Document Delivery Service

Please use the Journal Article request form at: http://lib-www.lanl.gov/requests.htm
Or via LinkSccecker in our LANL databases

In-House Photocopy Service. Copies are provided from materials in the Library's collection (journals, books, conference papers, etc). (Exception: We do not make copies of/from standards and codes.) Copying is done in compliance with the copyright law (see notice above) and with Library policy (see following).

Policies – The Research Library:
- Will copy journal articles, excerpts from books, or conference papers constituting 20% or less of the journal issue, book, proceedings volume (by page count).
- Will not facilitate systematic copying from a journal issue, book, or proceedings volume (i.e., requesting one article one day and another the next day, week, etc.).
- Will not provide multiple copies of any journal article, book excerpt, or conference paper.

For requests we cannot honor:
- Please consult with a librarian concerning possible alternatives.

Obtaining Photocopies from External Sources. The library uses a vendor to obtain photocopies from materials not owned.

If collection materials are unavailable due to binding, missing, etc.:
- Non-rush: order at library's cost
- Rush: order at your cost

Note: This is a highly requested service. Turn around times varies from 2 to 5 days (please include delivery/mail time). Extensive lists may require additional time.

rt 12/02/03
Citation: -- LinkSeeker Document Request --

Journal Title: Radiochimica acta
Volume: 83
Issue: 3
Start Page: 139
End Page: 146
Year: 1998

Article Title: Solubility of U(VI) in highly basic solutions

Author 1: YAMAMURA, T
Author 2: KITAMURA, A
Author 3: FUKUI, A
Author 4: NISHIKAWA, S
Author 5: YAMAMOTO, T
Author 6: MORIYAMA, H
Abbrev. Title: RADIOCH ACT
ISSN: 0033-8230
CODEN: RAACAP
Publisher: R OLDENBOURG VERLAG
Database ID: INFO:LANL REPO/ISI/0000788179000007
Month needed: Oct
Day needed: 19
Year needed: 2005

Document availability: Send article only if in the Library collection
Read copy right agreement: Yes
Form: Submit Document Request

EIS Name: Jean-Francois Lucchini
EIS Znumber: 190867
EIS Group: EES-12
EIS MS: A141
EIS Phone: +1.505.234.5556
EIS Fax: +1.505.887.3051
EIS Email: lucchini@lanl.gov

Printed for Research Library Photocopy Service <photo@lanl.gov>
Solubility of U(VI) in Highly Basic Solutions

By T. Yamamura, A. Kitamura, A. Fukui, S. Nishikawa, T. Yamamoto, and H. Moriyama

1 Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
2 Department of Nuclear Engineering, Osaka University, Osaka 565-0871, Japan
3 Department of Energy and Hydrocarbon Chemistry, Kyoto University, Kyoto 606-8501, Japan

(Received May 18, 1998; accepted in final form September 10, 1998)

U(VI) / Hydrolysis / Carbonate / Solubility / Equilibrium constant / Solubility limiting solid phase

Summary

The solubility of U(VI) was measured in highly basic solutions (pOHc = -log[OH⁻] ranges from 3 down to 0) at the ionic strength I = 0.5–2.0 M (M: mol dm⁻³) over a wide range of carbonate ion concentrations C = 1×10⁻³–0.5 M by both over saturation and undersaturation methods. In oversaturation experiments, the solubility of U(VI) decreased with increasing equilibration time from 1 week to 1 year, suggesting an increase in the crystallinity of the solid phase with aging. The solid phase was identified as Na₂UO₂·x H₂O (x = 3–5) by X-ray diffraction. Undersaturation experiments conducted for 1 month with this solid phase indicated a rapid attainment of equilibrium. These data were well interpreted by considering the formation of [UO₃(OH)₄]⁻, [UO₃(OH)₃]²⁻, and [UO₂(CO₃)₂]⁴⁻, and the apparent equilibrium constants for [UO₂(OH)₃]⁻ and [UO₂(OH)₄]²⁻ were determined with fairly small deviations. Using the evaluated solubility product of Na₂UO₂·x H₂O (x = 3–5), the stability constants for the above species were evaluated. The upper limit values of the stability constants of the carbonatohydroxidoxouranium(VI) complexes were also evaluated.

1. Introduction

Reliable thermodynamic stability data on complex formation of actinide ions are required to evaluate the migration of actinide elements from a deep underground repository. In a weakly acidic solution without any complexing ligands, the solubility of U(VI) is controlled by the equilibrium between its free hydrated ion and the solid. When the solution becomes weakly basic and is equilibrated with air, the solubility is greatly increased by the formation of complexes with hydroxide ion and carbonate ion. In spite that the concentration of carbonate species decrease in much more basic solutions of pH > 12, the highly hydrolyzed species become dominant and thus the solubility of U(VI) increases. For example, when cement containment is applied to confine transuranium elements, it requires the reliable thermodynamic constants of U(VI) hydroxide species because the cement has high basicity. The reliable stability data, however, are lacking for these hydrolyzed species, because there have been almost no experimental investigation in such highly basic solutions.

The solubility equilibria between the complex species and their solubility limiting solids are inevitably affected by the crystalline form of the solids [1, 2], stability data must be determined by experiments where both the chemical components and the crystallinity of the solids are correctly identified. Aqueous solutions of U(VI) with high pH conditions need rather long time to attain its equilibrium, as is the case for the Pu(IV) system [3], whereas the U(VI) system at pH < 7 reaches the equilibrium within 30 minutes [4]. In order to check whether the system has reached equilibrium or not, we examined an attainment of a “steady state” of the solution concentration and compared oversaturation experiments with undersaturation experiments equilibrated with the well-characterized solubility limiting solid.

The carbonate complex formation and hydrolysis reactions occur simultaneously, because the carbonate ion concentration increases with increasing pH. Ternary coordination compounds, presented as [UO₂(CO₃)₂(OH)₃]⁴⁻ [5] followed by IUPAC nomenclature, are expected in basic solution. For U(VI), the existence of [[UO₂(CO₃)₃(OH)]⁻] [6–8] and [UO₂(CO₃)₃(OH)]⁺ [9] have been suggested in the solubility study of Np(VI), on the other hand, the formation of [NpO₂(CO₃)₃(OH)]⁻ and [NpO₂(CO₃)₂(OH)]⁺ have been proposed to explain the increase in the solubility with increasing carbonate ion concentration and the decrease with increasing pH of solutions from 12 to 13 [10–12]. These types of complexes have not been proposed in the analysis of the solubility of U(VI) because no investigations were reported for hydroxide-carbonate systems in such highly basic solutions.

The objectives of this research are thus twofold:

1) precise and accurate determination of the stability constants of hydrolyzed species of [UO₂(OH)₃]⁻ and [UO₂(OH)₄]²⁻; and
2) examination of existence of carbonatohydroxidoxouranium(VI) ions.

2. Experimental

A stock solution of uranyl perchlorate was prepared from the uranyl nitrate hexahydrate purchased from...
Merck Co. Ltd. by a method previously described [13]. Sodium diuranate hydrate Na₃U₂O₇·xH₂O was prepared by the following method: The uranyl nitrate hexahydrate was placed in a sealed polypropylene centrifuge tube and was dissolved in deionized water. A large excess of 10 M NaOH solution was added to the uranyl nitrate solution in a glove box filled with an inert Ar gas. The centrifuge tube was sealed and shaken at ambient temperature for 10 days. After removing the supernatant solution by decantation, the solid phase was washed with a 0.01 M NaOH solution three times also under an Ar atmosphere. The solid phase was isolated by filtering the solution through a membrane filter and dried in a vacuum desiccator for a week.

Sample solutions were prepared in sealed polypropylene tubes. The stock solution of uranyl perchlorate (for the oversaturation experiments) or the sodium diuranate (for the undersaturation experiments) was added so as to adjust the U(VI) concentration to be 10⁻² M, i.e., larger than the U(VI) solubility in the region of interests. To adjust hydroxide ion concentration, total carbonate ion concentration and ionic strength, NaOH, NaHCO₃, and NaClO₄ (Wako Pure Chemical Industries, Ltd.) of analytical grade, respectively, were used without further purification. The sample solutions were shaken at 25±1°C for a certain period to attain equilibrium. The concentration of dissolved U(VI) was defined as the concentration of U(VI) contained in the solution filtrated through the membrane filter (Millipore Co. Ltd., NMWL, 10⁵) because the concentration of U(VI) in the filtrated solutions were independent of the pore sizes of the filters. The concentrations of U(VI), [U], and total carbonate ions, C, were measured using an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) HP4500 (Hewlett Packard Co. Ltd.) and Total Organic Carbon Analyzer TOC-5000A (Shimadzu Corp.), respectively. All treatments were conducted under an Ar gas atmosphere to exclude contamination by CO₂ contained in air.

The hydroxide ion concentrations, [OH⁻] = 10⁻¹OH⁻, of the test solutions with three different ionic strengths (I = 0.5, 1.0, 2.0 M) were determined using a cell with a glass electrode and a reference electrode:

\[
\text{test solution (ionic strength = I)} \\
\text{1.0 M NaClO₄, 3.3 M NaCl, AgCl, Ag.}
\]

(1)

The electrode with 1.0 M NaClO₄ electrolyte was calibrated against a solution with 1.0 M NaClO₄, and was used in the test solution with the same electrolyte concentration. The emf of the cell has linear relationship with the logarithm of the hydrogen ion concentration as:

\[
E = E^0 + \frac{RT}{F} \ln a_{OH^-} + E_i
\]

\[
= E^{0\Sigma} + \frac{RT}{F} \ln[OH^-] + E_i,
\]

(2)

where \(E^0\) and \(E^{0\Sigma}\) are constants, \(a_{OH^-}\) is the activity of the hydroxyl ion, and \(E_i\) is the liquid junction potential. The electrode with 1.0 M NaClO₄ was calibrated by determining the \(E^{0\Sigma} + E_i\) by the Gran plot [14] in the same concentration of electrolyte.

The identification of solid phases was performed by X-ray Powder Diffraction (XPD) method.

3. Results and discussion

3.1 Aging and solid phase

Aqueous U(VI) concentrations in \(I = 0.5\) and 2.0 M solutions of the oversaturation experiments decreased with increasing standing time from 1 week to 1 year as indicated in Fig. 1(a) for \(I = 1.0\) M. After 1 year for \(I = 1.0\) M and after 6 month for \(I = 0.5\) M,
they were found to be unchanged. This suggests that equilibrium is attained within a period from 6 months to 1 year.

In order to determine if the sample had certainly reached to its equilibrium or not, undersaturation experiments were also necessary. Some researchers avoid the precipitation of sodium uranate by using tetralkylammonium hydroxide and tetraalkylammonium salts to adjust alkalinity and ionic strength, respectively [12]. We took an another approach and carried out the oversaturation experiment as follows. After the solutions of which pOHc ranged from 0.5 to 2 were aged for 1 week, the solid phase was collected from the sample solutions and dried in air. Based on the result of XPD (Fig. 2), the solid phase precipitated in the oversaturation experiments was identified as sodium diuranate hydrate Na₄U₂O₇·xH₂O (x = 3–5) based on the reference data ASTM No. 18-1436. Thus, we included this well-identified compound as a solubility limiting solid phase in the undersaturation experiments.

The results of the oversaturation experiments aged for 1 year and the undersaturation experiments aged for 1 month (C = 0.1 M for all) are shown in Fig. 1(b). According to the figure, the aqueous U(VI) concentrations equilibrated with the Na₄U₂O₇·xH₂O solid phase are almost the same as the U(VI) concentration in the oversaturation sample aged for 1 year.

Based on these results, the following conclusion is drawn: (a) The solubility limiting solid phase for the undersaturation experiments was correctly selected. (b) In spite of the fact that the attainment of equilibrium is fairly slow in strong basic solutions, aging for 6 months to 1 year is enough for the oversaturation experiments, and the aging of 1 month is enough for the undersaturation experiments.

3.2 Calculation of the equilibrium constants

Table 1 is the list of the values of [U], C and pOHc of all the samples in undersaturation experiments. There are three series of experiments, the dependency on pOHc at C in the 10⁻³ M order (run: A05U, A10U, A20U) and at C in the 10⁻¹ M order (run: B05U, B10U, B20U), and the dependency on C (run: C05U, C10U, C20U).

The formation of [UO₂(CO₃)₄(ОН)₅]^{2−-2p−} was characterized by an apparent equilibrium constant K′ for the reaction (3) assuming the solubility limiting solid phase to be Na₄U₂O₇·xH₂O.

\[
0.5Na₄U₂O₇·xH₂O \rightarrow (q−3)OH⁻ + pCO₃^{2−} \\
= [UO₂(CO₃)₄(ОН)₅]^{2−-2p−} + Na⁺ \\
+ (0.5x−1.5)H₂O \quad (x = 3−5).
\] (3)

The apparent equilibrium constant K′ is thus defined as

\[
K' = \frac{[UO₂(CO₃)₄(ОН)₅]^{2−-2p−}[Na⁺]}{[OH⁻]^{q−3}[CO₃^{2−}]^p}. \tag{4}
\]

In the basic solutions examined in the present work, anionic hydrolyzed species and carbonate complexes are expected to be major species. It is known that the average number of coordinated hydroxyl ligand per uranyl hydrolyzed molecule, \(\bar{n} \), increases with increasing pOHc to reach \(\bar{n} = 3−4 \) at pH 13 [16]. No hydrolyzed species with \(\bar{n} > 4 \) has been reported so far. A polymeric hydrolyzed species \([UO₂(OH)₃][OH]^{−} \quad (\bar{n} = 2.33)\) has been widely investigated as one of the major species in the region around pH 8–9 but almost no contribution is expected at pOHc < 3 from the stability constant [17]. No other polymeric hydrolyzed species with \(\bar{n} \sim 2.33 \) has been reported [1, 2, 9, 18]. Based on the present knowledge, it can be expected that the species of which contributions are important at pOHc 0–3 are \([UO₂(OH)₃]^{2−} \quad \text{and} \quad [UO₂(OH)₃]^{−}\). Thus the U(VI) concentrations obtained in the range of pOHc 2.5–0.0 were analyzed by assuming a predominant contribution of the species \([UO₂(OH)₃]^{2−} \quad \text{and} \quad [UO₂(OH)₃]^{−}\) and \([UO₂(CO₃)₄]^{−} \), described as

\[
[U] = [UO₂(CO₃)₄]^{−} + [UO₂(OH)₃]^{−} + [UO₂(OH)₃]^{−}\tag{5}
\]

The undersaturation data listed in Table 1 were used to compute the apparent equilibrium constants K′. The numerical computations of K′ were performed by the non-linear least-squares fitting to minimize the sum of the squared deviations \[\Sigma (\text{log}[U]_{\text{meas}} - \text{log}[U]_{\text{calc}})^2 \]
dealing with both dependency on pOHc (run: A05U, A05U, A10U, B10U, A20U, B20U) and C (run: C05U, C10U, C20U) simultaneously for a given ionic strength. The determined values of log K′ are listed in Table 2. The errors inherent in the measured parameters are evaluated as \(\sigma_{\text{log}[U]} = 9.2 \times 10^{-4} \), \(\sigma_{\text{log}[C]} = 1.6 \times 10^{-5} \) and \(\sigma_{\text{pH}} = 4.4 \times 10^{-4} \) in the region of the measurements.

Fig. 3 shows the experimental U(VI) concentrations and the solubility curves calculated based on the log K′ values listed in Table 2. The three species included in the calculation show the pOHc dependen-
Table 1. Experimental data for the system U(VI)/CO3-/OH- at 25°C

<table>
<thead>
<tr>
<th>Condition:</th>
<th>(I=0.5)M</th>
<th>(I=1.0)M</th>
<th>(I=2.0)M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run:</td>
<td>A05U</td>
<td>B05U</td>
<td>C05U</td>
</tr>
<tr>
<td>pH 3 month</td>
<td>pH 4 month</td>
<td>pH 4 month</td>
<td>pH 1 month</td>
</tr>
<tr>
<td>(pOHc)</td>
<td>(C) ([\text{U}])</td>
<td>(C) ([\text{U}])</td>
<td>(C) ([\text{U}])</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2.75</td>
<td>2.67E-03</td>
<td>3.43E-07</td>
<td>1.85</td>
</tr>
<tr>
<td>2.56</td>
<td>2.54E-03</td>
<td>5.50E-07</td>
<td>1.72</td>
</tr>
<tr>
<td>2.37</td>
<td>2.90E-03</td>
<td>4.72E-07</td>
<td>1.64</td>
</tr>
<tr>
<td>2.13</td>
<td>2.79E-03</td>
<td>2.72E-07</td>
<td>1.36</td>
</tr>
<tr>
<td>1.93</td>
<td>2.58E-03</td>
<td>3.49E-07</td>
<td>1.47</td>
</tr>
<tr>
<td>1.80</td>
<td>2.96E-03</td>
<td>4.61E-07</td>
<td>1.11</td>
</tr>
<tr>
<td>1.68</td>
<td>2.71E-03</td>
<td>4.82E-07</td>
<td>0.99</td>
</tr>
<tr>
<td>1.50</td>
<td>2.61E-03</td>
<td>6.66E-07</td>
<td>0.87</td>
</tr>
<tr>
<td>1.44</td>
<td>2.97E-03</td>
<td>7.90E-07</td>
<td>0.75</td>
</tr>
<tr>
<td>1.30</td>
<td>2.75E-03</td>
<td>8.78E-07</td>
<td>0.63</td>
</tr>
<tr>
<td>1.17</td>
<td>3.17E-03</td>
<td>1.18E-06</td>
<td>0.52</td>
</tr>
<tr>
<td>0.98</td>
<td>2.59E-03</td>
<td>2.43E-06</td>
<td>0.42</td>
</tr>
<tr>
<td>0.64</td>
<td>3.07E-03</td>
<td>2.43E-06</td>
<td>0.30</td>
</tr>
<tr>
<td>0.77</td>
<td>2.82E-03</td>
<td>3.08E-06</td>
<td>0.61</td>
</tr>
<tr>
<td>0.30</td>
<td>3.00E-03</td>
<td>9.19E-06</td>
<td>0.25</td>
</tr>
<tr>
<td>Average</td>
<td>2.83E-05</td>
<td>1.28E-01</td>
<td>0.70</td>
</tr>
</tbody>
</table>
Table 2. Summary for the logarithm of apparent equilibrium constants (log K') and the equilibrium constants extrapolated to $I_m = 0$ (log K^0) and ion interaction coefficients with sodium ion (ε (species, Na$^+$)) for the U(VI) carbonate, hydroxyl complexes at $25 \pm 1^\circ C$ based on the Equilibrium (3). The errors indicate the 95% confidence level.a

<table>
<thead>
<tr>
<th>Species</th>
<th>log K'</th>
<th>log K^0</th>
<th>$\Delta \varepsilon$</th>
<th>ε (species, Na$^+$)b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$I = 0.5$ M</td>
<td>$I = 1.0$ M</td>
<td>$I = 2.0$ M</td>
<td></td>
</tr>
<tr>
<td>$[\text{UO}_2\text{(OH)}_2]$</td>
<td>-7.78 ± 0.37</td>
<td>-7.45 ± 0.38</td>
<td>-6.04 ± 0.11</td>
<td>-8.31 ± 0.41</td>
</tr>
<tr>
<td>$[\text{UO}_2\text{(OH)}_3]^-$</td>
<td>-7.04 ± 0.00</td>
<td>-6.87 ± 0.00</td>
<td>-5.30 ± 0.14</td>
<td>-3.83 ± 0.08</td>
</tr>
<tr>
<td>$[\text{UO}_2\text{(CO}_3\text{)}_2]^-$</td>
<td>-6.66 ± 0.10</td>
<td>-6.37 ± 0.07</td>
<td>-6.48 ± 0.06</td>
<td>-7.85 ± 0.10</td>
</tr>
</tbody>
</table>

a $\Delta \varepsilon$ is defined as in Eq. (9).
b The values are calculated by using ε(OH$^-$,Na$^+$) = 0.04 ± 0.01, ε(CO$_3^{2-}$,Na$^+$) = 0.05 ± 0.03, ε(Na$^+$,ClO$_4$) = 0.01 ± 0.01 [17].

3.3 Comparison of the results with the literature data

The ionic strength corrections were made before the comparison of the present results with the literature data. The apparent equilibrium constants extrapolated to the condition where the ionic strength is zero (K^0) are determined by using the specific ion interaction theory (S.I.T.) [17, 19–22]. It has an equation representing ionic strength dependence valid for up to $I = 3.5$ M [23]. For the apparent equilibrium constant (4), the S.I.T. presentation is described as;

$$\log K' - \Delta \varepsilon = D = \log K^0 - \Delta \varepsilon I_m,$$

$$D = \frac{0.5091 I_m^{0.5}}{1 + 1.5 I_m^{0.5}},$$

$$\Delta \varepsilon = (2 - 2 p - q^2) + 1 + (3 - q) - 4 q,$$

where I_m (m: mol kg$^{-1}$) is the molality of the sodium perchlorate dissolved in the medium. The calculated equilibrium constants of U(VI) carbonate and hydroxide complexes at $I_m = 0$ (i.e., $I = 0$ M) and $25\pm1^\circ C$ are estimated in Fig. 4, and summarized in Table 2. The values of the ion interaction coefficients are obtained and tabulated in Table 2.

It is convenient to compare our results with the literature data in terms of the stability constants β^p at the ionic strength of zero which is given by:

$$\text{UO}_2^{2+} + p \text{CO}_3^{2-} + q \text{OH}^- = [\text{UO}_2\text{(CO}_3\text{)}_p\text{(OH)}_q]^{2-2p-q},$$

$$\beta^p = \frac{-a_{\text{UO}_2\text{(CO}_3\text{)}_p\text{(OH)}_q}^{2-2p-q}}{(a_{\text{CO}_3^{2-}})(a_{\text{OH}^-})^q(a_{\text{UO}_2^{2+}})^p}.$$
Thus the stability constants β^θ can be evaluated by combining the solubility product of the solid compound $\text{Na}_3\text{U}_2\text{O}_7 \cdot x\;\text{H}_2\text{O}$ with the apparent equilibrium constant K^θ_{sol} for reaction (3),

$$\log \beta^\theta = \log K^\theta_{\text{sol}} - \log K^\theta_{\text{sol,cr}},$$

(12)

where $K^\theta_{\text{sol,cr}}$ is the solubility product of the solubility limiting solid phase, $\text{Na}_3\text{U}_2\text{O}_7 \cdot x\;\text{H}_2\text{O}$. However, the solubility product of reaction (13), $K^\theta_{\text{sol,cr}}$, is not available at present.

$$0.5\;\text{Na}_3\text{U}_2\text{O}_7 \cdot x\;\text{H}_2\text{O} = \text{UO}_2^{2+} + \text{Na}^+ + 3\;\text{OH}^- + (0.5\;x-1.5)\;\text{H}_2\text{O} \; (x = 3-5).$$

(13)

In the present study, the solubility product $K^\theta_{\text{sol,cr}}$ is then evaluated by taking the literature value of $\log \beta^\theta$ for $[\text{UO}_2(\text{CO}_3)_3]^{1-}$. Among the literature values for $[\text{UO}_2(\text{CO}_3)_3]^{1-}$, the value of Grenthe et al. has been determined carefully and given to be 21.60 ± 0.05 with a fair accuracy. By using this value, the value of $\log K^\theta_{\text{sol,cr}}$ is obtained to be -29.45 ± 1.04.

The obtained value for $\text{Na}_3\text{U}_2\text{O}_7 \cdot x\;\text{H}_2\text{O}$ may be compared with that of the solubility product for the solid phase of $\text{Na}_3\text{U}_2\text{O}_7\text{(cr)}$ as in reaction (14).

$$0.5\;\text{Na}_3\text{U}_2\text{O}_7\text{(cr)} + 1.5\;\text{H}_2\text{O} = \text{UO}_2^{2+} + \text{Na}^+ + 3\;\text{OH}^-. \quad (14)$$

Using the thermodynamic data cited in Ref. [17], the molar Gibbs free energy of formation $\Delta G^\theta_{\text{sol}}$ of $\text{Na}_3\text{U}_2\text{O}_7\text{(cr)}$ is calculated to be -175.273 ± 2.672 kJ mol$^{-1}$ and the solubility product is calculated to be $\log K^\theta_{\text{sol,cr}} = -28.09 \pm 0.47$. A definite difference between both values may be found and attributed to different solid phases.

The values of $\log \beta^\theta$ for the other species of $[\text{UO}_2(\text{OH})_4]^{3-}$ and $[\text{UO}_2(\text{OH})_3]^{2-}$ are determined based on the presently obtained value of $\log K^\theta_{\text{sol,cr}}$ (Table 3). The value for $[\text{UO}_2(\text{OH})_3]^{2-}$ was first determined experimentally in the present study. The species $[\text{UO}_2(\text{OH})_4]^{3-}$ appears only in highly basic solutions and it is necessary to check attainment of the equilibrium. A value of $\log K^\theta_{\text{sol}} = -5.65 \pm 0.08$ was determined after the aging for more than 6 months. The mean value is higher than the value evaluated in Ref. [17] and the standard deviation becomes very small. This species has been considered once in potentiometric study [16], but is is not clearly stated whether the equilibrium was attained with certainty. In the present study, the good linearity of the specific ion interaction correlation as can be seen in Fig. 4 yields fairly small standard deviations for the two values of $\log K^\theta_{\text{sol}}$ and c. Thus the equilibrium constant determined in the present work seems much more reliable than the equilibrium constants reported in their work. The value of $\zeta([\text{UO}_2(\text{OH})_3]^{2-},\text{Na}^+)$ is determined as -0.16 ± 0.06 in this work for the first time.

For $[\text{UO}_2(\text{OH})_3]^{3-}$, $\log K^\theta_{\text{sol}}$ is determined as -8.31 ± 0.41, which is substantially lower than the value presumed by Sandino et al. [11]. They have examined the species $[\text{UO}_2(\text{OH})_3]^{2-}$ in the region of pH 6–9 and a value of $\log K^\theta_{\text{sol}} = -6.65 \pm 0.78$ is evaluated from their $\log \beta^\theta$ value. Such large solubilities expected from the large value of $\log K^\theta_{\text{sol}}$ were not observed in this study. The difference between our value and the data reviewed by Grenthe is as large as 1.66. This species requires further investigations to settle this large discrepancy. The ion interaction parameter $\zeta([\text{UO}_2(\text{OH})_3]^{2-},\text{Na}^+)$ is calculated as -0.82 ± 0.20.

The stability constants $\log \beta^\theta$ are also evaluated by using the Eq. (12) and the $\log K^\theta_{\text{sol}}$ value obtained in this study as listed in Table 3.

There have been several reports on the carbonato-hydroxido complexes for neptunium(VI) since the report first appeared in 1971 [10] (Table 4). However, there have been many questions about why such species having moderately large stability constants have not been observed for uranium(VI). The upper limit values of the stability constants for $[\text{UO}_2(\text{CO}_3)_3(\text{OH})_3]^{2-}$ and $[\text{UO}_2(\text{CO}_3)_2(\text{OH})_3]^{2-}$ are calculated by a rough maximum estimation which made the concentration of one.
Table 3. Comparison of the apparent equilibrium constants $\log K^a$ and the stability constants β^a extrapolated to $L_\infty = 0$ M for the U(VI) carbonate, hydroxyl, and carbonatoxydroxy complexed at 25 ± 1°C

<table>
<thead>
<tr>
<th>Species</th>
<th>$\log K^a_{\text{free}}$</th>
<th>$\log K^a_{\text{corr}}$</th>
<th>$\log \beta^a$</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\text{UO}_2(\text{OH})_3]^{-}$</td>
<td>−8.31 ± 0.41</td>
<td>−6.65 ± 0.78</td>
<td>21.14 ± 0.79</td>
<td>this work</td>
</tr>
<tr>
<td></td>
<td>−8.4 ± 0.78</td>
<td>−6.85 ± 0.08</td>
<td>23.6 ± 0.68</td>
<td>[17]</td>
</tr>
<tr>
<td>$[\text{UO}_2(\text{OH})_3]^{2-}$</td>
<td>−6.5 ± 0.78</td>
<td>−5.6 ± 0.08</td>
<td>21.6 ± 0.68</td>
<td>this work</td>
</tr>
<tr>
<td>$[\text{UO}_2(\text{CO}_3)_3]^{3-}$</td>
<td>−6.85 ± 0.10</td>
<td>−5.6 ± 0.08</td>
<td>21.6 ± 0.68</td>
<td>this work</td>
</tr>
<tr>
<td></td>
<td>−6.85 ± 0.67</td>
<td>−5.6 ± 0.08</td>
<td>21.6 ± 0.68</td>
<td>[17]</td>
</tr>
</tbody>
</table>

* The errors indicated the 95% confidence level.
* Calculated from the K^a and K_{free}^a values.
* Calculated from the $\log \beta^a$ and K_{corr}^a values.
* Calculated from the $\log \beta^a$ and K_{corr}^a values.

Table 4. Comparison of the estimated upper limit value for carbonatoxydroxy complexes for U(VI) with the reported value for Np(VI)

<table>
<thead>
<tr>
<th>Species</th>
<th>$\log \beta^a$</th>
<th>I (M)</th>
<th>Method</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\text{NpO}_2(\text{CO}_3)(\text{OH})_3]^{2-}$</td>
<td>23.32</td>
<td>n.s.</td>
<td>sol.</td>
<td>[10]</td>
</tr>
<tr>
<td></td>
<td>20.0 ± 0.15</td>
<td>0.1</td>
<td>sol.</td>
<td>[11]</td>
</tr>
<tr>
<td></td>
<td>17.1 ± 0.23</td>
<td>0.1</td>
<td>sol.</td>
<td>[12]</td>
</tr>
<tr>
<td>$[\text{NpO}_2(\text{CO}_3)(\text{OH})_3]^{3-}$</td>
<td>26.28</td>
<td>0.1</td>
<td>sol.</td>
<td>[24]</td>
</tr>
<tr>
<td></td>
<td><21.61</td>
<td>0.1</td>
<td>sol.</td>
<td>[11]</td>
</tr>
<tr>
<td>$[\text{UO}_2(\text{CO}_3)(\text{OH})_3]^{3-}$</td>
<td><22.6</td>
<td>0.5</td>
<td>sol.</td>
<td>this work</td>
</tr>
<tr>
<td>$[\text{UO}_2(\text{CO}_3)(\text{OH})_3]^{4-}$</td>
<td><23.5</td>
<td>0.5</td>
<td>sol.</td>
<td>this work</td>
</tr>
</tbody>
</table>

* The value of $\log \beta$ at a certain ionic strength. The errors indicated the 95% confidence level.
* n.s.: not specified.
* sol.: solubility experiment, spec.: spectroscopic measurement.
* Same as b) in Table 3.

4. Conclusions

The apparent equilibrium constants of $[\text{UO}_2(\text{OH})_3]^{-}$, $[\text{UO}_2(\text{OH})_3]^{2-}$ and $[\text{UO}_2(\text{CO}_3)_3]^{3-}$ with solid phase $\text{Na}_2\text{U}_2\text{O}_7$ at $I = 0$ M were determined from the solubility data obtained in undersaturation experiments. The equilibrium constant for $[\text{UO}_2(\text{OH})_3]^{2-}$ was first determined experimentally in the present work. The equilibrium constant for $[\text{UO}_2(\text{OH})_3]^{-}$ was first determined in highly basic solutions, which revealed $[\text{UO}_2(\text{OH})_3]^{-}$ concentration 1-2 orders lower than expected from the literature data. The attainment of the equilibrium was certified by both observing the end of the decrease in the solubility with time and comparing the solubilities in the oversaturation samples with the solubilities in the undersaturation samples. The period of the equilibrium attainment was very long more than 6 months for the oversaturation samples. The solubility product of the solid phase $\text{Na}_2\text{U}_2\text{O}_7 \cdot x \text{H}_2\text{O}$ was evaluated. Using the value, the stability constants for the above species were determined. The upper limit values of the stability constants of the carbonatoxydroxydiocxurianium(VI) complexes were also evaluated.

Acknowledgments

This work was performed under the Visiting Research Program of the Kyoto University Research Reactor Institute (KURRI). One of the authors (T. Yamamura) would acknowledge the COE Postdoctoral Scholarship of the KURRI. This work was partly supported by a Grant in Aid Scientific Research from the Ministry of Education, Science, Sports and Culture.

References