical analyses of "brine weeps," intergranular fluids that seep into the WIPP from the disturbed rock zone surrounding the excavations. Later, Krumhansl used the results of these analyses to define the synthetic brine GWB for use in laboratory studies of the efficacy of MgO, which were then being initiated at Sandia National Laboratories (SNL) in Albuquerque. GWB was developed because investigators such as Krumhansl believed that the chemical behavior of MgO is sensitive to the Mg²⁺ concentration of the solutions used for lab experiments, and because the Mg²⁺ concentration of Brine A (1.44 M) is significantly higher than the average Mg²⁺ concentration of intergranular Salado brines, about 1.0 M (Brush, 1989; Brush, 1990).

Once he defined this synthetic brine, Krumhansl compared it to a number of other standard WIPP brines and concluded that it most closely resembles a synthetic Salado brine termed PAB-1 (Brush, 1989; Brush, 1990; Molecke, 1990). (Brush (1989) referred to his brine as "Performance Assessment Brine-1" in the memo that originally defined it, but Brush (1990) subsequently renamed it "Standard Brine-1," or SB-1.) Finally, Krumahnsl developed a recipe for this brine. GWB was then used, along with ERDA-6, for about half of the lab studies of MgO at SNL in Albuquerque during the mid-to-late 1990s. Appendix A contains the draft memorandum in which Krumhansl defined GWB, compared it to other standard WIPP brines, and developed a recipe for it.

This report describes the independent verification of the calculations that: (1) used the results of Krumhansl et al. (1991) to define an average, intergranular, Salado-Fm. brine, and (2) developed a recipe for this brine. This report describes the establishment of GWB in such a manner that any technically qualified person can reconstruct this work, if necessary.

3 DEFINITION OF GWB

Sampling and chemical analysis of intergranular Salado brines are described in detail by Krumhansl et al. (1991). The raw analytical data used in the following calculations are found in Table 3.1, 3.2, and 3.3 of Krumhansl et al. (1991). These tables are reproduced in the attached spreadsheet (see Appendix B of this report). The data are listed as ions in parts per thousand (ppt), the only exception being Li, which was reported in parts per million (ppm). The first column under each heading contains the raw data, the second column, where applicable, contains the raw data corrected using an internal standard (Krumhansl et al., 1991, p. 11). An exception is the first heading listed as Ca, in which there are three columns present. The second column provides the raw data, whereas the third column lists the corrected data. Zeros present in any column represent "no data."

All calculations were reproduced using the Microsoft EXCEL 2000 spreadsheet program running Windows 2000 (see Appendix B of this report). Krumhansl recorded the original analyte concentrations and computed charge balances using EXCEL 97. The spreadsheet is entitled "WEEPSNEW.XLS" and contains both the original data from Krumhansl's 1999 draft memo and the verification calculations by A. C. Snider (ACS).

The EXCEL file is divided into six sheets (Appendix B). The first three sheets, labeled Table 3.1, Table, 3.2, and Table 3.3, are the original data from Krumhansl. The following three sheets are the recreated calculations by Snider. Each sheet tab has the initials ACS in parentheses. Sheet "Table 3.1" includes the original data and samples taken directly from Krumhansl's 1991 report. Averages of major cations are under columns P, Q, R, and S, and calculated charge balances for uncorrected and corrected data are under columns T and U respectively. Sheet "Table 3.2" record samples and original data found in Krumhansl's 1991 report, uncorrected and corrected charge balances are under columns Q and R respectively. Sheet "Table 3.3" includes all data

from Kurmhansl's 1991 report. Uncorrected and corrected charge balances are under columns Q and R respectively. Sheet "Ions & avg (ACS)" displays all original data copied from the previous three sheets with labels in row 1 indicating which data is raw and which data has been corrected using an internal standard. Row 80 and below present the average and standard deviation for each element concentration. All data is presented in ppt, exception being Li, which is measured in ppm. Sheet "Molarity and salt wt calcs (ACS)" displays the calculations and results used to recreate the brine molarity for each element and the amount of salt needed to mix 1 kg GWB. The initial part of the spreadsheet (rows 1-13) converts average element concentrations to molar and millimolar concentrations (columns E and F respectively). The middle portion of the sheet (rows 15-36) tracks the amount of Na and Cl moles needed to achieve and exact charge balance, Cl being the adjustable parameter. The final third of the sheet displays the salts used in the brine recipe and the calculations, which determined the correct amounts of salt needed. Column E is the amount calculated from the original Salado samples, whereas column F is the actual amount of salt needed in order to dissolve all the salts completely in 1 kg GWB.

The data used for Snider's calculation were a combination of Krumhansl's corrected data, when available, and Krumhnsl's original raw data. Averages, reported in ppt, were converted to moles per liter, assuming a brine density of 1.2 kg/L. The results are presented in Table 1.

Element	Concentration (ppt)	Standard Deviation	Concentration (M)
Li ⁺	0.025	0.004	0.0044
B(OH) ₃ (aq)	1.42	0.21	0.157
Na ⁺	67.6	11.5	3.53
Mg ²⁺	20.6	4.2	1.02
K^+	15.2	2.3	0.465
Ca ²⁺	0.46	0.21	0.014
SO4 ²⁻	14.2	2.0	0.177
Br⁻	1.8	0.5	0.027
Cl	173	16	5.87

Table 2. Composition of GWB

4 DEVELOPMENT OF A RECIPE FOR GWB

Once the molar concentrations were defined, a GWB recipe was formulated. The ion averages did not need to be further modified, all ions charge balanced within the standard deviations. However, the charge balance reported by Krumhansl (Appendix A) was miscalculated, the ratio of cationic charges to anionic charges is 1.03. To achieve an exact charge balance, Cl concentration was designated as the adjustable parameter.

The following salts were used to account for all the chemical components used to define GWB (see Table 2 above):

- lithium (LiCl),
- borate (Na₂B₄O₇ \cdot 10H₂O),
- sodium (NaCl),
- magnesium (MgCl₂·6H₂O)
- potassium (KCl),
- calcium (CaCl₂·H₂O),
- sulfate (Na₂SO₄), and
- bromide (NaBr).

To determine the quantity of salt in grams of each chemical component to be added to the solution, per kg solution, a running balance of Na^+ and Cl^- was tabulated first. A Na^+ inventory was kept in the following manner using the Na^+ salts:

- SO_4^{2-} : added as X moles of Na₂SO₄ per kg of solvent; Y moles of Na remaining per kg of solvent = (total moles per kg of Na needed) 2(X).
- Br: added as Z moles of NaBr per kg of solvent; U moles per kg of Na remaining per kg of solvent = Y Z
- B: added as V/4 moles of Na₂B₄O₇·10H₂O per kg of solvent; W moles of Na per kg of solvent remaining to be added as NaCl= U-V/2

The CI balance was determined in a similar manner using CI salts:

- Ca²⁺: added as A moles of CaCl₂·2H₂O per kg of solvent; B moles of Cl⁻ remaining per kg of solvent = (total moles per kg of Cl⁻ needed) - 2(A)
- Li⁺: added as C moles of LiCl per kg solvent; D moles of Cl⁻ remaining per kg of solvent = B C
- Mg²⁺: added as E moles of MgCl₂·6H₂O per kg of solvent; F moles of Cl⁻ remaining per kg of solvent = D 2(E)
- K⁺: added as G moles of KCl per kg of solvent; H moles of Cl⁻ remaining per kg of solvent = F G
- Na⁺: added as W moles of NaCl per kg of solvent; moles of Cl⁻ remaining per kg of solvent = H-<u>W</u>

Chloride was designated the adjustable parameter, therefore the chloride added to the brine mixture contains ~4.5% less chloride than originally calculated. After the Na⁺ and Cl⁻ balance was attained, the weight in grams of each salt for 1 kg of GWB brine was calculated.

However, Krumhansl discovered that an additional 15 g of deionized water was needed for complete dissolution to occur. Thus, to actually prepare 1 kg of GWB, the calculated grams of salt and water must be multiplied by 1000 g/1015 g, which equals 0.9852. Table 3 gives the masses of salts needed to prepare 1 kg of GWB to obtain the composition in Table 2 and the weights of salts after multiplication by the correction factor of 0.9852.

Salt	Formula Wt (g/mol)	Quantity Calculated to Synthesize 1 kg of GWB with the Composition Shown in Table 2 (g)	Quantity Required to Synthesize 1 kg of GWB after Addition of 15 g of H ₂ O and Multiplication by 0.9852 (g)
H ₂ O	18.016	612	617 ¹
LiCl	42.391	0.15	0.15
Na ₂ B ₄ O ₇ ·10H ₂ O	381.38	12.5	12.3
NaCl	58.440	150	147
MgCl ₂ ·6H ₂ O	203.31	172	170
KCl	74.550	28.9	28.5
CaCl ₂ ·2H ₂ O	147.01	1.7	1.7
Na_2SO_4	142.04	21.0	20.7
NaBr	102.89	2.3	2.2

Table 3. Recipe for 1 kg of GWB

1. $617 \text{ g} = (612 \text{ g} + 15 \text{ g}) \times 0.9852.$

Table 4 compares the composition of GWB from Table 2 and that synthesized with the quantities of salts obtained after addition of 15 g of H_2O and multiplication by 0.9852.

Table 4.	Comparison	of the	Composition	of GW	B from	Table 1	2 and	Synthetic	GWB
	(see text).								

,

Element	Concentration from Table 2 (M)	Concentration after Addition of 15 g of H ₂ O and Multiplication by 0.9852 (M)
Li ⁺	0.0044	0.0043
B(OH) ₃ (aq)	0.157	0.155
Na ⁺	3.53	3.48
Mg ²⁺	1.02	1.00
K ⁺	0.465	0.458
Ca ²⁺	0.014	0.014
SO4 ²⁻	0.177	0.175
Br	0.027	0.026
CI.	5.87	5.51 ¹

1. The change in concentration of Cl⁻ is greater than those for other elements because it was the parameter adjusted to achieve charge balance.

To prepare GWB, we follow the procedure described by Robinson (1996) without any additional modification of the recipe.

5 REFERENCES

- Brush, L.H. 1989. "Preliminary Description of the Chemistry of Intergranular Brines from the Salado Fm. for the WIPP Supplemental Environmental Impact Statement." Unpublished memorandum to A.R. Lappin, February 13, 1989. Albuquerque, NM: Sandia National Laboratories.
- Brush, L.H. 1990. Test Plan for Laboratory and Modeling Studies of Repository and Radionuclide Chemistry for the Waste isolation Pilot Plant. SAND90-0266. Albuquerque, NM: Sandia National Laboratories.
- Brush, L.H., and Y. Xiong. 2003. "Calculation of Actinide Solubilities for the WIPP Compliance Recertification Application, AP-098." Unpublished analysis plan. Carlsbad, NM: Sandia National Laboratories.
- Krumhansl, J.L., K.M. Kimball, and C.L Stein. 1991. Intergranular Fluid Compositions from the Waste Isolation Pilot Plant (WIPP), Southeastern New Mexico. SAND90-0584. Albuquerque, NM: Sandia National Laboratories.
- Molecke, M.A. 1983. A Comparison of Brines Relevant to Nuclear Waste Experimentation. SAND83-0516. Albuquerque, NM: Sandia National Laboratories.
- Molecke, M.A. 1990. WIPP Bin-Scale CH TRU Waste Tests. Albuquerque, NM: Sandia National Laboratories.
- Popielak, R.S., R.L. Beauheim, S.R. Black, W.E. Coons, C.T. Ellingson and R.L. Olsen.
 1983. Brine Reservoirs in the Castile Formation, Waste Isolation Pilot Plant
 Project, Southeastern New Mexico. TME 3153. Carlsbad, NM:
 U.S. Department of Energy WIPP Project Office.
- Robinson, K.L. 1996. "Preparing Synthetic Brines for the Chemical Retardation and Transport Experiments." Unpublished technical operating procedure, TOP-544. Albuquerque, NM: Sandia National Laboratories.

APPENDIX A: "DEFINITION OF GW BRINE," BY J.L. KRUMAHNSL

Date: May 1, 1999

To: Hans Papenguth, 6832

From: Jim Krumhansl, 6118

Subject: Definition of GW Brine - DRAFT!

Introduction:

Early MgO studies showed that when the two traditional WIPP test brines (e.g. Castile and the SST or Brine A) were used the results were often quite different. In particular, the difference in Mg concentration seems to be a critical variable. Current PA scenarios also require evaluating the possibility that brines indigenous to the Salado may enter the repository in significant quantities. Thus, there would be considerable benefit from developing a test fluid that was directly traceable to brines sampled in the Salado. Over the years much effort has been devoted to sampling Salado brines and, generally, these fluids are not a close match to either SST or Castile brine

Methodology

A comprehensive analysis of weep fluids was tabulated by Krumhansl, Kimball and Stein, (1991, Tables 3.1-3.3 (note: Li values were incorrectly reported as ppt; they should be ppm.). This provides a basis for defining a generic weep fluid ("GW Brine") for use in MgO backfill tests. Cation analyses were done on a Spectraspan VII DCP. For all cations the raw analysis is reported and for some of the key components the raw data was corrected using an internal standard procedure (SAND90-0584, p. 11). This correction resulted in a slightly better charge balance so these figures were used in formulating the recipe for GW brine presented below. Sulfate and bromide analyses were done with a Dionix 2000i ion chromatograph and chloride was analyzed with a Buchler chloridometer. Table 1 presents averages and standard deviations for the analyses summarized in SAND90-0584, along with the final as-mixed composition of the GW brine.

For comparison (Table 2), these averaged values are presented with a variety of standard WIPP test brines summarized by Molecke (1990). Of these, the artificial Salado brine termed PAB-1 is the best match (Table 2) but apparently it has not been widely used in WIPP laboratory tests.

Computation performed using an EXCEL 97-SR10 spreadsheet titled WEEPSNEW.XLS that resides in Jim Krumhansl's computer.

Component	Raw	With Internal Standard		
	ppt	ppt		
Ca (ppt)	0.46 ± 0.35	0.46 ± 0.21		
B (ppt)	1.42 ± 0.21	Not Performed		
Li (ppm) [*]	25.3 ± 4.1	Not Performed		
Mg (ppt)	20.5 ± 4.5	20.6 ± 4.2		
K (ppt)	15.2 ± 2.3	15.2 ± 2.3		
Na (ppt)	66.0 ± 10.4	67.6 ± 11.5		
Cl (ppt)	173 ± 16	Not Performed		
$SO_4^{=}$ (ppt)	14.2 ± 2.0	Not Performed		
Br (ppt)	1.77 ± 0.45	Not Performed		
Charge balance	+/- = 0.955	+/- = 0.969		

 Table 1. Averages and Standard Deviations, from Tables 3.1 - 3.3 of SAND90-0584

conversions).				
Component	GW	PAB-1	Brine A	Castile
B (mM)	158	152	20	92
Ca (mM)	14	10	20	8.7
K (mM)	467	500	770	74
Mg (M)	1.02	1.00	1.44	0.066
Na (M)	3.53	3.9	1.83	6.00
Br (mM)	26.6	13	10	6.4
Cl (M)	5.86	6.04	5.35	5.02
$SO_4^{=}(mM)$	177	160	40	190
S.G.	1.2*	1.22	1.2	

Table 2. Chemistry (moles/liter) of Different WIPP Brines (see Appendix Table A-1 for

*Assumed value, needed for converting from g/kg to moles/l.

Brine Recipe

It is a fortunate coincidence that the averages of all these brines produces a mix that, within the standard deviations of the averages, is essentially neutral. Thus, these averages can be used with little further modification to develop a recipe for the standard GW brine. To actually mix a brine it is, of course, necessary to have an exact charge balance. To achieve this Cl was left as the adjustable parameter. Doing this resulted in a brine that contained 4.39% less chloride than the computed average in Table 1. Appendix Table A-2 records the computations needed to arrive at this figure. In doing so it was necessary to determine what salts would be used to provide the different components and also account for the amounts of the counter-ions (Na or Cl) that would be added along with the desired components. Table A-3, and the "as analyzed" column of Table 3, records the amounts of salts needed to prepare the brine mixture developed so far.

However, when the attempt was made to mix this brine a final problem was encountered; the mix was not fully soluble. Thus, it proved necessary to add an additional

15 grams of water, which increased the water added from the 611.764 grams derived from the exact recipe (Table A 3) to 626.764g. Thus, to actually prepare 1 kg of GW brine the "as analyzed" amounts of salts and water have to be multiplied by 1000/1015 = 0.985222 - to produce the "as mixed" recipe for 1 kg of brine. Then, finally, the "per liter" recipe values were obtained by multiplying by the assumed specific gravity of the brine, 1.2

Table 3. Recipe for Generic Weep ("GW") Brine				
Component	Salt Added	per kg as-analyzed	per kg as-mixed	per liter# (s.g. = 1.2)
1. Sulfate	Na ₂ SO ₄	21.022 g	20.711 g	24.853 g
2. Bromide	NaBr	2.284 g	2.250 g	2.700 g
3. Boron	Na ₂ B ₄ O ₇ .10H ₂ O	12.490 g	12.305 g	14.766 g
4. Sodium	NaCl	149.390 g	147.184 g	176.619 g
5. Potassium	KCl	29.004 g	28.575 g	34.290 g
6. Magnesiur	n MgCl ₂ .6H ₂ O	172.203g	169.658 g	203.590 g
7. Lithium	LiCl	0.155 g	0.153 g	0.183 g
8. Calcium	CaCl ₂ .2H ₂ O	1.688 g	1.663 g	1.996 g
9. Water	Deionized H ₂ O	611.764 g	617.501 g	741.003 g
Total Weight		1000.00 g	1000.00 g	1,200 g
Total Volume	2	833.33 ml	833.33 ml	1000 ml
				=================

References

- Krumhansl, J.L., K.M. Kimball, and C.L. Stein. 1991. Intergranular Fluid Compositions from the Waste Isolation Pilot Plant (WIPP), Southeastern New Mexico. SAND90-0584. Albuquerque, NM: Sandia National Laboratories.
- Molecke, M.A. 1990. Test Plan: WIPP Bin-Scale CH TRU Waste Tests. Unpublished test plan. Table 10.2, p. 106.

CRC Press, 1978-1979, Handbook of Chemistry and Physics. Boca Raton, FL: CRC Press. Physical Constants of Inorganic Compounds, pp B-81 - N-184.

Table A-1	Conversion of Analytic Results to Moles			
Element	g/kg Brine (Table 1)	Formula Weight	Moles/kg (s.g.=1.2)	Moles/l
Ca	0.46	40.08	0.0115	0.0138
В	1.42	10.811	0.131	0.158
Li	25.3E-3	6.939	3.65E-3	4.38E-3
Mg	20.6	24.312	0.847	1.02
К	15.2	39.0983	0.389	0.467
Na	67.6	22.9898	2.94	3.53
[Cl]	[173]	35.453	[4.88]	[5.86]
SO ₄ ⁼	14.2	96.0616	0.148	0.177
Br	1.77	79.903	0.0222	0.0266

7

Appendix 1. Calculations Used to Develop the GW Brine Recipe

Table A-2.Running Na and Cl Balances

Na Balance

Total Na inventory is 2.94 moles per kg.

- SO₄ added as 0.148 moles of Na₂SO₄.
 Na balance: 2.94 2 x 0.148 = 2.6440 moles Na remain per kg of brine as analyzed.
- Br added as 0.0222 moles of NaBr Na balance: 2.6440 - 0.0222 = 2.6218 moles Na remain per kg of brine as analyzed.
- B added as (0.131)/4 = 0.0328 moles of Na₂B₄O₉.10H₂O. Na balance: 2.6218 - (0.131)/2 = 2.5563 (i.e. 2.56) moles Na remain to be added as NaCl per kg of brine as analyzed.

Cl Balance

Ca added as 0.0115 moles of CaCl₂.2H₂O Cl balance: $2 \times 0.0115 = 0.0230$ moles Cl

Li added as 3.65E-3 moles of LiCl Cl balance: 0.00365 moles Cl

Mg added as 0.847 moles of MgCl₂.6H₂O Cl balance $2 \times 0.847 = 1.694$ moles Cl

K added as 0.389 moles of KCl Cl balance 0.389 moles Cl

Na added as 2.5563 moles of NaClCl Balance2.5563 moles Cl

Total added per kilogram of brine:

4.66595 moles Cl

This amount of Cl is slightly less than the average Cl values presented in Tables 1, 2 and A-1.

[(100)(4.88 - 4.66595)/4.88] = 4.39% less Cl

Table A-3.	Weights of salts added to make 1 kg of brine

 $(0.148 \text{ moles of } Na_2SO_4) \times 142.04 \text{ g/mole} = 21.022 \text{ g } Na_2SO_4$

(0.0222 moles of NaBr) x 102.90 g/mole = 2.284 g NaBr

 $(0.03275 \text{ moles of } Na_2B_4O_7.10H_2O) \times 381.37 \text{ g/m} = 12.490 \text{ g Borax}$

 $(0.0115 \text{ moles of } CaCl_2.2H_2O) \times 147.02 \text{ g/m} = 1.688 \text{ g } CaCl_2.2H_2O$

(3.65E-3 moles of LiCl) x 42.39 g/mole = 0.155 g LiCl

 $(0.847 \text{ moles of MgCl}_2.6H_2O) \times 203.31 \text{ g/m} = 172.203 \text{ g MgCl}_2.6H_2O$

(0.389 moles of KCl) x 74.56 g/mole = 29.004 g KCl

(2.5563 moles of NaCl) x 58.44 g/mole = 149.390 g NaCl Total weight of salts: 388.236 g Remaining Water: 611.764 g

Information Only

APPENDIX B: "WEEPSNEW.XLS"

	Α	В	С	D	E	F	G	Н	I	J	К	L	М	N	0	Р	Q	R	S	Т	U
1	Sample		Ca		В	Li	N	1g	ł	<	N	la	CI	SO4	Br	Av Ca	Av Mg	K Av	Na Av	chbal-uncr	chbal-corr
2	21A1	2.80	2.90	nd	nd	nd	32.0	38.7	5.2	6.3	18.1	20.9	143	20.2	3.5	#VALUE!	35.35	5.75	19.5	0.805895636	0.961202112
3	26A2	1.70	1.60	1.7	1.41	30	20.7	20.0	16.2	16.2	82.1	84.2	180	15.2	1.5	1.67	20.35	16.2	83.15	1.065632869	1.073589138
4	27A3	0.73	0.70	0.69	1.34	25	17.5	16.9	15.3	15.6	71.8	77.3	175	13.5	1.4	0.71	17.2	15.45	74.55	0.95296701	0.991674246
5	28A4	0.66	0.56	0.61	1.57	27	18.5	18.2	16.2	16.8	71.3	78.2	172	13.7	1.4	0.61	18.35	16.5	74.75	0.982692328	1.040827021
6	29A5	0.56	0.58	0.58	1.32	25	18.2	18.1	15.4	15.6	68.9	75.3	173	14.3	1.3	0.57	18.15	15.5	72.1	0.946631401	1.000127416
7	30A6	0.36	0.44	0.46	1.44	25	17.1	17.2	15.3	15.8	66.7	72.2	169	13.5	1.4	0.42	17.15	15.55	69.45	0.931959335	0.983253668
8	3B1	0.31	0.35	0.37	1.48	24	18.2	17.3	15.8	15.9	70.3	73.1	171	13.0	1.3	0.34	17.75	15.85	71.7	0.973768789	0.983897978
9	16B2	0.21	0.31	0.33	1.41	23	17.4	16.9	15.6	15.1	69.0	72.4	167	13.1	1.4	0.28	17.15	15.35	70.7	0.969200764	0.987654264
10	19B3	0.38	0.40	0.44	1.37	23	17.7	16.9	15.2	14.5	67.7	69.2	166	13.7	1.4	0.41	17.3	14.85	68.45	0.964711954	0.961471118
11	20B4	0.29	0.39	0.44	1.36	25	18.7	17.1	15.5	13.9	70.3	67.7	167	14.3	3.7	0.37	17.9	14.7	69	0.991516289	0.934734952
12	24B5	0.24	0.28	0.32	1.29	23	18.0	17.0	14.9	14.2	67.1	67.6	164	13.1	1.3	0.28	17.5	14.55	67.35	0.975416029	0.959729313
13	22B6	0.35	0.44	0.47	1.42	26	18.9	17.6	16.1	14.8	69.8	68.5	169	13.9	1.4	0.42	18.25	15.45	69.15	0.990217175	0.951297965
14	2C1	0.41	0.46	0.46	1.46	26	19.7	18.3	16.4	16.0	69.4	69.9	168	14.0	1.4	0.44	19	16.2	69.65	1.006650206	0.98636416
15	4C2	0.26	0.28	0.31	1.44	23	18.5	17.4	15.9	15.5	69.4	71.5	167	13.3	1.5	0.28	17.95	15.7	70.45	0.990935782	0.98952413
16	14C3	0.20	0.35	0.38	1.52	24	18.6	17.7	16.6	15.8	73.4	74.1	168	13.2	1.5	0.31	18.15	16.2	73.75	1.026103911	1.012578116
17	15C4	0.23	0.37	0.40	1.41	24	18.7	17.8	16.1	15.2	71.3	71.8	168	13.1	1.4	0.33	18.25	15.65	71.55	1.008058892	0.992383249
_	25C5	0.39	0.45	0.50	1.24	28	18.8	18.2	15.0	14.4	69.3	70.8	169	13.6	1.4	0.45	18.5	14.7	70.05	0.980071268	0.980382755
19	23C6	0.25	0.32	0.38	1.33	24	18.8	16.8	15.7	13.8	69.2	65.5	169	13.4	1.3	0.32	17.8	14.75	67.35	0.98251584	0.908620867
20	5D1	0.09	0.23	0.24	1.77	36	28.0	26.7	22.0	21.2	55.2	55.1	176	18.5	2.1	0.19	27.35	21.6	55.15	0.981832628	0.956990767
21	6D2	nd	0.31	nd	nd	nd	nd	18.7	0.0	15.0	nd	68.4	168	12.7	1.8	#VALUE!	#VALUE!	7.5	#VALUE!	dud	0.977436361
22	1D3	0.38	0.40	0.42	1.32	23	18.8	17.6	15.3	14.8	69.4	70.0	166	14.9	1.9	0.40	18.2	15.05	69.7	0.991989344	0.975425526
23	9D4	0.37	0.40	0.41	1.29	22	19.3	18.7	14.9	15.2	66.6	72.4	166	13.9	1.4	0.39	19	15.05	69.5	0.979160343	1.021700883
24	7D5	0.29	0.42	0.44	1.12	23	21.0	20.2	15.0	14.7	68.1	69.7	167	15.0	1.3	0.38	20.6	14.85	68.9	1.010874347	1.00947214
	8D6	0.57	0.64	0.67	1.03	24	20.2	21.2	13.4	14.1	65.4	68.9	172	15.2	1.4	0.63	20.7	13.75	67.15	0.941215699	0.989880254
26	18E1	0.25	0.30	0.33	1.52	24	17.3	17.0	15.4	15.2	68.1	72.0	169	13.1	1.3	0.29	17.15	15.3	70.05	0.948147386	0.975994103
27	17E2	0.34	0.42	0.46	1.46	23	18.0	17.8	15.3	15.4	67.6	72.0	168	13.8	1.4	0.41	17.9	15.35	69.8	0.958258973	0.993312495
28	13E3	0.32	0.38	0.42	1.46	22	18.2	17.2	16.5	15.9	71.5	73.1	169	13.6	1.4	0.37	17.7	16.2	-	0.996093256	0.99059923
29	12E4	0.39	0.47	0.47	1.47	22	18.1	17.4	16.3	16.1	71.4	74.3	169	13.1	1.6	0.44	17.75	16.2			1.007416354
30	11E5	0.46	0.51	0.53	1.31	22	18.1	18.1		16.3	67.7	74.8	171	13.6	1.2	0.50	18.1	15.8			
31	10E6	0.68	0.74	0.75	2.00	35	25.2	26.1	22.1	23.6	107.3	115.7	245	18.2	2	0.72	25.65	22.85	111.5	and the second se	1.069320936
32	4															#VALUE!				0.975803266	0.98930958
33	I			Tab	le 3.1:	: We	eps; /	Array #	‡1 (pa	rts pe	r thous	and)								0.043061237	0.034368668

Table 3.

Table 3.2

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.930934 0.929117 0.945176 0.963695 0.938584 0.941699 0.956212 0.960615	0.9419 0.939344 0.927117 0.951706 0.946507 0.937745
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.927899 0.946968 0.930934 0.929117 0.945176 0.963695 0.938584 0.941699 0.956212 0.960615	0.95145 0.953226 0.941362 0.9419 0.939344 0.927117 0.951706 0.946507 0.937745
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.946968 0.930934 0.929117 0.945176 0.963695 0.938584 0.941699 0.956212 0.960615	0.953226 0.941362 0.9419 0.939344 0.927117 0.951706 0.946507 0.937745
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.930934 0.929117 0.945176 0.963695 0.938584 0.941699 0.956212 0.960615	0.941362 0.9419 0.939344 0.927117 0.951706 0.946507 0.937745
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.929117 0.945176 0.963695 0.938584 0.941699 0.956212 0.960615	0.9419 0.939344 0.927117 0.951706 0.946507 0.937745
7 45A6 0.45 0.54 0.61 1.44 26 23.2 23.3 14.7 14.7 62.5 61.7 177 14.9 1.8 8 37B1 0.05 0.20 0.22 1.82 29 34.1 32.1 17.7 16.2 44.3 44.6 177 17.8 2.5 9 38B2 0.53 0.76 0.80 1.35 27 24.3 25.1 15.2 14.9 63.8 64.4 184 15.9 1.9 10 41B3 0.39 0.66 0.65 1.43 34 23.3 23.9 15.3 14.9 61.6 61.6 178 14.0 1.9 11 43B4 0.35 0.53 0.52 1.79 36 37.0 35.3 19.1 17.8 46.8 48.5 191 20.8 2.8 12 42B5 0.51 0.64 0.72 1.36 28 24.4 24.1 15.7 15.4 62.2 61.5 178 15.2 1.9 13 46	0.945176 0.963695 0.938584 0.941699 0.956212 0.960615	0.939344 0.927117 0.951706 0.946507 0.937745
8 37B1 0.05 0.20 0.22 1.82 29 34.1 32.1 17.7 16.2 44.3 44.6 177 17.8 2.5 9 38B2 0.53 0.76 0.80 1.35 27 24.3 25.1 15.2 14.9 63.8 64.4 184 15.9 1.9 10 41B3 0.39 0.66 0.65 1.43 34 23.3 23.9 15.3 14.9 61.6 61.6 178 14.0 1.9 11 43B4 0.35 0.53 0.52 1.79 36 37.0 35.3 19.1 17.8 46.8 48.5 191 20.8 2.8 12 42B5 0.51 0.64 0.72 1.36 28 24.4 24.1 15.7 15.4 62.2 61.5 178 15.2 1.9 13 46B6 0.13 0.25 0.27 1.36 27 23.2 23.2 14.3 14.2 59.6 59.3 172 13.0 1.9 14 3	0.963695 0.938584 0.941699 0.956212 0.960615	0.927117 0.951706 0.946507 0.937745
9 38B2 0.53 0.76 0.80 1.35 27 24.3 25.1 15.2 14.9 63.8 64.4 184 15.9 1.9 10 41B3 0.39 0.66 0.65 1.43 34 23.3 23.9 15.3 14.9 61.6 61.6 178 14.0 1.9 11 43B4 0.35 0.53 0.52 1.79 36 37.0 35.3 19.1 17.8 46.8 48.5 191 20.8 2.8 12 42B5 0.51 0.64 0.72 1.36 28 24.4 24.1 15.7 15.4 62.2 61.5 178 15.2 1.9 13 46B6 0.13 0.25 0.27 1.36 27 23.2 23.2 14.3 14.2 59.6 59.3 172 13.0 1.9 14 31C1 0.14 0.31 0.28 1.27 26 22.0 22.4 13.6<	0.938584 0.941699 0.956212 0.960615	0.951706 0.946507 0.937745
10 41B3 0.39 0.66 0.65 1.43 34 23.3 23.9 15.3 14.9 61.6 61.6 178 14.0 1.9 11 43B4 0.35 0.53 0.52 1.79 36 37.0 35.3 19.1 17.8 46.8 48.5 191 20.8 2.8 12 42B5 0.51 0.64 0.72 1.36 28 24.4 24.1 15.7 15.4 62.2 61.5 178 15.2 1.9 13 46B6 0.13 0.25 0.27 1.36 27 23.2 23.2 14.3 14.2 59.6 59.3 172 13.0 1.9 14 31C1 0.14 0.31 0.28 1.27 26 22.0 22.4 13.6 13.7 60.1 60.3 169 13.5 1.7	0.941699 0.956212 0.960615	0.946507 0.937745
11 43B4 0.35 0.53 0.52 1.79 36 37.0 35.3 19.1 17.8 46.8 48.5 191 20.8 2.8 12 42B5 0.51 0.64 0.72 1.36 28 24.4 24.1 15.7 15.4 62.2 61.5 178 15.2 1.9 13 46B6 0.13 0.25 0.27 1.36 27 23.2 23.2 14.3 14.2 59.6 59.3 172 13.0 1.9 14 31C1 0.14 0.31 0.28 1.27 26 22.0 22.4 13.6 13.7 60.1 60.3 169 13.5 1.7	0.956212 0.960615	0.937745
12 42B5 0.51 0.64 0.72 1.36 28 24.4 24.1 15.7 15.4 62.2 61.5 178 15.2 1.9 13 46B6 0.13 0.25 0.27 1.36 27 23.2 23.2 14.3 14.2 59.6 59.3 172 13.0 1.9 14 31C1 0.14 0.31 0.28 1.27 26 22.0 22.4 13.6 13.7 60.1 60.3 169 13.5 1.7	0.960615	
13 46B6 0.13 0.25 0.27 1.36 27 23.2 23.2 14.3 14.2 59.6 59.3 172 13.0 1.9 14 31C1 0.14 0.31 0.28 1.27 26 22.0 22.4 13.6 13.7 60.1 60.3 169 13.5 1.7		
14 31C1 0.14 0.31 0.28 1.27 26 22.0 22.4 13.6 13.7 60.1 60.3 169 13.5 1.7		
		0.944641
	0.945042	0.95208
	0.938925	0.9405
16 33C3 0.11 0.26 0.26 1.26 26 21.9 21.5 13.5 62.2 62.1 171 14.6 1.7 17	0.945642	
17 34C4 0.15 0.27 0.28 1.28 24 22.2 22.1 13.7 13.8 60.2 59.9 169 14.2 1.7	0.946477	
18 36C5 0.36 0.53 0.58 1.27 23 22.5 22.1 13.8 13.4 62.7 60.8 172 13.4 1.8 19 40C6 0.09 0.26 0.25 1.30 31 22.3 22.4 13.8 13.6 60.9 59.8 170 13.1 1.8	0.962641	
		0.943006
20 44D1 0.21 0.32 0.33 1.46 23 20.6 20.8 14.0 14.1 63.0 63.5 170 13.2 1.6 21 48D2 0.43 0.54 0.55 1.33 28 20.9 21.0 14.0 14.1 64.5 64.2 171 14.5 1.6	0.945374 0.954965	
22 35D3 0.35 0.55 0.54 1.41 22 20.9 20.9 14.4 14.2 63.6 63.3 171 14.2 1.6	0.954965	
23 39D4 0.25 0.55 0.51 1.34 27 21.2 21.8 14.4 14.7 63.1 63.1 171 14.3 1.7	0.952512	
23 60D5 0.39 0.57 0.51 1.81 31 22.5 23.0 15.9 15.9 60.8 62.2 176 14.2 1.9	0.933942	
25 54D6 0.42 0.60 0.57 1.42 25 20.5 20.9 14.0 14.1 63.7 64.0 172 13.8 1.6	0.939817	
	0.946195	
27		0.007139
28 Sample Ca B Li Mg K Na CI SO ₄ Br		
29 21A1 2.80 2.90 nd nd nd 32.0 38.7 5.2 6.3 18.1 20.9 143 20.2 3.5		
30 26A2 1.70 1.60 1.7 1.41 30 20.7 20.0 16.2 16.2 82.1 84.2 180 15.2 1.5		
<u>31</u> 27A3 0.73 0.70 0.69 1.34 25 17.5 16.9 15.3 15.6 71.8 77.3 175 13.5 1.4		
<u>32</u> 28A4 0.66 0.56 0.61 1.57 27 18.5 18.2 16.2 16.8 71.3 78.2 172 13.7 1.4		
<u>33</u> 29A5 0.56 0.58 0.58 1.32 25 18.2 18.1 15.4 15.6 68.9 75.3 173 14.3 1.3		
<u>34 30A6 0.36 0.44 0.46 1.44 25 17.1 17.2 15.3 15.8 66.7 72.2 169 13.5 1.4</u>		
35 3B1 0.31 0.35 0.37 1.48 24 18.2 17.3 15.8 15.9 70.3 73.1 171 13.0 1.3		
36 16B2 0.21 0.31 0.33 1.41 23 17.4 16.9 15.6 15.1 69.0 72.4 167 13.1 1.4		
37 19B3 0.38 0.40 0.44 1.37 23 17.7 16.9 15.2 14.5 67.7 69.2 166 13.7 1.4		
38 20B4 0.29 0.39 0.44 1.36 25 18.7 17.1 15.5 13.9 70.3 67.7 167 14.3 3.7		
<u>39</u> 24B5 0.24 0.28 0.32 1.29 23 18.0 17.0 14.9 14.2 67.1 67.6 164 13.1 1.3		
40 22B6 0.35 0.44 0.47 1.42 26 18.9 17.6 16.1 14.8 69.8 68.5 169 13.9 1.4 41 2C1 0.41 0.46 1.46 26 19.7 18.3 16.4 16.0 69.4 69.9 168 14.0 1.4		
42 4C2 0.26 0.28 0.31 1.44 23 18.5 17.4 15.9 15.5 69.4 71.5 167 13.3 1.5 43 14C3 0.20 0.35 0.38 1.52 24 18.6 17.7 16.6 15.8 73.4 74.1 168 13.2 1.4		
44 15C4 0.23 0.37 0.40 1.41 24 18.7 17.8 16.1 15.2 71.3 71.8 168 13.1 1.4		
44 1504 0.23 0.37 0.40 1.41 24 18.7 17.8 18.1 15.2 71.8 168 13.1 1.4 45 25C5 0.39 0.45 0.50 1.24 28 18.8 18.2 15.0 14.4 69.3 70.8 169 13.6 1.4		

-**-**.

.

•

Table 3.3

Š N

Table 3.3 (continued)

_	_	_	_	_																														-										_
ч																																												
σ																																·												
<u>а</u>																																												
0	1.3	2.1	1.8	1.9	1.4	1.3	1.4	1.3	1.4	1.4	1.6	1.2	2	2.2	1.7	2.0	1.9	3.3	2.1	1.8	1.8	1.8	1.9	1.7	1.7	1.7	1.8	1.8	1.7	1.8 8.9	20.0		2.2	1.7	2.1	1.8	1.7	1.6	1.8	1.8	1.8	2.5	6.7	ר ק.
z	13.4	18.5	12.7	14.9	13.9	15.0	15.2	13.1	13.8	13.6	13.1	13.6	18.2	13.0	11.7	12.7	16.2	24.0	13.0	12.6	13.6	13.4	14.1	12.6	11.4	13.3	13.6	13.0	13.7	13.4	14./	2 7	13.0	14.2	14.9	14.4	14.1	13.2	12.9	12.5	14.9	17.8	15.9	14.0 1
Μ	169	176	168	166	166	167	172	169	168	169	169	171	245	170	174	169	171	283	173	167	170	168	172	173	165	176	168	168	176	184 1	0/1	È È	174	172	171	175	171	170	173	174	177	177	184	1/0/1
L	65.5	55.1	68.4	70.0	72.4	69.7	68.9	72.0	72.0	73.1	74.3	74.8	115.7	69.2	67.6	70.9	77.9	1.17.9	67.5	65.8	70.7	65.5	62.2	67.3	64.2	69.1	72.4	68.9	67.3	67.4	/3.0	7.00	67.8	61.7	70.7	62.3	61.9	61.7	61.7	63.0	61.7	44.6	64.4	0.10
К	69.2	55.2	J,	69.4	66.6	68.1	65.4	68.1	67.6	71.5	71.4	67.7	107.3	68.3	66.1	68.7	72.9	111.2	67.3	64.3	68.8	64.7	61.4	65.4	61.6	67.1	69.0	66.3	67.3	66.5 201	68./	0.00	65.0	60.0	68.3	63.0	60.3	61.8	61.8	62.4	62.5	44.3	63.8 64	01.0
ſ	13.8	21.2	15.0	14.8	15.2	14.7	14.1	15.2	15.4	15.9	16.1	16.3	23.6	15.7	15.2	15.7	17.2	27.0	15.7	14.3	15.0	14.8	13.5	14.6	13.9	15.2	15.7	15.8	14.6	15.1	15.8		15.6	12.9	15.1	14.6	13.8	14.0	14.1	14.0	14.7	16.2	14.9	14.U
-	15.7	22.0	B	15.3	14.9	15.0	13.4	15.4	15.3	16.5	16.3	15.3	22.1	15.7	15.2	15.5	16.4	25.5	15.6	14.1	14.7	14.9	13.7	14.6	13.7	15.1	15.3	15.6	14.9	15.4	15.3		15.1	12.9	14.8	14.6	13.3	13.9	13.8	13.8	14.7	17.7	15.2	10.0
н	16.8	26.7	18.7	17.6	18.7	20.2	21.2	17.0	17.8	17.2	17.4	18.1	26.1	18.3	17.8	18.3	19.6	35.2	17.6	19.3	19.8	20.1	22.4	18.8	18.1	19.4	18.5	18.1	17.5	18.4	18.0	1.10	20.0	20.5	18.9	22.7	22.1	21.8	22.0	21.6	23.3	32.1	25.1 25.1	20.2
G	18.8	28.0	þ	18.8	19.3	21.0	20.2	17.3	18.0	18.2	18.1	18.1	25.2	18.7	17.9	18.4	19.2	34.8	17.8	1.94	19.9	20.7	22.8	18.7	18.1	19.4	18.2	18.3	17.9	18.9	1/.3		19.5	20.6	18.5	22.5	21.6	21.3	21.3	21.1	23.2	34.1	24.3	23.3
F	24	36	pu	53 53	22	23	24	24	23	22	22	22	35	24	25	24	25	44	24	20	23	23	22	20	pu .	22	22	22	83	5	RI C	3 8	ះ ខ	2	33	27	29	25	8	26	26	29	27	5
ш	1.33	1.77	pu	1.32	1.29	1.12	1.03	1.52	1.46	1.46	1.47	1.31	2.00	1.52	1.49	1.49	1.59	2.44	1.57	1.29	1.49	1.33	1.07	1.27	pu	1.37	1.41	1.33	1.46	1.31	1.46	- + - +	1.46	1.05	1.24	1.44	1.31	1.42	1.44	1.50	1.44	1.82	1.35	1.43
٥	0.38	0.24	p	0.42	0.41	0.44	0.67	0.33	0.46	0.42	0.47	0.53	0.75	0.32	0.29	0.33	0.41	1.0	0.57	0.26	0.32	0.33	0.47	0.26	nd	0.31	0.33	0.30	0.37	0.25	0.60	0.50	0.31	0.51	0.67	0.59	0.54	0.43	0.33	0.32	0.61	0.22	0.80	C0.0
υ	0.32	0.23	0.31	0.40	0.40	0.42	0.64	0:30	0.42	0.38	0.47	0.51	0.74	0.31	0.27	0.34	0.42	0.92	0.49	0.22	0.28	0.30	0.42	0.23	0.21	0.28	0.29	0.29	0.32	0.31	0.55	2.0	0.28	0.47	0.62	0.52	0.48	0.42	0.33	0.33	0.54	0.20	0.76	0.00
	0.25				0.37	0.29	0.57	0.25	0.34	0.32	0.39	0.46						1.0		0.22	0.30	0.30	0.35	0.12	0.22	0.23	0.24	0.33	0.33	0.33	0.46	2.42	0.21	0.36	0.56	0.43	0.43	0.27	0.19	0.21	0.45	0.05	0.53	0.34
٩	23C6	501	6D2	1D3	9D4	7D5	8D6	18E1	17E2	13E3	12E4	11E5	10E6	53AA1	55AA2	56AA3	57AA4	58AA5	59AA6	75881	74BB2	77883	80BB4	79BB5	61BB6	78CC1	76CC2	74CC3	68CC4	62CC5	63CC6		65DD4	64DD5	66DD6	49A1	50A2	51A3	52A4	47A5	45A6	37B1	38B2	4103
			_	_	_	51	_					22		59					64		99				70	7				12	9			8	5		g	7		98 8			80	

					<u>.</u>					_								
	A	В	C	D	E	F	G	Н	I	J	ĸ	L	М	N	0	Р	Q	R
	43B4	0.35	0.53	0.52	1.79	36	37.0	35.3	19.1	17.8	46.8	48.5	191	20.8	2.8			
92	42B5	0.51	0.64	0.72	1.36	28	24.4	24.1	15.7	15.4	62.2	61.5	178	15.2	1.9			
	46B6	0.13	0.25	0.27	1.36	27	23.2	23.2	14.3	14.2	59.6	59.3	172	13.0	1.9			
	31C1	0.14	0.31	0.28	1.27	26	22.0	22.4	13.6	13.7	60.1	60.3	169	13.5	1.7			
	32C2	0.10	0.27	0.26	1.21	21	21.8	22.0	13.3	13.3	59.8	59.8	168	14.4	1.7			
	33C3	0.11	0.26	0.26	1.26	26	21.9	21.5	13.5	13.5	62.2	62.1	171	14.6	1.7			
	34C4	0.15	0.27	0.28	1.28	24	22.2	22.1	13.7	13.8	60.2	59.9	169	14.2	1.7			
	36C5	0.36	0.53	0.58	1.27	23	22.5	22.1	13.8	13.4	62.7	60.8	172	13.4	1.8			
	40C6 44D1	0.09	0.26	0.25	1.30 1.46	31 23	22.3	22.4 20.8	<u>13.8</u> 14.0	13.6	60.9	59.8	170 170	13.1	1.8 1.6			
	44D1 48D2	0.21	0.52	0.55	1.40	23	20.8	20.8	14.0	14.1 14.1	63.0 64.5	63.5 64.2	170	13.2 14.5	1.6			
	35D3	0.43	0.54	0.55		20	20.9	20.9	14.0	14.1	63.6	63.3			1.6			
	39D4	0.35	0.55	0.54	1.41 1.34	27	20.9	20.9	14.4	14.2	63.1	63.1	171 171	14.2 14.3	1.6			
	60D5	0.25	0.55	0.51	1.81	31	22.5	21.0	14.0	14.7	60.8	62.2	176	14.3	1.7			
	54D6	0.39	0.60	0.57	1.42	25	22.5	20.9	14.0	14.1	63.7	64.0	172	13.8	1.9			
	Average		0.46	0.37							66.0				1.0		0.055554	0.968851
	Stdev	0.36		0.21	0.21	4:133					10.4				0.45279		0.800004	0.900001
	Sample		Ca		B	Li		1g		<u>⊪na ∠.0 sa</u> <	N		CI	SO ₄	Br			
	First			a	<u> </u>			iy	· · · ·	`		a		504				
	weeps			Ca				Mg		к		Na	CI	SO4	Br			
	1983-1986			2.5				32		12			191.00	23	1.8			
112	1903-1900			0.5				52 54		9			196.00	22	5.3			
113				0.2				40		7			161.00	18	2			
114				0.2				23		9			163.00	21	1.3			
115				0.2				16		12			161.00	25	0.9			
116				0.2				21		8			163.00	26	1.8			
117				0.4				23		11			161.00	21	1.4			
118	1			0.2				38		7			153.00	17	2.2			
119				0.2				25		9			165.00	22	1.3			
120	1			0.2				22		9		66.00	161.00	22	1.2			
121				0.2				29		9		59.00	192.00	25	1.6			
122				0.3				15		13			177.00	23	0			
123 124 125				0.3				29		11			159.00	19	1.6			
124				0.2				28		9			168.00	19	1.5			
125				0.2				26		10			184.00	19	1.4			
126				0.3				24		10			171.00	26	1.9			
127				0.3				24		10			172.00	20	1.4			
128	1			0.3				. 16		6			167.00	17	0			
129				0.2				25		11			164.00	22	1.4			
130				0.1			•	30		9			155.00	20	1.7			
131				0.3				30		9			155.00	20	1.7			
132				0.1				34		10			177.00	25	2			
133				0.2				36		10			171.00	22	1.5			
134 135	1			0.1				30		9 10			170.00	19 18	1.8			
135	I .			0.1				31		10		49.00	166.00	18	1.7			

۰. ۱ ., **н**

Table 3.3 (continued)

25

+ 7

	A	В	C	D	E	F	G	н	1	J	K	L	M	N	0	P	Т	Q	R
136				0.1				31		9			170.00	19	1.7				
137				0.1				31		9			170.00	20	1.7				
138				0.1				30		9			168.00	.19	1.7				
139				0.1				30	•	9			172.00	18	1.8				
140				0.1				28		9			166.00	20	1.5				
141				0.1				29		9			176.00	19	1.5				
142				0.3				29		9			174.00	19	1.5				
143				0.2				30		9			167.00	19	1.6				
144 145				0.1				29		10			172.00	20	1.5				
145				0.1				26		10			164.00	21	1.3				
140				0.2 0.1				21 29		9			166.00	22	0.8				
147				0.1				29 30		9			168.00 158.00	19	1.5 1.5				
149				0.1				35		9 10			175.00	19	1.5				
150				0.1				35 44		9			178.00	18 40	2.3				
151				0.1				33		9			173.00	40 18	2.3 1.5				
152				0.2				34		9			179.00	18	1.5				
153				0.2				29		10			165.00	17	1.4				
154				0.1				29		9			165.00	19	1.4				
155				0.1				30		9			169.00	19	1.4				
156				0.1				25		10			162.00	20	1.4				
156 157				0.2				30		. 9			164.00	18	1.4				
158				0.1				30		9			171.00	18	1.4				
159				0				59		6			201.00	23	3.1				
160				0.1		•		57		7			186.00	14	3.1				
161				0.1				25		10			166.00	21	1.2				
162				0.2				29		13			166.00	27	1.2				
163				0.2				30		11		48.00	169.00	21	1.5				
164				0.1				45		10		25.00	181.00	24	2.4				
165				0.2				23		8			157.00	20	1				
166				0.1				50		6			195.00	15	2.3				
167				0.2				23		8			162.00	22	1.1				
168				0.1				26		9			165.00	21	1.5				
169				0.2				34		12			181.00	21	1.5				
170				0.1				27		9			175.00	21	1.6				
171				0.2				25		9			167.00	19	1.4				
172				0.1				28		9			163.00	21	1.7				
173 174				0.1				41 20		8			171.00	21	2.1				
175				0.1 0.2				30 24		15 10			173.00 172.00	22	2.2				
175 176 177				0.2				24 27		9			163.00	20 21	1.4 1.6	•			
177				0.1				25		9			157.00	22	1.5				
178				0.1				25 50		6			190.00	16	2.9				
179				0.1				27		9 `			160.00	21	1.6				
180				0.1				27		9			166.00	20	1.5				
180				0.1				21		9		53.00	166.00	20	1.5				

.

Information Only

e dere

Table 3.3 (continued)

26

181 182 183 184 185 186 187 188 189	-			0.1									0	Q	R
183 184 185 186 187 188 189						44		7		29.00	177.00	18	2.4		
183 184 185 186 187 188 189				0.1		44		7		28.00	181.00	17	2.4		
184 185 186 187 188 189				0.2		30		11			169.00	20	1.7		
185 186 187 188 189				0.1		37		9			171.00	18	1.9		
186 187 188 189				0.2		21		8			161.00	21	1.1		
187 188 189				0.2		24	. •	9	••		162.00	20 -	1.4		
188 189				0.1		41		8			174.00	19	2		
189				0.1		53		5			187.00	20	3.2		
				0.1		37		10			171.00	23	1.9		
190				0.2		16		9			159.00	18	0.8		
191				0.3		15		6			162.00	15	0.9		
192				0.1		37		9			160.00	20	1.5		
193				0.1		29		9			160.00	20	1.5		
194				0.2		26		10			166.00	21	1.4		
195				0.2		22		8			160.00	20	1.1		
196				0.2		27		14			157.00	19	1.7		
196 197				0.2		22		8			164.00	21	1.1		
198				0.1		45		9			181.00	14	2.8		
199				0.2		18		8			159.00	20	1		
200				0.1		32		9			161.00	20	1.7		
201				0.1		43		7			181.00	18	2.2		1
202				0.2		18		9			160.00	20	1		
203				0.2		18		9			159.00	21	0.9		
204				0.2		27		8			161.00	25	1.5		
205				0.2		44		7			177.00	17	2.4		
206				0.2		17		11			159.00	21	0.9		
207				0.2		21		9			167.00	21	1.1		
208				0.3		43		7			186.00	18	0.9		
209				0.1		43		8			180.00	17	0.7		
210				0.1		27		10		55.00	165.00	21	0.9		
211				0.1		34		7			171.00	21	1.1		
212				0.1		45		7		28.00	181.00	18	0.9		
213				0.4		13		9			152.00	26	0.9		
214		•		0.1		42		7			177.00	17	2		
215				0.1		42		7		30.00	178.00	20	0.9		
216				0.1		42		8		32.00	180.00	19	0.9		
217				0.2		28		10		54.00	167.00	21	0.9		
218				0.1		31		9			168.00	20	0.9		
219				0.1		38		10			177.00	23	1.3		

Information Only

42

	Α	В	С	D	E	F	G	н	1	J	К	L.	м	N	0	Р
1				Raw	Correct	Raw	Raw	Raw	Correct	Raw	Correct	Raw	Correct	Raw	Raw	Raw
2		Sample		Ca		В	Li	N	/lg		ĸ		Va	CI	SO₄	Br
3		21A1	2.80	2.90	0	0	. 0	32.0	38.7	5.2	6.3	18.1	20.9	143	20.2	3.5
4		26A2	1.70	1.60	1.7	1.41	30	20.7	20.0	16.2	16.2	82.1	84.2	180	15.2	1.5
5		27A3	0.73	0.70	0.69	1.34	25	17.5	16.9	15.3	15.6	71.8	77.3	175	13.5	1.4
6		28A4	0.66	0.56	0.61	1.57	27	18.5	18.2	16.2	16.8	71.3	78.2	172	13.7	1.4
7		29A5	0.56	0.58	0.58	1.32	25	18.2	18.1	15.4	15.6	68.9	75.3	173	14.3	1.3
8		30A6	0.36	0.44	0.46	1.44	25	17.1	17.2	15.3	15.8	66.7	72.2	169	13.5	1.4
9		3B1	0.31	0.35	0.37	1.48	24	18.2	17.3	15.8	15.9	70.3	73.1	171	13.0	1.3
10		16B2	0.21	0.31	0.33	1.41	23	17.4	16.9	15.6	15.1	69.0	72.4	167	13.1	1.4
11		19B3	0.38	0.40	0.44	1.37	23	17.7	16.9	15.2	14.5	67.7	69.2	166	13.7	1.4
12		20B4	0.29	0.39	0.44	1.36	25	18.7	17.1	15.5	13.9	70.3	67.7	167	14.3	3.7
13 14		24B5 22B6	0.24	0.28	0.32	1.29	23	18.0	17.0	14.9	14.2	67.1	67.6	164	13.1	1.3
14		2200 2C1	0.35	0.44	0.47	<u>1.42</u> 1.46	26 26	18.9 19.7	17.6	16.1	14.8	69.8	68.5	169	13.9	1.4
16		4C2	0.41	0.46	0.46 0.31	1.40	20	19.7	18.3 17.4	16.4 15.9	16.0	69.4	69.9	168	14.0	1.4
17		14C2	0.20	0.28	0.31	1.44	23	18.5	17.4	16.6	15.5	69.4	71.5	167	13.3	1.5
18		15C4	0.20	0.37	0.30	1.41	24	18.7	17.8	16.1	15.8 15.2	73.4 71.3	74.1 71.8	168 168	<u>13.2</u> 13.1	<u> </u>
19		25C5	0.25	0.37	0.40	1.24	24	18.8	17.8	15.0	14.4	69.3	71.8	169	13.1	1.4
20		23C6	0.25	0.32	0.38	1.33	24	18.8	16.8	15.7	13.8	69.2	65.5	169	13.4	1.4
21		5D1	0.09	0.23	0.00	1.77	36	28.0	26.7	22.0	21.2	55.2	55.1	176	18.5	2.1
22		6D2	0.00	0.00	0.00	0.00	0.0	0.0	18.7	0.0	15.0	0.0	68.4	168	12.7	1.8
23		1D3	0.38	0.40	0.42	1.32	23	18.8	17.6	15.3	14.8	69.4	70.0	166	14.9	1.9
24		9D4	0.37	0.40	0.41	1.29	22	19.3	18.7	14.9	15.2	66.6	72.4	166	13.9	1.4
25		7D5	0.29	0.42	0.44	1.12	23	21.0	20.2	15.0	14.7	68.1	69.7	167	15.0	1.3
26		8D6	0.57	0.64	0.67	1.03	24	20.2	21.2	13.4	14.1	65.4	68.9	172	15.2	1.4
27		18E1	0.25	0.30	0.33	1.52	24	17.3	17.0	15.4	15.2	68.1	72.0	169	13.1	1.3
28		17E2	0.34	0.42	0.46	1.46	23	18.0	17.8	15.3	15.4	67.6	72.0	168	13.8	1.4
29		13E3	0.32	0.38	0.42	1.46	22	18.2	17.2	16.5	15.9	71.5	73.1	169	13.6	1.4
30		12E4	0.39	0.47	0.47	1.47	22	18.1	17.4	16.3	16.1	71.4	74.3	169	13.1	1.6
31		11E5	0.46	0.51	0.53	1.31	22	18.1	18.1	15.3	16.3	67.7	74.8	171	13.6	1.2
32		10E6	0.68	0.74	0.75	2.00	35	25.2	26.1	22.1	23.6	107.3	115.7	245	18.2	2
33		53AA1	0.32	0.31	0.32	1.52	24	18.7	18.3	15.7	15.7	68.3	69.2	170	13.0	2.2
34		55AA2	0.29	0.27	0.29	1.49	25	17.9	17.8	15.2	15.2	66.1	67.6	174	11.7	1.7
35 36		56AA3 57AA4	0.35	0.34	0.33	1.49 1.59	24 25	18.4 19.2	18.3	15.5	15.7	68.7	70.9	169	12.7	2.0
30		57AA4 58AA5	0.48	0.42	0.41	2.44	<u>25</u> 44	<u>19.2</u> 34.8	19.6 35.2	16.4 25.5	17.2 27.0	72.9	77.9	171 283	16.2 24.0	1.9 3.3
38		59AA6	0.56	0.92	0.57	2.44	24	17.8	17.6	15.6	15.7	67.3	67.5	173	13.0	2.1
39		75BB1	0.30	0.49	0.57	1.29	24	1.94	19.3	15.6	14.3	64.3	65.8	167	12.6	1.8
40		74BB2	0.30	0.22	0.20	1.49	23	19.9	19.3	14.1	14.3	68.8	70.7	107	13.6	1.8
41		77BB3	0.30	0.30	0.33	1.33	23	20.7	20.1	14.9	14.8	64.7	65.5	168	13.4	1.8
42		80BB4	0.35	0.42	0.00	1.07	22	22.8	22.4	13.7	13.5	61.4	62.2	172	14.1	1.9
43		79BB5	0.12	0.23	0.26	1.27	20	18.7	18.8	14.6	14.6	65.4	67.3	173	12.6	1.7
44		61BB6	0.22	0.21	0.0	0.0	0.0	18.1	18.1	13.7	13.9	61.6	64.2	165	11.4	1.7
45		78CC1	0.23	0.28	0.31	1.37	22	19.4	19.4	15.1	15.2	67.1	69.1	176	13.3	1.7

lons and avg (Acs)

22

Information Only

·** ****

	Α	В	С	D	E	F	G	н		J	К	L	м	N	0	Р	1
2		Sample		Са		В	Li	N	1g		K	1	Va	CI	SO₄	Br	1
46		76CC2	0.24	0.29	0.33	1.41	22	18.2	18.5	15.3	15.7	69.0	72.4	168	13.6	1.8	4
47		74CC3	0.33	0.29	0.30	1.33	22	18.3	18.1	15.6	15.8	66.3	68.9	168	13.0	1.8	
48		68CC4	0.33	0.32	0.37	1.46	23	17.9	17.5	14.9	14.6	67.3	67.3	176	13.7	1.7	
49		62CC5	0.33	0.31	0.25	1.31	21	18.9	18.4	15.4	15.1	66.5	67.4	184	13.4	1.8	
50		63CC6	0.46	0.55	0.60	1.46	23	17.3	18.0	15.3	15.8	68.7	73.0	170	14.7	1.8	X
51		69DD2	0.23	0.27	0.29	1.45	22	18.8	17.7	15.1	14.4	66.0	65.2	167	13.1	1.9	
52		72DD3	0.57	0.54	0.58	1.11	23	20.4	20.5	14.2	14.3	64.3	66.8	171	14.2	1.9	V
53		65DD4	0.21	0.28	0.31	1.46	23	19.5	20.0	15.1	15.6	65.0	67.8	174	13.0	2.2	
54		64DD5	0.36	0.47	0.51	1.05	21	20.6	20.5	12.9	12.9	60.0	61.7	172	14.2	1.7	
55		66DD6	0.56	0.62	0.67	1.24	23	18.5	18.9	14.8	15.1	68.3	70.7	171	14.9	2.1	5
56		49A1	0.43	0.52	0.59	1.44	27	22.5	22.7	14.6	14.6	63.0	62.3	175	14.4	1.8	and
57		50A2	0.43	0.48	0.54	1.31	29	21.6	22.1	13.3	13.8	60.3	61.9	171	14.1	1.7	-
58		51A3	0.27	0.42	0.43	1.42	25	21.3	21.8	13.9	14.0	61.8	61.7	170	13.2	1.6	
59		52A4	0.19	0.33	0.33	1.44	30	21.3	22.0	13.8	14.1	61.8	61.7	173	12.9	1.8	e ve
60		47A5	0.21	0.33	0.32	1.50	26	21.1	21.6	13.8	14.0	62.4	63.0	174	12.5	1.8	
61		45A6	0.45	0.54 -	0.61	1.44	26	23.2	23.3	14.7	14.7	62.5	61.7	177	14.9	1.8	ھ ا
62		37B1	0.05	0.20	0.22	1.82	29	34.1	32.1	17.7	16.2	44.3	44.6	177	17.8	2.5	
63		38B2	0.53	0.76	0.80	1.35	· 27	24.3	25.1	15.2	14.9	63.8	64.4	184	15.9	1.9	\sim
64		41B3	0.39	0.66	0.65	1.43	34	23.3	23.9	15.3	14.9	61.6	61.6	178	14.0	1.9	
65		43B4	0.35	0.53	0.52	1.79	36	37.0	35.3	19.1	17.8	46.8	48.5	191	20.8	2.8	
66		42B5	0.51	0.64	0.72	1.36	28	24.4	24.1	15.7	15.4	62.2	61.5	178	15.2	1.9	Acs
67		46B6	0.13	0.25	0.27	1.36	27	23.2	23.2	14.3	14.2	59.6	59.3	172	13.0	1.9	
68		31C1	0.14	0.31	0.28	1.27	26	22.0	22.4	13.6	13.7	60.1	60.3	169	13.5	1.7	
69		32C2	0.10	0.27	0.26	1.21	21	21.8	22.0	13.3	13.3	59.8	59.8	168	14.4	1.7	Į
70		33C3	0.11	0.26	0.26	1.26	26	21.9	21.5	13.5	13.5	62.2	62.1	171	14.6	1.7	
71		34C4	0.15	0.27	0.28	1.28	24	22.2	22.1	13.7	13.8	60.2	59.9	169	14.2	1.7	
72		36C5	0.36	0.53	0.58	1.27	23	22.5	22.1	13.8	13.4	62.7	60.8	172	13.4	1.8	1 %,
73		40C6	0.09	0.26	0.25	1.30	31	22.3	22.4	13.8	13.6	60.9	59.8	170	13.1	1.8	en -
74		44D1	0.21	0.32	0.33	1.46	23	20.6	20.8	14.0	14.1	63.0	63.5	170	13.2	1.6	
75 76		48D2 35D3	0.43	0.54	0.55	1.33	28	20.9	21.0	14.0	14.1	64.5	64.2	171	14.5	1.6	. سر ا
76		35D3 39D4	0.35	0.55	0.54 0.51	1.41 1.34	22 27	20.9 21.2	20.9 21.8	14.4	14.2 14.7	63.6 63.1	<u>63.3</u> 63.1	<u>171</u> 171	14.2 14.3	1.6	- ≺
78		39D4 60D5	0.25	0.55	0.51	1.34	31	21.2	21.8	14.8 15.9	14.7	63.1 60.8	63.1	171	14.3	1.7	3
78		54D6	0.39	0.57	0.51	1.81	25	22.5	23.0	15.9	15.9	63.7	62.2	176	13.8	1.9	
80		5400	0.42		0.57 Ca\w/1.S.*								04.0	CI	504	Br	6
80		AVG	Innt	0.47	0.46	1.42	LI 25			15.2	15.2	66.0	1Na W 1.5.1	173	14.2	1.8	mad
82		AVG	ppt Std	0.47	0.46	0.21	4	4.5	20.6 4.2	2.3	2.3	10.4	11.5	1/3	2.0	0.5	
83				0.00	0.21	0.21		4.0	4.2	2.3	2.0	10.4	11.0		2.0	0.5	1
84			ppm	Raw	Corrected			· · · · · · ·									<u>j</u>

Information Only

62

	А	В	С	D	Е	F	G	н
1		Internal Stand dat	ta was used		specific gravity	<u>1.2kg/l</u>		
2								
3				molal	molar		mixed	
4	element	ppt (g/Kg)	ppm (mg/Kg)	moles/Kg	moles/L	<u> </u>	molar	ratio check
5	Ca	0.46		0.011	0.014	. 14	0.014	0.985221675
6	В	1.42		0.131	0.157	157	0.155	0.985221675
7	Li	0.025	25.284	0.0036	0.0044	4.4	0.0043	0.985221675
8	Mg	20.6		0.847	1.02		1.00	0.985221675
9	K	15.2		0.388	0.465	465	0.458	0.985221675
10	Na	67.6 ¬		2.94	3.53		3.48	0.985221675
11	CI	173		4.89	5.87		5.51	0.939182254
12	SO4	14.2		0.148	0.177	177	0.175	0.985221675
13	Br	1.8		0.022	0.027	27	0.026	0.985221675
14						-		
15	Salt calcula	ations						
16								
17		1) Keep track of N	la balance, for	1 Kg solution	l			
18								[
19			moles/Kg	Salt	moles Na remaining			
20		SO4	0.148	Na2SO4	2.647			
21		Br	0.022	NaBr	2.625			
22		В	0.0327	2B4O7 10H	2.559			
23								
24								
25		2) Keep track of (Cl balance, for 1	Kg solution				
26 27			Malaalka	Salt	moles Cl remaining			
		0.	Moles/Kg		moles CI remaining			
28		Ca Li	0.0115	CaCl2 2H2C				
29			0.0036		4.865 3.171			
30 31		Mg K	0.8471 0.3876	MgCl2 6H2C KCl	2.783			
32		Na	2.559	NaCl	0.2242	#		
33		ina	2.003	i naoi		π		
34	#	To achieve an ex	act charge hala	nce chloride	will be the adjustable	paramater		
35	11	% less Cl	ast on ange bala			Jananiator		
36		4.584						
					· · ·			

Information Only

· • ·

Molarity & salt wt cales (Acs)

30

	А	В	С	D	E	F	G	Н
37		· •			· · · · · · · · · · · · · · · · · · ·			
38								
39		Weight of Salts for	1 Kg solution		(analyzed)	(mixed)		
40						*		
41		Salt	moles	FW (g/mol)	grams (salt)	grams (salt)	revised moles	
42		Na2SO4	0.1478	142.04	20.99	20.68	0.145614373	
43		NaBr	0.0222	102.89	2.282	2.248	0.021849332	
44		Na2B4O7 10H2O	0.03275	381.38	12.49	12.30	0.032262272	
45		CaCl2 2H2O	0.0115	147.012	1.684	1.659	0.011287504	
46		LiCI	0.0036	42.391	0.1544	0.1521	0.003588839	
47		MgCl2 6H2O	0.8471	203.306	172.2	169.7	0.834601767	
48		KCI	0.3876	74.55	28.90	28.47	0.38188916	
49		NaCl	2.559	58.44	149.6	147.3	2.521355513	
50		Total			388.282			·
51				-		(mixed)		
52		DI water			611.718	617.455738		
53					plus 15 g			
54					626.718			
55								
56	*	additional 15g of w						
57		all salts and water	must be mulit	plied by	<u>0.985221675</u>	to make 1 kg	brine.	

Information Only

molarity { sait wit cales (mes)

Brine companison (Aes)

כ	Srine".																							
-	jnesite in E																							
	Hydromag																							
5	(1999) "Kinetics and Mechanisms of Formation of Magnesite from Hydromagnesite in Brine"													JK (Oct memo) JK (May memo) ACS recreation		157	13.7	465	1.02	3.53	26.6	5.87		4 37
	ims of Formation					moles/L	3.073							JK (May memo)		158	14	467	1.02	3.53	26.6	5.86	177	
	ics and Mechanis			•.			Na or Cl							JK (Oct memo)		158	13.8	466	1.02	3.53	26.5	5.86	177	
<u>د</u>	(1999) "Kinet		FW (g/mol)	142.04	102.89	381.38	58.44	74.55	203 306	42.391	147.012			Zhang		158	13.8	467			26.6		178	4 48
<u>ر</u>				25.23										Molar	moles/L	0.1580	0.0138	0.4673	1.02	3.77	0.0266	5.61	0.1776	0.0045
	GWB recipe from Zhang et al.		Salt	Na2SO4	NaBr	Na2B407 10H2O	NaCI	KCI	MgCI2 6H2O	Lici	CaCl2 2H2O				lons	ш	Ca	У	Mg	Na	Br	Ö	SO4	
٢																								
-	- 0	v س	4	ഹ	9	7	8	თ	9	÷	12	13	14	15	16	17	18	19	20	21	22	23	24	25

nformation Only

32 of 32