

SAND91-0893/1 • UC-721 Unlimited Release Printed December 1991

SMLA LIBRARY

SAND91-089371 0022 UNCLASSIFIED

12/91 570P STAC

Preliminary Comparison with 40 CFR Part 191, Subpart B for the Waste Isolation Pilot Plant, December 1991

Volume 1: Methodology and Results

WIPP Performance Assessment Division

Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 for the United States Department of Energy under Contract DE-AC04-76DP00789

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from Office of Scientific and Technical Information PO Box 62 Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from National Technical Information Service US Department of Commerce 5285 Port Royal Rd Springfield, VA 22161

NTIS price codes Printed copy: A22 Microfiche copy: A01

PRELIMINARY COMPARISON WITH 40 CFR PART 191, SUBPART B FOR THE WASTE ISOLATION PILOT PLANT, DECEMBER 1991

VOLUME 1: METHODOLOGY AND RESULTS

WIPP Performance Assessment Division Sandia National Laboratories Albuquerque, New Mexico 87185

ABSTRACT

Before disposing of transuranic radioactive wastes at the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy must have a reasonable expectation that the WIPP will comply with the quantitative requirements of Subpart B of the United States Environmental Protection Agency's (EPA) Standard, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes. Sandia National Laboratories, through iterative performance assessments of the WIPP disposal system, is conducting an evaluation of the long-term performance of the WIPP that includes analyses for the Containment Requirements and the Individual Protection Requirements of Subpart B of the Standard. Recognizing that unequivocal proof of compliance with the Standard is not possible because of the substantial uncertainties in predicting future human actions or natural events, the EPA expects compliance to be determined on the basis of specified quantitative analyses and informed. qualitative judgment. Performance assessments of the WIPP will provide as detailed and thorough a basis as practical for the quantitative aspects of that decision.

The 1991 preliminary performance assessment is a snapshot of a system that will continue to evolve until a final compliance evaluation can be made. Results of the 1991 iteration of performance assessment are preliminary and are not suitable for final compliance evaluations because portions of the modeling system and data base are incomplete, conceptual model uncertainties are not fully included, final scenario probabilities remain to be determined, and the level of confidence in the results remains to be established. In addition, the final version of the EPA Standard, parts of which were remanded to the EPA in 1987 for further consideration, has not been promulgated. Results of the 1991 preliminary performance assessment do not indicate potential violations of Subpart B of the Standard and support the conclusion based on previous analyses, including the 1990 preliminary performance assessment, that reasonable confidence exists that compliance with Subpart B of the Standard can be achieved.

ACKNOWLEDGMENTS

The WIPP Performance Assessment Division is comprised of both Sandia and contractor employees working as a team to produce these annual preliminary comparisons with EPA regulations, assessments of overall long-term safety of the repository, and interim technical guidance to the program. The on-site team, affiliations, and contributions to the 1991 performance assessment are listed in alphabetical order:

	<u>Name</u>	<u>Affil.</u>	Primary	<u>Author of</u>	Area of Responsibility
			<u>Doc: Sect.</u>	<u>Major Cod</u>	<u>e</u>
R.	Anderson	SNL			Division Manager
Β.	Baker	TEC	V.2:§6.4		SEC02D, Hydrology, Office Manager
J.	Bean	UNM	V.2:§4.2.1		BRAGFLO & BOASTII, 2-Phase Flow
J.	Berglund	UNM	V.2:Ch.7	CUTTINGS	Task Ldr., Undisturbed
			Editor V.2		Repository, Cuttings/Cavings/ Engr. Mech.
W.	Beyeler	SAI	V.2:§5.3; 6.1:6.3	PANEL GARFIELD	Geostatistics, Analytical Models, CAMCON Systems Codes
К.	Brinster	SAI	,		Geohydrology, Concentual Models
R.	Blaine	ECO			SECO2D & CAMCON Systems Codes
Τ.	Blaine	EPE			Drilling Technology Exposure
_					Pathways Data
J.	Garner	API	V.2:§5.3	PANEL	Source Term, Sens. Anal.
Α.	Gilkey	UNM			CAMCON Systems Codes
L.	Gomez	SNL			Task Ldr., Safety Assessments
Μ.	Gruebel	TRI	V.1:Ch.1,2, 8,9,10		EPA Regulations
R.	Guzowski	SAI	V.1:Ch.4		Geology, Scenario Construction
J.	Helton	ASU	V.1:Ch.3,4	CCDFPERM	Task Ldr., Uncert./Sens. Anal
			V.2:Ch.2,3		Probability Models
Η.	Iuzzolino	GC	Editor V.3	CCDFPERM	LHS & CAMCON System Codes
R.	Klett	SNL			EPA Regulations
Ρ.	Кпирр	ECO			STAFF2D & SECOTR, Comp. Fluid
C.	Leigh	SNL		GENII-S	Exposure Pathways
М.	Marietta	SNL	Editor (Set))	Dep. Div. Manager. Tech. Coord
G.	de Marsily	UP	V.2:§6.2		Task Ldr., Geostatistics
R.	McCurley	UNM	V.2:§4.2.3		SUTRA & CAMCON System Codes
Α.	Peterson	SNL	Editor V.3		Task Ldr., Inventory
J.	Rath	UNM	V.2:§4.2.3		SUTRA, Engr. Mech.
R.	Rechard	SNL	Editor V.2		Task Ldr., CAMCON, OA, Ref. Data
			& V.3		
Ρ.	Roache	ECO	V.2:§6.4	SECO	Task Ldr., Comp. Fluid Dyn.
D.	Rudeen	UNM	V.2:§4.2.2; 6.5		STAFF2D, Transport
J.	Sandha	SAI	Editor V.3		INGRES, PA Data Base
J.	Schreiber	SAI	V.2:§4.2.1; 5.2.5		BRAGFLO & BOASTII, 2-Phase Flow
			EATLOL A'S		

Performance Assessment Division

Ρ.	Swift	TRI	V.1:Ch.5,11		Task Ldr., Geology, Climate Var.
Μ.	Tierney	SNL	Editor V.3		Task Ldr., CDF Constr.,
	2				Probability Models
К.	Trauth	SNL			Task Ldr., Expert Panels
Ρ.	Vaughn	API	V.2:§5.1;	BRAGFLO	Task Ldr., 2-Phase Flow & Waste
	0		5.2;5.2.5;		Panel Chemistry
			App.A		
J.	Wormeck	ECO	• •		Comp. Fluid Dyn. & Thermodyn.

The foundation of the annual WIPP performance assessment is the underlying data set and understanding of the important processes in the engineered and natural barrier systems. The SNL Nuclear Waste Technology Department is the primary source of these data and understanding. Assistance with the waste inventory comes from WEC and its contractors. We gratefully acknowledge the support of our departmental and project colleagues. Some individuals have worked closely with the performance assessment team, and we wish to acknowledge their contributions individually:

J.	Ball	ReS	Computer System Manager
Н.	Batchelder	WEC	CH & RH Inventories
R.	Beauheim	SNL	Natural Barrier System, Hydrologic Parameters
Β.	Butcher	SNL	Engineered Barrier System, Unmodified Waste-Form
			Parameters, Disposal Room Systems Parameters
L.	Brush	SNL	Engineered Barrier System, Source Term (Solubility) and Gas Generation Parameters
τ.,	Clements	ReS	Computer System Support
Т.	Corbet	SNL	Natural Barrier System, Geologic & Hydrologic
1.	001000	0.112	Parameters. Concentual Models
р	Davies	SNL.	Natural Barrier System Hydrologic & Transport
1.	Davieb	OND	Parameters & 2-Phase Flow Mechanistic Modeling
P	Drez	тт	CH & RH Inventories
ਾ 1 ਸ	Corbam	SNL	Natural Barrier System Fluid Flow & Transport
ь.	GOTHam	SIL	Parameters
c	Howarth	SNI	Natural Barrier System Hydrologic Parameters
р. р	Kohrman	WEC	CH & RH Waste Characterization
к. р	Lincoln	SNI	Project Integration
к. г	Mondonhall	SNL	Engineered Barrier System Unmedified Maste Form
г.	Mendennarr	SNL	Parameters Waste Panel Closure (Expansion)
р	Mungon	CNI	Performan Stratigraphy Constitutive Models Physical 6
D.	nunson	SINL	Mechanical Decomptorg
Ε.	Nowak	SNL	Shaft/Panel Seal Design, Seal Material Properties,
_	_		Reliability
J.	Orona	ReS	Computer System Support
J.	Tillerson	SNL	Repository Isolation Systems Parameters
S.	Webb	SNL	2-Phase Flow Sensitivity Analysis & Benchmarking
AP AS EC EP GC IT	<pre>I = Applied U = Arizona O = Ecodynam E = Epoch En = Geo-Cent = Internat S = ReSpec</pre>	Physics I State Uni ics Resea gineering ers Incor ional Tec	ncorporated SNL = Sandia National Laboratories versity TEC = Technadyne Engineering Consultants rch Associates TRI = Tech Reps, Inc. UNM = Univ. of New Mexico/New Mexico porated Engineering Research Institute hnology UP = University of Paris WEC = Westinghouse Electric Corporation
SA	I = Scientif	ic Applic	ations
	Interna	tional Co	rporation

Peer Review

Internal/Sandia

- T. Corbet
- D. Gallegos
- M. LaVenue
- S. Hora

Management/Sandia

- W. Weart
- T. Hunter

PA Peer Review Panel

- R. Heath, Chairman University of Washington
- R. Budnitz
 - Future Resources Associates, Inc. JK Research Associates, Inc.

University of Illinois

Ohio State University

University of California, Berkeley

- T. Cotton
- J. Mann
- T. Pigford
- F. Schwartz

Department of Energy

R. Becker

D. Hobart

F. Millero

J. Rhoderick

Expert Panels

Futures

М.	Baram	Boston University
W.	Bell	Yale University
G.	Benford	University of California, Irvine
D.	Chapman	The World Bank, Cornell University
Β.	Cohen	University of Pittsburgh
ν.	Ferkiss	Georgetown University
Τ.	Glickman	Resources for the Future
Τ.	Gordon	Futures Group
С.	Kirkwood	Arizona State University
Η.	Otway	Joint Research Center (Ispra), Los Alamos National Laboratory
Μ.	Pasqualetti	Arizona State University
D.	Reicher	Natural Resources Defense Council
N.	Rosenberg	Resources for the Future
М.	Singer	The Potomac Organization
Τ.	Taylor	Consultant
Μ.	Vinovski	University of Michigan
Sour	ce Term	
С.	Bruton	Lawrence Livermore National Laboratory
I-1	Ming Chou	U.S. Geological Survey

U.S. Geological Survey Los Alamos National Laboratory University of Miami

Retardation

R.	Dosch	Sandia	National	Laboratories
C.	Novak	Sandia	National	Laboratories
Μ.	Siegel	Sandia	National	Laboratories

Geostatistics Expert Group

G.	de Marsily, Chairman	U. of Paris
R.	Bras	Massachusetts Inst. of Tech.
J.	Carrera	U. Politechnica de Cataluña
G.	Dagan	Tel Aviv U.
Α.	Galli	Ecole des Mines de Paris
Α.	Gutjahr	New Mexico Tech.
D.	McLaughlin	Massachusetts Inst. of Tech.
S.	Neuman	U, of Arizona
Υ.	Rubin	U. of California, Berkeley

Report Preparation (TRI)

Editors:
Volume 1: M. Gruebel (text); S. Laundre-Woerner (illustrations)
Volume 2: D. Scott (text); D. Marchand (illustrations)
Volume 3: J. Chapman (text); D. Pulliam (illustrations)
D. Rivard, D. Miera, T. Allen, and the Word Processing Department
R. Rohac, R. Andree, and the Illustration and Computer Graphics
Departments
S. Tullar and the Production Department

J. Stikar (compilation of PA Peer Review Panel comments)

PREFACE

The Waste Isolation Pilot Plant (WIPP) is planned as the first mined geologic repository for transuranic (TRU) wastes generated by defense programs of the United States Department of Energy (DOE). Assessing compliance with the longterm performance criteria of Subpart B of the United States Environmental Protection Agency's (EPA) Standard, Environmental Radiation Protection Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR Part 191), is a cornerstone for the DOE's successful implementation of a TRU-waste disposal system.

This report (the 1991 Preliminary Comparison) is a preliminary version of the planned document, Comparison with 40 CFR Part 191, Subpart B for the Waste Isolation Pilot Plant (the Comparison). The 1991 Preliminary Comparison is the second in a series of annual "Performance Analysis and DOE Documentation" reports shown in the timing for performance assessment in the 1991 DOE report Strategy for the Waste Isolation Pilot Plant Test Phase (DOE/EM/48063-2). The Test Phase schedule and projected budget may change; if so, the schedule for the performance-assessment reports will also change. Where data and models are available, the text is a preview of the final report scheduled for 1996 (DOE/EM/48063-2). This report is a preview of the final Comparison only to the extent that the Standard, when repromulgated, is the same as the vacated 1985 Standard. This report treats the vacated Subpart B of the Standard as if it were still effective, because the DOE and the State of New Mexico have agreed that compliance evaluation will continue on that basis until a new Subpart B is promulgated. The approach to the Standard and the resultant methodology reported here do not reflect the EPA's efforts to develop a new Subpart B.

The 1991 Preliminary Comparison is based on last year's reports: the Preliminary Comparison with 40 CFR Part 191, Subpart B for the Waste Isolation Pilot Plant, December 1990 (SAND90-2347), Data Used in Preliminary Performance Assessment of the Waste Isolation Pilot Plant (1990) (SAND89-2408), and Sensitivity Analysis Techniques and Results for Performance Assessment at the Waste Isolation Pilot Plant (SAND90-7103). The 1991 Preliminary Comparison consists of four volumes. Volumes 2 (Probability and Consequence Modeling) and 3 (Reference Data) will be published in December 1991 with this volume (Methodology and Results). Volume 4 (Uncertainty and Sensitivity Analyses) will be published in March 1992.

Performance assessment is a dynamic process that relies on iterative simulations using techniques developed and data collected as work progresses. Neither the data base nor the models are fixed at this stage, and all aspects of the compliance-assessment system are subject to review as new information becomes available. Much of the modeling system described in this report will not change as the work progresses. Some of it will change, however, as problems are resolved and new models and data are incorporated into the system for use in subsequent simulations.

Vertical change bars in the right margins of Volume 1 of the 1991 Preliminary Comparison indicate changes from the text published in the single-volume 1990 Preliminary Comparison. Chapters 3 through 7 and Chapters 10 and 11 of the 1991 report, however, have been substantially revised or rewritten since the 1990 version and do not contain change bars. Chapters 3, 4, and 5 have been revised to reflect additions to the methodology and data used in evaluating the WIPP. Chapters 6 and 7 contain the results of the 1991 preliminary performance-assessment calculations. Chapters 10 and 11 discuss the 1991 results and summarize the status of the work to be completed to develop an adequate basis for evaluating compliance with Subpart B of the Standard.

Volumes 2, 3, and 4 do not contain change bars. Volume 2 is a compilation of essentially new material or material that was presented in a briefer form in 1990. Volume 3 is based on *Data Used in Preliminary Performance Assessment of the Waste Isolation Pilot Plant (1990)*, SAND89-2408, but contains numerous additions and refinements to the reference data base. Volume 4 reports the results of the uncertainty and sensitivity analyses for the 1991 calculations. Sensitivity analyses identify aspects of the modeling system that have the greatest potential to affect performance, thereby helping guide ongoing research. Because new data or new interpretations of existing data may change the conceptual models and/or the ranges and distributions of parameters throughout the life of the WIPP Project, sensitivity analyses are also iterative. Volume 4 is substantially revised and rewritten compared to the previous year's report, Sensitivity Analysis Techniques and Results for Performance Assessment at the Waste Isolation Pilot Plant, SAND90-7103.

Continuous publication of performance-assessment results as each new change is made is not feasible. As will be the case in subsequent *Preliminary Comparison* reports, results presented here reflect the improvements made during the previous year. The process is dynamic, however, and both the results and the description of the system are in part already out of date. In addition, data used in the 1991 performance assessment were accepted through July 1, 1991. This report presents a snapshot of a system that will continue to evolve until the final *Comparison* is complete.

The final *Comparison*, which will provide both quantitative and qualitative input to the determination of WIPP compliance with 40 CFR Part 191, Subpart B, will be without precedent as a completed performance evaluation for this type

of geologic repository. Therefore, careful planning is required to assure that the final *Comparison* will be adequate to support the determination of compliance. Coordination among the performance-assessment team at Sandia National Laboratories; the DOE WIPP Project Site Office (Carlsbad, New Mexico), WIPP Project Integration Office (Albuquerque, New Mexico), and Headquarters; the WIPP Panel of the National Research Council's Board on Radioactive Waste Management; the New Mexico Environment Department; the Environmental Evaluation Group; and the EPA is extremely important prior to preparation of the final *Comparison*. The draft of the final *Comparison* will be extensively reviewed prior to final publication. Responding to comments and revising the report will be necessary before the report can be published.

The 1991 DOE report Strategy for the Waste Isolation Pilot Plant Test Phase (DOE/EM/48063-2) outlines possible procedures that may be followed prior to the final determination of WIPP compliance. The DOE's decision process for the WIPP will involve all the activities necessary to document compliance with the applicable regulations, to complete the necessary institutional interactions, and to prepare a summary statement and recommendation for the Secretary of Energy upon which a final determination of compliance can be based. Additional documentation other than that required for compliance with Subpart B of 40 CFR Part 191 will be needed for the Resource Conservation and Recovery Act (RCRA), the National Environmental Policy Act (NEPA), and applicable Federal and State regulations. All of these documents will be reviewed by the cognizant DOE organizations whose concurrence is needed. The purpose of the review is to ensure that the analysis and documentation are adequate and appropriate to support the determination of compliance, to obtain the necessary permits and approvals, and to comply with DOE orders.

Once the process of documentation and review (both internal and external) has been completed, the DOE will prepare an internal summary report for the Secretary of Energy. This report will include a recommendation as to whether waste disposal at the WIPP should begin. Given a determination of compliance with the applicable regulations, a favorable record of decision on a new supplemental environmental impact statement, and a favorable readiness review, the Secretary will decide whether the WIPP should begin receiving TRU waste for permanent disposal. If land-withdrawal legislation mandates or the DOE signs with another agency a memorandum of understanding that provides for an independent certification of the DOE's compliance determination, the decision process will be amended.

This 1991 Preliminary Comparison provides an opportunity for interested parties to monitor the WIPP performance assessment and give constructive input for future annual iterations and the final Comparison.

CONTENTS

Χł	:001	IVESU	JMMART T
	INTE	RODUC	
	1.1	40 CF	R Part 191, The Standard (1985)
		1.1.1	Status of the Standard
		1.1.2	Subpart A
		1.1.3	Subpart B
			Controlled Area
			"Reasonable Expectation" of Compliance
	1.2	Appli	cation of Additional Regulations to the WIPP
		1.2.1	RCRA
		1.2.2	NEPA
	1.3	Orga	nization of the Comparison
	1.4	Desc	ription of the WIPP Project
		1.4.1	Mission
		1.4.2	Participants
		1.4.3	Physical Setting
			Geologic History of the Delaware Basin
			Stratigraphy and Geohydrology
		1.4.4	Repository/Shaft System
		1.4.5	Waste
			Waste Form
			Radionuclide Inventory
			Possible Modifications to Waste Form
	Syn	opsis	
	APF	PLICAT	ION OF SUBPART B TO THE WIPP
	2.1	Cont	ainment Requirements
		2.1.1	Performance Assessment
		2.1.2	Human Intrusion
		2.1.3	Release Limits
		2.1.4	Uncertainties
		2.1.5	Compliance Assessment
		2.1.6	Modifying the Requirements
	2.2	Assu	irance Requirements
	2.3	Indiv	idual Protection Requirements
	2.4	Grou	Indwater Protection Requirements
	Syr	nopsis.	
3.	PEI	RFORM	
	3.1	Con	ceptual Model for WIPP Performance Assessment
		3.1.1	
		3.1.2	Uncertainty in Risk
		3.1.3	Characterization of Uncertainty in Risk
		3.1.4	Risk and the EPA Limits

		3.1.5	Probability and Risk	3-2
	3.2	Defini	tion of Scenarios	3-3
		3.2.1	Definition of Summary Scenarios	3-3
		3.2.2	Definition of Computational Scenarios	3-3
	3.3	Deter	mination of Scenario Probabilities	3-3
		3.3.1	Probabilities for Summary Scenarios	3-3
		3.3.2	Probabilities for Computational Scenarios.	3-3
	3.4	Calcu	lation of Scenario Consequences	3-3
		3.4.1	Overview of Models	3-4
		3.4.2	Organization of Calculations for Performance Assessment	3-4
	3.5	Uncer	rtainty and Sensitivity Analysis	3-4
		3.5.1	Available Techniques	3-4
			Review of Techniques	3-4
			Relative Merits of Individual Techniques	3-4
			Monte Carlo as a Preferred Approach	3-5
		352	Monte Carlo Analysis	3-5
		0.0.2	Selection of Variable Banges and Distributions	3-5
			Generation of Sample	3-6
			Propagation of Sample Through Analysis	3-6
			Incortainty Analysis	3.6
			Sonsitivity Analysis	27
	Svn	oncie		200
4.	SCEI 4.1	NARIO Defin	S FOR COMPLIANCE ASSESSMENT	4 4
4.	SCEI 4.1	NARIO Defin	S FOR COMPLIANCE ASSESSMENT	4 4
4.	SCEI 4.1	NARIO Defin 4.1.1	S FOR COMPLIANCE ASSESSMENT ition of Scenarios Conceptual Basis for Scenario Development	4 4 4
4.	SCEI 4.1	NARIO Defin 4.1.1 4.1.2	S FOR COMPLIANCE ASSESSMENT ition of Scenarios Conceptual Basis for Scenario Development Definition of Summary Scenarios	4 4 4 4
4.	SCEI 4.1	NARIO Defin 4.1.1 4.1.2	S FOR COMPLIANCE ASSESSMENT ition of Scenarios Conceptual Basis for Scenario Development Definition of Summary Scenarios Identifying Events and Processes	4 4 4 4
4.	SCEI 4.1	NARIO Defin 4.1.1 4.1.2	S FOR COMPLIANCE ASSESSMENT ition of Scenarios Conceptual Basis for Scenario Development Definition of Summary Scenarios Identifying Events and Processes Classifying Events and Processes	4 4 4 4 4-1
4.	SCEI 4.1	NARIO Defin 4.1.1 4.1.2	S FOR COMPLIANCE ASSESSMENT ition of Scenarios Conceptual Basis for Scenario Development Definition of Summary Scenarios Identifying Events and Processes Classifying Events and Processes Screening Events and Processes	4 4 4 4 4-1 4-1
4.	SCEI 4.1	NARIO Defin 4.1.1 4.1.2 4.1.3	S FOR COMPLIANCE ASSESSMENT ition of Scenarios Conceptual Basis for Scenario Development Definition of Summary Scenarios Identifying Events and Processes Classifying Events and Processes Screening Events and Processes Evaluation of Natural Events and Processes	4 4 4 4 4-1 4-1 4-1
4.	SCEI 4.1	NARIO: Defin 4.1.1 4.1.2 4.1.3	S FOR COMPLIANCE ASSESSMENT. ition of Scenarios Conceptual Basis for Scenario Development Definition of Summary Scenarios Identifying Events and Processes Classifying Events and Processes Screening Events and Processes Evaluation of Natural Events and Processes Meteorite Impact.	4 4 4 4-1 4-1 4-1 4-1
4.	SCEI 4.1	NARIO Defin 4.1.1 4.1.2 4.1.3	S FOR COMPLIANCE ASSESSMENT	4 4 4 4-1 4-1 4-1 4 4
4.	SCEI 4.1	NARIO Defin 4.1.1 4.1.2 4.1.3	S FOR COMPLIANCE ASSESSMENT ition of Scenarios Conceptual Basis for Scenario Development Definition of Summary Scenarios Identifying Events and Processes Classifying Events and Processes Screening Events and Processes Screening Events and Processes Evaluation of Natural Events and Processes Meteorite Impact Erosion/Sedimentation Glaciation	4 4 4 4-1 4-1 4-1 4-1 4-1 4-1
4.	SCEI 4.1	NARIO: Defin 4.1.1 4.1.2 4.1.3	S FOR COMPLIANCE ASSESSMENT	4 4 4 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4-1
4.	SCEI 4.1	NARIO Defin 4.1.1 4.1.2	S FOR COMPLIANCE ASSESSMENT ition of Scenarios Conceptual Basis for Scenario Development Definition of Summary Scenarios Identifying Events and Processes Classifying Events and Processes Screening Events and Processes Screening Events and Processes Evaluation of Natural Events and Processes Meteorite Impact Erosion/Sedimentation	4 4 4 4-1 4-1 4 4 4 4 4 4 4-
4.	SCEI 4.1	NARIO Defin 4.1.1 4.1.2 4.1.3	S FOR COMPLIANCE ASSESSMENT ition of Scenarios Conceptual Basis for Scenario Development Definition of Summary Scenarios Identifying Events and Processes Classifying Events and Processes Screening Events and Processes Evaluation of Natural Events and Processes Meteorite Impact Erosion/Sedimentation	4 4 4 4 4-1 4-1 4-1 4 4 4 4 4
4.	SCEI 4.1	VARIO Defin 4.1.1 4.1.2 4.1.3	S FOR COMPLIANCE ASSESSMENT ition of Scenarios Conceptual Basis for Scenario Development Definition of Summary Scenarios Identifying Events and Processes Classifying Events and Processes Screening Events and Processes Screening Events and Processes Evaluation of Natural Events and Processes Meteorite Impact Erosion/Sedimentation Glaciation Pluvial Periods Sea-Level Variations Hurricanes Seiches	4 4 4 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4-
4.	SCEI 4.1	NARIO: Defin 4.1.1 4.1.2	S FOR COMPLIANCE ASSESSMENT ition of Scenarios Conceptual Basis for Scenario Development Definition of Summary Scenarios Identifying Events and Processes Classifying Events and Processes Screening Events and Processes Screening Events and Processes Evaluation of Natural Events and Processes Meteorite Impact Erosion/Sedimentation Glaciation Pluvial Periods Sea-Level Variations Hurricanes Seiches Tsunamis	4 4 4 4 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4-1
4.	SCEI 4.1	NARIO Defin 4.1.1 4.1.2	S FOR COMPLIANCE ASSESSMENT ition of Scenarios Conceptual Basis for Scenario Development Definition of Summary Scenarios Identifying Events and Processes Classifying Events and Processes Screening Events and Processes Screening Events and Processes Evaluation of Natural Events and Processes Meteorite Impact Erosion/Sedimentation Glaciation Pluvial Periods Sea-Level Variations Hurricanes Seiches Tsunamis Regional Subsidence or Uplift	4 4 4 4 4-1 4-1 4 4 4 4 4 4
4.	SCEI 4.1	VARIO Defin 4.1.1 4.1.2 4.1.3	S FOR COMPLIANCE ASSESSMENT ition of Scenarios Conceptual Basis for Scenario Development Definition of Summary Scenarios Identifying Events and Processes Classifying Events and Processes Screening Events and Processes Evaluation of Natural Events and Processes Meteorite Impact Erosion/Sedimentation Glaciation Pluvial Periods Sea-Level Variations Hurricanes Seiches Tsunamis Regional Subsidence or Uplift Mass Wasting	4 4 4 4 4-1 4-1 4-1 4 4 4 4 4
4.	SCEI 4.1	VARIO Defin 4.1.1 4.1.2 4.1.3	S FOR COMPLIANCE ASSESSMENT. ition of Scenarios. Conceptual Basis for Scenario Development. Definition of Summary Scenarios. Identifying Events and Processes. Classifying Events and Processes. Screening Events and Processes. Evaluation of Natural Events and Processes. Meteorite Impact. Erosion/Sedimentation. Glaciation. Pluvial Periods. Sea-Level Variations. Hurricanes. Seiches Tsunamis. Regional Subsidence or Uplift. Mass Wasting. Flooding.	4 4 4 4 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4-1
4.	SCEI 4.1	NARIO Defin 4.1.1 4.1.2	S FOR COMPLIANCE ASSESSMENT ition of Scenarios Conceptual Basis for Scenario Development Definition of Summary Scenarios Identifying Events and Processes Classifying Events and Processes Screening Events and Processes Evaluation of Natural Events and Processes Evaluation of Natural Events and Processes Meteorite Impact. Erosion/Sedimentation Glaciation Pluvial Periods Sea-Level Variations Hurricanes Seiches Tsunamis Regional Subsidence or Uplift Mass Wasting Flooding Diapirism	4 4 4 4 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4-1
4.	SCEI 4.1	VARIO Defin 4.1.1 4.1.2 4.1.3	S FOR COMPLIANCE ASSESSMENT	4 4 4 4 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4-1
4.	SCEI 4.1	VARIO Defin 4.1.1 4.1.2 4.1.3	S FOR COMPLIANCE ASSESSMENT ition of Scenarios Conceptual Basis for Scenario Development Definition of Summary Scenarios Identifying Events and Processes Classifying Events and Processes Screening Events and Processes Screening Events and Processes Evaluation of Natural Events and Processes Meteorite Impact. Erosion/Sedimentation Glaciation Pluvial Periods Sea-Level Variations Hurricanes Seiches Tsunamis Regional Subsidence or Uplift Mass Wasting Flooding. Diapirism Seismic Activity. Volcanic Activity	4 4 4 4 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4-1
4.	SCEI 4.1	VARIO Defin 4.1.1 4.1.2 4.1.3	S FOR COMPLIANCE ASSESSMENT ition of Scenarios Conceptual Basis for Scenario Development Definition of Summary Scenarios Identifying Events and Processes Classifying Events and Processes Screening Events and Processes Evaluation of Natural Events and Processes Meteorite Impact. Erosion/Sedimentation Glaciation Pluvial Periods Sea-Level Variations Hurricanes Seiches Tsunamis. Regional Subsidence or Uplift Mass Wasting Flooding Diapirism Seismic Activity. Volcanic Activity Magmatic Activity.	4 4 4 4 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4-1
4.	SCEI 4.1	VARIO Defin 4.1.1 4.1.2 4.1.3	S FOR COMPLIANCE ASSESSMENT ition of Scenarios. Conceptual Basis for Scenario Development Definition of Summary Scenarios. Identifying Events and Processes. Classifying Events and Processes. Screening Events and Processes. Evaluation of Natural Events and Processes. Evaluation of Natural Events and Processes. Meteorite Impact. Erosion/Sedimentation. Glaciation. Pluvial Periods. Sea-Level Variations. Hurricanes. Seiches. Tsunamis. Regional Subsidence or Uplift. Mass Wasting. Flooding. Diapirism. Seismic Activity Volcanic Activity Magmatic Activity. Formation of Dissolution Cavities.	4 4 4 4 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4-

		Shallow Dissolution	4-25
		Summary of Screening of Dissolution	4-28
		Formation of Interconnected Fracture Systems	4-28
		Faulting	4-29
	4.1.4	Evaluation of Human-Induced Events and Processes	4-30
		Explosions	4-30
		Drilling	4-32
		Mining	4-34
		Injection Wells	4-35
		Withdrawal Wells	4-37
		Water Wells	4-37
		Oil and Gas Wells	4-38
		Geothermal Wells	4-39
		Summary of Withdrawal Wells	4-39
		Irrigation	4-39
		Damming of Streams and Rivers	4-41
	4.1.5	Evaluation of Repository- and Waste-Induced Events and Processes	4-42
		Caving and Subsidence	4-43
		Shaft and Borehole Seal Degradation	4-49
		Thermaliv induced Stress Fracturing in Host Rock	4-50
		Excavation-Induced Stress Eracturing in Host Rock	4.50
		Gas Generation	4-51
		Explosions	4-52
		Nuclear Criticality	4.52
	416	Summary of Screened Events and Processes	4-54
	4.1.7	Developing Summary Scenarios	4-58
		Screening Scenarios	4-59
		Descriptions of Betained Scenarios	4-62
		Undisturbed Performance Summary Scenario (Base Case Sp)	4-62
		Base-Case Summary Scenario	4-63
		Belease at a Livestock Pond	4-66
		Human-Intrusion Summary Scenarios	4-67
		Intrusion Borehole into a Boom or Drift (Summary Scenario F^2)	4-07
		Intrusion Borehole through a Boom or Drift into Pressurized Brine	4-07
		in the Castile Formation (Summary Scenario F1)	4-70
		Intrusion Borehole through a Boom or Drift into Pressurized Brine	4-70
		in the Castile Formation and Another Intrusion Borehole	
		into the Same Panel (Summary Scenario $E1E2$)	4-70
	418	Definition of Computational Scenarios	1 72
12	Deter	mination of Scenario Brobabilities	4-73
7.2	121	Probabilities for Summary Sconarios	4-13
	4.2.1	Probabilities for Computational Scenarios	4-75
12	4.2.2 Expo	t Judament on Inadvertent Human Intrusion	4-70
4.3	421	Principles of Expert Judgment Elicitation	4-79
	4.J.I 120	Frinciples of Expert-subgriteric Elicitation	4-80
	4.J.Z	Expert Judgment Elicitation	4-80
	4.3.3	Expert-Juoynen Elicitation	4-81
	4.3.4	Poeton Teom	4-82
			4-82

			Southwest Team	
			Washington A Team	
			Washington B Team	
	Syno	opsis	-	
_	<u> </u>			
5.	CON			
	5.1	Ine N	latural Barrier System	
		5.1.1	Regional Geology	
		5.1.2	Stratigraphy	
			Bell Canyon Formation	
			Capitan Limestone	
			Castile Formation	
			Salado Formation	
			Rustler-Salado Contact Zone	
			Rustler Formation	
			The Unnamed Lower Member	
			Culebra Dolomite Member	
			Tamarisk Member	
			Magenta Dolomite Member	
			Forty-niner Member	
			Supra-Rustler Rocks	
		5.1.3	Climate	
		5.1.4	Paleoclimates and Climatic Variability	
		515	Surface Water	
		516	The Water Table	
		517	Regional Water Balance	
		510	Groundwater Flow above the Selede Formation	
		5.1.0	Botontiometria Surfaces	
			Croundwater Casabamietry	
			Groundwater Geochemistry	
			Recharge and Discharge	
		5.1.9	The Culebra Dolomite Groundwater Flow and Transport Models	
			Regional and Local Model Domains for Groundwater Flow	
			Uncertainty in the Transmissivity Field	
			Modeling the Effects of Climatic Change	
			Radionuclide Transport in the Culebra Dolomite	
	5.2	The E	Engineered Barrier System	
		5.2.1	The Salado Formation at the Repository Horizon	
		5.2.2	Repository and Seal Design	
			Waste Characterization	
			Seals	
			Backfill	
			Engineered Alternatives	
		5.2.3	The Radionuclide Inventory	
		5.24	Radionuclide Solubility and the Source Term for Transport Calculations	
		525	Performance-Assessment Model for the Repository/Shaft System	
		0.2.0	Closure Flow and Room (Waste Interactions	
			Modeling of Lindisturbed Performance	
			Modeling of Disturbed Performance	
			Modeling of Disturbed Performance	

	5 0	Modeling of Radionuclide Releases during a Borehole Intrusion	5-59
	5.3	CAMCON: Controller for Compliance-Assessment System	5-62
		5.3.1 Data Dases	5-64
	Svn		5-00
	Syn	uhaia	5-73
6.	CON	ITAINMENT REQUIREMENTS	6-1
	6.1	Conceptual Model for Risk	6-2
	6.2	Scenarios Included and Probability Estimates	6-2
	6.3	Imprecisely Known Parameters	6-5
	6.4	Sample Generation	6-8
	6.5	Consequence Modeling	6-8
	6.6	1991 Performance Assessment CCDFs	6-12
	Syn	opsis	6-17
7.	IND	IVIDUAL PROTECTION REQUIREMENTS	7-1
	7.1	Previous Studies	7-1
		7.1.1 Evaluation Prior to the 1985 Standard (1980 FEIS)	7-2
		7.1.2 Dose Estimates (Lappin et al., 1989)	7-2
		7.1.3 1989 Methodology Demonstration	7-2
		7.1.4 Sensitivity Analyses (Rechard et al., 1990)	7-3
		7.1.5 Dose Estimates (Lappin et al., 1990)	7-3
		7.1.6 1990 Preliminary Comparison	7-4
	7.2	Results of the 1991 Preliminary Comparison	7-4
	Syn	opsis	7-6
۵	A99		0.1
0.	0 1	Active Institutional Controle	0-1
	0.1	Disposal System Monitoring	0-1
	0.2	Disposal System Monitoring	8-2
	0.3	Passive Institutional Controls	8-2
		0.0.1 Falssive Markers	8-2
		8.3.2 Federal Ownership	8-4
	~ -	8.3.3 Records	8-4
	8.4		8-5
	8.5	Natural Resources	8-5
	8.6	Waste Removal	8-10
	Syn	opsis	8-10
9.	GR	OUNDWATER PROTECTION REQUIREMENTS	9-1
	9.1	Criteria for Special Sources of Groundwater	9-1
		9.1.1 Drinking Water Supply	9-4
		9.1.2 Alternative Source of Drinking Water	9-5
	Syn	lopsis	9-5

10.	CON	IPARISON TO THE STANDARD	10-1
	10.1	Containment Requirements (§ 191.13)	10-1
	10.2	Assurance Requirements (§ 191.14)	10-2
		10.2.1 Active Institutional Controls (§ 191.14(a))	10-2
		10.2.2 Disposal System Modeling (§ 191.14(b))	10-3
		10.2.3 Passive Institutional Controls (§ 191.14(c))	10-3
		10.2.4 Multiple Barriers (§ 191.14(d))	10-4
		10.2.5 Natural Resources (§ 191.14(e))	10-5
		10.2.6 Waste Removal (§ 191.14(f))	10-5
	10.3	Individual Protection Requirements (§ 191.15)	10-6
	10.4	Groundwater Protection Requirements (§ 191.16)	10-6
	10.5	Formal Comparison to the Standard	10-7
11.	STA	TUS	11-1
	11.1	Current Status of the Compliance-Assessment System	11-1
		11.1.1 Compliance-Assessment Models	11-1
		11.1.2 The Compliance-Assessment Data Base	11-2
		11.1.3 Summary of the Status of the Compliance-Assessment System	11-3
		11.1.4 The Role of Sensitivity Analyses in Evaluating Status	11-10
RE	FERE	NCES	R-1
AP	PENI	DIX A: Title 40, Code of Federal Regulations, Subchapter F, Part 191	A-1
AP	PENI	DIX B: Response to Review Comments	B-1
WI	PP Pe	erformance Assessment Bibliography	Bib-1
GL	oss	ARY	G-1
NC	MEN	CLATURE	N-1

FIGURES

Figure		Page
1-1	Graphical Representation of 40 CFR Part 191 Environmental Standards for Management and Disposal of Spent Fuel, High-Level, and Transuranic Waste	1-2
1-2	Position of the WIPP Waste Panels Relative to WIPP Boundaries and Surveyed Section Lines	1-5
1-3	Artist's Concept Showing the Two Components of the WIPP Disposal System: Controlled Area and Repository/Shaft System	1-7
1-4	WIPP Location Map	1-14
1-5	Generalized WIPP Stratigraphy	1-16
1-6	Topographic Map of the WIPP Area	1-17/18
1-7	Map of the WIPP Area, Showing Physiographic Features	1-19
1-8	Location of the WIPP in the Delaware Basin	1-21
1-9	Proposed WIPP Repository, Showing Both TRU-Waste Disposal Areas and Experimental Areas	1-26
2-1	Hypothetical CCDF Illustrating Compliance with the Containment Requirements	2-10
3-1	Estimated CCDF for Consequence Result cS	3-3
3-2	Estimated CCDF for Consequence Result cS Including Vertical Lines at the Discontinuities	3-4
3-3	Illustration of Hypothetical CCDF for Summed Normalized Release for Containment Requirements	3-6
3-4	Example Distribution of CCDFs Obtained by Sampling Imprecisely Known Variables	3-10
3-5	Example Determination of Mean and Percentile Values for cS = 1 in Figure 3-4	3-11
3-6	Example Summary Curves Derived from an Estimated Distribution of CCDFs	3-12
3-7	Example of Mean and Percentile Curves Obtained with Two Independently Generated Samples for the Results Shown in Figure 3-4	3-14
3-8	Example Confidence Bands for CCDFs	3-15
3-9	Hypothetical Distribution of CCDFs for Comparison with the Containment Requirements	3-21
3-10	Mean and Percentile Curves for the Example Distribution of CCDFs Shown in Figure 3-9	3-22

3-11	Hypothetical Distribution of CCDFs Generated for Comparison with the Containment Requirements in Which the Scenario Probabilities Are the Same for All Sample Elements
3-12	Mean and Percentile Curves for the Example Distribution of CCDFs Shown in Figure 3-11
3-13	Construction of Mean CCDF from Conditional CCDFs
3-14	Example Use of Logic Diagram to Construct Summary Scenarios
3-15	Models Used in 1991 WIPP Performance Assessment
3-16	Distribution Function for an Imprecisely Known Analysis Variable
3-17	Estimated Distribution Function for an Imprecisely Known Analysis Variable
3-18	Illustration of Random Sampling, Stratified Sampling, and Latin Hypercube Sampling for a Sample of Size 10 from Two Uniformly Distributed Variables
3-19	Overview of CAMCON
3-20	Example of an Estimated Distribution Function
3-21	Example Uncertainty Display Including Estimated Distribution Function, Density Function, and Mean
3-22	Example of Box Plots
3-23	Example Scatterplot
3-24	Example of Partial Correlation Coefficients (PCCs) and Standardized Regression Coefficients (SRCs) Plotted as a Function of Time for Raw and Rank-Transformed Data
3-25	Example Sensitivity Analysis for the CCDFs in Figure 3-4
4-1	Decomposition of the Sample Space S into High-Level Subsets
4-2	Construction of a CCDF for Comparison with the EPA Release Limits
4-3	Cross-Sectional Areas of Subsidence Over Waste Panels
4-4	Example of a Logic Diagram with Two Events Affecting Release (R) from a Repository and Three Events Affecting Transport (T) to the Accessible Environment for the Construction of Scenarios, Illustrating Scenario Probability Assignment
4-5	Potential Scenarios for the WIPP Disposal System
4-6	Conceptual Model Used in Simulating Undisturbed Performance
4-7	Conceptual Model for Scenario E2
4-8	Conceptual Model for Scenario E1
4-9	Conceptual Model for Scenario E1E2

4-10	Scenario Probability Estimate Based on Guzowski
4-11	Scenario Probability Estimate Based on Marietta et al.
5-1	Generalized Geology of the Delaware Basin, Showing the Location of the Capitan Reef and the Erosional Limits of the Basinal Formations
5-2	Geologic Time Scale
5-3	Stratigraphy of the Delaware Basin
5-4	Schematic East-West Cross Section through the Northern Delaware Basin
5-5	Schematic North-South Cross Section through the Northern Delaware Basin
5-6	Map of the WIPP Vicinity Showing the Proposed Land-Withdrawal Area, the Study Area of Brinster, and the Location of Observation Wells
5-7	East-West Cross Section Showing Stratigraphy of the Rustler Formation and the Dewey Lake Red Beds
5-8	Rustler Formation Halite and Culebra Dolomite Transmissivity around the WIPP
5-9	Log Hydraulic Conductivities of the Culebra Dolomite Member of the Rustler Formation
5-10	Log Hydraulic Conductivities of the Magenta Dolomite Member of the Rustler Formation
5-11	Estimated Mean Annual Precipitation at the WIPP during the Late Pleistocene and Holocene
5-12	Adjusted Potentiometric Surface of the Rustler-Salado Residuum in the WIPP Vicinity
5-13	Adjusted Potentiometric Surface of the Culebra Dolomite Member of the Rustler Formation in the WIPP Vicinity
5-14	Adjusted Potentiometric Surface of the Magenta Dolomite Member of the Rustler Formation in the WIPP Vicinity
5-15	Hydrochemical Facies in the Culebra Dolomite Member of the Rustler Formation
5-16	Regional and Local Domains Used for Simulations of Groundwater Flow and Transport
5-17	Schematic Cross Section of Salado Formation Stratigraphy at the Waste-Disposal Horizon
5-18	Plan View of Waste-Disposal Horizon Showing Shaft, Drift, and Panel Seal Locations
5-19	Representative Shaft and Plug Seals
5-20	Hypothesized Episodes in Disposal Area During Undisturbed Conditions
5-21	Hypothesized Episodes in Disposal Area After Human Intrusion

5-22	Two-Dimensional Repository Models Used for STAFF2D and SUTRA Estimations of Radionuclide Transport during Undisturbed Conditions	5-57
5-23	Simplified Waste-Disposal Panel Model Used in Two-Dimensional, Axially Symmetric BRAGFLO Simulations of Two-Phase (Brine and Gas) Flow	5-58
5-24	Conceptual Model of Borehole Intrusion	5-61
5-25	Borehole Erosion as a Function of Shear Stress	5-63
5-26	Organization of Programs in CAMCON	5-66
6-1	Family of CCDFs Showing Total Cumulative Normalized Releases to the Accessible Environment Resulting from Both Groundwater Transport in the Subsurface and Releases at the Surface during Drilling	6-13
6-2	Mean, Median, 10th, and 90th Percentile CCDFs Derived from the Family of CCDFs Shown in Figure 6-1	6-14
6-3	Family of CCDFs Showing Cumulative Normalized Releases to the Accessible Environment Resulting from Groundwater Transport in the Subsurface	6-15
6-4	Mean and 90th Percentile CCDFs Derived from the Family of CCDFs Shown in Figure 6-3	6-16
8-1	Control Zones at the WIPP	8-6
9-1	Illustration of Certain Definitions	9-2

TABLES

Table		Page
1-1	Major Stratigraphic Divisions, Southeastern New Mexico	1-22
2-1	Techniques for Assessing or Reducing Uncertainty in the WIPP Performance Assessment	2-9
3-1	Release Limits for the Containment Requirements	3-18
3-2	Probabilities for Combinations of Intrusions Over 10,000 Yrs for $\lambda = 0$ from 0 to 100 Yrs, $\lambda = 3.28 \times 10^{-4} \text{ Yr}^{-1}$ from 100 to 10,000 Yrs	3-39
3-3	Summary of Computer Models Used in the 1991 WIPP Performance Assessment	3-44
3-4	Sources of Additional Information on Uncertainty and Sensitivity Analysis	3-49
4-1	Potentially Disruptive Events and Processes	4-11
4-2	Summary of Screened Events and Processes	4-55
4-3	Activity Levels and Associated Probabilities Used in 1991 WIPP Performance Assessment	4-79
5-1	September 1991 Status of Composite Programs in CAMCON	5-67
6-1	Assumptions Used to Define Computational Scenarios for Results Reported in This Chapter	6-5
6-2	List of Parameters Sampled for the 1991 Preliminary Comparison	6-6
6-3	Partial List of Assumptions Made in Consequence Modeling for Results Reported in This Chapter	6-9
8-1	Summary of Hydrocarbon Resources at the WIPP	8-8
8-2	Summary of Potash Resources at the WIPP	8-9
11-1	Completeness of Technical Bases for Performance Assessment with Regard to 40 CFR 191, Subpart B, Conditional on 1991 Compliance-Assessment System and As-Received Waste	11-4

EXECUTIVE SUMMARY

6 The Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, is a research and development project of the United States Department of Energy 6 The WIPP is designed to be the first mined geologic repository to 7 (DOE). demonstrate the safe disposal of transuranic (TRU) radioactive wastes 8 generated by DOE defense programs since 1970. Before disposing of 9 radioactive waste at the WIPP, the DOE must have a reasonable expectation 10 that the WIPP will comply with the quantitative requirements of Subpart B of 11 the United States Environmental Protection Agency's (EPA) Environmental 12 Radiation Protection Standards for Management and Disposal of Spent Nuclear 13 Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR Part 191, U.S. 14 15 EPA, 1985), referred to in this report as the Standard. Comparing the longterm performance of the WIPP disposal system with the quantitative 16 requirements of the Standard will help determine whether the disposal system 17 will provide safe disposal of radionuclides. 18

19

1 2 3

Performance assessment as defined for the Containment Requirements of Subpart 20 21 B of the Standard means an analysis that identifies the processes and events 22 that might affect the disposal system, examines the effects of these processes and events on the performance of the disposal system, and estimates 23 24 the cumulative releases of radionuclides, considering the associated uncertainties, caused by all significant processes and events (§ 191.12(q)). 25 As used in this report, performance assessment includes analyses for 26 27 predicting doses as well as the definition in the Standard, because the 28 methodology developed for predicting releases for the Containment Requirements can be used for predicting doses for the Individual Protection 29 30 Requirements.

31

Recognizing that unequivocal proof of compliance with the Standard is not 32 possible because of the substantial uncertainties in predicting future human 33 actions or natural events, the EPA expects compliance to be determined on the 34 35 basis of specified quantitative analyses and informed, qualitative judgment. Performance assessments of the WIPP will provide as detailed and thorough a 36 basis as practical for the quantitative aspects of that decision. 37 Performance assessments will provide quantitative, probabilistic analyses of 38 disposal-system performance for comparison with the regulatory limits. 39 However, the three quantitative requirements in Subpart B specify that the 40 41 disposal system design must provide a <u>reasonable expectation</u> that the various quantitative tests can be met. Specifically, the qualitative nature of the 42 EPA's approach is established in the Containment Requirements of the 43 Standard: what is required is a reasonable expectation, on the basis of the 44 record before the DOE, that compliance with the Containment Requirements will 45 be achieved. 46

47

Sandia National Laboratories (SNL), as the scientific program manager for the 1 WIPP, is responsible for developing an understanding of the processes and 2 systems that affect long-term isolation of wastes in the WIPP and applying 3 that understanding to evaluation of the long-term WIPP performance and 4 compliance with the Standard. SNL defines and implements experiments both in 5 the laboratory and at the WIPP, develops and applies models to interpret the 6 experimental data, and develops and applies performance-assessment models. 7 This report summarizes SNL's late-1991 understanding of the WIPP Project's 8 ability to quantitatively evaluate compliance with the long-term performance 9 requirements set by Subpart B of the Standard. It documents one in a series 10 of annual iterations of performance assessment: each iteration builds on the 11 previous year's work until a final, defensible compliance evaluation can be 12 made. Results of this preliminary performance assessment should not be 13 formally compared to the requirements of the Standard to determine whether 14 the WIPP disposal system complies with Subpart B. The disposal system is not 15 adequately characterized, and necessary models, computer programs, and data 16 bases are incomplete. Furthermore, Subpart B of the Standard was vacated in 17 1987 by a Federal Court of Appeals and remanded to the EPA for 18 reconsideration. 19

20

Instead of presenting a formal compliance evaluation, this report examines 21 the adequacy of the available information for producing a comprehensive 22 comparison to the Containment Requirements and the Individual Protection 23 Requirements of the 1985 Standard, in keeping with the Consultation and 24 Cooperation Agreement (as modified) between the DOE and the State of New 25 Mexico. Defensibility of the compliance evaluation ultimately will be 26 determined in part by qualitative judgment, on the basis of the record before 27 the DOE, regarding reasonable expectations of compliance, assuming that 28 concept is retained by the EPA in repromulgating Subpart B. 29 30

Adequate documentation and independent peer review are essential parts of a performance assessment, without which informed judgments of the suitability of the WIPP as a waste repository are not possible. An extensive effort is being devoted to documenting and peer reviewing the WIPP performance assessment and the supporting research, including techniques, models, data, and analyses.

37 38

39 40

Compliance-Assessment Overview

A performance assessment must determine the events that can occur, the likelihood of these events, and the consequences of these events. The WIPP performance assessment is, in effect, a risk assessment. Risk can be represented as a set of ordered triples. The first element in each triple describes things that may happen to the disposal system in the future (i.e., the scenarios). The second element in each triple describes how likely these things are to happen (i.e., scenario probability). The third element in each triple describes the consequences of the occurrences associated with the first element (i.e., EPA normalized releases of radionuclides to the accessible environment).

An infinite number of possible 10,000-year histories of the WIPP exist. 7 These possible histories are grouped into summary scenarios for probability 8 assignment and consequence analysis. To increase resolution in the 9 evaluation, the summary scenarios involving human intrusion into the 10 repository are further decomposed into computational scenarios. For the 1991 11 performance assessment, computational scenarios are distinguished by the time 12 and number of intrusions, whether or not a brine reservoir is encountered 13 below the waste, and the activity level of waste intersected. Probabilities 14 are based on the assumption that intrusion boreholes are random in time and 15 space (Poisson process) with a rate constant that is sampled as an uncertain 16 parameter in the 1991 calculations. 17

18

32

6

The models used in the WIPP performance assessment exist at four different 19 levels. Conceptual models characterize the understanding of the system. An 20 adequate conceptual model is essential both for the development of the 21 possible 10,000-year histories for the WIPP and for the division of these 22 possible histories into the summary scenarios. Mathematical models are 23 24 developed to represent the processes of the conceptual model. The mathematical models are predictive in the sense that, given known properties 25 26 of the system and possible perturbations to the system, they project the response of the system conditional on modeling assumptions made during 27 development. Numerical models are developed to provide approximations to the 28 solutions of the mathematical models. Computer models implement the 29 numerical models and actually predict the consequences of the occurrences 30 31 associated with the scenarios.

As uncertainties will always exist in the results of a performance 33 assessment, the impact of these uncertainties must be characterized and 34 displayed. Thus, sensitivity and uncertainty analyses are an important part 35 of a performance assessment. Sensitivity analysis determines the importance 36 of specific components or subsystems to the results of the consequence 37 analyses. Uncertainty analysis determines how imprecise knowledge about the 38 disposal system affects confidence in the results of the consequence 39 analysis. Uncertainty in the results of the risk analysis may result from 40 the completeness of the occurrences considered, the aggregation of the 41 occurrences into scenarios for analysis, the selection of models (at all four 42 levels above) and imprecisely known parameters for use in the models, and 43 stochastic variation in future occurrences. 44 45

Many techniques are available for uncertainty and sensitivity analysis. 1 The WIPP performance assessment uses Monte Carlo analysis techniques. A Monte 2 Carlo analysis involves five steps: selection of variable ranges and 3 distributions; generation of a sample from the parameter value distributions; 4 propagation of the sample through the analysis; analysis of the uncertainty 5 in results caused by variability in the sampled parameters; and sensitivity 6 analyses to identify those parameters for which variability in the sampled 7 value had the greatest effect on the results. 8

No single summary measure can adequately display all the information produced 10 in a performance assessment. Thus, decisions on the acceptability of the 11 12 WIPP should be based on a careful consideration of all available information rather than on a single summary measure. Complementary cumulative 13 distribution functions (CCDFs) are used to display information on scenario 14 probability and consequence. Uncertainty resulting from imprecisely known 15 parameter values results in a family of CCDFs. Conceptual model uncertainty 16 has not yet been adequately addressed in any performance assessment but could 17 be included through the set of imprecisely known variables or by separate 18 performance assessments for each alternative conceptual model. This will be 19 addressed in future annual performance assessments. Variability in the 20 family of CCDFs can be displayed by showing the entire family or by showing 21 the mean and selected quantile curves. For human-intrusion scenarios of WIPP 22 performance, CCDFs will be compared to the limits set in the Containment 23 24 Requirements of the Standard.

25

9

26

27 28

Results

As previously indicated, compliance with the Containment Requirements will be 29 evaluated using a family of CCDF curves that graph exceedance probability 30 versus cumulative radionuclide releases for all significant scenarios. All 31 results are preliminary and are not suitable for final compliance evaluations 32 because portions of the modeling system and data base are incomplete, 33 conceptual model uncertainties are not fully included, final scenario 34 probabilities remain to be determined, the final version of the EPA Standard 35 has not been promulgated, and the level of confidence in the results remains 36 to be established. Uncertainty analyses required to establish the level of 37 38 confidence in results will be included in future performance assessments as advances permit quantification of uncertainties in the modeling system and 39 the data base. 40

41

42 Simulations of undisturbed performance indicate zero releases to the
43 accessible environment in the 10,000 years of regulatory concern for the
44 Containment Requirements. Because no releases are estimated to occur in the
45 10,000-year regulatory period for undisturbed performance, the base-case

summary scenario is not analyzed, but it is included in CCDF construction
 through its estimated probability and zero consequences.

3

For the 1991 performance assessment, the factors used to define the 4 computational scenarios are time and number of intrusions, whether or not a 5 brine reservoir is encountered below the waste, and activity level of the 6 waste intersected. Drilling intrusions are assumed to follow a Poisson 7 process. The rate constant is an imprecisely known variable with the upper 8 bound defined by the EPA Standard as 30 boreholes/ $km^2/10,000$ years and lower 9 bound of zero. For this performance assessment, the regulatory time interval 10 of 10,000 years is divided into five disjoint time intervals of 2000 years 11 each, with intrusion occurring at the midpoints of these intervals (at 1000, 12 13 3000, 5000, 7000, and 9000 years). An uncertain area fraction of the waste panels is assumed to be underlain by a pressurized brine reservoir in the 14 Castile Formation. Four activity levels for CH waste and one activity level 15 for RH waste are defined and their distributions sampled to represent 16 variability in the activity level of waste penetrated by a drilling 17 intrusion. 18

19

For the 1991 performance assessment, 45 imprecisely known parameters were sampled for use in consequence modeling for the Monte Carlo simulations of repository performance. For each of these 45 parameters, a range and distribution was subjectively assigned based on available data. These parameters specify physical, chemical, and hydrologic properties of the geologic and engineered barriers. Parameters for climatic variability and future drilling intrusions are also included.

27

Important differences between the 1990 and 1991 Monte Carlo analyses are the 28 inclusion in the 1991 modeling of a two-phase (brine and gas) flow computer 29 code that allows examining effects of waste-generated gas in uncertainty and 30 sensitivity analyses, the addition of parameters related to dual porosity 31 (both chemical and physical retardation) in the Culebra, the use of a set of 32 conditional simulations for transmissivity in the Culebra instead of the 33 simple zonal approach of the 1990 performance assessment, and the inclusion 34 of a preliminary analysis of potential effects of climatic variability on 35 flow in the Culebra. Distributions for parameter values for radionuclide 36 solubility in repository brine and radionuclide retardation in the Culebra 37 were based on judgment from expert panels. 38

39

Latin hypercube sampling is used to incorporate parameter uncertainty into
the performance assessment. A Latin hypercube sample of size 60 was
generated from the set of 45 variables. After the sample was generated, each
element of the sample was propagated through the system of computer codes
used for analysis of human-intrusion scenarios. Each sample was used in the

Executive Summary

calculation of both cuttings/cavings and subsurface groundwater releases for 1 intrusion times of 1000, 3000, 5000, 7000, and 9000 years. Two types of 2 intrusions were examined; those involving penetration of one or more 3 4 boreholes to or through a waste-filled room or drift in a panel without intersecting pressurized brine below, and those involving penetration of 5 exactly two boreholes to or through a waste-filled room or drift in a panel, 6 7 with one borehole also intersecting a pressurized brine reservoir below. Consequences of intrusions involving penetration of one or more boreholes 8 9 through a waste-filled room or drift in a panel and into a pressurized brine reservoir were found to be similar to and bounded by the second type of 10 intrusions. 11

12

Except for a few low-probability releases, cuttings/cavings dominate the 13 CCDFs for total releases. Based on the performance-assessment data base and 14 present understanding of the WIPP disposal system, the summary CCDF curves 15 showing exceedance probability versus total cumulative normalized releases to 16 17 the accessible environment resulting from both groundwater transport in the subsurface and releases at the surface during drilling are the preferred 18 19 choice for preliminary comparison with the Containment Requirements. These preliminary summary curves were generated including the effects of waste-20 generated gas, dual-porosity transport in the Culebra, and a preliminary 21 22 estimate of changes in recharge caused by climatic variability, and are considered to be the most realistic choice for an informal comparison with 23 the Containment Requirements. Informal comparison of these preliminary 24 results with the Containment Requirements indicates that, for the assumed 25 models, parameter values, and scenario probabilities, summary CCDFs (mean and 26 median curves) lie an order of magnitude or more below the regulatory limits. 27 28

Conclusions

32 Conclusions that can be drawn for each of the requirements in the 1985 33 Standard are;

34

29 30

31

35 Containment Requirements. As previously noted, results presented in this report are preliminary and are not suitable for evaluating compliance with 36 the Containment Requirements of the Standard. As explained in more detail 37 in Chapter 11, portions of the modeling system and the data base are 38 39 incomplete, conceptual model uncertainties are not fully included, final scenario probabilities remain to be estimated, and the level of confidence 40 in the results has not been established. In addition, the Standard has 41 not been repromulgated since its 1987 remand. 42

43

Informal comparison of these preliminary results with the Containment
 Requirements indicates that, for the assumed models, parameter values, and

scenario probabilities, summary CCDFs (mean and median curves) lie an
 order of magnitude or more below the regulatory limits.

• Assurance Requirements. Plans for implementing the first two Assurance 4 Requirements (Active Institutional Controls and Monitoring) are 5 preliminary. The design for passive institutional controls is currently 6 being considered by an expert panel. Implementation of passive 7 institutional controls can occur only after their design has been 8 selected. Barrier design is an integral part of the SNL research effort. 9 The WIPP Project has satisfied the natural resources requirement and has 10 published a summary report to that effect. The EPA stated in the Standard 11 that current plans for mined geologic repositories meet the waste removal 12 requirement without additional design. 13

Individual Protection Requirements. Previous and current evaluations of 15 undisturbed performance at the WIPP have indicated that no releases to the 16 accessible environment will occur within 10,000 years. Dose predictions 17 are therefore not expected to be required for the 1000-year period 18 specified by the Individual Protection Requirements. However, as with the 19 Containment Requirements, formal comparison to the Standard cannot be 20 prepared until the bases of the compliance-assessment system are judged 21 adequate. 22

Groundwater Protection Requirements. Studies have determined that no
 groundwater near the WIPP meets the criteria for "special source of ground
 water" as specified in the Standard. Based on the 1985 Standard, the
 Groundwater Protection Requirements are not relevant to the WIPP disposal
 system. No further action should be necessary.

29

23

3

14

1. INTRODUCTION

4
6 [NOTE: The text of Chapter 1 is followed by a synopsis that summarizes
7 essential information, beginning on page 1-29.]
8

Before disposing of radioactive waste at the Waste Isolation Pilot Plant 10 11 (WIPP), the United States Department of Energy (DOE) must have a reasonable expectation that the WIPP will comply with the quantitative requirements of 12 Subpart B of the United States Environmental Protection Agency's (EPA) 13 Environmental Radiation Protection Standards for Management and Disposal of 14 Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 15 Part 191; U.S. EPA, 1985), referred to herein as the Standard (included as 16 17 Appendix A of this volume). Comparing the long-term performance of the WIPP disposal system with the quantitative requirements of the Standard will help 18 determine whether the disposal system will provide safe disposal of 19 radionuclides. This report is a preliminary version of the planned 20 Comparison with 40 CFR, Part 191, Subpart B, for the Waste Isolation Pilot 21 Plant. The planned scope of that document includes the final report for the 22 23 performance assessment of the WIPP disposal system and relevant data for determining whether to proceed with disposal at the WIPP. 24

25 26

2 3

27 28

43

1.1 40 CFR Part 191, The Standard (1985)

The Standard promulgated in 1985 by the EPA is divided into two subparts 29 (Figure 1-1). Subpart A applies to a disposal facility prior to 30 decommissioning and limits annual radiation doses from waste management and 31 32 storage operations to members of the public in the general environment. Subpart B applies after decommissioning and limits probabilities of 33 cumulative releases of radionuclides to the accessible environment for 10,000 34 years. Subpart B also limits both radiation doses to members of the public 35 in the accessible environment and radioactive contamination of certain 36 sources of groundwater within or near the controlled area for 1,000 years 37 after disposal. Appendix A of the Standard specifies how to determine 38 39 release limits, and Appendix B of the Standard provides nonmandatory guidance for implementing Subpart B. The Compliance Strategy (U.S. DOE, 1989a) 40 discusses the WIPP interpretation of various terms and definitions contained 41 in the 1985 Standard. 42

The concept of "site" is integral to limits established by Subparts A and B for releases of waste from the repository, both during operation and after closure. "Site" is used differently in the two subparts; the meaning of

TRI-6342-607-0

Figure 1-1. Graphical Representation of 40 CFR Part 191 Environmental Standards for Management and Disposal of Spent Fuel, High-Level, and Transuranic Waste (after U.S. DOE, 1989a).

"site" at the WIPP for each subpart is discussed and defined below in the 1 appropriate section. The definitions of "general environment," "controlled 2 area," and "accessible environment," which are also important in assessing 3 compliance with the Standard, depend on the definition of "site." "Site" has 4 also been used generically for many years by the waste-management community 5 (e.g., in the phrases "site characterization" or "site specific"); few uses 6 of the word correspond to either of the EPA's usages (Bertram-Howery and 7 Hunter, 1989a; also see U.S. DOE, 1989a). 8

9

10 1.1.1 STATUS OF THE STANDARD

11

Subpart B of the Standard was vacated and remanded to the EPA by the United 12 States Court of Appeals for the First Circuit in July 1987. The Court found 13 that the EPA had neither reconciled the Individual Protection Requirements 14 with Part C of the Safe Drinking Water Act nor explained the divergence 15 between the two sets of criteria; furthermore, the EPA had not explained the 16 basis for the 1,000-year design criterion in the Individual Protection 17 Requirements. The Court also found that the Groundwater Protection 18 Requirements were promulgated without proper notice and comment. Working 19 Draft 3, a proposed revison of the Standard, was prepared for discussion 20 within the EPA in April 1991. A repromulgated Standard is not expected 21 before mid-1993. The Second Modification to the Consultation and 22 Cooperation Agreement (U.S. DOE and State of New Mexico, 1981, as modified) 23 24 commits the WIPP Project to proceed with compliance planning with the Standard as first promulgated until such time as a revised Standard becomes 25 available. Therefore, this report discusses the Standard as first 26 promulgated. Compliance plans for the WIPP will be revised as necessary in 27 response to any changes in the Standard resulting from the repromulgation. 28 29

30 **1.1.2 SUBPART A**

31

Subpart A limits the radiation doses that may be received by members of the 32 public in the general environment as a result of management and storage of 33 transuranic (TRU) wastes at DOE disposal facilities not regulated by the 34 Nuclear Regulatory Commission (NRC). Subpart A requires that "the combined 35 annual dose equivalent to any member of the public in the general environment 36 resulting from discharges of radioactive material and direct radiation from 37 38 such management and storage shall not exceed 25 millirems to the whole body and 75 millirems to any critical organ" (§ 191.03(b)). The general 39 environment is the "total terrestrial, atmospheric, and aquatic environments 40 outside sites within which any activity, operation, or process associated 41 with the management and storage of ... radioactive waste is conducted" 42 (§ 191.02(o)). The site as defined for Subpart A is "an area contained 43 within the boundary of a location under the effective control of persons 44

```
possessing or using ... radioactive waste that are involved in any activity,
1
   operation, or process covered by this Subpart" (§ 191.02(n)).
2
3
    "Site" for the purposes of Subpart A at the WIPP is the secured-area boundary
4
    shown in Figure 1-2. This area will be under the effective control of the
5
    security force at the WIPP, and only authorized persons will be allowed
6
    within the boundary (U.S. DOE, 1989a). In addition, the DOE will gain
7
    control over the sixteen-section (16 mi<sup>2</sup>) area within the proposed land-
8
    withdrawal boundary; this boundary is referred to in the agreement with New
9
    Mexico and in the WIPP Final Safety Analysis Report (FSAR) (U.S. DOE, 1990a)
10
    as the "WIPP site boundary." This control will prohibit habitation within
11
    the boundary. Consequently, for the purposes of assessing operational doses
12
    to nearby residents, the assumption can be made that no one lives closer than
13
    the latter boundary (Bertram-Howery and Hunter, 1989a). The boundary
14
    indicated as "WIPP" on illustrations in this volume is the boundary of the
15
    proposed land-withdrawal area.
16
17
    The DOE compliance approach to the Standard is described in the WIPP
18
    Compliance Strategy (U.S. DOE, 1989a; also see Bertram-Howery and Hunter.
19
    1989a and U.S. DOE, 1990b). Compliance with Subpart B is the topic of this
20
    report; therefore, Subpart A will not be discussed further. Discussions
21
    contained in this report elaborate on the DOE's published strategy (U.S. DOE,
22
    1989a; U.S. DOE, 1990b) for evaluating compliance with the remanded Subpart
23
    B. These discussions provide the regulatory framework for the methodology
24
    employed.
25
26
    1.1.3 SUBPART B
27
28
    In evaluating compliance with Subpart B, the WIPP Project intends to follow
29
30
    to the extent possible the guidance found in Appendix B of the Standard
    (U.S. DOE, 1989a). The application of Subpart B to the WIPP is discussed in
31
    detail in Chapter 2. The Containment Requirements (§ 191.13(a)) necessitate
32
    probabilistically predicting cumulative releases for 10,000 years.
33
                                                                          The
    Individual Protection Requirements (§ 191.15) set limits on annual doses for
34
    1,000 years. The Assurance Requirements (§ 191.14) complement the
35
    Containment Requirements. The Groundwater Protection Requirements (§ 191.16)
36
    limit radionuclide concentrations in specific groundwater sources for 1,000
37
    years. Some necessary definitions and interpretations are given below.
38
39
    Controlled Area
40
41
    The controlled area as defined in Subpart B of the Standard is
42
43
          (1) A surface location, to be identified by passive institutional
44
45
         controls, that encompasses no more than 100 square kilometers and
```

```
1-4
```


Figure 1-2. Position of the WIPP Waste Panels Relative to WIPP Boundaries and Surveyed Section Lines (U.S. DOE, 1989a).

2 3 4

5

1

extends horizontally no more than five kilometers in any direction from the outer boundary of the original location of the radioactive wastes in a disposal system; and (2) the subsurface underlying such a surface location (§ 191.12(g)).

The controlled area is limited to the lithosphere and the surface within no 6 more than 5 km (3 mi) from the outer boundary of the WIPP waste-emplacement 7 panels. The boundary of this maximum-allowable controlled area does not 8 coincide with the secured area boundary (Figure 1-2) or with the boundary 9 proposed in legislation pending before Congress for the WIPP land withdrawal 10 (Figure 1-3). The accessible environment is "...(1) the atmosphere; (2) land 11 surfaces; (3) surface waters; (4) oceans; and (5) all of the lithosphere that 12 is beyond the controlled area" (§ 191.12(k)). According to this definition, 13 the surface of the controlled area is in the accessible environment; the 14 underlying subsurface of the controlled area is not part of the accessible 15 environment (Figure 1-3). Any radionuclides that reached the surface would 16 be subject to the limits, as would any that reached the lithosphere outside 17 the subsurface portion of the controlled area. 18

19

The term "disposal site" is used frequently in Subpart B and in Appendix B of 20 the Standard. The "site" for the purposes of Subpart A and the "disposal 21 site" for the purposes of Subpart B are not the same. For the purposes of 22 the WIPP strategy for compliance with Subpart B, the disposal site and the 23 controlled area are the same (U.S. DOE, 1989a). The Standard defines 24 "disposal system" to mean any combination of engineered and natural barriers 25 that isolate the radioactive waste after disposal. For the WIPP, the 26 disposal system is the combination of the repository/shaft system and the 27 geologic and hydrologic systems of the controlled area (Figure 1-3). 28 The repository/shaft system, as defined, includes the WIPP underground workings 29 and all emplaced materials and the altered zones within the Salado Formation 30 and overlying units resulting from construction of the underground workings. 31 32

The surface of the controlled area is to be identified by passive institutional controls, which include permanent markers placed at a disposal site, along with records, government ownership, and other methods of preserving knowledge about the disposal system. The disposal site is to be designated by permanent markers and other passive institutional controls to indicate the dangers of the wastes and their location (§ 191.12(e); § 191.12(g)).

40

41 "Reasonable Expectation" of Compliance

42

43 The EPA discusses the overall approach of the Standard in a preamble to the 44 regulations. The three quantitative requirements in Subpart B specify that 45 the disposal system design must provide a "reasonable expectation" that their

181.6330-7-0

Figure 1-3. Artist's Concept Showing the Two Components of the WIPP Disposal System: Controlled Area and Repository/Shaft System. The repository/shaft system scale is exaggerated. The proposed land-withdrawal boundary is shown at the same scale as the maximum extent of the controlled area (Bertram-Howery and Hunter, 1989b).

Chapter 1: Introduction

various quantitative tests can be met. In the preamble, the EPA states that 1 2 this test of qualitative judgment is meant to "acknowledge the unique considerations likely to be encountered upon implementation of these disposal 3 standards" (U.S. EPA, 1985, p. 38071). The Standard "clearly indicates that 4 comprehensive performance assessments, including estimates of the 5 probabilities of various potential releases whenever meaningful estimates are 6 practicable, are needed to determine compliance with the containment 7 requirements" (U.S. EPA, 1985, p. 38076). These requirements "emphasize that 8 unequivocal proof of compliance is neither expected nor required because of 9 the substantial uncertainties inherent in such long-term projections. 10 Instead, the appropriate test is a reasonable expectation of compliance based 11 upon practically obtainable information and analysis" (ibid.). The EPA 12 states that the Standard requires "very stringent isolation while allowing 13 the [DOE] adequate flexibility to handle specific uncertainties that may be 14 encountered" (U.S. EPA, 1985, p. 38077). 15 16 In the preamble to the Standard, the EPA states that it clearly intends 17 18 qualitative considerations to have equal importance with quantitative analyses in determining compliance with Subpart B (U.S. EPA, 1985, p. 38066). 19 The EPA states that "the numerical standards chosen for Subpart B, by 20 themselves, do not provide either an adequate context for environmental 21 22 protection or a sufficient basis to foster public confidence ... " (U.S. EPA, 1985, p. 38079). The EPA also states that "factors such as [food chains, 23 ways of life, and the size and geographical distributions of populations] 24 cannot be usefully predicted over [10,000 years]....The results of these 25 analyses should not be considered a reliable projection of the 'real' or 26 absolute number of health effects resulting from compliance with the disposal 27 standards" (U.S. EPA, 1985, p. 38082). 28 29

30 The EPA's assumptions regarding performance assessments and uncertainties are incorporated in Appendix B of the Standard, which the EPA intends the 31 implementing agencies to follow. The EPA intends these assumptions to 32 "discourage overly restrictive or inappropriate implementation" of the 33 requirements (U.S. EPA, 1985, p. 38077). The guidance in Appendix B to the 34 35 Standard indicates that "compliance should be based upon the projections that 36 the [DOE] believe[s] are more realistic. Furthermore,...the quantitative calculations needed may have to be supplemented by reasonable qualitative 37 judgments in order to appropriately determine compliance with the disposal 38 standards" (U.S. EPA, 1985, p. 38076). In particular, Appendix B states: 39 40

The [EPA] believes that the [DOE] must determine compliance with
\$\$ 191.13, 191.15, and 191.16 of Subpart B by evaluating long-term
predictions of disposal system performance. Determining compliance with
\$ 191.13 will also involve predicting the likelihood of events and
1.1 40 CFR Part 191, The Standard (1985) 1.1.3 Subpart B

processes that may disturb the disposal system. In making these various 1 predictions, it will be appropriate for the [DOE] to make use of rather 2 complex computational models, analytical theories, and prevalent expert 3 judgment relevant to the numerical predictions. Substantial 4 uncertainties are likely to be encountered in making these predictions. 5 In fact, sole reliance on these numerical predictions to determine 6 compliance may not be appropriate; the [DOE] may choose to supplement 7 8 such predictions with qualitative judgments as well.

9 10

11

21

The qualitative section of the Containment Requirements (§ 191.13(b)) states:

Performance assessments need not provide complete assurance that the 12 requirements of 191.13(a) will be met. Because of the long time period 13 involved and the nature of the events and processes of interest, there 14 will inevitably be substantial uncertainties in projecting disposal 15 system performance. Proof of the future performance of a disposal system 16 is not to be had in the ordinary sense of the word in situations that 17 deal with much shorter time frames. Instead, what is required is a 18 reasonable expectation, on the basis of the record before the [DOE], that 19 compliance with 191.13(a) will be achieved. 20

The EPA stated in the preamble to the Standard that the agency recognized 22 that too many uncertainties exist in projecting the behavior of natural and 23 engineered components for 10,000 years and that too many opportunities for 24 errors in calculations or judgments are possible for the numerical 25 requirements to be the sole basis for determining the acceptability of a 26 disposal system. Qualitative Assurance Requirements were included in the 27 Standard to ensure that "cautious steps are taken to reduce the problems 28 caused by these uncertainties." These qualitative Assurance Requirements are 29 "an essential complement to the quantitative containment requirements" 30 (U.S. EPA, 1985, p. 38079). Each qualitative requirement was chosen to 31 compensate for some aspect of the inherent uncertainty in projecting the 32 future performance of a disposal system. The Assurance Requirements begin by 33 declaring that compliance with their provisions will "provide the confidence 34 needed for long-term compliance with the requirements of 191.13" (§ 191.14). 35 36

Determining compliance with Subpart B depends on the estimated overall 37 probability distribution of cumulative releases and on the estimated annual 38 doses; however, it also depends on the strength of the assurance strategies 39 (U.S. DOE, 1987, currently in revision) that will be implemented and on the 40 qualitative judgment of the DOE and its analysts. The preceding discussion 41 demonstrates the EPA's recognition of the difficulties involved in predicting 42 the future and in quantifying the outcomes of future events. The EPA clearly 43 expects the DOE to understand the uncertainties in the disposal system's 44 behavior to the extent practical, while recognizing that substantial 45 uncertainties will nevertheless remain. 46

47 48

1-9

1 2

1.2 Application of Additional Regulations to the WIPP

In addition to 40 CFR Part 191, the Resource Conservation and Recovery Act (RCRA) and the National Environmental Policy Act (NEPA) are considered in an overall evaluation of the WIPP as a repository for TRU wastes. This report does not provide an evaluation of the WIPP in regard to these additional regulations. However, the two regulations are briefly discussed as part of the overview of the WIPP.

9

10 1.2.1 RCRA

11

The Resource Conservation and Recovery Act (RCRA) was enacted in 1976 to 12 provide management of hazardous waste. In July 1990 the EPA authorized the 13 State of New Mexico to apply the RCRA regulations to facilities in the state 14 that managed radioactive mixed waste. In March 1989 the DOE had petitioned 15 the EPA for a "no migration" determination for the WIPP Test Phase. The DOE 16 submitted models to demonstrate, to a reasonable degree of certainty, that 17 the emplaced waste would not migrate from the disposal unit during the WIPP 18 Test Phase. The EPA issued a conditional "no migration" determination, for 19 the WIPP Test Phase only, in November 1990. Strategies are currently being 20 developed for RCRA compliance after the Test Phase is completed. 21

22 23 **1.2.2 NEPA**

24

The National Environmental Policy Act (NEPA) (42 USC 4321 et seq.) of 1969 25 requires all agencies of the Federal Government to prepare a detailed 26 statement on the environmental impacts of proposed "major Federal actions 27 significantly affecting the quality of the human environment." In compliance 28 with NEPA, the DOE has published the Draft Environmental Impact Statement, 29 Management of Commercially Generated Radioactive Waste (U.S. DOE, 1979), the 30 Final Environmental Impact Statement: Waste Isolation Pilot Plant (FEIS) 31 (U.S. DOE, 1980a), and the Final Supplement Environmental Impact Statement, 32 Waste Isolation Pilot Plant (FSEIS) (U.S. DOE, 1990c). An additional 33 supplemental environmental impact statement is planned prior to permanent 34 disposal at the WIPP (U.S. DOE, 1991a). 35

36

37 38

39

1.3 Organization of the Comparison

40 The organization of this report and of the final *Comparison*, which will 41 evolve from this report, is based on the requirements of the Standard. 42 Within the format of the requirements, the report is organized according to 43 the methodology developed by the performance-assessment team to implement the 44 guidance found in Appendix B to the Standard. This level of organization reflects the program elements described in the DOE management plan for the
 Test Phase (U.S. DOE, 1990b).

3

The 1991 Preliminary Comparison report is organized into four volumes. 4 Volume 1 (this volume) contains the methodology and results for the 1991 5 preliminary performance assessment. Volume 2 describes the consequence and 6 probability models used and contains the 1991 computational data base. Volume 7 8 3 is the 1991 reference data base. Volume 4 contains techniques and results of the uncertainty and sensitivity analyses for the 1991 performance 9 assessment. Volumes 2 and 3 are published concurrently with Volume 1 (this 10 volume); Volume 4 will be published 3 months after Volumes 1 through 3. The 11 results presented in Volume 4 will be used to guide subsequent performance 12 13 assessments.

14

Because this report is a preliminary version of the final report, many 15 sections are preliminary or incomplete. In Volume 1 (this volume), brief 16 17 descriptions of the Standard and the WIPP Project are provided in Chapter 1. Chapter 2 discusses application of Subpart B of the Standard to the WIPP 18 disposal system. Chapter 3 provides an overview of the compliance-assessment 19 methodology for the WIPP Project. Chapter 4 identifies and describes the 20 scenarios being used in the compliance assessment. Chapter 5 describes the 21 22 components of the compliance-assessment system. Chapter 6 presents the results of the second preliminary performance assessment relative to the 23 Containment Requirements (§ 191.13) of the Standard. Chapter 7 describes 24 results relative to the Individual Protection Requirements (§ 191.15) of the 25 Standard. Chapter 8 describes plans for implementing the Assurance 26 27 Requirements (§ 191.14) of the Standard. Chapter 9 discusses the relevance of the Groundwater Protection Requirements (§ 191.16) of the Standard to the 28 WIPP. Chapter 10 considers the adequacy of the computational bases for the 29 assessment. Chapter 11 identifies the status of the work necessary for the 30 final performance assessment. 31

Appendix A contains the full text of the Standard, as promulgated by the EPA in 1985. Appendix B contains comments from the New Mexico Environment Department (NMED) and the Environmental Evaluation Group (EEG) on the *Preliminary Comparison with 40 CFR Part 191, Subpart B for the Waste Isolation Plant, December 1990* (SAND90-2347), and the performance-assessment team's responses to those comments.

39

32

The final *Comparison* will be reviewed extensively. The planned organization of the final *Comparison* includes an appendix similar to Appendix B of this report that will present official comments from reviewers outside the DOE and responses to those comments from the performance-assessment team, analogous to the comment-response section typically provided in decision-basis documents. This appendix (B) will appear in each *Preliminary Comparison*. This report focuses on Subpart B of 40 CFR Part 191. Compliance with other
 regulatory requirements and analyses for other purposes, such as safety
 assessments, are discussed in separate documents. The methodology described
 here is also used for safety assessments.

1.4 Description of the WIPP Project

9 This section presents the mission of the WIPP Project and identifies the
10 participants in the Project, then briefly describes the physical setting, the
11 repository/shaft system, and the waste.

13 1.4.1 MISSION

14

12

5 6

7 8

Congress authorized the WIPP in 1979 (Public Law 96-164, 1979) as a research 15 and development facility. The WIPP is designed as a full-scale pilot plant 16 to demonstrate the safe management, storage, and disposal of TRU defense 17 18 waste. The WIPP performance assessment will help the DOE determine whether the WIPP will isolate wastes from the accessible environment sufficiently 19 well to satisfy the disposal requirements in Subpart B of the Standard. 20 Predictions with respect to compliance with Subpart B of the Standard will 21 provide input to the decision on whether the WIPP will become a disposal 22 facility. That decision is expected upon completion of the performance 23 24 assessment. The DOE will apply Subpart A of the Standard to the WIPP beginning with the first receipt of TRU waste for the Test Phase (U.S. DOE, 25 1989a). "Disposal," as defined in the Standard, will occur when the mined 26 repository is sealed and decommissioned. 27

29 1.4.2 PARTICIPANTS

30

28

The DOE is the implementing agency, as defined in the Standard, for the WIPP 31 Project. The WIPP Project is managed by the DOE WIPP Project Integration 32 Office (Albuquerque, New Mexico) through the DOE WIPP Project Site Office in 33 Carlsbad, New Mexico. The WIPP Project Site Office is assisted by two prime 34 contractors: Westinghouse Electric Corporation (WEC) and Sandia National 35 Laboratories (SNL). The operating contractor is responsible for all facility 36 37 operations at the WIPP and is also responsible for compliance with Subpart A and with the Assurance Requirements of Subpart B of the Standard. WEC is the 38 management and operating contractor during the Test Phase. SNL, as the 39 scientific program manager for the WIPP, is responsible for developing an 40 understanding of the processes and systems that affect long-term isolation of 41 wastes in the WIPP and applying that understanding to evaluate the long-term 42 43 WIPP performance and compliance with the Standard. SNL defines and implements experiments both in the laboratory and at the WIPP, develops and 44

applies models to interpret the experimental data, and develops and applies
performance-assessment models (U.S. DOE, 1991b).

3

The DOE and the State of New Mexico have had an Agreement for Consultation 4 and Cooperation since 1981 (U.S. DOE and State of New Mexico, 1981). This 5 agreement ensures that the State, through the New Mexico Environment 6 Department (NMED), has an active part in assuring that public safety issues 7 are fully addressed. In addition, review of the WIPP Project is provided by 8 the National Research Council's Board of Radioactive Waste Management (BRWM) 9 WIPP Panel, the Advisory Committee on Nuclear Facility Safety, and the 10 Defense Nuclear Facilities Safety Board. The EPA maintains a dialog with the 11 WIPP Project concerning the Preliminary Comparison reports. The WIPP also 12 receives close public scrutiny. Finally, the National Defense Authorization 13 Act, Fiscal Year 1989 (Public Law 100-456) assigned the Environmental 14 Evaluation Group (EEG) to the New Mexico Institute of Mining and Technology, 15 with the responsibility for independent technical evaluation of the WIPP with 16 regard to the protection of public health and safety and the protection of 17 18 the environment.

20 1.4.3 PHYSICAL SETTING

21

19

The characteristics of the WIPP are described in detail in the FEIS 22 (U.S. DOE, 1980a), Lappin et al. (1989), the WIPP Final Safety Analysis 23 Report (FSAR) (U.S. DOE, 1990a), the FSEIS (U.S. DOE, 1990c), Brinster 24 (1991), and Beauheim et al. (1991). Additional detailed discussion in the 25 1991 Preliminary Comparison is in Chapter 5 of this volume and in Volume 2. 26 The WIPP (Figure 1-4) is in southeastern New Mexico, about 42 km (26 mi) east 27 of Carlsbad, the nearest major population center (pop. 25,000 in the 1990 28 U.S. census). The area surrounding the WIPP has a small population density. 29 Two smaller communities, Loving (pop. 1,500) and Malaga (pop. 150), are about 30 33 km (20 mi) to the southwest. Less than 30 permanent residents live within 31 a 16-km (10-mi) radius. The nearest residents live about 5.6 km (3.5 mi) 32 south of the WIPP surface facility (U.S. DOE, 1990a). 33

34

The surface of the land within the proposed land-withdrawal boundary has been leased for cattle grazing. At present, none of the ranches within ten miles use well water for human consumption because the water contains large concentrations of total dissolved solids. Drinking water for the WIPP is supplied by pipeline from wells about 30 mi (48 km) north of the area (U.S. DOE, 1990a).

41

42 Potash, oil, and gas are the only known important mineral resources. The43 volumes and locations of these resources are estimated in the FEIS for the

TRI-6342-223-1

Figure 1-4. WIPP Location Map (after Bertram-Howery and Hunter, 1989a).

```
1
   WIPP (U.S. DOE, 1980a). The surrounding area is used primarily for grazing,
2
   potash mining, and hydrocarbon exploration and production.
3
4
   About 56 oil and gas wells are within a radius of 16 km (10 mi); the wells
    generally tap Pennsylvanian strata, about 4,200 m (14,000 ft) deep. The
5
    nearest well is about 3 km (2 mi) to the south-southwest of the waste panels.
6
    The surface location of the well, which is capable of producing gas, is
7
8
    outside the proposed land-withdrawal boundary, but the borehole is slanted to
    withdraw gas from rocks within the boundary. Except for this well, resource
9
    extraction is not allowed within the proposed land-withdrawal boundary.
10
11
    Three potash mines and two associated chemical processing plants are between
12
    8 and 16 km (5 and 10 mi) away. Potash mining is possible within a radius of
13
    3 to 8 km (2 to 5 mi) (U.S. DOE, 1990a). The potash zone is about 137 m
14
    (450 ft) thick and is encountered about 457 m (1,500 ft) below the surface
15
    (Figure 1-5).
16
17
    The WIPP is in the Delaware Basin between the high plains of West Texas and
18
    the Guadalupe Mountains of southeastern New Mexico. Prominent topographic
19
    features in the area are Los Medaños ("The Dunes"), Nash Draw, Laguna Grande
20
21
    de la Sal, and the Pecos River (Figures 1-6 and 1-7).
22
23
    Los Medaños is a region of gently rolling sand dunes that slopes upward to
    the northeast from Livingston Ridge on the eastern boundary of Nash Draw to a
24
    low ridge called "The Divide." The WIPP is in Los Medaños.
25
26
    Nash Draw, 8 km (5 mi) west of the WIPP, is a broad, shallow topographic
27
    depression with no external surface drainage. Nash Draw extends northeast
28
29
    about 35 km (22 mi) from the Pecos River east of Loving, New Mexico, to the
30
    Maroon Cliffs area. This feature is bounded on the east by Livingston Ridge
    and on the west by Quahada Ridge.
31
32
33
    Laguna Grande de la Sal, about 9.5 km (6 mi) west-southwest of the WIPP, is a
    large playa about 3.2 km (2 mi) wide and 4.8 km (3 mi) long formed by
34
    coalesced collapse sinks that were created by dissolution of evaporite
35
    deposits. In the geologic past, a relatively permanent, saline lake occupied
36
37
    the playa. In recent history, however, the lake has undergone numerous
    cycles of filling and evaporation in response to wet and arid seasons, and
38
    effluent from the potash and oil and gas industries has enlarged the lake.
39
    The lake contains fine sand, clay, and evaporite deposits (Bachman, 1974).
40
41
    The Pecos River, the principal surface-water feature in southeastern New
42
43
    Mexico, flows southeastward, draining into the Rio Grande in western Texas.
    At its closest point, the river is about 20 km (12 mi) southwest of the WIPP.
44
```


Figure 1-5. Generalized WIPP Stratigraphy (modified from Lappin, 1988).

Figure 1-6. Topographic Map of the WIPP Area (Bertram-Howery et al., 1990).

3342-787-

1-17/18

Figure 1-7. Map of the WIPP Area, Showing Physiographic Features (Bertram-Howery et al., 1990).

```
Surface drainage from the WIPP does not reach the river or its ephemeral
1
    tributaries.
2
3
   Geologic History of the Delaware Basin
4
5
    The Delaware Basin, an elongated, geologic depression, extends from just
6
    north of Carlsbad, New Mexico, into Texas west of Fort Stockton (Figure 1-8).
7
    The basin covers over 33,000 km<sup>2</sup> (12,750 mi<sup>2</sup>) and is filled to depths as
8
    great as 7,300 m (24,000 ft) with sedimentary rocks (Hills, 1984).
9
10
    Geologic history of the Delaware Basin is contained in Powers et al.
11
    (1978a,b); Cheeseman (1978); Williamson (1978); Hiss (1975); Hills (1984);
12
    Harms and Williamson (1988); and Ward et al. (1986). A broad, low depression
13
    formed about 450 to 500 million years ago during the Ordovician Period as
14
    transgressing seas deposited clastic and carbonate sediments. After a long
15
    period of accumulation and subsidence, the depression separated into the
16
    Delaware and Midland Basins when the area now called the Central Basin
17
    Platform uplifted during the Pennsylvanian Period, about 300 million years
18
19
    ago.
20
    Rock units representing the Permian System through the Quaternary System are
21
    shown in Table 1-1. During the Early and mid-Permian, the Delaware Basin
22
    subsided more rapidly, and a sequence of clastic rocks rimmed by reef
23
    limestone formed. The thickest of the reef deposits, the Capitan Limestone,
24
    is buried north and east of the WIPP but is exposed at the surface in the
25
    Guadalupe Mountains to the west (Figure 1-8). Evaporite deposits of the
26
    Castile Formation and the Salado Formation, which hosts the WIPP, filled the
27
    basin during the Late Permian and extended over the reef margins.
28
    Evaporites, carbonates, and clastic rocks of the Rustler Formation and the
29
    Dewey Lake Red Beds were deposited above the Salado Formation before the end
30
    of the Permian Period.
31
32
    Beginning with the Triassic Period and continuing to the present, the
33
     geologic record for the area is marked by long periods of nondeposition and
34
              Those formations that are present are either relatively thin or
     erosion.
35
     discontinuous and are not included in the performance assessment of the WIPP.
36
     Near the repository, the older, Permian-Period deposits below the Dewey Lake
37
    Red Beds were not affected by erosional processes during the past 250 million
38
     years (Lappin, 1988).
39
40
     Minimal tectonic activity has occurred in the region since the Permian Period
41
     (Hayes, 1964; Williamson, 1978; Hills, 1984; Section 5.1.1-Regional Geology
42
     in Chapter 5 of this volume). Faulting during the late Tertiary Period
43
     formed the Guadalupe and Delaware Mountains along the western edge of the
44
     basin. The most recent igneous activity in the area was during the mid-
45
```


Figure 1-8. Location of the WIPP in the Delaware Basin (modified from Richey et al., 1985).

2 3

TABLE 1-1. MAJOR STRATIGRAPHIC DIVISIONS, SOUTHEASTERN NEW MEXICO

	System	Series	Formation	Age Estimate (y
	Quaternary	Holocene Pleistocene	Windblown sand Mescalero caliche Gatuña Formation	~500,000 ~600,000 ±
Cenozoic	Tertiary	Pliocene	Ogallala Formation	5.5 million
	, or har y	Oligocene Eocene Paleocene	Absent Southeastern New Mexico	24 million
	Cretaceous	Upper (Late) Lower (Early)	Absent Southeastern New Mexico Detritus preserved	66 million
Mesozoic	Jurassic		Absent Southeastern New Mexico	144 million
	Triassic	Upper (Late) Lower (Early)	Dockum Group Absent Southeastern New Mexico	208 million
Paleozoic	Upper (Late)	Ochoan	Dewey Lake Red Beds Rustler Formation Salado Formation Castile Formation	245 million
	Perman	Guadalupian	Capitan Limestone and Bell Canyon Formation	
	Lower (Early)	Leonardian Wolfcampian	Bone Springs Wolfcamp	
	Source: Modified from Bachman, 1987			

64

65 Stratigraphy and Geohydrology

66

67 The Bell Canyon Formation of the Delaware Mountain Group is the deepest 68 hydrostratigraphic unit being considered in the performance assessment

(Figure 1-5). Understanding fluid flow in the Bell Canyon is necessary 1 because oil and gas drilling into deeper Pennsylvanian strata could penetrate 2 the WIPP and saturated sandstones of the Bell Canyon Formation. 3 4 5 The Castile Formation near the WIPP consists of anhydrite and lesser amounts of halite. The Castile Formation is of interest because it contains 6 discontinuous reservoirs of pressurized brine that could affect repository 7 performance if penetrated by an exploratory borehole. Except where brine 8 reservoirs are present, permeability of the Castile Formation is extremely 9 low, and rates of groundwater flow are too low to affect the disposal system 10 within the next 10,000 years. 11 12 The 250-million-year-old Salado Formation is about 600 m (2,000 ft) thick and 13 consists of three informal members: 14 15 16 a lower member, mostly halite with lesser amounts of anhydrite, polyhalite, and glauberite, with some layers of fine clastic material. 17 The unit is 296 to 354 m (960 ft to 1160 ft) thick, and the WIPP 18 repository is located within it, 655 m (2,150 ft) below the land surface 19 (Jones, 1978). Marker Bed 139 (MB139), an anhydritic bed about 1 m in 20 thickness that is a potential pathway for radionuclide transport to the 21 repository shafts, also occurs in this unit, about 1 m or less below the 22 repository (Lappin, 1988). 23 24 a middle member, the McNutt Potash Zone, a reddish-orange and brown 25 halite with deposits of sylvite and langbeinite from which potassium 26 salts are mined (Jones, 1978). 27 28 an upper member, a reddish-orange to brown halite interbedded with 29 polyhalite, anhydrite, and sandstone (Jones, 1978). 30 31 These lithologic layers are nearly horizontal at the WIPP, with a regional 32 dip of less than one degree. The Salado Formation is intact in the WIPP 33 area, and groundwater flow within it is extremely slow because primary 34 porosity and open fractures are lacking in the highly plastic salt (Mercer, 35 1983). The formation may be saturated throughout the WIPP area, but low 36 effective porosity allows for very little groundwater movement. The Salado 37 Formation is discussed in more detail in Section 5.1.2-Stratigraphy in 38 Chapter 5 of this volume. 39 40 The Rustler-Salado contact residuum, a transmissive, saturated zone of 41 dissolution residue, occurs above the halite of the Salado Formation in and 42 near Nash Draw. Brine in the Rustler-Salado contact residuum becomes more 43 concentrated as it moves toward the southwest and is nearly saturated with 44 salt in the lower region of Nash Draw near the Pecos River. 45

46

The Rustler Formation, the youngest unit of the Late Permian evaporite 1 sequence, includes units that provide potential pathways for radionuclide 2 migration away from the WIPP. Five units of the Rustler, in ascending order, 3 have been described (Vine, 1963; Mercer, 1983): 4 5 the unnamed lower member, composed mostly of fine-grained, silty 6 sandstones and siltstones interbedded with anhydrite west of the WIPP but 7 with increasing amounts of halite to the east. 8 9 the Culebra Dolomite Member, a microcrystalline, grayish dolomite or 10 dolomitic limestone with solution cavities containing some gypsum and 11 anhydrite filling. 12 13 the Tamarisk Member, composed of anhydrite interbedded with thin layers 14 15 of claystone and siltstone, with some halite just east of the WIPP. 16 the Magenta Dolomite Member, a very-fine-grained, greenish-gray dolomite 17 with reddish-purple layers. 18 19 the Forty-niner Member, consisting of anhydrite interbedded with a layer 20 21 of siltstone, with halite present east of the WIPP. 22 Most groundwater flow in the Rustler Formation occurs in the Culebra Dolomite 23 and Magenta Dolomite Members. The intervening units (the unnamed lower 24 25 member, the Tamarisk Member, and the Forty-niner Member) are considered aquitards because of their low permeability throughout the area. 26 27 Groundwater flow in the Culebra Dolomite Member near the WIPP is apparently 28 north to south (see "Potentiometric Surfaces" in Section 5.1.8-Confined 29 Hydrostratigraphic Units in Chapter 5 of this volume). Recharge is 30 apparently from the north, possibly at Bear Grass Draw where the Rustler 31 Formation is near the surface and at Clayton Basin where karst activity has 32 disrupted the Culebra Dolomite (Mercer, 1983). Discharge is to the west-33 southwest either into the Pecos River at Malaga Bend (Hale et al., 1954; Hale 34 and Clebsch, 1958; Havens and Wilkens, 1979; Mercer, 1983), into Cenozoic 35 alluvium in the Balmorhea-Loving Trough, which is a series of coalesced, 36 lens-shaped solution troughs formed by an ancestral Pecos River, or into both 37 38 (Brinster, 1991). Culebra Dolomite Member water contains large concentrations of total dissolved solids (Haug et al., 1987; LaVenue et al., 39 1988). 40 41 Small amounts of water can be produced from the Magenta Dolomite Member from 42 a thin, silty dolomite, along bedding planes of rock units, and along 43 fractures (Mercer, 1983). The unit is present at and near the WIPP but is 44 absent because of erosion in the southern part of Nash Draw. Regionally, 45 flow direction is similar to flow in the Culebra Dolomite Member and is 46

47 either toward Malaga Bend or more directly southward to the Balmorhea-Loving

Trough. Near the WIPP, flow is locally from east to west, perpendicular to
 flow in the Culebra.

Rock units younger than the Rustler Formation are believed to be unsaturated 4 throughout most of the WIPP area. However, saturation of these units could 5 occur as a result of climatic changes or breaching a pressurized brine 6 reservoir. Overlying the Rustler Formation are the youngest Permian rocks, 7 the Dewey Lake Red Beds. The Dewey Lake Red Beds consist of alternating 8 layers of reddish-brown, fine-grained sandstones and siltstones cemented with 9 calcite and gypsum (Vine, 1963). Drilling has identified only a few 10 localized zones of relatively high permeability (Mercer, 1983; Beauheim, 11 1987a). Three wells in the WIPP area produce only small amounts of water 12 from the Dewey Lake Red Beds for livestock (Cooper and Glanzman, 1971). 13 14

The Dewey Lake Red Beds are unconformably overlain east of the WIPP by 15 Triassic rocks of the undifferentiated Dockum Group (Figure 1-7). The lower 16 Dockum is composed of poorly sorted, angular, coarse-grained to 17 conglomeratic, thickly bedded material interfingering with shales. The 18 Dockum Group is the chief source of water for domestic and livestock use in 19 20 eastern Eddy County away from the WIPP and in western Lea County (Nicholson and Clebsch, 1961; Richey et al., 1985). Recharge to the Triassic rocks is 21 mainly from downward flow from overlying alluvium. 22

23

3

A long depositional hiatus occurred from Triassic time to the late Tertiary 24 25 Period (Table 1-1). No rocks represent the Jurassic or Cretaceous Periods east of the Pecos River near the WIPP. The Tertiary Period is represented by 26 27 a very thin Ogallala Formation remnant present only at The Divide west of San Simon Swale. The Quaternary Period is represented by the Gatuña Formation, 28 which occurs as discontinuous stream deposits in channels and depressions 29 (Bachman, 1980, 1984; Mercer, 1983); the informally named Mescalero caliche; 30 and localized accumulations of alluvium and dune sands. 31

38 1.4.4 REPOSITORY/SHAFT SYSTEM

35

32

The WIPP repository is about 655 m (2,150 ft) below the land surface in the 36 bedded salt of the Salado Formation. Present plans call for mining eight 37 panels of seven rooms (Figure 1-9). As each panel is filled with waste, the 38 next panel will be mined. Before the repository is closed permanently, each 39 panel will be backfilled and sealed, waste will be placed in the drifts 40 between the panels and backfilled, comprising two additional panel volumes, 41 and access ways will be sealed off from the shafts. Because the WIPP is a 42 research and development facility, an extensive experimental area is also in 43 44 use and under construction north of the waste-disposal area (U.S. DOE, 1990b). Additional information on the repository design is in Chapter 5 of 45 this volume. 46

Figure 1-9. Proposed WIPP Repository, Showing Both TRU-Waste Disposal Areas and Experimental Areas (after Waste Management Technology Dept., 1987).

1 1.4.5 WASTE

2

The TRU waste for which WIPP is designed is defense-program waste generated з by United States government activities since 1970. The waste consists of 4 laboratory and production trash such as glassware, metal pipes, solvents, 5 disposable laboratory clothing, cleaning rags, and solidified sludges. Along 6 with other contaminants, the trash is contaminated by alpha-emitting 7 transuranic (TRU) elements with atomic numbers greater than 92 (uranium), 8 half-lives greater than 20 years, and curie contents greater than 100 nCi/g. 9 Additional contaminants include other radionuclides of uranium and several 10 contaminants with half-lives less than 20 years. Approximately 60 percent of 11 the waste may be co-contaminated with waste considered hazardous under the 12 Resource Conservation and Recovery Act (RCRA). The waste scheduled for 13 disposal at the WIPP is described in more detail in Volume 3 of this report. 14 15 In accordance with DOE Order 5820.2A (U.S. DOE, 1980b), heads of DOE Field 16 Organizations can determine that other alpha-contaminated wastes, peculiar to 17

a specific waste-generator site, must be managed as TRU wastes. The WIPP 18 Waste Acceptance Criteria (WAC) determine which TRU wastes will be accepted 19 for emplacement at the WIPP. The most recent draft of the WAC report is 20 currently being prepared (WIPP-DOE-69-Rev. 4), and much of the WAC data used 21 in this report are from the Revision 4 draft. Data used in this report from 22 23 the draft WAC are not expected to change in the published version. Under current plans, most TRU waste generated since 1970 will be disposed of at the 24 WIPP; a small amount will be disposed of at other DOE facilities. 25 Inventories of the waste to be disposed of at the WIPP are in Volume 3, 26 27 Chapter 3 of this report.

29 Waste Form

30

41

28

Alpha-emitting TRU waste, although dangerous if inhaled or ingested, is not 31 hazardous externally and can be safely handled if confined in a sealed 32 container. Most of the waste, therefore, can be contact handled (CH) because 33 the external dose rate (200 mrem/h or less) permits people to handle properly 34 sealed drums and boxes without any special shielding. The only containers 35 that can currently be shipped to the WIPP in a TRUPACT-II (NuPac, 1989) 36 truck-transport container are 55-gallon steel drums, metal standard waste 37 boxes (SWBs), 55-gallon drums packed in an SWB, and an experimental bin 38 overpacked in an SWB (U.S. DOE, 1990c). Additional information on waste 39 containers is in Volume 3, Chapter 3 of this report. 40

A small portion of the waste volume must be remotely handled (RH); that is,
the surface dose rate exceeds 200 mrem/h so that the waste canisters must be
packaged for handling and transportation in specially shielded casks. The

5

surface dose rate of RH-TRU canisters cannot exceed 1,000 rem/h; however, no more than 5 percent of the canisters can exceed 100 rem/h. RH-TRU waste in canisters will be emplaced in holes drilled into the walls of the rooms (U.S. DOE, 1990a).

The WIPP's current design capacity for all radionuclides is 6.2×10^6 ft³ 6 (approximately 175,000 m³) containing about 16,000,000 Ci of CH-TRU waste and 7 no more than 5,100,000 Ci of RH-TRU waste. The total curies of RH-TRU waste 8 is limited by the First Modification to the Consultation and Cooperation 9 Agreement (U.S. DOE and State of New Mexico, 1981). The complex analyses for 10 evaluating compliance with Subpart B of the Standard require knowledge of the 11 waste inventory. Therefore, all analyses will be based on current 12 projections of a design volume inventory, estimated at about 532,500 drums 13 and 33,500 boxes of CH-TRU waste. The wastes are classified as retrievably 14 stored or newly generated (future generated). If approved, ten defense 15 facilities eventually will ship TRU waste directly to the WIPP: Idaho 16 National Engineering Laboratory, Rocky Flats Plant, Hanford Reservation, 17 Savannah River Site, Los Alamos National Laboratory, Oak Ridge National 18 Laboratory, Nevada Test Site, Argonne National Laboratory-East, Lawrence 19 Livermore National Laboratory, and Mound Laboratory (U.S. DOE, 1990c). 20 Additional information on inventory estimates is in Volume 3 of this report. 21 22

A hazardous constituent of CH-TRU waste is lead that is present as incidental 23 shielding, glovebox parts, and linings of gloves and aprons (U.S. DOE, 24 1990b). Trace quantities of mercury, barium, chromium, and nickel have also 25 26 been reported. A significant quantity of aluminum is also identified in CH-TRU waste. An estimate of the quantity of metals and combustibles is 27 discussed in Volume 3 of this report. Sludges contain a solidifier (such as 28 cement), absorbent materials, inorganic compounds, complexing agents, and 29 organic compounds including oils, solvents, alcohols, emulsifiers, 30 surfactants, and detergents. The WAC waste-form requirements designate that 31 32 the waste material shall be immobilized if greater than 1% by weight is particulate material less than 10 microns in diameter or if greater than 15% 33 by weight is particulate material less than 200 microns in diameter. Only 34 residual liquids in well-drained containers in quantities less than 35 approximately 1% of the container's volume are allowed. Radionuclides in 36 pyrophoric form are limited to less than 1% by weight of the external 37 container, and no explosives or compressed gases are allowed. A list of 38 CH-TRU waste forms identified as also containing trace quantities of 39 hazardous chemical constituents is in Volume 3, Chapter 3 of this report. 40 These hazardous materials are not regulated under 40 CFR Part 191 but are 41 regulated separately by the EPA and New Mexico under the Resource 42 Conservation and Recovery Act (RCRA). Many of these chemicals, if present in 43 significant quantities, could affect the ability of radionuclides to migrate 44

out of the repository by influencing rates of degradation of the organics,
 microbial activity, and gas generation. The effects of these processes are
 being studied.

```
5 Radionuclide Inventory
```

6

4

7 The radionuclide composition of CH-TRU waste varies depending upon the
8 facility and process that generated the waste. The existing RH-TRU waste
9 contains a wide range of radionuclides. An estimate of the CH- and RH-TRU
10 radionuclide inventories is in Volume 3 of this report.

11

The fissile material content in equivalent grams of plutonium-239 allowed by the WAC for CH-TRU waste is a maximum of 200 g for a 55-gallon drum and 5 g/ft^3 up to 350 g for boxes. An RH-TRU waste package shall not exceed 600 g.

16

Subpart B of the Standard sets release limits in curies for isotopes of 17 americium, carbon, cesium, iodine, neptunium, plutonium, radium, strontium, 18 technetium, thorium, tin, and uranium, as well as for certain other 19 radionuclides (Appendix A of this volume). Although the initial WIPP 20 inventory contains little or none of some of the listed nuclides, they will 21 be produced as a result of radioactive decay and must be accounted for in the 22 compliance evaluation; moreover, for compliance with the Individual 23 Protection Requirements, any radionuclides not listed in Subpart B must be 24 25 accounted for if those radionuclides could contribute to doses.

26

27 Possible Modifications to Waste Form

28

40

41 42

If ongoing research does not establish sufficient confidence in acceptable 29 performance or indicates a potential for unacceptable performance, 30 31 modifications to the waste form or backfill could be required. SNL has conducted preliminary research on possible modifications (Butcher, 1990). 32 The Engineered Alternatives Task Force (EATF), assembled by WEC, identified 33 specific alternatives, ranked alternatives according to specific feasibility 34 criteria, and recommended further research (WEC, 1990; U.S. DOE, 1990d). 35 The DOE will make decisions about testing and, if necessary, implementing 36 alternatives based on the recommendations of the EATF and performance-37 assessment considerations provided by SNL. 38 39

Chapter 1–Synopsis

44	Purpose of	Before disposing of transuranic (TRU) radioactive		
45	This Report	waste at the Waste Isolation Pilot Plant (WIPP), the		
46		United States Department of Energy (DOE) must have a		

1 2 3 4		reasonable expectation that the WIPP will comply with pertinent regulations. This report considers the regulations promulgated by the Environmental Protection Agency (EPA) as 40 CFR Part 191 (the Standard).
6 7 8 9		Regulatory compliance will be determined by establishing a reasonable expectation that long-term performance of the WIPP disposal system will meet the requirements of the Standard.
10 11 12 13 14 15		This 1991 report contains the second preliminary assessment of predicted long-term performance of the WIPP but does not yet provide a definitive assessment of compliance.
17 18 19	The Standard	The 1985 Standard is composed of two subparts and two appendixes. The full text of the Standard is in Appendix A of this report.
20 21 22 22		The U.S. Court of Appeals has vacated Subpart B of the Standard and remanded it to the EPA for clarification.
23 24 25 26		The WIPP Project has agreed to continue evaluating compliance with the original Standard until a revised Standard is available.
28		A repromulgated Standard is not expected before 1993.
29 30		Subpart A
32 33 34		applies to a disposal facility prior to decommissioning and contains the standards for management and storage of TRU wastes,
35 36 37 38 39		sets limits on the amount of radiation from waste management and storage operations that is acceptable for members of the public outside the waste disposal facility.
40 41 42		This report does not discuss the approach chosen for assessing compliance with Subpart A.
43 44 45		Subpart B
40 46 47 48 49		applies to a disposal facility after it is decommissioned and contains the standards for disposal of TRU wastes,
50 51 52 53		sets probabilistic limits on cumulative releases of radionuclides to the accessible environment for 10,000 years after disposal (Containment Requirements),
54		- -

1 2		defines qualitative means of increasing confidence in containment (Assurance Requirements),
3 4 5 6 7 8 9		sets limits on the amount of radiation that is acceptable for members of the public in the accessible environment within or near the specified controlled area for 1,000 years after disposal (Individual Protection Requirements),
10 11 12 13 14		sets limits on the acceptable amount of radioactive contamination of certain sources of groundwater within or near the controlled area for 1,000 years after disposal (Groundwater Protection Requirements).
15 16 17		This report discusses the approach for evaluating compliance with Subpart B.
18 19 20		Appendix A specifies how to determine release limits.
20 21 22 84		Appendix B provides nonmandatory guidance for implementing Subpart B.
25 26 27	A "Reasonable Expectation" of Compliance	Because of the uncertainties in long-term projections, the EPA does not expect absolute proof of the future performance of the disposal system.
29 30 31 32		The three quantitative requirements in Subpart B of the Standard specify that the disposal system shall be designed to provide a "reasonable expectation" that their quantitative tests can be met.
33 34 35 36 38		The EPA intends the qualitative Assurance Requirements to compensate for uncertainties in projecting future performance of the disposal system over 10,000 years.
39 40	Application of Additional Regulations to the WIPP	Resource Conservation and Recovery Act (RCRA)
41 42 43 44 45 46	-	The EPA has issued a conditional "no migration" determination for the WIPP Test Phase. The EPA determined that the DOE had demonstrated, to a reasonable degree of certainty, that hazardous constituents will not migrate from the disposal unit during the Test Phase.
47 48 49		National Environmental Policy Act (NEPA)
50 51		The DOE has issued environmental impact statements (EIS) evaluating the effects that disposal of

	radioactive wastes at the WIPP would have on the quality of the environment.		
The Purpose of the WIPP Project	The WIPP is a full-scale pilot plant for demonstrating the safe management, storage, and disposal of defense- generated, radioactive, transuranic waste.		
	The long-term performance of the WIPP is being predicted to assess whether the WIPP will isolate wastes from the accessible environment sufficiently well to satisfy the disposal requirements in Subpart B of the Standard.		
	Upon completion of the performance assessment, the decision will be made on whether the WIPP will become a permenent disposal facility. The DOE will apply Subpart A of the Standard to the WIPP beginning with the first receipt of radionuclides for the Test Phase.		
Participants in the WIPP Project	The DOE has overall responsibility for implementing the WIPP Project.		
	Westinghouse Electric Corporation (WEC) is the management and operating contractor (MOC) during the Test Phase. The MOC is responsible for operations once the decision is made to permanently emplace waste at the WIPP.		
	Sandia National Laboratories (SNL) provides scientific investigations for evaluating compliance with the long- term performance criteria in Subpart B of the Standard.		
	New Mexico and the DOE have an agreement for consultation and cooperation for the WIPP.		
	The Board of Radionuclide Waste Management (BRWM) of the National Research Council, the Advisory Committee on Nuclear Facility Safety, and the Defense Nuclear Facilities Safety Board review the WIPP Project.		
	The U.S. Congress assigned the Environmental Evaluation Group (EEG) the responsibility of independent technical evaluation of the WIPP.		
Physical Setting	The WIPP is in southeastern New Mexico, about 42 km (26 mi) east of Carlsbad, the nearest major population center (pop. 25,000).		
	Less than 30 permanent residents live within a 16-km (10-mi) radius of the WIPP; the nearest residents live about 5.6 km (3.5 mi) south of the WIPP surface facility.		

Synopsis

1 2	The quality of well water has always been poor; drinking water for the WIPP is supplied by pipeline.
3	Potosh oil and gos are the only known important
4	minoral recourses in the erec. Subject to valid
5	winetal resources in the area, Subject to value
6	existing lights, resource extraction is not allowed
7	within the proposed land-withdrawal boundaries.
8	
9	The WIPP is in the Delaware Basin in an area of gently
10	rolling sand dunes known as Los Medanos.
11	
12	Minimal tectonic activity has occurred in the region
13	during the past 250 million years. Faulting about 3.5
14	to I million years ago formed the Guadalupe and
15	Delaware Mountains along the western edge of the basin.
16	
17	The most recent igneous activity in the area was about
18	35 million years ago; major volcanic activity last
19	occurred over I billion years ago. None of these
20	processes affected the Salado Formation at the WIPP.
21	
22	The Bell Canyon Formation, deposited more than 250
23	million years ago, is about 600 m (2,000 ft) below the
24	WIPP repository. Exploratory drilling into this
25	formation for oil and gas could penetrate the WIPP.
26	
27	The Castile Formation, the formation below the rock
28	unit hosting the WIPP, contains discontinuous
29	reservoirs of pressurized brine that could affect
30	repository performance if breached by an exploratory
31	borehole.
32	
33	The Salado Formation, the bedded salt that hosts the
34	WIPP, has slow groundwater movement because the salt
35	lacks primary porosity and open fractures.
36	
37	Several rock units above the Salado Formation could
38	provide pathways for radionuclide migration away from
39	the WIPP:
40	
41	The Rustler-Salado contact residuum, above the salt
42	of the Salado Formation, contains brine.
43	
44	Groundwater flow in the Rustler Formation, above the
45	residuum, is most rapid in the Culebra and Magenta
46	Dolomite Members. Water in the Culebra Dolomite
47	contains high concentrations of total dissolved
48	solids; recharge is apparently an uncertain distance
49	north of the WIPP, and discharge is to the west-
50	southwest.
51	
52	Units younger than the Rustler Formation are currently
53	unsaturated throughout most of the WIPP area. However,

	climatic changes or breaching a pressurized reservoir could cause saturation in the future.		
The WIPP Repository/Shaft System	The WIPP repository is about 655 m (2,150 ft) below the land surface in salt that is 600 m (2,000 ft) thick.		
	Groundwater movement in the bedded salt is extremely slow; the repository has remained dry while it is ventilated, but slow seepage of brine does occur.		
	The WIPP underground workings are composed of four shafts connected to a single underground disposal level. The shafts will be sealed upon decommissioning of the WIPP.		
	The WIPP repository is designed with eight panels (groups) of seven rooms each. As each panel is filled with waste, the next panel will be mined.		
Radionuclides Accepted at the WIPP	The TRU waste for which the WIPP is designed is defense-program waste generated by U.S. government activities since 1970.		
	A projected inventory shows that the contaminated waste will typically be composed of laboratory and production trash, including glassware, metal pipes, solvents, disposable laboratory clothing, cleaning rags, and solidified sludges.		
	Approximately 60 percent of the waste may be co- contaminated with waste considered hazardous under the Resource Conservation and Recovery Act (RCRA).		
	Most of the waste has external dose rates so low that people can handle properly sealed drums and boxes without any special shielding.		
	A small portion of the waste has a higher external dose rate and must be remotely handled. Waste canisters will be packaged for handling and transportation in specially shielded casks.		
	For disposal at the WIPP, both contact-handled and remotely handled waste must comply with the WIPP <i>Waste</i> Acceptance Criteria.		

1 2

3

2. APPLICATION OF SUBPART B TO THE WIPP

[NOTE: The text of Chapter 2 is followed by a synopsis that summarizes
essential information, beginning on page 2-16.]

Subpart B of the Standard applies at the WIPP to probabilities of cumulative 8 releases of radionuclides into the accessible environment (§ 191.13) and to 9 annual radiation doses received by members of the public in the accessible 10 environment (§ 191.15) as a result of TRU waste disposal. Actions and 11 procedures are required (§ 191.14) for increasing confidence that the 12 probabilistic release limits will be met at the WIPP. Radioactive 13 contamination of certain sources of groundwater (§ 191.16) in the vicinity of 14 the WIPP disposal system from such TRU wastes would also be regulated, if any 15 of these sources of groundwater were found to be present (U.S. DOE, 1989a). 16 Each of the four requirements of Subpart B and their evaluation by the WIPP 17 Project is discussed in this chapter. The full text of the Standard is 18 reproduced as Appendix A of this volume. 19

20

32

Appendix B to the Standard is EPA's guidance to the implementing agency (in this case, the DOE). In the supplementary information published with the Standard in the *Federal Register* (U.S. EPA, 1985, p. 38069), the EPA stated that it intends the guidance to be followed:

25
26 ...Appendix B...describes certain analytical approaches and assumptions
27 through which the [EPA] intends the various long-term numerical standards
28 of Subpart B to be applied. This guidance is particularly important
29 because there are no precedents for the implementation of such long-term
30 environmental standards, which will require consideration of extensive
31 analytical projections of disposal system performance.

33 The EPA based Appendix B on analytical assumptions it used to develop the technical basis for the numerical disposal standards. Thus, the EPA 34 "believes it is important that the assumptions used by the [DOE] are 35 compatible with those used by the EPA in developing this rule. Otherwise, 36 implementation of the disposal standards may have effects quite different 37 than those anticipated by EPA" (U.S. EPA, 1985, p. 38074). The DOE 38 compliance approach to the Standard is described in the WIPP Compliance 39 Strategy (U.S. DOE, 1989a; also see U.S. DOE, 1990b). 40 41

The WIPP compliance assessment for Subpart B is based on four concepts.
First, a performance assessment must determine the events that can occur, the
likelihood of these events, and the consequences of these events.

Determining the possible events is commonly referred to as scenario 1 development. In general, each combination of events and processes (scenario) 2 is composed of phenomena that could occur at the WIPP. Similarly, evaluating 3 the likelihood of events happening determines probabilities for these 4 scenarios. These probabilities characterize the likelihood that individual 5 scenarios will occur at the WIPP. Determining consequences requires 6 calculating cumulative radionuclide releases or possibly human radiation 7 exposures for individual scenarios. In most cases, such calculations require 8 complex computer models. 9 10

Second, as uncertainties will always exist in the results of a performance 11 assessment, the impacts and magnitudes of these uncertainties must be 12 characterized and displayed. Thus, uncertainty analysis and sensitivity 13 analysis are important parts of a performance assessment. Uncertainty 14 analysis characterizes the uncertainty in analysis results that derive from 15 uncertainty in the information on which the analysis is based. Sensitivity 16 17 analysis attempts to determine the impact that specific information has on the final outcome of an analysis. 18

19

20 Third, no single summary measure can adequately display all the information produced in a performance assessment. Thus, decisions on the acceptability 21 of the WIPP, or any other complex system, must be based on a careful 22 23 consideration of all available information rather than on a single summary measure. To facilitate informed decisions as to whether "reasonable 24 expectations" exist for the WIPP to comply with Subpart B, the WIPP 25 performance assessment will generate and present results of detailed 26 analyses. Consideration of these results must also include any available 27 28 qualitative information as prescribed in § 191.13(b). 29

Fourth, adequate documentation is an essential part of a performance 30 assessment. Obtaining independent peer review and successfully communicating 31 with interested parties requires careful documentation. An extensive effort, 32 therefore, is being devoted to documenting and peer reviewing the WIPP 33 performance assessment and the supporting research, including techniques, 34 models, data, and analyses. Without adequate documentation, informed 35 judgments on the suitability of the WIPP as a waste repository are not 36 possible. 37

38

39 The EPA requirements for radionuclide containment and individual radiation 40 protection drive the performance assessment. Chapter 2 documents the 41 assumptions and interpretations of the Standard used in the performance 42 assessment.

- 43
- 44

2.1 Containment Requirements

1 2

> The primary objective of Subpart B is to isolate most of the waste from the 3 accessible environment by limiting probabilities of long-term releases 4 (U.S. EPA, 1985, p. 38070). This objective is reflected in § 191.13, the 5 Containment Requirements. 6

- 2.1.1 PERFORMANCE ASSESSMENT 8
- 9

12

21

7

Quantitatively evaluating compliance with 191.13(a) requires a performance 10 assessment, which has specific meaning within the Standard: 11

"Performance Assessment" means an analysis that: (1) identifies the 13 processes and events that might affect the disposal system; (2) examines 14 the effects of these processes and events on the performance of the 15 disposal system; and (3) estimates the cumulative releases of 16 radionuclides, considering the associated uncertainties, caused by all 17 significant processes and events. These estimates shall be incorporated 18 into an overall probability distribution of cumulative release to the 19 extent practicable (§ 191.12(q)). 20

The assessment as defined must provide a reasonable expectation that releases 22 resulting from all significant processes and events that may affect the 23 disposal system for 10,000 years after disposal have (1) a likelihood of less 24 than one chance in ten of exceeding quantities calculated as specified in 25 Appendix A of the rule; and (2) a likelihood of less than one chance in 1,000 26 of exceeding ten times the specified quantities (§191.13(a)). Numerical 27 limits have been placed not on the predicted cumulative radionuclide 28 releases, but rather on the probability that cumulative releases will exceed 29 quantities calculated as prescribed. 30

31

The term "performance assessment" has come to refer to the prediction of all 32 long-term performance, because the performance-assessment methodology, with 33 minor modifications, can also be used to assess compliance with the 34 1,000-year undisturbed performance for the Individual Protection 35 Requirements. Henceforth, this report will refer to the assessment of 36 compliance with both §191.13(a) of the Containment Requirements and the 37 Individual Protection Requirements as the "performance assessment." 38 39

Qualitatively evaluating compliance (§191.13(b)) requires informed judgment 40 by the DOE as to whether the disposal system can reasonably be expected to 41 provide the protection required by §191.13(a). Thus, instead of relying on 42 the performance assessment to prove that future performance of the disposal 43 system will comply, the DOE must examine the numerical predictions from the 44 perspective of the entire record, and judge whether a reasonable expectation 45 46 exists on that basis.

47

For the WIPP performance assessment, the disposal system consists of the 1 underground repository, shafts, and the engineered and natural barriers of 2 the disposal site. The engineered barriers are backfill in rooms; seals in 3 drifts and panel entries; backfill and seals in shafts; and plugs in 4 boreholes. Engineered modifications to the repository design could include 5 making the waste a barrier. Natural barriers are the subsurface geologic and 6 hydrologic features within the controlled area that inhibit release and 7 migration of hazardous materials. Barriers are not limited to the examples 8 given in the Standard's definition, nor are those examples mandatory for the 9 WIPP. As recommended by the EPA in Appendix B, "...reasonable projections 10 for the protection expected from all of the engineered and natural 11 barriers...will be considered." No portion will be disregarded, unless that 12 portion of the system makes "negligible contribution to the overall isolation 13 provided" by the WIPP (U.S. DOE, 1989a). 14

16 2.1.2 HUMAN INTRUSION

17

15

In the Second Modification to the Consultation and Cooperation Agreement, the 18 DOE agreed to prohibit further subsurface mining, drilling, slant drilling 19 under the withdrawal area, or resource exploration unrelated to the WIPP 20 Project on the sixteen square miles to be withdrawn under DOE control. The 21 Standard clearly limits reliance on future institutional control in that 22 "performance assessments...shall not consider any contributions from active 23 institutional controls for more than 100 years after disposal" (§ 191.14(a)). 24 The Standard further requires that "disposal sites shall be designated by the 25 most permanent markers, records, and other passive institutional controls 26 practicable to indicate the dangers of the wastes and their location" 27 (§ 191.14(c)). Analysis of the probability of human intrusion into the 28 repository may include the effectiveness of passive institutional controls 29 over a 9,900-year period because such controls could substantially reduce the 30 31 probability of intrusion and improve predicted repository performance (Bertram-Howery and Swift, 1990). 32

33

Determining compliance with the Standard requires performance assessments 34 that include the probabilities and consequences of disruptive events. The 35 most significant event to affect a disposal system within a salt formation 36 will probably be human intrusion. The EPA noted that salt formations are 37 easy to mine and are often associated with economic resources. Typical 38 examples of human intrusion include but are not limited to exploratory 39 drilling for any reason, mining, or construction of other facilities for 40 reasons unrelated to the repository. The possibility of inadvertent human 41 intrusion into repositories in salt formations because of resource evaluation 42 must be considered, and the use of passive institutional controls to deter 43

such intrusion should be "taken into account" in performance assessments
(U.S. EPA, 1985, p. 38080).

3 The EPA gives specific guidance in Appendix B of the Standard for considering 4 inadvertent human intrusion. The EPA believes that only realistic 5 possibilities for human intrusion that may be mitigated by design, site 6 7 selection, and passive institutional controls need be considered. Additionally, the EPA assumes that passive institutional controls should 8 "...reduce the chance of inadvertent intrusion compared to the likelihood if 9 no markers and records were in place." Exploring for subsurface resources 10 requires extensive and organized effort. Because of this effort, information 11 from passive institutional controls is likely to reach resource explorers and 12 deter intrusion into the disposal system (U.S. EPA, 1985, p. 38080). In 13 particular, as long as passive institutional controls "endure and are 14 understood," the guidance states they can be assumed to deter systematic or 15 persistent exploitation of the disposal site, and, furthermore, can reduce 16 the likelihood of inadvertent, intermittent human intrusion. The EPA assumes 17 that exploratory drilling for resources is the most severe intrusion that 18 must be considered (U.S. EPA, 1985). Mining for resources need not be 19 considered within the controlled area (Hunter, 1989). 20 21 Effects of the site, design, and passive institutional controls can be used 22 in judging the likelihood and consequences of inadvertent drilling intrusion. 23 The EPA suggests in Appendix B of the Standard that intruders will soon 24 detect or be warned of the incompatibility of their activities with the 25 disposal site by their own exploratory procedures or by passive institutional 26 controls (U.S. EPA, 1985). 27 28 Three assumptions relative to human intrusion have been made by the WIPP 29 performance-assessment team: 30 31 No human intrusion of the repository will occur during the period of 32 active institutional controls. Credit for active institutional controls 33 can be taken for no more than 100 years after decommissioning 34 (§ 191.14(a)). The performance assessment will assume active control for 35

36 the first 100 years.

37

44

- While passive institutional controls are effective, no advertent resource exploration or exploitation will occur inside the controlled area, but reasonable, site-specific exploitation outside the controlled area may occur. The period of effective passive control will be factored into the performance assessment as soon as specifications for passive controls are developed.
- The number of exploratory boreholes assumed to be drilled inside the controlled area through inadvertent human intrusion is to be based on

site-specific information and, as specified in Appendix B of the Standard
(U.S. EPA, 1985, p. 38089), need not exceed 30 boreholes/km² (0.4 mi²)
per 10,000 years. No more severe scenarios for human intrusion inside
the controlled area need be considered. While passive institutional
controls endure, the drilling rate assumed for inadvertent human
intrusion will be significantly reduced, although the likelihood cannot
be eliminated.

8

Given the approach chosen by the EPA for defining the disposal standards, 9 repository performance must be predicted probabilistically to quantitatively 10 evaluate compliance. Determining the probability of intrusion poses 11 questions that cannot be answered by numerical modeling or experimentation. 12 Projecting future drilling activity requires knowledge about complex 13 variables such as economic demand for natural resources, institutional 14 control over the site, public awareness of radiation hazards, and changes in 15 exploration technology. Extrapolating present trends 10,000 years into the 16 future requires expert judgment. All approaches to assessing drilling 17 probability presently being considered by SNL will include expert judgment. 18

20 2.1.3 RELEASE LIMITS

21

19

Appendix A to the Standard establishes release limits for all regulated 22 radionuclides. Table 1 in that appendix gives the limit for cumulative 23 releases to the accessible environment for 10,000 years after disposal for 24 each radionuclide per unit of waste. Note 1(e) to Table 1 defines the unit 25 of waste as an amount of TRU wastes containing one million curies of alpha-26 emitting transuranic radionuclides with half-lives greater than 20 years. 27 Note 2(b) describes how to develop release limits for a TRU-waste disposal 28 system by determining the waste unit factor, which is the inventory (in 29 curies) of transuranic alpha-emitting radionuclides in the waste with half-30 lives greater than 20 years divided by one million curies, where transuranic 31 is defined as radionuclides with atomic weights greater than 92 (uranium). 32 Consequently, as currently defined in the Standard, all transuranic 33 radioactivity in the waste cannot be included when calculating the waste unit 34 factor. For the WIPP, 1.186×10^7 curies of the radioactivity design total 35 of 1.814 x 10^7 curies comes from transuranic alpha-emitting radionuclides 36 with half-lives greater than 20 years. This number is based on the design 37 radionuclide inventories by waste generator for contact-handled (CH) and 38 39 remotely handled (RH) waste (Volume 3, Chapter 3 of this report). Regardless 40 of the waste unit, WIPP calculations have assumed that all nuclides in the design radionuclide inventories for CH- and RH-waste are regulated and must 41 be included in the release calculations. Therefore, the release limits used 42 by the WIPP are somewhat reduced and are more restrictive. 43 44

Note 6 of Table 1 in the Standard's Appendix A describes the manner in which 1 the release limits are to be used to determine compliance with § 191.13(a): 2 for each radionuclide released, the ratio of the cumulative release to the 3 total release limit for that radionuclide must be determined; ratios for all 4 radionuclides released are then summed for comparison to the requirements of 5 Thus, the quantity of a radionuclide that may be safely § 191.13(a). 6 released depends on the quantities of all other nuclides projected to be 7 released but cannot exceed its own release limit. The summed normalized 8 release cannot exceed 1 for probabilities greater than 0.1, and cannot exceed 9 10 for probabilities greater than 0.001 but less than 0.1 (§ 191.13(a)). 10 Potential releases estimated to have probabilities less than 0.001 are not 11 limited (§ 191.13(a)). Calculation methods for summed normalized releases 12 are described in more detail in Volume 3, Chapter 3 of this report. 13

15 2.1.4 UNCERTAINTIES

16

14

The EPA recognized that "[s]tandards must be implemented in the design phase for these disposal systems because active surveillance cannot be relied upon ..." over the very long time of interest. The EPA also recognized that "standards must accommodate large uncertainties, including uncertainties in our current knowledge about disposal system behavior and the inherent uncertainties regarding the distant future" (U.S. EPA, 1985, p. 38070).

23

24 Performance assessment requires considering numerous uncertainties in the projected performance of the disposal system. The WIPP Project will use the 25 interpretation of the EPA requirement for uncertainty analysis developed in 26 previous work at SNL for high-level waste disposal (Chapter 3 of this volume; 27 Cranwell et al., 1990; Pepping et al., 1983; Hunter et al., 1986; Cranwell et 28 al., 1987; Campbell and Cranwell, 1988; Rechard, 1989). The EPA has 29 explicitly recognized that performance assessments will contain uncertainties 30 and that many of these uncertainties cannot be eliminated. For the WIPP, 31 uncertainties will be parameter uncertainties, that is, uncertainties about 32 the numerical values in or resulting from data, uncertainties in the 33 conceptual model and its mathematical representation, and scenario 34 35 uncertainty. The WIPP Project will use expert judgment for parameters or models identified by sensitivity analyses as being important to WIPP 36 performance assessment and for which significant uncertainty exists in the 37 data sets and conceptual models. Thus far, conditional on existing data sets 38 and conceptual models, these parameters include radionuclide solubility. 39 geochemical retardation of radionuclides in the Culebra Dolomite above the 40 41 repository, dual porosity, permeabilities related to the repository room and its contents, and human-intrusion borehole properties. Data from expert 42 43 panels quantifying radionuclide concentrations in brines in WIPP waste panels and radionuclide retardation in the Culebra Dolomite are being compiled. 44

Additional expert panels are planned to quantify other parameters and thus
 address the uncertainty in using those important data sets and associated
 conceptual models.

4

14

In addition, WIPP performance assessment must also include the potential for 5 human intrusion and the effectiveness of passive institutional controls to 6 deter such intrusion. Including these factors in the WIPP performance 7 assessment requires using expert judgment. An expert panel has already я identified future societies' possible technical capabilities, needs, and 9 levels of intelligence. An additional panel is currently developing a marker 10 methodology to maximize both information that could be communicated to future 11 generations and marker lifetimes. Another expert panel may develop 12 strategies concerning barriers to intrusion-by-drilling. 13

15 One type of uncertainty that cannot be completely resolved is the validity of various models for predicting disposal system behavior 10,000 years into the 16 future. Although models will be validated (checked for correctness) to the 17 extent possible, expert judgment will be relied upon where validation is not 18 possible. Uncertainties arising from the numerical solutions of a 19 mathematical model are resolved in the process of verifying computer 20 programs. Completeness in scenario development or screening is most 21 appropriately addressed through peer review and probability assignment (U.S. 22 DOE, 1990b). 23

24

The WIPP Project will assess and reduce uncertainty to the extent practicable 25 26 using a variety of techniques (Table 2-1). The techniques in Table 2-1 are 27 typically applied iteratively. The first iteration can include rather crude assumptions leading to preliminary results that help focus these techniques 28 in subsequent iterations. In this manner, the resources required to 29 implement the techniques in Table 2-1 can be directed at the areas of the 30 WIPP performance assessment where the benefits of reducing uncertainty would 31 be the greatest. 32

33

34 The necessity of considering uncertainty in estimated behavior, performance, and cumulative releases is recognized in the Standard in § 191.12(p), 35 36 § 191.12(q)(3), § 191.13(b), and in Appendix B (U.S. EPA, 1985). Parameter uncertainty is mentioned only in one paragraph in Appendix B, although 37 parameter uncertainty is a major contributor to the other areas of 38 uncertainty. Model uncertainty and scenario uncertainty are not mentioned at 39 40 all, yet they could be even more important sources of uncertainty than the 41 parameters. Although uncertainties must be addressed, no guidance is provided in the Standard as to how this is to be accomplished. 42 43

5			
6	Type of	Tachniqua for Assossing	
7 18	Uncertainty	or Reducing Uncertainty	
11			
12	Scenarios	Expert Judgment and Peer Review	
13	(Completeness,	Quality Assurance	
14	Logic, and Probabilities)		
15			
16	Conceptual Models	Expert Judgment and Peer Review	
17		Sensitivity Analysis	
18		Uncertainty Analysis	1
19		Quality Assurance	
20	Computer Models	Export Judgmont and Poor Roview	
21	Computer models	Varification and Validation*	
22		Soneitivity Analysis	
23		Quality Assurance	
25		duality hoodrance	
26	Parameter Values	Expert Judgment and Peer Review	
27	and Variability	Data-Collection Programs	
28		Sampling Techniques	
29		Sensitivity Analysis	
30		Uncertainty Analysis	
31		Quality Assurance	
32			
33			
34	*to the extent possible		
35	Source: Bertram-Howery and Hu	inter, 1989b	
38			

TABLE 2-1. TECHNIQUES FOR ASSESSING OR REDUCING UNCERTAINTY IN THE WIPP PERFORMANCE ASSESSMENT

40 2.1.5 COMPLIANCE ASSESSMENT

41

38 39

The Standard assumes that the results of the performance assessment for § 191.13(a) will be incorporated into an overall probability distribution of cumulative release to the extent practicable. In Appendix B, the EPA assumes that, whenever practicable, results can be assembled into a single complementary cumulative distribution function (CCDF) that indicates the probability of exceeding various levels of summed normalized cumulative releases (Figure 2-1).

49

Descriptions of a procedure for performance assessment based on the
construction of a CCDF are available (Cranwell et al., 1990; Pepping et al.,
1983; Hunter et al., 1986; Cranwell et al., 1987; Campbell and Cranwell,
1988; and Rechard, 1989). The construction of CCDFs follows from the
development of scenario probabilities and the calculation of scenario
consequences. Further, the effects of different types of uncertainties can
be shown by constructing families of CCDFs and then reducing each family to a

Figure 2-1. Hypothetical CCDF Illustrating Compliance with the Containment Requirements (after Marietta et al., 1989).

single CCDF. The construction of families of CCDFs and the single CCDF isdescribed in Chapter 3 of this volume.

The EPA assumes that a single CCDF will incorporate all uncertainty, and if 4 this single distribution function meets the requirement of § 191.13(a), then 5 a disposal system can be considered to be in compliance with the Containment 6 Requirements (U.S. EPA, 1985). Thus, EPA assumes that satisfying the numeric 7 requirements is sufficient to demonstrate compliance with § 191.13(a) but not 8 mandatory. A basis for concluding that a system provides good isolation can 9 include qualitative judgment as well as quantitative results and thus does 10 not totally depend upon the calculated CCDF. The Containment Requirements 11 (§ 191.13(a)) state that, based upon performance assessment, releases shall 12 have probabilities not exceeding specified limits. Noncompliance is implied 13 if the single CCDF suggested by the EPA exceeds the limits; however, 14 § 191.13(b) states that performance assessments need not provide complete 15 assurance that the requirements in § 191.13(a) will be met and that the 16 determination should be "on the basis of the record before the [DOE]." Given 17 the discussions on use of qualitative judgment in Appendix B, this means the 18 entire record, including qualitative judgments. The guidance states that 19 20

it will be appropriate for the [DOE] to make use of rather complex
computational models, analytical theories, and prevalent expert judgment
relevant to the numerical predictions... In fact, sole reliance on
these numerical predictions to determine compliance may not be
appropriate; the [DOE] may choose to supplement such predictions with
qualitative judgments as well (U.S. EPA, 1985, p. 38088).

28 The likelihood that excess releases will occur must be considered in the 29 qualitative decision about a "reasonable expectation" of compliance, but is 30 not necessarily the deciding factor (Bertram-Howery and Swift, 1990).

31

27

3

At present, single-scenario CCDF curves are used extensively in performanceassessment sensitivity analysis for comparing various intermediate results in the modeling process. Such CCDF curves do not establish compliance or noncompliance, but they convey vital information about how changes in selected model parameters may influence performance and compliance (Bertram-Howery and Swift, 1990).

38

No "final" CCDF curves yet exist. Because probabilities for specific scenarios and many parameter-value distribution functions are still undetermined (see Chapters 4 and 5 of this volume), all CCDF curves presented in Chapter 6 of this volume are preliminary. Although the compliance limits are routinely included on all plots as reference points, the currently available curves cannot be used to judge compliance with the Containment
Requirements because the curves reflect an incomplete modeling system
 (Volume 2 of this report) and incomplete data (Volume 3 of this report) and
 because the Standard has not been repromulgated.

4

2.1.6 MODIFYING THE REQUIREMENTS

6

9

20

26

7 The EPA acknowledged that implementation of the Containment Requirements8 might require modifying those standards in the future. This implementation

... will require collection of a great deal of data during site 10 characterization, resolution of the inevitable uncertainties in such 11 information, and adaptation of this information into probabilistic risk 12 assessments. Although [EPA] is currently confident that this will be 13 successfully accomplished, such projections over thousands of years to 14 determine compliance with an environmental regulation are unprecedented. 15 If--after substantial experience with these analyses is acquired-16 -disposal systems that clearly provide good isolation cannot reasonably 17 be shown to comply with the containment requirements, the [EPA] would 18 consider whether modifications to Subpart B were appropriate. 19

Another situation that might lead to suggested revisions would be if additional information were developed regarding the disposal of certain wastes that appeared to make it inappropriate to retain generally applicable standards addressing all of the wastes covered by this rule (U.S. EPA, 1985, p. 38074).

In discussing the regulatory impacts of the Standard (U.S. EPA, 1985, 27 p. 38083), the EPA acknowledged that no impact analysis had been performed 28 for TRU wastes. The EPA evaluated the costs of the various engineering 29 controls potentially needed for repositories for commercially generated spent 30 fuel or high-level waste to meet different levels of protection for the 31 Containment Requirements and concluded additional precautions beyond those 32 already planned were unnecessary. No such analysis was performed prior to 33 promulgation of the Standard for the only TRU-defense-waste repository, the 34 WIPP. An impact study was recently initiated for TRU-waste repositories, but 35 findings are not yet available. 36

37

- 38
- 39 40

47

2.2 Assurance Requirements

The EPA included Assurance Requirements (§ 191.14) in the 1985 Standard to provide confidence the agency believed is needed for long-term compliance with the Containment Requirements by disposal systems not regulated by the NRC. These requirements are designed to complement the Containment Requirements because of the uncertainties involved in predicting long-term performance of disposal systems (U.S. EPA, 1985, p. 38072).

The Assurance Requirements include six provisions: active institutional 1 controls; monitoring after decommissioning to detect performance deviations; 2 passive institutional controls; different types of barriers encompassing both 3 engineered and natural barriers; avoidance of sites where a reasonable 4 expectation of future resource exploration exists, unless favorable disposal 5 characteristics compensate; and the possibility of removal of wastes for a 6 reasonable period of time. Each Assurance Requirement applies to some aspect 7 of uncertainty about long-term containment. Limiting reliance on active 8 institutional controls to 100 years will reduce reliance on future 9 generations to maintain surveillance. Carefully planned monitoring will 10 mitigate against unexpectedly poor system performance going undetected. 11 Markers and records will reduce the chances of systematic and inadvertent 12 intrusion. Multiple barriers, both engineered and natural, will reduce the 13 risk should one type of barrier not perform as expected. Considering future 14 resource potential and demonstrating that the favorable characteristics of 15 the disposal site compensate for the likelihood of disturbance will add to 16 the confidence that the Containment Requirements can be met for the WIPP. A 17 selected disposal system that permits possible future recovery of most of the 18 wastes for a reasonable period of time after disposal will allow future 19 generations the option of relocating the wastes should new developments 20 warrant such recovery (U.S. DOE, 1990b). In promulgating the Standard, the 21 EPA stated that "[t]he intent of this provision was not to make recovery of 22 waste easy or cheap, but merely possible...because the [EPA] believes that 23 future generations should have options to correct any mistakes that this 24 generation might unintentionally make" (U.S. EPA, 1985, p. 38082). The EPA 25 also stated that "any current concept for a mined geologic repository meets 26 this requirement without any additional procedures or design features" 27 (ibid.). 28

29 30

31 32

2.3 Individual Protection Requirements

The Individual Protection Requirements (§ 191.15) of the Standard require predicting potential doses to humans resulting from releases to the accessible environment for undisturbed performance during the first 1,000 years after decommissioning of the repository, in the event that performance assessments predict such releases. Although challenges to this requirement contributed to the remand of Subpart B to the EPA, the WIPP Project cannot assume that the requirement will change when the Standard is repromulgated.

The methodology developed for assessing compliance with the Containment
Requirements can be used to estimate doses as specified by the Individual
Protection Requirements. One of the products of scenario development for the
Containment Requirements is a scenario for undisturbed conditions. The

undisturbed performance of the repository is its design-basis behavior and
reasonable variations in that behavior resulting from uncertainties in
natural barriers and in designing systems and components to function for
10,000 years. Undisturbed performance for the WIPP is understood to mean
that uncertainties in such repository features as engineered barriers
(backfill, seals, and plugs) must be specifically included in the analysis of
the predicted behavior (U.S. DOE, 1990b).

"Undisturbed performance" means predicted behavior of a disposal system, including consideration of the uncertainties in predicted behavior, if the disposal system is not disrupted by human intrusion or the occurrence of unlikely natural events (§ 191.12(p)).

Human intrusion means any human activity other than those directly related to
repository characterization, construction, operation, or monitoring. The
effects of intrusion are specifically excluded for the undisturbed
performance analysis (U.S. DOE, 1989a).

Unlikely natural events at the WIPP are those events and processes that have 19 20 not occurred in the past at a sufficient rate to affect the Salado Formation at the repository horizon within the controlled area and potentially cause 21 the release of radionuclides. Only the presence of groundwater has 22 significantly affected the Salado near the WIPP at the repository horizon for 23 the past several million years. Therefore, the WIPP Project will model only 24 groundwater flow and the effects of the repository as the undisturbed 25 performance (U.S. DOE, 1989a). Because of the relative stability of the 26 natural systems within the region of the WIPP disposal system, all naturally 27 occurring events and processes that are expected to occur are part of the 28 base-case scenario and are assumed to represent undisturbed performance 29 (Marietta et al., 1989). 30

31

37

8

9

10

11

12 13

18

The EPA assumes in Appendix B of the Standard that compliance with § 191.15 "can be determined based upon best estimate predictions" rather than a CCDF. Thus, according to the EPA, when uncertainties are considered, only the mean or median of the appropriate distributions, whichever is greater, need fall below the limits (U.S. EPA, 1985, p. 38088).

The Individual Protection Requirements state that "the annual dose equivalent from the disposal system to any member of the public in the accessible environment" shall not exceed "25 millirems to the whole body or 75 millirems to any critical organ" (§ 191.15). These requirements apply to undisturbed performance of the disposal system, considering all potential release and dose pathways for 1,000 years after disposal. A specifically stated requirement is that modeled individuals be assumed to consume 2 l (0.5 gal) 1 per day of drinking water from a significant source of groundwater, which is
2 specifically defined in the Standard.

"Significant source of ground water" ... means: (1) An aquifer that: 4 (i) Is saturated with water having less than 10,000 milligrams per liter 5 of total dissolved solids; (ii) is within 2,500 feet of the land surface; 6 (iii) has a transmissivity greater than 200 gallons per day per foot, 7 provided that any formation or part of a formation included within the 8 source of groundwater has a hydraulic conductivity greater than 2 gallons 9 per day per square foot ...; and (iv) is capable of continuously yielding 10 at least 10,000 gallons per day to a pumped or flowing well for a period 11 of at least a year; or (2) an aquifer that provides the primary source of 12 water for a community water system as of [November 18, 1985] 13 (§ 191.12 (n)). 14

No water-bearing unit at the WIPP meets the first definition of significant 16 source of groundwater at tested locations within the proposed land withdrawal 17 area. At most well locations, water-bearing units meet neither requirement 18 (i) nor (iii): total dissolved solids exceed 10,000 mg/l and transmissivity 19 is less than 200 gallons per day per foot (26.8 ft²/day or 2.9 x 10^{-5} m²/s) 20 (Lappin et al., 1989; Brinster, 1991). Outside the land withdrawal area, 21 however, portions of the Culebra Dolomite Member do meet the requirements of 22 the first definition. The WIPP Project will assume that any portion of an 23 aquifer that meets the first definition is a significant source of 24 groundwater and will examine communication between nonqualifying and 25 qualifying portions. No community water system is being supplied by any 26 aquifer near the WIPP; therefore, no aquifer meets the second definition of 27 significant source of groundwater (U.S. DOE, 1989a). 28

29

3

15

The Dewey Lake Red Beds are saturated only in some areas. Based on current 30 evaluations, neither the Magenta Dolomite Member nor the Culebra Dolomite 31 Member of the Rustler Formation (Figure 1-5) appears to meet the entire 32 definition of a significant source of groundwater. Aquifers below the Salado 33 Formation are more than 762 m (2,500 ft) below the land surface at the WIPP. 34 The nearest aquifer that meets the first definition of a significant source 35 of groundwater over its entire extent is the alluvial and valley-fill aquifer 36 37 along the Pecos River. Communication between this aquifer and any other aquifers in the vicinity of the WIPP will be evaluated (U.S. DOE, 1989a). 38 Studies will include reviewing and assessing regional and WIPP drilling 39 records and borehole histories for pertinent hydrologic information 40 (U.S. DOE, 1990b). 41

42

43 No releases from the repository/shaft system are expected to occur within 44 1,000 years (Lappin et al., 1989; Marietta et al., 1989; Chapter 7 of this 45 volume); therefore, dose predictions for undisturbed performance could be

unnecessary. To date, analyses of undisturbed conditions suggest successful 1 2 long-term isolation of the waste. 3 4 2.4 Groundwater Protection Requirements 5 6 Special sources of groundwater are protected from contamination at levels 7 greater than certain limits by the Groundwater Protection Requirements 8 (§ 191.16). There are no special sources of groundwater as defined in 9 § 191.16 at the WIPP; therefore, the requirement to analyze radionuclide 10 concentrations in such groundwater is not relevant to the WIPP (see Chapter 9 11 of this volume). 12 13 14 **Chapter 2-Synopsis** 15 18 **WIPP** Compliance The WIPP compliance assessment is based on four ideas: 18 Assessment 19 A performance assessment must determine the events 20 that can occur (scenario development), the 21 likelihood of those events, and the consequences of 22 those events. 23 24 The impact of uncertainties must be characterized 25 and displayed because uncertainties will always 26 exist in the results of a performance assessment. 27 28 No single summary measure can adequately display all 29 the information produced in a performance 30 assessment. Decisions on the acceptability of the 31 WIPP must be based on a careful consideration of all 32 available information, including qualitative 33 information not in the calculations. 34 35 Adequate documentation and independent peer review 36 37 are essential parts of the performance assessment and supporting research. 38

Performance Assessment

- 49Subpart B of the Standard defines "performance50assessment" as an analysis that
- 51

47 48

1	identifies the processes and events that might
2	affect the disposal system,
3	
4	examines the effects of these processes and events
5	on the performance of the disposal system,
6	
7	estimates the cumulative releases of radionuclides,
8	considering the associated uncertainties, caused by
9	all significant processes and events.
10	
11	Disposal systems are to be designed to provide a
12	reasonable expectation, based on performance
13	assessments, that cumulative releases for 10,000 years
14	after disposal from all significant processes and
15	events that may affect the disposal system have
16	
17	a likelihood of less than one chance in ten of
18	exceeding quantities specified in Appendix A of the
19	Standard,
20	
21	a likelihood of less than one chance in 1,000 of
22	exceeding ten times the quantities specified in
23	Appendix A of the Standard.
24	
25	This report refers to the assessment of compliance with
26	both the Containment Requirements and the Individual
_	Protoction Dequirements of the UUIDD porformance
27	riotection Requirements as the wirr periormance
27 28	assessment."
27 28 29	assessment."
27 28 29 31	Probability of Human Intrusion
27 28 29 31 32	Probability of Human Intrusion
27 28 29 31 32 33	Probability of Human Intrusion Performance assessments must consider the probability
27 28 29 31 32 33 34	Probability of Human Intrusion Performance assessments must consider the probability of human intrusion into the repository within the
27 28 29 31 32 33 34 35	Probability of Human Intrusion Performance assessments must consider the probability of human intrusion into the repository within the 9,900-year period after active institutional controls,
27 28 29 31 32 33 34 35 36	Probability of Human Intrusion Performance assessments must consider the probability of human intrusion into the repository within the 9,900-year period after active institutional controls, such as post-operational monitoring, maintaining fences
27 28 29 31 32 33 34 35 36 37	Probability of Human Intrusion Performance assessments must consider the probability of human intrusion into the repository within the 9,900-year period after active institutional controls, such as post-operational monitoring, maintaining fences and buildings, and guarding the facility, are assumed
27 28 30 31 32 33 34 35 36 37 38	Probability of Human Intrusion Performance assessments must consider the probability of human intrusion into the repository within the 9,900-year period after active institutional controls, such as post-operational monitoring, maintaining fences and buildings, and guarding the facility, are assumed to end.
27 28 39 31 32 33 34 35 36 37 38 39	Probability of Human Intrusion Performance assessments must consider the probability of human intrusion into the repository within the 9,900-year period after active institutional controls, such as post-operational monitoring, maintaining fences and buildings, and guarding the facility, are assumed to end.
27 28 29 31 32 33 34 35 36 37 38 39 40	Probability of Human Intrusion Performance assessments must consider the probability of human intrusion into the repository within the 9,900-year period after active institutional controls, such as post-operational monitoring, maintaining fences and buildings, and guarding the facility, are assumed to end. Typical examples of human intrusion include but are not
27 28 29 31 32 33 34 35 36 37 38 39 40 41	Probability of Human Intrusion Performance assessments must consider the probability of human intrusion into the repository within the 9,900-year period after active institutional controls, such as post-operational monitoring, maintaining fences and buildings, and guarding the facility, are assumed to end. Typical examples of human intrusion include but are not limited to exploratory drilling, mining, or
27 28 29 31 32 33 34 35 36 37 38 39 40 41 42	Protection Requirements as the wirr performance assessment." Probability of Human Intrusion Performance assessments must consider the probability of human intrusion into the repository within the 9,900-year period after active institutional controls, such as post-operational monitoring, maintaining fences and buildings, and guarding the facility, are assumed to end. Typical examples of human intrusion include but are not limited to exploratory drilling, mining, or construction of other facilities for reasons unrelated
27 28 29 31 32 33 34 35 36 37 38 39 40 41 42 43	Protection Requirements as the wirr performance assessment." Probability of Human Intrusion Performance assessments must consider the probability of human intrusion into the repository within the 9,900-year period after active institutional controls, such as post-operational monitoring, maintaining fences and buildings, and guarding the facility, are assumed to end. Typical examples of human intrusion include but are not limited to exploratory drilling, mining, or construction of other facilities for reasons unrelated to the repository.
27 28 29 31 32 33 34 35 36 37 38 39 40 41 42 43 44	Protection Requirements as the wiff performance assessment." Probability of Human Intrusion Performance assessments must consider the probability of human intrusion into the repository within the 9,900-year period after active institutional controls, such as post-operational monitoring, maintaining fences and buildings, and guarding the facility, are assumed to end. Typical examples of human intrusion include but are not limited to exploratory drilling, mining, or construction of other facilities for reasons unrelated to the repository.
27 28 29 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	Protection Requirements as the wiff performance assessment." Probability of Human Intrusion Performance assessments must consider the probability of human intrusion into the repository within the 9,900-year period after active institutional controls, such as post-operational monitoring, maintaining fences and buildings, and guarding the facility, are assumed to end. Typical examples of human intrusion include but are not limited to exploratory drilling, mining, or construction of other facilities for reasons unrelated to the repository. The EPA assumes that exploratory drilling for resources
27 28 29 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	Protection Requirements as the wiff performance assessment." Probability of Human Intrusion Performance assessments must consider the probability of human intrusion into the repository within the 9,900-year period after active institutional controls, such as post-operational monitoring, maintaining fences and buildings, and guarding the facility, are assumed to end. Typical examples of human intrusion include but are not limited to exploratory drilling, mining, or construction of other facilities for reasons unrelated to the repository. The EPA assumes that exploratory drilling for resources is the most severe intrusion that must be considered.
27 28 29 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	Probability of Human Intrusion Performance assessments must consider the probability of human intrusion into the repository within the 9,900-year period after active institutional controls, such as post-operational monitoring, maintaining fences and buildings, and guarding the facility, are assumed to end. Typical examples of human intrusion include but are not limited to exploratory drilling, mining, or construction of other facilities for reasons unrelated to the repository. The EPA assumes that exploratory drilling for resources is the most severe intrusion that must be considered.
27 28 29 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	Probability of Human Intrusion Performance assessments must consider the probability of human intrusion into the repository within the 9,900-year period after active institutional controls, such as post-operational monitoring, maintaining fences and buildings, and guarding the facility, are assumed to end. Typical examples of human intrusion include but are not limited to exploratory drilling, mining, or construction of other facilities for reasons unrelated to the repository. The EPA assumes that exploratory drilling for resources is the most severe intrusion that must be considered. Performance assessments may consider the effectiveness
27 28 29 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	Protection Requirements as the wirr performance assessment." Probability of Human Intrusion Performance assessments must consider the probability of human intrusion into the repository within the 9,900-year period after active institutional controls, such as post-operational monitoring, maintaining fences and buildings, and guarding the facility, are assumed to end. Typical examples of human intrusion include but are not limited to exploratory drilling, mining, or construction of other facilities for reasons unrelated to the repository. The EPA assumes that exploratory drilling for resources is the most severe intrusion that must be considered. Performance assessments may consider the effectiveness of passive institutional controls such as permanent
27 28 29 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	Protection Requirements as the wife performance assessment." Probability of Human Intrusion Performance assessments must consider the probability of human intrusion into the repository within the 9,900-year period after active institutional controls, such as post-operational monitoring, maintaining fences and buildings, and guarding the facility, are assumed to end. Typical examples of human intrusion include but are not limited to exploratory drilling, mining, or construction of other facilities for reasons unrelated to the repository. The EPA assumes that exploratory drilling for resources is the most severe intrusion that must be considered. Performance assessments may consider the effectiveness of passive institutional controls such as permanent markers and records to indicate the dangers of the
27 28 29 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	Protection Requirements as the wirr performance assessment." Probability of Human Intrusion Performance assessments must consider the probability of human intrusion into the repository within the 9,900-year period after active institutional controls, such as post-operational monitoring, maintaining fences and buildings, and guarding the facility, are assumed to end. Typical examples of human intrusion include but are not limited to exploratory drilling, mining, or construction of other facilities for reasons unrelated to the repository. The EPA assumes that exploratory drilling for resources is the most severe intrusion that must be considered. Performance assessments may consider the effectiveness of passive institutional controls such as permanent markers and records to indicate the dangers of the wastes and their location.
27 28 29 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	Probability of Human Intrusion Performance assessments must consider the probability of human intrusion into the repository within the 9,900-year period after active institutional controls, such as post-operational monitoring, maintaining fences and buildings, and guarding the facility, are assumed to end. Typical examples of human intrusion include but are not limited to exploratory drilling, mining, or construction of other facilities for reasons unrelated to the repository. The EPA assumes that exploratory drilling for resources is the most severe intrusion that must be considered. Performance assessments may consider the effectiveness of passive institutional controls such as permanent markers and records to indicate the dangers of the wastes and their location.

1	Three assumptions relative to human intrusion at the
2	WIPP have been made by the performance-assessment team:
3	
4	No numan intrusion into the repository will occur
5	during the period of active institutional controls.
6	tribus subs for 100 sector often decompletions
7	taken only for 100 years after decommissioning.
8	While pergive institutional controls are offective
9	no advertent recourse exploration or exploitation
11	will occur inside the controlled area but
12	reasonable site-specific exploitation outside the
13	controlled area may occur and should be considered
14	in the performance assessment.
15	
16	No more than 30 exploratory boreholes/km ² (0.4 mi ²)
17	will be assumed drilled inside the controlled area
18	through inadvertent human intrusion in the 10,000
19	years of regulatory interest. While passive
20	institutional controls endure, the rate for
21	exploratory drilling may be significantly reduced,
22	although the likelihood cannot be eliminated.
29	
25	Release Limits
26	
27	Appendix A to the Standard establishes release limits
28	for all regulated radionuclides, based on a calculated
29	"waste unit factor" that considers alpha-emitting
30	radionuclides with atomic weights greater than 92
31	(uranium) with half-lives <u>greater</u> than 20 years.
32	Consequently, all TRU waste scheduled for disposal in
33	the WIPP cannot be included when calculating the waste-
34	unit factor.
35	
36	To determine compliance with § 191.13(a), for each
37	radionuclide released, the ratio of the cumulative
38	release to the total release limit for that
3 9 40	radionuclides released are then summed for comparison
41	to the requirements.
42	
	Uncertainties
45	uncer carnetes
46	For the WIPP uncertainties in parameters scenarios
47	and mathematical concentual and computer models are
48	significant considerations
49	
50	The WIPP Project will reduce uncertainty to the extent
51	practicable using a variety of techniques that are
52	typically applied iteratively.
53	

Expert judgment will be used for parameters that have 1 2 significant uncertainty in data sets. 3 Expert judgment will also be used to include the 4 potential for human intrusion and the effectiveness of 5 passive institutional controls to deter such intrusion. 6 7 Models will be validated (checked for correctness) to 8 the extent possible. Expert judgment must be relied 9 upon where validation is not possible. 10 12 Compliance Assessment 13 14 The EPA suggests that, whenever practicable, the 15 results of the performance assessment be assembled into 16 a single complementary cumulative distribution function 17 (CCDF). 18 19 A CCDF is a graphical method of showing the probability 20 of exceeding various levels of cumulative release. 21 22 According to the EPA guidance, if the CCDF shows that 23 releases have probabilities that do not exceed 24 specified limits, then a disposal system can be 25 considered to be in compliance with the Containment 26 27 Requirements. 28 The CCDF could show that some releases have 29 probabilities that exceed the specified limits; EPA 30 guidance states that compliance should be determined 31 from all information assembled by the DOE, including 32 qualitative judgments. 33 34 The likelihood that excess releases will occur must be 35 considered in a qualitative decision about a 36 "reasonable expectation" of compliance but is not 37 necessarily the deciding factor. 38 39 No "final" CCDF curves yet exist. Because 40 probabilities for specific scenarios and many 41 42 parameter-value distribution functions are still undetermined, all CCDF curves presented in this report 43 44 are preliminary. 46 Modifying the Requirements 47 48 The Containment Requirements could be modified by the 49 EPA if 50 51 52 complete analyses showed that disposal systems that clearly demonstrated good isolation could not 53 reasonably comply with the requirements, 54 55

	additional information indicated that the general requirements were too restrictive or not adequate for certain types of waste.
Assurance Requirements	Each Assurance Requirement applies to some aspect of uncertainty about the future relative to long-term containment by
	limiting reliance on active institutional controls to 100 years to reduce reliance on future generations to maintain surveillance,
	monitoring to mitigate against unexpectedly poor system performance going undetected,
	using markers and records to reduce the chances of systematic and inadvertent intrusion,
	including multiple barriers, both manmade and natural, to reduce the risk should one type of barrier not perform as expected,
	avoiding areas with natural resource potential, unless the favorable characteristics of the area as a disposal site outweigh the possible problems associated with inadvertent human intrusion of the repository,
	selecting a disposal system that permits possible future recovery of most of the wastes for a reasonable period of time after disposal, so that future generations have the option of relocating the wastes should new developments warrant such recovery.
Individual Protection Requirements	The Individual Protection Requirements apply only to undisturbed performance and require predicting potential annual doses to humans resulting from releases to the accessible environment during the first 1,000 years after decommissioning of the repository, if performance assessments predict such releases.
	The EPA assumes that compliance can be determined based upon "best estimate" predictions rather than a CCDF.
	One of the requirements is that individuals be assumed to consume 2 ℓ (0.5 gal) per day of drinking water from a significant source of groundwater. The WIPP Project has concluded that:

Synopsis

1 2 3 4 5 6 7		No water-bearing unit at the WIPP met the EPA's first definition of significant source of groundwater everywhere prior to construction of the WIPP (or currently). The WIPP Project will assume that any portion of a water-bearing unit that meets the definition is a significant source of groundwater.
9		No community water system is currently being
10		supplied by any aquifer near the WIPP; therefore, no
11		aquiter meets the second definition of significant
12		source of groundwater.
13		The nearest equifer that meets the definition of
15		significant source of groundwater over its entire
16		extent is along the Pecos River. Communication
17		between this aquifer and any other aquifers in the
18		vicinity of the WIPP will be evaluated.
19		
20		No releases from the undisturbed repository/shaft
21		system are expected to occur within 1,000 years;
22		therefore, dose predictions for undisturbed performance
23 25		may be unnecessary.
26	Groundwater	Special sources of groundwater are protected from
27	Protection	contamination at levels greater than certain limits.
28	Requirements	
29		No special sources of groundwater are present at the
30		WIPP; therefore, the requirement to predict
31		concentrations of radionuclides in such groundwater is
32		not relevant.
39		
35		

3. PERFORMANCE-ASSESSMENT OVERVIEW 1 2 Jon C. Helton¹ 3 4 [NOTE: The text of Chapter 3 is followed by a synopsis that summarizes 5 essential information, beginning on page 3-85.] 6 7 The design and implementation of a performance assessment is greatly 8 facilitated by a clear conceptual model for the performance assessment 9 itself. The purpose of this chapter is to present such a model and then to 10 indicate how the individual parts of the WIPP performance assessment fit into 11 this model. The WIPP performance assessment is, in effect, a risk 12 assessment. As a result, a conceptual model that has been used for risk 13 assessments for nuclear power plants and other complex systems is also 14 appropriate for the WIPP performance assessment. 15 16 17 3.1 Conceptual Model for WIPP Performance Assessment 18 19 3.1.1 RISK 20 21 Risk is often defined as consequence times probability or consequence times 22 frequency. However, this definition neither captures the nature of risk as 23 perceived by most individuals nor provides much conceptual guidance on how 24 risk calculations should be performed. Simply put, people are more likely to 25 perceive risk in terms of what can go wrong, how likely things are to go 26 wrong, and what are the consequences of things going wrong. The latter 27 description provides a structure on which both the representation and 28 calculation of risk can be based. 29 30 In recognition of this, Kaplan and Garrick (1981) have proposed a 31 representation for risk based on sets of ordered triples. Specifically, they 32 propose that risk be represented by a set R of the form 33 34 $R = \{(S_i, pS_i, cS_i), i=1, ..., nS\},\$ (3-1)35 36 37 where 38 $S_i = a$ set of similar occurrences, 39 40 $pS_i = probability$ that an occurrence in the set S_i will take place, 41 42 43 44 ¹ Arizona State University, Tempe, Arizona

3-1

```
cS_i = a vector of consequences associated with S_i,
1
2
         nS = number of sets selected for consideration,
3
4
5
    and the sets S_i have no occurrences in common (i.e., the S_i are disjoint
    sets). This representation formally decomposes risk into what can happen
6
    (the S_i), how likely things are to happen (the pS_i), and the consequences for
7
    each set of occurrences (the {f cS}_i). The {\it S}_i are typically referred to as
8
    "scenarios" in radioactive waste disposal. Similarly, the pS; are scenario
9
    probabilities, and the vector cS_i contains environmental releases for
10
    individual isotopes, the normalized EPA release summed over all isotopes, and
11
    possibly other information associated with scenario S_i. The set R in
12
    Equation 3-1 will be used as the conceptual model for the WIPP performance
13
    assessment.
14
15
    Although the representation in Equation 3-1 provides a natural conceptual way
16
    to view risk, the set R by itself can be difficult to examine. For this
17
    reason, the risk results in R are often summarized with complementary
18
    cumulative distribution functions (CCDFs). These functions provide a display
19
20
    of the information contained in the probabilities pS<sub>1</sub> and the consequences
21
    cS_i. With the assumption that a particular consequence result cS in the
22
    vector cS has been ordered so that cS_i \leq cS_{i+1} for i=1, ..., nS, the CCDF for
    this consequence result is the function F defined by
23
24
25
         F(x) = probability that cS exceeds a specific consequence value x
26
222233333333333
              = \Sigma pS_j,
                                                                                  (3-2)
                j=i
    where i is the smallest integer such that cS_1 > x. As illustrated in
    Figure 3-1, F is a step function that represents the probabilities that
36
    consequence values on the abscissa will be exceeded. Thus, "exceedance
37
    probability curve" is an alternate name for a CCDF that is more suggestive of
38
    the information that it displays. To avoid a broken appearance, CCDFs are
39
40
    often plotted in the form shown in Figure 3-2, which is the same as Figure
41
    3-1 except that vertical lines have been added at the discontinuities.
42
43
    The steps in the CCDFs shown in Figure 3-1 and Figure 3-2 result from the
    discretization of all possible occurrences into the sets S_1, ..., S_{nS}.
44
    Unless the underlying processes are inherently disjoint, the use of more sets
45
    S_{i} will tend to reduce the size of these steps and, in the limit, will lead
46
47
    to a smooth curve. Thus, Equation 3-2 really defines an estimated CCDF.
48
    Better estimates can be obtained by using more sets S_i and also by improving
49
    the estimates for pS_i and cS_i. However, various constraints, including
```


TRI-6342-730-5

Figure 3-1. Estimated CCDF for Consequence Result cS (Helton et al., 1991). The open and solid circles at the discontinuities indicate the points included on (solid circles) and excluded from (open circles) the CCDF.

TRI-6342-731-0

Figure 3-2. Estimated CCDF for Consequence Result cS Including Vertical Lines at the Discontinuities (Helton et al., 1991). This figure is the same as Figure 3-1 except for the addition of the vertical lines at the discontinuities.

available information and computational cost, will always limit how far such 1 efforts can be carried. The consequence result of greatest interest in the 2 WIPP performance assessment is the EPA sum of normalized radionuclide 3 releases to the accessible environment. This sum is one of many predicted 4 quantities (e.g., travel time, dose to humans, ...) that could be the 5 variable on the abscissa in Figures 3-1 and 3-2. However, the normalized 6 release is special in that the Standard places restrictions on certain points 7 on its CCDF. As discussed in Chapter 2 and illustrated in Figure 3-3, the 8 probabilities of exceeding 1 and 10 are required to be less than 0.1 and 9 0.001, respectively. The CCDF in Figure 3-3 is drawn as a smooth curve, 10 which is the limiting case for a large number of scenarios S_1 . If the number 11 of scenarios S_i is small, then the CCDF for the normalized sum will resemble 12 the step functions shown in Figures 3-1 and 3-2, although smoothing 13 procedures can be used to develop continuous approximations to these curves. 14 Additional discussion of the CCDF for normalized releases is given in Section 15 3.1.4-Risk and the EPA Limits. 16

17

18 3.1.2 UNCERTAINTY IN RISK

19

24

A number of factors affect the uncertainty in risk results, including
completeness, aggregation, model selection, imprecisely known variables, and
stochastic variation. The risk representation in Equation 3-1 provides a
convenient structure in which to discuss these uncertainties.

Completeness refers to the extent that a performance assessment includes all 25 possible occurrences for the system under consideration. In terms of the 26 risk representation in Equation 3-1, completeness deals with whether or not 27 all possible occurrences are included in the union of the sets S_{i} (i.e., in 28 $\cup_i S_i$). Aggregation refers to the division of the possible occurrences into 29 the sets S_1 and thus relates to the logic used in the construction of the 30 sets S_i . Resolution is lost if the S_i are defined too coarsely (e.g., nS is 31 too small) or in some other inappropriate manner. Model selection refers to 32 the actual choice of the models for use in a risk assessment. Appropriate 33 model choice is sometimes unclear and can affect both pS_i and cS_i . 34 35 Similarly, once the models for use have been selected, imprecisely known variables required by these models can affect both pS_i and cS_i . Due to the 36 complex nature of risk assessments, model selection and imprecisely known 37 variables can also affect the definition of the S_i . Stochastic variation is 38 represented by the probabilities pSi, which are functions of the many factors 39 that affect the occurrence of the individual sets $S_{\rm i}$. The CCDFs in 40 Figures 3-1 and 3-2 display the effects of stochastic uncertainty. Even if 41 the probabilities for the individual S_i were known with complete certainty, 42 the ultimate result of a risk assessment would still be CCDFs of the form 43 shown in Figures 3-1 and 3-2. 44

cS: Summed Normalized Release

TRI-6342-782-0

Figure 3-3. Illustration of Hypothetical CCDF for Summed Normalized Release for Containment Requirements (§ 191.13(a)). For a limited number of scenarios, the CCDF will look like the step functions shown in Figures 3-1 and 3-2.

The calculation of risk begins with the determination of the sets S_1 . Once 1 these sets are determined, their probabilities pS; and associated 2 consequences cS_i must be determined. In practice, development of the S_i is a 3 complex and iterative process that must take into account the procedures 4 required to determine the probabilities pS_i and the consequences cS_i . 5 Typically, the overall process is organized so that pS_i and cS_i will be 6 calculated by various models whose exact configuration will depend on S_i and 7 which will also require a number of imprecisely known variables. It is also 8 possible that imprecisely known variables could affect the definition of the 9 Si. 10

These imprecisely known variables can be represented by a vector 12

11

13

28

37

$$\mathbf{x} = [x_1, x_2, \dots, x_{nV}],$$
 (3-3)

where each x; is an imprecisely known input required in the analysis and nV 18 is the total number of such inputs. In concept, the individual x_i could be 19 20 almost anything, including vectors or functions required by an analysis and indices pertaining to the use of several alternative models. However, an 21 overall analysis, including uncertainty and sensitivity studies is more 22 likely to be successful if the risk representation in Equation 3-1 has been 23 developed so that each x_i is a real-valued quantity for which the overall 24 analysis requires a single value, but it is not known with preciseness what 25 26 this value should be. With the preceding ideas in mind, the representation for risk in Equation 3-1 can be restated as a function of \mathbf{x} : 27

$$R(\mathbf{x}) = \{ (S_{\underline{i}}(\mathbf{x}), pS_{\underline{i}}(\mathbf{x}), cS_{\underline{i}}(\mathbf{x})), i=1, \dots, nS(\mathbf{x}) \}.$$
(3-4)

29 30 31 32 33 33 As **x** changes, so will $R(\mathbf{x})$ and all summary measures that can be derived from 34 $R(\mathbf{x})$. Thus, rather than a single CCDF for each consequence value contained in the vector **cS** shown in Equation 3-1, a distribution of CCDFs results from 35 36 the possible values that \mathbf{x} can take on.

The individual variables x_i in x can relate to different types of 38 uncertainty. Individual variables might relate to completeness uncertainty 39 (e.g., the value for a cutoff used to drop low-probability occurrences from 40 the analysis), aggregation uncertainty (e.g., a bound on the value for nS), 41 model uncertainty (e.g., a 0-1 variable that indicates which of two 42 alternative models should be used), variable uncertainty (e.g., a solubility 43 limit or a retardation for a specific isotope), or stochastic uncertainty 44 (e.g., a variable that helps define the probabilities for the individual S_1). 45 46

1 2

12

3.1.3 CHARACTERIZATION OF UNCERTAINTY IN RISK

If the inputs to a performance assessment as represented by the vector \mathbf{x} in 3 Equation 3-3 are uncertain, then so are the results of the assessment. 4 5 Characterization of the uncertainty in the results of a performance 6 assessment requires characterization of the uncertainty in **x**. Once the uncertainty in x has been characterized, then Monte Carlo techniques can be 7 used to characterize the uncertainty in the risk results. 8 9

The outcome of characterizing the uncertainty in \mathbf{x} is a sequence of 10 probability distributions 11

$$D_1, D_2, \dots, D_{nV},$$
 (3-5)

13456789 where D_j is the distribution developed for the variable x_j , $j=1, 2, \ldots, nV$, 20 contained in \mathbf{x} . The definition of these distributions may also be 21 accompanied by the specification of correlations and various restrictions that further define the possible relations among the x₁. These distributions 22 23 and other restrictions probabilistically characterize where the appropriate input to use in the performance assessment might fall given that the analysis 24 25 is structured so that only one value can be used for each variable under consideration. In most cases, each D; will be a subjective distribution that 26 is developed from available information through a suitable review process and 27 serves to assemble information from many sources into a form appropriate for 28 use in an integrated analysis. However, it is possible that the D₁ may be 29 obtained by classical statistical techniques for some variables. 30

Once the distributions in Equation 3-5 have been developed, Monte Carlo 32 33 techniques can be used to determine the uncertainty in $R(\mathbf{x})$ from the 34 uncertainty in x. First, a sample

$$\mathbf{x}_{k} = [x_{k1}, x_{k2}, \dots, x_{k, nV}], k=1, \dots, nK,$$
 (3-6)

367 333 390 412 is generated according to the specified distributions and restrictions, where 43 nK is the size of the sample. The performance assessment is then performed 44 for each sample element \mathbf{x}_k , which yields a sequence of risk results of the 45 form

31

35

$$R(\mathbf{x}_{k}) = \{ (S_{i}(\mathbf{x}_{k}), pS_{i}(\mathbf{x}_{k}), cS_{i}(\mathbf{x}_{k})), i=1, \dots, nS(\mathbf{x}_{k}) \}$$
(3-7)

for k=1, ..., nK. Each set $R(\mathbf{x}_k)$ is the result of one complete performance assessment performed with a set of inputs (i.e., \mathbf{x}_k) that the review process producing the distributions in Equation 3-5 concluded was possible. Further, associated with each risk result $R(\mathbf{x}_k)$ in Equation 3-7 is a probability or weight¹ that can be used in making probabilistic statements about the distribution of $R(\mathbf{x})$.

7

12

31

39

8 In most performance assessments, CCDFs are the results of greatest interest. 9 For a particular consequence result, a CCDF will be produced for each set 10 $R(\mathbf{x}_k)$ of results shown in Equation 3-5. This yields a distribution of CCDFs 11 of the form shown in Figure 3-4.

Although Figure 3-4 provides a complete summary of the distribution of CCDFs 13 obtained for a particular consequence result by propagating the sample shown 14 in Equation 3-6 through a performance assessment, the figure is hard to read. 15 A less crowded summary can be obtained by plotting the mean value and 16 selected percentile values of the exceedance probabilities shown on the 17 ordinate for each consequence value on the abscissa. For example, the mean 18 plus the 5th, 50th (i.e., median), and 95th percentile values might be used. 19 The mean and percentile values can be obtained from the exceedance 20 probabilities associated with the individual consequence values and the 21 weights or "probabilities" associated with the individual sample elements. 1 22 The determination of the mean and percentile values for cS = 1 is illustrated 23 in Figure 3-5. If the mean and percentile values associated with individual 24 consequence values are connected, a summary plot of the form shown in 25 Figure 3-6 is obtained. Due to their construction, the percentile curves 26 hold pointwise above the abscissa, and thus, do not define percentile bounds 27 for the distribution of $R(\mathbf{x})$, which is a distribution of functions. However, 28 the mean curve is an estimate for the expected value of this distribution of 29 functions. 30

The question is often asked: "What is the uncertainty in the results of this performance assessment?" The answer depends on exactly what result of the performance assessment is of concern. In particular, the question is often directed at either (1) the total range of risk outcomes that results from imprecisely known inputs required in the assessment or (2) the uncertainty in quantities that are derived from averaging over the outcomes derived from these inputs.

TRI-6342-732-0

Figure 3-4. Example Distribution of CCDFs Obtained by Sampling Imprecisely Known Variables (after Breeding et al., 1990).

TRI-6342-732-2

Figure 3-5. Example Determination of Mean and Percentile Values for cS = 1 in Figure 3-4.

TRI-6342-734-0

Figure 3-6. Example Summary Curves Derived from an Estimated Distribution of CCDFs (after Breeding et al., 1990). The curves in this figure were obtained by calculating the mean and the indicated percentiles for each consequence value on the abscissa in Figure 3-4 as shown in Figure 3-5. The 95th percentile curve crosses the mean curve due to the highly skewed distributions for exceedance probability. This skewness also results in the mean curve being above the median (i.e., 50th percentile) curve.

The answer to questions of the first type is provided by results of the form 1 shown in Figure 3-4, which displays an estimated distribution for CCDFs 2 conditional on the distributions and models being used in the analysis. The 3 mean and percentile curves in Figure 3-6 summarize the distribution in 4 Figure 3-4. The percentile curves in Figure 3-6 also provide a way to place 5 confidence limits on the risk results in Figure 3-4. For example, the 6 probability is 0.9 that the exceedance probability for a specific consequence 7 value falls between the 5th and 95th percentile values. However, this result 8 is approximate since the percentile values are estimates derived from the 9 sampling procedures and are conditional on the assumed input distributions. 10 11

12 Questions of the second type relate to the uncertainty in estimated means. If a distribution of CCDFs is under consideration, then the "mean" is a mean 13 CCDF of the type shown in Figure 3-6. Because most real-world analyses are 14 very complex, assigning confidence intervals to estimated means by 15 traditional parametric procedures is typically not possible. Replicating the 16 analysis with independently generated samples and then estimating confidence 17 intervals for means from the results of these replications is possible. When 18 three or more replications are used, the t-test (Iman and Conover, 1983) can 19 be used to assign confidence intervals with a procedure suggested by Iman 20 (1981). When only two replications are used, the closeness of the estimated 21 means and possibly other population parameters can indicate the confidence 22 23 that can be placed in the estimates for these quantities. The results of a comparison of this latter type for the curves in Figure 3-6 are shown in 24 Figure 3-7. 25

26

Uncertainty in risk results due to imprecisely known variables and 27 uncertainty in estimates for means and other statistical summaries that 28 result from imprecisely known variables can be displayed in a single plot as 29 shown in Figure 3-8. For figures of this type, the confidence interval for 30 the family of CCDFs would probably be obtained by a sampling-based approach 31 as illustrated in conjunction with Figure 3-6. As indicated earlier, this 32 produces confidence intervals that hold pointwise along the abscissa. 33 Similarly, the mean curve would be obtained by averaging over the same curves 34 that gave rise to the preceding confidence intervals. The confidence 35 intervals for the mean would have to be derived by replicated sampling or 36 some other appropriate statistical procedure. 37

38

39 The point of greatest confusion involving the risk representation in 40 Equation 3-1 is probably the distinction between the uncertainty that gives 41 rise to a single CCDF and the uncertainty that gives rise to a distribution

TRI-6342-737-0

Figure 3-7. Example of Mean and Percentile Curves Obtained with Two Independently Generated Samples for the Results Shown in Figure 3-4 (after Breeding et al., 1990; additional discussion is provided in Iman and Helton, 1991). The two samples have the same number of elements and differ only in the random seed used in their generation.

3.1 Conceptual Model for WIPP Performance Assessment 3.1.3 Characterization of Uncertainty in Risk

cS: Consequence Value

TRI-6342-738-0

Figure 3-8. Example Confidence Bands for CCDFs (Helton et al., 1991).

of CCDFs. A single CCDF arises from the fact that a number of different 1 occurrences have a real possibility of taking place. This type of 2 uncertainty is referred to as stochastic variation in this report. A 3 distribution of CCDFs arises from the fact that fixed, but unknown, 4 quantities are needed in the estimation of a CCDF. The development of 5 distributions that characterize what the values for these fixed quantities 6 might be leads to a distribution of CCDFs. In essence, a performance 7 assessment can be viewed as a very complex function that estimates a CCDF. 8 Since there is uncertainty in the values of some of the input variables 9 operated on by this function, there will also be uncertainty in the output 10 variable produced by this function, where this output variable is a CCDF. 11 12

Both Kaplan and Garrick (1981) and a recent report by the International 13 Atomic Energy Agency (IAEA) (1989) have been very careful to make a 14 distinction between these two types of uncertainty. Specifically, Kaplan and 15 Garrick distinguish between probabilities derived from frequencies and 16 17 probabilities that characterize degrees of belief. Probabilities derived 18 from frequencies correspond to the probabilities pS_i in Equation 3-1 while probabilities that characterize degrees of belief (i.e., subjective 19 probabilities) correspond to the distributions indicated in Equation 3-5. 20 The IAEA report distinguishes between what it calls Type A uncertainty and 21 Type B uncertainty. The IAEA report defines Type A uncertainty to be 22 stochastic variation; as such, this uncertainty corresponds to the frequency-23 based probability of Kaplan and Garrick and the pS; of Equation 3-1. Type B 24 uncertainty is defined to be uncertainty that is due to lack of knowledge 25 about fixed quantities; thus, this uncertainty corresponds to the subjective 26 probability of Kaplan and Garrick and the distributions indicated in 27 Equation 3-5. This distinction has also been made by other authors, 28 including Vesely and Rasmusen (1984), Paté-Cornell (1986) and Parry (1988). 29 30

31 As an example, the WIPP performance assessment includes subjective uncertainty in quantities such as solubility limits, retardation factors, and 32 flow fields. Stochastic uncertainty enters into the analysis through the 33 assumption that future exploratory drilling will be random in time and space 34 (i.e., follow a Poisson process). However, the rate constant λ in the 35 definition of this Poisson process is assumed to be imprecisely known. 36 Thus. 37 there is subjective uncertainty in a quantity used to characterize stochastic uncertainty. 38

39

A recent reassessment of the risk from commercial nuclear power plants
performed by the U.S. Nuclear Regulatory Commission (U.S. NRC, 1990) has been
very careful to preserve the distinction between these two types of
uncertainty and provides an example of a very complex analysis in which a
significant effort was made to properly incorporate and represent these two
different types of uncertainty. Many of the results used for illustration in

3-16

this chapter are adapted from that study. A similarly careful effort to 1 represent uncertainty in performance assessment for radioactive waste 2 disposal will greatly facilitate the performance and presentation of analyses 3 intended to assess compliance with the EPA release limits. 4 5 3.1.4 RISK AND THE EPA LIMITS 6 7 As discussed in Chapter 2 of this volume, the EPA has promulgated the 8 following standard for the long-term performance of geologic repositories for 9 high-level and transuranic (TRU) wastes (1985): 10 11 191.13 Containment requirements. 12 13 (a) Disposal systems for spent nuclear fuel or high-level or 14 transuranic radioactive wastes shall be designed to provide a reasonable 15 expectation, based on performance assessments, that the cumulative 16 releases of radionuclides to the accessible environment for 10,000 years 17 after disposal from all significant processes and events that may affect 18 the disposal system shall: 19 20 (1) Have a likelihood of less than one chance in 10 of exceeding the quantities calculated according to Table 1 (Appendix A); and 21 (2) Have a likelihood of less than one chance in 1,000 of exceeding 22 ten times the quantities calculated according to Table 1 (Appendix A). 23 24 25 The term "accessible environment" means: "(1) The atmosphere; (2) land surfaces; (3) surface waters; (4) oceans; and (5) all of the lithosphere that 26 is beyond the controlled area" (U.S. EPA, 1985, 191.12(k)). Further, 27 "controlled area" means: "(1) A surface location, to be identified by 28 passive institutional controls, that encompasses no more than 100 square 29 kilometers and extends horizontally no more than five kilometers in any 30 31 direction from the outer boundary of the original location of the radioactive wastes in a disposal system; and (2) the subsurface underlying such a surface 32 location" (U.S. EPA, 1985, 191.12(g)). The preceding requirements refer to 33 Table 1 (Appendix A). This table is reproduced here as Table 3-1. 34 35 For a release to the accessible environment that involves a mix of 36 radionuclides, the limits in Table 3-1 are used to define a normalized 37

release for comparison with the release limits. Specifically, the normalized release for TRU waste is defined by

38

39 40

4123445678 444444444

$$nR = \sum_{i} \left(Q_{i}/L_{i} \right) \left(1 \times 10^{6} \text{ Ci/C} \right)$$
(3-8)

Radionuclide	Release limit L _i per 1000 MTHM [*] or other unit of waste (curies)	
Americium-241 or -243	100	
Carbon 14	100	
Cesium-135 or -137	1,000	
lodine-129	100	
Neptunium-237	100	
Plutonium-238, -239, -240, or -242	100	
Radium-226	100	
Strontium-90	1,000	
Technetium-99	10,000	
Thorium-230 or -232	10	
Tin-126	1,000	
Uranium-233, -234, -235, -236 or -238	100	
Any other alpha-emitting radionuclide with		
a half-life greater than 20 years	100	
Any other radionuclide with a half-life		
greater than 20 years that does not emit		
alpha particles	1,000	
* Metric tons of heavy metal exposed to a burnup heavy metal (MWd/MTHM) and 40,000 MWd/M	between 25,000 megawatt-days per metric to	
where		
Q _i = cumulative release (Ci) of a environment during the 10,00	radionuclide i to the accessible DO-yr period following closure of	
repository,		
repository, L_i = the release limit (Ci) for r	radionuclide i given in Table 3-1,	
repository, $L_i =$ the release limit (Ci) for r and	radionuclide i given in Table 3-1,	
repository, $L_i =$ the release limit (Ci) for r and C = amount of TRU waste (Ci) emp	radionuclide i given in Table 3-1, laced in the repository.	
repository, L_i = the release limit (Ci) for r and C = amount of TRU waste (Ci) emp For the 1991 WIPP performance assess	radionuclide i given in Table 3-1, laced in the repository. ment. C = 11.87 x 10^6 Ci.	

TABLE 3-1. RELEASE LIMITS FOR THE CONTAINMENT REQUIREMENTS (U.S. EPA, 1985, Appendix A, Table 1)

3.1 Conceptual Model for WIPP Performance Assessment 3.1.4 Risk and the EPA Limits

In addition to the previously stated Containment Requirements, the EPA
 expressly identifies the need to consider the impact of uncertainties in
 calculations performed to show compliance with these requirements.
 Specifically, the following statement is made:

... whenever practicable, the implementing agency will assemble all of the 6 results of the performance assessments to determine compliance with 7 [section] 191.13 into a "complementary cumulative distribution function" 8 that indicates the probability of exceeding various levels of cumulative 9 release. When the uncertainties in parameters are considered in a 10 performance assessment, the effects of the uncertainties considered can 11 be incorporated into a single such distribution function for each 12 disposal system considered. The Agency assumes that a disposal system 13 can be considered to be in compliance with [section] 191.13 if this 14 single distribution function meets the requirements of [section] 15 191.13(a) (U.S. EPA, 1985, p. 38088). 16

17 18

25

38

5

The representation for risk in Equation 3-1 provides a conceptual basis for the calculation of the "complementary cumulative distribution function" for normalized releases specified in the EPA standard. Further, this representation provides a structure that can be used for both the incorporation of uncertainties and the representation of the effects of uncertainties.

With respect to the EPA Containment Requirements (§ 191.13(a)), the sets S_{i} , 26 $i = 1, \dots, nS$, appearing in Equation 3-1 are simply the scenarios selected 27 for consideration. Ultimately, these scenarios S_{i} derive from the 28 significant "processes" and "events" referred to in the Standard. These 29 scenarios Si will always be sets of similar occurrences because any process 30 or event when examined carefully will have many variations. The pS; are the 31 probabilities for the S_i . Thus, each pS_i is the total probability for all 32 occurrences contained in S_i . Finally, cS_i is a vector of consequences 33 associated with S_i . Thus, cS_i is likely to contain the releases to the 34 accessible environment for the individual radionuclides under consideration 35 as well as the associated normalized release. In practice, the total amount 36 of information contained in cS_i is likely to be quite large. 37

The preceding ideas are now illustrated with a hypothetical example involving nS=8 scenarios S_1, S_2, \ldots, S_8 . If the probabilities pS_i and consequences **cS**_i associated with the S_i were known with certainty, then a single CCDF of the form shown in Figure 3-1 could be constructed for comparison with the EPA release limits. Unfortunately, neither the pS_i nor the **cS**_i are likely to be known with certainty. When this is incorporated into the representation in
Equation 3-1, the set R can be expressed as

3 4 5

$$R(\mathbf{x}) = \{ (S_{i}, pS_{i}(\mathbf{x}), cS_{i}(\mathbf{x})), i = 1, ..., nS = 8 \},$$
(3-9)

where **x** represents a vector of imprecisely known variables required in the estimation of the pS_i and the cS_i . For this example, the S_i are assumed to be fixed and thus are not represented as functions of **x** as is done for the more general case shown in Equation 3-4. The effect of uncertainties in **x** can be investigated by generating a random or Latin hypercube sample (McKay et al., 1979) from the variables contained in **x**. This creates a sequence of sets $R(\mathbf{x})$ of the form

13 14

15

18

 $R(\mathbf{x}_k) = \{(S_i, pS_i(\mathbf{x}_k), cS_i(\mathbf{x}_k)), i = 1, ..., nS = 8\}$ (3-10)

for k = 1, ..., nK, where \mathbf{x}_k is the value for \mathbf{x} in sample element k and nK is the number of elements in the sample.

As previously illustrated in Figure 3-1, a CCDF can be constructed for each 19 sample element and each consequence measure contained in **cS**. Figure 3-9 20 shows what the resultant distribution of CCDFs for the normalized EPA release 21 might look like. Each curve in this figure is a CCDF that would be the 22 appropriate choice for comparison against the EPA requirements $\underline{if} \mathbf{x}_k$ 23 contained the correct variable values for use in determining the pS_1 and cS_1 . 24 The distribution of CCDFs in Figure 3-9 reflects the distributions assigned 25 to the sampled variables in \mathbf{x} . Actually, what is shown is an approximation 26 to the true distribution of CCDFs, conditional on the assumptions of this 27 analysis. This approximation was obtained with a sample of size nK=40, so 40 28 CCDFs are displayed, one for each sample element. In general, a larger 29 sample would produce a better approximation but would not alter the fact that 30 the distribution of CCDFs was conditional on the assumptions of the analysis. 31 32 Figure 3-9 is rather cluttered and hard to interpret. As discussed in 33

conjunction with Figure 3-6, mean and percentile curves can be used to
summarize the family of CCDFs in Figure 3-9. The outcome of this
construction is shown in Figure 3-10, which shows the resultant mean curve
and the 90th, 50th (median), and 10th percentile curves. The mean curve has
generally been proposed for showing compliance with § 191.13(a) (e.g.,
Cranwell et al., 1990; Cranwell et al., 1987; Hunter et al., 1986).

Figure 3-9. Hypothetical Distribution of CCDFs for Comparison with the Containment Requirements (§ 191.13(a)).

TRI-6342-1501-0

Figure 3-10. Mean and Percentile Curves for the Example Distribution of CCDFs Shown in Figure 3-9.

Now that Figures 3-9 and 3-10 have been introduced, the nature of the EPA's 1 2 probability limits can be elaborated. Specifically, § 191.13(a) requires that the probability of exceeding a summed normalized release of 1 shall be 3 less than 0.1 and that the probability of exceeding a summed normalized 4 release of 10 shall be less than 0.001. Because quantities required in a 5 performance assessment are uncertain, the probabilities of exceeding these 6 release limits can never be known with certainty. However, by placing 7 distributions on imprecisely known quantities, distributions for these 8 probabilities can be obtained. To the extent that the distributions assumed 9 for the original variables are subjective, so also will be the distributions 10 for these probabilities. 11

In the example, an estimated distribution of probabilities at which a 13 normalized release of 1 will be exceeded can be obtained by drawing a 14 vertical line through 1 on the abscissa in Figure 3-9. This line will cross 15 the 40 CCDFs generated in this example to yield a distribution of 40 16 17 exceedance probabilities. A similar construction can be performed for a normalized release of 10. Means (actually, estimates for the expected value 18 of the true distribution, conditional on the assumptions of the analysis) for 19 20 these two distributions can be obtained by summing the 40 observed values and 21 then dividing by 40. The result of this calculation at 1, 10, and other points on the abscissa appears as the mean curve in Figure 3-10. 22

The EPA suggests in the guidance in Appendix B that, whenever practicable, 24 the results of a performance assessment should be assembled into a CCDF. 25 This is entirely consistent with the representation of risk given in 26 Equation 3-1. The EPA further suggests that, when uncertainties in 27 parameters are considered, the effects of these uncertainties can be 28 incorporated into a single CCDF. Calculating a mean CCDF as shown in 29 Figure 3-10 is one way to obtain a single CCDF. However, there are other 30 ways in which a single CCDF can be obtained. For example, a median or 90th 31 32 percentile curve as shown in Figure 3-10 could be used. However, whenever a distribution of curves is reduced to a single curve, information on 33 uncertainty is lost. 34

35

43

12

23

Replicated sampling can characterize the uncertainty in an estimated mean CCDF or other summary curve. However, representing the uncertainty in an estimated value in this way is quite different from displaying the variability or uncertainty in the population from which the estimate is derived (Figure 3-9). For example, the uncertainty in the estimated mean curve in Figure 3-10 is less than the variability in the population of CCDFs that was averaged to obtain this mean.

44 Preliminary analyses for § 191.13(a) have typically assumed that the 45 individual scenario probabilities are known with certainty and that the only

uncertainties in the analysis relate to the manner in which the summed 1 normalized release required for comparison with the EPA Standard is 2 calculated. As an example, Figure 3-11 shows the family of CCDFs that 3 results when the same sample used to construct the CCDFs in Figure 3-9 is 4 used but the individual scenario probabilities are fixed. In this case, the 5 values for the pS; do not change from sample element to sample element, but 6 the values for cS_i do. This results in a very simple structure for the CCDFs 7 in which the step heights for all CCDFs are the same. Mean and percentile 8 curves can be constructed from these CCDFs as before and are shown in 9 Figure 3-12. The hypothetical results on which Figures 3-9 and 3-11 are 10 based were constructed so that the normalized release for scenario S_{i+1} is 11 12 greater than the normalized release for scenario S_i for each sample element. The step heights associated with the individual scenarios in Figure 3-11 13 would still be the same if this ordering did not exist, but there would be a 14 more complex mixing of step heights. 15

16

17 Another approach to constructing a CCDF for comparison with the EPA Standard is based on initially constructing a conditional CCDF for each scenario and 18 then vertically averaging these conditional CCDFs with the probabilities of 19 the individual scenarios as weights. This approach is described in Cranwell 20 et al. (1987; also see Cranwell et al., 1990; Hunter et al., 1986) and has 21 been extensively used in calculating CCDFs for comparison with § 191.13(a). 22 23 Figure 3-13 gives a schematic representation for this construction approach. This approach is applicable to situations in which the scenario probabilities 24 are known and, in this case, yields the same mean CCDF as shown in 25 Figure 3-12. 26

27

28 3.1.5 PROBABILITY AND RISK

29

A brief discussion of how the concepts associated with a formal development 30 of probability relate to the definition of risk in Equation 3-1 is now given. 31 The intent is to emphasize the ideas involved rather than mathematical rigor. 32 A more detailed development of the mathematical basis of probability can be 33 found in numerous texts on probability theory (e.g., Feller, 1971; Ash, 34 35 1972). In addition, several excellent discussions of different conceptual interpretations of probability are also available (Barnett, 1982; 36 Weatherford, 1982; Apostolakis, 1990). A familiarity with the basic ideas in 37 the mathematical development of probability greatly facilitates an 38 understanding of scenario development. 39 40

A formal development of probability is based on the use of sets. The first
of these sets is called the sample space, which is the set of all possible
outcomes associated with the particular process or situation under
consideration. In the literature on probability, these individual outcomes
are referred to as elementary events. As an example, performance assessment

TRI-6342-1502-0

Figure 3-11. Hypothetical Distribution of CCDFs Generated for Comparison with the Containment Requirements in Which the Scenario Probabilities Are the Same for All Sample Elements.

TRI-6342-1503-0

Figure 3-12. Mean and Percentile Curves for the Example Distribution of CCDFs Shown in Figure 3-11.

TRI-6342-764-5

Figure 3-13. Construction of Mean CCDF from Conditional CCDFs. The expression $p(cS > x | S_1)$ is the probability of a normalized release exceeding x over 10,000 years given that scenario S_1 has occurred. The ordinate displays conditional probability for the CCDFs for the individual scenarios S_i and probability for the mean CCDF. When the probabilities pS_i are small, the mean CCDF may fall far below most of the individual conditional CCDFs (Helton et al., 1991).

Chapter 3: Performance-Assessment Overview

at the WIPP involves the characterization of the behavior of this site over a 1 10,000-yr period beginning at the decommissioning of the facility. Thus, the 2 3 sample space would consist of all possible 10,000-yr "histories" at the WIPP for this time period. To avoid confusion with the regulatory use of the word 4 "event," outcome or history is used for elementary event in this report. 5 More specifically, the sample space is the set S defined by 6 7 $S = \{x: x \text{ a single } 10,000 \text{-yr history beginning at decommissioning of the} \}$ 8 9 WIPP). (3-11)10 Each 10,000-yr history is complete in the sense that it includes a full 11 specification, including time of occurrence, for everything of importance to 12 performance assessment that happens in this time period. In the terminology 13 14 of Cranwell et al. (1990), each history would contain a characterization for a specific sequence of "naturally occurring and/or human-induced conditions 15 that represent realistic future states of the repository, geologic systems, 16 and ground-water flow systems that could affect the release and transport of 17 radionuclides from the repository to humans." 18 19 20 In general, the sample space will contain far too many outcomes to permit a meaningful development of probability to be based on the outcomes themselves. 21 Crudely put, the individual outcomes are so unlikely to occur that 22 probabilities cannot be assigned to their individual occurrences in a way 23 that leads to a useful probabilistic structure that permits a calculation of 24 probabilities for groups of outcomes. As a result, it is necessary to group 25 the outcomes into sets called events, where each event is a subset of the 26 27 sample space, and then to base the development of probability on these sets. 28 An event, as used in a formal development of probability, corresponds to what is typically called a scenario in performance assessment (i.e., the S_1 29 appearing in Equation 3-1). 30 31 An example of an event E in the probabilistic development for the WIPP would 32 33 be the set of all time histories in which the first borehole to penetrate the 34 repository occurs between 5000 and 10,000 years after decommissioning. That is, 35 36 $E = \{x: x a 10,000 - yr history at the WIPP in which the first borehole to$ 37 penetrate the repository occurs between 5000 and 10,000 years 38 after decommissioning}. 39 (3-12)40 Due to the many ways in which the outcomes in a sample space might be sorted, 41 the number of different events is infinite. In turn, each event is composed 42 of many outcomes or, in the case of the WIPP, many 10,000-yr histories. 43 Thus, events are "larger" than the individual outcomes contained in the 44 sample space. 45 46

3-28

As another example, Cranwell et al. (1990) define a scenario (i.e., an event 1 2 as used in the formal development of probability) to be "a set of naturally occurring and/or human-induced conditions that represent realistic future 3 states of the repository, geologic systems, and ground-water flow systems 4 that could affect the release and transport of radionuclides from the 5 repository to humans." As their development shows, they include all possible 6 ways in which this set of "conditions" could occur. Thus, they are actually 7 using the set of all time histories in which this set of conditions occurs as 8 9 their scenario. Their logic diagram for constructing scenarios (Cranwell et al., 1990, Figure 2) is equivalent to forming intersections of sets of time 10 histories. 11

12

Probabilities are defined for events rather than for the individual outcomes 13 in the sample space. Further, probabilities cannot be meaningfully developed 14 for single events in isolation from other events but rather must be developed 15 in the context of a suitable collection of events. The basic idea is to 16 develop a logically complete representation for probability for a collection 17 of events that is large enough to contain all events that might reasonably be 18 of interest but, at the same time, is not so large that it contains events 19 20 that result in intractable mathematical properties. As a result, the development of probability is usually restricted to a collection & of events 21 that has the following two properties: 22

- 23
- 24 25

26

28

31

37

(1) if E is in §, then E^{C} is in §, where the superscript c is used to denote the complement of E,

27 and

29 (2) if $\{E_i\}$ is a countable collection of events from §, then $\cup_i E_i$ and 30 $\cap_i E_i$ also belong to §.

A collection or set § satisfying the two preceding conditions is called a σ algebra or a Borel algebra. The significance of such a set is that all the familiar operations with sets again lead to a set in it (i.e., it is closed with respect to set operations such as unions, intersections, and complements).

As noted earlier, an event in the probabilistic development corresponds to 38 39 what is typically called a scenario in performance assessment. Thus, in the context of performance assessment, the set & would contain all allowable 40 However, for a given sample space S, the definition of § is not scenarios. 41 unique. This results from the fact that it is possible to develop the events 42 in § at many different levels of detail. As described in the preceding 43 paragraph, § is required to be a σ -algebra. The importance of this 44 requirement with respect to performance assessment is that it results in the 45

```
complements, unions, and intersections of scenarios also being scenarios with
1
    defined probabilities.
2
3
    Given that a suitably restricted set \S is under consideration (i.e., a \sigma-
4
    algebra), the probabilities of the events in § are defined by a function p
5
    such that
6
7
       (1) p(S) = 1,
8
9
       (2) if E is in §, then 0 \le p(E) \le 1,
10
11
12
    and
13
       (3) if E_1, E_2, \ldots is a sequence of disjoint sets (i.e., E_1 \cap E_1 = \emptyset if
14
            i \neq j) from S, then p(\bigcup_i E_i) = \sum_i p(E_i).
15
16
17
    All of the standard properties of probabilities can be derived from this
    definition.
18
19
    An important point to recognize is that probabilities are not defined in
20
21
    isolation. Rather, there are three elements to the definition of
    probability: the sample space S, a collection § of subsets of S, and the
22
    function p defined on §. Taken together, these quantities form a triple
23
    (S, \S, p) called a probability space and must be present, either implicitly
24
25
    or explicitly, in any reasonable development of the concept of probability.
26
    Now that the formal ideas of probability theory have been briefly introduced,
27
    the representation for risk in Equation 3-1 is revisited. As already
28
    indicated in Equation 3-11, the sample space in use when the EPA release
29
    limit for the WIPP is under consideration is the set of all possible
30
    10,000-yr histories that begin at the decommissioning of the facility. The
31
    sets S_i appearing in Equation 3-1 are subsets of the sample space, and thus
32
33
    the pS_i are probabilities for sets of time histories. If an internally
    consistent representation for probability is to be used, the S_1 must be
34
    members of a suitably defined set §, and a probability function p must be
35
36
    defined on §. Typically, the set § is not explicitly developed. However, if
     there is nothing inherently inconsistent with the probability assignments
37
38
    already made in Equation 3-1, it is possible to construct a set § and an
    associated probability function p such that the already assigned
39
40
    probabilities for the S<sub>j</sub> remained unchanged. However, this extension is not
    unique unless it is made to the smallest \sigma-algebra that contains the already
41
    defined scenarios. Such an extension permits the assignment of probabilities
42
     to new scenarios in a manner that is consistent with the probabilities
43
    already assigned to existing scenarios.
44
45
```

```
3-30
```

The most important idea that the reader should take out of this section is 1 that scenarios (i.e., the sets S_i in Equation 3-1) are sets of time 2 histories. In particular, scenarios are arrived at by forming sets of 3 similar time histories. There is no inherently correct grouping, and the 4 probabilities associated with individual scenarios $S_{\mathbf{i}}$ can always be reduced 5 by using a finer grouping. Indeed, as long as low-probability $S_{
m i}$ are not 6 thrown away, the use of more but lower probability S_i will improve the 7 resolution in the estimated CCDF shown in Figure 3-1. Further, as an 8 integrated release or some other consequence result must be calculated for 9 each scenario S_i , the use of more S_i also results in more detailed 10 specification of the calculations that must be performed for each scenario. 11 12

For example, a scenario S_i for the WIPP might be defined by 13

> $S_i = (x: x a 10,000 - yr history at the WIPP beginning at$ decommissioning in which a single borehole occurs). (3-13)

A more refined definition would be

 $S_{ik} = \{x:$ x a 10,000-yr history at the WIPP beginning at decommissioning in which a single borehole occurs between (i-1)*10³ and i*10³ yrs and no boreholes occur during any other time interval). (3 - 14)

Then,

14

15 16

17

18 19 20

21

22

23

24

25 26

27

44

 $S_{ik} \subset S_i$, $i = 1, \ldots, 10$, and $S_i = \bigcup_{k=1}^{10} S_{ik}$. (3-15)

Thus, S_1 and $\cup_k S_{1k}$ contain the same set of time histories. However, the 38 individual Sik contain smaller sets of time histories than does Si. In terms 39 of performance assessment, each Sik describes a more specific set of conditions that must be modeled than does S_{1} . The estimated CCDF in 40 Figure 3-1 could be constructed with either S_{i} or the S_{ik} , although the use 41 of the Sik would result in less aggregation error and thus provide better 42 resolution in the resultant CCDF. 43

The S_i appearing in the definition of risk in Equation 3-1 should be 45 developed to a level of resolution at which it is possible to view the 46 analysis for each Si as requiring a fixed, but possibly imprecisely known, 47 vector \mathbf{x} of variable values. Ultimately, this relates to how the set S in 48

the formal definition of probability will be defined. When a set S_i is 1 appropriately defined, it should be possible to use the same model or models 2 and the same vector of variable values to represent every occurrence (e.g., a 3 10,000-yr time history for WIPP) in S_i . In contrast, S_i is "too large" when 4 this is not possible. For example, the set S_1 in Equation 3-13 is probably 5 "too large" for the assumption that a fixed time of intrusion (e.g., 5000 yr) 6 is appropriate for all 10,000-yr histories contained in S_{i} , while a similar 7 assumption about time of intrusion (e.g., $(k\text{-}1/2) \times 10^3 \text{ yr})$ might be 8 appropriate for Sik as defined in Equation 3-14. A major challenge in 9 structuring a performance assessment is to develop the sets S_i appearing in 10 Equation 3-1, and hence the underlying probability space, at a suitable level 11 of resolution. 12

3.2 Definition of Scenarios

As indicated in Equation 3-1, the outcome of a performance assessment for WIPP can be represented by a set of ordered triples. The first element of each triple, denoted S_1 , is a set of similar occurrences or, equivalently, a scenario. As a result, an important part of the WIPP performance assessment is the development of scenarios.

The WIPP performance assessment uses a two stage procedure for scenario 22 development. The purpose of the first stage is to develop a comprehensive 23 set of scenarios that includes all occurrences that might reasonably take 24 place at the WIPP. The result of this stage is a set of scenarios that 25 summarize what might happen at the WIPP. These scenarios provide a basis for 26 discussing the future behavior of the WIPP and a starting point for the 27 second stage of the procedure, which is the definition of scenarios at a 28 level of detail that is appropriate for use with the computational models 29 employed in the WIPP performance assessment. 30

The first stage is directed at understanding what might happen at the WIPP and answering completeness questions. The second stage is directed at organizing the actual calculations that must be performed to obtain the consequences \mathbf{cS}_i appearing in Equation 3-1, and as a result, must provide a structure that both permits the \mathbf{cS}_i to be calculated at a reasonable cost and holds the amount of aggregation error that enters the analysis to a reasonable level. These two stages are now discussed in more detail.

39

31

13

14 15

21

40 3.2.1 DEFINITION OF SUMMARY SCENARIOS

41

42 The first stage of scenario definition for the WIPP performance assessment43 uses a five-step procedure proposed by Cranwell et al. (1990). The steps in

this procedure are: (1) compiling or adopting a "comprehensive" list of 1 events¹ and processes that potentially could affect the disposal system, 2 (2) classifying the events and processes to aid in completeness arguments, 3 (3) screening the events and processes to identify those that can be 4 eliminated from consideration in the performance assessment, (4) developing 5 scenarios by combining the events and processes that remain after screening, 6 and (5) screening scenarios to identify those that have little or no effect 7 on the shape or location of the CCDF used for comparisons with EPA release 8 limits. 9

Conceptually, the purpose of the first three steps is to develop the sample 11 space S appearing in a formal definition of probability. As indicated in 12 Equation 3-11, the sample space for the WIPP performance assessment is the 13 14 set of all possible 10,000-yr histories beginning at decommissioning of the facility. The development of S is described in Chapter 4. For the 1991 15 performance assessment, this development lead to a set S in which all 16 creditable disruptions were due to drilling intrusions. 17

Once the sample space S is developed, it is necessary to partition S into the 19 subsets, or scenarios, S_i appearing in Equation 3-1. This is the fourth step 20 21 in the scenario development procedure. As explained in Section 3.1.5-22 Probability and Risk, the S_i belong to a set § that, in concept, contains all scenarios for which probabilities will be defined. 23

The S_i are developed by decomposing S with logic diagrams of the form shown 25 in Figure 3-14. The logic diagram shown in Figure 3-14 starts with the 26 following three scenarios (i.e., subsets of S): 27

- 29 $TS = \{x: x = 10,000 \text{-yr history in which subsidence results due to} \}$ solution mining of potash}, 30 (3-16)31 32 $E1 = \{x:$ x a 10,000-yr history in which one or more boreholes pass through the repository and into a brine pocket}, 33 (3-17)34 and 35

36

40 41

10

18

24

- x a 10,000-yr history in which one or more boreholes pass $E2 = \{x:$ 37 through the repository without penetration of a brine pocket). 38 39 (3 - 18)
- 42 43 ¹ Cranwell et al. (1990) do not use the word "event" in the formal probabilistic sense used in Section 3.1.5-Probability and Risk, although 44 their usage can be interpreted in that formal sense. 45

- TS = {x: Subsidence Resulting From Solution
 Mining of Potash}
- *E1* = {x: One or More Boreholes Pass Through a Waste Panel and into a Brine Pocket}
- E2 = {x: One or More Boreholes Pass Through a Waste Panel Without Penetration of a Brine Pocket}

Superscript c (e.g., TS^c) Denotes Set Complement

TRI-6342-576-3

Figure 3-14. Example Use of Logic Diagram to Construct Summary Scenarios.

Additional scenarios are then defined by the paths through the logic diagram 1 shown in Figure 3-13. This results in the decomposition of S into the 2 following eight scenarios: 3

 $S_1 = TS^{c} \cap E1^{c} \cap E2^{c}, S_2 = TS^{c} \cap E1^{c} \cap E2, S_3 = TS^{c} \cap E1 \cap E2^{c}, S_4 = TS^{c} \cap E1 \cap E2,$

 $S_5 = TS \cap E1^{\circ} \cap E2^{\circ}, S_6 = TS \cap E1^{\circ} \cap E2, S_7 = TS \cap E1 \cap E2^{\circ}, S_8 = TS \cap E1 \cap E2,$ (3-19)

where the superscript c denotes the complement of a set. These eight 9 scenarios constitute a complete decomposition of S in the sense that 10

$$S = \bigcup_{i=1}^{8} S_{i}.$$
(3-20)

123456789 The development of these scenarios is discussed and more detail on their individual characteristics is given in Chapter 4 of this volume. 20

The last step in the development procedure is screening to remove unimportant 22 scenarios. As discussed in Chapter 4 of this volume, screening did not 23 remove any of the preceding eight scenarios from further consideration for 24 the 1991 WIPP performance assessment, although the assumption is made that 25 scenario TS has no impact on releases from the repository for the 1991 26 performance assessment. The effect of this assumption will be evaluated in 27 the 1992 performance assessment. 28

29

4

5 6

7 8

11

21

3.2.2 DEFINITION OF COMPUTATIONAL SCENARIOS 30

31

Although the preceding decomposition of S is useful for discussion and the 32 development of an understanding of what is important at the WIPP, a more 33 detailed decomposition is needed for the actual calculations that must be 34 performed to determine scenario consequences (i.e., the CS_i as shown in 35 36 Equation 3-1) and to provide a basis for CCDF construction. To provide more detail for the determination of both scenario probabilities and scenario 37 consequences, the scenarios on which the actual CCDF construction is based 38 for the WIPP performance assessment are defined on the basis of (1) number of 39 drilling intrusions, (2) time of the drilling intrusions, (3) whether or not 40 a single waste panel is penetrated by two or more boreholes, of which at 41 least one penetrates a brine pocket and at least one does not, and (4) the 42 activity level of the waste penetrated by the boreholes. The purpose of this 43 decomposition is to provide a systematic coverage of what might reasonably 44 happen at the WIPP. 45 46

1 The preceding scenario construction procedure starts with the division of the 10,000-yr time period appearing in the EPA regulations into a sequence 2 3 $[t_{i-1}, t_i], i = 1, 2, \ldots, nT,$ (3-21)4 5 of disjoint time intervals. When activity loading is not considered, these 6 time intervals lead to scenarios of the form 7 8 $S(\mathbf{n}) = \{x: x \text{ an element of } S \text{ for which exactly } n(i) \text{ intrusions} \}$ Q 10 occur in time interval $[t_{i-1}, t_i]$ for i=1, 2, ..., (3-22)nT } 11 12 and 13 14 $S^{+-}(t_{i-1},t_i) = \{x: x \text{ an element of } S \text{ involving two or more boreholes}\}$ 15 that penetrate the same waste panel during the 16 time interval $[t_{i-1}, t_i]$, at least one of these 17 boreholes penetrates a pressurized brine pocket 18 and at least one does not penetrate a pressurized 19 20 brine pocket}, (3-23)21 where 22 23 $\mathbf{n} = [n(1), n(2), \ldots, n(nT)].$ 24 (3-24)25 When activity loading is considered, the preceding time intervals lead to 26 scenarios of the form 27 28 $S(\mathbf{l},\mathbf{n}) = \{x: x \text{ an element of } S(\mathbf{n}) \text{ for which the } j^{th} \text{ borehole} \}$ 29 encounters waste of activity level l(j) for j=1, 30 2, ..., nBH, where nBH is the total number of 31 boreholes associated with a time history in $S(\mathbf{n})$ } 32 33 (3-25)34 35 and 36 $S^{+-}(\mathbf{I};t_{1-1},t_{1}) = \{x: x \text{ an element of } S^{+-}(t_{1-1},t_{1}) \text{ for which the } j^{\text{th}}\}$ 37 borehole encounters waste of activity level l(j)38 39 for $j=1, 2, \ldots, nBH$, where nBH is the total 40 number of boreholes associated with a time history in $S^{+-}(t_{i-1},t_i)$, 41 (3-26)42 43 where 44 4567 44490 552 nT $l = [l(1), l(2), \ldots, l(nBH)]$ and $nBH = \Sigma n(i)$. (3-27)i=1

Further refinements on the basis of whether or not subsidence occurs and 1 whether or not individual boreholes penetrate pressurized brine pockets are 2 3 also possible. However, at present, these distinctions do not appear to be important in the determination of scenario consequences and, as a result, are 4 not included in calculations performed for the 1991 WIPP performance 5 assessment. In essence, the computational scenarios defined in Equation 3-21 6 through Equation 3-27 are defining an important sampling strategy that covers 7 the stochastic or type A uncertainty that is characterized by the scenario 8 probabilities pS; appearing in Equation 3-1. Additional information on the 9 definition of computational scenarios is given in Volume 2, Chapter 3 of this 10 report. 11

- 12
- 13
- 14

15

3.3 Determination of Scenario Probabilities

16 The second element of the ordered triples shown in Equation 3-1 is the 17 scenario probability pS_1 . As with scenario definition, the probabilities pS_1 18 have been developed at two levels of detail.

19 20

21

3.3.1 PROBABILITIES FOR SUMMARY SCENARIOS

The first level was for use with the summary scenarios described in 22 Section 3.2.1-Definition of Summary Scenarios. The logic used to construct 23 these probabilities is shown in Figures 4-10 and 4-11 in Chapter 4 of this 24 The construction shown in Figure 4-10 is based on a classical 25 volume. 26 probability model in which alternative occurrences of unknown probability are assumed to have equal probability. The construction shown in Figure 4-11 is 27 based on the use of a Poisson model. Additional discussion of these 28 29 probability estimation procedures is given in Guzowski (1991). Further, Apostolakis et al. (1991) provide an extensive discussion of techniques for 30 determining probabilities in the context of performance assessment for 31 32 radioactive waste disposal.

In the WIPP performance assessment, probabilities are assigned to summary scenarios to assist in completeness arguments and to provide guidance with respect to what parts of the sample space must be considered in constructing CCDFs for comparison with the EPA release limits. The probabilities in Figure 4-11 were used to construct CCDFs for the 1990 preliminary comparison (Bertram-Howery et al., 1990). The probabilities used in the present report are now described.

41

33

42 3.3.2 PROBABILITIES FOR COMPUTATIONAL SCENARIOS

43

44 The second level of probability definition was for use with the computational
45 scenarios described in Section 3.2.2-Definition of Computational Scenarios.

These are the probabilities that will actually be used in the construction of 1 CCDFs for comparison with the EPA release limits. These probabilities are 2

based on the assumption that the occurrence of boreholes through the 3

repository follows a Poisson process with a rate constant λ . 4 The

probabilities pS(n) and pS(l,n) for the scenarios S(n) and S(l,n) are given by 5

$$pS(\mathbf{n}) = \begin{cases} nT \\ \Pi \\ i=1 \end{cases} \left[\frac{\lambda^{n(i)} \left(t_{i} - t_{i-1} \right)^{n(i)}}{n(i)!} \right] exp \left[-\lambda \left(t_{nT} - t_{0} \right) \right] \end{cases}$$
(3-28)

and

6

$$pS(\mathbf{I},\mathbf{n}) = \begin{pmatrix} nBH \\ \Pi & pL_{\mathcal{I}}(j) \\ j=1 \end{pmatrix} pS(\mathbf{n}), \qquad (3-29)$$

7890123456789012345678 where **n** and **l** are defined in Equations 3-24 and 3-27, respectively, and pL_{ℓ} 29 is the probability that a randomly placed borehole through a waste panel will encounter waste of activity level ℓ . The rate constant λ is a sampled 30 variable in the 1991 WIPP performance assessment. Table 3-2 provides an 31 example of probabilities pS(n) calculated as shown in Equation 3-28 with 32 $\lambda = 3.28 \times 10^{-4} \text{ yr}^{-1}$ for the time interval from 100 to 10,000 yr, which 33 corresponds to the maximum drilling rate suggested for use by the EPA. 34 Because the Standard allows for 100 yr of active institutional control, λ has 35 been set equal to zero for the time interval from 0 to 100 yr. Similar, but 36 more involved, equations are used to obtain $pS^{+-}(t_{i-1}, t_i)$ and 37 $pS^{+-}(l;t_{i-1}, t_i).$ 38

39

The formulas for determining pS(n), pS(l, n), $pS^{+-}(t_{i-1}, t_i)$, and 40 $pS^{+-}(I;t_{1-1}, t_i)$ are derived in Volume 2, Chapter 2 of this report under the 41 assumption that drilling intrusions follow a Poisson process (i.e., are 42 random in time and space). The derivations are general and include both the 43 stationary (i.e., constant λ) and nonstationary (i.e., time-dependent λ) 44 cases. 45

- 46
- 47
- 48 49

3.4 Calculation of Scenario Consequences

The two preceding sections have discussed the development of scenarios $S_{\rm i}$ and 50 their probabilities pS; at two levels of detail. First, scenarios were 51 considered at a summary level. This provides a fairly broad characterization 52 of scenarios and their probabilities and thus provides a basis for general 53 discussions of what might happen at the WIPP. Second, scenarios involving 54 55 drilling intrusions were considered at a much finer level of detail. This additional detail facilitates the necessary calculations that must be 56 performed to determine the scenario consequences cS_i . 57

PROBABILITIES FOR COMBINATIONS OF INTRUSIONS OVER 10,000 YRS FOR $\lambda = 0$ 2 TABLE 3-2. FROM 0 TO 100 YRS, $\lambda = 3.28 \text{ X} \text{ 10}^{-4} \text{ YR}^{-1}$ FROM 100 TO 10,000 YRS

3 The individual entries in this table correspond to computational scenarios of the form S(n). For a specified 5 number of intrusions, the first column indicates the time interval in which the first intrusion occurs, the 6 second column indicates the time interval in which the second intrusion occurs, and so on, where 7 8 $1 \sim [0, 2000], 2 \sim [2000, 4000], 3 \sim [4000, 6000], 4 \sim [6000, 8000], and 5 \sim [8000, 10000]; the last$ 9 column lists the probability for each combination of intrusions calculated with the relationship in Eq. 3-28. 18 0 Intrusions 61 **3** Intrusions 106 4 Intrusions $(\text{prob} = 3.888 \times 10^{-2})$ $(\text{prob} = 1.801 \times 10^{-1})$ $(\text{prob} = 2.219 \times 10^{-1})$ 13 62 107 $(\text{cum prob} = 3.888 \times 10^{-2})$ $(\text{cum prob} = 5.920 \times 10^{-1})$ $(\text{cum prob} = 7.722 \times 10^{-1})$ 63 108 14 (comp scen = 1)(comp scen = 35)(comp scen = 70)15 64 109 16 **6**5 112 Prob 11 12 13 14 Prob 11 12 13 14 18 <u>69</u> 118 1 1 1 1.569 x 10⁻³ 1 1 1 1 2.444 x 10⁻⁴ 1 Intrusion 19 71 1 1 2 4.953 x 10⁻³ 116 1 1 1 2 1.029 x 10⁻³ $(\text{prob} = 1.263 \times 10^{-1})$ 20 4.953 x 10⁻³ 1 1 3 72 117 $(\text{cum prob} = 1.651 \times 10^{-1})$. 21 4.953 x 10⁻³ 73 1 1 4 118 (comp scen = 5)22 4.953 x 10⁻³ 74 1 1 5 119 **2**9 Prob 1 12 13 14 5.214 x 10⁻³ 1 2 2 1 2 3 4 6.841 x 10⁻³ 75 120 28 2.423 x 10⁻² 1 1.043 x 10⁻² 1 2 3 76 121 . . 2 2.551 x 10⁻² 29 1 2 4 1.043×10^{-2} 77 122 . . 2.551 x 10⁻² 3 1.043 x 10⁻² 1 2 5 30 78 123 4 2.551×10^{-2} 1 3 3 5.214 x 10⁻³ 1.200 x 10⁻³ 31 79 4 5 5 5 124 2.551 x 10⁻² 5 1.043 x 10⁻² 1 3 4 5555 3.000 x 10⁻⁴ 32 80 125 1.263 x 10⁻¹ 33 1 3 5 1.043 x 10⁻² 1.801 x 10⁻¹ 81 126 5.214 x 10⁻³ 1 4 4 34 82 127 1 4 5 1.043 x 10⁻² 35 83 128 2 Intrusions 1 5 5 5.214 x 10⁻³ 36 84 129 5 Intrusions 37 $(\text{prob} = 2.050 \times 10^{-1})$ 2 2 2 1.829 x 10⁻³ $(\text{prob} = 1.170 \times 10^{-1})$ 85 130 $(\text{cum prob} = 3.701 \times 10^{-1})$ 5.488 x 10⁻³ 38 223 $(\text{cum prob} = 8.891 \times 10^{-1})$ 86 131 39 (comp scen = 15)2 2 4 5.488 x 10⁻³ (comp scen = 126)87 132 2 2 5 5.488 x 10⁻³ 49 133 88 Prob 1 12 13 14 2 3 3 5.488 x 10⁻³ 135 89 **48** 45 7.551 x 10⁻³ 1 1 6 Intrusions 90 2 3 4 1.098 x 10⁻² 136 1 2 1.590×10^{-2} 46 $(\text{prob} = 6.331 \times 10^{-2})$ 2 3 5 1.098×10^{-2} 137 91 1.590 x 10⁻² 1 3 47 $(\text{cum prob} = 9.525 \times 10^{-1})$ 2 4 4 5.488 x 10⁻³ 138 92 1 4 1.590 x 10⁻² 48 (comp scen = 210)2 4 5 1.098 x 10⁻² 139 93 1.590 x 10⁻² 1 5 49 140 2 5 5 5.488 x 10⁻³ .94 2 2 8.366 x 10⁻³ 50 142 1.829 x 10-3 95 3 3 3 1.673×10^{-2} 2 3 51 7 Intrusions 3 3 4 5.488 x 10⁻³ 143 96 1.673 x 10⁻² 2 4 52 $(\text{prob} = 2.937 \times 10^{-2})$ 144 5.488 x 10⁻³ 3 3 5 97 2 5 1.673×10^{-2} 53 $(\text{cum prob} = 9.818 \times 10^{-1})$ 145 5.488 x 10⁻³ 3 4 4 98 3 3 8.366 x 10⁻³ 54 (comp scen = 330)146 1.098 x 10⁻² 99 3 4 5 3 4 1.673×10^{-2} 55 147 5.488 x 10⁻³ 3 5 5 100 1.673 x 10⁻² 3 5 56 1.829 x 10⁻³ 101 4 4 4 8.366 x 10⁻³ 4 4 57 5.488 x 10⁻³ 4 4 5 102 1.673×10^{-2} 4 5 58 5.488 x 10⁻³ 103 4 5 5 5 5 8.366 x 10⁻³ 59 5 5 5 1.829 x 10⁻³ 104 2.050 x 10⁻¹ 60 2.219 x 10⁻¹

105

2 TABLE 3-2. PROBABILITIES FOR COMBINATIONS OF INTRUSIONS OVER 10,000 YRS FOR $\lambda = 0$ 3 FROM 0 TO 100 YRS, $\lambda = 3.28 \times 10^{-4} \text{ YR}^{-1}$ FROM 100 TO 10,000 YRS (concluded)

3 Intrusions (prob = 1.192 x 10 ⁻²) (cum prob = 9.937 x 10 ⁻¹) (comp scen = 495)	28 29 30 31	11 Intrusions (prob = 4.123×10^{-4}) (cum prob = 9.999×10^{-1}) (comp scen = 1365)	49 50 51 52	14 Intrusions (prob = 6.464 x 10 ⁻⁶) (cum prob =) (comp scen = 3060)
9 Intrusions prob = 4.301 x 10 ⁻³) (cum prob = 9.980 x 10 ⁻¹) (comp scen = 715)	 32 34 35 36 37 38 	12 Intrusions (prob = 1.116 x 10 ⁻⁴) (cum prob =) (comp scen = 1820)	58 55 56 57 58 59	15 Intrusions (prob = 1.399 x 10 ⁻⁶) (cum prob =) (comp scen = 3876)
10 Intrusions (prob = 1.397×10^{-3}) (cum prob = 9.994×10^{-1}) (comp scen = 1001)	89 - 41 42 43 44 45 46 - 48	13 Intrusions (prob = 2.787 x 10 ⁻⁵) (cum prob =) (comp scen = 2380)	60 -	

6**5** 66

B

67

An important point to bear in mind is that calculations to obtain ${\sf cS}_{\rm i}$ are 68 performed at the level of the individual time histories contained in the set 69 S shown in Equation 3-11. For this reason, the computational scenarios S_{1} 70 used in the construction of CCDFs should be reasonably "homogeneous"; 71 otherwise, it is not possible to assume that a calculation performed for a 72 specific time history in S_1 is a reasonable surrogate for the calculations 73 that might be performed for all the other time histories in S_i . However, 74 calculations are performed at the level of individual time histories 75 76 regardless of whether the previously discussed summary or computational scenarios are under consideration. 77

78

In what follows, a summary description of the models being used in the WIPP performance assessment will be given. Then, the way in which calculations are organized to provide results for comparison with the EPA release limits will be described.

1 3.4.1 OVERVIEW OF MODELS

2

14

The models used in the WIPP performance assessment, or any other complex 3 analysis, actually exist at four different levels. First, there are 4 conceptual models that characterize our perception of the site. These models 5 provide a nonmathematical summary of our knowledge of the site and the 6 physical processes that operate there. Development of an appropriate 7 conceptual model, or site description as it is sometimes called, is an 8 9 important part of the WIPP performance assessment. Summaries of the current conceptual model for the WIPP are given in Chapter 5 of this volume. An 10 adequate conceptual model is essential both for the development of the sample 11 space S appearing in Equation 3-11 and the division of the sample space into 12 the scenarios S_i appearing in Equation 3-1. 13

15 Second, mathematical models are developed to represent the processes at the site. The conceptual models provide the context within which these 16 mathematical models must operate and indicate the processes that they must 17 characterize. The mathematical models are predictive in the sense that, 18 given known properties of the system and possible perturbations to the 19 system, they project the response of the system. The processes that are 20 represented by these mathematical models include fluid flow, heat flow, 21 mechanical deformation, radionuclide transport by groundwater, removal of 22 waste by intruding boreholes, and human exposure to radionuclides released to 23 the surface environment. Among the dependent variables predicted by these 24 models are pressurization of the repository by gas generation, deformation of 25 the repository due to salt creep, removal of radionuclides from the 26 repository due to the inflow and subsequent outflow of brine, release of 27 radionuclides to the accessible environment due to either radionuclide 28 transport in the Culebra or cuttings removal to the surface, and human 29 exposure to radionuclides brought to the surface. Mathematical models are 30 often systems of ordinary or partial differential equations. However, other 31 possibilities exist. A description of the mathematical models being used in 32 the WIPP performance assessment is given in Volume 2, Chapters 4 through 7 of 33 34 this report.

35

Third, numerical models are developed to approximate the mathematical models. 36 Most mathematical models do not have closed-form solutions. Simply put, it 37 is not possible to find simple functions that equal the solutions of the 38 equations in the model. As a result, numerical procedures must be developed 39 to provide approximations to the solutions of the mathematical models. In 40 essence, these approximations provide "numerical models" that calculate 41 results that are close to the solutions of the original mathematical models. 42 For example, Runge-Kutta procedures are often used to solve ordinary 43 differential equations, and finite difference and finite element methods are 44 used to solve partial differential equations. In practice, it is unusual for 45

a mathematical model to have a solution that can be determined without the
use of an intermediate numerical model. A brief description of the numerical
models being used in the WIPP performance assessment is given in Volume 2,
Chapters 4 through 7 of this report.

Fourth, computer models must be used to implement the numerical models. It 6 is unusual for a mathematical model and its associated numerical model to be 7 sufficiently simple to permit a "pencil-and-paper" solution. Thus, computer 8 9 programs must be developed that will carry out the actual calculations. These computer models are often quite general in the sense that the user 10 exercises a large amount of control over both the mathematical model and its 11 numerical solution through the specific inputs supplied to the computer 12 model. Indeed, most computer models have the capability to implement a 13 variety of mathematical and numerical models. The computer model is where 14 the conceptual model, mathematical model, numerical model, and analyst come 15 together to produce predicted results. 16

17

5

It is the computer models that actually predict the consequences cS_1 18 appearing in Equation 3-1. Further, several models are often used in a 19 20 single analysis, with individual models both receiving input from a preceding model and producing output that is then used as input to another model. 21 22 Figure 3-15 illustrates the sequence of linked models that was used in the 1991 WIPP performance assessment. Each of the models appearing in this 23 figure is briefly described in Table 3-3; more information is available in 24 Volume 2, Chapters 4 through 7 of this report and the model descriptions for 25 the individual programs. 26

27

28

3.4.2 ORGANIZATION OF CALCULATIONS FOR PERFORMANCE ASSESSMENT

29

As shown in Table 3-2, even a fairly coarse gridding on time leads to far too 30 many computational scenarios (e.g., $S(\mathbf{n})$ and $S(\mathbf{l},\mathbf{n})$) to perform a detailed 31 calculation for each of them. Construction of a CCDF for comparison against 32 the EPA release limits requires the estimation of cumulative probability 33 34 through at least the 0.999 level. Thus, depending on the value for the rate constant λ in the Poisson model for drilling, this may require the inclusion 35 of computational scenarios involving as many as 10 to 12 drilling intrusions, 36 which results in a total of several thousand computational scenarios. 37 Further, this number does not include the effects of different activity 38 levels in the waste. To obtain results for such a large number of 39 computational scenarios, it is necessary to plan and implement the overall 40 calculations very carefully. The manner in which this can be done is not 41 42 unique. The following describes the approach used in the 1991 WIPP performance assessment to calculate a CCDF for comparison with the EPA 43 release limits. 44 45

TRI-6342-93-8

Figure 3-15. Models Used in 1991 WIPP Performance Assessment. The names for computer models (i.e., computer codes) are shown in capital letters.

Model	Description				
CUTTINGS	Calculates the quantity of radioactive material (in curies) brought to the surface as cu and cavings generated by an exploratory drilling operation that penetrates a waste pa (Volume 2, Chapter 7 of this report).	material (in curies) brought to the surface as cuttings ory drilling operation that penetrates a waste panel			
BRAGFLO	Describes the multiphase flow of gas and brine through a porous, heterogenous reservoir. BRAGFLO solves simultaneously the coupled partial differential equations that describe the mass conservation of gas and brine along with appropriate constraint equations, initial conditions, and boundary conditions (Volume 2, Chapter 5 of this report).				
PANEL	Calculates rate of discharge and cumulative discharge of radionuclides from a reposi panel through an intrusion borehole. Discharge is a function of fluid flow rate, nuclide solubility, and remaining inventory (Volume 2, Chapter 5 of this report).	itory e			
SECO2D	Calculates single-phase Darcy flow for groundwater flow problems in two dimensions. The formulation is based on a single partial differential equation for hydraulic head using fully implicit time differencing (Volume 2, Chapter 6 of this report).				
STAFF2D	Simulates fluid flow and transport of radionuclides in fractured porous media. STAFF2D is two-dimensional finite element code (Huyakorn et al., 1989; Volume 2, Chapter 6 of this report).				
As indic	ated in Equation 3-21, the 10,000-yr time interval that must be	e			
digioint	subject role comparison with the Err refease limits can be divided in subject vals $[t: 1, t:]$ $i = 1, 2,, nT$ where nT is the nu	umber			
of time	intervals selected for use. The following results can be calcu	ulate			
for each	time interval:				
rC _i	EPA normalized release to the surface environment for cuttin removal due to a single borehole in time interval i with the assumption that the waste is homogeneous (i.e., waste of different activity levels is not present),	ngs e (3-3			

2 TABLE 3-3. SUMMARY OF COMPUTER MODELS USED IN THE 1991 WIPP PERFORMANCE 3 ASSESSMENT

```
3.4 Calculation of Scenario Consequences
3.4.2 Organization of Calculations for Performance Assessment
```

(3 - 32)

```
2
3
4
```

and

interval i,

5

1

rGW2_i = EPA normalized release to the accessible environment for groundwater transport initiated by two boreholes in the same waste panel in time interval i, of which one penetrates a pressurized brine pocket and one does not (i.e., an ElE2-type scenario). (3-33)

groundwater transport initiated by a single borehole in time

 $rGW1_i$ = EPA normalized release to the accessible environment for

11 12

21

26

27

28

29

30 31

32

33 34

35 36

37 38

10

In general, rC_i , rC_{ii} , $rGW1_i$, and $rGW2_i$ will be vectors containing a large 13 variety of information; however, for notational simplicity, a vector 14 representation will not be used. For the WIPP performance assessment, the 15 cuttings release to the accessible environment (i.e., rC_i and rC_{ij}) is 16 determined by the CUTTINGS program, and the groundwater release to the 17 accessible environment (i.e., $rGW1_i$ and $rGW2_i$) is determined for the 1991 18 performance assessment through a sequence of linked calculations involving 19 the BRAGFLO, PANEL, SECO2D, and STAFF2D programs. 20

The releases rC_i , rC_{ij} , $rGWl_i$ and $rGW2_i$ are used to construct the releases associated with the many individual computational scenarios that are used in the construction of a CCDF for comparison with the EPA release limits. The following assumptions are made:

- (1) With the exception of ElE2-type scenarios, no synergistic effects result from multiple boreholes, and thus, the total release for a scenario involving multiple intrusions can be obtained by adding the releases associated with the individual intrusions.
 - (2) An ElE2-type scenario can only take place when the necessary boreholes occur within the same time interval $[t_{i-1}, t_i]$.

(3) An ElE2-type scenario involving more than two boreholes will have the same release as an ElE2-type scenario involving exactly two boreholes.

39 The preceding assumptions are used to construct the releases for individual 40 computational scenarios.

41

The normalized releases rC_i , rC_{ij} and $rGWl_i$ can be used to construct the EPA normalized releases for the scenarios $S(\mathbf{n})$ and $S(\mathbf{l},\mathbf{n})$ defined in Equations 3-22 and 3-25, respectively. For $S(\mathbf{n})$, the normalized release to the accessible environment can be approximated by 46 123456789

10 11 12

13

14

15

16

17

18

19

20 21

> 38 39

> 40 41

$$cS(\mathbf{n}) = \sum_{j=1}^{nBH} (rC_{m(j)} + rGW1_{m(j)}), \qquad (3-34)$$

where m(j) designates the time interval in which the jth borehole occurs. The vector

$$\mathbf{m} = [m(1), m(2), \dots, m(nBH)]$$
 (3-35)

is uniquely determined once the vector **n** appearing in the definition of $S(\mathbf{n})$ is specified. The definition of $S(\mathbf{n})$ contains no information on the activity levels encountered by the individual boreholes, and so $cS(\mathbf{n})$ was constructed with the assumption that all waste is of the same average activity. However, the definition of $S(\mathbf{I},\mathbf{n})$ does contain information on activity levels, and the associated normalized release to the accessible environment can be approximated by

$$cS(\mathbf{I},\mathbf{n}) = \sum_{\substack{j=1\\ j=1}}^{nBH} \left(rC_{m(j),l(j)} + rGW1_{m(j)} \right), \qquad (3-36)$$

2024567800 which does incorporate the activity levels encountered by the individual boreholes. The normalized releases for the computational scenarios 31 $S^{+-}(t_{i-1}, t_i)$ and $S^{+-}(l; t_{i-1}, t_i)$ defined in Equations 3-23 and 3-26, 32 respectively, can be constructed in a similar manner. 33 34

Additional information on the procedures being used to construct CCDFs for 35 the 1991 WIPP performance assessment is given in Volume 2, Chapter 3 of this 36 report. 37

3.5 Uncertainty and Sensitivity Analysis

The performance of uncertainty and sensitivity analyses is an important part 42 of the WIPP performance assessment. The need to conduct such analyses has a 43 large effect on the overall structure of the WIPP performance assessment. In 44 the context of this report, uncertainty analysis involves determining the 45 uncertainty in model predictions that results from imprecisely known input 46 variables, and sensitivity analysis involves determining the contribution of 47 individual input variables to the uncertainty in model predictions. 48 Specifically, uncertainty and sensitivity analyses involve the study of the 49 effects of subjective, or type B, uncertainty. As previously discussed, the 50 effects of stochastic, or type A, uncertainty is incorporated into the WIPP 51 performance assessment through the scenario probabilities pS; appearing in 52 Equation 3-1. However, it is possible to have subjective uncertainty in 53 quantities used in the characterization of stochastic uncertainty. 54 55

3.5.1 AVAILABLE TECHNIQUES 1

2

Review of Techniques 3

4

Four basic approaches to uncertainty and sensitivity analysis have been 5 developed: differential analysis, Monte Carlo analysis, response surface 6 methodology, and Fourier amplitude sensitivity test. This section provides a 7 brief overview of these approaches and references to more detailed sources of 8 information. 9

10

Differential analysis is based on using a Taylor series to approximate the 11 model under consideration. Once constructed, this series is used as a 12 surrogate for the original model in uncertainty and sensitivity studies. A 13 differential analysis involves four steps: (1) selection of base-case 14 values, ranges, and distributions for the input variables under 15 consideration; (2) development of a Taylor series approximation to the 16 original model; (3) assessment of uncertainty in model predictions through 17 the use of variance propagation techniques with the Taylor series 18 19 approximation to the model; and (4) determination of the sensitivity of model predictions to model input on the basis of fractional contributions to 20 variance. The most demanding part of a differential analysis is often the 21 calculation of the partial derivatives used in the Taylor series constructed 22 in the second step. Additional sources of information on differential 23 analysis are given in Table 3-4. 24

25

Monte Carlo analysis is based on performing multiple model evaluations with 26 probabilistically selected model input, and then using the results of these 27 evaluations to determine both the uncertainty in model predictions and the 28 independent variables that give rise to this uncertainty. A Monte Carlo 29 analysis involves five steps: (1) selection of a range and distribution for 30 31 each input variable; (2) generation of a sample from the ranges and distributions assigned to the input variables; (3) evaluation of the model 32 for each element of the sample; (4) assessment of the uncertainty in model 33 predictions through the use of estimated means, variances, and distribution 34 functions; and (5) determination of the sensitivity of model predictions to 35 model input on the basis of scatterplots, regression analysis, and 36 correlation analysis. Additional sources of information on Monte Carlo 37 analysis are given in Table 3-4. 38

39

Response surface methodology is based on developing a response surface 40 approximation to the model under consideration. This approximation is then 41 used as a surrogate for the original model in subsequent uncertainty and 42 sensitivity analyses. An analysis based on response surface methodology 43 involves six steps: (1) selection of a range and distribution for each input 44 variable; (2) development of an experimental design that defines the 45

combinations of variable values for which model evaluations will be 1 performed: (3) evaluation of the model for each point in the experimental 2 design; (4) construction of a response surface approximation to the original 3 model on the basis of the model evaluations obtained in the preceding step; 4 (5) assessment of the uncertainty in model predictions through the use of 5 either variance propagation techniques or Monte Carlo simulation with the 6 previously constructed response surface; and (6) determination of the 7 sensitivity of model predictions to model input on the basis of fractional 8 contribution to variance. Addition sources of information on response 9 surface methodology are given in Table 3-4. 10

The Fourier amplitude sensitivity test (FAST) is based on performing a 12 numerical calculation to obtain the expected value and variance of a model 13 prediction. The basis of this calculation is a transformation that converts 14 a multidimensional integral over all the uncertain model inputs to a one-15 16 dimensional integral. Further, a decomposition of the Fourier series representation of the model is used to obtain the fractional contribution of 17 the individual input variables to the variance of the model prediction. An 18 analysis based on the FAST approach involves four steps: (1) selection of a 19 range and distribution for each input variable; (2) development of a 20 21 transformation that converts the multidimensional integrals required to calculate the expected value and variance of a model prediction to one-22 dimensional integrals; (3) assessment of the uncertainty in model predictions 23 by evaluation of the one-dimensional integrals constructed in the preceding 24 step to obtain expected values and variances; and (4) determination of the 25 sensitivity of model predictions to model inputs on the basis of fractional 26 contributions to variance obtained from a decomposition of a Fourier series 27 representation for the model. Additional sources of information on the FAST 28 29 approach are given in Table 3-4.

31

32

30

11

Relative Merits of Individual Techniques

33 Differential analysis is based on developing a Taylor series approximation to the model under consideration. 34 Ultimately, the quality of the analysis 35 results will depend on how well this series approximates the original model. Desirable properties of differential analysis include the following: (1) the 36 effects of small perturbations away from the base-case value about which the 37 Taylor series was developed are revealed; (2) uncertainty and sensitivity 38 analyses are straightforward once the Taylor series is developed; 39 (3) specialized techniques (e.g., adjoint, Green's function, GRESS/ADGEN) 40 exist to facilitate the calculation of derivatives; and (4) the approach has 41 42 been widely studied and applied. 43

However, there are two important drawbacks to differential analysis that 44 should always be considered when selecting the procedure to be used in an 45

2 TABLE 3-4. SOURCES OF ADDITIONAL INFORMATION ON UNCERTAINTY AND SENSITIVITY ANALYSIS

	Topic	References		
Differential		Ronen, 1988; Lewins and Becker, 1982; Frank, 1978;		
	Analysis	Dickinson and Gelinas, 1976; Tomovic and Vukobratovic, 1972		
		Cacuci, 1981a,b; Cacuci et al., 1980; Dougherty and Rabitz,		
		1979; Dougherty et al., 1979; Hwang et al., 1978; Oblow et al.,		
		1986; Pin et al., 1986; Worley and Horwedel, 1986; Oblow,		
		1985		
	Marsha Oanla			
	Monte Carlo	Helton et al., 1986; Helton et al., 1985; Hendry, 1984;		
	Analysis	Fedra, 1983; Gardner and O'Neill, 1983; Iman and Conover,		
		1982a; Iman and Conover, 1980a,b; Iman et al., 1981a;		
		Iman et al., 1981b; Schwarz and Hoffman, 1980; Iman et al.,		
		1978		
	Posponso	Boy and Drapor 1007: Klaiinan 1007: Myara 1071: Olivi		
	Surface	1096: Morton 1092: Mond and Pike 1975: Kleijnen 1074		
	Mathodology	1960, MOROH, 1965, Meau and Fike, 1975, Rieijhen, 1974		
	memodology			
	Fourier	Lienmann and Stephanopoulos, 1985; McBae et al., 1981;		
	Amplitude	Cukier et al. 1978: Cukier et al. 1973: Schaibly and		
	Sensitivity	Shuler 1973		
	Test			
	1000			
	Reviews	Helton et al., 1991: Wu et al., 1991: Zimmerman et al., 1990:		
		Doctor, 1989: Bonano and Cranwell, 1988: NEA, 1987: Rish		
		and Marnicio, 1988; Fischer and Ehrhardt, 1985; Iman and		
		Helton, 1985a; Hendrickson, 1984; Rabitz et al., 1983; Cox an		
		Baybutt, 1981; Rose and Swartzman, 1981; Tilden et al., 1981		
		Mazumdar et al., 1978; Mazumdar et al., 1976;		
		Mazumdar et al., 1975		
	Comparative	Kim et al., 1988a,b; Mishra and Parker, 1989; Doctor et al.,		
	Studies	1988; Iman and Helton, 1988; Maerker, 1988; Seaholm et al.,		
		1988; Sykes and Thomson, 1988; Obray et al., 1986; Downing		
		et al., 1985; Iman and Helton, 1985b; Jacobson et al., 1985;		
		Uliasz, 1985; Harper and Gupta, 1983; Montgomery et al.,		
		1983; Rose, 1982; Ahmed et al., 1981; Gardner et al., 1981;		
		Scavia et al., 1981; Cox, 1977; Burns, 1975		

uncertainty/sensitivity study. First, differential analysis is inherently 1 local. The farther a perturbation moves from the base-case value about which 2 the Taylor series was constructed, the less reliable the analysis results 3 4 become. In particular, differential analysis is a poor choice for use in estimating distribution functions and provides no information on the possible 5 existence of thresholds or discontinuities in the relationships between 6 independent and dependent variables. Overall, the more nonlinear the 7 relationships between the independent and dependent variables, the more 8 9 difficult it is to employ a differential analysis effectively. Second, differential analyses can be very difficult to implement and often require 10 large amounts of human and/or computer time. This difficulty arises from the 11 need to calculate the partial derivatives required in the Taylor series. 12 The possible use of sophisticated techniques such as the GRESS/ADGEN procedures 13 offers some encouragement in this area. Even so, the need to calculate the 14 required derivatives should not be taken lightly. 15

Monte Carlo analysis is based on the use of a probabilistic procedure to 17 select model input. Then, uncertainty analysis results are obtained directly 18 from model predictions without the use of an intermediate surrogate model, 19 and sensitivity analysis results are obtained by exploring the mapping from 20 model input to model predictions that formed the basis for the uncertainty 21 22 analysis. Desirable properties of Monte Carlo analysis include the following: (1) the full range of each input variable is sampled and 23 subsequently used as model input; (2) uncertainty results are obtained 24 without the use of a surrogate model; (3) extensive modifications to the 25 original model are not necessary (such modifications are often required when 26 adjoint or Green's function techniques are used as part of a differential 27 analysis); (4) the full stratification over the range of each input variable 28 facilitates the identification of nonlinearities, thresholds, and 29 discontinuities; (5) a variety of regression-based sensitivity analysis 30 techniques are available; and (6) the approach is conceptually simple, widely 31 used, and easy to explain. 32

Two particularly appealing features of Monte Carlo analysis are the full 34 35 coverage of the range of each input variable and the ease with which an analysis can be implemented. The first feature is particularly important 36 when the input variables have large ranges and the existence of nonlinear 37 relationships between the input and output variables is a possibility. 38 With respect to the second feature, essentially any variable that can be supplied 39 as an input or generated as an output can be included in a Monte Carlo 40 41 analysis without any modification to the original model. 42

43 The major drawback to Monte Carlo procedures is the fact that multiple model 44 evaluations are required. If the model is computationally expensive to 45 evaluate or many model evaluations are required, then the cost of the

16

required calculations may be large. Computational cost should always be 1 considered when selecting a technique, but it is rarely the dominant cost in 2 performing an analysis. Special techniques such as Latin hypercube sampling 3 and importance sampling can often be used to reduce the number of required 4 model evaluations without compromising the overall quality of an analysis. 5 Further, it is important to recognize that, in practice, the other analysis 6 7 techniques discussed in this section can require as much computational time as Monte Carlo analysis. 8

9

Response surface methodology is based on constructing a response-surface 10 approximation to the original model. This approximation is then used as a 11 surrogate for the original model in subsequent uncertainty and sensitivity 12 13 studies. Desirable properties of response-surface methodology include the following: (1) complete control over the structure of model input through 14 the experimental design selected for use; (2) near optimum choice for a model 15 whose predictions are known to be a linear or quadratic function of the input 16 variables; and (3) uncertainty and sensitivity analyses that are inexpensive 17 and straightforward once the necessary response surface approximation has 18 19 been constructed. Further, the development of experimental designs has been widely studied, although typically for situations that are considerably less 20 involved than those encountered in performing an uncertainty/sensitivity 21 study for a complex model. 22

23

There are also several drawbacks to response surface methodology that should 24 25 be considered when an approach to uncertainty/sensitivity analysis is being selected. These include the following: (1) difficulty in development of an 26 appropriate experimental design because of many input variables, many output 27 variables, unknown form for the model, or spatial/temporal variability; 28 (2) use of few values for each input variable; (3) possible requirement of 29 many design points; (4) difficulties in detecting thresholds, 30 discontinuities, and nonlinearities; (5) difficulties in including 31 correlations and restrictions between input variables; and (6) difficulty in 32 construction of an appropriate response-surface approximation to the original 33 model, which may require a considerable amount of statistical sophistication 34 and/or artistry. Ultimately, the final uncertainty/ sensitivity results are 35 no better than the response-surface approximation to the original model. 36 Response-surface methodology will work when there are only a few (typically, 37 less than 10) input variables, a limited number of distinct output variables 38 (because a design that is appropriate for one output variable may not be 39 40 appropriate for a different output variable), and the relationships between the input and output variables are basically linear or quadratic or involve a 41 few cross-products. Otherwise, the structure of the input-output 42 relationships is too complicated to be captured by a classical experimental 43 design (or a sequence of designs if a sequential approach is being used) in 44 an efficient manner. 45 46

3-51

The FAST approach is based on performing a numerical calculation to estimate 1 expected value and variance. Further, sensitivity results are obtained by 2 decomposing the variance estimate into the variances due to the individual 3 input variables. Desirable properties of the FAST approach include the 4 following: (1) full range of each input variable is covered; (2) estimation 5 of expected value and variance is by a direct calculation rather than by use 6 of a surrogate model; and (3) modifications to the original model are not 7 required. 8

9

There are also several drawbacks to using the FAST approach. These include 10 the following: (1) the underlying mathematics is complicated and difficult 11 12 to explain; (2) the approach is not widely known or used; (3) developing the necessary space-filling curve and performing the numerical integration over 13 this curve to obtain expected value and variance is complicated; (4) many 14 model evaluations may be required; (5) an estimate for the cumulative 15 distribution function of the dependent variable is not provided; and (6) it 16 is not possible to specify correlations or other types of restrictions 17 18 between variables. Fortunately, software has been developed to facilitate the implementation of an uncertainty/sensitivity study based on the FAST 19 approach (McRae et al., 1981). As analyses are currently performed with the 20 FAST approach, no information on discontinuities, thresholds, or 21 nonlinearities is obtained. However, it is probably possible to investigate 22 23 this type of behavior with the model evaluations that must be performed in 24 the numerical integrations to obtain expected value and variance.

25

26 Monte Carlo as a Preferred Approach

27

Each approach to uncertainty and sensitivity analysis has its advantages and 28 disadvantages, and all approaches have been successfully applied. It would 29 be a mistake to state categorically that one approach will always be superior 30 to the others regardless of the model under consideration. For a given 31 analysis problem, the available approaches should be considered, and the 32 approach that seems most appropriate for the problem should be selected. 33 This selection should take into account the nature of the model, the type of 34 uncertainty and sensitivity analysis results desired, the cost of modifying 35 and/or evaluating the model, the human cost associated with mastering and 36 37 implementing a technique, the time period over which an analysis must be performed, and the programmatic risk associated with unanticipated 38 complications in the implementation of a technique. 39

40

45

The comments of the preceding paragraph notwithstanding, it is felt that
Monte Carlo techniques provide the best overall approach for studying
problems related to performance assessment for radioactive waste disposal.
This statement is made for several reasons.

First, there are often large uncertainties in such problems. Due to full stratification over the range of each variable, Monte Carlo techniques are particularly appropriate for analysis problems in which large uncertainties are associated with the input variables. In particular, differential analysis and response surface methodology are likely to perform poorly when the relationships between the input and output variables are nonlinear and the input variables have large uncertainties.

9 Second, Monte Carlo techniques provide direct estimates for distribution
10 functions. Neither differential analysis nor the FAST approach is intended
11 for the estimation of distribution functions. The estimates obtained with
12 response surface methodology are no better than the response surface
13 approximation to the original model. It should be possible to estimate
14 distribution functions with results generated as part of the FAST approach,
15 but this possibility apparently has not been investigated and applied.

8

16

30

Third, Monte Carlo techniques do not require a large amount of sophistication 17 that goes beyond the analysis problem of interest. In contrast, differential 18 analysis, response surface methodology, and the FAST approach require a large 19 amount of specialized knowledge to make them work. Developing this knowledge 20 21 and making these techniques work can be very costly in terms of analyst time. Conceptually, Monte Carlo techniques are simpler and do not require 22 modifications to the original model or additional numerical procedures. For 23 example, both differential analysis and the FAST approach can require 24 sophisticated numerical calculations. The application of response surface 25 methodology can require specialized knowledge in experimental design and 26 response surface construction. As a result, analyses based on Monte Carlo 27 techniques are usually easier to present and explain than analyses based on 28 the other techniques. 29

Fourth, Monte Carlo techniques can be used to propagate uncertainties through 31 a sequence of separate models. Examples of this type of analysis can be 32 found in performance assessments for radioactive waste disposal sites (Bonano 33 et al., 1989; Cranwell et al., 1987) and probabilistic risk assessments for 34 nuclear power plants (U.S. NRC, 1990; Helton et al., 1988; draft of NUREG/CR-35 4551, U.S. NRC). Due to the use of a number of independent computer programs 36 and the necessity to handle information at model interfaces appropriately, 37 the other methods do not seem to be applicable to this type of analysis. 38 39

Fifth, Monte Carlo techniques create a mapping from analysis input to analysis results. This mapping is rich in information because of the full stratification over the range of each input variable and the wide variety of output variables that can be generated and saved. Once produced and stored, this mapping can be explored in many ways. Differential analysis is inherently local. Response surface methodology employs a very sparse stratification. The exact nature of the mapping produced by the FAST
 approach has not been investigated.

4 3.5.2 MONTE CARLO ANALYSIS

5

3

As previously discussed, the WIPP performance assessment uses Monte Carlo
techniques to study the impact of uncertainties. A Monte Carlo analysis
involves five steps. Each of these steps is now discussed in the context of
the WIPP performance assessment.

10

11 Selection of Variable Ranges and Distributions

12

Monte Carlo analyses use a probabilistic procedure for the selection of model input. Therefore, the first step in a Monte Carlo analysis is the selection of ranges and distributions for the variables under consideration. When performed carefully, this can be the largest and most expensive part of a Monte Carlo analysis. However, the amount of effort expended here depends strongly on the purpose of the analysis.

19

If the analysis is primarily exploratory, then rather crude characterizations 20 of the ranges and distributions for the input variables may be adequate. For 21 example, physical plausibility arguments might be used to establish ranges, 22 and uniform or loguniform distributions could be assumed within these ranges. 23 These assumptions are often adequate to bound the ranges for output variables 24 of interest and also to determine which input variables have the greatest 25 influence on the output variables. The estimated range for an output 26 variable and associated sensitivity results are primarily determined by the 27 ranges assigned to the input variables. Thus, even for exploratory studies, 28 care should be taken to avoid assigning unreasonably large ranges to 29 variables. Sensitivity results are generally less dependent on the actual 30 31 distributions assigned to the input variables than they are to the ranges chosen for the variables. However, distributional assumptions can have a 32 large impact on the distributions estimated for output variables. Thus, when 33 distributions for output variables must be estimated accurately, care must be 34 used in developing distributions for the input variables. 35 36

Resources can often be used most effectively by performing a Monte Carlo 37 analysis in an iterative manner. In a first iteration, rather crude range 38 and distribution assumptions can be used to determine which input variables 39 dominate the behavior of output variables of interest. Often, most of the 40 variation in an output variable will be caused by a relatively small subset 41 of the input variables. Once the most important input variables are 42 identified, resources can be concentrated on characterizing their 43 uncertainty. This avoids spending a large effort to characterize carefully 44 the uncertainty in variables that have little impact on the ultimate outcome 45

3.5 Uncertainty and Sensitivity Analysis 3.5.2 Monte Carlo Analysis

of an analysis. This, in essence, is the approach used in the WIPP
performance assessment, where an uncertainty/sensitivity study is performed
each year to determine the importance of individual variables and thereby to
provide guidance for future research (e.g., Helton et al., 1991).

5

31

The variables considered in Monte Carlo studies are typically input 6 parameters to computer models. The individual variables x_i , j = 1, ..., m, 7 can represent any parameter used in an analysis, including hydraulic 8 conductivities, retardations, solubility limits, scenario probabilities, 9 parameters in distributions, probabilistic cutoffs used to eliminate low 10 probability scenarios, and parameters that characterize numerical 11 calculations such as mesh sizes and error bounds. The defining 12 characteristic of these variables is that the analysis requires a single 13 value for each variable but it is uncertain as to what the value should be. 14 15 Thus, the range assigned to each variable represents the set of possible values for that variable, and the corresponding distribution characterizes 16 the likelihood that the appropriate value to use for this variable falls in 17 various subsets of this range. As discussed in Section 3.1.3-18 Characterization of Uncertainty in Risk, this type of uncertainty corresponds 19 to what is sometimes called Type B, or subjective, uncertainty. 20 21

It is very important that the range assigned to a variable be consistent with 22 its usage in the computer program that implements the underlying model. In 23 particular, the range assigned to a variable should be consistent with the 24 scale on which the variable is used in the specific implementation of the 25 model under consideration. A common mistake is to estimate a variable on a 26 local scale and then to infer uncritically that the observed local 27 variability is the same as the uncertainty in this variable on a much larger 28 scale. This can lead to serious mis-estimates of the range for the 29 "effective" variable value that is actually used in an analysis. 30

For example, a computer program might take a single value for the solubility 32 limit of a radionuclide as input, with this single value being used 33 throughout a room in a waste repository or perhaps even throughout the entire 34 repository. Further, theoretical calculations or experimental results might 35 be available for solubility limits under conditions that could occur in 36 subregions of a room but which would be very unlikely to occur uniformly over 37 the entire room. In this case, it would be a mistake to use the range of 38 local results to characterize the range of solubility limits for a room or 39 the repository since this range was developed for isolated sets of conditions 40 41 that would not exist over large areas. The available information should be used in the construction of a range of "effective" solubility limits that is 42 consistent with the use of this parameter in the particular analysis being 43 44 performed. Similar situations can occur in the characterizations of hydraulic conductivities, retardations, and other variables where the scale 45

on which data are measured is very different from the scale on whichestimated variables are actually used.

The preceding discussion quite naturally leads to the following question: How should the ranges and distributions for variables be determined for use in a Monte Carlo analysis? This is a reasonable question to ask, and a hard question to answer. Clearly, the answer must depend on the goals of the analysis, the time and resources available, and the type of information that exists for use in estimating ranges and distributions.

11 The simplest and most desirable situation would be to have a sequence

$$e_{1j}, e_{2j}, \dots, e_{nE,j}$$
 (3-37)

of independent, unbiased, normally and identically distributed estimates for a variable x_j exactly as it is used by a model in a particular analysis and by the computer program that implements this model. In this case, each e_{ij} is an estimate for the corresponding model input x_j , and the single best estimate for x_j is given by

$$\overline{x}_{j} = \sum_{i=1}^{nE} e_{ij}/nE.$$
(3-38)

Further, the standard deviation, or standard error as it is sometimes called when population parameters are being considered, for \overline{x}_j is given by

$$SD(\bar{x}_{j}) = \begin{bmatrix} nE \\ \Sigma & (e_{1j} - \bar{x}_{j})^{2} \end{bmatrix}^{1/2} / \sqrt{nE(nE-1)}.$$
 (3-39)

The quantity

$$\mathbf{t} = (\mathbf{x}_{j} - \mathbf{x}_{j})/SD(\mathbf{x}_{j})$$
(3-40)

is distributed as a t-distribution with nE-l degrees of freedom, where x_j is the appropriate but unknown variable value for use in the analysis (Iman and Conover, 1983). The preceding expression can be rearranged algebraically to obtain

$$\mathbf{x}_{j} = \mathbf{\bar{x}}_{j} - \mathbf{t} \, \mathrm{SD}(\mathbf{\bar{x}}_{j}) \,. \tag{3-41}$$

Thus, the t-distribution can be used to define a distribution for x_i . 1 Further, a confidence interval (e.g., 95%, 99%) for x_i can also be obtained 2 from the t-distribution and used to define the range of x_i . This is з equivalent to excluding specified regions in the tails of the t-distribution 4 when generating x; from the expression in Equation 3-41. The justification 5 for using the t-distribution as a probability distribution for an uncertain 6 variable comes from applying Bayes' Theorem with a diffuse prior distribution 7 for both the mean and standard deviation of the sampling process (Winkler, 8 1972). 9

10

19

As just illustrated, it may be possible to estimate the range and 11 distribution for some variables with formal statistical procedures. Such 12 procedures should always be used when data have been collected in an 13 appropriate manner. Appropriate data collection usually requires prior 14 knowledge of the precise variable to be estimated and use of a carefully 15 planned experimental design. The exact statistical procedures selected for 16 use would depend on the experimental design and the assumed relationships 17 between the variable to be estimated and the data from the design. 18

Unfortunately, most parameters used in a performance assessment are not 20 amenable to direct statistical estimation for various subsets for the 21 following reasons: (1) The time scales over which parameters can be 22 estimated are often much shorter than the time scales over which they will 23 24 actually be used. (2) The physical scale on which parameters can be observed is often much smaller than the physical scale on which they will be used. As 25 a result, heterogeneities in the system prevent individual observations from 26 being used as estimates for system parameters. (3) Estimation of some 27 parameters (e.g., distribution coefficients) requires the removal of material 28 from the system. This removal can alter the properties of the material and 29 thus lead to incorrect parameter estimates. (4) The exact conditions that 30 will exist within the system (e.g., in a waste disposal room) are not known. 31 Thus, it is not possible to design experiments to match the exact conditions 32 for which parameter values are needed. (5) Collection of some types of data 33 involves a degradation of the site (e.g., the drilling of boreholes). As a 34 result, the collection of such data is necessarily limited. (6) Some data 35 involves the occurrence of rare events (e.g., scenario probabilities). 36 Although the geological and historical records can be searched for more 37 information, designed experiments are not possible. (7) Some parameters are 38 not directly measurable. For example, the time scales associated with future 39 human activities make it impossible to design experiments to estimate 40 parameters (e.g., drilling rates) associated with such activities. 41 42

43 Due to reasons of the type outlined in the preceding paragraph, ranges and
44 distributions for most parameters used in a performance assessment cannot be
45 obtained by formal statistical procedures. Nonetheless, there is still a

1 large body of relevant information that can be used in estimating ranges and 2 distributions. Much of this information is field data collected at the site. 3 Other sources of information include theoretical calculations, mechanistic 4 code calculations, physical data from other sites, and knowledge of the 5 differences between the conditions under which data were collected and the 6 conditions under which estimated parameters are to be used. 7

8 The challenge in developing ranges and distributions for use in a Monte Carlo 9 study is to incorporate this diverse body of information meaningfully. 10 Indeed, the importance of such ranges and distributions is that they provide 11 a mathematical structure that summarizes the available information in a form 12 that can be used in further analyses. In many situations, the only practical 13 way to develop these summary ranges and distributions is through an expert 14 review process.

16 The ultimate outcome of this review process would be a distribution function 17 F(x) of the form shown in Figure 3-16 for each independent variable of 18 interest. For a particular variable x_j , the function F is defined such that 19

$$\operatorname{prob}(x < x_{i} \le x + \Delta x) = F(x + \Delta x) - F(x).$$
(3-42)

That is, $F(x+\Delta x)$ - F(x) is equal to the probability that the appropriate 25 value to use for x_i in the particular analysis under consideration falls 26 between x and $x + \Delta x$. In most cases, the probabilities involved in this 27 representation will be subjective in the sense that they represent a degree 28 of belief as to where the appropriate value for x_i falls conditional on all 29 the information available to the reviewer or reviewers. However, when formal 30 statistical procedures can be used as is indicated in conjunction with 31 Equation 3-41, the final result will again be a distribution of the form 32 shown in Figure 3-16. In both cases, the data summary process will have 33 arrived at the same place: a distribution based on available information 34 that characterizes where the appropriate value for x_1 is likely to be 35 located. 36

In many situations, the most appropriate way to construct a subjective distribution of the form shown in Figure 3-16 is through the estimation of quantiles. For example, the process might start by determining minimum and maximum values for x_j, which defines the 0.00 and 1.00 quantiles. This provides estimates for the points

$$(x_{0.00}, 0.00)$$
 and $(x_{1.00}, 1.00)$ (3-43)

on the distribution function in Figure 3-16. The next point to estimate might be the median, which divides the range of x_1 into two intervals of

15

37

43

TRI-6342-666-3

Figure 3-16. Distribution Function for an Imprecisely Known Analysis Variable. For each value x on the abscissa, the corresponding value F(x) on the ordinate is the probability that the appropriate value to use in the analysis is less than or equal to x (Helton et al., 1991).

equal probability, followed by estimates for the 0.25 and 0.75 quantiles.
This produces the following additional points on the distribution function:

$$(x_{0.25}, 0.25), (x_{0.50}, 0.50), (x_{0.75}, 0.75).$$
 (3-44)

9 This process would continue by estimating additional points (e.g., the 0.05,
0.10, 0.90, and 0.95 quantiles) until the shape of the distribution is
11 reasonably characterized. The rest of the distribution could then be filled
12 in by assuming that the distribution function is linear between the specified
13 quantiles, which is equivalent to fitting a maximum entropy distribution
14 (Levin and Tribus, 1978; Tierney, 1990; Cook and Unwin, 1986). Figure 3-17
15 illustrates what the outcome of this process might look like.

Distribution functions for imprecisely known analysis variables can also be
obtained by selecting parameter values such as the mean and standard
deviation for established distributions (e.g., normal, lognormal, beta).
However, it is generally best to avoid this approach for several reasons.

First, there is usually no conceptual basis to pick a particular 22 23 distribution. Second, it is hard to justify why a particular set of 24 distribution parameters was selected (e.g., why a particular mean and standard deviation was selected for use with a lognormal distribution). In 25 contrast, it is often much easier to relate the assignment of quantiles to 26 27 specific information available to the reviewer. Third, most reviewers are not trained statisticians and often do not have an intuitive feeling for the 28 relationship between the shape of a highly skewed distribution and the 29 30 parameters that define it. Thus, selected parameters may not produce a distribution of the shape anticipated by the reviewer. In general, the use 31 of formal distributions is undesirable because it puts an unnecessary 32 transformation between the information possessed by the reviewer and the form 33 in which this information is used in the analysis. In contrast, 34 distributions constructed from quantiles are based on information that 35 corresponds more closely to that available to the reviewer. 36

37

45678

16

The scale of an expert review process can vary widely. At one extreme, a 38 single individual might be involved in reviewing the available information on 39 a particular variable and constructing the distribution shown in Figure 3-17. 40 The actual construction of this distribution could range from being entirely 41 subjective to using sophisticated computational procedures to relate 42 43 variability in data collected at one scale to uncertainty in a parameter for 44 use on a different scale. At the other extreme, several teams of experts could be used to estimate a distribution independently, and then the final 45 distribution used in the analysis would be calculated by averaging the 46 distributions obtained by the individual teams. An intermediate approach 47

TRI-6342-665-2

Figure 3-17. Estimated Distribution Function for an Imprecisely Known Analysis Variable. This distribution function was built up from estimates for the following quantities: 0.00, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95 and 1.00 (Helton et al., 1991).

would be to have several knowledgeable individuals independently estimate a
 distribution and then average these estimates. Bonano et al. (1990) provide
 a detailed discussion on the elicitation and use of expert judgment in
 performance assessment for radioactive waste disposal.

5 The U.S. Nuclear Regulatory Commission's reassessment of the risk from 6 commercial nuclear power plants (NUREG-1150) provides an excellent example of 7 the application of a formal expert review process to develop variable ranges 8 and distributions for use in a Monte Carlo analysis (U.S. NRC, 1990). This 9 study involves probably the most extensive use of a formal expert review 10 process performed to date. The general approach used and the experiences 11 gained in its implementation are summarized in several articles (Ortiz et 12 al., 1991; Hora and Iman, 1989). Further, the actual performance of the 13 expert review process is summarized in a sequence of technical reports 14 (Wheeler et al., 1989; Harper et al., 1990, 1991, and other volumes in 15 prep.). This analysis used several experts to assess independently the range 16 and distribution for each input variable of interest; then, the distributions 17 supplied by the individual experts were averaged, with equal weight being 18 given to each expert. A recent study of seismic hazard curves provides an 19 example of the use of the team approach to estimating distributions (EPRI, 20 1989). 21

A total of 45 imprecisely known variables were selected for sampling in the 23 24 1991 WIPP performance assessment. These variables are listed in Tables 6.0-1, -2, and -3 in Volume 3 of this report. Their selection was 25 based on their perceived importance with respect to the WIPP performance 26 assessment and was guided in part by sensitivity studies performed in 27 conjunction with the 1990 WIPP performance assessment (Helton et al., 1991). 28 The distributions assigned to these variables (see Tables 6.0-1, -2, and -3 29 in Volume 3 of this report) characterize where a fixed, but unknown, value 30 for a variable is likely to be located. The uncertainty in most variables 31 was characterized internally at SNL. However, a panel of experts from 32 outside SNL was used to assess the uncertainty in solubility limits. The 33 deliberations of this panel are described in Volume 3, Chapter 3 of this 34 report. 35

36

37 Generation of Sample

38

22

The generation of a sample from the distributions developed in the first step of a Monte Carlo analysis is now discussed. For this discussion, suppose that the multidimensional variable \mathbf{x} is under consideration and that the distribution function for \mathbf{x} is denoted by $F(\mathbf{x})$. Many sampling procedures have been proposed for use in Monte Carlo studies to generate samples from $F(\mathbf{x})$ (McGrath et al., 1975). The following often-used techniques are
1 discussed below: random sampling, stratified sampling, and Latin hypercube 2 sampling.

In random sampling, the observations

3

4 5 6789

16

21

26

27

28 29

3333333333333

43

$$\mathbf{x}_{i} = [x_{i1}, \dots, x_{in}], i = 1, \dots, m,$$
 (3-45)

where m is the sample size, are selected independently from the distribution
defined by F(X). In random sampling, points from different regions of the
sample space of X occur in direct relationship to the probability of
occurrence of these regions. Thus, a large sample size may be required to
ensure adequate coverage of regions believed to be important but having low
probabilities of occurrence.

A systematic coverage of the sample space (i.e., range) of x is forced in stratified sampling. Specifically, the sample space S of x is partitioned into nS distinct strata S_j , j = 1, ..., nS. In general each stratum has different probability p_j of occurring; that is,

$$p_{i} = \operatorname{prob}(\mathbf{x} \varepsilon S_{i}). \tag{3-46}$$

A random sample of size m_j is then obtained from each strata S_j . That is, the points x_{jk} , $k = 1, \ldots, m_j$, are selected at random from S_j . When all the x_{jk} are brought together, the result is the sequence of observations

$$\mathbf{x}_{i} = [x_{i1}, \dots, x_{in}], i = 1, \dots, m = \sum_{j=1}^{nS} m_{j}.$$
(3-47)

With stratified sampling, it is possible to force the selection of points from regions believed to be important even if these regions have a low probability of occurrence. This sampling technique is sometimes called importance sampling. When only one stratum is used, stratified sampling is the same as random sampling.

Stratified sampling operates to ensure the full coverage of specified regions 44 in the sample space. This idea is carried further in Latin hypercube 45 sampling (McKay et al., 1979) to ensure the full coverage of the range of 46 each variable. Specifically, the range of each variable (i.e., the x_i) is 47 48 divided into m intervals of equal probability and one value is selected at random from each interval. The m values thus obtained for x1 are paired at 49 random with the m values obtained for x_2 . These m pairs are combined in a 50 random manner with the m values of x3 to form m triples. This process is 51 continued until a set of m n-tuples is formed. These n-tuples are of the 52 form 53

$$\mathbf{x}_{i} = [x_{i1}, \dots, x_{in}], i = 1, \dots, m,$$
 (3-48)

7 and constitute the Latin hypercube sample. The individual x_j must be 8 independent for the preceding construction procedure to work; a method for 9 generating Latin hypercube and random samples from correlated variables has 10 been developed by Iman and Conover (1982b) and will be discussed briefly.

For illustration, the results of a random sample, a stratified sample, and a Latin hypercube sample are shown in Figure 3-18. A sample of size 10 from two uniformly distributed variables is used. Ten strata are used for the stratified sample and one value is taken from each strata. The selection of strata in a stratified sample is not unique and is often made to assure that certain low probability, but high interest, subranges of the independent variables are included in an analysis.

At the end of their comparison of sampling techniques, McKay et al. (1979) 20 conclude that Latin hypercube sampling has a number of desirable properties 21 and recommend its consideration for use in Monte Carlo studies. These 22 properties include (1) full stratification across the range of each variable. 23 (2) relatively small sample sizes, (3) direct estimation of means, variances, 24 and distribution functions, and (4) the availability of a variety of 25 techniques for sensitivity analysis. Another desirable property of Latin 26 hypercube sampling is that it is possible to determine the effects of 27 different distributions for the input variables on the estimated distribution 28 for an output variable without rerunning the model (Iman and Conover, 29 1980a,b). As a result of these properties, Latin hypercube sampling has 30 become a widely used sampling technique. 31

33 Control of correlation within a sample used in a Monte Carlo analysis can be 34 very important. If two or more variables are correlated, then it is 35 necessary that the appropriate correlation structure be incorporated into the 36 sample if meaningful results are to be obtained in subsequent uncertainty/ 37 sensitivity studies. On the other hand, it is equally important that 38 Variables not appear to be correlated when they are really independent. 39

It is often difficult to induce a desired correlation structure on a sample. Indeed, most multivariate distributions are incompatible with the majority of correlation patterns that might be proposed for them. Thus, it is fairly common to encounter analysis situations where the proposed variable distributions and the suggested correlations between the variables are inconsistent; that is, it is not possible to have both the desired variable distributions and the requested correlations between the variables.

123456

11

19

Figure 3-18. Illustration of Random Sampling, Stratified Sampling, and Latin Hypercube Sampling for a Sample of Size 10 from Two Uniformly Distributed Variables.

Chapter 3: Performance-Assessment Overview

In response to this situation, Iman and Conover (1982b) have proposed a 1 restricted pairing technique for controlling the correlation structure in 2 random and Latin hypercube samples that is based on rank correlation (i.e., 3 on rank-transformed variables) rather than sample correlation (i.e., on the 4 original raw data). With their technique, it is possible to induce an 5 approximation to any desired rank-correlation structure onto the sample. 6 This technique has a number of desirable properties: (1) It is distribution 7 free. That is, it may be used with equal facility on all types of input 8 distribution functions. (2) It is simple. No unusual mathematical 9 techniques are required to implement the method. (3) It can be applied to 10 any sampling scheme for which correlated input variables can logically be 11 considered, while preserving the intent of the sampling scheme. That is, the 12 same numbers originally selected as input values are retained; only their 13 14 pairing is affected to achieve the desired rank correlations. This means that in Latin hypercube sampling the integrity of the intervals is 15 maintained. If some other structure is used for selection of values, that 16 same structure is retained. (4) The marginal distributions remain intact. 17 18

For many, if not most, uncertainty/sensitivity analysis problems, rankcorrelation is probably a more natural measure of congruent variable behavior than is the more traditional sample correlation. What is known in most situations is some idea of the extent to which variables tend to move up or down together; more detailed assessments of variable linkage are usually not available. It is precisely this level of knowledge that rank correlation captures.

27 The exact mathematical procedure used in the Iman/Conover technique to induce 28 a desired rank-correlation structure is described in the original article 29 (Iman and Conover, 1982b) and also in Doctor (1989). The impact of various 30 rank-correlation assumptions is illustrated in Iman and Davenport (1982).

32 The WIPP performance assessment uses stratified sampling and Latin hypercube sampling. The decomposition of the sample space S shown in Equation 3-11 33 into scenarios S_1 as indicated in Equation 3-1, and shown in more detail in 34 Equations 3-21 through 3-27, is a form of stratified sampling. The scenario 35 probabilities pS; in Equation 3-1 are the strata probabilities. Thus, 36 stratified sampling is being used to incorporate stochastic, or Type A, 37 uncertainty into the WIPP performance assessment. Stratified sampling forces 38 the inclusion of low probability, but possibly high consequence, scenarios. 39 40

Latin hypercube sampling is being used to incorporate subjective, or Type B
uncertainty, into the WIPP performance assessment. Specifically, a Latin
hypercube sample of size 60 was generated from the 45 variables in
Tables 6.0-1, -2, and -3 in Volume 3 of this report. Further, the restricted

26

pairing technique of Iman and Conover (1982b) was used to prevent spurious
correlations within the sample. The resultant sample is listed in Volume 2,
Appendix A of this report.

5 Propagation of Sample Through Analysis

4

6

12

20

32

7 The next step is the propagation of the sample through the analysis.
8 Conceptually, this step is quite simple. Each element of the sample is
9 supplied to the model as input, and the corresponding model predictions are
10 saved for use in later uncertainty and sensitivity studies. This creates a
11 sequence of results of the form

$$y_i = f(x_{i1}, x_{i2}, \dots, x_{in}) = f(x_i), i = 1, 2, \dots, m,$$
 (3-49)

where n is the number of input (i.e., sampled) variables and m is the sample size. Typically, there are many model predictions of interest, in which case y_i would be a vector rather than a single number.

21 In its simplest form, this step involves little more than putting a "DO loop" around the model within which (1) each sample element is read and supplied to 22 23 the model as input, (2) the model is evaluated, and (3) the results of each model evaluation are written to a file that is saved after all model 24 evaluations have been completed. In practice, this step can be considerably 25 more complicated than this. For example, a sampled variable may not be in 26 exactly the form the model takes as input, or model predictions may not be in 27 the form desired for subsequent uncertainty and sensitivity analysis. 28 In such cases, a preprocessor and a postprocessor can be added to the loop 29 immediately before and immediately after model evaluation to perform the 30 necessary transformations. 31

A more complex situation sometimes arises when the model under consideration 33 is actually a sequence of individual models, each of which supplies input to 34 the next model in the sequence. When each model produces many distinct cases 35 for analysis by the next model, it is sometimes necessary to use a clustering 36 procedure at the interfaces to control the total number of cases that are 37 propagated through the entire analysis. Otherwise, the number of individual 38 cases can increase until the overall analysis becomes intractable due to 39 computational cost. As an example, the NUREG-1150 analyses (U.S. NRC, 1990) 40 found it necessary to group results at model interfaces to make the Monte 41 Carlo calculations being used to propagate uncertainties practical on a 42 computational basis (Helton et al., 1988; draft of NUREG/CR-4551, U.S. NRC). 43 44

45 The performance of sampling-based uncertainty/sensitivity studies is46 sometimes facilitated by the use of a special code package to control the

overall analysis (Campbell and Longsine, 1990; Holmes, 1987). The Compliance 1 Assessment Methodology Controller (CAMCON) has been developed to facilitate 2 the performance and archival storage of the many complex calculations that 3 are required in the WIPP performance assessment (Rechard, 1989; Rechard et 4 al., 1989). This methodology incorporates data bases, sampling procedures, 5 6 model evaluations, data storage, uncertainty and sensitivity analysis procedures, and plotting capabilities into a unified structure. The 7 structure and operation of CAMCON is illustrated in Figure 3-19. 8 9

Additional information on CAMCON and its use in the 1991 WIPP performanceassessment is given in Chapter 5 of this volume.

13 Uncertainty Analysis

Once a sample has been generated and propagated through a model, uncertainty analysis is straightforward. If random or Latin hypercube sampling is being used, then the expected value and variance for the output variable y can be estimated by

$$E(y) \doteq \sum_{i=1}^{m} y_i / m$$
(3-50)

and

12

14

19

0123456789012345678

$$V(y) \doteq \sum_{i=1}^{m} \left[y_i - E(y) \right]^2 / (m - 1), \qquad (3-51)$$

39 respectively. Both estimates are unbiased for random sampling. The estimated expected value is also unbiased for Latin hypercube sampling, but 40 the estimated variance is known to contain a bias. Empirical studies suggest 41 that this bias is small (McKay et al., 1979; Iman and Helton, 1985a). When 42 43 stratified sampling is used, the factors 1/m and 1/(m-1) in Equations 3-50 and 3-51 must be replaced by weights w_i , $i = 1, \ldots, m$, that reflect the 44 probability and number of observations associated with each stratum. 45 46

The distributions for the output variables considered in performance 47 assessment are often highly skewed. Due to the disproportionate impact of 48 large but unlikely values, the estimates for the means and variances 49 50 associated with such distributions tend to be unstable. Here, unstable means that there is a large amount of variation between estimates obtained from 51 independently generated samples. Further, when skewed distributions are 52 under consideration, means and variances give a poor characterization for 53 distribution shape. Basically, means and variances do not contain enough 54 information to characterize highly skewed distributions adequately. 55 56

Figure 3-19. Overview of CAMCON.

An estimated distribution function gives a better characterization of the
uncertainty in an output variable than a mean and a variance. The

distribution function F for the output variable y appearing in Equation 3-49
can be estimated from the relationship

- 5 67 89 10 112
- $F(y) = \begin{cases} 0 & \text{if } y < y_1 \\ \text{i/m if } y_1 \le y < y_{i+1}, \ i = 1, 2, \dots, m-1 \\ 1 & \text{if } y_n \le y, \end{cases}$ (3-52)

where it is assumed that the y_i have been ordered so that $y_i \leq y_{i+1}$. This 13 creates a plot that displays all the information contained in Equation 3-49 14 about the uncertainty in y. An example estimated distribution function is 15 shown in Figure 3-20. The abscissa displays the values for the output 16 variable, and the ordinate displays cumulative probability, which is the 17 probability of obtaining a value equal to or less than a value on the 18 abscissa. The step height is equal to the probability associated with the 19 individual sample elements. If stratified sampling was being used, each 20 observation would be assigned a weight that equalled the probability of the 21 stratum from which it was obtained divided by the number of observations 22 taken from that stratum. 23

24

Random sampling, stratified sampling, and Latin hypercube sampling all yield unbiased estimates for distribution functions for predicted variables. When the restricted pairing technique developed by Iman and Conover (1982b) is used to control correlations within the sample, a small bias may be introduced. However, the amount of this bias does not appear to be significant (Iman and Conover, 1982b; Iman and Helton, 1985a).

An alternate, and equivalent, way to display uncertainty is with a 32 complementary cumulative distribution function (CCDF), which is simply 1 33 minus the cumulative distribution function (cdf). A common practice is to 34 35 use CCDFs to display stochastic (i.e., Type A) uncertainty and cdf's to display subjective (i.e., Type B) uncertainty. CCDFs are often used to 36 display the results of performance assessments because they answer the 37 question "How likely is it to be this bad or worse?" Also, it is easier to 38 read the probabilities for unlikely but high consequence events from CCDFs 39 than from cdf's. The construction of a CCDF is described in conjunction with 40 Figure 3-1. As discussed in Section 3.1.4-Risk and the EPA Limits, the EPA 41 42 release limits can be formulated in terms of CCDFs. When both stochastic and subjective uncertainty are present in an analysis, the stochastic uncertainty 43 44 can be represented with a CCDF, and the subjective uncertainty can be represented with a family or distribution of CCDFs. Examples of 45 representations of this type are given in Figures 3-4 and 3-9. 46 47

TRI-6342-664-1

Figure 3-20. Example of an Estimated Distribution Function (Helton et al., 1991).

1 A cumulative distribution function readily displays the quantiles of a distribution. However, a distribution's mode (i.e., the subrange of a 2 variable in which its probability is most concentrated) is more difficult to 3 identify visually, although it can be done. Further, the mean is not 4 apparent at all. Figure 3-21 shows an alternate uncertainty display that 5 incorporates a distribution function, a density function, and a mean into a 6 single figure (Ibrekk and Morgan, 1987). One advantage of the estimated 7 distribution function is that it displays the results of every observation in 8 an unaltered form. In contrast, the shape of the density function can be 9 sensitive to the gridding selected for use unless a smoothing algorithm is 10 used. 11

12

13 As illustrated in Figure 3-22, box plots (Iman and Conover, 1983) provide an alternate way to display the information in a distribution function. 14 The endpoints of the boxes in Figure 3-22 are formed by the lower and upper 15 quartiles of the data, that is, x.25 and x.75. The vertical line within the 16 box represents the median, x 50. The sample mean is identified by the large 17 dot. The bar on the right of the box extends to the minimum of 18 19 $x_{75} + 1.5(x_{75} - x_{25})$ and the maximum observation. In a similar manner, the bar on the left of the box extends to the maximum of 20 x 25 - 1.5(x 75 - x 25) and the minimum observation. The observations 21 falling outside of these bars are shown with x's. In symmetric 22 distributions, these values would be considered as outliers. Box plots 23 contain the same information as a distribution function, although in a 24 somewhat reduced form. Further, their flattened shape makes it convenient to 25 present and compare different distributions in a single figure. 26 27

28 Concern is often expressed with respect to the accuracy of the estimates for distribution functions obtained in Monte Carlo analyses. When random 29 30 sampling is used, Kolmogorov-Smirnov bounds can be used to place confidence 31 intervals about estimated distribution functions (Conover, 1980). Other techniques also exist for use with random sampling (Woo, 1991; Cheng and 32 Iles, 1983). When Latin hypercube sampling is used, replicated sampling can 33 be used to place confidence intervals about estimated distribution functions 34 (Iman, 1982; Iman and Helton, 1991). Use of a technique called fast 35 probability integration provides an alternative to Monte Carlo procedures for 36 the calculation of the tails of distributions (Wu et al., 1990; Wu, 1987; Wu 37 and Wirsching, 1987; Chen and Lind, 1983; Rackwitz and Fiessler, 1978). 38 39 However, this technique does not appear to have been applied to a problem as complex as estimating the uncertainty in the results of a performance 40 41 assessment. 42

43 The capability to generate means, variances, CCDFs, cdf's, and box plots has44 been incorporated into the CAMCON structure.

TRI-6342-736-0

Figure 3-21. Example Uncertainty Display Including Estimated Distribution Function, Density Function, and Mean (plotted from results contained in Breeding et al., 1990).

TRI-6342-801-0

Figure 3-22. Example of Box Plots (hypothetical results).

1 Sensitivity Analysis

2

3 The final step in a Monte Carlo study is sensitivity analysis. The generation of scatterplots is undoubtedly the simplest sensitivity analysis 4 technique. This approach consists of generating plots of the points 5 (x_{ij}, y_i) , i = 1, ..., m, for each input variable x_i . An example of a 6 scatterplot showing a well-defined relationship between an input and an 7 output variable is shown in Figure 3-23. In contrast, the individual points 8 will be randomly spread over the plot when there is no relationship between 9 the input and the output variable. 10

11

24

28

20012034

41

43

44567890123

Sometimes scatterplots alone will completely reveal the relationships between 12 model input and model output. This is often the case when only one or two 13 inputs completely dominate the outcome of the analysis. Further, 14 scatterplots often reveal nonlinear relationships, thresholds, and variable 15 interactions that facilitate the understanding of model behavior and the 16 planning of more sophisticated sensitivity studies. Iman and Helton (1988) 17 provide an example where the examination of scatterplots revealed a rather 18 complex pattern of variable interactions. The examination of scatterplots is 19 a good starting point in any Monte Carlo sensitivity study. The examination 20 of such plots when Latin hypercube sampling is used can be particularly 21 revealing due to the full stratification over the range of each independent 22 variable. 23

25 Sensitivity analyses performed as part of Monte Carlo studies are often based 26 on regression analysis. In this approach, least squares procedures are used 27 to construct a model of the form

$$y = b_0 + \sum_{j} b_j x_j$$
(3-53)

from the mapping between analysis inputs and analysis results shown in Equation 3-49, where the x_j are the input variables under consideration and the b_j are coefficients that must be determined. The coefficients b_j and other aspects of the construction of the regression model shown in Equation 3-53 can be used to indicate the importance of the individual variables x_j with respect to the uncertainty in y.

42 The preceding regression model can be algebraically reformulated as

$$(y - \bar{y})/\hat{s} = \sum_{i} (b_{j}\hat{s}_{j}/\hat{s}) (x_{j} - \bar{x}_{j})/\hat{s}_{j},$$
 (3-54)

where

TRI-6342-1158-0

Figure 3-23. Example Scatterplot (adapted from Helton et al., 1989).

3.5 Uncertainty and Sensitivity Analysis 3.5.2 Monte Carlo Analysis

$$\bar{y} = \sum_{i} y_{i}/m, \qquad \hat{s} = \left[\sum_{i} (y_{i} - \bar{y})^{2}/(m - 1)\right]^{1/2},$$
$$\bar{x}_{j} = \sum_{i} x_{ij}/m, \qquad \hat{s}_{j} = \left[\sum_{i} (x_{ij} - \bar{x}_{j})^{2}/(m - 1)\right]^{1/2}$$

The coefficients $\hat{b}_j \hat{s_j}$ /s appearing in Equation 3-54 are called standardized regression coefficients. When the x_j are independent, the absolute value of the standardized regression coefficients can be used to provide a measure of variable importance. Specifically, the coefficients provide a measure of importance based on the effect of moving each variable away from its expected value by a fixed fraction of its standard deviation while retaining all other variables at their expected values. Calculating standardized regression coefficients is equivalent to performing the regression analysis with the input and output variables normalized to mean zero and standard deviation one.

The following identity holds for the least square regression model shown in Equation 3-53 and plays an important role is assessing the adequacy of such models:

$$\sum_{i} (y_{i} - \overline{y})^{2} = \sum_{i} (\hat{y}_{i} - \overline{y})^{2} + \sum_{i} (y_{i} - \hat{y}_{i})^{2} , \qquad (3-55)$$

where $\hat{y_i}$ denotes the estimate of y_i obtained from the regression model and \bar{y} is the mean of the y_i . Since the summation $\Sigma_i (y_i - \hat{y_i})^2$ provides a measure of variability about the regression line, the ratio

$$R^{2} = \sum_{i} (y_{i} - y_{i})^{2} / \sum_{i} (y_{i} - y_{i})^{2}$$
(3-56)

provides a measure of the extent to which the regression model can match the observed data. Specifically, when the variation about the regression line is small (i.e., when $\Sigma_i(y_i - \hat{y}_i)^2$ is small relative to $\Sigma_i(\hat{y}_i - \bar{y}_i)^2$), then the corresponding R² value is close to 1, which indicates that the regression model is accounting for most of the variability in the y_i . Conversely, an R² value close to zero indicates that the regression model is not very successful in accounting for the variability in the y_i . The designation coefficient of multiple determination is sometimes used for R² values.

Regression analyses often perform poorly when the relationships between theinput and output variables are nonlinear. This is not surprising since

regression analysis is based on developing linear relationships between 1 variables. The problems associated with poor linear fits to nonlinear data 2 3 can often be avoided with the technique of rank regression (Iman and Conover, 1979). Rank regression is a simple concept: data are replaced with their 4 corresponding ranks and then the usual regression procedures are performed on 5 these ranks. Specifically, the smallest value of each variable is assigned 6 the rank 1, the next largest value is assigned the rank 2, and so on up to 7 the largest value, which is assigned the rank m, where m denotes the number 8 9 of observations. The analysis is then performed with these ranks being used as the values for the variables in the regression model. The logarithmic and 10 other transformations can also be used to linearize the relationships 11 betweeen the variables in a regression analysis. 12

The ideas of correlation and partial correlation are useful concepts that often appear in sampling-based sensitivity studies. For a sequence of observations (x_i, y_i) , i = 1, ..., m, the (sample) correlation r_{xy} between x and y is defined by

$$r_{xy} = \frac{\sum_{i=1}^{m} (x_i - \bar{x})(y_i - \bar{y})}{\left[\sum_{i=1}^{m} (x_i - \bar{x})^2\right]^{1/2} \left[\sum_{i=1}^{m} (y_i - \bar{y})^2\right]^{1/2}},$$
(3-57)

where \overline{x} and \overline{y} are defined in conjunction with Equation 3-54. The correlation coefficient r_{xy} provides a measure of the linear relationship between x and y.

The nature of the correlation coefficient $\ensuremath{r_{\mathrm{xy}}}$ is most readily understood by considering the regression

$$y = b_0 + b_1 x.$$
 (3-58)

The definition of r_{XY} in Equation 3-57 is equivalent to the definition

$$r_{xy} = sign(b_1)(R^2)^{1/2},$$
 (3-59)

where sign(b₁) = 1 if $b_1 \ge 0$, sign(b₁) = -1 if $b_1 < 0$, and R^2 is the coefficient of determination that results from regressing y on x (Helton et al., 1991). With respect to interpretation, the correlation coefficient r_{XY} provides a measure of the linear relationship between x and y, and the regression coefficient b_1 characterizes the effect that a unit change in x will have on y.

13

18

122222200

31 32

33 34

35

36

37 38

340123 444 445

46

When more than one input variable is under consideration, partial correlation
 coefficients can be used to provide a measure of the linear relationships
 between the output variable y and the individual input variables. The
 partial correlation coefficient between y and an individual variable x_p is
 obtained from the use of a sequence of regression models. First, the
 following two regression models are constructed:

7 8

90 10 11234

28

$$\hat{\mathbf{y}} = \mathbf{b}_{0} + \boldsymbol{\Sigma} \quad \mathbf{b}_{j \neq p} \quad \mathbf{j}_{j \neq p} \quad \mathbf{and} \quad \hat{\mathbf{x}}_{p} = \mathbf{c}_{0} + \boldsymbol{\Sigma} \quad \mathbf{c}_{j} \mathbf{x}_{j}.$$
(3-60)

Then, the results of the two preceding regressions are used to define the 15 19 new variables y - \hat{y} and x_p - \hat{x}_p . By definition, the partial correlation coefficient between y and $x_{\rm p}$ is the correlation coefficient between y - \hat{y} 18 ₹q and x_p - \hat{x}_p . Thus, the partial correlation coefficient provides a measure of the linear relationship between y and x_p with the linear effects of the other 22 variables removed. The preceding provides a rather intuitive development of 23 what a partial correlation coefficient is. A formal development of partial 24 correlation coefficients and the relationships between partial correlation 25 coefficients and standardized regression coefficients is provided by 26 Iman et al. (1985). 27

The partial correlation coefficient provides a measure of the strength of the 29 linear relationship between two variables after a correction has been made 30 for the linear effects of the other variables in the analysis, and the 31 standardized regression coefficient measures the effect on the dependent 32 variable that results from perturbing an independent variable by a fixed 33 fraction of its standard deviation. Thus, partial correlation coefficients 34 and standardized regression coefficients provide related, but not identical, 35 36 measures of variable importance. In particular, the partial correlation coefficient provides a measure of variable importance that tends to exclude 37 the effects of other variables, the assumed distribution for the particular 38 input variable under consideration, and the magnitude of the impact of an 39 input variable on an output variable. In contrast, the value for a 40 standardized regression coefficient is significantly influenced by both the 41 distribution assigned to an input variable and the impact that this variable 42 43 has on an output variable. However, when the input variables in an analysis are uncorrelated, an ordering of variable importance based on either the 44 absolute value of standardized regression coefficients or the absolute value 45 of partial correlation coefficients will yield the same ranking of variable 46 importance, even though the standardized regression coefficients and partial 47 correlation coefficients for individual variables may be quite different 48 (Iman et al., 1985). 49 50

Many output variables are functions of time or location. A useful way to 1 present sensitivity results for such variables is with plots of partial 2 correlation coefficients or standardized regression coefficients as functions 3 of time or location. An example of such a presentation is given in Δ Figure 3-24. The upper set of curves in Figure 3-24 contains standardized 5 regression coefficients (SRCs) and partial correlation coefficients (PCCs) 6 plotted as a function of time for raw (i.e., untransformed) data. The lower 7 set contains similar results but for analyses performed with rank-transformed 8 data. As can be seen from the curves in Figure 3-24, the standardized 9 regression coefficients and partial correlation coefficients display similar 10 patterns of behavior. Further, the analysis with rank-transformed data 11 reveals a much stronger relationship between the two variables than does the 12 analysis with raw data. 13

Plots of the form shown in Figure 3-24 can be very useful in displaying the 15 results of sensitivity studies for families of CCDFs that are used to display 16 the uncertainty in the outcome of a performance assessment. For example, 17 standardized regression coefficients or partial correlation coefficients can 18 be used to determine the importance of individual input variables with 19 respect to the exceedance probabilities for individual consequence values 20 appearing on the abscissa in Figure 3-4. The values of these coefficients 21 can then be plotted above the corresponding consequence values. Figure 3-25 22 provides an example of the results of such an analysis. As shown in this 23 figure, variables 1, 3, and 5 are important with respect to the exceedance 24 probabilities for smaller values of the consequence and then decrease in 25 importance for larger consequence values. The opposite pattern of behavior 26 is shown by variables 2 and 4. 27

28

14

When many input variables are involved, the direct construction of a 29 regression model as shown in Equation 3-53 containing all input variables may 30 not be the best approach for several reasons. First, the large number of 31 variables makes the regression model tedious to examine and unwieldy to 32 display. Second, it is often the case that only a relatively small number of 33 input variables have an impact on the output variable. As a result, there is 34 no reason to include the remaining variables in the regression model. Third, 35 36 correlated variables result in unstable regression coefficients (i.e., coefficients whose values are sensitive to the specific variables included in 37 the regression model). When this occurs, the regression coefficients in a 38 model containing all the input variables can give a misleading representation 39 of variable importance. Fourth, an overfitting of the data can result when 40 variables are arbitrarily forced into the regression model. This phenomenon 41 occurs when the regression model attempts to match the predictions associated 42 43 with individual sample elements rather than match the trends shown by the sample elements collectively. 44

Figure 3-24. Example of Partial Correlation Coefficients (PCCs) and Standardized Regression Coefficients (SRCs) Plotted as a Function of Time for Raw and Rank-Transformed Data (adapted from Helton et al., 1989).

TRI-6342-735-0

Figure 3-25. Example Sensitivity Analysis for the CCDFs in Figure 3-4 (after Breeding et al., 1990).

Stepwise regression analysis (Draper and Smith, 1981; Neter and Wasserman, 1 1974) provides an alternative to constructing a regression model containing 2 all the input variables. With this approach, a sequence of regression models 3 is constructed. The first regression model contains the single input 4 variable that has the largest impact on the output variable. The second 5 regression model contains the two input variables that have the largest 6 impact on the output variable: the input variable from the first step plus 7 whichever of the remaining variables has the largest impact on the variation 8 not accounted for by the first variable. The third regression model contains 9 the three input variables that have the largest impact on the output 10 variable: the two input variables from the second step plus whichever of the 11 remaining variables has the largest impact on the variation not accounted for 12 by the first two variables. Additional models in the sequence are defined in 13 the same manner until the point is reached at which further models are unable 14 to meaningfully increase the amount of the variation in the output variable 15 that can be accounted for. Further, at each step of the process, the 16 possibility exists for an already selected variable to be dropped out if it 17 no longer has a significant impact on the uncertainty in the output variable; 18 this only occurs when correlations exist between the output variables. 19

21 Several aspects of stepwise regression analysis provide insights on the importance of the individual variables. First, the order in which the 22 variables are selected in the stepwise procedure provides an indication of 23 their importance, with the most important variable being selected first, the 24 next most important variable being selected second, and so on. Second, the 25 26 \mathbb{R}^2 values (see Equation 3-69 in Helton et al., 1991) at successive steps of the analysis also provide a measure of variable importance by indicating how 27 much of the variation in the dependent variable can be accounted for by all 28 variables selected through each step. When the input variables are 29 uncorrelated, the differences in the \mathbb{R}^2 values for the regression models 30 constructed at successive steps equal the fraction of the total variability 31 in the output variable that can be accounted for by the individual input 32 variables being added at each step (see Equation 3-75 in Helton et al., 33 Third, the absolute values of the standardized regression 1991). 34 coefficients in the individual regression models provide an indication of 35 variable importance. Further, the sign of a standardized regression 36 coefficient indicates whether the input and output variables tend to increase 37 and decrease together (a positive coefficient) or tend to move in opposite 38 directions (a negative coefficient). 39

40

20

A common but important situation occurs when input variables are
uncorrelated. In this case, the orderings of variable importance based on
order of entry into the regression model, size of the R² values attributable
to the individual variables, the absolute values of the standardized
regression coefficients, and the absolute values of the partial correlation

coefficients are the same. In situations where the input variables are 1 believed to be uncorrelated, one of the important applications of the 2 previously discussed restricted pairing technique of Iman and Conover (1982b) 3 is to assure that the correlations between variables within a Latin hypercube 4 or random sample are indeed close to zero. When variables are correlated, 5 care must be used in the interpretation of the results of a regression 6 analysis since the regression coefficients can change in ways that are 7 basically unrelated to the importance of the individual variables as 8 correlated variables are added to and deleted from the regression model. 9 10

As models involving more variables are developed in a stepwise regression 11 12 analysis, the possibility exists of overfitting the data. Overfitting occurs when the regression model in essence "chases" the individual observations 13 rather than following an overall pattern in the data. For example, it is 14 possible to obtain a good fit on a set of points by using a polynomial of 15 high degree. However, in doing so, it is possible to overfit the data and 16 17 produce a spurious model that makes poor predictions.

To protect against overfit, the Predicted Error Sum of Squares (PRESS) 19 criterion can be used to determine the adequacy of a regression model (Allen, 20 1971). For a regression model containing k variables and constructed from m 21 observations, PRESS is computed in the following manner. For i = 1, 2, ..., m, 22 the ith observation is deleted from the original set of m observations and 23 then a regression model containing the original k variables is constructed 24 from the remaining m - 1 observations. With this new regression model, the 25 29 value $\hat{y}_k(i)$ is estimated for the deleted observation y_i . Then, PRESS is defined from the preceding predictions and the m original observations by 28 29

$$PRESS_{k} = \sum_{i=1}^{m} \left(y_{i} - y_{k}^{\prime}(i) \right)^{2}.$$
(3-61)

30120345678 The regression model having the smallest PRESS value is preferred when 39 choosing between two competing models, as this is an indication of how well the basic pattern of the data has been fit versus an overfit or an underfit. 40 41

Monte Carlo analyses generate a mapping from analysis inputs to analysis 42 results. Once this mapping is generated and saved, it can be explored with a 43 wide variety of techniques. This section has discussed techniques based on 44 45 scatterplots, regression, correlation, partial correlation, and stepwise regression. The capability to generate sensitivity analysis results with 46 these techniques has been incorporated into the CAMCON structure. 47 48

Acknowledgment: Substantial portions of Chapter 3 are taken from Chapters 1, 49 2 and 6 of the report Sensitivity Analysis Techniques and Results for 50

Chapter 3-Synopsis		
Conceptual Model for WIPP Performance	Risk	
Assessment	Risk is represented by a set of ordered triples.	
	The first element in each triple describes things that may happen to the disposal system in the future (i.e., the scenarios).	
	The second element in each triple describes how likely these things are to happen (i.e., scenario probability).	
	The third element in each triple describe the consequences of the occurrences associated with the first element (i.e., EPA normalized releases of radionuclides to the accessible environment).	
	Complementary cumulative distribution functions (CCDFs) are used to display the information contained in the second and thir elements of the ordered triple (scenario probability and consequence).	
	Uncertainty in Risk	
	Uncertainty in the results of the risk analysis may result from	
	the completeness of the occurrences considered,	
	the aggregation of the occurrences into scenarios for analysis,	
	the selection of models and imprecisely known parameters for use in the models,	
	stochastic variation in future occurrences.	

1		Characterization of Uncertainty in Risk
2		We can be in the second bin of the second
3		Uncertainty resulting from imprecisely known
4 E		CODE
5 6		can be displayed by showing the entire family
7		or by showing the mean and selected quantile
γ Ω		or by showing the mean and serected quantite
10		
11		Risk and the EPA Limits
12		
13		CCDFs will be compared to the limits placed
14		on cumulative normalized releases of
15		radionuclides to the accessible environment
16		by the Containment Requirements of the
17		Standard.
18		
20		Probability and Risk
21		
22		The sample space for the WIPP performance
23		assessment consists of all possible 10,000-yr
24		histories of the WIPP following
25		decommissioning.
26		The infinite number of pergible 10,000 vr
21		historias are grouped into subsets of the
20		sample space (scenarios) for probability
30		assignment and consequence analysis
31		assignmente and consequence analysis.
32		There is no inherently "correct" grouping of
33		the time histories into subsets. The use of
34		more scenarios results in finer resolution in
35		the CCDF (more steps in a single curve) but
36		may also result in a larger computational
37		burden.
39		
40	Definition of Scenarios	Summary Scenarios
41		
42		The first stage in scenario definition for
43		the WIPP has five steps:
44		
45		compiling or adopting a comprehensive list
46		of events and processes that could
47		potentially affect the disposal system
48		during the next 10,000 years,
49		
50		classifying the events and processes,
51		
52		screening the events and processes to
53		identify those that can be eliminated from
54		consideration,
55		

1 2 3 4	developing scenarios by combining the events and processes that remain after screening,
5 6	screening the scenarios to identify those that can be eliminated from consideration.
/ 8 9 0 8	The first step corresponds to defining the sample space for the analysis. The remaining steps define the summary scenarios.
3	Computational Scenarios
5 16 17	To increase resolution in the CCDF, the summary scenarios are further decomposed into computational scenarios.
18 19 20 21 22 23 95	For 1991, computational scenarios are distinguished by the time and number of intrusions, whether or not a brine reservoir is encountered below the waste, and the activity level of waste intersected.
Determination of Scenario Probabilities	Probabilities for Summary Scenarios
28 29 24	Probabilities for summary scenarios were reported in the 1990 Preliminary Comparison.
32 32	Probabilities for Computational Scenarios
33 34 35 36 37 38 39	Probabilities for the 1991 computational scenarios are based on the assumption that intrusion follows a Poisson process (i.e., boreholes are random in time and space) with a rate constant, λ , that is sampled as an uncertain parameter in the 1991 calculations.
40 42 Calculation of Scenario 43 Consequences	Overview of Models
44 45	The models used in the WIPP performance assessment exist at four levels:
40 47 48	conceptual models that characterize our understanding of the system,
50 51 52	mathematical models that represent the processes of the conceptual model,
52 53 54 55 56	numerical models that provide approximations to the solutions of the selected mathematical models,

1 2		computer models that implement the numerical models.
8 5 6		Organization of Calculations for Performance Assessment
7 8 9 10 11 13		Calculations are organized so that results for computational scenarios can be constructed from a minimum number of calculations for each time interval.
1 5 16	Uncertainty and Sensitivity Analyses	Available Techniques
17 18 19 20 21		Available techniques for uncertainty and sensitivity analysis include differential analysis, Monte Carlo analysis, response surface methodology, and Fourier amplitude sensitivity tests.
22 23 24		The WIPP performance assessment uses Monte Carlo analysis techniques because
25 26 27 28 29		they are appropriate for analysis problems in which large uncertainties are associated with the independent variables,
30 31 32		they provide direct estimates for distribution functions,
33 34 35		they do not require sophisticated techniques beyond those required for the analysis of the problem of interest,
30 37 38 39		they can be used to propagate uncertainties through a sequence of separate models.
40 42 42		Monte Carlo Analysis
43 44 45		A Monte Carlo analysis involves five steps:
46 47 48		the selection of variable ranges and distributions,
49 50 51		the generation of a sample from the parameter value distributions,
52 53 54		the propagation of the sample through the analysis,
55 56 57 58		analysis of the uncertainty in results caused by variability in the sampled parameters,

1 2	sensitivity analyses to identify those parameters for which variability in the
3	sampled value had the greatest effect on
4	the results.
5	

1 2

4. SCENARIOS FOR COMPLIANCE ASSESSMENT

3 4

7

Robert V. Guzowski¹ and Jon C. Helton²

5 [NOTE: The text of Chapter 4 is followed by a synopsis that summarizes
6 essential information, beginning on page 4-85.]

4.1 Definition of Scenarios

9 10 11

8

4.1.1 CONCEPTUAL BASIS FOR SCENARIO DEVELOPMENT

As shown in Equation 3-1 and discussed in Chapter 3 of this volume, the 12 results of the WIPP performance assessment can be represented by a set of 13 ordered triples, where the first element in each triple is a set S_i of 14 similar occurrences (i.e., a scenario), the second element is the probability 15 pS_i for S_i , and the third element is a vector \mathbf{cS}_i of consequences associated 16 with S_i . The S_i are obtained by subdividing a set S that contains all 17 possible occurrences during the period of regulatory concern at the WIPP. 18 As discussed in conjunction with Equation 3-11, the set S (i.e., the sample 19 space) consists of all possible 10,000-year time histories at the WIPP 20 beginning at the decommissioning of the facility. 21

The first stage in scenario development is construction of the set S. Once S23 24 is constructed, the scenarios S_i can be obtained by subdividing S. The set S is very large; indeed, S has infinitely many elements. Thus, scenario 25 development must proceed carefully so that excessive resources are not 26 expended on the development and subsequent analysis of scenarios whose impact 27 on the CCDF used for comparison with the EPA release limits can be reasonably 28 anticipated due to low probability, low consequences, or regulatory 29 exclusion. 30

31

22

The following four subsets of S (i.e., scenarios) provide a natural starting 32 point for scenario development: S_{B} , called the base-case subset, which 33 consists of all elements in S that fall within the bounds of what can be 34 reasonably anticipated to occur at the WIPP over 10,000 years; S_{M} , called a 35 minimal disruption subset, which consists of all elements in S that involve 36 disruptions that result in no significant perturbation to the consequences 37 associated with the corresponding element in the base-case subset $S_{\rm B}$; $S_{\rm F}$, a 38 regulatory exclusion subset consisting of all elements in S that are excluded 39 from consideration by regulatory directive (e.g., human intrusions more 40

 ⁴² _______
 44 1 Science Applications International Corporation, Albuquerque, New Mexico

^{45 &}lt;sup>2</sup> Arizona State University, Tempe, Arizona

severe than the drilling of exploratory boreholes); and S_L , called a high 1 consequence, low probability subset, which consists of elements of S not 2 contained in S_B , S_M , or S_E that have the potential to result in large 3 consequences (e.g., normalized releases to the accessible environment greater 4 5 than 10) but whose collective probability is small (e.g., the probability of $S_{\rm L}$ is less than 0.0001). Everything that remains in S after the 6 identification of $S_{\rm B},~S_{\rm M},~S_{\rm E},$ and $S_{\rm L}$ now becomes a subset that can be 7 designated S_0 , where the subscript 0 was selected to represent the word 8 "Other". In set notation, 9

15

 $S_0 = (S_B \cup S_M \cup S_E \cup S_L)^c, \qquad (4-1)$

13 where the superscript c is used to designate the complement of a set. This 14 produces a decomposition of S into five subsets.

A conceptual representation for this decomposition is shown in Figure 4-1. 16 Due to regulatory guidance, SE can be excluded from consideration in 17 compliance assessment, which is equivalent to assuming that its probability 18 pS_E is equal to zero. The actual size of S_L relative to that of S_B and S_M 19 may be large. However, the probability of S_{L} is small. Thus, the possible 20 consequences associated with S_{L} will not result in violation of the EPA 21 release limits. Releases associated with $S_{\rm B}$, and hence with $S_{\rm M}$, are 22 anticipated to be nonexistent or very small for the WIPP. As a result, 23 determination of whether or not the WIPP meets the EPA release limits will 24 depend on additional scenarios S_i , i=1, ..., nS, obtained by further 25 refining (i.e., subdividing) the subset S_0 and possibly the subset $S_B \cup S_M$. 26 27 This further refinement is necessary since it is unlikely that S_0 will be so homogeneous that a single normalized release will provide a suitable 28 representation for the consequences associated with each element (i.e., time 29 history) in S_0 . 30

31

A representation of the CCDF for comparison with the EPA release limits that 32 results from the subsets $S_{\rm B}$, $S_{\rm M}$, $S_{\rm 1}$, ..., $S_{\rm nS}$, $S_{\rm L}$ is given in Figure 4-2. 33 The subset S_E is not included due to its exclusion by regulatory directive. 34 As shown in Figure 4-2, the probabilities for S_{B} and S_{M} determine the 35 vertical drop in the CCDF above zero (with the assumption that the base-case 36 37 leads to no release, which is apparently true for the WIPP (Bertram-Howery et al., 1990) but may not be true for other sites), and the right most 38 extent of the CCDF is determined by SL. As long as pSL is small (e.g., less 39 than 10^{-4}) and the releases associated with the S_i are not close to 40 41 violating the EPA release limits, the actual value assigned to cS_L has no impact on whether or not the CCDF for all scenarios crosses the EPA release 42 limits. The representation in Figure 4-2 is rather stylized. In practice, 43 both $S_{\rm B}$ and $S_{\rm L}$ may be subdivided into additional subsets that give rise to 44

TRI-6342-1298-0

Figure 4-1. Decomposition of the Sample Space *S* into High-Level Subsets, where S_B Designates the Base-Case Subset, S_M Designates a Minimal Disruption Subset, S_E Designates a Regulatory Exclusion Subset, S_L Designates a Low-Probability, High-Consequence Subset, and S_0 designates ($S_B \cup S_M \cup S_E \cup S_L$)^c.

TRI-6342-1278-0

Figure 4-2. Construction of a CCDF for Comparison with the EPA Release Limits.

additional steps. Further, some of the release values for the S_1 could overlap those for S_L . However, the overall pattern remains the same, with S_B and S_M determining the upper left of the CCDF, S_L determining the lower right, and the bulk of the CCDF being determined by the S_1 .

Sometimes terminology is used that suggests S_M and S_L are excluded from 6 consideration in the construction of a CCDF for comparison with the EPA 7 release limits. Such an exclusion should not take place. The probability 8 for S_{M} can be incorporated into the probability for S_{B} ; this is usually done 9 by simply not correcting the calculated probability of $S_{\rm B}$ for the possible 10 occurrence of $S_{\rm M}$. The effect of $S_{\rm L}$ is a small extension on the lower right 11 of the CCDF. Whether or not this effect is shown on the CCDF, it was 12 included in the construction of the CCDF through the determination that its 13 impact was unimportant. In this regard, the EPA provides guidance that 14 would not stand up to careful probabilistic scrutiny. They indicate that 15 events and processes that are estimated to have less than one chance in 16 10,000 of occurring in 10,000 years do not have to be included in a 17 performance assessment. By suitably defining the events and processes 18 selected for consideration, all probabilities can be made less than the 19 specified bound. A more reasonable specification would be on the total 20 21 probability that could be ignored rather than on individual increments of probability. The intent of the WIPP performance assessment is to bound the 22 total probability of all occurrences that are removed from detailed 23 consideration (i.e., the probability pS_{I} for S_{L}) rather than the individual 24 probabilities for a number of different scenarios. 25

27 Since $S_{\rm B}$, $S_{\rm M}$, and $S_{\rm L}$ may account for a large part of the sample space S and also have readily predicted effects on the CCDF used for comparison with the 28 EPA release limits, an efficient strategy is to determine $S_{\rm B}$, $S_{\rm M}$, and $S_{\rm L}$ 29 before the subdivision of S_0 into the scenarios S_1 shown in Figure 4-2 is 30 considered. This strategy allows resolution to be built into the analysis 31 where it is important, that is, in the construction of the S_1 . In 32 recognition of this, the WIPP performance assessment uses a two-stage 33 approach to scenario development. 34

35

26

5

The first stage of the analysis focuses on the determination of the sample space S and the subsets $S_{\rm B}$, $S_{\rm M}$, $S_{\rm L}$, and $S_{\rm O}$. A tentative division of $S_{\rm O}$ into additional summary scenarios is also performed. This stage of the analysis uses a scenario-selection procedure suggested by Cranwell et al. (1990) that consists of the following five steps: (1) compiling or adopting a "comprehensive" list of events and processes that potentially could affect

Chapter 4: Scenarios for Compliance Assessment

the disposal system, (2) classifying the events and processes to aid in completeness arguments, (3) screening the events and processes to identify those that can be eliminated from consideration in the performance assessment, (4) developing scenarios by combining the events and processes that remain after screening, and (5) screening scenarios to identify those that have little or no effect on the shape or location of the mean CCDF.

The purpose of the first step is to develop the sample space S, which 8 consists of all possible 10,000-year time histories that involve the 9 identified events and process. The set S is infinite and, in practice, its 10 individual elements cannot be listed. Rather, S is subdivided into the 11 subsets $S_{\rm B}$, $S_{\rm M}$, $S_{\rm L}$, and $S_{\rm O}$. This subdivision takes place in Steps 2 and 3. 12 The screening associated with Steps 2 and 3 also removes time histories from 13 S that are physically unreasonable. In Step 4, a preliminary subdivision of 14 the subset S_0 into additional summary scenarios is performed. This 15 subdivision is accomplished through a two-part process. In the first part, 16 subsets of S_0 (i.e., scenarios) are defined that involve specific events or 17 processes. However, these scenarios are not mutually exclusive. In the 18 second part, a subdivision of S_0 into mutually exclusive scenarios S_i is 19 accomplished by forming all possible intersections of the single 20 21 event/process scenarios and their complements. The fifth and final step in 22 the process is a screening of the scenarios S_i on the basis of probability, 23 consequence, and physical reasonableness. The purpose of this screening is to determine if some of the S_i can be removed from the analysis or assigned 24 to $S_{\rm M}$ or $S_{\rm L}$, with a resultant reduction in the size of $S_{\rm O}$. Thus, this final 25 step may involve a redefinition of $S_{\rm B}$, $S_{\rm M}$, $S_{\rm L}$, and $S_{\rm O}$. 26 27

The first stage of scenario development is described in Section 4.1.2-28 29 Definition of Summary Scenarios. If the first stage of scenario development has been performed properly, the impact of the subsets S_{M} and S_{L} on the CCDF 30 used for comparison with the EPA release limits can be reasonably 31 anticipated or, for $S_{\rm B}$, determined with a small number of calculations. 32 Compliance or noncompliance with the release limits will be determined by 33 S_0 . The summary scenarios S_i developed from S_0 in the first stage of 34 35 scenario development are unlikely to be defined at a sufficiently fine level of resolution for use in the actual construction of a CCDF. Therefore, the 36 37 second stage of scenario development is the division of $S_{\rm O}$ into mutually 38 exclusive scenarios at a sufficiently fine level of resolution for actual use in CCDF construction. 39

40

41 The first stage of scenario development for the 1991 WIPP performance 42 assessment indicated that drilling intrusions are the only credible 43 disruption associated with S_0 . Therefore, the subdivision of S_0 into

mutually exclusive scenarios for CCDF construction is based on drilling 1 intrusions. This subdivision is developed to provide good resolution at the 2 0.1 and 0.001 probabilities on the CCDF and is based on (1) number of З drilling intrusions, (2) time of the drilling intrusions, (3) whether or not 4 a single waste panel is penetrated by two or more boreholes, of which at 5 least one penetrates a brine pocket and at least one does not, and (4) the 6 activity level of the waste penetrated by the boreholes. The development of 7 scenarios for actual use in CCDF construction is described in Section 8 4.1.8-Definition of Computational Scenarios. 9

As shown in Equation 3-1, the second element of the conceptual 11 representation being used for the WIPP performance assessment is scenario 12 probability pS_i . Thus, once the scenarios S_i into which S_0 is subdivided 13 are determined, it is necessary to determine their probabilities. In 14 addition, probabilities also must be determined for $S_{\rm B}$ and $S_{\rm M}$. 15 The subset 16 $S_{\rm L}$ is constructed so that its probability is sufficiently small to have no significant impact on the CCDF used for comparison with the EPA release 17 limits. 18

As with scenario development, the WIPP performance assessment uses a two-20 stage procedure to determine scenario probabilities. The first stage 21 operates with the summary scenarios into which S_{0} was subdivided in the 22 first stage of scenario development. Here, the purpose is to obtain 23 probabilities that provide guidance on what is important to performance 24 assessment at the WIPP. For example, these probabilities provide guidance 25 at the fifth step of scenario development (i.e., screening scenarios) as to 26 whether or not specific scenarios S_1 can be taken from S_0 and moved to S_1 . 27 The determination of probabilities in conjunction with the first stage of 28 scenario development for the 1991 WIPP performance assessment is described 29 in Section 4.2.1-Probabilities for Summary Scenarios. 30

31

41

10

19

The second stage of probability development is for the scenarios S_i actually 32 used in CCDF construction. Thus, these probabilities are for the scenarios 33 34 S_i into which S_0 is divided in the second stage of scenario development. As indicated earlier, drilling was the only disruption associated with S_{O} for 35 the 1991 WIPP performance assessment. As a result, the probabilities pS; 36 are derived from assumptions involving rate of drilling, area of pressurized 37 brine under the repository, and distribution of activity levels within the 38 waste. The values used for pS_i are described in Section 4.2.2-Probabilities 39 for Computational Scenarios. 40

42 The determination of both scenarios and scenario probabilities is a complex43 process with significant uncertainties. To help assure that the WIPP

performance assessment brings a broad perspective to this task, an expert panel was formed to provide a diversity of views with respect to possible futures at the WIPP. The formation of this panel and the results obtained from its deliberations are summarized in Section 4.3-Expert Judgment on Inadvertent Human Intrusion.

6

4.1.2 DEFINITION OF SUMMARY SCENARIOS

7 8

9 A performance assessment addresses the Containment Requirements § 191.13(a) of the Standard by completing a series of analyses that predict the 10 performance of the disposal system for 10,000 years after decommissioning 11 and compares the performance to specific criteria within the Standard. 12 Although the definition of performance assessment in the Standard refers 13 only to events³ and processes that might affect the disposal system, the 14 occurrence of an event or process at a disposal site does not preclude the 15 occurrence of additional events and/or processes at or near the same 16 location. For the analyses in a performance assessment to be complete, the 17 combinations of events and processes that define possible future states of 18 the disposal system must be included. Combinations of events and processes 19 are referred to as scenarios in Bertram-Howery and Hunter (1989b), Marietta 20 et al. (1989), Cranwell et al. (1990), and Bertram-Howery et al. (1990). 21 In the present document, these combinations are referred to as summary 22 scenarios, including $S_{\rm B}$ and a coarse resolution of $S_{\rm O}$ into subsets of 23 outcomes, S_i. 24

Appendix B of the Standard states that wherever practicable, the results of 26 the performance assessments will be assembled into a complementary 27 28 cumulative distribution function (CCDF), of which the mean CCDF (see Chapter 3 of this volume) is one possibility, in order to determine 29 compliance. In order to construct a mean CCDF and other summary CCDFs for 30 determining compliance with the Containment Requirements, four criteria must 31 be met by the S_{i} into which S_{0} and possibly S_{B} are subdivided: (1) the set 32 of scenarios analyzed must describe all reasonably possible future states of 33 the disposal system, (2) the scenarios in the analyses should be mutually 34 exclusive so that radionuclide releases and probabilities of occurrence can 35 36 be conveniently associated with specific scenarios, (3) the cumulative releases of radionuclides (consequences) for each scenario must be 37 estimated, and (4) the probability of occurrence of each scenario must be 38 estimated. Because performance assessments are iterative analyses, the 39

40 \$2

 ³ Event is used in the regulatory sense throughout this chapter and should
 not be interpreted as "event" as used in the probabilistic development of
 risk in Chapter 3.

results of preliminary analyses may suggest areas for additional research,
 which could in turn suggest new events and processes for inclusion in the
 performance assessment.

Identifying all possible combinations of events and processes that could 5 affect a disposal system would result in an extremely large number of 6 scenarios S_i , most of which would have little or no effect on the 7 performance of the disposal system. Guidance to the Standard allows certain 8 9 events and processes to be excluded from the performance-assessment analyses on the basis of low probability, which corresponds to the subset $S_{\rm L}$. 10 In addition, exploratory drilling for natural resources is the most severe type 11 of human intrusion considered, so other human-intrusion modes result in 12 possible outcomes which are contained in $S_{\rm E}$. Each criterion is described in 13 Appendix B of the Standard (reproduced in Appendix A of this volume). 14

Scenarios S_i that are within the scope of Appendix B of the Standard and 16 17 meet the requirements for constructing a CCDF must be identified. Cranwell et al. (1990) developed a scenario-selection procedure that consists of five 18 These steps are (1) compiling or adopting a "comprehensive" list of 19 steps. 20 events and processes that potentially could affect the disposal system, (2) classifying the events and processes to aid in completeness arguments, (3) 21 screening the events and processes to identify those that can be eliminated 22 23 from consideration in the performance assessment, (4) developing scenarios by combining the events and processes that remain after screening, and (5) 24 screening scenarios to identify those that have little or no effect on the 25 shape or location of the mean CCDF. This scenario-selection procedure has 26 27 been adopted for the WIPP performance assessment, and a summary of its implementation follows. As discussed in Chapter 3, these scenarios are 28 called summary scenarios, and this scenario-selection procedure is the first 29 stage of scenario definition. The second stage is the definition of 30 computational scenarios. 31

33 Identifying Events and Processes

34

32

4

15

Several reports have identified events and processes that could affect the 35 integrity of generic disposal systems (e.g., Burkholder, 1980; IAEA, 1983; 36 Andersson et al., 1989; Cranwell et al., 1990) and disposal systems at 37 38 specific locations (e.g., Claiborne and Gera, 1974; Bingham and Barr, 1979). In a preliminary effort at identifying the events and processes that need to 39 be considered for the WIPP performance assessment, Hunter (1989) developed a 40 41 list of 24 events and processes primarily selected from lists published in Claiborne and Gera (1974), Bingham and Barr (1979), Arthur D. Little, Inc. 42 (1980), and Cranwell et al. (1990). This consolidated list was found to be 43 44 incomplete during preliminary scenario development (Guzowski, 1990) and from
external review of the 1990 Preliminary Comparison with 40 CFR Part 191,
Subpart B for the Waste Isolation Pilot Plant, December 1990 (Bertram-Howery
et al., 1990). Several events and processes that require evaluation on a
site-specific basis were not included in Hunter's (1989) list.

To address the completeness issue, the list of events and processes in 6 Hunter (1989) was replaced, and the events and processes were rescreened. 7 Cranwell et al. (1990) developed a scenario-selection procedure to provide 8 specific components of performance assessments to address the Containment 9 Requirements (§ 191.13) of the EPA Standard. For this reason, the events 10 and processes listed in Cranwell et al. (1990) (Table 4-1) were used as a 11 starting point in the development of disruptive scenarios for the WIPP. 12 This list was developed by a panel of experts that met in 1976 and again in 13 1977 under the auspices of the U.S. Nuclear Regulatory Commission. The task 14 of this panel was not to identify all possible events and processes that 15 16 could occur in or near a waste disposal facility but to identify events and processes that could compromise the performance of an engineered disposal 17 facility constructed in deep geologic media for nuclear waste. To address 18 specific concerns about the WIPP, gas generation by the degradation of the 19 waste, waste-related explosions, and nuclear criticality were added to the 20 list produced by the panel. 21

22

The difference between an event and a process is the time interval over 23 which a phenomenon occurs relative to the time frame of interest. Events 24 occur over relatively short time intervals, and processes occur over much 25 longer relative time intervals. The distinction between events and 26 processes is not rigid. For example, in the life of a person, a volcanic 27 28 eruptive cycle that lasts several years may be classified as a process, but 29 in the 10,000 years of regulatory concern for disposal of nuclear waste, this same cycle may be considered as an event. In identifying events and 30 processes for the WIPP performance assessment, phenomena that occur 31 instantaneously or within a relatively short time interval are considered to 32 be events, and phenomena that occur over a significant portion of the 10,000 33 34 years of regulatory concern are considered to be processes. The classification of a phenomenon as an event rather than as a process, or vice 35 36 versa, does not affect scenario development.

37

39

38 Classifying Events and Processes

40 This step in the scenario-selection procedure is optional. The purposes for
41 including this step in the procedure were to assist in organizing the events
42 and processes, to assist in completeness arguments, and to provide some
43 insights when developing conceptual models of the disposal system.
44 Categories in the classification schemes for the generic lists mentioned in

2	TABLE 4-1. POTENTIALLY DISRUPTIVE EVENTS AND PROCESSES
• 5	Natural Events and Processes
6	Celestial Bodies
7	Meteorite Impact
8 9	Surficial Events and Processes
10	Erosion/Sedimentation
11	Glaciation
12	Pluvial Periods
13	Sea-Level Variations
14	Hurricanes
15	Seiches
16	Tsunamis
17	Begional Subsidence or Unlift
18	Mass Wasting
19	Flooding
20	ricoung
20	Subsurface Events and Processes
22	Diapiriem
23	Saismic Activity
20	Volcanic Activity
27	Magmatic Activity
20	Formation of Discolution Covition
20	Formation of Interconnected Erecture Systems
20	Foulting
20	r auting
20	Human Induced Events and Processes
30	Inadvortant Intrusiona
22	Explosions
22	Drilling
34	Mining
34 25	Injection Molle
30 26	Mithdrowol W/ollo
30 37	Williurawai Weils
37	Hudrologia Ctrasses
30 20	<u>Hydroidgic Stresses</u>
39	Ingalion Domming of Streams and Divers
40	Damining of Streams and Rivers
41	Demositery, and Master Indused Franks and D
42	Repository- and waste-induced Events and Processes
43	Caving and Subsidence Shaft and Borehole Seel Degradation
44	Shan and Dorenole Seal Degradation
10	
40	Excavation-Induced Stress Fracturing in Host Rock
47	Gas Generation
48	Explosions
49	Nuclear Criticality
50	Courses Medified from Ourses II at a topo
52	Source: modified from Cranwell et al., 1990.
Ja	

Step 1 are similar and can be identified as naturally occurring, human
 induced, and waste and repository induced. Subdivisions of the categories
 (Table 4-1) also may be useful.

4

5 Screening Events and Processes

6

Events and processes are screened using three criteria based on guidance in 7 the Standard: probability of occurrence, physical reasonableness, and 8 consequence. In addition, EPA's guidance concerning implementation of the 9 Standard does not require consideration of human-intrusion events with 10 consequences more severe than those of exploratory drilling for resources. 11 12 Low probability events and processes define a set of possible outcomes that is included in S_{I} . Low consequence events and processes define a set of 13 possible outcomes that is included in S_M . Modes of intrusion other than 14 exploratory drilling define a set of possible outcomes that is included in 15 Events and processes that are physically unreasonable may be included $S_{\mathbf{F}}$. 16 17 in S_L or removed entirely from the sample space S depending on the justification for physical unreasonableness. Probability of occurrence of 18 an event or process must be estimated by probabilistic techniques. 19 According to Appendix B of the Standard, events and processes that are 20 estimated to have less than 1 chance in 10,000 of occurring in 10,000 years 21 do not have to be included in the performance assessment. Physical 22 23 reasonableness as a screening criterion is a qualitative estimate of low probability based on subjective judgment. A logical argument, possibly with 24 supporting calculations, can be used to establish whether the occurrence of 25 a particular event or process at a location within the time period of 26 regulatory concern and with sufficient magnitude to affect the performance 27 of the disposal system is physically reasonable. The third screening 28 criterion is consequence. At this stage of the scenario-development 29 procedure, consequence is based on whether the event or process either alone 30 or in combination with other events or processes may affect the performance 31 32 of the disposal system; many low consequence events and processes give rise 33 to occurrences in the subset S_{M} . Simplified conceptual models of the disposal system and simplified mathematical models can be used to determine 34 whether an event or process will affect the groundwater-flow system or alter 35 possible pathways from the panels to the accessible environment. 36 37

Although quantitative screening criteria generally are preferable to
qualitative criteria, the nature of the individual events and processes
being screened and the availability of information and data determine how
screening can proceed. On the regional scale of the northern Delaware
Basin, the dynamics resulting in the low level and nonregularity of tectonic
activity and other physical processes characteristic of this region are

poorly understood. Qualitative judgments of screening criteria using 1 interpretations based on geological field relationships, natural analogs, 2 and geographic location are required. The occurrence of human-induced 3 events and processes is dependent on the values, needs, and technological 4 development of future societies. While few if any of this category of 5 events and processes can be screened out on the qualitative grounds of 6 physical unreasonableness, qualitative judgments of the likelihood of 7 conditions for some of these events and processes to occur or the effects of 8 some of these occurrences on the disposal system can be made. In general, 9 screening decisions based on qualitative judgments that are supported by 10 strong logical arguments are as justifiable as screening decisions for 11 certain events and processes that are based on quantitative values derived 12 from sufficiently detailed data bases. 13

14

15 4.1.3 EVALUATION OF NATURAL EVENTS AND PROCESSES

16

This section evaluates each of the events and processes listed in Table 4-1 17 with regard to the screening criteria described above. Events and processes 18 with probabilities of occurrence of 1 are part of the base-case scenario. 19 Physically reasonable events and processes with probabilities of occurrence 20 less than 1 and above the cutoff specified in the Standard (less than 1 21 chance in 10,000 of occurring in 10,000 years) are retained for scenario 22 development. The estimation of numerical values for low-probability events 23 and processes is difficult and often controversial, so caution should be used 24 when screening high-consequence events and processes whose probability of 25 occurrence is estimated to be only slightly below the regulatory cutoff. No 26 consequence modeling was performed specifically as part of screening the 27 events and processes. The following evaluations only consider the disposal 28 system after it has been decommissioned. 29

31 Meteorite Impact

32

30

Meteorite impacts are a concern to nuclear-waste disposal because of the 33 possibility that such an impact could exhume buried waste or fracture the 34 rock overlying the waste to create pathways for groundwater to reach the 35 waste. Several estimates have been made of the probability of an impact at a 36 disposal site by a meteorite large enough to either exhume the waste or 37 substantially disrupt the disposal system. Hartmann (1979) estimated the 38 probability of a meteorite exhuming part of the waste in a repository of 39 10 km² area and a depth of 600 meters to be 6 x 10^{-13} /year. A Swedish study 40 (Karnbranslesakerhet, 1978) estimated a rate of impacts large enough to 41 create craters at least 100 meters deep to be $10^{-13}/\text{km}^2/\text{year}$. Logan and 42 Berbano (1978) estimated the probability of direct exhumation from a depth of 43 800 meters for a repository of 10 km² to be 1 x 10^{-13} /year. Claiborne and 44 Gera (1974) estimated the probability of exhumation of waste from a depth of 45

4-13

1 600 meters for a repository of 8 km² to be 2 x 10^{-13} /year. Cranwell et al. 2 (1990) estimated the probability of both direct exhumation of waste from a 3 repository of 8 km² at a depth of 630 meters and the fracturing of a shale 4 aquitard at a depth of 400 meters overlying the bedded-salt unit containing 5 the waste. The estimated probabilities are approximately 8 x 10^{-13} /year and 6 1 x 10^{-12} /year, respectively.

7

8 Each of these estimated probabilities is substantially below the screening 9 limit of $1 \ge 10^{-8}$ /year (1 chance in 10,000 in 10,000 years) established in 10 the Standard. Based on this screening criterion, meteorite impact can be 11 eliminated from consideration in the WIPP performance assessments.

- 13 Erosion/Sedimentation
- 14

12

Both erosion and sedimentation as a result of wind action are ongoing processes throughout the WIPP region. Sand dunes are present at the location of the waste panels, so wind action will result in both processes occurring, although the impact on the performance of the disposal system is likely to be minimal.

20

No perennial drainage channels are present at the WIPP, and in addition, no 21 22 intermittent channels are present at the location of the waste panels. Under current climatic conditions, erosion or deposition resulting from surficial-23 water movement consists of the movement of surficial sand deposits during 24 storms. According to Bachman (1974), the presence and thickness of the 25 Mescalero caliche, which is aerially extensive and approximately 600,000 26 years old, indicate that the climatic variations since that time have not 27 28 resulted in significant changes in geomorphic processes.

29

Because no significantly high topographic features exist in the immediate 30 vicinity of the WIPP, an influx of water-borne sediments that could cover 31 part or all of the WIPP is not physically reasonable. Massive changes to the 32 climatic conditions or tectonic setting within the next 10,000 years that 33 34 could result in deep erosion at the WIPP are not physically reasonable. A 35 concern about erosion is that the breaching of the Mescalero caliche, which has been interpreted by Bachman (1985) to be a barrier to infiltration of 36 precipitation, could result in recharge elevating the water table, thereby 37 saturating units that are currently unsaturated. According to Swift (1991a), 38 39 the expected climatic conditions during the next 10,000 years are likely to be within the ranges of conditions that occurred during the past 10,000 40 years. The past conditions did not result in the formation of major breaches 41 in the Mescalero caliche. Future climatic changes are not expected to cause 42 such breaches. Wetter climatic conditions would result in an increase in the 43 44 vegetative cover of the area, which could stabilize the current distribution of near-surface sedimentary deposits and protect the caliche. 45 46

0

4-14

Both erosion and sedimentation currently are occurring at the WIPP and are certain to occur in the future. Because of this uncertainty, these processes are part of the undisturbed conditions. Neither of these processes will occur to a degree that will affect the performance of the WIPP during the period of regulatory concern. Changes in the rates of these processes to an extent that could affect the performance of the WIPP are not physically reasonable.

8

9 Glaciation

10

16

No evidence exists to suggest that the northern part of the Delaware Basin has been covered by continental glaciers at any time since the beginning of the Paleozoic Era. During the maximum extent of continental glaciation in the Pleistocene Epoch, glaciers extended into northeastern Kansas at their closest approach to southeastern New Mexico.

According to Swift (1991a), a return to a full glacial cycle within the next 10,000 years is highly unlikely. Based on the extent of previous glaciations and the unlikely prospect that a future glaciation may occur within the period of regulatory concern, glaciation is eliminated as a process for inclusion in WIPP performance assessments based on a lack of physical reasonableness of alterations to the climatic cycle that would result in glaciers reaching or approaching the WIPP.

24

25 Pluvial Periods

26

27 The purpose of including Pluvial Periods in Table 4-1 was to assure that 28 climatic change is considered in the screening process. Climatic change from 29 current conditions is certain to occur for any location during the next 30 10,000 years, and as a result, this process has a probability of occurrence 31 of 1.

32

Based on probability and physical-reasonableness arguments, climatic change
is not screened out from consideration in the performance assessment. The
effect of climatic change on the groundwater-flow system in the WIPP region
has not been determined at this time. As a result, climatic change is
retained for performance-assessment analysis.

38

Because climatic change has a probability of occurrence of 1, this process is considered to be part of the undisturbed performance of the diposal system and is not a separate process for inclusion in the procedure for developing disruptive scenarios.

1 Sea-Level Variations

2

Variations in sea level relative to some point on land are the result of the 3 occurrence of other events and processes that have these changes as by-4 products. Examples are the rise of sea level as a result of glacial melting, 5 which is the result of climatic change, and the uplift of continental areas 6 by crustal rebound after the areas have been deglaciated, which is also the 7 result of climatic change. As a result, sea-level variation is not an 8 independent phenomenon that needs to be considered in scenario development. 9 Another reason for excluding sea-level variation from scenario development is 10 that the WIPP is at an elevation of approximately 3400 feet (1036 meters). 11 No tectonic or climatic process within the next 10,000 years is likely to 12 affect sea level to an extent that would have an effect on the performance of 13 14 the WIPP.

16 Hurricanes

17

15

Hurricanes are storms that originate over ocean water in the tropics of the
northern hemisphere (these storms are called cyclones in the southern
hemisphere) and are characterized by high winds and heavy rainfall. Whereas
these storms migrate to areas outside of the tropics, the distance of the
WIPP from the ocean precludes hurricanes from reaching this location because
they dissipate quickly over land.

24

Whereas hurricanes are not likely to reach the WIPP, intense storms accompanied by heavy rainfall do occur and are certain to occur in the future. These storms are short lived. The effects of these storms on the integrity of the disposal system are likely to be minor. Intense storms are common in southeastern New Mexico, and the effects of individual past storms on the geologic and hydrologic characteristics of the WIPP cannot be distinguished from the long-term geomorphic evolution of the region.

32

Hurricanes can be eliminated from the performance assessments because the
occurrence of these events is not physically reasonable at the location of
the WIPP. Intense storms are certain to occur in the future at the WIPP. As
a result, intense storms are considered part of normal climate variation and
are not included in the development of disruptive scenarios.

38

39 Seiches

40

A seiche is a "free or standing-wave oscillation of the surface of water in
an enclosed or semi-enclosed basin...that is initiated chiefly by local
changes in atmospheric pressure, aided by winds, tidal currents, and small
earthquakes; and that continues, pendulum fashion, for a time after cessation
of the originating force" (Bates and Jackson, 1980, p. 568). Seiches range

in height from several centimeters to a few meters. Whereas seiches could be
of some concern to disposal facilities in certain coastal environments, the
distance of the WIPP from ocean basins and other large bodies of water
precludes seiches from reaching this location.

6 Seiches are eliminated from the WIPP performance assessments based on the 7 lack of physical reasonableness of these phenomena at the WIPP location.

9 Tsunamis

10

8

5

A tsunami is a "gravitational sea wave produced by any large-scale, shortduration disturbance of the ocean floor, principally by a shallow submarine earthquake, but also by submarine earth movement, subsidence, or volcanic eruption" (Bates and Jackson, 1980, p. 668). Because of the elevation of the WIPP and the distance from the oceans, a wave generated by any of the mechanisms mentioned in the definition will not be of a size that could reach the WIPP.

18

The term tsunami perhaps can be extended to include waves produced by 19 meteorite impacts into bodies of water. Because the WIPP is located in 20 excess of 800 kilometers (500 miles) from the nearest large body of water 21 (e.g., Pacific Ocean) and at an elevation of approximately 1036 meters (3400 22 feet), a meteorite would have to be large enough and the impact would have to 23 be appropriately located for sufficient energy to move a large enough water 24 volume to inundate all topographic features on the continent between the 25 point of impact and the WIPP. Calculating the size of an appropriately large 26 meteorite is difficult because of the dependence of the calculation on depth 27 of water at the point of impact, water depth along the path toward the WIPP, 28 29 topographic relief along the path, energy expenditure vaporizing water upon impact, and the mechanical responses of the oceanic sediments and crustal 30 rocks to the impact. The combination of meteorite size and appropriate 31 location makes an impact-generated tsunami reaching the WIPP a low-32 probability event and perhaps a physically unreasonable event. Changes in 33 sea level caused by the melting of continental glaciers or tectonic activity 34 during the 10,000 years of regulatory concern will not affect this screening 35 decision. 36

38 Tsunamis of traditional origin are eliminated from the WIPP performance 39 assessments based on the lack of physical reasonableness of events large 40 enough to generate a wave that could reach the WIPP location. Ocean waves 41 generated by meteorite impacts are eliminated from consideration based on the 42 low probability of the appropriate combination of meteorite size, impact 43 location, and adequate water depth.

44

1 Regional Subsidence or Uplift

2

Regional subsidence or uplift can affect groundwater-flow directions and 3 gradients in addition to affecting erosion and deposition rates and 4 locations. During the geologic history of the WIPP, the region has undergone 5 several periods of regional subsidence and uplift. From early in the 6 Paleozoic Era until approximately 100 million years ago, the stratigraphic 7 record indicates a predominantly marine depositional environment that 8 requires the existence of a subsiding basin in order for nearly 18,000 feet 9 (approximately 5500 meters) of marine sediments to accumulate. The absence 10 of units deposited from Triassic through late Tertiary time indicates either 11 nondeposition or predominantly erosional conditions. Uplift accompanied by 12 erosional conditions are indicated by the fact that rocks of marine origin 13 are present at the WIPP at an elevation of greater than 3000 feet (915 14 meters). The absence of faults exposed at the surface in the interior of the 15 northern Delaware Basin, which indicates a relatively intact crustal block, 16 the relatively low rate of seismicity, which indicates an absence of or minor 17 tectonic activity, and the wide-spread presence of the Mescalero caliche. 18 which required relatively long-term stable conditions to form, suggest that 19 the interior of the Delaware Basin has been and continues to be relatively 20 21 stable.

22

The apparent long-term tectonic stability of the northern Delaware Basin 23 suggests that neither regional subsidence nor uplift is likely to occur in 24 the next 10,000 years on a scale that will alter the geologic or hydrologic 25 systems and affect the performance of the disposal system. For this reason, 26 regional subsidence and uplift do not need to be included in the WIPP 27 28 performance assessments because of the lack of physical reasonableness of major changes to the tectonic regime within the time period of regulatory 29 concern. 30

31

32 Mass Wasting

33

34 Mass wasting is the dislodgement and downslope movement of soil and rock under the direct application of gravitational body stresses (Bates and 35 Jackson, 1980). This process has the potential of affecting the performance 36 37 of a disposal system by damming surface drainage and impounding water. Impounded water that extends over the disposal system could affect recharge 38 39 to the underlying units. An impoundment near the disposal system could affect groundwater-flow gradients, thereby altering groundwater-flow 40 41 patterns.

42

43 The Pecos River, which is approximately 24 kilometers (15 miles) at closest 44 approach to the waste panels and more than 90 meters (300 feet) lower in 45 elevation, is the only perennial surface-water drainage feature in the WIPP region. This river is incised, but the resulting valley is not deep enough
or steep enough for mass wasting to impound water to a greater depth or
aerial extent than currently results from manmade dams. No evidence
indicates that past climatic conditions resulted in the existence of other
perennial streams that could be dammed by mass wasting. Future climatic
conditions are not likely to be substantially different from past conditions.

Because of the sparsity of perennial streams and rivers in the WIPP area and
the lack of appropriate morphological features that could result in
impoundments, mass wasting is not included in performance assessments for the
WIPP based on a lack of physical reasonableness of such events forming largescale impoundments.

14 Flooding

15

13

16 Flooding caused by rivers or streams overflowing their banks is a relatively short-term phenomenon. No perennial streams or standing bodies of water are 17 present at the WIPP, and no evidence has been cited that indicates such 18 19 features existed at this location during or since Pleistocene time (e.g., Powers et al., 1978a,b; Bachman, 1974, 1981, 1987). The Pecos River is 20 approximately 24 kilometers (15 miles) from and more than 90 meters 21 (300 feet) lower than the elevation of the land surface above the waste 22 In Nash Draw, lakes and spoil ponds associated with potash mines are 23 panels. located at elevations 30 meters (100 feet) or more lower than the elevation 24 25 of the land surface at the location of the waste panels. No evidence has been cited in the literature to support the possibility that Nash Draw was 26 formed by stream erosion or was at any time the location of a large body of 27 standing water. 28

29

Because no sources of surface water exist in the WIPP region that could
overflow and flood part or all of the WIPP, flooding is not included in the
WIPP performance assessments because such events are not physically
reasonable at this location.

35 Diapirism

36

34

Because of the relatively low density of salt compared to other sedimentary 37 rocks, bedded-salt deposits at depth have a tendency to rise through and be 38 displaced by higher density overlying rocks. This movement is facilitated by 39 the relatively high ductility of salt when compared to other rock types. 40 Under the appropriate conditions, bedded salt at depth will rise toward the 41 surface and bow the overlying rocks upward, forming a salt anticline. If the 42 overlying rocks are pierced and displaced by the upward movement of the mass 43 of salt, the salt structure is called a salt diapir or salt dome. 44

The specific conditions that result in diapirism are not known, although some 1 general conditions have been recognized. Based on evidence in German salt 2 basins, Trusheim (1960) concluded that an overburden of 1000 meters (3300 3 feet) and a salt thickness of at least 300 meters (985 feet) are needed to 4 initiate flow in salt. Similar values are used to locate areas of salt 5 flowage in the Gulf of Mexico (Halbouty, 1979). Other factors that can 6 affect the formation of salt domes are irregularities on the surface of the 7 overburden, variations in the thickness of the overburden, natural variations 8 in the density of the overburden, external stresses (tectonic stresses), 9 depth of burial of the salt, temperature, and geologic setting (Parker and 10 McDowell, 1951, 1955; Gussow, 1968; Trusheim, 1960). 11

In the northern Delaware Basin, deformation within evaporite units has been 13 noted in disturbed zones along the margin of the Capitan Reef and at isolated 14 locations within the interior of the basin (Borns, 1983; Borns et al., 1983). 15 This deformation is predominantly within the anhydrite and halite of the 16 Castile Formation with weak to nonexistent deformation in the overlying 17 halite of the Salado Formation. Whereas the origin of this deformation is 18 not known, Borns et al. (1983) hypothesized that the mechanism could be 19 either gravity-driven syndepositional deformation, gravity foundering, or 20 gravity sliding. The important thing to note about this deformation is that 21 the thick sequence of bedded salt in the Salado Formation is not deformed. 22 This lack of deformation indicates that the conditions required for salt 23 diapirism to occur are absent in the northern Delaware Basin. Given the 24 long-term stability of this part of the basin, changes in the geologic 25 setting that could initiate diapirism are not likely to occur within the next 26 10,000 years. 27

28

12

Diapirism is excluded from the WIPP performance assessments because the
development of conditions necessary to initiate diapirism are not physically
reasonable within the time frame of regulatory concern.

33 Seismic Activity

34

32

Seismic activity refers to earth movement in response to naturally occurring or human-induced events. The most common naturally occurring event that produces earth movement on a regional scale is an earthquake. Examples of other naturally occurring sources are volcanic eruptions, landslides, and meteorite impacts. Human-induced events that can cause seismic activity on a regional scale include but are not limited to fluid extraction and injection, explosions, and rockfalls in mines.

42

43 Earthquake records for southern New Mexico date from 1923, and seismic
44 instrumentation started in 1961 (U.S. DOE, 1980a). With the exception of
45 three minor shocks, all shocks felt in the WIPP region prior to 1961

originated from earthquakes more than 100 miles (160 kilometers) from the 1 WIPP and were located to the west and southwest of the WIPP (Sanford and 2 Toppozada, 1974). Since 1961, the distribution of earthquakes remained 3 similar to the distribution before 1961, although a cluster of earthquakes 4 has occurred in the southeasternmost corner of New Mexico and adjacent Texas 5 that may be the result of fluid injection for enhanced oil recovery (Shurbet, 6 1969). Seismic events occurring within 35 miles (56 kilometers) of the 7 center of the WIPP were recorded in 1972, 1974, and 1978 with the maximum 8 magnitude of 3.6 (U.S. DOE, 1980a). None of these events have been 9 10 correlated with human activity.

11

On a seismic risk map of the United States developed for the Uniform Building 12 Code (ICBO, 1979), southeastern New Mexico is located in Zone 1, which means 13 that the region has a potential of experiencing seismic activity of Modified 14 Mercalli intensities of V and VI. Seismic activity at these intensities can 15 cause minor damage to some structures. Because the tectonic forces in the 16 southwestern United States and northern Mexico that have produced and 17 continue to produce seismic events are not likely to abruptly change and 18 result in an aseismic region within the next 10,000 years, future regional 19 seismic activity from naturally occurring events is certain to result in 20 ground movement at the WIPP during the 10,000 years of regulatory concern. 21 Ground movement at the WIPP resulting from human-induced events is likely so 22 long as mining and the extraction of energy resources continues. Because 23 ground movement at the WIPP from seismic activity during the next 10,000 24 years has a probability of occurrence of 1, seismic activity is part of the 25 base-case scenario. No evidence has been cited in the literature of past 26 seismic activity altering either the geologic or hydrologic systems at the 27 28 WIPP. The alterations of these systems by future seismic activity is not likely to occur. Ground motion caused by seismic activity tends to rapidly 29 dampen with increasing depth (Reiter, 1990), although the precise amount of 30 dampening cannot be reliably predicted (Owen and Scholl, 1981). Because of 31 the depth of the waste panels, the dampening of ground motion with depth, and 32 the low intensity of seismic activity observed and predicted for southeastern 33 New Mexico, future seismic activity will be of no consequence to the 34 performance of the WIPP disposal system. 35

36

37 Volcanic Activity

38

Volcanic activity refers to magma originating in the lower crust or upper mantle that rises along fracture or fault zones through the overlying rock and is extruded onto the surface. This activity generally occurs in tectonically unstable areas such as rift zones, spreading centers and subduction zones along plate boundaries, and locations above deep-mantle thermal plumes. Volcanic activity is of interest to performance assessments because of the thermal effects of magma on groundwater flow, the possible 1 effects on groundwater flow of volcanic rock of low permeability in fracture 2 or fault zones, and the possible releases of radionuclides to the accessible 3 environment if the magma passes through a disposal facility on the way to the 4 surface.

5

The Paleozoic and younger stratigraphic sequence within the Delaware Basin is 6 devoid of volcanic rocks (Powers et al., 1978a). Within an area including 7 eastern New Mexico, and northern, central, and western Texas, the closest 8 Tertiary volcanic rocks with notable areal extent or tectonic significance to 9 the WIPP are approximately 170 kilometers (105 miles) to the south in the 10 Davis Mountains volcanic area. The closest Quaternary volcanic rocks are 250 11 kilometers (155 miles) to the northwest in the Sacramento Mountains. No 12 volcanic rocks are exposed at the surface within the Delaware Basin. 13 14

Despite the lack of evidence of past volcanic activity within the Delaware 15 Basin over a time interval of several hundred million years, Logan and 16 Berbano (1978) estimated the probability of volcanism affecting a waste-17 disposal area of 10 km² within this basin to range from 8 x 10^{-12} /year to 18 8 x 10^{-11} /year. Arthur D. Little, Inc. (1980) estimated this probability to 19 range from 1 x 10^{-10} /year to 1 x 10^{-8} /year. These ranges in probability 20 values are at or below the cutoff probability value for eliminating events 21 and processes from performance assessments. Because of the geologic record 22 and the current geologic setting, a question arises as to whether these 23 probability values are meaningful. No data exist with which to calculate 24 probabilities. With no volcanic rocks within the Paleozoic and younger 25 stratigraphic record, no evidence of exposed volcanic rocks within the 26 Delaware Basin, and a tectonically stable geologic setting, the initiation of 27 volcanic activity within the next 10,000 years is not likely to occur. 28 29

30 Volcanic activity is eliminated from WIPP performance assessments based on
31 the physical unreasonableness of major changes occurring in the tectonic
32 setting of the Delaware Basin within the time frame of regulatory concern.
33

34 Magmatic Activity

35

Magmatic activity as used in this report refers to molten rock (magma) that 36 originates in the lower crust or upper mantle, migrates upward through the 37 crust in response to buoyancy effects or stress/pressure differentials, but 38 cools and crystallizes before reaching the surface. Existing fault or 39 fracture zones may act as pathways for this migration. Magma that cools at 40 considerable depth is referred to as plutonic. Because some of the igneous 41 rocks in southeastern New Mexico and western Texas seem to have cooled 42 relatively close to but not at the surface, all igneous rocks that have 43 cooled before reaching the surface will be referred to as magmatic. This 44 type of activity occurs in tectonically unstable areas. Magmatic activity is 45

of concern to performance assessment because of the possibility that the rising magma could reach a disposal facility, thereby disrupting the engineered barriers designed to isolate the waste, and/or the heat associated with the magma could impose significant thermal effects on groundwater flow.

According to Powers et al. (1978a), no igneous activity has occurred within 6 100 miles (160 kilometers) of the WIPP since mid-Tertiary time (approximately 7 30 million years ago). Within the northern Delaware Basin, a northeast-8 trending lamprophyre dike or series of en-echelon dikes has been identified 9 in outcrop, in boreholes, and by magnetic anomaly. These various sources of 10 information suggest that this dike or dike system is up to 20 feet (6 meters) 11 wide and possibly extends for 80 miles (130 kilometers). Samples from one 12 outcrop location contain vesicles, which indicate emplacement of the dike to 13 relatively shallow depths, although no evidence of extrusion at the surface 14 has been cited. The dike is located as close as 9 miles (14.5 kilometers) to 15 the northwest of the WIPP (Powers et al., 1978a). Age dating of samples of 16 17 the dike material have produced dates of approximately 30 million years and 35 million years. 18

19

Hunter (1989) calculated the probability of a dike of a particular length 20 within the Delaware Basin intersecting a repository to be 2 x 10^{-6} during 21 This value is lower than the cutoff value of 10^{-4} in 10,000 10,000 years. 22 years established in the Standard. A question arises as to the validity of 23 one of Hunter's assumptions in making this calculation. The probability of 24 another dike intruding into the Delaware Basin was assumed to be the period 25 of regulatory concern (10,000 years) divided by the time interval since the 26 last dike intruded the basin (30 million years). This assumption ignores the 27 tectonic processes that likely contributed to the emplacement of the dike in 28 mid-Tertiary time. Powers et al. (1978a) suggest that the coincidence of the 29 dike's orientation with the orientation of several regional tectonic 30 lineaments in addition to crevasses and fractures in rocks exposed near 31 Carlsbad Caverns, which are approximately 37 miles (59 kilometers) west-32 southwest of the WIPP, indicates the presence of a zone of crustal weakness. 33 Emplacement of the dike may have been along a fracture zone that formed in 34 35 the early stages of mid-to-late Tertiary tectonism. Brinster (1991) suggests that uplift of the Guadalupe Mountains, which originated in late Pliocene 36 through early Pleistocene time (Powers et al., 1978a), produced a zone of 37 fractures in nearly the same location and of the same orientation as the 38 dike. Groundwater flow along this fracture zone dissolved salt in the 39 Rustler Formation. Subsidence in response to this salt dissolution produced 40 Nash Draw. Fracturing or faulting occurred in nearly the same location in 41 mid-Tertiary and early Pleistocene times. The fact that igneous material was 42 emplaced along the zone of failure during mid-Tertiary time but not during 43 early Pleistocene time suggests that a change in the geologic processes at 44

this location has occurred. No evidence supports the possibility of a dike
being emplaced at the location of the WIPP in any time frame.

3

In summary, a single dike transected the northern part of the Delaware Basin 4 during the geologic history of this basin. This event occurred approximately 5 30 million years ago, and a similar event has not occurred in this region 6 7 since this emplacement. The occurrence of an event that results in the emplacement of another dike at or near the WIPP during the 10,000 years of 8 regulatory concern after 30 million years of quiescence is not physically 9 reasonable. As a result, the recurrence of the tectonic conditions that 10 resulted in magmatic activity is eliminated from the WIPP performance 11 assessments based on the physical unreasonableness of such changes occurring 12 within the time frame of regulatory concern. 13

15 Formation of Dissolution Cavities

16

14

The circulation of groundwater that is undersaturated with salt can result in 17 the dissolution of salt and the formation of a cavity. Dissolution cavities 18 considered in a demonstration of the scenario-development procedure in 19 Cranwell et al. (1990) were assumed to form by the dissolution of salt from a 20 salt-bearing unit at depth, forming a cavity that resulted in the collapse of 21 the overlying rock units into the cavity. Such debris-filled structures are 22 called breccia pipes or breccia chimneys. In Cranwell et al. (1990), the 23 24 initiation of dissolution of the salt resulted from the fracturing of an aquitard either above or below the waste panels and the flow of 25 undersaturated groundwater through the fractures. Disruption of the unit 26 overlying the salt has the potential of providing a pathway for groundwater 27 to dissolve and remove the salt and eventually reach the radioactive waste, 28 whereas disruption of the underlying unit has the potential of the waste 29 itself being involved in the collapse into the underlying cavity where 30 circulating groundwater could have access to disrupted waste. In addition to 31 32 the formation of breccia chimneys by similar processes in the WIPP region. the possible migration of a dissolution front from Nash Draw toward the WIPP 33 also is considered in this section. 34

36 Deep Dissolution

37

35

Hunter (1989) dismissed the formation of deep dissolution cavities using the 38 screening criterion of low probability. Several of the assumptions used to 39 calculate the probability cannot be justified. For this reason, an alternate 40 approach is used to screen the formation of deep dissolution cavities. 41 Anderson (1978, 1981, 1983) proposed that salt dissolution at depth is a 42 43 major contributor to the total amount of salt removed from within the northern Delaware Basin. Davies (1983) proposed that groundwater circulating 44 45 through higher-conductivity zones in the Bell Canyon Formation has resulted

in at least local areas of deep salt dissolution in the interior of the 1 2 basin. Using regional well-log correlations, Borns and Shaffer (1985) 3 concluded that the geologic features both Anderson and Davies had attributed to deep salt dissolution were more readily attributed to mass redistribution 4 in the Castile Formation, the presence of localized depocenters in the lower 5 Castile Formation that resulted in the deposition of thicker upper Castile 6 and lower Salado sediments, and topographic irregularities on the top of the 7 Bell Canyon Formation producing apparent deformational structures in the 8 9 overlying units.

In the northern Delaware Basin, field work and drilling have confirmed the 11 existence of two breccia chimneys and suggested the existence of two more. 12 Stratigraphic relationships and active subsidence within San Simon Sink 13 indicate that dissolution has been an ongoing process at this location 14 (Nicholson and Clebsch, 1961; Lambert, 1983). All of the confirmed and 15 16 suspected breccia chimneys and San Simon Sink are located over the Capitan 17 Reef (Lambert, 1983). According to Snyder and Gard (1982), the origin of Hill A, which is located approximately 30 kilometers (17 miles) east-18 northeast of Carlsbad, is the result of dissolution of the Capitan Limestone 19 at depth, collapse of the Salado and younger formations into the dissolution 20 cavity, and dissolution of Salado and Rustler salts in the down-dropped 21 22 blocks within the chimney, possibly by downward-moving water. The 23 association of the other chimneys and San Simon Sink with the location of the 24 buried Capitan Reef suggests that deep dissolution only occurs where 25 groundwater circulates within the reef and where rocks containing evaporite 26 minerals have collapsed into cavities within the reef.

27

10

Breccia chimneys and buried reefs have not been identified within the interior of the Delaware Basin. Based on the association of known chimneys and reefs, the deep dissolution that produces breccia chimneys is not physically reasonable at or near the WIPP.

33 Shallow Dissolution

34

32

Whereas deep dissolution involves processes occurring in the lower Salado and 35 deeper formations, shallow dissolution involves processes that can affect the 36 upper Salado and shallower formations. Shallow dissolution has the potential 37 of occurring as a result of vertical recharge from the surface, horizontal 38 flow along the contact zone between the Salado and Rustler Formations, and 39 40 migration of the dissolution front from Nash Draw toward the WIPP. Each type 41 of dissolution has the potential of disrupting the Rustler Formation to an extent that groundwater flow in the Rustler Formation is changed from 42 confined to unconfined conditions. A change in groundwater-flow conditions 43

1 could have an important impact on the lengths of flow paths and the rate of 2 groundwater flow.

3

4 In the subsurface at the WIPP, the shallowest unit that is composed of a significant soluble component is the Forty-niner Member of the Rustler 5 Formation. With the exception of isolated sandstone lenses in the Dewey Lake 6 Red Beds, the units overlying the Forty-niner Member are not saturated 7 (Mercer, 1983; Brinster, 1991). The thickness of the units overlying the 8 Rustler Formation range from approximately 80 meters (260 feet) at the 9 western boundary of the WIPP to approximately 200 meters (650 feet) at the 10 eastern boundary (Brinster, 1991). Tests to determine the hydrologic 11 12 properties of the lower portion of the Dewey Lake Red Beds had to be stopped because of the low water content and permeability of the rocks (Beauheim, 13 1986, 1987a). In order for rainfall to reach the Forty-niner Member to 14 dissolve the halite component, this water must infiltrate through the 15 surficial wind-blown deposits and sandy Berino paleosol. Beneath the sandy 16 17 material, the water must pass through the dense and generally massive, although locally fractured, Mescalero caliche. Between the caliche and the 18 Forty-niner Member lie the sands and clays of the lower Dockum Formation and 19 75 to more than 150 meters (245 to 490 feet) of the Dewey Lake Red Beds. 20 Because of the low permeability of the lower portions of the Dewey Lake Red 21 Beds, the brine will have an extremely low flow rate, thereby blocking 22 additional infiltrating water from reaching and dissolving the salts in the 23 Rustler Formation. Because of the presence of both geologic and hydrologic 24 constraints on infiltration and groundwater flow, dissolution of salt by 25 infiltrating water at the WIPP, if this process can occur at all, will have a 26 low consequence on the hydrologic behavior of the disposal system. Because 27 of low consequence, this process can be eliminated from the performance 28 assessment of the WIPP. 29

30

31 A layer of material is present at the contact of the Salado and Rustler 32 Formations that has been interpreted as insoluble residue left after the dissolution of salt primarily of the Salado Formation (Robinson and Lang, 33 1938; Mercer and Orr, 1977; Mercer, 1983). This layer is referred to as the 34 Salado-Rustler contact residuum. The contact residuum extends from at least 35 the central portion of Nash Draw, across the WIPP, and into western Lea 36 County. Based on currently available data, the thickness of the contact 37 residuum within the WIPP ranges from 7 to 36 meters (23 to 118 feet) (Mercer, 38 1983; Lappin et al., 1989). Groundwater flow within the residuum is from an 39 unidentified recharge area, north to south across the WIPP, and then to the 40 southwest to the Pecos River (Mercer, 1983). Although the water-chemistry 41 data compiled in Lappin et al. (1989) do not indicate a trend in increasing 42 or decreasing total dissolved solids (TDS) or water density in the vicinity 43 44 of the WIPP, Brinster (1991) states that the brine concentration generally 45 becomes greater to the southwest and the groundwater is nearly saturated in

the portion of Nash Draw near the Pecos River. An increase in fluid density 1 in the direction of flow indicates that dissolution of the adjacent salt is 2 3 continuing, although the hydraulic properties of the residuum suggest that groundwater flow within this unit is relatively slow, and the water-chemistry 4 data suggest little dissolution is occurring at the WIPP. Because 5 dissolution has occurred along the Salado-Rustler contact in the past, is 6 currently taking place to some degree, and is likely to continue into the 7 future, this process is part of the base-case scenario. The units that 8 9 overlie the contact residuum (especially the relatively brittle Mescalero caliche) in the immediate vicinity of the WIPP have not been noticeably 10 disrupted by this dissolution process, except along the margin of Nash Draw 11 (U.S. DOE, 1980a). In addition, the mechanically brittle anhydrite layers in 12 the Rustler Formation tend to be unfractured. Because this long-term 13 14 dissolution process seems to have had a minimal impact at the WIPP, this process is not likely to have a significant effect on the performance of the 15 disposal system. 16

Nash Draw was formed by the dissolution of evaporite minerals in the Rustler 18 and upper Salado Formations (Bachman, 1981; Lambert, 1983; Brinster, 1991). 19 Interpretations differ as to the duration of this dissolution. Bachman 20 (1974) estimated that Nash Draw began to form since the development of the 21 Mescalero caliche 510,000 years ago (Bachman, 1985) and is continuing at 22 present, although the rate of dissolution has not been a constant because of 23 variations in the climate. With climatic conditions in southeastern New 24 Mexico in a drying trend since the Pleistocene Epoch, the rate of dissolution 25 26 has been decreasing. Brinster (1991) concluded in his synthesis of the regional geohydrology that a fracture system developed at the location of 27 Nash Draw in association with the uplift of the Guadalupe Mountains, which is 28 in the same time frame as the estimated age of uplift by Bachman (1974). 29 Recharge during wetter climatic conditions and groundwater from the overlying 30 units drained through this fracture system, dissolving the evaporite minerals 31 32 and resulting in the collapse of the overlying units. Drainage of groundwater from the overlying units allowed dissolution to continue during 33 drier climatic conditions. Once the groundwater drained from the overlying 34 units, the dissolution process that formed Nash Draw stopped from a practical 35 point of view. By this interpretation, the dissolution that formed Nash Draw 36 was a relatively short-lived process that is not continuing at present. A 37 change to a much wetter climate presumably could result in a limited 38 resumption of dissolution, although at lower rates than during the formation 39 of Nash Draw. 40

41

17

If Bachman's (1974) interpretation of the origins of Nash Draw is correct,
Nash Draw is continuing to expand in width. At the closest point to the
WIPP, Nash Draw is approximately 6.4 kilometers (4 miles) wide. If Nash Draw
did originate 510,000 years ago and the process is continuing, the mean rate

of expansion has been 0.01 meters/year (0.4 inches/year). With symmetrical 1 expansion from the axis of the draw, the rate of expansion toward the WIPP is 2 half of this value, or 0.005 meters/year (0.2 inches/year). Assuming that 3 climatic change to wetter conditions can extend this rate of expansion for 4 the next 10,000 years, the margin of Nash Draw would be approximately 50 5 meters (164 feet) closer to the WIPP than the present location. With the 6 WIPP located approximately 6.4 kilometers (4 miles) from Nash Draw, the 7 presence of Nash Draw is unlikely to affect the performance of the disposal 8 A ten-fold increase in this mean rate of expansion would result in 9 system. the margin of Nash Draw being 500 meters (1640 feet) closer to the WIPP than 10 the present location, although a climatic change of a magnitude that would 11 produce such an increase in the rate of expansion in the relatively short 12 time frame of 10,000 years is not physically reasonable. 13

15 If Brinster's (1991) interpretation is correct, the expansion of Nash Draw 16 from the present location to the WIPP by dissolution is not a physically 17 reasonable process within the time frame of regulatory concern, because the 18 primary source of water for the dissolution of evaporites was groundwater 19 whose source has, for practical purposes, been depleted.

20

14

21 Summary of Screening of Dissolution

22

23 Based on the geologic setting of confirmed and likely breccia chimneys and the lack of compelling field evidence of deep dissolution that could result 24 in the formation of breccia chimneys at or near the WIPP, processes that 25 could result in deep dissolution affecting the WIPP are not physically 26 reasonable. Of the possible processes that could result in shallow 27 dissolution, dissolution along the contact of the Salado and Rustler 28 Formations is an ongoing process. This process is part of the undisturbed 29 30 performance of the disposal system. The rate of dissolution within this zone is slow enough that no significant changes will occur to the groundwater-flow 31 system during the time period of regulatory concern. Dissolution that could 32 result in the margin of Nash Draw reaching the WIPP within the time frame of 33 interest is not physically reasonable. 34

35

36 Formation of Interconnected Fracture Systems

37

Fracture systems do not spontaneously occur but instead are the product of 38 the occurrence of events or processes. If an event or process produces 39 fractures, the effects of these fractures on the hydrologic properties of the 40 41 disposal system should be included in consequence modeling as an alteration or modification of base-case conditions. An originating event or process may 42 43 be appropriate for inclusion in scenario development, whereas the inclusion of fracture systems, which are produced by events and processes, is not. No 44 tectonic processes are occurring in the northern Delaware Basin at a rate 45

that would produce new fracture systems in rocks in the WIPP area within thetime frame of regulatory concern.

3

4 Faulting

5

17

Faulting refers to either the creation of a new fault or renewed movement on 6 an existing fault. The creation of a new fault is of concern to performance 7 assessment because of the potential for the fault to pass through the 8 disposal facility and rupture waste containers and possibly engineered 9 barriers to groundwater flow. In addition, new faults may provide new 10 pathways for groundwater flow or divert flow to alternate pathways. 11 Reactivation of existing faults may modify hydraulic properties along 12 existing pathways of groundwater flow and possibly redirect groundwater flow 13 to alternate pathways. Modifications to existing pathways or the creation of 14 new pathways may affect the travel time of radionuclides transported by 15 groundwater to reach the accessible environment. 16

Structure-contour maps for several major units in the WIPP vicinity (Powers 18 et al., 1978a) indicate that sedimentary units older than the Salado 19 Formation are faulted and the Salado Formation and younger units are not. 20 Although this change in the occurrence of faults coincides with a change in 21 the construction of the maps from seismic-reflection data to borehole data, 22 the quantity and spacing of the borehole data suggests that the absence of 23 faults in the Salado and younger units is real. In addition, no tectonic 24 fault scarps have been identified within the interior of the northern 25 Delaware Basin. As discussed in the previous section on "Magmatic Activity," 26 the lamprophyre dike and Nash Draw may be located along a long-lived zone of 27 crustal weakness. The relatively undisturbed nature of the brittle rocks of 28 the Rustler Formation indicates that this zone of weakness does not extend to 29 the WIPP. 30

31

Movement on faults typically occurs along existing faults in tectonically 32 active areas, and the formation of a new fault that is not subsidiary to an 33 existing fault within such areas is a rare event (Bonilla, 1979). At the 34 WIPP study area, faults are present in rock units older than the Salado 35 Formation (Powers et al., 1978a). The lack of evidence for the existence of 36 faults within the Salado Formation and younger units and the low seismic 37 38 activity within the northern Delaware Basin indicate that the tectonic setting has not been suitable for faulting to occur since at least the end of 39 Permian time 245 million years ago. 40

Faulting as a result of tectonic activity is excluded from the WIPP
performance assessment because the establishment of tectonic conditions that
would result in faulting in the vicinity of the WIPP is not physically
reasonable in the time frame of regulatory concern.

46

1 4.1.4 EVALUATION OF HUMAN-INDUCED EVENTS AND PROCESSES

2

13

In addition to the three screening criteria proposed by Cranwell et al. 3 (1990), Appendix B of the Standard limits the severity of human intrusion at 4 the location of the waste panels that need to be included in the performance 5 assessments. As stated in Appendix B, "...inadvertent and intermittent 6 intrusion by exploratory drilling for resources (other than any provided by 7 the disposal system itself) can be the most severe intrusion scenario assumed 8 by the implementing agencies" (U.S. EPA, 1985, p. 38089). The Standard does 9 not specifically define the term "severe" as used in Appendix B, but the 10 preamble to the Standard does provide guidance as to the intent of the EPA. 11 According to the preamble, 12

The implementing agencies are responsible for selecting the specific 14 information to be used in these [including the limiting assumptions 15 regarding the frequency and severity of inadvertent human intrusion] and 16 other aspects of performance assessments to determine compliance with 40 17 CFR Part 191. However, the Agency [EPA] believes it is important that 18 the assumptions used by the implementing agencies are compatible with 19 those used by EPA in developing this rule. Otherwise, implementation of 20 the disposal standards may have effects quite different than those 21 anticipated by EPA (U.S. EPA, 1985, p. 38074). 22

In calculating population risks as background in developing the Standard, Smith et al. (1982) considered exploratory drilling as the only realistic mode of human intrusion into the waste-storage facility. Following the example set by the EPA, exploratory drilling is the only mode of human intrusion within the boundaries of the waste panels that will be included in the performance assessments of the WIPP.

30

23

31 Explosions

32

Human-induced explosions are a concern to the WIPP performance assessment, because this type of event has the potential of breaching the engineered barriers and/or introducing disruptions to the geologic and hydrologic systems. These disruptions could alter the groundwater-flow path within the disposal system and provide shorter pathways for radionuclides to reach the accessible environment. Possible explosions associated with nuclear criticality are considered in a separate section.

40

Based on the current level of technology, the only type of human-induced explosion that has the potential of significantly impacting the performance of the disposal system is nuclear in origin. The deliberate use of a nuclear device to disrupt the disposal system or exhume waste would not be included in the WIPP performance assessment because Appendix B of the Standard limits the human-intrusion events that need to be considered to those that are inadvertent.

3

13

30

Inadvertent explosions at the location of the waste panels also can be 4 excluded from the WIPP performance assessments. Appendix B of the Standard 5 limits the severity of human intrusion at the location of the repository that 6 must be considered in performance assessments to exploratory drilling for 7 resources. Explosions away from the location of the waste panels that 8 potentially could result in the inadvertent disruption of the disposal system 9 include surface or near-surface bomb detonations during war, underground 10 testing of nuclear devices, and underground detonation of nuclear devices for 11 peaceful purposes. 12

The possibility of surface or near-surface detonation of nuclear bombs during 14 warfare requires that nations maintain nuclear arsenals into the future, a 15 war takes place that involves nuclear weapons, and either a strategic 16 facility worth targeting by an enemy exists in the WIPP region or the 17 delivery system malfunctions or is damaged, causing the nontargeted area of 18 the WIPP region to be hit. Surface nuclear detonations may affect hydrologic 19 systems by a combination of cratering and seismic waves, whereas the effects 20 of a near-surface detonation will primarily be the result of seismic waves. 21 The effects of an explosion on the disposal system will be greater the closer 22 the explosion occurs to the WIPP, but the closer an explosion occurs, the 23 lower the probability of the occurrence because of the progressively smaller 24 area surrounding the WIPP. Seismic effects on the source term or the 25 disposal system are likely to be addressed within parameter uncertainty 26 during modeling. Nuclear explosions in the WIPP region during warfare that 27 could have significant effects on disposal-system performance are low-28 probability events. 29

The topic of future nuclear testing presumes that future societies will 31 32 continue to possess nuclear devices that require testing. For this discussion, future nuclear testing is assumed to require a large area with 33 isolation similar to the Nevada Test Site. Whereas the conditions of size 34 and isolation are met in the northern Delaware Basin at present, future uses 35 of this region are not known. If underground testing is conducted in the 36 Delaware Basin, tests presumably would occur in the bedded salt of the Salado 37 Formation because of the lack of fractures within this unit and the ability 38 of salt to heal fractures generated during testing. The size of nuclear 39 40 devices tested would have to be relatively small in order to assure that the low-permeability units that impede dissolution of the Salado Formation are 41 not ruptured. Questions arise as to whether salt would be suitable for 42 nuclear testing given the high potential for compromising the test site by 43 salt dissolution, and the selection of the northern Delaware Basin instead of 44 other areas considering the vast areas of the continental United States that 45

are underlain by bedded salt. The consequences of testing are likely to be
limited to seismic effects on permeabilities of hydrologic units and
premature rupturing of waste drums and containers. Both of these effects can
be addressed with parameter uncertainties during performance modeling,
although selection of the northern Delaware Basin for a future test site has
a low probability, considering the numerous other locations and options for
testing.

Nuclear explosions have the potential of providing a technique for fracturing 9 oil- and natural-gas-bearing units to enhance resource recovery. 10 Future societies may use this technique or evaluate the use of non-nuclear 11 explosions as hydrocarbon resources become depleted. The size of explosions 12 will be relatively small in order to maximize fracturing of the unit being 13 exploited instead of maximizing cavity size or fracturing the surrounding 14 rocks, which could allow the hydrocarbons to escape. In the area surrounding 15 the WIPP, the stratigraphic units with the highest resource potential tend to 16 be thousands of meters deeper than the waste panels. Disruptions to the WIPP 17 disposal system and modification of the source term resulting from explosions 18 at depth are likely to be minor to nonexistent. 19

20

8

21 Nuclear or other large-scale explosions at the location of the waste panels can be excluded from performance assessments, because these explosions would 22 be more severe than required by the Standard for inclusion in these 23 assessments. Accidental surface and near-surface nuclear explosions during 24 warfare can be excluded from the assessments on the basis of low probability. 25 Nuclear testing and/or the use of nuclear devices for enhanced resource 26 27 recovery are highly speculative future human activities. The combination of the likelihood that these activities will occur in the future at a location 28 and be of a magnitude that will affect the WIPP disposal system has a 29 sufficiently low probability to eliminate such events from scenario 30 development. 31

32

33 Drilling

34

Appendix B of the Standard restricts the type of drilling that needs to be 35 included in performance assessments to exploratory drilling for resources. 36 This restriction eliminates from consideration the higher drilling densities 37 associated with the development of resource deposits. This appendix also 38 discusses the frequency of exploratory drilling. In the section on 39 Institutional Controls, the Standard states that "...the Agency [EPA] 40 believes that passive institutional controls can never be assumed to 41 eliminate the chance of inadvertent and intermittent human intrusion into 42 these disposal sites" (U.S. EPA, 1985, p. 38088). This statement is 43 interpreted here to require the probability of exploratory drilling by at 44 least one borehole to be greater than the cutoff established in the Standard 45

(i.e., greater than 1 chance in 10,000 in 10,000 years). In the section of 1 Appendix B entitled "Frequency and Severity of Inadvertent Human Intrusion 2 into Geologic Repositories," the statement is made that "...the Agency [EPA] 3 assumes that the likelihood of such inadvertent and intermittent drilling in 4 10,000 years need not be taken to be greater than 30 boreholes per square 5 kilometer of repository area per 10,000 years for geologic repositories in 6 proximity to sedimentary rock formations..." (U.S. EPA, 1985, p. 38089). 7 This statement provides an upper limit on the drilling density in 10,000 8 years for consideration in performance assessments. The preamble to the 9 Standard does provide an option for the use of other drilling densities by 10 including the following statement: 11

The Agency [EPA] believes that performance assessments should consider 13 the possibilities of such intrusion, but that limits should be placed on 14 the severity of the assumptions used to make the assessments. Appendix 15 B to the final rule describes a set of parameters about the likelihood 16 and consequences of inadvertent intrusion that the Agency assumed were 17 the most pessimistic that would be reasonable in making performance 18 assessments. The implementing agencies may adopt these assumptions or 19 develop similar ones of their own (U.S. EPA, 1985, p. 38077). 20

With 30 boreholes/km² in 10,000 years as a "worst-case" assumption, the 22 implication of the above statement is that the implementing agencies should 23 strongly consider developing site-specific drilling densities. For the WIPP 24 performance assessment, a panel of experts with a broad spectrum of 25 backgrounds was convened to propose possible modes of inadvertent human 26 intrusion at the WIPP during the next 10,000 years (Hora et al., 1991). 27 Topics addressed by the panel included drilling densities and time frames of 28 resource exploration for various possible future states of civilization. 29 Each of the four teams within the panel estimated future drilling densities 30 substantially lower than 30 boreholes/km² in 10,000 years. 31

Because of the wording of the Standard, exploratory drilling for resources is
retained for inclusion in performance assessments. Exploratory drilling can
be subdivided to identify more than one event to facilitate computer modeling
and both consequence and sensitivity analyses.

37

32

12

21

Based on economic conditions and resource demands at the time of geological 38 characterization, potash and natural gas were identified as the only two 39 resources with economic potential at the WIPP (Powers et al., 1978b). The 40 McNutt Potash Member of the Salado Formation, which is approximately 400 feet 41 (120 meters) above the depth of the proposed waste panels (Nowak et al., 42 1990), is the only unit in the stratigraphic sequence in the northern 43 Delaware Basin with potash in economic quantities, although economically 44 recoverable potash is not present in this unit at all locations 45 (Brausch et al., 1982). Keesey (1976, 1979) concluded that the Morrow 46

Formation at a depth in excess of 11,600 feet (3550 meters) beneath the waste 1 panels is the only reasonable target for resource exploration for natural gas 2 and that crude oil would not be reasonably extractable from any unit at this 3 location. Depending on the resource needs of future societies, all 4 exploratory drilling could be shallower than the waste panels if the target 5 resource is potash, all exploratory drilling could be deeper than the waste 6 panels if the target resource is natural gas, or drilling could be divided in 7 any ratio between the two depths if both resources are targets. 8 9

10 Mining

11

During geological characterization of the WIPP location (Powers et al., 12 1978a,b), each of eight natural resources were evaluated for their potential 13 occurrence in economic quantities at the WIPP. The resources investigated 14 were caliche, gypsum, salt, uranium, sulfur, lithium, potash, and 15 hydrocarbons. Uranium was not found to be present in even marginally 16 economic quantities. Sulfur deposits have not been identified in the 17 northern Delaware Basin. Lithium had been reported in marginally economic 18 quantities in samples from a single brine reservoir, but Powers et al. 19 (1978b) did not consider lithium as a potential resource at the WIPP because 20 of a lack of evidence that brine of an appropriate composition and quantity 21 exists at this location. Caliche, gypsum, and salt were not considered to be 22 economical at the WIPP because of their widespread occurrence and the 23 existence of more easily accessible deposits elsewhere in the region. Crude 24 oil was not considered to be available in sufficient quantity to qualify as a 25 potentially economically viable resource. Only natural gas and potash were 26 concluded to be potentially exploitable resources. 27

28

Bedded-salt deposits also have the potential of being mined to form cavities 29 for natural-gas storage. Guidance in the Standard excludes consideration of 30 mining of storage facilities at the WIPP, because mining is a more severe 31 disruption of the disposal system than exploratory drilling for resources. 32 Outside the boundary of the WIPP, mining cavities for natural-gas storage can 33 be evaluated in the same way that Powers et al. (1978b) evaluated mining 34 salt. The existence of extensive areas underlain by bedded salt 35 substantially reduces the likelihood of cavities being mined in the immediate 36 vicinity of the WIPP. 37

38

Of the two potential resources at the WIPP identified in Powers et al. (1978b), potash must be recovered by mining. Langbeinite is the primary mineral mined for potash. Conventional mining currently is active in the region around the WIPP. Based on the physical properties of langbeinite, the characteristics of the ore deposits, and the limited availability of suitable water, Brausch et al. (1982) concluded that solution mining is not feasible in this area.

46

4-34

The Standard excludes mining of any type at the location of the waste panels 1 2 from inclusion in scenarios for performance assessments. If mining beyond the boundaries of the WIPP affects the disposal system, mining needs to be 3 included in scenario development. Brausch et al. (1982) noted that 4 subsidence commonly occurs over potash mines in the WIPP region, although no 5 incidence of water leaking into the mines from overlying units has been 6 observed. Subsidence over a mine has the potential of forming a catchment 7 basin where runoff can accumulate (Guzowski, 1990). If the underlying units 8 are sufficiently fractured by the subsidence, accumulated water may have a 9 pathway to recharge these underlying units. In the WIPP region, this type of 10 recharge has the potential of affecting groundwater flow in members of the 11 12 Rustler Formation at the WIPP and/or adding water to what is now the unsaturated zone. 13

Whether or not potash in southeastern New Mexico will continue to be mined in the long-term future is not known. The probability of future mining is assumed to be above the cutoff established in the Standard. Effects of subsidence on recharge and groundwater flow also are not known, although computer modeling by the WIPP Performance Assessment Division is in progress to estimate these effects. For preliminary scenario development, potash mining beyond the area of the waste panels is retained.

23 Injection Wells

24

22

14

Injection wells refers to the drilling of wells followed by injection of 25 fluid. This fluid can either be water (e.g., water produced during the 26 exploitation of resources or water injected to enhance hydrocarbon recovery) 27 or hazardous liquids (e.g., byproducts of chemical industries). Injection 28 wells are of interest to performance assessment because a waste-filled room 29 or drift may be encountered during the drilling process, thereby providing a 30 31 mechanism for transporting waste to the surface, an abandoned well could create a new pathway for groundwater after the well is abandoned, and the 32 33 injection of a sufficient quantity of liquid may change the potentiometric field for the groundwater. 34

35

Saturated sedimentary units within a basin can be underpressured (below 36 hydrostatic) if the basin is topographically tilted and capped by a thick 37 38 sequence of low-permeability rocks (Belitz and Bredehoeft, 1988). A 39 preliminary examination of well data for the northern Delaware Basin by Brinster (1991) found that units between the base of the Castile Formation 40 and a depth of 1,800 meters (approximately 6,000 feet) are underpressured. 41 Units deeper than 1,800 meters also are underpressured except where natural-42 gas reservoirs are present. 43

Whether fluid injection for any reason is a possible future event depends on 1 the technological status and societal attitudes of future civilizations, as 2 well as the hydrogeologic suitability of units at depth at a particular 3 location. Although the deeper units in the basin tend to be underpressured, 4 pressures associated with natural-gas production from deep units in the 5 Delaware Basin tend to be greater than hydrostatic (Lambert and Mercer, 6 1978). Deep units beneath the WIPP have been identified as potentially 7 containing hydrocarbon resources with natural gas possibly being present in 8 economic quantities (Powers et al., 1978b). The presence of natural-gas 9 reservoirs in units beneath the WIPP would limit or possibly eliminate the 10 availability of underpressured units for injection of fluid at this location. 11 12

Unless the location of the waste panels has some uniquely favorable 13 characteristics for injection wells that are currently not recognized, the 14 selection of this location, which consists of an area of approximately 0.5 15 km^2 (0.2 mi²), seems to be an unlikely event considering the area of the 16 basin $(33,000 \text{ km}^2 (12,470 \text{ mi}^2))$ and the area of the region as a whole where 17 injection wells could be located. A qualitative assessment of this location 18 being chosen suggests that the probability is low but not positively less 19 than the cutoff value provided in the Standard. 20

21

A borehole being drilled for an injection well could penetrate a waste-filled 22 room or drift and possibly a brine reservoir in the Castile Formation. If 23 the assumption is made that the geologic characteristics of the deep 24 formations beneath the WIPP have hydrologic characteristics acceptable for 25 injection wells, both intercepting a room or drift and/or a brine reservoir 26 are physically reasonable. The effects of either occurrence on the 27 performance assessment of the WIPP would be approximately the same as deep 28 resource-exploration boreholes. For injection wells, more care might be 29 taken in the emplacement of seals, because the use and abandonment of 30 31 injection wells tend to be less routine than for oil and gas exploration boreholes. 32

33

43

The effects of injection wells on groundwater flow in units shallower than 34 the Salado Formation is likely to be negligible. Units selected for 35 injection will be thousands of feet deeper than the Rustler Formation, which 36 is the most likely path for the groundwater transport of radionuclides to the 37 accessible environment. The low-permeability Bell Canyon, Castile, and 38 39 Salado Formations are approximately 4,000 feet (1,220 meters) thick at the WIPP (Powers et al., 1978a), and these low-permeability units will isolate 40 the groundwater flow in the Rustler Formation from the pressure increases in 41 the much deeper units caused by the injection of fluids. 42

44 The emplacement of injection wells cannot be immediately eliminated from45 consideration on the basis of probability of occurrence, although the

locations at which such wells are drilled are limited by restrictions in the 1 Appendix B of the Standard states that the intruder's own 2 Standard. exploration procedures will soon detect that the drilling activity is not 3 compatible with the area. Because the candidate hydrologic units for 4 injection are substantially deeper than the waste panels, a well being 5 drilled for injection that penetrates a waste-filled room or drift will not 6 7 be drilled for additional thousands of meters to an injectable unit if the driller soon detects the incompatibility of the area with injection. 8

Injection wells can be eliminated from consideration in performance assessments because of a lack of consequence. Because the units suitable for injection are separated from the waste panels and hydrologic units above the panels by the virtually impermeable evaporite sequences of the Castile and Salado Formations, the injection of fluid (e.g., brine associated with natural-gas production) at depth will have no effect on the disposal system.

17 Withdrawal Wells

18

9

19 Withdrawal wells refer to boreholes drilled and completed for the extraction of groundwater, oil, or natural gas. Wells withdrawing groundwater have the 20 potential of altering the flow gradient in the area surrounding a well or of 21 altering the flow on a larger scale if water is withdrawn by a field of 22 wells. Water wells also have the potential of providing an alternate pathway 23 for radionuclides to reach the accessible environment if the unit being 24 pumped contains radionuclides that have escaped from the waste-filled rooms 25 and drifts. Because the Standard restricts the severity of drilling that 26 needs to be included in performance assessments of the WIPP to exploratory 27 drilling for resources, oil or gas production wells, which are withdrawal 28 29 wells, only need to be considered in areas outside of the repository area. Areas where oil or gas are withdrawn have the potential of surface subsidence 30 31 in response to the removal of the confined fluid that supports some of the weight of the overburden. 32

33

34 <u>Water Wells</u>

35

Water-producing units above the Salado Formation are restricted to the 36 Culebra Dolomite and Magenta Dolomite Members of the Rustler Formations, 37 38 although the yield of the Magenta Dolomite is so low that the unit generally receives little attention (Brinster, 1991). Little is known of the specific 39 hydrologic properties of the units deeper than the Salado Formation at the 40 WIPP, but with the exception of possible brine reservoirs in the Castile 41 Formation, water-producing units beneath the Salado Formation are in excess 42 43 of 5,000 feet (1,500 meters) deep at this location. Because of the considerable depth to the deeper water-producing units, only the Culebra 44

Dolomite is regarded as a realistic candidate for water usage in this
 screening of events and processes.

One of the requirements for a "significant source" of groundwater as defined 4 5 in the Standard is a total-dissolved-solids (TDS) content of less than 10,000 mg/l, which has been used as the upper TDS limit to potable water for 6 7 both people and cattle (Lappin et al., 1989). Based on the 10,000 mg/ ℓ -TDS limit, no potable groundwater has been identified in the Culebra Dolomite 8 within the land-withdrawal boundaries of the WIPP (Lappin et al., 1989). In 9 the Final Supplemental Environmental Impact Statement (U.S. DOE, 1990c), no 10 potable water was projected to occur within 5 kilometers (3.1 miles) of the 11 waste panels. A possible exception to this TDS distribution is one of four 12 13 water samples taken from well H-2 at different times. One sample had a TDS of 8,900 mg/ ℓ , whereas the other three samples taken at later times ranged 14 from 11,000 to 13,000 mg/ ℓ (Lappin et al., 1989). An explanation of these 15 changes in TDS content for the water from this well has not been verified, 16 17 nor has the reason been determined for the anomalously low TDS content of the 18 water for this particular location.

Whereas a lack of potable water within 5 kilometers of the waste panels would 20 seem to eliminate the emplacement of water wells from scenario analyses, 21 other considerations require that this event be retained for further 22 23 evaluation. Most of the groundwater in the Culebra Dolomite is substantially more saline than seawater. At some locations (e.g., H-1, H-2, H-4, H-14, 24 P-15), the TDS content of the water may be suitable for some types of fish or 25 shrimp farming if the sustained yield of the Culebra Dolomite is large enough 26 to supply such an operation. Cones of depression from pumping wells at these 27 locations could alter the groundwater-flow pattern in the dolomite and 28 increase the rate of groundwater flow or alter the pathway to the accessible 29 30 environment.

31

33

19

3

32 Oil and Gas Wells

The Standard limits the severity of human intrusion at the waste panels to exploratory boreholes. Oil and gas withdrawal wells would be associated with production rather than exploration. Withdrawal wells at oil or gas fields at a distance from the waste panels need to be considered for their possible effects on the groundwater-flow system, especially those effects from subsidence that result in fracturing of shallow units and enhanced recharge.

Resource evaluation of the WIPP region was part of site characterization.
Natural gas in the Morrow Formation was concluded to be the only possible
hydrocarbon resource with economic potential in the area (Keesey, 1976,
1979). At the WIPP, the Morrow Formation is at a depth in excess of 13,000
feet (3,960 meters) (Powers et al., 1978a). Because of the depth and

rigidity of the possible production horizons, subsidence would not be
expected to occur if gas (if present) was removed (Brausch et al., 1982).

4 Geothermal Wells

5

3

An assessment of the geothermal potential of the United States (Muffler,
1979) identified no potential geothermal resources in southeastern New
Mexico. This conclusion was based on the lack of thermal springs and the
relatively low heat flow measured in boreholes in this region.

10

Because favorable geothermal conditions do not exist in the northern Delaware Basin and significant changes in the geothermal regime within the time frame of regulatory concern are not physically reasonable, the drilling of geothermal wells is excluded from scenario development.

15

17

16 Summary of Withdrawal Wells

Poor water quality at and near the WIPP precludes the emplacement of water wells for domestic or livestock use. Depending on the tolerable water quality and sustainable water needs for fish or shrimp farming, emplacement of water wells into the Culebra Dolomite may be a realistic consideration for performance assessment because of possible alteration of the groundwater-flow field. Emplacement of water wells is retained for further evaluation and is designated Event E3.

25

Withdrawal of natural gas from deep reservoirs typically does not result in 26 subsidence of the overlying units. Without subsidence, natural-gas 27 withdrawal wells outside the boundaries of the WIPP will not affect the 28 disposal system. This type of withdrawal well can be eliminated from 29 consideration in the WIPP performance assessments because of low consequence. 30 The EPA guidance for implementation of the Standard states that human 31 intrusion at the location of the waste panels with consequences more severe 32 33 than exploratory drilling for resources need not be considered. Gasproduction wells at this location can be eliminated from consideration based 34 on regulatory restriction. 35

37 Irrigation

38

36

Irrigation uses water from rivers, lakes, impoundments, and/or wells to supplement the rainfall in an area to grow crops. The amount of water needed depends on the type of crop, the amount, timing, and distribution of naturally occurring precipitation, the amount of evapotranspiration, and the type of soil or sediments being irrigated. Irrigation is of interest to performance assessment because of the possibility that the water added to the

surface will infiltrate and reach the water table, possibly affecting 1 groundwater flow and the transport of radionuclides. 2 з In Eddy County, irrigation of the Pecos River valley began in 1887 using 4 water from both the river and wells (Pasztor, 1991). At present, 5 agricultural activity in this region is restricted to areas near the Pecos 6 and Black Rivers where water is available from either impoundments or from 7 shallow wells in the alluvial aquifers near the rivers (Hunter, 1985). 8 9 Two major obstacles exist to the use of irrigation at the WIPP. One is the 10 poor quality of the soil. Nearly the entire area of the WIPP is covered by 11 12 stabilized sand dunes that can be as much as 100 feet (30 meters) thick (Powers et al., 1978a). Beneath these sand dunes is the Berino paleosol, 13 which consists of up to 1.5 feet (0.4 meters) of argillaceous sand. 14 Underlying this unit is up to 10 feet (3 meters) of the Mescalero caliche, 15 which is a well-cemented calcareous paleosol. Any attempt at agricultural 16 17 development at this location would require considerable soil modification. The other problem is the supply of water in both the quantity and quality 18 required for crops. Water quality may be less of a concern in the future as 19 more salt-tolerant crops are identified and developed (Gibbons, 1990). 20 21 although a salt content equivalent to seawater seems to be an upper limit for most naturally occurring plants. Sources of water capable of long-term yield 22 are few in number in the WIPP region, and the sources that do exist generally 23 are already committed (e.g., the Pecos River) and/or are being mined and are 24 likely to be depleted (e.g., the Capitan Limestone). Geologic units deeper 25 than the Bell Canyon Formation are possible new sources of water for 26 irrigation, although the several thousand foot depth to these units is 27 28 considerable for irrigation wells, the amount of water available is not 29 known, and the salinity of the water is likely to be high. 30 31 The WIPP is a relatively small area within the southeastern portion of New 32 Mexico. By the time of the assumed loss of active institutional controls 100 years after closure of the WIPP, population pressures for more water should 33 be intense. If technological breakthroughs have occurred and desalination is 34 economically feasible for irrigation, vast areas of southeastern New Mexico 35 and West Texas will be available for agricultural uses. Even with 36 37 desalination, water supplies are limited in the region. The land available for irrigation is likely to outstrip the available water. As a result of 38 limited water supplies, areas with better soils will be the primary 39 candidates for irrigation (Swift, 1991b). Additional land at the WIPP with 40 41 poor soil is unlikely to divert water from committed uses. If large-scale 42 desalination does not develop, no uncommitted water is likely to be available to irrigate a newly available area with poor soil. 43

```
44
```

Irrigation at the WIPP is not included in the performance assessments because
 of the low probability of the combination of factors and necessary conditions
 required for this activity to be feasible.

5 Damming of Streams and Rivers

6

4

7 Damming refers to the building of a barrier across a topographically low area 8 in order to impound water. As with mass wasting, impoundments have the 9 potential of affecting the performance of the disposal system by altering 10 recharge if the impoundment extends over the disposal system or by altering 11 the groundwater gradients if the impoundment is near the disposal system. 12

In the WIPP area, only two topographically low features are of sufficient 13 size to warrent consideration for damming. These features are the Pecos 14 River and Nash Draw. During Pleistocene time, the Pecos River migrated to 15 its present position and became incised. According to Brinster (1991), as 16 the climate became drier and the hydraulic heads in the Capitan Reef became 17 lower, the overall flow in the river decreased to the point where the river 18 19 now has a small bed load and does little if any downward erosion. Whereas the Pecos River is incised, the depth of incision generally is not sufficient 20 for the damming of the river to form impoundments. At a limited number of 21 locations along the river, conditions were adequate for damming, and dams 22 23 have already been constructed at these locations. The options for additional 24 dams is severely limited. In addition, the Pecos River is approximately 24 kilometers (15 miles) from and more than 90 meters (300 feet) lower than the 25 surface location of the waste panels. Because of the limited option of 26 additional dams on the river and the distance of the river from the waste 27 panels, damming of the Pecos River can be eliminated from consideration in 28 performance assessments, because additional dams will be of no consequence to 29 the disposal system. 30

31

32 Nash Draw is the most pronounced topographic feature in the vicinity of the WIPP (see Figure 7-35, U.S. DOE, 1980a). The draw is a collapse feature 33 caused by the dissolution of underlying evaporites, and except for the 34 southern boundary, the boundaries of the feature are relatively steep and of 35 nearly uniform elevation. Nash Draw does not contain any perennial streams 36 or rivers to dam. Creation of an impoundment within the draw will be 37 38 considered with the possibility of water being supplied from outside of the feature. A dam across the southern end of the draw (approximately at the 39 location of borehole WIPP-21) would have to be over 3 miles (5 kilometers) 40 long, but such a dam would create a confined depression of approximately 40 41 square miles (103 square kilometers) and locally as much as 200 feet 42 43 (61 meters) deep. One problem with creating this impoundment is how to confine the water. Collapse structures caused by the dissolution of 44 45 evaporites beneath Nash Draw would provide pathways for water within the draw

to reach underlying fracture zones, which would act as conduits for the water 1 to leave the draw. The rocks and sediments at the margins of the feature 2 also could drain impounded water. To create an impoundment in Nash Draw, 3 large-scale leakage would have to be stopped or minimized or sufficient water 4 supplied to the impoundment to make up for the losses. Another and perhaps 5 fatal problem to creating an impoundment in this draw is providing enough 6 water to fill the draw and maintain the water level. Filling the draw will 7 be ignored in this discussion. In addition to leakage, evaporation would be 8 a major source of water loss. Pan evaporation in valleys in southeastern New 9 Mexico is approximately 110 inches (9.2 feet, 2.8 meters) per year (Powers et 10 al., 1978b), which for a 40-square-mile impoundment in Nash Draw would result 11 in the loss of approximately 235,000 acre-feet of water per year to 12 evaporation alone. Evaporation would be approximately 12 times the annual 13 flow of the Pecos River near Malaga (based on a time-weighted average of 26 14 ft^3/s ; Powers et al., 1978b). Based on the mean annual precipitation at 15 Carlsbad, which is 12 inches/year (30.5 centimeters/year) (Powers et al., 16 1978b), the evaporated quantity of water that would have to be replaced would 17 be approximately 11 times the annual flow volume of the Pecos River. Major 18 aquifer depletion would occur in the region if water wells were used to 19 maintain the water level. In the future when regional demands for water are 20 higher than today, the possibility of piping water from the Ogallala aquifer 21 northeast of the WIPP or a major river in another part of the country (e.g., 22 the Mississippi River) is not realistic. Because of the limited supplies of 23 water in southeastern New Mexico and the high demands for water that an 24 impoundment in Nash Draw would require, damming of Nash Draw is not retained 25 for performance assessments because this event is not physically reasonable. 26

27

The reason for eliminating damming from performance assessments depends on 28 the location of the topographic feature being considered for damming. For 29 the Pecos River, additional dams and impoundments will have no consequence on 30 the disposal system. Unless a sufficiently large source of water is located 31 to replace the water lost to leakage, evaporation, and use for human 32 activity, the construction of a dam to form an impoundment within Nash Draw 33 34 seems to have a low probability of occurring.

35

4.1.5 EVALUATION OF REPOSITORY- AND WASTE-INDUCED EVENTS AND PROCESSES 36

37

This category of events and processes has the potential of occurring as a 38 result of interactions of the engineered portion of the disposal system and 39 the surrounding rock. 40

1 Caving and Subsidence

2

13

An excavation at depth is not inherently stable because of differential 3 stresses exerted on inhomogeneous rock surrounding the opening. The collapse 4 of rock fragments from units above a subsurface excavation into the opening 5 is called caving. Depending on the size and depth of the excavation, caving 6 may result in measurable subsidence of the overlying land surface within a 7 relatively short time interval. For excavations in salt, salt creep will be 8 a contributing factor in the filling of the opening. Caving and subsidence 9 have the potential of affecting groundwater-flow patterns by enhancing the 10 vertical hydraulic conductivity between water-producing units or providing a 11 pathway for increased recharge or discharge. 12

For the waste-filled rooms and drifts at the WIPP, the amount of downward 14 movement of the overlying rock is limited by the fact that the rooms and 15 drifts will contain waste and backfill that can be compressed to certain 16 limits. Gas generated by corrosion of metals, bacterial action, and/or 17 18 radiolysis may be of sufficient pressure to impede the downward movement of rocks into the rooms and drifts. Whereas some caving of the roof can occur 19 into an open excavation if the opening is not specifically designed for 20 stability, any caving that does occur will be limited by the amount of space 21 not occupied by the waste and backfill. Salt creep without fracturing will 22 23 eventually become the dominant mode of deformation in the salt surrounding the rooms and drifts as the waste and backfill exert increasing resistance to 24 the creeping salt. 25

If the excavation, waste emplacement, and backfilling of the rooms and drifts occur within a relatively short time interval, caving will be minor to nonexistent. The amount of subsidence that can occur depends on the difference between the initial and compressed porosities of the various waste types and backfill, the amount of upward creep of the floor, the inward creep of the walls, the downward creep of the ceiling, and the gas pressure within the rooms and drifts.

34

26

Because of uncertainty about gas generated within the rooms and drifts, 35 specific data do not exist with which to determine the amount of salt creep 36 37 that will occur into the rooms and drifts after closure, and the amount of subsidence at the surface that will accompany this creep. Subsidence at 38 potash mines in the northern Delaware Basin may serve as an analog for the 39 process in the absence of pressurized gas. Mines in this region typically 40 operate at final extraction ratios ranging from 40 to 60 percent. With 41 42 6-foot (1.8-meter) openings in production areas and no backfill, the maximum predicted subsidence at the surface is approximately 2 feet (0.7 meters) 43 (Brausch et al., 1982). Based on data from Rechard et al. (1990a), the 44 extraction ratio for the planned waste panels will be 0.22. This much lower 45

4-43

extraction ratio along with the presence of both waste and backfill within 1 the rooms and drifts suggests that surface subsidence over the WIPP should be 2 less, and perhaps substantially less, than the maximum predicted subsidence 3 of 2 feet (0.7 meters) over potash mines in the area. 4 5 Predicting the specific amount of subsidence that may occur over the waste 6 panels requires a subsidence model. Because no TRU waste-disposal facilities 7 exist, no validated subsidence models exist for these types of facilities. 8 An alternative approach is to adopt subsidence models developed for other 9 types of subsurface openings, such as coal mines. The use of models for 10 analogous openings also does not solve the problem. According to Lee and 11

14 The difference in rock-mass behavior caused by site conditions alone would indicate that subsidence prediction and engineering cannot be 15 treated in purely mathematical terms. Although the NCB [British National 16 Coal Board] has developed quantitative, practical assessments of mining 17 effects in the United Kingdom, there is no generally applicable 18 19 subsidence model for the United States, nor are there adequately tested, empirical models for any of the major U.S. coal fields... (Lee and Abel, 20 21 1983, p. 25).

Abel (1983) with regard to subsidence over coal mines,

In an attempt to determine rough estimates of realistic bounds on the amount of subsidence that may occur over the waste panels, some simplified calculations have been performed. As a first step, the horizontal crosssectional area of the waste panels is converted from a rectangle to a circle to simplify the subsequent calculations. The dimensions of the waste panels are 2064 feet (629 meters) by 2545 feet (776 meters) (WEC, 1989), and a circle with an equivalent area has a radius of 1293 feet (394 meters).

The next step is to determine the area at the surface above the waste panels 31 that will subside. Subsidence will occur over an area larger than the 32 subsurface excavations, but at some distance laterally from the excavations, 33 no subsidence will occur. The angle between a vertical line from the edge of 34 the excavation to the surface and a line from the same edge of the excavation 35 to the boundary between subsidence and nonsubsidence on the surface is called 36 the angle of draw (α), which is also called the limit angle (Figure 4-3). A 37 major problem is that data are insufficient in the northern Delaware Basin 38 39 with which to derive or approximate a value of α for the WIPP.

Lee and Abel (1983) report that data collected by the NCB for longwall (as opposed to room and pillar) coal mines in Britain have a range of α from 25° to 35° with the range being much wider (but unspecified) when worldwide measurements are included. Although the WIPP waste panels are more analogous to room and pillar mines rather than longwall mines, no data are readily available for room and pillar mines, so the upper and lower values of the

4-44

12 13

22

TRI-6342-1282-0

Figure 4-3. Cross-Sectional Areas of Subsidence Over Waste Panels.
1 range of values reported by the NCB will be used to roughly determine the 2 area of surface subsidence.

4 In Figure 4-3, the radius of the subsidence area is r_1 . The length of r_1 can 5 be determined from the relationships

$$\tan \alpha = \frac{r_1}{(h_1 + h_2)}$$
 (4-2)

12 and as a result,

3

6

7 89 10

13

14

15

21

223456 22226

27

28

39 40

41

44

45 46 $r_1 = \tan \alpha x (h_1 + h_2)$ (4-3)

where h1 is the depth of the waste panels beneath the surface (2150 feet)
(655 meters) and h2 is the depth from the panels to the point where the
downward projection of the lateral limits of the zone of subsidence would
converge at depth. Although the value of h2 is not known directly, this
distance can be calculated from the relationship

$$\tan \alpha = \frac{r_2}{h_2} \tag{4-4}$$

which becomes

$$h_2 = \frac{r_2}{\tan \alpha}$$
(4-5)

where r_2 is the radius of the circular representation of the area of the waste panels. The value of r_2 is 1293 feet (394 meters).

37 For a value of α equal to 25°, h₂ in Equation 4-5 equals 2774 feet (845 38 meters). Substituting the appropriate values into Equation 4-3,

 $r_1 = \tan 25^\circ x (2150 \text{ feet} + 2774 \text{ feet}) = 2296 \text{ feet} (700 \text{ meters}).$

42 For a value of α equal to 35°, h₂ in Equation 4-5 equals 1847 feet (394 43 meters). Substituting the appropriate values into Equation 4-3,

```
r_1 = \tan 35^\circ x (2150 feet + 1847 feet) = 2799 feet (853 meters).
```

47 The next step is to determine the volume change in the waste-filled rooms and 48 drifts that must be accommodated by subsidence. Several assumptions must be 49 made at this point in this procedure. One assumption is that gas generated 50 by corrosion, microbial activity, or radiolysis does not affect the 51 compression of the waste and backfill by salt creep. Another assumption is 52 that all of the volume change in the rooms and drifts will be expressed as

4-46

subsidence at the surface. This second assumption requires that the rock units between the waste panels and the surface have no competence. Rock units that do have competence may bend without suffering complete failure when the support of underlying units is lost, thereby causing gaps (bed separations) to form between adjacent units. The formation of these gaps distribute some of the subsidence within the subsiding volume of material rather than entirely at the surface.

8

25

30

31 32

35

Salt creep will compress the contents of the waste-filled rooms and drifts 9 until the differential stresses have equalized. The rooms and drifts will 10 contain a variety of waste types with the addition of backfill, which is 11 assumed to consist of 70 percent crushed salt and 30 percent bentonite. 12 Calculations by Butcher (1991) indicate that an average void fraction of an 13 entire room of approximately 63 percent will be reduced to approximately 16 14 percent over a period of several hundred years. Rechard et al. (1990a) 15 reported the expected volume of excavated disposal rooms and drifts at the 16 WIPP to be 433.3 x 10^3 m³ (1.53 x 10^7 ft³). When the rooms and drifts are 17 fully loaded with waste and backfill, 63 percent of the original excavated 18 19 volume will remain as pore space, which will be equal to $2.72 \times 10^5 \text{ m}^3$ $(9.60 \times 10^6 \text{ ft}^3)$. Upon compaction by salt creep to a porosity of 16 percent, 20 the rooms and drifts will contain approximately 6.93 x 10^4 m³ (2.45 x 10^6 21 ft³) of void space. The change in volume will be 2.04 x 10^5 m³ (7.20 x 10^6 22 ft^3). This change in volume is assumed to be the volume of surface 23 subsidence that will occur over the waste panels. 24

To accommodate the volume of subsidence, the area of subsidence is assumed to subside uniformly, thereby forming a cylinder with the amount of surface subsidence represented by the height of the cylinder. The volume of a cylinder is

$$V = \pi r^2 h_3 \tag{4-6}$$

where h₃ is the amount of surface subsidence, and r is the r_1 in Equations 4-2 and 4-3 and Figure 4-3. From Equation 4-6,

$$h_3 = \frac{V}{\pi r^2} \quad . \tag{4-7}$$

40 For α equal to 25°, r₁ is equal to 2296 feet (700 meters). To accommodate a 41 volume of subsidence V equal to 7.20 x 10⁶ ft³ (2.04 x 10⁵ m³) in 42 Equation 4-7, h₃ equals 0.43 feet (0.13 meters). For α equal to 35°, r₁ 43 equals 2799 feet (853 meters), and h₃ then equals 0.29 feet (0.088 meters). 44 45 Although the actual value of α for the WIPP geologic setting (including the

46 effects of lateral salt-creep closure of the rooms and drifts), extraction

ratio, and waste and backfill conditions is not known, the above calculations
indicate the approximate magnitude of subsidence that may occur over the
waste panels. The next step in screening this process is to determine
whether subsidence on this order of magnitude has an effect on the disposal
system.

No direct information or data are available on the effects of subsidence on 7 the overlying groundwater-flow system in the northern Delaware Basin. An 8 alternative approach is to examine whether shallow dissolution in the WIPP 9 has affected groundwater flow. Removal of salt by dissolution leaving the 10 insoluble constituents reportedly is the origin for the Rustler-Salado 11 12 contact residuum (Robinson and Lang, 1938; Mercer and Orr, 1977; Mercer, 1983). If the subsequent lowering of the overlying units in response to the 13 removal of the salt has not disrupted the groundwater-flow system in these 14 overlying units, perhaps the subsidence over the waste panels also will not 15 affect the flow system. 16

Data compiled in Brinster (1991) indicate that the thickness of the contact 18 residuum within the boundary of the WIPP ranges from 7 to 16 meters (23 to 52 19 feet) with a seemingly anomalous thickness in borehole H-16 of 36 meters (118 20 feet). A substantially thicker sequence of salt had to be removed to leave 21 these thicknesses of insoluble residue. Based on data for nine sampled 22 intervals of salt from borehole ERDA-9 (Powers et al., 1978b), the weighted 23 24 average of the percent insoluble residue in salt is 4 percent at this location. This value was assumed to be representative of the amount of 25 insoluble residue in salt for the Salado Formation within the boundaries of 26 the WIPP. If a 7-meter (23-foot) thickness of insoluble residue represents 4 27 percent of the predissolution thickness of salt, the salt would have been 175 28 meters (574 feet) thick prior to dissolution. A 16-meter (52-foot) thickness 29 of residue corresponds to 400 meters (1312 feet) of salt prior to 30 dissolution. 31

32

6

17

The presence of the Rustler-Salado contact residuum suggests that a 33 substantial thickness of salt has been dissolved in order to leave the 34 thicknesses of insoluble residue that have been recorded in boreholes at the 35 WIPP. Both the Culebra and Magenta Dolomite Members of the Rustler Formation 36 37 continue to be confined water-producing units. If the units overlying the contact residuum have been lowered hundreds of meters without disrupting 38 confined hydrologic units in the Rustler Formation, the fraction of a meter 39 of additional lowering of units overlying the waste panels should not be 40 expected to disrupt the confinement of the water-producing units between the 41 waste panels and the surface. 42

43

1 Caving and subsidence associated with the presence of the waste panels will not be included in performance assessments of the WIPP because of the lack of 2 consequences of these phenomena. 3

Shaft and Borehole Seal Degradation 5

6

4

The engineered facility for the WIPP includes four shafts from the surface to 7 the level of the waste panels. At decommissioning of the facility, these 8 shafts will be sealed in order to prevent water above the Salado Formation 9 from reaching the waste, and to prevent water that may accumulate in the 10 rooms and drifts from having a pathway to overlying units or to the surface. 11 Two types of seals are planned for the shafts. One type is designed to be 12 13 temporary, consisting of concrete and bentonite-based materials to prevent the downward flow of water long enough for the second type of seal to 14 consolidate. The other type is long term and will consist of crushed salt 15 possibly with a component of swelling clay (Nowak et al., 1990). Closure of 16 the shafts by salt creep is expected to consolidate the seal material to a 17 18 point where the hydrologic properties of the seals are approximately the same as intact salt. 19

20

Degradation of the shaft seals is of concern to performance assessments 21 because of the possibility that the shafts could provide a pathway for 22 groundwater flow to or from the waste-filled rooms and drifts. Because the 23 concrete seals are designed to be temporary, their degradation is not 24 relevant to the long-term performance of the disposal system. 25 The lower seals are not expected to degrade, although the final properties of the seal 26 material are not known. A degraded seal or a seal that has not fully 27 consolidated is likely to have similar properties that can be incorporated 28 into modeling as parameter variability. The condition of the shaft seal must 29 be considered in every scenario analyzed in a performance assessment. For 30 this reason, possible degradation of shaft seals is part of the base-case 31 scenario. No mechanism for the WIPP setting has been recognized as a 32 possible cause of massive, instantaneous failure of shaft seals. 33 34

If boreholes for resource exploration are drilled into the waste panels, 35 these boreholes have the potential of providing pathways for groundwater 36 flow. Whereas considerable care will be used for the proper emplacement of 37 shaft seals at decommissioning, neither composition nor care of emplacement 38 can be assured for borehole seals. As with shaft seals, the hydrologic 39 properties of a degraded seal are likely to be similar to the properties of 40 41 an improperly emplaced seal. The condition of the borehole seals must be considered in each scenario that contains an exploratory-drilling event. 42 Because the properties of the seals can range from intact to totally 43 degraded, these properties can be incorporated into the modeling of system 44 performance as uncertainty in input variables. No mechanism for the WIPP 45

setting has been recognized as a possible cause of massive, instantaneous
failure of borehole seals. Appendix B of the Standard provides guidance as
to the "worst-case" properties of borehole seals that need to be considered
in performance assessments, although alternate properties can be used.

5 6

Thermally Induced Stress Fracturing in Host Rock

7

8 If the thermal load of the radioactive waste placed in a disposal facility is 9 sufficiently high, the potential exists for fractures to form in the host 10 rock in response to expansion and contraction of the rock, thermal contrasts 11 in the rock, or a large amount of thermal expansion of confined rock. These 12 fractures could provide pathways for groundwater flow with much higher 13 permeabilities than the intact host rock.

14

Because the waste destined for the WIPP will be low level, no thermal effects 15 within the waste or on the surrounding rock are expected. Preliminary 16 analysis (Thorne and Rudeen, 1979) assumed that drums and boxes loaded in the 17 WIPP contain the maximum permissible plutonium content, which would result in 18 a thermal load 25 times higher than expected for contact-handled waste 19 20 (U.S. DOE, 1980a). The maximum rise in temperature at the center of the repository was calculated to be less than 2°C at 80 years after waste 21 emplacement with the temperature quickly dropping to less than 1°C above 22 ambient for the remainder of the analysis. Temperature increases of the 23 24 magnitude determined in the analysis by Thorne and Rudeen (1979) will not result in the fracturing of the salt host rock for the WIPP. 25

26

27 Thermally induced fracturing of the Salado Formation can be eliminated from 28 consideration in the WIPP performance assessments based on the physical 29 unreasonableness of fracturing of this origin.

30

31 Excavation-Induced Stress Fracturing in Host Rock

32

Excavations alter the stress field in the rock surrounding the opening and provide an area into which rocks that had been under compression can expand. This expansion of the rock creates a disturbed zone of both microfractures and macrofractures within the rock that alters the mechanical and hydrologic properties around the opening. As with thermally induced fractures, excavation-induced fractures could provide pathways for groundwater flow around engineered barriers or act as sinks for the accumulation of fluids.

At the excavations for the WIPP, boreholes drilled for stratigraphic studies,
experiments, and construction have encountered a zone of fractures
surrounding the rooms and drifts, and the altered properties of the rock have
been confirmed by geophysical surveys and gas-flow tests (Lappin et al.,
1989). This zone is referred to as the disturbed-rock zone (DRZ). The DRZ

1 ranges from 1 to 5 feet (0.3 to 1.5 meters) in width depending on the size and age of a particular opening (Lappin et al., 1989). Drifts with 2 relatively narrow widths do not have associated DRZs at present (U.S. DOE, 3 1988), although with sufficient time, a DRZ is likely to form around all of 4 the rooms and drifts. After closure of the facility, salt creep will tend to 5 close the DRZ once sufficient backpressure is exerted by the waste and 6 7 backfill against the salt. Whether the properties of the DRZ will return to 8 those of intact salt has not been determined. 9

The presence or absence of a DRZ around the waste-disposal rooms and drifts
must be included in all scenarios analyzed for performance assessment.
Because the DRZ is part of each scenario, this feature is part of the
conceptual model for the base-case scenario.

14

15 Gas Generation

16

17 After the rooms and drifts at the WIPP are filled and sealed, various gases may be formed by the corrosion of metals in the waste and containers, 18 19 microbial decomposition of organic material in the waste, reactions between 20 the corrosion products of the metals and the microbially generated gases, and reactions between backfill constituents and gases and water (Brush and 21 Anderson, 1988a). An additional gas-generating process is radiolysis. 22 The generation of gas is of interest to performance assessment because 23 sufficiently high gas pressures have the potential of re-expanding the waste-24 filled rooms and drifts, developing a new or maintaining an existing DRZ, and 25 creating fractures in Marker Bed 139 and/or other marker beds along which 26 waste could migrate (Lappin et al., 1989). Other possible effects include 27 the limitation on the amount of brine that flows into the rooms and drifts, 28 and the possible expulsion of degraded waste into a borehole during human 29 intrusion. 30

31

WIPP waste is certain to contain some water as free liquid and moisture 32 absorbed in the waste. Additional liquid water and vapor are likely to be 33 introduced by the influx of brine from the Salado Formation. Anoxic 34 corrosion of the waste drums and metallic waste is expected to be the 35 dominant producer of gas, although microbial breakdown of cellulosic material 36 and possibly plastics and other synthetic materials also is likely to occur 37 (Lappin et al., 1989). For waste representative of the expected CH-TRU waste 38 in rooms and drifts, radiolysis is not expected to contribute significant 39 amounts of gas to the total amount produced (Slezak and Lappin, 1990). 40 The 41 amount of water available for reactions and microbial activity will have a 42 major impact on the amounts and types of gases produced.

43

44 The generation of gases within the rooms and drifts is certain to occur. For45 this reason, any effects of gas generation on the disposal system must be

```
included in each of the scenarios analyzed in performance assessment.
Because gas generation is part of each scenario, this process is an integral
part of the conceptual model for the base-case scenario.
```

5 Explosions

6

4

7 Corrosion of metals in the waste and waste containers along with microbial
8 breakdown of various waste constituents will produce gases that have the
9 potential to be flammable or explosive. Explosions in the waste-filled rooms
10 and drifts after decommissioning are of concern to performance assessments
11 because of possible damage to engineered barriers that could generate
12 pathways for groundwater flow.

13

14 Gases generated by corrosion and microbial activity would tend to collect in the upper portions of the rooms and drifts. To address the question of 15 16 possible damage to panel seals, Slezak and Lappin (1990) assumed the "worstcase" (most potentially detonable) mixture of methane, hydrogen, and oxygen 17 in the 1.5-foot (0.5-meter) head space of the rooms and drifts approximately 18 five years after panel-seal emplacement. Based on several assumptions to 19 optimize the effects of an explosion, the peak pressure pulse reaching the 20 21 panel seal was calculated to be 800 psi, which would have no consequences on the performance of the panel seal. The pressure would decay to 120 psi at 22 0.35 seconds after impact. 23

24

Waste-induced explosions can be eliminated from consideration in the WIPP
performance assessments based on the lack of consequences of such events.

27

28 Nuclear Criticality

29

Nuclear criticality refers to a sufficiently high concentration of 30 radionuclides for a sustained fission reaction to occur. This type of 31 reaction produces heat, or under a specific set of conditions, causes an 32 explosion. Nuclear criticality is important to performance assessment 33 34 because a heat source could form thermal convection cells in the groundwater, fracture brittle rocks as a result of differential thermal expansion, or 35 possibly cause a steam explosion. A nuclear explosion would be important 36 because such an event could result in total failure of the disposal system 37 and directly release radionuclides to the accessible environment. 38 39

In the nuclear-waste disposal environment, the radionuclides that could
result in nuclear criticality are present, although a concentration process
is required to create a critical mass. The waste acceptance criteria (draft
of WIPP-DOE-069-Rev. 4, as explained in Chapter 1 of this volume) for nuclear
waste destined for the WIPP sets limits on the amount of fissile radionuclide
content of CH- and RH-waste containers. Operations and safety criteria limit

the Pu-239 fissile gram equivalents (FGE) to less than 200 grams (0.4 pounds) 1 in 55-gallon (0.21 m³) drums, 100 grams (0.2 pounds) in 100-gallon (0.38 m³) 2 drums, 500 grams (1.1 pounds) in DOT M6 containers, and 5 grams (0.01 pounds) 3 per ft³ (0.028 m^3) in other waste boxes (up to a 350 gram (0.77 pounds)4 maximum) for CH waste. RH-waste containers are limited to no more than 600 5 grams (1.3 pounds) in Pu-239 FGE. Transportation standards for the waste 6 generally are more strict in the FGE content of containers than the 7 operations and safety criteria. The Pu-239 FGE must be less than 200 grams 8 (0.4 pounds) for CH drums, 325 grams (0.7 pounds) for standard waste boxes, 9 and 325 grams (0.7 pounds) for a TRUPACT-II container. RH-waste containers 10 may be limited to less than 325 grams (0.7 pounds) per cask. 11 12

Calculations performed to support the WIPP Final Environmental Impact 13 Statement (U.S. DOE, 1980a) indicated that a CH-waste drum holding 140 14 kilograms (308 pounds) of waste would have to contain more than 5 kilograms 15 (11 pounds) of plutonium to potentially form a critical mass. As stated in 16 the report, most drums will contain less than 0.01 kilograms (0.02 pounds) of 17 plutonium, with the maximum allowed plutonium content of 0.2 kilograms (0.4 18 19 pounds) per drum. Although RH waste was not included in the calculations, the maximum allowable FGE content of RH waste per container allowed by the 20 operations and safety criteria is far below the minimum calculated amount of 21 plutonium required to form a critical mass under optimum dry conditions. 22 23

Because of the relatively low plutonium content of the waste containers, 24 nuclear criticality within dry CH- and RH-waste containers has a probability 25 26 of occurrence of 0. Water within the containers introduces an altered set of conditions whose effects on criticality have not been evaluated at this time. 27 The possibility also exists that some of the plutonium will be dissolved by 28 groundwater and transported along any of various pathways through all or part 29 of the disposal system. Depending on the geochemical environment along any 30 particular transport path, the plutonium could precipitate or sorb in the 31 backfill, at certain components of the seal system, or within the Culebra 32 33 Dolomite Member or other hydrologic units. The WIPP performance-assessment team has not determined at this time whether concentration of plutonium can 34 reach critical mass at any of these locations. 35

For a high-yield nuclear explosion to occur within the waste containers, a 37 critical mass of plutonium would have to undergo rapid compression to a high 38 density (U.S. DOE, 1980a). The lack of a critical mass within the waste 39 containers requires that the probability of a nuclear explosion occurring 40 within the waste be assigned a value of 0, even without considering the 41 improbability of the other required conditions. In soils, Stratton (1983) 42 concluded that for a critical mass of plutonium to result in a high-yield 43 explosion would require either a large amount of plutonium to be concentrated 44 45 in an appropriate geometry or an unrealistically large amount of water to be

36

present to act as a reflectant. While not considering the WIPP disposal 1 system directly, Stratton's analysis of the conditions required in soils for 2 a nuclear explosion to occur indicate that explosions of this origin can be 3 eliminated from the WIPP performance assessment on the basis of low 4 5 probability. 6

Nuclear criticality as a possible source of heat within the disposal system 7 is retained for additional evaluation before a screening decision is made. 8

9

4.1.6 SUMMARY OF SCREENED EVENTS AND PROCESSES 10

11

12 None of the natural events and processes listed in Table 4-1 is retained for scenario development (Table 4-2). Phenomena such as erosion, sedimentation, 13 14 and climatic change (pluvial periods) are certain to occur during the next 10,000 years, which indicates that these phenomena are part of the conceptual 15 model for the base-case scenario. The effects of other events (i.e., sea-16 level variations, hurricanes, seiches, and tsunamis) are restricted to 17 coastal areas. Because of the geologic stability of the WIPP region, changes 18 in the tectonic setting that would result in the occurrence or recurrence of 19 20 the subsurface events and processes (except for seismic activity) are not physically reasonable in the time frame of regulatory concern. Seismic 21 22 activity has the potential of affecting the source term, and these effects can be addressed in the source-term uncertainty during modeling. Regional 23 24 subsidence or uplift, mass wasting, and flooding are not likely to occur to 25 an extent that would affect the performance of the disposal system. 26

Of the human-induced events and processes, explosions can be eliminated from 27 consideration because of low probability and low consequence for inadvertent 28 explosions during warfare and nuclear testing, respectively. Irrigation and 29 damming of valleys are not physically reasonable without major technological 30 innovations in response to poor water quality and limited water supplies. 31 32 Exploratory drilling for resources and drilling injection wells are both realistic events for the WIPP, although injection wells are expected to be of 33 no consequence to the performance of the disposal system. Based on the 34 geologic setting and previous resource evaluations, exploratory drilling for 35 resources is retained for scenario development, while injection wells are 36 excluded based on regulatory guidance and low consequence. Exploratory 37 drilling is subdivided into two possibilities: drilling into a waste-filled 38 room or drift and a brine reservoir in the underlying Castile Formation 39 (Event El), and drilling into a waste-filled room or drift but no brine 40 reservoir (Event E2). Mining (Event TS) is limited to potash extraction by 41 either conventional or solution methods in areas beyond the boundaries of the 42 waste panels, and drilling of withdrawal wells (Event E3) is limited to water 43 wells in areas where water quantity and quality will permit water use. Both 44

	RET	AINED		SCREEN	IED OUT	
Events and Processes	Undisturbed Conditions	For Scenario Development	Low Probability	Physically Unreasonable	Low Consequence	Regulator Requirements
Natural						
Meteorite Impact			X			•••••••••••••••••••••••••••••••
Erosion/Sedimentation	X					
Glaciation				X		
Pluvial Periods (Climate Change)	XX					
Sea-Level Variations				XX		
Hurricanes				X		
Seiches				XX		
Tsunamis						
"Conventional"				XX		
Metorite Impact			X			
Regional Subsidence or Uplift				X		
Mass Wasting				X		
Flooding				XX		
Diapirism				X		
Seismic Activity	XX					
Volcanic Activity	•••••			XX		
Magmatic Activity				XX		
Formation of Dissolution Cavities						
Deep Dissolution				XX		
Shallow Dissolution						
Rustler-Salado Contact	XX					
Nash Draw*			XX	XX		
Formation of Interconnected						
Fracture Systems				X		
Faulting				XX		

TABLE 4-2. SUMMARY OF SCREENED EVENTS AND PROCESSES

TABLE 4-2. SUMMARY OF SCREENED EVENTS AND PROCESSES (continued)

2 8		RETAINED			SCREENED OUT				
6	Events and Processes	Undisturbed	For Scenario	Low Probability	Physically Upressonable	Low	Regulator Bequirements		
10.		Conditions	Bevelopment	riobability	Onreasonable	Ounsequence	nequirements		
11	Human-Induced Explosions								
12	At Waste-Panels Location						XX		
13	Near Waste-Panels Location								
14	At Surface/Warfare			X					
15	Deep Testing			X					
16	Drilling (Exploratory)		X						
17	Mining								
18	At Waste-Panels Location						XX		
19	Near Waste-Panels Location		X						
20	Injection Wells					XX			
21	Withdrawal Wells								
22	Water Wells		XX						
23	Oil and Gas Wells								
24	At Waste-Panels Location						X		
25	Near Waste-Panels Location					X			
26	Irrigation			X					
27	Damming of Streams and Rivers								
28	At Pecos River		•••••			XX			
29	Near Nash Draw			X					
30									
31	Repository- and Waste-Induced								
32	Subsidence and Caving					XX			
33	Shaft & Borehole Seal		XX						
34	Degradation	XX							
35	Thermally Induced Fractures				XX				
36									
37 -					-				

1

	RET	AINED		SCREEN	IED OUT	
Events and Processes	Undisturbed Conditions	For Scenario Development	Low Probability	Physically Unreasonable	Low Consequence	Regulator Requirements
Excavation-Induced Fractures	XX					
Gas Generation	X					
Gas Generation Explosions (Gas Ignition)	X				XX	
Gas Generation Explosions (Gas Ignition) Nuclear Criticality	X				XX	
Gas Generation Explosions (Gas Ignition) Nuclear Criticality Critical Mass (Explosion)	X		x		X	
Gas Generation Explosions (Gas Ignition) Nuclear Criticality Critical Mass (Explosion) Sustained Reaction**	X		X		X	
Gas Generation Explosions (Gas Ignition) Nuclear Criticality Critical Mass (Explosion) Sustained Reaction**	X		X		XX	

the mining and water wells are being evaluated for their effects on
 groundwater flow in the WIPP area.

3

In the category of waste- and repository-induced events and processes, gas 4 generation and shaft-seal degradation are part of the conceptual model of the 5 base-case scenario. Borehole seal degradation can be addressed through 6 parameter uncertainty during modeling. Excavation-induced fracturing in the 7 host rock can be handled by including the disturbed zone surrounding mined 8 9 openings in the conceptual model of the base-case scenario. Caving into the rooms or drifts may occur in the short term after closure, but this process 10 has no long-term consequences on performance because of the mechanical 11 behavior of salt. Thermally induced fracturing of the host rock is not a 12 physically reasonable phenomenon because of the low thermal output of WIPP 13 waste. Subsidence caused by the mined openings and explosions caused by the 14 ignition of gases created by waste degradation have no effect on the 15 16 performance of the disposal system and can be eliminated from scenario development. Nuclear criticality requires additional evaluation before a 17 screening decision is made. 18

19

20 4.1.7 DEVELOPING SUMMARY SCENARIOS

21

To construct a CCDF, the summary scenarios used in the performance assessment 22 should be comprehensive and mutually exclusive subsets of the sample space S. 23 An earlier approach to scenario development combined events and processes 24 through the use of event trees (Bingham and Barr, 1979; Hunter, 1983; Hunter 25 et al., 1982; Hunter et al., 1983). According to McCormick (1981), an event 26 tree is an inductive logic method for identifying possible outcomes of a 27 given initiating event. Once the systems that can be utilized after a 28 failure are identified and enumerated, the failure and success states are 29 identified through bifurcations within the tree. If partial failures are 30 considered, a greater number of branches is needed. The result is an event 31 tree that provides accident sequences associated with an initiating event. 32 Analyses of this type commonly are used to assess potential accidents at 33 nuclear power plants (e.g., U.S. NRC, 1975). 34

35

Event trees were found not to be suitable for natural systems (Burkholder, 36 1980). The disadvantages of using event trees to develop scenarios for 37 natural systems are (1) the imposed temporal relationship of events and 38 processes to one another, (2) the apparent arbitrariness of branching within 39 the tree, (3) the inability to assure completeness of the final scenario set, 40 41 and (4) the inability of the tree to handle feedback loops, whereby development along one branch may change the system to the point where the 42 branching that resulted in that scenario will be reversed (Guzowski, 1990). 43 44

Event trees for scenario development have not been able to produce reasonable 1 2 numbers of well-defined and mutually exclusive scenarios that can be analyzed probabilistically to address the current formulation of the Standard 3 (Guzowski, 1990). An alternative approach addresses these problems through 4 logic diagrams (Figure 4-4) (Cranwell et al., 1990). In the logic diagram, 5 no temporal relationship between events and processes is implied by their 6 sequence across the top of the diagram. At each junction within the diagram 7 a yes/no decision is made as to whether the next event or process is added to 8 the scenario. As a result, each scenario consists of a combination of 9 occurrence and nonoccurrence of all events and processes that survive 10 screening (Cranwell et al., 1990). To simplify scenario notation, only the 11 events and processes that occur are used to identify the scenario. Based on 12 the assumption that the events and processes remaining after screening define 13 all possible futures of the disposal system that are important for a 14 probabilistic assessment (i.e., define the sample space S), the logic diagram 15 produces scenarios that are comprehensive, because all possible combinations 16 of events and processes are developed; the scenarios are mutually exclusive, 17 because each scenario is a unique set of events and processes; and feedback 18 loops may be incorporated in models of the combinations of events and 19 processes. 20

Figure 4-5 is the logic diagram for constructing all of the possible
combinations of the three events (E1, E2, and TS) that survived the screening
process for the WIPP. The base case represents the undisturbed condition,
which is the expected behavior of the disposal system without disruption by
human intrusion.

28 Screening Scenarios

29

27

21

The purpose of scenario screening is to identify those scenarios that will have no or a minimal impact on the shape and/or location of the mean CCDF. By inference, the criteria used to screen combinations of events and processes (scenarios) are similar to those criteria used to screen individual events and processes. These criteria are physical reasonableness of the combinations of events and processes, probability of occurrence of the scenario, and consequence.

37

The probability of occurrence for a scenario is determined by combining the 38 probabilities of occurrence and nonoccurrence from the events and processes 39 40 that make up the scenario. A mechanical approach to determining scenario probabilities can be implemented by assigning the probability of occurrence 41 and nonoccurrence for each event and process to the appropriate "yes" and 42 "no" legs at each bifurcation in the logic diagram (Figure 4-4). The 43 probability of a scenario is the product of the probabilities along the 44 pathway through the logic diagram that defines that scenario (see Figure 4-4 45

Indicates Examples of Probability Values Needed to Determine Probability of Scenario R2T1T3Probability of $R2T1T3 = (.60)(.20)(.30)(.95)(.01) = 3.4 \times 10^{-4}$

- Notes: (1) Expressions of the form *R2*, *T1*, *T3* are an abbreviation for $R1^{\circ} \cap R2 \cap T1 \cap T2^{\circ} \cap T3$ (i.e., intersections and complements are omitted from the notation).
 - (2) Indicated probability calculation assumes that *R1*, *R2*, *T1*, *T2*, *T3* are independent events. That is, $p(R1 \cap R2 \cap T1 \cap T2 \cap T3) = p(R1) p(R2) p(T1) p(T2) p(T3)$.
 - (3) If the events *R1*, *R2*, *T1*, *T2*, *T3* are not independent, then the ordering in the tree is important because conditional probabilities must be used.

TRI-6342-222-6

Figure 4-4. Example of a Logic Diagram with Two Events Affecting Release (R) from a Repository and Three Events Affecting Transport (T) to the Accessible Environment for the Construction of Scenarios (after Cranwell et al., 1990), Illustrating Scenario Probability Assignment.

4-60

x = 10,000 yr Time History

- TS = {x: Subsidence Resulting From Solution Mining of Potash}
- E1 = {x: One or More Boreholes Pass Through a Waste Panel and into a Brine Pocket}
- E2 = {x: One or More Boreholes Pass Through a Waste Panel Without Penetration of Brine Pocket}

Superscript c (e.g., TS c) Denotes Set Complement

TRI-6342-578-3

Figure 4-5. Potential Scenarios for the WIPP Disposal System.

for an example). Based on the probability criterion in Appendix B of the Standard for screening out individual events and processes, scenarios with probabilities of occurrence of less than 1 chance in 10,000 in 10,000 years need not be considered in determining compliance with the Standard, and therefore, consequence calculations are not necessary.

6 A final screening criterion is consequence, which in this step of the 7 procedure means integrated discharge to the accessible environment for 10,000 8 years. By inferring that the guidance in Appendix B of the Standard for 9 individual events and processes also applies to scenarios, scenarios whose 10 probability of occurrence is less than the cutoff in Appendix B can be 11 12 eliminated from further consideration if their omission would not significantly change the remaining probability distribution of cumulative 13 14 releases. Because the degree to which the mean CCDF will be affected by omitting such scenarios is difficult to estimate prior to constructing CCDFs, 15 only those scenarios that have no releases should be screened out from 16 additional consequence calculations. If significant changes are made to the 17 data base, the conceptual models, or mathematical models of the disposal 18 system, the latter scenarios should be rescreened. 19 20

In implementing this step of the procedure for this preliminary WIPP performance assessment, no scenarios were screened out. Because parameter values did not define the events, all combinations of events in the scenarios are physically reasonable. Because final scenario probabilities have not been estimated, no scenarios were screened out on the basis of low probability of occurrence. Final calculations of consequences have not been completed, so no scenarios were screened out on the basis of this criterion.

28

29 Descriptions of Retained Scenarios

30

31 This section describes the scenarios retained for consequence analysis.

32

33 Undisturbed Performance Summary Scenario (Base Case, SB)

34

The Individual Protection Requirements of the Standard (§ 191.15) call for a 35 reasonable expectation that the disposal system will limit annual doses to 36 individuals for 1,000 years after disposal, assuming undisturbed performance 37 of the disposal system. Undisturbed performance is also the base case of the 38 scenario-development methodology (Cranwell et al., 1990; Guzowski, 1990). 39 40 Although undisturbed performance is not mentioned in the Containment Requirements (§ 191.13), undisturbed performance is not precluded from the 41 containment calculations. 42

43

As defined in the Standard (§ 191.12(p)), "'[u]ndisturbed performance' means
the predicted behavior of a disposal system, including consideration of the

uncertainties in predicted behavior, if the disposal system is not disrupted 1 by human intrusion or the occurrence of unlikely natural events." Duration 2 of this performance is not limited by the definition. The base-case scenario 3 describes the disposal system from the time of decommissioning and 4 incorporates all expected changes in the system and associated uncertainties 5 for the 10,000 years of concern for § 191.13. Expected changes are assumed 6 to result from events and processes that are certain to occur without 7 8 disrupting the disposal system. The Standard does not provide a definition of unlikely natural events to be excluded from undisturbed performance nor, 9 by implication, likely natural events to be included. Because of the 10 relative stability of the natural systems within the region of the WIPP 11 disposal system, all naturally occurring events and processes that will occur 12 are part of the base-case scenario and are nondisruptive. These conditions 13 represent undisturbed performance (Marietta et al., 1989; Bertram-Howery 14 15 et al., 1990).

16

17 Base-Case Summary Scenario

18

After the repository is filled with waste, the disposal rooms and drifts in 19 the panels are backfilled and seals are emplaced in the access drifts to the 20 panels (Figure 4-4). While excavations are open, the salt creeps inward 21 because of the decrease in confining pressure on the salt around the rooms. 22 The movement of floors upward and ceilings downward into rooms and drifts 23 fractures the more brittle underlying anhydrite in MB139 and overlying 24 anhydrite layers A and B. The anhydrite is expected to fracture directly 25 beneath and above excavated rooms and drifts but not beneath or above the 26 27 pillars because of the overburden pressure on the pillars. To control potential migration of hazardous (RCRA) wastes through MB139, seals are 28 emplaced in MB139 directly beneath the panel seals (Stormont et al., 1987; 29 Borns and Stormont, 1988; Nowak et al., 1990). Access drifts and the lower 30 parts of shafts are backfilled with salt. Because of the high lithostatic 31 pressures at the repository depth, salt creep is expected to exert sufficient 32 pressure on the backfill to consolidate the material into low-conductivity 33 seals with properties similar to those of the host rock. The upper parts of 34 the shafts are also backfilled with salt, but pressure exerted by salt creep 35 on backfill is not expected to be sufficient to cause the same degree of 36 consolidation as is expected in lower portions of the shafts (Nowak et al., 37 1990). 38

39

Before the amount and direction of groundwater flow and radionuclide release
from the repository can be determined, gas generation must be considered.
Some waste and some waste containers will be composed of organic material.
Because microbes transported into the repository with the waste are expected
to be viable under sealed-repository conditions (Brush and Anderson, 1988a),
organic material in the repository will biodegrade with concomitant

generation of gases. In addition, moisture in the repository, either brought 1 in with waste or seeping in from the Salado Formation, can corrode metals in 2 the waste and metallic waste containers themselves, with gas generated as a 3 by-product. Radiolysis also will generate gases. The time period over which 4 gases will be generated is uncertain. Each of these processes is dependent 5 on the availability of water. The humidity required for microbiological 6 activity and whether or not saturated conditions are required for corrosion 7 and radiolysis have not been established. Moisture and microbes in waste 8 will generate some gas prior to waste emplacement in the repository. After 9 emplacement, the amount and rate of gas generation will depend on such 10 factors as microbe metabolisms; relationships between gas pressure, brine 11 inflow, room closure, and backfill and waste consolidation; and the degree to 12 13 which reactions attain completion (Bertram-Howery et al., 1990).

Radionuclide migration depends on the degree of saturation within the repository. Gas pressure resulting from microbial activity and corrosion may prevent brine inflow and desaturate the nearby Salado Formation, MB139, and anhydrite layers A and B. These conditions, in addition to the consumption of water by anoxic corrosion and possibly microbial activity, also would result in a decrease in the amount of water in the waste and backfill and a lower potential for radionuclide transport.

22

14

Two pathways for groundwater flow and radionuclide transport dominate the 23 disposal system (Figure 4-6). In the first path, brine and radionuclides 24 25 enter MB139, either through fractures in salt or directly as a result of rooms and drifts intersecting the marker bed during construction or room 26 Following repository decommissioning, waste-generated gas will 27 closure. begin to pressurize the waste panels (Weatherby et al., 1989). Brine will 28 drain by gravity to the lower half of the panels. Gas will saturate the DRZ 29 above the panel and open flow paths to anhydrite layers A and B above the 30 panel. MB139 beneath the panel will remain brine saturated, but gas will 31 32 open flow paths into the MB139 beyond the panels. The more-mobile gas phase will flow outward over the less-mobile brine phase. After gas generation 33 ceases, pressure and phase distribution will gradually equilibrate throughout 34 the entire region. Gas will continue to expand outward, but brine flow 35 reverses, flowing inward primarily along the lower portions of anhydrite 36 layers A and B and MB139. Gas saturation near the waste panels will 37 diminish. The anhydrite layers above the waste panels will be a major flow 38 39 path for gas. In contrast, brine will inhibit gas inflow in the MB139 40 beneath the waste panels.

41

42 Because material in the upper shaft is expected to be poorly consolidated, 43 the hydraulic pressure at the junction of the upper and lower parts of the 44 shaft seals is assumed to approximate the pressure head of the Culebra 45 Dolomite Member. As a result, the pressure gradient resulting from waste-

TRI-6342-200-5

Figure 4-6. Conceptual Model Used in Simulating Undisturbed Performance.

generated gas (approximately 15 MPa+) and hydrostatic pressure at the Culebra 1 (1 MPa) tends to force radionuclide-bearing brine from MB139 beneath the 2 3 panel through the seal in the marker bed, along the fractures in MB139 to the base of the shaft. Concurrently, gas flows through the upper portion of the 4 drifts and the anhydrite layers A and B to the shaft. Gas saturation in the 5 shaft seals will inhibit brine migration up the shaft to the Culebra Dolomite 6 Member. Brine and radionuclides will eventually reach the Culebra and 7 migrate downgradient to the accessible environment. 8

9

Relative motion during salt creep and gas generation prevents MB139 from 10 returning to its original position, and the salt-creep-induced fractures do 11 not completely close. Flow is through MB139 instead of through the overlying 12 access drift because of the substantially higher hydraulic conductivity in 13 MB139. Flow in MB139 is to the north through the seal rather than to the 14 south down the pre-excavation hydraulic gradient within MB139, because the 15 pressure drop to the north is greater after excavation, and the flow to the 16 south would be impeded by extremely low permeability of the intact marker 17 Therefore, the horizontal path directly through MB139 to the accessible bed. 18 environment is not included for this assessment, but this path is considered 19 for other analyses (see Volume 2 of this report). 20

21

The other dominant path is assumed to be from the repository vertically through the intact Salado Formation toward the Culebra Dolomite Member (Figure 4-6) (Lappin et al., 1989). This path has the largest pressure decline over the shortest distance of any path. In addition, large potential exists for radionuclides to leave the repository along this path because of the large horizontal cross-sectional area of the waste-bearing rooms and drifts in the repository.

29

The methodology can determine pathways to individuals and calculate doses to humans if a release pathway is added. The pathway used in an earlier analysis (Lappin et al., 1989) is described in the next section. Because undisturbed performance releases no radionuclides in 1,000 years, these calculations are not necessary for this scenario (Marietta et al., 1989).

36 Release at a Livestock Pond

37

Livestock wells were assumed to be located downgradient from the repository 38 for earlier analyses (Lappin et al., 1989), because these wells were believed 39 to be the only realistic pathway for radionuclides to reach the surface under 40 undisturbed conditions. Waste-generated gas pressurizes the waste panels, 41 forcing radionuclide-bearing brine to seep through and around grouted seals 42 in the marker bed and migrate through the part of MB139 that underlies drift 43 excavations to the bottom of the sealed shafts. This material is then 44 assumed to continue to migrate up through the lower seal system due to the 45

pressure gradient between the waste panels and the Culebra Dolomite Member. 1 Material introduced into the Culebra Dolomite is entrained in the 2 In order to provide a route to humans, an active livestock well groundwater. 3 is assumed to penetrate the Culebra Dolomite downgradient from the sealed 4 shafts. Radionuclides migrate through the Culebra groundwater to the 5 livestock well where water is pumped to the surface for cattle to drink. 6 This is the beginning of the biological pathway to humans via a beef 7 ingestion route (Lappin et al., 1989). Other possible pathways originating 8 from the full and later dry stock pond exist and will be considered, but for 9 undisturbed conditions, any possibility requires a pumping well route to the 10 surface. Because no radionuclides are released into the Culebra in 1,000 11 years, this route is not completed, and no need exists to consider other 12 possible pathways for § 191.15 at this time, although this position may 13 change when the Standard is repromulgated. 14

16 Human-Intrusion Summary Scenarios

Appendix B of the Standard (U.S. EPA, 1985) provides guidance on a number of 18 factors concerning human intrusion. The section "Institutional Controls" in 19 Appendix B (U.S. EPA, 1985, p. 38088) states that active controls cannot be 20 assumed to prevent or reduce radionuclide releases for more than 100 years 21 after disposal. Passive institutional controls can be assumed to deter 22 systematic and persistent exploitation and to reduce the likelihood of 23 inadvertent intrusion, but these controls cannot eliminate the chance of 24 inadvertent intrusion. The section "Consideration of Inadvertent Human 25 Intrusion into Geologic Repositories" in Appendix B (U.S. EPA, 1985, 26 p. 38088) suggests that exploratory drilling for resources can be the most 27 severe form of human intrusion considered. The section "Frequency and 28 Severity of Inadvertent Human Intrusion into Geologic Repositories" in 29 Appendix B (U.S. EPA, 1985, p. 38089) suggests that the likelihood and 30 consequence of drilling should be based on site-specific factors. In keeping 31 with the guidance, this assessment includes scenarios that contain human-32 intrusion events. 33

34

15

17

35 Intrusion Borehole into a Room or Drift (Summary Scenario *E2*)

36

Scenario E2 consists of one or more boreholes that penetrate to or through a 37 waste-filled room or drift in a panel (Figure 4-7). The borehole does not 38 intersect pressurized brine or any other important source of water. The hole 39 is abandoned after a plug is emplaced above the Culebra Dolomite Member. The 40 drilling mud that remains in the borehole is assumed to degrade into sand-41 like material. The borehole below the plug in the Salado Formation is 42 43 propped open by the sand-like material.

44

4-67

TRI-6342-216-1

Figure 4-7. Conceptual Model for Scenario *E2*. Arrows indicate assumed direction of flow. Exploratory borehole does not penetrate pressurized brine below the repository horizon. R_c is the release of cuttings and eroded material. R_{acc} is the release at the subsurface boundary of the accessible environment. A plug above the Culebra Dolomite Member is assumed to remain intact for 10,000 years.

After the repository is decommissioned, moisture in the waste or brine from 1 2 the host rock allows microbiological activity and corrosion to occur, generating gas. Repository conditions would evolve according to the previous 3 description of the undisturbed scenario. At the time of intrusion into a 4 waste panel, gas could vent through the intruding borehole, thereby allowing 5 the repository to resaturate. The rapid venting of waste-generated gas may 6 7 result in spalling of waste material into the borehole and eventual removal 8 to the surface by drilling fluid. During drilling, radionuclides are 9 released directly to the surface as the drill penetrates a room or drift and intersects drums or boxes of waste. The waste that is ground up by the drill 10 bit is transported to the surface by circulating drilling fluid. Additional 11 material may be dislodged from walls of the borehole by the circulating fluid 12 as drilling proceeds below the repository. 13

14

After drilling is completed, the hole is plugged. Because hydraulic head in 15 the Culebra Dolomite Member is less than hydraulic head of the repository, 16 the connection between the repository and the Culebra Dolomite provides a 17 potential pathway for flow of water and gas from the repository to the 18 19 Culebra. This process forces water and gas from the repository and nearby members (Figure 4-7) into the borehole and upward to the Culebra Dolomite 20 Member. Brine, puddled beneath the waste in MB139, inhibits gas flow through 21 22 this member towards the borehole. However, gas in the upper portion of the waste panel and overlying anhydrite layers A and B will migrate into the 23 24 borehole fill, saturating the borehole. Brine flow from the lower member 25 will be inhibited by this gas cap in the borehole. Brine flowing from the intact halite and anhydrite will eventually displace the gas. When brine 26 27 saturation in the waste panel exceeds residual brine saturation (approximately 20 percent), flow through the waste will resume. When brine 28 saturations exceed about 60 percent, significant flow into the borehole will 29 The time delay between intrusion and significant brine and 30 occur. radionuclide release to the Culebra Dolomite Member may be significant and 31 will depend on a number of material property values and coupled processes 32 33 discussed in Chapter 5 of this volume and Volume 2, Chapter 4 of this report. After the pressure within the repository is sufficiently reduced, brine flows 34 35 in from the host rock as long as pore pressure within the host rock is greater than hydrostatic. This inflow forces brine up the borehole toward 36 the Culebra Dolomite. The borehole plug for this scenario is located so that 37 all flow up the borehole is diverted into the Culebra Dolomite Member. 38 For the analysis of this scenario, it is assumed that the borehole plug does not 39 40 degrade. Other analyses assumed that borehole plugs degraded in 150 years (Lappin et al., 1989; Marietta et al., 1989). 41 42

1 Intrusion Borehole through a Room or Drift into Pressurized Brine in the Castile Formation (Summary

2 Scenario *E1*)

Scenario E1 (Figure 4-8) consists of one or more boreholes that penetrate through a waste-filled room or drift and continues into or through a pressurized brine reservoir in the Castile Formation in which brine pressure is between hydrostatic and lithostatic for that depth. The borehole is plugged at a level above the Culebra Dolomite Member (Marietta et al., 1989).

A borehole that penetrates a room or a drift vents gas and intersects 10 containers of waste as described with E2. This waste is incorporated into 11 the drilling fluid and circulated directly to the mud pits at the surface. 12 After the hole is plugged and abandoned, the brine pressure is assumed to be 13 sufficient to drive flow up the borehole into the Culebra Dolomite Member. 14 As in the E2 scenario, the borehole plug is assumed to be above the Culebra 15 16 Dolomite and to remain intact, diverting all flow into the Culebra. The flow rate depends on the head difference between the Culebra Dolomite and the 17 injected brine and on the hydraulic properties of materials in the borehole. 18 Radionuclides from the room or drift may be incorporated into the Castile 19 brine if it circulates through the waste adjacent to the borehole. If the 20 pressure gradient is not favorable for circulation of Castile brine through 21 the waste, a long-term discharge of Salado brine and waste-generated gas may 22 occur as described in E2. Upon reaching the Culebra Dolomite, the waste-23 bearing brine and gas flows down the hydraulic gradient toward the accessible 24 environment boundary; this pressurized brine and gas injection results in 25 temporary alterations of the flow field and chemistry in the Culebra 26 Dolomite. Brine flow reduces the local residual pressure in the Castile 27 Formation, thereby reducing the driving pressure of the flow. Eventually, 28 29 brine stops flowing.

30

Intrusion Borehole through a Room or Drift into Pressurized Brine in the Castile Formation and Another
 Intrusion Borehole into the Same Panel (Summary Scenario *E1E2*)

34 Scenario E1E2 consists of exactly two boreholes that penetrate waste-filled rooms or drifts in the same panel (Figure 4-9). One borehole also penetrates 35 pressurized brine in the Castile Formation, whereas the other borehole does 26 not. The borehole that penetrates the pressurized brine is plugged between 37 38 the room or drift and the Culebra Dolomite Member. This plug is assumed not to degrade, forcing into the room all the brine flowing up the borehole. The 39 other borehole is plugged above the Culebra Dolomite Member. This plug is 40 41 also assumed not to degrade, forcing into the Culebra Dolomite all the brine and gas flowing up this borehole. The Castile brine is assumed to be under a 42 greater pressure than gas or brine in rooms and drifts of the repository 43 (Marietta et al., 1989). 44

45

TRI-6342-215-1

Figure 4-8. Conceptual Model for Scenario E1. Arrows indicate assumed direction of flow. Exploratory borehole penetrates pressurized brine below the repository horizon. R_c is the release of cuttings and eroded material. R_{acc} is the release at the subsurface boundary of the accessible environment. A plug above the Culebra Dolomite Member is assumed to remain intact for 10,000 years.

TRI-6342-217-1

Figure 4-9. Conceptual Model for Scenario *E1E2*. Arrows indicate assumed direction of flow. One exploratory borehole penetrates pressurized brine below the repository horizon and a plug between the repository and the Culebra Dolomite Member is assumed to remain intact for 10,000 years. The second borehole does not penetrate pressurized brine below the repository, and a plug above the Culebra Dolomite Member is assumed to remain intact for 10,000 years. R_c is the release of cuttings and eroded material. R_{acc} is the release at the subsurface boundary of the accessible environment.

Radionuclides and gas are released directly to the surface during drilling of 1 the two holes as described with El and E2. Additional releases from this 2 system are dependent on the sequence in which the holes are drilled. 3 The 4 plug in the borehole that penetrates the pressurized brine reservoir allows 5 brine flowing up the hole to enter the repository but not leave the repository until the second hole penetrates the same panel. Once the second 6 7 hole is drilled, a pathway is formed for brine and gas from the pressurized brine reservoir to flow through waste panels and nearby members to this new 8 hole and up to the Culebra Dolomite Member. Flow in the Culebra Dolomite is 9 downgradient (Marietta et al., 1989). 10

11

12 If the hole that does not penetrate pressurized brine is drilled first, gas 13 and/or fluid pressure is relieved; this is followed by brine flow and radionuclide transport up the hole as a result of brine inflow into the panel 14 from the host rock, possibly enhanced by creep closure of rooms and drifts. 15 Flow is diverted into the Culebra Dolomite Member by the plug located above 16 this unit. The subsequent drilling and plugging of the borehole that 17 18 penetrates the pressurized brine reservoir results in flow through the repository and up the other borehole. After the driving pressure is 19 20 depleted, Scenario E1E2 reverts to Scenario E2, because the borehole that penetrates the pressurized brine no longer contributes to flow and transport 21 (Marietta et al., 1989). Analyses of Scenario E1E2 assume that both 22 boreholes are drilled at or close to the same time for modeling convenience. 23 24

The sequence of drilling, time lapsed between drilling events, and distance 25 between the two boreholes in the same panel all affect radionuclide 26 27 migration. Flow through the rooms and drifts depends on the hydraulic properties of the waste backfill and seals placed in these openings and on 28 29 the pressure gradient between the holes. For some configurations, flow from one hole to the other may take longer than the regulatory period or take 30 sufficiently long to allow significant decay of radionuclides in transport. 31 32 These issues are addressed in the analyses described in Chapter 6 of this volume. 33

34

35 4.1.8 DEFINITION OF COMPUTATIONAL SCENARIOS

36

37 A more detailed decomposition of the sample space S is desired for the actual 38 calculations that must be performed to determine scenario consequences (i.e., ${f cS}_i$ as shown in Equation 3-1) and to provide a basis for constructing a 39 family of CCDFs as described earlier. To provide more detail for the 40 determination of both scenario probabilities and scenario consequences, the 41 42 computational scenarios on which the actual CCDF construction is based for the WIPP performance assessment are defined on the basis of (1) number of 43 drilling intrusions, (2) time of the drilling intrusions, (3) whether or not 44

```
1
    a single waste panel is penetrated by two or more boreholes, of which at
    least one penetrates a brine pocket and at least one does not, and (4) the
2
3
    activity level of the waste penetrated by the boreholes. The purpose of this
    decomposition is to provide a systematic coverage of what might reasonably
4
    happen at the WIPP.
5
6
7
    The procedure starts with the division of the 10,000-year time period
     appearing in the EPA regulations into a sequence
8
9
10
        [t_{i-1}, t_i], i = 1, 2, ..., nT,
                                                                                           (4-8)
11
     of disjoint time intervals. When activity loading in the waste panels is not
12
     considered, these time intervals lead to computational scenarios of the form
13
14
15
                   S(\mathbf{n}) = \{\mathbf{x}: \mathbf{x} \text{ an element of } S \text{ for which exactly } n(i) \text{ intrusions} \}
16
                                   occur in the time interval [t_{i-1}, t_i], i=1,2,\ldots,nT
17
                                                                                           (4-9)
18
19
     and
20
        S^{+-}(t_{i-1}, t_i) = \{x: x \text{ an element of } S \text{ involving two or more boreholes that} \}
21
22
                                   penetrate the same waste panel during the time
23
                                   interval [t_{i-1}, t_i], at least one of these boreholes
24
                                   penetrates a pressurized brine pocket and at least
                                   one does not penetrate a pressurized brine pocket},
25
26
                                                                                          (4-10)
27
28
     where
                       \mathbf{n} = [n(1), n(2), \dots, n(nT)].
29
                                                                                          (4-11)
30
31
     When activity loading is considered, the preceding time intervals lead to
     computational scenarios of the form
32
33
                  S(\mathbf{l},\mathbf{n}) = \{x: x \text{ an element of } S(\mathbf{n}) \text{ for which the } j^{th} \text{ borehole} \}
34
35
                                   encounters waste of activity level l(j)
                                                                                          (4-12)
36
37
     and
38
       S^{+-}(\mathbf{l};t_{i-1}, t_i) = \{x: x \text{ an element of } S^{+-}(t_{i-1}, t_i) \text{ for which the } j^{\text{th}}\}
39
40
                                   borehole encounters waste of activity level l(j),
41
                                                                                          (4-13)
42
43
     where
44
4567899012
                                                                        nT
                       l = [l(1), l(2), \ldots, l(nBH)] and nBH = \Sigma n(i).
                                                                                          (4 - 14)
                                                                       i=1
```

Further refinements on the basis of whether or not subsidence occurs and 1 2 whether or not individual boreholes penetrate pressurized brine pockets are also possible. In essence, the computational scenarios defined in 3 Equation 4-8 through Equation 4-14 are defining an importance sampling 4 strategy that covers the stochastic or Type A uncertainty that is 5 characterized by the scenario probabilities pS; appearing in Equation 3-1. 6 7 Additional information on the definition of computational scenarios is given in Volume 2, Chapter 3 of this report. 8

- 9 10
- 11 12

4.2 Determination of Scenario Probabilities

The second element of the ordered triples shown in Equation 3-1 is the 13 scenario probability pSi. As with the scenarios, these probabilities have 14 15 been developed at two different levels of detail. The first level is for the summary scenarios discussed in Section 4.1.2-Definition of Summary Scenarios 16 and shown in Figure 4-5. The primary purpose of these probabilities is to 17 provide guidance in scenario development. The development of these 18 probabilities is described in Section 4.2.1-Probabilities for Summary 19 Scenarios. The second level is for the computational scenarios discussed in 20 21 Section 4.1.8-Definition of Computational Scenarios. These are the 22 probabilities that will actually be used in the construction of CCDFs for comparison with the EPA release limits. These probabilities are defined in 23 Section 4.2.2-Probabilities for Computational Scenarios. 24

25

26 4.2.1 PROBABILITIES FOR SUMMARY SCENARIOS

27

28 Probabilities for the summary scenarios described in Section 4.1.2-Definition 29 of Summary Scenarios were estimated as part of a previous methodology demonstration (Marietta et al., 1989). These estimates were called weights 30 to emphasize that they were only preliminary. Possible approaches to 31 determining probabilities of occurrence for these scenarios were reviewed and 32 additional probabilities were estimated by Guzowski (1991), who concluded 33 that probability assignments for the compliance assessment should rely on 34 35 expert judgment. A formal expert-judgment elicitation (e.g., Bonano et al., 1989) has begun. This elicitation focuses on identifying a set of mutually 36 exclusive futures, modes of intrusion for each future, and frequencies of 37 intrusion for each mode. When viewed at a high level, this process involves 38 development of a sample space S, a collection \S of subsets of S, and 39 ultimately, a probability function defined for elements of S. The status and 40 preliminary results of effort are described in the final section of this 41 chapter. The effects of possible markers and barriers will be considered 42 through additional expert-judgment elicitations. Because the elicitation of 43 44 expert judgments is not complete, preliminary probability estimates also must be used for this assessment. 45 46

4-75

Preliminary probability estimates for the summary scenarios are based on the 1 2 current understanding of natural resources in the vicinity of the repository, projections of future drilling activity, and regulatory guidance. Two sets 3 of probability estimates (Marietta et al., 1989; Guzowski, 1991) were 4 compared by Bertram-Howery et al. (1990). Neither set was considered 5 credible enough to be used as final probability estimates in the absence of 6 formal expert-judgment elicitation (Guzowski, 1991). Both sets of 7 preliminary probabilities, derived by using different probability techniques, 8 were used in the 1990 preliminary assessment, and the resultant comparison of 9 simulated performances provided a measure of the sensitivity of the modeling 10 system to the uncertainty in scenario probability assignment. One set, 11 obtained primarily using a classical-model approach based on the theory of 12 indifference (Weatherford, 1982), contains estimates for event probabilities 13 of 0.0065 for drilling into a room or drift (E2), 0.0033 for drilling into a 14 room or drift and penetrating a pressurized brine occurrence (E1), and 0.25 15 for subsidence due to potash mining outside the controlled area (TS)16 (Guzowski, 1991). The scenario probabilities can be estimated from the logic 17 diagram as before (Figure 4-10). The second set (Marietta et al., 1989) 18 19 contains estimates for event probabilities of 0.17 for E2, 0.085 for E1, and 0.05 for TS and yields a much different set of scenario probabilities 20 (Figure 4-11). The probability of human intrusion is 0.01 for the first set 21 and 0.24 for the second set. 22

23 24 4.2.2 PROBABILI

25

33

456789012345678901234

4.2.2 PROBABILITIES FOR COMPUTATIONAL SCENARIOS

Probabilities for the computational scenario refinements are now presented. These are the probabilities that will be used in the construction of CCDFs for comparison with the EPA release limits in the present report. These probabilities are based on the assumption that the occurrence of boreholes through the repository follows a Poisson process with a rate constant λ . The probabilities pS(n) and pS(l,n) for the computational scenarios S(n) and S(l,n) are given by

$$pS(\mathbf{n}) = \begin{cases} nT \\ \Pi \\ i=1 \end{cases} \left[\frac{\lambda^{n(i)} \left(t_{i} - t_{i-1} \right)^{n(i)}}{n(i)!} \right] exp \left[-\lambda \left(t_{nT} - t_{0} \right) \right]$$
(4-15)

and

$$pS(\mathbf{I},\mathbf{n}) = \begin{pmatrix} nBH \\ \Pi & pL \\ j=1 \end{pmatrix} pS(\mathbf{n}), \qquad (4-16)$$

TS - Subsidence Resulting from Solution Mining of Potash

E1 - Drilling through Room and Brine Pocket

E2 - Drilling through or into a Room

TRI-6342-576-3

TS - Subsidence Resulting from Solution Mining of Potash E1 - Drilling through Room and Brine Pocket

E2 - Drilling through or into a Room

TRI-6342-577-2

Figure 4-11. Scenario Probability Estimate Based on Marietta et al. (1989).

where **n** and **l** are defined in Equations 4-11 and 4-14, respectively, and pL_{ℓ} 1 2 is the probability that a randomly placed borehole through a waste panel will encounter waste of activity level l. The rate constant λ is a sampled 3 variable in the 1991 WIPP performance assessment. Table 3-2 provides an 4 example of probabilities $pS(\mathbf{n})$ calculated as shown in Equation 4-15 with 5 $\lambda = 3.28 \text{ x } 10^{-4} \text{ yr}^{-1}$, which corresponds to the maximum drilling rate 6 suggested for use by the EPA. The activity level probabilities pL_ℓ used in 7 the 1991 WIPP performance assessment are presented in Table 4.3. 8

10 The probabilities $pS^{+-}(t_{i-1},t_i)$ and $pS^{+-}(I;t_{i-1},t_i)$ for the computational 11 scenarios $S^{+-}(t_{i-1},t_i)$ and $S^{+-}(I;t_{i-1},t_i)$ are given by

$$pS^{+-}(t_{i-1},t_i) = \sum_{\ell=1}^{nP} \{1 - \exp[-\alpha(\ell)(t_{i-1},t_i)]\} \{1 - \exp[-\beta(\ell)(t_{i-1},t_i)]\}$$

$$(1 - \exp[-\beta(\ell)(t_{i-1},t_i)]\}$$

$$(4 - 17)$$

20 and

9

12

134156789

21

2234567

28

29

42

43 44

45 46

$$pS^{+-}(I;t_{i-1},t_{i}) = \begin{pmatrix} nBH \\ \Pi & pL_{\ell(j)} \\ j=1 \end{pmatrix} pS^{+-}(t_{i-1},t_{i}), \qquad (4-18)$$

where

33333333333333441

$$\alpha(l) = \frac{[aDT(l)]\lambda}{aTOT}$$
$$\beta(l) = \frac{[aTOT(l) - aBP(l)]\lambda}{aTOT}$$

[~ R D (0)])

 $aBP(l) = area (m^2)$ of pressurized brine pocket under waste panel l, $aTOT(l) = total area (m^2)$ of waste panel l,

 $aTOT = total area (m^2)$ of waste panels,

47 and

48 49 50

54

nP = number of waste panels.

The probability $pS^{+-}(t_{i-1},t_i)$ can also be determined under the assumption that exactly two boreholes are involved (see Chapter 2, Volume 2 of this report).

55 The relations appearing in Equations 4-15 through 4-18 are derived in Volume 56 2, Chapter 2 of this report under the assumption that drilling intrusions 57 follow a Poisson process (i.e., are random in time and space). The

TABLE 4-3. ACTIVITY LEVELS AND ASSOCIATED PROBABILITIES USED IN 1991 WIPP PERFORMANCE ASSESSMENT

Activity Level		Proba- bility ^b	<u></u>	Time (years)						
	Typea		0	1000	3000	5000	7000	9000		
1	СН	0.4023	3.4833	0.2718	0.1840	0.1688	0.1575	0.1473		
2	СН	0.2998	34.8326	2.7177	1.8401	1.6875	1.5748	1.4729		
3	СН	0.2242	348.326	27.177	18.401	16.875	15.748	14.729		
4	СН	0.0149	3483.26	271.77	184.01	168.75	157.48	147.29		
5	RH	0.0588	117.6717	0.1546	0.1212	0.1139	0.1082	0.1030		
Average f	for CH Wa	ste:	150.7905	11.7648	7.9658	7.3053	6.8174	6.3764		

^a CH designates contact handled waste; RH designates remote handled waste

^b Probability that a randomly placed borehole through the waste panels will intersect waste of activity level ℓ , $\ell = 1,2,3,4,5$.

derivations are quite general and include both the stationary (i.e., constant λ) and nonstationary (i.e., time-dependent λ) cases.

4.3 Expert Judgment on Inadvertent Human Intrusion

Identifying the probability of future inadvertent human intrusion is at best a qualitative task. Because the Standard allows for exceptions to quantitative evaluations where qualitative judgments are the only choice and because the expertise to make the qualitative evaluations is not available within the Project, the Project has selected teams of outside experts, organized into two separate panels, to address possible modes of inadvertent intrusion and types of markers to deter intrusion. These experts evaluate the available information, reduce the problems to manageable components, and with the assistance of probability specialists, quantify their subjective conclusions to the greatest extent possible. The events and probabilities generated by these experts will be evaluated for incorporation into the performance assessment.

The activities and results of the future-intrusion panel are discussed here. The planned marker-development panel is discussed in Chapter 8 of this volume.

1 4.3.1 PRINCIPLES OF EXPERT-JUDGMENT ELICITATION

2

Expert-judgment elicitation is often used to address technical issues that 3 cannot be practically resolved by other means (Bonano et al., 1989; Hora and 4 Iman, 1989). Teams of experts represent the various fields that are 5 pertinent to the issue at hand. The experts not only provide a broad 6 perspective on the problem, but the outcome of their work can often be 7 expressed in numerical form (events probabilities) that can be incorporated 8 9 into computer models. Before beginning their task, the experts are provided with necessary background information and an explicit statement of the issue 10 or issues to be addressed. 11

12

13 Training the experts to synthesize their expertise into relatively unbiased 14 probabilities is fundamental. A common method of addressing such questions 15 is to "decompose" each question into constituent parts that can be readily 16 quantified. Expert interaction and the sharing of insights enhance 17 decomposition and analysis of the questions. Individuals knowledgeable in 18 both the topic under discussion and expert elicitation quantify the responses 19 from each expert.

20

21 4.3.2 EXPERT SELECTION

22

Expert selection for the future-intrusion panel was a major activity.
Sixteen experts organized into four four-member teams were selected. Their
backgrounds span a variety of social and physical sciences including, for
example, futures studies, demography, mining engineering, agricultural
science, and resource economics. The three steps in this process were
nominator identification, nominee identification, and selection of experts.

Persons with sufficient knowledge to nominate individuals to serve on the future-intrusion panel were identified. The nominators were identified through contacts with professional organizations, government organizations, and private industry. In addition, nominators were identified through literature searches in various areas such as futures research. Once the nominators were identified (71 individuals), they were formally requested to nominate candidates for the panel.

37

38 The nominators, who could also nominate themselves, submitted a total of 126 39 nominations. The nominees were requested to submit a description of their 40 interests and any special qualifications relevant to this activity, along 41 with a curriculum vitae. Letters of interest were received from 70 nominees. 42

43 The selection committee for this panel was composed of three individuals who
44 are not members of the SNL staff. Each member of the selection committee
45 evaluated the nominees on the following criteria: tangible evidence of

expertise; professional reputation; availability and willingness to
participate; understanding of the general problem area; impartiality; lack of
economic or personal stake in the potential findings; balance among team
members to provide each team the needed breadth of expertise; physical
proximity to other participants to facilitate interactions among team
members; and balance among all participants to ensure adequate representation
of various constituent groups.

8 9

4.3.3 EXPERT-JUDGMENT ELICITATION

10

32

41 43

The future-intrusion experts were asked to address issues related to societal 11 development and human activities that could lead to inadvertent human 12 intrusion in a time frame that extends 10,000 years after disposal. They 13 were asked to identify reasonable, foreseeable futures for human societies, 14 to suggest how the activities of these societies could result in intrusions 15 into the WIPP repository, and to provide probabilities of the various futures 16 and the degree of completeness that these foreseeable futures represent (to 17 18 what extent can what could happen to society be accounted for by these foreseeable futures). For each foreseeable future, the experts were asked to 19 identify and quantify expected modes of intrusion into the repository and to 20 examine issues relating to persistence of information about the WIPP, the 21 22 ability to detect radiological waste in the repository, and the existence of radiological waste in the repository. 23

24 25 The approach is a form of scenario analysis. Futures¹ can be constructed by 26 considering alternative projections of basic trends in society. These trends 27 may include population growth, technological development, and the use and 28 scarcity of resources, among others. Transcending these factors are events 29 that interrupt, modify, or reinforce the development of society. Such events 30 include war, disease, pestilence, fortuitous discovery of new technologies, 31 human-induced climate changes, and so forth.

Each future specifies a picture of the characteristics of society at various 33 These characteristics will, in turn, provide information about those times. 34 35 activities that are likely to take place and pose threats to the integrity of the repository. Such activities include extractive industry, particularly 36 mining for potash or drilling for oil and gas, and drilling for water for use 37 in agriculture, industry, or for other purposes. Other types of intrusion 38 include various kinds of excavation or intrusive activities not currently 39 practiced. 40

 ¹ The expert-elicitation scenarios are referred to here as "futures" to avoid
 confusion with scenarios developed for consequence analysis.
From the states of societies and their potentially intrusive activities, modes of intrusion and motivations for these intrusions can be inferred. Similarly, from futures and the resulting states of society, one can assess whether knowledge concerning underground disposal of nuclear waste would exist, whether the waste itself would continue to exist, and whether a means to detect waste before or during intrusion would exist.

8 Four teams of future-intrusion experts have provided written reports that discuss societal development, describe possible futures, and establish the 9 basis for estimating the possibilities of these futures. The teams have 10 analyzed modes of intrusion and developed probabilistic quantitative 11 estimates of the frequencies of various intrusions. The likelihoods of 12 various futures were also estimated by the teams with assistance from an 13 elicitation specialist. The results of the elicitation sessions and the 14 subsequent analysis were returned to the panelists for review and comment. A 15 more detailed description of this process and the results can be found in 16 Hora et al. (1991). 17

18

19 4.3.4 PANEL RESULTS

20

21 The material provided by the four teams falls into two categories: qualitative discussions of the future states of society and modes of 22 intrusion found in the reports provided by each team; and a more quantitative 23 analysis developed during the elicitation sessions. The teams were given 24 25 complete freedom in addressing the issue statement, so all utilized different approaches. One important reason for convening the future-intrusion panel 26 27 was to provide input to the marker-development panel regarding modes of intrusion and states of society that should be considered when examining 28 markers to deter inadvertent human intrusion (providing design 29 characteristics and estimating effectiveness). As such, the panelists were 30 31 not limited in the issue statement to considering the mode of intrusion 32 specified by the Standard and now being modeled—intrusion by a borehole. Thus, some modes of intrusion discussed by the teams cannot currently be 33 34 modeled by computer programs. 35

A qualitative description of the various futures developed by the teams is
presented here. The actual reports written by the four teams are reproduced
as appendices in Hora et al. (1991).

39

40 Boston Team

41

The probability assessment developed by the Boston Team (T. Gordon, M. Baram,
W. Bell, and B. Cohen) assigned probabilities to particular modes of human
intrusion. They started with descriptions of possible future societies and

worked forward to develop possible modes of intrusion. This resulted in six 1 specific modes of intrusion, four of which involve activities that directly 2 impact the WIPP (disposal of wastes through injection wells, drilling for 3 resources, underground storage of additional nuclear waste at the WIPP, and 4 archaeological exploration), and two others that would have an indirect 5 impact (the construction of dams and explosive testing in the area). Whether 6 or not the intrusion would take place was believed to be influenced by five 7 underlying factors (level of technology, world population, cost of materials, 8 the persistence of knowledge concerning the WIPP, and the level of 9 industrialization in the WIPP area). In addition, the team felt that the 10 10,000 year period of regulatory interest should be further divided (years 0 11 to 300, 300 to 3000, and 3000 to 10,000) and that factors and probabilities 12 would be different during these intermediate periods. The Boston Team 13 provided numerous conditional probabilities that captured all the 14 interactions between the underlying factors and the three time periods in 15 order to develop specific intrusion probabilities or frequencies. 16

17

18 Southwest Team

19

In contrast to the Boston Team, whose analysis was very specific and 20 detailed, the Southwest Team (G. Benford, C. Kirkwood, H. Otway, and 21 M. Pasqualetti) chose to focus on two broad societal factors that they felt 22 influenced the probability of human intrusion at the WIPP, without directly 23 linking the probability to a particular mode of intrusion. Political 24 control, whether by the United States or by some other country, was seen as 25 26 quite important, especially with regards to active control of the site and the continuation of information regarding the exact location and dangers of 27 the WIPP. The other important underlying factor is that of the pattern of 28 technological development (a steady increase, a steady decrease, or a seesaw 29 between high and low levels of technology). Technological development 30 relates to the ability to intrude upon the WIPP and to detect various 31 warnings. While this team did not divide the 10,000 year regulatory period 32 for the actual probability calculation, they did state that the probability 33 of altered political control is high over the next 200 years. They also gave 34 periods for each of the three patterns during which intrusion would be most 35 likely (steady increase: 1000 to 2000 years; steady decrease: 100 to 500 36 years; and seesaw: cycles of 1000 years). This strategy resulted in a single 37 probability of inadvertent human intrusion over the 10,000 year regulatory 38 39 period. The probability is of one intrusion, for they thought that multiple intrusions were unlikely. 40

41

42 Several questions were handled by the team outside of the direct probability
43 elicitation. Depending on the technological development pattern, modes of
44 intrusion might include mole miners, nanotechnology, and deep strip mining
45 for steady increase, or conventional drilling and excavation for steady

decline and seesaw. The question of whether the wastes would be rendered
 harmless was given a probability of 0.99 in the steady-increase pattern, and
 essentially a zero probability for the other two patterns.

4

5 Washington A Team

6

The Washington A Team (D. Chapman, V. Ferkiss, D. Reicher, and T. Taylor) 7 8 organized their analysis by considering four alternative futures for society. The four futures are (1) continuity, where trends in population growth, 9 technology development, and resource exploration and extraction continue 10 along current lines; (2) radical increase, where current activities continue, 11 but at an increased rate; (3) discontinuity, where there are shifts in 12 political power and socioeconomic development, with a resulting loss of 13 14 knowledge about the WIPP; and (4) steady-state resources, where current trends in resource extraction and consumption are reversed-recycling of 15 resources and using renewable energy sources—so there is less need to search 16 the earth for extractable resources. Society need not continue with one 17 condition for the entire 10,000 years but may shift among them. 18 Human intrusion is expected to be moderated by active controls at the WIPP (the 19 20 team assumed no intrusion if there are active controls at the WIPP) and 21 effective information regarding the location and risks of the repository. The probability of intrusion was computed separately for the two time periods 22 of 0 to 200 years and 200 to 10,000 years and assuming that society did not 23 shift among conditions. The first period was thought to be crucial except 24 for the steady-state condition. 25

26

The two probabilities developed were not linked to particular modes, but the 27 team did discuss both direct (deep tunnel that intersects the WIPP, drilling, 28 and excavation) and indirect (dams, a water-well field, and explosions) 29 activities that might intrude upon the repository. They also outlined which 30 modes they thought were likely to take place with the four alternative 31 futures: conventional drilling and excavation with the continuity future; 32 conventional drilling and excavation, machine mining, and tunnels or 33 pipelines with the radical-increase future; conventional drilling and 34 excavation with the discontinuity future; and indirect means with the steady-35 state future. 36

37

38 Washington B Team

39

40 The Washington B Team (T. Glickman, N. Rosenberg, M. Singer, and
41 M. Vinovskis) started with four specific modes of intrusion (resource
42 exploration and extraction, development of groundwater, scientific
43 investigation, and weather modification) that were thought to be influenced
44 by four underlying factors in society (the overall level of wealth and
45 technology, prudent and effective government control, climate, and resource

prices). Two significant periods of time were used in the calculations: the 1 near future (0 to 200 years) and the far future (200 to 500 years for 2 resource exploration and extraction, and 200 to 10,000 years for the other 3 three modes). There were differences in the applicable underlying factors 4 for both the modes of intrusion and the time periods, and different 5 conditional probabilities describing the interactions between the factors. 6 Thus, separate probabilities of intrusion were calculated for each mode and 7 for each time period. 8

The findings of the future-intrusion panel were not incorporated into the
11 1991 calculations. Efforts are currently being made to organize the results
12 so that they can be used in the 1992 calculations.

9

13 14

15 16

Chapter 4–Synopsis

19 20 22 23	Scenarios in Performance Assessment	The Containment Requirements of the Standard refer to all significant events and processes that might affect a disposal system.
24 25 26		For a performance assessment to be complete, combinations of events and processes (scenarios) also must be analyzed.
27 28 29 30		In order to determine compliance with the Containment Requirements,
31 32 33		the set of scenarios must describe all reasonably possible, potentially disruptive future states of the disposal system,
34 35 36		scenarios must be mutually exclusive,
37 38 39		the consequences of each scenario must be determined,
40 41 42		the probability of occurrence of each scenario must be estimated.
43 44 45 46 49		Certain events and processes can be excluded from performance-assessment analyses based on low probability and/or low consequence of occurrence.
49 50 51 52 53	Identifying Events and Processes	The WIPP performance-assessment team has adopted and modified a generic list of events and processes that could affect the performance of a waste-disposal facility.

1 2 3 4 5	Phenomena that occur instantaneously or within a relatively short time interval are considered events. Phenomena that occur over a significant portion of the 10,000 years of regulatory concern are considered processes.
8 Screening Events 9 and Processes	Events and processes are screened based on probability of occurrence, physical reasonableness, and consequence.
11 12 13 14	Events and processes with less than one chance in 10,000 of occurring in 10,000 years do not have to be considered.
16 17 18 19 20 21 22	Sufficient data may not be available to calculate a probability of occurrence. A logical argument based on physical reasonableness can establish whether conditions exist or can change to a sufficient degree within the regulatory time period for a particular event or process to occur with sufficient magnitude to affect the performance of the disposal system.
23 24 25 26 27 28	Consequence is based on whether the event or process, either alone or in combination with other events or processes, may affect the performance of the disposal system.
30	Natural Events or Processes
31 32 33 34	None of the potentially disruptive natural events or processes considered for the WIPP were retained for scenario development of disturbed performance.
35 36 37 38	Events or processes that are part of the base-case scenario are
39 40 41	erosion, sedimentation, climatic change (pluvial periods), science activity
42 43 44 45	seismic activity, shallow dissolution (Rustler-Salado contact residuum).
46 47 48	Events or processes that were eliminated from consideration based on low probability of occurrence are
49 50 51 52	meteorite impact, tsunamis (from meteorite impacts), shallow dissolution (depending on theory).
53	

Synopsis

1	Events or processes that were eliminated from
2	consideration based on physical unreasonableness
3	arguments are
4	1 • . •
5	glaciation,
6	hurricanes,
7	seicnes,
8	tsunamis (of traditional origin),
9	regional subsidence of upilit,
10	mass wasting,
11	dioniziem
12	ulapirism, volcopio potivity
13	voicanic activity,
14	deen dissolution
15	shallow dissolution (depending on theory)
17	faulting
18	
19	Because sea-level variation is dependent on other
20	events or processes, it is not considered as an
21	independent phenomenon for scenario development.
22	
24	Human-Induced Events or Processes
25	
26	Events or processes that were eliminated from
27	consideration based on low probability of occurrence
28	are
29	
30	accidental surface and near-surface nuclear
31	explosions during warfare,
32	
33	damming of streams and rivers.
34	
35	Events or processes that were eliminated from
36	consideration based on physical unreasonableness are
37	
38	nuclear testing or enhanced oil recovery using
3 9	nuclear devices,
40	tour to the second
41	irrigation.
42	
43	Events or processes that were eliminated from
44	consideration based on low consequence are
45	inication walls
46	injection wells,
47	drilling of doop oil or gas wells outside the WIPP
48 40	boundaries
49 50	bouldar 165.
50	Evaluation of deliberate large-scale nuclear
50 50	explosions at the WIPP is not required by the Standard
52	exprosions at the will is not required by the standard.
00	

1 2	Events or processes that are being evaluated for inclusion in disruptive scenarios because of their
3	possible effects on groundwater flow are
5	potash mining (outside the boundaries of the waste
6	panels),
8	drilling of water wells,
9	drilling of oil or gas exploratory wells
11	diffing of off of gab exploratory wells.
12	Exploratory drilling for resources is a realistic event
13	for the WIPP and is retained for two possibilities of
14	scenario development:
16	drilling into a waste-filled room or drift, with a
17	brine reservoir in the underlying Castile Formation,
18	drilling into a waste-filled room or drift without
20	breaching a brine reservoir.
24	
23	Repository- and Waste-Induced Events or Processes
24	Fronte or processes that were aliminated from
25	consideration based on physical unreasonableness are
27	constantion based on physical anteasonasteness are
28	thermally induced stress fracturing in the host
29	rock,
30	and a first here we affind the state of the
31	explosions because of nuclear criticality.
33	Events or processes that were eliminated from
34	consideration based on low consequence are
35	
36	caving and subsidence,
37 38	explosions or fires within waste-filled rooms and
39	drifts.
40	
41	Events or processes that are part of the base-case
42	scenario are
43	shaft-seal degradation
45	Share Sour degradation,
46 47	excavation-induced stress fracturing in the host rock,
48	
49	gas generation within the repository.
ວບ 51	A phenomenon that is being evaluated for inclusion in
52	the development of disruptive scenarios is heat
53	generated by nuclear criticality.
54	

1 2 3	Developing Scenarios	Scenarios used in performance assessment must be comprehensive and mutually exclusive.
4 5 6 7 8 9 10 11 12 13 15		The WIPP performance assessment uses a logic diagram to construct scenarios. At each junction within the diagram, a yes/no decision is made as to whether the next event or process is added to the scenario. Parameter values, time of occurrence, and location of occurrence are not used to define the events and processes, and parameter uncertainty is incorporated directly into the data base. Each scenario consists of a combination of occurrence and nonoccurrence of all events and processes that survive screening.
16 17 18	Screening Scenarios	Scenarios are screened to identify those that have little or no effect on the mean CCDF.
19 20 21		Scenarios are screened on the same criteria used to screen events and processes: physical reasonableness, probability of occurrence, and consequence.
22 23 24 25 26 28		The probability of occurrence of a scenario is determined by combining the probability of occurrence and nonoccurrence of its constituent events and processes.
29	Descriptions	Undisturbed Performance Scenario
30 31 32 33 34 35 26		The undisturbed performance scenario includes all natural events and processes expected to occur at the WIPP during the next 10,000 years. It also includes undisturbed processes within the disposal system, such as gas generation within the waste panels.
37 38 39 40 41 43		The undisturbed performance scenario is used to evaluate compliance with the Individual Protection Requirements and as the base-case scenario for assessments of disturbed performance for evaluation of compliance with the Containment Requirements.
44		Human-Intrusion Scenarios
45 46 47		Three summary human-intrusion scenarios are considered:
48 49 50		E2, in which a borehole penetrates a waste panel, creating a flow path to the Culebra Dolomite,
51 52 53 54 55		E1, in which a borehole penetrates a waste panel and an underlying pressurized brine reservoir in the Castile Formation, creating a flow path to the Culebra Dolomite,

1 2 3 4		ElE2, in which two boreholes, one of each type, penetrate a single waste panel, creating a flow path for Castile brine through the waste from one hole to the other and then upward to the Culebra Dolomite.
7 8 9 10 11	Scenario Probability Assignments	Probabilities for the 1991 computational scenarios are based on the assumption that intrusion follows a Poisson process (i.e., boreholes are random in time and space) with a rate constant, λ , that is sampled as an uncertain parameter in the 1991 calculations.
1 5 16 17	Expert Judgment on Inadvertent Human Intrusion	The WIPP Project has selected panels of external experts to provide judgment for use in determining the probability of intrusion.
18 19 20		One panel has met and has addressed the possible modes of intrusion and their likelihoods.
21 22 23 24		A second panel will be convened to address types of markers that could deter intrusion, thereby lowering its probability.
2 0 27		Techniques of Expert-Judgment Elicitation
28 29 30 31		Judgments are elicited from experts in quantitative probabilistic forms suitable for use in performance assessments.
32 34		Expert Selection
35 36 37		Experts for the future-intrusion panel were selected with a three-step process:
38 39 40 41 42		seventy-one nominators were identified through literature searches and contacts with professional organizations, government organizations, and private industry,
43 44 45		one hundred and twenty six nominees were identified, of whom seventy expressed interest,
46 47 48 49		sixteen panel members were selected on the basis of expertise, professional reputation, availability and willingness to participate, understanding of the
50 51 52 53		problem, impartiality, lack of an economic or personal stake in the outcome, balance of expertise, physical proximity to other panel members, and balance among various constituent groups
55		

1	Expert-Judgment Elicitation
2	The future-intrusion experts were asked to identify
4	reasonable, foreseeable futures for human societies, to
5	suggest how these futures could result in intrusions,
6	and to provide probabilities for their futures.
8	
9	Panel Results
10	
11	Each of four teams on the future-intrusion panel
12	identified possible futures and the associated
13	probabilities of intrusion.
14	-
15	Findings of the panel are still being analyzed and were
16	not incorporated into the 1991 calculations.
17	

1 2 3

5. COMPLIANCE-ASSESSMENT SYSTEM

4 [NOTE: The text of Chapter 5 is followed by a synopsis that summarizes
5 essential information, beginning on page 5-73.]

6

17

This chapter reviews the conceptual models used for quantitative simulations 7 of the disposal system. A full documentation of the compliance-assessment 8 system is beyond the scope of a single chapter, and wherever possible the 9 reader is referred to original documents for technical details. Descriptions 10 of specific computer programs and their applications to the WIPP performance 11 assessment have been included in Volume 2 of this report, and are described 12 13 here only briefly. Additional information about the executive controller for the computer programs within the modeling system can be found in Rechard et 14 al. (1989). Data used in the 1991 preliminary performance assessment are 15 available in Volume 3 of this report. 16

The first two major sections of this chapter describe the physical components 18 19 of the disposal system and its surroundings that will provide barriers to radionuclide migration during the next 10,000 years. These barriers are of 20 two types: natural barriers, which are features of the regional and local 21 environment, and engineered barriers, which include designed features of the 22 23 repository system, such as the panel and shaft seals. Descriptions of the physical components are followed by qualitative descriptions of the models 24 25 used to simulate performance of the barrier systems.

27 The third section of the chapter briefly describes CAMCON, the Compliance 28 Assessment Methodology Controller. CAMCON is the executive program which 29 links specific numerical models into a single computational system capable of 30 generating the Monte Carlo simulations required for probabilistic performance 31 assessments.

32

26

33 34

35

5.1 The Natural Barrier System

The hydrogeologic setting of the WIPP provides excellent natural barriers to radionuclide migration. Groundwater flow, which provides the primary mechanism for radionuclide migration from the WIPP, is extremely slow in the host Salado Formation, and is slow enough in the overlying rocks to be of concern during the next 10,000 years only in the most transmissive units. If radionuclides reach the overlying units, geochemical retardation during transport may provide an additional barrier to migration.

43

1 5.1.1 REGIONAL GEOLOGY

2

The geology of the WIPP and the surrounding area has been summarized in 3 Chapter 1 of this volume, and is described elsewhere in detail (e.g., Powers 4 et al., 1978a,b; Cheeseman, 1978; Williamson, 1978; Hiss, 1975; Hills, 1984; 5 Harms and Williamson, 1988; Ward et al., 1986; Holt and Powers, 1988; 6 Beauheim and Holt, 1990; Brinster, 1991). The brief review presented here 7 describes regional structural features and introduces the major stratigraphic 8 9 units. Specific geologic features that affect compliance-assessment modeling are described in greater detail in subsequent sections of this chapter. 10 11

The WIPP is located in the Delaware Basin, a structural depression that formed during the Late Pennsylvanian and Permian Periods, approximately 300 to 245 million years ago (Figures 5-1, 5-2). Sedimentation within the subsiding basin resulted in the deposition of up to 4,000 m (13,000 ft) of marine strata. Organic activity at the basin margins produced massive carbonate reefs that separated deep-water facies from the shallow-water shelf sediments deposited landward.

19

Permian-age rocks of importance to WIPP performance-assessment modeling are 20 those of the Guadalupian and Ochoan Series, deposited between approximately 21 265 and 245 million years ago (Figure 5-3). During this time subsidence in 22 the Delaware Basin was initially rapid, resulting in deposition of deep-water 23 shales, sandstones, and limestones of the Delaware Mountain Group. 24 Intermittent connection with the open ocean and a decrease in clastic 25 sediment supply, possibly in response to regional tectonic adjustments, led 26 27 to the deposition of a thick evaporite sequence. Anhydrites and halites of the Castile Formation are limited to the structurally deeper portion of the 28 basin, enclosed within the reef-facies rocks of the Capitan Limestone. 29 Subsidence within the basin slowed in Late Permian time, and the halites of 30 the Salado Formation, which include the host strata for the WIPP, extend 31 outward from the basin center over the Capitan Reef and the shallow-water 32 shelf facies. Latest Permian-age evaporites, carbonates, and clastic rocks 33 of the Rustler Formation and the Dewey Lake Red Beds record the end of 34 regional subsidence and include the last marine rocks deposited in 35 southeastern New Mexico. The overlying sandstones of the Triassic-age Dockum 36 Group reflect continental deposition and mark the onset of a period of 37 regional tectonic stability that lasted approximately 240 million years, 38 until late in the Tertiary Period. 39

40

Permian-age strata of the Delaware Basin now dip gently (generally less than 1°) to the east, and erosion has exposed progressively older units toward the western edge of the basin (Figures 5-1, 5-4). This tilting reflects the late Pliocene and early Pleistocene (approximately 3.5 million to 1 million years ago) uplift of the Capitan Reef to form the Guadalupe Mountains more than

TRI-6342-237-4

Figure 5-1. Generalized Geology of the Delaware Basin, Showing the Location of the Capitan Reef and the Erosional Limits of the Basinal Formations (Lappin, 1988).

All Ages in Millions of Years

TRI-6342-611-1

Figure 5-2. Geologic Time Scale (simplified from Geological Society of America, 1984).

Figure 5-3. Stratigraphy of the Delaware Basin (modified from Mercer, 1983; Brinster, 1991).

TRI-6342-1076-0

Figure 5-4. Schematic East-West Cross Section through the Northern Delaware Basin (modified from Davies, 1984). Note extreme vertical exaggeration. Approximate location of line of section shown on Figure 5-1.

60 km (37 miles) west of the WIPP (Figures 5-1, 5-4). Field evidence
suggests that additional uplift may have occurred during the late Pleistocene
and Holocene, and some faults of the Guadalupe Mountains may have been active
within the last 1,000 years (Powers et al., 1978a,b). North and east of the
WIPP the Capitan Reef has not been uplifted and remains in the subsurface
(Figure 5-5).

The present landscape of the Delaware Basin has been influenced by near-8 9 surface dissolution of the evaporites (Bachman, 1984, 1987). Karst features created by dissolution include sinkholes, subsidence valleys, and breccia 10 pipes. Most of these features formed during wetter climates of the 11 Pleistocene, although active dissolution is still occurring wherever 12 13 evaporites are exposed at the surface. Some dissolution may also be occurring at depth where circulating groundwater comes in contact with 14 evaporites: modern subsidence in San Simon Swale east of the WIPP 15 (Figure 1-6) may be related to localized dissolution of the Salado Formation 16 (Anderson, 1981; Bachman, 1984; Brinster, 1991). Nash Draw, which formed 17 during the Pleistocene by dissolution and subsidence, is the most prominent 18 karst feature near the WIPP. As discussed again in Section 5.1.2-19 Stratigraphy below, evaporites in the Rustler Formation have been affected by 20 dissolution near Nash Draw. 21

The largest karst feature in the Delaware Basin is the Balmorhea-Loving Trough, south of the WIPP along the axis of the basin (Figure 1-6). Dissolution of evaporites, perhaps along the course of a predecessor of the modern Pecos River, resulted in subsidence and the deposition of Cenozoic alluvium up to 300 m (984 ft) thick in southern Eddy County, and up to almost 600 m (1970 ft) thick across the state line in Texas (Bachman, 1984, 1987; Brinster, 1991).

31 5.1.2 STRATIGRAPHY

32

30

22

7

The stratigraphic summary presented here is based on the work of Brinster (1991) and is limited to those units that may have an important role in future performance of the disposal system. Hydrologic data about the units have been summarized by Brinster (1991), and are, in general, not repeated here. Stratigraphic relationships between the units are shown in Figure 5-3. Figure 5-6 shows the region examined in detail by Brinster (1991) and the location of wells that provide basic data.

41 Bell Canyon Formation

42

40

The Bell Canyon Formation consists of 210 to 260 m (690 to 850 ft) of
sandstones and siltstones with minor limestones, dolomites, and conglomerates
(Williamson, 1978; Mercer, 1983; Harms and Williamson, 1988). Sandstones

Figure 5-5. Schematic North-South Cross Section through the Northern Delaware Basin (modified from Davies, 1984). Note extreme vertical exaggeration. Approximate location of line of section shown on Figure 5-1.

Figure 5-6. Map of the WIPP Vicinity Showing the Proposed Land-Withdrawal Area, the Study Area of Brinster (1991), and the Location of Observation Wells (Haug et al., 1987; Brinster, 1991).

within the upper portion of the Bell Canyon Formation occur as long, sinuous
channels separated by siltstones, reflecting their deposition by density
currents that flowed into the deep basin from the Capitan Reef (Harms and
Williamson, 1988). These sandstones have been targets for hydrocarbon
exploration elsewhere in the Delaware Basin and are of interest for the WIPP
performance assessment because they are the first units containing extensive
aquifers below the evaporite sequence that hosts the repository.

8

Simulations of undisturbed repository performance do not include the Bell 9 Canyon Formation because a thick sequence of evaporites with very low 10 permeability separates the formation from the overlying units. Simulations 11 of human intrusion scenarios do not include a borehole pathway for fluid 12 migration between the Bell Canyon Formation (or deeper units) and the 13 repository. Relatively little is known about the head gradient that would 14 drive flow along this pathway, but data from five wells in the Bell Canyon 15 Formation suggest that flow would be slight, and, in an uncased hole, 16 downward because of brine density effects (Mercer, 1983; Beauheim, 1986; 17 Lappin et al., 1989). 18

19

20 Capitan Limestone

21

The Capitan Limestone is not present at the WIPP but is a time-stratigraphic 22 equivalent of the Bell Canyon and Castile Formations to the west, north, and 23 east (Figures 5-1, 5-3). The unit is a massive limestone ranging from 76 to 24 230 m (250 to 750 ft) thick. Dissolution and fracturing have enhanced 25 effective porosity, and the Capitan is a major aquifer in the region, 26 providing the principal water supply for the city of Carlsbad. Upward flow 27 of groundwater from the Capitan aquifer may be a factor in dissolution of 28 overlying halite and the formation of breccia pipes. Existing breccia pipes 29 are limited to the vicinity of the reef, as is the active subsidence in San 30 Simon Swale (Figure 5-6) (Brinster, 1991). 31

33 Castile Formation

34

32

The Castile Formation is approximately 470 m (1540 ft) thick at the WIPP and 35 contains anhydrites with intercalated limestones near the base and halite 36 layers in the upper portions. Primary porosity and permeability in the 37 Castile Formation are extremely low. However, approximately 18 wells in the 38 region have encountered brine reservoirs in fractured anhydrite in the 39 Castile Formation (Brinster, 1991). Hydrologic and geochemical data have 40 been interpreted as indicating that these brine occurrences are hydraulically 41 isolated (Lambert and Mercer, 1978; Lappin, 1988). Fluid may be derived from 42 interstitial entrapment of connate water after deposition (Popielak et al., 43 44 1983), dehydration of the original gypsum to anhydrite (Popielak et al., 1983), or intermittent movement of meteoric waters from the Capitan aquifer 45

into the fractured anhydrites between 360,000 and 880,000 years ago (Lambert
and Carter, 1984). Pressures within these brine reservoirs are greater than
those at comparable depths in other relatively permeable units in the region
and range from 7 to 17.4 MPa (Lappin et al., 1989).

Pressurized brine in the Castile Formation is of concern for performance 6 7 assessment because occurrences have been found at WIPP-12 within the WIPP land-withdrawal area and at ERDA-6 and other wells in the vicinity. The 8 WIPP-12 reservoir is at a depth of 918 m (3012 ft), about 250 m (820 ft) 9 below the repository horizon, and is estimated to contain 2.7 x 10^6 m³ 10 (1.7 x 10⁷ barrels) of brine at a pressure of 12.7 MPa (Lappin et al., 1989). 11 This pressure is greater than the nominal freshwater hydrostatic pressure at 12 that depth of 9 MPa and is slightly greater than the nominal hydrostatic 13 pressure for a column of equivalent brine at that depth of 11.1 MPa. 14 The brine is saturated, or nearly so, with respect to halite, and has little or 15 no potential to dissolve the overlying salt (Lappin et al., 1989). Brine 16 17 could, however, reach the repository through an intrusion borehole.

Early geophysical surveys mapped a structurally disturbed zone in the 19 vicinity of the WIPP that may correlate with fracturing or development of 20 secondary porosity within the Castile Formation; this zone could possibly 21 22 contain pressurized brine (Borns et al., 1983). Later electromagnetic surveys indicated that the brine present at WIPP-12 could underlie part of 23 the waste panels (Earth Technology Corporation, 1988). WIPP-12 data are 24 therefore used to develop a conceptual model of the brine reservoir for 25 analyzing scenarios that include the penetration of pressurized brine. The 26 numerical model for the Castile Formation brine reservoir is described in 27 28 Volume 2 of this report. Data are summarized in Volume 3 of this report.

29

18

5

30 Salado Formation

31

The Salado Formation is about 600 m (1970 ft) thick at the WIPP and contains bedded halite rhythmically interbedded with anhydrite, polyhalite, glauberite, and some thin mudstones (Adams, 1944; Bachman, 1981; Mercer, 1983). Unlike the underlying Castile Formation, the Salado Formation overlaps the Capitan Limestone and extends eastward beyond the reef for many kilometers into west Texas (Figure 5-3). Erosion has removed the Salado Formation from the western portion of the basin (Figure 5-1).

39

Where the Salado Formation is intact and unaffected by dissolution,
circulation of groundwater is extremely slow because primary porosity and
open fractures are lacking in the plastic salt (Mercer, 1983; Brinster,
1991). The formation is not dry, however. Interstitial brine seeps into the
repository at rates up to approximately 0.01 *l*/day/m of tunnel (Bredehoeft,
1988; Nowak et al., 1988), and the Salado is assumed to be saturated

(Brinster, 1991). Porosity is estimated to be approximately 0.001 (Mercer, 1 1983, 1987; Powers et al., 1978a,b; Bredehoeft, 1988). Permeability of the 2 formation is very low but measurable, with an average value of 0.05 3 microdarcies (5 x 10^{-20} m²) reported by Powers et al. (1978a,b) from well 4 tests. This value corresponds approximately to a hydraulic conductivity of 5 approximately 5 x 10^{-13} m/s (1 x 10^{-7} ft/d). In situ testing of halite in 6 the repository indicates lower permeabilities ranging from 1 to 100 7 nanodarcies $(10^{-22} \text{ to } 10^{-20} \text{ m}^2)$ (Stormont et al., 1987; Beauheim et al., 8 1990), suggesting that the higher values may reflect properties of disturbed 9 rock (Brinster, 1991). 10

11

12 Rustler-Salado Contact Zone

13

In the vicinity of Nash Draw, the contact between the Rustler and Salado 14 Formations is an unstructured residuum of gypsum, clay, and sandstone created 15 by dissolution of halite. The residuum becomes thinner to the east and 16 intertongues with clayey halite of the unnamed lower member of the Rustler 17 Formation. Mercer (1983) concluded on the basis of brecciation at the 18 contact that dissolution in Nash Draw occurred after deposition of the 19 Rustler Formation. In shafts excavated at the WIPP, the residuum shows 20 evidence of channeling and filling, fossils, and bioturbation, indicating 21 that some dissolution occurred before Rustler deposition (Holt and Powers, 22 1988). 23

24

The residuum ranges in thickness in the vicinity of the WIPP from 2.4 m (7.9 ft) in P-14 east of Nash Draw to 33 m (108 ft) in WIPP-29 within Nash Draw (Mercer, 1983). Measured hydraulic conductivity values for the residuum are highest at Nash Draw (up to 10⁻⁶ m/s [10⁻¹ ft/d]), and three to six orders of magnitude lower to the east (Brinster, 1991). Porosity estimates range from 0.15 to 0.33 (Hale and Clebsch, 1958; Robinson and Lang, 1938; Geohydrology Associates, Inc., 1979; and Mercer, 1983).

32

33 Rustler Formation

34

The Rustler Formation is 95 m (312 ft) thick at the WIPP (as measured in 35 ERDA-9) and ranges in the area from a minimum of 8.5 m (28 ft) where thinned 36 by dissolution and erosion west of the repository to a maximum of 216 m 37 (709 ft) to the east (Brinster, 1991). Overall, the formation is composed of 38 about 40 percent anhydrite, 30 percent halite, 20 percent siltstone and 39 sandstone, and 10 percent anhydritic dolomite (Lambert, 1983). On the basis 40 of outcrops in Nash Draw west of the WIPP, the formation is divided into four 41 formally named members and a lower unnamed member (Vine, 1963). These five 42 units (Vine, 1963; Mercer, 1983) are, in ascending order, the unnamed lower 43 member (oldest), the Culebra Dolomite Member, the Tamarisk Member, the 44 Magenta Dolomite Member, and the Forty-niner Member (youngest) (Figure 5-7). 45

TRI-6342-262-2

Figure 5-7. East-West Cross Section Showing Stratigraphy of the Rustler Formation and the Dewey Lake Red Beds (modified from Brinster, 1991). Note vertical exaggeration. Location of cross section is shown on Figure 5-6.

1 The Unnamed Lower Member

```
2
```

The unnamed lower member is about 36 m (118 ft) thick at the WIPP and 3 thickens slightly to the east. The unit is composed mostly of fine-grained 4 silty sandstones and siltstones interbedded with anhydrite (converted to 5 gypsum at Nash Draw) west of the WIPP. Increasing amounts of halite are 6 present to the east. Halite is present over the WIPP (Figure 5-8) but is 7 absent north and south of the WIPP where the topographic expression of Nash 8 Draw extends eastward. Distribution of halite within this and other members 9 of the Rustler Formation is significant because, as is discussed in the 10 following section, there is an apparent correlation between the absence of 11 halite and increased transmissivity in the Culebra Dolomite Member. 12 13 The basal interval of the unnamed lower member contains siltstone and 14 sandstone of sufficient transmissivity to allow groundwater flow. 15 Transmissivities of 2.9 x 10^{-10} m²/s (2.7 x 10^{-4} ft²/d) and 2.4 x 10^{-10} m²/s 16 $(2.2 \times 10^{-4} \text{ ft}^2/\text{d})$ were calculated from tests at H-16 that included this 17 interval (Beauheim, 1987a). Transmissivity in the lower portion of the 18 unnamed member is believed to increase to the west, where dissolution in the 19 underlying Rustler-Salado contact zone has caused fracturing of the sandstone 20 and siltstone (Beauheim and Holt, 1990). 21 22 The remainder of the unnamed lower member contains mudstones, anhydrite, and 23 variable amounts of halite. Hydraulic conductivity of these lithologies is 24 extremely low: tests of mudstones and claystones in the waste-handling shaft 25 gave hydraulic conductivity values ranging from 6 x 10^{-15} m/s (2 x 10^{-9} ft/d) 26 to 1 x 10⁻¹³ m/s (3 x 10⁻⁸ ft/d) (Saulnier and Avis, 1988; Brinster, 1991). 27 28 Culebra Dolomite Member 29 30 The Culebra Dolomite Member of the Rustler Formation is microcrystalline 31 dolomite or dolomitic limestone with solution cavities (Vine, 1963). In the 32 vicinity of the WIPP, it ranges in thickness from 4 to 11.6 m (13 to 38.3 ft) 33 and has a mean thickness of about 7 m (23 ft). Outcrops of the Culebra 34 Dolomite occur in the southern part of Nash Draw and along the Pecos River. 35 36 The Culebra Dolomite has been identified as the most likely pathway for 37 release of radionuclides to the accessible environment, and hydrologic 38 research has concentrated on the unit for over a decade (Mercer and Orr, 39 1977; Mercer and Orr, 1979; Mercer, 1983; Mercer et al., 1987; Beauheim, 40 1987a,b; LaVenue et al., 1988; Davies, 1989; LaVenue et al., 1990; Cauffman 41 et al., 1990; Brinster, 1991). Hydraulic data are available from 41 well 42 locations in the WIPP vicinity (Cauffman et al., 1990). 43

TRI-6330-94-2

Figure 5-8. Rustler Formation Halite and Culebra Dolomite Transmissivity around the WIPP (Lappin et al., 1989).

Hydraulic conductivity of the Culebra varies six orders of magnitude from 1 east to west in the vicinity of the WIPP (Figure 5-9), ranging from 2 \times 10⁻¹⁰ 2 m/s (6 x 10^{-5} ft/d) at P-18 east of the WIPP to 1 x 10^{-4} m/s (6 x 10^{1} ft/d) 3 at H-7 in Nash Draw (Brinster, 1991). This variation is controlled by 4 fracturing in the Culebra caused either by subsidence associated with post-5 6 depositional dissolution of salt in the Rustler Formation (Snyder, 1985), or 7 by stress reduction from removal of overburden (Holt and Powers, 1988), or possibly from a combination of both processes. Present distribution of 8 halite in the Rustler Formation correlates with hydraulic conductivity in the 9 Culebra (Figure 5-8), suggesting a causal link between the controlling 10 processes. 11

12

Measured matrix porosities of the Culebra Dolomite range from 0.03 to 0.30 (Lappin et al., 1989; Kelley and Saulnier, 1990). Fracture porosity values have not been measured directly, but interpreted values from tracer tests at the H-3 and H-11 hydropads are 2 x 10^{-3} and 1 x 10^{-3} , respectively (Kelley and Pickens, 1986).

18

19 <u>Tamarisk Member</u>

20

The Tamarisk Member ranges in thickness from 8 to 84 m (26 to 276 ft) in southeastern New Mexico, and is about 36 m (118 ft) thick at the WIPP. The Tamarisk consists of mostly anhydrite or gypsum interbedded with thin layers of claystone and siltstone. Near Nash Draw, dissolution has removed evaporites from the Tamarisk Member, and the Magenta and Culebra Dolomites are separated only by a few meters of residue (Brinster, 1991).

27

Unsuccessful attempts were made in two wells, H-14 and H-16, to test a 2.4 m 28 (7.9 ft) sequence of the Tamarisk Member that consists of claystone, 29 mudstone, and siltstone overlain and underlain by anhydrite. Permeability 30 was too low to measure in either well within the time allowed for testing, 31 but Beauheim (1987a) estimated the transmissivity of the claystone sequence 32 to be one or more orders of magnitude less than that of siltstone in the 33 unnamed lower member, which yielded values of 2.9 x 10^{-10} m²/s (2.7 x 10^{-4} 34 ft^2/d) and 2.4 x 10⁻¹⁰ m²/s (2.2 x 10⁻⁴ ft²/d). 35

36

37 Magenta Dolomite Member

38

The Magenta Dolomite Member of the Rustler Formation is a fine-grained dolomite that ranges in thickness from 4 to 8 m (13 to 26 ft) and is about 6 m (19 ft) thick at the WIPP. The Magenta is saturated except near outcrops along Nash Draw, and hydraulic data are available from 14 wells. Hydraulic conductivity ranges over five orders of magnitude from 5.0 x 10^{-10} to 5.0 x 10^{-5} m/s (1 x 10^{-4} to 1 x 10^{1} ft/d).

TRI-6342-272-1

Figure 5-9. Log Hydraulic Conductivities (measured in m/s) of the Culebra Dolomite Member of the Rustler Formation (Brinster, 1991).

A contour map of log hydraulic conductivities of the Magenta Dolomite Member based on sparse data (Figure 5-10) shows a decrease in conductivity from west to east, with slight indentations of the contours north and south of the WIPP that correspond to the topographic expression of Nash Draw (Brinster, 1991). Comparison of Figures 5-9 and 5-10 show that in most locations conductivity of the Magenta is one to two orders of magnitude less than that of the Culebra.

9 No porosity measurements have been made on the Magenta Dolomite Member.
10 Beauheim (1987a) assumed a representative dolomite porosity of 0.20 for
11 interpretations of well tests.

12

13 Forty-niner Member

14

The uppermost member of the Rustler Formation, the Forty-niner Member, is about 20 m (66 ft) thick throughout the WIPP area and consists of lowpermeability anhydrite and siltstone. Tests in H-14 and H-16 yielded hydraulic conductivities of about 5 x 10^{-9} m/s (1 x 10^{-3} ft/d) and 5 x 10^{-10} m/s (1 x 10^{-4} ft/d) respectively (Beauheim, 1987a).

```
20
```

21 Supra-Rustler Rocks

22

23 Where present, the supra-Rustler units collectively range in thickness from 4 24 to 536 m (13 to 1758 ft). Regionally, the supra-Rustler units thicken to the east and form a uniform wedge of overburden across the region (Brinster, 25 1991). Fine-grained sandstones and siltstones of the Dewey Lake Red Beds 26 (Pierce Canyon Red Beds of Vine, 1963) conformably overlie the Rustler 27 Formation at the WIPP and are the uppermost Permian rocks in the region. 28 The unit is absent in Nash Draw, is as much as 60 m (196 ft) thick where present 29 30 west of the WIPP, and can be over 200 m (656 ft) thick east of the WIPP (Figures 5-4, 5-7). East of the WIPP, the Dewey Lake Red Beds are 31 unconformably overlain by Mesozoic rocks of the Triassic Dockum Group. These 32 rocks are absent above the repository and reach a thickness of over 100 m 33 (328 ft) in western Lea County. East of the WIPP, Triassic and, in some 34 locations, Cretaceous rocks are unconformably overlain by the Pliocene 35 Ogallala Formation. At the WIPP, Permian strata are overlain by 36 discontinuous sands and gravels of the Pleistocene Gatuña Formation, the 37 informally named Pleistocene Mescalero caliche, and Holocene soils. 38 39

Drilling in the Dewey Lake Red Beds has not identified a continuous zone of
saturation. Some localized zones of relatively high permeability were
identified by loss of drilling fluids at DOE-2 and H-3d (Mercer, 1983;
Beauheim, 1987a). Thin and apparently discontinuous saturated sands were
identified in the upper Dewey Lake Red Beds at H-1, H-2, and H-3 (Mercer and

TRI-6342-275-1

Figure 5-10. Log Hydraulic Conductivities (measured in m/s) of the Magenta Dolomite Member of the Rustler Formation (Brinster, 1991).

```
Orr, 1979; Mercer, 1983). Several wells operated by the J. C. Mills Ranch
1
    (James Ranch) south of the WIPP produce sufficient quantities of water from
2
    the Dewey Lake Red Beds to supply livestock (Brinster, 1991).
3
4
5
    Hydrologic properties of supra-Rustler rocks are relatively poorly understood
    because of the lack of long-term hydraulic tests. Hydraulic conductivity of
6
7
    the Dewey Lake Red Beds, assuming saturation, is estimated to be 10-8 m/s
    (10^{-3} \text{ ft/d}), corresponding to the hydraulic conductivity of fine-grained
8
    sandstone and siltstone (Mercer, 1983; Davies, 1989). Porosity is estimated
9
    to be about 0.20, which is representative of fine-grained sandstone
10
    (Brinster, 1991).
11
12
    5.1.3 CLIMATE
13
14
    The present climate of southeastern New Mexico is arid to semi-arid (Swift.
15
    1991a). Annual precipitation is dominated by a late summer monsoon, when
16
    solar warming of the continent creates an atmospheric pressure gradient that
17
    draws moist air inland from the Gulf of Mexico (Cole, 1975). Winters are
18
19
    cool and generally dry.
20
    Mean annual precipitation at the WIPP has been estimated to be between 28 and
21
    34 cm/yr (10.9 and 13.5 in/yr) (Hunter, 1985). At Carlsbad, 42 km (26 mi)
22
    west of the WIPP and 100 m lower in elevation, 53-year (1931-1983) annual
23
    means for precipitation and temperature are 32 cm/yr (12.6 in/yr) and 17.1°C
24
    (63°F) (University of New Mexico, 1989). Freshwater pan evaporation in the
25
    region is estimated to be 280 cm/yr (110 in/yr) (U.S. DOE, 1980a).
26
27
    Short-term climatic variability can be considerable in the region. For
28
    example, the 105-year (1878 to 1982) precipitation record from Roswell,
29
    135 km northwest of the WIPP and 60 m higher in elevation, shows an annual
30
    mean of 27 cm/yr (10.6 in/yr) with a maximum of 84 cm/yr (32.9 in/yr) and a
31
32
    minimum of 11 cm/yr (4.4 in/yr) (Hunter, 1985).
33
    5.1.4 PALEOCLIMATES AND CLIMATIC VARIABILITY
34
35
    Geologic data from the American Southwest show repeated alternations of
36
    wetter and drier climates throughout the Pleistocene, which correspond to
37
    global cycles of glaciation and deglaciation (Swift, 1991a). Climates in
38
    southeastern New Mexico have been coolest and wettest during glacial maxima,
39
    when the North American ice sheet reached its southern limit roughly 1200 km
40
    (750 mi) north of the WIPP. Mean annual precipitation at these extremes was
41
    approximately twice that of the present. Mean annual temperatures may have
42
    been as much as 5^{\circ}C (9°F) cooler than at present. Modeling of global
43
```

```
44 circulation patterns suggests these changes resulted from the disruption and
```

southward displacement of the winter jet stream by the ice sheet, causing an
 increase in the frequency and intensity of winter storms throughout the
 Southwest (COHMAP members, 1988).

Data from plant and animal remains and paleo-lake levels permit quantitative 5 reconstructions of precipitation in southeastern New Mexico during the 6 advance and retreat of the last major ice sheet in North America. 7 Figure 5-11 shows estimated mean annual precipitation for the WIPP for the 8 last 30,000 years, based on an estimated present precipitation of 30 cm/yr 9 (11.8 in/yr). The precipitation maximum coincides with the maximum advance 10 of the ice sheet 22,000 to 18,000 years ago. Since the final retreat of the 11 ice sheet approximately 10,000 years ago, conditions have been generally dry. 12 with intermittent and relatively brief periods when precipitation may have 13 approached glacial levels. Causes of these Holocene fluctuations are 14 uncertain (Swift, 1991a). 15

17 Based on the past record, it is reasonable to assume that climate will change 18 at the WIPP during the next 10,000 years, and the performance-assessment hydrologic model must allow for climatic variability. Presently available 19 long-term climate models are incapable of resolution on the spatial scales 20 required for numerical predictions of future climates at the WIPP (e.g., 21 Hansen et al., 1988; Mitchell, 1989; Houghton et al., 1990), and simulations 22 using these models are of limited value beyond several hundreds of years into 23 the future. Direct modeling of climates during the next 10,000 years has not 24 been attempted for WIPP performance assessment. Instead, performance-25 assessment modeling uses past climates to set limits for future variability 26 (Swift, 1991a; Swift, October 10, 1991, memo in Volume 3, Appendix A). 27 The extent to which unprecedented climatic changes caused by human-induced 28 changes in the composition of the Earth's atmosphere may invalidate this 29 assumption is uncertain. Presently available models of climatic response to 30 31 an enhanced greenhouse effect (e.g., Mitchell, 1989; Houghton et al., 1990) do not predict changes of a larger magnitude than those of the Pleistocene 32 33 (although predicted rates of change are far greater), suggesting the choice of a Pleistocene analog for future climatic extremes will remain appropriate. 34 Future WIPP performance assessments will re-examine the assumption, taking 35 into account the result of ongoing research in the fields of climate change. 36

37

4

16

38 Glacial periodicities have been stable for the last 800,000 years, with major peaks occurring at intervals of 19,000, 23,000, 41,000 and 100,000 years, 39 corresponding to variations in the Earth's orbit (Milankovitch, 1941; Hays 40 et al., 1976; Imbrie et al., 1984; Imbrie, 1985). Barring anthropogenic 41 42 changes in the Earth's climate, relatively simple modeling of the nonlinear climatic response to astronomically controlled changes in the amount of solar 43 energy reaching the Earth suggests that the next glacial maximum will occur 44 in approximately 60,000 years (Imbrie and Imbrie, 1980). Regardless of 45

Estimated Average Annual Precipitation

TRI-6342-299-3

Figure 5-11. Estimated Mean Annual Precipitation at the WIPP during the Late Pleistocene and Holocene (modified from Swift, 1991a).

anthropogenic effects, short-term climatic fluctuations comparable to those
of the last 10,000 years are probable during the next 10,000 years and must
be included in performance-assessment modeling.

Climatic variability will be incorporated into the modeling system 5 conceptually by varying groundwater flow into the Culebra Dolomite Member of 6 the Rustler Formation as a scaled function of precipitation (Swift, 7 October 10, 1991, memo in Volume 3, Appendix A). Short-term variability in 8 precipitation is approximated with a periodic function that generates peaks 9 of twice present precipitation every 2000 years and a future climate that is, 10 on the average, wetter than that of the present one half of the time. Long-11 term, glacial increase in precipitation is approximated with a periodic 12 function that reaches a maximum of twice present precipitation in 60,000 13 years. For this performance assessment, climatic variability has been 14 included in the consequence analysis by varying boundary conditions of the 15 Culebra groundwater-flow model as a scaled function of future precipitation. 16 As discussed further in Section 5.1.9-Culebra Dolomite Groundwater Flow and 17 Transport in this chapter and in Volume 2, potentiometric heads along a 18 portion of the northern boundaries of the regional model domain were varied 19 between present elevation and the ground surface, reaching maximum elevations 20 at times of maximum precipitation. 21

23 5.1.5 SURFACE WATER

24

32

22

4

The Pecos River, the principal surface-water feature in southeastern New Mexico, flows southeastward in Eddy County approximately parallel to the axis of the Delaware Basin (Figure 5-1) and drains into the Rio Grande in western Texas. In the vicinity of the WIPP, the drainage system includes small ephemeral creeks and draws and has a drainage area of about 50,000 km² (20,000 mi²). At its closest point the Pecos River is about 20 km (12 mi) southwest of the WIPP (Brinster, 1991).

Very little, if any, of the surface water from Nash Draw reaches the Pecos 33 River (Robinson and Lang, 1938; Lambert, 1983). Several shallow, saline 34 lakes in Nash Draw cover an area of about 16 km^2 (6 mi^2) southwest of the 35 WIPP (Figure 5-6) and collect precipitation, surface drainage, and 36 groundwater discharge from springs and seeps. The largest lake, Laguna 37 Grande de la Sal, has existed throughout historic time. Since 1942, smaller, 38 intermittent, saline lakes have formed in closed depressions north of Laguna 39 40 Grande de la Sal as a result of effluent from potash mining and oil-well development in the area (Hunter, 1985). Effluent has also enlarged Laguna 41 Grande de la Sal. 42

1 5.1.6 THE WATER TABLE

2

No detailed maps of the water table are available for the vicinity of the 3 WIPP. Outside of the immediate vicinity of the Pecos River, where water is 4 pumped for irrigation from an unconfined aquifer in the alluvium, near-5 surface rocks are either unsaturated or of low permeability and do not 6 produce water in wells. Tests of the lower Dewey Lake Red Beds in H-14 that 7 were intended to provide information about the location of the water table 8 proved inconclusive because of low transmissivities (Beauheim, 1987a). 9 Livestock wells completed south of the WIPP in the Dewey Lake Red Beds at the 10 J. C. Mills Ranch (James Ranch) may produce from perched aquifers (Mercer, 11 1983; Lappin et al., 1989), or they may produce from transmissive zones in a 12 continuously saturated zone that is elsewhere unproductive because of low 13 transmissivities. 14

15

Regionally, water-table conditions can be inferred for the more permeable 16 units where they are close to the surface and saturated. The Culebra 17 Dolomite may be under water-table conditions in and near Nash Draw and near 18 regions of Rustler Formation outcrop in Bear Grass Draw and Clayton Basin 19 20 north of the WIPP (Figure 1-6). The Magenta Dolomite is unsaturated and presumably above the water table at WIPP-28 and H-7 near Nash Draw. Water-21 table conditions exist in the Rustler-Salado contact zone near where it 22 discharges into the Pecos River at Malaga Bend (Brinster, 1991). 23

25 5.1.7 REGIONAL WATER BALANCE

26

24

Hunter (1985) examined the overall water budget of approximately 5180 $\rm km^2$ 27 (2000 mi²) surrounding the WIPP. Water inflow to the area comes from 28 precipitation, surface-water flow in the Pecos River, groundwater flow across 29 the boundaries of the region, and water imported to the region for human use. 30 Outflow from the water-budget model occurs as stream-water flow in the Pecos 31 River, groundwater flow, and evapotranspiration. Volumes of water gained by 32 33 precipitation and lost by evapotranspiration are more than one order of magnitude larger than volumes gained or lost by other means. 34

35

Uncertainties about precipitation, evapotranspiration, and water storage 36 within the system limit the usefulness of estimates of groundwater recharge 37 based on water budget analyses. Regionally, Hunter (1985) concluded that 38 approximately 96 percent of precipitation was lost directly to 39 evapotranspiration, without entering the surface or groundwater flow systems. 40 Within the 1000 km² immediately around the WIPP, where no surface runoff 41 occurs and all precipitation not lost to evapotranspiration must recharge 42 groundwater, a separate analysis suggested evapotranspiration may be as high 43 as 98 to 99.5 percent (Hunter, 1985). Direct measurements of infiltration 44 rates are not available from the WIPP vicinity. 45 46

1 5.1.8 GROUNDWATER FLOW ABOVE THE SALADO FORMATION

2

Well tests indicate that the three most permeable units in the vicinity of 3 4 the WIPP above the Salado Formation are the Culebra Dolomite and Magenta Dolomite Members of the Rustler Formation and the residuum at the Rustler-5 Salado contact zone. The vertical permeabilities of the strata separating 6 these units are not known, but lithologies and the potentiometric and 7 geochemical data summarized below suggest that for most of the region, 8 vertical flow between the units is very slow. Although preliminary 9 hydrologic modeling indicates that some component of vertical flow between 10 units can be compatible with observed conditions (Haug et al., 1987; Davies, 11 1989), the units are assumed to be perfectly confined for the 1991 12 performance-assessment calculations. 13

15 Potentiometric Surfaces

16

14

Mercer (1983) and Brinster (1991) have constructed potentiometric-surface 17 maps for the Rustler-Salado residuum, the Culebra Dolomite, and the Magenta 18 Dolomite. Brinster's (1991) maps are reproduced here (Figures 5-12, 5-13, 19 and 5-14). These maps show the level to which fresh water would rise in a 20 well open to each unit. Contours are based on measured heads (water 21 elevations in wells) that have been adjusted to freshwater-equivalent heads 22 (the level to which fresh water would rise in the same well). Maps for the 23 Culebra and the Magenta Dolomites are based on data from 31 and 16 wells, 24 25 respectively. The map for the Rustler-Salado residuum includes data from 14 wells and water elevations in the Pecos River, reflecting an assumption that 26 water-table conditions exist in the unit near the river. 27

28

Because the data used to construct the potentiometric maps are sparse and 29 unevenly distributed, interpretations must be made with caution. For 30 31 example, the "bullseye" patterns visible in all three maps are controlled by single data points, and would probably disappear from the maps if sufficient 32 data were available. Contours are most reliable where data are closely 33 spaced, particularly in the immediate vicinity of the WIPP, and are least 34 reliable where they have been extrapolated into areas of no data, such as the 35 southeast portion of the mapped area. With these caveats noted, however, the 36 potentiometric maps can be useful in drawing conclusions about flow both 37 within and between the three units. 38

39

Flow of a constant-density liquid within an isotropic medium would be
perpendicular to the potentiometric contours. Near the WIPP, localized
regions have been identified where variations in brine density result in nonuniform gravitational driving forces and anomalous flow directions (Davies,
1989), and the effects of anisotropy on flow patterns are not fully

TRI-6342-295-1

Figure 5-12. Adjusted Potentiometric Surface of the Rustler-Salado Residuum in the WIPP Vicinity (Brinster, 1991). Contours based on data from indicated wells and the elevation of the Pecos River.

Figure 5-13. Adjusted Potentiometric Surface of the Culebra Dolomite Member of the Rustler Formation in the WIPP Vicinity (Brinster, 1991). Contours based on data from indicated wells.

TRI-6342-285-1

Figure 5-14. Adjusted Potentiometric Surface of the Magenta Dolomite Member of the Rustler Formation in the WIPP Vicinity (Brinster, 1991). Contours based on data from indicated wells.

1 understood. In general, however, flow in the Rustler-Salado residuum is from northeast to southwest. Flow in the Culebra is from north to south, and flow 2 3 in the Magenta is from east to west in that portion of the map where data are sufficient to permit interpretation. Differences in flow directions may 4 5 reflect long-term transient conditions (see "Recharge and Discharge" in Section 5.1.8-Confined Hydrostatigraphic Units) and indicate low permeability 6 7 of the strata separating the three units: if the three functioned as a 8 single aquifer, potentiometric maps would be similar.

```
9
```

Flow between units is also a function of hydraulic gradient and can be 10 interpreted qualitatively from the potentiometric maps. Like lateral flow 11 within units, vertical flow between units is from higher potentiometric 12 levels to lower levels. Differences between the elevations of the 13 potentiometric surfaces reflect low permeabilities of the intervening strata 14 15 and slow rates of vertical leakage relative to rates of flow within the aquifers. Brinster (1991), Beauheim (1987a), and Holt et al. (in prep., 16 summarized by Brinster, 1991) present analyses of vertical hydraulic 17 gradients on a well-by-well basis. These analyses suggest that, if flow 18 occurs, the direction of flow between the Magenta and the Culebra is downward 19 20 throughout the WIPP area. Directly above the repository, flow may be upward 21 from the Rustler-Salado residuum to the Culebra Dolomite. Elsewhere in the region, both upward and downward flow directions exist between the two units. 22 23

24 Groundwater Geochemistry

25

Major solute geochemical data are available for groundwater from the RustlerSalado contact zone from 20 wells, from the Culebra Dolomite from 32 wells,
and from the Magenta Dolomite from 12 wells (Siegel et al., 1991).
Groundwater quality in all three units is poor, with total dissolved solids
(TDS) exceeding 10,000 mg/l (the concentration specified for regulation by
the Individual Protection Requirements of the Standard) in most locations.

Waters from the Rustler-Salado residuum have the highest TDS concentrations of any groundwaters in the WIPP area. The lowest concentration reported from the unit is 70,000 mg/l from H-7c southwest of the WIPP, and the highest is 410,000 mg/l from H-5 at the northeast corner of the land-withdrawal area (Siegel et al., 1991).

38

Waters from the Magenta Dolomite are the least saline of those in the confined units. Within the land-withdrawal area, TDS concentrations range from approximately 4000 to 25,000 mg/l. Higher values are reported from H-10 southeast of the WIPP, where the sample is of uncertain quality, and from WIPP 27 in Nash Draw, where groundwater chemistry has been altered by dumping of effluent from potash mines (Siegel et al., 1991).

Groundwater chemistry is variable in the Culebra Dolomite. A maximum TDS 1 concentration of 240,000 mg/l is reported from H-15 immediately east of the 2 3 WIPP, and a minimum value of 2500 mg/l is reported from H-8, 14 km (9 mi) southwest of the repository. Three other wells (H-7, H-9, and the Engle 4 well), all south of the WIPP, also contain water with less than 10,000 mg/l5 TDS. In a single test in February 1977, H-2 immediately west of the 6 repository yielded water with a TDS concentration of 8900 mg/l. Three 7 subsequent tests over the following decade yielded TDS levels of 12,500, 8 13,000, and 11,000 mg/l (Lappin et al., 1989). 9 10

Relative concentrations of major ions vary spatially within the Culebra 11 12 Dolomite. Siegel et al. (1991) recognized four zones containing distinct hydrochemical facies (Figure 5-15) and related water chemistry to the 13 distribution of halite in the Rustler Formation. Zone A contains a saline 14 15 (about 2 to 3 molal) sodium chloride brine with a magnesium/calcium molar ratio greater than 1.2. Zone A waters occur eastward from the repository, in 16 a region that corresponds roughly with the area of lowest transmissivity in 17 18 the Culebra Dolomite. Halite is present in the unnamed lower member of the Rustler Formation throughout Zone A, and in the eastern portion of the region 19 halite occurs in the upper members as well. Zone B is an area of dilute, 20 calcium sulfate-rich water (ionic strength less than 0.1 molal) south of the 21 repository. This region generally has high transmissivity in the Culebra 22 Dolomite, and halite is absent from all members of the Rustler Formation. 23 24 Zone C, extending from the repository west to Nash Draw, contains waters of variable composition with low to moderate ionic strength (0.3 to 1.6 molal), 25 with magnesium/calcium molar ratios less than 1.2. Transmissivity is 26 variable in this region, and halite is present in the Rustler Formation only 27 to the east, in the unnamed lower member. Salinities are highest near the 28 eastern edge of the zone. Zone D waters, found only in two wells in Nash 29 Draw, are anomalously saline (3 to 6 molal) and have high potassium/sodium 30 ratios that reflect contamination by effluent from potash mines. 31 32

33 Distribution of the hydrochemical facies may not be consistent with the inferred north-to-south flow of groundwater in the Culebra Dolomite. 34 Specifically, less saline waters of Zone B are down-gradient from more saline 35 36 waters in Zones A and C. Chapman (1988) suggested that direct recharge of 37 fresh water from the surface could account for the characteristics of Zone B. As discussed in more detail below ("Recharge and Discharge" section), the 38 inconsistency between chemical and potentiometric data could also result from 39 a change in location and amount of recharge since the wetter climate of the 40 last glacial maximum. Present flow in the Culebra could be transient, 41 reflecting gradual drainage of a groundwater reservoir filled during the 42 43 Pleistocene. Regional hydrochemical facies may not have equilibrated with

TRI-6331-78-0

Figure 5-15. Hydrochemical Facies in the Culebra Dolomite Member of the Rustler Formation (Siegel et al., 1991).

the modern flow regime and instead may reflect geographic distribution of
halite during a past flow regime (Siegel and Lambert, 1991).

3

4 Recharge and Discharge

5

The only documented points of naturally occurring groundwater discharge in 6 the vicinity of the WIPP are the saline lakes in Nash Draw and the Pecos 7 River, primarily near Malaga Bend (Hunter, 1985; Brinster, 1991). Discharge 8 into the lakes from Surprise Spring was measured at a rate of less than 0.01 g m^3/s (0.35 ft³/s) in 1942 (Hunter, 1985). Estimated total groundwater 10 discharge into the lakes is 0.67 m³/s (24 ft³/s) (Hunter, 1985). Based on 11 chemical and potentiometric data, Mercer (1983) concluded that discharge from 12 the spring was from the Tamarisk Member of the Rustler Formation, and that 13 the lakes were hydraulically isolated from the Culebra Dolomite and lower 14 units. Lambert and Harvey's (1987) analysis of stable isotopes in water from 15 Surprise Spring supports this conclusion: the isotopic compositions indicate 16 that Surprise Spring and Laguna Grande de la Sal are not discharge points for 17 18 the Culebra Dolomite.

19

Groundwater discharge into the Pecos River is many orders of magnitude larger 20 than discharge into the saline lakes. Based on 1980 stream-flow gage data, 21 Hunter (1985) estimated that groundwater discharge into the Pecos River 22 between Avalon Dam north of Carlsbad and a point south of Malaga Bend was no 23 more than approximately 9.2 x 10^{14} m³/s (23,600 ac-ft/yr). Most of this 24 gain in stream flow occurs near Malaga Bend and is the result of groundwater 25 discharge from the residuum at the Rustler-Salado contact (Hale et al., 1954; 26 Kunkler, 1980; Hunter, 1985; Brinster, 1991). 27

28

The only documented point of groundwater recharge is also near Malaga Bend, 29 where an almost immediate water-level rise has been reported in a Rustler-30 31 Salado residuum well following a heavy rainstorm (Hale et al., 1954). This location is hydraulically down-gradient from the repository, and recharge 32 here has little relevance to flow near the WIPP. Examination of the 33 potentiometric-surface map for the Rustler-Salado residuum (Figure 5-12) 34 indicates that some inflow must occur north of the WIPP, where freshwater-35 equivalent heads are highest. Additional inflow to the residuum may occur as 36 leakage from overlying units, particularly where the units are close to the 37 38 surface and under water-table conditions. Brinster (1991) proposed that inflow to the residuum (and other water-bearing units in the Rustler 39 Formation) could also come from below, upward through breccia pipes from the 40 Capitan aquifer north and east of the repository. 41 42

There is no direct evidence for the location of either recharge to or
discharge from the Culebra Dolomite. The potentiometric-surface map
(Figure 5-13) indicates recharge from the north and discharge to the south.

Mercer (1983) suggested that recharge from the surface probably occurred 15
 to 30 km (9 to 19 mi) north of the WIPP at Clayton Basin and Bear Grass Draw,
 where the Rustler Formation crops out. Small amounts of inflow may also
 occur as leakage from overlying units throughout the region.

6 The potentiometric-surface map (Figure 5-13) indicates that flow in the
7 Culebra Dolomite is toward the south. Some of this southerly flow may enter
8 the Rustler-Salado residuum under water-table conditions near Malaga Bend and
9 ultimately discharge into the Pecos River. Additional flow may discharge
10 directly into the Pecos River or into alluvium in the Balmorhea-Loving Trough
11 to the south (Figure 5-6) (Brinster, 1991).

12

5

Recharge to the Magenta Dolomite may also occur north of the WIPP in Bear Grass Draw and Clayton Basin (Mercer, 1983). The potentiometric-surface map indicates that discharge is toward the west in the vicinity of the WIPP, probably into the Tamarisk Member and the Culebra Dolomite near Nash Draw. Some discharge from the Magenta Dolomite may ultimately reach the saline lakes in Nash Draw. Additional discharge probably reaches the Pecos River at Malaga Bend or alluvium in the Balmorhea-Loving Trough (Brinster, 1991).

Isotopic data from groundwater samples suggest that groundwater travel time 21 22 from the surface to the Dewey Lake Red Beds and the Rustler Formation is long and rates of flow are extremely slow. Low tritium levels in all WIPP-area 23 samples indicate minimal contributions from the atmosphere since 1950 24 (Lambert and Harvey, 1987). Four modeled radiocarbon ages from Rustler 25 Formation and Dewey Lake Red Beds groundwater are between 12,000 and 16,000 26 years. Observed uranium isotope activity ratios require a conservative 27 28 minimum residence time in the Culebra Dolomite of several thousands of years and more probably reflect minimum ages of 10,000 to 30,000 years (Lambert and 29 Carter, 1987). Stable-isotope data are more ambiguous: Lambert and Harvey 30 (1987) concluded that compositions are distinct from modern surface values 31 and that the contribution of modern recharge to the system is slight, whereas 32 Chapman (1986, 1988) concluded that available stable-isotope data do not 33 permit interpretations of groundwater age. Additional stable-isotope 34 research is in progress and may resolve some uncertainty about groundwater 35 36 age.

37

Potentiometric data from four wells support the conclusion that little infiltration from the surface reaches the water-bearing units of the Rustler Formation. Hydraulic head data are available for a claystone in the Fortyniner Member from DOE-2, H-3, H-4, H-5, and H-6. Comparison of these heads to Magenta heads in surrounding wells shows that flow between the units at all four wells may be upward (Holt et al., in prep., summarized by Brinster, 1991; Beauheim, 1987a). This observation offers no insight into the possibility of infiltration reaching the Forty-niner Member, but it rules out
 the possibility of infiltration reaching the Magenta Dolomite or any deeper
 units at these locations.

4

5 Location and amount of groundwater recharge and discharge in the area may have been substantially different during wetter climates of the Pleistocene. 6 Gypsiferous spring deposits on the east side of Nash Draw are of late 7 Pleistocene age and reflect discharge from an active water table in the 8 Rustler Formation (Bachman, 1981; 1987; Davies, 1989; Brinster, 1991). 9 Coarse sands and gravels in the late Pleistocene Gatuña Formation indicate 10 deposition in high-energy, through-going drainage systems unlike those 11 presently found in the Nash Draw area (Bachman, 1987). Citing isotopic 12 evidence for a Pleistocene age for Rustler Formation groundwater, Lambert and 13 Carter (1987) and Lambert (1991) have speculated that during the late 14 Pleistocene, Nash Draw may have been a principal recharge area, and flow in 15 the vicinity of the WIPP may have been eastward. In this interpretation, 16 there is essentially no recharge at the present, and the modern groundwater-17 flow fields reflect the gradual draining of the strata. Preliminary modeling 18 of long-term transient flow in a two-dimensional, east-west cross section 19 indicates that, although the concept remains unproven, it is not incompatible 20 with observed hydraulic properties (Davies, 1989). As the performance-21 assessment groundwater-flow model (see following section) is further 22 developed and refined, the potential significance of uncertainty in the 23 location and amount of future recharge will be re-evaluated. 24

25

26 5.1.9 THE CULEBRA DOLOMITE GROUNDWATER FLOW AND TRANSPORT MODELS

27

Performance-assessment modeling at present simulates groundwater flow and 28 radionuclide transport only in the Culebra Dolomite Member of the Rustler 29 Formation, which has been identified as the most transmissive saturated unit 30 overlying the repository. For the 1991 calculations, the unit is modeled as 31 a perfectly confined two-dimensional aquifer. The implications of this 32 33 simplifying assumption are not fully understood, and the conceptual model for groundwater flow will be re-examined in subsequent performance assessments 34 when the computational tools for three-dimensional flow models become 35 available. 36

37

Details of the programs used to simulate flow and transport in the Culebra Dolomite are described in Volume 2 of this report. Darcy flow is calculated for a single phase (liquid) using the SECO_2D program (Volume 2, Chapter 6 of this report). The program solves a transient equation for groundwater flow and includes capabilities for regional and local area grid solutions, generalized boundary conditions, flexible specification of initial conditions, parameterized climate variability, particle tracking, and confined or unconfined storage coefficients. The program also has automated
 specification of grid spacing and times steps, options for cell-centered or
 node-centered grids, and efficient multigrid solvers.

Radionuclide transport is assumed to occur in a dual-porosity (fractures and 5 matrix) medium and is calculated using the STAFF2D program (Huyakorn et al., 6 1989). STAFF2D is a two-dimensional finite-element program designed to 7 simulate groundwater flow and solute transport in fractured or granular 8 aquifers including physical and chemical retardation. The program takes into 9 account fluid interactions between the fractures and porous matrix blocks, 10 advective-dispersive transport in the fractures, and diffusion in the porous 11 matrix blocks and fracture skin. The program also simulates radioactive 12 decay during transport. 13

14

4

15 Regional and Local Model Domains for Groundwater Flow

16

Regional and local domains for the groundwater-flow model are shown in 17 Figure 5-16. Flow that directly affects regulatory compliance occurs within 18 the approximately 5-km-by-7-km local domain, which uses 125-m-by-125-m grid 19 blocks and has relatively good control from well data. Boundary conditions 20 for the local domain are provided by simulations within the regional domain, 21 which uses a relatively coarser grid and has sparser well control. Initial 22 boundary conditions for the 25-km-by-30-km regional grid are selected to be 23 compatible with regional hydrogeologic constraints, and are adjusted during 24 model calibration. 25

26

27 Uncertainty in the Transmissivity Field

28

Transmissivity values for the Culebra Dolomite are known from 41 well 29 30 locations in the vicinity of the WIPP. These values have been used to 31 construct and calibrate a transmissivity field that is compatible with observed head data (LaVenue et al., 1990). No calibrated field can provide a 32 33 unique characterization of spatial variability in transmissivity between well locations, however, and performance-assessment calculations must take this 34 uncertainty into account by sampling a range of transmissivity values. The 35 1990 calculations used a zonal approach in which the model domain was divided 36 37 into coarse geographic zones, each of which was assigned a range and distribution of hydraulic conductivity values derived directly from the 38 transmissivity values from wells. Sampling on transmissivity within the 39 zones allowed for a probabilistic assessment of groundwater flow, but the 40 41 resulting fields were not conditioned on the available head data, and transmissivity values were not correlated between zones. 42 43

In March 1991, the WIPP performance-assessment team convened a group ofgeostatistics consultants to advise on suitable methods for including

Figure 5-16. Regional and Local Domains Used for Simulations of Groundwater Flow and Transport. The regional domain is used for SECO_2D simulations of groundwater flow. The local domain is used for SECO_2D flow simulations and STAFF2D transport simulations.

```
uncertainty in groundwater flow and transport models. The group was
1
    requested to make suggestions that could be implemented by June 1991 to be
2
   used in the 1991 calculations. The group was also asked to suggest
3
4
    techniques that could be implemented in 1992 or later and to make
    recommendations about possible future data acquisition.
5
6
    With regard to displaying the uncertainty in the transmissivity field, the
7
    consultant group proposed that a set (e.g., 100 or more) of correlated and
8
    conditioned random transmissivity fields should be generated separately, and
9
    the probabilistic sampling methodology should randomly select one of these
10
    fields for each Monte Carlo performance-assessment run. Each of these random
11
    fields should have an equal probability, or alternatively, a probability
12
    based on a "goodness-of-fit" criterion between observed and calculated heads
13
    and an assumed distribution of measurement uncertainty. For sensitivity
14
    analysis purposes, these random fields should be ordered with respect to a
15
    given criterion, such as travel time to the accessible environment.
16
17
    As described in more detail in Volume 2 of this report, for the 1991
18
    calculations 60 regional transmissivity fields have been calibrated to
19
    observed head data by adjusting boundary conditions. The multiple fields
20
    were simulated based on local estimates of transmissivity and the generalized
21
22
    covariance derived from them and on the pilot points used by LaVenue et al.
    (1990). Each simulated field was checked for consistency with pre-excavation
23
    equilibrium pressures by identifying fixed boundary pressures that minimize
24
    the squared deviation of model pressures from estimated equilibrium
25
    pressures. Boundary pressures were constrained by a prior estimate obtained
26
    through kriging the equilibrium freshwater heads. Only those fields that
27
    produced a minimum squared error of model pressures less than 2 (within the
28
    95 percent confidence level on observed heads) were retained as plausible.
29
    These fields were assigned equal probability for Latin hypercube sampling.
30
    To facilitate sensitivity studies, the retained fields were ordered on travel
31
    time from the center of the waste panel region to the boundary of the
32
33
    accessible environment.
34
    Modeling the Effects of Climatic Change
35
36
37
    The effects of climatic change are examined in the 1991 preliminary
    performance assessment by varying boundary conditions for the regional model
38
    domain (see Section 5.1.4-Paleoclimates and Climatic Variability above and
39
    Swift, October 10, 1991, memo in Volume 3, Appendix A for additional
40
41
    information about climatic variability). As discussed further in Volume 2 of
    this report, groundwater flow into the model, which is assumed to be an
42
```

44 performance-assessment calculations by prescribing potentiometric heads along 45 approximately 15 km of the northern boundaries of the regional model domain

43

uncertain function of mean annual precipitation, was controlled in the 1991

1 (Figure 5-16). Heads within the "recharge strip" were varied between their present estimated elevations and a maximum elevation of the ground surface, 2 using a sampled scaling factor uniformly distributed between zero and one. 3 Maximum head values, and therefore maximum groundwater flows into the model, 4 occurred at precipitation maximums calculated using the precipitation 5 6 function described in Chapter 4 of this volume and in the October 10, 1991 memo by Swift in Volume 3, Appendix A. For those vectors with a large (close 7 to one) scaling factor, the maximum heads were close to the ground surface. 8 For vectors with a small (close to zero) scaling factor, the effect of 9 climate variability was muted, and heads varied little from their present 10 values. 11

12

This representation of variable recharge to the Culebra reflects a single, 13 preliminary conceptual model for the effects of climatic change. Alternative 14 conceptual models and refinement of this model will be examined in future 15 analyses. For the 1991 preliminary comparison, variable heads were 16 prescribed only along the northern edge of the model because, as discussed 17 previously in "Recharge and Discharge" in Section 5.1.8-Confined 18 Hydrostratigraphic Units in this chapter, potentiometric maps indicate north-19 to-south flow in the Culebra and probable recharge north of the modeled area. 20 Maximum head elevations were limited to the ground surface because geologic 21 22 evidence does not indicate the presence of widespread surface water in the region during the late Pleistocene. The sampled scaling factor reflects 23 uncertainty in the extent to which increases in precipitation will affect 24 heads within the model domain. As discussed in the October 10, 1991 memo by 25 Swift in Volume 3, Appendix A, this uncertainty includes uncertainty in the 26 location and extent of the recharge area for the Culebra, uncertainty in the 27 relationship between precipitation and infiltration in the recharge area, and 28 uncertainty in the flow path from the recharge area to the model domain. 29 Future analyses will examine the sensitivity of the groundwater-flow model to 30 uncertainty in the recharge scaling factor, to the assumptions made in 31 determining the location and range of the prescribed head variations, and to 32 the assumptions made in selecting the parameter values controlling the future 33 precipitation function. 34

35

36 Radionuclide Transport in the Culebra Dolomite

37

Analysis of hydrologic tests indicates that in regions of relatively higher 38 transmissivity, the Culebra Dolomite behaves as a dual-porosity medium, with 39 solute transport occurring in both fractures and matrix porosity (Kelly and 40 Pickens, 1986; Saulnier, 1987; Beauheim, 1987a,b,c, 1989). The performance-41 assessment model for transport uses the Darcy velocity field calculated by 42 the local groundwater-flow model and allows for retardation during transport 43 both by diffusion and sorption in matrix porosity and sorption by clays that 44 line fractures. 45

46

Distribution coefficients (Kds), defined for a given element as the amount 1 sorbed by a gram of rock divided by the amount in a milliliter of solution, 2 are used to calculate the partitioning of radionuclides between groundwater 3 and rock. Distribution coefficients may be determined experimentally for 4 individual radionuclides in specific water/rock systems (e.g., Lappin et al., 5 1989), but because values are strongly dependent on water chemistry and rock 6 7 mineralogy and the nature of the flow system, experimental data cannot be extrapolated directly to a complex natural system. For the 1990 preliminary 8 performance assessment, cumulative distribution functions (cdfs) for Kds were 9 estimated from experimental and theoretical work (Siegel, 1990). 10 Distributions were then derived for retardation factors, which are defined as 11 mean fluid velocity divided by mean radionuclide velocity and which take into 12 account pore space geometry and the thickness of clay linings as well as Kd 13 values. The derivation of retardation factors for the 1991 calculations is 14 discussed in Volume 3 of this report. 15

16

Sensitivity analyses performed as part of the 1990 preliminary performance 17 assessment indicated that, conditional on the models and distributions used 18 in the 1990 calculations, variability in retardation factors was the second 19 most important contributor (after radionuclide solubility in repository 20 brine) to overall variability in cumulative releases through groundwater 21 22 transport (Helton et al., 1991). Because the major source of uncertainty in 23 retardation factors is in the estimation of K_{ds} and because directly 24 applicable experimental data are not available, the WIPP performance-25 assessment team organized an expert panel to provide judgment about probability distributions for K_d values to be used in the 1991 preliminary 26 performance assessment. Unlike other expert panels organized for WIPP 27 performance assessment (e.g., the future intrusion panel discussed in 28 Chapter 4 of this volume and the source term panel discussed later in this 29 chapter), this panel consisted of SNL staff members who are currently working 30 on retardation in the Culebra or who have done so in the past. In other 31 regards, procedures for the presentation of the issues and the elicitation of 32 results were as suggested by Hora and Iman (1989) and Bonano et al. (1990), 33 as described in Chapter 4 of this volume. 34 35

The radionuclide retardation expert panel was requested to provide 36 37 probability distributions for distribution (sorption) coefficients for eight elements (americium, curium, uranium, neptunium, plutonium, radium, thorium, 38 and lead) that represent a spatial average over the total area of concern 39 (kilometers from the repository). This was to be done for two separate 4∩ cases: (1) the coefficients that result from the clay that lines the 41 42 fractures in the Culebra Dolomite, and (2) the coefficients that result from the matrix pore space of the Culebra Dolomite. During the meetings, the 43 44 panelists decided to further break down the problem by examining the coefficients that would result from the particular rock species and two 45

Chapter 5: Compliance-Assessment System

```
different transport fluids: (1) transport fluid that is predominantly
1
    relatively low-salinity Culebra brine, or (2) transport fluid that is
2
3
    predominantly high-salinity Salado brine. Probability distributions were
    thus provided for four situations for each radionuclide.
4
5
    Two short meetings were held in April 1991 to discuss the physical situation
6
    and the issue statement. The period between the second and third meetings
7
    (approximately one month) was available for the panelists to examine the
8
    existing data base and discuss the results with each other. The third
9
    meeting, held at the end of May 1991, involved the expert judgment
10
    elicitation training, a discussion among the panelists as to the cases and
11
    assumptions to be used during the elicitation, and the actual elicitation
12
    sessions. The experts were elicited separately, at the request of one of the
13
14
    panelists. Each panelist provided distributions where they were able.
    Incompleteness resulted in some cases from a lack of knowledge about a
15
    particular radionuclide. Specific distributions provided by each panelist
16
    are presented in Volume 3 of this report, together with the composite
17
    distributions used in the 1991 performance-assessment calculations.
18
19
20
                       5.2 The Engineered Barrier System
21
22
```

The WIPP disposal system includes engineered barriers that minimize the 23 likelihood of radionuclides migrating through the hydrogeologic setting to 24 the accessible environment. As presently designed, the repository relies on 25 seals in panels, drifts, and shafts to prevent migration through the 26 27 excavated openings. If performance assessments indicate additional barriers are needed to reduce potential radionuclide transport up an intrusion 28 borehole, modifications can be made to the form of the waste and backfill or 29 to the design of the waste-disposal areas that will assure acceptable long-30 term performance. 31

33 5.2.1 THE SALADO FORMATION AT THE REPOSITORY HORIZON

34

32

Although the stratigraphy of the Salado Formation is consistent over much of 35 the Delaware Basin, there are important vertical variations in lithology. 36 Because these lithologic layers are close to horizontal at the WIPP, the 37 repository is being excavated within a single stratigraphic horizon (rather 38 than at a constant elevation) so that all panels within the waste-disposal 39 area share the same local stratigraphy. As a result, the floor of the waste-40 disposal area will slope slightly (less than 1°) to the southeast, and there 41 will be a difference in elevation between the highest and lowest panels of 42 less than 10 m (33 ft). 43

44

Panels are excavated entirely within a 7.3-m (24-ft)-thick section of halite 1 2 and polyhalite (Figure 5-17). Below this section and approximately 1.25 m (4 ft) below the floor of the panels lies Marker Bed 139 (MB139), which 3 contains approximately 0.9 m (3 ft) of anhydrite with clay seams. Above the 4 repository horizon and approximately 2.1 m (7 ft) above the roof of the 5 panels lies anhydrite B, an approximately 6-cm (2.4-in)-thick anhydrite and 6 clay seam. Anhydrite A, approximately 21 cm (8.3 in) of anhydrite with clay, 7 is another 1.8 m (6 ft) above anhydrite B. A more detailed description of 8 the stratigraphy is provided in Volume 3 of this report. 9 10 Excavation of the repository and the consequent release of lithostatic 11 stresses has created a disturbed rock zone (DRZ) around the underground 12 openings. The DRZ at the WIPP has been confirmed by borehole observations, 13 geophysical surveys, and gas-flow tests, and varies in extent from 1 to 5 m 14 (3.3 to 16.4 ft) (Stormont et al., 1987; Peterson et al., 1987; Lappin et 15 al., 1989). Fractures and microfractures within the DRZ have increased 16 porosity and permeability of the rock and increased brine flow from the DRZ 17 to the excavated openings (Borns and Stormont, 1988, 1989). Fracturing has 18 19 occurred in MB139 below the excavated areas and in both anhydrites A and B above the excavated area. It is not known how far fracturing in MB139 and 20 the anhydrites A and B extends laterally from the excavations at this time, 21 nor is the ultimate extent of the DRZ known. Most deformation related to 22 23 development of the DRZ is believed to occur in the first five years after excavation (Lappin et al., 1989). 24

25

Fracturing in the DRZ, particularly in MB139 and the anhydrite layers, may provide a pathway for fluid migration out of the repository and possibly around panel and drift seals. Characterization of fracture-related permeability in these layers is essential to modeling of two-phase (gas and brine) fluid flow into and out of the repository.

31

32 5.2.2 REPOSITORY AND SEAL DESIGN

33

Major components of repository design that affect performance assessment are 35 the waste itself, the underground waste-disposal area and its access drifts 36 and shafts, and the seals that will be used to isolate the disposal area when 37 the repository is decommissioned. The underground workings will ultimately 38 consist of eight waste-disposal panels, access. drifts and shafts, and an 39 experimental area (Figure 5-18). Drifts in the central portion of the 40 repository will also be used for waste disposal, providing the equivalent of 41 an additional two panels for waste disposal. A more detailed discussion of 42 repository design is available in Volume 3 of this report. 43 44

5-41

TRI-6342-1075-0

TRI-6342-229-2

Figure 5-18. Plan View of Waste-Disposal Horizon Showing Shaft, Drift, and Panel Seal Locations (after Stormont, 1988).

All underground horizontal openings are rectangular in cross section. The 1 disposal area drifts, in the southern part of the repository, are 4.0 m 2 (13 ft) high by 7.6 m (25 ft) wide; the disposal rooms are 4.0 m (13 ft) 3 high, 10.1 m (33 ft) wide, and 91.4 m (300 ft) long. Pillars between rooms 4 are 30.5 m (100 ft) wide. The eight waste-disposal panels will each have an 5 initial volume of 46,000 m³ (1.6 x 10^6 ft³). The northern drift disposal 6 area will have an initial volume of 34,000 m³ (1.2 x 10^6 ft³), and the 7 southern drift disposal area will have an initial volume of 33,000 m³ 8 $(1.2 \times 10^6 \text{ ft}^3)$ (Rechard et al., 1990a). Overall, the waste-disposal areas 9 will have an initial volume of about $435,000 \text{ m}^3$ (1.5 x 10^7 ft^3). 10

11

16

The four access shafts are cylindrical and range in diameter from 5.8 m (19 ft) to 3.0 m (10 ft). Shafts are lined in the units above the Salado Formation to prevent groundwater inflow and provide stability; they are unlined in the salt.

Excavation of the first waste-disposal panel is complete; the remaining panels will be excavated as needed. Waste will be emplaced within the panels in drums or metal boxes, and panels will be backfilled and sealed as they are filled. Seals will be installed in panels, drifts, and the vertical shafts before the repository is decommissioned. Waste, backfill, and seals will be consolidated by creep closure after decommissioning.

24 Waste Characterization

25

23

The waste that will be emplaced in the WIPP must meet Waste Acceptance 26 Certification requirements (draft of WIPP-DOE-069-Rev. 4, as explained in 27 Chapter 1 of this volume). These requirements include that waste material 28 containing particulates in certain size and quantity ranges will be 29 immobilized, liquids are restricted to that remaining in well-drained 30 containers, radionuclides in pyrophoric form are limited to less than one 31 percent by weight of the external container, and no explosives or compressed 32 gases are permitted. Ignitable, corrosive, and reactive wastes are not 33 acceptable at the WIPP. 34

35

The current design of the WIPP has a total emplacement volume for CH-TRU 36 waste of 6.2 x 10^6 ft³ (approximately 175,000 m³) (U.S. DOE, 1980a). The 37 estimate of the volume of CH waste supplied by the 10 generator sites for the 38 1990 IDB (Integrated Data Base) was approximately 100,000 m³ (U.S. DOE, 39 1990e). Current performance-assessment calculations use an initial CH-waste 40 inventory based on the design volume for waste emplacement. To estimate the 41 characteristics of the CH inventory for a design capacity, the 1990 IDB 42 43 estimated volumes were scaled up by 64.9 percent by volume to equal the design volume. The stored waste in the 1990 IDB only represents about 34 44 percent of the design volume. Since 66 percent of the waste volume has not 45

been generated, the waste characterization must be considered an estimate
 with a potentially large uncertainty.

An estimation of the characterization of the CH waste for the current 4 performance-assessment calculations was based on a scale up of weights 5 estimated from 1987 waste characterization information (Drez, 1989). 6 The 1987 detailed waste characterization information was used because a later 7 update is not currently available. Based on the design capacity of the WIPP 8 and average weights (Butcher, 1989) for the combustibles (plastics and 9 10 cellulosics) and metals and glass constituents, estimates of about 13,000,000 kg of combustibles and 20,000,000 kg of metals and glass were calculated. 11 Using the percentages of the detailed constituents in the 1987 estimated 12 inventory and the total weight of combustibles and metals and glass for the 13 design capacity, estimates of the total weights of the aluminum, steel, 14 paper, cloth, wood, plastics, rubber, and other detailed constituents in CH 15 waste for the design volume were made. The weights of metals, plastics, 16 cellulosics, and rubbers are required for performance assessment because they 17 may influence gas generation and potential radionuclide transport. 18 19

20 The weight of waste containers, drums, and boxes, and of container liners must be estimated because they also affect gas-generation potential. It was 21 22 assumed in the estimation of the container weights that only 55-gallon drums and standard waste boxes will be emplaced in the WIPP. These are the only 23 containers that can currently be transported in a TRUPACT-II (NuPac, 1989). 24 Based on a design capacity and the assumption about the containers, it was 25 estimated that about 532,500 drums and 33,500 standard waste boxes would be 26 emplaced in the WIPP. The total weight of the steel in the containers is 27 28 larger than the estimated total weight of metals and glass in the waste inventory. 29

30

3

The estimates of the total weights of the constituents in the wastes for 31 32 these analyses were larger than the weights estimated for the analyses discussed in Lappin et al. (1989). This increase was primarily the result of 33 scaling the volume of the waste to a design volume of about $175,000 \text{ m}^3$. 34 Lappin et al. (1989) used a volume of 556,000 drum equivalents, which is 35 about 115,000 m^3 . The increase in the weights of the constituents also 36 resulted from an increase in the estimates reported by Drez (1989) from an 37 earlier inventory provided in Lappin et al. (1989). 38

39

40 Seals

41

42 Seals will be emplaced in the entrance to each panel, in two locations within 43 the drifts between the panels and the vertical shafts, and in each of the 44 four vertical shafts (Figure 5-18, 5-19) (Nowak et al., 1990). Design of 45 these seals reflects specific functions for each type of seal. Seals in the

Figure 5-19. Representative Shaft and Plug Seals (after Nowak et al., 1990). Vertical distances based on stratigraphy in ERDA-9.

upper portion of the shafts must prevent groundwater flow from the water-1 bearing units of the Rustler Formation from reaching the lower portions of 2 the shafts and the waste-disposal areas. Seals in the lower portion of the 3 shafts must provide a long-term, low-permeability barrier that will prevent 4 Salado Formation brine from migrating up the shaft. Panel seals (and drift 5 seals) prevent long-term migration of radionuclide-contaminated brine through 6 the drifts to the base of the shafts and must also provide safe isolation of 7 radionuclides during the operational phase of the repository. 8

The primary long-term component of both lower shaft and panel seals will be 10 crushed salt, confined between short-term rigid bulkheads that will prevent 11 12 fluid flow while creep closure reconsolidates the crushed salt to properties comparable to those of the intact Salado Formation. The short-term seals 13 will be concrete in the panels and drifts, and composite barriers of 14 concrete, bentonite, and consolidated crushed salt in the shafts. Crushed 15 salt in the long-term portion of the seals will be preconsolidated to 16 approximately 80% of the density of the intact formation and will compact 17 further to approximately 95% of initial density within 100 years, at which 18 19 time permeabilities are expected to be comparable to those of the undisturbed rock (Nowak and Stormont, 1987). Panel seals will be 40 m (131 ft) long, 20 with 20 m (66 ft) of preconsolidated crushed salt between two 10-m (33-ft) 21 concrete barriers. Shaft seals will extend the full length of the shafts and 22 will include composite barriers at the appropriate depths to individual 23 24 lithologic units, including the Culebra Dolomite (Nowak et al., 1990). Additional information about seal design is presented in Volume 3 of this 25 report. 26

27

9

Marker Bed 139 will be sealed below each panel and drift seal by grouting, either with crushed-salt-based grout, cementitious material, or bitumen. Other anhydrite layers will be sealed similarly. Salt creep is expected to close fractures in halite in the DRZ over time, and engineered seals are not planned for the DRZ outside of MB139 and other interbeds.

34 Backfill

35

33

Void space between waste containers and elsewhere in the underground workings 36 will be backfilled before sealing and decommissioning (Tyler et al., 1988; 37 Lappin et al., 1989). This backfill will reduce initial void space and 38 permeability in the panels and will consolidate under pressure to further 39 limit brine flow through the waste. Performance-assessment calculations to 40 date have assumed a backfill material of pure crushed salt, which will not 41 sorb radionuclides. Design alternatives for backfill that include bentonite 42 as an additional barrier to retard radionuclides are under consideration 43 (WEC, 1990; U.S. DOE, 1990d), and will be evaluated in future performance 44 45 assessments.

46

1 Engineered Alternatives

2

The WIPP has been designed to dispose of waste in the form in which it is 3 shipped from the generator sites. Preliminary performance-assessment 4 calculations indicate that modifications to the waste form that limit 5 dissolution of radionuclides in brine have the potential to improve predicted 6 7 performance of the repository (Marietta et al., 1989; Bertram-Howery and Swift, 1990). Modifications to the backfill and design of the room could 8 also reduce radionuclide releases. Modifications could also, if needed, 9 mitigate the effects of gas generated within the repository. Present 10 performance assessments are not complete enough to determine whether or not 11 such modifications will be needed for regulatory compliance, but the DOE is 12 proceeding with investigations of engineered alternatives to waste form and 13 repository design so that alternatives will be available if needed (U.S. DOE, 14 1990a). The Engineered Alternatives Task Force (EATF), assembled by 15 Westinghouse Electric Corporation, has identified 19 possible modifications 16 to waste form, backfill, and room design that merit additional investigation 17 (WEC, 1990; U.S. DOE, 1990d). The 1991 performance-assessment calculations 18 do not include simulations of these alternatives. Selected alternatives will 19 be examined in future performance-assessment calculations, however, to 20 provide guidance to DOE on possible effectiveness of modifications. 21

22 23

5.2.3 THE RADIONUCLIDE INVENTORY

24

The radionuclide inventory for CH- and RH-TRU waste was estimated from input 25 to the 1990 IDB (U.S. DOE, 1990e). Twelve radionuclides were identified to 26 be in the initial CH inventory. The estimates from the 1990 IDB were based 27 on a volume of $106,458 \text{ m}^3$. To estimate the curie content of the initial 28 inventory for a design capacity, the 1990 estimated curie contents were 29 30 scaled up by 64.9 percent by volume to equal the design volume. This scaling results in an initial total CH inventory of about 16,000,000 curies. Based 31 on a design volume, the majority of the CH waste has not been generated; 32 therefore, the radionuclide inventory is an estimate based on currently 33 available information and has the potential for large uncertainty. The 34 stored and newly generated RH volume in the 1990 IDB sum to a total of 35 5,344 m^3 . The containers that will be placed in an RH canister have a 36 different volume depending on the generator site; therefore, a canister may 37 not contain 0.89 m³ of RH waste. The U.S. DOE (1991c) identifies that the 38 submittal to the 1991 IDB totals 7,622 canisters. The total volume based on 39 the number of canisters is $6,784 \text{ m}^3$. The 1990 IDB indicates there may be a 40 considerable volume of uncharacterized waste that will probably be RH. 41 Because of the uncertainty in the RH inventory, the smaller total volume of 42 waste and not the volume of canisters was used as a scaling factor to 43

estimate the RH design radionuclide inventory for these analyses. The total 1 RH inventory was estimated to be about 1,600,000 curies. Details of the 2 radionuclide inventory are presented in Volume 3 of this report. 3 4 Radioactive decay within the repository is simulated with a nearly complete 5 set of decay chains, which are given in Volume 3 of this report. Decay is 6 simulated for 20 radionuclides in the CH inventory and for an additional 3 7 radionuclides in the RH inventory. Only those radionuclides with short half-8 lives are omitted. Decay during transport, which begins when radionuclides 9 leave the repository, is simulated using a simplified set of four decay 10 chains that omit radionuclides with short half-lives, low toxicity, and low 11 activity (less than 100 curies at 10,000 years). This simplification did not 12 eliminate radionuclides that could cause significant health effects. 13 14 The only radioactive gas expected in the repository is radon-222, created 15 from the decay of radium-226. Decay of thorium-230 will cause the amount of 16 radium-226 to increase from about 0 to 23 curies in a panel at 10,000 years. 17 Because radon-222, with a half-life of only 3.8 days, will exist in secular 18 equilibrium with radium-226, its activity will be insignificant throughout 19 the 10,000-year period. Not including releases of volatile radionuclides 20 should not significantly affect the total radionuclide release. 21 22 5.2.4 RADIONUCLIDE SOLUBILITY AND THE SOURCE TERM FOR TRANSPORT CALCULATIONS 23 24 Previous WIPP performance assessments have calculated the source term for 25 transport modeling using the same estimated range and distribution 26 (loguniform from 10^{-9} to 10^{-3} M) for the solubility limit of all radionuclide 27 species in repository brine (Lappin et al., 1989; Brush and Anderson, 1989). 28 Sensitivity analyses performed as part of the 1990 preliminary performance 29 30 assessment indicated that, conditional on the models and distributions used in the 1990 calculations, variability in the solubility limit was the most 31 important single contributor to variability in total cumulative releases to 32 the accessible environment resulting from groundwater transport (Helton 33 et al., 1991). In the absence of experimental data that might better define 34 solubility limits, a panel of experts external to the WIPP Project was 35 convened to provide the performance-assessment team with judgment about 36 37 solubility limits for specific elements under variable Eh and pH conditions.

38

Selection of the panel and elicitation of their judgment followed the procedure suggested by Hora and Iman (1989), described in Chapter 4 of this volume in the discussion of the future-intrusion panel. Candidates for the expert panel on source term were gathered by a two-tiered nomination process. Initial nominations were solicited from an SNL staff member and a university consultant, as well as from members of the Performance Assessment Peer Review

Panel and the National Research Council's WIPP Panel. Additional nominations 1 were requested from all those contacted. Curriculum vitae from those who 2 were interested in participating in such a panel and available during the 3 entire study period were reviewed by a two-member selection committee 4 external to SNL. Some individuals removed themselves from consideration 5 because of prior time commitments, current contracts with SNL, a self-6 determined lack of expertise, or involvement in an oversight organization. 7 Nominees were evaluated on the basis of expertise and professional 8 reputation, and four experts were selected whose complementary areas of 9 specialization provided the needed breadth and balance to the panel. 10 11

Rather than considering the solubility limit of the radionuclides (as was 12 used in the 1990 calculations in lieu of concentrations), the panel was 13 14 instead asked to consider explicitly the individual radionuclide concentrations that might be expected. Specifically, panel members were 15 asked to develop probability distributions for the dissolved concentration of 16 americium, curium, uranium, neptunium, plutonium, radium, thorium, and lead 17 in the WIPP brines in the repository rooms and drifts (with all that implies 18 19 in terms of waste and room chemistry). They were also requested to repeat the process for the concentration due to suspended materials, which was not 20 distinguished from the dissolved fraction in the 1990 calculations. 21 22

The radionuclide source term expert panel met twice in Albuquerque during 23 24 March and April 1991 and communicated with each other throughout the study period as they saw fit. The first meeting was used to acquaint the experts 25 with the WIPP, the SNL effort in performance assessment, and the issue 26 statement. The panelists were provided with one-half day of training in 27 expert-judgment/probability elicitation, which is the process whereby experts 28 are assisted in developing probability distributions by individuals 29 experienced in decision analysis and the expert-judgment process. 30 31

The second meeting included presentations by each panelist of his or her 32 approach in responding to the issue statement. Further discussion led to the 33 panelists' decision to be elicited as a group in order to benefit from each 34 panelist's particular expertise. Being elicited together required the 35 development of a group strategy for creating the probability distributions. 36 The panel developed a strategy based on basic solubility principles; related 37 38 experimental data, where available; consideration of the impact on the 39 concentration due to changes in environmental factors (e.g., changes in pH); and expert judgment in synthesizing the above. Individual uncertainty cannot 40 be distinguished in a single distribution but resulted in a larger range for 41 the composite distribution. Greater detail in the description of the panel's 42 methodology can be found in Trauth et al. (1991). The probability 43 distributions created by the panel are contingent upon other circumstances. 44 45 such as the oxidation state of the radionuclide or the presence of other

5-50

1 compounds (carbonate or sulfate). Eh versus pH diagrams were provided for those radionuclides for which more than one oxidation state was thought 2 possible. The probability distributions can be found in Trauth et al. (1991) 3 and are reproduced in Volume 3 of this report. These distributions reflect 4 concentrations of dissolved materials only: the panelists concluded that 5 available data was insufficient to provide judgment about concentrations of 6 suspended materials. 7

8

9 As a step in reducing the uncertainty in the estimates, the expert panel developed distributions for each specific radionuclide of interest. In 10 addition, where the repository conditions might lead to the existence of more 11 than one oxidation state for a radionuclide or more that one solid species 12 13 containing the radionuclide (based on the presence or absence of specific complexants -- carbonate and sulfate), more than one distribution was developed 14 for a specific radionuclide. The ranges of some of the distributions 15 developed by the panel are larger and some are smaller than the distributions 16 used in the 1990 calculations, and the ranges reflect greater or lesser 17 concentrations. Variations reflect differences in the chemistry of the 18 specific radionuclide in the presence of WIPP waste and the standard A brine 19 for the WIPP (Molecke, 1983; Lappin et al., 1989, Table 3.4). 20

- 21
- 22

5.2.5 PERFORMANCE-ASSESSMENT MODEL FOR THE REPOSITORY/SHAFT SYSTEM 23

The performance-assessment model for the repository/shaft system must 24 simulate migration of radionuclides and hazardous materials away from the 25 repository through all pathways. Specifically, the model simulates liquid 26 and gas flow in the Salado Formation, particularly in the interbeds, as a 27 function of the various processes active in the waste-disposal panels, 28 including borehole intrusion. The model also calculates a time-dependent 29 source term of radionuclide concentrations in repository brine for transport 30 31 modeling in the Salado Formation and the overlying Culebra Dolomite.

32

Closure, Flow, and Room/Waste Interactions 33

34

When the repository is decommissioned, waste-disposal panels, access drifts, 35 36 and the experimental area will be backfilled, and the drifts and shafts will 37 be sealed. Free brine initially will not be present within the disposal area, and void space above the backfilled waste will be air-filled 38 (Figure 5-20a). Brine seepage from the Salado Formation will have filled 39 fractures in MB139 beneath the disposal area (Lappin et al., 1989; Rechard 40 et al., 1990b). 41

42

Following decommissioning, salt creep will begin to close the repository 43 44 (Figure 5-20b). In the absence of elevated gas pressures within the 45 repository, modeling of salt creep indicates that consolidation of the waste

TRI-6334-267-5

Figure 5-20. Hypothesized Episodes in Disposal Area During Undisturbed Conditions. This drawing shows (a) initial conditions after decommissioning; (b) conditions after room creep closure and brine inflow; (c) conditions after gas generation, brine outflow, and room expansion; and (d) undisturbed conditions with gas-filled room surrounded by gas-saturated brine (Rechard et al., 1990b).

in unreinforced rooms could be largely complete within 100 years (Tyler 1 et al., 1988; Munson et al., 1989a,b). Brine will seep into the disposal 2 area from the surrounding salt, however, and gas will be generated in the 3 humid environment by corrosion of metals, radiolysis of brine, and microbial 4 decomposition of organic material. Some gas will disperse into the 5 surrounding anhydrite layers. Continued gas generation could increase 6 7 pressure within the repository sufficiently to reverse brine inflow and partially or completely desaturate the waste-disposal area (Figure 5-20c). 8 9 High pressure may also halt and partially reverse closure by salt creep. In the undisturbed final state, the disposal area could be incompletely 10 consolidated and gas-filled rather than brine-filled (Figure 5-20d). 11 12

All of the major processes active in the waste-disposal area are linked, and 13 all are rate- and time-dependent. For example, creep closure will be, in 14 part, a function of pressure within the repository. Pressure will be in turn 15 a function of the amount of gas generated and the volume available within the 16 repository and the surrounding Salado Formation for gas storage. Gas-storage 17 volume will be a function of closure rate and time, with storage volume 18 decreasing as consolidation continues. Time and rate of gas generation, 19 therefore, will strongly influence repository pressurization and closure. 20 Gas-generation rates will be dependent on specific reaction rates and the 21 22 availability of reactants, including water. Some water can be generated by microbial activity (Brush and Anderson, 1988b). Additional water will be 23 provided by brine inflow, which, in the absence of a final mechanistic model, 24 is assumed to occur according to two-phase immiscible flow through a porous 25 medium. Other possibilities are being investigated. Whatever model is used, 26 brine inflow will depend in large part on repository pressure, so that some 27 gas-generation reactions could be partially self-buffering. 28

Responses of the disposal system to human intrusion are equally complicated. 30 Consequences will depend on the time of intrusion, the degree to which the 31 repository has closed, and the amount of gas generated. If intrusion occurs 32 into a fully pressurized, dry, and partially unconsolidated waste-disposal 33 area, venting of gas up the borehole will permit brine to resaturate 34 available void space (Figure 5-21a,b). Following eventual deterioration of 35 borehole plugs, brine may flow from the disposal area into the borehole, 36 transporting radionuclides upward to the Culebra Dolomite. Upward flow from 37 a pressurized brine pocket in the Castile Formation may contribute to flow 38 and radionuclide transport (Figure 5-21c). 39

29

40

Performance assessments must model the consequences of intrusion as a function of conditions within the waste-disposal area. For example, radionuclide transport will depend, in part, on the rate of brine flow through the waste, which in turn will be a function of brine availability and waste permeability. Time- and pressure-dependent consolidation by creep

Figure 5-21. Hypothesized Episodes in Disposal Area After Human Intrusion. This drawing shows (a) initial room gas depressurization when penetrated by an exploratory borehole, (b) final gas and brine depressurization as borehole seals degrade, and (c) brine flow through the borehole to the Culebra Dolomite (Rechard et al., 1990b). closure will be a major factor in determining waste permeability. Models and
the data base needed to describe conditions within the waste-disposal area in
detail are still incomplete. Present interpretations are based on
simplifying assumptions that will be modified as research progresses.

5 6

Modeling of Undisturbed Performance

7

Modeling of the undisturbed performance of the disposal system is required to 8 evaluate compliance with the Individual Protection Requirements of the 9 Standard (§ 191.15) and to provide simulations of the base-case scenario for 10 the probabilistic evaluation of compliance with the Containment Requirements 11 of the Standard (§ 191.13). Previous estimates of undisturbed performance 12 have indicated zero releases to the accessible environment within 10,000 13 14 years (Lappin et al., 1989; Marietta et al., 1989) (see Chapter 7 of this As a result, Monte Carlo simulations of the base-case scenario are 15 volume). not included in the construction of the CCDFs used for preliminary 16 comparisons with the Containment Requirements. Only those scenarios that 17 result in releases to the accessible environment will affect the CCDF. 18 Emphasis in modeling undisturbed performance, therefore, is on examining 19 conservative deterministic calculations that will indicate whether or not 20 releases could occur that would require inclusion of the base-case scenario 21 in the Monte Carlo analysis. 22

23

Analyses of undisturbed performance reported by Lappin et al. (1989) and 24 Marietta et al. (1989) used NEFTRAN (NEtwork Flow and TRANsport; Longsine 25 et al., 1987), a one-dimensional flow and transport program in which the 26 disposal system was represented by a network of discrete legs. Flow and 27 transport was assumed to occur along MB139 to the base of the waste shaft 28 (Figure 5-18), and then upward through the shaft seals to the Culebra 29 Dolomite. Flow and transport was also calculated for a vertical leg through 30 the intact Salado Formation directly to the Culebra Dolomite. The head 31 32 gradient between the waste panels and the Culebra was held constant, and effects of gas generation were not considered. Neither pathway resulted in 33 radionuclides reaching the Culebra Dolomite within 50,000 years (Marietta 34 et al., 1989). 35

36

The 1991 preliminary assessment of undisturbed performance uses SUTRA 37 (Saturated-Unsaturated TRAnsport; Voss, 1984) and STAFF2D (Solute Transport 38 And Fracture Flow in 2 Dimensions; Huyakorn et al., 1989) to simulate flow 39 and transport from the waste panels in two dimensions. Flow is assumed to 40 occur in a single phase (brine), and gas generated within the waste panels is 41 not included directly in the simulation. The effects of gas generation are 42 43 included indirectly, however, by using elevated repository pressures calculated using the two-phase (gas and brine) flow program BOAST II (Black 44

Oil Applied Simulation Tool, enhanced version; Fanchi et al., 1987).
 Additional details about the programs and their applications in the 1991
 calculations are provided in Volume 2 of this report.

4

Flow and transport are simulated in two two-dimensional sections through the 5 6 disposal system. One section is a horizontal plane containing the vertical projection of two waste panels onto MB139 (Figure 5-22a). This section is 7 used to estimate lateral transport of radionuclides through the intact marker 8 bed. The second section, a vertical profile containing a north-south drift 9 and an access shaft, is used to estimate flow and transport along the drift 10 and shaft pathway towards the Culebra Dolomite (Figure 5-22b). Results of 11 these simulations are presented in detail in Volume 2 of this report and are 12 summarized in Chapter 7 of this volume. 13

15 Modeling of Disturbed Performance

16

14

Simulations of disturbed performance use BRAGFLO (BRine And Gas FLOw; see 17 18 Volume 2 of this report), a finite difference transient two-phase flow 19 program developed for the WIPP performance assessment, to calculate brine and gas flow within a waste panel and the surrounding rock and within a borehole 20 or boreholes connecting the panel with the Culebra Dolomite and a brine 21 reservoir in the Castile Formation. The program PANEL (see Volume 2 of this 22 23 report), also developed for the WIPP performance assessment, is used to estimate concentrations of radionuclides within repository brine and and for 24 supplementary calculations of one-phase (brine) flow within a panel and a 25 borehole or boreholes. Details of the programs and their application in the 26 1991 calculations are provided in Volume 2 of this report. Results of the 27 simulations of disturbed performance are given in Chapter 6 of this volume. 28 29

Two-dimensional BRAGFLO simulations of two-phase (brine and gas) flow use a 30 radially symmetric model of the disposal system with a simplified 31 stratigraphy (Figure 5-23). Gas generation is estimated using corrosion and 32 biodegradation reactions dependent on the availability of brine, metal, and 33 cellulose. Gas generation ceases when reactants are consumed. Material 34 35 property parameter values (e.g., porosity and absolute and relative 36 permeability) are assigned to each of units in the simplified stratigraphy. Far-field pore pressure is held constant through time, and pressure in the 37 38 repository is calculated dependent on the gas-generation rate and two-phase flow in the units shown in Figure 5-23, including the waste panel, the intact 39 and disturbed halite and anhydrite layers, the Castile brine reservoir, the 40 41 Culebra Dolomite, and the intrusion borehole.

43 For the 1991 preliminary comparison, uncertain parameters sampled for BRAGFLO 44 flow simulations were porosities, permeabilities, and threshold pressures for 45 the intrusion borehole and disturbed and undisturbed anhydrite (in anhydrite

42

TRI-6342-1228-0

Figure 5-22. Two-Dimensional Repository Models Used for STAFF2D and SUTRA Estimations of Radionuclide Transport during Undisturbed Conditions. Figure 5-22a is a horizontal (plan) view of the projection of two waste panels onto the plane containing MB-139. Figure 5-22b is a vertical cross section containing the waste disposal area, a north-south drift, and a vertical access shaft.

Figure 5-23. Simplified Waste-Disposal Panel Model Used in Two-Dimensional, Axially Symmetric BRAGFLO Simulations of Two-Phase (Brine and Gas) Flow (Vaughn et al., 1991).

layers A and B and in MB139), far-field pore pressure in MB139 (which was 1 then used to fix a hydrostatic far-field pressure for all other elevations), 2 and the initial pressure of the Castile brine reservoir. Gas-generation 3 rates under humid and saturated conditions, the stoichiometry of the 4 corrosion reaction, the volume fractions of the reactants (metal and 5 6 cellulose), and the initial liquid saturation of the waste were also sampled. Ranges and distributions for these parameters are given in Volume 3 of this 7 report. As described in Volume 2 of this report, reaction stoichiometry and 8 initial volume fractions of reactants were used to derive initial room 9 porosity and room heights. 10

11

22

The program PANEL estimates radionuclide concentrations in repository brine 12 by modeling radioactive decay and dissolution within a waste panel. 13 These 14 calculations require an initial inventory of all radionuclides, half-lives and decay chains for all radionuclides, solubility limits for all elements. 15 and the pore volume of the panel. The model assumes chemical equilibrium and 16 17 the uniform distribution of waste within the panel. Sorption of radionuclides within the panel is not considered. For the 1991 preliminary 18 comparison, uncertain geochemical parameters included Eh/pH conditions within 19 the repository and solubility limits for 7 radionuclides. Ranges and 20 distributions for these parameters are given in Volume 3 of this report. 21

23 Single-phase flow modeling using PANEL can consider four components of fluid 24 flow separately: upward flow of brine from the Castile Formation due to the head difference between the brine reservoir and repository; brine flow from 25 26 the Salado Formation into the waste panel; circulation of brine through the waste within the panel; and upward flow within the borehole from the panel to 27 the Culebra Dolomite. Brine inflow from the Salado Formation is calculated 28 using BRAGFLO, as described below. Required parameters for the Castile 29 Formation include the initial pressure of the brine reservoir and the bulk 30 storage coefficient. Other required parameters include the time of 31 intrusion, the dimensions and locations of boreholes, and hydraulic 32 conductivity within the waste panel and the boreholes. All flow in PANEL is 33 assumed to occur as in a single phase (brine) and to be governed by Darcy's 34 law. Pressure in the Culebra Dolomite is assumed to remain constant. 35 Change in brine reservoir pressure is assumed to be proportional to the volume of 36 fluid discharged. All components are assumed to be at steady state with 37 38 respect to boundary pressures at any given time.

39

40 Modeling of Radionuclide Releases during a Borehole Intrusion

41

The performance-assessment model for borehole intrusion relies on a fundamental assumption that future drilling technologies will be comparable to those of the present. The reasonableness of this assumption is unknown; without it, however, estimates of the amount of waste brought to the ground surface during an intrusion would be arbitrary and purely speculative.

If a borehole intrudes the repository, waste will be brought directly to the 1 ground surface as particulates suspended in the circulating drilling fluid. 2 Some of this material will be cuttings, the material removed by the drill bit 3 from a cylindrical space with a radius equal to that of the bit. An 4 additional amount of waste will be brought to the surface as cavings, the 5 material removed from the borehole wall. When the drill bit first penetrates 6 the upper portion of a panel that is pressurized relative to the borehole 7 with waste-generated gas, the escape of this gas may cause waste and backfill 8 to spall into the borehole. As the borehole is extended below the 9 repository, additional material will be eroded from the walls of the borehole 10 at the repository horizon by the circulating fluid. Both cuttings and 11 cavings will be transported to the surface in the circulated drilling fluid 12 and released to the accessible environment in a settling pit at the surface. 13 14

The amount of waste removed as cuttings is a simple function of bit diameter. 15 Estimating the amount of waste removed as cavings requires a more complex 16 conceptual model, based on standard drilling technology (Figure 5-24). 17 Drilling fluid, commonly referred to as mud, is pumped down the interior of 18 19 the hollow drill pipe and out through the drill bit, where it cools the bit and removes cuttings. Fluid returns to the ground surface outside the drill 20 pipe, in the annular space between the pipe (or collar, which is the lowest 21 and thickest segment of pipe that supports the bit) and the borehole wall. 22 During the return flow, fluid infiltrates into porous portions of the 23 borehole wall and deposits a layer of muddy filter cake. In moderately 24 25 porous units, filter cake typically accumulates until the unit is sealed and fluid loss is halted. Sealing of extremely porous units may require adding 26 sealants to the drilling fluid or installing casing. 27

28

Because the drillstring (pipe, collar, and bit) rotates, fluid flow within 29 the hole has both a rotational and axial motion (Figure 5-24). Variables 30 31 controlling erosion by flowing fluid include the angular velocity of the 32 drillstring, the fluid circulation rate, radii of the components of the drillstring, fluid viscosity, fluid density, borehole roughness, and the 33 effective shear strength for erosion of the waste. Parameter values 34 35 describing variables related to the drilling operation are determined by examining current technology. Driller's logs routinely report velocity 36 (revolutions per minute), circulation (gallons per minute), and drillstring 37 38 radii. Drilling mud exhibits non-Newtonian behavior, and viscosity must be described with two parameters. The effective shear strength for erosion of 39 40 the waste will depend on several factors, including the form in which the waste is emplaced and the degree to which the waste has been consolidated by 41 salt creep. Reference waste is a composite material, and values for the 42 effective shear strength for erosion must be determined experimentally. 43

Figure 5-24. Conceptual Model of Borehole Intrusion. Not to scale (modified from Lappin et al., 1989).
As described in more detail in Volume 2 of this report, erosion of waste will 1 occur when the fluid shear stress at the borehole wall exceeds the effective 2 shear strength for erosion of the waste. For any given set of conditions, 3 the fluid shear stress at the borehole wall will be a function of annular 4 thickness: as erosion increases hole radius, shear stress will decrease 5 (Figure 5-25a). Erosion will cease when shear stress at the borehole wall 6 falls below a failure-shear-stress value corresponding to the effective shear 7 strength for erosion of the waste. The total amount of waste removed, 8 including both cuttings and eroded material, will be equal to the volume of a 9 cylinder with a height equal to the repository thickness and a radius equal 10 to the radius of failure by erosion (Figure 5-25b). 11 12

The program CUTTINGS (see Volume 2 of this report) is used to simulate 13 erosion adjacent to the drill collar using fixed values for the effective 14 shear strength for erosion for the waste corresponding to properties of as-15 16 received waste. Drill-bit radius, which in present drilling technology is primarily a function of total borehole depth, is selected by assuming that 17 exploratory boreholes at the WIPP will be drilled for deep gas targets (see 18 "Drilling" in Section 4.1.4-Evaluation of Human-Induced Events and Processes 19 in Chapter 4) and then choosing the corresponding maximum bit radius at the 20 21 repository depth.

22

Spalling of material into the borehole is not included in the analyses by 23 CUTTINGS. This phenomenon may occur when the drill bit penetrates repository 24 wastes pressurized by gases generated by corrosion and biodegradation. The 25 escape of gases to the borehole causes radial effective stresses adjacent to 26 27 the borehole to become tensile. The peak tensile stress is near the borehole 28 wall, but tensile fracturing may occur away from the borehole wall, resulting in spalling of the heterogeneous composite waste and backfill material. The 29 process of spalling is complex, involving gas flow through a moving waste 30 matrix with changing boundaries. As a result, estimating the quantity of 31 spalled material is not straightforward. The importance of the contribution 32 of spalling to the total amount of cavings is still being evaluated. For the 33 1991 preliminary comparison, erosion by drilling fluid, rather than spalling 34 by waste-generated gas, is assumed to be the dominant mechanism producing 35 cavings. 36

37

- 38
- 39

5.3 CAMCON: Controller for Compliance-Assessment System

40

The complexity of the compliance-assessment modeling system for the WIPP
requires that calculations be controlled by an executive program (Rechard,
1989; Rechard et al., 1989). CAMCON (Compliance Assessment Methodology
CONtroller) controls code linkage and data flow during lengthy and iterative
consequence analyses, minimizes analyst intervention during data transfer,

a.) Relationship Between Radius and Stress

b.) Volume of Material Removed

TRI-6342-408-2

Figure 5-25. Borehole Erosion as a Function of Shear Stress.

and automatically handles quality assurance during the calculations. CAMCON currently consists of about 75 codes and FORTRAN object libraries and includes approximately 293,000 lines of FORTRAN software written specifically for the WIPP Project and another 175,000 lines of software adapted from other applications.

7 The controller allows easy examination of intermediate diagnostics and final
8 results. Computer modules within the executive program can be easily
9 replaced for model comparisons. CAMCON modularizes tasks so computer
10 programs for a particular module are interchangeable. CAMCON is fully
11 described in Rechard et al. (1989).

13 5.3.1 DATA BASES

14

12

15 Three data bases, primary, secondary, and computational, are included in CAMCON. The primary data base contains measured field and laboratory data 16 17 gathered during the disposal-system and regional characterization. Because the analysis can be no better than these data, the data base should contain 18 all necessary data for the compliance assessment and repository design, have 19 as little subjective interpretation as possible, and be quality assured. 20 Data base structure must be flexible to accommodate different organizations 21 22 and unforeseen types of data. Practical experience suggests that a relational data base is best (Rautman, 1988). 23

24

25 The secondary data base contains interpreted data, usually interpolated onto a regular grid, and incorporates information that comprises the conceptual 26 27 model of the disposal system. Levels of interpretation can vary from objective interpolation of data combined with subjective judgments to totally 28 subjective extrapolations of data; all interpretations are well documented to 29 ensure the secondary data is reproducible by others. Data from literature or 30 31 professional judgment are used to fill knowledge gaps to complete the conceptual model. The secondary data base must be accessible to both the 32 analyst and the executive package controlling the system. 33

34

The computational data base is CAMDAT (Compliance Assessment Methodology DATa). CAMDAT uses a neutral-file format so that a series of computer programs can be linked by a "zig-zag" connection rather than the usual serial connection. The file format chosen for CAMDAT was based on GENESIS (Taylor et al., 1987) and EXODUS and their associated data manipulation and plotting programs (Gilkey, 1986a,b, 1988; Gilkey and Flanagan, 1987). CAMDAT is fully described in Rechard et al. (1989).

1 5.3.2 PROGRAM LINKAGE AND MODEL APPLICATIONS

2

Program linkage and data flow through CAMDAT are controlled by CAMCON. 3 Computer programs that make up the CAMCON system are major program modules, 4 support program modules, and translators. Major program modules refer to 5 programs that represent major tasks of the consequence modeling. Support 6 program modules refer to programs such as interpolators that are necessary to 7 facilitate use of major program modules. Translator program modules refer to 8 programs that translate data either into or out of the computational data 9 base. Figure 5-26 shows how programs within CAMCON are used to evaluate 10 human-intrusion scenarios. Table 5-1 shows the status of the 79 composite 11 12 programs now in CAMCON. Specific information on seven major CAMCON programs is provided Volume 2 of this report. 13

Figure 5-26. Organization of Programs in CAMCON (Rechard et al., 1989).

CON ation Module TQ: finite-element n generator MESH: rectilinear mesh arator	C X A	Notebook (listing); Review for Class / Add CAMDAT records
CON ation Module TQ: finite-element n generator MESH: rectilinear mesh arator	C X A	Notebook (listing); Review for Class
ation Module TQ: finite-element n generator MESH: rectilinear mesh prator	X	Add CAMDAT records
TQ: finite-element n generator MESH: rectilinear mesh rator	X	Add CAMDAT records
MESH: rectilinear mesh rator	А	
		Notebook
NET: network generator	С	Notebook; Review for Class A
EXO: PATRAN to DAT transformation	Х	Add CAMDAT records
a Base Module		
PROP: item entry property data base	С	Changes required by data base modification
RES TM : relational base	Х	Helpfile; Notebook; Review for Class A
SDB: data tabulation condary data for reports	С	Make code more robust; SDB Reader; Update code; FLINT; Notebook
TSDB: parameter ibution plots condary data base	С	SDB Reader; Document; Helpfile; FLINT; Notebook
	ta Base Module IPROP: item entry property data base RES TM : relational base SDB: data tabulation condary data for reports TSDB: parameter ibution plots condary data base Classifications: Class A software has been ev atisfies the quality assurance nd verification. The software iNL. Class C software is a candida etrievability requirements. The primally evaluated. An up-to- written, and internal documer locumentation are in progress	ta Base Module IPROP: item entry C property data base RESTM: relational X base SDB: data tabulation C acondary data a for reports TSDB: parameter C ribution plots acondary data base acondary data base

TABLE 5-1. SEPTEMBER 1991 STATUS OF COMPOSITE PROGRAMS IN CAMCON

1

1

	Code	QA Status ¹	Work Remaining
Prope	rty Module		
10.	BCSET: boundary condition set up	С	Test cases; FLINT; Notebook; Review for Class A
11.	FITBND: fit of pressure optimization bound-ary conditions	X	Helpfile; [CAMCON]; Driver
12.	GARFIELD: attribute fields (e.g., transmissivity)	X	Helpfile; [CAMCON]; Driver; Test cases; FLINT; Notebook Review for Class A
13.	GENOBS: functional relationships between well heads and pressure boundary conditions	х	Helpfile; [CAMCON]; Driver
14.	GRIDGEOS: interpolation from data to mesh	С	Check out kriging; Test cases; [CAMCON] FLINT; Notebook; Review for Class A
15.	ICSET: initial condition set up	С	Test cases; FLINT; Notebook; Review for Class A
16.	LHS: Monte Carlo sampling module	С	Test Cases; FLINT; Notebook; Review for Class A
17.	PRELHS: pre-LHS translator	С	FLINT; Notebook; Review for Class A
18.	POSTLHS: post-LHS translator	С	Algebraic function; FLINT; Notebook; Review for Class A
19.	MATSET: material property set up	С	Test cases; FLINT; Notebook; Review for Class A
20.	RELATE: interpolation from coarse to fine mesh and fine to coarse mesh (relates property and boundary conditions)	С	Document; Test cases; FLINT; Notebook; Review for Class A
21.	SORTLHS: vector reordering for LHS	X	Allow user to input own order; Test cases; FLINT; Notebook; Review for Class A
Grou	ndwater Flow Module		
22.	BRAGFLO: 2-phase flow model	Х	User manual

	Code	QA Status ¹	Work Remaining
23.	PREBRAGFLO: pre-BRAGFLO translator	Х	User manual
24.	POSTBRAGFLO: post-BRAGFLO translator	х	User manual
25.	BOAST_II: black oil model	X	Add semi-implicit wells; Add total velocity solution approach; Helpfile; [CAMCON]; FLINT; Test cases; Notebook; Review for Class A
26.	PREBOAST: pre- BOAST_II translator	С	(see BOAST_II, item 25)
27.	POSTBOAST: post- BOAST_II translator	С	(see BOAST_II, item 25)
28.	HST3D: hydrologic flow model	Х	Add dynamic memory date and time; Add binary output
29.	PREHST: pre-HST3D translator	х	QA checkout
30.	POSTHST: post- HST3D translator	Х	QA checkout
31.	SECO_2DH: 2-D hydrologic flow model, horizontal	х	Improve boundary condition capabilities; Use and Theory M; Test cases; Notebook; Review for Class A
32.	SUTRA: hydrologic flow model	С	CAMDAT source read; Test cases; Update; Helpfile; Notebook; Review for Class A
33.	PRESUTRA: pre- SUTRA translator	С	(see SUTRA, item 32)
34.	POSTSUTRA: post- SUTRA translator	С	(see SUTRA, item 32)
35.	SUTRA_GAS: SUTRA modification for fluid as gas instead of liquid	Х	Helpfile; Notebook
36.	SWIFTII: hydrologic flow model	С	None at this time
37.	PRESWIFT: pre- SWIFTII translator	С	None at this time
38.	POSTSWIFT: post- SWIFTII translator	С	None at this time

TABLE 5-1. SEPTEMBER 1991 STATUS OF COMPOSITE PROGRAMS IN CAMCON (continued)

	Code	QA Status ¹	Work Remaining
Repos	itory Module		
39.	CUTTINGS: evalu- ation of amount of material removed during drilling	С	Test cases; FLINT; Notebook; Review for Class A
40.	PANEL: panel model, mixing cell for radionuclides analytic flow modeling	Х	Merge versions w and w/o brine pocket models; Test cases; Document; FLINT; Notebook; Review for Class A
Conta	inment Transport Module		
41.	NEFTRAN: network transport model	С	None at this time
42.	PRENEF: pre- NEFTRAN translator	С	Changes required by modifications to CAMCON
43.	POSTNEF: post- NEFTRAN translator	С	None at this time
44.	STAFF2D: finite- element transport model	С	Check out multi-grid solver; Define permeability and poros attributes; Test cases; FLINT; Notebo Review for Class A
45.	PRESTAFF: pre- STAFF2D translator	С	(see STAFF2D, item 44)
46.	POSTSTAFF: post- STAFF2D translator	С	(see STAFF2D, item 44)
Comp	bliance Module		
47.	CCDFCALC: CCDF calculation program	С	Test cases; Notebook; Review for Class A
48.	NUCPLOT: box plot of each radionuclide contribution to CCDF	С	Make more user friendly; Test cases; Notebook; Review for Class A
49.	CCDFPLOT: CCDF plotting	С	Notebook; Review for Class A
50.	GENII: human dose calculations	Х	Document; Helpfile; [CAMCON]; Driver
51.	DOSE: dose calculations from transfer factors	Х	Combine with PONDDOSE & FARMDOSE; Document; Helpfile; ICAMCON1: Driver

	Code	QA Status ¹	Work Remaining
Suppo	ort Module		
52.	ALGEBRA: CAMDAT manipulation program	С	Redo input structure; Examples; New manual; Notebook; Review for Class A
53.	BLOT: mesh and curve plotting	С	Add capability to plot geographical data; Element contours Examples; New manual; Notebook; Review for Class A
54.	GROPE: CAMDAT file reader	С	Update helpfile; Notebook
55.	RESHAPE: redefinition of blocks (i.e., groupings of mesh elements)	С	Document; Test cases; FLINT; Notebook
56.	TRACKER: particle tracking support program	С	Add three-dimensional capability; Test cases; FLINT; Notebook; Review for Class A
57.	UNSWIFT: conversion of SWIFT input files into CAMDAT	С	Notebook
Statis	tical Module		
58.	PCCSRC: partial correlation coefficient statistics	С	Test cases; Notebook; Review for Class A
59.	STEPWISE: stepwise statistics	С	Document; Test cases; Notebook; Review for Class A
60.	LHS2STEP: translator from from LHS to STEPWISE or PCC/SRC	c ;	(see STEPWISE, item 59)
61.	CCD2STEP: translator from CCDFCALC	С	(see STEPWISE, item 59)
Utiliti	es		
62.	CAM2TXT: binary CAMDAT to ASCII conversion	х	None at this time
63.	CHAIN: radionuclide chains	Х	[CAMCON]; Notebook
64.	CHANGES: record of needed enhancements to CAMCON or code:	C	None at this time

1

	Code	QA Status ¹	Work Remaining
65.	DISTRPLT: pdf's plots given parameters	х	[CAMCON]; Helpfile; Notebook
66.	FLINT: FORTRAN language analyzer	х	[CAMCON]; Helpfile
67.	HLP2ABS: conversion of helpfile to software abstract	Х	Switch over from R:BASE TM to INGRES TM ; [CAMCON]; Helpfile
68.	LISTDCL: list of DEC command procedural files	С	None at this time
69.	LISTFOR: list of programs & sub-routines; summary of comments & active FORTRAN lines	C	None at this time
70.	NEFDIS: plot of NEFTRAN discharge history as a function of time	Х	[CAMCON]
71.	SCANCAMDAT: quick summary of data in CAMDAT	х	Helpfile; Notebook
72.	TXT2CAM: ASCII to binary CAMDAT conversion	Х	None at this time
Libra	ries		
73.	CAMCON_LIB	Х	Architecture manual; Helpfile; Notebook; Review for Class A
74.	CAMSUPES	х	Add PARSE; Architecture manual; Helpfile; Notebook
75.	DVDI	х	Architecture manual; Helpfile; Notebook; Review for Class A
76.	PLOTLIB	х	Architecture manual; Helpfile; Notebook Review for Class A
77.	PLT	Х	Architecture manual; Helpfile; Notebook; Review for Class A
78.	SDBREAD	х	Architecture manual; [CAMCON]; Helpfile; Notebook; Review for Class A
79.	CDBREAD	Х	Under development

Chapter 5-Synopsis

The Natural Barrier System	Castile Formation
- ,	The Castile Formation (Late Permian), located immediately below the rock unit containing th repository, consists mostly of anhydrite and some locations contains reservoirs of pressurized brine.
	Pressurized brine in the Castile Formation could reach the repository through an intrusi borehole.
	Salado Formation
	The Salado Formation (Late Permian), the host rock for the repository, is about 600 m (1970 ft) thick at the WIPP and is mostly halite with some anhydrite interbeds.
	Where the Salado Formation is intact and unaffected by dissolution, circulation of groundwater is extremely slow because primary porosity and open fractures are lacking.
	Rustler Formation
	The Rustler Formation (Late Permian), above to Salado Formation, contains five members. Two of these members, the Culebra and Magenta Dolomite Members, are considered in performan assessments because they are potential pathwa for release of radionuclides to the accessible environment.
	Climate
	The present climate of southeastern New Mexic is arid to semi-arid. Geologic data show pase alternations of wetter and drier climates that correspond to global cycles of glaciation and deglaciation.
	Mean annual precipitation at the last glacial maxima was approximately twice that of the present

1 2 3 4 5 8	Climatic variability is incorporated into the modeling system by varying boundary conditions of the two-dimensional, groundwater-flow model for the Culebra Dolomite Member of the Rustler Formation.
8	Surface Water
9	
10	ne principal surface-water feature in southeastern New Mexico is the Pecos River
12	which is about 20 km (12 mi) southwest of the
13	WIPP at its closest point.
14	
15	Several shallow, saline lakes in Nash Draw 8 km
16	(5 mi) west of the WIPP collect precipitation,
17	surface drainage, and groundwater discharge
18	from springs and seeps.
49 21	The Water Table
22	
23	Away from the immediate vicinity of the Pecos
24	River, near-surface rocks are either
25	unsaturated or of low permeability and do not
26	produce water in wells.
27	
28	Regionally, water-table conditions can be
29	interred for the more permeable units where
30	they are close to the surface and saturated.
33	Regional Water Balance
34	
35	Water inflow to the area comes from
36	precipitation, surface-water flow in the Pecos
37	River, groundwater flow across the boundaries
38	of the region, and water imported to the region
39	for human use.
40	
41	Outflow from the water-budget model occurs as
42	groundwater flow and evapotranspiration
44	groundwater riew, and exapter anoprior
45	Immediately around the WIPP, where no surface
46	runoff occurs and all precipitation not lost to
47	evapotranspiration must recharge groundwater.
48	evapotranspiration may be as high as 98-99.5%.
59	
51	Groundwater Flow above the Salado Formation
52	
53	Although preliminary hydrologic modeling
54	indicates the possibility of some vertical flow
55	performance according to a substant of the 1991
57	performance-assessment carculations units are assumed to be perfectly confined
58	assance to se perfectly continue.

Potentiometric maps show differences in flow directions and indicate slow flow rates between the three major hydrostratigraphic units: they do not function as a single aquifer.

Groundwater Geochemistry

43

 Groundwater quality of the Rustler-Salado contact residuum and the Culebra and Magenta Dolomite Members is poor, with total dissolved solids exceeding 10,000 mg/ ℓ (the level set for regulation by the Individual Protection Requirements of the Standard) in most locations.

Recharge and Discharge

Potentiometric-surface mapping indicates that recharge to the Culebra Dolomite may be in an area north of the WIPP where the Rustler crops out, and through leakage from overlying units.

Discharge from the Culebra Dolomite is indicated toward the south, possibly into the Rustler-Salado contact residuum under watertable conditions near Malaga Bend and ultimately into the Pecos River. The Culebra may also discharge directly into the Pecos River or into alluvium.

Recharge to the Magenta Dolomite may also occur in an area north of the WIPP.

Discharge near the WIPP from the Magenta Dolomite is indicated toward the west, probably into the Tamarisk Member and the Culebra Dolomite near Nash Draw. Additional discharge may ultimately reach the saline lakes in Nash Draw, the Pecos River at Malaga Bend, or the alluvium in the Balmorhea-Loving Trough.

Groundwater Flow and Transport Models for the Culebra Dolomite

The Culebra Dolomite is modeled for performance assessment as a perfectly confined, twodimensional aquifer.

Darcy flow is calculated for a single phase (liquid), and radionuclide transport is assumed to occur in a dual-porosity (fractures and matrix) medium.

5-75

1 2 3 4 5 6 7 8		The performance-assessment model allows for retardation during transport both by diffusion and sorption in matrix porosity and sorption by clays that line fractures. Retardation factors used in the 1991 preliminary comparison are based on expert judgment elicited from a panel of SNL researchers.
10 11	The Engineered Barrier System	Currently, engineered barriers in the WIPP are seals in panels, drifts, and shafts.
12 13 14 15 16 18		Other possible engineered barriers are modifications to the form of the waste and backfill or to the design of the waste-disposal areas.
19 20		The Salado Formation at the Repository Horizon
20 21 22 23 24 25		The repository has been excavated within a single stratigraphic horizon in the salt so that all panels within the waste-disposal area share the same local stratigraphy.
26 27 28 29		Excavation of the repository and the consequent release of lithostatic stresses have created a disturbed rock zone (DRZ) around the underground openings. Fracturing in the DRZ
30 31 32		may provide a pathway for fluid migration out of the repository and possibly around panel and drift seals.
99 35 26		Repository and Seal Design
37 38 39		Waste will be emplaced within panels in drums or metal boxes, and panels will be backfilled and sealed as they are filled.
40 41 42 43		Backfill will reduce initial void space and permeability in the panels and will consolidate under pressure to further limit brine flow through the west.
44 45 46 47		through the waste. Fure crushed salt, which will not sorb radionuclides, is currently assumed as backfill material.
48 49 50 51		The primary long-term component of the seals will be crushed salt, confined between short- term rigid bulkheads that will prevent fluid flow while creep closure reconsolidates the
52 53 53		crushed salt to properties comparable to those of the intact Salado Formation.

Synopsis

Waste Characterizatio

1 2 3

4

5

6

7 8

9

10

11

12

13 15

16 17

18

19

20

21

22

23 24

25

26

27

28 29

31

32 33

34 35

36 37

39

40

41 42

43

44

45

46 47

48 49

50 51

52

53

54

55 56

57

The Waste Acceptance Certification requirements state that waste must be immobilized if it contains particulates in specified ranges. Waste must also be drained of liquids and contain no explosives or compressed gases.

Waste is characterized for the 1991 calculations by scaling 1987 data up to the design capacity of the repository. Estimates are made of the amounts of combustibles, metals, and other constituents of the waste.

The Radionuclide Inventory

Current performance-assessment calculations use an initial waste inventory that includes both CH and RH waste that currently exists or is estimated to be generated by 2013, based on 1990 data scaled up to the design volume of the repository.

The radionuclide inventory for transport calculations is a function of the initial inventory and decay within the repository before transport begins.

Radionuclide Solubility and the Source Term for Transport Calculations

Radionuclide solubility limits for the 1991 preliminary comparison are based on judgment elicited from an expert panel. Concentrations of suspended materials are not considered.

Performance-Assessment Model for the Repository/Shaft System

Liquid and gas flow in the Salado Formation is simulated as a function of the various processes active in the waste-disposal panels, including borehole intrusion.

All of the major processes active in the wastedisposal area are linked, and all are rate- and time-dependent.

Time and rate of gas generation will strongly influence repository pressurization and closure. Gas-generation rates will be dependent on specific reaction rates and the availability of reactants.

1 2 3 4		Responses of the disposal system to human intrusion will depend on the time of intrusion, the degree to which the repository has closed, and the amount of gas generated.
6 7		Modeling of Undisturbed Performance
8 9 10 11 12 13 14		Because estimates of undisturbed performance indicate no releases to the accessible environment, simulations of undisturbed performance are not included in the probabilistic calculations used to generate the CCDF curves.
15 16 17 18 19 20 21 22 23 24 29		For the 1991 preliminary comparison, the programs SUTRA and STAFF2D are used with two two-dimensional repository models (a horizontal and a vertical section through the system) to estimate radionuclide migration away from the undisturbed repository. Gas-pressurization effects are included by using elevated repository pressures calculated using the two- phase flow program BOAST_II.
 27 28 29 30 31 32 33 34 35 36 		Modeling of Disturbed Performance The transient two-phase flow program BRAGFLO calculates brine and gas flow within waste panel, the surrounding rock, and an intrusion borehole. Gas-generation reactions are calculated dependent on availability of reactants (metal and cellulose) and brine saturation.
37 38 39		The program PANEL calculates radionuclide concentrations in repository brine as a function of solubility and decay.
42 43		Modeling of Radionuclide Releases during a Borehole Intrusion
44 45 46 47 48		The program CUTTINGS is used to estimate the quantity of cuttings and cavings from the drilling process released to the accessible environment in a settling pit at the surface.
51 52 53 54 55 56 57 59	CAMCON: Controller for Compliance Assessment System	The Compliance Assessment Methodology CONtroller (CAMCON) controls code linkage and data flow during lengthy and iterative consequence analyses, minimizes analyst intervention during data transfer, and automatically handles quality assurance during calculations.
60		

2 8

6. CONTAINMENT REQUIREMENTS

5	
8	[NOTE: The text of Chapter 6 is followed by a synopsis that summarizes
8	essential information, beginning on page 6-17.]
9	
10	The Containment Requirements of the Standard state that disposal systems
11	i
12	shall be designed to provide a reasonable expectation based upon
13	performance assessments, that the cumulative releases of radionuclides
14	to the accessible environment for 10,000 years after disposal from all
15	significant processes and events that may affect the disposal system
16	shall:
17	
18	(1) Have a likelihood of less than one chance in 10 of exceeding the
19	quantities calculated according to Table 1 (Appendix A [of the
20	Standard]): and
21	(2) Have a likelihood of less than one chance in 1,000 of exceeding ten
22	times the quantities calculated according to Table 1 (Appendix A [of
23	the Standard]). (§ 191.13(a))
24	
25	As indicated in Chapters 2 and 3 of this volume, compliance with the
26	Containment Requirements will be evaluated using a family of CCDF curves
27	that graph exceedance probability versus cumulative radionuclide releases
28	for all significant scenarios. As discussed further in Chapters 10 and 11
29	of this volume, results presented here are not suitable for final compliance
30	evaluations because portions of the modeling system and data base are
31	incomplete, conceptual-model uncertainties are not included, final scenario
32	probabilities remain to be determined, and the level of confidence in the
33	results remains to be established. Uncertainty analyses required to
34	establish the level of confidence in results will be included in future
35	performance assessments as advances permit quantification of uncertainties
36	in the modeling system and the data base.
37	
38	Results in the form of CCDFs for the 1991 preliminary compliance assessment
39	are presented separately for total releases (cuttings/cavings plus
40	subsurface) to the accessible environment and for subsurface groundwater
41	releases only. These CCDF presentations are the culmination of the
42	application of the conceptual model for risk (performance assessment)
43	described in Chapter 3 of this volume.
44	
45	

6.1 Conceptual Model for Risk 1 2 Construction of CCDFs presented in this chapter is based on the conceptual 3 representation of performance assessment described in Chapter 3 of this 4 The outcome of the performance assessment is represented as a set volume. 5 of ordered triples of the form 6 7 $R = \{(S_i, pS_i, cS_i), i=1, ..., nS\}$ (6-1)8 9 10 where 11 S_i = a set of similar occurrences, 12 13 14 $pS_i = probability$ that an occurrence in the set S_i will take place, 15 $cS_i = a$ vector of consequences associated with S_i , 16 17 nS = number of sets selected for consideration,18 19 and the sets S_{i} have no occurrences in common (i.e., the S_{i} are disjoint 20 21 sets). 22 In terms of performance assessment, the S_i are scenarios, the pS_i are 23 24 scenario probabilities, and the cS_i are vectors containing results or consequences associated with scenarios. The information contained in the 25 pS_i and cS_i is summarized in the form of CCDFs as exceedance probability 26 versus consequence curves. The construction of these curves is described in 27 Volume 2, Chapter 3 of this report. 28 29 30 6.2 Scenarios Included and Probability Estimates 31 32 The representation of the performance assessment as an ordered triple 33 involves scenario probabilities that require an underlying sample space. 34 The introduction to Chapter 4 of this volume defined this sample space, S, 35 as 36 37 $S = \{x: x \text{ is a single } 10,000 \text{-year history beginning at}$ 38 decommissioning). 39 40 (6-2)41 Following the screening of a comprehensive list (Table 4-1) of possible 42 events and processes that could affect future states of the waste-barrier 43 system, a logic diagram (Figure 4-5) was used to construct summary 44

1 scenarios, S_1 , that are mutually exclusive sets of common occurrences whose 2 union is S, i.e.,

$$S = \bigcup_{i=1}^{8} S_i \quad . \tag{6-3}$$

11 The base-case summary scenario, S_1 , in the logic diagram is the undisturbed 12 scenario for the Containment Requirements. Since there are no releases 13 estimated to occur in the 10,000-year regulatory period (Volume 2, Chapter 4 14 of this report), S_1 is not analyzed, but it is included in CCDF construction through its estimated probability and zero consequences (Figure 4-2). 15 In order to display the family of CCDFs such that stochastic variability and 16 uncertainty due to imprecisely known variables are clearly separated, the 17 summary scenarios, S_i , for human intrusion are further refined into 18 computational scenarios denoted $S(\mathbf{n})$, $S(\mathbf{l},\mathbf{n})$, $S^{+-}(t_{i-1}, t_i)$, and 19 $S^{+-}(I;t_{1-1}, t_1)$, which are disjoint sets of common occurrences defined such 20 that it is reasonable to use the same consequences for all elements of each 21 22 computational scenario and such that consequences can be estimated with reasonable computational cost. 23

24

32

з

4567890

The factors used to define $S(\mathbf{n})$, $S(\mathbf{l},\mathbf{n})$, $S^{+-}(t_{i-1}, t_i)$, and $S^{+-}(\mathbf{l};t_{i-1}, t_i)$, are: number and time of intrusions (Volume 2, Chapter 2, Tables 2-2 and 2-3), flow through a panel due to penetration of a pressurized brine reservoir in the Castile Formation (Volume 2, Chapter 2, Table 2-6), and activity level of the waste penetrated by a borehole (Volume 2, Chapter 2, Table 2-7). These factors all relate to stochastic or Type A uncertainty since they lead to values used for pS_i in constructing the CCDFs.

33 For the 1991 performance assessment, drilling intrusions are assumed to follow a Poisson process (i.e., intrusions occur randomly in space and time 34 with a fixed rate constant). The rate constant is an imprecisely known 35 variable with upper bound defined by the regulatory guidance of 30 36 boreholes/km $^2/10,000$ yr and lower bound of zero. The Poisson rate constant 37 is assumed to be a uniformly distributed variable and is included in the set 38 of imprecisely known variables that accounts for Type B uncertainty. 39 Since 40 the EPA limit requires estimation of cumulative probability through the 0.999 level, consequences of computational scenarios involving up to 10 or 41 12 drilling intrusions may be included in the comparison with regulatory 42 43 limits. For this performance assessment, the regulatory time interval of 10,000 years is divided into five disjoint time intervals of 2,000 years 44 each with intrusion occurring at the midpoints of these intervals (i.e., 45 46 1000, 3000, 5000, 7000, and 9000 years).

1 For the 1991 performance assessment, the waste panels are assumed to be underlain by one or more pressurized brine reservoirs in the Castile 2 Formation. The possible location of these brine reservoirs is shown in 3 Volume 3. The fraction of waste panel area underlain by brine reservoirs is 4 included in the set of imprecisely known variables. The uncertainty in this 5 parameter is Type B (i.e., subjective), although the parameter itself is 6 used in the calculation of the probabilities pSi that characterize Type A 7 8 (i.e., stochastic) uncertainty.

9

For the 1991 performance assessment, activity loading of the waste within a 10 panel is included. Four CH activity levels and one RH activity level are 11 defined to represent variability in the activity level of waste penetrated 12 by a drilling intrusion. The distribution of activity levels for existing 13 waste to be shipped to the WIPP is contained in Volume 3 of this report. 14 This distribution was scaled up from existing waste to the WIPP design 15 capacity for the 1991 performance assessment. As with the rate constant λ 16 in the model for the occurrence of drilling intrusions and the area fraction 17 for pressurized brine, the distribution of activity loading is used in the 18 calculation of the probabilities pSi. 19

```
20
```

35

The three factors just listed (Poisson rate constant, area of brine 21 22 reservoir, and variable activity loading) are used in probability models (Volume 2, Chapter 2 of this report) for estimating computational scenario 23 probabilities, pSi. These estimates determine the vertical step sizes of 24 the CCDFs and therefore represent Type A or stochastic uncertainty. The 25 probabilities used in this performance assessment are not always exact for a 26 Poisson process because some assumptions are made to simplify the 27 calculations. However, these assumptions are made so that probability 28 29 estimates are bounding, i.e., estimates used are greater than an exact calculation (i.e., $p(\cup_i S_i) = \Sigma_i pS_i$) to simplify calculations for some S_i . 30 31

32 In developing the logic diagram for defining summary scenarios and setting 33 up the design of the consequence modeling a number of additional assumptions 34 have been made. These are summarized in Table 6-1.

Previous calculations (Marietta et al., 1989; Bertram-Howery et al., 1990) 36 have analyzed summary scenarios, S_1 , S_2 , S_3 , and S_4 in Figure 4-5. CCDFs 37 were constructed as described by Cranwell et al. (1990) using fixed scenario 38 probabilities. CCDFs presented in this report do not use the same 39 construction technique but follow the procedure described in Volume 2, 40 41 Chapter 3 of this report. Scenario probabilities are not fixed. Instead, probabilities are calculated for computational scenarios $S(\mathbf{n})$, $S(\mathbf{I},\mathbf{n})$, 42 43 $S^{+-}(t_{i-1}, t_i)$, and $S^{+-}(I; t_{i-1}, t_i)$ as described in Chapter 4 of this volume, using the probability models defined in Volume 2, Chapter 2 of this report. 44 45

TABLE 6-1.ASSUMPTIONS USED TO DEFINE COMPUTATIONAL SCENARIOS FOR RESULTS
REPORTED IN THIS CHAPTER

- 1. No connections exist between panels.
 - No synergistic effects result from multiple boreholes except for E1E2-type computational scenarios.
- An E1E2-type computational scenario only occurs when intrusions of each type happen in the same panel within the same time interval.
 - 4. An *E*1*E*2-type computational scenario has the same release with more than two intrusions in one panel as with exactly two intrusions.
- 5. In an *E*2-type computational scenario, a plug exists directly above the Culebra Unit in the Rustler Formation that directs flow into the Culebra, and this plug is effective for 10,000 years following decommissioning.
 - 6. In an *E*1-type computational scenario, a plug exists as in number five, and no other plug exists to retard flow from the Castile pressurized brine reservoir.
 - 7. In an *E*1*E*2-type computational scenario, number five is true for one intrusion, and a similar plug exists between the repository and the Rustler Formation that directs flow through the penetrated waste panel toward the other intrusion in the same panel. Further, both intrusions are conservatively assumed to occur at the same time.
 - Computational scenarios involving subsidence events are not included in this performance assessment, which is equivalent to assuming that subsidence has no effect on the consequences calculated for the scenarios under consideration.
 - 9. Closure of the intrusion boreholes is not included in this performance assessment.

Fundamental differences between this year's and previous years' performance assessments are the refinement of summary scenarios into computational scenarios and the use of the Poisson assumption of random intrusion in space and time for calculating scenario probabilities. The CCDF construction procedure used for this year's performance assessment results in an explicit representation for the effects of stochastic variability (Type A uncertainty).

38 39

40

1

2 8 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

6.3 Imprecisely Known Parameters

Forty-five imprecisely known parameters were sampled for use in consequence 41 modeling for the Monte Carlo simulations of performance. For each of these 42 45 parameters, a range and distribution were assigned as discussed in Volume 43 3 of this report. However, Volume 3 lists approximately 300 parameters that 44 could be used in consequence modeling. These parameters specify physical, 45 chemical, and hydrologic properties of the rock formations (geologic 46 barriers) and of the seals, backfill, and waste form (engineered barriers). 47 Parameters for climate variability and future drilling intrusions are 48 included in this list. Selection of the set of parameters to be sampled is 49 an important decision in designing each year's preliminary compliance 50 The present study is preliminary, so the final set of sampled assessment. 51 parameters will probably differ from the present set. Table 6-2 lists the 52 set of imprecisely known parameters that was sampled for the 1991 53

1

Salado Formation	
1 Far-field pore pressure	246
2 Anhydrite permeability/undisturbed	245
3. Anhydrite porosity/undisturbed	2.4.5
4. Threshold pressure / anhydrite	2.4.1
5. Halite permeability/undisturbed	2.3.5
Castile Formation	
Initial pressure/brine reservoir	4.3.2
7. Bulk storativity/brine reservoir	4.3.2
Rustler Formation/Culebra Dolomite Member	
8. Longitudinal dispersivity	2.6.2
9. Fracture spacing	2.6.4
10. Fracture porosity	2.6.4
11. Matrix porosity	2.6.4
12. I ransmissivity conditional simulations	V.2, Sec. 6.3
Partition coefficients/fracture	2.6.10
13. Am	
14. Np	
15. Pu	
16. Th	
17. U	
Partition coefficients/matrix	2.6.10
18. Am	
19. Np	
20. Pu	
21. In	
22. 0	
As-Received Waste Form	
Gas generation/corrosion	3.3.8
23. Inundated generation rate	
24. Humid generation rate ²	
25. Stoichiometry	
Gas generation rate/biodegradation	3.3.9
26. Inundated generation rate	
27. Humid generation rate ²	
28. Stoichiometry	
A sample is drawn from a uniform variate over a set on have equal probability, and each conditioned on trans	of 60 fields for transmissivity, each ass
pilot point values.	

TABLE 6-2. LIST OF PARAMETERS SAMPLED FOR THE 1991 PRELIMINARY COMPARISON

2		(concluded)		
6 5 6		Parameter Name	Volume 3 Reference	
8 9		Dissolved concentrations/solubility ³	335	
10	29.	Am ³⁺	0.0.0	
11	30.	Np ⁴⁺		
12	31.	Np5+		
13	32.	Pu ⁴ +		
14	33.	Pu ⁵⁺		
15	34.	Th ⁴⁺		
16	35.	U_+		
17 19	36.	U ^{5 +}		
19		Volume fractions of IDB categories	3.4.1	
20	37.	Metal/glass		
21	38.	Combustibles		
22	39.	Initial waste saturation	3.4.9	
23	40.	Eh-pH conditions	3.3.6	
25	Age	nts Acting on Disposal System		
26	-	Human intrusion borehole		
27	41.	Borehole-fill permeability	4.2.1	
28	42.	Borehole diameter	4.2.2	
29 20	43.	Climate/recharge factor	4.4.3	
30	Prol	hability Model for Computational Sconarios		
32	44	Area fraction of pressurized bring reservoir (Castila	E 1 1	
33	45	Bate constant for Poisson drilling model	5.1.1	
34	10.	hate constant for Foldson anning model	5.2.1	
36 27	3 Fa	$\frac{1}{10000000000000000000000000000000000$	i) is correlated at a level of 0.00	
39	<u> </u>			
40				
41				
42	perfo	ormance assessment. Included are the na	ames and a reference to Volume 3	
43	of th	is report for each parameter. A summar	cy table of these parameters with	
44	a ran	nge, median, distribution, and original	reference for each is given in	
AE	Volum	bold chapter (of this warset	reference for each 13 given in	
40	vorun	le 5, chapter 6 of this report.		
46				
47	Funda	imental differences from last year's pro-	eliminary comparison are the	
48	addit	ion of parameters related to two-phase	tlow and gas generation,	
-+9 50	in th	ne culebra and a set of conditional air	nemical and physical retardation)	
50	the C	Culebra instead of the 1990 simple zona	ann actions for transmissivity in ann ann ann ann ann ann ann ann ann	
52	calcu	lations also include a preliminary ana	lysis of potential effects of	
53	clima	atic variability on flow in the Culebra		
54		,		
55				

TABLE 6-2. LIST OF PARAMETERS SAMPLED FOR THE 1991 PRELIMINARY COMPARISON (concluded)

1 2

10

17 18

19 20

6.4 Sample Generation

Latin hypercube sampling is used to incorporate Type B uncertainty (i.e.,
uncertainty due to imprecisely known variables) into the performance
assessment (Chapter 3 of this volume). Specifically, a Latin hypercube
sample of size 60 was generated from the set of 45 variables listed in
Table 6-2. Restricted pairing was used to prevent any spurious
correlations. The resultant sample is listed in Volume 2, Appendix B of
this report.

Decomposition of the sample space S into the computational scenarios described above is a form of stratified sampling (Chapter 3 of this volume), where the pS₁ are the strata probabilities. This stratified sampling incorporates Type A or stochastic uncertainty into the performance assessment and forces the inclusion of low-probability, high-consequence computational scenarios (e.g., ElE2-type drilling intrusions).

6.5 Consequence Modeling

21 After the sample is generated, each element of the sample is propagated 22 through the system of codes used for scenario analysis. Only human-23 intrusion computational scenarios are included. In the 1991 performance 24 assessment, the major modules used to simulate flow and transport are CUTTINGS, BRAGFLO, PANEL, SECO2D, and STAFF2D. These codes are linked and 25 the data flow controlled by the CAMCON executive package (Rechard et al., 26 1989). Each sample was used in the calculation of both cuttings/cavings and 27 subsurface groundwater releases for intrusion times of 1000, 3000, 5000, 28 7000, and 9000 years for E2- and E1E2-type intrusions. Consequences, cSi, 29 of El-type intrusions were found to be similar to and bounded by ElE2-type 30 intrusions, so only the latter required calculations. Therefore, 600 31 executions of the linked system of codes were needed to generate the 32 required set of consequences for subsurface groundwater releases. The 33 resulting set of consequences (cuttings/cavings plus subsurface groundwater 34 releases) were used by the probability model, CCDFPERM, to calculate a 35 family of CCDFs and its summary curves (median, mean, and various 36 37 quantiles). The probability model calculates probabilities and consequences for computational scenarios for all combinations of the activity levels and 38 39 time intervals, resulting in up to 800,000 computational scenarios included in this performance assessment. 40

41

42 The important assumptions for the 1991 preliminary comparison are listed in43 Table 6-3.

- 44
- 45

Compliance-Assessment System Component	Assumption	Cross- Reference
REPOSITORY/SHAFT/ BOREHOLE MODELS: REPOSITORY/SHAFT DESIG	N	
Panel, Drift and Lower Shaft Seals	Reconsolidate to properties close to those of intact salt	V.3,Ch.3
	No MB139 or anhydrite A and B seals	V.2,Ch.5
REPOSITORY/SHAFT/ BOREHOLE MODELS: PANEL MODEL		
Salado Formation	Homogeneous time-invariant material properties within each stratigraphic unit	V.2, Ch.5; V.3, Ch.2
	Initial brine saturation in Salado	V.2, Ch.5
Waste/Backfill	Homogeneous material properties and time-invariant porosity on a panel scale	V.2, Ch.5; V.3, Ch.3
	No sorptive retardation in backfill	V.1, Ch.5
	CH waste emplaced only in 55 gal drums and standard waste boxes	V.3, Ch.3
	IDB radionuclide inventory extrapolated to design capacity	V.1,Ch.5; V.3, Ch.3
	Volume fractions of combustibles and metals/glass extrapolated to design capacity	V.3, Ch.3
	All combustibles and 50% of rubbers biodegrade	V.3, Ch.3
	RH waste included in cuttings but not subsurface groundwater releases	V.2, Ch.2,
	Activity loading variability included for CH waste	V.2, Ch.2
	No radionuclide transport as colloids	V.1, Ch.5; V.3, Ch.3
Panel/Waste Interactions	Panel modeled with equivalent- enclosed-volume cylindrical geometry	V.2, Ch.5

1 TABLE 6-3. PARTIAL LIST OF ASSUMPTIONS MADE IN CONSEQUENCE MODELING FOR RESULTS 2 REPORTED IN THIS CHAPTER

Compliance-Assessment System Component	Assumption	Cross- Reference
	Gas generated by corrosion and biodegradation only (no radiolysis)	V.2, Ch.5 V.3, Ch.3
	Gas generation proportional to brine saturation	V.2, Ch.5
	Brine consumed during corrosion; no gas consumed within the panel	V.2, Ch.5
	Fracture flow limited to MB139/room interaction	V.3, Ch.3
	Brine and gas flow obeys generalized Darcy's Law for compressible fluids in all media	V.2, Ch.5
	No dissolved gas in brine phase	V.2, Ch.5
	Solubility limits allocated among isotopes of an element based on relative abundance	V.2, Ch.5
	Radionuclide concentrations assumed to be uniform throughout panel and in equilibrium at all times	V.2, Ch.5
Human Intrusion	Exploratory hydrocarbon drilling only	V.1, Ch.4
	Future drilling technology comparable to present	V.1, Ch.4,5 V.3, Ch. 7
	Arbitrary plug configurations for scenarios	V.1, Ch.4
	Brine reservoirs in the Castile Fm. underlie portions of some waste panels	V.1, Ch.4; V.2, Ch.2
	Some plugs deteriorate, some remain intact from time of emplacement through remainder of 10,000 years	V.1, Ch.4; V.3, Ch.4
	Probability of intrusion follows a Poisson process (i.e., random in space and time for 9900 years)	V.1, Ch.4; V.2, Ch.2; V.3, Ch.5
	Borehole-fill properties comparable to silty sand	V.3, Ch.4
	Source for all intrusion boreholes for Culebra transport located above center of waste-disposal area	V.2, Ch.6

1 TABLE 6-3. PARTIAL LIST OF ASSUMPTIONS MADE IN CONSEQUENCE MODELING FOR RESULTS 2 REPORTED IN THIS CHAPTER (continued)

Compliance-Assessment System Component	Assumption	Cross- Reference
REPOSITORY/SHAFT MODELS: REPOSITORY MODEL		
Panel and Drift Seals	Reconsolidate to properties close to those of intact salt	V.3, Ch.3
Lower Shaft Seals	Reconsolidate to properties close to those of intact salt	V.3, Ch.3
GROUNDWATER-FLOW AND TRANSPORT MODELS: GROUNDWATER-FLOW MODEL		
Regional Hydrogeology	Rock properties are time invariant	V.1, Ch.4,
	Future climate variability bounded by past	V.1, Ch. 5
Rustler/Dewey Lake Hydrogeology	2-D, confined,single porosity, Darcy flow model for Culebra	V.1, Ch. 5 V.2, Ch.6
	60 transmissivity fields conditioned on measured transmissivities at well locations and pilot point values represent uncertainty in field	V.2, Ch.6
	Changes in recharge restricted to northern boundary	V.1, Ch.5 V.2, Ch.6
	No flow boundary along Nash Draw, constant heads on other boundaries except for recharge strip	V.2, Ch.6
	Impact of subsidence not considered	V.2, Ch.6
	Future vertical flow through existing boreholes not considered	V.2, Ch.6
	Variable-density effects not considered	V.2, Ch.6
	Brine flow from intrusion borehole does not alter flow in Culebra	V.2, Ch.6
GROUNDWATER FLOW AND TRANSPORT MODELS: RADIONUCLIDE TRANSPORT MODEL		
Physical Retardation	Dual-porosity medium for transport	V.1, Ch.5;

1 TABLE 6-3. PARTIAL LIST OF ASSUMPTIONS MADE IN CONSEQUENCE MODELING FOR RESULTS.

Compliance-Assessment System Component	Assumption	Cross- Reference
Chemical Retardation	Retardation in both clay-lined fractures and dolomite matrix	V.1, Ch.5; V.2, Ch.6
	Transport by colloids not considered	V.1, Ch.5; V.2, Ch.6
CUTTINGS/CAVINGS MOD	EL	
Drill Cuttings	Homogeneous waste properties	V.1, Ch.5; V.2, Ch.7
	Present-day rotary drilling methods	V.1, Ch.5; V.2, Ch.7
Erosion/Cavings	Spalling from gas-filled waste panel not considered	V.1, Ch.5; V.2, Ch.7
	Waste characterized by an effective shear strength	V.1, Ch.5; V.2, Ch.7
	Erosion occurs when drilling fluid shear stress exceeds effective shear strength	V.1, Ch.5; V.2, Ch.7

1 TABLE 6-3. PARTIAL LIST OF ASSUMPTIONS MADE IN CONSEQUENCE MODELING FOR RESULTS 2 REPORTED IN THIS CHAPTER (concluded)

37 38

36

39

6.6 1991 Performance Assessment CCDFs

The CCDFs resulting from the 1991 analysis described above are displayed in 40 Figures 6-1 and 6-2. Figure 6-1 is the family of CCDFs for total release 41 (cuttings/cavings plus subsurface groundwater) to the accessible 42 environment. Figure 6-2 is a set of summary curves (median, mean, and two 43 quantiles) derived from this family. To illustrate the effect of cuttings 44 and cavings, subsurface groundwater releases are displayed separately in 45 Figures 6-3 and 6-4. Except for a few low-probability releases, cuttings 46 and cavings dominate the CCDFs for total releases. Based on the 47 performance-assessment data base and present understanding of the WIPP 48 disposal system, the summary curves in Figure 6-2 are considered to be the 49 most realistic choice for preliminary comparison with the Containment 50 Requirements of EPA 40 CFR 191. Additional CCDFs are presented with 51 sensitivity analysis results and alternate displays of uncertainty analysis 52 results in Volume 4 of this report. 53 54

6-12

TRI-6342-1293-0

Figure 6-1. Family of CCDFs Showing Total Cumulative Normalized Releases to the Accessible Environment Resulting from Both Groundwater Transport in the Subsurface and Releases at the Surface during Drilling. CCDFs are conditional on assumed scenarios, models, and distributions for parameter values, as described in the text and in Volumes 2 and 3 of this report.

TRI-6342-1294-0

Figure 6-2. Mean, Median, 10th, and 90th Percentile CCDFs Derived from the Family of CCDFs Shown in Figure 6-1. Curves show total cumulative normalized releases to the accessible environment resulting from both groundwater transport in the subsurface and releases at the surface during drilling. CCDFs are conditional on assumed scenarios, models, and distributions for parameter values, as described in the text and in Volumes 2 and 3 of this report.

TRI-6342-1295-0

Figure 6-3. Family of CCDFs Showing Cumulative Normalized Releases to the Accessible Environment Resulting from Groundwater Transport in the Subsurface. CCDFs are conditional on assumed scenarios, models, and distributions for parameter values, as described in the text and in Volumes 2 and 3 of this report.

TRI-6342-1296-0

Figure 6-4. Mean and 90th Percentile CCDFs Derived from the Family of CCDFs Shown in Figure 6-3. The median and 10th percentile CCDFs are off the plot to the left. Curves show cumulative normalized releases to the accessible environment resulting from groundwater transport in the subsurface. CCDFs are conditional on assumed scenarios, models, and distributions for parameter values, as described in the text and in Volumes 2 and 3 of this report.

The main consequence modeling differences between the 1990 and 1991 1 preliminary comparisons are the inclusion of variable climate, dual-porosity 2 transport, and waste-generated gas effects. The main probability modeling 3 4 differences are the assumption that drilling intrusions are a Poisson 5 process, the inclusion of uncertainty in the characterization of stochastic variability instead of using fixed probability estimates for summary 6 7 scenarios, and the refinement of summary scenarios into many computational scenarios. An analysis of the effects of these changes is presented in 8 9 Volume 4 of this report.

10 11

12 1**9**

Chapter 6-Synopsis

15 16 17 18	Conceptual Model for Risk	Construction of CCDFs presented in this chapter is based on the conceptual representation of performance assessment described in Chapter 3 of this volume.
20 21 22 23 24 25 26	Scenarios Included and Probability Estimates	The base-case summary scenario is not analyzed for comparison with the Containment Requirements (disturbed performance) because no releases are estimated to occur in the 10,000-year regulatory period. However, the base case summary scenario is included in CCDF construction through its estimated probability and zero consequences.
28 29 30 31 32 33 34 35 36 37 38		Families of CCDFs are displayed so that stochastic variability and uncertainty due to imprecisely known variables are clearly separated. Portraying the summary scenarios in this manner requires further refining of the summary scenarios into computational scenarios that are separate sets of common occurrences with similar consequences for all elements of each computational scenario. In addition, separation into computational sets allows estimating consequences with reasonable computational cost.
39 40 41 42 43 44		The factors, which all relate to stochastic or Type A uncertainty, that are used to define the sets of computational scenarios are number and time of intrusions,
45 46 47 48 49 50 51		flow through a panel due to penetration of a pressurized brine reservoir in the Castile Formation, activity level of the waste penetrated by a borehole.

1		For the 1991 performance assessment,
2 3		drilling intrusions are assumed to occur randomly in
4		space and time with a fixed rate constant (follow a
5		Poisson process). For this performance assessment,
6		the regulatory time interval of 10,000 years is
7		divided into five time intervals of 2,000 years,
8		with intrusion occurring at the midpoints of these
9		intervals (at 1000, 3000, 5000, 7000, and 9000
10		years).
11		the weate people are accured to be underlain by one
12		or more pressurized brine reservoirs in the Castile
14		Formation
15		
16		four CH activity levels and one RH activity level
17		are defined to represent variability in the activity
18		level of waste penetrated by a drilling intrusion.
19		
20		Fundamental differences between this year's and
21		previous years' performance assessments are
22		refinement of summary scenarios into computational
24		scenarios
25		,
26		the use of the Poisson assumption for calculating
27		scenario probabilities.
28		
29		The CCDF construction procedure used for this year's
30		performance assessment results in an explicit
32		variability
33		
35	Imprecisely Known	Forty-five imprecisely known parameters were sampled
36	Parameters	for use in consequence modeling for the Monte Carlo
37		simulations of performance. For each, a range and
38		distribution were assigned.
39 40		Fundamental differences from last year's performance
41		assessment are the addition of
42		
43		parameters related to two-phase flow and gas
44		generation,
45		
46		parameters related to dual porosity (both chemical
47		and physical retardation) in the Culebra,
48		
49 50		a set of conditional simulations for transmissivity
50 51		in the Gulebra instead of the 1990 simple zonal
52		approach,

	a preliminary analysis of potential effects of climatic variability on flow in the Culebra.
Sample Generation	Latin hypercube sampling is used to incorporate uncertainty due to imprecisely known variables, or Type B uncertainty, into the performance assessment.
	For the 1991 performance assessment, a Latin hypercube sample of size 60 was generated from the set of 45 variables.
	Decomposition into computational scenarios is a form of stratified sampling in which Type A uncertainty is incorporated into the performance assessment and forces the inclusion of low-probability, high-consequence computational scenarios.
Consequence Modeling	After the sample is generated, each element of the sample is propagated through the system of computer codes used for scenario analysis. Only computational scenarios for human intrusion are included.
	In the 1991 performance assessment, the major computer modules used to simulate flow and transport are CUTTINGS, BRAGFLO, SECO2D, AND STAFF2D.
	Each sample was used in calculating both cuttings/cavings and subsurface groundwater releases for intrusion times of 1000, 3000, 5000, 7000, and 9000 years for El- and E2-type intrusions. Consequences of E1-type intrusion were found to be similar to and bounded by E1E2-type intrusions, so only the latter required calculations.
	The resulting set of consequences (cuttings/cavings plus subsurface groundwater releases) were used by the probability computer model CCDFPERM to calculate a family of CCDFs and its summary curves (median, mean, and various quantiles).
1991 Performance Assessment CCDFs	Based on the performance-assessment data base and present understanding of the WIPP disposal system, the summary curves showing total cumulative normalized releases to the accessible environment resulting from both groundwater transport in the subsurface and releases at the surface during drilling (Figure 6-2) are considered to be the most realistic choices for preliminary comparison with the Containment Requirements.
1	Except for a few low-probability releases,
----	--
2	cuttings/cavings dominates the CCDFs for total
3	releases.
4	
5	The main differences in modeling consequences between
6	the 1990 and 1991 preliminary comparisons are the
7	inclusion of
8	
9	variable climate,
10	
11	dual-porosity transport,
12	
13	waste-generated effects.
14	
15	The main differences in modeling probabilities between
16	the 1990 and 1991 preliminary comparisons are
17	
18	the assumption that drilling intrusions are a
19	Poisson process,
20	
21	the inclusion of uncertainty in the characterization
22	of stochastic variability instead of using fixed
23	probability estimates for summary scenarios,
24	
25	the refinement of summary scenarios into many
26	computational scenarios.
29	

7. INDIVIDUAL PROTECTION REQUIREMENTS

4 [NOTE: The text of Chapter 7 is followed by a synopsis that summarizes
5 essential information, beginning on page 7-6.]

6

8

15

1 2 3

7 The Standard contains Individual Protection Requirements:

Disposal systems for transuranic wastes shall be designed to provide a
reasonable expectation that for 1000 years after disposal, undisturbed
performance of the disposal system shall not cause the annual dose
equivalent from the disposal system to any member of the public in the
accessible environment to exceed 25 mrem to the whole body and 75 mrem
to any critical organ (§ 191.15).

The Standard requires that an uncertainty analysis of undisturbed conditions 16 be performed to assess compliance with § 191.15. In the case of the WIPP, 17 the performance measure is dose to humans in the accessible environment. 18 Evaluations thus far indicate that radionuclides will not migrate out of the 19 repository/shaft system during 1000 years. Therefore, dose calculations are 20 not expected to be a part of the WIPP assessment of compliance with 40 CFR 21 Part 191. However, Subpart B is in remand. The outcome of the remand could 22 23 require dose calculations over longer time periods. Performance assessments 24 will evaluate compliance with the Individual Protection Requirements of the 1985 Standard until a revised Standard is promulgated. 25

26 27

29

7.1 Previous Studies

30 Three previous studies reported doses to humans resulting from hypothetical 31 releases from the WIPP for selected scenarios (U.S. DOE, 1980a; 32 33 Lappin et al., 1989; Lappin et al., 1990). Although these studies employed deterministic calculations and were not concerned with assessing compliance 34 with § 191.15, they have an important bearing on the design of probability-35 based dose calculations. Undisturbed performance was evaluated 36 probabilistically by Marietta et al. (1989) in a methodology demonstration 37 for WIPP performance assessment. Calculations for undisturbed performance 38 of the repository were not updated in the 1990 preliminary performance 39 assessment (Bertram-Howery et al., 1990). However, information about 40 possible effects of gas generated within the repository was obtained from 41 the assessment of disturbed performance. 42 43

7.1.1 EVALUATION PRIOR TO THE 1985 STANDARD (1980 FEIS) 2

3

16

19

The approach in the WIPP Final Environmental Impact Statement (U.S. DOE, 4 1980a) for analyzing the effects of radioactivity released from the WIPP was 5 to estimate the consequence of five different hypothetical scenarios that 6 7 might move radionuclides to the biosphere. The analyses of these scenarios 8 proceeded from radionuclide movement through the geosphere to transport through the biosphere after discharge into the Pecos River at Malaga Bend, 9 and, finally, to predicted radiation doses received by people. The human 10 dose estimates were based on the Report of ICRP Committee II on Permissible 11 Dose for Internal Radiation (ICRP, 1959), usually referred to as ICRP 2. 12 The travel times for radionuclides arriving at Malaga Bend were on the order 13 of a million years, but this study predates the Standard, which specifies a 14 time scale of 1000 years for individual protection. 15

7.1.2 DOSE ESTIMATES (LAPPIN ET AL., 1989) 18

An analysis of undisturbed conditions for the WIPP was performed 20 (Lappin et al., 1989) for two different cases in support of the WIPP 21 supplemental environmental impact statements (SEIS) (U.S. DOE 1989b, 1990c). 22 23 The exposure pathway considered was radionuclide transport through the sealed shafts and intact Salado to the Culebra Dolomite, downgradient 24 through the Culebra to a hypothesized stockwell at the nearest location 25 where Culebra water might be potable for cattle, and then to humans via beef 26 27 ingestion. Calculations were deterministic, with one case using expected parameter values and the other case using degraded parameter values. The 28 study indicated that, in the absence of human intrusion, there would be no 29 releases to the Culebra in 1000 years. Therefore, no doses were calculated 30 for undisturbed conditions. 31

32

35

7.1.3 1989 METHODOLOGY DEMONSTRATION 38

The next evaluation of undisturbed performance of the WIPP was the 36 methodology demonstration of Marietta et al. (1989). Undisturbed 37 performance was simulated using the base-case scenario (Guzowski, 1990). 38 39 The repository was assumed to be consolidated, and all legs in the flow path were assumed to be saturated from the time of repository decommissioning. 40 41 Uncertainty analysis was based on probability density functions representing realistic but preliminary estimates of minimum, maximum, and expected or 42 43 median values and distributions of parameters.

44

In the simulations for the methodology demonstration, no releases from the 45 repository/shaft system to the Culebra occurred during the 1000 years of 46 regulatory concern. Because of the slow rate of radionuclide movement, 47

simulations were extended to 50,000 years to assess system performance.
 Even at this longer time interval, no significant releases to the Culebra
 occurred. Results were therefore presented in terms of radionuclide
 migration through the MB139 seal below the repository and to the base of the
 shaft.

7 The demonstration analysis for undisturbed conditions indicated no releases 8 from the repository in either the 1000-year period for the Individual 9 Protection Requirements (§ 191.15) or the 10,000-year period for the 10 Containment Requirements (§ 191.13). The fact that no releases occurred 11 indicated that no dose calculations were needed for demonstrating compliance 12 with the Individual Protection Requirements of the 1985 Standard.

13

16

6

15 7.1.4 SENSITIVITY ANALYSES (RECHARD ET AL., 1990)

Rechard et al. (1990a) examined the relative importance of various phenomena and system components through sensitivity analyses of four different repository shaft models for undisturbed conditions. Although these simulations did not calculate EPA sums or doses to humans for either the Containment or Individual Protection Requirements, they did calculate brine flow in the lower shaft seals, which bears directly upon estimating releases to the Culebra.

24

The first two models considered only one-phase (brine) flow: a twodimensional model of brine flow into MB139, and a cylindrical model of brine flow through a waste panel into a shaft. The second two models considered effects of gas flow: a two-dimensional model simulating gas flow through drifts, and a one-dimensional model of two-phase (brine and gas) flow through MB139.

31

The following conclusions were drawn: for brine-saturated conditions, flow 32 from the repository occurs in all directions when expected parameter values 33 are used, but for degraded parameter values, a primary path along MB139 34 exists. The two-phase calculations that assessed gas migration to the shaft 35 indicated that brine would retard such flow unless well-fractured, high-36 permeability paths exist as in MB139 and anhydrite layers A and B. 37 This work indicated that two-phase models including local stratigraphy (MB139, 38 anhydrite layers A and B) were required for simulating undisturbed 39 conditions. 40

41

44

43 7.1.5 DOSE ESTIMATES (LAPPIN ET AL., 1990)

The two cases reported by Lappin et al. (1989) were repeated by
Lappin et al. (1990) with revised assumptions. Changes were the following:
a shorter pathway from the northern equivalent panel instead of the

northeast panel was used; both hydrostatic and lithostatic driving pressures were used to bound the problem; and MB139 properties were revised to include improved understanding of the DRZ and to update seal design. Again, there were no radionuclide releases to the Culebra Dolomite in 10,000 years, and therefore, no dose calculations were performed for undisturbed conditions.

6 8

9

7.1.6 1990 PRELIMINARY COMPARISON

Calculations for undisturbed performance of the WIPP repository were not 10 updated in the 1990 preliminary performance assessment (Bertram-Howery 11 et al., 1990). However, results from preliminary simulations of two-phase 12 (gas and brine) flow provided some data on the possible effects of gas 13 generation within the repository during the first 1000 years after 14 15 decommissioning. The analysis used two-dimensional, two-phase flow simulations with idealized room geometry and local stratigraphy to evaluate 16 the effect of gas on repository performance. Simulations assumed panel 17 seals that would consolidate to intact halite properties in the drift but no 18 seal in either MB139 or the anhydrite layers A and B. The gas-generation 19 20 rate was fixed at 2 moles/drum/year, the maximum rate for hydrogen generation postulated by Lappin et al. (1989). (As discussed in Volume 3 of 21 this report, the gas-generation rate has since been revised.) 22

23

Preliminary results from the simulations suggested that in the undisturbed 24 state, gas saturation would be high in the upper portion of the waste, 25 26 MB139, and the overlying anhydrite layers. As calculated, gas migration away from a room within the excavated volume and the DRZ would occur over a 27 length scale longer than the drift length from the northernmost panel seal 28 to the closest shaft. In the simulations, gas saturation is near maximum at 29 the shaft/drift interfaces, meaning that transport of dissolved 30 31 radionuclides, which requires a liquid medium, would be diminished. In 32 addition, brine content in the waste would be diminished due to the presence 33 of gas, so less brine would be available to transport radionuclides, and very little gas or brine would move into the lower permeability, intact 34 halite surrounding the fractured anhydrite and the DRZ. 35

- 36
- 37 38 40

7.2 Results of the 1991 Preliminary Comparison

All previous assessments of repository performance for undisturbed
conditions have not fully addressed potential effects of waste-generated
gas. Therefore, updated analyses of undisturbed conditions for Individual
Protection (191.15) and Containment (191.13) Requirements were performed.
As described, earlier analyses have estimated that there would be no
releases to the Culebra Dolomite and, therefore, to the accessible
environment 5 km downgradient (Figure 1-3) in 10,000 years. Based on these

earlier analyses, the approach adopted for the 1991 performance assessment 1 is to perform deterministic calculations to verify that previous conclusions 2 3 of no releases in 10,000 years are still valid with the 1991 modeling system including gas effects, current data, and current conceptual models. Two 4 sets of calculations were performed and are fully described in Volume 2 of 5 this report. These calculations have been designed to provide a 6 conservatively large estimate of potential releases to the accessible 7 environment. Because of the complexity of the interdependent processes 8 being modeled, it is not possible to assert that results of these 9 calculations bound potential releases. 10

11

First, a two-dimensional simulation to assess the migration of brine from 12 the repository into the intact portion of MB139 was done. This calculation 13 estimates the spatial scale that passive, neutrally bouyant particles would 14 be transported in advecting brine as a result of maximum gas-generation 15 rates in a waste panel. A pressure-time history was calculated for maximum 16 corrosion and biodegradation rates with a two-phase, two-dimensional 17 simulation using BOAST II. Brine flow, pollutant concentration, and 18 particle transport were calculated with a one-phase, two-dimensional 19 simulation using SUTRA with the pressure-time history from BOAST II. 20 21 Assuming least-favorable bounds for important parameter values results in the 1% (of initial source) contour occurring at less than 120 m from the 22 waste panel at 10,000 years. The accessible-environment boundary is located 23 5 km from the waste panels, so this pathway is not considered further. 24 25

26 Second, a two-dimensional vertical section simulation of the repository from waste panels to the closest shaft to assess migration of radionuclides 27 through the DRZ, panel seals, and backfilled excavations was done. The 28 calculation estimates the extent that radionuclides would be transported in 29 brine flowing towards and upwards through sealed shafts as a result of the 30 pressure gradient between the Culebra Dolomite and a waste panel that is 31 pressurized with waste-generated gas. Again, a pressure-time history 32 (BOAST II) resulting from maximum gas-generation rates of corrosion and 33 biodegradation was used to calculate (STAFF2D and SUTRA) brine advection, 34 35 pollutant concentration, and particle tracking (pathways and travel times). In this case, a measure of radionuclude migration at different locations 36 should be reported. The appropriate measure for comparison to the 37 Containment Requirements is the normalized EPA sum (EPA Sum); for the 38 39 Individual Protection Requirements the measure should be peak concentration, but if there are zero releases, both measures are zero. Therefore, EPA Sums 40 are reported 20 and 50 m up the shaft above the intersection with the 41 repository horizon and 100 and 200 m into the intact MB139 (away from the 42 shaft) (see Volume 2, Chapter 4 of this report). Assuming least favorable 43 bounds for important parameter values (e.g., an inexhaustible source, no 44 decay, no retardation, the same solubility limit for all radionuclides, 45

7 **-** 5

etc.) results in EPA Sums less than 10^{-2} at 20 m and less than 10^{-3} at 50 m 1 up the shaft from the repository horizon. Therefore, there are no 2 significant releases at the shaft/Culebra intersection at 10,000 years. The 3 accessible-environment boundary is 5000 m downgradient in the Culebra, so 4 this pathway results in zero releases to the accessible environment in 5 10,000 years. EPA Sums at 100 and 200 m into MB139 away from the shaft are 6 less than 10^{-2} and 10^{-5} , respectively. For the Containment Requirements the 7 undisturbed scenario is not analyzed further, and consequences (EPA Sums) of 8 this scenario are all zero in the CCDF construction of Chapter 6 of this 9 volume. Probability of the undisturbed scenario must still be included 10 (Figure 3-13). For the Individual Protection Requirements, there are no 11 releases to the accessible environment in 1000 years, so dose calculations 12 are not required. 13 14 After performing these calculations, which are somewhat stylized, it was 15 believed to be prudent to check diagnostic information from the Monte Carlo 16 simulations for the Containment Requirements reported in Chapter 6 of this 17 volume. In that set of analyses, 120 simulations of computational scenarios 18 were run for human intrusion occurring at 1000, 3000, 5000, 7000, and 9000 19 years, for a total of 600 simulations. Before intrusion occurs, these 20 calculations simulate undisturbed conditions. Simulations of the 1000-year 21 22 intrusion time apply directly to the Individual Protection Requirements. The two-phase BRAGFLO calculations should be compared to the first 23 description of calculations in the above discussion because only a waste 24 panel and surrounding stratigraphy are modeled. 25 26 27 **Chapter 7-Synopsis** 28 39 The Standard requires that an uncertainty analysis of undisturbed conditions 31 be performed to assess compliance with the Individual Protection 32 Requirements. For the WIPP, the performance measure is dose to humans in the 33 accessible environment. 34 35 Evaluations thus far indicate that radionuclides will not migrate out of the 36 repository/shaft system during 1000 years. Therefore, dose calculations are 37 not expected to be a part of the WIPP assessment of compliance with the 38 Standard. 39 40 42 **Previous Studies** Evaluation Prior to the 1985 Standard (1980 FEIS) 43 The Final Environmental Impact Statement (FEIS) 44 estimated the consequence of five different 45 hypothetical scenarios that might move radionuclides to 46 47 the biosphere. 48

The pathway included radionuclide movement through the geosphere, transport through the biosphere after 2 discharge into the Pecos River at Malaga Bend, and 3 receipt of radiation doses by humans. 4 5 The travel times for radionuclides arriving at Malaga 6 7 Bend were on the order of a million years. 9 Dose Estimates (Lappin et al., 1989) 10 11 This analysis of undisturbed conditions for the WIPP 12 was performed in support of the supplemental 13 environmental impact statements (SEIS). 14 15 16 The exposure pathway was radionuclide transport through the sealed shafts and intact Salado to the Culebra 17 Dolomite, downgradient through the Culebra to a 18 hypothesized stock well at the nearest location where 19 Culebra water might be potable for cattle, and then to 20 humans via beef ingestion. 21 22 The study indicated that, in the absence of human 23 intrusion, no releases would occur in 1000 years. 24 26 1989 Methodology Demonstration 27 28 For this evaluation, undisturbed performance was 29 simulated through a base-case scenario. The repository 30 was assumed to be consolidated, and all legs in the 31 flow path were assumed to be saturated from the time of 32 repository decommissioning. 33 34 The simulations indicated that no releases from the 35 repository/shaft system to the Culebra occurred during 36 the 1000 years of regulatory concern for undisturbed 37 performance. Even for a simulation with a longer time 38 interval of 50,000 years, no significant releases to 39 the Culebra occurred. 40 41 The fact that no releases occurred indicated that no 42 dose calculations were needed for demonstrating 43 compliance with the Individual Protection Requirements 44 of the 1985 Standard. 45 46 Sensitivity Analysis (Rechard et al., 1990) 48 49 The relative importance of various phenomena and system 50 51 components through sensitivity analyses of four different repository/shaft models for undisturbed 52 conditions was analyzed. 53 54 Conclusions of the study were the following: 55 56

1	For brine-saturated conditions, flow from the
2	repository occurs in all directions when expected
3	parameter values are used, but for degraded
4	parameter values, a primary path along MB139 exists.
5	
6	Two-phase calculations that assessed gas migration
7	to the shaft indicated that brine would retard such
Ω	flow unless well-fractured high-permeability paths
0 0	exist as in MB139 and anhydrite layers A and B.
3 10	
10	Two-phase models including local stratigraphy
10	(MR130 aphydrite layers A and B) were required for
12	(MDIJ), annydrice rayers A and D) were required for
13 1a	simulating undisturbed conditions.
14	
16	Dose Estimates (Lappin et al., 1990)
17	
18	This evaluation revised the cases of Lappin et al.
19	(1989) by using a shorter pathway within the
20	repository, both hydrostatic and lithostatic driving
21	pressures to bound the problem, and MB139 properties
22	that included improved understanding of the DRZ and
23	updated seal design.
24	
25	No radionuclide releases to the Culebra Dolomite
26	occurred in 10,000 years, and therefore, no dose
27	calculations were performed for undisturbed conditions.
28	
30	1990 Preliminary Comparison
31	
32	In lieu of calculations for undisturbed performance,
33	results from preliminary simulations of two-phase (gas
34	and brine) flow provided some data on possible effects
35	of gas generation within the repository during the
36	first 1000 years after decommissioning
37	
38	Preliminary results from the simulations suggested
30	that in the undisturbed state
40	chac, in the unuistable state,
40	are acturation is near maximum at the chaft/drift
41	gas saturation is near maximum at the shall/drift
42	interfaces, meaning that transport of dissolved
43	radionuclides, which requires a liquid medium, would
44	be diminisned,
45	• • · · · • • • • • • • • • • • • • • •
46	brine content in the waste would be diminished due
47	to the presence of gas, so less brine would be
48	available to transport radionuclides,
49	
50	very little gas or brine would move into the lower
51	permeability, intact halite surrounding the
52	fractured anhydrite and the DRZ.
54 -	

Synopsis

2	Preliminary Comparison	assessment is to perform deterministic calculations to
3		verify that, using the 1991 modeling system, previous
4		conclusions of no releases in 10,000 years are still
5		valid.
6		
7		First, a two-dimensional horizontal simulation to
8		assess the migration of brine from the repository into
9		the intact portion of MB139 was performed. The
10		calculation estimates the spatial scale that passive,
11		neutrally buoyant particles would be transported in
12		advecting brine as a result of maximum gas-generation
13		rates in a waste panel.
14		
15		Second, a two-dimensional simulation of a vertical
16		section of the repository from waste panels to the
17		closest shaft was performed to assess migration of
18		radionuclides through the DRZ, panel seals, and
19		backfilled excavations. The calculation estimates the
20		extent that radionuclides would be transported in brine
21		flowing towards and upwards through sealed shafts as a
22		result of the pressure gradient between the Culebra
23		Dolomite and a waste panel that is pressurized with
24		waste-generated gas.
25		I and formula have to for important percentary values
26		Least ravorable bounds for important parameter values
27		(e.g., an inexhaustible source, no decay, no
28		rectardation, the same solubility limit for all
29		radionuclides, etc.) are assumed.
30		Popults of the horizontal simulation show
31		concentrations in the intact MR139 after 10 000 years
32		at 1% of the course 120 m from the papels Results of
33 24		the vertical simulation including the shaft show FPA
04 25		normalized sums at 10 000 years of less than 10-2 at
33 26		20 m up the chaft and loce than 10^{-3} at 50 m up the
30		shaft Therefore no significant releases occur at the
20		shaft/Culebra intersection at 10 000 years
39		shale, outebla incersection at 10,000 years.
40		For the Individual Protection Requirements, no releases
41		to the accessible environment occur in 1000 years, so
42		dose calculations are not required.
443		

3

8. ASSURANCE REQUIREMENTS PLAN

4 [NOTE: The text of Chapter 8 is followed by a synopsis that summarizes
5 essential information, beginning on page 8-10.]

6

7 As prescribed in the Second Modification to the Consultation and Cooperation Agreement, the WIPP Project has prepared a plan for implementing the 8 Assurance Requirements of the 1985 Standard (U.S. DOE, 1987). The plan is 9 preliminary, because methods and technologies could evolve over the 10 operational time period. In accordance with the Project's interpretation of 11 the EPA's intention, the Project will select assurance measures based on the 12 uncertainties in the final performance assessment. This chapter will be 13 updated as the management and operating contractor, Westinghouse Electric 14 Corporation (see Chapter 1 of this volume), updates the implementation plans. 15 A draft of the revised Assurance Requirements Plan (U.S. DOE, 1987) is in 16 review, with publication expected before year-end 1991. The current plan 17 includes definitions and clarifications of the Standard as it applies to the 18 WIPP, the implementation objective for each requirement, an outline of the 19 implementation steps for each requirement, and a schedule of activities 20 leading to final compliance. Additional information on markers as passive 21 institutional controls comes from performance-assessment activities using 22 expert panels. This chapter summarizes plans for implementing the Assurance 23 Requirements. 24

25 26

27 28

8.1 Active Institutional Controls

29 Active institutional controls are expected to include evaluation of land use in the WIPP area; maintaining fences and buildings and guarding the facility 30 31 during active cleanup; decontamination and decommissioning; land reclamation; 32 and post-operational monitoring. The objectives of these activities are to provide a facility and presence at the site during active cleanup, to restore 33 the land surface as closely to its original condition as possible to avoid 34 future preferential selection of the area for incompatible uses, and to 35 monitor the disposal system. 36

37

All performance-assessment calculations begin 100 years after the WIPP is
 decommissioned, thus assuming that active control is maintained for 100
 years.

8.2 Disposal-System Monitoring

Monitoring is required until there are no significant concerns to be 3 addressed by further monitoring. The objective of a monitoring program would 4 be "to detect substantial and detrimental deviation from the expected 5 performance of the disposal system" (§ 191.14(b)). Monitoring activities 6 will be identified during the course of the performance assessment but are 7 likely to include monitoring of hydrological, geological, geochemical, and 8 structural performance. Numerous subsidence monuments have been installed to 9 monitor subsidence as an indicator of unexpected changes in the disposal 10 system. 11

12

1 2

- . -
- 13 14

15

8.3 Passive Institutional Controls

The Project will implement passive institutional controls over the entire 16 17 controlled area of the WIPP. Passive institutional controls include markers warning of the presence of buried nuclear waste and identifying the boundary 18 of the controlled area, external records about the WIPP repository, and 19 continued federal ownership. The EPA assumes in the guidance to the Standard 20 that passive institutional controls will reduce the possibility of 21 22 inadvertent human intrusion into the repository. Compliance evaluation for the Standard must include the potential for human intrusion and the 23 effectiveness of passive institutional controls to deter such intrusion. The 24 25 remainder of this section discusses development of three types of passive institutional controls. 26

27

28 8.3.1 PASSIVE MARKERS

29

According to guidance in Appendix B of the Standard, inadvertent human intrusion can be mitigated by a number of approaches, including the use of passive controls such as markers or elements to physically deter human intrusion (and warn potential intruders that drilling, excavation, etc., should cease for safety reasons). The guidance also suggests that the effectiveness of passive institutional controls such as markers should be estimated.

37

In an effort to address the issue of markers for the WIPP, two expert panels have been established. Members of the first panel, whose work has already been completed, were asked to (1) identify possible future societies and how they may intrude the repository, and (2) develop probabilities of future societies and probabilities of various intrusions. The possible modes of intrusion identified by the future-intrusion experts were provided to the marker-development experts as the starting point as they (1) develop design 1 characteristics for "permanent" markers, and (2) judge the efficacy of the 2 markers in deterring human intrusion.

The work of the future-intrusion panel is described in Chapter 4 of this 4 volume, along with a discussion of the expert-judgment process. The 5 procedure used for selection of the marker-development experts was the same 6 as that described earlier for the future-intrusion experts. Nominations were 7 solicited from 75 nominators, resulting in a total of 92 nominations. 8 Letters of interest were received from 57 nominees. For the marker-9 development panel, 12 experts and one consultant, organized into one six-10 member and one seven-member team, have been selected. Their backgrounds 11 12 include anthropology, archaeology, cognitive psychology, linguistics, materials science, astronomy, and architecture. 13

The marker-development panel met in November 1991 and will meet again in 15 January 1992. Background information (introduction to the WIPP; performance 16 17 assessment and the Standard; scenario development and modeling; the geology, hydrology, and climate of the WIPP; and a review of previous marker work) 18 were provided to the panelists at the first meeting, and several future-19 intrusion experts returned to describe their efforts. These initial 20 presentations led into a discussion of the issue statement, which delineated 21 the specific points regarding marker development that must be addressed by 22 the panel. Training was provided to assist the experts in the development of 23 probability distributions describing the efficacy of markers in deterring 24 human intrusion. In addition, the marker-development experts toured the WIPP 25 to better understand the physical setting. The period between the two 26 meetings will be used by the panelists to review the materials provided to 27 them, to develop a response to the issue statement, and to prepare draft 28 29 documentation describing the approach used to respond. The second meeting will involve discussion between the two teams on their respective approaches 30 and elicitation of probability distributions. After the second meeting, the 31 documentation will be revised based on the results of the discussions and the 32 elicitation sessions. The probability estimates of the marker-development 33 experts will be documented, organized, and returned to the experts for 34 comment and review. Following concurrence by the experts, the results will 35 be documented for performance assessment and published as a Sandia National 36 Laboratories report (SAND report). 37

38

3

14

The marker-development experts will consider passive markers (i.e., markers that, after installation, should remain operational without further human attention) for deterring inadvertent human intrusion. These experts will be asked to define characteristics for selecting and manufacturing markers to be placed at the WIPP and to estimate the efficacy of these markers over the 10,000 years of regulatory interest. The marker characteristics should be defined so that, during the performance period, the markers and their Chapter 8: Assurance Requirements Plan

1 message(s) will have a high probability of warning potential intruders of the 2 dangers associated with the transuranic wastes within the repository. A 3 system of several types of markers may increase the probability that warnings 4 about the WIPP are heeded. Judgments about the likely performance of the 5 selected marker system will depend on the possible future states of society 6 (incorporating judgment from the future-intrusion experts) and on the 7 physical changes that the region surrounding the WIPP could undergo.

8

9 Determining characteristics for markers, one product of the markerdevelopment activity, will require assessing specific marker performance for various modes of intrusion under various natural and manmade processes that may destroy or neutralize the markers. Intrusion modes identified by the future-intrusion experts will be provided to the expert panel working on characteristics for markers. The marker-development experts may, however, identify additional intrusion modes.

16

17 The marker-development panel will be asked to estimate the probabilistic 18 performance of various types of markers. These estimates will be formally 19 elicited.

20

A consultant is preparing material that describes past efforts at developing barriers to human intrusion and some considerations pertaining to such development, as a complement to the markers. An expert panel may be convened in the future to further investigate this strategy.

26 8.3.2 FEDERAL OWNERSHIP

27

25

In accordance with Appendix B of the Standard, the DOE or some successor agency is assumed to retain ownership and administrative control over the land. The federal agency responsible for the land will institute regulations that appropriately restrict land use and development. The Bureau of Land Management has obtained federal control of the remaining sections of former state trust lands within the boundary.

34

35 8.3.3 RECORDS

36

Records will be preserved of the disposal site and its contents. Though no 37 expert-elicitation effort has yet been planned on what types of records 38 should be preserved, the future-intrusion panel provided estimates on how 39 effective records will be in preventing inadvertent human intrusion. 40 Records should specify techniques for borehole plugging should exploratory drilling 41 cause an intrusion. Such techniques could be incorporated into the legal 42 records along with the description and location of the disposal system. 43 The records could also contain a warning about the potential effects of drilling 44 through the repository and into pressurized brine in the Castile Formation. 45

8.4 Multiple Barriers

The Standard requires that both natural and engineered barriers be used as 3 part of the isolation system. At the WIPP, natural barriers include the 4 favorable characteristics of the salt formation and the geohydrologic 5 setting. Engineered barriers include backfills and seals that isolate 6 volumes of wastes. The effectiveness of these barriers is being modeled for 7 the performance assessment. The objective is to provide a disposal system 8 that isolates the radioactive wastes to the levels required in the Standard. 9 In addition, the DOE has commissioned an Engineered Alternatives Task Force 10 to evaluate additional engineering measures for the WIPP should such measures 11 be necessary. 12

8.5 Natural Resources

The Standard requires that locations containing recoverable resources not be used for repositories unless the favorable characteristics of a proposed location can be shown to compensate for the greater likelihood of being disturbed in the future. The WIPP Project met this requirement when the site was selected, and the recently published Implementation of the Resource Disincentive in 40 CFR Part 191.14(e) at the Waste Isolation Pilot Plant provides the supporting documentation (U.S. DOE, 1991d).

In the report, evaluation of the natural resources in the WIPP area centered on two issues. First, the denial of resources that could not be developed because such development might conflict with the long-term goal of waste isolation was considered. Second, the attractiveness to future generations of resources associated with the location was studied. Future societies might attempt to exploit natural resources near the WIPP and thereby create the potential for a release of radionuclides into the accessible environment.

These issues were evaluated in the *FEIS* (U.S. DOE, 1980a) and other reports (U.S. DOE, 1981; U.S. DOE and State of New Mexico, 1981, as modified; Brausch et al., 1982; Weart, 1983; U.S. DOE, 1990c). The *Resource Disincentive* report (U.S. DOE, 1991d) summarizes from these reports and documents the information about natural resources that the DOE used in making the decision to proceed with the WIPP Project.

39

32

1 2

13 14

15 16

24

In order to conduct resource analyses, the area was originally organized into four control zones (U.S. DOE, 1980a) (Figure 8-1). In 1982, the DOE released control of the outermost control zone (Vaughn, 1982). Comprehensive site characterization activities showed that the WIPP area contains potential economic quantities of both hydrocarbons and potash.

Figure 8-1. Control Zones at the WIPP (Powers et al., 1978a,b).

8.5 Natural Resources

In order to gain control over the development of hydrocarbons at the WIPP, 1 2 the DOE acquired the oil and gas leases within all the WIPP control zones. The only leases that are still intact are in Section 31 (Figure 8-1). 3 These leases only allow resource production by entry of the proposed land 4 withdrawal area below 6000 feet. One of these leases is currently in 5 production. The upper 6000 feet of the leases was taken by the DOE in 1979. 6 Current policy does not allow any further resource development inside the 7 proposed land withdrawal boundary (U.S. DOE, 1991d). Estimates were prepared 8 of the hydrocarbon reserves (economically producible resources) within the 9 area (Keesey, 1976). The study was updated immediately prior to publication 10 of the Draft Environmental Impact Statement (U.S. DOE, 1979), and reserve 11 estimates were subsequently prepared (Keesey, 1979). The report on the 12 implementation of the resource disincentive at the WIPP (U.S. DOE, 1991d) 13 14 summarizes the impacts of hydrocarbon resource denial, based on information in the FEIS (U.S. DOE, 1980a). The projected impacts of hydrocarbon resource 15 denial at the WIPP are shown in Table 8-1. 16

17

18 The principal nonhydrocarbon mineral resources that underlie the WIPP facility are caliche, gypsum, salt, lithium from brines, sylvite, and 19 langbeinite. With the exceptions of sylvite and langbeinite (Table 8-2), 20 however, the impact of mineral resource denial is relatively insignificant. 21 Langbeinite, a somewhat rare mineral that contains soluble potassium used in 22 making some fertilizers, is present in the WIPP area in limited commercial 23 deposits. Sylvite, an additional evaporite mineral, is sometimes mixed with 24 25 langbeinite to create the principal beneficial ingredient (potassium sulfate) produced from langbeinite for fertilizers. Denying langbeinite production 26 within the WIPP boundaries would decrease the estimated 28 to 46 years of 27 remaining mining operations in the area by only 4 years. In addition, 28 substitutes for the potassium sulfate in langbeinite are available. 29 30

31 Groundwater in the WIPP area has been studied extensively, and the results have been summarized in the FEIS (U.S. DOE, 1980a), the Final Safety Analysis 32 Report (U.S. DOE, 1990a), and in Chapters 5 and 9 of this volume. 33 Groundwater exists both above and below the WIPP repository horizon. Below 34 35 the WIPP, the groundwater in the Bell Canyon Formation is of very poor quality and is usually considered a brine. Units above the repository 36 37 horizon have low groundwater yields with high concentrations of total dissolved solids (Lappin et al., 1989). Sources of drinking water for 38 39 substantial populations are not impacted by the WIPP. Alternative supplies of drinking water are available from wells 30 miles north of the WIPP that 40 are completed in the Ogallala Formation (U.S. DOE, 1990a). Groundwater near 41 the WIPP is not vital to the preservation of unique and sensitive ecosystems. 42 Endangered species of plants or animals are not known to inhabit the WIPP 43 area (U.S. DOE, 1980a). 44 45

Deposit	WIPP Total [*]	Region	United States	World
RESOURCES				
Natural Gas (bill. ft ³)	490	25,013	855,000	N/A
Control Zones I-III	211	0.8%	0.025%	
Control Zone IV	279	1.1%	0.033%	
Distillate (mill. barrels)	5.72	293	N/A	N/A
Control Zones I-III	2.46	0.84%	r i	· · ·
Control Zone IV	3.26	1.11%		
Crude Oil (mill. barrels)	37.5	1915	200.000	N/A
Control Zones I-III	16.12	0.84%	0.008%	
Control Zone IV	21.38	1.12%	0.0006%	
	200		0.0000	
RESERVES				
Vatural Gas (bill. ft ³)	44.62	3865	208.800	2,520.000
Control Zones I-III	21.05	0.54%	0.01%	0.0008
Control Zone IV	23.57	0.61%	0.011%	0.0009
Distillate (mill. barrels)	0.12	169.1	35.500	N/A
Control Zones I-III	0.03	0.02%	0.0008%	,.
Control Zone IV	0.09	0.06%	0.00024%	
Crude Oil		471.7	29,486	646,000
Control Zones I-III Control Zone IV Crude Oil	0.12 0.03 0.09	169.1 0.02% 0.06% 471.7	35,500 0.00008% 0.00024% 29,486	N/A 646,000

states that the DOE believes that resource attractiveness does not appear to 50 compromise the adequacy, safety, or reliability of the WIPP. Future studies 51 will continue to evaluate the validity of this assumption. 52

Deposit	WIPP Total*	Region	United States	World
RESOURCES				
Sylvite (mill. tons ore)	133.2	4260	8550	850,000
Control Zones I-III	39.1	0.92%	0.46%	0.0046%
Control Zone IV	94.1	2.21%	1.10%	0.01%
Langbeinite (mill. tons ore)	351.0	1140	N/A	N/A
Control Zones I-III	121.9	10.7%		
Control Zone IV	229.1	20.1%		
KESERVES				
Sylvite (mill. tons K ₂ 0)	3.66	106	206	11,206
Control Zones I-III	NIL			
Control Zone IV	3.66	3.45%	1.78%	0.33%
Langbeinite (mill. tons K20)	4.41	9.3	9.3	N/A
Control Zones I-III	1.21	13.0%	13.0%	,
Control Zone IV	3.20	34.4%	34.4%	
* Control Zones I-IV (see Figure 8-	-1)			
Source: U.S. DOE, 1991d, based	d on U.S. DOE, 1	1980a, p. 9-19 and	d 9-28.	
The fourable abarratoric	tion of the	UIDD locatio	in formed the he	aia fau tha
DOF's decision to proceed	luith full.	wiff location	and plang for t	sis for the
Phase The DOF concluded	that there	favorable ob	anu prans for t	ne lest
available at another site	e and that the	hey more than	accompensate for	the
possibility that the site	e might be d	isturbed in t	he future (U.S.	DOE, 1991d)
- 2	5		、	,,

8.6 Waste Removal

The Standard requir	es that disposal systems be selected so that removal of
most of the wastes	is not precluded for a reasonable period of time after
disposal (§ 191.14)	(f)). According to the preamble, "[t]he intent of this
provision was not t	to make recovery of waste easy or cheap, but merely
possible in case so	me future discovery or insight made it clear that the
wastes needed to be	e relocated" (U.S. EPA, 1985, p. 38082).
	(111, 200, pr 0002).
A primary plan for	waste removal during the operational phase of the UIPP
(Subpart A of the S	Standard) has been prepared (U.S. DOF 1980a). In
promulgating the St	tandard the FPA stated that to most δ 101 1/(f) for the
dianocal phage (Sub	part R of the Standard) it only need by technologically
forgible to be obly	part B of the scalad magnitum and magnet the master
teasible to be able	i to mine the sealed repository and recover the waste, ev
at substantial cost	and occupational risk (U.S. EPA, 1985, p. 38082). The
EPA also stated that	it "any current concept for a mined geologic repository
meets this requirer	ment <u>without</u> any additional procedures or design features
(ibid.). Thus, the	e WIPP satisfies this requirement.
	Chapter 8—Synopsis
The WIPP Project ha	as prepared a preliminary plan for implementing the
Assurance Requireme	ents of the 1985 Standard.
Active Institutional	The objectives of estive institutional controls at the
Controls	100 00100010000 01 001000 100110001 000000
00111015	WIPP are to
	WIPP are to
	WIPP are to provide a facility and presence at the site during
	WIPP are to provide a facility and presence at the site during active cleanup,
	WIPP are to provide a facility and presence at the site during active cleanup,
	WIPP are to provide a facility and presence at the site during active cleanup, restore the land surface as closely to its origina
	WIPP are to provide a facility and presence at the site during active cleanup, restore the land surface as closely to its origina condition as possible to avoid future preferential
	WIPP are to provide a facility and presence at the site during active cleanup, restore the land surface as closely to its origina condition as possible to avoid future preferential selection of the area for incompatible uses,
	WIPP are to provide a facility and presence at the site during active cleanup, restore the land surface as closely to its origina condition as possible to avoid future preferential selection of the area for incompatible uses, monitor the disposal system.
	WIPP are to provide a facility and presence at the site during active cleanup, restore the land surface as closely to its origina condition as possible to avoid future preferential selection of the area for incompatible uses, monitor the disposal system.
Disposal System	<pre>WIPP are to WIPP are to provide a facility and presence at the site during active cleanup, restore the land surface as closely to its origina condition as possible to avoid future preferential selection of the area for incompatible uses, monitor the disposal system. The objective of a monitoring program would be to</pre>
Disposal System Monitoring	<pre>WIPP are to WIPP are to provide a facility and presence at the site during active cleanup, restore the land surface as closely to its origina condition as possible to avoid future preferential selection of the area for incompatible uses, monitor the disposal system. The objective of a monitoring program would be to detect substantial and detrimental deviation from the</pre>
Disposal System Monitoring	<pre>WIPP are to WIPP are to provide a facility and presence at the site during active cleanup, restore the land surface as closely to its origina condition as possible to avoid future preferential selection of the area for incompatible uses, monitor the disposal system. The objective of a monitoring program would be to detect substantial and detrimental deviation from the expected performance of the disposal system.</pre>
Disposal System Monitoring	<pre>WIPP are to WIPP are to provide a facility and presence at the site during active cleanup, restore the land surface as closely to its origina condition as possible to avoid future preferential selection of the area for incompatible uses, monitor the disposal system. The objective of a monitoring program would be to detect substantial and detrimental deviation from the expected performance of the disposal system.</pre>
Disposal System Monitoring	<pre>WIPP are to WIPP are to provide a facility and presence at the site during active cleanup, restore the land surface as closely to its origina condition as possible to avoid future preferential selection of the area for incompatible uses, monitor the disposal system. The objective of a monitoring program would be to detect substantial and detrimental deviation from the expected performance of the disposal system. Monitoring activities are likely to include monitoring of budgelegical coelected.</pre>
Disposal System Monitoring	<pre>WIPP are to provide a facility and presence at the site during active cleanup, restore the land surface as closely to its origina condition as possible to avoid future preferential selection of the area for incompatible uses, monitor the disposal system. The objective of a monitoring program would be to detect substantial and detrimental deviation from the expected performance of the disposal system. Monitoring activities are likely to include monitoring of hydrological, geological, geochemical, and structural performance</pre>

1 2	Passive Institutional Controls	The objectives of passive institutional controls at the WIPP are to deter or minimize inadvertent human
3		intrusion into the repository, as outlined in
4		Appendix B to the Standard.
5		
6		Current plans for passive institutional controls
7		include
8		
9		markers warning of the presence of buried nuclear
10		waste and identifying the boundary of the controlled
11		area,
12		federal ermerchin
13		rederar ownersnip,
14		external records about the UIPP repository
17		excernar records about the wire repository.
18		Passive Markers
19		14551.5 Multip
20		Appendix B of the Standard assumes that
21		
22		inadvertent human intrusion into the repository can
23		be mitigated by a number of approaches, including
24		the use of passive controls such as markers,
25		physical deterrents, and warnings,
26		-
27		the effectiveness of passive institutional controls
28		such as markers should be estimated.
29		· · · · · · · · · · · ·
30		A two-step process using expert panels addresses the
31		issue of markers for the WIPP:
उ∠ २२		The future intrucion experts identified percipie
34		future societies and possible types of intrusions of
35		the repository by those societies. The experts also
36		developed probabilities of various intrusions based
37		on the probability of existence of the identified
38		societies.
39		
40		The determinations of the future-intrusion experts
41		will be used by the marker-development experts in
42		developing design characteristics for "permanent"
43		markers and judging the efficacy of the markers in
44		deterring human intrusion.
45		
46		Research describing past efforts in developing barriers
47		to human intrusion has also begun. An expert panel may
48		be convened if this approach is deemed a necessary
49 51		complement to placing markers at the WIPP.
50		

1		Federal Ownership of the WIPP
2 3		In accordance with the Standard, the DOE or a successor
4		government agency is assumed to own and control the
5		land and institute regulations that restrict land use
6		and development.
8		Decords of the UIPD
9 10		Records of the wiff
11 12		Records will be preserved of the disposal site and its contents.
13 14 15 16 17		Records will warn about the potential effects of drilling through the repository and specify techniques for borehole plugging, should exploratory drilling cause an intrusion.
20 21 22	Multiple Barriers	The Standard requires that both natural and manmade barriers be used as part of the isolation system.
23		At the WIPP, natural barriers include
24 25 26 27		the favorable characteristics of the salt formation, the features of the geohydrologic setting.
28 29		Manmade barriers include
30 31		backfills, seals that isolate volumes of wastes.
33 34 36		The effectiveness of these barriers is being modeled for the performance assessment.
37 38 39	Natural Resources	The issues of denial and attractiveness of hydrocarbon and potash resources, the most significant resources in the WIPP area, have been evaluated.
40 41 42 43		Studies indicate that hydrocarbon resources represent only a small percentage of U.S. and world supplies.
43 44 45 46 47		Although langbeinite, a potash mineral, is relatively rare, substitutes for the soluble potassium used to make potassium sulfate for the chemical and fertilizer industries are available.
40 49 50 51 52 53		Previous analyses have indicated that the consequence of inadvertent intrusion into the repository in search of resources is small. Ongoing studies will continue to evaluate this assumption.

1 2 3 4		The DOE has determined that the WIPP Project met the requirement that the favorable characteristics of the location outweigh the possibility of the repository being disturbed in the future.
7 8	Waste Removal	The Standard requires that it be possible to remove the waste for a reasonable period of time after disposal.
9 10 11 12 13		The EPA has stated that current plans for mined geologic repositories meet this requirement without additional design.

9. GROUNDWATER PROTECTION REQUIREMENTS

3 [NOTE: The text of Chapter 9 is followed by a synopsis that summarizes 5 essential information, beginning on page 9-5.] 6 7 8 9 The Groundwater Protection Requirements (§ 191.16) require the disposal 10 11 system to provide a reasonable expectation that radionuclide concentrations in a "special source of ground water" will not exceed values specified in the 12 regulation. This chapter shows that the requirement is not relevant to the 13 WIPP because no groundwater near the WIPP within the maximum extent allowed 14 by the Standard (Figure 9-1) satisfies the definition of special source of 15 groundwater. 16 17 A special source of groundwater is defined as: 18 19 ... those Class I groundwaters identified in accordance with the Agency's 20 Ground-Water Protection Strategy published in August 1984 that: (1) Are 21 within the controlled area encompassing a disposal system or are less 22 than five kilometers beyond the controlled area; (2) are supplying 23 drinking water for thousands of persons as of the date that the 24 25 Department chooses a location within that area for detailed characterization as a potential site for a disposal system (e.g., in 26 accordance with Section 112(b)(1)(B) of the NWPA); and (3) are 27 irreplaceable in that no reasonable alternative source of drinking water 28 is available to that population. (§ 191.12(o)) 29 30 In accordance with the above definition, the Groundwater Protection 31 32 Requirements would be relevant to the WIPP only if all of the criteria were 33 met. 34 The following sections address these criteria. 35 36 37 9.1 Criteria for Special Sources of Groundwater 38 39 In its Ground-Water Protection Strategy (U.S. EPA, 1984), the EPA establishes 40 groundwater protection policies for three classes of groundwater. The class 41 42 definitions were developed to reflect the value of the groundwater and its vulnerability to contamination. The classes apply to groundwater having 43

TRI-6342-230-0

Figure 9-1. Illustration of Certain Definitions (from U.S. DOE, 1989a). The dashed line, drawn 5 km (3 mi) from the maximum allowable extent of the controlled area (§ 191.12(g)), shows the maximum area in which the occurrence of a special source of groundwater (§ 191.12(o)) is of regulatory interest.

significant water resource value. Class I groundwaters (U.S. EPA, 1984) are
defined as follows:

Certain ground-water resources are in need of special protective 4 measures. These resources are defined to include those that are highly 5 vulnerable to contamination because of the hydrogeological 6 characteristics of the areas under which they occur. Examples of 7 8 hydrogeological characteristics that cause groundwater to be vulnerable to contamination are high hydraulic conductivity (karst formations, sand 9 and gravel aquifers) or recharge conditions (high water table overlain by 10 thin and highly permeable soils). In addition, special groundwaters are 11 characterized by one of the following two factors: 12 13

- (1) Irreplaceable source of drinking water. These include groundwater
 located in areas where there is no practical alternative source of
 drinking water (islands, peninsulas, isolated aquifers over bed rock) or
 an insufficient alternative source for a substantial population; or
- (2) Ecologically vital, in that the groundwater contributes to
 maintaining either the base flow or water level for a particularly
 sensitive ecological system that, if polluted, would destroy a unique
 habitat (e.g., those associated with wetlands that are habitats for
 unique species of flora and fauna or endangered species).

Based upon this EPA definition, for Class I groundwater to be present at the WIPP, the groundwater resource must be highly vulnerable to contamination because of the hydrogeological characteristics of the areas under which the resource occurs, including areas of high hydraulic conductivity or areas of groundwater recharge. Either of the following must also be true: the groundwater must be an irreplaceable source of drinking water, or the groundwater must be ecologically vital.

32

3

18

24

The hydrogeological characteristics of the WIPP have been evaluated through extensive ongoing investigations dating to 1975 (U.S. DOE, 1990f). Groundwater quality and the hydrologic conductivity of water-bearing units at the WIPP are monitored and reported annually (U.S. DOE, 1989c).

The most transmissive hydrologic unit in the WIPP area is the Culebra 38 Dolomite Member of the Rustler Formation. Hydraulic properties of the 39 Culebra Dolomite have been calculated from test holes in the vicinity of the 40 WIPP. Within the approximately 10.5-km radius dictated by § 191.12(o), the 41 Culebra has hydraulic conductivities ranging from 2×10^{-4} m/s (60 ft/d) to 42 2×10^{-10} m/s (6 $\times 10^{-5}$ ft/d) (Brinster, 1991). Horizontal groundwater flow 43 in the Culebra is generally to the south along a decreasing gradient at a 44 very slow rate. 45

Based on hydrogeological studies in the WIPP area, no geological units with high hydraulic conductivities that would require special protective measures appear to be present:

The hydrologic system near the WIPP does not appear to be a significant 5 6 groundwater recharge zone. The Culebra Dolomite is separated from overlying rocks by an anhydrite with a lower hydraulic conductivity than 7 that of the Culebra. In wells located to the east of Livingston Ridge, 8 the depth from the surface to the middle of the Culebra Dolomite is 9 consistently greater than 125 m (410 ft) (Marietta et al., 1989). 10 Available data indicate that "modern flow directions within the Rustler 11 Formation, including the Culebra, do not reflect flow from a modern 12 recharge area to a modern discharge area..." (Lappin et al., 1989). 13

- The WIPP area is not characterized by a high water table overlain by thin and highly permeable soils. Much of the area includes underlying beds of caliche and siltstone 10 feet or less below the ground surface that apparently prevent large volumes of water from moving downward (U.S. DOE, 19 1990f).
- Even if groundwater that is highly vulnerable to contamination was present near the WIPP, it would not be classified as Class I because it does not meet either the second or third criterion:

Groundwater near the WIPP is not an irreplaceable source of drinking 25 water for a substantial population because low yields of water-bearing 26 units and high concentrations of total dissolved solids in the 27 groundwater severely limit its use. Uses of water from the Culebra 28 Dolomite are restricted mostly to stock watering; none is used for 29 domestic purposes. Total dissolved solids concentrations in Culebra 30 31 groundwater in the vicinity range from 2,500 to 240,000 mg/ ℓ (Lappin et al., 1989). 32

Groundwater at the WIPP is not "ecologically vital" because it does not contribute "to maintaining base flow or water level for a particularly sensitive ecological system that, if polluted, would destroy a unique habitat..." (U.S. EPA, 1984). Endangered species of plants or animals are not known to inhabit the WIPP area (U.S. DOE, 1980a).

40 9.1.1 DRINKING WATER SUPPLY

41

39

33

4

14

20

24

42 Class I groundwater is not present in the vicinity of the WIPP; therefore, 43 the Groundwater Protection Requirements are not relevant to the WIPP. If 44 Class I groundwaters were present, however, the requirements would be 45 relevant only if the groundwater was supplying drinking water to thousands of 46 persons at the date DOE selected the site for development of the WIPP and if 47 these groundwaters were irreplaceable.

1 2 3 4 5 6 7	At the time the DOE ch Class I groundwaters) of the controlled area tens) of persons, a fa groundwaters were pres to the WIPP.	nose the WIPP location, no source of water (including within 5 km (3 mi) beyond the maximum allowable extent a was supplying drinking water for thousands (or even act that remains true today. Thus, even if Class I sent, the requirements of § 191.16 would not be relevant
8	9.1.2 ALTERNATIVE SOUR	
9 10 11 12 13	As described above, no WIPP. No population therefore, no alterna	o Class I groundwater is present in the vicinity of the of thousands of people is in the vicinity of the WIPP; tive source of drinking water is needed.
14 15		Chapter 9–Synopsis
18 19 20 21 22 23 24 26	Groundwater Protection reasonable expectation source of ground wate The Groundwater Prote a "special source of there.	n Requirements require the disposal system to provide a n that concentrations of radionuclides in a "special r" will not exceed specified values. ction Requirements would be relevant to the WIPP only if ground water" were present at the WIPP, but none exists
27	Criteria for Special	Presence of Class I Groundwater
28 29 30 31 32 33 34 35 36 37 38	Sources of Groundwater	For Class I groundwater to be present at the WIPP, the groundwater resource must be highly vulnerable to contamination because of the hydrogeological characteristics of the areas under which it occurs. In addition, the groundwater must either be an irreplaceable source of drinking water, or the groundwater must be ecologically vital. Studies indicate that such groundwater is not present
39 40		in the vicinity of the WIPP.
42		Drinking Water Supply
43 44 45 46 47 48 59		At the time the DOE chose the WIPP location and at present, no source of water within 5 km (3 mi) beyond the maximum allowable extent of the controlled area was supplying drinking water for thousands (or even tens) of persons.

1	Alternative Source of Drinking Water
2	
3	Because no Class I groundwater is present in the
4	vicinity of the WIPP, no alternative source of drinking
5	water is needed.
6	

10. COMPARISON TO THE STANDARD

4 The preliminary performance assessment reported in this document should not 5 be formally compared to the requirements of the Standard to determine 6 whether the WIPP disposal system complies with Subpart B. The disposal 7 system is not adequately characterized, and necessary models, computer 8 programs, and data bases are incomplete. In addition, the final version of 9 the EPA Standard has not been promulgated.

11 Instead, the discussion in this chapter examines the adequacy of the available information for producing a comprehensive comparison to the 12 Containment Requirements (§ 191.13) and the Individual Protection 13 Requirements (§ 191.15). Adequacy of repository performance will be 14 determined primarily by qualitative judgment regarding "reasonable 15 16 expectation" of meeting the requirements in § 191.13 and § 191.15. The Assurance Requirements and the Groundwater Protection Requirements are also 17 considered here. All questions of adequacy inherently depend on the 18 Standard. This evaluation is based on the 1985 version of the Standard. 19 20

21

1 2 3

10

22

23

10.1 Containment Requirements (§ 191.13)

The Containment Requirements specify probabilistically predicting cumulative 24 releases of radionuclides to the accessible environment for 10,000 years 25 26 after disposal, taking into account all significant processes and events that may affect the disposal system. Based on these and additional 27 guidelines in the Containment Requirements, significant processes and events 28 have been screened and combined to form the scenarios for which releases 29 will be estimated. Judgment from an expert panel will contribute to the 30 process of determining scenario probabilities. 31

Because the calculations to quantitatively assess compliance are complex, the executive computer program CAMCON is being developed to link specific numerical models into a single computational system capable of generating the Monte Carlo simulations required for probabilistic performance assessments. As Table 5-1 in Chapter 5 of this volume indicates, several of the individual computer programs required to complete CAMCON are currently under development or are incomplete.

40

32

Information continues to be added to the compliance-assessment data bases. In the absence of experimental data that might better define certain parameters, panels are being convened to provide the performance-assessment team with judgment based on the expertise of the panel members. Thus far, expert panels have provided a range of values for radionuclide solubility

```
and the source term for transport calculations and for distribution
1
    coefficients (K_ds) used in determining radionuclide retardation in the
2
    Culebra Dolomite Member of the Rustler Formation. Additional expert panels
3
    are planned to quantify other parameters and thus address the uncertainty in
4
    using those data sets.
5
6
    The Containment Requirements state that compliance will be judged on the
7
    basis of a "reasonable expectation" of acceptable performance. Although the
8
    Standard does not define "reasonable expectation," it does indicate that
9
    compliance assessments should include both quantitative numerical
10
    simulations of disposal-system performance and qualitative expert judgment.
11
    In addition to expert evaluation of future human actions and parameter
12
    values unattainable from experimental data, expert judgment will also define
13
    the term "reasonable expectation" to guide probabilistic predictions of the
14
    WIPP's performance (Bertram-Howery and Swift, 1990).
15
16
    The compliance-assessment system can be used for sensitivity and uncertainty
17
    analyses and is adequate for preliminary performance studies of the WIPP.
18
    Results of the 1991 performance-assessment calculations are in Chapter 6 of
19
20
    this volume.
21
22
                   10.2 Assurance Requirements (§ 191.14)
23
24
    The Assurance Requirements were included in the Standard to provide the
25
26
    confidence needed for long-term compliance with the Containment
    Requirements. To address the provisions of the Assurance Requirements, the
27
    WIPP Project has prepared A Plan for the Implementation of Assurance
28
    Requirements in Compliance with 40 CFR Part 191.14 at the Waste Isolation
29
    Pilot Plant, DOE/WIPP 87-016. This plan, which was published in 1987, is
30
    currently being revised. The revised plan should be available by year-end
31
    1991.
32
33
    10.2.1 ACTIVE INSTITUTIONAL CONTROLS (§ 191.14(a))
34
35
    This subsection of the Assurance Requirements specifies that active
36
    institutional controls should be maintained over disposal sites for as long
37
    as is practicable after disposal. Active institutional controls are
38
    expected to include
39
40
         evaluation of land use in the WIPP area,
41
42
        maintaining fences and buildings and guarding the facility during the
43
         operational phase,
44
45
```

```
decontamination and decommissioning,
```

land reclamation,

post-operational monitoring.

7 Many of these activities will not commence until waste disposal has been
8 completed. All performance-assessment calculations begin 100 years after
9 the WIPP is decommissioned. Active institutional controls are thus assumed
10 to be maintained for 100 years, the maximum time allowed by the Standard.

11

13

1 2

3 4

5 6

12 10.2.2 DISPOSAL SYSTEM MONITORING (§ 191.14(b))

Monitoring the disposal system after waste disposal is expected to detect
any "substantial and detrimental deviations" from expected performance if
they occur. Specific monitoring activities will be identified during
evaluation of the WIPP and are likely to include monitoring of hydrological,
geological, geochemical, and structural performance.

19

20 Monuments have been installed to monitor subsidence as an indicator of 21 unexpected changes in the disposal system. Additional monitoring activities 22 will commence as the necessary types and methods of monitoring are 23 identified.

24

25 10.2.3 PASSIVE INSTITUTIONAL CONTROLS (§ 191.14(c))

26

As stated in this subsection of the Assurance Requirements, the disposal 27 site is to be designated by "the most permanent markers, records, and other 28 passive institutional controls practicable to indicate the dangers of the 29 wastes and their location." The EPA assumes that, for as long as passive 30 institutional controls endure and are understood, they can be effective in 31 32 deterring systematic or persistent exploitation and can reduce the likelihood of inadvertent, intermittent human intrusion. However, passive 33 institutional controls are not expected to eliminate the possibility of 34 inadvertent human intrusion into the repository (U.S. EPA, 1985, p. 38088). 35 Plans for passive institutional controls include markers warning of the 36 presence of buried nuclear waste and identifying the boundaries of the 37 controlled area, external records about the WIPP repository, and continued 38 federal ownership. 39

40

The marker-development panel met in November 1991 and will meet again in
January 1992. The panel will define characteristics for selecting and
manufacturing markers and estimate the efficacy of these markers over the
10,000-year regulatory period. The panel will also provide estimates of the
probabilistic performance of various types of markers. A consultant is

preparing material that describes past efforts at developing barriers to
 human intrusion. An expert panel may be convened to further investigate
 this strategy.

4

Records will be preserved of the disposal site and its contents. An expert 5 panel has not yet been planned on the types and possible content of external 6 records that should be preserved. However, the expert panel on inadvertent 7 human intrusion into the repository has estimated the effectiveness of 8 records in preventing inadvertent human intrusion and suggested including 9 specific information in external records on the potential effects of 10 inadvertent exploratory drilling into the repository and techniques for 11 plugging intrusion boreholes. 12

13

14 The Standard assumes that the DOE or some successor agency will retain 15 ownership and administrative control over certain portions of the land 16 around the WIPP. Withdrawal of the designated land to assure continued 17 federal ownership has not been enacted.

19 10.2.4 MULTIPLE BARRIERS (§ 191.14(d))

20

18

21 This subsection of the Assurance Requirements specifies that different types of barriers, including engineered and natural barriers, be present in the 22 repository to isolate the wastes from the accessible environment. At the 23 WIPP, natural barriers include the salt formation and the geohydrologic 24 setting. Engineered barriers include backfills and seals that isolate 25 The effectiveness of these barriers will continue to be 26 volumes of wastes. modeled in preliminary performance assessments until a determination is made 27 that the barriers isolate the radioactive wastes to the levels required in 28 the Standard. 29

30

31 The DOE has commissioned an Engineered Alternatives Task Force to evaluate 32 possible additional engineering measures for the WIPP. Preliminary performance-assessment calculations indicate that modifications to the waste 33 form that limit dissolution of radionuclides in brine have the potential to 34 improve predicted performance of the repository (Marietta et al., 1989; 35 Bertram-Howery and Swift, 1990). Current performance assessments are not 36 complete enough to determine whether or not modifications will be needed for 37 regulatory compliance. The 1991 performance-assessment calculations did not 38 include simulations of possible alternatives. Selected alternatives will be 39 examined in future performance-assessment calculations, however, to provide 40 guidance to the DOE on possible effectiveness of modifications. 41 42

1 10.2.5 NATURAL RESOURCES (§ 191.14(e))

This subsection of the Assurance Requirements states that locations 3 containing recoverable resources are not to be used for radioactive-waste 4 repositories unless the favorable characteristics of a location can be shown 5 to compensate for the greater likelihood of being disturbed in the future. 6 The WIPP Project met this requirement when the site was selected, and the 7 summary report Implementation of the Resource Disincentive in 40 CFR Part 8 191.14(e) at the Waste Isolation Pilot Plant (U.S. DOE, 1991d) has been 9 10 published.

11

2

The report addresses the issues of denial and attractiveness of hydrocarbon 12 and potash resources, the most significant resources in the WIPP area. 13 Studies indicate that hydrocarbon resources near the WIPP represent only a 14 small percentage of U.S. and world supplies. The production of the potash 15 mineral langbeinite, the only mineral resource in significant quantities 16 within the WIPP boundaries and a source of potassium for use in the chemical 17 and fertilizer industries, would only be slightly impacted by removing the 18 area from mining operations. In addition, substitutes for the potassium 19 sulfate in langbeinite are available. The Final Environmental Impact 20 Statement (U.S. DOE, 1980a) and the Final Supplement Environmental Impact 21 Statement (U.S. DOE, 1990c), among other reports, have indicated that, based 22 on available information, the consequence of an inadvertent intrusion into 23 the repository in search of resources is small. The report on the 24 implementation of the resource disincentive (U.S. DOE, 1991d) states that 25 the DOE believes that resource attractiveness does not appear to compromise 26 the adequacy, safety, or reliability of the WIPP. Future studies will 27 continue to evaluate the validity of this assumption. 28

30 10.2.6 WASTE REMOVAL (§ 191.14(f))

31

29

This subsection of the Assurance Requirements specifies that disposal 32 systems are to be selected so that removal of most of the wastes is not 33 precluded for a reasonable period of time after disposal. The preamble to 34 the Standard states that removal need not be easy or cheap, but merely 35 possible (U.S. EPA, 1985, p. 38082). The WIPP Project has prepared a plan 36 for waste removal during the operational phase (Subpart A of the Standard) 37 based on the repository as designed. In addition, the EPA stated that 38 current plans for mined geologic repositories meet this requirement without 39 additional design (U.S. EPA, 1985, p. 38082). No further action for Subpart 40 41 B of the Standard should be necessary.

- 42
- 43
1

10.3 Individual Protection Requirements (§ 191.15)

Repositories are expected to provide a reasonable expectation that, for 3 1,000 years after disposal, the undisturbed performance of the disposal 4 system will not cause doses to any member of the public in the accessible 5 environment to exceed certain levels. Previous and current evaluations of 6 7 undisturbed performance at the WIPP have indicated no releases to the accessible environment within 10,000 years (Lappin et al., 1989; Marietta et 8 al., 1989; Chapter 7 of this volume and Volume 2 of this report). The 1989 9 methodology demonstration reported that, for undisturbed performance, 10 radionuclides did not reach the Culebra Dolomite within 50,000 years 11 (Marietta et al., 1989). Gas generated within the waste panels was not 12 directly included in the simulation for the 1991 preliminary performance 13 calculations. However, the effects of gas generation were included 14 indirectly by using elevated repository pressures calculated with a two-15 phase flow (gas and brine) computer program. 16

17

18 The compliance-assessment system for the WIPP must be used to predict 19 releases to the accessible environment for undisturbed performance. Formal 20 comparison to the Standard cannot be prepared until the bases of the system 21 are judged adequate. However, analyses indicate that no releases will 22 occur. Therefore, dose predictions are not expected to be required.

23 24

25 26

10.4 Groundwater Protection Requirements (§ 191.16)

The Groundwater Protection Requirements require the disposal system to 27 provide a reasonable expectation that radionuclide concentrations in a 28 "special source of ground water" will not exceed values specified in the 29 regulation. Determining the presence of this type of groundwater relies on 30 the definition of Class I groundwater, which is a groundwater resource that 31 is highly vulnerable to contamination because of the hydrogeological 32 characteristics of the areas under which the resource occurs, including 33 areas of high hydraulic conductivity or areas of groundwater recharge. In 34 35 addition, the groundwater must either be an irreplaceable source of drinking water, or the groundwater must be ecologically vital (U.S. EPA, 1984). 36

37

Studies have determined that no groundwater near the WIPP is highly vulnerable to contamination (U.S. DOE, 1989b; Lappin et al., 1989; Marietta et al., 1989; U.S. DOE, 1990f; Brinster, 1991). Groundwater flow in the Culebra Dolomite, the most transmissive hydrologic unit in the WIPP area, is generally to the south at a very slow rate, indicating that the area does not exhibit high hydraulic conductivity. Available data indicate that significant groundwater recharge does not occur near the WIPP. Low yields from water-bearing units and high concentrations of total
 dissolved solids in groundwater near the WIPP severely limit groundwater
 use. Groundwater in the vicinity does not represent an irreplaceable source
 of drinking water for a substantial population. Groundwater at the WIPP
 does not support a particularly sensitive ecological system and, therefore,
 could not pollute a unique habitat.

8 Based on the 1985 Standard, the Groundwater Protection Requirements are not
9 relevant to the WIPP disposal system. No further action should be
10 necessary.

10.5 Formal Comparison to the Standard

16 The performance of the WIPP can be formally compared to the Standard when17 (U.S. DOE, 1990b)18

the complete set of significant scenarios with probabilities ofoccurrence has been defined,

the compliance-assessment system is considered adequate, is operational,
and has adequate documentation to support repetition or modification of
each simulation,

the data sets have undergone quality assurance, and the computational
 models and systems of models have been validated to the extent possible,

the final analyses are complete, and a peer-review process has affirmedthat the analyses are adequate.

Formal comparison to determine compliance should be based on comprehensive, 32 33 practical performance assessments that incorporate all critical components and processes identified by iterative uncertainty and sensitivity analyses, 34 results of the in situ tests, and other appropriate refinements in the 35 The utility of the compliance-assessment system is conditional on 36 system. how well the disposal system is understood and is reflected here for the 37 natural barriers of the controlled area and the engineered barriers of the 38 repository/shaft system. As test results and system refinements are 39 incorporated into the performance assessment, their influence on the 40 performance measures (i.e., the CCDFs and doses) will be evaluated. If 41 successive, iterative assessments converge to a stable CCDF, the performance 42 43 assessment may be considered complete.

44

7

11 12

1**8** 15

21

25

28

31

1	1		S	T/	Α.	Т	U	S
---	---	--	---	----	----	---	---	---

6 This chapter summarizes the current status of the WIPP performance assessment 7 and indicates where work can now be identified that remains to be done before 8 a final comparison can be made to the Standard. The summary presented here 9 is based on the preliminary results derived from the current modeling system 10 and may change as subsequent performance-assessment iterations shift 11 priorities for model development and data acquisition.

12

2 8 5

13

15

14

11.1 Current Status of the Compliance-Assessment System

16 The compliance-assessment system contains models used to estimate future 17 performance of the disposal system and the data base that supports the 18 models. Status of models and the data base are discussed in general terms 19 separately and then summarized in detail for each component of the modeling 20 system.

22 11.1.1 COMPLIANCE-ASSESSMENT MODELS

23

21

As discussed in Chapter 3, the models used in the WIPP performance assessment exist at four distinct levels. The status of the individual models can be considered separately at each of the four levels.

26 27

> At the first level, a conceptual model is used to describe the processes to 28 be simulated for a given performance measure. This model must be based on 29 observational information and typically involves the application of a 30 generalized knowledge of physical processes to the available information. 31 Thus, a conceptual model provides a simplifying framework in which 32 33 information can be organized and linked to processes that can be simulated with predictive models. Only rarely is a single conceptual model uniquely 34 compatible with the observed data, although a conceptual model is sometimes 35 sufficiently well-established that alternatives do not need to be considered 36 in detail. In many cases, however, alternative conceptual models may be 37 equally appropriate given the available information. For example, the 38 current conceptual model used in performance-assessment simulations of 39 regional groundwater flow in the Culebra Dolomite Member of the Rustler 40 Formation includes recharge only to the north of the repository (see Chapter 41 5 of this volume). This is compatible with available well data, but it is 42 not uniquely required by the data. Alternative conceptual models for the 43 location of recharge to the system remain to be developed and tested. 44 45

46 At the second level, processes defined by the conceptual models are47 represented by mathematical models that can be used to predict behavior of

the system through time. These mathematical models are typically systems of ordinary and partial differential equations. For example, the Darcy flow equations are used to represent the conceptual model for groundwater flow along a pressure gradient in a confined aquifer. Descriptions of the mathematical models used in the WIPP performance assessment are given in Volume 2 of this report.

7

At the third level, numerical models are developed that permit computational 8 solutions that approximate the solutions of the mathematical models. In 9 theory, this step is not always required in model development. In practice, 10 however, it is unusual for a mathematical model based on differential 11 equations to have a solution that can be determined without the use of an 12 intermediate numerical model. Descriptions of the numerical solvers used in 13 the WIPP performance assessment are given in the code manuals referenced in 14 Volume 2 of this report. 15

16

At the fourth level, the numerical models must be translated to computer code to be implemented. A computer model could be no more than the encoding of a specific numerical model. In practice, however, computer programs typically contain options for a variety of numerical solutions for a single mathematical model and also may contain options for a variety of mathematical models corresponding to alternative conceptual models.

23

Ultimately, models used in the WIPP performance assessment must be verified 24 and, to the extent possible, validated. Verification is the process by which 25 a computer model is demonstrated to generate an acceptable numerical solution 26 to the mathematical problem in question. For complex programs, verification 27 is a nontrivial task and typically involves comparing benchmark test problem 28 solutions with solutions generated by other codes and numerical models. 29 Validation is the process by which a conceptual model and its associated 30 mathematical model is demonstrated to provide an acceptable representation of 31 reality. Some models can be validated experimentally. Others, however, 32 33 particularly those that cover large domains with spatially varying properties and those that must simulate behavior for long time periods, are difficult to 34 validate experimentally. In some cases, absolute validation may not be 35 possible, and the final choice of a model will be based on subjective 36 judgment. 37

38

39 11.1.2 THE COMPLIANCE-ASSESSMENT DATA BASE

40

The compliance-assessment data base serves two principal functions. First,
it provides the essential basis for the conceptual models used to
characterize the system. Conceptual models must explain the observed data.
Second, the data base provides input to the computer models. Results of
calculations depend directly on the data used to establish boundary

1 conditions and parameter values, and uncertainty in model results depends 2 directly on uncertainty in the values selected for the input parameters. The 3 two functions of the data base are closely linked; for example, boundary 4 conditions for computer models may be selected based directly on observed 5 data or on values inferred for a particular conceptual model.

The status of the data base must be evaluated with respect to both functions. 7 Is the currently available data adequate to support the conceptual model for 8 a particular component of the system? Is the currently available data 9 adequate for calculations, and can it be used to characterize the uncertainty 10 in results? For both functions, the status of the data base is evaluated 11 relative to the needs of the performance assessment. For example, some 12 conceptual models may be adequately supported by sparse data, whereas for 13 other components extensive data may remain insufficient to identify the best 14 conceptual model. For some computer model parameters, large uncertainties 15 16 may have little impact on estimated performance and therefore be acceptable; for other parameters even small uncertainties may result in large 17 uncertainties in estimated performance. 18

19

22

6

20 11.1.3 SUMMARY OF THE STATUS OF THE COMPLIANCE-ASSESSMENT SYSTEM

The 1991 status of individual components within the compliance-assessment 23 24 system is summarized in Table 11-1. Status is evaluated with respect to 40 CFR 191, Subpart B only. Similar evaluations have not been completed for 25 status with respect to other regulations, including 40 CFR 268 and NEPA. 26 Status is shown for the data base for each component, as determined by 27 researchers within the WIPP Project. Status is also indicated for the 28 performance-assessment module that corresponds to each component and that 29 30 contains the conceptual models and the computer models with their encoded 31 and numerical models. Qualifiers used to describe the status are "preliminary," "intermediate," and "advanced." These gualifiers refer to 32 status relative to the needs of performance assessment, which, as noted 33 above, may not coincide with the status relative to research on the specific 34 35 topic. Thus, it is possible for a simplistic model or a sparse data base to be labeled "advanced" if uncertainty about the component in question has 36 little impact on estimated performance. Alternatively, it is possible for 37 38 sophisticated models and extensive data bases to be labeled "preliminary" if uncertainty about the component remains high and has a large impact on model 39 results. 40

41

"Preliminary," where applied to the data base, indicates that data are
insufficient to distinguish conceptual models or that data are not available
for some important parameters. Where applied to conceptual models,
"preliminary" means that the understanding of the component is incomplete
and that alternative conceptual models may remain unidentified. Where

		Performance Assessment Understanding	Adequacy of Performance-	Adequacy of Data for
Compliance-A System Comp	ssessment ponent	of Conceptual Model	Assessment Module	Performano Assessmer
REPOSITOR' BOREHOLE REPOSITOR'	Y/SHAFT/ MODELS: Y/SHAFT DESIGN			
Repository De	esign			
Geometry Drift Backfill				Intermedia Intermedia
Performance	e-Assessment Module	Intermediate	Intermediate	
Panel/Drift Se	eals			
Concrete Se Grout Seal (al Components			Intermedia Intermedia
Crushed Sal	It Seal Components			Intermedia
fracture he	aling in salt)			Preliminar
Performanc	e-Assessment Module	Intermediate	Intermediate	
Shaft Seals				
Upper Shaft	Sealing System			
Concrete S	Seal Components			Intermedia
Clay Seal	Components	••••••	••••••	Intermedia
Lower Shaft	Sealing System	••••••	••••••	
Concrete	Seal Components			Intermedia
Clay Seal	Components			Intermedia
Crushed S	alt Seal Components			Intermedia
DRZ Seal fracture I	Components (including nealing in salt)			Prelimina
Performanc	e-Assessment Module	Intermediate	Intermediate	

			· · · · · · · · · · · · · · · · · · ·	
		Performance Assessment Understanding	Adequacy of Performance-	Adequacy
Compliance-A	ssessment	of Conceptual	Assessment	Performan
System Comp	onent	Model	Module	Assessme
REPOSITORY BOREHOLE N PANEL MODE	/SHAFT/ MODELS: EL			
Salado Forma	tion			
Reference St	ratigraphy			Advanced
Material Prop	perties of Undisturbed Fm.			
Halite Abso	lute Permeability	•••••••••••••••••••••••••••••••••••••••		Intermedia
Halite Pore	Pressure	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	Intermedia
Anhydrite A	bsolute Permeability			Intermedia
Anhydrite P	ore Pressure	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	Intermedia
Ideal Gas S	olubility	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	Intermedia
Present Dis	solved Gas Free in Fm	•••••••••••••••••••••••••••••••••••••••	••••••	Preliminar
Capillary Fil		•••••••••••••••••••••••••••••••••••••••		Preliminar
Halite/Ani	nydrite			Preliminar
Material Prop	perties of DRZ			
Halite Abso	lute Permeability	•••••••••••••••••••••••••••••••••••••••		Intermedia
Halite Pore	Pressure	••••••		Intermedia
Anhydrite A	bsolute Permeability	••••••		Preliminar
Anhydrite P	ore Pressure	•••••••••••••••••••••••••••••••••••••••		Preliminar
Porosity				Preliminar
Performance	Assessment Module	Intermediate	Intermediate	
Waste/Backf	11			
Composite V	Vaste/Backfill Properties			
Absolute Pa	prosity	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	Intermedia
Initial Satur	ation	•••••••••••••••••••••••••••••••••••••••		BiDennieumenie
Critical She	ar Strength			Preliminar
Performance	Assessment Module	Intermediate	Intermediate	
Properties of	Backfill above Drums			
Effective Po	prosity	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	Intermedia
Absolute Pe	ermeability	••••••	•••••••••••••••••••••••••••••••••••••••	Intermedia
initial Satur		••••••	••••••	Intermedia
				Internedia
Critical She	ar Strength	••••••	•••••	Intermedia

1TABLE 11-1.COMPLETENESS OF TECHNICAL BASES FOR PERFORMANCE ASSESSMENT WITH2REGARD TO 40 CFR 191, SUBPART B, CONDITIONAL ON 1991 COMPLIANCE-3ASSESSMENT SYSTEM AND AS-RECEIVED WASTE (continued)

Compliance-Assessment System Component	Performance Assessment Understanding of Conceptual Model	Adequacy of Performance- Assessment Module	Adequacy of Data for Performance Assessment
Inventory			
Combustibles			Intermediate
Metal /Glass			Intermediate
VOCs			Preliminary
Organics			Preliminary
Al & Fe & Heavy Metals			Preliminary
CH-Waste Inventory			Intermediate
BH-Waste Inventory			Preliminary
Performance-Assessment Module	Intermediate	Intermediate	
40 CFR 191 Source Term			
Decay			Advanced
Solubility (laboratory tests)			Preliminary
Colloid Formation/Chelation			
(laboratory tests)	•••••		Preliminary
Retardation in Repository	••••••		Preliminary
Performance-Assessment Module	Preliminary	Preliminary	
Panel/Waste Interactions			
Gas Generation (laboratory tests)			
Generation Processes			
Corrosion			Intermodiate
Biological			
			Proliminany
Badiolysis			Preliminary
Radiolysis			Preliminary
Radiolysis	/		Preliminary Intermediate Intermediate
Radiolysis	/ /		Preliminary Intermediate Intermediate
Radiolysis Gas Gettering Processes Coupling of Processes to Closure Compaction, Brine/Gas Flow, ar Gas Generation	/ nd		Preliminary Intermediate Intermediate
Radiolysis Gas Gettering Processes Coupling of Processes to Closure Compaction, Brine/Gas Flow, ar Gas Generation	/ nd		Preliminary Intermediate
Radiolysis Gas Gettering Processes Coupling of Processes to Closure Compaction, Brine/Gas Flow, ar Gas Generation Performance-Assessment Module	/ nd Intermediate	Intermediate	Preliminary Intermediate Intermediate
Radiolysis	/ nd Intermediate	Intermediate	Preliminary Intermediate Intermediate
Radiolysis Gas Gettering Processes Coupling of Processes to Closure Compaction, Brine/Gas Flow, ar Gas Generation Performance-Assessment Module Brine/Gas Flow and Transport	/ nd Intermediate	Intermediate	Preliminary Intermediate Intermediate
Radiolysis Gas Gettering Processes Coupling of Processes to Closure Compaction, Brine/Gas Flow, ar Gas Generation Performance-Assessment Module. Brine/Gas Flow and Transport Relative Permeability (to gas)	/ nd Intermediate	Intermediate	Preliminary Intermediate Intermediate
Radiolysis Gas Gettering Processes Coupling of Processes to Closure Compaction, Brine/Gas Flow, ar Gas Generation Performance-Assessment Module. Brine/Gas Flow and Transport Relative Permeability (to gas) Undisturbed Anhydrite	/ nd Intermediate	Intermediate	Preliminary Intermediate Intermediate
Radiolysis Gas Gettering Processes Coupling of Processes to Closure Compaction, Brine/Gas Flow, ar Gas Generation Performance-Assessment Module. Brine/Gas Flow and Transport Relative Permeability (to gas) Undisturbed Anhydrite Undisturbed Halite	/ nd Intermediate	Intermediate	Preliminary Intermediate Intermediate Intermediate
Radiolysis Gas Gettering Processes Coupling of Processes to Closure Compaction, Brine/Gas Flow, ar Gas Generation Performance-Assessment Module. Brine/Gas Flow and Transport Relative Permeability (to gas) Undisturbed Anhydrite Undisturbed Halite DRZ Anhydrite	/ nd Intermediate	Intermediate	Preliminary Intermediate Intermediate Intermediate
Radiolysis Gas Gettering Processes Coupling of Processes to Closure Compaction, Brine/Gas Flow, ar Gas Generation Performance-Assessment Module. Brine/Gas Flow and Transport Relative Permeability (to gas) Undisturbed Anhydrite Undisturbed Halite DRZ Anhydrite DRZ Halite	/ nd Intermediate	Intermediate	Preliminary Intermediate Intermediate Intermediate Intermediate
Radiolysis Gas Gettering Processes Coupling of Processes to Closure Compaction, Brine/Gas Flow, ar Gas Generation Performance-Assessment Module. Brine/Gas Flow and Transport Relative Permeability (to gas) Undisturbed Anhydrite Undisturbed Halite DRZ Anhydrite DRZ Halite Waste/Backfill	/ nd Intermediate	Intermediate	Preliminary Intermediate Intermediate Intermediate Intermediate
Radiolysis Gas Gettering Processes Coupling of Processes to Closure Compaction, Brine/Gas Flow, ar Gas Generation Performance-Assessment Module Brine/Gas Flow and Transport Relative Permeability (to gas) Undisturbed Anhydrite Undisturbed Halite DRZ Anhydrite DRZ Halite Waste/Backfill Capillary Pressure	/ nd Intermediate	Intermediate	Preliminary Intermediate Intermediate Intermediate Intermediate Preliminary Preliminary Preliminary Preliminary
Radiolysis Gas Gettering Processes Coupling of Processes to Closure Compaction, Brine/Gas Flow, ar Gas Generation Performance-Assessment Module. Brine/Gas Flow and Transport Relative Permeability (to gas) Undisturbed Anhydrite Undisturbed Halite DRZ Anhydrite DRZ Halite Waste/Backfill Capillary Pressure Anhydrite	/ nd Intermediate	Intermediate	Preliminary Intermediate Intermediate Intermediate Intermediate Preliminary Preliminary Preliminary Preliminary Preliminary
Radiolysis Gas Gettering Processes Coupling of Processes to Closure Compaction, Brine/Gas Flow, ar Gas Generation Performance-Assessment Module Brine/Gas Flow and Transport Relative Permeability (to gas) Undisturbed Anhydrite Undisturbed Halite DRZ Anhydrite DRZ Halite Waste/Backfill Capillary Pressure Anhydrite Halite	/ nd Intermediate	Intermediate	Preliminary Intermediate Intermediate Intermediate Intermediate Intermediate Preliminary Preliminary Preliminary Preliminary Preliminary
Radiolysis Gas Gettering Processes Coupling of Processes to Closure Compaction, Brine/Gas Flow, ar Gas Generation Performance-Assessment Module. Brine/Gas Flow and Transport Relative Permeability (to gas) Undisturbed Anhydrite Undisturbed Halite DRZ Anhydrite DRZ Halite Waste/Backfill Capillary Pressure Anhydrite Halite	/ nd Intermediate	Intermediate	Preliminary Intermediate Intermediate Intermediate Intermediate Intermediate Preliminary Preliminary Preliminary Preliminary Preliminary Preliminary
Radiolysis Gas Gettering Processes Coupling of Processes to Closure Compaction, Brine/Gas Flow, ar Gas Generation Performance-Assessment Module. Brine/Gas Flow and Transport Relative Permeability (to gas) Undisturbed Anhydrite Undisturbed Halite DRZ Anhydrite DRZ Anhydrite DRZ Halite Waste/Backfill Capillary Pressure Anhydrite Halite Threshold Pressure for Anhydrite Eracture Opening	/ nd Intermediate	Intermediate	Preliminary Intermediate Intermediate Intermediate Intermediate Intermediate Preliminary Preliminary Preliminary Preliminary Preliminary Preliminary

Understanding Performance- of Data f Of Conceptual Assessment Performance- System Component Model Model Performance- Brine/Gas Flow and Transport (continued) Gas Dissolved in Brine Initia			Performance Assessment	Adequacy of	Adequacy
Compliance-Assessment System Component of Conceptual Model Assessment Module Performant Assessment Module Brine/Gas Flow and Transport (continued) Gas Dissolved in Brine Initial Prelimina Prelimina Prelimina Prelimina Potential Prelimina Preliminary Performance-Assessment Module Preliminary Creep Closure/Expansion Advance Wall Closure Advance Creep Closure/Expansion Intermediate Wall Closure Advance Coupling With Gas Generation and Brine/Gas Flow Intermediate Performance-Assessment Module Intermediate Waste-Form and Backfill Compaction Intermediate Waste Form and Backfill Compaction Intermediate Waste Formance-Assessment Module Intermediate Performance-Assessment Module Intermediate Human Intrusion ¹ Advanced Castile Brine Reservoir Areal Extent Advanced Castile Brine Reservoir Areal Extent Intermediate Performance-Assessment Module Intermediate Premeability Intermediate Performance-Assessment Module Intermediate Presormance-Assessment Module In			Understanding	Performance-	of Data for
System Component Model Module Assessm Brine/Gas Flow and Transport (continued) Gas Dissolved in Brine Prelimina Prelimina Initial Initial Prelimina Intermedia Radionuclide Transport in Salado Preliminary Preliminary Creep Closure/Expansion Madule Advance Coupling With Gas Generation Intermediate Intermediate Vall Closure Advance Coupling With Gas Generation Intermediate Vaste Compaction Intermediate Intermediate Intermediate Vaste Compaction Intermediate Intermediate Intermediate Vaste Compaction Intermediate Intermediate Vaste Compaction Intermediate Intermediate Performance-Assessment Module Intermediate Intermediate Human Intrusion1 Material Properties of Borehole Advanced Castlie Brine Reservoir Advanced Castlie Brine Reservoir Areal Extent Intermediate Intermediate Volume of Brine Intermediate Intermediate <th>Compliance-As</th> <th>ssessment</th> <th>of Conceptual</th> <th>Assessment</th> <th>Performanc</th>	Compliance-As	ssessment	of Conceptual	Assessment	Performanc
Brine/Gas Flow and Transport (continued) Gas Dissolved in Brine Initial Prelimina Potential Intermedi Radionuclide Transport in Salado Preliminary Performance-Assessment Module Preliminary Creep Closure/Expansion Advance Coupling With Gas Generation and Brine/Gas Flow and Brine/Gas Flow Intermediate Performance-Assessment Module Intermediate Waste-Form and Backfill Compaction Intermediate Waste-Form and Backfill Compaction Intermediate Waste-Formance-Assessment Module Intermediate Performance-Assessment Module Intermediate Human Intrusion ¹ Intermediate Material Properties of Borehole Drilling Properties Drilling Properties Advanced Castile Brine Reservoir Advanced Areal Extent Intermedi Volume of Brine Intermediate Performance-Assessment Module Intermediate Premeability Intermedi Performance-Assessment Module Advanced Casalie Brine Reservoir Advanced Area	System Comp	onent	Model	Module	Assessmen
Brine/Gas Flow and Transport (continued) Gas Dissolved in Brine Prelimina Initial. Prelimina Prelimina Potential. Prelimina Prelimina Radionuclide Transport in Salado Preliminary Prelimina Performance-Assessment Module Preliminary Preliminary Creep Closure/Expansion Advance Wall Closure Advance Coupling With Gas Generation Intermediate and Brine/Gas Flow Intermediate Performance-Assessment Module Intermediate Waste Compaction Intermediate Coupling With Gas Generation Intermediate Advance Intermediate Performance-Assessment Module Intermediate Human Intrusion1 Intermediate Material Properties of Borehole Advance Drilling Properties Advanced Castile Brine Reservoir Advanced Areal Extent Intermediate Volume of Brine Intermediate Performance-Assessment Module Intermediate Performance-Assessment Module Intermediate Performance-Assessment Module	· · ·				<u></u>
Gas Dissolved in Brine Prelimina Prelimina Prelimina Prelimina Intermedi Initial Intermedia Interme	Brine/Gas Fle	ow and Transport (contin	ued)		
Initial Prelimina Potential Intermedi Radionuclide Transport in Salado Preliminary Performance-Assessment Module Preliminary Creep Closure/Expansion Advance Wall Closure Advance Coupling With Gas Generation Intermediate Performance-Assessment Module Intermediate Waste-Form and Backfill Compaction Intermediate Waste Compaction Intermediate Waste Compaction Intermediate Vaste Compaction Intermediate Performance-Assessment Module Intermediate Performance-Assessment Module Intermediate Human Intrusion1 Intermediate Material Properties of Borehole Drilling Properties Drilling Properties Advanced Castile Brine Reservoir Advanced Areal Extent Intermedi Volume of Brine Intermediate Performance-Assessment Module Intermediate Performance-Assessment Module Intermediate Permeability Intermediate Performance-Assessment Module Intermediate P	Gas Dissolv	ed in Brine			D (' '
Performance-Assessment Module Preliminary Performance-Assessment Module Preliminary Creep Closure/Expansion Advance Wall Closure Advance Coupling With Gas Generation Intermediate and Brine/Gas Flow Intermediate Performance-Assessment Module Intermediate Waste-Form and Backfill Compaction Intermediate Waste-Form and Backfill Compaction Intermediate Waste-Formance-Assessment Module Intermediate Coupling With Gas Generation Intermediate and Brine/Gas Flow Intermediate Performance-Assessment Module Intermediate Human Intrusion1 Intermediate Material Properties of Borehole Drilling Properties Drilling Properties Advanced Cassile Brine Reservoir Advanced Areal Extent Intermedi Volume of Brine Intermediate Performance-Assessment Module Intermediate Permeability Intermediate Performance-Assessment Module Intermediate Performance-Assessment Module Intermediate Performance-Assessment M	Initial	••••••			Preliminary
Performance-Assessment Module	Radionuclid	le Transport in Salado		•••••••••••••••••••••••••••••••••••••••	Proliminan
Performance-Assessment Module Preliminary Creep Closure/Expansion Advance Wall Closure Advance Coupling With Gas Generation Intermediate Performance-Assessment Module Intermediate Waste-Form and Backfill Compaction Intermediate Waste Compaction Intermediate Coupling With Gas Generation Intermediate Quester Compaction Intermediate Performance-Assessment Module Intermediate Performance-Assessment Module Intermediate Human Intrusion1 Intermediate Material Properties of Borehole Advanced Drilling Properties Advanced Performance-Assessment Module Advanced Castile Brine Reservoir Advanced Areal Extent Intermediate Volume of Brine Intermediate Performance-Assessment Module Intermediate Performance-Assessment Module Intermediate Performance-Assessment Module Intermediate Intermediate Intermediate Performance-Assessment Module Intermediate Performance-Assessment Module	naulonuciu			•••••••••••••••••••••••••••••••••••••••	Freiminary
Creep Closure/Expansion Wall Closure	Performance	-Assessment Module	Preliminary	Preliminary	
Wall Closure Advance Coupling With Gas Generation Intermediate Performance-Assessment Module Intermediate Waste-Form and Backfill Compaction Intermediate Waste Compaction Intermediate Coupling With Gas Generation Intermediate and Brine/Gas Flow Intermediate Performance-Assessment Module Intermediate Performance-Assessment Module Intermediate Human Intrusion1 Material Properties of Borehole Drilling Properties Advance Performance-Assessment Module Advanced Castile Brine Reservoir Advanced Areal Extent Intermediate Volume of Brine Intermediate Performance-Assessment Module Intermediate Volume of Brine Intermediate Permeability Intermediate Permeability Intermediate Performance-Assessment Module Intermediate Intermediate Intermediate Performance-Assessment Module Intermediate Intermediate Intermediate Performance-Assessment Module Intermediate <	Creep Closu	re/Expansion			
Coupling With Gas Generation and Brine/Gas FlowIntermediateIntermediate Performance-Assessment ModuleIntermediateIntermediate Waste-Form and Backfill Compaction Waste Compaction	Wall Closur	е	••••••		Advanced
and Dime/Gas Flow	Coupling W	ith Gas Generation			1
Performance-Assessment Module Intermediate Waste-Form and Backfill Compaction Intermediate Waste Compaction Intermediate Coupling With Gas Generation Intermediate Performance-Assessment Module Intermediate Human Intrusion ¹ Intermediate Material Properties of Borehole Advance Drilling Properties Advanced Performance-Assessment Module Advanced Castile Brine Reservoir Advanced Areal Extent Intermediate Volume of Brine Intermediate Performance-Assessment Module Intermediate Performance-Assessment Module Advanced Castile Brine Reservoir Advanced Areal Extent Intermediate Volume of Brine Intermediate Performance-Assessment Module Intermediate Performance-Assessment Module Intermediate Intermediate Intermediate Performance-Assessment Module Intermediate Performance-Assessment Module Intermediate Performance-Assessment Module Intermediate	and Brine,	Gas Flow		•••••	Intermedia
Waste-Form and Backfill Compaction Intermedian Waste Compaction Intermedian Coupling With Gas Generation Intermedian and Brine/Gas Flow Intermediate Performance-Assessment Module Intermediate Human Intrusion1 Material Properties of Borehole Drilling Properties Advance Performance-Assessment Module Advanced Castile Brine Reservoir Advanced Areal Extent Intermed Volume of Brine Intermed Performance-Assessment Module Intermed Permeability Intermed Performance-Assessment Module Intermed Permeability Intermed Permeability Intermed Performance-Assessment Module Intermediate Intermed Intermediate Performance-Assessment Module Intermediate Intermediate Intermediate Performance-Assessment Module Intermediate Performance-Assessment Module Intermediate	Performance	-Assessment Module	Intermediate	Intermediate	
Waste Compaction Intermedian Coupling With Gas Generation Intermedian and Brine/Gas Flow Intermediate Performance-Assessment Module Intermediate Human Intrusion ¹ Material Properties of Borehole Drilling Properties Advance Plug Properties Advanced Castile Brine Reservoir Advanced Areal Extent Intermed Volume of Brine Intermed Performance-Assessment Module Intermed Permeability Intermed Performance-Assessment Module Intermediate Intermediate Intermediate Performance-Assessment Module Intermediate Intermediate Intermediate	Waste-Form	and Backfill Compaction			
Coupling With Gas Generation and Brine/Gas FlowIntermediate Performance-Assessment ModuleIntermediate Human Intrusion ¹ Material Properties of Borehole Drilling PropertiesAdvance Plug PropertiesAdvanced Performance-Assessment ModuleAdvanced Castile Brine Reservoir Areal ExtentIntermediate Volume of BrineIntermediate Performance-Assessment ModuleIntermediate Performance-Assessment ModuleIntermediate Performance-Assessment ModuleIntermediate Intermed Performance-Assessment ModuleIntermediateIntermediate	Waste Com	paction			Intermedia
and Brine/Gas FlowIntermediate Intermediate Intermed	Coupling W	/ith Gas Generation			
Performance-Assessment ModuleIntermediate	and Brine	/Gas Flow			Intermedia
Human Intrusion ¹ Material Properties of Borehole Drilling Properties Advance Plug Properties Advance Performance-Assessment Module Advanced Castile Brine Reservoir Areal Extent Areal Extent Intermed Volume of Brine Intermed Performance-Assessment Module Intermed Pressure Intermed Permeability Intermed Performance-Assessment Module Intermediate Intermed Intermed Performance-Assessment Module Intermediate	Performance	-Assessment Module	Intermediate	Intermediate	
Material Properties of Borehole Advance Drilling Properties Advance Plug Properties Advanced Performance-Assessment Module Advanced Castile Brine Reservoir Areal Extent Areal Extent Intermed Volume of Brine Intermed Permeability Intermed Performance-Assessment Module Intermed Pressure Intermed Permeability Intermed Performance-Assessment Module Intermediate	Human Intrus	sion ¹			
Material Properties of Borehole Advance Drilling Properties Advance Plug Properties Advanced Castile Brine Reservoir Advanced Areal Extent Intermed Volume of Brine Intermed Permeability Intermed Performance-Assessment Module Intermed Pressure Intermed Permeability Intermed Performance-Assessment Module Intermediate Intrusion Probability Intermediate Performance-Assessment Module Intermediate					
Drilling Properties Advance Plug Properties Advanced Performance-Assessment Module Advanced Castile Brine Reservoir Areal Extent Areal Extent Intermed Volume of Brine Intermed Permeability Intermed Gas Intermed Performance-Assessment Module Intermediate	Material Prop	perties of Borehole			
Performance-Assessment Module	Drilling Pro	perties	••••••	•••••••••••••••••••••••••••••••••••••••	Advanced
Performance-Assessment Module Advanced Castile Brine Reservoir Intermed Areal Extent Intermed Volume of Brine Intermed Pressure Intermed Permeability Intermed Gas Intermediate Performance-Assessment Module Intermediate Intrusion Probability Intermediate Performance-Assessment Module Intermediate	Flug Flope	rues	••••••••••••••••••••••••••••••		Advanced
Castile Brine Reservoir Areal Extent	Performance	Assessment Module	Advanced	Advanced	
Areal Extent Intermed Volume of Brine Intermed Pressure Intermed Permeability Intermed Gas Intermediate Performance-Assessment Module Intermediate Intrusion Probability Intermediate Performance-Assessment Module Intermediate Performance-Assessment Module Intermediate	Castile Brine	Reservoir			
Volume of Brine Intermed Pressure Intermed Permeability Intermed Gas Intermed Performance-Assessment Module Intermediate Intrusion Probability Intermediate Performance-Assessment Module Intermediate Intrusion Probability Intermediate Performance-Assessment Module Intermediate	Areal Exten	nt		•••••••••••••••••••••••••••••••••••••••	Intermedia
PressureIntermed PermeabilityIntermed GasIntermed Performance-Assessment ModuleIntermediateIntermediate Intrusion ProbabilityIntermediateIntermediate Performance-Assessment ModuleIntermediateIntermediate	Volume of I	Brine			Intermedia
PermeabilityIntermed GasIntermed Performance-Assessment ModuleIntermediateIntermediate Intrusion ProbabilityIntermediateIntermediate Performance-Assessment ModuleIntermediateIntermediate	Pressure				Intermedia
GasIntermed Performance-Assessment ModuleIntermediateIntermediate Intrusion ProbabilityIntermediateIntermediate Performance-Assessment ModuleIntermediateIntermediate	Permeabilit	γ		•••••••••••••••••••••••••••••••••••••••	Intermedia
Performance-Assessment ModuleIntermediateIntermediate Intrusion ProbabilityIntermediate IntermediateIntermediate	Gas	-			Intermedia
Intrusion ProbabilityIntermediateIntermediate	Performance	e-Assessment Module	Intermediate	Intermediate	
Intrusion ProbabilityIntermediate Intermediate	–				
Performance-Assessment ModuleIntermediateIntermediate	Intrusion Pro	bability			Intermediat
	Performance	e-Assessment Module	Intermediate	Intermediate	
	4				

	Performance Assessment Understanding	Adequacy of Performance-	Adequacy of Data for
Compliance-Assessment System Component	of Conceptual Model	Assessment Module	Performanc Assessmen
GROUNDWATER FLOW AND T	BANSPORT MODELS		
GROUNDWATER FLOW MODE	iL		
Regional Hydrogeology			
3-D Regional Geology/Flow			
Understanding Present Flow			Intermediate
Predicting Future Flow			Preliminary
Climate Variability			Intermediat
Becharge Variability		•••••••••••••••••••••••••••••••••••••••	
Present			Proliminan
Bango in Futuro	•••••••••••••••••••••••••••••••••••••••		Proliminary
Dissolution Processos			Intermediat
Integrate Geochemical /Isoton	ia Data		Intermediat
Integrate deochernical/isotop			interneulat
Performance-Assessment Moc	lulePreliminary	Preliminary	
Local Hydrogeology			
2-D Groupdwater (Culebra) Ele	ww.Modol		
Koundan/ Conditions			
Boundary Conditions Present			Intermediat
Present			Intermediat
Present Future			Intermediat Intermediat
Future Transmissivity Distribution			Intermediat
Future Transmissivity Distribution Definition of High T Zone			Intermediat Intermediat
Future Transmissivity Distribution Definition of High T Zone Uncertainty in T			Intermediat
Future Transmissivity Distribution Definition of High T Zone Uncertainty in T Matrix/Fracture Porosity			Intermediat Intermediat Intermediat Intermediat Intermediat
Boundary Conditions Present Future Transmissivity Distribution Definition of High T Zone Uncertainty in T Matrix/Fracture Porosity Variable Brine Density Effects	3		Intermediat Intermediat Intermediat Intermediat
Boundary Conditions Present Future Transmissivity Distribution Definition of High T Zone Uncertainty in T Matrix/Fracture Porosity Variable Brine Density Effects Flow Potential	5		Intermediat Intermediat Intermediat Intermediat Intermediat
Boundary Conditions Present Future Transmissivity Distribution Definition of High T Zone Uncertainty in T Matrix/Fracture Porosity Variable Brine Density Effects Flow Potential Mixing	5		Intermediat Intermediat Intermediat Intermediat Intermediat Intermediat
Boundary Conditions Present Future Transmissivity Distribution Definition of High T Zone Uncertainty in T Matrix/Fracture Porosity Variable Brine Density Effects Flow Potential Mixing Effect of Potash Mining Effect of Potash Mining	5		Intermediat Intermediat Intermediat Intermediat Intermediat Intermediat Preliminan Preliminan
Boundary Conditions Present Future Transmissivity Distribution Definition of High T Zone Uncertainty in T Matrix/Fracture Porosity Variable Brine Density Effects Flow Potential Mixing Effect of Potash Mining Effect of Existing Boreholes	5		Intermediat Intermediat Intermediat Intermediat Intermediat Intermediat Preliminan Preliminan
Boundary Conditions Present Future Transmissivity Distribution Definition of High T Zone Uncertainty in T Matrix/Fracture Porosity Variable Brine Density Effects Flow Potential Mixing Effect of Potash Mining Effect of Existing Boreholes	3 3 4.4.0 Intermediate		Intermediat Intermediat Intermediat Intermediat Intermediat Intermediat Intermediat Preliminan Preliminan Preliminan
Boundary Conditions Present Future Transmissivity Distribution Definition of High T Zone Uncertainty in T Matrix/Fracture Porosity Variable Brine Density Effects Flow Potential Mixing Effect of Potash Mining Effect of Existing Boreholes Performance-Assessment Moo	s JuleIntermediate		Intermediat Intermediat Intermediat Intermediat Intermediat Intermediat Intermediat Preliminan Preliminan Preliminan
Boundary Conditions Present Future Transmissivity Distribution Definition of High T Zone Uncertainty in T Matrix/Fracture Porosity Variable Brine Density Effects Flow Potential Mixing Effect of Potash Mining Effect of Existing Boreholes Performance-Assessment Moo	s JuleIntermediate		Intermediat Intermediat Intermediat Intermediat Intermediat Intermediat Intermediat Preliminan Preliminan Preliminan
Boundary Conditions Present Future Transmissivity Distribution Definition of High T Zone Uncertainty in T Matrix/Fracture Porosity Variable Brine Density Effects Flow Potential Mixing Effect of Potash Mining Effect of Potash Mining Effect of Existing Boreholes Performance-Assessment Model 3-D Groundwater Flow Model	s JuleIntermediate		Intermediat Intermediat Intermediat Intermediat Intermediat Intermediat Intermediat Preliminary Preliminary Preliminary
Boundary Conditions Present Future Transmissivity Distribution Definition of High T Zone Uncertainty in T Matrix/Fracture Porosity Variable Brine Density Effects Flow Potential Mixing Effect of Potash Mining Effect of Potash Mining Effect of Existing Boreholes Performance-Assessment Model Dewey Lake/Rustler Transmi	s JuleIntermediate		Intermediat Intermediat Intermediat Intermediat Intermediat Intermediat Intermediat Preliminary Preliminary Preliminary
Boundary Conditions Present Future Transmissivity Distribution Definition of High T Zone Uncertainty in T Matrix/Fracture Porosity Variable Brine Density Effects Flow Potential Mixing Effect of Potash Mining Effect of Potash Mining Effect of Existing Boreholes Performance-Assessment Model Dewey Lake/Rustler Transmi Dewey Lake/Rustler Bounda	s JuleIntermediate ssivities ry Conditions		Intermediat Intermediat Intermediat Intermediat Intermediat Intermediat Preliminary Preliminary Preliminary
Boundary Conditions Present Future Transmissivity Distribution Definition of High T Zone Uncertainty in T Matrix/Fracture Porosity Variable Brine Density Effects Flow Potential Mixing Effect of Potash Mining Effect of Potash Mining Effect of Existing Boreholes Performance-Assessment Model Dewey Lake/Rustler Transmi Dewey Lake/Rustler Bounda Vertical	s JuleIntermediate ssivities ry Conditions	Intermediate	Intermediat

TADLE 11-1.	COMPLETENESS OF TECHNICAL BASES FOR PERFORMANCE ASSESSMENT WITH REGARD TO 40 CFR 191, SUBPART B, CONDITIONAL ON 1991 COMPLIANCE- ASSESSMENT SYSTEM AND AS-RECEIVED WASTE (concluded)				
Compliance-A System Comr	Assessment	Performance Assessment Understanding of Conceptual Model	Adequacy of Performance- Assessment Module	Adequacy of Data for Performanc Assessmen	
System Comp	oonent	Model	Module	Assessme	
GROUNDWA RADIONUCL	TER FLOW AND TRAN	SPORT MODELS:			
Physical Ret	ardation				
Matrix Diffus	sion in Dual Porosity Tra	nsport		Intermediat	
Performance	e-Assessment Module	Intermediate	Intermediate		
Chemical Re	tardation				
Radionuclid	e Solubility in Culebra B	rine		Preliminar	
Sorption by	Clays			Preliminar	
Performance	e-Assessment Module	Preliminary	Preliminary		
CUTTINGS N CUTTINGS/0	NODELS: CAVINGS MODEL				
Drill Cuttings	3				
Performance	e-Assessment Module	Advanced ¹	Advanced ¹		
Erosion/Cav	vings				
Critical Shea	ar Strength			Preliminar	
Performanc	e-Assessment Module	Preliminary	Intermediate		
Spalling					
Failure Crite	eria			Preliminar	
Performanc	e Assessment Module	Preliminary	Preliminary		

Chapter 11: Status

applied to the performance-assessment modules, "preliminary" means work on 1 one or more aspects of the mathematical, numerical, and computer models is 2 either still in the planning stages or only recently initiated. 3 4 "Intermediate," where applied to the data base, means that data are 5 sufficient for computations but that sources of uncertainty are not fully 6 understood and uncertainty therefore has not been adequately quantified. 7 Where applied to conceptual models, "intermediate" means that important 8 processes are identified and understood and that significant alternative 9 conceptual models, if any, may have been identified. Where applied to the 10 performance-assessment modules, "intermediate" means that models are 11 available, but that verification and validation are in the early stages and 12 the application of the models to the WIPP performance assessment is still 13 under development. 14 15 "Advanced," where applied to the data base, means that data for a specific 16 component are fully adequate for performance assessments. Uncertainty is 17 understood, quantified, and can be displayed in computational results. 18 Where applied to conceptual models, "advanced" means that an appropriate 19 conceptual model has been chosen and is adequately supported by the 20 available data. Uncertainty in the conceptual model is adequately 21 understood. Where applied to performance-assessment modules, "advanced" 22 indicates validation and verification work is in progress and that the 23 models are ready for use in performance assessments. 24

25

The status of the WIPP compliance-assessment system will change as the WIPP research and performance-assessment programs advance, and Table 11-1 will change accordingly in future iterations. Some changes will reflect ongoing research and the availability of new data or models. All changes will reflect performance-assessment analyses that show whether an acceptable level of information has been achieved for each component or module.

32

35

38 11.1.4 THE ROLE OF SENSITIVITY ANALYSES IN EVALUATING STATUS

Sensitivity analyses, as discussed in detail in Chapter 3 of this volume, 36 provide information about the sensitivity of the modeling system to 37 uncertainty in specific input parameters. For example, stepwise linear 38 regression analyses can rank parameters in terms of the magnitude of the 39 contribution to overall variability in modeled performance resulting from 40 the variability in each parameter. These analyses are a useful tool for 41 identifying those parameters where reductions in uncertainty (i.e., 42 narrowing of the range of values from which the sample used in the Monte 43 Carlo analysis is drawn) have the greatest potential to increase confidence 44 in the estimate of disposal-system performance. Identification of sensitive 45 parameters can help set priorities for resource allocation to allow the WIPP 46

Project to proceed as efficiently as possible toward a final evaluation of 1 regulatory compliance. Sensitivity analyses performed as part of the 1990 2 preliminary comparison indicated that uncertainty in the values used for 3 radionuclide solubility in the waste and retardation in the Culebra Dolomite 4 Member dominated the variability in subsurface discharges to the accessible 5 environment (Helton et al., 1991). As a result, expert panels were convened 6 in 1991 to provide judgment on more suitable ranges and distributions for 7 these parameters. Experimental programs have been accelerated for 8 solubility and started for retardation to provide real data. However, 9 10 additional research on a particular parameter will not invariably lead to a reduction in uncertainty. Reducing uncertainty in the data base is 11 desirable, but in general the more important goal will be to determine the 12 correct level of residual uncertainty that must be included in the analysis. 13 14

Sensitivity analyses are an important part of performance assessment, but 15 because they are inherently conditional on the models, data distributions, 16 and techniques used to generate them, they cannot provide insight about 17 parameters not sampled, conceptual and computer models not used in the 18 analysis in question, or processes that have been oversimplified during the 19 sensitivity analyses. Qualitative judgment about the modeling system must 20 be used in combination with sensitivity analyses to set priorities for 21 22 performance-assessment data acquisition and model development.

23

REFERENCES

2 3

4 Adams, J. E. 1944. "Upper Permian Ochoa Series of Delaware Basin, West 6 Texas and Southeastern New Mexico." American Association of Petroleum 7 Geologists Bulletin 28: 1596-1625. 8 g Ahmed, S., D. R. Metcalf, and J. W. Pegram. 1981. "Uncertainty Propagation 10 in Probabilistic Risk Assessment: A Comparative Study." Nuclear Engineering 11 and Design 68: 1-3. 12 13 Allen, D. M. 1971. The Prediction Sum of Squares as a Criterion for 14 Selecting Predictor Variables. Report No. 23. Lexington, KY: Department of 15 16 Statistics, University of Kentucky. 17 18 Anderson, R. Y. 1978. "Deep Dissolution of Salt, Northern Delaware Basin, New Mexico." Report to Sandia National Laboratories. 19 20 Anderson, R. Y. 1981. Deep-Seated Salt Dissolution in the Delaware Basin, 21 Texas and New Mexico. New Mexico Geological Society Special Publication No. 22 10. 133-145. 23 24 Anderson, R. Y. 1983. "Evidence for Deep Dissolution in the Delaware 25 Basin." Report prepared for the State of New Mexico Environmental Evaluation 26 Group. 27 28 Andersson, J., T. Carlsson, T. Eng, F. Kautsky, E. Söderman, and S. 29 Wingefors. 1989. The Joint SKI/SKB Scenario Development Project. TR89-35. 30 Stockholm, Sweden: Svensk Kärnbränslehantering AB. 31 32 Apostolakis, G. 1990. "The Concept of Probability in Safety Assessments of 33 34 Technological Systems." Science 250: 1359-1364. 35 Apostolakis, G., R. Bras, L. Price, J. Valdes, K. Wahi, and E. Webb. 1991. 36 Techniques for Determining Probabilities of Events and Processes Affecting 37 the Performance of Geologic Repositories. NUREG/CR-3964. SAND86-0196/2. 38 Washington DC: Division of High-Level Waste Management, Office of Nuclear 39 40 Material Safety and Safeguards, U.S. Nuclear Regulatory Commission. 41 Arthur D. Little, Inc. 1980. Technical Support of Standards for High-Level 42 43 Radioactive Waste Management, Volume D, Release Mechanisms. EPA 520/4-79-007D. Washington, DC: U.S. Environmental Protection Agency. 44 45 46 Ash, R. B. 1972. Real Analysis and Probability. New York, NY: Academic 47 Press. 48 49 Bachman, G. O. 1974. Geologic Processes and Cenozoic History Related to Salt Dissolution in Southeastern New Mexico. U.S. Geological Survey Open-50 51 File Report 74-194. Denver, CO: U.S. Geological Survey. 52 53 Bachman, G. O. 1980. Regional Geology and Cenozoic History of the Pecos Region, Southeastern New Mexico. U.S. Geological Survey Open-File Report 54 D-77-946. Albuquerque, NM: U.S. Geological Survey. 55 56

Bachman, G. O. 1981. Geology of Nash Draw, Eddy County, New Mexico. U.S. 1 2 Geological Survey Open-File Report 81-31. 3 Bachman, G. O. 1984. Regional Geology of Ochoan Evaporites, Northern Part 4 of the Delaware Basin. New Mexico Bureau of Mines and Mineral Resources 5 Circular 184. Socorro, NM: New Mexico Bureau of Mines and Mineral 6 Resources. 7 8 Backman, G. O. 1985. Assessment of Near-Surface Dissolution at and near the 9 10 Waste Isolation Pilot Plant (WIPP), Southeastern New Mexico. SAND84-7178. Albuquerque, NM: Sandia National Laboratories. 11 12 Bachman, G. O. 1987. Karst in Evaporites in Southeastern New Mexico. 13 SAND86-7078. Albuquerque, NM: Sandia National Laboratories. 14 15 Barnett, V. 1982. Comparative Statistical Inference (2nd Ed.). New York, 16 NY: Wiley. 17 18 Bates, R. L., and J. A. Jackson, eds. 1980. Glossary of Geology. 2nd ed. 19 Falls Church, VA: American Geological Institute. 20 21 22 Beauheim, R. L. 1986. Hydraulic-Test Results for Well DOE-2 at the Waste Isolation Pilot Plant (WIPP) Site. SAND86-1364. Albuquerque, NM: Sandia 23 National Laboratories. 24 25 Beauheim, R. L. 1987a. Interpretations of Single-Well Hydraulic Tests 26 Conducted At and Near the Waste Isolation Pilot Plant (WIPP) Site, 1983-1987. 27 SAND87-0039. Albuquerque, NM: Sandia National Laboratories. 28 29 Beauheim, R. L. 1987b. Analysis of Pumping Tests of the Culebra Dolomite 30 Conducted at the H-3 Hydropad at the Waste Isolation Pilot Plant (WIPP) Site. 31 SAND86-2311. Albuquerque, NM: Sandia National Laboratories. 32 33 Beauheim, R. L. 1987c. Interpretation of the WIPP-13 Multipad Pumping Test 34 of the Culebra Dolomite at the Waste Isolation Pilot Plant (WIPP) Site. 35 SAND87-2456. Albuquerque, NM: Sandia National Laboratories. 36 37 Beauheim, R. L. 1989. Interpretation of H-11b4 Hydraulic Tests and the H-11 38 Multipad Pumping Test of the Culebra Dolomite at the Waste Isolation Pilot 39 Plant (WIPP) Site. SAND89-0536. Albuquerque, NM: Sandia National 40 Laboratories. 41 42 Beauheim, R. L., and R. M. Holt, 1990. "Hydrogeology of the WIPP Site," in 43 Geological and Hydrological Studies of Evaporites in the Northern Delaware 44 Basin for the Waste Isolation Pilot Plant (WIPP), New Mexico. Geological 45 46 Society of America 1990 Annual Meeting Field Trip #14 Guidebook. Dallas, TX: 47 The Dallas Geological Society. 131-180. 48 Beauheim, R. L., G. J. Saulnier, Jr., and J. D. Avis. 1990. Interpretation 49 of Brine-Permeability Tests of the Salado Formation at the Waste Isolation 50 Pilot Plant Site: First Interim Report. SAND89-0536. Albuquerque, NM: 51 Sandia National Laboratories. 52 53

Beauheim, R. L., G. J. Saulnier, Jr., and J. D. Avis. 1991. Interpretation 1 of Brine-Permeability Tests of the Salado Formation at the Waste Isolation 2 Pilot Plant Site: First Interim Report. SAND90-0083. Albuquerque, NM: 3 4 Sandia National Laboratories. 5 Belitz, K., and J. D. Bredehoeft. 1988. "Hydrodynamics of Denver Basin: 6 Explanation of Subnormal Fluid Pressures." American Association of Petroleum 7 Geologists Bulletin vol. 72, no. 11: 1334-1359. 8 9 Bertram-Howery, S. G., and R. L. Hunter. 1989a. Plans for Evaluation of the 10 Waste Isolation Pilot Plant's Compliance with EPA Standards for Radioactive 11 Waste Management and Disposal. SAND88-2871, Albuquerque, NM: Sandia 12 National Laboratories. 13 14 Bertram-Howery, S. G., and R. L. Hunter, eds. 1989b. Preliminary Plan for 15 Disposal-System Characterization and Long-Term Performance Evaluation of the 16 Waste Isolation Pilot Plant. SAND89-0178. Albuquerque, NM: Sandia National 17 18 Laboratories. 19 20 Bertram-Howery, S. G., and P. N. Swift. 1990. Status Report: Potential for Long-Term Isolation by the Waste Isolation Pilot Plant Disposal System. 21 SAND90-0616. Albuquerque, NM: Sandia National Laboratories. 22 23 Bertram-Howery, S. G., M. G. Marietta, R. P. Rechard, P. N. Swift, D. R. 24 Anderson, B. L. Baker, J. E. Bean, Jr., W. Beyeler, K. F. Brinster, R. V. 25 Guzowski, J. C. Helton, R. D. McCurley, D. K. Rudeen, J. D. Schreiber, and P. 26 Vaughn, 1990. Preliminary Comparison with 40 CFR Part 191, Subpart B for 27 the Waste Isolation Pilot Plant, December 1990. SAND90-2347. Albuquerque, 28 NM: Sandia National Laboratories. 29 30 Bingham, F. W., and G. E. Barr. 1979. Scenarios for Long-Term Release of 31 Radionuclides From a Nuclear-Waste Repository in the Los Medanos Region of 32 New Mexico. SAND78-1730. Albuquerque, NM: Sandia National Laboratories. 33 34 Bonano, E. J., and R. M. Cranwell. 1988. "Treatment of Uncertainties in the 35 Performance Assessment of Geologic High-Level Radioactive Waste Reposi-36 tories." Mathematical Geology 20: 543-565. 37 38 39 Bonano, E. J., S. C. Hora, R. L. Keeney, and D. von Winterfeldt. 1989. The Formal Use of Expert Judgments in Performance Assessment of Radioactive Waste 40 Repositories. SAND89-0495C, CONF-891008-1. Albuquerque, NM: Sandia 41 National Laboratories. 42 43 Bonano, E. J., S. C. Hora, R. L. Keeney, and D. von Winterfeldt. 1990. 44 Elicitation and Use of Expert Judgement in Performance Assessment for High-45 Level Radioactive Waste Repositories. NUREG/CR-5411, SAND89-1821. 46 Albuquerque, NM: Sandia National Laboratories. 47 48 Bonilla, M. G. 1979. "Historic Surface Faulting--Map Patterns, Relation to 49 Subsurface Faulting, and Relation to Preexisting Faults" in Proceedings of 50 Conference VIII, Analysis of Actual Fault Zones in Bedrock, April 1-5, 1979. 51 U.S. Geological Survey Open-File Report 79-1239: 36-65. 52 53

Borns, D. J. 1983. Petrographic Study of Evaporite Deformation near the 1 Waste Isolation Pilot Plant (WIPP). SAND83-0166. Albuquerque, NM: Sandia 2 National Laboratories. 3 4 Borns, J. C., and S. E. Shaffer. 1985. Regional Well-Log Correlation in the 5 6 New Mexico Portion of the Delaware Basin. SAND83-1798. Albuquerque, NM: Sandia National Laboratories. 7 8 Borns, D. J., and J. C. Stormont. 1988. An Interim Report on Excavation 9 Effect Studies at the Waste Isolation Pilot Plant: The Delineation of the 10 Disturbed Rock Zone. SAND87-1375. Albuquerque, NM: Sandia National 11 Laboratories. 12 13 Borns, D. J., and J. C. Stormont. 1989. "The Delineation of the Disturbed 14 Rock Zone Surrounding Excavations in Salt." Proceedings of the Rock 15 16 Mechanics Symposium at the University of West Virginia, June 19-22, 1989. Rotterdam, Netherlands: A.A. Balkema. 17 18 Borns, D. J., L. J. Barrows, D. W. Powers, and R. P. Snyder. 1983. 19 Deformation of Evaporites Near the Waste Isolation Pilot Plant (WIPP) Site. 20 SAND82-1069. Albuquerque, NM: Sandia National Laboratories. 21 22 Box, G. E. P., and N. R. Draper. 1987. Empirical Model-Building and 23 Response Surfaces. New York, NY: Wiley. 24 25 26 Brausch, L. M., A. K. Kuhn, and J. K. Register. 1982. Natural Resources Study, Waste Isolation Pilot Plant (WIPP), Eddy and Lea Counties, New Mexico. 27 WTSD-TME-3156. Albuquerque, NM: U.S. Department of Energy. 28 29 Bredehoeft, J. D. 1988. "Will Salt Repositories Be Dry?" EOS, American 30 Geophysical Union, vol. 69, no. 9. 31 32 Breeding, R. J., J. C. Helton, W. B. Murfin, and L. N. Smith. 1990. 33 Evaluation of Severe Accident Risks: Surry Unit 1. NUREG/CR-4551, 34 SAND86-1309, vol. 3, rev. 1. Albuquerque, NM: Sandia National Laboratories. 35 36 Brinster, K. F. 1991. Preliminary Geohydrologic Conceptual Model of the Los 37 Medaños Region near the Waste Isolation Pilot Plant for the Purpose of 38 Performance Assessment. SAND89-7147. Albuquerque, NM: Sandia National 39 40 Laboratories. 41 Brush, L. H., and D. R. Anderson. 1988a. "Appendix A.1: Drum (Metal) 42 Corrosion, Microbial Decomposition of Cellulose, Reactions Between Drum-43 Corrosion Products and Microbially Generated Gases, Reactions Between 44 Possible Backfill Constituents and Gases and Water Chemical Reactions" in 45 System Analysis, Long-Term Radionuclide Transport, and Dose Assessments. 46 Waste Isolation Pilot Plant (WIPP), Southeastern New Mexico, March, 1989. 47 Eds. A. R. Lappin, R. L. Hunter, D. P. Garber, and P. B. Davies. 48 49 SAND89-0462. Albuquerque, NM: Sandia National Laboratories. 50

Brush, L. H., and D. R. Anderson. 1988b. "Appendix A.2: Effects of 1 Microbial Activity on Repository Chemistry, Radionuclide Speciation, and 2 Solubilities in WIPP Brines" in Systems Analysis, Long-Term Radionuclide 3 4 Transport, and Dose Assessments, Waste Isolation Pilot Plant (WIPP). Southeastern New Mexico; March 1989. Eds. A. R. Lappin, R. L. Hunter, D. P. 5 Garber, and P. B. Davies. SAND89-0462. Albuquerque, NM: Sandia National 6 Laboratories. 7 8 Brush, L. H., and D. R. Anderson. 1989. "Appendix E: Estimates of 9 Radionuclide Concentrations in Brines" in Performance Assessment Methodology 10 Demonstration: Methodology Development for Purposes of Evaluating Compliance 11 with EPA 40 CFR Part 191, Subpart B, for the Waste Isolation Pilot Plant. M. 12 13 G. Marietta, S. G. Bertram-Howery, D. R. Anderson, K. Brinster, R. Guzowski. H. Iuzzolino, and R. P. Rechard. SAND89-2027. Albuquerque, NM: Sandia 14 15 National Laboratories. 16 Burkholder, H. C. 1980. "Waste Isolation Performance Assessment -- A Status 17 Report" in Scientific Basis for Nuclear Waste Management. Volume 2. Plenum 18 19 Press. 689-702. 20 "Error Analysis of Nonlinear Simulations: Applications 21 Burns, J. R. 1975. to World Dynamics." IEEE Transactions on Systems, Man, and Cybernetics SMC-22 **5**: 331-340. 23 24 Butcher, B. M. 1989. Waste Isolation Pilot Plant Simulated Waste 25 Compositions and Mechanical Properties. SAND89-0372. Albuquerque, NM: 26 Sandia National Laboratories. 27 28 Butcher, B. M. 1990. Preliminary Evaluation of Potential Engineered 29 30 Modifications for the Waste Isolation Pilot Plant (WIPP). SAND89-3095. Albuquerque, NM: Sandia National Laboratories. 31 32 Butcher, B. M. 1991. The Advantages of a Salt/Bentonite Backfill for Waste 33 34 Isolation Pilot Plant Disposal Rooms. SAND90-3074. Albuquerque, NM: Sandia 35 National Laboratories. 36 37 Cacuci, D. G. 1981a. "Sensitivity Theory for Nonlinear Systems. I. Nonlinear Functional Analysis Approach." Journal of Mathematical Physics 22: 38 39 2794-2802. 40 Cacuci, D. G. 1981b. "Sensitivity Theory for Nonlinear Systems. II. 41 42 Extensions to Additional Classes of Responses." Journal of Mathematical Physics 22: 2803-2812. 43 44 Cacuci, D. G., C. F. Weber, E. M. Oblow, and J. H. Marable. 1980. 45 "Sensitivity Theory for General Systems of Nonlinear Equations." Nuclear 46 Science and Engineering 75: 88-110. 47 48 49 Campbell, J. E., and R. M. Cranwell. 1988. "Performance Assessment of Radioactive Waste Repositories." Science 239: 1389-1392. 50 51 52 Campbell, J. E., and D. E. Longsine. 1990. "Application of Generic Risk Assessment Software to Radioactive Waste Disposal." Reliability Engineering 53 and System Safety 30: 183-193. 54 55

Cauffman, T. L., A. M. LaVenue, and J. P. McCord. 1990. Ground-Water Flow 1 Modeling of the Culebra Dolomite: Volume II - Data Base. SAND89-7068/2. 2 Albuquerque, NM: Sandia National Laboratories. 3 4 Chapman, J. B. 1986. Stable Isotopes in the Southeastern New Mexico 5 Groundwater: Implications for Dating Recharge in the WIPP Area. EEG-35. 6 Santa Fe, NM: New Mexico Environmental Evaluation Group. 7 Q 9 Chapman, J. B. 1988. Chemical and Radiochemical Characteristics of 10 Groundwater in the Culebra Dolomite, Southeastern New Mexico, EEG-39, Santa Fe, NM: Environmental Evaluation Group, Environmental Improvement Division, 11 Health and Environment Department, State of New Mexico. 12 13 Cheeseman, R. J. 1978. Geology and Oil/Potash Resources of the Delaware 14 Basin, Eddy and Lea Counties, New Mexico. New Mexico Bureau of Mines and 15 Mineral Resources Circular 159. Socorro, NM: New Mexico Bureau of Mines and 16 Mineral Resources. 7-14. 17 18 Chen, X., and N. C. Lind. 1983. "Fast Probability Integration by Three 19 Parameter Normal Tail Approximation." Structural Safety 1: 169-176. 20 21 Cheng, R. C. H., and T. C. Iles. 1983. "Confidence Bounds for Cumulative 22 Distribution Functions of Continuous Random Variables." Technometrics 25: 23 24 77-86. 25 26 Claiborne, H. C., and F. Gera. 1974. Potential Containment Failure Mechanisms and Their Consequences at a Radioactive Waste Repository in Bedded 27 Salt in New Mexico. ORNL-TM-4639. Oak Ridge, TN: Oak Ridge National 28 Laboratory. 29 30 COHMAP (Cooperative Holocene Mapping Project) members. 1988. "Climatic 31 Changes of the Last 18,000 years: Observations and Model Simulations." 32 Science 241: 1043-1052. 33 34 35 Cole, F. W. 1975. Introduction to Meteorology Second Edition. New York, NY: John Wiley and Sons, Inc. 36 37 Conover, W. J. 1980. Practical Nonparametric Statistics (2nd ed.). New 38 York, NY: Wiley. 39 40 Cook, I., and S. D. Unwin. 1986. "Controlling Principles for Prior 41 Probability Assignments in Nuclear Risk Assessment." Nuclear Science and 42 Engineering **94**: 107-119. 43 44 Cooper, J. B., and V. M. Glanzman. 1971. "Geohydrology of Project GNOME 45 Site, Eddy County, New Mexico" in Hydrology of Nuclear Test Sites, U.S. 46 Geological Survey Professional Paper 712-A. 47 48 49 Cox, D. C., and P. Baybutt. 1981. "Methods for Uncertainty Analysis: A 50 Comparative Survey." Risk Analysis 1: 251-258. 51 Cox, N. D. 1977. "Comparison of Two Uncertainty Analysis Methods." Nuclear 52 Science and Engineering 64: 258-265. 53 54

R-6

Cranwell, R. M., J. E. Campbell, J. C. Helton, R. L. Iman, D. E. Longsine, N. 1 R. Ortiz, G. E. Runkle, and M. J. Shortencarier. 1987. Risk Methodology for 2 Geologic Disposal of Radioactive Waste: Final Report. NUREG/CR-2452, 3 SAND81-2573. Albuquerque, NM: Sandia National Laboratories. 4 5 Cranwell, R. M., R. V. Guzowski, J. E. Campbell, and N. R. Ortiz. 1990. 6 Risk Methodology for Geologic Disposal of Radioactive Waste: Scenario 7 Selection Procedure. NUREG/CR-1667, SAND80-1429. Albuquerque, NM: Sandia 8 National Laboratories. 9 10 Cukier, R. I., C. M. Fortuin, K. E. Shuler, A. G. Petschek, and J. H. 11 Schiably. 1973. "Study of the Sensitivity of Coupled Reaction Systems to 12 Uncertainties in Rate Coefficients, I. Theory." Journal of Chemical Physics 13 3873-3878. 14 59: 15 Cukier, R. I., H. B. Levine, and K. K. Shuler. 1978. "Nonlinear Sensitivity 16 Analysis of Multiparameter Model Systems." Journal of Computational Physics 17 26: 1-42. 18 19 Davies, P. B. 1983. "Assessing the Potential for Deep-Seated Salt 20 Dissolution and the Subsidence at the Waste Isolation Pilot Plant (WIPP)." 21 Unpublished manuscript presented at the State of New Mexico Environmental 22 Evaluation Group conference, WIPP Site Suitability for Radioactive Waste 23 Disposal, Carlsbad, NM, May 12-13, 1983. 24 25 26 Davies, P. B. 1984. "Deep-Seated Dissolution and Subsidence in Bedded Salt Deposits." Ph.D. dissertation. Dept. of Applied Earth Sciences, Stanford 27 University. 28 29 Davies, P. B. 1989. Variable-Density Ground-Water Flow and Paleohydrology 30 in the Region Surrounding the Waste Isolation Pilot Plant (WIPP), 31 Southeastern New Mexico. U.S. Geological Survey Open-File Report 88-490. 32 Albuquerque, NM: U.S. Geological Survey. 33 34 Dickinson, R. P., and R. J. Gelinas. 1976. "Sensitivity Analysis of 35 Ordinary Differential Equation Systems - A Direct Method." Journal of 36 Computational Physics 21: 123-143. 37 38 Doctor, P. G. 1989. "Sensitivity and Uncertainty Analyses for Performance 39 Assessment Modeling." Engineering Geology 26: 411-429. 40 41 Doctor, P. G., E. A. Jackson, and J. A. Buchanan. 1988. A Comparison of 42 Uncertainty Analysis Methods Using a Groundwater Flow Model. PNL-5649. 43 Richland, WA: Pacific Northwest Laboratory. 44 45 Dougherty, E. P., and H. Rabitz. 1979. "A Computational Algorithm for the 46 Green's Function Method of Sensitivity Analysis in Chemical Kinetics." 47 International Journal of Chemical Kinetics 11: 1237-1248. 48 49 Dougherty, E. P., J. T. Hwang, and H. Rabitz. 1979. "Further Developments 50 and Applications of the Green's Function Method of Sensitivity Analysis in 51 Chemical Kinetics." Journal of Chemical Physics 71: 1794-1808. 52 53

Downing, D. J., R. H. Gardner, and F. O. Hoffman. 1985. "An Examination of 1 Response-Surface Methodologies for Uncertainty Analysis in Assessment 2 Models." Technometrics 27: 151-163. 3 4 Draper, N. R., and H. Smith. 1981. Applied Regression Analysis, Second 5 Edition. New York, NY: Wiley. 6 7 Drez, P. 1989. "Preliminary Nonradionuclide Inventory of CH-TRU Waste," 8 letter from Paul Drez, International Technology Corporation, Albuquerque, NM, 9 to Larry Brush, Sandia National Laboratories, Albuquerque, NM. 10 11 Earth Technology Corporation. 1988. Final Report for Time Domain 12 Electromagnetic (TDEM) Surveys at the WIPP Site. SAND87-7144. Albuquerque, 13 NM: Sandia National Laboratories. 14 15 EPRI (Electric Power Research Institute). 1989. Probabilistic Seismic 16 Hazard Evaluations at Nuclear Plant Sites in the Central and Eastern United 17 18 States: Resolution of the Charleston Earthquake Issue. EPRI-NP-6395D. Palo Alto, CA: EPRI. 19 20 Fanchi, J. R., J. E. Kennedy, and D. L. Dauben. 1987. BOAST II: A Three-21 Dimensional Three-Phase Black Oil Applied Simulation Tool. DOE/BC-88/2/SP, 22 23 DE 88001205. U.S. Department of Energy. 24 Fedra, K. 1983. Environmental Modeling under Uncertainty: Monte Carlo 25 Simulation. RR-83-28. Laxenburg, Austria: International Institute for 26 Applied Systems Analysis. 27 28 Feller, W. 1971. An Introduction to Probability Theory and Its 29 Applications, Vol. II (2nd Ed.). New York, NY: Wiley. 30 31 Fischer, F., and J. Ehrhardt. 1985. Uncertainty Analysis with a View 32 Towards Applications in Accident Consequence Assessments. KfK 3906. 33 Karlsruhe, FRD: Kernforschungszentrum Karlsruhe. 34 35 36 Frank, P. M. 1978. Introduction to System Sensitivity Theory. New York: Academic Press. 37 38 Gardner, R. H., and R. V. O'Neill. 1983. "Parameter Uncertainty and Model 39 Predictions: A Review of Monte Carlo Results." Uncertainty and Forecasting 40 of Water Quality. Eds. M. B. Beck and G. Van Straten. New York: Springer-41 42 Verlag. 245-257. 43 Gardner, R. H., R. V. O'Neill, J. B. Mankin, and J. H. Carney. 1981. "A 44 Comparison of Sensitivity Analysis and Error Analysis Based on a Stream 45 46 Ecosystem Model." Ecological Modelling 12: 173-190. 47 Geohydrology Associates, Inc. 1979. Water-Resources Study of the Carlsbad 48 Potash Area, New Mexico. Consultant Report for the U.S. BLM. Contract No. 49 YA-S12-CT8-195. 50 51 Geological Society of America. 1984. Decade of North American Geology 52 Geologic Time Scale. Geological Society of America Map and Chart Series 53 MCH050. 54 55

Gibbons, A. 1990. "Growing Crops in Saltwater." Science 248: 963. 1 2 Gilkey, A. P. 1986a. SPLOT-A Distance-Versus-Variable Plot Program for the 3 Output of a Finite Element Analysis. SAND86-0882. Albuquerque, NM: Sandia 4 National Laboratories. 5 6 Gilkey, A. P. 1986b. TPLOT-A Time History or X-Y Plot Program for the 7 Output of a Finite Element Analysis. SAND86-0882. Albuquerque, NM: Sandia 8 National Laboratories. 9 10 Gilkey, A. P., and D. P. Flanagan. 1987. DETOUR-A Deformed Mesh/Contour 11 Plot Program. SAND86-0914. Albuquerque, NM: Sandia National Laboratories. 12 13 Gussow, W. C. 1968. "Salt Diapirism: Importance of Temperature, and Energy 14 Source of Displacement in Diapirism and Diapirs." American Association of 15 Petroleum Geologists Memoir 8, no. 8: 16-52. 16 17 Guzowski, R. V. 1990. Preliminary Identification of Scenarios That May 18 Affect the Escape and Transport of Radionuclides From the Waste Isolation 19 20 Pilot Plant, Southeastern New Mexico. SAND89-7149. Albuquerque, NM: Sandia National Laboratories. 21 22 Guzowski, R. V. 1991. Evaluation of Applicability of Probability Techniques 23 24 to Determining the Probability of Occurrence of Potentially Disruptive Intrusive Events at the Waste Isolation Pilot Plant. SAND90-7100. 25 Albuquerque, NM: Sandia National Laboratories. 26 27 Halbouty, M. T. 1979. Salt Domes. Gulf Region, United States & Mexico. 28 2nd ed. Houston, TX: Gulf Publishing Company. 29 30 Hale, W. E., and A. Clebsch, Jr. 1958. Preliminary Appraisal of Groundwater 31 Conditions in Southeastern Eddy County and Southwestern Lea County, New 32 Mexico. U.S. Geological Survey Trace Element Memorandum Report 1045. 23. 33 34 Hale, W. E., L. S. Hughes, and E. R. Cox. 1954. Possible Improvement of 35 Quality of Water of the Pecos River by Diversion of Brine at Malaga Bend, 36 Eddy County, New Mexico. Carlsbad, NM: Pecos River Commission, New Mexico 37 and Texas, in cooperation with USGS Water Resources Division. 38 39 Hansen, J., I. Fung, A. Lacis, D. Rind, S. Lebedeff, R. Ruedy, and G. 40 Russell. 1988. "Global Climate Changes as Forecast by Goddard Institute for 41 Space Studies Three-Dimensional Model." Journal of Geophysical Research 93: 42 9341-9364. 43 44 Harms, J. C., and C. R. Williamson. 1988. "Deep-Water Density Current 45 Deposits of Delaware Mountain Group (Permian), Delaware Basin, Texas and New 46 Mexico." American Association of Petroleum Geologists Bulletin 72: 299-317. 47 48

```
Harper, W. V., and S. K. Gupta. 1983. Sensitivity/Uncertainty Analysis of a
1
   Borehole Scenario Comparing Latin Hypercube Sampling and Deterministic
2
   Sensitivity Approaches. BMI/ONWI-516. Columbus, OH: Battelle Memorial
3
4
    Institute.
5
   Harper, F. T. et al., 1990. Evaluation of Severe Accident Risks:
6
    Quantification of Major Input Parameters; Experts' Determination of In-Vessel
7
    Issues. NUREG/CR-4551, SAND86-1309, vol. 2, part 1, rev. 1. Albuquerque,
8
   NM: Sandia National Laboratories.
9
10
    Harper, F. T. et al., 1991. Evaluation of Severe Accident Risks:
11
    Quantification of Major Input Parameters; Experts' Determination of
12
    Containment Loads and Molten Core-Concrete Issues. NUREG/CR-4551,
13
    SAND86-1309 vol 2, part 2, rev. 1. Albuquerque, NM: Sandia National
14
    Laboratories.
15
16
    Hartmann, W. K. 1979. "Long-Term Meteorite Hazards to Buried Nuclear Waste.
17
    Report 2" in A Summary of FY-1978 Consultant Input for Scenario Methodology
18
    Development. Pacific Northwest Laboratories. PNL-2851: VI-1-VI-15.
19
20
21
    Haug, A., V. A. Kelley, A. M. LaVenue, and J. F. Pickens. 1987. Modeling of
    Groundwater Flow in the Culebra Dolomite at the Waste Isolation Pilot Plant
22
23
    (WIPP) Site: Interim Report. SAND86-7167. Albuquerque, NM: Sandia National
    Laboratories.
24
25
26
    Havens, J. S., and D. W. Wilkins. 1979. Experimental salinity alleviation
27
    at Malaga Bend of the Pecos River, Eddy County, New Mexico. U.S. Geological
    Survey Water-Resources Investigations 80-4.
28
29
30
    Hayes, P. T. 1964. Geology of the Guadalupe Mountains, New Mexico. U.S.
    Geological Survey Professional Paper 446.
31
32
    Hays, J. D., J. Imbrie, and N. J. Shackleton. 1976. "Variations in the
33
    Earth's Orbit; Pacemaker of the Ice Ages." Science 194: 1121-1132.
34
35
    Helton, J. C., R. L. Iman, and J. B. Brown. 1985. "Sensitivity Analysis of
36
    the Asymptotic Behavior of a Model for the Environmental Movement of
37
    Radionuclides." Ecological Modelling 28: 243-278.
38
39
    Helton, J. C., R. L. Iman, J. D. Johnson, and C. D. Leigh. 1986.
40
    "Uncertainty and Sensitivity Analysis of a Model for Multicomponent Aerosol
41
    Dynamics." Nuclear Technology 73: 320-342.
42
43
44
    Helton, J. C., J. M. Griesmeyer, F. E. Haskin, R. L. Iman, C. N. Amos, and
45
    W. B. Murfin. 1988. "Integration of the NUREG-1150 Analyses: Calculation
    of Risk and Propagation of Uncertainties." Proceedings of the Fifteenth
46
    Water Reactor Safety Research Information Meeting: pp. 151-176. Washington,
47
    D.C.: U.S. Nuclear Regulatory Commission.
48
49
    Helton, J. C., R. L. Iman, J. D. Johnson, and C. D. Leigh. 1989.
50
    "Uncertainty and Sensitivity Analysis of a Dry Containment Test Problem for
51
    the MAEROS Aerosol Model." Nuclear Science and Engineering 102: 22-42.
52
53
```

Helton, J. C., J. W. Garner, R. D. McCurley, and D. K. Rudeen. 1991. 1 Sensitivity Analysis Techniques and Results for Performance Assessment at the 2 Waste Isolation Pilot Plant. SAND90-7103. Albuquerque, NM: Sandia National 3 4 Laboratories. 5 Hendrickson, R. G. 1984. Survey of Sensitivity Analysis Methodology. NBSIR 6 84-2814. Washington, D. C.: U.S. National Bureau of Standards. 7 8 Hendry, D. F. 1984. "Monte Carlo Experimentation in Econometrics," in Z. 9 Groiliches and M. D. Intriligator (eds.), Handbook of Econometrics, vol. II: 10 New York, NY: Elsevier. 937-976. 11 12 Hills, J. M. 1984. "Sedimentation, Tectonism, and Hydrocarbon Generation in 13 the Delaware Basin, West Texas and Southeastern New Mexico." American 14 Association of Petroleum Geologists Bulletin 68: 250-267. 15 16 Hiss, W. L. 1975. "Stratigraphy and Ground-Water Hydrology of the Capitan 17 Aquifer, Southeastern New Mexico and West Texas." Ph.D. dissertation. 18 University of Colorado, Boulder, CO. 19 20 Holmes, R. W. 1987. "Uncertainty Analysis for the Long-Term Assessment of 21 Uranium Mill Tailings" in Uncertainty Analysis for Performance Assessments 22 of Radioactive Waste Disposal Systems, 167-190. Paris: Organization for 23 Economic Co-Operation and Development. 24 25 Holt, R. M., and D. W. Powers. 1988. Facies Variability and Post-26 Depositional Alteration Within the Rustler Formation in the Vicinity of the 27 Waste Isolation Pilot Plant, Southeastern New Mexico. DOE/WIPP-88-004. 28 Carlsbad, NM: U.S. Department of Energy. 29 30 Hora, S. C., and R. L. Iman. 1989. "Expert Opinion in Risk Analysis: The 31 NUREG-1150 Methodology." Nuclear Science and Engineering 102: 323-331. 32 33 Hora, S. C., D. von Winterfeldt, and K. M. Trauth. 1991. Expert Judgment on 34 Inadvertent Human Intrusion into the Waste Isolation Pilot Plant. 35 SAND90-3063. Albuquerque, NM: Sandia National Laboratories. 36 37 38 Houghton, J. T., G. J. Jenkins, and J. J. Ephraums. 1990. Climate Change: The IPCC Scientific Assessment. Cambridge, UK: Cambridge University Press. 39 40 Hunter, R. L. 1983. Preliminary Scenarios for the Release of Radioactive 41 Waste From a Hypothetical Repository in Basalt of the Columbia Plateau. 42 NUREG/CR-3353, SAND83-1342. Albuquerque, NM: Sandia National Laboratories. 43 44 45 Hunter, R. L. 1985. A Regional Water Balance for the Waste Isolation Pilot 46 Plant (WIPP) Site and Surrounding Area. SAND84-2233. Albuquerque, NM: Sandia National Laboratories. 47 48

```
1
    Hunter, R. L. 1989. Events and Processes for Constructing Scenarios for the
    Release of Transuranic Waste From the Waste Isolation Pilot Plant,
2
    Southeastern New Mexico. SAND89-2546. Albuquerque, NM: Sandia National
3
    Laboratories.
4
5
6
    Hunter, R. L., G. E. Barr, and F. W. Bingham. 1982. Preliminary Scenarios
7
    for Consequence Assessments of Radioactive-Waste Repositories at the Nevada
    Test Site. SAND82-0426. Albuquerque, NM: Sandia National Laboratories.
8
9
    Hunter, R. L., G. E. Barr, and F. W. Bingham. 1983. Scenarios for
10
    Consequence Assessments of Radioactive-Waste Repositories at Yucca Mountain,
11
    Nevada Test Site. SAND82-1277. Albuquerque, NM: Sandia National
12
    Laboratories.
13
14
    Hunter, R. L., R. M. Cranwell, and M. S. Y. Chu. 1986. Assessing Compliance
15
    with the EPA High-Level Waste Standard: An Overview. SAND86-0121, NUREG/CR-
16
    4510. Albuquerque, NM: Sandia National Laboratories.
17
18
    Huyakorn, P. S., H. O. White, Jr., and S. Panday. 1989. STAFF2D Solute
19
    Transport and Fracture Flow in Two Dimensions. Herndon, VA: Hydrogeologic,
20
    Inc.
21
22
    Hwang, J. T., E. P. Dougherty, S. Rabitz, and H. Rabitz. 1978. "The Green's
23
    Function Method of Sensitivity Analysis in Chemical Kinetics." Journal of
24
    Chemical Physics 69: 5180-5191.
25
26
27
    IAEA (International Atomic Energy Agency). 1983. Concepts and Examples of
    Safety Analyses for Radioactive Waste Repositories in Continental Geological
28
    Formations. Safety Series No. 50. Paris: International Atomic Energy
29
    Agency.
30
31
    IAEA (International Atomic Energy Agency). 1989. Evaluating the Reliability
32
33
    of Predictions Made Using Environmental Transfer Models. Safety Series
    Report No. 100. Vienna: International Atomic Energy Agency.
34
35
    Ibrekk, H., and M. G. Morgan. 1987. "Graphical Communication of Uncertain
36
    Quantities to Nontechnical People." Risk Analysis 7: 519-529.
37
38
    ICBO (International Conference of Building Officials). 1979. Uniform
39
40
    Building Code. Whittier, CA: International Conference of Building
    Officials.
41
42
    ICRP (International Commission on Radiological Protection). 1959. Report of
43
    the ICRP Committee II on Permissible Dose for Internal Radiation. ICRP
44
    Publication 2. Pergamon Press.
45
46
    Iman, R. L., 1981. "Statistical Methods for Including Uncertainty Associated
47
    with the Geologic Isolation of Radioactive Waste Which Allow For a Comparison
48
    with Licensing Criteria" in Proceedings of the Symposium on Uncertainties
49
    Associated with the Regulation of the Geologic Disposal of High-Level
50
    Radioactive Waste, Gatlinburg, TN, March 9-13 1981.
51
52
```

Iman, R. L. 1982. "Statistical Methods for Including Uncertainties 1 Associated with Geologic Isolation of Radioactive Waste Which Allow for a 2 Comparison with Licensing Criteria," in Proceedings of the Symposium on 3 Uncertainties Associated with the Regulation of the Geologic Disposal of High 4 Level Radioactive Waste, Gatlinburg, TN March 9-13, 1981. D. C. Hocher, ed. 5 6 NUREG/CP-0022, CONF-810372: 145-157. Oak Ridge, TN: Oak Ridge National Laboratory. 7 8 Iman, R. L., and W. J. Conover. 1979. "The Use of the Rank Transform in 9 Regression." Technometrics 21: 499-509. 10 11 Iman, R. L., and W. J. Conover. 1980a. "Small Sample Sensitivity Analysis 12 Techniques for Computer Models, with an Application to Risk Assessment." 13 Communications in Statistics A9: 1749-1842. 14 15 16 Iman, R. L., and W. J. Conover. 1980b. "Rejoinder to Comments." Communications in Statistics A9: 1863-1874. 17 18 Iman, R. L., and W. J. Conover. 1982a. Sensitivity Analysis Techniques: 19 Self-Teaching Curriculum. SAND81-1978, NUREG/CR-2350. Albuquerque, NM: 20 Sandia National Laboratories. 21 22 Iman, R. L., and W. J. Conover. 1982b. "A Distribution-Free Approach to 23 Inducing Rank Correlation Among Input Variables." Communications in 24 Statistics, vol. B11, no. 3: 311-334. 25 26 27 Iman, R. L., and W. J. Conover. 1983. A Modem Approach to Statistics. New York: Wiley. 28 29 Iman, R. L., and J. M. Davenport. 1982. "Rank Correlation Plots for Use 30 with Correlated Input Variables." Communications in Statistics B11 11: 31 335-360. 32 33 Iman, R. L., and J. C. Helton. 1985a. A Comparison of Uncertainty and 34 Sensitivity Analysis Techniques for Computer Models. NUREG/CR-3904, 35 SAND84-1461. Albuquerque, NM: Sandia National Laboratories. 36 37 Iman, R. L. and J. C. Helton. 1985b. "Overview of Methods for Uncertainty 38 Analysis and Sensitivity Analysis in Probabilistic Risk Assessment" in 39 Proceedings of the ANS/ENS International Topical Meeting on Probabilistic 40 Safety Methods and Applications, San Francisco, CA, USA, 24 February - 1 41 March 1985, vol. 1, pp. 15-1 to 15-11. La Grange Park, IL: American Nuclear 42 Society. 43 44 Iman, R. L., and J. C. Helton. 1988. "An Investigation of Uncertainty and 45 Sensitivity Analysis Techniques for Computer Models." Risk Analysis 8: 46 71-90. 47 48 Iman, R. L. and J. C. Helton. 1991. "The Repeatability of Uncertainty and 49 50 Sensitivity Analyses For Complex Probabilistic Risk Assessments." Risk Analysis. In press (December). 51 52

Iman, R. L., J. C. Helton, and J. E. Campbell. 1978. Risk Methodology for 1 Geologic Disposal of Radioactive Waste: Sensitivity Analysis Techniques. 2 NUREG/CR-0394, SAND78-0912. Albuquerque, NM: Sandia National Laboratories. 3 4 Iman, R. L., J. C. Helton, and J. E. Campbell. 1981a. "An Approach to 5 Sensitivity Analysis of Computer Models, Part 1. Introduction, Input Variable 6 Selection and Preliminary Variable Assessment." Journal of Quality 7 Technology 13: 174-183. 8 9 Iman, R. L., J. C. Helton, and J. E. Campbell. 1981b. "An Approach to 10 Sensitivity Analysis of Computer Models, Part 2. Ranking of Input Variables, 11 Response Surface Validation, Distribution Effect and Technique Synopsis." 12 Journal of Quality Technology 13: 232-240. 13 14 Iman, R. L., M. J. Shortencarier, and J. D. Johnson. 1985. A FORTRAN 77 15 Program and User's Guide for the Calculation of Partial Correlation and 16 Standardized Regression Coefficients. NUREG/CR-4122, SAND85-0044. 17 18 Albuquerque, NM: Sandia National Laboratories. 19 Imbrie, J. 1985. "A Theoretical Framework for the Pleistocene Ice Ages." 20 Journal of the Geological Society of London 142: 417-432. 21 22 23 Imbrie, J., and J. Z. Imbrie. 1980. "Modeling the Climatic Response to Orbital Variations." Science 207. 943-953. 24 25 Imbrie, J., J. D. Hays, D. G. Martinson, et al. 1984. "The Orbital Theory of 26 Pleistocene Climate: Support from a Revised Chronology of the Marine 180 27 28 Record." Milankovitch and Climate. Eds. A. L. Berger et al. Boston, MA: D. Reidel. 269-305. 29 30 Jacobson, E. A., M. D. Freshley, and F. H. Dove. 1985. Investigations of 31 Sensitivity and Uncertainty in Some Hydrologic Models of Yucca Mountain and 32 Vicinity. SAND84-7212. Albuquerque, NM: Sandia National Laboratories. 33 34 35 Jones, C. L. 1978. Test Drilling for Potash Resources: Waste Isolation Pilot Plant Site, Eddy County, New Mexico. U.S. Geological Survey Open-File 36 Report 78-592. Washington, DC: U.S. Geological Survey. 37 38 Kaplan, S., and B. J. Garrick. 1981. "On the Quantitative Definition of 39 40 Risk." Risk Analysis 1: 11-27. 41 Karnbranslesakerhet. 1978. Handling of Spent Nuclear Fuel and Final Storage 42 of Vitrified High-Level Reprocessing Waste. Stockholm, Sweden: 43 Karnbranslesakerhet. 44 45 46 Keesey, J. J. 1976. Hydrocarbon Evaluation, Proposed Southeastern New 47 Mexico Radioactive Storage Site, Eddy County, New Mexico. 2 volumes. Midland, TX: Sipes, Williamson and Aycock. 48 49 Keesey, J. J. 1979. Evaluation of Directional Drilling for Oil and Gas 50 51 Reserves Underlying the WIPP Site Area, Eddy County, New Mexico. Midland, TX: Sipes, Williamson and Associates. 52 53

Kelly, V. A., and J. F. Pickens. 1986. Interpretation of the Convergent-1 Flow Tracer Tests Conducted in the Culebra Dolomite at the H-3 and H-4 2 Hydropads at the Waste Isolation Pilot Plant (WIPP) Site. SAND86-7161. 3 Albuquerque, NM: Sandia National Laboratories. 4 5 Kelly, V. A., and G. J. Saulnier, Jr. 1990. Core Analysis From the Culebra 6 Dolomite at the Waste Isolation Pilot Plant. SAND90-7011. Albuquerque, NM: 7 Sandia National Laboratories. 8 9 Kim, T. W., S. H. Chang, and B. H. Lee. 1988a. "Uncertainty and Sensitivity 10 Analyses in Evaluating Risk of High Level Waste Repository." Radioactive 11 Waste Management and the Nuclear Fuel Cycle 10: 321-356. 12 13 Kim, T. W., S. H. Chang, and B. H. Lee. 1988b. "Comparative Study on 14 Uncertainty and Sensitivity Analysis and Application to LOCA Model." 15 Reliability Engineering and System Safety 21: 1-26. 16 17 Kleijnen, J. P. C. 1974. Statistical Techniques in Simulation, Parts 1 and 18 2. New York, NY: Marcel Dekker. 19 20 Kleijnen, J. P. C. 1987. Statistical Tools for Simulation Practitioners. 21 New York, NY: Marcel Dekker. 22 23 Kunkler, J. L. 1980. Evaluation of the Malaga Bend Salinity Alleviation 24 Project Eddy County, New Mexico. U.S. Geological Survey Open-File Report 25 80-1111. Albuquerque, NM: U.S. Geological Survey/Water Resources Division 26 and the Pecos River Commission. 27 28 Lambert, S. J. 1983. Dissolution of Evaporites in and around the Delaware 29 Basin, Southeastern New Mexico and West Texas. SAND82-0461. Albuquerque, 30 NM: Sandia National Laboratories. 31 32 Lambert, S. J. 1991. "Isotopic Constraints on the Rustler and Dewey Lake 33 Groundwater Systems," Chapter 5 in Hydrogeochemical Studies of the Rustler 34 Formation and Related Rocks in the Waste Isolation Pilot Plant Area, 35 Southeastern New Mexico. M. D. Siegel, S. J. Lambert, and K. L. Robinson, 36 eds. SAND88-0196. Albuquerque, NM: Sandia National Laboratories. 37 38 Lambert, S. J., and J. A. Carter. 1984. Uranium-Isotope Disequilibrium in 39 Brine Reservoirs of the Castile Fm., Northern Delaware Basin, Southeastern 40 New Mexico, I: Principles and Methods. SAND83-0144. Albuquerque, NM: 41 Sandia National Laboratories. 42 43 Lambert, S. J., and J. A. Carter. 1987. Uranium-Isotope Systematics in 44 Groundwaters of the Rustler Formation, Northern Delaware Basin, Southeastern 45 New Mexico. SAND87-0388. Albuquerque, NM: Sandia National Laboratories. 46 47 Lambert, S. J., and D. M. Harvey. 1987. Stable-Isotope Geochemistry of 48 Groundwater in the Delaware Basin of Southeastern New Mexico. SAND87-0138. 49 Albuquerque, NM: Sandia National Laboratories. 50 51

Lambert, S. J., and J. W. Mercer. 1978. Hydrologic Investigations of the 1 Los Medaños Area, Southeastern New Mexico, 1977. SAND77-1401. Albuquerque, 2 NM: Sandia National Laboratories. 3 4 Lappin, A. R. 1988. Summary of Site-Characterization Studies Conducted from 5 1983 through 1987 at the Waste Isolation Pilot Plant (WIPP) Site, 6 Southeastern New Mexico. SAND88-0157. Albuquerque, NM: Sandia National 7 Laboratories. 8 9 Lappin, A. R., R. L. Hunter, D. P. Garber, P. B. Davies, R. L. Beauheim, D. 10 J. Borns, L. H. Brush, B. M. Butcher, T. Cauffman, M. S. Y. Chu, L. S. Gomez, 11 R. V. Guzowski, H. J. Iuzzolino, V. Kelley, S. J. Lambert, M. G. Marietta, J. 12 W. Mercer, E. J. Nowak, J. Pickens, R. P. Rechard, M. Reeves, K. L. Robinson, 13 and M. D. Siegel. 1989. Systems Analysis, Long-Term Radionuclide Transport, 14 and Dose Assessments, Waste Isolation Pilot Plant (WIPP), Southeastern New 15 Mexico; March 1989. SAND89-0462. Albuquerque, NM: Sandia National 16 Laboratories. 17 18 19 Lappin, A. R., R. L. Hunter, P. B. Davies, D. J. Borns, M. Reeves, J. Pickens, and H. J. Iuzzolino. 1990. Systems Analysis, Long-Term 20 Radionuclide Transport, and Dose Assessments, Waste Isolation Pilot Plant 21 (WIPP), Southeastern New Mexico; September, 1989. SAND89-1996. Albuquerque, 22 NM: Sandia National Laboratories. 23 24 LaVenue, A. M., A. Haug, and V. A. Kelley. 1988. Numerical Simulation of 25 Groundwater Flow in the Culebra Dolomite at the Waste Isolation Pilot Plant 26 27 (WIPP) Site; Second Interim Report. SAND88-7002. Albuquerque, NM: Sandia National Laboratories. 28 29 LaVenue, A. M., T. L. Cauffman, and J. F. Pickens. 1990. Ground-Water Flow 30 Modeling of the Culebra Dolomite: Volume 1 - Model Calibration. 31 SAND89-7068. Albuquerque, NM: Sandia National Laboratories. 32 33 34 Lee, F. T., and J. F. Abel, Jr. 1983. Subsidence from Underground Mining: 35 Environmental Analysis and Planning Considerations. Circular 876. U.S. Geological Survey. 36 37 Levin, R. D., and M. Tribus, eds. 1978. The Maximum Entropy Formalism. 38 Cambridge, MA: The MIT Press. 39 40 Lewins, J., and M. Becker, eds. 1982. "Sensitivity and Uncertainty Analysis 41 of Reactor Performance Parameters." Advances in Nuclear Science and 42 Technology 14, New York, NY: Plenum Press. 43 44 45 Liepmann, D., and G. Stephanopoulos. 1985. "Development and Global 46 Sensitivity Analysis of a Closed Ecosystem Model." Ecological Modelling 30: 13-47. 47 48 49 Logan, S. E., and M. C. Berbano. 1978. Development and Application of a Risk Assessment Method for Radioactive WAste Management, Volume II: 50 Implementation for Terminal Storage in Reference Repository and Other 51 Applications. EPA 520/6-78-005. Washington, DC: U.S. Environmental 52 Protection Agency. 53 54

Longsine, D. E., E. J. Bonano, and C. P. Harlan. 1987. User's Manual for 1 the NEFTRAN Computer Code. NUREG/CR-4766, SAND86-2405. Albuquerque, NM: 2 Sandia National Laboratories. ġ. 4 McCormick, N. J. 1981. Reliability and Risk Analysis - Methods and Nuclear 5 Power Applications. New York: Academic Press. 6 7 McGrath, E. J., et al. 1975. Techniques for Efficient Monte Carlo 8 Simulation. ORNL-RSIC-38, vols. I-III. Oak Ridge, TN: Oak Ridge National 9 Laboratory. 10 11 McKay, M. D., W. J. Conover, and R. J. Beckman. 1979. "A Comparison of 12 Three Methods for Selecting Values of Input Variables in the Analysis of 13 Output From a Computer Code." Technometrics vol. 21, no. 2: 239-245. 14 15 McRae, G. J., J. W. Tilden, and J. H. Seinfeld. 1981. "Global Sensitivity 16 Analysis -- A Computational Implementation of the Fourier Amplitude Sensitivity 17 Test (FAST)." Computers and Chemical Engineering 5: 15-25. 18 19 Marietta, M. G., S. G. Bertram-Howery, D. R. Anderson, K. Brinster, R. 20 Guzowski, H. Iuzzolino, and R. P. Rechard. 1989. Performance Assessment 21 Methodology Demonstration: Methodology Development for Purposes of 22 Evaluating Compliance with EPA 40 CFR Part 191, Subpart B, for the Waste 23 Isolation Pilot Plant. SAND89-2027. Albuquerque, NM: Sandia National 24 Laboratories. 25 26 Maerker, R. E. 1988. Comparison of Results Based on a Deterministic Versus 27 a Statistical Sensitivity Analysis. ORNL/TM-10773. Oak Ridge, TN: Oak 28 Ridge National Laboratory. 29 30 Mazumdar, M., et al. 1975. Review of the Methodology for Statistical 31 32 Evaluation of Reactor Safety Analysis. EPRI 309. Palo Alto, CA: Electric Power Research Institute. 33 34 Mazumdar, M., et al. 1976. Methodology Development for Statistical 35 Evaluation of Reactor Safety Analyses. EPRI-NP-194. Palo Alto, CA: 36 Electric Power Research Institute. 37 38 Mazumdar, M., J. A. Marshall, and S. C. Chay. 1978. "Propagation of 39 Uncertainties in Problems of Structural Reliability." Nuclear Engineering 40 and Design 50: 163-167. 41 42 43 Mead, R., and D. J. Pike. 1975. "A Review of Response Surface Methodology 44 from a Biometric Viewpoint." Biometrics 31: 803-851. 45 Mercer, J. W. 1983. Geohydrology of the Proposed Waste Isolation Pilot 46 Plant Site, Los Medanos Area, Southeastern New Mexico. U.S. Geological 47 Survey, Water-Resources Investigations Report 83-4016. Albuquerque, NM: 48 49 U.S. Geological Survey. 50 Mercer, J. W. 1987. Compilation of Hydrologic Data from Drilling the Salado 51 and Castile Formations Near the WIPP Site, Southeastern New Mexico. 52 53 SAND86-0954. Albuquerque, NM: Sandia National Laboratories. 54

Mercer, J. W., and B. R. Orr. 1977. Review and Analysis of Hydrogeologic 1 2 Conditions Near the Site of a Potential Nuclear-Waste Repository, Eddy and Lea Counties, New Mexico. U.S. Geological Survey Open-File Report 77-123. 3 4 Mercer, J. W. and B. R. Orr. 1979. Interim Data Report on Geohydrology of 5 the Proposed Waste Isolation Pilot Plant, Southeast New Mexico. U.S. 6 Geological Survey Water Resources Investigation 79-98. 7 8 Mercer, J. W., R. L. Beauheim, R. P. Snyder, and G. M. Fairer. 1987. Basic 9 Data Report for Drilling and Hydrologic Testing of Drillhole DOE-2 at the 10 Waste Isolation Pilot Plant (WIPP) Site. SAND86-0611. Albuquerque, NM: 11 Sandia National Laboratories. 12 13 Milankovitch, M. M. 1941. Canon of Insolation and the Ice-age Problem. 14 Koniglich Serbische Akademie, Beograd. (English translation by the Israel 15 Program for Scientific Translations; published by the U.S. Department of 16 Commerce and the National Science Foundation, Washington, D.C.). 17 18 Mishra, S., and J. C. Parker. 1989. "Effects of Parameter Uncertainty on 19 Predictions of Unsaturated Flow." Journal of Hydrology 108: 19-33. 20 21 Mitchell, J. F. B. 1989. "The 'Greenhouse Effect' and Climate Change." 22 Reviews of Geophysics 27: 115-139. 23 24 Molecke, M. A. 1983. A Comparison of Brines Relevant to Nuclear Waste 25 Experimentation. SAND83-0516. Albuquerque, NM: Sandia National 26 27 Laboratories. 28 29 Montgomery, R. H., V. D. Lee, and K. H. Reckhow. 1983. "Predicting Variability in a Lake Ontario Phosphorus Model." Journal of Great Lakes 30 Research 9: 74-82. 31 32 33 Morton, R. H. 1983. "Response Surface Methodology." Mathematical Scientist 8: 31-52. 34 35 Muffler, L. J. P., ed. 1979. Assessment of Geothermal Resources of the 36 United States -- 1978. Circular 790. U.S. Geological Survey. 37 38 Munson, D. E., Fossum, A. F., and Senseny, P. E. 1989a. Advances in 39 Resolution of Discrepancies Between Predicted and Measured In Situ WIPP Room 40 41 Closures. SAND88-2948. Albuquerque, NM: Sandia National Laboratories. 42 43 Munson, D. E., Fossum, A. F., and Senseny, P. E. 1989b. Approach to First Principles Model Prediction of Measured WIPP In Situ Room Closure in Salt. 44 SAND88-2535. Albuquerque, NM: Sandia National Laboratories. 45 46 47 Myers, R. H. 1971. Response Surface Methodology. Boston, MA: Allyn and 48 Bacon. 49 50 Neter, J., and W. Wasserman. 1974. Applied Linear Statistical Models. Homewood, IL: Richard D. Irwin. 51 52

NEA (Nuclear Energy Agency). 1987. Uncertainty Analysis for Performance 1 2 Assessments of Radioactive Waste Disposal Systems. Paris: Organization for Economic Co-Operation and Development. 3 4 Nicholson, A., Jr., and A. Clebsch, Jr. 1961. Geology and Ground-water 5 Conditions in Southern Lea County, New Mexico. New Mexico Bureau of Mines 6 and Mineral Resources Ground-Water Report No. 6. Socorro, NM: New Mexico 7 Bureau of Mines and Mineral Resources. 8 9 Nowak, E. J., and J. C. Stormont. 1987. Scoping Model Calculations of the 10 Reconsolidation of Crushed Salt in WIPP Shafts. SAND87-0879. Albuquerque, 11 NM: Sandia National Laboratories. 12 13 Nowak, E. J., D. F. McTigue, and R. Beraun. 1988. Brine Inflow to WIPP 14 Disposal Rooms: Data, Modeling, and Assessment. SAND88-0112. Albuquerque, 15 NM: Sandia National Laboratories. 16 17 Nowak, E. J., J. R. Tillerson, and T. M. Torres. 1990. Initial Reference 18 Seal System Design: Waste Isolation Pilot Plan. SAND90-0355. Albuquerque, 19 NM: Sandia National Laboratories. 20 21 NuPac (Nuclear Packaging, Inc.). 1989. Safety Analysis Report for the 22 TRUPACT-II Shipping Package. NuPac TRUPACT-II SAR Rev. 4. 23 24 Oblow, E. M. 1985. GRESS: Gradient Enhanced Software System, Version D, 25 User's Guide. ORNL/TM-9658. Oak Ridge, TN: National Laboratory. 26 27 Oblow, E. M., F. G. Pin, and R. Q. Wright. 1986. "Sensitivity Analysis 28 Using Computer Calculus: A Nuclear Waste Isolation Example." Nuclear 29 Science and Engineering 94: 46-65. 30 31 Obray, C. D, C. C. Wright, and S. J. Baldwin. 1986. "A Comparative Study of 32 Monte-Carlo Simulation and Taylor Series Approaches to the Derivation of 33 34 Uncertainty Estimates: A Case Study on Compact Heat Exchangers" in Modelling Under Uncertainty 1986. Eds. S. B. Jones and D. G. S. Davies. 35 Institute of Physics Conference Series No. 80: 243-252. Bristol, England: 36 Institute of Physics. 37 38 39 Olivi, L. 1986. Response Surface Methodology Handbook for Nuclear Reactor 40 Safety. EUR 9600 EN. Luxembourg: Commission of the European Communities. 41 Ortiz, N. R., T. A. Wheeler, R. J. Breeding, S. Hora, M. A. Myer, and R. L. 42 43 Keeney. 1991. "Use of Expert Judgment in NUREG-1150." Nuclear Engineering and Design. 126: 313-331. 44 45 Owen, G. N., and R. E. Scholl. 1981. Earthquake Engineering of Large 46 Underground Structures. FHWA/RD-80/195. Washington, D.C.: Federal Highway 47 Administration, Department of Transportation. 48 49 Parker, T. J., and A. N. McDowell. 1951. "Scale Models as Guides to 50 Interpretation of Salt Dome Faulting." American Association of Petroleum 51 Geologists Bulletin vol. 35, no. 9: 2076-2086. 52 53

Parker, T. J., and A. N. McDowell. 1955. "Model Studies of Salt dome 1 Tectonics." American Association of Petroleum Geologists Bulletin vol. 39, 2 no. 12: 2384-2470. 3 4 Parry G. W. 1988. "On the Meaning of Probability in Probabilistic Safety 5 Assessment." Reliability Engineering and System Safety 23: 309-314. 6 7 Pasztor, S. B. 1991. "A Historical Perspective of Cultural Development in 8 Southeastern New Mexico," Chapter IX in Background Information Presented to 9 the Expert Panel on Inadvertent Human Intrusion into the Waste Isolation 10 Pilot Plant. Eds. R. V. Guzowski and M. M. Gruebel. SAND91-0928. 11 Albuquerque, NM: Sandia National Laboratories. In preparation. 12 13 Paté-Cornell M. E. 1986. "Probability and Uncertainty in Nuclear Safety 14 Decisions." Nuclear Engineering and Design 93: 319-327. 15 16 Pepping, R. E., M. S. Y. Chu, and M. D. Siegel. 1983. "A simplified 17 18 analysis of a hypothetical repository in a basalt formation, Volume 2." Technical Assistance for Regulatory Development: Review and Evaluation of 19 the Draft EPA Standard 40 CFR 191 for Disposal of High-Level Waste. 20 NUREG/CR-3235, SAND82-1557. Albuquerque, NM: Sandia National Laboratories. 21 22 23 Peterson, E. W., P. L. Lagus, and K. Lie. 1987. Fluid Flow Measurements of Test Series A and B for the Small Scale Seal Performance Tests. SAND87-7041. 24 Albuquerque, NM: Sandia National Laboratories. 25 26 27 Pin, F. G., B. A. Worley, E. M. Oblow, R. Q. Wright, and W. V. Harper. 1986. "An Automated Sensitivity Analysis Procedure for the Performance Assessment 28 of Nuclear Waste Isolation Systems." Nuclear and Chemical Waste Management 29 **6**: 255-263. 30 31 Popielak, R. S., R. L. Beauheim, S. R. Black, W. E. Coons, C. T. Ellingson, 32 and R. L. Olson. 1983. Brine Reservoirs in the Castile Fm., Waste Isolation 33 Pilot Plant (WIPP) Project, Southeastern New Mexico. TME-3153. Carlsbad, 34 NM: U.S. Department of Energy. 35 36 37 Powers, D. W., S. J. Lambert, S-E Shaffer, L. R. Hill, and W. D. Weart, eds. 1978a. Geological Characterization Report, Waste Isolation Pilot Plant 38 (WIPP) Site, Southeastern New Mexico. Volume I. SAND78-1596. Albuquerque. 39 NM: Sandia National Laboratories. 40 41 42 Powers, D. W., S. J. Lambert, S-E Shaffer, L. R. Hill, and W. D. Weart, eds. 43 1978b. Geological Characterization Report, Waste Isolation Pilot Plant (WIPP) Site, Southeastern New Mexico. Volume II. SAND78-1596. Albuquerque, 44 NM: Sandia National Laboratories. 45 46 47 Public Law 96-164. 1979. Department of Energy National Security and Military Applications of Nuclear Energy Authorization Act of 1980. 48 49 Public Law 100-456. 1989. National Defense Authorization Act, Fiscal Year 50 1989. 51 52

Rabitz, H., M. Kramer, and D. Dacol. 1983. "Sensitivity Analysis in 1 Chemical Kinetics." Annual Reviews of Physical Chemistry 34: 410-461. 2 3 Rackwitz, R., and B. Fiessler. 1978. "Structural Reliability Under Combined 4 Random Load Sequences." Journal of Computers and Structures 9: 489-494. 5 6 Rautman, C. 1988. Technical Data Base Planning Strategy for the NNWSI Site 7 & Engineering Properties Data Base. SLTR87-5003. Albuquerque, NM: Sandia 8 National Laboratories. 9 10 Rechard, R. P. 1989. Review and Discussion of Code Linkage and Data Flow in 11 Nuclear Waste Compliance Assessments. SAND87-2833. Albuquerque, NM: Sandia 12 National Laboratories. 13 14 Rechard, R. P., H. J. Iuzzolino, J. S. Rath, R. D. McCurley, and D. K. 15 Rudeen, 1989. User's Manual for CAMCON: Compliance Assessment Methodology 16 Controller. SAND88-1496. Albuquerque, NM: Sandia National Laboratories. 17 18 Rechard, R. P., H. J. Iuzzolino, and J. S. Sandha. 1990a. Data Used in 19 Preliminary Performance Assessment of the Waste Isolation Pilot Plant (1990). 20 SAND89-2408. Albuquerque, NM: Sandia National Laboratories. 21 22 Rechard, R. P., W. Beyeler, R. D., McCurley, D. K. Rudeen, J. E. Bean, and J. 23 D. Schreiber. 1990b. Parameter Sensitivity Studies of Selected Components 24 of the WIPP Repository System. SAND89-2030. Albuquerque, NM: Sandia 25 National Laboratories. 26 27 Reiter, L. 1990. Earthquake Hazard Analysis. New York, NY: Columbia 28 29 University Press. 30 Richey, S. F., J. G. Wells, and K. T. Stephens. 1985. Geohydrology of the 31 Delaware Basin and Vicinity, Texas and Mexico. U.S. Geological Survey Water 32 Resources Investigations Report 84-4077. Washington, DC: U.S. Geological 33 34 Survey. 35 Rish, W. R., and R. J. Marnicio. 1988. Review of Studies Related to 36 Uncertainty in Risk Analysis. ORNL/TM-10776. Oak Ridge, TN: Oak Ridge 37 National Laboratory. 38 39 Robinson, T. W., and W. B. Lang. 1938. Geology and Groundwater Conditions 40 of the Pecos River Valley in the Vicinity of Laguna Grande de la Sal, New 41 Mexico, With Special Reference to the Salt Content of the River Water. New 42 Mexico State Engineer 12th-13th Biennial Rpts 1934-1938. 77-100. 43 44 Ronen, Y, ed. 1988. Uncertainty Analysis. Boca Raton, FL: CRC Press. 45 46
References

Rose, K. A.. 1982. "A Simulation Comparison and Evaluation of Parameter 1 Sensitivity Methods Applicable to Large Models" in Analysis of Ecological 2 Systems: State-of-the-Art in Ecological Modeling. Eds. W. K. Lauenroth, et 3 al. 129-140. 4 5 Rose, K. A., and G. S. Swartzman. 1981. A Review of Parameter Sensitivity 6 Methods Applicable to Ecosystem Models. NUREG/CR-2016. Seattle, WA: 7 University of Washington. 8 9 Sanford, A. R., and T. R. Toppozada. 1974. Seismicity of Proposed 10 Radioactive Waste Disposal Site in Southeastern New Mexico. Circular 143. 11 Socorro, NM: New Mexico Bureau of Mines and Mineral Resources. 12 13 Saulnier, G.J. Jr. 1987. Analysis of Pumping Tests of the Culebra Dolomite 14 Conducted at the H-11 Hydropad at the Waste Isolation Pilot Plant (WIPP) 15 Site. SAND87-7124. Albuquerque, NM: Sandia National Laboratories. 16 17 Saulnier, G. J., Jr., and J. D. Avis. 1988. Interpretation of Hydraulic 18 Tests Conducted in the Waste-Handling Shaft at the Waste Isolation Pilot 19 Plant (WIPP) Site. SAND87-7001. Albuquerque, NM: Sandia National 20 21 Laboratories. 22 23 Scavia, D., W. F. Powers, R. P. Canale, and J. L. Moody. 1981. "Comparison of First-Order Error Analysis and Monte Carlo Simulation in Time-Dependent 24 Lake Eutrophication Models." Water Resources Research 17: 1051-1059. 25 26 Schaibly, J. H., and K. E. Shuler. 1973. "Study of the Sensitivity of 27 Coupled Reaction Systems to Uncertainties in Rate Coefficients, II. 28 Applications." Journal of Chemical Physics 59: 3879-3888. 29 30 Schwarz, G., and F. O. Hoffman. 1980. "Imprecision of Dose Predictions for 31 Radionuclides Released to the Environment: An Application of a Monte Carlo 32 Simulation Technique." Environment International 4: 289-297. 33 34 Seaholm, S. K., E. Ackerman, and S. C. Wu. 1988. "Latin Hypercube Sampling 35 and the Sensitivity Analysis of a Monte Carlo Epidemic Model." International 36 Journal of BioMedical Computing 23: 97-112. 37 38 39 Shurbet, D. H. 1969. "Increased Seismicity in Texas." Texas Journal of Science 21: 37-41. 40 41 42 Siegel, M. D. 1990. "Appendix A, Memo 3a: Representation of Radionuclide 43 Retardation in the Culebra Dolomite in Performance Assessment Calculations," in Data Used in Preliminary Performance Assessment of the Waste Isolation 44 Pilot Plant (1990). R. P. Rechard, H. Iuzzolino, and J. S. Sandha. 45 46 SAND89-2408. Albuquerque, NM: Sandia National Laboratories. 47 Siegel, M. D., and S. J. Lambert. 1991. "Summary of Hydrogeochemical 48 Constraints on Groundwater Flow and Evolution in the Rustler Formation," 49 50 Chapter I in Hydrogeochemical Studies of the Rustler Formation and Related

Rocks in the Waste Isolation Pilot Plant Area, Southeastern New Mexico. Eds. 1 M. D. Siegel, S. J. Lambert, and K. L. Robinson. SAND88-0196. Albuquerque, 2 NM: Sandia National Laboratories. 3 4 5 Siegel, M. D., K. L. Robinson, and J. Myers. 1991. "Solute Relationships in Groundwaters from the Culebra Dolomite and Related Rocks in the Waste 6 Isolation Pilot Plant Area, Southeastern New Mexico," Chapter 2 in 7 Hydrogeochemical Studies of the Rustler Formation and Related Rocks in the 8 Waste Isolation Pilot Plant Area, Southeastern New Mexico. SAND88-0196. 9 10 Albuquerque, NM: Sandia National Laboratories. 11 Slezak, S., and A. Lappin. 1990. "Potential for and Possible Impacts of 12 13 Generation of Flammable and/or Detonable Gas Mixtures during the WIPP Transportation, Test, and Operational Phases," memorandum to D. Mercer and C. 14 Fredrickson (January 5). Albuquerque, NM: Sandia National Laboratories. 15 16 Smith, C. B., D. J. Egan, Jr., W. A. Williams, J. M. Grunlke, C.-Y. Hung, and 17 B. L. Serini. 1982. Population Risks from Disposal of High-Level 18 Radioactive Wastes in Geologic Repositories. EPA-520/3-80-006. Washington, 19 D.C.: U.S. Environmental Protection Agency. 20 21 Snyder, R. P. 1985. "Dissolution of Halite and Gypsum, and Hydration of 22 Anydrite to Gypsum, Rustler Formation, in the Vicinity of the Waste Isolation 23 Pilot Plant, Southeastern New Mexico," Open-File Report 85-229. Denver, CO: 24 U.S. Geological Survey. 25 26 Snyder, R. P., and L. M. Gard. 1982. Evaluation of Breccia Pipes in 27 Southeastern New Mexico and their Relation to the Waste Isolation Pilot Plant 28 (WIPP) Site. Open-File Report 82-968. Washington, D.C.: U.S. Geological 29 Survey for the U.S. Department of Energy (Interagency Agreement E 30 (29-2)-3627). 31 32 33 Stormont, J. C. 1988. Preliminary Seal Design Evaluation for the Waste Isolation Pilot Plant. SAND87-3083. Albuquerque, NM: Sandia National 34 Laboratories. 35 36 Stormont, J. C., E. W. Peterson, and P. L. Lagus. 1987. Summary of and 37 Observations about WIPP Facility Horizon Flow Measurements through 1986. 38 39 SAND87-0176. Albuquerque, NM: Sandia National Laboratories. 40 Stratton, W. R. 1983. The Myth of Nuclear Explosions at Waste Disposal 41 Sites. LA-9360. Los Alamos, NM: Los Alamos National Laboratory. 42 43 Sykes, J. F., and N. R. Thomson. 1988. "Parameter Identification and 44 Uncertainty Analysis for Variably Saturated Flow." Advances in Water 45 Resources 11: 185-191. 46 47 Swift, P. N. 1991a. "Long-Term Climate Variability at the Waste Isolation 48 Pilot Plant," Chapter VII in Background Information Presented to the Expert 49 50 Panel on Inadvertent Human Intrusion into the Waste Isolation Pilot Plant. Eds. R. V. Guzowski and M. M. Gruebel. SAND91-0928. Albuquerque, NM: 51 Sandia National Laboratories. In preparation. 52 53

References

Swift, P. N. 1991b. "Agriculture and Climatic Change at the Waste Isolation 1 Pilot Plant," Chapter VIII in Background Information Presented to the Expert 2 Panel on Inadvertent Human Intrusion into the Waste Isolation Pilot Plant. 3 Eds. R. V. Guzowski and M. M. Gruebel. SAND91-0928. Albuquerque, NM: 4 Sandia National Laboratories. In preparation. 5 6 Taylor, L. M., D. P. Flanagan, and W. C. Mills-Curran. 1987. The GENESIS 7 Finite Element Mesh File Format. SAND86-0910. Albuquerque, NM: Sandia 8 National Laboratories. 9 10 Thorne, B. J., and D. K. Rudeen. 1979. Regional Effects of TRU Repository 11 Heat. CSI-2053-05. Albuquerque, NM: Civil Systems, Inc. 12 13 14 Tierney, M. S. 1990. Constructing Probability Distributions of Uncertain Variables in Models of the Performance of the Waste Isolation Pilot Plant. 15 SAND90-2510. Albuquerque, NM: Sandia National Laboratories. 16 17 Tilden, J. W., V. Costanza, G. J. McRae, and J. H. Seinfeld. 1981. 18 "Sensitivity Analysis of Chemically Reacting Systems" in Modelling of 19 Chemical Reaction Systems. Eds. K. H. Ebert, P. Deuflhard and W. Jaeger 20 (eds). New York, NY: Springer-Verlag. 69-91. 21 22 Tomovic, R., and M. Vukobratovic. 1972. General Sensitivity Theory. New 23 24 York, NY: Elsevier, 25 Trauth, K. M., R. P. Rechard, and S. C. Hora. 1991. "Expert Judgment as 26 Input to Waste Isolation Pilot Plant Performance Assessment Calculations: 27 Probability Distributions of Significant System Parameters" in Mixed Waste: 28 Proceedings of the First International Symposium, August 26-29, Baltimore, 29 Maryland. Eds. A. A. Moghissi and G. A. Benda. American Society of 30 Mechanical Engineers, U.S. Department of Energy, U.S. Environmental 31 Protection Agency, and the University of Maryland 32 33 34 Trusheim, F. 1960. "On the Mechanism of Salt Migration in Northern Germany." American Association of Petroleum Geologists Bulletin vol. 44, no. 35 9: 1519-1540. 36 37 Tyler, L. D., R. V. Matalucci, M. A. Molecke, D. E. Munson, E. J. Nowak, and 38 J. C. Stormont. 1988. Summary Report for the WIPP Technology Development 39 Program for Isolation of Radioactive Waste. SAND88-0844. Albuquerque, NM: 40 Sandia National Laboratories. 41 42 U.S. DOE (Department of Energy). 1979. Draft Environmental Impact 43 Statement, Management of Commercially Generated Radioactive Waste. DOE/EIS-44 0046-D. Washington, DC: U.S. Department of Energy. 45 46 U.S. DOE (Department of Energy). 1980a. Final Environmental Impact 47 48 Statement: Waste Isolation Pilot Plant. DOE/EIS-0026. U.S. Department of Energy, October 1980. 49 50 U.S. DOE (Department of Energy). 1980b. Subject: Radioactive Waste 51 Management. DOE Order 5820.2A, dated September 26, 1988. 52 53

U.S. DOE (Department of Energy). 1981. "Waste Isolation Pilot Plant (WIPP); 1 Record of Decision." Federal Register 46: 9162. 2 3 U.S. DOE (Department of Energy). 1987. A Plan for the Implementation of 4 Assurance Requirements in Compliance with 40 CFR Part 191.14 at the Waste 5 Isolation Pilot Plant. DOE/WIPP 87-016. Carlsbad, NM: U.S. Department of 6 7 Energy. 8 U.S. DOE (Department of Energy). 1988. Geotechnical Field Data and Analysis 9 Report. DOE-WIPP-87-017. Carlsbad, NM: U.S. Department of Energy. 10 11 U.S. DOE (Department of Energy). 1989a. Waste Isolation Pilot Plant 12 Compliance Strategy for 40 CFR Part 191. WIPP-DOE-86-013. Carlsbad, NM: 13 U.S. Department of Energy. 14 15 U.S. DOE (Department of Energy). 1989b. Draft Supplement Environmental 16 17 Impact Statement, Waste Isolation Pilot Plant. DOE/EIS-0026-DS. Washington, DC: U.S. Department of Energy, Office of Environmental Restoration and Waste 18 Mmanagement. 19 20 U.S. DOE (Department of Energy). 1989c. Annual Water Quality Data Report, 21 Waste Isolation Pilot Plant, DOE/WIPP 89-001. Carlsbad, NM: Westinghouse 22 23 Electric Corporation. 24 U.S. DOE (Department of Energy). 1990a. Final WIPP Safety Analysis Report, 25 Waste Isolation Pilot Plant. Carlsbad, NM: U.S. Department of Energy. 26 27 28 U.S. DOE (Department of Energy). 1990b. WIPP Test Phase Plan: Performance Assessment. DOE/WIPP 89-011, Rev. 0. Carlsbad, NM. 29 30 U.S. DOE (Department of Energy). 1990c. Final Supplement Environmental 31 Impact Statement, Waste Isolation Pilot Plant. DOE/EIS-0026-FS. Washington. 32 33 DC: U.S. Department of Energy, Office of Environmental Restoration and Waste Management. 34 35 U.S. DOE (Department of Energy). 1990d. Recommended Initial Waste Forms for 36 the WIPP Experimental Test Program, May 1990, Engineered Alternnatives Task 37 Force. DOE/WIPP 90-009. Carlsbad, NM: Westinghouse Electric Corporation. 38 39 40 U.S. DOE (Department of Energy). 1990e. Integrated Data Base for 1990: Spent Fuel and Radioactive Waste Inventories, Projects and Characterizations. 41 DOE/RW-006, Rev. 6. 42 43 44 U.S. DOE (Department of Energy). 1990f. Waste Isolation Pilot Plant No-Migration Variance Petition. DOE/WIPP 89-003, Revision 1. Carlsbad, NM: 45 Westinghouse Electric Corporation. 46 47 U.S. DOE (Department of Energy). 1991a. Strategy for the Waste Isolation 48 Pilot Plant Test Phase. DOE/EM/48063-2. Washington, DC: Office of Waste 49 Operations, U.S. Department of Energy. 50 51

References

U.S. DOE (Department of Energy). 1991b. Waste Isolation Pilot Plant Test 1 Phase Management Plan. DOE/WIPP91-015. Carlsbad, NM: U.S. Department of 2 Energy. 3 4 U.S. DOE (Department of Energy). 1991c. Recommended Strategy for the 5 Remote-Handled Transuranic Waste Program. DOE/WIPP 90-058, Revision 1. 6 Carlsbad, NM: U.S. Department of Energy. 7 8 U.S. DOE (Department of Energy). 1991d. Implementation of the Resource 9 Disincentive in 40 CFR Part 191.14(e) at the Waste Isolation Pilot Plant 10 DOE/WIPP 91-029. Carlsbad, NM: U.S. Department of Energyy. 11 12 U.S. DOE (Department of Energy) and State of New Mexico. 1981, as modified. 13 "Agreement for Consultation and Cooperation" on WIPP by the State of New 14 Mexico and U.S. Department of Energy, modified 11/30/84 and 8/4/87. 15 16 U.S. EPA (Environmental Protection Agency). 1984. Ground-Water Protection 17 Strategy. Washington, DC: Office of Ground-Water Protection. 18 19 20 U.S. EPA (Environmental Protection Agency). 1985. Environmental Standards 21 for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Waste; Final Rule, 40 CFR Part 191, Federal Register 22 **50**: 38066-38089. 23 24 U.S. NRC (Nuclear Regulatory Commission). 1975. Reactor Safety Study - An 25 Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants: U.S. 26 Nuclear Regulatory Commission Rept. WASH-1400, NUREG-75/014. Washington, 27 DC. 28 29 30 U.S. NRC (Nuclear Regulatory Commission). 1990. Severe Accident Risks: An Assessment forr Five U.S. Nuclear Power Plants. NUREG-1150. Washington, 31 D.C.: U.S. Nuclear Regulatory Commission. 32 33 Uliasz, M. 1985. "Comparison of the Sensitivity Analysis Methods for 34 Meteorological Models." Zeitschrift fuer Meteorologie 6: 340-348. 35 36 University of New Mexico. 1989. New Mexico Statistical Abstract 1989. 37 Albuquerque, NM: Bureau of Business and Economic Research, University of New 38 Mexico. 39 40 Vaughn, P., J. Schreiber and J. Bean. 1991. "The Modeling and Effect of 41 Waste-Generated Gas of Probabilistic System Assessments of the Waste 42 Isolation Pilot Plant" in Proceedings of NEA Workshop on Gas Generation and 43 Release from Radioactive Waste Repositories, Aix-en-Provence, France. 44 45 September 23-26, 1991. In preparation. 46 Vaughn, W. A. 1982. "Review of the Environmental Analysis for the Cost 47 Reduction Proposals for the Waste Isolation Pilot Plant (WIPP) Project," 48 letter to H. E. Roser, Assistant Secretary for Defense Programs (July 8). 49 50 Washington, D.C.: Environmental Protection, U.S. Department of Energy. 51

Vesely, W. E. and D. M. Rasmuson. 1984. "Uncertainties in Nuclear 1 Probabilistic Risk Analyses." Risk Analysis 4: 313-322. 2 3 Vine, J. D. 1963. "Surface Geology of the Nash Draw Quadrangle, Eddy County, 4 New Mexico." U.S. Geological Survey Bulletin 1141-B. 5 6 Voss, C. I. 1984. SUTRA (Saturated-Unsaturated Transport): A Finite-7 Element Simulation Model for Saturated-Unsaturated, Fluid-Density-Dependent 8 Ground-Water Flow with Energy Transport or Chemically Reactive Single-Species 9 Solute Transport. Reston, VA. U.S. Geological Survey National Center. 10 11 Ward, R. F., C. G. St. C. Kendall, and P. M. Harris. 1986. "Upper Permian 12 (Guadalupian) Facies and Their Association with Hydrocarbons - Permian Basin, 13 West Texas and New Mexico." American Association of Petroleum Geologists 14 Bulletin 70: 239-262. 15 16 Waste Management Technology Department. 1987. The Scientific Program at the 17 Waste Isolation Pilot Plant. SAND85-1699. Albuquerque, NM: Sandia National 18 Laboratories. 19 20 Weart, W. D. 1983. Summary of Evaluation of the Waste Isolation Pilot Plant 21 (WIPP) Site Suitability. SAND83-0450. Albuquerque, NM: Sandia National 22 Laboratories. 23 24 Weatherby, J. R., J. G. Arguello, and C. M. Stone. 1989. "The Effect of Gas 25 Generation on Performance of CH-TRU Disposal Rooms," memorandum to B. M. 26 Butcher (November 14). Albuquerque, NM: Sandia National Laboratories. 27 28 Weatherford, R. 1982. Philosophical Foundations of Probability Theory. 29 London, UK: Routledge and Kegan Paul, Ltd. 30 31 WEC (Westinghouse Electric Corporation). 1989. Waste Isolation Pilot Plant 32 Underground Facility Plan. Drawing No. 51-W-032-W, revision C, sheet 1 of 1. 33 Carlsbad, NM: Westinghouse Waste Isolation Division. 34 35 WEC (Westinghouse Electric Corporation). 1990. Final Program Plan for 36 Engineered Alternatives. April 20, 1990, Carlsbad, New Mexico. 37 38 Wheeler, T. A., S. C. Hora, W. R. Cramond, and S. D. Unwin. 1989. Analysis 39 of Core Damage Frequency: Expert Judgment Elicitation. NUREG/CR-4550. 40 SAND86-1084, vol. 2, rev. 2. Albuquerque, NM: Sandia National Laboratories. 41 42 Williamson, C. R. 1978. "Depositional Processes, Diagenesis and Reservoir 43 Properties of Permian Deep-Sea Sandstone, Bell Canyon Formation." Ph.D. 44 dissertation. University of Texas, Austin, TX. 45 46 47 Winkler, R. L. 1972. An Introduction to Bayesian Inference and Decision. New York: Holt, Reinhart and Winston. 48 49 Woo, G. 1991. "A Quitting Rule for Monte Carlo Simulation of Extreme 50 Risks." Reliability Engineering and System Safety 31: 179-189. 51 52

References

Worley, B. A., and J. E. Horwedel. 1986. A Waste Package Performance 1 Assessment Code with Automated Sensitivity-Calculation Capability. ORNL/TM-2 9976. Oak Ridge, TN: Oak Ridge National Laboratory. 3 4 Wu, Y.-T. 1987. "Demonstration of a New, Fast Probability Integration 5 Method for Reliability Analysis." Journal of Engineering for Industry 109: 6 24-28. 7 8 Wu, Y.-T., and P. H. Wirsching. 1987. "New Algorithm for Structural 9 Reliability." Journal of Engineering for Industry 113: 1319-1336. 10 11 Wu, Y.-T., H. R. Millwater, and T. A. Cruse. 1990. "Advanced Probabilistic 12 Structural Method for Implicit Performance Functions." AIAA Journal 28: 13 1663-1669. 14 15 16 Wu, Y. -T., A. G. Journel, L. R. Abramson, and P. K. Nair. 1991. Uncertainty Evaluation Methods for Waste Package Performance Assessment. 17 NUREG/CR-5639. Washington, DC: Division of High-Level Waste Management, 18 Office of Nuclear Material Safety and Safeguards, U.S. Nuclear Regulatory 19 20 Commission. 21 22 Zimmerman, D. A., K. K. Wahi, A. L. Gutjahr, and P. A. Davis. 1990. A 23 Review of Techniques for Propagating Data and Parameter Uncertainties in High-Level Radioactive Waste Repository Performance Models. NUREG/CR-5393. 24 25 SAND89-1432. Albuquerque, NM: Sandia National Laboratories. 26

APPENDIX A: TITLE 40, CODE OF FEDERAL REGULATIONS, SUBCHAPTER F, PART 191

APPENDIX A: TITLE 40, CODE OF FEDERAL REGULATIONS SUBCHAPTER F—RADIATION PROTECTION PROGRAMS

PART 191—ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR MANAGEMENT AND DISPOSAL OF SPENT NUCLEAR FUEL, HIGH-LEVEL AND TRANSURANIC RADIOACTIVE WASTES

Subpart A-Environmental Standards for Management and Storage

Sec.

- 191.01 Applicability.191.02 Definitions.191.03 Standards.191.04 Alternative standards.191.05 Effective date.
- Subpart B-Environmental Standards for Disposal

191.11 Applicability.

- 191.12 Definitions.
- 191.13 Containment requirements.
- 191.14 Assurance requirements.
- 191.15 Individual protection requirements.
- 191.16 Ground water protection requirements.
- 191.17 Alternative provisions for disposal.
- 191.18 Effective date.

Appendix A Table for Subpart B Appendix B Guidance for Implementation of Subpart B

Authority: The Atomic Energy Act of 1954, as amended; Reorganization Plan No. 3 of 1970; and the Nuclear Waste Policy Act of 1982.

Subpart A-Environmental Standards for Management and Storage

§ 191.01 Applicability.

This Subpart applies to:

(a) Radiation doses received by members of the public as a result of the management (except for transportation) and storage of spent nuclear fuel or high-level or transuranic radioactive wastes at any facility regulated by the

Nuclear Regulatory Commission or by Agreement States, to the extent that such management and storage operations are not subject to the provisions of Part 190 of title 40; and

(b) Radiation doses received by members of the public as a result of the management and storage of spent nuclear fuel or high-level or transuranic wastes at any disposal facility that is operated by the Department of Energy and that is not regulated by the Commission or by Agreement States.

§ 191.02 Definitions.

Unless otherwise indicated in this Subpart, all terms shall have the same meaning as in Subpart A of Part 190.

(a) "Agency" means the Environmental Protection Agency.

(b) "Administrator" means the Administrator of the Environmental Protection Agency.

(c) "Commission" means the Nuclear Regulatory Commission.

(d) "Department" means the Department of Energy.

(e) "NWPA" means the Nuclear Waste Policy Act of 1982 (Pub. L. 97-425).

(f) "Agreement State" means any State with which the Commission or the Atomic Energy Commission has entered into an effective agreement under subsection 274b of the Atomic Energy Act of 1954, as amended (68 Stat. 919).

(g) "Spent nuclear fuel" means fuel that has been withdrawn from a nuclear reactor following irradiation, the constituent elements of which have not been separated by reprocessing.

(h) "High-level radioactive waste," as used in this Part, means highlevel radioactive waste as defined in the Nuclear Waste Policy Act of 1982 (Pub. L. 97-425).

(i) "Transuranic radioactive waste," as used in this Part, means waste containing more than 100 nanocuries of alpha-emitting transuranic isotopes, with half-lives greater than twenty years, per gram of waste, except for:
(1) High-level radioactive wastes; (2) wastes that the Department has determined, with the concurrence of the Administrator, do not need the degree of isolation required by this Part; or (3) wastes that the Commission has approved for disposal on a case-by-case basis in accordance with 10 CFR Part 61.

(j) "Radioactive waste," as used in this Part, means the high-level and transuranic radioactive waste covered by this Part.

(k) "Storage" means retention of spent nuclear fuel or radioactive wastes with the intent and capability to readily retrieve such fuel or waste for subsequent use, processing, or disposal.

(1) "Disposal" means permanent isolation of spent nuclear fuel or radioactive wastes from the accessible environment with no intent of recovery, whether or not such isolation permits the recovery of such fuel or waste. For example, disposal of waste in a mined geologic repository occurs when all of the shafts to the repository are backfilled and sealed.

(m) "Management" means any activity, operation, or process (except for transportation) conducted to prepare spent nuclear fuel or radioactive waste for storage or disposal, or the activities associated with placing such fuel or waste in a disposal system.

(n) "Site" means an area contained within the boundary of a location under the effective control of persons possessing or using spent nuclear fuel or radioactive waste that are involved in any activity, operation, or process covered by this Subpart.

(o) "General environment" means the total terrestrial, atmospheric, and aquatic environments outside sites within which any activity, operation, or process associated with the management and storage of spent nuclear fuel or radioactive waste is conducted.

(p) "Member of the public" means any individual except during the time when that individual is a worker engaged in any activity, operation, or process that is covered by the Atomic Energy Act of 1954, as amended.

(q) "Critical organ" means the most exposed human organ or tissue exclusive of the integumentary system (skin) and the cornea.

§ 191.03 Standards.

(a) Management and storage of spent nuclear fuel or high-level or transuranic radioactive wastes at all facilities regulated by the Commission or by Agreement States shall be conducted in such a manner as to provide reasonable assurance that the combined annual dose equivalent to any member of the public in the general environment resulting from: (1) Discharges of radioactive material and direct radiation from such management and storage and (2) all operations covered by Part 190; shall not exceed 25 millirems to the whole body, 75 millirems to the thyroid, and 25 millirems to any other critical organ.

(b) Management and storage of spent nuclear fuel or high-level or transuranic radioactive wastes at all facilities for the disposal of such fuel or waste that are operated by the Department and that are not regulated by the Commission or Agreement States shall be conducted in such a manner as to provide reasonable assurance that the combined annual dose equivalent to any member of the public in the general environment resulting from discharges of radioactive material and direct radiation from such management and storage shall not exceed 25 millirems to the whole body and 75 millirems to any critical organ.

§ 191.04 Alternative standards.

(a) The Administrator may issue alternative standards from those standards established in 191.03(b) for waste management and storage activities at facilities that are not regulated by the Commission or Agreement States if, upon review of an application for such alternative standards:

(1) The Administrator determines that such alternative standards will prevent any member of the public from receiving a continuous exposure of more than 100 millirems per year dose equivalent and an infrequent exposure of more than 500 millirems dose equivalent in a year from all sources, excluding natural background and medical procedures; and

(2) The Administrator promptly makes a matter of public record the degree to which continued operation of the facility is expected to result in levels in excess of the standards specified in 191.03(b).

(b) An application for alternative standards shall be submitted as soon as possible after the Department determines that continued operation of a facility will exceed the levels specified in 191.03(b) and shall include all information necessary for the Administrator to make the determinations called for in 191.04(a).

(c) Requests for alternative standards shall be submitted to the Administrator, U.S. Environmental Protection Agency, 401 M Street, SW., Washington, DC 20460.

§ 191.05 Effective date.

The standards in this Subpart shall be effective on November 18, 1985.

Subpart B-Environmental Standards for Disposal

§ 191.11 Applicability.

(a) This Subpart applies to:

 Radioactive materials released into the accessible environment as a result of the disposal of spent nuclear fuel or high-level or transuranic radioactive wastes;

(2) Radiation doses received by members of the public as a result of such disposal; and

(3) Radioactive contamination of certain sources of ground water in the vicinity of disposal systems for such fuel or wastes.

(b) However, this Subpart does not apply to disposal directly into the oceans or ocean sediments. This Subpart also does not apply to wastes disposed of before the effective date of this rule.

§ 191.12 Definitions.

Unless otherwise indicated in this Subpart, all terms shall have the same meaning as in Subpart A of this Part.

(a) "Disposal system" means any combination of engineered and natural barriers that isolate spent nuclear fuel or radioactive waste after disposal.

(b) "Waste," as used in this Subpart, means any spent nuclear fuel or radioactive waste isolated in a disposal system.

(c) "Waste form" means the materials comprising the radioactive components of waste and any encapsulating or stabilizing matrix.

(d) "Barrier" means any material or structure that prevents or substantially delays movement of water or radionuclides toward the accessible environment. For example, a barrier may be a geologic structure, a canister, a waste form with physical and chemical characteristics that significantly decrease the mobility of radionuclides, or a material placed over and around waste, provided that the material or structure substantially delays movement of water or radionuclides.

(e) "Passive institutional control" means: (1) Permanent markers placed at a disposal site, (2) public records and archives, (3) government ownership and regulations regarding land or resource use, and (4) other methods of preserving knowledge about the location, design, and contents of a disposal system. (f) "Active institutional control" means: (1) Controlling access to a disposal site by any means other than passive institutional controls;
(2) performing maintenance operations or remedial actions at a site,
(3) controlling or cleaning up releases from a site, or (4) monitoring parameters related to disposal system performance.

(g) "Controlled area" means: (1) A surface location, to be identified by passive institutional controls, that encompasses no more than 100 square kilometers and extends horizontally no more than five kilometers in any direction from the outer boundary of the original location of the radioactive wastes in a disposal system; and (2) the subsurface underlying such a surface location.

(h) "Ground water" means water below the land surface in a zone of saturation.

(i) "Aquifer" means an underground geological formation, group of formations, or part of a formation that is capable of yielding a significant amount of water to a well or spring.

(j) "Lithosphere" means the solid part of the Earth below the surface, including any ground water contained within it.

(k) "Accessible environment" means: (1) The atmosphere; (2) land surfaces; (3) surface waters; (4) oceans; and (5) all of the lithosphere that is beyond the controlled area.

(1) "Transmissivity" means the hydraulic conductivity integrated over the saturated thickness of an underground formation. The transmissivity of a series of formations is the sum of the individual transmissivities of each formation comprising the series.

(m) "Community water system" means a system for the provision to the public of piped water for human consumption, if such system has at least 15 service connections used by year-round residents or regularly serves at least 25 year-round residents.

(n) "Significant source of ground water," as used in this Part, means: (1) An aquifer that: (i) Is saturated with water having less than 10,000 milligrams per liter of total dissolved solids; (ii) is within 2,500 feet of the land surface; (iii) has a transmissivity greater than 200 gallons per day per foot, provided that any formation or part of a formation included within the source of ground water has a hydraulic conductivity greater than 2 gallons per day per square foot; and (iv) is capable of continuously yielding at least 10,000 gallons per day to a pumped or flowing well for a period of at least a year; or (2) an aquifer that provides the primary source of water for a community water system as of the effective date of this Subpart.

(o) "Special source of ground water," as used in this Part, means those Class I ground waters identified in accordance with the Agency's Ground-Water Protection Strategy published in August 1984 that: (1) Are within the controlled area encompassing a disposal system or are less than five kilometers beyond the controlled area; (2) are supplying drinking water for thousands of persons as of the date that the Department chooses a location within that area for detailed characterization as a potential site for a disposal system (e.g., in accordance with Section 112(b)(1)(B) of the NWPA); and (3) are irreplaceable in that no reasonable alternative source of drinking water is available to that population.

(p) "Undisturbed performance" means the predicted behavior of a disposal system, including consideration of the uncertainties in predicted behavior, if the disposal system is not disrupted by human intrusion or the occurrence of unlikely natural events.

(q) "Performance assessment" means an analysis that: (1) Identifies the processes and events that might affect the disposal system; (2) examines the effects of these processes and events on the performance of the disposal system; and (3) estimates the cumulative releases of radionuclides, considering the associated uncertainties, caused by all significant processes and events. These estimates shall be incorporated into an overall probability distribution of cumulative release to the extent practicable.

(r) "Heavy metal" means all uranium, plutonium, or thorium placed into a nuclear reactor.

(s) "Implementing agency," as used in this Subpart, means the Commission for spent nuclear fuel or high-level or transuranic wastes to be disposed of in facilities licensed by the commission in accordance with the Energy Reorganization Act of 1974 and the Nuclear Waste Policy Act of 1982, and it means the Department for all other radioactive wastes covered by this Part.

§ 191.13 Containment requirements.

(a) Disposal systems for spent nuclear fuel or high-level or transuranic radioactive wastes shall be designed to provide a reasonable expectation, based upon performance assessments, that cumulative releases of radionuclides to the accessible environment for 10,000 years after disposal from all significant processes and events that may affect the disposal system shall: (1) Have a likelihood of less than one chance in 10 of exceeding the quantities calculated according to Table 1 (Appendix A); and

(2) Have a likelihood of less than one chance in 1,000 of exceeding ten times the quantities calculated according to Table 1 (Appendix A).

(b) Performance assessments need not provide complete assurance that the requirements of 191.13(a) will be met. Because of the long time period involved and the nature of the events and processes of interest, there will inevitably be substantial uncertainties in projecting disposal system performance. Proof of the future performance of a disposal system is not to be had in the ordinary sense of the word in situations that deal with much shorter time frames. Instead, what is required is a reasonable expectation, on the basis of the record before the implementing agency, that compliance with 191.13(a) will be achieved.

§ 191.14 Assurance requirements.

To provide the confidence needed for long-term compliance with the requirements of 191.13, disposal of spent nuclear fuel or high-level or transuranic wastes shall be conducted in accordance with the following provisions, except that these provisions do not apply to facilities regulated by the Commission (see 10 CFR Part 60 for comparable provisions applicable to facilities regulated by the Commission):

(a) Active institutional controls over disposal sites should be maintained for as long a period of time as is practicable after disposal; however, performance assessments that assess isolation of the wastes from the accessible environment shall not consider any contributions from active institutional controls for more than 100 years after disposal.

(b) Disposal systems shall be monitored after disposal to detect substantial and detrimental deviations from expected performance. This monitoring shall be done with techniques that do not jeopardize the isolation of the wastes and shall be conducted until there are no significant concerns to be addressed by further monitoring.

(c) Disposal sites shall be designated by the most permanent markers, records, and other passive institutional controls practicable to indicate the dangers of the wastes and their location.

(d) Disposal systems shall use different types of barriers to isolate the wastes from the accessible environment. Both engineered and natural barriers shall be included.

Appendix A

(e) Places where there has been mining for resources, or where there is a reasonable expectation of exploration for scarce or easily accessible resources, or where there is a significant concentration of any material that is not widely available from other sources, should be avoided in selecting disposal sites. Resources to be considered shall include minerals, petroleum or natural gas, valuable geologic formations, and ground waters that are either irreplaceable because there is no reasonable alternative source of drinking water available for substantial populations or that are vital to the preservation of unique and sensitive ecosystems. Such places shall not be used for disposal of the wastes covered by this Part unless the favorable characteristics of such places compensate for their greater likelihood of being disturbed in the future.

(f) Disposal systems shall be selected so that removal of most of the wastes is not precluded for a reasonable period of time after disposal.

§ 191.15 Individual protection requirements.

Disposal systems for spent nuclear fuel or high-level or transuranic radioactive wastes shall be designed to provide a reasonable expectation that, for 1,000 years after disposal, undisturbed performance of the disposal system shall not cause the annual dose equivalent from the disposal system to any member of the public in the accessible environment to exceed 25 millirems to the whole body or 75 millirems to any critical organ. All potential pathways (associated with undisturbed performance) from the disposal system to people shall be considered, including the assumption that individuals consume 2 liters per day of drinking water from any significant source of ground water outside of the controlled area.

§ 191.16 Ground water protection requirements.

(a) Disposal systems for spent nuclear fuel or high-level or transuranic radioactive wastes shall be designed to provide a reasonable expectation that, for 1,000 years after disposal, undisturbed performance of the disposal system shall not cause the radionuclide concentrations averaged over any year in water withdrawn from any portion of a special source of ground water to exceed:

(1) 5 picocuries per liter of radium-226 and radium-228;

(2) 15 picocuries per liter of alpha-emitting radionuclides (including radium-226 and radium-228 but excluding radon); or

(3) The combined concentrations of radionuclides that emit either beta or gamma radiation that would produce an annual dose equivalent to the total body or any internal organ greater than 4 millirems per year if an individual Appendix A: Title 40, Code of Federal Regulations, Subchapter F, Part 191

consumed 2 liters per day of drinking water from such a source of ground water.

(b) If any of the average annual radionuclide concentrations existing in a special source of ground water before construction of the disposal system already exceed the limits in 191.16(a), the disposal system shall be designed to provide a reasonable expectation that, for 1,000 years after disposal, undisturbed performance of the disposal system shall not increase the existing average annual radionuclide concentrations in water withdrawn from that special source of ground water by more than the limits established in 191.16(a).

§ 191.17 Alternative provisions for disposal.

The Administrator may, by rule, substitute for any of the provisions of Subpart B alternative provisions chosen after:

(a) The alternative provisions have been proposed for public comment in the Federal Register together with information describing the costs, risks, and benefits of disposal in accordance with the alternative provisions and the reasons why compliance with the existing provisions of Subpart B appears inappropriate;

(b) A public comment period of at least 90 days has been completed, during which an opportunity for public hearings in affected areas of the country has been provided; and

(c) The public comments received have been fully considered in developing the final version of such alternative provisions.

§ 191.18 Effective date.

The standards in this Subpart shall be effective on November 18, 1985.

Appendix A-Table for Subpart B

TABLE 1.—RELEASE LIMITS FOR CONTAINMENT REQUIREMENTS

(Cumulative releases to the accessible environment for 10,000 years after disposal)

Radionuclide	Release limit per 1,000 MTHM or other unit of waste (see notes) (curies)
Americium-241 or -243	100
Carbon-14	100
Cesium-135 or -137	1,000
Iodine-129	100
Neptunium-237	100
Plutonium-238, -239, -240, or -242	100
Radium-226	100
Strontium-90	1,000
Technetium-99	10,000
Thorium-230 or -232	10
Tin-126	1,000
Uranium-233, -234, -235, -236, or -238	100
Any other alpha-emitting radionuclide with a half-life	
greater than 20 years Any other radionuclide with a half-life greater than 20 years	100
that does not emit alpha particles	1,000

Application of Table 1

Note 1: Units of Waste. The Release Limits in Table 1 apply to the amount of wastes in any one of the following:

.

(a) An amount of spent nuclear fuel containing 1,000 metric tons of heavy metal (MTHM) exposed to a burnup between 25,000 megawatt-days per metric ton of heavy metal (MWd/MTHM) and 40,000 MWd/MTHM;

(b) The high-level radioactive wastes generated from reprocessing each 1,000 MTHM exposed to a burnup between 25,000 MWd/MTHM and 40,000 MWd/MTHM;

(c) Each 100,000,000 curies of gamma or beta-emitting radionuclides with half-lives greater than 20 years but less than 100 years (for use as discussed in Note 5 or with materials that are identified by the Commission as highlevel radioactive waste in accordance with part B of the definition of highlevel waste in the NWPA);

(d) Each 1,000,000 curies of other radionuclides (i.e., gamma or betaemitters with half-lives greater than 100 years or any alpha-emitters with half-lives greater than 20 years) (for use as discussed in Note 5 or with materials that are identified by the Commission as high-level radioactive waste in accordance with part B of the definition of high-level waste in the NWPA); or

(e) An amount of transuranic (TRU) wastes containing one million curies of alpha-emitting transuranic radionuclides with half-lives greater than 20 years.

Note 2: Release Limits for Specific Disposal Systems. To develop Release Limits for a particular disposal system, the quantities in Table 1 shall be adjusted for the amount of waste included in the disposal system compared to the various units of waste defined in Note 1. For example:

(a) If a particular disposal system contained the high-level wastes from 50,000 MTHM, the Release Limits for that system would be the quantities in Table 1 multiplied by 50 (50,000 MTHM divided by 1,000 MTHM).

(b) If a particular disposal system contained three million curies of alpha-emitting transuranic wastes, the Release Limits for that system would be the quantities in Table 1 multiplied by three (three million curies divided by one million curies).

(c) If a particular disposal system contained both the high-level wastes from 50,000 MTHM and 5 million curies of alpha-emitting transuranic wastes, the Release Limits for that system would be the quantities in Table 1 multiplied by 55:

 $\frac{50,000 \text{ MTHM}}{1,000 \text{ MTHM}} + \frac{5,000,000 \text{ curies TRU}}{1,000,000 \text{ curies TRU}} = 55$

Note 3: Adjustments for Reactor Fuels with Different Burnup. For disposal systems containing reactor fuels (or the high-level wastes from reactor fuels) exposed to an average burnup of less than 25,000 MWd/MTHM or greater than 40,000 MWd/MTHM, the units of waste defined in (a) and (b) of Note 1 shall be adjusted. The unit shall be multiplied by the ratio of 30,000 MWd/MTHM divided by the fuel's actual average burnup, except that a value of 5,000

MWd/MTHM may be used when the average fuel burnup is below 5,000 MWd/MTHM and a value of 100,000 MWd/MTHM shall be used when the average fuel burnup is above 100,000 MWd/MTHM. This adjusted unit of waste shall then be used in determining the Release Limits for the disposal system.

For example, if a particular disposal system contained only high-level wastes with an average burnup of 3,000 MWd/MTHM, the unit of waste for that disposal system would be:

 $1,000 \text{ MTHM} \times \frac{(30,000)}{(5,000)} = 6,000 \text{ MTHM}$

If that disposal system contained the high-level wastes from 60,000 MTHM (with an average burnup of 3,000 MWd/MTHM), then the Release Limits for that system would be the quantities in Table 1 multiplied by ten:

$$\frac{60,000 \text{ MTHM}}{6,000 \text{ MTHM}} = 10$$

which is the same as:

$$\frac{60,000 \text{ MTHM}}{1,000 \text{ MTHM}} \times \frac{(5,000 \text{ MWd/MTHM})}{(30,000 \text{ MWd/MTHM})} = 10$$

Note 4: Treatment of Fractionated High-Level Wastes. In some cases, a highlevel waste stream from reprocessing spent nuclear fuel may have been (or will be) separated into two or more high-level waste components destined for different disposal systems. In such cases, the implementing agency may allocate the Release Limit multiplier (based upon the original MTHM and the average fuel burnup of the high-level waste stream) among the various disposal systems as it chooses, provided that the total Release Limit multiplier used for that waste stream at all of its disposal systems may not exceed the Release Limit multiplier that would be used if the entire waste stream were disposed of in one disposal system.

Note 5: Treatment of Wastes with Poorly Known Burnups or Original MTHM. In some cases, the records associated with particular high-level waste streams may not be adequate to accurately determine the original metric tons of heavy metal in the reactor fuel that created the waste, or to determine the average burnup that the fuel was exposed to. If the uncertainties are such that the original amount of heavy metal or the average fuel burnup for particular highlevel waste streams cannot be quantified, the units of waste derived from (a) and (b) of Note 1 shall no longer be used. Instead, the units of waste defined in (c) and (d) of Note 1 shall be used for such high-level waste streams. If the uncertainties in such information allow a range of values to be associated with the original amount of heavy metal or the average fuel Appendix A: Title 40, Code of Federal Regulations, Subchapter F, Part 191

burnup, then the calculations described in previous Notes will be conducted using the values that result in the smallest Release Limits, except that the Release Limits need not be smaller than those that would be calculated using the units of waste defined in (c) and (d) of Note 1.

Note 6: Uses of Release Limits to Determine Compliance with 191.13. Once release limits for a particular disposal system have been determined in accordance with Notes 1 through 5, these release limits shall be used to determine compliance with the requirements of 191.13 as follows. In cases where a mixture of radionuclides is projected to be released to the accessible environment, the limiting values shall be determined as follows: For each radionuclide in the mixture, determine the ratio between the cumulative release quantity projected over 10,000 years and the limit for that radionuclide as determined from Table 1 and Notes 1 through 5. The sum of such ratios for all the radionuclides in the mixture may not exceed one with regard to 191.13(a)(1) and may not exceed ten with regard to 191.13(a)(2).

For example, if radionuclides A, B, and C are projected to be released in amounts Q_a , Q_b , and Q_c , and if the applicable Release Limits are RL_a , RL_b , RL_c , then the cumulative releases over 10,000 years shall be limited so that the following relationship exists:

$$\frac{Q_a}{RL_a} + \frac{Q_b}{RL_b} + \frac{Q_c}{RL_c} < 1$$

Appendix B-Guidance for Implementation of Subpart B

[Note: The supplemental information in this appendix is not an integral part of 40 CFR Part 191. Therefore, the implementing agencies are not bound to follow this guidance. However, it is included because it describes the Agency's assumptions regarding the implementation of Subpart B. This appendix will appear in the Code of Federal Regulations.]

The Agency believes that the implementing agencies must determine compliance with §§ 191.13, 191.15, and 191.16 of Subpart B by evaluating long-term predictions of disposal system performance. Determining compliance with § 191.13 will also involve predicting the likelihood of events and processes that may disturb the disposal system. In making these various predictions, it will be appropriate for the implementing agencies to make use of rather complex computational models, analytical theories, and prevalent expert judgment relevant to the numerical predictions. Substantial uncertainties are likely to be encountered in making these predictions. In fact, sole reliance on these numerical predictions to determine compliance may not be appropriate; the implementing agencies may choose to supplement such predictions with

Appendix A

qualitative judgments as well. Because the procedures for determining compliance with Subpart B have not been formulated and tested yet, this appendix to the rule indicates the Agency's assumptions regarding certain issues that may arise when implementing §§ 191.13, 191.15, and 191.16. Most of this guidance applies to any type of disposal system for the wastes covered by this rule. However, several sections apply only to disposal in mined geologic repositories and would be inappropriate for other types of disposal systems.

Consideration of Total Disposal System. When predicting disposal system performance, the Agency assumes that reasonable projections of the protection expected from all of the engineered and natural barriers of a disposal system will be considered. Portions of the disposal system should not be disregarded, even if projected performance is uncertain, except for portions of the system that make negligible contributions to the overall isolation provided by the disposal system.

Scope of Performance Assessments. Section 191.13 requires the implementing agencies to evaluate compliance through performance assessments as defined in § 191.12(q). The Agency assumes that such performance assessments need not consider categories of events or processes that are estimated to have less than one chance in 10,000 of occurring over 10,000 years. Furthermore, the performance assessments need not evaluate in detail the releases from all events and processes estimated to have a greater likelihood of occurrence. Some of these events and processes may be omitted from the performance assessments if there is a reasonable expectation that the remaining probability distribution of cumulative releases would not be significantly changed by such omissions.

Compliance with Section 191.13. The Agency assumes that, whenever practicable, the implementing agency will assemble all of the results of the performance assessments to determine compliance with § 191.13 into a "complementary cumulative distribution function" that indicates the probability of exceeding various levels of cumulative release. When the uncertainties in parameters are considered in a performance assessment, the effects of the uncertainties considered can be incorporated into a single such distribution function for each disposal system considered. The Agency assumes that a disposal system can be considered to be in compliance with § 191.13 if this single distribution function meets the requirements of § 191.13(a).

Compliance with Sections 191.15 and 191.16. When the uncertainties in undisturbed performance of a disposal system are considered, the implementing agencies need not require that a very large percentage of the range of estimated radiation exposures or radionuclide concentrations fall below limits established in §§ 191.15 and 191.16, respectively. The Agency assumes that compliance can be determined based upon "best estimate" predictions (e.g., the mean or the median of the appropriate distribution, whichever is higher).

Institutional Controls. To comply with § 191.14(a), the implementing agency will assume that none of the active institutional controls prevent or reduce radionuclide releases for more than 100 years after disposal. However, the Federal Government is committed to retaining ownership of all disposal sites for spent nuclear fuel and high-level and transuranic radioactive wastes and will establish appropriate markers and records, consistent with § 191.14(c). The Agency assumes that, as long as such passive institutional controls endure and are understood, they: (1) can be effective in deterring systematic or persistent exploitation of these disposal sites; and (2) can reduce the likelihood of inadvertent, intermittent human intrusion to a degree to be determined by the implementing agency. However, the Agency believes that passive institutional controls can never be assumed to eliminate the chance of inadvertent and intermittent human intrusion into these disposal sites.

Consideration of Inadvertent Human Intrusion into Geologic Repositories. The most speculative potential disruptions of a mined geologic repository are those associated with inadvertent human intrusion. Some types of intrusion would have virtually no effect on a repository's containment of waste. On the other hand, it is possible to conceive of intrusions (involving widespread societal loss of knowledge regarding radioactive wastes) that could result in major disruptions that no reasonable repository selection or design precautions could alleviate. The Agency believes that the most productive consideration of inadvertent intrusion concerns those realistic possibilities that may be usefully mitigated by repository design, site selection, or use of passive controls (although passive institutional controls should not be assumed to completely rule out the possibility of intrusion). Therefore, inadvertent and intermittent intrusion by exploratory drilling for resources (other than any provided by the disposal system itself) can be the most severe intrusion scenario assumed by the implementing agencies. Furthermore, the implementing agencies can assume that passive institutional controls or the intruders' own exploratory procedures are adequate for the intruders to soon detect, or be warned of, the incompatibility of the area with their activities.

Frequency and Severity of Inadvertent Human Intrusion into Geologic Repositories. The implementing agencies should consider the effects of each particular disposal system's site, design, and passive institutional controls in judging the likelihood and consequences of such inadvertent exploratory drilling. However, the Agency assumes that the likelihood of such inadvertent and intermittent drilling need not be taken to be greater than 30 boreholes

Appendix A

per square kilometer of repository area per 10,000 years for geologic repositories in proximity to sedimentary rock formations, or more than 3 boreholes per square kilometer per 10,000 years for repositories in other geologic formations. Furthermore, the Agency assumes that the consequences of such inadvertent drilling need not be assumed to be more severe than: (1) Direct release to the land surface of all the ground water in the repository horizon that would promptly flow through the newly created borehole to the surface due to natural lithostatic pressure—or (if pumping would be required to raise water to the surface) release of 200 cubic meters of ground water pumped to the surface if that much water is readily available to be pumped; and (2) creation of ground water flow path with a permeability typical of a borehole filled by the soil or gravel that would normally settle into an open hole over time—not the permeability of a carefully sealed borehole.

APPENDIX B: RESPONSE TO REVIEW COMMENTS

APPENDIX B: RESPONSE TO REVIEW COMMENTS

Comments in this appendix relate to SAND90-2347, Preliminary Comparison with CFR Part 191, Subpart B for the Waste Isolation Pilot Plant, December 1990. Responses relate to SAND91-0893, the 1991 version of SAND90-2347.

Response to Comments from New Mexico Environment Department

COMMENT 1. Page I-6, first paragraph: 2000 m equals 6560 feet.

RESPONSE: Metrication error has been corrected.

COMMENT 2. Page I-30, sixth paragraph: How important is it that the Rustler formation includes hydrostratigraphic units that provide potential pathways for radionuclide migration away from the WIPP, with so much halite of the Salado formation to cross?

RESPONSE: The Culebra Dolomite in the Rustler Formation is the primary water-producing unit between the waste panels and the surface. Although the thickness of the bedded salt between the panels and the Culebra would be expected to act as a barrier to radionuclides migrating to the Rustler, the shafts and exploratory boreholes will provide possible pathways through the salt for waste in the panels to reach the overlying units. Because of these possible pathways through the salt, possible transportation pathways within the Rustler Formation must be considered.

COMMENT 3. Page III-34: What is the meaning of CCDFs crossing the Containment Requirement?

RESPONSE: A CCDF that extends to the right of the line labeled "Containment Requirement" (see Figure 3-9 in Volume 1 of SAND91-0893) indicates that for one (or more) scenarios S_1 analyzed the pair (S) $(pS_1(\mathbf{x}_k), cS_1(\mathbf{x}_k))$ lies beyond the EPA limits of (0.1, 1.0) and (0.001, 10.0) for the specific sample element, \mathbf{x}_k .

Since the parameter values in the sample element, \mathbf{x}_k , are not known to be correct with certainty, the full family of CCDFs must be considered. Mean and percentile curves, e.g., median, (see Figure 3-10, Volume 1 of SAND91-0893) are suitable summary curves for comparison to the requirement.

For example, if the 90% quantile curve lies to the left of the Containment Requirement, then compliance is indicated with at least a 90% level-ofconfidence conditional on the assumed conceptual and mathematical models, the assigned ranges and distributions for uncertain parameters, the scenarios, and all other assumptions used in the analyses, as discussed in Chapter 6, Volume 1 of SAND91-0893.

COMMENT 4. Page V-18, last paragraph: What method was used to convert darcies into m/s? A darcy is a unit of permeability (m^2) while m/s is a unit of conductivity.

RESPONSE: The conversion was based on Table 2.3 (Conversion Factors for Permeability and Hydraulic Conductivity Units) in *Groundwater* by R. A. Freeze and J. A. Cherry (1979).

COMMENT 5. Page V-74, second paragraph: The decay product of Radium-226 is Radon-222 (not 226) with a half-life of 3.825 days.

RESPONSE: The correction has been made.

COMMENT 6. Page VI-6, Table VI-1: Bulk Shear Stress 1 to 5 Pa?? MPa maybe.

RESPONSE: As more carefully explained in Volume 3, Section 3.4 of SAND91-0893, this effective shear stress of the waste equals the fluid stress at which sediment movement (erosion) from a bed of clay particles is general. It is smaller by several orders of magnitude from the macroscopic soil shear strength, and in the absence of real data for waste materials, is used as a conservative estimate.

COMMENT 7. Page VI-17: Abscissa should read: 10^{-15} m² and 10^{-13} m².

RESPONSE: The errors in the figure have been noted. This figure is not repeated in SAND91-0893.

COMMENT 8. Page VI-18: Time should read Time*10³ years.

RESPONSE: The errors in the figure have been noted. This figure is not repeated in SAND91-0893.

COMMENT 9. Page VI-27: Distance should read Distance*10³ m?

RESPONSE: The labeling errors in Figures VI-11 and VI-12 have been noted. These figures are not repeated in SAND91-0893.

Response to Comments from the Environmental Evaluation Group

COMMENT 1. Abstract (i - ii): The abstract clearly elucidates areas of uncertainty in performance assessment of the WIPP for compliance with 40 CFR Part 191, Subpart B:

- a. sensitivity analysis and parameter distribution determinations;
- b. construction of mean CCDF curves for scenarios included within the analysis from families of curves resulting from Latin Hypercube sampling of parameter distributions;
- c. a significant increase in retardation factors due to clay-lined fractures and assumption of a dual-porosity model;
- d. the effects of gas generation in the repository on brine flow and radionuclide transport and the preliminary nature of their use in performance assessment.

However, an equally important area of uncertainty not mentioned in the abstract is scenario probability assignments which have considerable influence on CCDF formulation, not only because there are significant differences in assignments between investigators, but also because they have been utilized deterministically in this PA analyses, and have significant impact on the ordinate of the CCDF curves. Also, there appears to have been a significant reduction of radionuclide release to the ground surface from human intrusion boreholes, notwithstanding scenario probability assignments, and this topic should merit attention in the abstract.

RESPONSE: These points should have been summarized in the abstract for SAND90-2347. The abstracts for the volumes of SAND91-0893 will be overviews of significant information contained in the volumes.

COMMENT 2. Page ES-3, Lines 10-13: It is stated that the "mean" CCDF's produced by this analysis are within the EPA limits. It would be equally important to note how many of the Latin Hypercube Samples (LHS) utilized in these analyses exceeded the EPA limits, and/or an exceedance frequency reported. A reported mean CCDF without a variance estimate does not convey this equally important type of information.

RESPONSE: This point was illustrated in examples of families of CCDFs in Chapter III of SAND90-2347. The subject is discussed in Volume 1, Chapter 3 of SAND91-0893 and is also illustrated in the figures in Chapter 6 of Volume 1. **COMMENT 3.** Page ES-4, Lines 18-24: Whereas it is understandable that climatic change (TC) has not been incorporated into the model as part of the base case scenario at this time, the reason for exclusion of subsidence to the surface (TS) associated with potash mining is not clearly stated. Subsidence was assigned a probability of 0.05 ([Marietta et al., 1989] SAND89-2027, p. IV-46) based on the fact that it has been observed in the Delaware Basin, although it was not utilized in the methodological demonstration. It would appear that the main reason for excluding it from scenario development is that this type of event has yet to be incorporated into the modeling scheme because its effect on the Rustler Formation has not been fully conceptualized.

RESPONSE: Consequences of subsidence associated with potash mining have not been included in either the 1990 or 1991 preliminary performance assessments because, as the comment notes, "its effect on the Rustler Formation has not been fully conceptualized." Subsidence has not been excluded from scenario development, and its effects will be included in future consequence modeling.

A preliminary estimate of the effects of climatic change is included in the 1991 calculations, and will be refined and developed further in future analyses. The approach used to model the effects of subsidence may be analogous to that used in 1991 to approximate effects of climatic change.

COMMENT 4. Page I-6, Line 6: Conversion error ... about 2000 m (1,250 ft) ...

RESPONSE: Metrication error has been corrected.

COMMENT 5. Page I-38, Lines 39-40: Why was the 1987 IDB [U.S. DOE, 1987] used instead of the 1990 IDB (October 1990) [U.S. DOE, 1990a] for currently projected total radionuclide inventories by generator facility for CH and RH-TRU wastes?

RESPONSE: The CH radionuclide inventory was based on a draft of a Westinghouse report that used input to the 1987 IDB. This report had not been updated to include 1990 IDB input but was considered to be the best available CH radionuclide inventory. The RH radionuclide inventory was based on the 1990 IDB input as discussed in SAND89-2408, *Data Used in Preliminary Performance Assessment of the Waste Isolation Pilot Plant (1990)* (Rechard et al., 1990). The CH and RH radionuclide inventory in SAND89-2408, which differ somewhat from the values on Page I-38, Lines 13 to 26, were used in the analyses. The CH and RH radionuclide inventory for the 1991 analyses are based on input to the 1990 IDB.

Appendix B

COMMENT 6. Page II-3, Lines 22-26; Page II-11, Lines 1-4: The statement that inadvertent intrusion into the repository will lead to its detection goes beyond the guidance in the 1985 Standard and in Working Draft #3 which says "to soon detect, or be warned of, the incompatibility of the area with their activities." The thrust of their guidance seems to be that only inadvertent and intermittent intrusion need be considered, not persistent intrusion or exploitation of natural resources. Also, from a performance assessment (PA) point of view, the time interval before detection (and consequent borehole plugging) is important for some intrusion scenarios in ameliorating releases to the surface. In fact the El scenario depends on non-detection in the time interval it requires to reach the pressurized brine in the Castile Formation.

RESPONSE: The synopsis and text have been revised in Volume 1, Chapter 2 of SAND91-0893 to address this comment. The specific sentence in question, which was not consistent with the 1990 calculations, is not included in the 1991 report.

COMMENT 7. Page II-3, Lines 36-42; Page II-12, Lines 10-17: The statement about artificially reducing allowable releases by a factor of almost 3 suggests a misunderstanding of the EPA release limits. These rounded release limits relate to the radiological hazard of the radionuclide. Alpha-emitting transuranic elements have a higher hazard than shorter lived alpha-emitters or plutonium-241 (which is a beta emitter) and thus have a lower release limit. It is correct that some short-lived radionuclides decay to "regulated" daughter products but at a much lower curie level. For example a curie of Pu-241 will produce only 0.034 Ci of Americium-241 in its lifetime (and the maximum activity at any time would be 0.030 Ci). The inclusion of ingrowth Am-241 would increase the WIPP alpha-TRU inventory by only about 2.5%.

RESPONSE: The information in these paragraphs is no longer valid for the WIPP. Updated information is included in Volume 1, Chapter 1 of SAND91-0893.

COMMENT 8. Pages II-4 and 5, Lines 41, 45 and Lines 1-7; Page II-16, Lines 9-15: In light of the feeling that there is "reasonable confidence" that WIPP will meet the Standard, what is the purpose of this section for this report? Who is going to determine what "good isolation" means, and how will the restrictiveness of the requirements be evaluated, and by whom (EPA, DOE, ...)?

RESPONSE: This section was included to provide a complete overview of the Containment Requirements and is not intended to imply that the requirements will be modified. The EPA does not indicate who would make such determinations.

COMMENT 9. Page II-10, Lines 20-21: The statement that mining for resources need not be considered within the controlled area appears to be consistent with EPA guidance but it should be recognized that this may not be a conservative assumption for potash mining. In cases involving exploration for potash in the McNutt zone of the Salado Formation, no encounter with waste would occur and the prevention of exploitation would have to depend solely on passive institutional markers in the long term. This report references Hunter (SAND89-2546, 1989) which discusses a scenario involving solution mining of potash. This author states that Kaplan (ONWI-354, 1982) suggests that well designed markers supplemented by written records can be expected to last for 5,000 years and possibly 10,000 years. Kaplan, however, states that suitable stone markers such as exhibited by ancient monuments have survived in a variety of climates for up to 5,000 years (p. 49). In addition, the only reference to a 10,000 year marker survivability (except for the abstract) is with reference to marble and limestone markers (p. 43) which are not sufficiently durable for this period given the present levels of atmospheric pollution; and that markers constructed of modern metals such as titanium (p. 55) are not likely to survive this period of time because of recycling activities by Man. Also, this author states that about one-third to one-half of Stonehenge construction stone has been removed since it was built (p. 29). The phrase "very likely to survive 10,000 years" presented in the abstract of this report is nowhere substantiated in the report. Therefore, the exclusion of solution mining, and consequent subsidence scenario (TS) over the controlled area is seemingly not strongly supported by the Kaplan (1982) study for a 10,000 year period.

RESPONSE: The events and processes considered for scenario development have been rescreened in the 1991 report. Potash mining has been retained for further evaluation. Following the guidance in the Standard, future mining within the controlled area is excluded from consideration in performance assessment (PA) calculations. The possible effects of markers on future exploration have not been considered in the rescreening for the 1991 report. An expert panel on marker development will recommend design characteristics for "permanent" markers and judge efficacy of markers in deterring intrusion.

COMMENT 10. Page III-3, Lines 19-20; Page III-13, Lines 16-20: This statement is rather confusing because the probability of any event (for comparison with the EPA standard in this report) which constitutes part of a scenario is currently based on a binomial distribution:

 $(p+q)^n$, where q=(1-p), and $P(X)=(n!/X!(n-x)!)*p^X*q^{n-X}$, where n=1, X=1, and P(X)=p, and q=1-p(X)

and throughout this document, the event probabilities are held constant for PA comparisons, and both "yes" and "no" event occurrences (deterministic) are considered in the LHS sampling scheme. Hunter (SAND89-2546, 1989) describes the use of this distribution where n>1.0 for estimating the future number of borehole intrusions in the repository/rooms at WIPP over the long term. The term "probability distribution" refers to scenario LHS techniques developed for demonstration purposes, and the text should clarify that for PA in this report the term "probability" is appropriate. Furthermore, the "probability" of the probability distribution(s) utilized in this report for demonstration purposes should be documented if they are going to be used in future PA reports.

RESPONSE: The confusing text was poorly phrased and does not appear in SAND91-0893. A probability model has been developed for the 1991 performance assessment that includes stochastic variability rather than assuming fixed scenario (event) probabilities.

COMMENT 11. Page III-16, Line 16: The phrase "m input vectors," while understandable, appears awkward because "m" is undefined in the immediate vicinity of the phrase.

RESPONSE: This sentence does not appear in SAND91-0893.

COMMENT 12. Pages III-5 to III-7, Uncertainty analysis; Pages III-16 to III-37: Whereas this section is well written and understandable, there are a number of technical and philosophical concerns which create problems from both a statistical and data presentation viewpoint. Since the LHS technique permeates all aspects of uncertainty and sensitivity analysis for this PA, it is important to dwell on the advantages and disadvantages of this statistical tool because of its significant impact in the process of EPA compliance determination. As stated by Thomas (ONWI-380, 1982, p. 45): "The primary virtue of Latin Hypercube Sampling is the fact that it yields unbiased estimates of the probability density functions for computer outputs." Thomas also states that the LHS method is found to be inferior to conventional experimental designs for obtaining sensitivity coefficients for computer programs involving large numbers of equations and input parameters. The main problem with LHS utilization is in obtaining uncertainty information for individual input parameters in that it cannot control the type or extent of confounding among main effects and interactions in its operation. The problem is centered around the step-wise linear regression techniques that must be used to rank sensitivities of individual parameters which have covariances that vary with the specific magnitude of the parameters themselves. Thomas recommends an analytical approach, the adjoint method, as being superior for this purpose and it does not have the mentioned drawbacks of the LHS method in this endeavor. Although the parameter confounding issue has been mentioned in
this report to be of concern, a more extensive discussion on the justification of LHS for this purpose in comparison to other methodologies such as the adjoint should be included in the PA report.

Another concern with this section is the manner of CCDF representation. Although EPA in the remanded Standard suggests the use of the mean or median CCDF (whichever is greatest) for the undisturbed or base case scenario in PA, it does not make such a suggestion for other types. Sandia National Laboratories (SNL) has interpreted this to mean that the "mean curve" is the primary measure in PA for the WIPP for both undisturbed and human intrusion scenarios. However, such representation does not convey any further information of the CCDF distribution function which the LHS procedure generated, and it would appear that anyone attempting to make a decision on "reasonable expectation" of compliance with the Standard would require variance information on the mean. In fact the graph showing all of the CCDF's for a given LHS sampling (Figure III-6) has more information from which to make a decision on this basis than has the mean CCDF for the same sampling (Figure III-7). Criteria other than the mean CCDF such as number of LHS samples generated, the fraction of CCDF's exceeding the Standard, the CCDF's bounding the samples, and percentile CCDF's are all equally important in making such decisions. The EPA guidance on this issue was certainly not intended to restrict supplying such information, and because EPA's intent is subject to interpretation, all relevant information should be presented when possible if it may have some bearing on the decision. Ancillary information of this type becomes particularly important when the mean CCDF is very close to EPA compliance limits (such as was the case in this report), or when the Standard is exceeded.

Also, there is some question as to the use of constant scenario probabilities for comparison to the Standard at this time without addressing the issue of the possible vertical displacements of the mean CCDF's when and if probability distributions (of events) are used to generate LHS scenarios from which such a mean is estimated. Since vertical displacements of the mean CCDF's may move such curves into the non-compliance portion of the Standard, it is important that the effect(s) be documented more fully in the report. Furthermore, it is not clear from reading this section that event probability distributions will ultimately be utilized in PA, and, therefore, the relevance of some of the examples presented (see Figure III-7) to this report has not been fully established.

RESPONSE: A detailed discussion on the reasons for using LHS techniques instead of other techniques such as the adjoint method is in Volume 1, Chapter 3 of SAND91-0893.

The full range of information generated from the performance assessment will be provided in the presentation of CCDFs for preliminary and final comparisons to the Standard.

COMMENT 13. Pages III-7 to III-8, Monte Carlo Techniques; Pages III-38 to III-42: The production of the mean CCDF in Figure III-14 from the family of CCDF's in Figure III-13 is unclear with respect to the ordinate.

The procedures for developing variable distributions for use in the WIPP PA are not given adequate attention in this report. Several of the secondary references are not currently available, and the available citation (Tierney 1990, SAND90-2510), and this report do not adequately discuss:

- a. sufficient criteria used for selection of a specific distribution to be used in MEF formulation (SAND90-2510) other than identification of the source;
- number of observations (or subjective estimates) used to construct the prior distributions using MEF;
- c. justification that values used for any distribution are drawn from the same population (observations), and how many (if any) of these are subjective estimates (mixed models);
- d. the relationship between the number of parameter observations (if any) used in a given distribution, the uncertainty in its use for LHS, and how the MEF conservatism impacts CCDF's in the PA;
- e. why some other measures such as the mean, median, or the observations themselves (assumed not to be subjective) would not be more appropriate with or without LHS application;
- f. limitations outlined in SAND90-2510 pertaining to effects of spatial averaging on variances used in lumped-parameter models, and the effects of possible correlations between parameters.

Whereas it is meaningless to question whether a subjectively selected prior distribution is an unbiased estimator of the actual parameter distribution when this decision is based on personal judgement, it is important to know how it will impact on the total uncertainty of a PA run where both statistically derived prior distributions, and those based on subjective criteria are concurrently utilized for LHS. In fact the resulting LHS operation confounds these effects, and both uncertainty and (to a certain extent) sensitivity analyses are similarly affected. What proportion of subjectively derived distributions are to be admitted, before one questions whether the resulting PA can be considered to be based primarily on quantitative observations from the site, and not on subjective (Bayesian) judgement? This question is of particular importance when "sensitive" parameters are under consideration.

The use of MEF is a well known and established Bayesian reliability analysis technique used to produce prior distributions that may be termed conservative in nature depending on their application. This is accomplished by maximizing the Shannon equation (H): ... -(p1*ln(p1) + p2*ln(p2) + ... pn*(ln(pn))), where: p1, p2, . . . pn are probabilities of observing parameter estimates: x1, x2, ... xn from given parameter functions (ki, i=1, 2, ... m, m<n) (Martz et al., 1982, p. 231). The application of Shannon's equation is well established in biostatistical analysis in the determination of species diversity on gridded areas or volumes (cells): 1, 2, ... n. A maximum diversity is obtained when: pl = p2 = ... pn, or the measure of diversity (H) is equal to ln(n). Unfortunately, the value is affected not only by the actual diversity itself, but also by the number of categories employed (n), and users frequently employ an "evenness" or "homogeneity" Shannon index (J) which is equal to (H/ln(n)). The latter expresses the observed diversity (H) as a proportion of the maximum value obtainable (ln(n)). The theoretical maximum diversity index is obtained when the observable parameter is equally distributed in all n cells. In general a well designed experiment to measure (H) will optimize the number and size of cells required, and insure randomization of cell selection to obtain a reliable estimate of the actual value (H*); and it can be expected that as the number of randomized observations increases, that the observed value (H) will become a better estimate of the actual (H*) based on statistical sampling theory.

Although not readily apparent in the available citation (SAND90-2510), the MEF should be subject to (H) and (J) type determinations, and to the optimization techniques applied to the biostatistical example just described for comparison. Where observed values for a given parameter are representative and in good supply, it would be expected that a better representation of the actual distribution of the parameter would be obtained than when a smaller number of observations are available. The "evenness" concept would be expected to produce distributions satisfying the method of maximum entropy, however, there is no discussion in this report of the robustness of this technique with respect to prior distribution selection where the number of observables are relatively sparse. There is also some confusion when parameter distributions derived from statistical sampling theory and Bayesian MEF derived distributions involving sparse or non-existent data are given equal weighting in the LHS process. Any uncertainty and sensitivity analysis is bound to involve subjective/objective interactions that may be difficult if not impossible to identify using this mixed methodology, and will impact on decisions regarding CCDF evaluations. The references cited do not appear to address this issue.

Finally, it is not readily apparent that because MEF produced parameter distributions are conservative by design, that their application utilizing LHS for mean CCDF production are also conservative. For example, the production of large retardation factors from LHS of an MEF prior distribution factor of this parameter presented in this report would be expected to shift a given CCDF toward the compliance part of the Standard while the minimum retardation factor (1) is held constant. In fact MEF distributions which conservatively estimate upper or lower values can be shown to shift the CCDF in a nonconservative direction. It would appear that sensitive parameters that exhibit this type of behavior should be given more extensive field study based on statistical sampling theory to give possibly less conservative, but more realistic, distribution functions for use in PA. This report has not adequately justified the effects of MEF on CCDF construction.

RESPONSE: Production of a mean (or median, or p-percentile) CCDF from a family of CCDFs is discussed in some detail in the sections "Characterizing Uncertainty in Risk," pages III-23 to III-29, and "Risk and the EPA Limits," pages III-29 to III-33 in SAND90-2347.

- 13a. Criteria and procedures for developing probability distributions of parameters from currently available information were explained in SAND90-2510 (Tierney, 1990).
- 13b. The number of observations (or subjective estimates) used to construct empirical (or subjective) distributions was usually not mentioned either in SAND90-2347, or in the companion data report (Rechard et al., 1990, SAND89-2408), and is not adequately discussed in 1991. However, a thorough discussion of data is a high priority in 1992.
- 13c. None of the distributions in SAND89-2408 (Rechard et al., 1990) arose from mixed models; most distributions were subjective and based on range and subjective estimates of median (50th percentile).
- 13d. The sensitivity of CCDFs to changes in the <u>forms</u> of parameter probability distributions was not investigated in the 1990 PA exercise or in SAND91-0893.
- 13e. In some cases, summary measures such as mean or median would have been more appropriate choices for parameters, but distributions were nevertheless used to test for sensitivity and incorporate a (perhaps unnecessary) conservation in the analyses. See Section 1.2 in Volume 3 of SAND91-0893 for further discussion.

13f. As stated, these limitations were clearly stated in SAND90-2510 (Tierney, 1990).

Sensitivity and uncertainty analyses are "blind" to the origin of the parameter distributions that are employed in those kinds of analyses. The main question is: How sensitive are the results of, say, an uncertainty analysis to changes in the <u>forms</u> of the underlying parameter distributions? As stated above [13d.], no such sensitivity studies were conducted in the 1990 PA exercise.

Most comments on maximum entropy formalism (MEF) concern fine points of using MEF in Bayesian reliability analysis. The best response to these comments is the following explanation of <u>why</u> MEF was used in the 1990 PA exercise. The MEF was invoked in the 1990 PA exercise (Tierney, 1990, SAND90-2510) for only <u>two</u> reasons: 1) MEF provides an accepted technique for constructing a prior distribution when only subjective estimates of the moments (e.g., mean and variance) of the distribution are provided by experts; and 2) MEF can be used to justify connecting the points of a step-like empirical cdf (whether based on measurements or on subjective estimates of percentiles) with straight lines instead of some other curve (e.g., splines or quadratics). In actual practice, during the data gathering for the 1990 exercise, no one submitted subjective estimates of mean/variance; the MEF proved useful only in the sense of reason 2.

COMMENT 14. Page III-48, Performance Assessment Process: The reference in Table III-1 lists an improvement for 2-D radionuclide transport with a retardation submodel involving dual-porosity clay-lined fractures and other specified conditions. However, no mention is made of the C&C agreement which requires the use of a retardation factor of one (1) barring tracer experiments to make firmer estimates of this parameter. A baseline simulation where no credit is taken for retardation should be included in this report to scope out the effect of this parameter on the PA if such experiments are not forthcoming. Also, it appears that Bayesian reliability methodology has been used to make the retardation distributions which contain subjective judgement about this parameter for a specific radionuclide, and is not based purely on statistical sampling theory. How does this impact on the C & C agreement? Finally, a sensitivity analysis of retardation factors generated for use in the PA is not reported in this document.

RESPONSE: Uncertainty/sensitivity analyses of 1991 results, including parameters for chemical and physical retardation, are in Volume 4 of SAND91-0893. Construction of cdf's for these parameters is included in Volume 3. The Consultation and Cooperation (C & C) Agreement ($K_d=0$) is considered through a separate sensitivity analysis in Volume 4. In addition, the WIPP test plan now includes retardation experiments.

COMMENT 15. Page IV-1, Lines 4-8: Estimates of scenario probabilities for PA are to be made from expert judgement, but are the estimates to be made in a deterministic manner, or will a distribution from which to sample by LHS be constructed? It is not clear in this report whether future PA's will continue to use assigned probabilities for scenarios, or whether LHS sampling will be performed for this parameter as noted in the CCDF demonstration in Chapter 3. If the latter is the case, then a methodology for this approach should also be presented in this report including how the experts will be involved in making this determination.

RESPONSE: A summary of the results of the expert panel on inadvertent human intrusion into the WIPP is in Volume 1, Chapter 4 of SAND91-0893. The findings of this expert panel are in the recently published *Expert Judgment on Inadvertent Human Intrusion into the Waste Isolation Pilot Plant* (SAND90-3063) (Hora et al., 1991). The panel's findings were not incorporated in the 1991 calculations. In the interim, performance assessments have assumed that intrusion is a Poisson process (random in space and time) and sampled on the rate constant (see Chapter 4, Volume 1 of SAND91-0893).

COMMENT 16. Page IV-8, Lines 23-26: Comments on use of mean CCDF included in Chapter 3: it is not clear why other analysis parameters should not also be included.

RESPONSE: The full range of information generated from the performance assessments will be provided in the presentation of CCDFs for preliminary and final comparisons to the Standard.

COMMENT 17. Page IV-13, Lines 21-45; Page IV-14, Lines 1-27: The PA's in this report exclude subsidence (TS) and climatic-(base case) change as part of the scenarios; it is assumed that they will be included in future PA reports. A discussion on subsidence directly above the repository (not considered possible in this report) is criticized in Chapter 3, on the basis of secondary references used in making this determination. However, subsidence outside of the controlled area is retained for scenario development based on the possible formation of catchment basins for rainfall which could allow recharge to the unsaturated zone and the Culebra aquifer. This report as well as the cited reports (Hunter, SAND89-2546, 1989, Guzowski, SAND89-7149, 1990) do not discuss hydrological stresses to the WIPP area such as damming of streams or irrigation (Cranwell, SAND81-2573, 1987), although both reference this report. Cranwell discusses this topic in very general terms and refers to an example (p. 43) where an annual precipitation of 40 inches (compare WIPP at about 40 cm annually) is assumed. He also states that irrigation presupposes the presence of aquifers with sufficient yield to support that activity. A large mined aquifer, the Ogallala, which lies to the immediate north and east of

WIPP could be considered a prime candidate, providing future engineered recharge and expanded utilization of the Ogallala to include the WIPP area is necessary and feasible. Water could be transported from a high yield area of that aquifer. Also, local aquifers or dams along the Pecos River could be utilized pending increased moisture availability from a significant future change in precipitation (to be considered as part of the base case scenario) coupled with a concomitant favorable change in precipitation pattern. Cranwell (1987) limits his consideration of aquifers to those directly above a bedded salt repository. Since irrigation maximizes infiltration at the expense of surface runoff, it might be expected to significantly affect aquifer recharge. If the potential future hydrological stress scenarios due to irrigation activities near WIPP are to be discredited by PA in future reports, then its exclusion by screening should be justified, and not ignored as has been the case.

RESPONSE: The topics of subsidence directly above the panels and possible hydrologic stresses caused by the damming of streams and irrigation are rescreened and are discussed in more detail in Volume 1, Chapter 4 of SAND91-0893.

COMMENT 18. Page IV-15, Lines 14-17: The statement is made that a nuclear criticality scenario will be evaluated separately. A consultant to EEG in 1984 considered the possibility of a criticality incident in the Culebra. His findings indicate that under some conditions criticality was possible. The following summary is offered. . .

Criticality Considerations in the Culebra

Background

SC&A Incorporated performed Culebra criticality analyses for EEG in January 1984. These analyses considered various concentrations of fissionable material that might be in the Culebra dependent on the assumed solubilities in brine and in the distribution coefficient (Kd) Value of the matrix. Also minerals in the water and brine were considered for their effect on moderating or poisoning a criticality event.

The analyses considered two geometries. One was a block of Culebra 7 m high x 5 m wide x 1 m long. The other size block was 7 m high x 0.5 m wide x 1 m long. Two plutonium solubilities were considered 0.66 mg/l and 6.6 mg/l (2.8E-6 M and 2.8E-5 M). A high and low value in adsorbed iron was also considered, since its concentration is fairly significant. A plutonium Kd value of 2,000 ml/g and a bulk rock specific gravity of 2.0 was assumed in all cases.

The results indicated that with the 5 m wide block and the high plutonium solubility the conditions could be very supercritical. For the 0.5 m wide block and high plutonium solubility the values are slightly subcritical or slightly critical. EEG concurred (in an 8/10/84 letter from Neill to W. R. Cooper) that if the plutonium solubility limit in the repository did not significantly exceed 0.66 mg/l there should not be a credible accumulation of fissile material outside of the repository that would lead to a critical configuration. Also implicit in this conclusion was that the Kd value would not significantly exceed 2,000 ml/g.

The possibility of a criticality event in the Culebra needs to be reexamined because of the possibility that both the plutonium solubility and Kd values could be greater than those used in the low fissile case.

Solubility

At present the performance assessment is assuming that solubilities could be as high as 1 E-3 M. This is 35 times the high fissile value used by SC&A. It would undoubtedly lead to k_{eff} values greater than 1.0 for all conditions evaluated. Even for 1E-4 M solubility most of the high fissile conditions would be supercritical (exception perhaps for Case C).

<u>Kd Values</u>

A variety of plutonium Kd values have been used. Table A-8 in Appendix A of SAND89-2408 [Rechard et al., 1990] uses 100 ml/g as the expected value for the matrix while Siegel (in a 6/12/90 memorandum that is also in Appendix A) used matrix Kd values ranging from zero (0%) to 6,000 ml/g at the 100 percentile. So, Kd values might be more or less than the 2,000 ml/g value used in the SC&A calculations.

Product of Solubility and Kd

For a given volume of aquifer the important parameter for evaluating criticality is the product of solubility and Kd since this determines the amount of plutonium in the volume with assumptions used in the SC&A calculations. A value of: KdS = 2,000 ml/g (2.8 E-5 moles/1) = $0.056 \text{ ml/g} \pmod{2.1 \text{ Pu}}$ always has a $k_{eff} > 1.0$ in a 7 m x 5 m x 1 m volume and the k_{eff} is "about 1.0" (plus or minus) in a 7 m x 0.5 m x 1.0 m volume. The 0.5 m width is probably more reasonable for a scenario where the contaminated brine is injected into the Culebra aquifer from a borehole. Therefore, criticality should be re-evaluated in the future if there is ever an indication that the KdS value exceeds about 0.05 ml/g (moles/1).

<u>Conclusion</u>

A 1984 analysis performed by SC&A, Inc., for EEG indicated that a criticality event in the Culebra aquifer from adsorbed plutonium following a release from the repository was not credible with the maximum values of plutonium solubility and Kd that were believed to be appropriate at the time.

Recent studies related to the Performance Assessment suggest that the solubility of plutonium in brine could be two orders of magnitude greater than that assumed in the "non-credible" determination. Also, the Kd value could be higher than the value used by SC&A, Inc.

The criticality issue needs to be thoroughly re-evaluated if Performance Assessment data indicates that the product of KdS might exceed about 0.05 ml/g (moles/1 of plutonium).

RESPONSE: A performance-assessment task has been initiated to examine the potential for nuclear criticality from post-closure processes.

COMMENT 19. EEG Views on Scenarios and Assumptions Considered by Sandia [SNL] in Preliminary Performance Assessment: Analyses by Arthur D. Little (ADL), SC&A, and by EEG over the years lead to several questions about the completeness of Sandia's scenarios and the detailed assumptions used.

Parameter Uncertainty

Sandia has reached conclusions about several parameters where uncertainty exists that have had significant effects on scenarios considered, detailed assumptions made and in outcome of analyses. The parameters are discussed below.

19a. Marker Bed - 139 (MB-139) Permeability. The characteristics of MB-139 are very important in any realistic modeling of the repository room horizon. There is reason to believe that MB-139 will be the most effective conduit between waste storage rooms and: other rooms, other panels, repository shafts, and the accessible environment. ADL assumed that a disturbed area in MB-139 will extend out 50 feet horizontally from mined waste storage rooms and that this area will be in hydraulic and pressure communication with waste storage rooms. This assumption increases the sensitive area of the repository to a human intrusion drill bit by a factor of 4.4. Also, the permeability values chosen for MB-139 in both the near-field and far-field affect results in a number of undisturbed and disturbed scenarios.

EEG believes that Sandia should include a MB-139 disturbed area in the surface area available for all human intrusion scenarios unless there is field data to indicate that the disturbed area will not be in communication with waste storage rooms. Also the distance that the disturbed zone extends from waste storage rooms should be estimated from actual field data.

RESPONSE: The extent of the Disturbed Rock Zone (DRZ) in MB139 is an important factor in answering the question of whether exploratory boreholes near (0-50 m) the WIPP repository are in effective communication with the waste storage rooms through MB139. Following mining, an ellipsoidal pattern of fractures develops around the excavations. An arcuate fracture system concave toward the opening develops in the floor and roof. This DRZ varies in size and depth (1 m-5 m) (3 ft-16 ft) according to the size and age of the opening (Lappin et al., 1989). The DRZ generally extends far enough to include the MB139 directly below the repository. Currently, there is little evidence that the DRZ exists beneath unexcavated portions of the underground workings (Stormont et al. 1987).

The lack of a DRZ below unexcavated portions of the repository suggests that an intruding borehole outside the boundary of the repository would not be in effective communication for radionuclide transport in quantities important for CCDF construction with the repository wastes. This hypothesis was examined by Stormont et al. (1987) in SAND87-0176.

The principal pathway for radionuclides out of a pressurized repository is downward into MB139 and then laterally outward in MB139. If the resistance to flow of the small thickness of DRZ between MB139 and the repository is neglected, it can be assumed for computational purposes that the repository wastes lie entirely within MB139. Because excavation damage exists in MB139 only directly under the waste rooms, the permeability of MB139 beneath the rooms will be greater than MB139 regions away from the repository.

If a borehole penetrates a pressurized, brine-saturated repository panel (and in this model MB139), brine would be expected to flow into the borehole at a rate determined by the local permeability adjacent to the hole and the pressure gradient.

In the following calculations using the code SUTRA, the brine flow rates into hypothetical boreholes are calculated as a function of borehole location. Boreholes penetrating the repository and at various distances away from the repository are considered.

Spatial Grid

The analysis used the fine mesh Finite Element (FE) model used in the repository modeling of undisturbed conditions for one-phase flow and transport (Volume 2, Chapter 4 of SAND91-0893). In order to accurately model a borehole near the repository boundary, the FE mesh had to be grossly refined where simulation boreholes were to be placed. The mesh utilized symmetry and areal geometry to represent one-fourth of the WIPP repository's shadow projected onto the MB139 layer. Thus, the "footprint" of the repository on the MB139 medium was represented as material MB139DRZ, and the surrounding material was denoted as MB139FF (Far-Field). The final mesh used in the analysis consisted of 4740 elements (79 x 60 elements, and 80 x 61 nodes), shown in Figure 1. Thickness of all elements (normal to the plane) were assigned a value of 1.0 Simulation boreholes were then assigned to nodes located at 0.25, 0.50, m. 1.00, 2.00, and 1710.80 m outside the MB139DRZ, lying inside material MB139FF between the repository's footprint "toes." In addition, boreholes were modeled on the interface of MB139FF/MB139DRZ, at 0.25 m inside material MB139DRZ, and along the axis of symmetry of the FE mesh (74.00 m from the MB139FF/MB139DRZ material boundary). Simulation borehole nodes in the vicinity of interest are depicted in Figure 2.

Material Properties and Boundary Conditions

The required SUTRA flow equation properties are grain density (of solid matrix), fluid density, permeability (assumed isotropic for this calculation), bulk compressibility (of solid matrix), and fluid compressibility. Both materials' property values are listed in Table 1. Dirichlet boundary conditions (p = 11.0 MPa) for the grid were applied to the far-field boundaries. Neumann boundary conditions ($\partial p_f / \partial u = 0$; where u = outward normal direction) were applied to the one-fourth repository/MB139 symmetric boundaries, as shown in Figure 3. To simulate boreholes, a pressure of 6.5 MPa (hydrostatic) was assigned to a borehole node. The FE mesh was refined such that all elements surrounding borehole nodes were square and had a length of 0.25 m. Thus, all simulation boreholes had an effective diameter on the order of 0.25 m, as shown in Figure 4.

TRI-6342-1291-0

Figure 1. Final FE Mesh Used in Modeling of Undisturbed Conditions.

TRI-6342-1287-0

Figure 2. Simulation Borehole Nodes near the MB139FF/MB139DRZ Material Boundary.

Material	Property	Value
MB139FF	Grain Density	2.963E+03 kg/m ³
	Permeability	2.870E-20 m ²
	Porosity	1.000E-02
	Bulk Compressibility	1.200E-11 Pa ⁻¹
	Fluid Compressibility	2.700E-10 Pa ⁻¹
	Fluid Viscosity	1.600E-03 Pa-s
MB139DRZ	Grain Density	2.963E+03 kg/m ³
	Fluid Density	1.200E+03 kg/m ³
	Permeability	1.000E-17 m ²
	Porosity	5.500E-02
	Bulk Compressibility	1.200E-11 Pa ⁻¹
	Fluid Compressibility	2.700E-10 Pa ⁻¹
	Fluid Viscosity	1.600E-03 Pa-s

TABLE 1. MATERIAL PROPERTIES USED FOR ONE-PHASE FLOW AND TRANSPORT CALCULATIONS

Figure 3. Application of Dirichlet and Neumann Boundary Conditions to the One-fourth Repository/MB139 Symmetric Boundaries.

Results and Discussion

The undisturbed calculations (Volume 2 of SAND91-0893) involving transient flow and transport into the MB139 medium used a time-varying source term, applied to interior nodes within material MB139DRZ, and was run to 10,000 years. Due to the mesh refinements in the current model, numerical stability required a very small time step. Thus to maximize computational efficiency, steady-state calculations were implemented. Instead of applying a timevarying pressure function, representing gas generation within the repository, a constant pressure of 18 MPa was used as the source term driving the fluid flow. Since transport was of no interest, the transport equations were turned off during the calculations. Therefore, seven steady-state calculations were run, a separate calculation for each borehole at a unique spatial location.

As seen in Figures 5a and 5b, the simulation borehole flow rates change dramatically as boreholes are placed outside of the "footprint" of the repository. In Figures 5a and 5b, the negative distances represent the borehole locations measured from the MB139FF/MB139DRZ interface, residing within material MB139FF. Similarly, positive distances represent the borehole locations measured from the MB139FF/MB139DRZ interface, within material MB139DRZ (i.e., the repository's "footprint"). In these figures, the flow rates represent the amount of fluid flowing into a borehole node, simulating the amount of fluid flowing up (normal to the plane of the MB139 medium) a borehole. Viewing Figure 5b, it can be seen that the simulation borehole flow rates drop approximately two and one-half orders of magnitude from inside the repository's "footprint" (MB139DRZ) to outside the "footprint" (MB139FF). Specifically, just 0.25 m inside the MB139FF/MB139DRZ interface (distance 0.25 m, node 1193), the approximated steady-state flow rate was $1.78E-07 \text{ m}^3/\text{s}$, and just 0.25 m outside the MB139FF/MB139DRZ interface (distance -0.25 m, node 1191), the calculated steady-state flow rate was $4.89E-10 \text{ m}^3/\text{s}$.

Conclusions

Based on this analysis, it seems unnecessary to enlarge the effective repository area for disturbed scenario compliance calculations to include near "hit" situations. As demonstrated by these calculations, boreholes striking outside the repository experience a significant (two orders of magnitude) decrease in volumetric flow rate.

19b. <u>Permeability in Shaft and Borehole Seals</u>. The appropriate value for expected and degraded permeability values in WIPP shafts and boreholes is important to the determination of whether the release to the accessible environment modeled by ADL in the undisturbed case is plausible. Also, high permeability values could influence the reasonableness and consequences of the U-Tube Scenario (Magenta - repository - Culebra) considered by SC&A.

B-26

Figure 5. Borehole Flow Rates versus Distance of MB139DRZ.

EEG believes that Sandia needs to justify any shaft permeability values used in any disturbed or undisturbed scenarios.

RESPONSE: The shaft backfill is an engineered barrier; consequently, the permeabilities can be specified in designs (Nowak et al., 1990). As shown in Volume 2 of SAND91-0893, the current design specifications limit the maximum allowable shaft permeability below those assumed by PA for simulating long-term performance. Justification depends on the outcome of the seal test program. Seal requirements for demonstrating compliance are discussed in Volume 4 of SAND91-0893.

19c. <u>Climate Change</u>. Climate change is ruled out as a variable by concluding that rainfall in a pluvial period was only double that in recent history. This estimated increase may be a reasonable conclusion from the data (EEG has not evaluated this). However, a doubling of annual precipitation is likely to lead to somewhat greater than twice the annual recharge.

A more detailed evaluation of possible recharge and Culebra transport is necessary before it can be concluded that the effects of climatic change are negligible.

RESPONSE: Climate change has not been ruled out as a variable, nor is the present understanding of the relationship between climatic change and recharge adequate to conclude that the effects of climatic change are negligible. Doubling of annual precipitation is likely to result in substantially larger increases in infiltration (see memo by Swift in Volume 3 of SAND91-0893). The 1991 groundwater-flow model does not directly link changes in infiltration to changes in model boundary flux. Instead, increased recharge was simulated by prescribing elevated heads along the northern boundary of the model domain (see Volume 1, Section 5.1.9 of SAND91-0893).

19d. Subsidence and Surface Recharge. Actions by humans have the potential to significantly increase recharge. Potash mining either within or outside the WIPP Site boundary could lead to a pathway for Culebra recharge, even without a pluvial period. Also, the present Memorandum of Understanding between the Department of Energy and the Bureau of Land Management in conjunction with the Administrative Land Withdrawal in January 1991 allows BLM to sell or give away sand, gravel, and caliche from the surface of the WIPP site (including the exclusive use area above the wastes).

These other possibilities of enhanced recharge to the Culebra need to be seriously considered in scenario assumptions.

RESPONSE: The effects of subsidence related to potash mining have been included in scenario development but are not yet sufficiently well understood to be incorporated in consequence modeling. Effects of subsidence on groundwater flow in the Culebra will be modeled in future performance assessments.

The effects of near-surface activities (e.g., removal of caliche) on flow in the Culebra have not been evaluated, but because units above the Culebra have low permeabilities at and near the WIPP, the potential for a significant change is believed to be small. The effects of vertical flux into the Culebra within the model domain, regardless of the hypothesized cause, will be evaluated in future simulations of groundwater flow.

19e. Uncertainty in Radionuclide Source Term. There is some uncertainty in the volume, number of curies, and radionuclide composition of the wastes that will eventually be brought to WIPP for disposal. All of these parameters will have some effect on the CCDF. It is realized that the WIPP Project [Site] Office is continually refining and updating data on the existing and not-yet-generated waste.

The amount of heat-source wastes (Pu-238) that will come to WIPP as well as the waste form and number of curies per container could be especially important to performance assessment calculations. About 80% of the total alpha-TRU radioactivity presently projected to be emplaced in WIPP is Pu-238 and of this total over 95% is in heat source wastes at SRS or LANL. This large amount of radioactivity greatly increases the multiplier for Table 1, thus greatly increasing the quantity of radioactivity that is allowed to reach the accessible environment.

Since Pu-238 has a half-life of only 87.7 years it figures to be of much less concern per curie during the 10,000 year evaluation period than U-233, Pu-239, Pu-240, and Am-241. Thus, the presence of heat source wastes would be expected to make compliance with 191.13 easier.

Most of the present Pu-238 wastes cannot be shipped to WIPP with the current NRC certificate of compliance for TRUPACT-II and may never be shippable without treatment. Since DOE has made no firm commitments concerning treatment of heat source wastes there is an uncertainty about whether the waste will come to WIPP at all, and (if it does come) in what form. Sandia should perform PA calculations and plot a CCDF for two source term conditions, one with the heat source waste included and one without.

RESPONSE: Performance Assessment has considered the suggestion made by the EEG to look at inventories with and without heat-source Pu wastes. In all 1991 calculations, the WIPP is assumed to be filled to the design volume, with quantities of radionuclides scaled up from the 1990 IDB. Using a smaller inventory (without the Pu-238 in heat-source waste) would result in smaller allowable releases.

Pu-238 is <u>not</u> "of much less concern during the 10,000-year evaluation period than U-233, Pu-239, Pu-240, and Am-241" because Pu-238 decays to Pb-210 through the three daughter products U-234, Th-230, and Ra-226. "Thus, the presence of heat-source wastes would be expected to make compliance with 191.13 easier" only if the daughter products of Pu-238 are ignored. The Standard requires the consideration of decay products, and performance assessments therefore consider the complete design inventory.

Comment 19 (continued). Scenarios Not Considered

At the present time Sandia is not assuming that any radionuclides will be brought to the surface except in drill bit cuttings from the "effective" radius of the borehole. Furthermore, it is assumed that all wastes in drill bit cuttings contain only average concentrations of radionuclides.

Waste being brought to the surface has the potential to be a more severe test of the Standard than having the waste diverted into the Culebra Aquifer where transport to the accessible environment can be significantly delayed by ground water flow time and retardation factors. Yet at the present time Sandia has eliminated all scenarios where wastes are brought to the surface except as drill bit cuttings. The deletion of discharges to the surface is unrealistic and non-conservative.

In 1987 Sandia performed scoping and preliminary PA calculations where they considered volumes of radioactive material that might be brought to the surface from drilling into waste storage rooms in the following conditions:

- (a) containing a brine slurry;
- (b) in dry consolidated form;
- (c) in dry nonconsolidated form.

These deterministic calculations indicated that the quantities of radioactivity brought to the surface could exceed the [EPA] standard in cases (a) and (c).

The uncertainty in waste storage room conditions reflected in Sandia's 1987 work still exists. The primary problem is that if room closure and consolidation cannot be guaranteed before brine inflow occurs and/or the 100 year control period expires then conditions (a) or (c) could be present at the time of intrusion. In 1987 the point was made that early reduction of void space alone might solve this problem. Yet, no progress has been reported in confirming this preliminary finding or in reducing void space by waste modification and/or backfill design changes.

EEG believes that Sandia must consider releases of radioactive material to the surface beyond the average radionuclide composition drill bit cuttings included in the Preliminary Comparison. Our concerns are expressed in more detail below.

<u>Radionuclide Quantities in Drill Cuttings</u>. The scenarios recognize there will be radioactive material brought to the surface in drilling fluid each time waste storage rooms are penetrated. This material will be both from drill bit cuttings and from "cavings" (additional material "eroded from the walls of the borehole at the repository horizon by the circulating fluid.") SAND90-2347 (pages V-83 to V-85) discusses variation in drill bit radius (is sampled probabilistically) and in shear strength of the waste which affects the amount of "cavings" (which is being studied). EEG agrees with the procedure being used to determine the final hole radius, but we point out that the bulk shear strength of the waste should also be considered for those cases where the waste is unconsolidated or in a brine slurry. The 1987 scoping studies assumed that in a dry non-consolidated room all waste in an intercepted drum would be carried to the surface and in a brine slurry room that 46 m³ of brine would flow to the surface. These assumptions are reasonable and a good starting point for developing waste volume distributions.

The average radionuclide composition and concentration varies significantly between waste generation sites. Also, there is considerable variation between waste packages at each site. Unlike spent fuel in a high-level waste repository there is no average or typical TRU waste container. Table [2] (developed from data in DOE/RW-0006, Rev. 6, the 1990 Integrated Data Base [U.S. DOE, 1990a]) indicates the estimated averages of presently stored and newly generated wastes at the individual generating sites.

The variation at each generating site is also significant. For example, the Savannah River Site (SRS) is expected to have 5,560 drums averaging 880 Ci/m³ (DOE/WIPP 88-005 [U.S. DOE, 1989]). Since drilling into waste is an expected event and the EPA standard requires that releases with an expected probability greater than 0.001 be considered, it is necessary that cuttings from the more concentrated packages be considered.

Generator	Volume Percent	Cumulative Percent	Average Concentratior (Ci/m ³)
NIS	0.6	0.6	1.17
LLNL	1.1	1.7	2.09
Mound	0.9	2.6	2.36
RFP	16.0	18.6	3.69
ANL-E	0.2	18.8	3.94
INEL	39.5	58.3	4.89
Hanford	10.3	68.6	5.28
ORNL	1.2	69.8	24.92
LANL	11.4	81.2	54.51
SRS	18.7	99.9	181.07

TABLE 2. PERCENT VOLUMES AND AVERAGE CONCENTRATIONS FROM TRU WASTES GENERATING SITES

The effect of considering the high concentration packages in the current calculations is believed to be significant. From the CCDF plots in Figures VI-2, 3, 4 (in SAND90-2347) it appears that the quantities released during drilling are about 2 to 4 curies. This is approximately the value EEG obtained using average container concentrations and a 12 inch effective diameter borehole. However, we believe that when the SRS high-curie containers are considered there could be greater than 30 curies brought to the surface with a probability of greater than 0.001 when considering random emplacement (which may not be the actual or the most conservative mode). We recommend that this variation in radionuclide concentrations be determined as well as possible and treated probabilistically in the calculation.

RESPONSE: The analyses summarized by Lappin et al. (1989) indicated that a brine slurry would not form in a gas-free repository. The two-phase BRAGFLO calculations conducted for this report (see Volume 2 of SAND91-0893) support this conclusion: the presence of gas results in less brine in the waste. The effective shear strengths for erosion currently being used in cuttings calculations are very low, on the order of 1 Pa.

The possibility of waste removal through a borehole from a gas-pressurized and gas-saturated repository with consolidated or unconsolidated wastes is currently under study.

Comment 19 (continued). <u>Contaminated Brine Flows to the Surface</u>. The El, E2, and ElE2 scenarios assume that the only material reaching the surface is from drill bit cuttings and some "cavings" from the annulus about the drill bit in the waste storage room. Brine flowing to the surface from an encounter with a pressurized Castile brine reservoir was not assumed. EEG believes that brine flows to the surface should be assumed and that the consequences could be significant for the ElE2 scenario. Our reasons follow.

Sandia and DOE have described typical drilling practices elsewhere (Appendix C of SAND89-0462 [Lappin et al., 1989] and in DOE February 7, 1990 response to EEG's comments on the Draft Supplement EIS). These responses explain how it is possible to have very little flow to the surface by closing in blow-out preventers within a few minutes, determining the pressure, and then preparing drilling mud of sufficient density to stop the flow before resuming drilling. For example, it was stated (in the 2/7/90 letter) that only 51 barrels flowed at WIPP-12 before shut in by a blow-out preventer.

The 2/7/90 DOE letter went on to say that at WIPP-12 an additional 49,224 barrels flowed during deepening, geophysical logging, and further deepening before it was finally shut in for subsequent hydrologic testing. This additional flow was described as resulting from a "conscious decision."

It appears that virtually every time a pressurized Castile brine reservoir has been encountered in the vicinity of WIPP that "conscious decisions" have been made to allow varying amounts of brine to flow at the surface. Table [3] extracted from two WIPP reports (TME-3080 and TME-3153) [U.S. DOE, 1981 and U.S. DOE, 1983] describes remedial measures taken. Although the available data are not as detailed or as quantitative as one would like, it is clear that drilling practice through 1982 included release of brine at the surface whenever pressurized Castile brine reservoirs were encountered. In the absence of any brine reservoir encountered in the Delaware Basin since 1982, where new practices might have been observed, we believe that typical commercial drilling practices should be assumed.

Brine released at the surface from the E2 scenario would be expected to increase the effective radius of the borehole and thus increase the amount of waste brought to the surface in suspension and in solution. The major effect could occur in the ElE2 scenario because brine present in the repository from the first encounter (which would be expected to be saturated in uranium, plutonium, and americium) would be discharged at the surface. The following example indicates that discharge could be significant.

There would be about 8,800 m³ of brine in a waste panel if 20% of the original volume contained brine. If plutonium, americium, and uranium were present in the brine at 10^{-6} Molar concentration there would be about 8,000 Ci at 150

Name of Well	Date Drilled	Initial Flow bbl/day	Remedial Action
Mascho-1	1937	8,000	No action to stop flow.
Mascho-2	1938	3,000	No action to stop flow.
Culbertson-1	1945		3,000 barrels estimated to flow to surface. No record of flow rate or duration.
Tidewater	1962	NA	12 pound per gallon drill- ing mud did not stop. Finally control by casing and cementing.
Shell	1964	20,000	Allowed to flow until artesian flow ceased.
Belco	1974	12,000	Brine flowed to surface for 26 hours with 14 pound per gallon drilling mud.
Gulf	1975	5,000	No records on total volume or duration of artesian flow.
ERDA-6	1975 1981-82 (testing)	660	WIPP borehole. Estimate 19,000 barrels could be produced by artesian flow.
Pogo	1979	10,000	Initial flow of 1440 bbl/ day with 14.6 pound per gallon drilling mud. Stopped after 4 days with 15 pound per gallon mud.
WIPP-12	1981	12,000	WIPP borehole. Over 79,000 barrels produced. Estimate 350,000 barrels producible by artesian flow.

TABLE 3. CASTILE BRINE RESERVOIR INTERACTIONS IN WIPP AREA

References

- U.S. DOE Brine Pocket Occurrences in the Castile Formation, southeastern New Mexico, TME-3080, March 1981.
- Brine Reservoirs in the Castile Formation Waste Isolation Pilot Plant (WIPP) Project Southeastern New Mexico, TME-3153, March 1983.

years after closure, 6,700 Ci at 1,500 years, and 800 Ci at 3,000 years. Permissible quantities of waste allowed in the accessible environment (assume 10 times Table 1 values) would be between about 1,700 and 5,100 Ci depending on the TRU waste equivalency definition finally used.

Although the hydraulic characteristics of many brine reservoirs are adequate to flow 8,800 m³ at the surface (WIPP-12 would have flowed 56,000 m³), the amount of brine flowing from a panel might be somewhat less. However, the solubility could be somewhat higher. The solubility of americium is particularly important because of its high specific activity. At 10^{-6} M americium-241 contributes about 90%, 98%, and 79% of the total activity at 150, 1500, and 3000 years. The quantities in solution are solubility limited before about 1,500 years (at 10^{-6} M) and inventory limited thereafter.

EEG believes that the Performance Assessment has to include events where contaminated brine comes to the surface. Computational details would determine whether these events should be incorporated into the E1E2 scenario or into a separate scenario.

RESPONSE: The EEG raised the question of increased quantities of waste being brought directly to the surface if flow from a penetrated brine pocket was allowed to continue unrestricted. This could happen by two mechanisms. First, some additional particulate waste could be eroded from the borehole wall. Second, waste dissolved in brine within the panel could be brought to the surface with the Castile brine. The first mechanism has been examined with calculations discussed in the next paragraph. The second mechanism, which requires an ElE2-type intrusion and flow of Castile brine through the panel, has not been modeled. It can be noted qualitatively, however, that because of the resistance provided by the relatively low-permeability waste and backfill, flow along the ElE2 pathway is less likely to result in an uncontrolled flow of brine at the surface.

The first mechanism has been examined with a CUTTINGS calculation to assess the importance on erosion of unrestricted brine flow from a Castile brine pocket in an El scenario. Unrestricted artesian flow from a Castile brine pocket would normally not be permitted. However, several cases of such flow have occurred in past drilling events near the WIPP site. In 1964 a well (Shell) was allowed to flow to the surface until artesian flow ceased. The initial flow rate was 20,000 bbl/day. Using this value of brine flow, borehole erosion was calculated with the CUTTINGS code assuming that the drill bit had passed the repository horizon and penetrated a Castile brine pocket. The uphole flow rate was assumed to consist of the combined drilling mud flow and brine pocket flow. The drill diameter adjacent to the repository was also assumed to be the outside drill stem diameter. All other input parameters were kept the same (see Table 4). The results indicate that for the chosen input variables, there would be an increase in the volume of waste transported to the surface of 19.6%.

	With Castile Brine Flow	Without Castile Brine Flow
Drill String		······································
Angular Velocity	7.7 rad/s	7.7 rad/s
Diameter of Intrusion		
Drill Bit	0.4444 m	0.4444 m
Relative Roughness	0.25	0.25
Effective Shear Strength		
for Erosion	1 Pa	1 Pa
Fluid Density (Mud)	1200 kg/m ³	1200 kg/m ³
Viscosity	9.17 x 10 ⁻³ Pa•s	9.17 x 10 ⁻³ Pa•s
Yield Stress Point	4 Pa	4 Pa
Drill String Diameter	0.1016 m	0.1016 m
Mud and Brine Flow Rate	8.094 x 10 ⁻² m ³ /s	4.415 x 10 ⁻² m ³ /s
Final Eroded Diameter	1.0866 m	0.9935 m

TABLE 4. INPUT AND OUTPUT VARIABLES-CUTTING

Comment 19 (continued). Brine Slurry Filled Room. A brine slurry filled room could be present in scenarios that do not involve a brine reservoir. Also, because of creep closure and gas generation this brine could be under greater than hydrostatic pressure and thus have a driving force of its own (unless the gas cap was relieved by the drill bit upon initial entry to the room). The potential quantities of brine that might come to the surface would be somewhat less than with a brine reservoir (perhaps tens of cubic meters rather than hundreds or thousands of cubic meters) but the consequences could still be significant.

The brine slurry room scenario with wastes being brought to the surface in drilling fluid and/or by flow should be included unless other studies can establish that this room condition will not exist in the absence of a brine reservoir.

RESPONSE: The question of a brine-slurry-filled room was raised a number of years ago by the EEG and others. It became the impetus for extensive tests on the permeability of the Salado Formation to quantify the maximum amount of brine that could enter the repository over 10,000 years. The permeability measurements to date continue to show very low permeabilities, which prevent great quantities of brine from entering the room, which in turn precludes the possibility of forming a slurry. Furthermore, the current PA two-phase BRAGFLO code models both the gas generation and brine

movement as suggested. In the vast majority of simulations of the E2 scenario with varying permeability, there is insufficient brine entering the room to even fill the pores (and results in mostly zero releases (see Volume 2 of SAND91-0893)). Consequently, the extensive discussion refuting this hypothesized condition in Lappin et al. (1989), in the FSEIS (U.S. DOE, 1990b), and elsewhere remains valid.

Comment 19 (continued). Location and Effectiveness of Borehole Seals. The present scenarios assume that borehole plugs remain intact for the 10,000 year period and thus preclude any contaminated fluid from reaching the surface. This assumption maximizes the amount of fluid that will be injected into the Culebra aquifer but it may not maximize the amount of radionuclides that reach the accessible environment from both the Culebra and surface routes. Also, the location of the plugs is different in the El scenario portion of the ElE2 scenario than in the other scenarios. This change may lead to conservative (higher) release rates to the accessible environment but is not explained.

The assumed borehole permeability range of 10^{-11} to 10^{-14} m² is in the range that Freeze and Cherry [1979] call appropriate for silty sand. This appears to be consistent with guidance in the 4/91 Draft of 40 CFR 191.

EEG does not have a position at this time on the assumptions used about the location or the 100% effectiveness of the plugs.

RESPONSE: Because no question was asked, we can only comment on the three points raised: (1) maximizing flow to the Culebra by using 100% effective plugs above the Culebra, (2) changing locations of 100% effective plugs between E1 and E1E2 summary scenarios, and (3) selection of borehole permeability.

Concerning the first point, it is Performance Assessment's intent to be conservative in placing a 100% effective plug above the Culebra to divert the flow into the Culebra. Without the plug, contaminants could move higher in the borehole but not to the surface since the pore pressure in the Salado Formation and the Castile brine pocket are not great enough to move brine to the surface through a sand-filled borehole (see Reeves et al., 1991, SAND89-7069). Lateral transport of radionuclides in subsurface units above the Culebra (e.g., the Magenta Dolomite or the Dewey Lake Red Beds) has not been modeled but is believed to be less important than transport in the Culebra because transmissivity in these units is substantially lower.

As correctly surmised by the EEG concerning the second point, changing the locations of the 100% effective plugs between the summary scenarios does

produce higher releases by forcing 100% of any flow from the brine reservoir directly through the waste in the E1E2 summary scenario.

On the final comment, Performance Assessment concurs with the EEG that the assumed borehole permeability range of 10^{-11} to 10^{-14} m² is consistent with 40 CFR 191 as originally promulgated and the April 1991 draft.

COMMENT 20. Page V-2, Lines 6-42; Pages V-26, Line 26 to V-34, Line 6: The discussion of the Culebra and Magenta dolomites in the WIPP area infers that there is a source of aquifer recharge (North and East of the site) to these units. Furthermore, it is stated that the Magenta is possibly recharging the Culebra through fractures. Also, it is mentioned that the presence of a 3 meter thick caliche layer inhibits downward flow of moisture from supra-Rustler aquifer units. The recharge statements are in apparent contradiction to the discussion on the paleo-flow transient state postulated for the WIPP (summarized on p. V-53, figure V-19) which would exclude significant moisture of recent origin from entering these aquifers. The reference to a caliche moisture flow inhibitor from the surface to aquifers farther down is also perplexing. Is the Capitan Reef at the periphery of the Guadalupe Basin implicated as an ultimate source of recharge if infiltration from the surface is to be minimized? If so, how does one explain the "pleistocene" age of the water reported for the Culebra which would negate any significant modern recharge related to this discussion? Is the caliche layer compromised by sinkholes, boreholes, potash mining, or deliberate removal? The experiments and field studies (EEG is currently involved in one) to address these uncertainties should be referenced, and the state of "ignorance" on the subject should be clearly detailed in this report to accurately present the state of uncertainty in PA.

RESPONSE: Uncertainty remains high about the past and possible future changes in recharge and groundwater flow in the Culebra. The discussion of the topic in Volume 1, Chapter 5 of SAND91-0893 has been extensively rewritten. The impact of this uncertainty on the performance of the system will be evaluated in future analyses.

COMMENT 21. Pages V-2, Line 45 to V-4, Line 9; Pages V-37, Line 4 to V-51, Line 20: The section on long-term climate variability is well written and in sufficient detail in both describing paleo-climates at WIPP, and in forecasting future climates for this area. However, several important aspects are not considered which are of relevance to the WIPP area. The first aspect concerns the potential change of WIPP to a "dry-farming" region with a doubling of annual precipitation as discussed in a previous comment (p. IV-13, 14). The second aspect concerns the distribution of the precipitation throughout the year. This report indicates that the

increased moisture will occur outside of the growing season because of the southerly displacement of the jet stream during the winter. Under these conditions the doubling of annual precipitation would not produce a linear increase in soil moisture, but with reduced potential evapotranspiration rate (p.e.t.) would create significantly longer periods of water surplus in the surrounding soils and alluvium and encourage crop irrigation practices similar to those now occurring in central California. Potentially larger surface storage of moisture in surrounding dams and lakes would also encourage the latter as would potentially larger runoff from the Pecos River and its tributaries. Conversely, if the precipitation patterns were to resemble that of the midwest US, then dry farming activity would be expected to increase and to encourage irrigational supplements to overcome periods of moisture deficit currently practiced in the mid-grass region of the Great Plains. Hence PA models addressing climatic change should incorporate precipitation patterns into the analysis and model the effect on water budgets in the WIPP area. Accompanying vegetational changes through plant succession should also be modeled to determine their effect on moisture availability and their effect on WIPP integrity.

In summary, a factor of 2 increase in rainfall at the WIPP site potentially makes possible dry-farming in the area (greater than 21 inches/year precipitation is required), or increased livestock grazing. The implications of this potential effect is not discussed nor addressed in the screening of scenario possibilities at the WIPP.

RESPONSE: Doubling of precipitation may result in substantially more than doubled infiltration (see memo by Swift in Volume 3 of SAND91-0893). The performance-assessment methodology used in 1991 for simulating this increase is preliminary, and results are applicable only to the narrowly defined conceptual model for recharge at the northern edge of the model domain (see Section 5.1.9 in Volume 1, Chapter 5 of SAND91-0893). Other conceptual models for enhanced recharge will be examined in later analyses.

The WIPP performance-assessment team does not, at present, plan to model specific possible causes of increased infiltration such as changes in plant communities. Rather, the approach will be to examine the effects of varying recharge directly, with uncertainty in the recharge factor including uncertainty in the various processes that control recharge.

COMMENT 22. Page V-5, Lines 29-33; Pages V-54, Lines 35-43 to V-56, Lines 1-11: There are several areas of concern with respect to the selection of retardation factors for the Culebra dolomite: the range of values used in preparation of the CCDF (p. C-5, this document [SAND90-2347]) ranges from 1 to 16,000 (matrix), and from 1 to 50,000 (clay/fracture) for plutonium as

as provided by the "principal investigator." This presumably refers to a paper presentation by Siegel (11/19/90) in which natural uranium is the basis for a natural analog study to constrain the strength of clay/solute interactions within the Culebra Aquifer. Siegel reports retardation factors of about 1,200 for Culebra dolomite using a uniform porous-medium model, and values of about 200 for clays using the fracture flow-model. Retardation factors ranging from 200-30,000 are reported for the Palo Duro basin; however, the author states that such brines may be poor analogs for the comparatively young groundwaters of moderate salinity characteristic of the WIPP site. The latter are also under reducing conditions where uranium exists in the quadrivalent state. Siegel's paper is partly based on work by Hubbard et al. (1984) and Laul et al. (1988). Hubbard states that retardation factors greater than or equal to 40 for thorium (and indirectly for uranium) may be expected in the Palo Duro Basin based on Ra-228/Th-228 ratios observed. The uranium is again assumed to be in the quadrivalent state, and Ra-228 is considered to have a retardation factor of 1.0. Laul presents retardation factors based on U-238/Ra-226 ratios in brine ranging from about 10 to 300,000 assuming a retardation factor of 1.0 for Ra-226. Two wells, Zeeck #1 (7,140-7,172 feet deep) and J. Friemel #1 (8,168-8,204 feet deep) yielded retardation factors of about 324,000 and 132,000, respectively. Both of these wells can be considered to manifest "anoxic" or reducing environments where uranium is expected to be in the quadrivalent state. In addition, Friemel #1 yielded a retardation factor of 193,000 at another comparable depth (7,326-7,300 feet deep), again indicating a reducing environment. Laul states that wells at depths between 750 to 1,800 feet are considered to be shallow aquifers and thus may represent "oxic" or oxidizing environments. Wells ranging in depth between 750 to 2,970 feet (Zeeck #4, zone 4; Mansfield #2, Detter #2; Harman #1; and Freimel #1, zone 9) yielded retardation factor estimates between 28 to 1,897. By contrast thorium retardation factors estimated by the ratio, Ra-228/Th-228 yielded 94, 1,436, and 240 for the deep wells noted above, and a range between 70 to 870 for the shallow wells. Other wells in the study gave uranium retardation factors between 2,720 to 183,000, and thorium retardation factors between 36 to 408. The range in well depths yielding these retardation factors was between 3,100 to 7,900 feet and there was a tendency for the deepest wells to have the highest retardation factors. Furthermore, all of these wells would probably qualify as "anoxic" wells according to Laul.

It thus appears from the analysis of retardation factors based on naturalanalogs U-238, Ra-226, Ra-228, and Th-228, all other conditions being met, that the Culebra at about 1,000 feet below the surface would qualify as an "oxic" aquifer and that the retardation factors estimated for these types of wells would be more applicable. The above argument suggests that a

maximum retardation factor of about 2,000 should be used for plutonium if it is a radiomimetic of uranium under these conditions, or a lower maximum retardation factor of about 1,000 should be used if it mimics thorium under oxic conditions. These estimates agree well with Siegel's and Hubbard's original estimates mentioned earlier. Thus, the maximum retardation factor of 50,000 used in PA may be high by as much as a factor of 50 for the clay/fracture environment and as much as 16 for the matrix-porosity environment. Even if the Culebra is found to be "anoxic," the retardation factor would still be under 2,000 for plutonium if it mimics thorium behavior according to these analyses. It would be desirable to take measurements of the type described for the Palo Duro Basin on the Culebra aquifer to determine the redox environment and natural-analog concentration ratios.

The use of a dual porosity model in PA involving both matrix and fractureflow incorporating retardation factors due to both is based primarily on the work of Neretnieks and Rasmussen [1984] (Water Resources Research, V. 20, No. 12). This report is based on the flow of moisture through fissured crystalline rock which is less than exact due to insufficient knowledge of fissure orientation and frequency, intersection characteristics, and variations in these properties as stated by the authors. A discussion of application of this model to the Culebra dolomite without a comparison to crystalline rock, and adequate knowledge of fracture characteristics which might limit this application is not given enough consideration in this document. A similar criticism on the estimate of maximum retardation factors in conjunction with the clay coatings on the Culebra dolomite fractures was discussed earlier.

Overall, there remains insufficient justification for using any Kd values for the Culebra aquifer in performance assessment. EEG has urged DOE since 1979 to experimentally determine a range of Kd values for various conditions in the Culebra. Unfortunately, after all these years, there is no more experimental justification than was provided in the Geological Characterization Report in 1978 [Powers et al., 1978]. This serious deficiency in the data for performance assessment should be removed as soon as possible, either through field tests as planned in 1986 or through laboratory testing, or both. In the absence of reliable experimentally obtained results, EEG will insist on the implementation of the C & C Agreement provision of taking no credit for retardation in the performance assessment calculations.

RESPONSE: Expert judgment (whether from an individual or a panel) is always necessary to develop the probability distributions for use in the modeling systems (PA data base) from the results of experiments (sorption data base). Sandia is planning column experiments to begin preliminary testing early in 1992. Until data required by the C & C Agreement is available, SNL will continue to include retardation in PA analyses in order to provide guidance to the data-acquisition work.

COMMENT 23. Page V-6, Lines 40-44; Pages V-59 to V-62, Lines 31-24: Exclusion of the calibrated model for the Culebra Dolomite as derived by LaVenue et al., (1990, in PA document) is of some concern, considering the amount of effort that has gone into this activity to date. The use of a "zone" approach has the advantage of using a simpler (and shorter running time) model than SWIFT II, but it appears to be uncalibrated, and it is not amenable to parameter and conceptual-model uncertainty analysis as well. In fact the use of the zone approach only for "interim" purposes should justify an analysis of how this methodology will impact on future CCDF analyses, and what one might infer from those presented in this report. It would appear that very little effort has gone into reconciling expected calibration biases of non-unique solutions on parameter and model uncertainties in PA when techniques such as "kriging" are utilized for tuning numerical models. It might be more fruitful to question either the necessity or possibility of reconciling such biases for PA over long time periods than to abandon a well documented, bench-marked and Culebra calibrated model (SWIFT II).

RESPONSE: The 1991 calculations use 60 different transmissivity fields, each calibrated to observed head data (see Sections 5.1.9 in Volume 1 and 6.3 in Volume 2 of SAND91-0893). A geostatistics expert group has been established to advise the performance-assessment team on suitable methods for including uncertainty in groundwater flow in future performance assessments (see Volume 2, Section 6.2 of SAND91-0893). Among the techniques being examined for use in future performance assessments is an extension of the pilot point approach of LaVenue et al. (1990), which will generate random fields conditioned on transmissivity data and both steadystate and transient head data, without restrictions on the variance of transmissivity and with the capability to include variable-density flow models (see Volume 2, Section 6.2 of SAND91-0893).

COMMENT 24. Page V-74, Lines 18-22: A reference is made to Radon-226 as the daughter of Ra-226 several times in this discussion. Radon-222 with a half-life of 3.8 days is the correct isotope of radon gas produced from Ra-226 (Radon-226 does not exist). Furthermore, it is stated that the activity of this radioactive gas will be insignificantly small. Because it will be in secular equilibrium with Ra-226, then the same reasoning will show that the activity of Ra-226 will be insignificantly small as well. The same logic would apply to the daughter products of Rn-222 including Pb-210. Was this the point of this discussion? **RESPONSE:** The discussion of radon-222 as the only radioactive gas expected is correct in line 17. The reference to radon-226 in lines 20 and 21 were typographical errors. The point of the discussion was that the only gaseous radionuclide was radon-222, there was a very small quantity of it, and not including gaseous transport of volatile radionuclides would not significantly affect radionuclide releases.

Appendix B References

Cranwell, R. M., J. E. Campbell, J. C. Helton, R. L. Iman, D. E. Longsine, N. R. Ortiz, G. E. Runkle, and M. J. Shortencarier. 1987. Risk Methodology for Geologic Disposal of Radioactive Waste: Final Report. NUREG/CR-2452, SAND81-2573. Albuquerque, NM: Sandia National Laboratories.

Freeze, R. A., and J. A. Cherry. 1979. *Groundwater*. Englewood Cliffs, NJ: Prentice-Hall, Inc.

Guzowski, R. V. 1990. Preliminary Identification of Scenarios That May Affect the Escape and Transport of Radionuclides From the Waste Isolation Pilot Plant, Southeastern New Mexico. SAND89-7149. Albuquerque, NM: Sandia National Laboratories.

Hora, S. C., D. von Winterfeldt, and K. M. Trauth. 1991. Expert Judgment on Inadvertent Human Intrusion into the Waste Isolation Pilot Plant. SAND90-3063. Albuquerque, NM: SAndia National Laboratories.

Hubbard, N., D. Livingston, L. Fukui, and G. L. McVay, eds. 1984. "Composition and Stratigraphic Distribution of Materials in the Lower San Andres Salt Unit." *Materials Research Symposia Proceedings, Boston, MA, November 14, 1983.* Volume 26. New York, NY: Elsevier Science Publishing Company, Inc.

Hunter, R. L. 1989. Events and Processes for Constructing Scenarios for the Release of Transuranic Waste From the Waste Isolation Pilot Plant, Southeastern New Mexico. SAND89-2546. Albuquerque, NM: Sandia National Laboratories.

Kaplan, M. F. 1982. Archeological Data as a Basis for Repository Marker Design. ONWI-354. Washington, DC: U.S. Department of Energy.

Lappin, A. R., R. L. Hunter, D. P. Garber, P. B. Davies, R. L. Beauheim, D. J. Borns, L. H. Brush, B. M. Butcher, T. Cauffman, M. S. Y. Chu, L. S. Gomez, R. V. Guzowski, H. J. Iuzzolino, V. Kelley, S. J. Lambert, M. G. Marietta, J. W. Mercer, E. J. Nowak, J. Pickens, R. P. Rechard, M. Reeves, K. L. Robinson, and M. D. Siegel. 1989. Systems Analysis, Long-Term Radionuclide Transport, and Dose Assessments, Waste Isolation Pilot Plant (WIPP), Southeastern New Mexico; March 1989. SAND89-0462. Albuquerque, NM: Sandia National Laboratories.

Laul, J. C., and M. R. Smith. 1988. Disequilibrium Study of Natural Radionuclides of Uranium and Thorium Series in Cores and Briny Groundwaters from Palo Duro Basin, Texas. PNL/SRP-5783. Richland, WA: Pacific Northwest Laboratory.

LaVenue, A. M., T. L. Cauffman, and J. F. Pickens. 1990. Ground-Water Flow Modeling of the Culebra Dolomite: Volume 1--Model Calibration. SAND89-7068. Albuquerque, NM: Sandia National Laboratories.

Marietta, M. G., S. G. Bertram-Howery, D. R. Anderson, K. Brinster, G. Guzowski, H. Iuzzolino, and R. P. Rechard. 1989. *Performance Assessment*

Methodology Demonstration: Methodology Development for Purposes of Evaluating Compliance with EPA 40 CFR Part 191, Subpart B, for the Waste Isolation Pilot Plant. SAND89-2027. Albuquerque, NM: Sandia National Laboratories.

Martz, H. F., and M. C. Bryson. 1982. Predicting Low-Probability/High-Consequence Events. LA-UR-82-1668. Los Alamos, NM: Los Alamos National Laboratory.

Neretnieks, I., and A. Rasmussen. 1984. "An Approach to Modeling Radionuclide Migration in a Medium with Strongly Varying Velocity and Block Sizes along the Flow Path." *Water Resources Research* vol. 20, no. 12: 1823-1836.

Nowak, E. J., J. R. Tillerson, and T. M. Torres. 1990. Initial Reference Seal System Design: Waste Isolation Pilot Plant. SAND90-0355. Albuquerque, NM: Sandia National Laboratories.

Powers, D. W., S. J. Lambert, S-E Shaffer, L. R. Hill, and W. D. Weart, eds. 1978. *Geological Characterization Report, Waste Isolation Pilot Plant (WIPP) Site, Southeastern New Mexico*. 2 volumes. SAND78-1596. Albuquerque, NM: Sandia National Laboratories.

Rechard, R. P., H. J. Iuzzolino, and J. S. Sandha. 1990. Data Used in Preliminary Performance Assessment of the Waste Isolation Pilot Plant (1990). SAND89-2408. Albuquerque, NM: Sandia National Laboratories.

Reeves, M., et al. 1991. Regional Double-Porosity Solute Transport in the Culebra Dolomite Under Brine-Reservoir-Breach Release Conditions: An Analysis of Parameter Sensitivity and Importance. SAND89-7069. Albuquerque, NM: Sandia National Laboratories.

Stormont, J. C., E. W. Peterson, and P. L. Lagus. 1987. Summary of and Observations about WIPP Facility Horizon Flow Measurements through 1986. SAND87-0176. Albuquerque, NM: Sandia National Laboratories.

Thomas, R. E. 1982. Uncertainty Analysis. ONWI-380. Washington, DC: Office of Nuclear Waste Isolation, U.S. Department of Energy.

Tierney, M. S. 1990. Constructing Probability Distributions of Uncertain Variables in Models of the Performance of the Waste Isolation Pilot Plant. SAND90-2510. Albuquerque, NM: Sandia National Laboratories.

U.S. DOE (Department of Energy). 1981. Brine Pocket Occurrences in the Castile Formation, Southeastern New Mexico. DOE/TME-3080.

U.S. DOE (Department of Energy). 1983. Brine Reservoirs in the Castile Forrmation, Waste Isolation Pilot Plant (WIPP) Project, Southeastern New Mexico. DOE/TME-3153.

U.S. DOE (Department of Energy). 1987. Integrated Data Base for 1987: Spent Fuel and Radioactive Waste Inventories, Projects and Characterizations. DOE/RW-0006, Rev. 3.
U.S. DOE (Department of Energy). 1989. Radionuclide Source Term for the WIPP. DOE/WIPP-88-005. Carlsbad, NM: U.S. Department of Energy.

U.S. DOE (Department of Energy). 1990a. Integrated Data Base for 1990: Spent Fuel and Radioactive Waste Inventories, Projects and Characterizations. DOE/RW-0006, Rev. 6.

U.S. DOE (Department of Energy). 1990b. Final Supplement Environmental Impact Statement, Waste Isolation Pilot Plant. DOE/EIS-0026-FS. Washington, DC: U.S. Department of Energy, Office of Environmental Restoration and Waste Management.

WIPP PERFORMANCE ASSESSMENT BIBLIOGRAPHY

PUBLISHED

Anderson, D. R., M. G. Marietta, and S. G. Bertram-Howery. 1991. WIPP Performance Assessment: A 1990 Snapshot of Compliance with 40 CFR 191, Subpart B. SAND90-2338. Albuquerque, NM: Sandia National Laboratories.

Anderson, D. R., M. G. Marietta, and S. G. Bertram-Howery. 1991. "WIPP Performance Assessment: A 1990 Snapshot of Compliance with 40 CFR 191, Subpart B." Proceedings of the Probabilistic Safety Assessment and Management (PSAM) Conference, Beverly Hills, California, February 4-7, 1991. Amsterdam: Elsevier Science Publishers. 893-898.

Bertram-Howery, S. G., and R. L. Hunter. 1989. Plans for Evaluation of the Waste Isolation Pilot Plant's Compliance with EPA Standards for Radioactive Waste Management and Disposal. SAND88-2871. Albuquerque, NM: Sandia National Laboratories.

Bertram-Howery, S. G., and R. L. Hunter, eds. 1989. Preliminary Plan for Disposal-System Characterization and Long-Term Performance Evaluation of the Waste Isolation Pilot Plant. SAND89-0178. Albuquerque, NM: Sandia National Laboratories.

Bertram-Howery, S. G., and P. N. Swift. 1990. Status Report: Potential for Long-Term Isolation by the Waste Isolation Pilot Plant Disposal System. SAND90-0616. Albuquerque, NM: Sandia National Laboratories.

Bertram-Howery, S. G., and P. N. Swift. 1991. Early-1990 Status of Performance Assessment for the Waste Isolation Pilot Plant Disposal System. SAND90-2095. Albuquerque, NM: Sandia National Laboratories.

Bertram-Howery, S. G., and P. N. Swift. 1991. "Early-1990 Status of Performance Assessment for the Waste Isolation Pilot Plant Disposal System." *Proceedings of the Probabilistic Safety Assessment and Management (PSAM) Conference, Beverly Hills, California, February 4-7, 1991.* Amsterdam: Elsevier Science Publishers. 325-330.

Bertram-Howery, S. G., M. G. Marietta, D. R. Anderson, K. F. Brinster, L. S. Gomez, R. V. Guzowski, and R. P. Rechard. 1989. Draft Forecast of the Final Report for the Comparison to 40 CFR Part 191, Subpart B for the Waste Isolation Pilot Plant. SAND88-1452. Albuquerque, NM: Sandia National Laboratories.

Bertram-Howery, S. G., M. G. Marietta, R. P. Rechard, P. N. Swift, D. R. Anderson, B. L. Baker, J. E. Bean, Jr., W. Beyeler, K. F. Brinster, R. V. Guzowski, J. C. Helton, R. D. McCurley, D. K. Rudeen, J. D. Schreiber, and P. Vaughn. 1990. Preliminary Comparison with 40 CFR Part 191, Subpart B for the Waste Isolation Pilot Plant, December 1990. SAND90-2347. Albuquerque, NM: Sandia National Laboratories. Brinster, K. F. 1991. Preliminary Geohydrologic Conceptual Model of the Los Medaños Region near the Waste Isolation Pilot Plant for the Purpose of Performance Assessment. SAND89-7147. Albuquerque, NM: Sandia National Laboratories.

Guzowski, R. V. 1990. Preliminary Identification of Scenarios That May Affect the Escape and Transport of Radionuclides From the Waste Isolation Pilot Plant, Southeastern New Mexico. SAND89-7149. Albuquerque, NM: Sandia National Laboratories.

Guzowski, R. V. 1991. Evaluation of Applicability of Probability Techniques to Determining the Probability of Occurrence of Potentially Disruptive Intrusive Events at the Waste Isolation Pilot Plant. SAND90-7100. Albuquerque, NM: Sandia National Laboratories.

Guzowski, R. V. 1991. Preliminary Identification of Scenarios for the Waste Isolation Pilot Plant, Southeastern New Mexico. SAND90-7090. Albuquerque, NM: Sandia National Laboratories.

Guzowski, R. V. 1991. "Preliminary Identification of Scenarios for the Waste Isolation Pilot Plant, Southeastern New Mexico." *Proceedings of the Probabilistic Safety and Management (PSAM) Conference, Beverly Hills, California, February 4-7, 1991.* Amsterdam: Elsevier Science Publishers. 337-342.

Guzowski, R. V., and M. M. Gruebel, eds. 1991. Background Information Presented to the Expert Panel on Inadvertent Human Intrusion into the Waste Isolation Pilot Plant. SAND91-0928. Albuquerque, NM: Sandia National Laboratories.

Helton, J. C., J. W. Garner, R. D. McCurley, and D. K. Rudeen. 1991. Sensitivity Analysis Techniques and Results for Performance Assessment at the Waste Isolation Pilot Plant. SAND90-7103. Albuquerque, NM: Sandia National Laboratories.

Hora, S. C., D. von Winterfeldt, and K. M. Trauth. 1991. Expert Judgment on Inadvertent Human Intrusion into the Waste Isolation Pilot Plant. SAND90-3063. Albuquerque, NM: Sandia National Laboratories.

Hunter, R. L. 1989. Events and Processes for Constructing Scenarios for the Release of Transuranic Waste from the Waste Isolation Pilot Plant, Southeastern New Mexico. SAND89-2546. Albuquerque, NM: Sandia National Laboratories.

Marietta, M. G., S. G. Bertram-Howery, D. R. Anderson, K. F. Brinster, R. V. Guzowski, H. J. Iuzzolino, and R. P. Rechard. 1989. Performance Assessment Methodology Demonstration: Methodology Development for Evaluating Compliance with EPA 40 CFR 191, Subpart B, for the Waste Isolation Pilot Plant. SAND89-2027. Albuquerque, NM: Sandia National Laboratories.

Marietta, M. G., S. G. Bertram-Howery, R. P. Rechard, and D. R. Anderson. 1991. "Status of WIPP Compliance with EPA 40 CFR 191, December 1990." Proceedings of the 1991 International High-Level Radioactive Waste Management Conference - Public Safety and Technical Achievement, Las Vegas, Nevada, April 28-May 3,1991.

Rechard, R. P. 1989. Review and Discussion of Code Linkage and Data Flow in Nuclear Waste Compliance Assessments. SAND87-2833. Albuquerque, NM: Sandia National Laboratories.

Rechard, R. P. 1991. CAMCON: Computer System for Assessing Regulatory Compliance of the Waste Isolation Pilot Plant. SAND90-2094. Albuquerque, NM: Sandia National Laboratories.

Rechard, R. P. 1991. "CAMCON: Computer System for Assessing Regulatory Compliance of the Waste Isolation Pilot Plant." *Proceedings of the Probabilistic Safety and Management (PSAM) Conference, Beverly Hills, California, February* 4-7, 1991. Amsterdam: Elsevier Science Publishers. 899-904.

Rechard, R. P. 1991. "Use of Risk to Resolve Conflicts in Assessing Hazards." Proceedings of the First International Mixed-Waste Symposium, Baltimore, Maryland, August 26-29, 1991.

Rechard, R. P., H. J. Iuzzolino, J. S. Rath, R. D. McCurley, and D. K. Rudeen. 1989. User's Manual for CAMCON: Compliance Assessment Methodology Controller. SAND88-1496. Albuquerque, NM: Sandia National Laboratories.

Rechard, R. P., H. J. Iuzzolino, and J. S. Sandha. 1990. Data Used in Preliminary Performance Assessment of the Waste Isolation Pilot Plant (1990). SAND89-2408. Albuquerque, NM: Sandia National Laboratories.

Rechard, R. P., W. Beyeler, R. D. McCurley, D. K. Rudeen, J. E. Bean, and J. D. Schreiber. 1990. Parameter Sensitivity Studies of Selected Components of the Waste Isolation Pilot Plant Repository/Shaft System. SAND89-2030. Albuquerque, NM: Sandia National Laboratories.

Rechard, R. P., P. J. Roache, R. L. Blaine, A. P. Gilkey, and D. K. Rudeen. 1991. Quality Assurance Procedures for Computer Software Supporting Performance Assessments of the Waste Isolation Pilot Plant. SAND90-1240. Albuquerque, NM: Sandia National Laboratories.

Roache, P. J., P. M. Knupp, S. Steinberg, and R. L. Blaine. 1990. "Experience with Benchmark Test Cases for Groundwater Flow" in FED-Vol. 93, Benchmark Test Cases for Computational Fluid Dynamics. Eds. I. Celik and C. J. Freitas. American Society of Mechanical Engineers.

SNL (Sandia National Laboratories) WIPP Performance Assessment Division. 1991. Preliminary Comparison with 40 CFR Part 191, Subpart B for the Waste Isolation Pilot Plant, December 1991-Volume 1: Methodology and Results. SAND91-0893/1. Albuquerque NM: Sandia National Laboratories. SNL (Sandia National Laboratories) WIPP Performance Assessment Division. 1991. Preliminary Comparison with 40 CFR Part 191, Subpart B for the Waste Isolation Pilot Plant, December 1991-Volume 2: Probability and Consequence Modeling. SAND91-0893/2. Albuquerque, NM: Sandia National Laboratories.

SNL (Sandia National Laboratories) WIPP Performance Assessment Division. 1991. Preliminary Comparison with 40 CFR Part 191, Subpart B for the Waste Isolation Pilot Plant, December 1991-Volume 3: Reference Data. R. P. Rechard, A. C. Peterson, J. D. Schreiber, H. J. Iuzzolino, M. S. Tierney, and J. S. Sandha, eds. SAND91-0893/3. Albuquerque, NM: Sandia National Laboratories.

Tierney, M. S. 1990. Constructing Probability Distributions of Uncertain Variables in the Models of the Performance of the Waste Isolation Pilot Plant. SAND90-2510. Albuquerque, NM: Sandia National Laboratories.

Tierney, M. S. 1991. Combining Scenarios in a Calculation of the Overall Probability Distribution of Cumulative Releases of Radioactivity from the Waste Isolation Pilot Plant, Southeastern New Mexico. SAND90-0838. Albuquerque, NM: Sandia National Laboratories.

Trauth, K. M., S. C. Hora, and R. P. Rechard. 1991. "Expert Judgment as Input to Waste Isolation Pilot Plant Performance-Assessment Calculations, Probability Distributions of Significant System Parameters." Proceedings of the First International Mixed-Waste Symposium, Baltimore, Maryland, August 26-29, 1991.

IN PREPARATION

Berglund, J., and M. G. Marietta. A Computational Model for the Direct Removal of Repository Material by Drilling. SAND90-2977. Albuquerque, NM: Sandia National Laboratories.

Blaine, T., and D. Jackson. *Environmental Pathways Data Base for WIPP Radiological Safety Assessments*. SAND90-7101. Albuquerque, NM: Sandia National Laboratories.

Gilkey, A. ALGEBRA User's Manual. SAND88-1431. Albuquerque, NM: Sandia National Laboratories.

Gilkey, A. *BLOT User's Manual*. SAND88-1432. Albuquerque, NM: Sandia National Laboratories.

Marietta, M. G., D. R. Anderson, D. Scott, and P. N. Swift. *Review of Parameter Sensitivity Studies for the Waste Isolation Pilot Plant.* SAND89-2028. Albuquerque, NM: Sandia National Laboratories.

Marietta, M. G., R. P. Rechard, P. N. Swift, and others. Preliminary Probabilistic Safety Assessment of the Waste Isolation Pilot Plant. SAND90-2718. Albuquerque, NM: Sandia National Laboratories. Marietta, M. G., S. G. Bertram-Howery, R. P. Rechard, and D. R. Anderson. Status of WIPP Compliance with EPA 40 CFR 191, December 1990. SAND90-2424. Albuquerque, NM: Sandia National Laboratories.

Rechard, R. P. CAMCON Architectural Overview and Program Reference Manual. SAND90-1984. Albuquerque, NM: Sandia National Laboratories.

Rechard, R. P., A. P. Gilkey, D. K. Rudeen, J. S. Rath, W. Beyeler, R. Blaine, H. J. Iuzzolino, and R. D. McCurley. User's Reference Manual for CAMCON: Compliance Assessment Methodology Controller Version 3.0. SAND90-1983. Albuquerque, NM: Sandia National Laboratories.

Rechard, R. P., H. J. Iuzzolino, and J. S. Sandha. *Quality Assurance Procedures for Data Supporting Performance Assessments of the Waste Isolation Pilot Plant*. SAND91-0429. Albuquerque, NM: Sandia National Laboratories.

Rechard, R. P., P. J. Roache, J. W. Berglund, D. K. Rudeen, J. E. Bean, and J. D. Schreiber. *Quality Assurance Procedures for Analyses Supporting Performance Assessments of the Waste Isolation Pilot Plant*. SAND91-0428. Albuquerque, NM: Sandia National Laboratories.

Roache, P. J., R. Blaine, and B. L. Baker. SECO 2.1 User's Manual. SAND90-7096. Albuquerque, NM: Sandia National Laboratories.

SNL (Sandia National Laboratories) WIPP Performance Assessment Division. Preliminary Comparison with 40 CFR Part 191, Subpart B for the Waste Isolation Pilot Plant, December 1991-Volume 4: Uncertainty and Sensitivity Analyses. SAND91-0893/4. Albuquerque, NM: Sandia National Laboratories.

Swift, P. N., B. L. Baker, K. F. Brinster, M. G. Marietta, and P. J. Roache. Parameter and Boundary Conditions Sensitivity Studies Related to Climate Variability and Scenario Screening for the Waste Isolation Pilot Plant. SAND89-2029. Albuquerque, NM: Sandia National Laboratories.

,

GLOSSARY

1

2 3 absorption - The attraction of molecules of gases or ions in solution to the 4 surface of solids in contact with them. 5 6 accessible environment - The accessible environment means (1) the atmosphere, 7 (2) land surfaces, (3) surface waters, (4) oceans, and (5) all of the 8 lithosphere that is beyond the controlled area (40 CFR 191.12[k]). 9 10 actinide - Any element in the actinium series of elements of increasing 11 atomic numbers beginning with actinium (89) and ending with lawrencium (103). 12 13 activation product - An isotope created from another isotope subjected to 14 15 radiation. 16 adsorption - Adherence of gas molecules, or of ions or molecules in solution, 17 to the surface of solids with which they are in contact. 18 19 advection - The process of transport of an aqueous property by mass motion. 20 21 algorithm - A procedure for solving a mathematical problem in a finite number 22 of steps that frequently involves repetition of an operation. 23 24 alpha particle - A positively charged particle emitted in the radioactive 25 decay of certain nuclides. Made up of two protons and two neutrons bound 26 together, it is identical to the nucleus of a helium atom. It is the least 27 penetrating of the three common types of radiation -- alpha, beta, and gamma. 28 29 alternative conceptual model - Multiple working hypotheses of a system. Part 30 of a formalized procedure of inquiry first proposed by T. C. Chamberlin in 31 1890. The purpose is to "divide our affection, suggest critical tests, and 32 expose more facets of a system," thereby avoiding being too strongly swayed 33 by one conceptual model (set of hypotheses) and unwittingly seeking only 34 35 facts to support it. 36 anhydrite - A mineral consisting of anhydrous calcium sulfate (CaSO₄). It is 37 38 gypsum without water, and is denser, harder, and less soluble. 39 40 anisotropic - Pertaining to any material property, such as hydraulic conductivity, that varies with direction. 41 42 anoxic - Without free oxygen. 43 44

```
anticline - A fold of rocks, generally concave downward (convex upward),
1
   whose core contains stratigraphically older rocks.
2
3
   aperture - The open space caused by a fracture in rock.
4
5
    aquifer - A body of rock that is sufficiently permeable to conduct
6
    groundwater and to yield significant quantities of groundwater to wells and
7
    springs.
8
9
    aquitard - A less permeable unit in a hydrostratigraphic sequence that
10
    retards but does not prevent the flow of water to or from an adjacent
11
    aquifer.
12
13
    argillaceous - Containing clay-sized particles or clay minerals.
14
15
    argillic - See argillaceous.
16
17
    backfill - Material filling a former excavation (e.g., salt placed around the
18
    waste containers, filling the open space in the room).
19
20
    barrier - "Barrier means any material or structure that prevents or
21
    substantially delays movement of water or radionuclides toward the accessible
22
    environment. For example, a barrier may be a geologic structure, a canister,
23
    a waste form with physical and chemical characteristics that significantly
24
25
    decrease the mobility of radionuclides, or a material placed over and around
    waste, provided that the material or structure substantially delays movement
26
    of water or radionuclides." (40 CFR 191.12[d])
27
28
    benchmark - To compare model predictions made with one applied model with
29
    those obtained with other implementations of analytic or numerical
30
    computational models. Benchmarking is a part of verification.
31
32
    bentonite - A commercial term applied to expansive clay materials containing
33
34
    montmorillonite (smectite) as the essential mineral.
35
    beta distribution - A useful model for random variates defined on a finite
36
    interval. The beta distribution permits representation of a wide variety of
37
    distributional shapes by selection of two shape parameters.
38
39
    biodegradable - Capable of being broken down by microorganisms.
40
41
    biogenic - Produced directly by the physiological activities of organisms,
42
    either plant or animal.
43
44
```

```
biosphere - The life zone of the earth, including the lower part of the
1
    atmosphere, the hydrosphere, soil, and the lithosphere to a depth of about 2
2
3
    km (1 mi).
4
    biotransformation - The changing of chemical compounds within a living
5
    system.
6
7
    biotransport - Movement of radionuclides over biological pathways, such as
8
    through the food chain.
9
10
    borehole - (1) A manmade hole in the wall, floor, or ceiling of a subsurface
11
    room used for verifying geology, making observations, or emplacing canisters
12
    of remote-handled transuranic (RH-TRU) waste. (2) A hole drilled from the
13
    surface for purposes of geologic or hydrologic testing, or to explore for
14
    resources; sometimes referred to as a drillhole.
15
16
    breccia - A rock consisting of very angular, coarse fragments held together
17
    by a mineral cement or a fine-grained matrix (as sand or clay).
18
19
    breccia pipe - A vertically cylindrical feature filled with collapse debris.
20
    It is formed when relatively fresh water from a deep aquifer moves upward
21
    dissolving more soluble rocks and causing collapse of the surrounding rock
22
    material.
23
24
    brine aquifer - The Rustler-Salado residuum, a zone of residual material,
25
    left after dissolution of the original salt at the interface of the Rustler
26
    and Salado Formations, that is highly permeable and contains much brine.
27
28
    brine inclusion - A small cavity in a rock mass (salt) containing brine;
29
    also, the brine included in such an opening. Some gas is often present.
30
31
    brine occurrence - See brine reservoir,
32
33
    brine pocket - See brine occurrence.
34
35
    brine reservoir - Pressurized brine in the Castile Formation; also referred
36
    to as "brine pocket" or "brine occurrence."
37
38
    calibrate - To vary parameters of an applied model within reasonable range
39
    until differences between observed data and computed values are minimized
40
    (subjective).
41
42
43
    canister - For the WIPP, it is a container, usually cylindrical, for remotely
    handled waste, spent fuel, or high-level waste; affords physical containment
44
    during handling but not radiation shielding.
45
46
```

G - 3

1

1 2 3	capacitance - In hydrology, the combined compressibility of the solid porous matrix and the fluid within the pores.
4	capture volume - The maximum volume of waste through which neutrally buoyant
	particles can pass (by means of being carried along with brine) within a
5	given time period (usually 10 000 years)
7	given time period (usually 10,000 years).
, ,	and A chinning container that is rediction chielded
0	cask - A shipping concarner that is radiación shieided.
9 10	actionia Portaining to positivaly abarand iona
10	cacionic - restanting to positively charged lons.
11	able the the second fragmentium aluminum and incertains budgets
12	chlorice - Any of a group of magnesium-, aluminum-, and from-bearing hydrous
13	silicate minerals. Inerr layered, sneet-like structure is similar to that of
14	clays and micas.
15	alastic . Dook or addiment compared principally of byeken from that are
10	derived from processing works of minorely of broken fragments that are
17	derived from preexisting focks of minerals.
10	alaystons An inducated alay having the tayture and composition of shale but
19	lacking the fine lowingtion and fingility
20	racking the line ramination and fissifity.
21	entrefering (constantiantical technics for each technic (constant) and technical
22	couriging - Geostatistical technique for estimating two (or more) correlated
23	variables from field measurements at different locations.
24	composition Machanical success by shiph the same in the same is
25	compaction - Mechanical process by which the pore space in the waste is
26	reduced prior to waste emplacement.
27	complementary cumulation distribution function (OODE) () ()
28	complementary cumulative distribution function (GCDF) - One minus the
29	cumulative distribution function.
30	compliance evaluation or accomment. The process of according the regulatory
20	compliance evaluation of assessment - The process of assessing the regulatory
32	compliance of a mined geologic waste repository.
33	
34	compressibility - A measure of the ability of a substance to be reduced in
35	volume by application of pressure; quantitatively, the reciprocal of the bulk
36	modulus.
37	
38	computational model - The computational model is the implementation of the
39	mathematical model. The implementation may be through analytic or numerical
40	solution. Often the analytic solution is numerically evaluated (e.g.,
41	numerical integration or evaluation of complex functions); hence, both
42	solution techniques are typically coded on the computer. Consequently, the
43	computational model is often called a computer model.
44	

```
computer model - The appropriately coded analytical, quasi-analytical, or
1
   numerical solution technique used to solve a mathematical model; generic,
2
   until site-specific data are used.
3
4
   conceptual model - The set of hypotheses (preferably based on observed data)
5
    that postulate the description and behavior of the disposal system (e.g.,
6
    structural geometry, material properties, and significant physical processes
7
    that affect behavior). For WIPP, the data pertinent for a conceptual model
8
    are stored in the secondary data base.
9
10
    conductivity - A shortened form of hydraulic conductivity.
11
12
    confined groundwater - Groundwater occurring in an aquifer bounded above and
13
    below by an aquitard.
14
15
    confirm - To use full-scale in situ experiments to corroborate portions of
16
    parameter ranges or distributions established by laboratory or small-scale
17
    tests.
18
19
    conformable - Strata or stratification characterized by an unbroken sequence
20
    in which the layers are formed one above the other by regular, uninterrupted
21
    deposition.
22
23
    connectivity - The manner in which individual nodes or points connect
24
    together to form elements or legs.
25
26
    consequence module - A module of the CAMCON system that assesses the
27
    consequences of radionuclides being transported from the repository.
28
29
    consolidate - To cause loosely aggregated, soft, or liquid earth materials to
30
    become firm and coherent.
31
32
    consolidation - Process by which backfill and waste mass loses pore space in
33
    response to the increasing weight of overlying material.
34
35
    Consultation and Cooperation (C&C) Agreement - An agreement that affirms the
36
    intent of the Secretary of Energy to consult and cooperate with the State of
37
    New Mexico with respect to State public health and safety concerns.
                                                                          It is an
38
    appendix to a July 1981 agreement (the Stipulated Agreement) made with the
39
    State and approved by the District court when that court stayed the
40
    proceedings of a lawsuit against the DOE by the State. The C&C agreement
41
42
     identifies a number of "key events" and "milestones" in the construction and
    operation of the WIPP that must be reviewed by the State before they are
43
     started. The C&C agreement has been updated and extended as recently as
44
    March 1988.
45
```

46

G - 5

```
controlled area - The controlled area means "(1) a surface location, to be
1
    identified by passive institutional controls, that encompasses no more that
2
    100 km and extends horizontally no more than 5 km in any direction from the
з
    outer boundary of the original location of the radioactive wastes in a
4
    disposal system; and (2) the subsurface underlying such a surface location."
5
    (40 CFR 191.12[g])
6
7
8
    creep - A usually very slow deformation of solid rock resulting from constant
    stress; refers to the gradual flow of salt under high compressive loading.
9
10
    creep closure - Closure of underground openings, especially openings in
11
    salt, by plastic flow of the surrounding rock under pressure.
12
13
14
    criticality - The state of a mass of fissionable material when it is
15
    sustaining a chain reaction.
16
17
    cumulative distribution function - The sum (or integral as appropriate) of
    the probability of those values of a random variable that are less than or
18
19
    equal to a specified value.
20
    curie - Ci; a unit of radioactivity equal to the number of disintegrations
21
    per second of 1 pure gram of radium-226 (1 Ci = 3.7 \times 10^{10} disintegrations
22
    per second).
23
24
    cuttings - Rock chips cut by a bit in the process of drilling a borehole or
25
    well.
26
27
    Darcian flow - Pertaining to a formula derived by Darcy for the flow of
28
29
    fluids through porous media, which states that flow is directly proportional
    to the hydraulic gradient, the cross-sectional area through which flow
30
    occurs, and the hydraulic conductivity.
31
32
    darcy - An English standard unit of permeability, defined by a medium for
33
    which a flow of 1 cm^3/s is obtained through a section of 1 cm^2, for a fluid
34
    viscosity of 1 cP and a pressure gradient of 1 atm/cm. One darcy is equal to
35
    9.87 x 10<sup>-13</sup> m<sup>2</sup>.
36
37
    decommissioning - Actions taken upon abandonment of the repository to reduce
38
    potential environmental, health, and safety impacts, including repository
39
    sealing as well as activities to stabilize, reduce, or remove radioactive
40
    materials or to demolish surface structures.
41
42
    decontamination - The removal of radioactive contamination from facilities,
43
    equipment, or soils by washing, heating, chemical or electrochemical
44
     treating, mechanical cleaning, or other techniques.
45
46
    G-6
```

```
Glossary
```

```
desaturate - To remove liquid from a material until it is no longer
1
2
   saturated.
3
    deterministic - An exact mathematical relationship between the dependent and
4
    independent variables in a system.
5
6
    diffusion - The transfer of mass components from a region of higher to lower
7
8
    concentration.
9
    disposal - "Disposal means permanent isolation of spent nuclear fuel or
10
    radioactive waste from the accessible environment with no intent of recovery,
11
    whether or not such isolation permits the recovery of such fuel or waste.
12
13
    For example, disposal of waste in a mined geologic repository occurs when all
    of the shafts to the repository are backfilled and sealed." (40 CFR
14
15
    191.02[1])
16
    disposal system - Any combination of engineered and natural barriers that
17
18
    isolate spent nuclear fuel or radioactive waste after disposal (40 CFR
    191.12(a)). The natural barriers extend to the accessible environment.
19
                                                                              The
    WIPP disposal system comprises the disposal region, shafts, and controlled
20
    area.
21
22
    disturbed rock zone - That portion of the geologic barrier of which the
23
24
    physical or chemical properties may have changed significantly as a result of
    underground construction.
25
26
27
    dolomite - A carbonate sedimentary rock consisting of more than 50% of the
    mineral dolomite [CaMg(CO3)2].
28
29
    dose - A general term indicating the amount of energy absorbed per unit mass
30
    from incident radiation.
31
32
    dose equivalent - The product of absorbed dose and modifying factors that
33
    take into account the biological effect of the absorbed dose. While dose
34
    includes only physical factors, dose equivalent includes both physical and
35
    biological factors and provides a radiation-protection scale applicable to
36
    all types of radiation. Units are rem for individual and person-rem for a
37
    population group.
38
39
40
    dosimetry - The measurement of radiation doses.
41
    drawdown - The lowering of water level in a well as a result of fluid
42
    withdrawal.
43
44
    drift - A horizontal passageway in a mine.
45
```

46

```
dynamical - Characterized by or tending to produce continuous change or
1
    advance.
2
3
4
    empirical - Relying explicitly upon or derived explicitly from observation or
5
    experiment.
6
    emplacement - At WIPP, the placing of radioactive wastes within the waste
7
    rooms.
8
9
    equipotential - Points with the same hydraulic head.
10
11
    equivalent grams plutonium-239 - Fissionable content of radioactive waste
12
    converted to an equivalent number of grams of plutonium-239.
13
14
    Eulerian - Pertaining to a mathematical representation of fluid flow in which
15
    the behavior and properties of the fluid are described at fixed points within
16
    the coordinate system.
17
18
    evaporite - A sedimentary rock composed primarily of minerals produced by
19
    precipitation from a solution that has become concentrated by the evaporation
20
21
    of a solvent, especially salts deposited from a restricted or enclosed body
    of seawater or from the water of a salt lake. In addition to halite (NaCl),
22
    these salts include potassium, calcium, and magnesium chlorides and sulfates.
23
24
    evapotranspiration - Loss of water from a land area through transpiration of
25
    plants and evaporation from the soil.
26
27
    event - A phenomenon that occurs instantaneously or within a short time
28
    interval relative to the time frame of interest.
29
30
    exploratory drilling - Drilling to an unexplored depth or in territory having
31
    unproven resources.
32
33
    exponential distribution - A probability distribution whose pdf is an
34
35
    exponential function defined on the range of the variable in question.
36
    facies - An areally restricted part of a rock body that differs in
37
    mineralogic composition, grain size, or fossil content from nearby beds
38
    deposited at the same time and that broadly corresponds to a certain
39
    environment or mode of deposition.
40
41
42
    facility - The surface structures of the repository.
43
    finding - A conclusion that is reached after an evaluation.
44
45
```

G-8

fission product - Any radioactive or stable nuclide resulting from fission, 1 including both primary fission fragments and their radioactive decay 2 products. 3 4 5 flowpath - The path traveled by a neutrally buoyant particle released into a groundwater-flow field. 6 7 fluvial - Of or pertaining to a river or rivers. 8 9 10 frequentist - One who believes that the probability of an event is the ratio of the number of times the event occurs in a series of trials of a chance 11 experiment to the number of trials performed. 12 13 14 geochemistry - The study of the distribution and amounts of the chemical elements in minerals, ores, rocks, soils, water, and the atmosphere. 15 16 geohydrology - The study of the hydrologic or flow characteristics of sub-17 surface waters. 18 19 20 geology - The study of the Earth, the materials of which it is made, the processes that act on these materials, the products formed, and the history of 21 the planet and its life forms since its origin. 22 23 geomorphology - The study of the classification, description, nature, origin, 24 25 and development of present landforms and their relationships to underlying structure, and of the history of geologic changes as recorded by these 26 surface features. 27 28 29 geophysics - The study of the Earth by quantitative physical methods such as electric, gravity, magnetic, seismic, and thermal techniques. 30 31 32 geosphere - The solid portion of the Earth as compared to the atmosphere and the hydrosphere. 33 34 getter - A substance that sorbs gases. 35 36 glaciation - The formation, movement, and recession of glaciers or ice 37 38 sheets. Used narrowly, the term can refer only to the growth of ice sheets. 39 glauberite - A brittle, light-colored, monoclinic mineral: Na₂Ca(SO₄)₂. It 40 has a vitreous luster and saline taste and occurs in saline residues. 41 42 gradational - Gradual change in rock characteristics from one rock body to 43 another. 44 45

grout - A cement slurry of high water content. 1 2 gypsum - Hydrous calcium sulfate (CaSO4 · 2H₂O), a mineral frequently 3 associated with halite and anhydrite in evaporites. 4 5 halite - A dominant mineral in evaporites; salt, NaCl. 6 7 halogenated - Atoms from the halogen family of elements combined with other 8 atoms such as carbon. 9 10 headward erosion - The lengthening and cutting upstream of a young valley or 11 gully above the original source of its stream. 12 13 14 Holocene - A geologic epoch of the Quaternary Period, subsequent to the Pleistocene Epoch (about 10,000 years ago) and continuing to the present. 15 16 horizon - In geology, an interface indicative of a particular position in a 17 stratigraphic sequence. An underground level; for instance, the waste-18 emplacement horizon at the WIPP is the level about 650 m (2,150 ft) deep in 19 the Salado Formation where openings are mined for waste disposal. 20 21 host rock - The geologic medium in which radioactive waste is emplaced. 22 23 hot cell - A heavily shielded compartment in which highly radioactive 24 material can be handled, generally by remote control. 25 26 hydraulic - Of, involving, moved, or operated by a fluid under pressure. 27 28 hydraulic conductivity - The measure of the rate of flow of water through a 29 cross-sectional area under a unit hydraulic gradient. 30 31 hydraulic gradient - A quantity defined in the study of ground-water 32 hydraulics that describes the rate of change of total hydraulic head per unit 33 34 distance of flow in a given direction. 35 hydraulic head - The elevation above a datum to which water would rise at a 36 37 given point in a well open to an aquifer. It is a function of the elevation of the aquifer and the fluid pressure within it. 38 39 hydrochemical - The diagnostic chemical character of ground water occurring 40 41 in hydrologic systems. 42 hydrodynamic dispersion - The tendency of a solute to spread out from the 43 path that it would be expected to follow according to the advective 44 hydraulics of the solvent. 45 46

L

```
G-10
```

```
Glossary
```

```
hydrogeology - The study of subsurface waters and of related geologic aspects
1
    of surface waters.
2
3
    hydrologic properties - Those properties of a rock that govern the entrance
4
    of water and the capacity to hold, transmit, and deliver water, such as
5
    porosity, effective porosity, specific retention, permeability, and the
6
    directions of maximum and minimum permeabilities.
7
R
    hydrology - The study of global water, its properties, circulation, and
9
    distribution.
10
11
12
    hydropad - A complex of water wells closely spaced for testing on
    hydrostratigraphic units.
13
14
    hydrophobic - Lacking an affinity for, repelling, or failing to adsorb or
15
    absorb water.
16
17
                                                                                     Ł
18
    hydrostatic - Pressure caused by the weight of overlying fluid.
19
20
    hydrostratigraphic - Pertaining to a body of rock in which lateral variations
    in hydraulic properties within the study area are less significant than
21
    vertical variations between it and the overlying and underlying units.
22
23
24
    in situ - In the natural or original position; used to distinguish in-place
25
    experiments, rock properties, and so on, from those in the laboratory.
26
    interbeds - Sedimentary beds that lie between or alternate with other beds
27
    having different characteristics.
28
29
30
    interfinger - The disappearance of sedimentary bodies into laterally adjacent
    masses by splitting into many thin layers, each terminating independently.
31
32
33
    intergranular - Between the grains or particles of a rock.
34
    interpolators - Computer programs used to estimate an intermediate value of
35
36
    one (dependent) variable which is a function of a second variable.
37
    intertonguing - The lateral intergradation of different rock types through a
38
39
    vertical succession of thin, interlocking or overlapping, wedge-shaped
40
    layers.
41
42
    intracrystalline - Pertaining to something within a mineral crystal.
43
```

```
Glossary
```

1 ionic strength - A measure of the average electrostatic interaction among ions in a solution; a function of both concentration and valence of the 2 solutes. 3 4 isolation - Refers to inhibiting the transport of radioactive material so 5 that the amounts and concentrations of this material entering the accessible 6 7 environment will be kept within prescribed limits. 8 isopach - A line drawn on a map through points of equal thickness of a 9 designated stratigraphic unit or group of stratigraphic units. 10 11 isotope - A species of atom characterized by the number of protons and the 12 13 number of neutrons in its nucleus. In most instances, an element can exist 14 as any of several isotopes, differing in the number of neutrons, but not the number of protons, in their nuclei. Isotopes can be either stable isotopes 15 16 or radioactive isotopes (also called radioisotopes or radionuclides). 17 1 18 isotropic - Having the same property in all directions. 19 iterative - A computational procedure in which repetition of a set of 20 21 operations produces results that approximate the desired result more and more closely as the number of repetitions increases. 22 23 24 jointing - The condition or presence of parallel fractures or partings in a rock, without displacement. 25 26 karst - A topography formed from solution of limestone, dolomite, or gypsum; 27 characterized by sinkholes, caves, and underground drainage. 28 29 30 karstification - The formation of karst features by the solutional and mechanical action of water. 31 32 33 kriging - Geostatistical method for estimating magnitude plus uncertainty of 34 a quantity (e.g., hydrogeological parameters), that is distributed in space 35 and is measured in a network of points, at points other than the points of the network. 36 37 lacustrine - Pertaining to a lake or lakes. 38 39 Lagrangian - Pertaining to a mathematical representation of fluid flow in 40 41 which the behavior and properties of the fluid are described for elements that move with flow. 42 43 langbeinite - A colorless to reddish mineral [K2Mg2(SO4)3] used as a source 44 of potassium in fertilizers and formed as a saline residue from evaporation. 45 46 G-12

```
1
    Latin hypercube sampling - A Monte Carlo sampling technique that divides the
2
    cumulative distribution function into intervals of equal probability and
    samples from each interval.
3
4
    lenticular - Having the cross-sectional shape of a lens, esp. of a double-
5
    convex lens.
                  The term may be applied to a body of rock or a sedimentary
6
7
    structure.
8
9
    ligands - Ions bound to a central atom in a compound.
10
    limey - Containing calcium carbonate (CaCO<sub>3</sub>).
11
12
13
    lithologic - The descriptive characteristics of rock composition.
14
15
    lithosphere - The solid portion of the earth, including any groundwater
    contained within it, as opposed to the atmosphere and the hydrosphere.
16
17
18
    lithostatic pressure - Subsurface pressure caused by the weight of overlying
19
    rock or soil; about 14.9 MPa at the WIPP repository level.
20
21
    lognormal distribution - A probability distribution in which the logarithm of
    the variable in question follows a normal distribution.
22
23
24
    loguniform distribution - A probability distribution in which the logarithm
25
    of the variable in question follows a uniform distribution.
26
    low - A general geologic term for such features as a structural basin, a syn-
27
    cline, a saddle, or a sag.
28
29
    management - "Management means any activity, operation, or process (except
30
31
    for transportation) conducted to prepare spent nuclear fuel or radioactive
    waste for storage or disposal, or the activities associated with placing such
32
    fuel or waste in a disposal system." (40 CFR 191.02[m])
33
34
35
    material - Substance (e.g., rock type) with physical properties that can be
    expressed quantitatively.
36
37
    material attribute - Material characteristic that varies at each element of a
38
    mesh of a numerical model.
39
40
41
    material property - Characteristic of the material that remains constant
42
    throughout the mesh of a numerical model.
43
44
    mathematical model - The mathematical representation of a conceptual model
    (e.g., as coupled algebraic, differential, or integral equations with proper
45
```

```
boundary conditions that approximate the physical processess in a specified
1
2
    domain of the conceptual model).
3
    mean - The expectation of a random variable; i.e., the sum (or integral) of
4
    the product of the variable and the pdf over the range of the variable.
5
6
    median - That value of a random variable at which its cdf takes the value
7
    0.5; i.e., the 50th percentile point.
8
9
    mesh - A subdivision of the domain of some mathematical model into cells for
10
    purposes of numerical solution.
11
12
    microbiology - A branch of biology dealing especially with microscopic forms
13
    of life.
14
15
    microcrystalline - Crystals too small to see with the naked eye.
16
17
    microfracturing - The formation of fractures that cannot be detected with the
18
    unaided eye.
19
20
21
    microwave - Electromagnetic radiation having wavelengths between 100
    centimeters and 1 millimeter.
22
23
    mode - That value of a random variable at which its pdf takes its maximum
24
    value.
25
26
27
    modeler - One who studies a phenomenon or system by making a model of that
28
    phenomenon or system.
29
    modular - Constructed with standardized units or dimensions for flexibility
30
    and variety in use.
31
32
    module - A standardized computer program within a functional aggregation of
33
    computer programs.
34
35
    molal - Concentration of a solution expressed in moles of solute per 1000
36
37
    grams of solvent.
38
    monocline - A local steepening in an otherwise uniformly gentle dip.
39
40
    Monte Carlo sampling - A random sampling technique used in computer
41
    simulation to obtain approximate solutions to mathematical or physical
42
    problems.
43
44
```

```
Glossary
```

mud - In drilling, a carefully formulated suspension, usually in water but 1 2 sometimes in oil, used in drilling to lubricate and cool the drill bit, carry cuttings up from the bottom, and maintain pressure in the borehole to offset 3 pressures of fluids in the formation. 4 5 mudstone - A blocky or massive, fine-grained sedimentary rock in which the 6 7 proportion of clay and silt are approximately equal. 8 multipad - See hydropad. 9 10 neoprene - A synthetic rubber made by the polymerization of chloroprene. 11 12 13 neutron - An elementary particle that has approximately the same mass as the proton but lacks electric charge, and is a constituent of all nuclei having 14 mass number greater than 1. 15 16 Newtonian fluid - Pertaining to a substance in which the rate of shear strain 17 is directly proportional to the shear stress. 18 19 noncombustibles - Materials that will not burn. 20 21 normal (or Gaussian) distribution - A probability distribution in which the 22 23 pdf is a symmetric, bell-shaped curve of bounded amplitude extending from 24 minus infinity to plus infinity. 25 26 nuclide - A species of atom characterized by the construction of its nucleus. 27 organics - Compounds containing carbon. 28 29 30 ostracode - Any of various fossil and living species of marine and freshwater bivalve crustaceans, subclass Ostracoda. 31 32 overexcavation - Excavation of the disturbed rock zone prior to emplacement 33 34 of a seal. 35 36 overgrowth - Secondary material deposited around a crystal grain of the same 37 composition. 38 overpack (waste) - A container put around another container. In the WIPP, 39 overpacks would be used on those damaged or otherwise non-transportable 40 drums, boxes, and canisters that it would not be practical to decontaminate. 41 42 43 oxygen-18/oxygen-16 ratio - Comparison of the amount of oxygen-18 and oxygen-16 in a substance. Ratios in sea water reflect global volume of glacial ice. 44 45

```
oxyhydroxides - Compounds containing an oxide and a hydroxide group: e.g.,
1
    goethite (\alphaFeO•OH) and limonite (FeO•OH•nH<sub>2</sub>O).
2
3
4
    paleoclimate - A climate of the geologic past.
5
    paleosol - A buried soil horizon of the geologic past.
6
7
    panel - A group of several underground rooms bounded by two pillars and con-
8
    nected by drifts. Within the WIPP, a panel usually consists of seven rooms
9
    connected by 10-m-wide drifts at each end.
10
11
12
    parameter - See variable.
13
    particulate - Minute separate particles.
14
15
    pascal (Pa) - Unit of pressure produced by a force of 1 newton applied over
16
    an area of 1 m<sup>2</sup>. One pound per square inch is equal to 6.895 x 10^3 Pa.
17
18
19
    passive institutional control - "Passive institutional control means (1)
    permanent markers placed at a disposal site, (2) public records and archives,
20
    (3) government ownership and regulations regarding land or resource use, and
21
    (4) other methods of preserving knowledge about the location, design, and
22
    contents of a disposal system." (40 CFR 191.12[e])
23
24
    perched groundwater - Groundwater occurring in a discontinuous saturated zone
25
26
    and separated from an underlying body of groundwater by an unsaturated zone.
    Its water table is a perched water table.
27
28
    performance assessment - Performance assessment is defined by Subpart B of 40
29
    CFR 191 as "an analysis that (1) identifies the processes and events that
30
    might affect the disposal system, (2) examines the effects of these processes
31
32
    and events on the performance of the disposal system, and (3) estimates the
33
    cumulative releases of radionuclides, considering the associated
34
    uncertainties, caused by all significant processes and events. These
    estimates shall be incorporated into an overall probability distribution of
35
    cumulative release to the extent practicable." (40 CFR 191.12(q))
36
37
    permeability - A measurement of the ability of a rock or soil to allow fluid
38
    to pass through it.
39
40
41
    physico-chemical - Pertaining to physical chemistry.
42
    pillar - Rock left in place after mining to provide underground vertical
43
44
    support.
45
```

G-16

```
pintle - A cylindrical flanged device on the end of an RH-TRU waste canister
1
   used for grasping and lifting the canister.
2
3
4
   plankton - Aquatic organisms that float passively or exhibit limited
   locomotor activity.
5
6
   playa - An intermittently dry, vegetation-free, flat area at the lowest part
7
    of an undrained desert basin, underlain by stratified clay, silt, or sand,
8
    and commonly by soluble salts.
9
10
    plutonium - A reactive metallic element, symbol Pu, atomic number 94, in the
11
    transuranium series of elements; used as a nuclear fuel, to produce
12
    radioactive nuclides for research, and as a fissile agent in nuclear weapons.
13
14
    pluvial - Of a geologic episode, change, deposit, process, or feature re-
15
    sulting from the action or effects of rain.
16
17
    polyethylene - Various partially crystalline lightweight thermo-plastics made
18
    from ethylene.
19
20
    polyhalite - An evaporite mineral: K2MgCa2(SO4)4.2H2O; a hard, poorly soluble
21
    mineral.
22
23
    polypropylene - A plastic made from propylene.
24
25
    polyvinyl - A plastic made from vinyl chloride.
26
27
    porosity - The percentage of total rock volume occupied by voids.
28
29
    post-depositional - Occurring after sediments have been laid down.
30
31
    potash - Specifically K2CO3. Also loosely used for many potassium compounds,
32
    especially as used in agriculture or industry.
33
34
    potential - In physics, the work required to bring a unit electrical charge,
35
    magnetic pole, or mass from an infinitely distant position to a designated
36
37
    point in a static electrical, magnetic, or gravitational field, respectively.
38
    potentiometric surface - An imaginary surface representing the head of
39
    groundwater and defined by the level to which water will rise in a well.
40
41
    predictive - Foretelling or predicting something; for the WIPP, predicting
42
    future states of the repository system.
43
44
```

```
probabilistic - Using or pertaining to probabilities or probability theory.
                                                                                    i
1
2
   probability density function - For a continuous random variable X, the
3
   function giving the probability that X lies in the interval x to x+dx
4
    centered about a specified value x (i.e., the derivative of the cumulative
5
    distribution function).
6
7
   process - A phenomenon that occurs over a significant portion of the time
8
9
    frame of interest.
10
    quality assurance - All those planned and systematic actions necessary to
11
    provide adequate confidence that a structure, system, or component will
12
    perform satisfactorily in service.
13
14
    rad - A basic unit of absorbed dose defined as an energy absorption of 100
15
    erg/g by a specified material from any ionizing radiation incident upon that
16
    material.
17
18
    radioactive waste - Solid, liquid, or gaseous material of negligible economic
19
    value that contains radionuclides in excess of threshold quantities.
20
21
    radioactivity - The emission of energetic particles and/or radiation during
22
23
    radioactive decay.
24
    radiochemistry - The chemical study of irradiated and naturally occurring
25
    radioactive materials and their behavior.
26
27
    radiological - Pertaining to nuclear radiation and radioactivity.
28
29
    radiolysis - The damage to a material caused by radiation.
30
31
32
    radiometric - Pertaining to the disintegration of radioactive elements.
33
    radionuclide - A radioactive nuclide.
34
35
    radionuclide retardation - The process or processes that cause the time
36
    required for a given radionuclide to move between two locations to be greater
37
    than the ground-water travel time, because of physical and chemical
38
39
    interactions between the radionuclide and the geohydrologic unit through
    which the radionuclide travels.
40
41
    recharge - The processes involved in the addition of water to the ground-
42
    water zone of saturation.
43
44
```

```
G-18
```

```
Glossary
```

```
1
   recrystallization - The formation, essentially in the solid state, of new
   crystalline mineral grains in a rock. The new grains are generally larger
2
    than the original grains and may have the same or a different mineralogical
3
    composition.
4
5
    reentrant - A prominent, generally angular indentation in a land form.
6
7
    rem - Roentgen equivalent in man - a special unit of dose equivalent which is
8
    the product of absorbed dose, a quality factor which rates the biological
9
    effectiveness of the radiation types producing the dose, and other modifying
10
    factors (usually equal to one). If the quality and modifying factors are
11
    unity, 1 rem is equal to 1 rad.
12
13
    repository - The portion of the WIPP facility within the Salado Formation,
14
    including the access drifts, waste panels, and experimental areas, but
15
    excluding the shafts.
16
17
    repository/shaft system - The WIPP underground workings, including the
18
    shafts, and all emplaced materials and the altered zones within the Salado
19
    Formation and overlying units resulting from construction of the underground
20
    workings.
21
22
    retardation - The degree to which the rate of radionuclide migration is
23
    reduced below the velocity of fluid flow.
24
25
                                                                                     L
    retardation factor - Fluid speed divided by mean speed.
26
27
    retrieval - The act of intentionally removing radioactive waste before
28
    repository decommissioning from the underground location at which the waste
29
    had been previously emplaced for disposal.
30
31
    risk - A representation of the potential of a system to cause harm,
32
    represented by combining the likelihood of undesirable occurrences and the
33
    negative effects associated with such occurrences. A general representation
34
    of risk is a set R = \{(S_i, pS_i, cS_i), i = 1, \dots, nS\} of ordered triples,
35
    where S_i is a set of similar occurrences, pS_i is the probability of S_i, cS_i
36
    is a vector of consequences associated with S_1, and nS is the number of sets.
37
38
    room - An excavated cavity underground. Within the WIPP, a room is
39
    10 m wide, 4 m high, and 91 m long.
40
41
    saturated - All connected pores in a given volume of material contain fluid.
42
43
```

scenario - A combination of naturally occurring or human-induced events and 1 processes that represents realistic future changes to the repository, 2 geologic, and geohydrologic systems that could cause or promote the escape of 3 radionuclides from the repository. 4 5 seal - An engineered barrier designed to isolate the waste panels or to 6 impede groundwater flow in the shafts. 7 8 sealing - Formation of barriers within man-made penetrations (shafts, drill-9 holes, tunnels, drifts). 10 11 sedimentation - The action or process of forming or depositing rock particles 12 in layers. 13 14 semilog - Graph or chart having a logarithmic scale on one axis and an arith-15 metic scale or uniform spacing on the other axis. 16 17 shaft - A man-made hole, either vertical or steeply inclined, that connects 18 the surface with the underground workings of a mine. 19 20 21 significant source of groundwater - "Significant source of ground water means: (1) An aquifer that: (i) is saturated with water having less than 22 10,000 milligrams per liter of total dissolved solids; (ii) is within 2,500 23 feet of the land surface; (iii) has a transmissivity greater than 200 gallons 24 per day per foot, provided, that any formation or part of a formation 25 included within the source of ground water has a hydraulic conductivity 26 27 greater than two gallons per day per square foot; and (iv) is capable of continuously yielding at least 10,000 gallons per day to a pumped or flowing 28 well for a period of at least a year; or (2) an aquifer that provides the 29 primary source of water for a community water system as of the effective date 30 of this subpart." (40 CFR 191.12[n]) 31 32 silicification - The introduction of, or replacement by, silica, generally 33 resulting in the formation of fine-grained quartz, which may fill pores and 34 replace existing minerals. 35 36 siliclastic - Clastic, noncarbonate rocks that contain almost exclusively 37 quartz or other silicate minerals. 38 39 siltstone - A sedimentary rock composed of at least two-thirds silt-sized 40 grains (1/256 to 1/16 mm); it tends to be flaggy, containing hard, durable, 41 generally thin layers. 42 43

```
sinkhole - A hollow or funnel-shaped depression at the land surface generally
1
    caused by solution in a limestone region that communicates with a cavern or
2
    passage.
3
4
    sludge - A muddy or slushy mass, deposit, or sediment.
5
6
7
    smectite - A general term for clay minerals of the montmorillonite group that
8
    possess swelling properties and high cation-exchange capacities.
9
    solubility - The equilibrium concentration of a solute when undissolved
10
    solute is in contact with the solvent.
11
12
    solute - The material dissolved in a solvent.
13
14
    sorb - To take up and hold by either adsorption or absorption.
15
16
    source term - The kinds and amounts of radionuclides that make up the source
17
    of a potential release of radioactivity. For the performance assessment, the
18
    source term is defined as the sum of the quantities of the important
19
    radionuclides in the WIPP inventory that could be mobilized for possible
20
21
    transport to the accessible environment, and the rates at which these
    radionuclides could be mobilized.
22
23
    special source of groundwater - "Special source of ground water means those
24
    Class I ground waters identified in accordance with the Agency's Ground-Water
25
    Protection Strategy published in August 1984 that: (1) are within the
26
    controlled area encompassing a disposal system or are less than five
27
    kilometers beyond the controlled area; (2) are supplying drinking water for
28
    thousands of persons as of the date that DOE chooses a location within that
29
    area for detailed characterization as a potential site for a disposal system
30
31
    (e.g., in accordance with Section 112(b)(1)(B) of the NWPA and (3) are
32
    irreplaceable in that no reasonable alternative source of drinking water is
    available to that population." (40 CFR 191.12[0])
33
34
    Standard - 40 CFR Part 191, Environmental Standards for the Management and
35
    Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive
36
    Wastes; Final Rule.
37
38
39
    stationarity - A stochastic process is said to be stationary in time (or
40
    space) if its statistical properties are invariant under arbitrary time (or
    space) translations.
41
42
    stochastic process - Any process occurring in space and/or time whose
43
    descriptive variables are random variables; synonymous with random function,
44
45
    random field, or random process.
```

46

```
storativity - The volume of water released by an aquifer per unit surface
1
2
    area per unit drop in hydrologic head.
3
    stratabound - A deposit confined to a single stratigraphic unit.
4
5
    stratigraphy - The study of rock strata; concerned with the original
6
    succession and age relations of rock strata, their form, distribution,
7
    lithologic composition, fossil content, and geophysical and geochemical
8
    properties.
9
10
    subjective - Proceeding from or taking place within an individual's mind (as
11
    opposed to empirical, i.e., supported by explicit records of measurements or
12
13
    experiments).
14
    surfactant - A surficially active substance.
15
16
    sylvite - A white or colorless mineral (KCl), the principal ore mineral of
17
    potassium compounds, that occurs in beds as a saline residue from
18
    evaporation.
19
20
    syncline - A fold having stratigraphically younger rock material in its
21
22
    center; it is usually concave upward.
23
    syndepositional - Forming contemporaneously with deposition.
24
25
    Tamarisk Member - A sequence of anhydrite, claystone, and siltstone within
26
    the Late Permian Rustler Formation of southeastern New Mexico.
27
28
    tectonic - The forces involved in, or the resulting structures and features
29
    of, movements of the Earth's crust.
30
31
    thermodynamic - Pertaining to the relationship of heat to mechanical and
32
33
    other forms of energy.
34
35
    tight - Pertaining to a rock that has all interstices filled with fine grains
    or with matrix material so that porosity and permeability are almost non-
36
    existent.
37
38
39
     topography - The configuration of a land surface, including its relief and
     the position of its natural and man-made features.
40
41
     tortuosity - A measure of the actual length of the path of flow through a
42
    porous medium.
43
44
```

```
transgressive - The spread or extension of the sea over land areas, and the
1
    consequent evidence of such an advance (such as strata deposited
2
   unconformably on older rocks).
3
4
    transiency - The state or quality of being transient.
                                                                                    1
5
6
7
    translator - A computer program that translates output from one program to
    input for another program. Also referred to as pre- and post-processors.
8
9
    transmissivity - For a confined aquifer, the product of hydraulic
10
    conductivity and aquifer thickness.
11
12
    transuranic radioactive waste (TRU waste) - Waste that, without regard to
13
    source or form, is contaminated with more than 100 nCi of alpha-emitting
14
    transuranic isotopes with half-lives greater than 20 yr, per gram of waste,
15
    except for (1) HLW; (2) wastes that the DOE has determined, with the
16
    concurrence of the EPA Administrator, do not need the degree of isolation
17
    required by 40 CFR 191; or (3) wastes that the NRC Commission has approved
18
    for disposal on a case-by-case basis in accordance with 10 CFR 61. Heads of
19
    DOE field organizations can determine that other alpha-contaminated wastes,
20
    peculiar to a specific site, must be managed as TRU waste.
21
22
    truncated distribution - A probability distribution defined on a range of
23
    variable values that is smaller than the range normally associated with the
24
    distribution: e.g., a normal distribution defined on a finite range of
25
    variable values.
26
27
    turbidity current - A density current in water, air, or other fluid, caused
28
    by different amounts of matter in suspension; specifically a bottom-flowing
29
    current laden with suspended sediment moving swiftly (under the influence of
30
    gravity) down a subaqueous slope and spreading horizontally on the floor of a
31
    body of water.
32
33
34
    unconfined - Used to describe an aquifer that is not bounded above and below
    by an aquitard.
35
36
    unconformably - Not conformable, i.e., a break in deposition of sedimentary
37
    material.
38
39
    unconformity - A substantial break or gap in the geologic record in which a
40
    rock unit is overlain by another that is not normally next in stratigraphic
41
    succession.
42
43
    unconsolidated - Material that is loosely arranged or whose particles are not
44
45
     cemented together.
```

46

```
1
    undisturbed performance - "The predicted behavior of a disposal system,
2
    including consideration of the uncertainties in predicted behavior, if the
    disposal system is not disrupted by human intrusion or the occurrence of
3
    unlikely natural events." (40 CFR 191.12(p))
4
5
    uniform distribution - A probability distribution in which the pdf is
6
    constant over the range of variable values.
7
8
    unsaturated - Refers to a rock or soil in which the pores are not completely
9
    filled with a fluid (usually water, but also other liquids and gas).
10
11
    Uranium-234/Uranium-238 activity ratio - Comparison of the radioactivities of
12
    U-234 and U-238; the change in this ratio in groundwater can be related to
13
    the passage of time because U-238 decays to the more soluble Th-234, which in
14
    turn decays to U-234. As a result, the ratio of U-234 to U-238 in
15
    groundwater increases with time.
16
17
    validate - To establish confidence that the model (and the associated
18
    computer program) correctly simulates the appropriate physical and chemical
19
    phenomena. Validation is accomplished through either laboratory or in situ
20
21
    experiments, as appropriate.
22
    validation - The process of assuring through sufficient testing of a model
23
    using real site data that a conceptual model and the corresponding
24
    mathematical and computer models correctly simulate a physical process with
25
    sufficient accuracy.
26
27
    variable - Any quantity supplied as an ingredient of a model, or a computer
28
    program that implements a model; also referred to as a parameter.
29
30
31
    variance - The square of the standard deviation; the variance is a measure of
32
    the amount of spreading of a probability density function about its mean.
33
    verification - The process of assuring (e.g., through tests on ideal
34
    problems) that a computer code (computational model) correctly performs the
35
    stated capabilities (such as solving the mathematical model). Given that a
36
    computer code correctly solves the mathematical model, the physical
37
38
    assumptions of the mathematical model must then be checked through
    validation.
39
40
    vug - A small cavity in a rock.
41
42
43
    water table - In saturated rock, the surface of the water that is at
    atmospheric pressure.
44
45
```

G-24

WIPP land withdrawal- Sixteen contiguous sections proposed to be withdrawn
from public access to be used for the disposal of TRU waste.

3

1	NOMENCLATURE
2	
3	
4	Acronyms and Initialisms
5	
6 7	AFC - Atomic Energy Commission
, 8	Reomic Energy commission
9	AKRIP - Computer program used for kriging
10	
11	ALGEBRA - CAMDAT computer program that algebraically manipulates data and
12	plots meshes and curves.
13	
14	ASCII - American Standard Code for Information Exchange
15	RCSET . Computer program that gets up boundary conditions
10	Source program that sets up boundary conditions.
18	BLOT - A mesh-and-curve-plotting computer program.
19	
20	BOAST_II - A computational computer program that simulates three-phase flow
21	(oil, water, and gas) in a three-dimensional, porous medium.
22	
23	BRAGFLO - Computer program that simulates two-phase flow (brine and gas) in a
24	chree-dimensional, porous medium.
26	BRWM - Board on Radioactive Waste Management of the National Research Council
27	
28	CAM - Compliance Assessment Methodology
29	
30	CAMCON - Compliance Assessment Methodology CONtroller; controller (driver)
31	for compliance evaluations developed for the WIPP.
32	CANDAT Compliance Accordement Mathedalacy DATe bases computational date base
33 34	developed for the WIPP
35	
36	CAM2TXT - Computer program for binary CAMDAT to ASCII conversion.
37	
38	CAS - Compliance assessment system
39	
40	CCDF - See Glossary: complementary cumulative distribution function
41	
42	CODFUALU - Computer program used to calculate a CCDF
43	

N-1

Nomenclature

CCDFPLT - Computer program that calculates and plots the complementary 1 cumulative distribution function. 2 3 CCD2STEP - Computer program that translates from CCDFCALC. I 4 5 cdf - See Glossary: cumulative distribution function 6 7 CFR - Code of Federal Regulations 8 9 L 10 CHAIN - Computer program that generates radionuclide chains. 11 CHANGES - Computer program that is a record of needed enhancements to CAMCON 12 or codes. 13 14 CH-TRU - Contact-Handled TRansUranic waste; packaged TRU waste whose external 15 surface dose rate does not exceed 200 mrem per hour. 16 17 CUTTINGS - Computer program for evaluating the amount of material removed 18 during drilling. 19 20 DISTRPLT - Computer program that plots a pdf's given parameters. L 21 22 DOE - The U.S. Department Of Energy, established in 1978 as a successor to 23 the Energy Research and Developmment Administration (ERDA). 24 25 DOSE - Computer program that calculates human doses from transfer factors. Ł 26 27 See Glossary: disturbed rock zone DRZ -28 29 DST - Drill-stem test 30 31 32 El - A scenario for the WIPP consisting of one or more boreholes that penetrate through a waste-filled room or drift and continue into or through a 33 brine pocket in the underlying Castile Formation. 34 35 E2 - A scenario for the WIPP consisting of one or more boreholes that 36 penetrate to or through a waste-filled room or drift in a panel but do not 37 intersect brine or any other important source of water. 38 39 E1E2 - A scenario for the WIPP consisting of exactly two boreholes that 40 penetrate waste-filled rooms or drifts in the same panel, with one borehole 41 42 also penetrating a brine reservoir in the underlying Castile Formation. 43

EDTA - Ethylenediaminetetraacetic acid: an organic compound that reacts with many metallic ions to form a soluble complex. EEG - The Environmental Evaluation Group, an agency of the State of New Mexico that reviews the safety of the WIPP. EID - Environmental Improvement Division EIS - Environmental impact statement EPA - Environmental Protection Agency of the U.S. Government ERDA - Energy Research and Development Administration FASTQ - Computer program that generates finite element meshes. FD - Finite difference (numerical analysis) FE - Finite element (numerical analysis) FEIS - Final Environmental Impact Statement 50 FR 38066 - Federal Register, Volume 50, p. 38066 FITBND - Computer program that optimizes fit-of-pressure boundary conditions. L FLINT - Computer program that is a FORTRAN language analyzer. FORTRAN - A computer programming language; from FORmula TRANslation. 40 CFR 191 - Code of Federal Regulations, Title 40, Part 191 FRP - Fiberglass-reinforced plywood FSAR - Final Safety Analysis Report FSEIS - Final Supplement Environmental Impact Statement GARFIELD - Computer program that generates attribute fields (e.g., transmissivity) GENII - Computer program that calculates human doses.
GENMESH - Computer program that generates three-dimensional, finite 1 difference, meshes. 2 3 4 GENNET - Computer program that generates networks. 5 GENOBS - Computer program that generates functional relationships between 6 well heads and pressure boundary conditions. 7 8 GENPROP - Computer program for item entry into a property data base. 9 10 GRIDGEOS - Computer program that interpolates observational hydrologic or 11 geologic data onto computational meshes. 12 13 GROPE - File reader for CAMDAT. 14 15 HEPA - High Efficiency Particulate Air (filter): usually capable of 99.97% 16 efficiency as measured by a standard photometric test using a $0.3\mu m$ droplets 17 (aerodynamic equivalent diameter) of DOP. 18 19 HLP2ABS - Computer program that reads a program help file and converts it 20 into standard data base format from which the program abstract can be 21 written. 22 23 HLW - High level waste 24 25 HST3D - Computer program that simulates three-dimensional ground-water flow 26 systems and heat and solute transport. 27 28 ICRP - International Commission on Radiological Protection 29 30 31 ICSET - Computer program that sets up initial conditions. 32 IGIS - Interactive Graphics Information System 33 34 IMPES - Implicit pressure, explicit saturation 35 36 $\tt INGRES^{\tt TM}$ - A relational data base management system used to implement the 37 WIPP secondary property data base. 38 39 40 LHS - Latin hypercube sampling; computer program that selects Latin hypercube samples: A constrained Monte Carlo sampling scheme which samples n different 41 values of a continuous random variate from n nonoverlapping intervals 42 selected on the basis of equal probability. 43 44

1

Acronyms and Initialisms

1 2	LHS2STEP - Computer program that translates from LHS to STEPWISE or PCCSRC.	I
3 4	LISTDCL - Computer program that lists DEC command procedural files.	١
5	LISTFOR - Computer program that lists programs and subroutines and summarizes comments and active FORTRAN lines.	
7 8 9	LISTSDB - Computer program that tabulates data in a secondary data base for reports.	
10 11 12	MATSET - Computer program that sets material properties in CAMDAT.	
13 14 15 16	MB139 - Marker Bed 139: One of 45 units within the Salado Formation composed of silica or sulfate and containing about 1 m of polyhalitic anhydrite and anhydrite. MB139 is located within the WIPP horizon.	
17 18	MEF - Maximum Entropy Formalism	
19 20	NAS - National Academy of Sciences	
21 22	NCRP - National Council on Radiation Protection and Measurement	
23 24 25	NEA - Nuclear Energy Agency of the Office of Economic Cooperation and Development, Paris.	
25 26 27	NEFDIS - Computer program that plots NEFTRAN discharge history as a function of time.	
28 29 30 31	NEFTRAN - Network Flow and TRANsport. Computer program that calculates flow and transport along one-dimensional legs comprising a flow network.	
32 33	NRC - Nuclear Regulatory Commission	
34 35 36	NUCPLOT - Computer program for a box plot of each radionuclide contribution to a CCDF.	
37 38	NWPA - Nuclear Waste Policy Act (Public Law 97-425 & 100-203)	
39 40	PA - Performance Assessment	
41 42 43	PANEL - Computer program for a panel model that estimates radionuclide flow to the Culebra Dolomite Member through one or more boreholes.	

PATEXO - Computer program that transforms PATRAN to CAMDAT. L PCCSRC - Computer program that calculates partial correlation and standardized regression coefficients. pdf - See Glossary: probability density function. PLOTSDB - Computer program that plots parameter distribution in a secondary data base. POSTBOAST - Post-processor computer program (translator) for BOAST II. POSTBRAGFLO - Post-processor computer program (translator) for BRAGFLO. L POSTHST - Post-processor computer program (translator) for HST3D. POSTLHS - Post-processor computer program (translator) for LHS. POSTNEF - Post-processor computer program (translator) for POSTNEF. POSTSTAFF - Post-processor computer program (translator) for STAFF2D. POSTSUTRA - Post-processor computer program (translator) for SUTRA. POSTSWIFT - Post-processor computer program (translator) for SWIFTII. PRA - Probabilistic risk assessment PREBOAST - Pre-processor computer program (translator) for BOAST II. PREBRAGFLO - Pre-processor computer program (translator) for BRAGFLO. PREHST - Pre-processor computer program (translator) for HST3D. PRELHS - Pre-processor computer program (translator) for LHS. PRENEF - Pre-processor computer program (translator) for NEFTRAN. PRESTAFF - Pre-processor computer program (translator) for STAFF2D. PRESUTRA - Pre-processor computer program (translator) for SUTRA. PRESWIFT - Pre-processor computer program (translator) for SWIFTII.

N-6

Acronyms and Initialisms

```
QA - See Glossary: quality assurance
1
2
    R_{acc} - Release of radioisotopes at the subsurface boundary of the accessible
з
    environment.
4
5
    R_c - Release of radioisotope-bearing cuttings and eroded material to the land
6
    surface during drilling of an intrusion borehole.
7
8
    RCRA - Resource, Conservation, and Recovery Act of 1976 (Public Law 94-580)
9
10
    RELATE - Computer program that interpolates from coarse to fine mesh and fine
11
    to coarse mesh (relates property and boundary conditions).
12
13
    RESHAPE - Computer program that redefines blocks (i.e., groupings of mesh
14
    elements).
15
16
    RH-TRU - Remote-Handled TRansUranic waste: packaged TRU waste whose external
17
    surface dose rate exceeds 200 mrem per hour, but not greater than 1,000 mrem
18
    per hour.
19
20
    SAR - Safety Analysis Report
21
22
    SCANCAMDAT - Computer program that quickly summarizes the data in CAMDAT.
                                                                                     T
23
24
25
    SCP - Site characterization plan
26
    SECO 2DH - Computer program for horizontal, two-dimensional groundwater flow
27
    simulation.
28
29
    SEIS - Supplement Environment Impact Statement
30
31
    SNL - Sandia National Laboratories
32
33
    SORTLHS - Computer program that reorders vectors for LHS (Latin hypercube
34
    sampling).
35
36
    SRC - Standardized regression coefficients
37
38
    STAFF2D - Computer program for a finite-element transport model.
39
40
    STEPWISE - Computer program that performs stepwise regression including rank
41
    regression.
42
43
```

Nomenclature

```
SUTRA - Finite-element simulation computer program that calculates saturated-
1
    unsaturated, fluid-density-dependent groundwater flow with energy transport
2
    or chemically reactive single-species solute transport.
3
4
5
    SUTRAGAS - SUTRA computer program modified for fluid as a gas instead of as a
    liquid.
6
7
    SWB - Standard waste box
8
9
    SWIFTII - Sandia Waste-Isolation Flow and Transport computer program that
10
11
    simulates saturated flow and heat, brine, and radionuclide chain transport in
    porous and fractured media.
12
13
    TRACKER - Computer program that tracks neutrally buoyant particles in a
14
    steady or transient flow.
15
16
    TRU - TRansUranic
17
18
    TS - An event considered in scenario development for the WIPP consisting of
19
    subsidence that results due to solution mining of potash.
20
21
22
    TXT2CAM - Computer program for ASCII to binary CAMDAT conversion.
23
    UNSWIFT - Computer translator program that converts SWIFTII input files into
24
25
    CAMDAT.
26
    WAC - Waste Acceptance Criteria
27
28
    WEC - Westinghouse Electric Corporation
29
30
    WIPP - Waste Isolation Pilot Plant
31
32
    YMP - Yucca Mountain Project
33
34
```

1		Abbreviations and Symbols
2		
3	Am - americium	
5		
6	atm - atmosphere	
7	dem demosphere	
, o	Ba - barium	
q		
10	Ce - cerium	
11		
12	Cf - californium	
۰۲ 13		
14	Ci - curie	
15		
10	cm - centimeter	
17	cm - centimeter	
10	Cm - curium	
10		
19		
20	CO - CODATC	
21	Co	
22	cs - cesium	
23	0	
24	ou - copper	
20	The ovidation potential	
20	En - Oxidación pocencial	
27		
20	Eu - europrum	
29	Fo éven	
30	re - 11011	
31	ft foot	
32 22	11 - 1001	
33	α - σram	
25	6 6	
36	gal - gallon	
37		
38	1 n - 1nch	
39		
40	кg - Kilogram	
41		
42	km - Kliometer	
43		
44	k - liter	
45		

```
1b - pound
1
2
З
    m - meter
4
    M - Molar (molarity): Concentration of a solution expressed as moles of
5
    solute per liter of solution.
6
7
    mg/\ell - milligrams per liter
8
9
    mi - mile
10
11
    \mu d - microdarcy
12
13
    md - millidarcy
14
15
    Mn - manganese
16
17
    MPa - megapascal (10<sup>6</sup> Pa)
18
19
    mrem - millirem (10^{-3} \text{ rem})
20
21
    nCi - nanocurie
22
23
    Ni - nickel
24
25
    NM - New Mexico
26
27
    Np - neptunium
28
29
    Pa - pascal
30
31
32
    Pb - lead
33
    pH - the negative logarithm of the activity of hydrogen ion
34
35
     Pr - praseodymium
36
37
     Pu - plutonium
38
39
     Ra - radium
40
41
     Rn - radon
42
43
     Ru - ruthenium
44
45
     N-10
```

1	s - second	
2		
3	Sb - antimony	
4		
5	Si - silicon	
6		
7	Sm - samarium	
8		
9	Sr - strontium	
10		
11	Te - tellurium	
12		
13	Th - thorium	
14		
15	U - uranium	
16		
17	Y - yttrium	
18		
19	yr - year	
20		9 .
21	§ - section of 40 CFR Part 191	
22		

FEDERAL AGENCIES

U. S. Department of Energy (4) Office of Environmental Restoration and Waste Management Attn: L. P. Duffy, EM-1 J. E. Lytle, EM-30 S. Schneider, EM-342 C. Frank, EM-50 Washington, DC 20585 U.S. Department of Energy (5) WIPP Task Force Attn: M. Frei, EM-34 (2) G. H. Daly S. Fucigna J. Rhoderick 12800 Middlebrook Rd. Suite 400 Germantown, MD 20874 U.S. Department of Energy (4) Office of Environment, Safety and Health Attn: R. P. Berube, EH-20 C. Borgstrum, EH-25 R. Pelletier, EH-231 K. Taimi, EH-232 Washington, DC 20585 U. S. Department of Energy (4) WIPP Project Integration Office Attn: W. J. Arthur III L. W. Gage P. J. Higgins D. A. Olona P.O. Box 5400 Albuquerque, NM 87115-5400 U. S. Department of Energy (12) WIPP Project Site Office (Carlsbad) Attn: A. Hunt (4) M. McFadden V. Daub (4) J. Lippis K. Hunter R. Becker P.O. Box 3090 Carlsbad, NM 88221-3090

U. S. Department of Energy, (5) Office of Civilian Radioactive Waste Management Attn: Deputy Director, RW-2 Associate Director, RW-10 Office of Program Administration and Resources Management Associate Director, RW-20 Office of Facilities Siting and Development Associate Director, RW-30 Office of Systems Integration and Regulations Associate Director, RW-40 Office of External Relations and Policy Office of Geologic Repositories Forrestal Building Washington, DC 20585 U. S. Department of Energy Attn: National Atomic Museum Library Albuquerque Operations Office P.O. Box 5400 Albuquerque, NM 87185 U. S. Department of Energy Research & Waste Management Division Attn: Director P.O. Box E Oak Ridge, TN 37831 U. S. Department of Energy (2) Idaho Operations Office Fuel Processing and Waste Management Division 785 DOE Place Idaho Falls, ID 83402 U.S. Department of Energy Savannah River Operations Office Defense Waste Processing Facility Project Office Attn: W. D. Pearson P.O. Box A

Aiken, SC 29802

U.S. Department of Energy (2) Richland Operations Office Nuclear Fuel Cycle & Production Division Attn: R. E. Gerton 825 Jadwin Ave. P.O. Box 500 Richland, WA 99352 U.S. Department of Energy (3) Nevada Operations Office Attn: J. R. Boland D. Livingston P. K. Fitzsimmons 2753 S. Highland Drive Las Vegas, NV 87183-8518 U.S. Department of Energy (2) Technical Information Center P.O. Box 62 Oak Ridge, TN 37831 U.S. Department of Energy (2) Chicago Operations Office Attn: J. C. Haugen 9800 South Cass Avenue Argonne, IL 60439 U.S. Department of Energy Los Alamos Area Office 528 35th Street Los Alamos, NM 87544 U.S. Department of Energy (3) Rocky Flats Area Office Attn: W. C. Rask G. Huffman T. Lukow P.O. Box 928 Golden, CO 80402-0928 U.S. Department of Energy Dayton Area Office Attn: R. Grandfield P.O. Box 66 Miamisburg, OH 45343-0066 U.S. Department of Energy Attn: E. Young Room E-178 GAO/RCED/GTN Washington, DC 20545

U.S. Bureau of Land Management 101 E. Mermod Carlsbad, NM 88220 U.S. Bureau of Land Management New Mexico State Office P.O. Box 1449 Santa Fe, NM 87507 U.S. Environmental Protection Agency (2) Office of Radiation Protection Programs (ANR-460) Attn: Richard Guimond (2) Washington, D.C. 20460 U.S. Nuclear Regulatory Commission Division of Waste Management Attn: H. Marson Mail Stop 4-H-3 Washington, DC 20555 U.S. Nuclear Regulatory Commission (4)Advisory Committee on Nuclear Waste Attn: Dade Moeller Martin J. Steindler Paul W. Pomeroy William J. Hinze 7920 Norfolk Avenue Bethesda, MD 20814 Defense Nuclear Facilities Safety Board Attn: Dermot Winters 625 Indiana Avenue NW Suite 700 Washington, DC 20004 Nuclear Waste Technical Review Board (2)Attn: Dr. Don A. Deere Dr. Sidney J. S. Parry Suite 910 1100 Wilson Blvd. Arlington, VA 22209-2297 Katherine Yuracko Energy and Science Division Office of Management and Budget 725 17th Street NW Washington, DC 20503

U.S. Geological Survey (2) Water Resources Division Attn: Cathy Peters Suite 200 4501 Indian School, NE Albuquerque, NM 87110

INSTITUTIONAL DISTRIBUTION

NEW MEXICO CONGRESSIONAL DELEGATION:

Jeff Bingaman U.S. Senate 524 SHOB Washington, DC 20510

Pete V. Domenici U.S. Senate 427 SDOB Washington, DC 20510

Bill Richardson House of Representatives 332 CHOB Washington, DC 20510

Steven H. Schiff House of Representatives 1520 LHOB Washington, DC 20510

Joe Skeen House of Representatives 1007 LHOB Washington, DC 20510

STATE AGENCIES

Environmental Evaluation Group (5) Attn: Robert Neill Suite F-2 7007 Wyoming Blvd., N.E. Albuquerque, NM 87109

New Mexico Bureau of Mines and Mineral Resources Socorro, NM 87801 New Mexico Department of Energy & Minerals Attn: Librarian 2040 S. Pacheco Santa Fe, NM 87505 New Mexico Radioactive Task Force (2) (Governor's WIPP Task Force) Attn: Anita Lockwood, Chairman Chris Wentz, Coordinator/Policy Analyst 2040 Pacheco Santa Fe, NM 87505 Bob Forrest Mayor, City of Carlsbad P.O. Box 1569 Carlsbad, NM 88221 Chuck Bernard Executive Director Carlsbad Department of Development P.O. Box 1090 Carlsbad, NM 88221 Robert M. Hawk (2) Chairman, Hazardous and Radioactive Materials Committee Room 334 State Capitol Sante Fe, NM 87503 New Mexico Environment Department Secretary of the Environment Attn: J. Espinosa (3) P.O. Box 968 1190 St. Francis Drive Santa Fe, NM 87503-0968 New Mexico Environment Department

Attn: Pat McCausland WIPP Project Site Office P.O. Box 3090 Carlsbad, NM 88221-3090

ADVISORY COMMITTEE ON NUCLEAR FACILITY SAFETY

John F. Ahearne Executive Director, Sigma Xi 99 Alexander Drive Research Triangle Park, NC 27709 James E. Martin 109 Observatory Road Ann Arbor, MI 48109

Dr. Gerald Tape Assoc. Universities 1717 Massachusetts Ave. NW Suite 603 Washington, DC 20036

WIPP PANEL OF NATIONAL RESEARCH COUNCIL'S BOARD ON RADIOACTIVE WASTE MANAGEMENT

Charles Fairhurst, Chairman Department of Civil and Mineral Engineering University of Minnesota 500 Pillsbury Dr. SE Minneapolis, MN 55455-0220

John O. Blomeke 3833 Sandy Shore Drive Lenoir City, TN 37771-9803

John D. Bredehoeft Western Region Hydrologist Water Resources Division U.S. Geological Survey (M/S 439) 345 Middlefield Road Menlo Park, CA 94025

Fred M. Ernsberger 1325 NW 10th Avenue Gainsville, FL 32601

Rodney C. Ewing Department of Geology University of New Mexico 200 Yale, NE Albuquerque, NM 87131

B. John GarrickPickard, Lowe & Garrick, Inc.2260 University DriveNewport Beach, CA 92660

Leonard F. Konikow U.S. Geological Survey 431 National Center Reston, VA 22092 Jeremiah O'Driscoll 505 Valley Hill Drive Atlanta, GA 30350 Christopher Whipple Clement International Corp. 160 Spear St. Suite 1380 San Francisco, CA 94105-1535 National Research Council (3) Board on Radioactive Waste Management RM HA456 Attn: Peter B. Myers, Staff Director (2) Dr. Geraldine J. Grube 2101 Constitution Avenue Washington, DC 20418

PERFORMANCE ASSESSMENT PEER REVIEW PANEL

G. Ross Heath
College of Ocean and
Fishery Sciences HN-15
583 Henderson Hall
University of Washington
Seattle, WA 98195

Thomas H. Pigford Department of Nuclear Engineering 4159 Etcheverry Hall University of California Berkeley, CA 94720

Thomas A. Cotton JK Research Associates, Inc. 4429 Butterworth Place, NW Washington, DC 20016

Robert J. Budnitz President, Future Resources Associates, Inc. 2000 Center Street Suite 418 Berkeley, CA 94704 C. John Mann Department of Geology 245 Natural History Bldg. 1301 West Green Street University of Illinois Urbana, IL 61801

Frank W. Schwartz Department of Geology and Mineralogy The Ohio State University Scott Hall 1090 Carmack Rd. Columbus, OH 43210

FUTURE SOCIETIES EXPERT PANEL

Theodore S. Glickman Resources for the Future 1616 P St., NW Washington, DC 20036

Norman Rosenberg Resources for the Future 1616 P St., NW Washington, DC 20036

Max Singer The Potomac Organization, Inc. 5400 Greystone St. Chevy Chase, MD 20815

Maris Vinovskis Institute for Social Research Room 4086 University of Michigan 426 Thompson St Ann Arbor, MI 48109-1045

Gregory Benford University of California, Irvine Department of Physics Irvine, CA 92717

Craig Kirkwood College of Business Administration Arizona State University Tempe, AZ 85287 Harry Otway Health, Safety, and Envir. Div. Mail Stop K-491 Los Alamos National Laboratory Los Alamos, NM 87545

Martin J. Pasqualetti Department of Geography Arizona State University Tempe, AZ 85287-3806

Michael Baram Bracken and Baram 33 Mount Vernon St. Boston, MA 02108

Wendell Bell Department of Sociology Yale University 1965 Yale Station New Haven, CT 06520

Bernard L. Cohen Department of Physics University of Pittsburgh Pittsburgh, PA 15260

Ted Gordon The Futures Group 80 Glastonbury Blvd. Glastonbury, CT 06033

Duane Chapman 5025 S. Building, Room S5119 The World Bank 1818 H Street NW Washington, DC 20433

Victor Ferkiss 23 Sage Brush Circle Corrales, NM 87048

Dan Reicher Senior Attorney Natural Resources Defense Council 1350 New York Ave. NW, #300 Washington, DC 20005

Theodore Taylor P.O. Box 39 3383 Weatherby Rd. West Clarksville, NY 14786

MARKERS EXPERT PANEL

Dr. Dieter Ast Department of Materials Science Bard Hall Cornell University Ithaca, NY 14853-1501

Dr. Victor Baker Department of Geosciences Building #77, Gould-Simpson Building University of Arizona Tucson, AZ 85721

Mr. Michael Brill President BOSTI 1479 Hertel Ave. Buffalo, NY 14216

Dr. Frank Drake Board of Studies in Astronomy and Astrophysics Lick Observatory University of California, Santa Cruz Santa Cruz, CA 95064

Dr. Ben Finney University of Hawaii at Manoa Department of Anthropology Porteus Hall 346, 2424 Maile Way Honolulu, HI 96822

Dr. David Givens American Anthropological Association 1703 New Hampshire Ave., NW Washington, D.C. 20009

Dr. Ward Goodenough Department of Anthropology University of Pennsylvania 325 University Museum 33rd and Spruce Streets Philadelphia, PA 19104-6398

Dr. Maureen Kaplan Eastern Research Group, Inc. 6 Whittemore Street Arlington, MA 02174

Mr. Jon Lomberg P.O. Box 207 Honaunau, HI 96726 Dr. Louis Narens Department of Cognitive Sciences School of Social Sciences University of Califorrnia, Irvine Irvine, CA 92717

Dr. Frederick Newmeyer Department of Linguistics GN-40 University of Washington Seattle, WA 98195

Dr. Woodruff Sullivan Department of Astonomy FM-20 University of Washington Seattle, WA 98195

Dr. Wendell Williams Materials Science and Engineering White Building Case Western Reserve University Cleveland, OH 44106

NATIONAL LABORATORIES

Argonne National Labs (2) Attn: A. Smith D. Tomasko 9700 South Cass, Bldg. 201 Argonne, IL 60439 Battelle Pacific Northwest Laboratories (3) Attn: R. E. Westerman S. Bates H. C. Burkholder Battelle Boulevard Richland, WA 99352 Lawrence Livermore National Laboratory Attn: G. Mackanic P.O. Box 808, MS L-192 Livermore, CA 94550 Los Alamos National Laboratories Attn: B. Erdal, CNC-11 P.O. Box 1663 Los Alamos, NM 87544

Los Alamos National Laboratories Attn: A. Meijer Mail Stop J514 Los Alamos, NM 87545 Los Alamos National Laboratories (3) HSE-8 Attn: M. Enoris L. Soholt J. Wenzel P.O. Box 1663 Los Alamos, NM 87544 Los Alamos National Laboratories (2) HSE-7 Attn: A. Drypolcher S. Kosciewiscz P.O. Box 1663 Los Alamos, NM 87544 Oak Ridge National Labs Martin Marietta Systems, Inc. Attn: J. Setaro P.O. Box 2008, Bldg. 3047 Oak Ridge, TN 37831-6019 Savannah River Laboratory (3) Attn: N. Bibler M. J. Plodinec G. G. Wicks Aiken, SC 29801 Savannah River Plant (2) Attn: Richard G. Baxter Building 704-S K. W. Wierzbicki Building 703-H Aiken, SC 29808-0001 CORPORATIONS/MEMBERS OF THE PUBLIC Benchmark Environmental Corp. (3) Attn: John Hart C. Frederickson K. Lickliter 4501 Indian School Rd., NE Suite 105 Albuquerque, NM 87110 Deuel and Associates, Inc. Attn: R. W. Prindle

7208 Jefferson, NE

Albuquerque, NM 87109

Disposal Safety, Inc. Attn: Benjamin Ross Suite 314 1660 L Street NW Washington, DC 20006 Ecodynamics Research Associates (2) Attn: Pat Roache Rebecca Blaine P.O. Box 8172 Albuquerque, NM 87198 E G & G Idaho (3)1955 Fremont Street Attn: C. Atwood C. Hertzler T. I. Clements Idaho Falls, ID 83415 Geomatrix Attn: Kevin Coppersmith 100 Pine Street #1000 San Francisco, CA 94111 Golden Associates, Inc. (3) Attn: Mark Cunnane Richard Kossik Ian Miller 4104 148th Avenue NE Redmond, WA 98052 In-Situ, Inc. (2) Attn: S. C. Way C. McKee 209 Grand Avenue Laramie, WY 82070 INTERA, Inc. Attn: A. M. LaVenue 8100 Mountain Road NE Suite 213 Albuquerque, NM 87110 INTERA, Inc. Attn: J. F. Pickens Suite #300 6850 Austin Center Blvd. Austin, TX 78731 INTERA, Inc. Attn: Wayne Stensrud P.O. Box 2123 Carlsbad, NM 88221

INTERA, Inc. Attn: William Nelson 101 Convention Center Drive Suite 540 Las Vegas, NV 89109 IT Corporation (2) Attn: P. Drez J. Myers Regional Office - Suite 700 5301 Central Avenue, NE Albuquerque, NM 87108 IT Corporation R. J. Eastmond 825 Jadwin Ave. Richland, WA 99352 MACTEC (2) Attn: J. A. Thies D. K. Duncan 8418 Zuni Road SE Suite 200 Albuquerque, NM 87108 Pacific Northwest Laboratory Attn: Bill Kennedy Battelle Blvd. P.O. Box 999 Richland, WA 99352 RE/SPEC, Inc. (2) Attn: W. Coons Suite 300 4775 Indian School NE Albuquerque, NM 87110 RE/SPEC, Inc. Attn: J. L. Ratigan P.O. Box 725 Rapid City, SD 57709 Reynolds Elect/Engr. Co., Inc. Building 790, Warehouse Row Attn: E. W. Kendall P.O. Box 98521

Las Vegas, NV 89193-8521

Roy F. Weston, Inc. CRWM Tech. Supp. Team Attn: Clifford J. Noronha 955 L'Enfant Plaza, S.W. North Building, Eighth Floor Washington, DC 20024 Science Applications International Corporation Attn: Howard R. Pratt, Senior Vice President 10260 Campus Point Drive San Diego, CA 92121 Science Applications International Corporation (2) Attn: George Dymmel Chris G. Pflum 101 Convention Center Dr. Las Vegas, NV 89109 Science Applications International Corporation (2) Attn: John Young Dave Lester 18706 North Creek Parkway Suite 110 Bothell, WA 98011 Southwest Research Institute Center for Nuclear Waste Regulatory Analysis (2) Attn: P. K. Nair 6220 Culebra Road San Antonio, Texas 78228-0510 Systems, Science, and Software (2) Attn: E. Peterson P. Lagus Box 1620 La Jolla, CA 92038 TASC Attn: Steven G. Oston 55 Walkers Brook Drive Reading, MA 01867

Tech. Reps., Inc. (5) Attn: Janet Chapman Terry Cameron Debbie Marchand John Stikar Denise Bissell 5000 Marble NE Suite 222 Albuquerque, NM 87110 Tolan, Beeson, & Associates Attn: Terry L. Tolan 2320 W. 15th Avenue Kennewick, WA 99337 TRW Environmental Safety Systems (TESS) Attn: Ivan Saks 10306 Eaton Place Suite 300 Fairfax, VA 22030 Westinghouse Electric Corporation (4) Attn: Library L. Trego C. Cox L. Fitch R. F. Kehrman P.O. Box 2078 Carlsbad, NM 88221 Westinghouse Hanford Company Attn: Don Wood P.O. Box 1970 Richland, WA 99352 Western Water Consultants Attn: D. Fritz 1949 Sugarland Drive #134 Sheridan, WY 82801-5720 Western Water Consultants Attn: P. A. Rechard P.O. Box 4128 Laramie, WY 82071 Neville Cook Rock Mechanics Engineering Mine Engineering Dept. University of California

Berkeley, CA 94720

Star Route Box 87 Anthony, TX 79821 Shirley Thieda P.O. Box 2109, RR1 Bernalillo, NM 87004 Jack Urich c/o CARD 144 Harvard SE Albuquerque, NM 87106 **UNIVERSITIES** University of California Mechanical, Aerospace, and Nuclear Engineering Department (2) Attn: W. Kastenberg D. Browne 5532 Boelter Hall Los Angeles, CA 90024 University of Hawaii at Hilo Attn: S. Hora Business Administration Hilo, HI 96720-4091 University of New Mexico Geology Department Attn: Library Albuquerque, NM 87131 University of New Mexico Research Administration Attn: H. Schreyer 102 Scholes Hall Albuquerque, NM 87131 University of Wyoming Department of Civil Engineering Attn: V. R. Hasfurther Laramie, WY 82071 University of Wyoming Department of Geology Attn: J. I. Drever Laramie, WY 82071

Dennis W. Powers

University of Wyoming Department of Mathematics Attn: R. E. Ewing Laramie, WY 82071

LIBRARIES

Thomas Brannigan Library Attn: Don Dresp, Head Librarian 106 W. Hadley St. Las Cruces, NM 88001

Hobbs Public Library Attn: Marcia Lewis, Librarian 509 N. Ship Street Hobbs, NM 88248

New Mexico State Library Attn: Norma McCallan 325 Don Gaspar Santa Fe, NM 87503

New Mexico Tech Martin Speere Memorial Library Campus Street Socorro, NM 87810

New Mexico Junior College Pannell Library Attn: Ruth Hill Lovington Highway Hobbs, NM 88240

Carlsbad Municipal Library WIPP Public Reading Room Attn: Lee Hubbard, Head Librarian 101 S. Halagueno St. Carlsbad, NM 88220

University of New Mexico General Library Government Publications Department Albuquerque, NM 87131

NEA/PSAC USER'S GROUP

Timo K. Vieno
Technical Research Centre of Finland
 (VTT)
Nuclear Engineering Laboratory
P.O. Box 169
SF-00181 Helsinki
FINLAND

Alexander Nies (PSAC Chairman) Gesellschaft für Strahlen- und Institut für Tieflagerung Abteilung für Endlagersicherheit Theodor-Heuss-Strasse 4 D-3300 Braunscheweig GERMANY

Eduard Hofer Gesellschaft für Reaktorsicherheit (GRS) MBH Forschungsgelände D-8046 Garching GERMANY

Takashi Sasahara Environmental Assessment Laboratory Department of Environmental Safety Research Nuclear Safety Research Center, Tokai Research Establishment, JAERI Tokai-mura, Naka-gun Ibaraki-ken JAPAN

Alejandro Alonso Cátedra de Tecnología Nuclear E.T.S. de Ingenieros Industriales José Gutiérrez Abascal, 2 E-28006 Madrid SPAIN

Pedro Prado CIEMAT Instituto de Tecnología Nuclear Avenida Complutense, 22 E-28040 Madrid SPAIN Miguel Angel Cuñado ENRESA Emilio Vargas, 7 E-28043 Madrid SPATN Francisco Javier Elorza ENRESA Emilio Vargas, 7 E-28043 Madrid SPAIN Nils A. Kjellbert Swedish Nuclear Fuel and Waste Management Company (SKB) Box 5864 S-102 48 Stockholm SWEDEN Björn Cronhjort Swedish National Board for Spent Nuclear Fuel (SKN) Sehlsedtsgatan 9 S-115 28 Stockholm SWEDEN Richard A. Klos Paul-Scherrer Institute (PSI) CH-5232 Villingen PSI SWITZERLAND NAGRA (2) Attn: Charles McCombie Fritz Van Dorp Parkstrasse 23 CH-5401 Baden SWITZERLAND Brian G. J. Thompson Department of the Environment Her Majesty's Inspectorate of Pollution Room A5.33, Romney House 43 Marsham Street London SW1P 2PY UNITED KINGDOM

INTERA/ECL (2) Attn: Trevor J. Sumerling Daniel A. Galson Chiltern House 45 Station Road Henley-on-Thames Oxfordshire RG9 1AT UNITED KINGDOM U.S. Nuclear Regulatory Commission (2)Attn: Richard Codell Norm Eisenberg Mail Stop 4-H-3 Washington, D.C. 20555 Paul W. Eslinger Battelle Pacific Northwest Laboratories (PNL) P.O. Box 999, MS K2-32 Richland, WA 99352 Andrea Saltelli Commission of the European Communities Joint Resarch Centre od Ispra I-21020 Ispra (Varese) ITALY Budhi Sagar Center for Nuclear Waste Regulatory Analysis (CNWRA) Southwest Research Institute P.O. Drawer 28510 6220 Culebra Road San Antonio, TX 78284 Shaheed Hossain Division of Nuclear Fuel Cycle and Waste Management International Atomic Energy Agency Wagramerstrasse 5 P.O. Box 100 A-1400 Vienna AUSTRIA Claudio Pescatore Division of Radiation Protection and Waste Management 38, Boulevard Suchet F-75016 Paris FRANCE

FOREIGN ADDRESSES

Studiecentrum Voor Kernenergie Centre D'Energie Nucleaire Attn: A. Bonne SCK/CEN Boeretang 200 B-2400 Mol BELGIUM Atomic Energy of Canada, Ltd. (3) Whiteshell Research Estab. Attn: Michael E. Stevens Bruce W. Goodwin Donna Wushke Pinewa, Manitoba ROE 1LO CANADA Ghislain de Marsily Lab. Géologie Appliqué Tour 26, 5 étage 4 Place Jussieu F-75252 Paris Cedex 05 FRANCE Jean-Pierre Olivier OECD Nuclear Energy Agency (2) 38, Boulevard Suchet F-75016 Paris FRANCE D. Alexandre, Deputy Director ANDRA 31 Rue de la Federation 75015 Paris FRANCE Claude Sombret Centre D'Etudes Nucleaires De La Vallee Rhone CEN/VALRHO S.D.H.A. BP 171 30205 Bagnols-Sur-Ceze FRANCE Bundesministerium fur Forschung und Technologie Postfach 200 706 5300 Bonn 2 GERMANY

Bundesanstalt fur Geowissenschaften und Rohstoffe Attn: Michael Langer Postfach 510 153 3000 Hannover 51 GERMANY Gesellschaft fur Reaktorsicherheit (GRS) mb (2) Attn: Bruno Baltes Wolfgang Muller Schwertnergasse 1 D-5000 Cologne GERMANY Hahn-Mietner-Institut fur Kernforschung Attn: Werner Lutze Glienicker Strasse 100 100 Berlin 39 GERMANY Institut fur Tieflagerung (2) Attn: K. Kuhn Theodor-Heuss-Strasse 4 D-3300 Braunschweig GERMANY Physikalisch-Technische Bundesanstalt Attn: Peter Brenneke Postfach 33 45 D-3300 Braunschweig GERMANY Shingo Tashiro Japan Atomic Energy Research Institute Tokai-Mura, Ibaraki-Ken 319-11 JAPAN Netherlands Energy Research Foundation ECN Attn: L. H. Vons 3 Westerduinweg P.O. Box 1 1755 ZG Petten THE NETHERLANDS

Johan Andersson Statens Kärnkraftinspektion SKI Box 27106 S-102 52 Stockholm SWEDEN Fred Karlsson Svensk Karnbransleforsorjning AB SKB Box 5864 S-102 48 Stockholm SWEDEN Nationale Genossenschaft fur die Lagerung Radioaktiver Abfalle (NAGRA) (2) Attn: Stratis Vomvoris Piet Zuidema Hardstrasse 73 CH-5430 Wettingen SWITZERLAND D. R. Knowles British Nuclear Fuels, plc Risley, Warrington, Cheshire WA3 6AS 1002607 UNITED KINGDOM AEA Technology Attn: J.H. Rees D5W/29 Culham Laboratory Abington Oxfordshire OX14 3DB UNITED KINGDOM AEA Technology Attn: W. R. Rodwell 044/A31 Winfrith Technical Centre Dorchester Dorset DT2 8DH UNITED KINGDOM AEA Technology Attn: J. E. Tinson B4244 Harwell Laboratory Didcot Oxfordshire OX11 ORA

UNITED KINGDOM

INTERNAL

1	A. Narath	6
20	O. E. Jones	6
1510	J. C. Cummings	6
1511	D. K. Gartling	6
3151	S. M. Wayland	6
3200	N. R. Ortiz	6
6000	D. L. Hartley	6
6233	J. C. Eichelberger	6
6300	T. O. Hunter	6
6301	E. Bonano	6
6310	T. E. Blejwas, Acting	6
6313	L. E. Shephard	6
6312	F. W. Bingham	6
6313	L. S. Costin	6
6315	Supervisor	6
6316	R. P. Sandoval	6
6320	R. E. Luna, Acting	6
6340	W. D. Weart	ϵ
6340	S. Y. Pickering	6
6341	J. M. Covan	E
6341	D. P. Garber	e
6341	R. C. Lincoln	e
6341	J. Orona*	6
6341	Sandia WIPP Central Files (250)	
6342	D. R. Anderson	(
6342	B. M. Butcher	(
6342	D. P. Gallegos	(
6342	L. S. Gomez	6
6342	M. Gruebel	
6342	R. Guzowski	
6342	R. D. Klett	
6342	M. G. Marietta	
6342	D. Morrison	
6342	A. C. Peterson	
6342	R. P. Rechard	
6342	P. Swift	
6342	M. Tierney	
6342	K. M. Trauth	
6342	B. L. Baker*	
6342	J. Bean*	
6342	J. Berglund*	
6342	W. Beyeler*	
6342	T. Blaine*	

6342	K. Brinster*				
6342	K. Byle*				
6342	L. Clements*				
6342	J. Garner*				
6342	A. Gilkey*				
6342	H. Iuzzolino*				
6342	J. Logothetis*				
6342	R. McCurley*				
6342	J. Rath*				
6342	D. Rudeen*				
6342	J. Sandha*				
6342	J. Schreiber*				
6342	P. Vaughn*				
6343	T. M. Schultheis				
6344	R. L. Beauheim				
6344	P. B. Davies				
6344	S. J. Finley				
6344	E. Gorham				
6344	C. F. Novak				
6344	S. W. Webb				
6345	R. Beraun				
6345	L. Brush				
6345	A. R. Lappin				
6345	M. A. Molecke				
6346	D. E. Munson				
6346	E. J. Nowak				
6346	J. R. Tillerson				
6347	A. L. Stevens				
6400	D. J. McCloskey				
6413	J. C. Helton				
6415	R. M. Cranwell				
6415	C. Leigh				
6415	R. L. Iman				
6622	M.S.Y. Chu				
9300	J. E. Powell				
9310	J. D. Plimpton				
9325	J. T. McIlmoyle				
9325	R. L. Rutter				
9330	J. D. Kennedy				
8523-	2 Central Technical Files				
3141	S. A. Landenberger (5)	_			
3145	Document Processing (8)	for			
DOE/OSTI					
3151	G. C. Claycomb (3)				

^{*6342/}Geo-Centers