SANDIA REPORT

SAND97-0796 • UC-721 Unlimited Release Printed August 1997

A Summary of the Sources of Input Parameter Values for the Waste Isolation Pilot Plant Final Porosity Surface Calculations

B. M. Butcher

Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

Approved for public release; distribution is unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from Office of Scientific and Technical Information PO Box 62 Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from National Technical Information Service US Department of Commerce 5285 Port Royal Rd Springfield, VA 22161

NTIS price codes Printed copy: A08 Microfiche copy: A01

Distribution Category UC-721

A Summary of the Sources of Input Parameter Values for the Waste Isolation Pilot Plant Final Porosity Surface Calculations

B. M. Butcher

WIPP Disposal Room Systems Department Nuclear Waste Management Center Sandia National Laboratories P.O. Box 5800 Albuquerque, NM 87185-1341

ABSTRACT

A summary of the input parameter values used in final predictions of closure and waste densification in the Waste Isolation Pilot Plant disposal room is presented, along with supporting references. These predictions are referred to as the final porosity surface data and will be used for WIPP performance calculations supporting the Compliance Certification Application to be submitted to the U.S. Environmental Protection Agency. The report includes tables that list all of the input parameter values, references citing their source, and in some cases references to more complete descriptions of considerations leading to the selection of values.

1.0 INTRODUCTION
1.1 Background1
2.0 DISPOSAL ROOM GEOMETRY
3.0 MATERIAL PROPERTIES
3.1 Halite
3.2 Anhydrite
3.3 Waste
3.4 Gas Generation
4.0 SUMMARY
5.0 REFERENCES
APPENDIX A: UNPUBLISHED REFERENCES
APPENDIX B: SUPPORTING JUSTIFICATION MEMORANDAB-1
APPENDIX C: DOCUMENTATION OF CALCULATIONS
APPENDIX D: MESH COORDINATES AND CONNECTIVITYD-1

LIST OF TABLES

Table 1: Final Porosity Surface Calculation Input Parameters: Dimensions
Table 2: Final Porosity Surface Calculation Input Parameters - Computational Configuration and Stratigraphy
Table 3: Final Porosity Surface Calculation Input Parameters - Halite Constitutive Parameters 12
Table 4: Final Porosity Surface Calculation Input Parameters - Anhydrite Properties 15
Table 5: Final Porosity Surface Calculation Input Parameters - Waste Composition Assumptions
Table 6: Final Porosity Surface Calculation Input Parameters: Waste Densities; Porosity
Table 7: Final Porosity Surface Calculation Input Parameters - Waste Mechanical Properties 18
Table 8: Pressure-Volumetric Strain Data Used in the Volumetric-Plasticity Model for the Waste Drums 18
Table 9: Final Porosity Surface Calculation Input Parameters - Gas Generation Assumptions 20

LIST OF FIGURES

1	Simplified stratigraphic model used for the disposal room analyses
2	Mesh discretization and boundary conditions used for the disposal room analyses9

1.0 INTRODUCTION

This report provides information and supporting references on the input parameter values used in final predictions of closure and waste densification in the Waste Isolation Pilot Plant (WIPP) disposal room. These predictions are referred to as the final porosity surface data and will be used for WIPP performance calculations supporting the Compliance Certification Application (CCA) to be submitted to the Environmental Protection Agency. The planning document under which these data were acquired was Butcher (1995), and the WIPP primary source document for the parameter values used for the WIPP CCA was Butcher (1996).

The objective of the report is to establish traceability (the sources) of the parameter values. This is accomplished through a series of tables that list all of the input parameter values and related information used in calculating the final porosity surface results. A reference citing the source of each parameter value accompanies each entry, and in some cases a reference to a more complete description of considerations leading to their selection is provided. Many of these citations refer to a memorandum from D. Munson to M.S. Tierney defining the mechanical parameter values for the rock formation surrounding the disposal room, data which are also used for other rock mechanics thermal/structural calculations related to borehole closure and seal design. A copy of the memorandum is reproduced in Appendix A, along with other principal references not available in the published literature. Other less extensive documentation related to parameter selection is reproduced in Appendix B; documentation of several calculations is reproduced in Appendix C, and the finite-element mesh coordinates and connectivity for the final porosity surface calculations are given in Appendix D.

The information presented in this report also supports two other documents. The first of these reports describes the evolution of the disposal room model to its present state of development (Butcher, 1997). The second describes the version of the disposal room conceptual model used to generate the final porosity surface data and how the calculations were performed (Stone, 1997a).

1.1 Background

The WIPP is a United States Department of Energy research and development facility designed to demonstrate the safe management, storage, and long-term disposal of contact-handled transuranic (CH-TRU) and remote-handled transuranic (RH-TRU) waste generated by defense activities of the United States. The repository is located in southeastern New Mexico in bedded salt deposits 655 m below the surface.

The ability of salt to deform with time, fill voids, and create an impermeable barrier around the waste was one of the principal reasons for locating the WIPP repository in a bedded salt formation. The "closure" process is a complex and interdependent series of events starting after a region within a repository is excavated and filled with waste (Butcher, 1997). Immediately upon excavation, the equilibrium state of the rock surrounding the repository is disturbed, and the rock begins to deform and return to equilibrium. Eventually, as mechanical equilibrium is reestablished,

subsidence ceases, and the waste and backfill have undergone as much compaction by the weight of the rock above the repository (overburden) as is possible. Prediction of the extent of closure for WIPP performance assessment is required because the amount determines the density of the waste at any given time, thus controlling flow of brine and gases through the waste and its capacity for storing fluids. Permeability and storage volume of the waste are dependent on the extent of closure, and in turn determine the extent of migration of radioactive and hazardous species. The conceptual model of these processes is collectively referred to as the disposal room model.

Closure calculations were made with the finite-element computer code SANTOS (Version 2.00 on the CRAY-J916/UNICOS 8.04 system configuration) (Stone, 1997b). These calculations compute the porosity of the waste and its surroundings as a function of time. Computation of repository closure has been a particularly challenging structural engineering problem because the rock surrounding the repository continually deforms with time. Not only is the deformation of the salt inelastic, but it also involves larger deformations than are customarily addressed with conventional structural deformation codes. In addition, the formation surrounding the repository is far from homogeneous in composition, containing various parting planes and interbeds with different properties than the salt.

Deformation of the waste is also nonlinear, with large strains, and its response is complicated by the presence of gas. These complex characteristics of the materials comprising the repository and its surroundings require the use of highly specialized constitutive models that have been built into the SANTOS code over a number of years (Stone, 1997a).

2.0 DISPOSAL ROOM GEOMETRY

The basic unit of the disposal room model encompasses an excavated room 3.96 m high by 10.06 m wide by 91.44 m in length, with an initial room free volume of 3644 m³ plus the surroundings. The current disposal assumption is that a maximum of 6804 drums of uniformly distributed unprocessed waste will be stored in the disposal room in 7-pack units. There are 972 of these units stacked three high on the disposal room floor. Unlike previous calculations, which included a crushed salt layer around the waste and in the space between the drums, the final porosity surface analysis considered a disposal room without backfill. The volume occupied by the waste and the drums was 1728 m³. Parameter values for the room geometry in the final porosity surface calculations are given in Table 1.

A two-dimensional plane strain model was used for the SANTOS analyses. The discretized model represents the room as one of an infinite number of rooms located at the repository horizon. Making use of symmetry, only half of the room needed to be modeled. The left and right boundaries are planes of symmetry. The basic half-symmetry disposal room dimensions are 3.96 m high by 5.03 m wide (Tables 1 and 2).

The idealized stratigraphy for the WIPP underground used in the geomechanical model is the stratigraphy defined by Munson (see memorandum in Appendix A). This stratigraphy is shown in Figure 3 of Stone (1997a). A difficulty with this abstraction is that it is more detailed than can conveniently be incorporated into the numerical analysis. To circumvent this problem, recent work by Osnes and Labreche (see memorandum in Appendix A) has examined the differences in room closure obtained by assuming different simplifying abstractions of the stratigraphy. Closure results assuming the full stratigraphic model of Munson, which consisted of 12 clay seams and 7 anhydrite layers, was compared with analysis results using smaller combinations of clay seams and marker beds. In preparing for the current analyses, Stone performed a set of calculations (see memorandum in Appendix A), that identified a simple stratigraphic model that captured most of the room closure and room porosity results seen in the more complex stratigraphic models. The stratigraphic model used in the current work (Table 2 and Figure 1) is composed mainly of argillaceous salt with a clean salt layer above the disposal room between Clay G and Clay I, anhydrite MB 139, and a thin layer located in the clean salt layer identified as anhydrite. Based on the study by Stone, no clay seams were included in the model.

The assumed storage volume configuration for the waste differs from past calculations because there is no backfill: the space between the drums is empty. Since modeling the extreme detail of the 7-pack packing and the space between drums for the entire room was beyond the capability of the numerical technique, an assumption about the waste configuration was required in order to have an accurate continuum representing the waste response. The space between the drums was eliminated by assuming that each waste drum deformed laterally from a cylindrical cross-section to a close-packed configuration with its neighbors during the early phases of closure. The justification for this assumption was that little force is required to laterally deform a drum. As the distance between the walls decreases, the drums are assumed to be pushed together

Description	Value	Reference	Comments
Room Geometry			
Room Geometry			
Room Height	13 ft (3.96 m)	Sandia WIPP Project, (1992) p. 3-5	
Room Width	33 ft (10.06 m)	Sandia WIPP Project, (1992) p. 3-5	
Room Length	300 ft (91.44 m)	Sandia WIPP Project, (1992) p. 3-5	
Initial Room Volume	3644 m ³		Height x width x length (use feet and convert)
Number of Drums/Room	6804	Sandia WIPP Project, (1992) p. 3-11	
Number of 7- Packs/Room	972	Calculated from 6804 drums	
Drum External Volume	0.2539 m ³	Sandia WIPP Project, (1992) Table 3.1-2, p. 3- 10	
Waste Volume	1728 m ³		(6804 drums) x (external drum volume)
Waste Height	2.676 m	Sandia WIPP Project, (1992) Fig. 3.1-3, p. 3-12	
Nominal Waste Width with Voids Between Drums	8.6 m	Stone, (1997a) Eq. 2, p. 9	Calculated from Sandia WIPP Project, 1992, Fig. 3.3-3, p. 3- 12.
Nominal Waste Length with Voids Between Drums	89.1 m	Stone, (1997a) Eq. 2, p. 9	Calculated from Sandia WIPP Project, 1992, Fig. 3.3-3, p. 3- 12.
Width of Waste Continuum	7.35 m	Stone, (1997a) Eq. 2, p. 9	
Height of Waste Continuum	2.676 m	Sandia WIPP Project, (1992) Fig. 3.1-3, p. 3-12	
Length of Waste Continuum	87.85 m	Stone, (1997a) Eq. 2, p. 9	

Table 1: Final Porosity Surface Calculation Input Parameters: Dimensions

Table 2: Final Porosity Surface Calculation Input Parameters - ComputationalConfiguration and Stratigraphy

Description	Value	Reference	Comments
Deep less Distances			
Boundary Distances Billar Thickness	100 ft (30.5 m)	Sandia WIPP	
Final Thechess	100 ft (50.5 fii)	Project (1992) p. 3-5	
Half Room Width	5.03 m		(Room Width)/2
Distance from the Center of the Room to the Center of the Pillar	20.27 m		(Room Width + Pillar Width)/2 computed in feet and then converted to meters.
Relative Elevation of Clay G, (Anhydrite B)	0 m	Munson (see memo in App. A) Fig. 2.5.1, p. 24/ 24	As of 2/15/96 this reference represents the latest representation of local stratigraphy for numerical calculations.
Relative Elevation Top Boundary	52.87 m	Munson (see memo in App. A) Fig. 2.5.1, p. 24/24	
Relative Elevation Bottom Boundary	-54.19 m	Munson (see memo in App. A) Fig. 2.5.1, p. 24/24	
Disposal Room Floor	-6.39 m	Justification for this value is provided in a memorandum from C. M. Stone, March 4, 1996 (see App. B).	
Disposal Room Ceiling	-2.43 m	Justification for this value is provided in a memorandum from C. M. Stone, March 4, 1996 (see App. B).	
Local Rock Stratigraphy			Figure 1
Argillaceous Salt	-54.19 m to -8.63 m	Taken from Munson (see memo in App. A) Fig. 2.5.1, p. 24/ 24. See Stone (see memo in App. A), Fig. 1, p. 3.	
Anhydrite MB 139 Lower Boundary	-8.63 m	Munson (see memo in App. A) Fig. 2.5.1, p. 24/24	
Anhydrite MB 139 Interbed	-8.63 m to -7.77 m	Munson (see memo in App. A) Fig. 2.5.1, p. 24/24	

Description	Value	Reference	Comments
Local Rock Stratigraphy - (continued)			Figure 1
Anhydrite MB 139 Upper	-7.77 m	Munson (see memo	
Boundary		in App. A) Fig.	
		2.5.1, p. 24/ 24	
Argillaceous Salt	-7.77 m to 0.00 m	Taken from Munson	
		(see memo in App.	
		A) Fig. 2.5.1, p. 24/	
		24. See Stone (App.	
		A) Fig. 1, p. 3.	
Clay G (anhydrite "b")	0.00 m	Munson, (see memo	
		in App. A) Fig.	
		2.5.1, page 24/ 24	
Clean Salt	0.0 m to 4.27 m	Taken from Munson	
		(see memo in App.	
		A) Fig. 2.5.1, p. 24/	
		24. See Stone (App.	
		A), Fig. 1, p. 3.	
Clay I (Upper Boundary of	4.27 m	Munson (see memo	
Clean Salt)		in App. A) Fig.	
		2.5.1, p. 24/ 24	
Argillaceous Salt	4.27 m to 52.87 m	Taken from Munson	
		(see memo in App.	
		A) Fig. 2.5.1, p. 24/	
		24. See Stone (App.	
		A), Fig. 1, p. 3.	
Traction on Upper Mesh Boundary	13.57 MPa	Munson, (see memo	
	compression	in App. A) Fig.	
		2.5.1, page 24/ 24	
Traction on Lower Mesh	15.97 MPa	Munson (see memo	
Boundary		in App. A) Fig.	
		2.5.1, p. 24/24, Sec.	
		2.5.4, p. 22/24	
Mesh Configuration Coordinates	See App. D		

Table 2 (continued) Final Porosity Surface Calculation Input Parameters - Computational Configuration and Stratigraphy

at very low stress levels, eliminating space between them. These stress levels were considered to have a negligible effect on later consolidation of the waste. The consequence of this assumption is elimination of any resistance of the waste to lateral closure until all the space is eliminated, which would imply a greater than expected rate of closure at early times. Thus, this assumption leads to an overly severe performance assessment because it implies a faster buildup of gas pressure,

Figure 1. Simplified stratigraphic model used for the disposal room analyses.

which is the driver for releases of radionuclides. Based on the no lateral resistance assumption, the waste was assumed to occupy a modified continuum width of 7.35 m and a length of 87.85 m (Table 1), as defined by Equation 2 in Stone (1997a). The height of the waste during this collapse was assumed to remain unchanged.

Applying the assumptions defined in the previous paragraphs of this section, the mesh discretization and boundary conditions for the final porosity surface analysis are shown in Figure 2, which is identical to Figure 4 in Stone (1997a). The coordinates and connectivity of the meshes in this figure are given in Appendix D of this report.

TRI-6348-44-0

Figure 2. Mesh discretization and boundary conditions used for the disposal room analyses.

This page intentionally left blank

3.0 MATERIAL PROPERTIES

3.1 Halite

A combined transient-secondary creep constitutive model for rock salt attributed to Munson and Dawson (1982) and described by Munson et al. (1989) was used for the clean and argillaceous salt. The material properties (Munson, see Appendix A) are described in Table 3.

3.2 Anhydrite

The anhydrite layer beneath the disposal room is expected to experience inelastic material behavior. The MB 139 anhydrite layer is considered to be isotropic and elastic until yield occurs. Once the yield stress is reached, plastic strain begins to accumulate, according to the Drucker-Prager criterion (Stone, 1997a, Equation 10). The elastic properties and the Drucker-Prager constants C and a for the anhydrite are given in Table 4.

3.3 Waste

The waste properties depend on the waste inventory. The transuranic waste is a combination of metals, sorbents, cellulose, rubber and plastics, and sludges. The waste is modeled as an average mixture of these components, which changes in properties as the respective amounts of each component change in the inventory projections. The waste inventory assumptions and property values used for the final porosity surface calculations and their origins are given in Tables 5 and 6. The initial average waste density is 559.5 kg/m³; the average solid density is 1757 kg/m³, which corresponds to an initial average waste porosity of 0.681. The volume of solids in a single disposal room is 551.2 m³, and the initial average porosity of the undeformed disposal room (waste + void volume = 3644 m^3) is 0.849.

The stress-strain behavior of the waste was represented by a volumetric plasticity model (Stone, 1997b) with a piecewise linear function defining the relationship between the mean stress and the volumetric strain. Values for the elastic constants and plasticity model parameters are given in Table 7, and the piecewise linear data for the average stress-strain behavior of the waste are given in Table 8.

Table 3: Final Porosity Surface Calculation Input Parameters - Halite Constitutive Parameters

Description	Value	Reference	Comments
Halite Constitutive Parameters			
Elastic Properties (Both Clean			
and Argillaceous Salt)	1. 100 55		
G	12,400 GPa	Munson (see memo in App. A) Sec. 2.5.1, p. 1/ 24	As of 2/15/96 this reference represents the latest values for the mutlimechanism deformation model and the traceability of their origin. The method of converting input elastic constants to the elastic parameters TWOMU and BULK MODULUS used in SANTOS is described in the memorandum from C. M. Stone, March 4, 1996, p. 3 (App. B).
E	31,000 GPa	Munson (see memo in App. A) Sec. 2.5.1, p. 1/ 24	
n	0.25	Munson (see memo in App. A) Sec. 2.5.1, p. 1/ 24	The method of converting input elastic constants to the elastic parameters TWOMU and BULK MODULUS used in SANTOS is described in the memorandum from C. M. Stone, March 4, 1996, p. 3 (App. B).
Clean Salt Creep Properties			
A ₁	8.386E22 /sec	Munson (see memo in App. A) Sec. 2.5.1, p. 1/ 24	
Q1	25,000 Cal/mole	Munson (see memo in App. A) Sec. 2.5.1, p. 1/ 24	
n ₁	5.5	Munson (see memo in App. A) Sec. 2.5.1, p. 1/ 24	
B ₁	6.086E6 /sec	Munson (see memo in App. A) Sec. 2.5.1, p. 1/24	
A ₂	9.672E12 /sec	Munson (see memo in App. A) Sec. 2.5.1, p. 1/ 24	
Q ₂	10,000 cal/mole	Munson (see memo in App. A) Sec. 2.5.1, p. 1/ 24	

Table 3 (continued) Final Porosity Surface Calculation Input Parameters - Halite Constitutive Parameters

Description	Value	Reference	Comments
Clean Salt Creep Properties - continued			
n ₂	5.0	Munson (see memo in App. A) Sec. 2.5.1, p. 1/ 24	
B ₂	3.034E-2	Munson (see memo in App. A) Sec. 2.5.1, p. 1/ 24	
S ₀	20.57 MPa	Munson (see memo in App. A) Sec. 2.5.1, p. 1/ 24	
q	5,335	Munson (see memo in App. A) Sec. 2.5.1, p. 1/ 24	
m	3.0	Munson (see memo in App. A) Sec. 2.5.1, p. 1/ 24	
K_0	6.275	Munson (see memo in App. A) Sec. 2.5.1, p. 1/ 24	
с	9.198E-3 /K	Munson (see memo in App. A) Sec. 2.5.1, p. 1/ 24	
а	-17.37	Munson (see memo in App. A) Sec. 2.5.1, p. 1/ 24	
b	-7.738	Munson (see memo in App. A) Sec. 2.5.1, p. 1/ 24	
d	0.58	Munson et al. (1989) Table 2-2, p. 41.	
Argillaceous Salt Creep Properties			
A ₁	1.407E23 /sec	Munson, (see memo in App. A) Sec. 2.5.1, page 3/ 24	
Q1	25,000 cal/mole	Munson (see memo in App. A) Sec. 2.5.1, p. 3/ 24	
n ₁	5.5	Munson (see memo in App. A) Sec. 2.5.1, p. 3/ 24	
B ₁	8.998E6 /sec	Munson (see memo in App. A) Sec. 2.5.1, p. 3/ 24	

Table 3 (continued)	Final Porosity Surface Calculation Input Parameters	- Halite
	Constitutive Parameters	

Description	Value	Reference	Comments
Argillaceous Salt Creep Properties - continued			
A ₂	1.314E13 /sec	Munson (see memo in App. A) Sec. 2.5.1, p. 3/ 24	
Q_2	10,000 cal/mole	Munson (see memo in App. A) Sec. 2.5.1, p. 3/ 24	
n ₂	5.0	Munson (see memo in App. A) Sec. 2.5.1, p. 3/ 24	
B ₂	4.289E-2 /sec	Munson (see memo in App. A) Sec. 2.5.1, p. 3/ 24	
S ₀	20.57 MPa	Munson (see memo in App. A) Sec. 2.5.1, p. 3/ 24	
q	5,335	Munson (see memo in App. A) Sec. 2.5.1, p. 4/ 24	
m	3.0	Munson (see memo in App. A) Sec. 2.5.1, p. 4/ 24	
K ₀	2.470E6	Munson (see memo in App. A) Sec. 2.5.1, p. 4/ 24	
с	9.198E-3 /K	Munson (see memo in App. A) Sec. 2.5.1, p. 4/ 24	
a "	-14.96	Munson (see memo in App. A) Sec. 2.5.1, p. 4/ 24	
b _w	-7.738	Munson (see memo in App. A) Sec. 2.5.1, p. 4/ 24	
d	0.58	Munson et al. (1989) Table 2-2, p. 41.	

Description	Value	Reference	Comments
Anhydrite Properties			
Young's Modulus	75.1	Munson (see memo in App. A) Sec. 2.5.2, p. 18/24	As of 2/15/96 this reference represents the latest values for nonsalt materials adjacent to the repository and the traceability of their origin. The method of converting input elastic constants to the elastic parameters TWOMU and BULK MODULUS used in SANTOS is described in the memorandum from C. M. Stone, March 4, 1996, p. 3 (App. B).
Poisson's Ratio	0.35	Munson (see memo in App. A) Sec. 2.5.2, p. 18/24	The method of converting input elastic constants to the elastic parameters TWOMU and BULK MODULUS used in SANTOS is described in the memorandum from C. M. Stone, March 4, 1996, p. 3 (App. B).
С	1.35 MPa	Munson (see memo in App. A) Sec. 2.5.2, p. 19/24	The method of converting these input constants to the anhydrite model parameters used in SANTOS is described in the memorandum from C. M. Stone, March 4, 1996, p. 2 (App. B).
a	0.45	Munson (see memo in App. A) Sec. 2.5.2, p. 19/24	The method of converting these input constants to the anhydrite model parameters used in SANTOS is described in the memorandum from C. M. Stone, March 4, 1996, p. 2 (App. B).

Table 4: Final Porosity Surface Calculation Input Parameters - Anhydrite Properties

Table 5: Final Porosity Surface Calculation Input Parameters - Waste Composition Assumptions

Description	Value	Reference	Comments
Waste Composition Assumptions:		Baseline Inventory Report (BIR) 1995, Rev. 1. Hereafter referred to as BIR.	Justification for use of this version of the inventory provided in a memorandum of record by B. M. Butcher, March 11, 1996 (App. B).
Metallic	122 kg/m ³	BIR (1995) Rev. 1, Table 5-1, p. 5-4.	
Sorbents	40 kg/m ³	BIR (1995) Rev. 1, Table 5-1, p. 5-4.	Minor change from 40 kg/m ³ in draft copy to 39 kg/m ³ in final document neglected. The final document was issued after the calculations were initiated.
Cellulose	170 kg/m ³	BIR (1995) Rev. 1, Table 5-1, p. 5-4.	
Rubber and Plastics	84 kg/m ³	BIR (1995) Rev. 1, Table 5-1, p. 5-4.	
Sludges	143.5 kg/m ³	BIR (1995) Rev. 1, Table 5-1, p. 5-4.	Minor change from 143.5 kg/m ³ in draft copy to 144.1 kg/m ³ in final document neglected
Initial Waste Density	559.5 kg/m ³		Sum of waste component densities : 122 + 40 + 170 + 84 + 143.5

Description	Value	Reference	Comments
Solid Densities			
Metallic	7830 kg/m ³	Butcher et al. (1991) p. 1, paragraph 5	Values between 7830 kg/m ³ and 7860 kg/m ³ are quoted for iron in the literature. Any value within this range is considered acceptable.
Sorbents	3000 kg/m ³	Butcher et al. (1991) p. 9, Table 2-2	Portland cement considered representative
Cellulose	1100 kg/m ³	Butcher et al. (1991) p. 14, paragraph 4	Computed for the composition of mixture 3 (Table 2-1) using solid density values in Table 2-2.
Rubber and Plastics	1200 kg/m ³	Butcher et al. (1991) p. 40, paragraph 1	Computed for the composition of mixture 6 (Table 2-1) using handbook solid density values for PVC and polyethylene.
Sludges	2200 kg/m ³	Butcher et al. (1991) p. 67, paragraph 2.	Estimated from the composition of mixture 13 (Table 2-1) using solid density values in Table 2-2.
Waste Solid Density	1757 kg/m ³	Calculation documented in App. C.	
Waste Volume Fraction			
Metallic	0.218		(Metals waste density)/(initial waste density)
Sorbents	0.071		(Sorbents waste density)/ (initial waste density)
Cellulose	0.304		(Cellulose waste density)/ (initial waste density)
Rubber and Plastics	0.150		(Rubber and plastics waste density)/(initial waste density)
Sludges	0.256		(Sludge waste density)/(initial waste density)
Initial Waste Porosity	0.681		1 - (initial waste density/waste solid density)
Initial Solid Volume	551.2 m ³		(1 - waste porosity) x (waste volume)
Initial Room Porosity	0.849		1 - (Initial solid volume)/ (initial room volume)

 Table 6: Final Porosity Surface Calculation Input Parameters: Waste Densities; Porosity

Description	Value	Reference	Comments
Waste Mechanical Compaction			
Properties			
Pressure-Volume Strain Data	See Table 9		
G	333 MPa	Weatherby et al.	
		(1991) p. 922	
K	222 MPa	Weatherby et al.	
		(1991) p. 922	
a ₀	1.0 MPa	Weatherby et al.	The method for determining this
		(1991) p. 922	value is provided in a
			memorandum from C. M. Stone,
			March 4, 1996, p. 1 (App. B).
a_1	3.0	Weatherby et al.	The method for determining this
		(1991) p. 922	value is provided in a
			memorandum from C. M. Stone,
			March 4, 1996, p. 1 (App. B).
a ₂	0.	Weatherby et al.	The method for determining this
		(1991) p. 922	value is provided in a
			memorandum from C. M. Stone,
			March 4, 1996, p. 1 (App. B).

Table 7: Final Porosity Surface Calculation Input Parameters - Waste Mechanical Properties

Table 8: Pressure-Volumetric Strain Data Used in the Volumetric-Plasticity Model for the Waste Drums

Pressure (MPa)	$\ln(r/r_0)$
1.53	0.510
2.03	0.631
2.53	0.719
3.03	0.786
3.53	0.838
4.03	0.881
4.93	0.942
12.0	1.14

3.4 Gas Generation

The current practice for calculating gas pressures in SANTOS closure calculations is to either assume gas generation rates or a lookup table of gas production (Brown and Weatherby, 1993, p. A-7). Given an assumed number of moles of gas within the repository as a function of time, the void volume available for storage at a given time is computed and used to compute the gas pressure using the ideal gas law (Brown and Weatherby, 1993, p. A-7).

The porosity surface approach is required because a fully coupled analysis of closure based on detailed descriptions of salt creep, waste consolidation, brine flow in or out of the waste, gas production, and gas migration away from the waste into the interbeds is not technically feasible. As a consequence, a two-step process has been developed. This porosity surface approach begins by computing the extent of closure for various assumed gas contents with the SANTOS code. The method of coupling closure with the coupled fluid flow interactions related to gas production is to determine porosities for actual waste contents by interpolation of these data in the WIPP performance assessment code BRAGFLO (WIPP PA Department, 1993, pp. 4-18 to 4-23). Inherent in this process is the assumption that the porosity - gas pressure values for a given amount of gas are independent of the previous gas generation history. Thus, the closure data provided by SANTOS can be thought of as representing a surface, with any gas generation history computed by BRAGFLO constrained to fall in this surface. The reader is referred to Butcher (1997) for validation of these concepts.

Since exact histories of gas generation are not known for the closure calculations, an arbitrary set of gas generation conditions must be selected that spans all gas generation potentials likely to be encountered. The reason for this requirement is to avoid any uncertainty that might occur if gas production predictions from BRAGFLO fell outside the closure data. That is, extrapolation of conditions outside the range of the data is considered unacceptable. Bounds for assumed gas production for SANTOS were that (1) no gas is generated or (2) all the potential gas-generating materials are consumed. The gas generation rates for SANTOS were the fastest rates possible, those for waste completely immersed in brine. The consequences of any slower rates can be obtained by interpolation between curves. To preserve a link with reality, the gas generation input parameter values for SANTOS calculations were approximately the same as values used in past performance assessments. Because the gas generation histories used in SANTOS calculations are simply a device used to introduce a given amount of gas in the waste at various times, we did not need to update our assumptions to be consistent with all the changes in the nature of reaction products, generation rates, and variations in waste inventory that are required for the CCA.

The gas generation histories assumed for the final porosity surface calculations (Table 9) are representative of waste inundated with brine, a worst case because inundated rates are greater than rates for waste that is not immersed in brine. Gas from two sources is considered: anoxic corrosion and microbial activity. The estimated anoxic corrosion gas production from Beraún and Davies (1992) is 1050 moles/drum with a production rate of 1 mole/drum/year (Table 9) and that from microbial activity is 550 moles/drum with a production rate of 1 mole/drum/year (Table 9). This means that for the baseline case, microbial activity ceases at 550 years while anoxic

corrosion will continue until 1050 years after emplacement. The amount of gas generated in the disposal room is based on 6804 unprocessed waste drums per room.

To simulate different gas amounts within the room at any given time, the baseline gas production was multiplied by a factor f which varies between 0 and 2.0 (Stone, 1997a). Values of f selected for the calculations were f = 0, 0.025, 0.05, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 0.8, 1.0, 1.2, 1.6and 2.0. The condition f = 0 represents the state of the repository when no gas is produced, and the condition f = 2 represents two times the maximum expected rate of gas production. The factor of 2 is used to guarantee that data are available to BRAGFLO for all gas generation scenarios imaginable.

Description	Value	Reference	Comments
Input Parameters Gas Parameters			
Corrosion Gas Production Rate	1 mole/year/drum	Brush (1991) Table 1, p. A-35	Inundated best-value production rate
Corrosion Gas Potential	1050 moles/drum	Beraún and Davies (1992), p. A-11	Justification for use of this value is provided in a memorandum of record by B. M. Butcher, March 18, 1996 (App. B).
Microbial Gas Production Rate	1 mole/year/drum	Brush (1991) Table 1, p. A-35	Inundated best-value production rate
Microbial Gas Potential	550 moles/drum	Beraún and Davies (1992) p. A-11	Justification for use of this value is provided in a memorandum of record by B. M. Butcher, March 18, 1996 (App. B).
Scaling factor <i>f</i>	0, 0.025, 0.05, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0, 1.2, 1.6, 2.0	Analyst's choice	
Gas Constant <i>R</i>	8.23 (m ³ Pa)/(g-mole K)	Physical constant	
Gas Temperature	300 K	Common repository assumption	Nominal value sufficient; see discussion of gas generation in memorandum of record by B. M. Butcher, March 18, 1996 (App. B).

Table 9: Final Porosity Surface Calculation Input Parameters - Gas Generation Assumptions

4.0 SUMMARY

The input parameter values used in final predictions of closure and waste densification in the Waste Isolation Pilot Plant disposal room and supporting references are summarized in this report. The closure predictions are referred to as the final porosity surface data and will be used for WIPP performance calculations supporting the Compliance Certification Application to be submitted to the U.S. Environmental Protection Agency. This report includes tables that list all of the input parameter values, references citing their source, and in some cases references to more complete descriptions of considerations leading to the selection of values.

5.0 REFERENCES

- Baseline Inventory Report (BIR). 1995. Waste Isolation Pilot Plant Transuranic Waste Baseline Inventory Report. WIPP Technical Assistance Contractor, Report CAO-94-1005, Revision 1. [Carlsbad, NM]: WIPP Technical Assistance Contractor for U.S. Department of Energy.
- Beraún, R., and P. B. Davies. 1992. "Appendix A: Baseline Design Input Data Base to be Used During Calculations Effort to be Performed by Division 1514 in Determining the Mechanical Creep Closure Behavior of Waste Disposal Rooms in Bedded Salt," in *Preliminary Performance Assessment for the Waste Isolation Pilot Plant, December 1992. Volume 3: Model Parameters.* Sandia WIPP Project. SAND92-0700/3. Albuquerque, NM: Sandia National Laboratories. A-7 through A-13.
- Brown, W. T., and J. R. Weatherby. 1993. "Appendix A: Influence of Gas Generation Potential and Gas Generation Rate on the Performance of CH-TRU Disposal Rooms," in A Summary of the Models Used for the Mechanical Response of Disposal Rooms in the Waste Isolation Pilot Plant with Regard to Compliance with 40 CFR 191, Subpart B. B.M. Butcher and F.T. Mendenhall. SAND92-0427. Albuquerque, NM: Sandia National Laboratories. A-5 through A-25.
- Brush, L. H. 1991. "Appendix A: Current Estimates of Gas Production Rates, Gas Production Potentials, and Expected Chemical Conditions Relevant to Radionuclide Chemistry for the Long-Term WIPP Performance Assessment," *Preliminary Comparison with 40 CFR Part 191, Subpart B for the Waste Isolation Pilot Plant, December 1991. Volume 3: Reference Data.* Eds. R. P. Rechard, A. C. Peterson, J. D. Schreiber, H. J. Iuzzolino, M. S. Tierney, and J. S. Sandha. SAND91-0893/3. Albuquerque, NM: Sandia National Laboratories. A-27 through A-41.
- Butcher, B. M. 1995. "Sandia National Laboratories Waste Isolation Pilot Plant Analysis Plan: Final Porosity Surface Calculations, WBS 1.1.01.2.3, Rev. 1, Effective date 11/6/95." (Copy on file in the Sandia WIPP Central Files, Sandia National Laboratories, Albuquerque, NM as WPO#29792.)
- Butcher, B. M. 1996. "Principal Investigator Documentation Package for Final Porosity Surface Data." Albuquerque, NM: Sandia National Laboratories. (Copy on file in the Sandia WIPP Central Files, Sandia National Laboratories, Albuquerque, NM as WPO#35697.)
- Butcher, B. M. 1997. *Waste Isolation Pilot Plant Disposal Room Model*. SAND97-0794. Albuquerque, NM: Sandia National Laboratories.
- Butcher, B. M., T. W. Thompson, R. G. VanBuskirk, and N. C. Patti. 1991. Mechanical Compaction of Waste Isolation Pilot Plant Simulated Waste. SAND90-1206. Albuquerque, NM: Sandia National Laboratories.

- Munson, D. E., and P. R. Dawson. 1982. "A Work Hardening/Recovery Model of Transient Creep of Salt During Stress Loading and Unloading," in *Issues in Rock Mechanics*, *Proceedings of the 23rd U.S. Symposium on Rock Mechanics, Berkeley, CA, August 25-27,* 1982. Eds. R.E. Goodman and F.E. Heuze. New York, NY: American Institute of Mining, Metallurgical and Petroleum Engineers. Vol. 23, pp. 299-306. Also published as SAND82-0962 and SAND82-0810J. Albuquerque, NM: Sandia National Laboratories.
- Munson, D. E., A. F. Fossum, and P. E. Senseny. 1989. "Approach to First Principles Model Prediction of Measured WIPP In Situ Room Closure in Salt," in *Rock Mechanics as a Guide for Efficient Utilization of Natural Resources, Proceedings of the 30th US Symposium on Rock Mechanics, West Virginia University, Morgantown, WV, June 19-22, 1989.* Ed. A.W. Khair. Brookfield, VT: A.A. Balkema. 673-680. Also published as SAND88-2535. Albuquerque, NM: Sandia National Laboratories.
- Sandia WIPP Project. 1992. Preliminary Performance Assessment for the Waste Isolation Pilot Plant, December 1992. Volume 3: Model Parameters. SAND92-0700/3. Albuquerque, NM: Sandia National Laboratories.
- Stone, C. M. 1997a. *Final Disposal Room Structural Response Calculations*. SAND97-0795. Albuquerque, NM: Sandia National Laboratories.
- Stone, C. M. 1997b. SANTOS¾A Two-Dimensional Finite Element Program for the Quasistatic, Large Deformation, Inelastic Response of Solids. SAND90-0543. Albuquerque, NM: Sandia National Laboratories.
- Weatherby, J. R., W. T. Brown, and B. M. Butcher. 1991. "The Closure of WIPP Disposal Rooms Filled with Various Waste and Backfill Combinations," in *Rock Mechanics as a Multidisciplinary Science, Proceedings of the 32nd U.S. Symposium, University of Oklahoma, Norman, OK, July 10-12, 1991.* Ed. J. C. Roegiers. Brookfield, VT: A. A. Balkema. 919-928. Also published as SAND90-2399C. Albuquerque, NM: Sandia National Laboratories.
- WIPP PA (Performance Assessment) Department. 1993. Preliminary Performance Assessment for the Waste Isolation Pilot Plant, December 1992. Volume 4: Uncertainty and Sensitivity Analyses for 40 CFR 191, Subpart B. SAND92-0700/4. Albuquerque, NM: Sandia National Laboratories.

This page intentionally left blank

Appendix A: Unpublished References

B. M. Butcher, "Waste Compressibility Curve Predictions." Sandia National Laboratories Memorandum of Record, February 16, 1995.	A-3
D. E. Munson, "Mechanical Parameters for Update of Reference Data Report." Sandia National Laboratories Memorandum to M. S. Tierney, September 26, 1995	A-22
J. D. Osnes and D. A. Labreche, "The Effect of Clay Seams and Anhydrite Layers on the Closure of Waste Isolation Pilot Plant Disposal Rooms and Guidelines for Simplifying the Modeled Stratigraphy." RE/SPEC External Memorandum RS(RCO)-390/7-95/58, August 29, 1995	. A-47
C.M. Stone, "Proposed Model for the Final Porosity Surface Calculations." Sandia National Laboratories Memorandum to B. M. Butcher, October 27, 1995	A-106

Appendix A errata

Page	Reference	Corrections
A-4	Luker et al., 1991	Correct the spelling of the word "Science"
A-24, A-26	2.5.1 Fossum et al., 1994	Brookfield is in Vermont
A-24, A-27	2.5.1 Fossum et al., 1988 2.5.7 " " " "	Brookfield is in Vermont
A-24, A-27	2.5.8 Munson and Dawson, 1982	Dawson's middle initial is R
A-25, A-27	2.5.13 Munson et al., 1992	Brookfield is in Vermont
A-26 A-43	2.5.2 Munson et al., 1989 2.5.1 " " " "	Insert "WIPP" after "Measured" in title
A-28, A-29	2.5.15 Chan et al., 1995	Bodner's initials are S.R. Journal ref. is Vol. 5, no. 3, pp. 292-314 (July 1996)
A-38	2.5.25 Stone et al., 1985	SAND number should be 84-2618
A-39, A-42, A-43	2.5.26 Yang, 1981	Correct the spelling of "Thermophysical". This chapter is on file in the Sandia WIPP Central Files as WPO#43754
A-45	2.5.30 Munson et al., 1987	Insert a closing parenthesis after "1987" and add the following to the end of this title: Waste Isolation Pilot Plant (WIPP), Thermal/Structure Interactions Program
A-80	Callahan et al., 1990	This report is dated August 28, 1989. It is available from the National Technical Information Service (NTIS), Springfield, VA as DE90000681/XAB and DE90000682/XAB. This report is called out in Sections 3.0 and 3.3 of this memo.

A-81	Osnes and Brandshaug, 1980	The published proceedings is titled, Underground Rock Engineering, 13th Canadian Rock Mechanics Symposium, Toronto, Canada, May 28-29, 1980. Series: Special Volume - Canadian Institute of Mining and Metallurgy; 22. Montreal:
		Canadian Institute of Mining and Metallurgy. pp. 193-197. Copy of proceedings paper is on file in the Sandia WIPP Central Files as WPO#44095.
A-81	Stone, 1992	This memo has been reprinted in pages E-41 through E-61 of SAND94-0890, which is available from the National Technical Information Service as DE95016749/XAB. The word "Behavior" should be inserted after the word "Closure."
A-82	Zienkiewicz et al., 1968	The final author's first initial is "I." This journal article is on file in the Sandia WIPP Central Files as WPO#43859.
A-117	Citation 5. Munson et al., 1989	Fossum's middle initial is "F."
A-117	Citation 8. Beraun and Davies	Insert phrase "to be Performed" after word "Effort."
A-118	Citation 9. Butcher et al.	The final version of this document, "Systems Prioritization Method—Iteration 2 Baseline Position Paper: Disposal Room and Cuttings Model," is dated March 28, 1995 and is on file in the Sandia WIPP Central Files as WPO#28729 (Vol. 1) and WPO#28733 (Vol. 2). This document is not available from the National Technical Information Service.

p. A-102 The references should appear in the following order: Beraún, R., and P.B. Davies. 1991; Butcher, B.M. 1995; Butcher, B.M. et al. 1991; Krieg, R.D. 1984; Munson, D.E. 1992; Munson, D.E. et al. 1989; 92 PA V3 1992; Sjaardema, G.D. and R.D. Krieg. 1987

In addition, the following references should be added:

Baseline Inventory Report (BIR). 1995. Waste Isolation Pilot Plant Transuranic Waste Baseline Inventory Report. CAO-94-1005, Revision 1. [Carlsbad, NM]: WIPP Technical Assistance Contractor for U.S. Department of Energy.

Bechtel, Inc. 1986. "WIPP Design Validation Final Report." DOE/WIPP-86-010. Prepared for the U.S. Department of Energy. San Francisco, CA: Bechtel National, Inc.

Butcher, B.M., and F.T. Mendenhall. 1993. A Summary of the Models Used for the Mechanical Response of Disposal Rooms in the Waste Isolation Pilot Plant with Regard to Compliance with 40 CFR 191, Subpart B. SAND92-0427. Albuquerque, NM: Sandia National Laboratories. Krieg, 1984 is on file in the SWCF as WPO# 36331. This rough draft is also available in the Sandia National Laboratories' Technical Library as SC-DR-72-0883. This rough draft is titled, "A Simple Constitutive Description for Cellular Concrete."

Sandia National Laboratories

Albuquerque, New Mexico 87185-1342

date: February 16, 1995

to: Memorandum of Record

[Note: All calculations described in this memorandum were performed by B. M. Butcher.]

B M. Butth

from: B. M. Butcher, 6348, MS 1341

subject: Waste Compressibility Curve Predictions

This memorandum of record describes the suggested method for defining the average waste compressibility curve for the repository. In this case, the starting point for the calculations is the Draft Baseline Inventory Report, Document CAO-94-1005. Rev. 1, issued February, 1995, Table 6-1, titled WIPP CH_TRU Waste Material Parameter disposal Inventory. A copy of this table is in Appendix A of this memo.

The listing of the QBASIC computer code COMPRESS.BAS used to compute the average compressibility curve is given in Appendix B. The basis for this calculation is the mixture theory approach and the comporessibility data for the individual waste components described in Butcher, et al (1991) and Luker, et al (1991). Any effects because of containers (drums) are not included, because the containers offer very little resistance to collapse. A lookup file for the compressibility of sludge type wastes is also needed for the calculation and is included in the Appendix B listings. Input to program COMPRESS in order of insertion is:

- The output file name xxxxxx, as in C:\xxxxxx.DAT must be specified. An example for xxxxxxx might be RESULTS\COMP\BIR295, which would produce the BIR295.DAT file in directory RESULTS, subdirectory COMP.
- The average amounts of iron based, aluminum based and other metals in the inventory (3 values) must be specified. Reference to Table 6-1 indicates that these numbers would be 83 Kg/m³, 12 Kg/m³, and 27 Kg/m³.
- The average solid density of the metals in g/cm³ is required. This value is a judgment call because the composition of "other metals", which would include lead, copper, tantalum, etc., is not defined in Table 6-1. Normally, if the composition were known, this quantity could be computed as described in Butcher et. al (1991). Values for the solid density of iron would be 7.83 g/cm³, the solid density of aluminum based metals would be 2.7 g/cm3, and a appropriate average density would be used for the other metals, maybe something of the order of 9 g/cm³ depending on the composition. In the absence of this information a value of 7.83 g/cm³, the value for iron, was used for the calculation described in this memorandum. Justification for the use of this value is that (1) iron based metals are the principal components of the metals waste, (2) the low solid density of the aluminum tends to offset the higher density of the "other metals," yielding an average density close to that of iron, and (3) sensitivity calculations in which the average solid density of metals value was varied showed that the dependence of the compaction curve on the exact value of this parameter was small.

- The average amounts of plastics and rubber (2 values) must be defined. Reference to Table 6-1 indicates that these numbers would be 63 Kg/m³ and 21 Kg/m³.
- The average amount of cellulose (1 value) must be defined. Reference to Table 6-1 indicates that this number would be 170 Kg/m³.
- The average amount of sorbents (defined as other organics)(1 value) must be defined. Reference to Table 6-1 indicates that this number would be 40 Kg/m³. In the COMPRESS program sorbents can be characterized as either dry portland cement (C), vermiculite (V), or Oil Dri (OD).
- The average amounts of sludges and soils (3 values) must be defined. Soils are considered more like sludges than like the other waste components (such as cellulose), and can be lumped with the sludges because they represent a very small portion of this category. Should the amount of soils increase in the future, a separate curve for their compactibility should be introduced into the calculation. Reference to Table 6-1 indicates that these numbers would be 130 Kg/m³ for inorganic sludge, 7.8 Kg/m³ for organic sludge, and 5.7 Kg/m³ for soils.

Given these parameters, the program is used to compute the average compressibility curve. A copy of this data file is given in Appendix B. The results in the attached figure show that even though recent waste composition values have changed substantially from previous values, the average compressibility curve using the new inventory data differs very little from the curve used for the 1992 Preliminary Performance Assessment (Butcher, et. al, 1991, Figure 4-1), probably because of compensating changes.

References :

Butcher, B. M., R. G. VanBuskirk*, N. C. Patti*, and T. W. Thompson, 1991. "Mechanical Compaction of WIPP Simulated Waste," SAND90-1206, Sandia National Laboratories, Albuquerque, NM; See also Luker, R. S., Thompson, T. W., and Butcher, B. M., 1991."Compaction and Permeability of Simulated Waste." In Rock Mechanics as a Multidisciplinary Science, Proceedings of the 32nd U. S. Symposium, Roegiers (ed.), A. A. Balkema, Rotterdam, pp 693-702.

Luker, R. S., Thompson, T. W., and Butcher, B. M., 1991. "Compaction and Permeability of Simulated Waste." In Rock Mechanics as a Multidisciplinary Sciene, Proceedings of the 32nd U. S. Symposium, Roegiers (ed.), A. A. Balkema, Rotterdam, pp 693-702.

Copy to:

MSAEA2 BAMCBurcher (dayailo) (68:48)

- MS 1342 J. T. Holmes (6348)
- MS 1330 SWCF(DRM) (WBS 1.1.1.2.3) (6352) D. Lebreche (RE/SPEC)
Figure 1: A Comparsion of the 12/92 PA Average Repository Compaction Curve With a More Recent Curve Based in Baseline Inventory Report Parameters

Appendix A: Table 6-1 from the Draft Baseline Inventory Report, Document CAO-94-1005. Rev. 1, issued February, 1995

01-Feb-95

Table 5-1

8

WIPP CH-TRU Waste Material Parameter Disposal Inventory

			(Kg/m3)	
	Materials	Maximum	Average	<u>Minimum</u>
Inorganics	· Iron Based	1.7E+03	8.3E+01	0.0E+00
	Aluminum Based	1.0E+03	1.2E+01	0.0E+00
	Other Metals	1.4E+03	2.7E+01	0.0E+00
	Other Inorganics	2.1E+03	4.0E+01	0.0E+00
Organics	Cellülöse	9.6E+02	1.7E+02	0.0E+00
	Rubber	6.8E+02	2.1E+01	0.0E+00
	Plastics	8.9E+02	6.3E+01	0.0E+00
Solidified Ma	terials Inorganic	2.2E+03	1.3E+02	0.0E+00
	Organic	1.4E+03	7.8E+00	0.0E+00
Soils		1.6E+03	5.7E+00	0.0E+00
Container N	laterials			
	Steel		1.4E+02	

Plastic/ Liners

3.3E+01

Appendix B:

• Listing of data file SLUDGE.DAT for the compressibility of sludges

• Listing of data file BIRREV1.DAT for the average compressibility of waste

• Listing of program COMPRESS output

• QA CONFIRMATION OF RESULTS

Additional Explanation of the Section "QA Confirmation of Results"

This section is a numerical check of the code COMPRESS to ensure that the calculated porosities are correct. The code listing shows that the output command on line 900 for indices K prints the stress [STRESS(K)], the density of the metal waste [RHOM(K)], the density of the plastic waste [RHOP(K)], the density of the cellulosics [RHOC(K)], the density of the sorbent [RHOS(K)], and the density of the sludge [RHOSL(K)] corresponding to the value of STRESS. Output from line 950 includes the specific volume of the waste [VOL(K)] (1/density), the void volume corresponding to VOL, [VVOL(K)], the porosity [P(K)], and the waste density [RH(K)] corresponding to the value for STRESS. Values of these parameters at a stress of 2002.16 psi (K = 63) are highlighted on page A-17.

The MATHCAD calculation following the program listing is an independent hand calculation of the parameter values at 2002.16 psi (13.80 MPa). The parameter *rhom* in the hand calculation corresponds to RHOM of the COMPRESS output, *rhop* corresponds to RHOP, *rhoc* corresponds to RHOC, etc. The hand calculation parameter *vt* corresponds to VOL and the parameter *vvt* corresponds to VVOL. Comparison of the highlighted computer output at 2002.16 psi with the hand-calculated values shows that the values are identical within roundoff error, confirming the COMPRESS calculation. The hand calculated values were also used to calculate the porosity *por*, which corresponds to the COMPRESS parameter value P(63). These values are also in agreement. Finally, the conversion of the stress in psi to stress in MPa is checked in the hand calculation and found to be in agreement with the COMPRESS value, completing the verification.

Sheet1

File	SLUDGE	2/16/95
density g/cc		stress - psi
L		
1.5	0	1
1.53	0	75
1.55828	0.060019	149.576
1.56528	0.062796	170.501
1.57939	0.065582	199.564
1.59177	0.068369	232.053
1.60281	0.071116	263.725
1.61266	0.073901	292.033
1.62225	0.076688	323.903
1.63173	0.079475	356.767
1.64042	0.082225	387.358
1.64972	0.085012	418.571
1.65815	0.087795	450.93
1.66624	0.090572	480.134
1.67423	0.093363	510.277
1.68238	0.096114	542.351
1.69084	0.0989	572.877
1.70137	0.101687	603.088
1.71392	0.104482	635.756
1.72029	0.107224	665.846
1.73443	0.110014	696.41
1.74671	0.112797	729.206
1.75268	0.115575	759.819
1.75902	0.118353	791.797
1.76576	0.121147	821.167
1.77235	0.123904	853.236
1.77883	0.12669	883.57
1.78531	0.129477	915.037
1.79207	0.132231	947.167
1.79864	0.135018	976.693
1.80521	0.137805	1007.25
1.81135	0.140587	1038.42
1.81741	0.143356	1070.09
1.82335	0.146144	1101.76
1.82918	0.148924	1133.77
1.83477	0.151666	1163.57
1.83999	0.154447	1194 43
1 8455	0.157225	1226 08
1 85108	0.160002	1255 83
1 85637	0.16278	1286 73
1 86167	0.165558	1318 04
1 86667	0 168335	1349 14
1 87109	0.171145	1381 24
1 87699	0 173014	1411 22
1 88190	0.176606	1443.35
1 88670	0 170/79	1472 8/
1 80164	0.182256	1503 69
1 80646	0 185022	1535.00
1 1.09040	1 0.100000	1 1000.01

S	h	e	e	t	1

1.90099	0.187815	1567.19
1.90558	0.190588	1596.98
1.91006	0.193361	1628.9
1.91451	0.196135	1660.49
1.91893	0.198908	1691.53
1.9232	0.201676	1721.33
1.92736	0.204453	1751.69
1.93161	0.20724	1784.15
1.9358	0.210013	1814.13
1.93998	0.212786	1845.92
1.9441	0.215563	1876.93
1.94818	0.218341	1909.08
1.95213	0.221119	1938.95
1.95609	0.223896	1970.24
1.96	0.22667	2002.16

Page 2

Sheet1

WASTE	COMPACTION
STRESS	POROSITY
MPa	
0.5171025	0.8006011
1.031282	0.7395592
1.175553	0.7237282
1.375934	0.7024797
1.599936	0.67979
1.818305	0.6587131
2.01348	0.6408958
2.233214	0.6220217
2.459801	0.6036918
2.670717	0.5875416
2.885921	0.5718592
3.109027	0.5564186
3.31038	0.5430908
3.518207	0.5299146
3.739347	0.5164916
3.949815	0.5042071
4.158111	0.4924215
4.383347	0.4800999
4.590808	0.469373
4.801538	0.45852
5.027657	0.4473844
5.238724	0.4375826
5.459203	0.4276801
5.6617	0.41883
5.882806	0.4095016
6.09195	0.4009367
6.308906	0.3923278
6.530432	0.3837928
6.734005	0.3761524
6.944686	0.3684704
7.159595	0.3608786
7.377949	0.3533862
7.596305	0.3461036
7.817004	0.3389504
8.022466	0.332452
8.235237	0.3259226
8.453453	0.3193853
8.658571	0.3133651
8.871617	0.3072904
9.093696	0.3011253
9.301916	0.29548
9.523925	0.2896025
9.729939	0.2842753
9.951465	0.2786932
10.15479	0.2736635
10.36673	0.2685496
10.59033	0.2632942
10.8053	0.2583605

Page 1

Sheet1

11.0107	0.2537278
11.23078	0.2488981
11.44858	0.2442196
11.66259	0.2397153
11.86805	0.2354757
12.07738	0.2312546
12.30118	0.2268475
12.50788	0.2228396
12.72707	0.2186917
12.94087	0.2147223
13.16253	0.2107019
13.36848	0.2070263
13.58421	0.203261
13.80429	0.199503
14.8	0.1825007

```
1 REM PROGRAM COMPRESS 2/16/95
2 REM Derived from Program WASTEAD3: 11/14/89
3 REM Given a tabular description of the compression of the sludge
  REM category: C:\DATA\RESULTS\COMP\SLUDGE.DAT, this program is used
  REM to compute its compressibility curve. Creep corrections are included.
5 REM Densities are in g/cc, stress is in psi, but results are in MPa
10 DIM STRESS(200), RHOM(200), RHOP(200), RHOC(200), RHOS(200)
  DIM RHOSL(200), VOL(200), VVOL(200), P(200), RH(200)
20 S1$ = "C:\"
30 PRINT "ENTER OUTPUT FILE NAME"
40 INPUT S2$
50 S4$ - ".DAT"
60 \ S3\$ = S1\$ + S2\$ + S4\$
70 PRINT "FILE NAME IS", S3$
90 S6S - S3S
100 PRINT "OUTPUT FILE IS", S6$
  J OPEN "O", #2, S6$
    REM FM IS THE WEIGHT FRACTION OF METALS WASTE
    REM FP IS THE WEIGHT FRACTION OF PLASTICS WASTE
   REM FC IS THE WEIGHT FRACTION OF CELLUOSICS WASTE
    REM FS IS THE WEIGHT FRACTION OF SORBENTS WASTE
           REM SORBENTS ARE CLASSIFIED AS "OTHER ORGANICS"
    REM FSL IS THE WEIGHT FRACTION OF SLUDGE WASTE
           REM SOILS ARE LUMPED IN WITH SLUDGE WASTE
    REM RMSD IS THE SOLID DENSITY OF THE METAL WASTE: define in g/cc
    REM RPSD IS THE SOLID DENSITY OF PLASTICS: 1.2 g/cc unless changed
    REM RCSD IS THE SOLID DENSITY OF CELLULOSICS: 1.1 g/cc unless changed
    REM RSCSD IS THE SOLID DENSITY OF CEMENT: 3.0 g/cc unless changed
    REM RSVSD IS THE SOLID DENSITY OF VERMICULITE: 2.9 unless changed
    REM RSODSD IS THE SOLID DENSITY OF OIL DRY: 2.6 unless changed
    REM RSLSD IS THE SOLID DENSITY OF SLUDGES: 2.2 unless changed
230 PRINT "ENTER THE AVE WEIGHT FRACTION OF METALS: IRON, ALUMINUM, AND OTHER"
240 INPUT FM1, FM2, FM3
    FM = FM1 + FM2 + FM3
250 PRINT " THE SOLID DENSITY OF THE METAL WASTE IS?"
260 INPUT RMSD
270 PRINT "ENTER THE AVERAGE WEIGHT OF PLASTICS: PLASTICS + RUBBER"
280 INPUT FP1, FP2
    FP = FP1 + FP2
290 RPSD = 1.2
300 PRINT "ENTER THE AVERAGE WEIGHT OF WASTE - CELLUOSICS"
310 INPUT FC
 0 RCSD = 1.1
.JO PRINT "ENTER THE AVERAGE WEIGHT OF WASTE - SORBENTS"
340 INPUT FS
350 PRINT "IS THIS COMPONENT CEMENT (C), VERMICULITE (V) OR OIL DRI (OD)?"
360 INPUT SORB$
370 RSCSD = 3!
380 RSVSD - 2.9
390 RSODSD - 2.6
400 PRINT "ENTER THE AVERAGE WEIGHT OF SLUDGE: INORGANIC, ORGANIC, SOILS"
410 INPUT FSL1, FSL2, FSL3
    FSL = FSL1 + FSL2 + FSL3
420 \text{ RSLSD} = 2.2
h30 FT = FM + FP + FC + FS + FSL
    PRINT "TOTAL WEIGHT OF WASTE IS ", FT
    INPUT PAUSE
    FM = FM / FT
    PRINT "THE MASS FRACTION OF METALS IS ", FM
    INPUT PAUSE
```

```
FP = FP / FT
   PRINT "THE MASS FRACTION OF PLASTICS IS ", FP
    INPUT PAUSE
    FC - FC / FT
    PRINT "THE MASS FRACTION OF COMBUSITBLES IS ", FC
    INPUT PAUSE
    FS = FS / FT
    PRINT "THE MASS FRACTION OF SORBENTS IS ", FS
    INPUT PAUSE
    FSL = FSL / FT
    PRINT "THE MASS FRACTION OF SLUDGES IS ", FSL
    INPUT PAUSE
    FT = FM + FP + FC + FS + FSL
440 IF FT - 1 THEN 470
450 PRINT "WEIGHT FRACTIONS ADD UP TO ", FT
440 GOTO 230
    REM SLUDGE CURVE IS IN TABULAR FORM
470 OPEN "I", #1, "C:\DATA\RESULTS\COMP\SLUDGE.DAT"
480 FOR K - 1 TO 63
490 INPUT #1, RHOSL(K), D, STRESS(K)
491 REM PRINT RHOSL(K), STRESS(K)
500 IF FM - 0 THEN 550
    REM DEFINE METAL DENSTIY AT GIVEN STRESS STRESS(K)
    REM EQUATIONS ARE FROM SAND REPORT
510 RHOM(K) - RMSD / 10240 * (STRESS(K) + 1800)
520 VM - FM / RHOM(K)
530 VV = (1 - RHOM(K) / RMSD) * VM + VV
540 V = VM + V
550 IF FP - 0 THEN 620
    REM DEFINE PLASTICS DENSITY AT GIVEN STRESS
560 TEMP1 - LOG(STRESS(K) / 3115) / 4.179
570 IF TEMP1 < -1 THEN 961
580 RHOP(K) = RPSD \star (1 + TEMP1)
581 IF STRESS(K) < 254 THEN RHOP(K) - RPSD * (1 - (890 - STRESS(K)) / 1060)
582 IF STRESS(K) < 0 THEN RHOP(K) = .16 \times RPSD
590 VP - FP / RHOP(K)
600 VV = (1 - RHOP(K) / RPSD) * VP + VV
610 V = VP + V
620 IF FC - 0 THEN 670
    REM DEFINE DENSITY OF COMBUSTIBLES AT GIVEN STRESS
630 \text{ RHOC}(K) = \text{RCSD} * (1 - \text{EXP}(-(\text{STRESS}(K) + 103) / 1167))
640 VC - FC / RHOC(K)
 0 VV = (1 - RHOC(K) / RCSD) * VC + VV
\cup 0 V = VC + V
670 IF FS - 0 THEN 850
    REM DEFINE THE DENSITY OF SORBENTS (OTHER ORGANICS)
680 IF SORB$ - "C" THEN 710
690 IF SORB$ - "V" THEN 760
700 IF SORBS - "OD" THEN 810
710 RHOS(K) = RSCSD * (1 + LOG(STRESS(K) / 2280000!) / 21.9)
711 IF STRESS(K) < 233 THEN RHOS(K) = RSCSD * (1 - (2350 - STRESS(K)) / 5110)
712 IF STRESS(K) < 0 THEN RHOS(K) - RSCSD \star .46
720 VS - FS / RHOS(K)
730 VV = (1 - RHOS(K) / RSCSD) * VS + VV
740 V = VS + V
  J GOTO 850
760 \text{ RHOS}(K) = \text{LOG}(\text{STRESS}(K) / 60.2) / 1.432
770 VS - FS / RHOS(K)
780 VV = (1 - RHOS(K) / RSVSD) * VS + VV
790 V = VS + V
```

```
800 GOTO 850
810 RHOS(K) = LOG(STRESS(K) / .467) / 7.27
820 VS - FS / RHOS(K)
~30 VV = (1 - RHOS(K) / RSODSD) * VS + VV
 0 V = VS + V
850 IF FSL - 0 THEN 900
    REM DEFINE THE DENSITY OF SLUDGE WASTE - INCLUDING SOILS
870 VSL - FSL / RHOSL(K)
880 VV = (1 - RHOSL(K) / RSLSD) * VSL + VV
890 V - VSL + V
900 PRINT "LINE 900", STRESS(K), RHOM(K), RHOP(K), RHOC(K), RHOS(K), RHOSL(K)
910 RH(K) - 1 / V
920 VOL(K) - V
930 VVOL(K) - VV
940 P(K) = VV / V
        PORE - P(K)
        POREM = P(K - 1)
         STMPA = STRESS(K) * .0068947#
STMPAM - STRESS(K - 1) * .0068947#
950 PRINT *LINE 950*, K, VOL(K), VVOL(K), P(K), RH(K)
960 WRITE #2, STMPA, P(K)
        PRINT STMPA, P(K)
961 V - 0
962 VV - 0
970 NEXT K
    REM EXTRAPOLATE TO 14.8 MPa"
    SLOPE = (PORE - POREM) / (STMPA - STMPAM)
    PKM = (14.8 - STMPA) * SLOPE + PORE
    WRITE #2, 14.8, PKM
    PRINT 14.8, PKM
980 END
```

```
A-16
```

MathCall Process CHECK 2126/95 Baseline Inventory Report Results BINV295 File i := 1 ..10 iron - i = 1 aluminum - 2 other metals - 3 sorbents - i = 4 cellulose - i = 5 rubber - 6 plastics - 7 plastics sludges (organic) - i = 8 sludges (inorganic) - = 9 "soils - i = 10 A := 83 A := 12 A := 27 A := 40 A := 170 A := 21 1 2 3 4 5 6 A := 63 A := 130 A := 7.8 A := 5.7 7 8 9 10 $\Sigma A = 559.5$ $RM := \frac{A + A + A}{1 + 2 + 3}$ $RM := \frac{A}{\Sigma A}$ $RS := \frac{A}{\Sigma A}$ RS = 0.071A $RCEL := \frac{5}{\Sigma A}$ RCEL = 0.304A + A 6 7RPLA := $\frac{-6}{\Sigma A}$ RPLA = 0.15 $RC := \frac{\begin{array}{c} A + A + A \\ 5 & 6 & 7 \\ \hline \Sigma A \end{array} \qquad RC = 0.454$ $RSL := \frac{\begin{array}{c} A + A + A \\ 8 & 9 & 10 \end{array}}{\Sigma A}$ RSL = 0.256

RM + RS + RC + RSL = 1_____ Calculate a point - assume a stress of 2002.16 psi corresponding to a sludge density of 1.96 g/cc Assume a solid metal density of 7.83 g/cc plastics density of 1.2 g/c cellulosics density of 1.1 g/cc sorbent density (cement) of 3.0 g/cc sludge density of 2.2 g/cc s := 2002.16Metals density, void volume, volume S + 1800 rhom := 7.83 -----rhom = 2.90710240 RM vm := ---- $\mathbf{vvm} := \begin{bmatrix} \mathbf{rhom} \\ 1 - \frac{\mathbf{rhom}}{7.83} \end{bmatrix} \cdot \mathbf{vm}$ vm = 0.075vvm = 0.047Plastics density, void volume, volume $ln\left[\frac{s}{3115}\right]$ rhop = -0.106rhop := 4.179 rhop := 1.2 (1 + rhop) rhop = 1.073RPLA vp := --vp = 0.14rhop $vvp := \left[1 - \frac{rhop}{1-2}\right] \cdot vp$ vvp = 0.015Cellulosics density, void volume, volume rhoc := $1.1 \cdot \left[1 - \exp \left[\frac{-(s + 103)}{1167} \right] \right]$ rhoc = 0.919 RCEL vc := ----vc = 0.331rhoc $\mathbf{vvc} := \begin{bmatrix} \mathbf{rhoc} \\ \mathbf{1} - \frac{\mathbf{rhoc}}{\mathbf{1.1}} \end{bmatrix} \cdot \mathbf{vc}$ vvc = 0.054 Sorbents density, void volume, volume

______ rhosb := 3 \cdot 1 + $\frac{\ln \left[\frac{s}{2280000}\right]}{21.9}$ rhosb = 2.036 RS vsb := ----vsb = 0.035rhosb **vvsb** := $\begin{bmatrix} 1 - \frac{\text{rhosb}}{3} \end{bmatrix} \cdot \text{vsb}$ vvsb = 0.011Sludge density, void volume, volume rhosl := 1.96 RSL vsl := _____ vsl = 0.131 rhosl $\mathbf{vvsl} := \left[1 - \frac{\mathbf{rhosl}}{2 \cdot 2} \right] \cdot \mathbf{vsl} \quad \mathbf{vvsl} = 0.014$ Totals _____ vt := vm + vp + vc + vsb + vsl vt = 0.712 vvt := vvm + vvp + vvc + vvsb + vvsl vvt = 0.142 vvt por := ---por = 0.2vt $s := s \cdot .0068947$ s = 13.804rhom = 2.907rhop = 1.073rhoc = 0.919rhosb = 2.036rhosl = 1.96

2/26/95

1.378665				
12.94087	.2147223			
TTNE 900	1909.08	2.836142	1.059409	.9038425
.02941	1.94818			
LINE 950	60	.7216447	.1520519	.2107019
1.385723				
13.16253	.2107019			
LINE 900	1938.95	2.858982	1.063867	.9087995
2.031536	1.95213			
LINE 950	61	.7182997	.148707	.2070263
1.392177				
13.36848	.2070263			
LINE 900	1970.24	2.882908	1.068464	.9138579
2.033729	1.95609			
.TTNE 950	62	.714905	.1453123	.203261
.398787				
13.58421	.203261	Prostals	Pphotics	Peella losis s
LINE 900	2002.16	2.907316	1073079	. <i>9</i> 188803
22035931	1.98 - 51	**	void volume	y aros. by
LINE 950	63	77115489	.1419561	.199503
1.405385				
13.80429	.199503			
14.8	.1825007			

Press any key to continue

Side Calclulation 2/28/95 - Show the correspondence between the constant for cement sorbent in SAND 90-1206, Section 2.4.4.1, in units of MPa, and that used in the COMPRESS program, which is in units of psi.

rho :=
$$3.0 \cdot \left[1 + \frac{\ln \left[\frac{13.80429}{15700} \right]}{21.9} \right]$$

rho = 2.036

 $\frac{15700}{0.0068947} = 2.277 \cdot 10^{6}$

Sandia National Laboratories

Albuquerque, New Mexico 87185

date: 09/26/95

^{to:} M.S. Tierney, 6741 (1328)

Munsen from: D.E. Munson, 6121 (1322)

subject: Mechanical Parameters for Update of Reference Data Report

I have attached the best current set of mechanical parameters for use in the Reference Data Report update (essentially an update to the PA 92, Volume 3). These parameters are those in current use for thermal/structural calculations in the Rock Mechanics Program of the WIPP Project. The parameters are for the Multimechanism Deformation Coupled Fracture (MDCF) Model, which, in the absence of fracture, reduces to the previously given Multimechanism Deformation (M-D) Model. The parameter set for the model includes both clean and argillaceous salt. The parameter set, together with the respective constitutive descriptions, are permissible for the purposes of performance assessment. I have also included a set of parameters consistent with the Reduced Modulus (R-M) steady state creep model which has been used in the past. Although no longer recommended for future WIPP calculations, use of the R-M model historical calculations is permitted provided they are adequately verified for the specific calculation against the more precise M-D model which includes both steady state and transient creep.

These parameters will be updated as necessary in subsequent inputs to the Compliance Application process. Specifically, both a healing kinetics and a damage-permeability relationship will be incorporated into the MDCF model.

If	you	have	any	questions,	please	contact	mę	
						X\	$\langle \rangle$	
				D			- Flas	DALLA
				Rev	iewea:_			diast
						A. F. FC	ssum, 151/	9/20/93
						1 2	1/2	
				Dere	0 h a a a		Allen	
				Rev	rewead		llorson 61	21 ~ 1 ~ 1
					7	U. K. 11	.11213011, 01	1 9/25/95
								/ /
~	.							

Copy to: 0443 A. F. Fossum, 1517 1322 J. R. Tillerson, 6121 1395 M. Marietta, 6707 SWCF-A:1.1.3.4.5:PA:TSI/PROP:rock mechanics model parameters 2.5 Mechanical Parameters for Material in Salado Formation

2.5.1 Halite and Argillaceous Halite

Elastic Constants (Halite and Argillaceous Halite)

Parameter*		Nominal	Range	Units	Distribution	Source
Shear Modulus,	μ	12.4		GPa		2.5.1
Young's Modulus	, E	31.0		GPa		2.5.1
Poisson's Ratio), V	0.25				2.5.1
S	Sense: Detwe	ny. 1989. en Predict	Advances ed and M	in Resc easured	olution of Discr In Situ Room Cl	epancies osures.
ŝ	SAND8 Labor	8-2948. Al atories.	buquerqu	e, NM: S	Sandia National	

Creep Constants - MDCF Model (Halite)

Parameter	Nominal	Range** Units D	istribution**	Source
A ₁	8.386 E22	/s		2.5.2
Q1	25	Kcal/mol		2.5.2
n ₁	5.5			2.5.2
B ₁	6.086 E06	/s		2.5.2
A ₂	9.672 E12	/s		2.5.2
Q ₂	10	Kcal/mol		2.5.2
n ₂	5.0			2.5.2
B ₂	3.034 E-2	/s		2.5.2
σο	20.57	MPa		2.5.2
q	5.335 E03			2.5.2
m	3.0			2.5.2
K ₀	6.275 E05			2.5.2
		-1/24-		

с	9.198 E-3	/T	2.5.2
α_w	-17.37		2.5.2
β_w	-7.738		2.5.2
α _r	-2.69		2.5.3
β _r	-1.00		2.5.3
R	1.987	cal/mol-deg	2.5.4

**Distribution functions for the halite (clean salt) parameters have been determined [2.5.1]; however, the evaluation procedure is complicated and the results cannot be presented in tabular form.

Source(s): 2.5.1. Fossum, A. F., T. W. Pfeifle, K. D. Mellegard, and D. E. Munson. 1994. Probability Distributions for Parameters of the Munson-Dawson Salt Creep Model. Proc. 1st N. Am. Rock Mechanics Symp. Brookfield, MA: pp. 715-722. 2.5.2. Munson, D. E., A. F. Fossum, and P. E. Senseny. 1989. Advances in Resolution of Discrepancies between Predicted and Measured, In Situ Room Closures. SAND88-2948. Albuquerque, NM: Sandia National Laboratories. 2.5.3. WIPP Project. 1992. Preliminary Performance Assessment for the Waste Isolation Pilot Plant, December 1992, Volume 3: Model Parameters. SAND92-0700/3. Albuquerque, NM: Sandia National Laboratories. pp. A109-A123. 2.5.4. Munson, D. E., and P. R. Dawson. 1979. Constitutive Model for the Low Temperature Creep of Salt (with Application to WIPP). Sand79-1853. Albuquerque, NM: Sandia National Laboratories. 2.5.5. Fossum, A. F., and D. E. Munson. 1995. Reliability Assessment of Underground Shaft Closure. Proc. 10th Eng. Mech. Conf. New York, NY: ASCE. pp. 345-348. 2.5.6. Munson, D. E. 1979. Preliminary Deformation-Mechanism Map for Salt (with Application to WIPP). SAND79-0076. Albuquerque, MN: Sandia National Laboratories. 2.5.7. Fossum, A. F., G. D. Callahan, L. L. Van Sambeek, and P. E. Senseny. 1988. How Should One-Dimensional Laboratory Equations be Cast into Three-Dimensional Form? Proc. 29th U. S. Symp. on Rock Mech. Brookfield, MA: Balkema. pp. 35-41. 2.5.8. Munson, D. E., and P. E. Dawson. 1982. A Transient Creep Model for Salt during Stress Loading -2/24-

Creep Constants - MDCF Model (Argillaceous Halite)

Parameter	Nominal	Range** Units	Distribution**	Source	
A1	1.407 E23	/s		2.5.2	
Q1	25	Kcal/mo	1	2.5.2	
n ₁	5.5			2.5.2	
B ₁	8.998 E06	/s		2.5.2	
A ₂	1.314 E13	/s		2.5.2	
Q2	10	Kcal/mo	1	2.5.2	
n ₂	5.0			2.5.2	
B ₂	4.289 E-2	/s		2.5.2	
σ₀	20.57	MPa		2.5.2	

-3/24-

đ	5.335 E03		2.5.2
m	3.0	/T	2.5.2
K ₀	2.470 E06		2.5.2
C	9.198 E-3		2.5.2
α _w	-14.96		2.5.2
β _w	-7.738		2.5.2
α _r	-2.69		2.5.3
β _r	-1.00		2.5.3
R	1.987	cal/mol-deg	2.5.4

**Distribution functions for the argillaceous salt parameters have been determined [2.5.5]; however, the evaluation procedure is complicated and the results cannot be presented in tabular form.

2.5.1. Fossum, A. F., T. W. Pfeifle, K. D. Mellegard, Source(s): and D. E. Munson. 1994. Probability Distributions for Parameters of the Munson-Dawson Salt Creep Model. Proc. 1st N. Am. Rock Mechanics Symp. Brookfield, MA: pp. 715-722. 2.5.2. Munson, D. E., A. F. Fossum, and P. E. Senseny. 1989. Advances in Resolution of Discrepancies between Predicted and Measured In Situ Room Closures. SAND88-2948. Albuquerque, NM: Sandia National Laboratories. 2.5.3. WIPP Project. 1992. Preliminary Performance Assessment for the Waste Isolation Pilot Plant, December 1992, Volume 3: Model Parameters. SAND92-0700/3. Albuquerque, NM: Sandia National Laboratories. pp. A109-A123. 2.5.4. Munson, D. E., and P. R. Dawson. 1979. Constitutive Model for the Low Temperature Creep of Salt (with Application to WIPP). Sand79-1853. Albuquerque, NM: Sandia National Laboratories. 2.5.5. Fossum, A. F., and D. E. Munson. 1995. Reliability Assessment of Underground Shaft Closure. Proc. 10th Eng. Mech. Conf. New York, NY: ASCE. pp. 345-348. 2.5.6. Munson, D. E. 1979. Preliminary Deformation-Mechanism Map for Salt (with Application to WIPP). SAND79-0076. Albuquerque, MN: Sandia National Laboratories. 2.5.7. Fossum, A. F., G. D. Callahan, L. L. Van Sambeek, and P. E. Senseny. 1988. How Should One-Dimensional Laboratory Equations be Cast into Three--4/24-

 Dimensional Form? Proc. 29th U. S. Symp. on Rock Mech. Brookfield, MA: Balkema. pp. 35-41. 2.5.8. Munson, D. E., and P. E. Dawson. 1982. A Transient Creep Model for Salt during Stress Loading and Unloading. SAND82-0962. Albuquerque, NM: Sandia National Laboratories. 2.5.9. Mellegard, K. D., G. D. Callahan, and P. E. Senseny. 1992. Multiaxial Creep of Natural Rock Salt. SAND91-7083. Albuquerque, NM: Sandia National Laboratories. 2.5.10. Callahan, G. D., A. F. Fossum, and D. K. Svalstad. 1986. Documentation of SPECTROM-32: a Finite Element Thermomechanical Stress Analysis Program. RSI- 0269. Rapid City, SD: RE/SPEC Inc. 2.5.11. Biffle, J. H. 1993. JAC3D-A Three-Dimensional Finite Element Computer Program for the Nonlinear Quasistatic Response of Solids with the Conjugate Gradient Method. SAND87-1305. Albuquerque, NM: Sandia National Laboratories. 2.5.12. Munson, D. E., and K. L. DeVries. 1991. Development and Validation of a Predictive Technology for Creep Closure of Underground Rooms in Salt. Proc. 7th International Congress on Rock Mechanics. Rotterdam, The Netherlands: A. A. Balkema. pp. 127- 134. [SAND90-1147]. 2.5.13. Munson, D. E., K. L. DeVries, D. M. Schiermeister, W. F. DeYonge, and R. L. Jones. 1992. Measured and Calculated Closures of Open and Brine Filled Shafts and Deep Vertical Boreholes in Salt. Proc. 33rd U. S. Symp. on Rock Mechanics. Brookfield, MA: A. Balkema. pp. 439-448. 2.5.14. Munson, D. E., J. R. Weatherby, and K. L.
Proc. 33rd U. S. Symp. on Rock Mechanics. Brookfield, MA: A. A. Balkema. pp. 439-448. 2.5.14. Munson, D. E., J. R. Weatherby, and K. L. DeVries. 1993. Two- and Three-Dimensional Calculations of Scaled In Situ Tests using the M-D Model of Salt Creep. Int'l J. Rock Mech. Min. Sci. & Geomech. Abstr. 30. pp. 1345-1350.

Fracture Constants - MDCF Model (Halite)

Parameter	Median	Range	Units	Distribution	Source
$ \begin{array}{l} x_1 \\ x_2 \\ x_{3s} \\ x_{3t} \\ x_4 \\ \chi_s (\sigma > \sigma_0) \\ \chi_s (\sigma < \sigma_0) \end{array} $	6 9 5.5 40 3 231.0 351.1		MP a MP a		2.5.152.5.152.5.152.5.152.5.152.5.152.5.152.5.15

-5/24-

Xt	15.15	MPa	2.5.15
x6	0.75		2.5.15
X7	1.0	MPa	2.5.15
X8	0.1		2.5.15
CO	5 E04		2.5.15
C2	850		2.5.15
Сз	10		2.5.15
C4	6		2.5.15
C5	25	Мра	2.5.15
to	1	S	2.5.15
n3	3		2.5.15
ω 0	<u>≥</u> 1 E-4		2.5.15
Source(S)	<pre>2.5.15. Chan, K. S. F. Bodner. 199 Argillaceous Salt press). [SAND94-3 2.5.16. Chan, K. D. E. Munson. 199 Flow and Damage E Compression. Mech 2.5.17. Chan, K. S. R. Bodner, and Nonassociated Ine Plasticity. 10: 2.5.18. Chan, K. D. E. Munson. 199 Damage Healing in Rock Mechanics. R 2.5.19. Fossum, A D. E. Munson. 199 Constitutive Mode Evolution in Soli Int'l J. Rock Mec pp. 1341-1344. 2.5.20. Chan, K. A. F. Fossum, and Mechanics Approac Structure. Proc. "95). Berlin: Spr 2.5.21. Munson, D N. S. Brodsky, an Theoretical Calcu of Damage Around Symp. on Rock Mec 491-496.</pre>	 S., D. E. Munson, A. F. 5. Inelastic Flow Behav. Int'l J. Damage Mechai 017]. S., S. R. Bodner, A. F. 2. A Constitutive Model volution in Solids under Mat. 14.: Elsevier. p S., N. S. Brodsky, A. F D. E. Munson. 1994. Dam lastic Flow in Rock Salic Elsevier Science. pp. 6 S., A. F. Fossum, S. R. 5. Constitutive Represer WIPP Salt. Proc. 35th otterdam: Balkema. pp. F., N. S. Brodsky, K. 3. Experimental Evaluat 1 for Inelastic Flow and ds Subjected to Triaxia h. Min. Sci. & Geomech. S., K. L DeVries, S. R. D. E. Munson. 1995. A h to Life Prediction fo ICES '95, (Computationa inger. pp. 1140-1145. E., D. J. Holcomb, K. d K. S. Chan. 1995. Cor lations and Experimenta a Shaft in Salt. Proc. 	Fossum, and ior of nics (in Fossum, and for Inelastic r Triaxial op. 1-14. . Fossum, mage-Induced t. Int'l J. of 23-642. Bodner, and ntation of U. S. Symp. on 485-490. S. Chan, and ion of a d Damage l Compression. Abstr. 30: Bodner, Damage r a Salt l Mechanics L. DeVries, relation of l Measurements 35th U. S. ema. pp.

-6/24-

Parameter	Nominal	Range	Units	Distribution	Source
X1 X2 X3s X3t X4	6 9 5.5 40 3				2.5.15 2.5.15 2.5.15 2.5.15 2.5.15 2.5.15
γ_{α} ($\sigma > \sigma_{\alpha}$)	231.0		MPa		2.5.15
χ_{2} ($\sigma < \sigma_{0}$)	351.1		MPa		2.5.15
$\chi_{s} = 0,$	15.15		MP a		2 5 15
лс Хб	0.75				2.5.15
×7	1.0		MPa		2.5.15
x8	0.1				2.5.15
	5 54				2 5 1 5
C2	850				2.5.15
C3	10				2.5.15
C4	6				2.5.15
C5	25		Mpa		2.5.15
to	1		S		2.5.15
n3	3				2.5.15
ω 0	≥1 E-4				2.5.15
p_1 ($\rho_a > 0.0$)	20.6				2.5.15
Source(s) 2.5.15 S. F. Argill press, 2.5.16 D. E. Flow a Compre 2.5.17 S. R. Nonass Plasti 2.5.18 D. E. Damage Rock M 2.5.19	5. Chan, K. Bodner. 19 Laceous Sal SAND94-30 5. Chan, K. Munson. 19 and Damage ession. Mec 7. Chan, K. Bodner, an sociated In Lcity. 10 8. Chan, K. Munson. 19 9. Healing i Mechanics. 9. Fossum,	S., D. 95. Inel t. Int'l 17). S., S. 92. A Co Evolutio ch. Mat. S., N. d D. E. elastic Elsevie S., A. 95. Cons n WIPP S Rotterda A. F., N	E. Munso astic F. J. Dama R. Bodne nstitution n in Sol 14.: El S. Brods Munson. Flow in Flow in Flow in titutive alt. Pro m: Balke . S. Bro	on, A. F. Fossum low Behavior of age Mechanics (i er, A. F. Fossum ive Model for In lids under Triax sevier. pp. 1-14 sky, A. F. Fossu 1994. Damage-In Rock Salt. Int' ce. pp. 623-642. Im, S. R. Bodner e Representation oc. 35th U. S. S ema. pp. 485-490 odsky, K. S. Cha	n, and n, and elastic ial 4. m, duced l J. of , and of ymp. on n, and
		-7/24-			

Fracture Constants - MDCF Model (Argillaceous Halite)

A-29

D. E. Munson. 1993. Experimental Evaluation of a Constitutive Model for Inelastic Flow and Damage Evolution in Solids Subjected to Triaxial Compression. Int'l J. Rock Mech. Min. Sci. & Geomech. Abstr. 30: pp. 1341-1344. 2.5.20. Chan, K. S., K. L DeVries, S. R. Bodner, A. F. Fossum, and D. E. Munson. 1995. A Damage Mechanics Approach to Life Prediction for a Salt Structure. Proc. ICES '95, (Computational Mechanics '95). Berlin: Springer. pp. 1140-1145. 2.5.21. Munson, D. E., D. J. Holcomb, K. L. DeVries, N. S. Brodsky, and K. S. Chan. 1995. Correlation of Theoretical Calculations and Experimental Measurements of Damage Around a Shaft in Salt. Proc. 35th U. S. Symp. on Rock Mechanics. Rotterdam: Balkema. pp. 491-496.

Discussion:

The constitutive model for salt creep and fracture now recommended for use in WIPP structural calculations is the most recent formulation of the Multimechanism Deformation Coupled Fracture (MDCF) model [2.4.15]. This MDCF model is to be used in those cases where the occurrence of damage or microfractures is important, such as in the damaged rock zone (DRZ). However, in those cases where only the continuum creep process is important and the damage contribution of the MDCF model can be suppressed, the MDCF model reduces identically to that of the original extended Multimechanism Deformation (M-D) model of creep [2.5.1]. Thus, previous calculations with the extended M-D model are included within the framework of the now recommended MDCF model.

The clean and argillaceous salt (halite) material parameters for creep and fracture given above are the nominal or engineering values, as obtained through fitting of data in a consistent manner and as governed by theoretical guidance and restrictions. These parameter values are consistent with, but not identical to, the median and mean values of distribution functions obtained, where possible, from the data. The determination of distribution functions from sparse creep databases has been accomplished for both clean [2.5.1] and argillaceous [2.5.5] salt. The remainder of the material parameters are nominal or engineering values.

The current creep and fracture model incorporates and is an extension of the Modified Multimechanism Deformation (M-D) steady state creep model, with workhardening/recovery transients, proposed in PA 92 [2.5.3] for WIPP structural calculations. The fracture aspect of the MDCF model [2.5.15] now permits the tertiary, or accelerated, creep transient response to be modeled in addition to the steady state with workhardening/recovery transients. The MDCF

-8/24-

model is based on the mechanism maps for creep [2.5.6] and fracture [2.5.16] as they pertain to the temperature, stress, and pressure conditions of the potential WIPP repository. From the mechanism maps, the individual mechanisms that can be expected to contribute to the WIPP storage room creep response are (1) a high stress dislocation slip, (2) a mechanistically undefined but empirically specified, low temperature, low stress creep, and (3) a high temperature, low stress dislocation climb creep. The three fracture mechanisms are (1) low stress, stress rupture, (2) high stress, brittle intergranular fracture, and (3) low confining pressure, cleavage fracture. In the MDCF model [2.5.15], the creep strains add directly to the fracture induced strains to give the overall total creep strain. Coupling occurs because the formation of damage (microfractures) reduces the effective load bearing area and hence increases the effective stress driving the creep process. Further coupling occurs because the evolution of the damage depends upon the transient creep strain rate [2.5.17].

This coupled creep and damage induced flow behavior can be described in terms of the generalized kinetic equation [2.5.7, 2.5.18]

$$\dot{\varepsilon}_{ij}^{I} = \frac{\partial \sigma_{eq}^{c}}{\partial \sigma_{ij}} \dot{\varepsilon}_{eq}^{c} + \frac{\partial \sigma_{eq}^{\omega_{s}}}{\partial \sigma_{ij}} \dot{\varepsilon}_{eq}^{\omega_{s}} + \frac{\partial \sigma_{eq}^{\omega_{t}}}{\partial \sigma_{ij}} \dot{\varepsilon}_{eq}^{\omega_{t}} + \frac{\partial \sigma_{eq}^{h}}{\partial \sigma_{ij}} \dot{\varepsilon}_{eq}^{h}$$
(1)

where $\dot{\varepsilon}_{ij}^{I}$ is the total inelastic strain rate and σ_{eq}^{C} , $\sigma_{eq}^{\omega_{S}}$, and $\sigma_{eq}^{\omega_{f}}$ are the power-conjugate equivalent stress measures for dislocation creep, shear damage, and tensile damage, respectively. The $\dot{\varepsilon}_{eq}^{C}$, $\dot{\varepsilon}_{eq}^{\omega_{S}}$, and $\dot{\varepsilon}_{eq}^{\omega_{f}}$ are the conjugate equivalent inelastic strain rates. The last term in Eq. 1 concerns the healing aspects of damage. Although experimental [2.5.19] and constitutive modeling [2.5.18] efforts to define the healing response have been completed, the results have not yet been incorporated into the numerical codes and will not be discussed further in this document.

<u>Continuum Creep</u>: The creep portion of Eq. 1 is treated first. Here, we follow directly the development given by Munson et al. [2.5.1] and PA 92 [2.5.3] for the extended M-D model, but make the straightforward modifications to the stress terms necessary for the MDCF model [2.5.15]. The kinetic equation for representing the creep rate, $\dot{\varepsilon}_{ea}^{c}$, resulting from dislocation mechanisms is given by

$$\dot{\varepsilon}_{eq}^{C} = F \sum_{i=1}^{3} \dot{\varepsilon}_{S_{i}}$$
⁽²⁾

-9/24-

where F is the function representing transient behavior and the summation of $\dot{\varepsilon}_{S_i}$ is the sum of the steady state creep rates of the three thermally activated mechanisms from the mechanism map that are controlling for the stress and temperature conditions of the WIPP repository.

The steady state creep rates of the individual mechanisms are [2.5.1]

$$\dot{\varepsilon}_{s_1} = A_1 \, e^{-Q_1 / RT} \left(\frac{\sigma_{eq}^c}{\mu(1-\omega)} \right)^{n_1} \tag{3a}$$

$$\dot{\varepsilon}_{s_2} = A_2 e^{-Q_2 / RT} \left(\frac{\sigma_{eq}^C}{\mu(1-\omega)} \right)^{n_2}$$
(3b)

$$\dot{\varepsilon}_{s_3} = H \left(B_1 e^{-Q_1/RT} + B_2 e^{-Q_2/RT} \right) \sinh \left[\frac{q \left(\frac{\sigma_{eq}^C}{(1-\omega)} - \sigma_0 \right)}{\mu} \right]$$
(3c)

where the A_i 's and B_i 's are constants; Q_i 's are the activation energies; T is the absolute temperature; R is the universal gas constant; μ is the shear modulus; n_i 's are the stress exponents; q is a stress constant; and σ_0 is the stress limit of the dislocation slip mechanism. H is the Heaviside function with an argument of $[(\sigma^{c}_{eq}/(1-\omega)) - \sigma_{0}]$. The damage, ω , is coupled into these rate equations through a term in the denominator of the stress term which represents the decrease in load bearing area with damage [2.5.15]. The dislocation climb mechanism, designated by subscript 1, dominates at low stress and high temperature. The undefined mechanism, designated by subscript 2, although it has no associated micromechanical model, is well defined empirically on the basis of laboratory testing and dominates at low stress and temperatures. This mechanism is also the most likely controlling mechanism over most of the range of the WIPP underground conditions. The glide mechanism, denoted by subscript 3, is dominant at high stress for all temperatures.

The transient function, F, has been developed by considering the change in strain rate with strain, during either workhardening or recovery, as the transient strain evolves to a steady state condition. The transient response is described in terms of an

-10/24-

internal variable, ζ , whose value increases in workhardening and decreases in recovery to the transient strain limit, ε_{*}^{*} . Thus, the transient function is composed of a workhardening branch, an equilibrium branch, and a recovery branch [2.5.8], and is given by

$$F = \begin{cases} \exp\left[\Delta\left(1-\frac{\zeta}{\varepsilon_{i}^{*}}\right)\right]^{2} , & \zeta \leq \varepsilon_{i}^{*} \\ 1 & , & \zeta = \varepsilon_{i}^{*} \\ \exp\left[-\delta\left(1-\frac{\zeta}{\varepsilon_{i}^{*}}\right)\right]^{2} , & \zeta \geq \varepsilon_{i}^{*} \end{cases}$$
(4)

where Δ and δ represent the workhardening and recovery parameters, respectively, and ζ is the internal state variable. Temperature dependence of the transient stain limit, ε_{i}^{*} , is represented by

$$\varepsilon_{t}^{*} = K_{0} e^{CT} \left[\frac{\sigma_{eq}^{C}}{\mu(1-\omega)} \right]^{m}$$
(5)

where K_0 , c, and m are constants. The evolution rate of the internal state variable, ζ , is governed by

$$\dot{\zeta} = (F-1)\dot{\varepsilon}_s \tag{6}$$

which diminishes to zero as the steady state condition is achieved.

The conjugate equivalent stress measure, σ_{eq}^c , for non-dilatant continuum creep flow resulting from dislocation mechanisms is the Tresca equivalent stress,

$$\sigma_{eq}^{c} = \left|\sigma_{1} - \sigma_{3}\right| \tag{7}$$

where σ_1 and σ_3 are the maximum and minimum principal stresses, respectively. The Tresca equivalent stress measure is preferred over the von Mises measure because experimental creep measurements of the flow surface and inelastic strain rate vector are in better agreement with the former measure [2.5.9].

Note that Eqs. 2-7 represent the continuum creep part of the

MDCF model and, when ω is zero, reduces to the M-D model presented in PA 92 [2.5.3]. The ω appearing in Eqs. 2-7 is the Kachanov damage variable and when represented by an appropriate evolutionary equation describes the effect on continuum creep caused by an increase in stress through a reduction of load bearing area.

Initially, the continuum creep behavior as given by the extended M-D model was incorporated into both a two-dimensional finite element code, SPECTROM-32 [2.5.10], and a three-dimensional finite element code, JAC-3D [2.5.11]. These codes and the model have been used to simulate, with success, the measured room closure of a number of large scale in situ tests, in both two-dimensional [2.5.12, 2.5.13] and three-dimensional [2.5.14] geometries.

As indicated in the tables, the distribution functions of the critical parameters have been determined for clean [2.5.2] and argillaceous salt [2.5.5]. These distribution functions were used further with Fast Probability Integration methods to demonstrate the calculation of distribution functions for shaft closure.

Fracture: The fracture processes are considered as separate mechanisms, distinct from those of dislocation mechanism induced, nondilatant strain. However, the mechanisms are coupled in the process of salt deformation and the strains attributed to the dislocation induced strain and the fracture induced strain are additive. In the fracture process, microfractures, envisioned to preexist or to be induced during salt creep, are considered to exhibit sliding by shear during creep at low or zero confining pressure, resulting in a deviatoric strain rate. Furthermore, some of the sliding microfractures may develop wing-tip cracks, whose opening leads to a dilational strain rate. Thus, fracture response of salt exhibits both deviatoric and dilational characteristics. Opening of the cracks is logically a pressure dependent process, which causes the damage induced inelastic flow to depend upon the pressure [2.5.15, 2.5.16].

The kinetic equation of damage induced inelastic flow is given by [2.5.15, 2.5.17]

$$\dot{\varepsilon}_{eq}^{\omega_i} = F^{\omega_i} \quad \dot{\varepsilon}_s^{\omega_i} \tag{8}$$

where i = s or t for shear or tensile damage, respectively, and

$$F\omega_{s} = F \exp\left(\frac{c_{4}(\sigma_{eq}^{c} - c_{5})}{\sigma_{0}}\right)$$
(9a)

and

-12/24-

$$F\omega_{t} = F \exp\left(\frac{c_{4}(\sigma_{eq}^{\omega_{t}} - c_{5})}{\sigma_{0}}\right)$$
(9b)

are the transient functions for shear and tensile damage induced flow, respectively. The kinetic equations for the flow, $\dot{\varepsilon}_{S}^{\omega_{i}}$, during steady state creep are

$$\dot{\varepsilon}_{S}^{\omega_{i}} = c_{1}\omega_{0}e^{c_{1}\omega}\left[\sinh\left(\frac{c_{2}\sigma_{eq}^{\omega_{i}}H(\sigma_{eq}^{\omega_{i}})}{(1-\omega)(1-\rho_{e})}\right)\right]^{a_{3}}$$
(10a)

with i = s or t, for shear and tensile damage, respectively, and

$$c_1 = c_0 \left(B_1 \, e^{-Q_1 / RT} + B_2 \, e^{-Q_2 / RT} \right) \tag{10b}$$

where c_0 , c_2 , c_3 , c_4 , c_5 and n_3 are material constants. The initial damage, ω_0 , is either an assumed small value (0.0001 is used) or the actual initial value of the damage variable, ω . The B_i's and Q_i's are the constants for the dislocation slip mechanism. This form of kinetic equations allows $\dot{\varepsilon}_i^{\omega_i}$ to exhibit a transient

behavior by virtue of the transient function, $F\omega_i$, which is directly coupled to the transient function, F, for creep.

Damage developmenc is described by the damage evolution equation [2.5.15]

$$\dot{\omega} = \frac{x_4}{t_0} \left[\ln\left(\frac{1}{\omega}\right) \right]^{\frac{x_4+1}{x_4}} \left\{ \left[\frac{\sigma_{eq}^{\omega_e} H(\sigma_{eq}^{\omega_e})}{(1-\rho_e)\chi_e} \right]^{x_{3e}} + \left[\frac{\sigma_{eq}^{\omega_e} H(\sigma_{eq}^{\omega_e})}{(1-\rho_e)\chi_e} \right]^{x_{3y}} \right\} - h(\omega, T, I_1)$$
(11)

where x_{3i} , x_4 , x_5 , χ_i (with i = s or t for shear or tensile damage, respectively) are material constants, t_0 is a reference time, and $h(\omega, T, I_1)$ is the damage healing function whose exact form remains to be determined. While the last term of Eq. 11 is not treated in this memo because it is not yet ready for inclusion in the model, the appropriate form of $h(\omega, T, I_1)$ for WIPP salt has been a subject of experimental [2.5.19] and theoretical [2.5.18] investigations.

The use of the scalar damage variable, ω , for representing creep damage due to sliding of microfractures is valid as long as the microfractures are randomly oriented. Thus, shear induced damage may be reasonably described in terms of a scalar quantity.

On the other hand, wing tip cracks typically develop and align with a preferential direction parallel to the minimum compressive stress. Such a flow anisotropy is not normally utilized in the modeling, even though a method has been developed for its treatment [2.5.15]. This special treatment is not considered further, here.

The damage evolution of Eq. 11 is generally integrated with respect to time after loading. This requires some initial value of damage. Thus, ω_0 is assumed equal to 0.0001, if there is no actual damage, or is taken as the actual amount of preexisting damage, if there is initial damage. For creep under constant triaxial compression or extension and with no initial damage (or healing), integration of Eq. 11 gives

$$\omega = \exp\left[-\left(\frac{\chi_{s}^{x_{u}}t_{0}}{\left[\sigma_{aq}^{\omega_{s}}H(\sigma_{aq}^{\omega_{s}})\right]^{x_{u}}t}\right)^{x_{4}}\right]$$
(12)

at some elapsed time, t, after loading.

The conjugate equivalent stress measure, $\sigma_{eq}^{\omega_s}$, for the shear form of damage, as required in the kinetic equation, Eq. 10a, and in the damage evolution equation, Eq. 11, is given by

$$\sigma_{eq}^{\omega_{s}} = \left|\sigma_{1} - \sigma_{3}\right| - f x_{2} x_{7} sgn(I_{1} - \sigma_{1}) \left[\frac{I_{1} - \sigma_{1}}{3x_{7} sgn(I_{1} - \sigma_{1})}\right]^{x_{s}}$$
(13)

where I_1 is the first invariant of the Cauchy stress, the x_i 's are material constants, and the σ_i 's are principal stresses. Here sgn() is the signum function. The influence of the argillaceous particles in the salt matrix is to act as local sites of stress concentration which effectively lower the confining pressure. Additional microfractures can then form at the sites. This is represented as a linear approximation to a more detailed function [2.5.15], as

$$f = 1 - p_1 \rho_a \tag{14}$$

where p_1 is a material constant and ρ_a is the argillaceous content by volume.

Because the damage induced inelastic flow was found to be nonassociated [2.5.17], a different conjugate equivalent stress measure, $\left[\sigma_{eq}^{\omega_{e}}\right]_{f}$, is used in conjunction with Eq. 1 to obtain the flow law. Thus, the nonassociated flow for shear induced damage

-14/24-

is given by

$$\left[\sigma_{eq}^{\omega_{r}}\right]_{f} = \left|\sigma_{1} - \sigma_{3}\right| - \frac{x_{2}x_{g}}{3}\left[I_{1} - \sigma_{1}\right]$$
(15)

where x_8 is a constant.

The conjugate equivalent stress measure, $\sigma_{eq}^{\omega_i}$, for the tensile form of damage is given by

$$\sigma_{sq}^{\omega_i} = -x_1 \sigma_3 H(-\sigma_3) \tag{16}$$

where x_1 is a material constant and H is the Heaviside function with a least principal stress argument, σ_3 , which is a tensile stress.

The fracture aspects have been incorporated into the finite element codes, SPECTROM 32 [2.5.10] and JAC3D [2.5.11]. The MDCF model has been used to simulate the formation of the damaged rock zone (DRZ) around a typical storage room [2.5.20]. This simulation also predicts, rather crudely, the life to failure of the room. The model has also been used to predict the formation of the DRZ around the air intake shaft for comparison to measured ultrasonic quantities indicative of damage [2.5.21].

Elastic Constants - R-M Model (Halite and Argillaceous Halite)

Parameter*	Nominal	Range	Units	Distribution	Source
Shear Modulus, μ	0.992		GPa		2.5.22
Young's Modulus, E	2.480		GPa		2.5.22
Bulk Modulus, K	1.656		GPa		2.5.22
Poisson's Ratio, V	0.25				2.5.23

Source(s): 2.5.22. Morgan, H. S., C. M. Stone, and R. D. Krieg. 1985. The Use of Field Data to Evaluate and Improve Drift Response Model for the Waste Isolation Pilot Plant (WIPP). Proc. 26th U. S. Symp. on Rock Mechanics. Boston, MA: Balkema. pp. 769-776. 2.5.23. Krieg, R. D. 1984. Reference Stratigraphy and Rock Properties for the Waste Isolation Pilot Plant (WIPP) Project. SAND83-1908. Albuquerque, NM: Sandia National Laboratories.

*Note that any two independent elastic constants are sufficient to define the response, with all the others simply derived from

the two given values.

Creep Constants - R-M Model (Clean Halite)

Parameter	Nominal	Range	Units	Distribution	Source
A Q n	1.66 E14 12 4.9		/s Kcal/m	ol	2.5.24 2.5.23 2.5.23
Source(s):	2.5.23. Krieg, Rock Properties (WIPP) Project. National Labora 2.5.24. Engarta parameter is da in Krieg [2.5.3 Laboratories. 2.5.25. Stone, Beisinger. 198 Program for the Inelastic Resp 1618. Albuquer	R. D. 19 for the SAND83- atories. ner, B. erived f 23]. Alb C. M., 5. SANCH e Quasis onse of que, NM:	984. Refe Waste 1908. A L. and D rom valu uquerque R. D. Kr O - A Fi tatic, I Two-Dime Sandia	erence Stratigra Isolation Pilot Ibuquerque, NM: 0. E. Munson. 19 19 es of D, u, and 19 es of D, u, and 10 e	aphy and Plant Sandia 992. This In found Itional Computer Dn, SAND84- atories.

Creep Constants - R-M Model (Argillaceous Halite)

Parameter	Nominal	Range	Units	Distribution	Source
A Q n	4.99 E14 12 4.9		/s Kcal/m	ol	2.5.24 2.5.23 2.5.23
Source(s):	2.5.23. Krieg, Rock Properties (WIPP) Project. National Labora 2.5.24. Engarta parameter is do in Krieg [2.5.25] Laboratories. 2.5.25. Stone, Beisinger. 1982 Program for the Inelastic Respondent	R. D. 19 for the SAND83- atories. ner, B. 1 erived f: 23]. Alba C. M., 1 5. SANCHG e Quasist onse of f que, NM:	84. Refe Waste 1 1908. A L. and D rom valu uquerque R. D. Kr D - A Fi tatic, I Two-Dime Sandia	erence Stratigra Isolation Pilot Ibuquerque, NM: D. E. Munson. 19 Des of D, u, and C, NM: Sandia Na cieg, and Z. E. Inite Element, C Large Deformatic ensional Solids. National Labora	aphy and Plant Sandia 992. This in found tional Computer on, SAND84- atories.

Discussion:

As is apparent, the Reduced Modulus (R-M) model was developed by an reduction of the elastic modulii of salt [2.5.22]. The elastic constants for this model are obtained by dividing the normal elastic constants by a factor of 12.5, which was obtained by backfitting in situ closure data of the South Drift. Because the reduced modulii values are not within the accepted range of the experimental uncertainty, the reduction is artificial.

The R-M model is based entirely on steady state creep as described by a function of the form of Eq. 3b, which is equivalent to assuming a single thermally activated controlling mechanism. However, evaluation of the parameters of the equation utilized all of the experimental creep data available at the time from both the unknown and climb mechanism regimes of the deformation mechanism map as used in the development of the modified M-D model. As a consequence, the constants do not match those of the steady state portion of the modified M-D model for the unknown mechanism. Because of the use of a single function, the subscripts on the parameters have been dropped.

The general model from which the R-M model was initially taken [2.5.23] also provided for a first order kinetics transient response. The transient part of the model has not been used in WIPP calculations and will not be presented here.

Typically, the R-M model has been used most frequently in conjunction with the SANCHO finite element code [2.5.25]. However, it can be used equally with other finite element codes. In all calculations with the R-M model to date, a von Mises flow criterion has been used.

Parameter	Nominal	Range	Units	Distribution	Source
Specific Heat Coef. Lin. Exp. λ ₃₀₀	862.8 45.0 E-6 5.40		J/kg-de /deg W/m-deg	≥g	2.5.26 2.5.27 2.5.27
γ	1.14				2.5.27
Source(s): 2.5.2 Data Prope Natic 2.5.2 Therm Mater	: 2.5.26. Yang, J. M. 1981. Physical Properties Data for Rock Salt: Chapter 4 - Thermalphysical Properties, NBS Monograph 167. Washington, D.C.: National Bureau of Standards. pp. 205-221. 2.5.27. Sweet, J. N., and J. E. McCreight. 1980. Thermal Conductivity of Rocksalt and Other Geologic Materials for the Site of the Proposed Waste				

Thermal Properties (Halite and Argillaceous Halite)

-17/24-

A-39

Isolation Pilot Plant. SAND79-1665. Albuquerque, NM: Sandia National Laboratories. 2.5.28. Munson, D. E., and H. S. Morgan. 1986. Methodology for Performing Parallel Design Calculations (Nuclear Waste Repository Application) SAND85-0324. Albuquerque, NM: Sandia National Laboratories.

Discussion:

Thermal conductivity is determined from the equation [2.5.28]

$$\lambda = \lambda_{300} \left(\frac{300}{T} \right)^{\gamma} \tag{17}$$

where the temperature, T, is in degrees Kelvin.

2.5.2 Non-Salt Materials

Elastic Constants (Anhydrite)

Parameter*		Nominal	Range	Units	Distribution	Source
Shear Modulu	s, μ	27.8		GPa		2.5.28
Young's Modu Bulk Modulus	lus, E , K	75.1 83.4		GPa GPa		2.5.28 2.5.28
Poisson's Ra	tio, V	0.35				2.5.28
Source(s): 2.5.28. Munson, D. E., and H. S. Morgan. 1986. Methodology for Performing Parallel Design Calculations (Nuclear Waste Repository Application) SAND85-0324. Albuquerque, NM: Sandia National Laboratories.						
*Note that a define the two	ny two the res given	independen ponse, wit values.	t elasti h all th	c consta e others	nts are suffici s simply derived	ent to I from

Elastic Constants (Polyhalite)

Parameter*	Nominal	Range	Units	Distribution	Source	
Shear Modulus, μ	20.3		GPa		2.5.28	
-18/24-						

Young's Modulu Bulk Modulus,	us, E K	55.3 65.8	GPa GPa	2.5.28 2.5.28			
Poisson's Rat:	ίο, ν	0.36		2.5.28			
Source(s): 2.5.28. Munson, D. E., and H. S. Morgan. 1986. Methodology for Performing Parallel Design Calculations (Nuclear Waste Repository Application). SAND85-0324. Albuquerque, NM: Sandia National Laboratories.							
*Note that any define the two of	y two he resp given	independer ponse, wit values.	nt elastic constants are th all the others simply	sufficient to derived from			

Plasticity Parameters - Drucker-Prager Yield Model (Anhydrite)

Parameter	Nominal	Range	Units	Distribution	Source		
a C	0.45 1.35		MPa		2.5.28 2.5.28		
Source(s):	2.5.28. Munson, D. E., and H. S. Morgan. 1986. Methodology for Performing Parallel Design Calculations (Nuclear Waste Repository Application). SAND85-0324. Albuquerque, NM: Sandia National Laboratories.						

Plasticity Parameters - Drucker-Prager Yield Model (Polyhalite)

Parameter	Nominal	Range	Units	Distribution	Source
a C B Source(s):	0.473 1.42 2.5.28. Munson, Methodology for Calculations (N SAND85-0324. Al Laboratories.	D. E., Perform uclear W buquerqu	MPa and H. S ing Para aste Rep e, NM: S	5. Morgan. 1986. Allel Design Dository Applica Sandia National	2.5.28 2.5.28

Discussion:

The Drucker-Prager model is an elastic, perfectly plastic model which has a pressure dependent yield. Typically it is given as
$$\sqrt{J_2} = C - aI_1 \tag{18}$$

where $\sqrt{J_2}$ is the square root of the second invariant of the deviatoric Cauchy stress and I_1 is the first invariant of the Cauchy stress.

Although the Drucker-Prager model has been used extensively to represent anhydrite and polyhalite, the exact nature of the flow of these materials is under further study. In most of the analyses, the mechanical response of the polyhalite can be assumed to be elastic because the polyhalite beds are at large distances from the WIPP horizon. The anhydrite beds however may be very close to the excavations, as in the case of MB139, and it is necessary to determine if the bed material will yield under the condition of the analysis before it may be assumed to be elastic.

Thermal Properties (Anhydrite)

Parameter	Nominal	Range	Units	Distribution	Source
Specific Heat Coef. Lin. Exp.	733.3 20.0 E-6		J/kg-de /deg	¢g	2.5.26 2.5.29
λ ₃₀₀	4.70		W/m-deg	J	2.5.29
γ	1.15				2.5.29
Source(s): 2.5.26 Data f Proper Nation 2.5.27 Therma Materi Isolat Sandia 2.5.28 Method Calcul SAND85 Labora 2.5.29 Conduc of the 0856.	5. Yang, J. For Rock Sa ties, NBS hal Bureau 7. Sweet, J al Conducti tals for th tion Pilot A National 8. Munson, dology for Lations (Nu 5-0324. Alk atories. 9. Moss, M. ctivity of Proposed Albuquerqu	M. 1981 Alt: Chap Monograp of Stand J. N., an vity of Plant. S Laborato D. E., a Perform clear Wa ouquerque , and G Polyhal: Waste Is Laborato	L. Physi oter 4 - oh 167. dards. p nd J. E. Rocksal of the P SAND79-1 ories. and H. S ing Para aste Rep e, NM: S M. Has ite and solation Sandia N	cal Properties Thermalphysica Washington, D.C p. 205-221. McCreight. 1980 t and Other Geo roposed Waste 665. Albuquerque . Morgan. 1986. llel Design ository Applica andia National eman, 1981. The Anhydrite from Pilot Plant. Stational Laborate	l .: logic e, NM: tion). rmal the Site AND81- ories.

-20/24-

Discussion:

The thermal conductivity is determined from Eq. 17 [2/5/28], as given previously.

Thermal Properties (Polyhalite)

Parameter		Nominal	Range	Units	Distribution	Source
Specific Heat Coef. Lin. Ex λ ₃₀₀ γ	р.	890.0 24.0 E-6 0.35 1.14		J/kg-da /deg W/m-dea	a a	2.5.26 2.5.29 2.5.29 2.5.29
Source(s):	2.5.26 Data f Proper Nation 2.5.27 Therma Materi Isolat Sandia 2.5.28 Method Calcul SAND85 Labora 2.5.29 Conduc of the 0856.	5. Yang, J For Rock S Tal Bureau 7. Sweet, 6 1 Conduct als for th als for the als for the als for the als for the als for the als for the als for the als for the als for the als for the als for the als for the als for the als for the als for the al	. M. 198 alt: Chay of Stan of Stan J. N., at ivity of he Site Plant. Laborat D. E., Perform uclear W buquerqu ., and G Polyhal Waste I ue, NM:	1. Physi pter 4 - ph 167. dards. p nd J. E. Rocksal of the P SAND79-1 ories. and H. S ing Para aste Rep e, NM: S M. Has ite and solatior Sandia N	cal Properties Thermalphysica Washington, D.C Dp. 205-221. McCreight. 198 t and Other Geo Proposed Waste 665. Albuquerqu S. Morgan. 1986. Allel Design Dository Applica Sandia National Seman, 1981. The Anhydrite from Dilot Plant. S National Laborat	1 logic le, NM: tion). ermal the Site SAND81- cories.

Discussion:

The thermal conductivity is determined from Eq. 17 [2.5.28], as given previously.

2.5.3 Interbed Mechanical Response Parameter

Parameter		Nominal	Range	Units	Distribution	Source
Coef. Fricti	on	0.2				2.5.1
Source(s):	2.5.1. Sensen	Munson, y. 1989.	D. E., A. Advances	F. Fos in Reso	sum, and P. E. lution of Discre	epancies

Discussion:

The very thin interbeds that occur in the stratigraphy (as given later in Figure 2.5-1) between the major layers of salt, argillaceous salt, anhydrite, and polyhalite. These interbeds consist of either anhydrite or clay, or mixtures of these components. In structural calculations, it is not possible to model these thin interbeds as discrete layers. As a consequence, they are handled as slip planes in the numerical codes. These slip planes have a coefficient of friction assigned to them which appears to be correct based on underground observations.

2.5.4 Non-Material Input Parameters

Initial Overburden Weight (Averaged)

Parameter	Nominal	Range	Units	Distribution	Source
Weight, G	22710		Pa/m		2.5.23
Source(s):	2.5.23. Krieg, Rock Properties (WIPP) Project. National Labora	R. D. 19 for the SAND83- atories.	84. Refe Waste I 1908. Al	erence Stratigra Isolation Pilot Lbuquerque, NM:	phy and Plant Sandia

Discussion:

The lithostatic overburden pressure, P at any depth, H, is given by [2.5.23]

$$P = GH \tag{19}$$

This function uses parameters based on the integrated densities of the overburden as determined from neutron logs [2.5.23]. For the nominal facility depth of 650.45 m below ground surface, the lithostatic pressure is 14.77 MPa. The lithostatic pressure can be adjusted in an appropriate manner for any other horizon.

-22/24-

Initial Rock Temperature at Facility Horizon

Parameter		Nominal	Range	Units	Distribution	Source
Temperature,	T ₀	26.8	+/-0.5	С		2.5.30
Source(s):	2.5.3 J. R. (Room April Natio	0. Munson, Ball. 1987 H): In Sit 1987. SANI nal Laborat	D. E., 1 7. Heated tu Data 1 087-2488 cories.	R. L. Jo d Axisym Report (. Albuqu	nes, D. L. Hoag, metric Pillar Te February 1985 - erque, NM: Sand:	, and est ia

Discussion:

The temperature was obtained from a single thermocouple placed deep in the formation, laterally away from the excavation of the Room H entry.

Local Stratigraphy for Thermal/Structural Numerical Calculations

Parameter	Nominal	Range	Units	Distribution	Source
Stratigraphy	As	given in	Figure	2.5-1	2.5.1
Source(s):	2.5.1. Munson, 1 Senseny. 1989. 2 between Predicto SAND88-2948. All Laboratories.	D. E., A. Advances ed and Me buquerque	F. Fos in Reso asured , NM: Sa	sum, and P. E. lution of Discre In Situ Room Cle andia National	epancies osures.

Discussion:

The recommended calculational stratigraphy is that given by Munson et al. [2.5.1]. This is shown in Figure 2.5-1 and has a local vertical zero referenced to the anhydrite "b" (Clay G). The location of a excavated storage room at the WIPP repository horizon is also shown. The extent of the given stratigraphy is sufficient for calculations involving single rooms, but must checked for adequacy of extent before larger simulations are made.

-24/24-

Rapid City, South Dakota • Albuquerque, New Mexico Pierre, South Dakota • Minneapolis, Minnesota

External Memorandum

To: Dr. B. M. Butcher Sandia National Laboratories Department 6748 Mail Stop 1341 P. O. Box 5800 Albuquergue, NM 87185-5800

cc: C390 TR 2: Model Modification

From: Dr. John D. Osnes ____ D. Osnu Mr. Duane A. Labreche Ducane A Kabueche RE/SPEC Inc. P.O. Box 725 Rapid City, SD 57709-0725

Date: August 29, 1995

Subject: The Effect of Clay Seams and Anhydrite Layers on the Closure of Waste Isolation Pilot Plant Disposal Rooms and Guidelines for Simplifying the Modeled Stratigraphy

1.0 INTRODUCTION

This memorandum documents the results of a numerical study of the effects that clay seams and associated marker beds have on the calculated porosity of Waste Isolation Pilot Plant (WIPP) disposal rooms. In addition, it makes recommendations for simplifying the stratigraphy in future calculations of the disposal room porosity. The Disposal Room Model (DRM) simulates the creep closure of a WIPP disposal room after transuranic (TRU) waste and crushed-salt backfill have been emplaced. The input to the mathematical representations of the DRM consists of parameters that describe the geologic materials surrounding a room, the waste and backfill emplaced in a room, and the gas generation process that results from waste decomposition and corrosion. The output of the DRM simulations consists of stress and displacement fields as a function of time for all materials represented in the problem. From the standpoint of repository system performance assessment, the most important results of DRM simulations are predictions of the void space (porosity) in the room. The interrelationship between void space, time, and gas quantity has been termed a *porosity surface*, the development of which requires multiple DRM simulations and substantial computer resources. Recently, a Sandia memorandum [Butcher and Holmes, 1995] was issued reaffirming the standardized set of input parameters for the DRM. One of the "parameters" is a definition of the local WIPP stratigraphy for use in disposal room modeling. The recommended stratigraphy contains 12 clay seams and 8 marker beds interspersed between layers of argillaceous and clean halite. All of the clay seams and several of the marker beds are relatively thin and from a volume-of-rock perspective, appear to be unimportant. Indeed, almost all of the previous calculations of room porosity (e.g., Weatherby et al. [1991a]; Weatherby et al. [1991b]; Callahan and DeVries [1991]; Stone [1992]; and Labreche et al. [1993]) have been based on "all-salt" models in which the clay seams and marker beds have been omitted.

When considered in light of the additional detail and effort required in the development and solution of a numerical model, the tactic of omitting most, if not all, of the thin layers from the geologic model is understandable. However, the discontinuities in stiffness and strength introduced by these thin layers make them potentially too important to ignore for some aspects of rock behavior without investigating the consequences. Butcher and Holmes [1995] anticipated that simplifications of the stratigraphy probably can be made without adversely affecting the results of DRM simulations, and they concluded by stating that an addendum will be issued to provide guidelines for simplifying the local WIPP stratigraphy for DRM simulations. The objective of this study is to investigate the consequences of simplifying the stratigraphy in calculations of disposal room closure and particularly in room porosity calculations.

A brief description of the problem is provided in Section 2.0. The modeling approach is described in Section 3.0. Section 4.0 contains the results of the numerical simulations in terms of room closures and porosities. A critical review of these results and their implications for the calculation of porosity surfaces are presented in Section 5.0. References cited in this memorandum are listed in Section 6.0. Figures showing the room closures and porosities predicted for each of the stratigraphic variations considered in this study are provided in Attachment A. Attachment B contains a copy of Butcher and Holmes [1995].

2.0 PROBLEM DESCRIPTION

In general terms, the DRM is a mechanical simulation of the creep closure of an infinite array of disposal rooms, each filled with 6,804 drums of TRU waste covered with crushed-salt backfill to within 0.711 m of the roof of the room. Specifications for the DRM are clearly defined in Butcher and Holmes [1995], a copy of which is attached to this memorandum (Attachment B). Consequently, only specific conditions that require clarification or that deviate from the problem description in Butcher and Holmes [1995] are presented in the following subsections.

2.1 STRATIGRAPHIC VARIATIONS

The objective of this study is to assess the effects of simplifying the reference DRM stratigraphy on calculations of room closure and porosity. Consequently, the major deviations from the specifications in Butcher and Holmes [1995] are in the stratigraphy, particularly in the number of clay seams represented in the model. Figure 1 shows the Revised Reference Stratigraphy for DRM simulations that is defined in Butcher and Holmes [1995]. This stratigraphy contains 12 clay seams (A, B, D, E, F, G, H, I, J, K, L, and M, from bottom to top) and 8 marker beds (MB134, MB136, MB138, Anhydrite A, MB139, Anhydrite C, MB140, and MB141, from top to bottom) interspersed between layers of argillaceous and clean halite. The Revised Reference Stratigraphy is taken from Munson et al. [1989] and is reaffirmed in Munson [1992]; it differs from the WIPP Reference Stratigraphy given by Krieg [1984] primarily in the definitions of the argillaceous and clean halite layers.

The Revised Reference Stratigraphy illustrated in Figure 1 is the baseline from which simplifications to the stratigraphy are derived and subsequently assessed with respect to their effect on calculations of room closure and porosity. Most of these simplifications are in the number of clay seams represented in the DRM. In total, seven variations on the Revised Reference Stratigraphy are analyzed in this study. These variations are summarized in Table 1 and are discussed below.

The baseline model is referred to as the "12-Clay Model" because it contains all 12 of the clay seams defined in the Revised Reference Stratigraphy, as well as all of the other stratigraphic details *except Anhydrite C*. Anhydrite C, which lies 10 m below the floor of the disposal room, is omitted from the 12-Clay Model because it is very thin (0.08 m). Krieg [1984] omitted Anhydrite B, which is 0.06-m thick and is less than 2.5 m above the disposal room roof (immediately above Clay G), because "it is too thin to be structurally sound." This omission of Anhydrite B from structural models of WIPP rooms has been maintained in subsequent definitions of the stratigraphy, including the Revised Reference Stratigraphy. Consequently, omitting Anhydrite C from the 12-Clay Model appears justifiable considering its thickness is comparable to the thickness of Anhydrite B and it is located substantially further from the disposal room.

It is assumed *a priori* that the influence of a clay seam on room closure and porosity diminishes with increasing distance between the clay seam and the disposal room. Consequently, the simplifications to the Revised Reference Stratigraphy generally involve eliminating the clay seams furthest from the room to progressively reduce the number of clay seams in the model. In this manner, the 7-Clay, 5-Clay, and 3-Clay Models are derived from the 12-Clay Model, with only the three clay seams (E, F, and G) nearest the disposal room remaining in the 3-Clay Model. The 7 marker beds (omitting Anhydrite C) and the argillaceous and clean halite layers in the 12-Clay Model are all represented in the 7-Clay, 5-Clay, and 3-Clay Models.

Figure 1. Revised Reference Stratigraphy for Disposal Room Models (after Butcher and Holmes [1995]).

Page 5

	Materials ^(a) in Stratigraphic Model							
Stratigraphic Unit	12-Clay	7-Clay	5-Clay	3-Clay	PA Profile	All- Salt	Clean- Salt	
MB134	An	An	An	An	aH	aH	cH	
MB136	An	An	An	An	aH	aH	cH	
Clay M	CS	aH	aH	aH	aH	aH	cH	
Clay L	CS	aH	aH	aH	aH	aH	cH	
MB138	An	An	An	An	An	aH	cH	
Clay K	CS	CS	CS	aH	CS	aH	cH	
Clay J	CS	CS	aH	aH	aH	aH	cH	
Clay I	CS	CS	cH	cH	cH	cH	cH	
Anhydrite A	An	An	An	An	An	cH	cH	
Clay H	CS	CS	CS	cH	CS	cH	cH	
Clay G	CS	CS	CS	CS	аH	aH	cH	
Clay F	CS	CS	CS	CS	aH	aH	cH	
MB139	An	An	An	An	An	aH	cH	
Clay E	cs	CS	CS	CS	CS	aH	cH	
Clay D	CS	aH	aH	aH	aH	aH	cH	
Anhydrite C	aH	aH	аH	aH	aH	aH	cH	
Clay B	CS	аH	aH	aH	aH	аH	cH	
MB140	An	An	An	An	aH	aH	cH	
Clay A	CS	aH	aH	aH	aH	aH	cH	
MB 141	pН	pН	pH	pН	aH	aH	cH	
Argillaceous Halite	aH	aH	aH	aH	aH	aH	cH	
Clean Halite	cH	cH	cH	cH	cH	cH	cH	

Table 1.Variations From Revised Reference Stratigraphy [Butcher and
Holmes, 1995] Modeled in Current Study

 (a) CS = Clay Seam; An = Anhydrite; aH = Argillaceous Halite; cH = Clean Halite; pH = Polyhalite A different simplification of the stratigraphy has been used in the flow and transport models used to assess the undisturbed performance of the WIPP repository and shaft system [WIPP Performance Assessment Department, 1993]. In these models, only the three marker beds closest to a disposal room (MB138, Anhydrite A, and MB139) were represented. Using a similar stratigraphy for mechanical models of the disposal room is desirable so that all of the disposal room models used in future WIPP performance assessments are consistent. Consequently, in this study, another variation on the Revised Reference Stratigraphy is modeled in which only MB138, Anhydrite A, and MB139 and the clay seams beneath them (E, H, and K) are represented. This variation on the stratigraphy is designated the "PA Profile" and is compared to the other stratigraphic models in Table 1. Like the 3-Clay Model, the PA Profile contains three clay seams but they are not the clay seams closest to the disposal room.

Almost all of the previous calculations of room porosity (e.g., Weatherby et al. [1991a]; Weatherby et al. [1991b]; Callahan and DeVries [1991]; Stone [1992]; and Labreche et al. [1993]) have been based on "all-salt" models in which the clay seams and marker beds were omitted. Actually, even the differentiation between clean and argillaceous halite was eliminated in these models, and the salt was modeled using the creep parameters for clean halite even though the vast majority of the salt in the Revised Reference Stratigraphy is classified as argillaceous halite. Consequently, these all-salt models are the extreme simplifications of the Revised Reference Stratigraphy.

Unfortunately, the room closures and porosities calculated previously with all-salt models are not likely to be directly comparable to calculations based on the DRM specifications in Butcher and Holmes [1995] because aspects other than stratigraphy also are substantially different in these models. Among the obvious differences are model geometry (quarter-room versus half-room), compaction characteristics of the TRU waste, and gas generation rates. To independently assess the effects of omitting all of the clay seams and marker beds and the effects of other differences from previous disposal room models, two additional variations on the Revised Reference Stratigraphy are evaluated in this study. In the "All-Salt Model," all of the clay seams and marker beds are omitted, but the clean and argillaceous halite layers in the Revised Reference Stratigraphy are preserved. Hence, most of the All-Salt Model is composed of argillaceous halite. In the second variation, designated the "Clean-Salt Model," not only are the clay seams and marker beds omitted, but all of the salt is modeled using the creep parameters for clean halite. This model bears the most similarity to previous models used for room closure and porosity calculations. Nevertheless, there are distinct differences in the model geometry, TRU waste characteristics, and gas generation rate between the Clean-Salt Model and the models used in previous analyses.

2.2 DISPOSAL ROOM LOCATION

In Butcher and Holmes [1995], there is an inconsistency between the stratigraphic elevations specified in the narrative description and the elevations illustrated in the accompanying figure (which is reproduced in Figure 1 of this memorandum). In the figure, the local or reference zero for the stratigraphy is located at Clay G and the top of MB139 is 7.77 m below Clay G. According to the narrative description of the stratigraphy, the elevation of Clay G is 387.07 m above mean sea level (amsl) and the elevation of the top of MB139 is 379.11 m amsl. Hence, the reported elevation difference between Clay G and the top of MB139 is 7.96 m, not 7.77 m as illustrated in the figure. The absolute elevations are taken from Figure 2.2-2 of Sandia WIPP Project [1992], which is cited as "after Munson et al., 1989." However, none of these elevations, when taken relative to Clay G, agree exactly with the cited reference, which is the source of the illustration of the stratigraphy in Butcher and Holmes [1995] will have to be resolved in future revisions. In the disposal room models in the current study, the distance between Clay G and the top of MB139 is taken to be 7.77 m, the distance illustrated in the figure 1 of this memorandum.

The most critical aspect of the inconsistency in the distance between Clay G and the top of MB139 is that the horizon of the disposal room is specified with respect to these stratigraphic units in Butcher and Holmes [1995]. In the reference, a disposal room is not illustrated in the figure showing the Revised Reference Stratigraphy (the location of experimental Room G is shown instead). The location of the repository floor is specified in the narrative description of the stratigraphy as 6.58 m below Clay G and 1.38 m above the top of MB139. This specification is consistent with a distance of 7.96 m between Clay G and the top of MB139. However, it is not consistent with the distance of 7.77 m that is indicated in the Revised Reference Stratigraphy figure and that is modeled in the current study. The specified distances from the room floor to Clay G and to the top of MB139 cannot both be satisfied in this 7.77-m interval. *Consequently, the specified distance of 1.38 m between the room floor and the top of MB139 is used in this study, as illustrated in Figure 1.* This location of the room with respect to MB139 is consistent with the recent disposal room analyses by DeVries [1994] and Labreche [1995]. However, it places the room floor 6.39 m below Clay G, instead of 6.58 m as specified in Butcher and Holmes [1995].

2.3 DIMENSIONS OF TRU WASTE REGION

Butcher and Holmes [1995] provide a tabulation of the volumes of the disposal room contents and a figure illustrating the dimensions of the room and its contents. However, there is an inconsistency between the tabulated volume of the TRU waste $(1,727.5 \text{ m}^3)$ and the dimensions of the TRU waste region (9.06-m wide by 2.676-m high by 89.10-m long) illustrated in the figure. The tabulated volume is derived from the number of drums per disposal room (6,804) multiplied by the external volume of each drum (0.2539 m³); whereas the dimensions are based on the exterior of the region composed of seven-packs of drums in a disposal room. These exterior dimensions include the space between drums that may be filled with either air or crushed-salt backfill, depending on how and when the backfill is emplaced. The compaction characteristics specified for TRU waste in Butcher and Holmes [1995] are based on the assumed distribution of the contents of individual drums; they do not account for the behavior of either air or crushed-salt backfill between the drums as they are emplaced in a disposal room. Consequently, it is assumed that representing the volume of the drums and their contents is more important in simulating the disposal room closure than representing the exterior dimensions of the region that contains the drums, as well as the air or backfill between them. Based on this assumption, the tabulated volume of the TRU waste (1,727.5 m³) given in Butcher and Holmes [1995] is used to derive the height of the TRU waste region in the twodimensional models in this study. This volume is divided by the disposal room length (91.44 m) and the width of any section across six seven-packs (8.60 m) to yield a height of 2.20 m.

The TRU waste height of 2.20 m that is used in the disposal room models in this study is 0.476 m less than the height of seven-packs of drums stacked three high in a room. In the disposal room models, the additional headspace is modeled as being filled with crushed-salt. This modeling approach reproduces the volume of the crushed-salt backfill in a disposal room if the space between the drums is indeed backfilled in the WIPP repository.

2.4 CONSTITUTIVE MODEL FOR ANHYDRITE

Elastic properties for the anhydrite and polyhalite that comprise the marker beds are specified in Butcher and Holmes [1995]. Although plasticity parameters are not provided, Butcher and Holmes [1995] do note that "the analyst is not required to use an elastic model" for these materials. A preliminary simulation of the 12-Clay Model revealed that an elastic model of the anhydrite marker beds would not yield realistic results. As shown by Figure 2, tensile stresses in excess of 150 MPa were predicted in the anhydrite marker beds near the room (MB138, Anhydrite A, and MB139) within 3 years of excavation of the room. Geologic materials generally have tensile strengths less than 3 MPa, and no geologic material, including anhydrite, can withstand tensile stresses of this magnitude without fracturing.

Krieg [1984] provides plasticity parameters for Drucker-Prager and Mohr-Coulomb representations of the brittle failure of anhydrite and polyhalite; Munson [1992] reiterates these same parameter values for the Drucker-Prager model. However, both the Drucker-Prager and Mohr-Coulomb constitutive models are more representative of the shear failure of geologic materials; whereas the preliminary simulation of the 12-Clay Model indicated that a tensile mode of failure is more likely in the anhydrite marker beds near the disposal room. *Consequently, a limited-tension material model [Zienkiewicz et al., 1968; Osnes and Brandshaug, 1980] that simulates tensile failure was specified for all of the anhydrite marker beds.* The tensile strength of the anhydrite was assumed to be 1 MPa. The only marker bed composed of polyhalite is MB141, and tensile stresses were not predicted in this marker bed in any of the simulations. Consequently, an elastic model was considered adequate to represent the response of polyhalite.

A-55

Figure 2. Least-Compressive Principal Stress Predicted in a Preliminary Simulation of the 12-Clay Model in Which the Anhydrite was Modeled as an Elastic Material.

In the limited-tension material model, the material behaves elastically at stress states in which the least-compressive principal stress is more compressive than the tensile strength of the material. Tensile stresses are limited to values less than or equal to the tensile strength by plastic deformation that redistributes stress to surrounding materials. Modeling the anhydrite marker beds as limited-tension materials reduces the amount of tension they can support, in turn making them more flexible as they bend in response to room closure. The effect of this enhanced flexibility is readily apparent in Figure 3 which compares the vertical room closures predicted in preliminary simulations of the 12-Clay Model with the anhydrite marker beds modeled as elastic and as limited-tension materials. In both simulations, the disposal room was not backfilled with crushed salt, so room closure was not restrained by consolidation of the backfill.

2.5 GAS GENERATION RATE

Although waste decomposition and corrosion are likely to generate gas in WIPP disposal rooms, gas generation is not represented in the DRM simulations in the current study. Gas generation and the associated pressurization of the disposal rooms limit the closure of the rooms. Neglecting gas generation in this study serves to isolate and amplify the effects of the stratigraphic variations on calculations of room closure and porosity.

3.0 MODELING APPROACH

The various models of the stratigraphy described in Section 2.1 were analyzed using the finite-strain formulation in Version 4.06 of the finite element program SPECTROM-32 [Callahan, 1994; Callahan et al., 1990]. Special modeling methodologies were required to simulate the sequence of room excavation and waste and backfill emplacement, and to represent the clay seams. The results of the finite element analyses were assessed and compared in terms of vertical and horizontal room closures and room porosity as functions of time. The finite element model, the special modeling methodologies, and the methods for calculating room closure and porosity are described in the following subsections.

3.1 FINITE ELEMENT MODEL

The same finite element mesh was used to represent all of the stratigraphic variations considered in this study. Figure 4 shows the finite element mesh, which consists of 3,333 nodes in 1,056 eight-noded quadrilateral elements. To simulate the various models of the stratigraphy, the geologic material assigned to the layers of elements corresponding to each stratigraphic unit was changed according to the specifications in Table 1.

Figure 3. Comparison of Vertical Room Closures Predicted in Preliminary Simulations of the 12-Clay Model in Which the Anhydrite Was Modeled as an Elastic or a Limited-Tension Material.

Figure 4. Finite Element Mesh Used to Simulate a Disposal Room in all Variations of the Revised Reference Stratigraphy (Unlabeled Blocks are Argillaceous Halite).

The two-dimensional, plane-strain model represents a vertical cross section that is perpendicular to the long axes of an infinite array of parallel disposal rooms. Vertical planes of symmetry through the room mid-plane and the pillar mid-plane bound the model on the left and right, respectively. Based on the symmetry conditions, horizontal displacement was not permitted along these boundaries.

The vertical extent of the finite element model extends approximately 160 m above and below the 107-m high section of the Revised Reference Stratigraphy that was defined in Butcher and Holmes [1995] and that is shown in Figure 1. This extension was deemed necessary because the simulated time period was uncertain at the outset of this study, and 10,000-year simulations were considered a possibility. Over such a lengthy simulation period, it is likely that the response of the disposal room would be significantly effected by boundary conditions specified at boundaries located only 50 m above and below the disposal room. Butcher and Holmes [1995] do not specify the vertical extent of disposal room models for precisely this reason; they state that, "The analyst should choose a model height appropriate for the problem and the simulation code being used, a height which does not adversely influence the results of interest."

The objective of extending the finite element model beyond the limits of the Revised Reference Stratigraphy was to eliminate boundary effects on the disposal room response over the simulated period of time. The effects of the material properties specified in the 160-m extensions to the Revised Reference Stratigraphy were assumed to be secondary to the boundary effects. Consequently, stratigraphy representative of the WIPP site was not specified in these extensions. Instead, the extensions were assigned the material properties of the predominate rock type in the stratigraphic variation being modeled. This rock type was argillaceous halite in all of the variations except the Clean-Salt Model, which was composed entirely of clean halite.

Vertical displacement was not allowed along the bottom boundary of the finite element model. A vertical traction of 10.03 MPa was specified along the top boundary. Butcher and Holmes [1995] specify an initial, isotropic stress state that varies linearly with depth based on an average density of 2,300 kg/m³, a gravitational acceleration of 9.79 m/s², and a compressive stress of 13.57 MPa at the top of MB134. This specification yields an initial compressive stress of 15.97 MPa at the bottom of MB141. The conditions specified along the top and bottom boundaries of the finite element model, in conjunction with the density and gravitational acceleration values, yield the specified compressive stresses at the top of MB134 and the bottom of MB141. A uniform temperature of 27°C was specified throughout the finite element model [Butcher and Holmes, 1995].

Although 10,000-year simulations were a possibility at the outset of the study, the simulation period was nonetheless a variable to be determined during the course of the study. The simulations of most of the stratigraphic models were terminated when the calculated room porosities approached zero. At least 250 years were simulated for all of the stratigraphic

models; the simulation of the baseline 12-Clay Model was taken to 1,000 years. The restart capabilities of SPECTROM-32 were utilized to perform the simulations incrementally and to continue them as needed.

3.2 SIMULATION OF EXCAVATION AND WASTE AND BACKFILL EMPLACEMENT

The room detail given in Figure 4 shows the regions used to represent the TRU waste and the crushed-salt backfill. The symmetric half of the room that is simulated in the finite element model is 5.03-m wide by 3.96-m high. As shown in Figure 4, the corners of the room are represented as being right angles. The half of the TRU waste region represented in the model is 4.30-m wide by 2.20-m high and is located in the lower left corner of the half-room. The backfill/airgap region surrounds the TRU waste region and extends to the rib and the roof of the room.

In reality, there will be periods of time between excavating a disposal room, emplacing TRU waste in it, and backfilling it with crushed salt. The lengths of these intervals have not been defined and probably are insignificant relative to simulation periods of 100's or 1,000's of years. When the room is backfilled, the backfill cannot be emplaced to the roof of the room. Butcher and Holmes [1995] specify an airgap of 0.711 m between the top of the backfill and the roof. This airgap will decrease and eventually disappear as the room closes. Closure of the airgap cannot be explicitly simulated with Version 4.06 of SPECTROM-32 because it does not have an algorithm for simulating the contact between two surfaces. An alternative that has been used in previous infinitesimal-strain simulations is to represent the airgap with elements composed of extremely compressible material (like air). When the volume of each airgap element decreases to a small fraction of its original volume, the element's material is changed to crushed salt. However, this approach is not reliable in finite-strain simulations because the elements tend to collapse before the requisite volume reduction is achieved.

In the DRM simulations performed in this study, excavation of the room was immediately followed by emplacement of TRU waste in the waste region. The weight of the TRU waste provides a small load on the floor of the room beneath the TRU waste region. To simulate the closure of the airgap, the backfill/airgap region was not filled with crushed salt until the area of this region decreased by 3.58 m^2 (the room half-width of 5.03 m multiplied by the airgap thickness of 0.711 m). This approach is based on the assumption that the backfill provides negligible resistance to closure of the room until the airgap completely closes.

To precisely determine the time for backfilling, a preliminary simulation of each stratigraphic model would have been required. The closure of the backfill/airgap region as a function of time after excavation could have been calculated from these preliminary simulations. However, performing seven preliminary simulations would have consumed a substantial amount of computer time when it was likely that the variation in the resultant backfill times would been minimal. Consequently, only a preliminary simulation of the 12-Clay Model was performed initially.

In the preliminary simulation of the 12-Clay Model, the area of the backfill/airgap region decreased by 3.58 m^2 at approximately 3.24 years after excavation. Based on this simulation, backfilling of the remaining area of the backfill/airgap region was simulated at 3.24 years after excavation in all of the stratigraphic models except the All-Salt and Clean-Salt Models. Additional preliminary simulations of the All-Salt and Clean-Salt Models had to be performed to more precisely determine the backfill times for these models (1.45 years and 4.21 years, respectively). As indicated by Table 2, analysis of the final simulations confirmed that the area of the backfill/airgap region decreased by approximately 3.58 m^2 at the time of backfilling in all of the stratigraphic models.

Stratigraphic Model	Backfill Time (years after excavation)	Decrease in Area at Backfill Time (m²)
12-Clay	3.24	3.47
7-Clay	3.24	3.45
5-Clay	3.24	3.42
3-Clay	3.24	3.11
PA Profile	3.24	3.31
All-Salt	1.45	3.51
Clean-Salt	4.21	3.51

Table 2.Decrease in the Area of the Backfill/AirgapRegion at the Time of Backfilling

3.3 REPRESENTATION OF THE CLAY SEAMS

Butcher and Holmes [1995] describe the clay seams as frictional interfaces with a friction coefficient of 0.2 (friction angle of 11.31°). They were simulated in this study using the "frictional slideline" component model in SPECTROM-32 [Callahan et al., 1990]. This component model provides the capability to simulate a thin region within a host material that has a shear resistance which is proportional to the normal stress across the region. The thin region behaves like the host material when the shear stress parallel to the region does not exceed the shear resistance. When the shear resistance is exceeded, the material in the region deforms perfectly plastically, straining without further increases in shear stress. The clay seams in this study were represented by 0.05-m thick elements composed of either argillaceous or clean halite with the frictional slideline model specified concurrently in these elements.

3.4 CALCULATION OF ROOM CLOSURE AND POROSITY

In Section 4.0, the results of the finite element simulations are assessed and compared in terms of vertical and horizontal room closures and room porosity as functions of time. The vertical and horizontal closures provide quantitative measures of the deformed shape of the disposal room. The vertical closure is equal to the relative vertical displacement between the centers of the roof and floor; from symmetry, the horizontal closure is equal to twice the horizontal displacement of the midheight of the rib. These quantities are relatively easy to calculate and are unambiguous. The calculation of the porosities of the room and its contents is more involved, and the remainder of this subsection is devoted to describing the calculational methods used in previous studies and in the current study.

The porosity (also called the void fraction) is defined as the percentage or fraction of the total volume of a porous region that is composed of voids. The remainder of the porous region is composed of solids, so the void volume can be calculated by subtracting the volume of the solids in the region from the total volume. In the DRM, there are two distinct porous regions (the backfill and the TRU waste) which have substantially different initial porosities (39.25 percent and 68.1 percent, respectively, based on the DRM specifications in Butcher and Holmes [1995]). Hence, the porosities of these two regions generally are calculated independently; the volume-averaged porosity of the disposal room can then be calculated from the porosities of the backfill and TRU waste and their corresponding volumes.

Generally, the compressibility of the solid volume in a porous region is negligible compared to the compressibility of the void volume. Consequently, it was assumed in porosity calculations in previous DRM analyses that the volume of the solids is constant and that the change in the volume of the region is entirely due to the change in the void volume. However, for a number of reasons, this assumption is not valid in the current study because it results in the calculation of negative TRU waste porosities, which are physically impossible. Therefore, the underlying assumption had to be modified and the calculational method changed accordingly. The previous methodology, the rationale for changing it, and the revised methodology are described in the following subsections.

3.4.1 Previous Method for Calculating Porosities

In previous calculations of porosities from DRM simulations (e.g., Labreche et al. [1993]; DeVries [1994]; and Labreche [1995]), it was assumed that the solids in the backfill and TRU waste regions are essentially incompressible. In turn, the solid volume in each region was assumed to be constant. Based on this assumption and the definition of porosity, the porosities of these regions were calculated according to the following equations: External Memorandum

$$\phi_{\rm BF}(t) = 1 - \frac{V_{\rm BF,s}}{V_{\rm BF}(t)} \tag{1}$$

$$\phi_{\mathrm{TW}}(t) = 1 - \frac{V_{\mathrm{TW},s}}{V_{\mathrm{TW}}(t)}$$
(2)

where:

$\phi_{\rm BF}(t)$	=	Backfill porosity at time t
$V_{{ m BF},s}$	=	Volume of the solids in the backfill
$V^{}_{ m BF}(t)$	=	Volume of the backfill region at time t
$\phi_{\rm TW}(t)$	=	TRU waste porosity at time t
$V_{\mathrm{TW},s}$	=	Volume of the solids in the TRU waste
$V_{\rm TW}(t)$	=	Volume of the TRU waste region at time t .

Since the void volume is the product of the porosity and the total volume, it is straightforward to show that the volume-averaged porosity of the disposal room can be calculated from the porosities and total volumes of the backfill and TRU waste as follows:

$$\phi_{\text{Room}}(t) = \frac{\phi_{\text{BF}}(t) V_{\text{BF}}(t) + \phi_{\text{TW}}(t) V_{\text{TW}}(t)}{V_{\text{BF}}(t) + V_{\text{TW}}(t)}.$$
(3)

Calculating porosities according to Equations 1 and 2 requires the volume of the solids in each region and the total volume of each region as a function of time. The solid volumes are easily calculated by rearranging Equations 1 and 2 and substituting the specified values of the initial porosities into them, as shown below:

$$V_{\mathrm{BF},s} = (1 - \phi_{\mathrm{BF},o}) V_{\mathrm{BF},o} \tag{4}$$

$$V_{\text{TW},s} = (1 - \phi_{\text{TW},s}) V_{\text{TW},s}$$
(5)

where:

 $\phi_{BF,o}$ = Initial backfill porosity $V_{BF,o}$ = Initial volume of the backfill regions $\phi_{TW,o}$ = Initial TRU waste porosity $V_{TW,o}$ = Initial volume of the TRU waste region.

In previous DRM analyses, the volumes of the backfill and TRU waste regions as functions of time were simply calculated from the deformed outlines of these regions. This approach was satisfactory because the volumes of the regions were always greater than the volumes of the solids in them, which is consistent with the assumption that the compressibilities of the solid volumes are negligible.

3.4.2 Problems with the Previous Method

It should be noted in Equations 1 and 2 that if the volume of a region becomes less than the (initial) volume of the solids in the region, a negative porosity is calculated, which is physically impossible. The fact that negative porosities were not calculated in previous analyses is largely because nonzero gas generation rates were simulated in most of these analyses and the resultant gas pressures kept the room contents from completely consolidating. In analyses in which gas generation was not considered, negative porosities were not calculated, in part because of the shorter time periods simulated (generally less than 250 years), and in part because the specified compaction characteristics yielded smaller compressibilities as the porosities approached zero than the characteristics specified in Butcher and Holmes [1995] yield.

In the current study, a gas generation rate of zero is modeled and time periods of at least 250 years are simulated for all of the stratigraphic models. In addition, the initial porosity and the compaction characteristics specified in Butcher and Holmes [1995] for TRU waste are different from the values specified for previous studies. The combination of all of these factors resulted in the calculation of negative porosity values for the TRU waste region when the methodology used in previous DRM analyses was employed.

The effects of the differences in the TRU waste characteristics are graphically illustrated in Figure 5. This figure compares the compaction function specified in Butcher and Holmes [1995] to the compaction function specified previously [Sandia WIPP Project, 1992]. Both compaction functions are stated in terms of natural (true) volumetric strain as a function of mean stress. From these compaction functions and the specifications of the initial porosity of TRU waste, the TRU waste porosity as a function of mean stress can be calculated using the following equation:

$$\phi = 1 - (1 - \phi_o) \exp(\varepsilon_v)$$
(6)

where:

 ϕ = Porosity ϕ_o = Initial porosity ε_v = Natural volumetric strain (compression positive).

The resultant porosity functions also are shown in Figure 5. As indicated by Equation 6, the porosity not only depends on the volumetric strain but also on the initial porosity. The initial porosity specified in Sandia WIPP Project [1992] was 74.0 percent; whereas Butcher and Holmes [1995] specified an initial porosity of 68.1 percent.

In terms of volumetric strains, the TRU waste compaction functions shown in Figure 5 are very similar at mean stresses less than 3 MPa; beyond that they deviate significantly from each other, especially considering that the differences in the resultant porosities are exponential functions of the differences in the volumetric strains. In addition to the differences in the compaction functions, the differences in the initial porosities yield significant differences in the TRU waste porosities at mean stresses greater than 1 MPa. The cumulative effect of the differences in the compaction functions and the initial porosities is that the porosities calculated from the Butcher and Holmes [1995] specifications become negative at mean stresses greater than 2.5 MPa and the porosities calculated according to the Sandia WIPP Project [1992] specifications do not become negative until the mean stress exceeds 6 MPa.

Equation 6 is derived from the fundamental definitions of porosity and natural volumetric strain and is based on the assumption that the solids are incompressible. Assuming that the compaction functions shown in Figure 5 are representative of the volumetric response of TRU waste, these functions indicate that the solids in TRU waste are relatively compressible, at least when compared to geologic materials such as halite. Since the underlying assumption of incompressibility is not satisfied, the methodology for calculating porosities had to be revised in the current study.

3.4.3 Revised Method for Calculating Porosities

The negative porosities calculated at mean stresses greater than 2.5 MPa indicate that the volume of the solids cannot be assumed to be constant, as was done in previous calculations of porosity. However, it seems reasonable to presume that as long as there is void space in a subregion of the TRU waste, the compressibility of the solids *in that subregion* is negligible compared to the compressibility of the voids. Consequently, in calculating the porosities in this study, it is assumed that the volume of the solids in a subregion is constant until the porosity in the subregion approaches zero. By definition, the volume of the solids is equal to the volume of the solids in the subregion when the porosity is zero (no void space), and this volume can be less than the initial volume of the solids in the subregion because of the compressibility of the solids. This concept of the compaction of a porous material implies that the solid volume is constant in subregions with nonzero porosities while the solid volume is equal to the subregion volume in subregions that have fully compacted to zero porosity.

This concept is implemented in the revised method for calculating porosities by modifying Equations 1 and 2 so that the volumes of the solids in each region, as well as the volumes of the regions themselves, vary with time. The modified equations are shown below:

$$\phi_{\rm BF}(t) = 1 - \frac{V_{\rm BF,s}(t)}{V_{\rm BF}(t)}$$
(7)

$$\phi_{\rm TW}(t) = 1 - \frac{V_{\rm TW,s}(t)}{V_{\rm TW}(t)}$$
(8)

External Memorandum

Page 21

where:

 $V_{\text{BF},s}(t)$ = Volume of the solids in the backfill at time t $V_{\text{TW},s}(t)$ = Volume of the solids in the TRU waste at time t.

As in previous DRM analyses, the volumes of the backfill and TRU waste regions as functions of time $(V_{BF}(t) \text{ and } V_{TW}(t))$ are calculated from the deformed outlines of the regions.

The solid volumes in the backfill and TRU waste regions are simply the sums of the solid volumes in all of the subregions that comprise the respective regions. In calculations of porosities from finite element simulations, the subregions are conveniently defined by the finite elements that compose the backfill and TRU waste regions. Therefore, the volumes of the solids are calculated according to the following summations over the elements in each region:

$$V_{\mathrm{BF},s}(t) = \sum_{e_{\mathrm{RF}}} V_{s,e}(t)$$
(9)

$$V_{\mathrm{TW},s}(t) = \sum_{e_{\mathrm{TW}}} V_{s,e}(t)$$
(10)

where:

 $V_{s,e}(t) =$ Volume of the solids in element *e* at time *t* $e_{BF} =$ Elements in the backfill region $e_{TW} =$ Elements in the TRU waste region.

The volume of the solids in each element (subregion) depends on whether or not the material in the element has fully compacted to zero porosity. Once the element has fully compacted to zero porosity, then the volume of the solids in the element at any time thereafter must be identically equal to the volume of the element because there is no void space left in the element. In an element that has not fully compacted, it is assumed that the compressibility of the solids is negligible compared to the compressibility of the void space. Neglecting the compressibility of the solids in such an element implies that the initial volume of the solids in the element is maintained until the element fully compacts to zero porosity. These conditions for calculating the solid volume in each element as a function of time are expressed algebraically as follows:

$$V_{s,e}(t) = \begin{cases} V_e(t), \text{ if } V_e(t') \le V_{s,e}(0) \text{ at any } t' \le t \text{ (fully compacted)} \\ V_{s,e}(0), \text{ otherwise} \end{cases}$$
(11)

where:

$$V_{se}(0) = (1 - \phi_{oe}) V_{oe}$$
(12)

and:

 $V_e(t) =$ Volume of element e at time t $V_{s,e}(0) =$ Initial volume of the solids in element e $\phi_{o,e} =$ Initial porosity of element e $V_{o,e} =$ Initial volume of element e.

The elemental volumes required in Equations 11 and 12 are calculated from the initial and deformed shapes of the elements.

As indicated by the preceding pairs of equations, the porosities of both the crushed-salt backfill and the TRU waste are calculated using the revised methodology in the current study. This is simply a matter of consistency because the constitutive model for crushed salt is implemented in SPECTROM-32 in such a way that a crushed-salt element is transformed to solid salt as the porosity of the element approaches zero. Consequently, the volume of a crushed-salt element is never less than or equal to the initial volume of the solids in it (i.e., the condition in Equation 11 is never satisfied). In turn, the revised methodology yields exactly the same backfill porosities as the method used in previous DRM analyses. In the current study as in previous analyses, the volume-averaged porosity of the room is calculated according to Equation 3 from the porosities and volumes of the backfill and TRU waste regions.

4.0 SIMULATION RESULTS

The results of the simulations of the stratigraphic models defined in Table 1 are compared in this section. Only comparisons of room closures and porosities are made because these are the responses of interest in this study of the effects of simplifying the modeled stratigraphy. Figures showing the closures and porosities predicted as functions of time by each model are provided in Attachment A. Closure and porosity values at 10, 50, 100, 250, 500, and 1,000 years also are given on these figures.

The vertical and horizontal closures predicted by the stratigraphic models considered in this study are compared in Figures 6 and 7, respectively. Note that the time axes of these and all figures in this section are shifted so that zero is the time at which airgap closure was predicted and backfilling of the remaining area was simulated. As indicated by Table 2, the airgap closure time and the coincident backfill time varied slightly among the All-Salt, the Clean-Salt, and the other models. Subtracting the backfill time from the simulation time yields comparisons that begin with comparable values of closure and porosity. (The time axes of the figures in Attachment A are *not* shifted because those figures show the results for individual stratigraphic models.)

Figure 6. Comparison of the Vertical Closures of the Disposal Room Predicted by Each of the Stratigraphic Models.

Figure 7. Comparison of the Horizontal Closures of the Disposal Room Predicted by Each of the Stratigraphic Models.

In Figures 6 and 7, the vertical and horizontal closure predictions for all of the models in which clay seams and marker beds were represented fall in narrow bands. In addition, the horizontal closures predicted for these models exceed the vertical closures at all times, with differences of about 0.5 m at 250 years. The closure results for the All-Salt and Clean-Salt Models, in which clay seams and marker beds were not represented, are discernibly different from the results for the other stratigraphic models. At 250 years, these two models predict vertical closures that are about 0.3 m more and horizontal closures that are about 0.4 m less than the corresponding closures predicted by the other models. Further, unlike the predictions of the other models, the horizontal closures are smaller than the vertical closures at all times in the All-Salt and Clean-Salt Models.

The differences between the closure predictions are accentuated in Figures 8 and 9 by comparing the closures predicted by each stratigraphic model to the closures predicted by the 12-Clay Model. The 12-Clay Model was considered the baseline model for this comparison because all of the stratigraphic units in the Revised Reference Stratigraphy, except Anhydrite C, are represented in the 12-Clay Model; the other stratigraphic models represent additional simplifications to the Revised Reference Stratigraphy. The vertical and horizontal closures predicted by the 7-Clay and 5-Clay Models are essentially the same as the closures predicted by the 12-Clay Model, differing by less than 0.05 m at all times. Simplifying the stratigraphy further to the 3-Clay and PA Profile Models yielded somewhat greater deviations from the 12-Clay Model predictions. Nevertheless, the maximum difference between the vertical closures predicted by these two models and the 12-Clay Model is only 0.17 m; the maximum difference in the horizontal closure predictions is even smaller (less than 0.1 m). To provide perspective for the magnitudes of these differences, Figure 3 indicates that modeling the anhydrite marker beds as either elastic or limited-tension materials in the 12-Clay Model yields a difference in vertical closure of 0.1 m at only 7 years after excavation and this difference is clearly increasing with time. Hence, the differences in the closures predicted by the 3-Clay, PA Profile, and 12-Clay Models are relatively insignificant compared to the effects of other modeling considerations.

Figures 8 and 9 clearly illustrate the magnitudes of the differences between the closures predicted by the All-Salt and Clean-Salt Models and the closures predicted by the other stratigraphic models. The differences in vertical closure at 50 years are particularly significant when one considers that the 12-Clay Model predicted a room height at the centerline of 2.33 m whereas the All-Salt and Clean-Salt Models predicted heights of only 1.80 m and 1.90 m. The close agreement between the closures predicted by the All-Salt and Clean-Salt Models is somewhat surprising because the All-Salt Model is composed predominately of argillaceous halite which creeps appreciably faster than the clean halite that comprises the entirety of the Clean-Salt Model.

The room porosities calculated from the simulations of the various stratigraphic models are compared in Figure 10. The differences in the room porosities relative to the porosities

Figure 9. Differences Between the Horizontal Closures of the Disposal Room Predicted by Each of the Stratigraphic Models and the 12-Clay Model.

Figure 10. Comparison of the Room Porosities Calculated From the Simulations of Each of the Stratigraphic Models.

calculated from the 12-Clay simulation are shown in Figure 11. Like the room closures, the room porosities calculated from all of the models except the All-Salt and Clean-Salt Models fall in a narrow band; whereas the porosities calculated from the All-Salt and Clean-Salt simulations are appreciably different from the porosities calculated from the other models in which clay seams and marker beds were represented. Of the latter group of models, the porosities calculated from the PA Profile simulation deviate the most from the 12-Clay simulation, but the maximum difference is only 1.2 percent. The porosities calculated from the 5-Clay and 7-Clay simulations are essentially the same and differ from each other by less than 0.4 percent.

The porosities calculated from the All-Salt and Clean-Salt simulations are appreciably smaller than the porosities calculated from all of the other stratigraphic models at all times less than 250 years. The maximum differences from the porosities calculated from the 12-Clay simulation are approximately 14 and 12 percent, respectively. The maximum differences occur at about 50 years when the room porosity calculated from the 12-Clay simulation is 29 percent. The consolidation of the room contents is essentially complete at 200 years in the All-Salt and Clean-Salt simulations; whereas the room contents continue to consolidate through about 500 years in the 12-Clay simulation.

Room porosities are needed in simulations of repository performance assessment because the gas pressure that drives fluid transport depends on the volume of the void space and the amount of gas in the room. According to the ideal gas law, the pressure produced by a given amount of gas is inversely proportional to the void volume in the room, which is the product of the room porosity and the room volume. Consequently, even though gas generation was not simulated in this study, a crude indication of the relative effects of the differences in room porosity on gas pressure can be obtained from the ratios between the void volumes calculated from the various simulations in this study. This simplistic approach neglects the fact that gas generation and the associated gas pressure reduces the room closure and increases the room porosity relative to values determined in this study without gas generation.

Figure 12 shows the void volume ratios calculated by dividing the void volumes from the 12-Clay simulation by the corresponding void volumes from the simulations of the other stratigraphic models. The ratios for all of the models except the All-Salt and Clean-Salt Models are so narrowly grouped that they are regraphed at an expanded scale in Figure 13 for clarification. Because of the inverse relationship between gas pressure and void volume, ratios greater than unity in these figures indicate that the pressures that would be produced by the same amounts of gas would be greater in the alternate stratigraphic model than in the 12-Clay Model. Clearly, disposal room simulations based on the All-Salt and Clean-Salt Models would yield substantially higher gas pressures than simulations based on any of the other stratigraphic models *if the higher gas pressures did not result in correspondingly larger room porosities and void volumes*.

Figure 12. Ratios Between the Room Void Volumes Calculated From the 12-Clay Simulation and the Room Void Volumes Calculated From the Simulations of the Other Stratigraphic Models.

Figure 13. Ratios Between Room Void Volumes Calculated From the 12-Clay Simulation and the Room Void Volumes Calculated From the Simulations of the Other Clay-Seam Models.
5.0 SUMMARY AND CONCLUSIONS

The objective of this study was to investigate the effects of simplifying the Revised Reference Stratigraphy defined in Butcher and Holmes [1995] on simulations of the mechanical response of WIPP disposal rooms. The simplification of principal interest was the number of clay seams represented in the disposal room model, and the only responses considered were room closure and porosity. The Revised Reference Stratigraphy contains 12 clay seams and 8 marker beds interspersed between layers of argillaceous and clean halite. A symmetric half of a WIPP disposal room and pillar in an infinite array of disposal rooms was simulated in 7 variations of the Revised Reference Stratigraphy using the finite-strain modeling capability in Version 4.06 of the finite element program SPECTROM-32.

The 7 stratigraphic models simulated in this study were designated the 12-Clay, 7-Clay, 5-Clay, 3-Clay, PA Profile, All-Salt, and Clean-Salt Models. The stratigraphy represented in each of these models is defined in Table 1. The 12-Clay Model was considered the baseline model because all of the stratigraphic units in the Revised Reference Stratigraphy except the 0.08-m thick Anhydrite C layer were represented in the 12-Clay Model. Additional simplifications to the Revised Reference Stratigraphy were simulated in the other 6 stratigraphic models. The 7 marker beds represented in the 12-Clay Model also were represented in the 7-Clay, 5-Clay, and 3-Clay Models, but progressively fewer clay seams were simulated in each of these models. Three clay seams also were simulated in the PA Profile Model, but the only other stratigraphic units represented in this model were the 3 marker beds directly above these clay seams and the clean halite layer above the room. None of the marker beds or clay seams were simulated in the All-Salt Model, although the clean halite layer was represented. Hence, the All-Salt Model was composed predominately of argillaceous halite. The Clean-Salt Model was composed entirely of clean halite. Although this model has little resemblance to the Revised Reference Stratigraphy, it was simulated because most of the previous calculations of disposal room closure and porosity were based on models composed of only clean halite.

The room closures and porosities calculated from the 12-Clay, 7-Clay, and 5-Clay simulations were essentially the same throughout the 500-year period of consolidation of the room contents. The horizontal and vertical closures predicted by the 7-Clay and 5-Clay Models differed from the corresponding closures predicted by the 12-Clay Model by less than 0.05 m; the room porosities differed by less than 0.8 percent. Further simplifying the stratigraphy to the 3-Clay and PA Profile Models produced slightly larger deviations from the 12-Clay results, yielding maximum differences in vertical closure, horizontal closure, and room porosity of 0.17 m, 0.08 m, and 1.2 percent, respectively, through 250 years. Nevertheless, these differences probably are insignificant compared to differences that would be caused by other changes in the models such as mesh refinement, time-step control, and convergence tolerances.

The room closures and porosities calculated from the All-Salt and Clean-Salt simulations were very similar to each other, but they differed appreciably from the results calculated from the other stratigraphic models. Both of these models overpredicted the room closure, and in turn, underpredicted the room porosity. The Clean-Salt Model generally yielded vertical closures and room porosities that were closer to the results of the 12-Clay Model, with maximum differences of 0.46 m and 12.1 percent, respectively, through 250 years; the All-Salt Model predicted horizontal closures that were slightly closer to the predictions of the 12-Clay Model with a maximum difference of 0.41 m.

With respect to calculations of room closure and porosity, the results of this study clearly indicate that inclusion of the nonsalt units in the Revised Reference Stratigraphy in disposal room models yields appreciable reductions in vertical room closure and increases in room porosities compared to predictions based on models without the marker beds and clay seams. The results are relatively insensitive to the number of clay seams represented in the model, but they are far more sensitive to whether or not the 3 marker beds nearest the room (MB139, Anhydrite A, and MB138) are modeled. This conclusion is supported by the results of the PA Profile Model which contains only these 3 marker beds and the clay seam below each of them. The room closures and porosities calculated from the PA Profile Model closely agree with the results of the 3-Clay Model that contains 7 marker beds and 3 clay seams (of which only Clay E is represented in both models). Conversely, the results of the PA Profile Model differ substantially from the closures and porosities calculated from the 3 marker beds and 3 clay seams (of which only Clay E is represented in both models). Conversely, the results of the PA Profile Model, which has the same stratigraphy as the PA Profile Model with the 3 marker beds and clay seams removed.

Overall, the stratigraphy represented in the PA Profile Model appears to be adequate for calculations of room porosity. Using this model for room porosity calculations has the added advantage of being consistent with the models used for flow and transport simulations in repository performance assessment. It must be emphasized that these conclusions regarding stratigraphy in disposal room models are strictly applicable to room closure and porosity calculations, the responses focused upon in this study. Prediction of other mechanical responses such as stresses in the disturbed rock zone around the room may require inclusion of additional stratigraphic details. It also should be noted that the effects of gas generation were not investigated in this study. Representing at least the stratigraphy in the PA Profile Model clearly yields appreciable differences in the room closures and porosities calculated from simulations in which gas generation is not modeled. These differences may be muted to some extent in simulations with nonzero gas generation rates because gas generation and the associated pressurization of the disposal rooms limit the closure of the rooms. The relationship between the effects of stratigraphy and gas generation cannot be assessed without further investigation.

Preliminary simulations of the 12-Clay Model indicated that the material model used to represent the anhydrite marker beds is at least as important in room closure and porosity calculations as whether or not the marker beds are represented at all. When the marker beds were represented as elastic materials, unrealistically large tensile stresses (in excess of 150 MPa) were predicted in the marker beds near the disposal room. When the tensile stresses were limited to a maximum of 1 MPa by using a limited-tension model to represent the anhydrite marker beds, the marker beds were substantially more flexible as they bent in response to room closure. As a result, the vertical room closure at 7 years after excavation increased by 0.1 m in the preliminary simulations of the 12-Clay Model, and this difference was increasing with time.

As a final note with respect to disposal room modeling and porosity calculation, this study revealed that the TRU waste characteristics specified in Butcher and Holmes [1995] yield substantially different waste porosities as a function of mean stress than the characteristics used in previous analyses. The cumulative effect of the changes to the TRU waste characteristics is that the porosities calculated from the Butcher and Holmes [1995] specifications become negative at mean stresses greater 2.5 MPa if it is assumed that the solids are incompressible. This physically impossible response is apt to be predicted in long-term simulations of disposal rooms without gas generation, such as made in this study. Negative porosities were precluded in this study by assuming that the compressibility of the solids can be neglected only until the porosity approaches zero and by modifying the calculational method accordingly. As a result, the porosities of the TRU waste region approached zero and never became negative. Nonetheless, the validity and applicability of the TRU waste characteristics should be investigated further.

6.0 REFERENCES

Butcher, B. M. and J. T. Holmes, 1995. Completion of Milestone DR015, Definition of Closure Analysis Input Parameters, Due March 31, 1995, Internal Memorandum to L. Shephard and M. Tierney, Sandia National Laboratories, Albuquerque, NM, March 31.

Callahan, G. D., 1994. SPECTROM-32: A Finite Element Thermomechanical Stress Analysis Program, Version 4.06, prepared by RE/SPEC Inc., Rapid City, SD, RSI-0531, for Sandia National Laboratories, Albuquerque, NM.

Callahan, G. D. and K. L. DeVries, 1991. Analyses of Backfilled Transuranic Wastes Disposal Rooms, SAND91-7052, Sandia National Laboratories, Albuquerque, NM.

Callahan, G. D., A. F. Fossum, and D. K. Svalstad, 1990. Documentation of SPECTROM-32: A Finite Element Thermomechanical Stress Analysis Program, DOE/CH/10378-2, prepared by RE/SPEC Inc., Rapid City, SD, for U. S. Department of Energy, Chicago Operations Office, Argonne, IL, Vol. 1 and 2. **DeVries, K. L., 1994.** Analysis of a WIPP Disposal Room Located in the Reference Stratigraphy Using the Finite Strain Formulation and the M-D Constitutive Model (Sandia National Laboratories Contract AB-5908), External Memorandum RSI(RCO)-262/10-94/39, RE/SPEC Inc., Rapid City, SD, November 2.

Krieg, R. D., 1984. Reference Stratigraphy and Rock Properties for the Waste Isolation Pilot Plant (WIPP) Project, SAND83-1908, Sandia National Laboratories, Albuquerque, NM.

Labreche, D. A., 1995. Comparison of SPECTROM-32 and SANTOS Results: Analysis of a WIPP Disposal Room Located in a Layered Stratigraphy (SNL Contract AK-7653), External Memorandum RSI(ALO)-390/07-95/641, RE/SPEC Inc., Albuquerque, NM, August 3.

Labreche, D. A., G. D. Callahan, K. L. DeVries, and J. D. Osnes, 1993. Comparison of Two Geomechanical Analysis Codes for WIPP Disposal Room Modeling: SANCHO and SPECTROM-32, RSI-0461, prepared by RE/SPEC Inc., Rapid City, SD, for Sandia National Laboratories, Albuquerque, NM.

Munson, D. E., 1992. Mechanical Parameters for Volume 3, SAND92-0700, Internal Memorandum to M. S. Tierney, Sandia National Laboratories, Albuquerque, NM, October 26, (in Preliminary Performance Assessment for the Waste Isolation Pilot Plant, December 1992, Volume 3: Model Parameters, SAND92-0700/3, Appendix A, pp. A-107 to A-124, Sandia National Laboratories, Albuquerque, NM).

Munson, D. E., A. F. Fossum, and P. E., Senseny, 1989. Advances in Resolution of Discrepancies Between Predicted and Measured In Situ WIPP Room Closures, SAND88-2948, Sandia National Laboratories, Albuquerque, NM.

Osnes, J. D. and T. Brandshaug, 1980. "Application of 'No Tension' Analysis to Fissure Development in Plutonic Rock Above a Nuclear Waste Vault," *13th Canadian Rock Mechanics Symposium Special Volume,* Toronto, Ontario.

Sandia WIPP Project, 1992. Preliminary Performance Assessment for the Waste Isolation Pilot Plant, December 1992, Volume 3: Model Parameters, SAND92-0700/3, Sandia National Laboratories, Albuquerque, NM.

Stone, C. M., 1992. Creep Closure of Waste Disposal Rooms in Bedded Salt Due to Gas Generation Produced by Several Alternatives of the Engineered Alternatives Task Force, Internal Memorandum to B. M. Butcher, Sandia National Laboratories, Albuquerque, NM.

Weatherby, J. R., J. G. Argüello, B. M. Butcher, and C. M. Stone, 1991a. "The Structural Response of a WIPP Disposal Room with Internal Gas Generation," *Proceedings, 32nd U. S.* Symposium on Rock Mechanics, July 10-12, University of Oklahoma, Norman, OK, A. A. Balkema, Rotterdam, Netherlands, pp. 929-937.

Weatherby, J. R., W. T. Brown, and B. M. Butcher, 1991b. "The Closure of WIPP Disposal Rooms Filled with Various Waste and Backfill Combinations," *Proceedings, 32nd U. S.* Symposium on Rock Mechanics, July 10-12, University of Oklahoma, Norman, OK, A. A. Balkema, Rotterdam, Netherlands, pp. 919-928.

WIPP Performance Assessment Department, 1993. Preliminary Performance Assessment for the Waste Isolation Pilot Plant, December 1992, Volume 4: Uncertainty and Sensitivity Analyses for 40 CFR 191, Subpart B, SAND92-0700/4, Sandia National Laboratories, Albuquerque, NM.

Zienkiewicz, O. C., B. E. Valliappan, and J. P. King, 1968. "Stress Analysis of Rock as a 'No Tension' Material," *Geotechnique*, Vol. 18, pp. 56-66.

JDO:sdc

ATTACHMENT A

ROOM CLOSURES AND POROSITIES PREDICTED BY EACH STRATIGRAPHIC MODEL

Figure A-1. Vertical and Horizontal Room Closures Predicted by the 12-Clay Model. RSI-390-95-015

Figure A-2. Backfill, Waste, and TRU Waste Porosities Predicted by the 12-Clay Model.

Figure A-3. Vertical and Horizontal Room Closures Predicted by the 7-Clay Model. RSI-390-95-017

Figure A-4. Backfill, Waste, and TRU Waste Porosities Predicted by the 7-Clay Model.

Figure A-5. Vertical and Horizontal Room Closures Predicted by the 5-Clay Model. RSI-390-95-019

Figure A-6. Backfill, Waste, and TRU Waste Porosities Predicted by the 5-Clay Model.

Figure A-7. Vertical and Horizontal Room Closures Predicted by the 3-Clay Model. RSI-390-95-021

Figure A-8. Backfill, Waste, and TRU Waste Porosities Predicted by the 3-Clay Model.

Figure A-9. Vertical and Horizontal Room Closures Predicted by the PA Profile Model. RSI-390-95-023

Figure A-10. Backfill, Waste, and TRU Waste Porosities Predicted by the PA Profile Model.

Figure A-11. Vertical and Horizontal Room Closures Predicted by the All-Salt Model. RSI-390-95-025

Figure A-12. Backfill, Waste, and TRU Waste Porosities Predicted by the All-Salt Model.

Figure A-13. Vertical and Horizontal Room Closures Predicted by the Clean-Salt Model. RSI-390-95-027

Figure A-14. Backfill, Waste, and TRU Waste Porosities Predicted by the Clean-Salt Model.

ATTACHMENT B

DEFINITION OF CLOSURE ANALYSIS INPUT PARAMETERS [BUTCHER AND HOLMES, 1995]

.

Albuquerque, New Mexico 87185-1341

date: March 31, 1995

to: Les Shephard, 6701, MS 1395, Martin Tierney, 6741, MS 1328

from: Barry Butcher, John Holmes, 6748, MS 1341

subject: Completion of milestone DR015, defnition of closure analysis input parameters, due March 31, 1995

> A task to review and update closure analysis input parameters has been completed. These values are listed in the attachment, and should be used for all future porosity surface calculations. This same memo and the attachment are also being transmitted to our QA representative, in order to request guidance about what QA prodedures are required to qualify the information for compliance calculations.

Copy to:

MS 0443 C. M. Stone (1517) MS 0443 J. G. Arguello, Jr (1517) MS 1322 D. E. Munson (6121) MS 1330 SWCF(DRM) (WBS 1.1.1.2.3) (6352) MS 1341 B. M. Butcher (6748) day file MS 1341 A. L. Stevens (6706) MS 1341 Wyla Green (6706) MS 1341 Dyan Foss (6706) Duane Lebreche, RE/SPEC

Copy without attachment to:

MS 1395 P. E. Brewer (6700) MS 1335 S. A Goldstein (6705) MS 1328 D. R. Anderson (1328) MS 1395 D. Brewer (6352) MS 1330 G. M. Pullen (6352) MS 1330 M. Alkis (6352) MS 1330 D. Armijo (6352)

Part 1 Model Geometry, Initial Stress, Boundary Conditions and Miscellaneous Constants

A. Dimensions of the WIPP Disposal Room

The nominal room dimensions are listed in the reference (92PAV3) as 13 ft high, 33 ft wide, and 300 ft long; the values cited in the table are conversions (0.3048 m/ft) from these values. The air gap is specified in Bechtel (1986) as 28 in; the value cited in the table is a conversion from this value with the three significant digits as shown in the reference (Figure 3.1-3). The baseline room dimensions are shown in an idealized geometry Figure 1.

Deveneter	11	Malua			
Parameter	Units	value	1	Reference	
			Document	Section	Figure
Height	m	3.96	92PAV3	3.1.1	
Width	m	10.06	92PAV3	3.1.1	
Length	m	91.44	92PAV3	3.1.1	
Air Gap	m	0.711	92PAV3	3.1.6	F 3.1-3

Table 1.1 Geometry of the Baseline Disposal Room

B. Contents of the Baseline WIPP Disposal Room

The contents of the baseline room model assumes an idealized arrangement of 972 7-Pack units, a total of 6804 drums. The room volume is the value specified in Beraún and Davies (1991). The volume of TRU Waste is the product of the number of drums in a room and the external volume of a drum, 0.2539 m^3 (92PAV3, Table 3.1-2). The air gap volume is the product of the air gap height (0.711 m), the room width (10.06 m) and the room length (91.44 m). The backfill volume is the difference between the room volume and the sum of waste and air gap volumes. Figure 1 shows the configuration of the room contents for the baseline case.

Parameter	Units	Value		Reference	
			Document	Section	Page
Number of Drums	-	6804	92PAV3	3.1.6	
Volume of Room	m ³	3644.8	92PAV3	App A (Beraún, Davies 91)	р А-7
Volume of TRU Waste	m ³	1727.5	Derived		
Volume of Backfill	m ³	1263.3	Derived		
Volume of Air Gap	m ³	654.0	Derived		

 Table 1.2 Volume of Contents in Baseline Room Configuration

Part 1 (cont) Model Geometry, Initial Stress, Boundary Conditions and Miscellaneous Constants

C. Domain Dimensions for the Numerical Model

The pillar width (i.e., the rib-to-rib distance between rooms) is specified so that a model width can be determined for multiple-room configurations and for the Infinite Array of Rooms configuration. The model width given in Table 1.3 is for the Infinite Array of Rooms configuration; this dimension is the distance from the room centerline to the pillar centerline. The analyst should choose a model height appropriate for the problem and the simulation code being used, a height which does not adversely influence the results of interest.

i at	<u>Ne 1.0 1</u>	uniencai mo	del deolliett	y
Parameter	Units	Value	Reference	
			Document	Section
Pillar	m	30.48	92PAV3	3.1.1
Width	m	20.27	Derived	
Height	m	not specified	Analyst's Dis	cretion

Table 1.3 Numerical Model Geometry

D. In Situ Stress State

The density specified in Table 1.4 is a depth-weighted average over the 107.06 m between Elevations 332.88 and 439.94 (see Part 1, Section F on Stratigraphy for discussion of Elevations); this density is calculated in Krieg (1984). The value for gravity is specified in Krieg (1984) as an elevation adjusted acceleration of gravity which, in conjunction with the density, is used to calculate the value of stress at Elevation 439.94 m; this location corresponds to the top of the (then) Reference Stratigraphy presented in Krieg (1984). Using these same constants, the value of in situ vertical stress at the depth of Clay G the local reference -- Elevation 387.07 m -- is determined. The often cited value of 14.8 MPa as the stress level at the repository occurs at Elevation 385.3 m, based on these parameters.

Parameter	Units	Value	Reference		
			Document	Section	Page
Density	kg/m ³	2300.0	Krieg, 1984	IV.A	p 14
Gravity	m/s ²	9.790	Krieg, 1984	IV.A	р 1 4
Stress @ 439.94	MPa	-13.57	Krieg, 1984	IV.A	p 14
Stress @ 387.07	MPa	-14.76	Derived		

L

Parameter Summary for the WIPP Disposal Room Model

Part 1 (cont) Model Geometry, Initial Stress, Boundary Conditions and Miscellaneous Constants

E. Boundary Conditions for the Numerical Model

The normal stress is specified for traction boundaries at the top (52.87 m above Clay G at Elevation 387.07) and bottom (54.19 m below Clay G) of Krieg's Reference stratigraphic section. These are typical locations for the boundaries of a DRM when an Infinite Array of Rooms configuration is assumed, although the caution given in Part 1, Section C above should be heeded. The values of normal stress were computed using the density and gravity from Krieg (1984) and specified in Table 1.4. The boundary conditions along the vertical boundaries of the model are specified as symmetry boundaries for the Infinite Array of Rooms configuration; the analyst should choose suitable boundary conditions at suitable distances from the rooms in multiple-room models such that the boundary effects during the length of the simulation are minimal.

Parameter	Units	Value	Reference		
			Document	Section	Page
Normal Stress @ 439.94	MPa	-13.57	Krieg, 1984	IV.A	p 14
Normal Stress @ 332.88	MPa	-15.98	Derived		
Room and Pillar Centerlines	Room and Pillar NA Vertical Centerlines Symmetry		Assumption for Infinite Array of Rooms Configuration		

Table 1.5 Boundary Conditions

F. Stratigraphy

The stratigraphy currently recommended for disposal room modeling activities is defined by Munson, et al, 1989 and shown in Figure 2. The local or reference zero is located at Clay G (at the base of Anhydrite b); the base of this clay seam is taken to be at Elevation 387.07 m above mean sea level. In this stratigraphy, the floor of the waste disposal room is at Elevation 380.49 m, as defined in WIPP PA Vol 3 (1992). This places Clay G 6.58 m above the repository floor at Elevation 387.07 and the top of Marker Bed 139 1.38 m below the floor at Elevation 379.11. This Reference Stratigraphy identifies 12 clay seams (A, B, D, E, F, G, H, I, J, K(1) and M) and 8 Marker Beds (134, 136, 138, Anhydrite a, 139, Anhydrite c, 140 and 141), but it does not include all stratigraphic details within this interval of the Salado Formation. It is anticipated that a reduced number of clay seams and marker beds can be used in DRM simulations without adverse effects on room closure behavior. An addendum to this memo will be distributed providing guidelines for simplifying the stratigraphy for DRM simulations.

Part 1 (cont) Model Geometry, Initial Stress, Boundary Conditions and Miscellaneous Constants

Parameter	Units Value		· · · · · · · · · · · · · · · · · · ·		
			Document	Section	Figure
Revised Reference Profile	NA	Figure 2	92PAV3	App A (Munson 92)	F 2.5-1
Clay G Elevation	m	387.07	Derived		
Floor Elevation	m	380.49	92PAV3	2.2	F 2.2-3
Top of MB 139	m	379.11	Derived		

Table 1.6 Stratigraphy

G. Miscellaneous Constants

Several constants are (have been) required for developing the DRM parameter set presented in the tables of this document. These constants include an ambient rock temperature for calculating temperature dependent properties and conversion constants for various measures. Table 1.7 contains a list of these constants.

•	ubic 1.1	misochune			
Parameter Units		Value		Reference	
			Document	Section	Table
Ambient Rock Temperature	К	300.15	92PAV3	4.1	T 4.1.1
1 Foot (exact)	m	0.3048	92PAV3	Conversion Table	тз
1 Cubic Foot	m3	0.02832	92PAV3	Conversion Table	Т5
1 Drum (55 gal) (internal)	m ³	0.2082	92PAV3	Conversion Table	Т5
1 Drum (55 gal) (external)	m ³	0.2539	92PAV3	3.1.5	T 3.1-2
1 Year	s	3.1557E7	92PAV3	Conversion Table	T 13

Table 1.7 Miscellaneous Constants

Part 2 Material Constants for the Host Rock

A. Munson-Dawson Parameters for Halite

The Munson-Dawson constitutive model is recommended for simulating the response of pure halite and argillaceous halite in the Salado Formation. The standard reference for the Munson-Dawson constitutive model (M-D) is Munson, et al, 1989. A summary of the model parameters

Parameter	Units	Value	Value		References ¹	
				Document	Section	Page
Munson-Daws	son Prope	rties for:		•		
F	MPa	Pure Halite A	rgillaceous Hall 31000	10 92PAV3	App A (Munson 92)	<u>р А-110/111</u>
	IVII a	0.25	0.25	0217110	, the section of the	p A-110/111
V		0.25	12400			p A-110/111
μ	мра	12400.	12400.			p A 110/111
A1	s ⁻¹	8.386E22	1.40/E23			р А-но/нн
	yr1	2.646E30	4.440E30	Derived		
A2	s-1	9.672E12	1.314E13			p A-110/111
	yr-1	3.052E20	4.147E20	Derived	l	
Q1	cal/mol	25000.	25000.			p A-110/111
Q ₁ /R	К	12582.	12582.	Derived	l	
Q2	cal/mol	10000.	10000.			p A-110/111
Q ₂ /R	к	5033.	5033.	Derived	l	
n1		5.5	5.5			p A-110/111
n2		5.0	5.0			p A-110/111
B1	[∺] s-1	6.086E6	8.998E6			p A-110/111
	yr-1	1.921E14	2.839E14	Derived	l	
B ₂	s-1	3.034E-2	4.289E-2			p A-110/11
	yr-1	9.574E5	1.353E6	Derived	l	
q		5335.	5335.			p A-110/111
σ0	MPa	20.57	20.57			р А-110/111
m		3.	3.			p A-110/111
Ko		6.275E5	2.470E6			p A-110/111
с	к ⁻¹	9.198E-3	9.198E-3			p A-110/112
α		-17.37	-14.96			p A-110/112
β		-7.738	-7.738			p A-110/112
δ		0.58	0.58	Munson, e	t al, 89 2.3.4	Table 2-2 (p41)

Table 2.1	Material	Constants 1	for the	Host Rock

¹ Except where noted, all parameters are from 92PAV3, Appendix A (Munson, 92) on the page cited.

from this report is presented by Munson (1992) in an appendix to 92PAV3. All except one parameter for the M-D model for these two materials were taken directly from this reference; parameter δ is the value cited in Munson, et. al. (1989). These parameters are listed in Table 2.1. Some additional parameters are listed as *Derived*, including the A's and the B's. Munson (1992) lists these parameters in units of s⁻¹; the parameters are listed in these units as well as in units of yr^{-1} , derived by applying the second to year conversion given in Table 1.7. Note that in some cases the parameters listed in Table 2.1 are slightly different from previously used parameters, probably because of a difference in conversion constants, the number of significant digits, or premature roundoff. The other parameters listed as Derived are the Q/R terms, which were calculated from the values of Q and R (1.987 cal/mol-deg) listed in Munson (1992); these terms may also be slightly different from values published in other references. The Q and R are part of the terms in the M-D model which define a temperature-dependent creep threshold. The appropriate value of ambient rock temperature to use as a reference or to calculate the term O/RT is given in Part 1, Miscellaneous Constants (Table 1.7). Finally, if bulk modulus and shear modulus are used to define the elastic properties of halite rather than Young's modulus and Poisson's ratio, the appropriate value of bulk modulus is 20667. MPa, while the shear modulus is given in Table 2.1.

B. Elastic Properties of Anhydrite and Polyhalite

Elastic constants for the anhydrite and polyhalite which comprise the major marker beds in the Salado Formation were obtained from Munson (1992). Shear and bulk modulus values are listed for codes which use these elastic constants. These values were derived rather than using the values from Munson (1992) directly (for the sake of avoiding differences that are important when benchmarking codes). The Munson values are identical up to the third significant figure; the additional significant digits lead to almost exact values for Young's modulus and Poisson's ratio when calculated from the bulk and shear moduli. Note that the analyst is not required to use an elastic model; plasticity parameters are available (Munson, 1992) for a Drucker-Prager Model should an elastic-plastic representation be desired for these materials.

Designed						
Parameter	•	value	Value		References	
		···		Document	Section	Page
Elastic Prope	erties for:	<u>Anhydrite</u>	Polyhalite	· · · ·		<u>A/P</u>
E	MPa	75100.	55300.	92PAV3	App A (Munson 92)	p A-117/A-118
v		0.35	0.36	92PAV3	App A (Munson 92)	p A-117/A-118
μ	MPa	27815.	20331.	Derived		
к	MPa	83444.	65833.	Derived		

Table 2.2 Elastic Constants for Interbeds

C. Frictional Properties of Clay Seams

Clay seams are typically modeled as frictional interfaces; the friction coefficient is specified, as well as an equivalent friction angle for models using such a formulation.

Table 2.3 Frictional Properties of Clay Seams							
Parameter	Units	Value	Document	References Section	Page		
friction coefficient		0.2	92PAV3	App A (Munson 92)	p A-120		
friction angle		11.31*	(arc tanger	nt of friction coefficient)			

Part 3 Material Constants for Crushed Salt Backfill

The baseline backfill material for the WIPP Disposal Room is crushed salt. The recommended constitutive model for crushed salt and the standard reference is described in Sjaardema and Krieg (1987); the baseline material parameters are listed in Table 3.1. Parameter values not listed in the 92PAV3 document are taken directly from Sjaardema and Krieg (1987), except initial density (ρ_0). This value is assumed but it has been used frequently in previous Disposal Room analyses. One fundamental model assumption is the consolidation of crushed salt to an intact salt-like state. Thus, the values for final density (ρ_f), bulk modulus (K_f) and shear modulus (G_f) are values for intact halite. The value for B_0 is specified in two units of time.

Parameter	Units	Value		Reference	
			Document	Section	Table/Page
ρο	kg/m ³	1300.	92PAV3	App A (Beraún, Davies 91)	р А-8
Pf	kg/m ³	2140.	92PAV3	2.5	T 2.5-1
κ _o	MPa	0.0176	Sjaardema a	and Appendix A	Eq A.1
Go	МРа	0.0106	Sjaardema a Krieg, 1987	and Appendix A	Eq A.2 Constant
K1	m ³ /kg	0.00653	92PAV3	2.5	T 2.5-1
G ₁	m ³ /kg	0.00653	92PAV3	2.5	T 2.5-1
Кf	МРа	20667.	Derived		
Gf	MPa	12400.	92PAV3	App A (Munson 92)	p A-110
B ₀	kg/m ^{3.} s	1.3E8	92PAV3	2.5	T 2.5-1
	kg/m ^{3.} yr	4.102E15	Derived		
B1	MPa ⁻¹	0.82	92PAV3	2.5	T 2.5-1
A	m ³ /kg	-0.0173	92PAV3	2.5	T 2.5-1

Table 3.1 Material Constants for Crushed Salt Backfill

Part 4 Material Constants for TRU Waste

The constitutive model of TRU Waste is an elastic-plastic model for crushable materials developed at Sandia (R. Krieg, SC-DR-72-0883, "A Simple Constitutive Description for Soils and Crushable Foams"). Several recent references discuss the model and its parameters, including Butcher and Mendenhall (1993).

Updated information on potential waste characteristics has recently become available leading to a redefinition of the volumetric yield function for TRU Waste constitutive model. This model component has also been referred to as the waste compaction curve. A Draft version of the Baseline Inventory Report, Rev. 1 available after February 16, 1995, (CAO, Table 5-1) reported average, minimum and maximum bounds to density for various categories of waste. The grouping of the various waste types presented in the CAO table has been modified slightly (see table footnotes) to be consistent with Butcher, et. al. (1991); the average waste density (but not the maximum and minimum) information is presented in Table 4.1. With a revised inventory, the distribution of waste in each category has changed somewhat; the result is a change in the initial density, initial porosity change, and the effective waste solid density. The average initial waste density is 559.5 kg/m³, the sum of the average density of each category. The volume fraction of each category is determined from the fractional contribution of each component to the average waste density. The mass fraction is determined from the (quotient of) volume fraction and the solid density of each component. The effective solid density (1757 kg/m³) is the reciprocal of the sum of the mass fractions.

Waste Density (kg/m ³)				
waste Category	Average	Solia	volume Fraction	Mass Fraction
Metallic ¹	122.	7850.	0.218	2.777E-5
Sorbents ²	40.	3000.	0.071	2.367E-5
Cellulose	170.	1100.	0.304	27.636E-5
Rubber & Plastics	84.	1200.	0.150	12.500E-5
Sludges ³	<u>143.5</u>	<u>2200.</u>	0.256	<u>11.636E-5</u>
	559.5	1757.	0.999	56.916E-5

 Table 4.1 WIPP CH-TRU Waste Material Parameter Disposal Inventory (based on Table 5-1, CAO-94-1005, available February 1995)

¹ Includes Inorganic Materials Iron, Aluminum and Other Metals.

² Other Inorganic Materials.

³ Includes Materials Soils and Solidified Inorganic and Organic Materials.

The model elastic constants, the von Mises yield surface parameters and the gas generation potential parameters have not changed from previous values. All can be obtained from Table 2.5-1 in the 92PA Volume 3 document (92PAV3) and are listed in Table 4.2. The revised initial waste density is the value computed from the Table 4.1 information. The initial porosity of the waste is derived from the initial density and the effective solid density ($\phi_0 = 1 - \rho_0/\rho_s$). Butcher (1995) presents a listing of axial stress-porosity data derived from the newly presented distribution of waste between the various categories using the approach described in Butcher, et al., (1991). The stress-porosity data has been converted into a pressure-volumetric strain curve for use in mechanical simulations. (The conversion from porosity to (natural log of) volume strain is by Equation 1.)

$$\varepsilon_{v} = \ln \left(\left(1 - \phi \right) \rho_{s} / \rho_{0} \right)$$
 (Eqtn 1)

The data points defining the Volumetric Plasticity Model (Table 4.2) represent the recommended piece-wise linear definition of the volumetric yield function for TRU Waste.

Parameter	Units	Value		Reference	•
			Document	Section	Table
ρο	kg/m ³	559.5	Derived (se	ee Table 4.1)	
φo		0.681	Butcher, 95	App B (Dat	ta)
к	MPa	222.	92PAV3	2.5	T 2.5-1
μ	MPa	333.	92PAV3	2.5	T 2.5-1
a ₀	MPa ²	0.	92PAV3	2.5	T 2.5-1
a ₁	MPa	0.	92PAV3	2.5	T 2.5-1
a ₂		3.	92PAV3	2.5	T 2.5-1
Volumetric Plasticity	<u>/ Model</u>	(see Figure 3)			
	Pressure	Volumetric Strain	Derived from	Data in	
	<u>(MPa)</u>	<u>(Ιπ ρ/ρο</u>)	Butcher, 95;	Appendix B	
	0.00	0.00			
	0.533	0.4737			
	1.103	0.8292			
	2.031	1.1001			
	3.670	1.3198			
	10.0	1.72			
Gas Generation Potential					
Anoxic and Microbial	moles/drum	2.0, t: 0-550 yrs	92PAV3	2.5	T 2.5-1
Anoxic	moles/drum	1.0, t: 550-1050 yrs	92PAV3	2.5	T 2.5-1

Table 4.2 Material Constants for TRU Waste

References

92PAV3, Sandia WIPP Project, 1992. Preliminary Performance Assessment for the Waste Isolation Pilot Plant, December 1992, Volume 3: Model Parameters, SAND92-0700/3, prepared by Sandia National Laboratories, Albuquerque, NM

Beraún, R., and P.B. Davies, 1991. "Baseline Design Input Data Base to be Used During Calculations Effort to be Performed by Division 1514 in Determining the Mechanical Creep Closure Behavior of Waste Disposal Rooms in Bedded Salt", Sandia Internal Memorandum, September 12, in Appendix A, pp A-5 to A-14 of Preliminary Performance Assessment for the Waste Isolation Pilot Plant, December 1992, Volume 3: Model Parameters, SAND92-0700/3, prepared by Sandia National Laboratories, Albuquerque, NM

Munson, D. E., 1992. "Mechanical Parameters for Volume 3, SAND92-0700", Sandia Internal Memorandum, October 26, in Appendix A, pp A-107 to A-124 of Preliminary Performance Assessment for the Waste Isolation Pilot Plant, December 1992, Volume 3: Model Parameters, SAND92-0700/3, prepared by Sandia National Laboratories, Albuquerque, NM

Butcher, B. M., T. W. Thompson, R. G. VanBuskirk, and N. C. Patti, 1991. Mechanical Compaction of Waste Isolation Pilot Plant Simulated Waste, SAND90-1206, prepared by Sandia National Laboratories, Albuquerque, NM.

Butcher, B. M., 1995. "Waste Compressibility Curve Predictions", Memorandum of Record, Sandia National Laboratories, February 16.

Krieg, R. D., 1984. Reference Stratigraphy and Rock Properties for the Waste Isolation Pilot Plant (WIPP) Project, SAND83-1908, prepared by Sandia National Laboratories, Albuquerque, NM.

Munson, D. E., A. F. Fossum, P. E. Senseny, 1989. Advances in Resolution of Discrepancies Between Predicted and Measured In Situ WIPP Room Closures, SAND88-2948, prepared by Sandia National Laboratories, Albuquerque, NM.

Sjaardema, G. D. and R. D. Krieg, 1987. A Constitutive Model for the Consolidation of WIPP Crushed Salt and Its Use in Analyses of Backfilled Shaft and Drift Configurations, SAND87-1977, prepared by Sandia National Laboratories, Albuquerque, NM.

Figure 1. WIPP Disposal Room Baseline Configuration for DRM Simulations of Ideal Packing of TRU Waste in Drums (92PA V3, Figure 3.1-3)

Figure 2. WIPP Revised Reference Stratigraphy for DRM Simulations (Munson, et al, 1989, Figure 3)

March 31, 1995 Figure 3 Rev. 0

A-105

date: June 6, 1996

Albuquerque, New Mexico 87185

to: B. M. Butcher, 6748 (MS1341)

from: Charles M. Stone, 9117 (MS0443)

subject: Proposed Model for the Final Porosity Surface Calculations

Introduction

This memo documents our best estimate of the configuration and constitutive property values for the final porosity surface calculations. This estimate is based on information from WIPP project documents, contractor reports, scoping analyses, and from insight gained during previous disposal room analyses. The quasi-static, large deformation finite element code SANTOS [1] will be used for the analyses. It has the capability to compute an internal room pressure and to apply the resulting forces to nodes on the deforming room boundary.

Disposal Room Model

The disposal room model consists of a rectangular room 3.96 m high by 10.06 m wide by 91.44 m in length resulting in an initial room volume of 3642.75 m³. Unlike previous calculations which included a crushed salt layer around the waste, the current analyses consider a disposal room with waste only, no backfill. The current configuration calls for 6804 drums of uniformly distributed unprocessed waste to be stored in the disposal room. The corresponding volume occupied by the waste and the drums is 1728 m³. The waste is stored in a seven-pack drum configuration with three seven-packs stacked, for a total waste height of 2.676 m, along the length of the drift. The initial porosity of the waste is 0.681 resulting in a solid volume of 551.2 m³.

Geomechanical Model

A two-dimensional plane strain disposal room model will be used for the SANTOS analyses. The model represents the room as one of an infinite number of rooms located at the repository horizon. Making use of symmetry, only half of the room needs to be modeled. The left and right boundaries are planes of symmetry with a zero-displacement boundary condition applied in the horizontal direction. The upper and lower boundaries are located approximately 50 m from the room. Previous scoping studies have shown that locating the upper and lower boundaries at a distance of 50 m from the disposal room results in less than a 5 percent difference in room porosity when compared to room porosity calculated with the boundaries located at a distance of 100 m. It is felt that this small difference in room porosity is acceptable when compared to other uncertainties and assumptions in the model. A prescribed normal traction of 13.57 MPa is applied on the upper boundary and a normal traction of 14.76 MPa is applied at the lower boundary. A lithostatic stress ($\sigma_x = \sigma_y = \sigma_z$) that varies with depth is used as the initial stress on the configuration and gravity forces are included.

-2-

The stratigraphy is based on the WIPP Revised Reference Stratigraphy^[2] shown in Figure 1. Recent work by Osnes and Labreche [3] has quantified the differences in room closure obtained by assuming different stratigraphic models incorporating different numbers of clay seams and anhydrite layers. In their study, the full stratigraphic model consisting of 12 clay seams and 7 anhydrite layers (12-Clay) is viewed as the reference analysis. Several different models were studied including models with 7, 5, and 3 clay seams. The models also included different combinations of anhydrite layers. The assumption was made a priori that the influence of clay seams on room closure diminishes with increasing distance between the clay seam and the disposal room. This assumption formed the basis for the development of their simplified models which eliminated the furthest clay seams from the disposal room. The room closure and room porosity results reported by Osnes and Labreche showed that the simplified models reproduced the results of the 12-Clay reference model quite well. They stated that the differences in closure predicted by the 12-Clay reference model and the 3-Clay model were relatively insignificant compared to the effects of other modeling considerations. This conclusion suggests that a simplified model may confidently be used for the disposal room response. In addition, the results showed that a disposal room located in a stratigraphy composed of all salt closed considerably faster than a disposal room located in a stratigraphic model which contained anhydrite layers. The presence of the anhydrite layers seemed to have the biggest effect on disposal room response.

Based on the results presented by Osnes and Labreche [3], we feel that a simplified stratigraphic model is justifiable for the final porosity surface calculations. The structural features in the stratigraphy shown by Osnes and Labreche to have the greatest effect on the disposal room response are the anhydrite layers. The anhydrite layers nearest the disposal room horizon will be evaluated for inclusion in the simplified model. These layers include MB 139 beneath the room and Anhydrite A above the room. MB 139 will have a large effect on the disposal room response because of its thickness and its proximity to the disposal room. The proposed stratigraphic model will also include both argillaceous and clean salt. Both types of salt must be included because of the large differences in their creep rates.

The proposed simplified stratigraphy is shown in Figure 2. Clay G is shown for reference only, it is not included in the stratigraphy. A major question regarding this stratigraphic representation is whether the clay seam beneath MB 139 is structurally important. In order

Figure 1. Idealized Stratigraphy Near the Disposal Room Horizon [2]

Figure 2. Proposed Stratigraphy for the Final Porosity Surface Calculations

to answer this question, several scoping analyses were run to compare disposal room closure results for a stratigraphy with and without a clay seam beneath MB 139. A second question to be answered by the study is whether the presence of the marker bed is sufficient to reduce the rate of room closure compared to an all salt stratigraphy as found by Osnes and Labreche [3]. These questions are answered by Figure 3 which shows the disposal

Figure 3. Disposal Room Volume History For Various Stratigraphic Assumptions.

room volume as a function of time for the scoping analyses. The analyses showed that the presence of MB 139 did slow the rate of disposal room closure when compared to the all salt stratigraphy. In addition, the presence of the clay seam beneath MB 139 did not affect the closure of the disposal room. An additional observation from this study is the fact that the horizontal closure increased when the marker bed was included in the stratigraphy. This is due to the fact that the stiff anhydrite layer forces more salt to flow horizontally into the drift rather than flowing upward at the drift floor.

An additional set of calculations was performed to assess the effects of including Anhydrite A in the stratigraphy. This thin anhydrite layer was modeled with both one and three elements through the thickness of the layer. The effect on disposal room closure is shown in Figure 3. The presence of the thin layer significantly decreased the rate of disposal room closure when compared to the stratigraphy with MB 139 only and, therefore, it should be included in the simplified stratigraphy. In addition, only a single row of elements will be used to model the thin anhydrite layer.

The proposed stratigraphy will include both argillaceous and clean salt. Two anhydrite layers, MB 139 and Anhydrite A, are also included. No clay seams will be included in the

stratigraphy. It is important to point out that all of the calculations shown above tend to approach the same disposal room volume as time proceeds. The biggest effects of the stratigraphy appear to occur early and disappear with time which agrees with the results presented in Osnes and Labreche [3]. This is an important observation because the porosity surface calculations will be run for a simulation time of 10,000 years.

The disposal room contains material representing the stored waste. The basic halfsymmetry room dimensions are 3.96 m high by 5.03 m wide. The waste and drum volume of 1728 m³ is distributed along 87.96 m of the drift at a height of 2.676 m. The assumption is made that lateral deformation of a configuration of drums caused by inward movement of the walls of the disposal room is sufficient to eliminate space between the drums early in the closure process at low stress levels. Based on this assumption, the equivalent halfwidth of the waste is computed to be 3.735 m instead of the seven-pack width of 4.3 m. A gas pressure, p_g , will be applied around the room boundary.

Contact surfaces will be defined between the waste and room boundaries to model the contact and sliding that occurs as the room deforms and entombs the waste. Specifically, contact surfaces will be defined between the waste and floor of the room, the waste and room rib, and the waste and ceiling. All of the contacts surfaces will be allowed to separate if the forces between the surfaces reached a tensile value. This feature allows the room to reopen due to gas generation within the disposal room.

A combined transient-secondary creep constitutive model for rock salt attributed to Munson and Dawson [4] and described by Munson, et. al [5] will used for the clean and argillaceous salt. The model can be decomposed into an elastic volumetric part defined by,

$$\varepsilon_{kk} = \frac{\sigma_{kk}}{3K} \tag{EQ 1}$$

(where the ε_{ij} and the σ_{ij} are the total strain and stress components, respectively, and K is the elastic bulk modulus) and a deviatoric part defined by,

$$\dot{s}_{ij} = 2G\left(\dot{e}_{ij} - F\dot{e}_s\left[\frac{\cos 2\theta}{\cos 3\theta \sqrt{J_2}}s_{ij} - \frac{\sqrt{3}\sin\theta}{\cos 3\theta J_2}\left\{s_{ip}s_{pj} - \frac{2J_2}{3}\delta_{ij}\right\}\right]\right), \quad (EQ 2)$$

where the second term of the above equation represents the creep contribution. In the above equation, s_{ij} is the deviatoric stress defined as $s_{ij} = \sigma_{ij} - \frac{\sigma_{kk}}{3}$, G is the elastic shear modulus, and e_{ij} is the deviatoric strain defined by $e_{ij} = \varepsilon_{ij} - \frac{\varepsilon_{kk}}{3}$.

In the creep term of Equation 3, F is a multiplier on the steady-state creep rate to simulate the transient creep response according to the following,

$$F = \begin{cases} e^{\Delta[1 - \zeta/\varepsilon_t^*]^2}, \zeta < \varepsilon_t^* \\ 1, \zeta = \varepsilon_t^* \\ e^{-\delta[1 - \zeta/\varepsilon_t^*]^2}, \zeta > \varepsilon_t^* \end{cases}$$
(EQ 3)

where Δ and δ are work-hardening and recovery parameters, respectively, and ε_t^* is the so-called transient strain limit. Finally, ζ is an internal state variable whose rate of change is determined by the following evolutionary equation,

$$\dot{\zeta} = (F-1)\dot{\varepsilon}_s . \tag{EQ4}$$

In Equation 3, the work-hardening parameter Δ is defined as $\Delta = \alpha + \beta \log(\overline{\sigma}/G)$ where α and β are constants. The variable $\overline{\sigma}$ is the equivalent Tresca stress given by

$$\overline{\sigma} = 2\sqrt{J_2}\cos\theta$$
 where $\theta = \frac{1}{3}asin\left[\frac{-3\sqrt{3}J_3}{2(J_2)^{3/2}}\right]$ is the Lode angle and is limited to the

range $-\frac{\pi}{6} \le \theta \le \frac{\pi}{6}$. The variables J_2 and J_3 are the second and third invariants of the stress deviator given by $J_2 = \frac{1}{2}s_{pq}s_{qp}$ and $J_3 = \frac{1}{3}s_{pq}s_{qr}s_{rp}$, respectively. The recovery parameter δ is held constant. The transient strain limit is given by $\varepsilon_t^* = K_o e^{cT} (\overline{\sigma}/G)^M$ where K_o , c, and M are constants.

The steady-state, or secondary creep, strain rate, $\dot{\varepsilon}_s$, is given by

$$\dot{\varepsilon}_{s} = A_{1}e^{-Q_{1}/RT} \left(\frac{\overline{\sigma}}{\overline{G}}\right)^{n_{1}} + A_{2}e^{-Q_{2}/RT} \left(\frac{\overline{\sigma}}{\overline{G}}\right)^{n_{2}}$$

$$+ |H| [B_{1}e^{-Q_{1}/RT} + B_{2}e^{-Q_{2}/RT}] \sinh\left[\frac{q(\overline{\sigma} - \sigma_{o})}{G}\right];$$
(EQ 5)

where the A_i s and B_i s are constants, the Q_i s are activation energies, T is the absolute temperature, R is the universal gas constant, the n_i s are the stress exponents, q is the socalled stress constant, σ_o is the stress limit of the dislocation slip mechanism, and |H| is the Heaviside step function with the argument $(\overline{\sigma} - \sigma_o)$. The material constants corresponding to the clean and argillaceous salt, used in the analyses, are given in Table 1 and Table 2.

G MPa	E MPa	v
12,400	31,000	0.25

 Table 1: Elastic Properties [2]

 Table 2: Creep Properties [2]

Parameters (units)	Clean Salt	Argillaceous Salt
A_1 (/sec)	8.386E22	1.407E23
Q_1 (cal/mole)	25,000	25,000
<i>n</i> ₁	5.5	5.5
B_1 (/sec)	6.086E6	8.998E6
A_2 (/sec)	9.672E12	1.314E13
Q_2 (cal/mole)	10,000	10,000
<i>n</i> ₂	5.0	5.0
B_2 (/sec)	3.034E-2	4.289E-2
σ_o (MPa)	20.57	20.57
q	5,335	5,335
М	3.0	3.0
K _o	6.275E5	2.470E6
c (/T)	9.198E-3	9.198E-3
α	-17.37	-14.96
β	-7.738	-7.738
δ	0.58	0.58

The stress-strain behavior of the waste was represented by a volumetric plasticity model [1] with a piecewise linear function defining the relationship between the mean stress and the volumetric strain. Compaction experiments on simulated waste were used to develop this relationship. The deviatoric response of the waste material has not been characterized. It is anticipated that when a drum filled with loosely compacted waste is compressed axially, the drum will not undergo significant lateral expansion until most of the void space inside the drum has been eliminated.
For the volumetric plasticity model, the yield surface in principal stress space is a surface of revolution with its axis centered about the hydrostat and the open end pointing into the compression direction. The open end is capped with a plane which is at right angles to the hydrostat. The deviatoric part is elastic-perfectly plastic so the surface of revolution is stationary in stress space. The volumetric part has variable strain hardening so the end plane moves outward during volumetric yielding. The volumetric hardening is defined by a set of pressure-volumetric strain relations. A flow rule is used such that deviatoric strains produce no volume change (associated flow). The model is best broken into volumetric and deviatoric parts with the deviatoric part resembling conventional plasticity. The volumetric yield function is a product of two functions, ϕ_s and ϕ_p , describing the surface of revolution and the plane normal to the pressure axis, respectively. These are given by

$$\phi_s = \frac{1}{2} s_{ij} s_{ij} - a_0 + a_1 p + a_2 p^2$$
(EQ 6)

$$\phi_p = p - g(\varepsilon_v) \tag{EQ7}$$

where a_0 , a_1 , a_2 are constants defining the deviatoric yield surface, p is the pressure, and ε_v is the volume strain. The form of g is defined in this problem by a set of piecewise linear segments relating pressure-volume strain. Table 3 lists the pressure-volumetric strain data used for the waste drum model. Note that the final point listed in the table is a linear extrapolation beyond the curve data given in [6]. The final pressure value of 12 MPa corresponds to an axial stress on a waste drum of 36 MPa. The elastic material parameters and constants defining the yield surface are given in Table 4.

Table 3: Pressure-Volumetric Strain Data Used in the Volumetric-Plasticity	' Model
for the Waste Drums [6]	

Pressure (MPa)	ln (ρ/ρ ₀)
1.530	0.5101
2.0307	0.6314
2.5321	0.7189
3.0312	0.7855
3.5301	0.8382
4.0258	0.8808
4.9333	0.9422
12.0	1.140

Parameter	Value
G	333. Mpa
К	222 Mpa
a ₀	1.0 Mpa
a ₁	3.0
a ₂	0.

Table 4: Material Constants Used With the Volumetric Plasticity Model for theWaste

The anhydrite layer beneath the disposal room is expected to experience inelastic material behavior. The MB 139 anhydrite layer is considered to be isotropic and elastic until yield occurs. Once the yield stress is reached plastic strain begins to accumulate. Yield is assumed to be governed by the Drucker-Prager criterion

$$\sqrt{J_2} = C - aJ_1 \tag{EQ 8}$$

where J_2 is the second deviatoric stress invariant and J_1 is the first stress invariant(σ_{kk}). A nonassociative flow rule, Equation 9, is used to determine the plastic strain components, $\dot{\epsilon}_{ij}^p$.

$$\dot{\varepsilon}_{ij}^{p} = \lambda s_{ij} \tag{EQ 9}$$

In this equation, λ is a positive scalar function of proportionality. The elastic properties and Drucker-Prager constants, C and a, for the anhydrite are given in Table 5.

Material	Young's Modulus (GPa)	Poisson's Ratio	C (MPa)	a
Anhydrite	75.1	0.35	1.35	0.45

Table 5: Elastic and Drucker-Prager Constants for Anhydrite [7]

Gas Generation Model

The gas generation potential and gas production rate are composed of gas from two sources: anoxic corrosion and microbial activity. Reference [8] reports that the estimated gas production potential from anoxic corrosion will be 1050 *moles/drum* with a production rate of 1 *mole/drum/year*. The gas production potential from microbial activity is estimated

to be 550 moles/drum with a production rate of 1 mole/drum/year. This means that microbial activity ceases at 550 years while anoxic corrosion will continue until 1050 years after emplacement. The total amount of gas generated in a disposal room for the Baseline case was specified to be based on 6804 unprocessed waste drums per room. The total gas potential for the Baseline case is shown in Figure 3.

the Disposal Room Analyses

These values for the Baseline case are considered acceptable for the calculations, even though the values for the gas generation model recommended for the final Performance Assessment BRAGFLO calculations are likely to be different. The use of the Baseline values is consistent with the porosity surface approach that compensates for the absence of detailed definition about gas generation within the repository by constructing a set of closure (void volume or porosity) curves using assumed gas generation (pressure) histories that span all of the gas generation histories that potentially might be encountered within the repository [9]. Several calculations in which the assumed rate of gas production is doubled will be made, and calculations assuming a total gas potential of 3200 moles/drum will also assure that the porosity surface data spans all potential gas generation histories.

The gas pressure is computed from the ideal gas law based on the current free volume in the room. Specifically, the gas pressure, p_g , is computed with the following relationship:

$$p_g = f \frac{NRT}{V}, \tag{EQ 10}$$

where N, R, and T are the mass of gas in g-moles for the Baseline case, the universal gas constant, and the absolute temperature in degrees Kelvin. The variable V is the current free volume of the room. After each iteration in the analysis, the current room free volume is calculated based on the locations of the nodes on the boundary of the room. The variable fis a multiplier used in the study to scale the pressure by varying the amount of gas generation. A value of f=1 corresponds to an analysis with full gas generation, while a value of f=0 corresponds to no internal pressure increase due to gas generation.

References

- 1. Stone, C. M., SANTOS A Two-Dimensional Finite Element Program for the Quasistatic, Large Deformation, Inelastic Response of Solids, SAND90-0543, Sandia National Laboratories, Albuquerque, New Mexico, in preparation.
- 2. Butcher, B. M. and J. Holmes, 'Completion of milestone DR015, definition of closure analysis input parameters, due March 31, 1995,' Sandia National Laboratories, memorandum to Les Shepard and Martin Tierney, March 31, 1995.
- Osnes, J. D. and D. A. Labreche, 'The Effect of Clay Seams and Anhydrite Layers on the Closure of Waste Isolation Pilot Plant Disposal Rooms and Guidelines for Simplifying the Modeled Stratigraphy,' RE/SPEC External Memorandum RS(RCO)-390/7-95/58, August 29,1995.
- 4. Munson, D. E. and P. R. Dawson, A Transient Creep Model for Salt During Stress Loading and Unloading, Sandia National Laboratories, Albuquerque, New Mexico, 1982.
- 5. Munson, D. E., A. E. Fossum, and P. E. Senseny, Advances in Resolution of Discrepancies Between Predicted and Measured In Situ WIPP Room Closures, SAND88-2948, Sandia National Laboratories, Albuquerque, New Mexico, 1989.
- 6. Butcher, B. M., 'Waste Compressibility Curve Predictions,' Sandia National Laboratories Memorandum of Record, February 16, 1995.
- Munson, D. E., 'Mechanical Parameters for Volume 3, SAND92-0700", Sandia Internal Memorandum, October 26, in Appendix A, pp A-107 to A-124 of Preliminary performance Assessment for the Waste Isolation Pilot Plant, December 1992, Volume 3: Model Parameters, SAND92-0700/3, prepared by Sandia National Laboratories, Albuquerque, NM.
- Beraun, R. and P. B. Davies, 'Baseline Design Input Data Base to be Used During Calculations Effort by Division 1514 in Determining the Mechanical Creep Closure Behavior of Waste Disposal Rooms in Bedded Salt,' Memorandum to Distribution, Sandia National Laboratories, Albuquerque, NM, September 12, 1991.

B. M. Butcher, 6748

9. Butcher, B. M., S. W. Webb, and J. W. Berglund, 'Disposal Room and Cuttings Models-White Paper for Systems Prioritization and Technical Baseline,' WIPP Project Document, Section 3.2.4, 1994.

Distribution:

	SWCF-A: 1.1.1.2.3; DRM
9100	P. J. Hommert
9102	R. D. Skocypec (Route to 9111)
9103	J. H. Biffle (Route to 9116)
9104	E. D. Gorham (Route to 9114, 9115)
9112	A. C. Ratzel (Route to 9113)
9117	H. S. Morgan (Route to Staff)
9118	E. P. Chen (Acting) (Route to Staff)
9117	C. M. Stone
9117	J. G. Arguello
9117	QA File
	9100 9102 9103 9104 9112 9117 9117 9117 9117

Appendix B: Supporting Justification Memoranda

B. M. Butcher, "Corrosion and Microbial Gas Generation Potentials," Sandia National Laboratories Memorandum of Record, March 18, 1996.	. B-2
B. M. Butcher, "Baseline Inventory Assumptions for the Final Porosity Surface Calculations," Sandia National Laboratories Memorandum of Record, March 11, 1996.	.B-5
C. M. Stone, "Resolution of Remaining Issues for the Final Disposal Room Calculations," Memorandum to B. M. Butcher, March 4, 1996.	B-8

Appendix B errata

p. B-3 The references should be in the following order: Beraún, R. and P.B. Davies 1992; Butcher, B. M. et al. 1994; Brush, L. H. 1991; Lappin A. R. et al. 1989; Sandia WIPP Project. 1992

p. B-8 Text reference to Munson 1989 should be reference to Munson et al. 1989.

p. B-11 Butcher and Holmes 1995 Correct spelling of Les Shephard's surname.

In addition, the following references should be added:

- Butcher, B.M., and F.T. Mendenhall. 1993. A Summary of the Models Used for the Mechanical Response of Disposal Rooms in the Waste Isolation Pilot Plant with Regard to Compliance with 40 CFR 191, Subpart B. SAND92-0427. Albuquerque, NM: Sandia National Laboratories. The final version of this document, "Systems Prioritization Method—Iteration 2 Baseline Position Paper: Disposal Room and Cuttings Model," is dated March 28, 1995 and is on file in the Sandia WIPP Central Files as WPO#28729 (Vol. 1) and WPO#28733 (Vol. 2). This document is not available from the National Technical Information Service.
- Munson, D. E., A. F. Fossum, and P. E. Senseny. 1989. "Approach to First Principles Model Prediction of Measured WIPP In Situ Room Closure in Salt," in Rock Mechanics as a Guide for Efficient Utilization of Natural Resources, Proceedings of the 30th US Symposium on Rock Mechanics, West Virginia University, Morgantown, WV, June 19-22, 1989. Ed. A.W. Khair. Brookfield, VT: A.A. Balkema. 673-680. The NTIS accession number and WPO# supplied at the end of this citation are the numbers for SAND88-2948 (Advances in Resolution of Discrepancies Between Predicted and Measured In Situ WIPP Room Closures). The title cited in this citation, "Approach to First Principles Model Prediction of Measured In Situ Room Closure in Salt," is also available as SAND88-2535C, which is available from the NTIS as DE8905777/XAB.

Sandia National Laboratories

Albuquerque, New Mexico 87185-1341

date: March 18, 1996: reissued July 10, 1996 after editorial revision

to: Memorandum of Record

B. M. Butin

from: B. M. Butcher, 6748, MS 1341

subject: Corrosion and Microbial Gas Generation Potentials

A number of values for the potential for corrosion and microbial gas generation have been used during development of the porosity surface approach (Butcher and Mendenhall, 1993, pp. 7-3 to 7-7). For example, in Lappin et. al (1989, Sec. 4.10.2) the gas generation potential was quoted as 589 moles/drum for anoxic microbial decay and 894 moles/drum for anoxic corrosion of metals.

Later, Beraún and Davies (1992) referenced Brush as recommending a gas potential of 1050 moles/drum for corrosion and 550 moles/drum for microbial decay. The source for these values was Reference 11 in Beraún and Davies (1992), which was described as "in draft," and apparently never issued. Source documentation for these values is therefore unknown, but may have been an early draft of the reference written by Brush (1991) in which the gas potential values were quoted as 900 moles/drum for corrosion and 600 moles/drum for microbial decay in the final version.

Recommended gas potentials have changed again several times since 1991. Nevertheless. use of the Beraún and Davies (1992) values of 1050 moles/drum for corrosion and 550 moles/drum for microbial decay has continued. The justification for using these values is that the porosity surface concept was adopted in order to circumvent problems related to (1) the absence of detailed definition of gas generation within the repository and (2) the realization that gas production histories typical of the repository that depend on brine inflow could not be addressed at that time as part of a mechanical closure calculation. There was no way of estimating how the brine content of the waste changes with time with structural codes such as SANTOS. To compensate for this deficiency, the porosity surface concept selects a set of gas generation histories that span all of the gas generation histories likely to be encountered within the repository. Disposal room porosities and gas pressures are calculated for each of the assumed histories as a function of time, summarized in data tables and transferred to BRAGFLO. Closure histories for specific repository conditions are then defined with the performance assessment code BRAGFLO, with which brine flow, gas generation, and gas migration are computed throughout the repository (Butcher et. al, 1994, Sections 3.2.4, 3.4.1).

In maintaining the link between SANTOS and BRAGFLO, the range of gas generation potentials for generation of the porosity surface data for the CCA exceed presently anticipated conditions for the repository. This procedure assures that BRAGFLO extrapolation outside

the data range is not needed. It also provides justification for using gas potential values that are not quite the same as values used on other performance assessment calculations. In other words, the gas model used for disposal room calculations is simply a device to enter a range of gas contents into the calculations, and should not be interpreted as having any exact significance in regard to predicted repository conditions. In other words, while it is desirable to keep these gas contents somewhat typical of parameter values used in the BRAGFLO gas model, to assist in physical intuition of the porosity surface results, the values used in SANTOS need not be exactly representative of repository conditions.

References:

- Beraún R., and P.B. Davies. 1992. "Appendix A: Baseline Design Input Data Base to be Used During Calculations Effort to be Performed by Division 1514 in Determining the Mechanical Creep Closure Behavior of Waste Disposal Rooms in Bedded Salt," *Preliminary Performance Assessment for the Waste Isolation Pilot Plant, December* 1992. Volume 3: Model Parameters. Sandia WIPP Project. SAND92-0700/3. Albuquerque, NM: Sandia National Laboratories. A-7 through A-13.
- Brush, L. H. 1991. Current Estimates of Gas Production Rates, Gas Production Potentials, and Expected Chemical conditions Relevant to Radionuclide Chemistry for the Long-Term WIPP Performance Assessment. Appendix A of WIPP PA (Performance Assessment) Division. 1991a. Preliminary Comparison with 40 CFR Part 191, Subpart B for the Waste Isolation Pilot Plant, December 1991. Volume 3: Reference Data. SAND91-0893/3. Eds. R.P. Rechard, J.D. Schreiber, H.J. Iuzzolino, M.S. Tierney, and J.S. Sandha. Albuquerque, NM: Sandia National Laboratories, Pages A-27 to A-41.
- Lappin, A.R., R. L. Hunter, D. P. Garber, and P.B. Davies, eds. 1989. "Systems Analysis, Long-Term Radionuclide Transport, and Dose Assessments, Waste Isolation Pilot Plant (WIPP), Southeastern New Mexico: March 1989," SAND89-0462, Sandia national Laboratories, Albuquerque, New Mexico.
- Butcher, B. M., Webb, S. W., and Berglund, J. W., 1994. "DISPOSAL ROOM AND CUTTINGS MODELS - WHITE PAPER FOR SYSTEMS PRIORITIZATION AND TECHNICAL BASELINE," WIPP Project document.
- Sandia WIPP Project. 1992. Preliminary Performance Assessment for the Waste Isolation Pilot Plant, December 1992. Volume 3: Model Parameters. SAND92-0700/3. Albuquerque NM: Sandia National Laboratories.

Copy to:

MS 1341 B. M. Butcher (6748) day file MS 1330 SWCF-A: 1.1.1.2.3; DRM

Sandia National Laboratories

Albuquerque, New Mexico 87185-1341

date: March 11, 1996: reissued July 10, 1996 after revision

to: Memorandum of Record

B. M. Butin

from: B. M. Butcher

subject: Baseline Inventory Assumptions for the Final Porosity Surface Calculations

Final porosity surface calculations were started November 1, 1995, using waste compaction data derived from the February 1995 revision of the Baseline Inventory Report (BIR revision 1). The assumption was made, therefore, that future BIR adjustments would be small and have little effect on calculation results.

In contrast to the assumption, an updated draft revision, Draft B, November 1995, of the inventory was found to be quite different than the February version (Revision 1). These changes were qualified in the sense that reported values were not considered final until the document was approved. Revision 2 of the BIR was published on December 28, 1995, after the porosity surface calculations were completed. At that time, the consequences of the new values were reviewed in order to decide whether or not to scrap already completed calculations and start over again using the new inventory. The conclusion of the review was that Revision 2 did not contain sufficient information to assess the consequences of the revisions. It was observed that the compaction characteristics of the inventory described in Revision 1 represent an upper bound of the final porosity states (greatest porosity at any given time), because it takes more time to compact waste that has not been partially vitrified (discussed in a following paragraph). Therefore, more time is available for gas pressure to build up and stop closure. Less closure is considered conservative with regard to repository performance because the waste is more porous, and therefore would offer less resistance to the flow of radioactive brine.

Changes in Draft B are that vitrified waste is listed for the first time, the amount of ironbased metal has increased by over a factor of two and cellulosics waste has decreased in amount by a factor of three. New inventory values taken from Table ES-1 of Draft B are compared with the Revision 1 values in Table 1.

Closer examination of the differences between Revision 1 and Draft B revealed that the increase in amount of waste was because of the presence of vitrified waste. During vitrification, combustibles are burned up, causing the drop in the combustibles inventory, but the iron-based alloys remain intact. In addition, vitrification represents a 6 fold or greater reduction in waste volume, so that more of it can be used to fill the repository to capacity. In Draft B, the total amount of iron-based metal is the amount of iron in vitrified waste, augmented by the scaling process used to fill up the repository, plus the iron-based material in unprocessed waste. The procedure accounts for the increased iron content and decreased combustibles, but does not specify quantitatively how much iron is associated with the vitrified form. We need to know how much iron is associated with iron in vitrified waste and

how much is in unprocessed waste. This information is critical because the stress-strain response of iron in vitrified waste differs greatly from that of iron in unprocessed metals waste. Iron in vitrified waste is for all practical purposed locked up in it, undergoing little consolidation because the vitrification process produces a waste form that is likely to have high enough strength to resist further large scale densification. Vitrified waste thus undergoes little further consolidation during closure, whereas unprocessed metals waste undergoes a very large amount of densification during closure.

Summary: The lack of quantitative definition of the amount of iron that is associated with the vitrified waste component in Revision 2 of the BIR prevented use of this latest information in constructing the compaction curve data input for the final porosity surface calculations. Instead, final calculations were made using waste compaction data derived from the February 1995 version of the Baseline Inventory Report (BIR Revision 1). This approach is considered to provide an upper bound of the final porosity states.

Copy to:

MS 1341 B. M. Butcher (6748) day file MS 1330 SWCF-A: 1.1.1.2.3; DRM

	92 PA	Rev. 1: February 1995	Rev. 2: December 1995
<u>Material</u>	kg/m ³	kg/m ³	kg/m ³
Iron Base Metals		83	170
Aluminum Base Metals		12	18
Other Metals		27	72
Total Metals	110	122	260
Other Inorganic Material	32	40	33
Vitrified	0	0	50
Cellulosics	47	170	52
Rubber		21	10
Plastics		63	33
Total Rubber and Plastics	67	84	43
Solidified Inorganic Material		130	120
Solidified Organic Material		7.8	2.6
Total Sludges	171	137.8	122.6
Cement	0	0	0
Soils	0	5.7	32
Initial Waste Density	426	560	593

Table 1: Baseline Inventory Assumptions for Disposal Room Model Calculations

Sandia National Laboratories

date: March 4, 1996 Revised May 16, 1996

Albuquerque, New Mexico 87185

to: B. M. Butcher, 6748, MS1341

from: C. M. Stone, 9117, MSO

subject: Resolution of remaining issues for the final disposal room calculations

Disposal Room Elevation

In Butcher and Holmes (1995), the local zero reference is defined to be Clay G which is at Elevation 387.07 m above mean sea level and the top of MB 139 is at Elevation 379.11 which results in a distance below the reference of 7.96 m. Butcher and Holmes also locates the floor of the disposal room at Elevation 380.49 m. This locates the floor 1.38 m above MB 139 and 6.58 below Clay G. The top of MB 139 is shown in Figure 2 of Butcher and Holmes (1995) and Munson (1989) to be -7.77 m below Clay G rather than -7.96 m. It was decided to hold the top of MB 139 to be -7.77 m as shown in the referenced figures and locate the disposal room floor 1.38 m above at -6.39 m below Clay G. It was felt that the location of the disposal room relative to MB 139 was the important dimension here. The top of the disposal room is located 3.96 m above the disposal room floor at -2.43 m relative to Clay G.

Determination of Plastic Constants for the TRU Waste

In Butcher and Holmes (1995), the inelastic deviatoric response of the TRU waste is characterized by a constitutive model of the form

$$J_2 = a_0 + a_1 p + a_2 p^2$$
 (EQ 1)

where J_2 is the second deviatoric stress invariant, p is the pressure (positive in compression), and a_0 , a_1 , and a_2 are material constants. The material constants are defined for this particular form of deviatoric response. In SANTOS, the model for the waste is written in a different functional form

$$\bar{\sigma} = A_0 + A_1 p + A_2 p^2 \tag{EQ 2}$$

where $\bar{\sigma}$ is the von Mises equivalent stress and p is the pressure (positive in compression). The material constants A₁, A₂, and A₃ are different from a₁, a₂, and a₃. Butcher and Holmes (1995) give the following values: $a_1 = 0.0$, $a_2 = 0.0$, and $a_3 = 3.0$. When combined with Eq. 1, the material constants define J_2 as

$$J_2 = 3p^2$$
 . (EQ 3)

The von Mises equivalent stress is defined as $\overline{\sigma} = \sqrt{3J_2}$ and when Eq. 3 is substituted for J_2 the following result is obtained

$$\overline{\sigma} = 3p$$
 . (EQ 4)

This allows us to redefine the appropriate TRU waste material constants for SANTOS as $A_1 = 0.0$, $A_2 = 3.0$ and $A_3 = 0.0$. In order to stabilize the iterative algorithm in SANTOS, some strength is assigned to the waste at zero confining pressure. This is done by giving A1 a value of 1.0×10^6 pa. This results in the following values used in the final porosity surface calculations; A1 = 1.0×10^6 , A2 = 3.0, and A3 = 0.0.

Determination of SANTOS Input Constants for Anhydrite

The anhydrite layer beneath the disposal room is expected to experience inelastic material behavior. The MB 139 anhydrite layer is considered to be isotropic and elastic until yield occurs. Once the yield stress is reached, plastic strain begins to accumulate. Yield is assumed to be governed by the Drucker-Prager criterion

$$\sqrt{J_2} = C - aJ_1 \tag{EQ 5}$$

where J_2 is the second deviatoric stress invariant and J_1 is the first stress invariant. A nonassociative flow rule is used to determine the plastic strain components. The elastic constants and Drucker-Prager constants, C and a, as defined by Munson (1995) are given in Table 1. The input to the soil and crushable foam model in the SANTOS code requires

Table 1: Anhydrite Elastic and Drucker-Prager Constants [Munson]

Material	Young's Modulus, E, (Gpa)	Poisson's Ratio, v	C (Mpa)	a
Anhydrite	75.1	0.35	1.35	0.45

the analyst to provide TWO MU, (2μ) , and the BULK MODULUS, K. The conversion from Young's modulus, E, and Poisson's ratio, v, to the SANTOS input parameters is given from the following relationships taken from Fung (1965):

$$2\mu = \frac{E}{(1.+\nu)}$$
(EQ 6)

$$K = \frac{E}{3(1.-2v)}.$$
 (EQ 7)

SANTOS requires the input to the material model which describes the anhydrite nonlinear response to be given in terms of effective stress, $\overline{\sigma} = \sqrt{3J_2}$, and pressure, $p = \frac{J_1}{3}$. Rewriting Eq. (5) in terms of $\overline{\sigma}$ and p, we obtain the following relationship

$$\overline{\sigma} = \sqrt{3}C - 3\sqrt{3}ap. \tag{EQ 8}$$

The SANTOS input constant A0 is $\sqrt{3}C$ and the input constant A1 is $3\sqrt{3}a$. The set of SANTOS input parameters for the anhydrite is given in Table 2.

Material	TWO MU (Gpa)	BULK MODULUS (Gpa)	A0 (Mpa)	A1	A2
Anhydrite	55.6	83.4	2.3	2.338	0.0

 Table 2: SANTOS Input Parameters for the Anhydrite Layers

Determination of SANTOS Input Elastic Constants for Halite and Argillaceous Halite

The finite element code, SANTOS, uses TWO MU and BULK MODULUS as input for the elastic parameters in the M-D creep model. The quantity, TWO MU, is twice the shear modulus, μ . The value of the shear modulus reported by Munson for halite and argillaceous halite is 12.4 Gpa. This means that TWO MU has a value of 24.8 Gpa. The value of the BULK MODULUS is not given directly by Munson (1995) but it may be calculated from the following relation given in Fung (1965):

$$K = \frac{E}{3(1.-2v)}$$
 (EQ 9)

where K, E and ν are the bulk modulus, Young's modulus and Poisson's ratio, respectively. The values for Young's modulus and Poisson's ratio are given by Munson (1995). The resulting value of the bulk modulus is calculated to be 20.66 Gpa.

<u>References</u>

Butcher, B. M. and J. T. Holmes. 1995. "Completion of Milestone DR015, Definition of Closure Analysis Input Parameters, Due March 31, 1995," Memorandum to Les

Sheppard and Martin Tierney, Sandia National Laboratories, Albuquerque, New Mexico, March 31, 1995.

- Fung, Y. C. 1965. Foundations of Solid Mechanics. Englewood Cliffs: NJ. Prentice Hall Inc.
- Munson, D. E. 1995. "Mechanical Parameters for Update of Reference Data Report," memo to M. S. Tierney, Sandia National Laboratories, Albuquerque, New Mexico, September 26, 1995.
- Munson, D. E., A. E. Fossum, and P. E. Senseny. 1989. "Advances in Resolution of Discrepancies Between Predicted and Measured In Situ WIPP Room Closures," SAND88-2948, Sandia National Laboratories, Albuquerque, New Mexico.

CMS:9117

Copy to:

MS-1330		SWCF-A: 1.1.1.2.3; DRM
MS-0841	9100	P. J. Hommert
MS-0835	9102	R. D. Skocypec (Route to 9111)
MS-0833	9103	J. H. Biffle (Route to 9116)
MS-0828	9104	E. D. Gorham (Route to 9114, 9115)
MS-0834	9112	A. C. Ratzel (Route to 9113)
MS-0443	9117	H. S. Morgan (Route to Staff)
MS-0437	9118	E. P. Chen (Acting) (Route to Staff)
MS-0443	9117	C. M. Stone
MS-0443	9117	J. G. Arguello
MS-0443	9117	QA File

This page intentionally left blank

Appendix C: Documentation of Calculations

Calculation of solid density for the inventory listed in the Baseline Inventory Report Rev 1,	
February 1995	. C-2
Verification of Pressure-Volumetric Strain Values Described in Table 8 of this report. April	
1, 1996	. C-3

Calculation of solid density for the inventory listed in the Baseline Inventory Report Rev 1, February 1995.

File C: MATHCAD STRAIN Check of Mike Stone's volume strain calculation by B. M. Butcher, April 1, 1996 using the data file C: MATHCAD BIRREV1.PRN This data file has the same average waste compressibility data as recommended in "Waste Compressibility Curve Predictions," Memorandum of Record by B. M. Butcher, February 16, 1995 A := READPRN(BIRREV1) RHOS := 1757 rho0 := 559.5 i := 0 ..63 s := A phi := A rho := RHOS [1 - phi] i i,0 i i,1 i [1] rho0 = 559.5 $ev := ln \left[\frac{rho}{i} \\ \frac{i}{rho0} \right]$ (mean stress is 1/3 axial stress) i B := p B := ev B := s B := phi i,0 i i,1 i i,2 i i,3 i WRITEPRN(EV) := B Check Calculations phi0 := 1 - $\frac{rho0}{----}$ phi0 = 0.68156 RHOS $evl := ln \begin{bmatrix} 1 - phi \\ i \\ 1 - phi0 \end{bmatrix} \qquad delt := evl - ev \\ i & i \end{bmatrix}$ Graphing this data shows that it coincides with the curve computed by Stone pressure strain axial porosity stress $\begin{bmatrix} 0 & 0.00176 & 0 & 0.681 \\ 0.26667 & -0.32536 & 0.8 & 0.77 \\ 0.34376 & -0.20106 & 1.03128 & 0.73956 \\ 0.39185 & -0.14205 & 1.17555 & 0.72373 \end{bmatrix}$ 0.681 $B = \begin{bmatrix} 0.39185 & -0.14205 & 1.17555 & 0.72373 \\ 0.45864 & -0.06795 & 1.37593 & 0.70248 \\ 0.53331 & 0.00554 & 1.59994 & 0.67979 \\ 0.6061 & 0.06929 & 1.81831 & 0.65871 \\ 0.67116 & 0.12018 & 2.01348 & 0.6409 \\ 0.7444 & 0.1714 & 2.23321 & 0.62202 \\ 0.7444 & 0.2726 & 2.23221 & 0.62202 \\ 0.21222 & 0.22222 & 0.22222 \\ 0.21222 & 0.22222 & 0.22222 \\ 0.21222 & 0.22222 & 0.22222 \\ 0.21222 & 0.22222 & 0.22222 \\ 0.2122 & 0.2222 & 0.22222 \\ 0.2122 & 0.2222 & 0.22222 \\ 0.2122 & 0.2222 & 0.22222 \\ 0.2122 & 0.2222 & 0.22222 \\ 0.2122 & 0.2222 & 0.22222 \\ 0.2122 & 0.2222 & 0.22222 \\ 0.2122 & 0.2222 & 0.2222 \\ 0.2122 & 0.222 & 0.2222 \\ 0.2122 & 0.2222 & 0.2222 \\ 0.2122 & 0.2222 & 0.2222 \\ 0.212 & 0.222 & 0.2222 \\ 0.212 & 0.222 & 0.2222 \\ 0.212 & 0.222 & 0.2222 \\ 0.212 & 0.222 & 0.2222 \\ 0.212 & 0.222 & 0.2222 \\ 0.212 & 0.222 & 0.2222 \\ 0.212 & 0.222 & 0.2222 \\ 0.212 & 0.222 & 0.2222 \\ 0.212 & 0.2222 & 0.2222 \\ 0.212 & 0.2222 & 0.2222 \\ 0.212 & 0.2222 & 0.2222 \\ 0.212 & 0.222 & 0.2222 \\ 0.212 & 0.222 & 0.2222 \\ 0.212 & 0.222 & 0.2222 \\ 0.212 & 0.222 & 0.2222 \\ 0.212 & 0.222 & 0.222 \\ 0.212 & 0.222 & 0.222 \\ 0.212 & 0.222 & 0.222 \\ 0.212 & 0.222 & 0.222 \\ 0.212 & 0.222 & 0.222 \\ 0.212 & 0.222 & 0.222 \\ 0.212 & 0.222 & 0.222 \\ 0.212 & 0.222 & 0.222 \\ 0.212 & 0.222 & 0.222 \\ 0.212 & 0.222 & 0.222 \\ 0.212 & 0.222 & 0.22$

C-2

0.81993 0.21876 2.4598 0.60369

0.890240.25872.45580.803690.961970.296022.885920.571861.036340.331453.109030.556421.103460.361053.310380.543091.172740.389483.518210.52991

Verification of Pressure- Volumetric Strain Values Described in Table 8 of this report. April 1, 1996

C:-mathcad-biroctb Calculate solid density for inventory listed in the Baseline Inventory Report, Rev 1, February 1995. Calculation made by B. M. Butcher, 12.4.95, Revised by B. M. Butcher, February 19, 1996. Solid density is calculated using the equations in Section 2.3.2 in SAND90-1206, "Mechanical Compaction of Waste Isolation Pilot Plant Simulated Waste," using the solid density values for each waste component in Table 6 of the present report ("A summary of the Sources of Input parameter Values for the Final Porosity Surface Calculations") - this last sentence was added on 4/15/96 by B. M. Butcher to reference the method of calculation

Define masses = m is metal, c is combustible, p is plastic, s is sludge/soil wmi := 83 kg/m3 wc := 170 wim := 39 wss := 5.7 wma := 12 wpp := 63 wsi := 130

 wma := 12
 wpp := 63
 wsi := 130

 wmo := 27
 wpr := 21
 wso := 8.4

v is volume

	wmi + wma + wmo	
vmt :=	7830	vmt = 0.016
vc := -]	wc 100	vc = 0.155
vp := -	pp + wpr 1200	vp = 0.07
vsorb :	= wim 3000	vsorb = 0.013
vslud :	wsi + wso + wss 2200	vslud = 0.066
vt wt	<pre>:= vmt + vc + vp + vsorb + vslud := wmi + wma + wmo + wc + wpp + wpr ++</pre>	vt = 0.319 • wim + wsi + wso + wss wt = 559.1
rs		
	Average solid denisty is 175	55 kg/m3
	Initial porosity is 1	$-\frac{vt}{-}=0.681$

1.31661 0.44272 3.94982 0.50421 1.38604 0.46622 4.15811 0.49242 1.46112 0.4902 4.38335 0.4801 1.53027 0.51062 4.59081 0.46937 1.60051 0.53087 4.80154 0.45852 1.67589 0.55123 5.02766 0.44738 1.74624 0.56881 5.23872 0.43758 1.81973 0.58626 5.4592 0.42768 1.88723 0.60161 5.6617 0.41883 1.96094 0.61753 5.88281 0.4094 2.10297 0.6462 6.30891 0.39233 2.17681 0.66015 6.53043 0.38379 2.24467 0.67247 6.734 0.36647 2.3149 0.68471 6.94469 0.36847 2.38653 0.69666 7.1596 0.36088 2.45932 0.70831 7.37795 0.35339 2.5321 0.71951 7.5963 0.3461 2.60567 0.73039 7.817 0.33895 2.67416 0.74018 8.02247 0.32592 2.81782 0.75956 8.45345 0.31937 2.95721 0.77718 8.87162 0.30729 3.03123 0.78604 9.0937 0.30113 3.10064 0.79408 9.5392 0.2848 3.1715 0.81763 9.95146 0.27869 3.24331 0.80986 9.72994 0.28428 3.1715 0.81763 10.8053 0.25837 <tr< td=""><td></td><td>1.24645</td><td>0.41763</td><td>3.73935</td><td>0.51649</td></tr<>		1.24645	0.41763	3.73935	0.51649
1.38604 0.46622 4.15811 0.49242 1.46112 0.4902 4.38335 0.48011 1.53027 0.51062 4.59081 0.46937 1.60051 0.53087 4.80154 0.45852 1.67589 0.55123 5.02766 0.44738 1.74624 0.56881 5.23872 0.43758 1.81973 0.58626 5.4592 0.42768 1.88723 0.60161 5.6617 0.41883 1.96094 0.61753 5.88281 0.4095 2.03065 0.63193 6.09195 0.40094 2.10297 0.6462 6.30891 0.39233 2.17681 0.66015 6.53043 0.38379 2.24467 0.67247 6.734 0.37615 2.3149 0.68471 6.94469 0.36847 2.38653 0.69666 7.1596 0.36088 2.45932 0.70831 7.37795 0.33395 2.67416 0.74018 8.02247 0.32245 2.74508 0.74991 8.23524 0.32592 2.81782 0.75956 8.45345 0.31939 2.88619 0.76837 8.65857 0.31337 2.95721 0.77718 8.87162 0.28428 3.1715 0.81763 9.95146 0.27869 3.24331 0.802458 10.1548 0.27869 3.4433 0.82458 10.1548 0.27865 3.5301 0.83875 10.5903 0.26329 3.6162 <t< td=""><td></td><td>1.31661</td><td>0.44272</td><td>3.94982</td><td>0.50421</td></t<>		1.31661	0.44272	3.94982	0.50421
1.46112 0.4902 4.38335 0.4801 1.53027 0.51062 4.59081 0.46937 1.60051 0.53087 4.80154 0.45852 1.67589 0.55123 5.02766 0.44738 1.74624 0.56881 5.23872 0.42768 1.88723 0.60161 5.6617 0.41883 1.96094 0.61753 5.88281 0.4095 2.03065 0.63193 6.09195 0.40094 2.10297 0.6462 6.30891 0.39233 2.17681 0.66015 6.53043 0.38379 2.24467 0.67247 6.734 0.37615 2.3149 0.68471 6.94469 0.366847 2.38653 0.69666 7.1596 0.36088 2.45932 0.70831 7.37795 0.35339 2.5321 0.71951 7.5963 0.34611 2.60567 0.73039 7.817 0.33245 2.74508 0.74991 8.23524 0.32592 2.81782 0.75956 8.45345 0.31939 2.88619 0.76837 8.65857 0.31337 2.95721 0.77718 8.87162 0.30729 3.03123 0.78604 9.0937 0.28428 3.17464 0.80239 9.52392 0.2896 3.24331 0.80886 9.72994 0.28428 3.31715 0.81763 10.3667 0.26329 3.60177 0.84543 10.1626 0.23776 3.67023		1.38604	0.46622	4.15811	0.49242
1.53027 0.51062 4.59081 0.46937 1.60051 0.53087 4.80154 0.45852 1.67589 0.55123 5.02766 0.44738 1.74624 0.56881 5.23872 0.43758 1.81973 0.58626 5.4592 0.42768 1.88723 0.60161 5.6617 0.41883 1.96094 0.61753 5.88281 0.4095 2.03065 0.63193 6.09195 0.40094 2.10297 0.6462 6.30891 0.39233 2.17681 0.66015 6.53043 0.38379 2.24467 0.67247 6.734 0.37615 2.3149 0.68471 6.94469 0.36847 2.38653 0.69666 7.1596 0.36088 2.45932 0.70831 7.37795 0.35339 2.5321 0.71951 7.5963 0.3461 2.60567 0.73039 7.817 0.33895 2.67416 0.74018 8.02247 0.32452 2.74508 0.74991 8.23524 0.32592 2.81782 0.75956 8.45345 0.31337 2.95721 0.77718 8.87162 0.30729 3.03123 0.78604 9.0937 0.30113 3.10064 0.79408 9.30192 0.29548 3.1715 0.81763 9.59392 0.28428 3.1715 0.81763 9.5933 0.26329 3.60177 0.84543 10.1548 0.27869 3.8493 0.8		1.46112	0.4902	4.38335	0.4801
1.60051 0.53087 4.80154 0.45852 1.67589 0.55123 5.02766 0.44738 1.74624 0.56881 5.23872 0.43758 1.81973 0.58626 5.4592 0.42768 1.88723 0.60161 5.6617 0.41883 1.96094 0.61753 5.88281 0.4095 2.03065 0.63193 6.09195 0.40094 2.10297 0.6462 6.30891 0.39233 2.17681 0.66015 6.53043 0.38379 2.24467 0.67247 6.734 0.37615 2.3149 0.68471 6.94469 0.36847 2.38653 0.69666 7.1596 0.36088 2.45932 0.70831 7.37795 0.35339 2.5321 0.71951 7.5963 0.3461 2.60567 0.73039 7.817 0.33895 2.67416 0.74918 8.02247 0.32592 2.81782 0.75956 8.45345 0.3123 0.778637 8.65857 0.31337 2.95721 0.77718 8.87162 0.30729 3.03123 0.78604 9.0937 0.30113 3.10064 0.79408 9.30192 0.28428 3.1715 0.81763 9.95146 0.27869 3.24331 0.80986 9.72994 0.28428 3.1715 0.81763 9.95146 0.27869 3.8493 0.82458 10.1548 0.27366 3.8493 0.82458 10.5903 0.26329 <tr< td=""><td></td><td>1.53027</td><td>0.51062</td><td>4.59081</td><td>0.46937</td></tr<>		1.53027	0.51062	4.59081	0.46937
1.67589 0.55123 5.02766 0.44738 1.74624 0.56881 5.23872 0.43758 1.81973 0.58626 5.4592 0.42768 1.88723 0.60161 5.6617 0.41883 1.96094 0.61753 5.88281 0.4095 2.03065 0.63193 6.09195 0.40094 2.10297 0.6462 6.30891 0.39233 2.17681 0.66015 6.53043 0.38379 2.24467 0.67247 6.734 0.37615 2.3149 0.68471 6.94469 0.36847 2.38653 0.69666 7.1596 0.36088 2.45932 0.70831 7.37795 0.35339 2.5321 0.71951 7.5963 0.3461 2.60567 0.73039 7.817 0.33895 2.67416 0.74991 8.23524 0.32592 2.88619 0.76837 8.65857 0.31337 2.95721 0.77718 8.87162 0.30729 3.03123 0.78604 9.0937 0.30113 3.10064 0.79408 9.30192 0.28428 3.1715 0.81763 9.95146 0.27869 3.24331 0.8086 9.7294 0.28428 3.1715 0.81763 9.95146 0.27869 3.8493 0.82458 10.1548 0.27366 3.45557 0.83159 10.3667 0.26329 3.60177 0.84543 10.8053 0.22837 3.67023 0.87		1.60051	0.53087	4.80154	0.45852
1.74624 0.56881 5.23872 0.43758 1.81973 0.58626 5.4592 0.42768 1.88723 0.60161 5.6617 0.41883 1.96094 0.61753 5.88281 0.40095 2.03065 0.63193 6.09195 0.40094 2.10297 0.6462 6.30891 0.39233 2.17681 0.66015 6.53043 0.38379 2.24467 0.67247 6.734 0.37615 2.3149 0.68471 6.94469 0.36847 2.38653 0.69666 7.1596 0.36088 2.45932 0.70831 7.37795 0.35339 2.5321 0.71951 7.5963 0.3461 2.60567 0.73039 7.817 0.33245 2.74508 0.74991 8.23524 0.32592 2.81782 0.75956 8.45345 0.31939 2.88619 0.76837 8.65857 0.31337 2.95721 0.77718 8.87162 0.30729 3.03123 0.78604 9.0937 0.30113 3.10064 0.79408 9.30192 0.28428 3.31715 0.81763 9.95146 0.27869 3.8493 0.82458 10.1548 0.27366 3.45557 0.83159 10.3667 0.26855 3.5301 0.83875 10.5903 0.26329 3.61077 0.845431 10.8053 0.22836 3.67023 $0.8516511.0107$ 0.225873 3.7436 $0.8758211.$		1.67589	0.55123	5.02766	0.44738
1.81973 0.58626 5.4592 0.42768 1.88723 0.60161 5.6617 0.41883 1.96094 0.61753 5.88281 0.4095 2.03065 0.63193 6.09195 0.40094 2.10297 0.6462 6.30891 0.39233 2.17681 0.66015 6.53043 0.38379 2.24467 0.67247 6.734 0.37615 2.3149 0.68471 6.94469 0.36847 2.38653 0.69666 7.1596 0.36088 2.45932 0.70831 7.37795 0.35339 2.5321 0.71951 7.5963 0.3461 2.60567 0.73039 7.817 0.33895 2.67416 0.74918 8.02247 0.32592 2.81782 0.75956 8.45345 0.31939 2.88619 0.76837 8.65857 0.31133 2.95721 0.77718 8.87162 0.30729 3.03123 0.78604 9.0937 0.30113 3.10064 0.79408 9.30192 0.28428 3.1715 0.81763 9.95146 0.27869 3.24331 0.80986 9.72994 0.28428 3.61077 0.84543 10.5903 0.26329 3.6127 0.85811 11.2308 0.2489 3.616773 0.85811 11.2308 0.2489 3.8162 0.86432 11.4486 0.24422 3.8753 0.87026 11.6626 0.23972 3.7436 0.875		1.74624	0.56881	5.23872	0.43758
1.88723 0.60161 5.6617 0.41883 1.96094 0.61753 5.88281 0.4095 2.03065 0.63193 6.09195 0.40094 2.10297 0.6462 6.30891 0.39233 2.17681 0.66015 6.53043 0.38379 2.24467 0.67247 6.734 0.37615 2.3149 0.68471 6.94469 0.36847 2.38653 0.69666 7.1596 0.36088 2.45932 0.70831 7.37795 0.35339 2.5321 0.71951 7.5963 0.3461 2.60567 0.73039 7.817 0.33895 2.67416 0.74018 8.02247 0.32592 2.81782 0.75956 8.45345 0.31939 2.88619 0.76837 8.65857 0.31337 2.95721 0.77718 8.87162 0.30729 3.03123 0.78604 9.0937 0.30113 3.10064 0.79408 9.30192 0.28428 3.17464 0.80239 9.52392 0.2896 3.24331 0.80866 9.72994 0.28428 3.31715 0.81763 9.95146 0.27366 3.45557 0.83159 10.3667 0.26329 3.60177 0.84543 10.8053 0.25836 3.67023 0.85165 11.0107 0.25373 3.7436 0.87221 11.4868 0.23548 4.0258 0.87521 11.6626 0.23972 3.956 0.8		1.81973	0.58626	5.4592	0.42768
1.96094 0.61753 5.88281 0.4095 2.03065 0.63193 6.09195 0.40094 2.10297 0.6462 6.30891 0.39233 2.17681 0.66015 6.53043 0.38379 2.24467 0.67247 6.734 0.37615 2.3149 0.68471 6.94469 0.36847 2.38653 0.69666 7.1596 0.36088 2.45932 0.70831 7.37795 0.35339 2.5321 0.71951 7.5963 0.3461 2.67416 0.74018 8.02247 0.33245 2.74508 0.74991 8.23524 0.32592 2.81782 0.75956 8.45345 0.31939 2.88619 0.76837 8.65857 0.31337 2.95721 0.77718 8.87162 0.30729 3.03123 0.78604 9.0937 0.30113 3.10064 0.79408 9.30192 0.28428 3.1715 0.81763 9.95146 0.27366 3.45557 0.83159 10.3667 0.26855 3.5301 0.83875 10.5903 0.26329 3.60177 0.84543 10.8053 0.25836 3.67023 0.85165 11.0107 0.25373 3.7436 0.8782 11.868 0.23548 4.0258 0.86432 11.4486 0.24422 3.88753 0.87026 11.6626 0.23972 3.956 0.8782 11.868 0.22685 4.1693 0.9026 12.9409 0.21472 <	1	1.88723	0.60161	5.6617	0.41883
2.03065 0.63193 6.09195 0.40094 2.10297 0.6462 6.30891 0.39233 2.17681 0.66015 6.53043 0.38379 2.24467 0.67247 6.734 0.37615 2.3149 0.68471 6.94469 0.36847 2.38653 0.69666 7.1596 0.36088 2.45932 0.70831 7.37795 0.35339 2.5321 0.71951 7.5963 0.3461 2.60567 0.73039 7.817 0.33245 2.67416 0.74018 8.02247 0.32592 2.81782 0.75956 8.45345 0.31939 2.88619 0.76837 8.65857 0.31337 2.95721 0.77718 8.87162 0.30729 3.03123 0.78604 9.0937 0.30113 3.10064 0.79408 9.30192 0.28428 3.1715 0.81763 9.95146 0.27869 3.24331 0.80986 9.72994 0.28428 3.31715 0.81763 9.95146 0.27869 3.8493 0.82458 10.1548 0.27366 3.45557 0.83159 10.3667 0.26855 3.5301 0.83875 10.5903 0.26329 3.60177 0.84543 10.8053 0.2489 3.8162 0.86432 11.4486 0.24422 3.8753 0.87026 11.6626 0.23972 3.956 0.87582 11.868 0.23548 4.0258 0.88132 12.7771 0.21869 </td <td></td> <td>1.96094</td> <td>0.61753</td> <td>5.88281</td> <td>0.4095</td>		1.96094	0.61753	5.88281	0.4095
2.10297 0.6462 6.30891 0.39233 2.17681 0.66015 6.53043 0.38379 2.24467 0.67247 6.734 0.37615 2.3149 0.68471 6.94469 0.36847 2.38653 0.69666 7.1596 0.36088 2.45932 0.70831 7.37795 0.35339 2.5321 0.71951 7.5963 0.3461 2.60567 0.73039 7.817 0.33895 2.67416 0.74018 8.02247 0.32592 2.81782 0.75956 8.45345 0.31939 2.88619 0.76837 8.65857 0.31377 2.95721 0.77718 8.87162 0.30729 3.03123 0.78604 9.0937 0.30113 3.10064 0.79408 9.30192 0.28428 3.1715 0.81763 9.95146 0.27869 3.24331 0.80986 9.72994 0.28428 3.31715 0.81763 9.95146 0.27366 3.45557 0.83159 10.3667 0.26855 3.5301 0.83875 10.5903 0.26329 3.60177 0.84543 10.8053 0.25836 3.67023 0.85165 11.0107 0.25373 3.7436 0.87582 11.868 0.23548 4.0258 0.87582 11.868 0.23548 4.0258 0.88132 12.7074 0.23125 4.1693 0.9026 12.9409 0.21472 4.3875 0.9077		2.03065	0.63193	6.09195	0.40094
2.17681 0.66015 6.53043 0.38379 2.24467 0.67247 6.734 0.37615 2.3149 0.68471 6.94469 0.36847 2.38653 0.69666 7.1596 0.36088 2.45932 0.70831 7.37795 0.35339 2.5321 0.71951 7.5963 0.3461 2.60567 0.73039 7.817 0.33895 2.67416 0.74018 8.02247 0.32592 2.81782 0.75956 8.45345 0.31939 2.88619 0.76837 8.65857 0.31337 2.95721 0.77718 8.87162 0.30729 3.03123 0.78604 9.0937 0.30113 3.10064 0.79408 9.30192 0.229548 3.17464 0.80239 9.52392 0.2896 3.24331 0.80986 9.72994 0.28428 3.1715 0.81763 9.95146 0.27869 3.38493 0.82458 10.1548 0.27366 3.45557 0.83159 10.3667 0.26329 3.60177 0.88875 10.5903 0.26329 3.60177 0.84543 10.8053 0.25836 3.67023 0.85165 11.0107 0.25373 3.7436 0.87582 11.868 0.23548 4.0258 0.87582 11.8626 0.23972 3.956 0.87582 11.868 0.22685 4.1693 0.9026 12.9409 0.21472 4.31363 0.90		2.10297	0.6462	6.30891	0.39233
2.24467 0.67247 6.734 0.37615 2.3149 0.68471 6.94469 0.36847 2.38653 0.69666 7.1596 0.36088 2.45932 0.70831 7.37795 0.35339 2.5321 0.71951 7.5963 0.3461 2.60567 0.73039 7.817 0.33895 2.67416 0.74018 8.02247 0.32452 2.74508 0.74991 8.23524 0.32592 2.81782 0.75956 8.45345 0.31939 2.88619 0.76837 8.65857 0.31337 2.95721 0.77718 8.87162 0.30729 3.03123 0.78604 9.0937 0.30113 3.10064 0.79408 9.30192 0.229548 3.17464 0.80239 9.52392 0.2896 3.24331 0.80986 9.72994 0.28428 3.1715 0.81763 9.95146 0.27869 3.38493 0.82458 10.1548 0.27366 3.45557 0.83159 10.3667 0.26329 3.60177 0.84543 10.8053 0.25836 3.67023 0.85165 11.0107 0.25373 3.7436 0.87582 11.868 0.23548 4.0258 0.87582 11.868 0.23548 4.0258 0.88753 12.7271 0.21869 4.1693 0.9026 12.9409 0.21472 4.3875 0.90771 13.1625 0.21073 4.52807 0.91		2.17681	0.66015	6.53043	0.38379
2.3149 0.68471 6.94469 0.368471 2.38653 0.69666 7.1596 0.36088 2.45932 0.70831 7.37795 0.35339 2.5321 0.71951 7.5963 0.3461 2.60567 0.73039 7.817 0.33895 2.67416 0.74018 8.02247 0.32592 2.81782 0.75956 8.45345 0.31939 2.88619 0.76837 8.65857 0.31337 2.95721 0.77718 8.87162 0.30729 3.03123 0.78604 9.0937 0.30113 3.10064 0.79408 9.30192 0.28428 3.17464 0.80239 9.52392 0.2846 3.1715 0.81763 9.95146 0.27869 3.24331 0.80986 9.72994 0.28428 3.31715 0.81763 9.95146 0.27869 3.38493 0.82458 10.1548 0.27366 3.45557 0.83159 10.3667 0.26329 3.60177 0.84543 10.8053 0.25836 3.67023 0.85165 11.0107 0.25373 3.7436 0.85811 11.2308 0.24492 3.8162 0.86432 11.4486 0.24422 3.8753 0.87026 11.6626 0.23972 3.956 0.87582 11.868 0.23548 4.0258 0.88132 12.0774 0.23125 4.1004 0.88704 12.3012 0.22685 4.1693 0.9026 12.9409 0.21472 <td></td> <td>2.24467</td> <td>0.67247</td> <td>6.734</td> <td>0.37615</td>		2.24467	0.67247	6.734	0.37615
2.38653 0.69666 7.1596 0.36088 2.45932 0.70831 7.37795 0.35339 2.5321 0.71951 7.5963 0.3461 2.60567 0.73039 7.817 0.33245 2.67416 0.74018 8.02247 0.33245 2.74508 0.74991 8.23524 0.32592 2.81782 0.75956 8.45345 0.31939 2.88619 0.76837 8.65857 0.31337 2.95721 0.77718 8.87162 0.30729 3.03123 0.78604 9.0937 0.30113 3.10064 0.79408 9.30192 0.29548 3.17464 0.80239 9.52392 0.28428 3.31715 0.81763 9.95146 0.27869 3.38493 0.82458 10.1548 0.27366 3.45557 0.83159 10.3667 0.26329 3.60177 0.84543 10.8053 0.25836 3.67023 0.85165 11.0107 0.25373 3.7436 0.85811 11.2308 0.24492 3.8162 0.86432 11.4486 0.24422 3.8753 0.87026 11.6626 0.23972 3.956 0.87582 11.868 0.23548 4.0258 0.88132 12.0774 0.23125 4.1004 0.88704 12.3012 0.22685 4.31363 0.9026 12.9409 0.21472 4.3875 0.90771 13.1625 0.2107 4.52807 0.9		2.3149	0.68471	6.94469	0.36847
2.45932 0.70831 7.37795 0.35339 2.5321 0.71951 7.5963 0.3461 2.60567 0.73039 7.817 0.33895 2.67416 0.74018 8.02247 0.32592 2.74508 0.74991 8.23524 0.32592 2.81782 0.75956 8.45345 0.31939 2.88619 0.76837 8.65857 0.31337 2.95721 0.77718 8.87162 0.30729 3.03123 0.78604 9.0937 0.30113 3.10064 0.79408 9.30192 0.28968 3.17464 0.80239 9.52392 0.2896 3.24331 0.80986 9.72994 0.28428 3.1715 0.81763 9.95146 0.27869 3.38493 0.82458 10.1548 0.27366 3.45557 0.83159 10.3667 0.26855 3.5301 0.83875 10.5903 0.25836 3.60177 0.84543 10.8053 0.25836 3.60177 0.84543 11.4486 0.24422 3.8162 0.86432 11.4486 0.24422 3.8753 0.87026 11.6626 0.23972 3.956 0.87582 11.868 0.23548 4.0258 0.88132 12.0774 0.221472 4.1693 0.89221 12.5079 0.22284 4.24237 0.89753 12.7271 0.21869 4.31363 0.9026 12.9409 0.21472 4.3875 $0.$		2.38653	0.69666	7.1596	0.36088
2.5321 0.71951 7.5963 0.3461 2.60567 0.73039 7.817 0.33895 2.67416 0.74018 8.02247 0.32592 2.81782 0.75956 8.45345 0.31939 2.88619 0.76837 8.65857 0.31337 2.95721 0.77718 8.87162 0.30729 3.03123 0.78604 9.0937 0.30113 3.10064 0.79408 9.30192 0.28428 3.17464 0.80239 9.52392 0.2896 3.24331 0.80986 9.72994 0.28428 3.31715 0.81763 9.95146 0.27869 3.38493 0.82458 10.1548 0.27366 3.45557 0.83159 10.3667 0.26855 3.5301 0.83875 10.5903 0.226329 3.60177 0.84543 10.8053 0.2489 3.8162 0.85165 11.0107 0.25373 3.7436 0.85811 11.2308 0.2482 3.88753 0.87026 11.6626 0.23972 3.956 0.87582 11.868 0.23548 4.0258 0.88132 12.0774 0.23125 4.1004 0.88704 12.3012 0.22284 4.24237 0.89753 12.7271 0.21869 4.31363 0.9026 12.9409 0.21472 4.3875 0.90771 13.1625 0.2107 4.45617 0.91235 13.3685 0.20326 4.60143 0.9218 13.8043 0.1995 <td></td> <td>2.45932</td> <td>0.70831</td> <td>7.37795</td> <td>0.35339</td>		2.45932	0.70831	7.37795	0.35339
2.60567 0.73039 7.817 0.33895 2.67416 0.74018 8.02247 0.33245 2.74508 0.74991 8.23524 0.32592 2.81782 0.75956 8.45345 0.31939 2.88619 0.76837 8.65857 0.31337 2.95721 0.77718 8.87162 0.30729 3.03123 0.78604 9.0937 0.30113 3.10064 0.79408 9.30192 0.29548 3.17464 0.80239 9.52392 0.2896 3.24331 0.80986 9.72994 0.28428 3.31715 0.81763 9.95146 0.27869 3.38493 0.82458 10.1548 0.27366 3.45557 0.83159 10.3667 0.26855 3.5301 0.83875 10.5903 0.26329 3.60177 0.84543 10.8053 0.25836 3.67023 0.85165 11.0107 0.25373 3.7436 0.85811 11.2308 0.2489 3.8162 0.86432 11.4486 0.24422 3.88753 0.87026 11.6626 0.23972 3.956 0.87582 11.868 0.23548 4.0258 0.88132 12.0774 0.22125 4.1004 0.88704 12.3012 0.22685 4.1693 0.9026 12.9409 0.21472 4.3875 0.90771 13.1625 0.2107 4.45617 0.91235 13.3685 0.20703 4.52807 0.91709 13.5842 0.20		2.5321	0.71951	7.5963	0.3461
2.674160.74018 8.02247 0.332452.745080.74991 8.23524 0.325922.817820.75956 8.45345 0.319392.886190.76837 8.65857 0.313372.957210.77718 8.87162 0.307293.031230.78604 9.0937 0.301133.100640.79408 9.30192 0.295483.174640.80239 9.52392 0.28963.243310.80986 9.72994 0.284283.317150.81763 9.95146 0.278693.384930.8245810.15480.273663.455570.8315910.36670.268553.53010.8387510.59030.263293.601770.8454310.80530.258363.670230.8516511.01070.253733.74360.8581111.23080.24893.81620.8643211.44860.244223.887530.8702611.66260.239723.9560.8758211.8680.235484.02580.8813212.07740.231254.10040.8870412.30120.226854.16930.902612.94090.214724.38750.9077113.16250.21074.456170.9123513.36850.207034.528070.9170913.58420.203264.601430.921813.80430.1995		2.60567	0.73039	7.817	0.33895
2.74508 0.74991 8.23524 0.32592 2.81782 0.75956 8.45345 0.31939 2.88619 0.76837 8.65857 0.31337 2.95721 0.77718 8.87162 0.30729 3.03123 0.78604 9.0937 0.30113 3.10064 0.79408 9.30192 0.29548 3.17464 0.80239 9.52392 0.2896 3.24331 0.80986 9.72994 0.28428 3.31715 0.81763 9.95146 0.27869 3.38493 0.82458 10.1548 0.27366 3.45557 0.83159 10.3667 0.26855 3.5301 0.83875 10.5903 0.26329 3.60177 0.84543 10.8053 0.25836 3.67023 0.85165 11.0107 0.25373 3.7436 0.85811 11.2308 0.2489 3.8162 0.86432 11.4486 0.24422 3.88753 0.87026 11.6626 0.23972 3.956 0.87582 11.868 0.23548 4.0258 0.88132 12.0774 0.23125 4.1004 0.88704 12.3012 0.22685 4.1693 0.9026 12.9409 0.21472 4.3875 0.90771 13.1625 0.2107 4.45617 0.91235 13.3685 0.20703 4.52807 0.91709 13.5842 0.20326 4.60143 0.9218 13.8043 0.1995		2.67416	0.74018	8.02247	0.33245
2.81782 0.75956 8.45345 0.31939 2.88619 0.76837 8.65857 0.31337 2.95721 0.77718 8.87162 0.30729 3.03123 0.78604 9.0937 0.30113 3.10064 0.79408 9.30192 0.29548 3.17464 0.80239 9.52392 0.2896 3.24331 0.80986 9.72994 0.28428 3.31715 0.81763 9.95146 0.27869 3.38493 0.82458 10.1548 0.27366 3.45557 0.83159 10.3667 0.26855 3.5301 0.83875 10.5903 0.26329 3.60177 0.84543 10.8053 0.25836 3.67023 0.85165 11.0107 0.25373 3.7436 0.85811 11.2308 0.2489 3.8162 0.86432 11.4486 0.23548 4.0258 0.87582 11.868 0.23548 4.0258 0.88132 12.0774 0.23125 4.1004 0.88704 12.3012 0.22685 4.1693 0.9026 12.9409 0.21472 4.3875 0.90771 13.1625 0.2107 4.45617 0.91235 13.3685 0.20703 4.52807 0.91709 13.5842 0.20326 4.60143 0.9218 13.8043 0.1995		2.74508	0.74991	8.23524	0.32592
2.88619 0.76837 8.65857 0.31337 2.95721 0.77718 8.87162 0.30729 3.03123 0.78604 9.0937 0.30113 3.10064 0.79408 9.30192 0.29548 3.17464 0.80239 9.52392 0.2896 3.24331 0.80986 9.72994 0.28428 3.31715 0.81763 9.95146 0.27869 3.38493 0.82458 10.1548 0.27366 3.45557 0.83159 10.3667 0.26855 3.5301 0.83875 10.5903 0.26329 3.60177 0.84543 10.8053 0.25836 3.67023 0.85165 11.0107 0.25373 3.7436 0.85811 11.2308 0.2489 3.8162 0.86432 11.4486 0.224422 3.88753 0.87026 11.6626 0.23972 3.956 0.87582 11.868 0.23548 4.0258 0.88132 12.0774 0.23125 4.1004 0.88704 12.3012 0.22685 4.1693 0.9026 12.9409 0.21472 4.3875 0.90771 13.1625 0.2107 4.45617 0.91235 13.3685 0.20703 4.52807 0.91709 13.5842 0.20326 4.60143 0.9218 13.8043 0.1995		2.81782	0.75956	8.45345	0.31939
2.95721 0.77718 8.87162 0.30729 3.03123 0.78604 9.0937 0.30113 3.10064 0.79408 9.30192 0.29548 3.17464 0.80239 9.52392 0.2896 3.24331 0.80986 9.72994 0.28428 3.31715 0.81763 9.95146 0.27869 3.38493 0.82458 10.1548 0.27366 3.45557 0.83159 10.3667 0.26855 3.5301 0.83875 10.5903 0.26329 3.60177 0.84543 10.8053 0.25836 3.67023 0.85165 11.0107 0.25373 3.7436 0.85811 11.2308 0.2489 3.8162 0.86432 11.4486 0.24422 3.88753 0.87026 11.6626 0.23972 3.956 0.87582 11.868 0.23548 4.0258 0.88132 12.0774 0.22284 4.24237 0.89753 12.7271 0.21869 4.31363 0.9026 12.9409 0.21472 4.3875 0.90771 13.1625 0.2107 4.52807 0.91709 13.5842 0.20326 4.60143 0.9218 13.8043 0.1995		2.88619	0.76837	8.65857	0.31337
3.03123 0.78604 9.0937 0.30113 3.10064 0.79408 9.30192 0.29548 3.17464 0.80239 9.52392 0.2896 3.24331 0.80986 9.72994 0.28428 3.31715 0.81763 9.95146 0.27869 3.38493 0.82458 10.1548 0.27366 3.45557 0.83159 10.3667 0.26855 3.5301 0.83875 10.5903 0.26329 3.60177 0.84543 10.8053 0.25836 3.67023 0.85165 11.0107 0.25373 3.7436 0.85811 11.2308 0.2489 3.8162 0.86432 11.4486 0.24422 3.88753 0.87026 11.6626 0.23972 3.956 0.87582 11.868 0.23548 4.0258 0.88132 12.0774 0.23125 4.1004 0.88704 12.3012 0.22284 4.24237 0.89753 12.7271 0.21869 4.31363 0.9026 12.9409 0.21472 4.3875 0.90771 13.1625 0.2107 4.45617 0.91235 13.3685 0.20703 4.52807 0.91709 13.5842 0.20326 4.60143 0.9218 13.8043 0.1995		2.95721	0.77718	8.87162	0.30729
3.10064 0.79408 9.30192 0.29548 3.17464 0.80239 9.52392 0.2896 3.24331 0.80986 9.72994 0.28428 3.31715 0.81763 9.95146 0.27869 3.38493 0.82458 10.1548 0.27366 3.45557 0.83159 10.3667 0.26855 3.5301 0.83875 10.5903 0.26329 3.60177 0.84543 10.8053 0.25836 3.67023 0.85165 11.0107 0.25373 3.7436 0.85811 11.2308 0.2489 3.8162 0.86432 11.4486 0.24422 3.88753 0.87026 11.6626 0.23972 3.956 0.87582 11.868 0.23548 4.0258 0.88132 12.0774 0.22284 4.24237 0.89753 12.7271 0.21869 4.31363 0.9026 12.9409 0.21472 4.3875 0.90771 13.1625 0.2107 4.45617 0.91235 13.3685 0.20703 4.52807 0.91709 13.5842 0.20326 4.60143 0.9218 13.8043 0.1995		3.03123	0.78604	9.0937	0.30113
3.17464 0.80239 9.52392 0.2896 3.24331 0.80986 9.72994 0.28428 3.31715 0.81763 9.95146 0.27869 3.38493 0.82458 10.1548 0.27366 3.45557 0.83159 10.3667 0.26855 3.5301 0.83875 10.5903 0.26329 3.60177 0.84543 10.8053 0.25836 3.67023 0.85165 11.0107 0.25373 3.7436 0.85811 11.2308 0.2489 3.8162 0.86432 11.4486 0.24422 3.88753 0.87026 11.6626 0.23972 3.956 0.87582 11.868 0.23548 4.0258 0.88132 12.0774 0.23125 4.1004 0.88704 12.3012 0.22685 4.1693 0.9026 12.9409 0.21472 4.3875 0.90771 13.1625 0.2107 4.52807 0.91709 13.5842 0.20326 4.60143 0.9218 13.8043 0.1995		3.10064	0.79408	9.30192	0.29548
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.17464	0.80239	9.52392	0.2896
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.24331	0.80986	9.72994	0.28428
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.31715	0.81763	9.95146	0.27869
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.38493	0.82458	10.1548	0.27366
3.5301 0.83875 10.5903 0.26329 3.60177 0.84543 10.8053 0.25836 3.67023 0.85165 11.0107 0.25373 3.7436 0.85811 11.2308 0.2489 3.8162 0.86432 11.4486 0.24422 3.88753 0.87026 11.6626 0.23972 3.956 0.87582 11.868 0.23548 4.0258 0.88132 12.0774 0.23125 4.1004 0.88704 12.3012 0.22685 4.1693 0.89221 12.5079 0.22284 4.24237 0.89753 12.7271 0.21869 4.31363 0.9026 12.9409 0.21472 4.3875 0.90771 13.1625 0.2107 4.45617 0.91235 13.3685 0.20703 4.52807 0.91709 13.5842 0.20326 4.60143 0.9218 13.8043 0.1995		3.45557	0.83159	10.3667	0.26855
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.5301	0.83875	10.5903	0.26329
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.60177	0.84543	10.8053	0.25836
3.7436 0.85811 11.2308 0.2489 3.8162 0.86432 11.4486 0.24422 3.88753 0.87026 11.6626 0.23972 3.956 0.87582 11.868 0.23548 4.0258 0.88132 12.0774 0.23125 4.1004 0.88704 12.3012 0.22685 4.1693 0.89221 12.5079 0.22284 4.24237 0.89753 12.7271 0.21869 4.31363 0.9026 12.9409 0.21472 4.3875 0.90771 13.1625 0.2107 4.45617 0.91235 13.3685 0.20703 4.52807 0.91709 13.5842 0.20326 4.60143 0.9218 13.8043 0.1995		3.67023	0.85165	11.0107	0.25373
3.8162 0.86432 11.4486 0.24422 3.88753 0.87026 11.6626 0.23972 3.956 0.87582 11.868 0.23548 4.0258 0.88132 12.0774 0.23125 4.1004 0.88704 12.3012 0.22685 4.1693 0.89221 12.5079 0.22284 4.24237 0.89753 12.7271 0.21869 4.31363 0.9026 12.9409 0.21472 4.3875 0.90771 13.1625 0.2107 4.45617 0.91235 13.3685 0.20703 4.52807 0.91709 13.5842 0.20326 4.60143 0.9218 13.8043 0.1995		3.7436	0.85811	11.2308	0.2489
3.88753 0.87026 11.6626 0.23972 3.956 0.87582 11.868 0.23548 4.0258 0.88132 12.0774 0.23125 4.1004 0.88704 12.3012 0.22685 4.1693 0.89221 12.5079 0.22284 4.24237 0.89753 12.7271 0.21869 4.31363 0.9026 12.9409 0.21472 4.3875 0.90771 13.1625 0.2107 4.45617 0.91235 13.3685 0.20703 4.52807 0.91709 13.5842 0.20326 4.60143 0.9218 13.8043 0.1995		3.8162	0.86432	11.4486	0.24422
3.956 0.87582 11.868 0.23548 4.0258 0.88132 12.0774 0.23125 4.1004 0.88704 12.3012 0.22685 4.1693 0.89221 12.5079 0.22284 4.24237 0.89753 12.7271 0.21869 4.31363 0.9026 12.9409 0.21472 4.3875 0.90771 13.1625 0.2107 4.45617 0.91235 13.3685 0.20703 4.52807 0.91709 13.5842 0.20326 4.60143 0.9218 13.8043 0.1995		3.88753	0.87026	11.6626	0.23972
4.0258 0.88132 12.0774 0.23125 4.1004 0.88704 12.3012 0.22685 4.1693 0.89221 12.5079 0.22284 4.24237 0.89753 12.7271 0.21869 4.31363 0.9026 12.9409 0.21472 4.3875 0.90771 13.1625 0.2107 4.45617 0.91235 13.3685 0.20703 4.52807 0.91709 13.5842 0.20326 4.60143 0.9218 13.8043 0.1995		3.956	0.87582	11.868	0.23548
4.10040.8870412.30120.226854.16930.8922112.50790.222844.242370.8975312.72710.218694.313630.902612.94090.214724.38750.9077113.16250.21074.456170.9123513.36850.207034.528070.9170913.58420.203264.601430.921813.80430.1995		4.0258	0.88132	12.0774	0.23125
4.16930.8922112.50790.222844.242370.8975312.72710.218694.313630.902612.94090.214724.38750.9077113.16250.21074.456170.9123513.36850.207034.528070.9170913.58420.203264.601430.921813.80430.1995		4.1004	0.88704	12.3012	0.22685
4.24237 0.89753 12.7271 0.21869 4.31363 0.9026 12.9409 0.21472 4.3875 0.90771 13.1625 0.2107 4.45617 0.91235 13.3685 0.20703 4.52807 0.91709 13.5842 0.20326 4.60143 0.9218 13.8043 0.1995		4.1693	0.89221	12.5079	0.22284
4.31363 0.9026 12.9409 0.21472 4.3875 0.90771 13.1625 0.2107 4.45617 0.91235 13.3685 0.20703 4.52807 0.91709 13.5842 0.20326 4.60143 0.9218 13.8043 0.1995		4.24237	0.89753	12.7271	0.21869
4.3875 0.90771 13.1625 0.2107 4.45617 0.91235 13.3685 0.20703 4.52807 0.91709 13.5842 0.20326 4.60143 0.9218 13.8043 0.1995		4.31363	0.9026	12.9409	0.21472
4.45617 0.91235 13.3685 0.20703 4.52807 0.91709 13.5842 0.20326 4.60143 0.9218 13.8043 0.1995 4.62333 0.94281 14.8 0.1825		4.3875	0.90771	13.1625	0.2107
4.52807 0.91709 13.5842 0.20326 4.60143 0.9218 13.8043 0.1995 4.82322 0.94281 14.8 0.1825		4.45617	0.91235	13.3685	0.20703
4.60143 0.9218 13.8043 0.1995		4.52807	0.91709	13.5842	0.20326
1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 5		4.60143	0.9218	13.8043	0.1995
		4.93333	0.94281	. 14.8	0.1825

Appendix D

Mesh Coordinates and Connectivity

List of Appendix D Tables

Table No.	Title	Page No.
D-1	Summary	D-3
D-2	Mesh Coordinates	D-5
D-3	Element Block 1 Description	D-15
D-4	Element Block 2 Description	D-2 5
D-5	Element Block 3 Description	D-26
D-6	Element Block 4 Description	D-28

Table D-1. Summary of Exodus File Format

Database Title:	DISPOSAL ROOM MODEL-MULTIMATERIAL STRATIGRAPHY-SLIDELINES
Conversion:	EXOTX1 3/24/94 Version 1.1 (Binary to ASCII)
Database Initial Variables:	2 Dimensions
	1805 nodes
	1680 elements
	4 element blocks
Element Type:	4-node quad

D-4

.

Node			Node			Node			Node		
No.	X	Y	No.	<u> </u>	Y	No.	X	Y	No.	X	Y
1	0.0000	-54.1900	48	0.9565	-41.0373	95	1.9324	-31.5345	142	2.8667	-24.6687
2	0.9214	-54,1900	49	1.8876	-41.0373	96	2.8325	-31.5345	143	3.7072	-24.6687
3	1.8427	-54.1900	50	2.7983	-41.0373	97	3.6999	-31.5345	144	4.5085	-24.6687
4	2.7641	-54,1900	51	3.6927	-41.0373	98	4.5413	-31.5345	145	5.2786	-24.6687
5	3.6855	-54.1900	52	4.5741	-41.0373	99	5.3618	-31.5345	146	6.0237	-24.6687
6	4.6068	-54.1900	53	5.4450	-41.0373	100	6.1656	-31.5345	147	6.8125	-24.6687
7	5.5282	-54.1900	54	6.3076	-41.0373	101	6.9987	-31.5345	148	7.6158	-24.6687
8	6.4495	-54.1900	55	7.1848	-41.0373	102	7.8413	-31.5345	149	8.4348	-24.6687
9	7.3709	-54.1900	56	8.0668	-41.0373	103	8.6944	-31.5345	150	9.2713	-24.6687
10	8.2923	-54.1900	57	8.9540	-41.0373	104	9.5592	-31.5345	151	10.1270	-24.6687
11	9.2136	-54.1900	58	9.8471	-41.0373	105	10.4368	-31.5345	152	11.0037	-24.6687
12	10.1350	-54.1900	59	10.7466	-41.0373	106	11.3284	-31.5345	153	11.9036	-24.6687
13	11.0564	-54.1900	60	11.6530	-41.0373	107	12.2354	-31.5345	154	12.8289	-24.6687
14	11.9777	-54.1900	61	12.5672	-41.0373	108	13.1594	-31.5345	155	13.7823	-24,6687
15	12.8991	-54.1900	62	13.4899	-41.0373	109	14.1022	-31.5345	156	14.7666	-24,668/
16	13.8205	-54.1900	63	14.4220	-41.0373	110	15.0655	-31.5345	157	15.7848	-24.6687
17	14.7418	-54.1900	64	15.3643	-41.0373	111	16.0514	-31.5345	158	10.8403	-24.6687
18	15.6632	-54.1900	65	16.3180	-41.0373	112	17.0622	-31,5345	159	1/.9309	-24.6687
19	16.5846	-54,1900	66	17.2840	-41.0373	113	18.1003	-31.5345	160	19.0786	-24.6687
20	17.5059	-54.1900	67	18.2638	-41.03/3	114	19.1686	-31.5345	161	20.2700	-24.008/
21	18.4273	-54.1900	68	19.2586	-41.03/3	115	20.2700	-31.3343	162	0.0000	-21.98/3
	19.3486	-54.1900	69 70	20.2700	-41.03/3	110	0.0000	-27.8233	103	1.0444	-21.98/3
23	20.2700	-54,1900	70	0.0000	-35.9007	11/	1.0093	-27.8233	164	1.9997	-21.9873
24	0.0000	-47.0804	/1	0.9741	-35.9007	118	1.9549	-27.8233	105	2.0030	-21.90/3
25	0.9389	-47.0804	72	1.9100	-35.9007	119	2.8490	-27.0233	100	3.7100	-21.90/3
26	1.8652	-47.0804	73	2.8154	-35.9007	120	3.7033	-27.0233	167	4.4921	-21.9073
27	2.7812	-47.0804	74	3.0903	-35.9007	121	4.3249	-27.0233	100	5.2370	21.9873
28	3.6891	-47.0804	75	4.5577	-55,9007	122	5.5202	-27.0233	109	6 7105	-21.9873
29	4.5904	-47.0804	70	6 2266	-35,9000	123	6 9056	-27.8233	170	7 5030	-21.9873
	5.4800	-47.0804	70	7 0017	-35,9007	124	7 7285	-27.8233	172	8 3051	-21.9873
31	0.5/60	47.0804	70	7.0517	-35,9007	125	8 5646	-27.8233	172	9 1274	-21.9873
32	9 1705	-47.0804	80	8 8747	-35 9007	120	9 4153	-27 8233	174	9 9721	-21 9873
33	0.1775	-47.0804	81	9 7032	-35 9006	127	10 2819	-27 8233	175	10 8413	-21.9873
35	0 0011	-47.0804	87	10 5917	-35 9007	120	11 1660	-27 8233	176	11.7376	-21.9873
36	10 0015	-47.0804	83	11 4907	-35 9007	130	12.0695	-27 8233	177	12.6637	-21.9873
37	11 8154	-47.0804	84	12 4013	-35 9007	131	12.9942	-27.8233	178	13.6224	-21.9873
38	12 7332	-47.0804	85	13 3247	-35 9006	132	13.9423	-27.8233	179	14.6172	-21.9873
30	13 6552	-47.0804	86	14 2621	-35 9006	133	14.9160	-27.8233	180	15.6515	-21.9873
40	14 5819	-47.0804	87	15 2149	-35 9007	134	15.9181	-27.8233	181	16,7294	-21.9873
40	15 5138	-47.0804	88	16.1847	-35,9007	135	16.9512	-27.8233	182	17.8551	-21.9873
	16 4513	-47 0804	89	17.1731	-35.9007	136	18.0186	-27.8233	183	19.0336	-21.9873
43	17.3950	-47.0804	90	18.1821	-35.9007	137	19.1236	-27.8233	184	20.2700	-21.9873
44	18.3455	-47.0804	91	19.2136	-35.9007	138	20.2700	-27.8233	185	0.0000	-19.7082
45	19.3036	-47.0804	92	20.2700	-35.9007	139	0.0000	-24.6687	186	1.0620	-19.7082
46	20.2700	-47.0804	93	0.0000	-31.5345	140	1.0268	-24.6687	187	2.0222	-19.7082
47	0.0000	-41.0373	94	0.9917	-31.5345	141	1.9773	-24.6687	188	2.9009	-19.7082
•			•			-					

Table D-2. Mesh Coordinates (continued)

Node	······		Node			Node			Node		
No.	X	Y	No.	X	Y	No.	<u> </u>	Y	No.	X	Y
189	3.7144	-19.7082	236	4.4430	-16.1242	283	5.0291	-13.5348	330	5.4559	-11.6639
190	4.4758	-19.7082	237	5.1122	-16.1242	284	5.5978	-13.5348	331	6.0680	-11.6639
191	5.1954	-19.7082	238	5.7398	-16.1242	285	6.2542	-13.5348	332	6.7138	-11.6639
192	5.8817	-19.7082	239	6.4403	-16.1242	286	6.9393	-13.5348	333	7.3965	-11.6639
193	6.6264	-19.7082	240	7.1648	-16.1242	287	7.6561	-13.5348	334	8.1198	-11.6639
194	7.3903	-19.7082	241	7.9157	-16.1242	288	8.4077	-13.5348	335	8.8878	-11.6639
195	8.1753	-19.7082	242	8.6956	-16.1242	289	9.1976	-13.5348	336	9.7049	-11.6639
196	8.9834	-19.7082	243	9.5074	-16.1242	290	10.0296	-13.5348	337	10.5762	-11.6639
197	9.8172	-19.7082	244	10.3543	-16.1242	291	10.9080	-13.5348	338	11.5069	-11.6639
198	10.6790	-19.7082	245	11.2399	-16.1242	292	11.8374	-13.5348	339	12.5030	-11.6639
199	11.5717	-19.7082	246	12.1679	-16.1242	293	12.8229	-13.5348	340	13.5711	-11.6639
200	12.4984	-19.7082	247	13,1427	-16.1242	294	13.8700	-13.5348	341	14.7184	-11.6639
201	13.4625	-19.7082	248	14.1689	-16.1242	295	14.9850	-13.5348	342	15.9528	-11.6639
202	14.4677	-19.7082	249	15.2516	-16.1242	296	16.1747	-13.5348	343	17.2830	-11.6639
203	15.5182	-19.7082	250	16.3966	-16.1242	297	17.4465	-13.5348	344	18.7185	-11.6639
204	16.6184	-19.7082	251	17.6099	-16.1242	298	18.8086	-13.5348	345	20.2700	-11.6639
205	17.7734	-19.7082	252	18.8986	-16.1242	299	20.2700	-13.5348	346	0.0000	-10.9333
206	18.9886	-19.7082	253	20.2700	-16.1242	300	0.0000	-12.5235	347	1.1851	-10.9333
207	20.2700	-19.7082	254	0.0000	-14.7245	301	1.1499	-12.5235	348	2.1792	-10.9332
208	0.0000	-17.7709	255	1.1147	-14.7245	302	2.1343	-12.5235	349	3.0205	-10.9333
209	1.0796	-17.7709	256	2.0895	-14.7245	303	2.9863	-12.5235	350	3.7397	-10.9333
210	2.0446	-17.7709	257	2.9522	-14.7245	304	3.7325	-12.5235	351	4.3611	-10.9333
211	2.9180	-17.7709	258	3.7252	-14.7245	305	4.3939	-12.5235	352	4.9043	-10.9333
212	3.7180	-17.7709	259	4.4266	-14.7245	306	4.9875	-12.5235	353	5.3849	-10.9333
213	4.4594	-17.7709	260	5.0706	-14.7245	307	5.5268	-12.5235	354	5.9750	-10.9333
214	5.1538	-17.7709	261	5.6688	-14.7245	308	6.1611	-12.5235	355	6.6010	-10.9333
215	5.8108	-17.7709	262	6.3472	-14.7245	309	6.8265	-12.5235	356	7.2667	-10.9333
216	6.5333	-17.7709	263	7.0520	-14.7245	310	7.5263	-12.5235	357	7.9758	-10.9333
217	7.2775	-17.7709	264	7.7859	-14.7245	311	8.2637	-12.5235	358	8.7329	-10.9333
218	8.0455	-17.7709	265	8.5516	-14.7245	312	9.0427	-12.5235	359	9.5426	-10.9332
219	8.8395	-17.7709	266	9.3525	-14.7245	313	9.8673	-12.5235	360	10.4102	-10.9333
220	9.6623	-17.7709	267	10.1920	-14.7245	314	10.7421	-12.5235	361	11.3416	-10.9333
221	10.5166	-17.7709	268	11.0739	-14.7245	315	11.6721	-12.5235	362	12.3431	-10.9333
222	11.4058	-17.7709	269	12.0026	-14.7245	316	12.6629	-12.5235	363	13.4217	-10.9333
223	12.3332	-17.7709	270	12.9828	-14.7245	317	13.7206	-12.5235	364	14.5851	-10.9333
224	13.3026	-17.7709	271	14.0194	-14.7245	318	14.8517	-12.5235	365	15.8419	-10.9333
225	14.3183	-17.7709	272	15.1183	-14.7245	319	16.0637	-12.5235	366	17.2013	-10.9333
226	15.3849	-17.7709	273	16.2856	-14.7245	320	17.3647	-12.5235	367	18.6735	-10.9332
227	16.5075	-17.7709	274	17.5282	-14.7245	321	18.7635	-12.5235	368	20.2700	-10.9333
228	17.6917	-17.7709	275	18.8536	-14.7245	322	20.2700	-12.5235	369	0.0000	-10.3122
229	18.9436	-17.7709	276	20.2700	-14.7245	323	0.0000	-11.6639	370	1.2026	-10.3122
230	20.2700	-17.7709	277	0.0000	-13.5348	324	1.1675	-11.6639	371	2.2016	-10.3122
231	0.0000	-16.1242	278	1.1323	-13.5348	325	2.1567	-11.6639	372	3.0376	-10.3122
232	1.0972	-16.1242	279	2.1119	-13.5348	326	3.0034	-11.6639	373	3.7433	-10.3122
233	2.0670	-16.1242	280	2.9692	-13.5348	327	3.7361	-11.6639		4.3447	-10.3122
234	2.9351	-16.1242	281	3.7288	-13.5348	328	4.3775	-11.6639	375	4.8627	-10.3122
235	3.7216	-16.1242	282	4.4102	-13.5348	329	4.9459	-11.6639	376	5.3139	-10.3122

Table D-2. Mesh Coordinates (continued)

Node			Node			Node			Node		
No.	X	Y	No.	Χ	Y	No.	Χ	Y	No.	Χ	Y
377	5.8819	-10.3122	425	6.8773	-9.3356	473	7.9584	-8.6300	521	9.5806	-8.2000
378	6.4883	-10.3122	426	7.5440	-9.3356	474	8.7309	-8.6300	522	10.5153	-8.2000
379	7.1369	-10.3122	427	8.2682	-9.3356	475	9.5806	-8.6300	523	11.5435	-8.2000
380	7.8319	-10.3122	428	9.0556	-9.3356	476	10.5153	-8.6300	524	12.6746	-8.2000
381	8.5780	-10.3122	429	9.9125	-9.3356	477	11.5435	-8.6300	525	13.9187	-8.2000
382	9.3802	-10.3122	430	10.8459	-9.3356	478	12.6746	-8.6300	526	15.2872	-8.2000
383	10.2443	-10.3122	431	11.8634	- 9.3356	479	13.9187	-8.6300	527	16.7926	-8.2000
384	11.1764	-10.3122	432	12.9734	-9.3356	48 0	15.2872	-8.6300	528	18.4485	-8.2000
385	12,1832	-10.3122	433	14.1853	-9.3356	481	16.7926	-8.6300	529	20.2700	-8.2000
386	13.2723	-10.3122	434	15.5091	-9.3356	482	18.4485	-8.6300	530	0.0000	-7.9850
387	14.4518	-10.3122	435	16.9560	-9.3356	483	20.2700	-8.6300	531	1.2730	-7.9850
388	15.7309	-10.3122	436	18.5385	-9.3356	484	0.0000	-8.4150	532	2.2913	-7.9850
389	17.1195	-10.3122	437	20.2700	-9.3356	485	1.2730	-8.4150	533	3.1060	-7.9850
390	18.6285	-10.3122	438	0.0000	-8.9542	486	2.2913	-8.4150	534	3.7578	-7.9850
391	20.2700	-10.3122	439	1.2554	-8.9542	487	3.1060	-8.4150	535	4.2792	-7.9850
392	0.0000	-9.7843	440	2.2689	-8.9542	488	3.7578	-8.4150	536	4.6963	-7.9850
393	1.2202	-9.7843	441	3.0889	-8.9542	489	4.2792	-8.4150	537	5.0300	-7.9850
394	2.2240	-9.7843	442	3.7542	-8.9542	490	4.6963	-8.4150	538	5.5097	-7.9850
395	3.0547	-9.7843	443	4.2956	-8.9542	491	5.0300	-8.4150	539	6.0373	-7.9850
396	3.7469	-9.7843	444	4.7379	-8.9542	492	5.5097	-8.4150	540	6.6177	-7.9850
397	4.3283	-9.7843	445	5.1010	-8.9542	493	6.0373	-8.4150	541	7.2561	-7.9850
398	4.8211	-9.7843	446	5.6027	-8.9542	494	6.6177	-8.4150	542	7.9584	-7.9850
399	5.2429	-9.7843	447	6.1500	-8.9542	495	7.2561	-8.4150	543	8.7309	-7.9850
400	5.7888	-9.7843	448	6.7475	-8.9542	496	7.9584	-8.4150	544	9.5806	-7.9850
401	6.3755	-9.7843	449	7.4000	-8.9542	497	8.7309	-8.4150	545	10.5153	-7.9850
402	7.0071	-9.7843	450	8.1133	-8.9542	498	9.5806	-8.4150	546	11.5435	-7.9850
403	7.6879	-9.7843	451	8.8932	-8.9542	499	10.5153	-8.4150	547	12.6746	-7.9850
404	8.4231	-9.7843	452	9.7465	-8.9542	500	11.5435	-8.4150	548	13.9187	-7.9850
405	9.2179	-9.7843	453	10.6806	-8.9542	501	12.6746	-8.4150	549	15.2872	-7.9850
406	10.0784	-9.7843	454	11.7035	-8.9542	502	13.9187	-8.4150	550	16.7926	-7.9850
407	11.0111	-9.7843	455	12.8240	-8.9542	503	15.2872	-8.4150	551	18.4485	-7.9850
408	12.0233	-9.7843	456	14.0520	-8.9542	504	16.7926	-8.4150	552	20.2700	-7.9850
409	13.1228	-9.7843	457	15.3981	-8.9542	505	18.4485	-8.4150	553	0.0000	-7.7700
410	14.3185	-9.7843	458	16.8743	-8.9542	506	20.2700	-8.4150	554	1.2730	-7.7700
411	15.6200	-9.7843	459	18.4935	-8.9542	507	0.0000	-8.2000	555	2.2913	-7.7700
412	17.0378	-9.7843	460	20.2700	-8.9542	508	1.2730	-8.2000	556	3.1060	-7.7700
413	18.5835	-9.7843	461	0.0000	-8.6300	509	2.2913	-8.2000	557	3.7578	-7.7700
414	20.2700	-9.7843	462	1.2730	-8.6300	510	3,1060	-8.2000	558	4.2792	-7.7700
415	0.0000	-9.3356	463	2.2913	-8.6300	511	3.7578	-8.2000	559	4.6963	-7.7700
416	1.2378	-9.3356	464	3.1060	-8.6300	512	4.2792	-8.2000	560	5.0300	-7.7700
417	2.2465	-9.3356	465	3.7578	-8.6300	513	4.6963	-8.2000	561	5.5097	-7.7700
418	3.0718	-9.3356	466	4.2792	-8.6300	514	5.0300	-8.2000	562	6.0373	-7.7700
419	3.7505	-9.3356	467	4.6963	-8.6300	515	5.5097	-8.2000	563	6.6177	-7.7700
420	4.3119	-9.3356	468	5.0300	-8.6300	516	6.0373	-8.2000	564	7.2561	-7.7700
421	4.7795	-9.3356	469	5.5097	-8.6300	517	6.6177	-8.2000	565	7.9584	-7.7700
422	5.1720	-9.3356	470	6.0373	-8.6300	518	7.2561	-8.2000	566	8.7309	-7.7700
423	5.6958	-9.3356	471	6.6177	-8.6300	519	7.9584	-8.2000	567	9.5806	-7.7700
424	6.2628	-9.3356	472	7.2561	-8,6300	520	8.7309	-8.2000	568	10.5153	-7.7700

Table D-2. Mesh Coordinates (continued)

Node			Node			Node			Node		
No.	X	Y	No.	X	Y	No.	X	Y	No.	X	Y
569	11.5435	-7.7700	617	13.9187	-7.2180	665	16.7926	-6.6660	713	8.7309	-5.7300
570	12.6746	-7.7700	618	15.2872	-7.2180	666	18.4485	-6.6660	714	9.5806	-5.7300
571	13.9187	-7.7700	619	16.7926	-7.2180	667	20.2700	-6.6660	715	10.5153	-5.7300
572	15.2872	-7.7700	620	18.4485	-7.2180	668	0.0000	-6.3900	716	11.5435	-5.7300
573	16.7926	-7.7700	621	20.2700	-7.2180	669	1.2730	-6.3900	717	12.6746	-5.7300
574	18.4485	-7.7700	622	0.0000	-6.9420	670	2.2913	-6.3900	718	13.9187	-5.7300
575	20.2700	-7.7700	623	1.2730	-6.9420	671	3.1060	-6.3900	719	15.2872	-5.7300
576	0.0000	-7.4940	624	2.2913	-6.9420	672	3.7578	-6.3900	720	16.7926	-5.7300
577	1.2730	-7.4940	625	3.1060	-6.9420	673	4.2792	-6.3900	721	18.4485	-5.7300
578	2.2913	-7.4940	626	3.7578	-6.9420	674	4.6963	-6.3900	722	20.2700	-5.7300
579	3.1060	-7.4940	627	4.2792	-6.9420	675	5.0300	-6.3900	723	5.0300	-5.4000
580	3.7578	-7.4940	628	4.6963	-6.9420	676	5.5097	-6.3900	724	5.5097	-5,4000
581	4.2792	-7.4940	629	5.0300	-6.9420	677	6.0373	-6.3900	725	6.0373	-5.4000
582	4.6963	-7.4940	630	5.5097	-6.9420	678	6.6177	-6.3900	726	6.6177	-5.4000
583	5.0300	-7.4940	631	6.0373	-6.9420	679	7.2561	-6.3900	727	7.2561	-5.4000
584	5.5097	-7.4940	632	6.6177	-6.9420	680	7.9584	-6.3900	728	7.9584	-5.4000
585	6.0373	-7.4940	633	7.2561	-6.9420	681	8.7309	-6.3900	729	8.7309	-5.4000
586	6.6177	-7.4940	634	7.9584	-6.9420	682	9.5806	-6.3900	730	9.5806	-5.4000
587	7.2561	-7.4940	635	8.7309	-6.9420	683	10.5153	-6.3900	731	10.5153	-5.4000
588	7.9584	-7.4940	636	9.5806	-6.9420	684	11.5435	-6.3900	732	11.5435	-5.4000
589	8,7309	-7.4940	637	10.5153	-6.9420	685	12.6746	-6.3900	733	12.6746	-5.4000
590	9,5806	-7.4940	638	11.5435	-6.9420	686	13.9187	-6.3900	734	13.9187	-5.4000
591	10.5153	-7.4940	639	12.6746	-6.9420	687	15.2872	-6.3900	735	15.2872	-5.4000
592	11.5435	-7.4940	640	13.9187	-6.9420	688	16.7926	-6.3900	736	16.7926	-5.4000
593	12.6746	-7.4940	641	15.2872	-6.9420	689	18.4485	-6.3900	737	18.4485	-5.4000
594	13.9187	-7.4940	642	16.7926	-6.9420	690	20.2700	-6.3900	738	20.2700	-5.4000
595	15.2872	-7.4940	643	18.4485	-6.9420	691	5.0300	-6.0600	739	5.0300	-5.0700
596	16.7926	-7.4940	644	20.2700	-6.9420	692	5.5097	-6.0600	740	5.5097	-5.0700
597	18.4485	-7.4940	645	0.0000	-6.6660	693	6.0373	-6.0600	741	6.0373	-5.0700
598	20.2700	-7.4940	646	1.2730	-6.6660	694	6.6177	-6.0600	742	6.61//	-5.0700
599	0.0000	-7.2180	647	2.2913	-6.6660	695	7.2561	-6.0600	743	7.2561	-5.0700
600	1.2730	-7.2180	648	3.1060	- 6.6660	696	7.9584	-6.0600	744	7.9584	-5.0700
601	2.2913	-7.2180	649	3.7578	-6.6660	697	8.7309	-6.0600	745	8.7309	-5.0700
602	3.1060	-7.2180	650	4.2792	-6.6660	698	9.5806	-6.0600	740	9.5800	-5.0700
603	3.7578	-7.2180	651	4.6963	-6.6660	699	10.5153	-0.0000	747	10.5155	-5.0700
604	4.2792	-7.2180	652	5.0300	-6.6660	700	11.5435	-6.0600	748	11.3433	-5.0700
605	4.6963	-7.2180	653	5,5097	-6.6660	701	12.0/40	-0.0000	749	12.0740	5.0700
606	5.0300	-7.2180	654	6.03/3	-0.0000	702	15.918/	-0.0000	750	15.910/	-5.0700
607	5.5097	-7.2180	655	6.61//	-0.0000	703	15.2872	-0.0000	751	16 7026	5.0700
608	6.0373	-7.2180	656	7.2561	-0.0000	704	10.7920	-0.0000	752	10.7920	-5.0700
609	6.6177	-7.2180	657	/.9584	-0.0000	705	10.4400	-0.0000	753	20.7700	-5.0700
610	7.2561	-7.2180	658	8./309	-0.0000	706	5 0200	-0.0000	754	5 0200	-3.0700
611	7.9584	-/.2180	659	9.5806	-0.0000	700	5,0300	-5.7300	756	5,0300	-4.7400
612	8,7309	-7.2180		10.5155	-0.0000	708	5,507/	-5.7300	750	6 0272	-4.7400
613	9,5806	-7.2180		11.5435	-0.0000	710	6 6177	-5.7300	758	6 6177	-4 7400
614	10.5155	-7.2180	662	12.0/40	-6 6660	710	7 7561	-5.7500	750	7 2561	-4 7400
615	11.3433	-/.2180	003	13.910/	-6 4440	712	7.0594	-5.7300	760	7 9584	-4 7400
616	12.6/46	-/.2180	1 004	13.2872	-0.0000	/12	1.7304	-5.7500	1 /00	1.7504	T. / TVU

 Table D-2.
 Mesh Coordinates (continued)

Node			Node			Node			Node		
No.	X	Y	No.	Χ	Y	No.	Χ	Y	No.	Χ	Y
761	8.7309	-4.7400	809	8.7309	-3.7500	857	8.7309	-2.7600	905	10.5153	-2.0829
762	9.5806	-4.7400	810	9.5806	-3.7500	858	9.5806	-2.7600	906	11.5435	-2.0829
763	10.5153	-4.7400	811	10.5153	-3.7500	859	10.5153	-2.7600	907	12.6746	-2.0829
764	11.5435	-4.7400	812	11.5435	-3.7500	860	11.5435	-2.7600	908	13.9187	-2.0829
765	12.6746	-4.7400	813	12.6746	-3.7500	861	12.6746	-2.7600	909	15.2872	-2.0829
766	13.9187	-4.7400	814	13.9187	-3.7500	862	13.9187	-2.7600	91 0	16.7926	-2.0829
767	15.2872	-4.7400	815	15.2872	-3.7500	863	15.2872	-2.7600	911	18.4485	-2.0829
768	16.7926	-4.7400	816	16.7926	-3.7500	864	16.7926	-2.7600	912	20.2700	-2.0829
769	18.4485	-4.7400	817	18.4485	-3.7500	865	18.4485	-2.7600	913	0.0000	-1.7357
770	20.2700	-4.7400	818	20.2700	-3.7500	866	20.2700	-2.7600	914	1.2730	-1.7357
771	5.0300	-4.4100	819	5.0300	-3.4200	867	5.0300	-2.4300	915	2.2913	-1.7357
772	5.5097	-4.4100	820	5.5097	-3.4200	868	5.5097	-2.4300	916	3.1060	-1.7357
773	6.0373	-4.4100	821	6.0373	-3.4200	869	6.0373	-2.4300	917	3.7578	-1.7357
774	6.6177	-4.4100	822	6.6177	-3.4200	87 0	6.6177	-2.4300	918	4.2792	-1.7357
775	7.2561	-4.4100	823	7.2561	-3.4200	871	7.2561	-2.4300	919	4.6963	-1.7357
776	7.9584	-4.4100	824	7.9584	-3.4200	872	7.9584	-2.4300	920	5.0300	-1.7357
777	8.7309	-4.4100	825	8.7309	-3.4200	873	8.7309	-2.4300	921	5.5097	-1.7357
778	9.5806	-4.4100	826	9.5806	-3.4200	874	9.5806	-2.4300	922	6.0373	-1.7357
779	10.5153	-4.4100	827	10.5153	-3.4200	875	10.5153	-2.4300	923	6.6177	-1.7357
780	11.5435	-4.4100	828	11.5435	-3.4200	8 76	11.5435	-2.4300	924	7.2561	-1.7357
781	12.6746	-4.4100	829	12.6746	-3.4200	877	12.6746	-2.4300	925	7.9584	-1.7357
782	13.9187	-4.4100	830	13.9187	-3.4200	878	13.9187	-2.4300	926	8.7309	-1.7357
783	15.2872	-4.4100	831	15.2872	-3.4200	879	15.2872	-2.4300	927	9.5806	-1.7357
784	16.7926	-4.4100	832	16.7926	-3.4200	880	16.7926	-2.4300	928	10.5153	-1.7357
785	18.4485	-4.4100	833	18.4485	-3.4200	881	18.4485	-2.4300	929	11.5435	-1.7357
786	20.2700	-4.4100	834	20.2700	-3.4200	882	20.2700	-2.4300	930	12.6746	-1.7357
787	5.0300	-4.0800	835	5.0300	-3.0900	883	0.0000	-2.4300	931	13.9187	-1.7357
788	5.5097	-4.0800	836	5.5097	-3.0900	884	1.2730	-2.4300	932	15.2872	-1.7357
789	6.0373	-4.0800	837	6.0373	-3.0900	885	2.2913	-2.4300	933	16.7926	-1.7357
790	6.6177	-4.0800	838	6.6177	-3.0900	886	3.1060	-2.4300	934	18.4485	-1.7357
791	7.2561	-4.0800	839	7.2561	-3.0900	887	3.7578	-2.4300	935	20.2700	-1.7357
792	7.9584	-4.0800	840	7.9584	-3.0900	888	4.2792	-2.4300	936	0.0000	-1.3886
793	8.7309	-4.0800	841	8.7309	-3.0900	889	4.6963	-2.4300	937	1.2730	-1.3886
794	9.5806	-4.0800	842	9.5806	-3.0900	890	0.0000	-2.0829	938	2.2913	-1.3886
795	10.5153	-4.0800	843	10.5153	-3.0900	891	1.2730	-2.0829	939	3.1060	-1.3886
796	11.5435	-4.0800	844	11.5435	-3.0900	892	2.2913	-2.0829	940	3.7578	-1.3886
797	12.6746	-4.0800	845	12.6746	-3.0900	893	3.1060	-2.0829	941	4.2792	-1.3886
798	13.9187	-4.0800	846	13.9187	-3.0900	894	3.7578	-2.0829	942	4.6963	-1.3886
799	15.2872	-4.0800	847	15.2872	-3.0900	895	4.2792	-2.0829	943	5.0300	-1.3886
800	16.7926	-4.0800	848	16.7926	-3.0900	896	4.6963	-2.0829	944	5.5097	-1.3886
801	18.4485	-4.0800	849	18.4485	-3.0900	897	5.0300	-2.0829	945	6.0373	-1.3886
802	20.2700	-4.0800	850	20.2700	-3.0900	898	5.5097	-2.0829	946	6.6177	-1.3886
803	5.0300	-3.7500	851	5.0300	-2.7600	899	6.0373	-2.0829	947	7.2561	-1.3886
804	5.5097	-3.7500	852	5.5097	-2.7600	900	6.6177	-2.0829	948	7.9584	-1.3886
805	6.0373	-3.7500	853	6.0373	-2.7600	901	7.2561	-2.0829	949	8.7309	-1.3886
806	6.6177	-3.7500	854	6.6177	-2.7600	902	7.9584	-2.0829	950	9.5806	-1.3886
807	7.2561	-3.7500	855	7.2561	-2.7600	903	8.7309	-2.0829	951	10.5153	-1.3886
808	7.9584	-3.7500	856	7.9584	-2.7600	904	9,5806	-2.0829	952	11.5435	-1.3886

Node			Node		ľ	Node			Node		
No.	X	Y	No.	X	Y	No.	X	Y	No.	Χ	Y
953	12.6746	-1.3886	1001	15.2872	-0.6943	1049	18.4485	0.0000	1097	0.0000	1.5750
954	13.9187	-1.3886	1002	16.7926	-0.6943	1050	20.2700	0.0000	1098	1.2730	1.5750
955	15.2872	-1.3886	1003	18,4485	-0.6943	1051	0.0000	0.5250	1099	2.2913	1.5750
956	16.7926	-1.3886	1004	20.2700	-0.6943	1052	1.2730	0.5250	1100	3.1060	1.5750
957	18.4485	-1.3886	1005	0.0000	-0.3471	1053	2.2913	0.5250	1101	3.7578	1.5750
958	20.2700	-1.3886	1006	1.2730	-0.3471	1054	3.1060	0.5250	1102	4.2792	1.5750
959	0.0000	-1.0414	1007	2.2913	-0.3471	1055	3.7578	0.5250	1103	4.6963	1.5750
960	1.2730	-1.0414	1008	3.1060	-0.3471	1056	4.2792	0.5250	1104	5.0300	1.5750
961	2.2913	-1.0414	1009	3.7578	-0.3471	1057	4.6963	0.5250	1105	5,5097	1.5750
962	3.1060	-1.0414	1010	4.2792	-0.3471	1058	5.0300	0.5250	1106	6.0373	1.5750
963	3.7578	-1.0414	1011	4.6963	-0.3471	1059	5.5097	0.5250	1107	6.6177	1.5750
964	4.2792	-1.0414	1012	5.0300	-0.3471	1060	6.0373	0.5250	1108	7.2561	1.5750
965	4.6963	-1.0414	1013	5.5097	-0.3471	1061	6.6177	0.5250	1109	7.9584	1.5750
966	5.0300	-1.0414	1014	6.0373	-0.3471	1062	7.2561	0.5250	1110	8.7309	1.5750
967	5.5097	-1.0414	1015	6.6177	-0.3471	1063	7.9584	0.5250	1111	9.5806	1.5750
968	6.0373	-1.0414	1016	7.2561	-0.3471	1064	8.7309	0.5250	1112	10.5153	1.5750
969	6.6177	-1.0414	1017	7.9584	-0.3471	1065	9.5806	0.5250	1113	11.5435	1.5750
970	7.2561	-1.0414	1018	8.7309	-0.3471	1066	10.5153	0.5250	1114	12.6746	1.5750
971	7.9584	-1.0414	1019	9.5806	-0.3471	1067	11.5435	0.5250	1115	13.9187	1.5750
972	8.7309	-1.0414	1020	10.5153	-0.3471	1068	12.6746	0.5250	1116	15.2872	1.5750
973	9.5806	-1.0414	1021	11.5435	-0.3471	1069	13.9187	0.5250	1117	16.7926	1.5750
974	10.5153	-1.0414	1022	12.6746	-0.3471	1070	15.2872	0.5250	1118	18.4485	1.5750
975	11.5435	-1.0414	1023	13.9187	-0.3471	1071	16.7926	0.5250	1119	20.2700	1.5750
976	12.6746	-1.0414	1024	15.2872	-0.3471	1072	18.4485	0.5250	1120	0.0000	2.1000
977	13.9187	-1.0414	1025	16.7926	-0.3471	1073	20.2700	0.5250	1121	1.2730	2.1000
978	15.2872	-1.0414	1026	18.4485	-0.3471	1074	0.0000	1.0500	1122	2.2913	2.1000
979	16.7926	-1.0414	1027	20.2700	-0.3471	1075	1.2730	1.0500	1123	3.1060	2.1000
980	18.4485	-1.0414	1028	0.0000	0.0000	1076	2.2913	1.0500	1124	3.7578	2.1000
981	20.2700	-1.0414	1029	1.2730	0.0000	1077	3.1060	1.0500	1125	4.2792	2.1000
982	0.0000	-0.6943	1030	2.2913	0.0000	1078	3.7578	1.0500	1126	4.6963	2.1000
983	1.2730	-0.6943	1031	3.1060	0.0000	1079	4.2792	1.0500	1127	5.0300	2.1000
984	2.2913	-0.6943	1032	3.7578	0.0000	1080	4.6963	1.0500	1128	5.5097	2.1000
985	3.1060	-0.6943	1033	4.2792	0.0000	1081	5.0300	1.0500	1129	6.0373	2.1000
986	3.7578	-0.6943	1034	4.6963	0.0000	1082	5.5097	1.0500	1130	6.6177	2,1000
987	4.2792	-0.6943	1035	5.0300	0.0000	1083	6.0373	1.0500	1131	7.2561	2.1000
988	4.6963	-0.6943	1036	5.5097	0.0000	1084	6.6177	1.0500	1132	7.9584	2,1000
989	5.0300	-0.6943	1037	6.0373	0.0000	1085	7.2561	1.0500	1133	8,7309	2.1000
990	5.5097	-0.6943	1038	6.6177	0.0000	1086	7.9584	1.0500	1134	9.5806	2.1000
991	6.0373	-0.6943	1039	7.2561	0.0000	1087	8.7309	1.0500	1135	10.5153	2,1000
992	6.6177	- 0.6943	1040	7.9584	0.0000	1088	9.5806	1.0500	1136	11.5435	2.1000
993	7.2561	-0.6943	1041	8.7309	0.0000	1089	10.5153	1.0500	1137	12.0107	2.1000
994	7.9584	-0.6943	1042	9.5806	0.0000	1090	11.5435	1.0500	1138	15.918/	2,1000
995	8.7309	-0.6943	1043	10.5153	0.0000	1091	12.6746	1.0500	1139	15.28/2	2.1000
996	9.5806	-0.6943	1044	11.5435	0.0000	1092	13,9187	1.0500		10,/920	2.1000
997	10.5153	-0.6943	1045	12.6746	0.0000	1093	15.28/2	1.0500		18.4483	2.1000
998	11.5435	-0.6943	1046	13.9187	0.0000	1094	10 /926	1.0500	1142	20.2700	2.1000
999	12.6746	-0.6943	1047	15.2872	0.0000	1095	18,4485	1.0500	1143	1 2720	4.2700
1000	13.9187	-0.6943	1048	16.7926	0.0000	1 1096	20.2700	1.0500	1144	1.2/30	4.2700

Table D-2. Mesh Coordinates (continued)

Node Node Node Node No Y No. Y Х Х No. Х Y No. Х Y 4.2700 5.2900 4.8627 1145 2.2913 1193 3.7505 1241 6.6389 1289 6.0680 8.4228 3.1060 4.2700 1194 1146 4.3119 5.2900 1242 5.3139 6.6389 1290 6.7138 8.4228 1147 3.7578 4.2700 1195 4.7795 5.2900 1243 5.8819 1291 6.6389 7.3965 8.4228 4.2792 4.2700 1196 1148 5.1720 5.2900 1244 6.4883 6.6389 1292 8.1198 8.4228 4.2700 1149 4.6963 1197 5.6958 5.2900 1245 7.1369 6.6389 1293 8.8878 8.4228 1150 5.0300 4.2700 1198 6.2628 5.2900 1246 7.8319 6.6389 1294 9.7049 8.4228 5.5097 4.2700 1151 1199 6.8773 5.2900 1247 8.5780 6.6389 1295 10.5762 8.4228 4.2700 6.0373 1200 7.5440 1248 1152 5.2900 9.3802 6.6389 1296 11.5069 8.4228 6.6177 4.2700 1201 8.2682 5.2900 1153 1249 10.2443 1297 6.6389 12.5030 8.4228 4.2700 1202 9.0556 5.2900 1154 7.2561 1250 11.1764 6.6389 1298 13.5711 8.4228 4.2700 9.9125 1155 7.9584 1203 5.2900 1251 12.1832 6.6389 1299 14.7184 8.4228 4.2700 8.7309 1204 10.8459 5.2900 1252 13.2723 1300 15.9528 1156 6.6389 8.4228 4.2700 1205 1253 14.4518 1157 9.5806 11.8634 5.2900 6.6389 1301 17.2830 8.4228 4.2700 1206 12.9734 5.2900 1254 15.7309 1158 10.5153 6.6389 1302 18.7185 8.4228 4.2700 1159 11.5435 1207 14.1853 5.2900 1255 17.1195 6.6389 1303 20.2700 8.4228 4.2700 1208 1256 1160 12.6746 15.5091 5.2900 18.6285 6.6389 1304 0.0000 9.5202 1161 13.9187 4.2700 1209 16.9560 5.2900 1257 20.2700 6.6389 1305 1.1499 9.5202 4.2700 1162 15.2872 1210 18.5385 5.2900 1258 0.0000 7.4686 1306 2.1343 9.5202 4.2700 16.7926 1211 20.2700 5.2900 1259 1.1851 7.4686 1307 2.9863 1163 9.5202 1164 18.4485 4.2700 1212 0.0000 5.9174 1260 2.1792 7.4686 1308 3.7325 9.5202 4.2700 1213 20.2700 1.2202 5.9174 1261 3.0205 1309 1165 7.4686 4.3939 9.5202 0.0000 4.7444 1214 2.2240 5.9174 1262 3.7397 7.4686 1310 1166 4.9875 9.5202 1.2554 4.7444 1215 3.0547 5.9174 1263 4.3611 7.4686 9.5202 1167 1311 5.5268 2.2689 4.7444 1216 3.7469 5.9174 1264 4.9043 1312 1168 7.4686 6.1611 9.5202 4.7444 4.3283 3.0889 1217 5.9174 1265 5.3849 7.4686 1313 9.5202 1169 6.8265 1170 3.7542 4.7444 1218 4.8211 5.9174 1266 5.9750 7.4686 1314 7.5263 9.5202 1171 4.2956 4.7444 1219 5.2429 5.9174 1267 6.6010 7.4686 1315 8.2637 9.5202 4.7379 4.7444 1220 5.7888 5.9174 1268 7.4686 1316 1172 7.2667 9.0427 9.5202 1173 5.1010 4.7444 1221 6.3755 5.9174 1269 7.9758 7.4686 1317 9.8673 9.5202 4.7444 1174 5.6027 1222 7.0071 5.9174 1270 8.7329 7.4686 1318 10.7421 9.5202 6.1500 4.7444 1223 7.6879 5.9174 1271 9.5426 7.4686 1319 11.6721 9.5202 1175 6.7475 4.7444 1224 8.4231 5.9174 1272 10.4102 7.4686 1320 9.5202 1176 12.6629 7.4000 4.7444 1225 9.2179 5.9174 1273 11.3416 1321 13.7206 1177 7.4686 9.5202 1178 8.1133 4.7444 1226 10.0784 5.9174 1274 12.3431 7.4686 1322 14.8517 9.5202 1179 8.8932 4.7444 1227 11.0111 5.9174 1275 13.4217 7.4686 1323 16.0637 9.5202 9.7465 4.7444 1228 12.0233 5.9174 1276 14.5851 1324 9.5202 1180 7.4686 17.3647 4.7444 1229 13.1228 1277 15.8419 1325 9.5202 1181 10.6806 5.9174 7.4686 18.7635 1230 5.9174 1278 17.2013 1326 1182 11.7035 4.7444 14.3186 7.4686 20.2700 9.5202 12.8240 4.7444 1231 15.6200 5.9174 1279 18.6735 7.4686 1327 0.0000 10.7821 1183 20.2700 1184 14.0520 4.7444 1232 17.0378 5.9174 1280 7.4686 1328 1.1323 10.7821 15.3981 4.7444 1233 18.5835 5.9174 1281 0.0000 8.4228 1329 2.1119 10.7821 1185 16.8743 4.7444 1234 20.2700 5.9174 1282 1.1675 8.4228 1330 2.9692 10.7821 1186 1187 18.4935 4.7444 1235 0.0000 6.6389 1283 2.1567 8.4228 1331 3.7288 10.7821 20.2700 4.7444 1236 1.2026 6.6389 1284 3.0034 8.4228 1332 4.4102 10.7821 1188 5.2900 1237 2.2016 1285 8.4228 1333 5.0291 1189 0.0000 6.6389 3.7361 10.7821 5.2900 3.0376 1286 4.3775 8.4228 1334 5.5978 10.7821 1190 1.2378 1238 6.6389 1191 2.2465 5.2900 1239 3.7433 6.6389 1287 4.9459 8.4228 1335 6.2542 10.7821 4.3447 1288 3.0718 5.2900 1240 5.4559 8.4228 1336 6.9393 10.7821 1192 6.6389

Table D-2. Mesh Coordinates (continued)
Table D-2. Mesh Coordinates (continued)

Node			Node			Node			Node		
No.	X	Y	No.	Χ	Y	No.	X	Y	No.	X	Y
1337	7.6561	10.7821	1385	9.5074	13.9022	1433	11.5717	18.0286	1481	13.7823	23.4857
1338	8.4077	10.7821	1386	10.3543	13.9022	1434	12.4984	18.0286	1482	14.7666	23.4857
1339	9.1976	10.7821	1387	11.2399	13.9022	1435	13.4625	18.0286	1483	15.7848	23.4857
1340	10.0296	10.7821	1388	12.1679	13.9022	1436	14.4677	18.0286	1484	16.8403	23.4857
1341	10.9080	10.7821	1389	13.1427	13.9022	1437	15.5182	18.0286	1485	17.9369	23.4857
1342	11.8374	10.7821	1390	14.1689	13.9022	1438	16.6184	18.0286	1486	19.0786	23.4857
1343	12.8229	10.7821	1391	15.2516	13.9022	1439	17.7734	18.0286	1487	20.2700	23.4857
1344	13.8700	10.7821	1392	16.3966	13.9022	1440	18,9886	18.0286	1488	0.0000	26.8425
1345	14.9850	10.7821	1393	17.6099	13.9022	1441	20.2700	18.0286	1489	1.0093	26.8425
1346	16.1747	10.7821	1394	18.8986	13.9022	1442	0.0000	20.5668	1490	1.9549	26.8425
1347	17.4465	10.7821	1395	20.2700	13.9022	1443	1.0444	20.5668	1491	2.8496	26.8425
1348	18.8086	10.7821	1396	0.0000	15.8215	1444	1.9997	20.5668	1492	3.7035	26.8425
1349	20.2700	10.7821	1397	1.0796	15.8215	1445	2.8838	20.5668	1493	4.5249	26.8425
1350	0.0000	12.2333	1398	2.0446	15.8215	1446	3.7108	20.5668	1494	5.3202	26.8425
1351	1.1147	12.2333	1399	2.9180	15.8215	1447	4.4921	20.5668	1495	6.0947	26.8425
1352	2.0895	12.2333	1400	3.7180	15.8215	1448	5.2370	20.5668	1496	6.9056	26.8425
1353	2.9522	12.2333	1401	4.4594	15.8215	1449	5.9527	20.5668	1497	7.7285	26.8425
1354	3.7252	12.2333	1402	5.1538	15.8215	1450	6.7195	20.5668	1498	8.5646	26.8425
1355	4.4266	12.2333	1403	5.8108	15.8215	1451	7.5030	20.5668	1499	9.4153	26.8425
1356	5.0706	12.2333	1404	6.5333	15.8215	1452	8,3051	20.5668	1500	10.2819	26.8425
1357	5.6688	12.2333	1405	7.2775	15.8215	1453	9.1274	20.5668	1501	11.1660	26.8425
1358	6.3472	12.2333	1406	8.0455	15.8215	1454	9.9721	20.5668	1502	12.0695	26.8425
1359	7.0520	12.2333	1407	8.8395	15.8215	1455	10.8413	20.5668	1503	12.9942	26.8425
1360	7.7859	12.2333	1408	9.6623	15.8215	1456	11.7376	20.5668	1504	13.9423	26.8425
1361	8.5516	12.2333	1409	10.5166	15.8215	1457	12.6637	20.5668	1505	14.9160	26.8425
1362	9.3525	12.2333	1410	11.4058	15.8215	1458	13.6224	20.5668	1506	15.9181	26.8425
1363	10.1920	12.2333	1411	12.3332	15.8215	1459	14.6172	20.5668	1507	16.9512	26.8425
1364	11.0739	12.2333	1412	13.3026	15.8215	1460	15.6515	20.5668	1508	18.0186	26.8425
1365	12.0026	12.2333	1413	14.3183	15.8215	1461	16.7294	20.5668	1509	19.1230	26.8425
1366	12.9828	12.2333	1414	15.3849	15.8215	1462	1/.8551	20.5008	1510	20.2700	20.8425
1367	14.0194	12.2333	1415	16.5075	15.8215	1463	19.0330	20.5008	1511	0.0000	20,7020
1368	15.1183	12.2333	1416	1/.691/	15.8215	1464	20.2700	20.3008	1512	0.9917	20.7020
1369	16.2856	12.2333	141/	18,9436	15.8215	1405	1.0268	23.4857	1515	1.9324	20 7020
1370	17.5282	12.2333	1418	20.2700	15.8215	1400	1.0208	23.4037	1514	2.6525	20 7028
1371	18.8536	12,2333	1419	0.0000	18.0280	140/	1.9//3	23.4037	1515	3.0999	20 7028
1372	20.2700	12.2333	1420	1.0620	18.0280	1400	2.0007	23.4031	1517	5 3618	30.7028
1373	0.0000	13.9022	1421	2.0222	10.0200	1409	3.7072	23.4037	1517	5.3010 6.16 5 6	30.7028
13/4	1.0972	13.9022	1422	2.9009	10.0200	1470	4.3003	23.4037	1510	6 9987	30.7028
1375	2.0670	12.0022	1425	3.7144 A A759	18.0200	1471	6.0237	23.4857	1520	7 8413	30 7028
13/0	2.9331	12.0022	1424	5 1054	18.0280	1472	6 8125	23.4057	1520	8 6944	30 7028
13//	5./210	13,9022	1423	5 8817	18 0286	1473	7 6158	23.4857	1522	9 5592	30 7028
1370	4,4450	12 0022	1420	6 6764	18.0286	1474	8 4348	23,4057	1522	10 4368	30 7028
13/9	5 7209	13.9044	142/	7 3003	18 0286	1476	9 2713	23 4857	1524	11.3284	30,7028
1300	5.1370	13,9022	1420	8 1752	18 0286	1477	10 1270	23 4857	1525	12 2354	30.7028
1301	7 1649	13.9022	1430	8 9834	18 0286	1478	11 0037	23 4857	1526	13.1594	30.7028
1302	7 0157	13 9022	1431	9 8172	18 0286	1479	11,9036	23,4857	1527	14,1022	30.7028
1384	8 6956	13 9022	1432	10 6790	18 0286	1480	12.8289	23.4857	1528	15.0655	30.7028
1 1304	0.0750	13.7044	1 1752	10.0720	10.0200	1 - 100					

Node Node Node Node No. No. Х Y Х Y No. Х Y No. Х Y 16.0514 30.7028 1577 18.2638 40.2473 20.2700 1529 1625 52.8700 1.1025 1673 -4.8586 1530 17.0622 30.7028 1578 19.2586 40.2473 0.0000 1626 -6.3900 1674 1.4700 -4.8586 1531 18.1003 30.7028 1579 20.2700 40.2473 1627 0.3675 -6.3900 1675 1.8375 -4.8586 19.1686 30.7028 1580 1532 0.0000 46.1183 1628 0.7350 -6.3900 1676 2.2050 -4.8586 1533 20.2700 30.7028 1581 0.9389 46.1183 1629 1.1025 -6.3900 1677 2.5725 -4.8586 1534 0.0000 35.1421 1582 1.8652 46.1183 1630 1.4700 -6.3900 1678 2.9400 -4.8586 0.9741 35.1421 1583 2.7812 46.1183 1.8375 1535 1631 -6.3900 1679 3.3075 -4.8586 1.9100 35.1421 1584 3.6891 46.1183 1536 1632 2.2050 -6.3900 1680 3.6750 -4.8586 1537 2.8154 35.1421 1585 4.5904 46.1183 1633 2.5725 -6.3900 1681 0.0000 -4.4757 1538 3.6963 35.1421 1586 5.4866 46.1183 1634 2.9400 -6.3900 1682 0.3675 -4.4757 4.5577 35.1421 1587 6.3786 46.1183 1539 1635 3.3075 -6.3900 1683 0.7350 -4.4757 1540 5.4034 35.1421 1588 7.2778 46.1183 1636 3.6750 -6.3900 1684 1.1025 -4.4757 6.2366 35.1421 1589 8.1795 1541 46.1183 1637 0.0000 -6.0071 1685 1.4700 -4.4757 1542 7.0917 35.1421 1590 9.0838 46.1183 1638 0.3675 -6.0071 1.8375 1686 -4.4757 7.9540 35.1421 1591 9.9911 46.1183 1543 1639 0.7350 -6.0071 1687 2.2050 -4.4757 35.1421 1592 1544 8.8242 10.9015 46.1183 1640 1.1025 -6.0071 1688 2.5725 -4.4757 35.1421 1545 9.7032 1593 11.8154 46.1183 1641 1.4700 -6.0071 1689 2.9400 -4.4757 1546 10.5917 35.1421 1594 12.7332 46.1183 1642 1.8375 -6.0071 1690 3.3075 -4.4757 1595 11.4907 35.1421 13.6552 1643 1547 46.1183 2.2050 -4.4757 -6.0071 1691 3.6750 46.1183 1548 12.4013 35.1421 1596 14.5819 1644 2.5725 -6.0071 1692 0.0000 -4.0929 1549 13.3247 35.1421 1597 15.5138 46.1183 1645 2.9400 -6.0071 1693 0.3675 -4.0929 14.2621 35.1421 1598 16.4513 1550 46.1183 1646 3.3075 -6.0071 1694 0.7350 -4.0929 1551 15.2149 35.1421 1599 17.3950 46.1183 1647 3.6750 -6.0071 1695 1.1025 -4.0929 35.1421 1600 18.3455 0.0000 1552 16.1847 46.1183 1648 -5.6243 1696 1.4700 -4.0929 17.1731 35.1421 1601 19.3036 46.1183 1553 1649 0.3675 -5.6243 1697 1.8375 -4.0929 1554 18.1821 35.1421 1602 20.2700 46.1183 1650 0.7350 -5.6243 1698 2.2050 -4.0929 19.2136 35,1421 1603 0.0000 52.8700 1651 1.1025 -5.6243 1699 -4.0929 1555 2.5725 20.2700 35.1421 1604 0.9214 52.8700 1652 1.4700 1700 -4.0929 1556 -5.6243 2.9400 1.8427 52.8700 1557 0.0000 40.2473 1605 1653 1.8375 -5.6243 1701 3.3075 -4.0929 1558 0.9565 40.2473 1606 2.7641 52.8700 1654 2.2050 -5.6243 1702 3.6750 -4.0929 1559 1.8876 40.2473 1607 3.6855 52.8700 1655 2.5725 -5.6243 1703 0.0000 -3.7100 2.7983 40.2473 1608 4.6068 52.8700 1656 2.9400 -5.6243 1704 -3.7100 1560 0.3675 3.6927 40.2473 1609 5.5282 52.8700 1657 3.3075 1705 1561 -5.6243 0.7350 -3,7100 1562 4.5741 40.2473 1610 6.4495 52.8700 1658 3.6750 -5.6243 1706 1.1025 -3.71001563 5.4450 40.2473 1611 7.3709 52.8700 1659 0.0000 -5.2414 1707 1.4700 -3.7100 8.2923 52.8700 1564 6.3076 40.2473 1612 1660 0.3675 -5.2414 1708 1.8375 -3.71009.2136 1565 7.1848 40.2473 1613 52.8700 1661 0.7350 -5.2414 1709 2.2050 -3.7100 8.0668 40.2473 1614 10.1350 52.8700 1662 1.1025 -5.2414 1710 2.5725 -3.7100 1566 40.2473 11.0564 1.4700 1567 8.9540 1615 52.8700 1663 -5.2414 1711 2.9400 -3.7100 9.8471 40.2473 11.9777 52.8700 1664 1.8375 -5.2414 1712 3.3075 -3.7100 1568 1616 1569 10.7466 40.2473 1617 12.8991 52.8700 1665 2.2050 -5.2414 1713 3.6750 -3.71001570 11.6530 40,2473 1618 13.8205 52.8700 1666 2.5725 -5.2414 1714 0.0000 2.3100 40.2473 1619 14.7418 52.8700 1667 2.9400 -5.2414 1715 2.3100 1571 12.5672 1.2730 1572 13.4900 40.2473 1620 15.6632 52.8700 1668 3.3075 -5.2414 1716 2.2913 2.3100 14.4220 40.2473 1621 16.5846 52.8700 1669 3.6750 -5.2414 1717 3.1060 2.3100 1573 17.5059 52.8700 1574 15.3643 40.2473 1622 1670 0.0000 -4.8586 1718 3.7578 2.3100 40.2473 1623 18.4273 52.8700 1671 -4.8586 1719 4.2792 1575 16.3180 0.3675 2.3100 17.2840 19.3486 52.8700 1672 -4.8586 1720 4.6963 2.3100 1576 40.2473 1624 0.7350

Table D-2. Mesh Coordinates (continued)

Node	<u> </u>		Node		Ī	Node	• • •		Node		
No.	Х	Y	No.	X	Y	No.	X	Y	No.	X	Y
1721	5.0300	2.3100	1743	4.6963	2.8000	1765	4.2792	3.2900	1787	3.7578	3.7800
1722	5.5097	2.3100	1744	5.0300	2.8000	1766	4.6963	3.2900	1788	4.2792	3.7800
1723	6.0373	2.3100	1745	5.5097	2.8000	1767	5.0300	3.2900	1789	4.6963	3.7800
1724	6.6177	2.3100	1746	6.0373	2.8000	1768	5.5097	3.2900	1790	5.0300	3.7800
1725	7.2561	2.3100	1747	6.6177	2.8000	1769	6.0373	3.2900	1791	5.5097	3.7800
1726	7.9584	2.3100	1748	7.2561	2.8000	1770	6.6177	3.2900	1792	6.0373	3.7800
1727	8,7309	2.3100	1749	7.9584	2.8000	1771	7.2561	3.2900	1793	6.6177	3,7800
1728	9,5806	2.3100	1750	8.7309	2.8000	1772	7.9584	3.2900	1794	7.2561	3.7800
1729	10.5153	2.3100	1751	9.5806	2.8000	1773	8.7309	3.2900	1795	7.9584	3.7800
1730	11.5435	2.3100	1752	10.5153	2.8000	1774	9.5806	3.2900	1796	8.7309	3.7800
1731	12.6746	2.3100	1753	11.5435	2.8000	1775	10.5153	3.2900	1797	9.5806	3.7800
1732	13.9187	2.3100	1754	12.6746	2.8000	1776	11.5435	3.2900	1798	10.5153	3.7800
1733	15.2872	2.3100	1755	13.9187	2.8000	1777	12.6746	3.2900	1799	11.5435	3.7800
1734	16.7926	2.3100	1756	15.2872	2.8000	1778	13.9187	3.2900	1800	12.6746	3.7800
1735	18.4485	2.3100	1757	16.7926	2.8000	1779	15.2872	3.2900	1801	13.9187	3.7800
1736	20.2700	2.3100	1758	18.4485	2.8000	1780	16.7926	3.2900	1802	15.2872	3.7800
1737	0.0000	2.8000	1759	20.2700	2.8000	1781	18.4485	3.2900	1803	16.7926	3.7800
1738	1.2730	2.8000	1760	0.0000	3.2900	1782	20.2700	3.2900	1804	18.4485	3.7800
1739	2.2913	2.8000	1761	1.2730	3.2900	1783	0.0000	3.7800	1805	20.2700	3.7800
1740	3.1060	2.8000	1762	2.2913	3.2900	1784	1.2730	3.7800			
1741	3.7578	2.8000	1763	3.1060	3.2900	1785	2.2913	3.7800			
1742	4.2792	2.8000	1764	3.7578	3.2900	1786	3.1060	3.7800			

Table D-2. Mesh Coordinates (continued)

Table D-3. Element Block 1 Description

ElementElementElementNo.ConnectivityNo.Connectivity	nt			
No. Connectivity No. Connectivity No.				
		Conne	ctivity	
1 1 2 25 24 49 51 52 75 74 97	101	102	125	124
2 2 3 26 25 50 52 53 76 75 98	102	103	126	125
3 3 4 27 26 51 53 54 77 76 99	103	104	127	126
4 4 5 28 27 52 54 55 78 77 100	104	105	128	127
5 5 6 29 28 53 55 56 79 78 101	105	106	129	128
6 6 7 30 29 54 56 57 80 79 102	106	107	130	129
7 7 8 31 30 55 57 58 81 80 103	107	108	131	130
8 9 32 31 56 58 59 82 81 104	108	109	132	131
9 9 10 33 32 57 59 60 83 82 105	109	110	133	132
10 10 11 34 33 58 60 61 84 83 106	110	111	134	133
11 11 12 35 34 59 61 62 85 84 107	111	112	135	134
12 12 13 36 35 60 62 63 86 85 108	112	113	136	135
13 13 14 37 36 61 63 64 87 86 109	113	114	137	136
14 14 15 38 37 62 64 65 88 87 110	114	115	138	137
15 15 16 39 38 63 65 66 89 88 111	116	117	140	139
16 16 17 40 39 64 66 67 90 89 112	117	118	141	140
17 17 18 41 40 65 67 68 91 90 113	118	119	142	141
18 18 19 42 41 66 68 69 92 91 114	119	120	143	142
19 19 20 43 42 67 70 71 94 93 115	120	121	144	143
20 20 21 44 43 68 71 72 95 94 116	121	122	145	144
21 21 22 45 44 69 72 73 96 95 117	122	123	146	145
22 22 23 46 45 70 73 74 97 96 118	123	124	147	146
23 24 25 48 47 71 74 75 98 97 119	124	125	148	147
24 25 26 49 48 72 75 76 99 98 120	125	126	149	148
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	126	127	150	149
26 27 28 51 50 74 77 78 101 100 122	127	128	151	150
27 28 29 52 51 75 78 79 102 101 123	128	129	152	151
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	129	130	153	152
29 30 31 54 53 77 80 81 104 103 125 20 21 22 55 54 70 81 80 105 104 105	130	131	154	153
30 31 32 55 54 78 81 82 105 104 126	131	132	155	154
31 32 33 56 55 79 82 83 106 105 127 20 22 24 57 56 80 82 84 107 106 128	132	133	150	155
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	133	134	159	150
33 34 35 58 57 81 84 85 108 107 129 24 25 26 50 58 92 95 96 100 108 130	134	133	150	157
34 35 30 59 38 82 83 80 109 108 150	135	130	159	150
35 36 37 00 39 85 80 87 110 109 131 122	130	137	161	160
30 37 38 01 00 64 87 66 111 110 132 27 28 20 62 61 95 98 90 112 111 133	130	130	163	162
37 38 39 02 01 85 88 89 112 111 13528 20 40 63 63 86 80 00 113 112 134	139	140	164	163
38 39 40 03 02 80 87 90 113 112 134	140	142	165	165
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	141	142	165	165
40 41 42 05 04 88 51 52 115 114 150	142	143	167	166
41 42 43 67 66 90 94 95 118 117 138	144	145	168	167
42 43 44 45 68 67 91 95 96 119 118 139	145	146	169	168
44 45 46 69 68 92 96 97 120 119 140	146	147	170	169
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	147	148	171	170
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	148	149	172	171
$\begin{vmatrix} 47 & 49 & 50 & 73 & 72 \end{vmatrix}$ $\begin{vmatrix} 95 & 99 & 100 & 123 & 122 \end{vmatrix}$ $\begin{vmatrix} 142 \\ 143 \end{vmatrix}$	149	150	173	172
48 50 51 74 73 96 100 101 124 123 144	150	151	174	173

Element						Element						Element				
No.	C	onnec	tivitv			No.	C	onnec	tivity			No.	C	onnec	tivity	
145	151	152	175	174		193	201	202	225	224	1	241	251	252	275	274
146	152	153	176	175		194	202	203	226	225		242	252	253	276	275
147	153	154	177	176		195	203	204	227	226		243	254	255	278	277
148	154	155	178	177		196	204	205	228	227		244	255	256	279	278
149	155	156	179	178		197	205	206	229	228		245	256	257	28 0	279
150	156	157	180	179		198	206	207	230	229		24 6	257	258	281	280
151	157	158	181	180		199	208	209	232	231		247	258	259	282	281
152	158	159	182	181		200	209	210	233	232		248	259	260	283	282
153	159	160	183	182		201	210	211	234	233		249	260	261	284	283
154	160	161	184	183		202	211	212	235	234		250	261	262	285	284
155	162	163	186	185		203	212	213	236	235		251	262	263	28 6	285
156	163	164	187	186		204	213	214	237	236		252	263	264	287	286
157	164	165	188	187		205	214	215	238	237		253	264	265	288	287
158	165	166	189	188		206	215	216	239	238		254	265	266	289	288
159	166	167	190	189		207	216	217	240	239		255	266	267	290	289
160	167	168	191	190		208	217	218	241	240		256	267	268	291	290
161	168	169	192	191		209	218	219	242	241		257	268	269	292	291
162	169	170	193	192		210	219	220	243	242		258	269	27 0	293	292
163	170	171	194	193		211	220	221	244	243		259	270	271	294	293
164	171	172	195	194		212	221	222	245	244		260	271	272	295	294
165	172	173	196	195		213	222	223	246	245		261	272	273	296	295
166	173	174	197	196		214	223	224	247	246		262	273	274	297	296
167	174	175	198	197		215	224	225	248	247		263	274	275	298	297
168	175	176	199	198		216	225	226	249	248		264	275	276	299	298
169	176	177	200	199		217	226	227	250	249		265	277	278	301	300
170	177	178	201	200		218	227	228	251	250		266	278	279	302	301
171	178	179	202	201		219	228	229	252	251		267	279	28 0	303	302
172	179	18 0	203	202		220	229	230	253	252		268	28 0	281	304	303
173	180	181	204	203		221	231	232	255	254		269	281	282	305	304
174	181	182	205	204		222	232	233	256	255		270	282	283	306	305
175	182	183	206	205		223	233	234	257	256		271	283	284	307	306
176	183	184	207	206		224	234	235	258	257		272	284	285	308	307
177	185	186	209	208	l	225	235	236	259	258		273	285	286	309	308
178	186	187	210	209		226	236	237	260	259		274	286	287	310	309
179	187	188	211	210		227	237	238	261	260		275	287	288	311	310
180	188	189	212	211		228	238	239	262	261		276	288	289	312	311
181	189	190	213	212		229	239	240	263	262		277	289	290	313	312
182	190	191	214	213		230	240	241	264	263		278	290	291	314	313
183	191	192	215	214		231	241	242	265	264		279	291	292	315	314
184	192	193	216	215		232	242	243	266	265		280	292	293	316	315
185	193	194	217	216		233	243	244	267	266		281	293	294	317	316
186	194	195	218	217		234	244	245	268	267		282	294	295	318	317
187	195	196	219	218		235	245	246	269	268	1	283	295	296	319	318
188	196	197	220	219		236	246	247	270	269	1	284	296	297	320	319
189	197	198	221	220		237	247	248	271	270	1	285	297	298	321	320
190	198	199	222	221		238	248	249	272	271		286	298	299	322	321
191	199	200	223	222	1	239	249	250	273	272		287	300	301	324	523
192	200	201	224	223	1	240	250	251	274	273		1				

Element					Element					Element	t			
No.	(Connec	ctivity		No.		Conne	ctivity		No.	(Conne	ctivity	
288	301	302	325	324	336	351	352	375	374	384	401	402	425	424
289	302	303	326	325	337	352	353	37 6	375	385	402	403	426	425
290	303	304	327	326	338	353	354	377	376	386	403	404	427	426
291	304	305	328	327	339	354	355	378	377	387	404	405	428	427
292	305	306	329	328	340	355	356	379	378	388	405	406	429	428
293	306	307	330	329	341	356	357	380	379	389	406	407	430	429
294	307	308	331	330	342	357	358	381	380	390	407	408	431	430
295	308	309	332	331	343	358	359	382	381	391	408	409	432	431
296	309	310	333	332	344	359	360	383	382	392	409	410	433	432
297	310	311	334	333	345	360	361	384	383	393	410	411	434	433
298	311	312	335	334	346	361	362	385	384	394	411	412	435	434
299	312	313	336	335	347	362	363	386	385	395	412	413	436	435
300	313	314	337	336	348	363	364	387	386	396	413	414	437	436
301	314	315	338	337	349	364	365	388	387	397	415	416	439	438
302	315	316	339	338	350	365	366	389	388	398	416	417	440	439
303	316	317	340	339	351	366	367	390	389	399	417	418	441	440
304	317	318	341	340	352	367	368	391	390	400	418	419	442	441
305	318	319	342	341	353	369	370	393	392	401	419	42 0	443	442
306	319	320	343	342	354	370	371	394	393	402	420	42 1	444	443
307	320	321	344	343	355	371	372	395	394	403	421	422	445	444
308	321	322	345	344	356	372	373	396	395	404	422	423	446	445
309	323	324	347	346	357	373	374	397	396	405	423	424	447	446
310	324	325	348	347	358	374	375	398	397	406	424	425	448	447
311	325	326	349	348	359	375	376	399	398	407	425	426	449	448
312	326	327	350	349	360	376	377	400	399	408	426	427	450	449
313	327	328	351	350	361	377	378	401	400	409	427	428	451	450
314	328	329	352	351	362	378	379	402	401	410	428	429	452	451
315	329	330	353	352	363	379	380	403	402	411	429	43 0	453	452
316	330	331	354	353	364	380	381	404	403	412	430	431	454	453
317	331	332	355	354	365	381	382	405	404	413	431	432	455	454
318	332	333	356	355	366	382	383	406	405	414	432	433	456	455
319	333	334	357	356	367	383	384	407	406	415	433	434	457	456
320	334	335	358	357	368	384	385	408	407	416	434	435	458	457
321	335	336	359	358	369	385	386	409	408	417	435	436	459	458
322	336	337	360	359	370	386	387	410	409	418	436	437	460	459
323	337	338	361	360	371	387	388	411	410	419	438	439	462	461
324	338	339	362	361	372	388	389	412	411	420	439	440	463	462
325	339	340	363	362	373	389	390	413	412	421	440	441	464	463
326	340	341	364	363	374	390	391	414	413	422	441	442	465	464
327	341	342	365	364	375	392	393	416	415	423	442	443	466	465
328	342	343	366	365	376	393	394	417	416	424	443	444	467	466
329	343	344	367	366	377	394	395	418	417	425	444	445	468	467
330	344	345	368	367	378	395	396	419	418	426	445	446	469	468
331	346	347	370	369	379	396	397	420	419	427	446	447	470	469
332	347	348	371	370	380	397	398	421	420	428	447	448	471	470
333	348	349	372	371	381	398	399	422	421	429	448	449	472	471
334	349	350	373	372	382	399	400	423	422	430	449	450	473	472
335	350	351	374	373	383	400	401	424	423	431	450	451	474	473

Element						Element						Element				
No.	0	Connec	tivity			No.	C	<u>Connec</u>	tivity			No.	C	onnec	tivity	
432	451	452	475	474		481	594	595	618	617		530	646	647	670	669
433	452	453	476	475		482	595	596	619	618		531	647	648	671	670
434	453	454	477	476		483	596	597	620	619		532	648	649	672	671
435	454	455	478	477		484	597	598	621	620		533	649	650	673	672
436	455	456	479	478		485	599	600	623	622		534	650	651	674	673
437	456	457	48 0	479		486	600	601	624	623		535	651	652	675	674
438	457	458	481	480		487	601	602	625	624		536	652	653	676	675
439	458	459	482	481		488	602	603	626	625		537	653	654	677	676
440	459	460	483	482		489	603	604	627	626		538	654	655	678	677
441	553	554	577	576		490	604	605	628	627		539	655	656	679	678
442	554	555	578	577		491	605	606	629	628		540	65 6	657	6 8 0	679
443	555	556	579	578		492	606	607	630	629		541	657	658	681	680
444	556	557	580	579		493	607	608	631	630		542	658	659	682	681
445	557	558	581	580		494	608	609	632	631		543	659	660	683	682
446	558	559	582	581		495	609	610	633	632		544	660	661	684	683
447	559	560	583	582		496	610	611	634	633		545	661	662	685	684
448	560	561	584	583		497	611	612	635	634		546	662	663	686	685
449	561	562	585	584		498	612	613	636	635		547	663	664	687	686
450	562	563	586	585		499	613	614	637	636		548	664	665	688	687
451	563	564	587	586		500	614	615	638	637		549	665	666	689	688
452	564	565	588	587		501	615	616	639	638		550	666	667	690	689
453	565	566	589	588		502	616	617	640	639		551	675	676	692	691
454	566	567	590	589		503	617	618	641	640		552	676	677	693	692
455	567	568	591	590		504	618	619	642	641		553	677	678	694	693
456	568	569	592	591		505	619	620	643	642		554	678	679	695	694
457	569	570	593	592		506	620	621	644	643		555	6/9	680	696	695
458	570	571	594	593		507	622	623	646	645		556	680	081	697	090
459	571	572	595	594		508	623	624	647	646		557	081	082	098 600	6097
460	572	573	596	595		509	624	625	648	647		550	082	680	700	600
461	573	574	597	596		510	625	626	649	048		559	680	604	700	700
462	574	575	598	597		511	626	627	030	649		500	695	696	701	700
463	576	577	600	599		512	627	628	651	650		562	686	687	702	702
464	577	578	601	600		513	628	629	652 452	651		562	687	688	703	702
465	578	579	602	601	ļ	514	629	630	653	652		564	688	680	704	703
466	579	580	603	602		516	630	622	655	654		565	680	600	705	705
467	580	581	604	603		510	622	622	656	655	ļ	566	601	692	708	707
468	581	582	605	604		517	632	624	657	656		567	692	693	709	708
469	582	585	000	603		510	624	625	658	657		568	693	694	710	709
470	583	584	007	600		519	625	636	650	658		569	694	695	711	710
4/1	584	282	608	607		520	636	637	660	659		570	695	696	712	711
472	282	280	609	600		521	627	639	661	660		571	696	697	713	712
4/3	280	787	610	605		522	638	630	662	661		572	697	698	714	713
474	587	580	611	610	'	525	630	640	663	667		573	698	699	715	714
4/5	580	289	612	613		525	640	641	664	663		574	699	700	716	715
4/0	285	39U \$01	617	612		525	641	647	665	664		575	700	701	717	716
4//	59U 501	507	615	61/	ĺ	527	642	643	666	665		576	701	702	718	717
4/8	507	502	616	614	[]	528	643	644	667	666		577	702	703	719	718
4/9	502	507	617	614		520	645	646	669	668		578	703	704	720	719
1 400	223	574	017	010	1	1 227	545	010	007		1	1				

Element					F	lement					Element				
No.	(Connec	ctivity			No.	C	Connec	tivity		No.	C	Conne	tivity	
579	704	705	721	720		628	757	758	774	773	677	809	810	826	825
580	705	706	722	721		629	758	759	775	774	678	810	811	827	826
581	707	708	724	723		630	759	760	776	775	679	811	812	828	827
582	708	709	725	724		631	760	761	777	776	680	812	813	829	828
583	709	710	726	725		632	761	762	778	777	681	813	814	830	829
584	710	711	727	726		633	762	763	779	778	682	814	815	831	830
585	711	712	728	727		634	763	764	78 0	779	683	815	816	832	831
586	712	713	729	728		635	764	765	781	780	684	816	817	833	832
587	713	714	730	729		636	765	766	782	781	685	817	818	834	833
588	714	715	731	730		637	766	767	783	782	686	819	82 0	836	835
589	715	716	732	731		638	767	768	784	783	687	820	821	837	836
590	716	717	733	732		639	768	769	785	784	688	821	822	838	837
591	717	718	734	733		640	769	770	78 6	785	689	822	823	839	838
592	718	719	735	734		641	771	772	788	787	690	823	824	84 0	839
593	719	720	736	735		642	772	773	789	788	691	824	825	841	840
594	720	721	737	736		643	773	774	79 0	789	692	825	826	842	841
595	721	722	738	737		644	774	775	791	790	693	82 6	827	843	842
596	723	724	740	739		645	775	776	792	791	694	827	828	844	843
597	724	725	741	740		646	776	777	793	792	695	828	829	845	844
598	725	726	742	741		647	777	778	794	793	696	829	830	846	845
599	726	727	743	742		648	778	779	795	794	697	830	831	847	846
600	727	728	744	743		649	779	78 0	796	795	698	831	832	848	847
601	728	729	745	744		650	78 0	781	797	796	699	832	833	849	848
602	729	73 0	746	745		651	781	782	798	797	700	833	834	850	849
603	730	731	747	746		652	782	783	799	798	701	835	836	852	851
604	731	732	748	747		653	783	784	80 0	799	702	836	837	853	852
605	732	733	749	748		654	784	785	801	800	703	837	838	854	853
606	733	734	750	749		655	785	786	802	801	704	838	839	855	854
607	734	735	751	750		656	787	788	804	803	705	839	840	856	855
608	735	736	752	751		657	788	789	805	804	706	840	841	857	856
609	736	737	753	752		658	789	790	806	805	707	841	842	858	857
610	737	738	754	753		659	790	791	807	806	708	842	843	859	858
611	739	740	756	/55		660	791	792	808	807	709	843	844	860	859
612	740	/41	/5/	/56		661	792	793	809	808	710	844	845	861	860
013	741	742	750	15/		662	793	794 705	810	809	711	845	846	862	801
614	742	743	759	750		003	794	795	811 912	810	712	840	84/	803	862
615	745	744	760	759		004	795	/90 707	812 912	012	715	84/ 040	848	804	803
610	744	745	701	760		666	790	797	813 014	012	714	848 840	849	803 844	804
617	745	740	762	701		000 447	700	700	014	015	715	049	830 851	800 969	805 967
610	740	747	705	762		669	798	799 000	01J 012	014	710	853	0 <i>52</i> 952	000 960	007
620	747	740	765	763		660	800	800 801	010 017	015 016	719	852 852	055 954	009 970	860
620	740	750	766	765		6 7 0	800 801	801	01/ 819	817	710	85 <i>1</i>	854	870 871	870
622	750	750	767	766		671	801	804	820	810	720	855	856	877	871
622	750	751 757	769	767		672	803 804	804 804	820	820	720	855 856	850	872	877
624	751	752	760	769		673	804	805 806	877	821	722	850	858	874	872
625	752	754	770	760		674	805 806	807	873	822	723	858	859	875	874
626	755	756	770	771	1	675	807	808	824	822	724	850	860	876	875
627	756	757	773	772		676	808	800	825	824	725	860	861	877	876
02/	001	121	115	114		070	000	007	020	024	125	000	001	0//	070

Element					1	Element					Element				
No.	0	Connec	tivity			No.	C	Connec	tivity		No.	0	Connec	tivity	
726	861	862	878	877		775	913	914	937	936	824	964	965	988	987
727	862	863	879	878		776	914	915	938	937	825	965	966	989	988
728	863	864	88 0	879		777	915	916	939	938	826	966	96 7	990	989
729	864	865	881	880		778	916	917	940	939	827	967	968	991	990
730	865	866	882	881		779	917	918	941	940	828	968	969	992	991
731	883	884	891	890		780	918	919	942	941	829	969	970	993	992
732	884	885	892	891		781	919	920	943	942	830	97 0	971	994	993
733	885	88 6	893	892		782	920	921	944	943	831	971	972	995	994
734	88 6	887	894	893		783	921	922	945	944	832	972	973	996	995
735	887	888	895	894		784	922	923	946	945	833	973	974	997	996
736	888	889	896	895		785	923	924	947	946	834	974	975	998	997
737	889	8 67	897	896		786	924	925	948	947	835	975	976	999	998
738	867	868	898	897		787	925	926	949	948	836	97 6	977	1000	999
739	868	8 69	899	898		788	926	927	950	949	837	977	978	1001	1000
740	8 69	87 0	90 0	899		789	927	928	951	950	838	978	979	1002	1001
741	87 0	871	901	900		790	928	929	952	951	839	979	980	1003	1002
742	871	872	902	901		791	929	93 0	953	952	840	98 0	981	1004	1003
743	872	873	903	902		792	93 0	931	954	953	841	982	983	1006	1005
744	873	874	904	903	1	793	931	932	955	954	842	983	984	1007	1006
745	874	875	905	904		794	932	933	956	955	843	984	985	1008	1007
746	875	87 6	906	905		795	933	934	957	956	844	985	98 6	1009	1008
747	876	877	907	906		796	934	935	958	957	845	98 6	987	1010	1009
748	877	878	908	907		797	936	937	960	959	846	987	988	1011	1010
749	878	879	909	908		798	937	938	961	960	847	988	989	1012	1011
750	879	880	910	909		799	938	939	962	961	848	989	990	1013	1012
751	880	881	911	910	1	800	939	940	963	962	849	990	991	1014	1013
752	881	882	912	911		801	940	941	964	963	850	991	992	1015	1014
753	890	891	914	913		802	941	942	965	964	851	992	993	1010	1015
754	891	892	915	914		803	942	943	900	965	852	993	994	1017	1010
755	892	893	916	915		804	943	944	967	900	855	994	995	1018	1017
756	893	894	917	916		805	944	945	968	967	854	995	990	1019	1010
757	894	895	918	917		806	945	940	969	908	855	990	997	1020	1019
758	895	896	919	918		807	946	947	970	909	830	997	998	1021	1020
759	896	89/	920	919		808	947	948	9/1	970	859	000	1000	1022	1021
760	897	898	921	920	1	809	948	949	972	971	850	1000	1000	1023	1022
761	898	899	922	921		011	949	950	074	073	860	1000	1007	1024	1023
762	899	900	923	922		812	950	057	075	973	861	1001	1002	1025	1025
703	900	901	924	923	ľ	813	951	953	976	975	862	1002	1003	1027	1026
764	901	902	925	029	2	813	053	954	977	976	863	1005	1006	1029	1028
765	902	903	027	026	(815	954	955	978	977	864	1006	1007	1030	1029
767	903	005	078	020	,	816	955	956	979	978	865	1007	1008	1031	1030
769	005	905	020	025		817	956	957	980	979	866	1008	1009	1032	1031
769	906	907	930	920	ý	818	957	958	981	980	867	1009	1010	1033	1032
770	907	908	931	930		819	959	960	983	982	868	1010	1011	1034	1033
771	907	909	932	931	ĺ	820	960	961	984	983	869	1011	1012	1035	1034
772	909	910	933	932	2	821	961	962	985	984	870	1012	1013	1036	1035
773	910	911	934	93	3	822	962	963	986	985	871	1013	1014	1037	1036
1	~ • •														

Element					Eleme	ent					Element				
No.	(Conne	ctivity		No.			Conne	ctivity		No.		Conne	ctivity	
873	1015	1016	1039	1038	922		1181	1182	1205	1204	971	1232	1233	1256	1255
874	1016	1017	1040	1039	923		1182	1183	1206	1205	972	1233	1234	1257	1256
875	1017	1018	1041	1040	924		1183	1184	1207	1206	973	1235	1236	1259	1258
876	1018	1019	1042	1041	925		1184	1185	1208	1207	974	1236	1237	1260	1259
877	1019	1020	1043	1042	926		1185	1186	1209	1208	975	1237	1238	1261	1260
878	1020	1021	1044	1043	927		1186	1187	1210	1209	976	1238	1239	1262	1261
879	1021	1022	1045	1044	928		1187	1188	1211	1210	977	1239	1240	1263	1262
880	1022	1023	1046	1045	929		1189	1190	1213	1212	978	1240	1241	1264	1263
881	1023	1024	1047	1046	930		1190	1191	1214	1213	979	1241	1242	1265	1264
882	1024	1025	1048	1047	931		1191	1192	1215	1214	980	1242	1243	1266	1265
883	1025	1026	1049	1048	932		1192	1193	1216	1215	981	1243	1244	1267	1266
884	1026	1027	1050	1049	933		1193	1194	1217	1216	982	1244	1245	1268	1267
885	1143	1144	1167	1166	934		1194	1195	1218	1217	983	1245	1246	1269	1268
886	1144	1145	1168	1167	935		1195	1196	1219	1218	984	1246	1247	1270	1269
887	1145	1146	1169	1168	936		1196	1197	1220	1219	985	1247	1248	1271	1270
888	1146	1147	1170	1169	937		1197	1198	1221	1220	986	1248	1249	1272	1271
889	1147	1148	1171	1170	938		1198	1199	1222	1221	987	1249	1250	1273	1272
89 0	1148	1149	1172	1171	939		1199	1200	1223	1222	988	1250	1251	1274	1273
891	1149	1150	1173	1172	940		1200	1201	1224	1223	989	1251	1252	1275	1274
892	1150	1151	1174	1173	941		1201	1202	1225	1224	990	1252	1253	1276	1275
893	1151	1152	1175	1174	942		1202	1203	1226	1225	991	1253	1254	1277	1276
894	1152	1153	1176	1175	943		1203	1204	1227	1226	992	1254	1255	1278	1277
895	1153	1154	1177	1176	944		1204	1205	1228	1227	993	1255	1256	1279	1278
896	1154	1155	1178	1177	945		1205	1206	1229	1228	994	1256	1257	1280	1279
897	1155	1156	1179	1178	946		1206	1207	1230	1229	995	1258	1259	1282	1281
898	1156	1157	1180	1179	947		1207	1208	1231	1230	996	1259	1260	1283	1282
899	1157	1158	1181	1180	948		1208	1209	1232	1231	997	1260	1261	1284	1283
900	1158	1159	1182	1181	949		1209	1210	1233	1232	998	1261	1262	1285	1284
901	1159	1160	1183	1182	950		1210	1211	1234	1233	999	1262	1263	1286	1285
902	1160	1101	1184	1183	951		1212	1213	1236	1235	1000	1263	1264	1287	1286
903	1101	1162	1185	1184	952		1213	1214	1237	1236	1001	1264	1265	1288	1287
904	1162	1163	1180	1185	953		1214	1215	1238	1237	1002	1265	1266	1289	1288
905	1163	1164	118/	1180	954		1215	1215	1239	1238	1003	1266	1267	1290	1289
906	1164	1100	1188	1187	955		1210	1217	1240	1239	1004	1267	1268	1291	1290
907	1100	110/	1190	1189	950		1217	1218	1241	1240	1005	1208	1209	1292	1291
908	1107	1160	1191	1101	937		1210	1219	1242	1241	1000	1209	1270	1295	1292
909	1160	1109	1192	1191	938		1219	1220	1245	1242	1007	1270	1271	1294	1293
910	1170	1170	1195	1192	959		1220	1221	1244	1245	1008	1271	1272	1295	1294
012	1170	1171	1194	110/	900		1221	1222	1245	1244	1009	1272	1273	1290	1295
012	1177	1172	1195	1105	062		1222	1225	1240	1245	1010	1273	1274	1237	1290
915	1172	1173	1107	1106	902		1225	1224	1247	1240	1011	1274	1275	1270	1297
015	1174	1175	1108	1107	903		1224	1225	1240	1248	1012	1275	1277	1300	1200
016	1175	1176	1100	1109	065		1225	1220	1250	1240	1013	1270	1278	1300	1300
910	1176	1177	1200	1100	066		1220	1227	1250	1250	1014	1278	1270	1302	1301
919	1177	1178	1200	1200	900		1227	1220	1252	1251	1015	1270	1280	1302	1302
910	1178	1170	1207	1200	968		1220	1230	1253	1252	1017	1281	1282	1305	1304
920	1179	1180	1203	1202	969		1230	1231	1254	1253	1018	1282	1283	1306	1305
921	1180	1181	1204	1203	970		1231	1232	1255	1254	1019	1283	1284	1307	1306
915 916 917 918 919 920 921	1173 1174 1175 1176 1177 1178 1179 1180	1174 1175 1176 1177 1178 1179 1180 1181	1197 1198 1199 1200 1201 1202 1203 1204	1190 1197 1198 1199 1200 1201 1202 1203	963 964 965 966 967 968 969 970		1225 1225 1226 1227 1228 1229 1230 1231	1226 1227 1228 1229 1230 1231 1232	1249 1250 1251 1252 1253 1254 1255	1247 1248 1249 1250 1251 1252 1253 1254	1012 1013 1014 1015 1016 1017 1018 1019	1275 1276 1277 1278 1279 1281 1282 1283	1277 1278 1279 1280 1282 1283 1284	1300 1301 1302 1303 1305 1306 1307	1299 1300 1301 1302 1304 1305 1306

Element					Element					Element				
No.		Conne	ctivity		No.		Conne	ctivity		No.	(Conne	ctivity	
1020	1284	1285	1308	1307	1069	1335	1336	1359	1358	1118	1386	1387	1410	1409
1021	1285	1286	1309	1308	1070	1336	1337	1360	1359	1119	1387	1388	1411	1410
1022	1286	1287	1310	1309	1071	1337	1338	1361	1360	1120	1388	1389	1412	1411
1023	1287	1288	1311	1310	1072	1338	1339	1362	1361	1121	1389	1390	1413	1412
1024	1288	1289	1312	1311	1073	1339	1340	1363	1362	1122	1390	1391	1414	1413
1025	1289	1290	1313	1312	1074	1340	1341	1364	1363	1123	1391	1392	1415	1414
1026	1290	1291	1314	1313	1075	1341	1342	1365	1364	1124	1392	1393	1416	141:
1027	1291	1292	1315	1314	1076	1342	1343	1366	1365	1125	1393	1394	1417	1416
1028	1292	1293	1316	1315	1077	1343	1344	1367	1366	1126	1394	1395	1418	141′
1029	1293	1294	1317	1316	1078	1344	1345	1368	1367	1127	1396	1397	1420	141
1030	1294	1295	1318	1317	1079	1345	1346	1369	1368	1128	1397	1398	1421	142
1031	1295	1296	1319	1318	1080	1346	1347	1370	1369	1129	1398	1399	1422	142
1032	1296	1297	1320	1319	1081	1347	1348	1371	1370	1130	1399	1400	1423	1423
1033	1297	1298	1321	1320	1082	1348	1349	1372	1371	1131	1400	1401	1424	142
1034	1298	1299	1322	1321	1083	1350	1351	1374	1373	1132	1401	1402	1425	1424
1035	1299	1300	1323	1322	1084	1351	1352	1375	1374	1133	1402	1403	1426	142
1036	1300	1301	1324	1323	1085	1352	1353	1376	1375	1134	1403	1404	1427	142
1037	1301	1302	1325	1324	1086	1353	1354	1377	1376	1135	1404	1405	1428	142
1038	1302	1303	1326	1325	1087	1354	1355	1378	1377	1136	1405	1406	1429	142
1039	1304	1305	1328	1327	1088	1355	1356	1379	1378	1137	1406	1407	1430	142
1040	1305	1306	1329	1328	1089	1356	1357	1 38 0	1379	1138	1407	1408	1431	143
1041	1306	1307	1330	1329	1090	1357	1358	1381	1380	1139	1408	1409	1432	143
1042	1307	1308	1331	1330	1091	1358	1359	1382	1381	1140	1409	1410	1433	143
1043	1308	1309	1332	1331	1092	1359	1360	1383	1382	1141	1410	1411	1434	143
1044	1309	1310	1333	1332	1093	1360	1361	1384	1383	1142	1411	1412	1435	143
1045	1310	1311	1334	1333	1094	1361	1362	1385	1384	1143	1412	1413	1436	143
1046	1311	1312	1335	1334	1095	1362	1363	1386	1385	1144	1413	1414	1437	143
1047	1312	1313	1336	1335	1096	1363	1364	1387	1386	1145	1414	1415	1438	143
1048	1313	1314	1337	1336	1097	1364	1365	1388	1387	1146	1415	1416	1439	143
1049	1314	1315	1338	1337	1098	1365	1366	1389	1388	1147	1416	1417	1440	143
1050	1315	1316	1339	1338	1099	1366	1367	1390	1389	1148	1417	1418	1441	144
1051	1316	1317	1340	1339	1100	1367	1368	1391	1390	1149	1419	1420	1443	144
1052	1317	1318	1341	1340	1101	1368	1369	1392	1391	1150	1420	1421	1444	144
1053	1318	1319	1342	1341	1102	1369	1370	1393	1392	1151	1421	1422	1445	144
1054	1319	1320	1343	1342	1103	1370	1371	1394	1393	1152	1422	1423	1446	144
1055	1320	1321	1344	1343	1104	1371	1372	1395	1394	1153	1423	1424	1447	144
1056	1321	1322	1345	1344	1105	1373	1374	1397	1396	1154	1424	1425	1448	144
1057	1322	1323	1346	1345	1106	1374	1375	1398	1397	1155	1425	1426	1449	144
1058	1323	1324	1347	1346	1107	1375	1376	1399	1398	1156	1426	1427	1450	144
1059	1324	1325	1348	1347	1108	1376	1377	1400	1399	1157	1427	1428	1451	145
1060	1325	1326	1349	1348	1109	1377	1378	1401	1400	1158	1428	1429	1452	145
1061	1327	1328	1351	1350	1110	1378	1379	1402	1401	1159	1429	1430	1453	145
1062	1328	1329	1352	1351	1111	1379	1380	1403	1402	1160	1430	1431	1454	145
1063	1329	1330	1353	1352	1112	1380	1381	1404	1403	1161	1431	1432	1455	145
1064	1330	1331	1354	1353	1113	1381	1382	1405	1404	1162	1432	1433	1456	145
1065	1331	1332	1355	1354	1114	1382	1383	1406	1405	1163	1433	1434	1457	145
1066	1332	1333	1356	1355	1115	1383	1384	1407	1406	1164	1434	1435	1458	145
1067	1333	1334	1357	1356	1116	1384	1385	1408	1407	1165	1435	1436	1459	145
1		1005	1250	1257	1117	1385	1386	1409	1408	1166	1436	1437	1460	145

Table D-3. Element Block 1 Description (continued)

Element					Element					Elen	ient				
No.	(Conne	ctivitv		No.		Conne	ctivity		N	D.	(Conne	ctivity	
1167	1437	1438	1461	1460	1216	1489	1490	1513	1512	12	65	1540	1541	1564	1563
1168	1438	1439	1462	1461	1217	1490	1491	1514	1513	12	56	1541	1542	1565	1564
1169	1439	1440	1463	1462	1218	1491	1492	1515	1514	12	57	1542	1543	1566	1565
1170	1440	1441	1464	1463	1219	1492	1493	1516	1515	12	58	1543	1544	1567	1566
1171	1442	1443	1466	1465	1220	1493	1494	1517	1516	12	59	1544	1545	1568	1567
1172	1443	1444	1467	1466	1221	1494	1495	1518	1517	12	70	1545	1546	1569	1568
1173	1444	1445	1468	1467	1222	1495	1496	1519	1518	12	71	1546	1547	1570	1569
1174	1445	1446	1469	1468	1223	1496	1497	1520	1519	12	72	1547	1548	1571	1570
1175	1446	1447	1470	1469	1224	1497	1498	1521	1520	12	73	1548	1549	1572	1571
1176	1447	1448	1471	1470	1225	1498	1499	1522	1521	12	74	1549	1550	1573	1572
1177	1448	1449	1472	1471	1226	1499	1500	1523	1522	12	75	1550	1551	1574	1573
1178	1449	1450	1473	1472	1227	1500	1501	1524	1523	12	76	1551	1552	1575	1574
1179	1450	1451	1474	1473	1228	1501	1502	1525	1524	12	77	1552	1553	1576	1575
1180	1451	1452	1475	1474	1229	1502	1503	1526	1525	12	78	1553	1554	1577	1576
1181	1452	1453	1476	1475	1230	1503	1504	1527	1526	12	79	1554	1555	1578	1577
1182	1453	1454	1477	1476	1231	1504	1505	1528	1527	12	80	1555	1556	1579	1578
1183	1454	1455	1478	1477	1232	1505	1506	1529	1528	12	81	1557	1558	1581	1580
1184	1455	1456	1479	1478	1233	1506	1507	1530	1529	12	82	1558	1559	1582	1581
1185	1456	1457	1480	1479	1234	1507	1508	1531	1530	12	83	1559	1560	1583	1582
1186	1457	1458	1481	1480	1235	1508	1509	1532	1531	12	84	1560	1561	1584	1583
1187	1458	1459	1482	1481	1236	1509	1510	1533	1532	12	85	1561	1562	1585	1584
1188	1459	1460	1483	1482	1237	1511	1512	1535	1534	12	86	1562	1563	1586	1585
1189	1460	1461	1484	1483	1238	1512	1513	1536	1535	12	87	1563	1564	1587	1586
1190	1461	1462	1485	1484	1239	1513	1514	1537	1536	12	88	1564	1565	1588	1587
1191	1462	1463	1486	1485	1240	1514	1515	1538	1537	12	89	1565	1566	1589	1588
1192	1463	1464	1487	1486	1241	1515	1516	1539	1538	12	90	1566	1567	1590	1589
1193	1465	1466	1489	1488	1242	1516	1517	1540	1539	12	91	1567	1568	1591	1590
1194	1466	1467	1490	1489	1243	1517	1518	1541	1540	12	92	1568	1569	1592	1591
1195	1467	1468	1491	1490	1244	1518	1519	1542	1541	12	93	1569	1570	1593	1592
1196	1468	1469	1492	1491	1245	1519	1520	1543	1542	12	94	1570	1571	1594	1593
1197	1469	1470	1493	1492	1246	1520	1521	1544	1543	12	95	1571	1572	1595	1594
1198	1470	1471	1494	1493	1247	1521	1522	1545	1544	12	96	1572	1573	1596	1595
1199	1471	1472	1495	1494	1248	1522	1523	1546	1545	12	97	1573	1574	1597	1596
1200	1472	1473	1496	1495	1249	1523	1524	1547	1546	12	98	1574	1575	1598	1597
1201	1473	1474	1497	1496	1250	1524	1525	1548	1547	12	99 20	1575	1576	1599	1598
1202	1474	1475	1498	1497	1251	1525	1526	1549	1548	13	00	1576	1577	1600	1599
1203	1475	1476	1499	1498	1252	1526	1527	1550	1549	13	JI 20	1577	1578	1601	1600
1204	1476	1477	1500	1499	1253	1527	1528	1001	1550	13	02 02	1578	1579	1602	1601
1205	1477	1478	1501	1500	1254	1528	1529	1552	1551	13	03	1580	1581	1604	1603
1206	1478	1479	1502	1501	1255	1529	1530	1553	1552	13	04	1581	1582	1605	1604
1207	1479	1480	1503	1502	1256	1530	1531	1554	1553	13	05	1582	1583	1600	1605
1208	1480	1481	1504	1503	1257	1531	1532	1555	1554	13	00	1504	1504	1607	1600
1209	1481	1482	1505	1504	1258	1532	1535	1550	1555	13	07	1584	1502	1608	1607
1210	1482	1485	1500	1505	1239	1525	1535	1550	1557	13	00	1202	1500	1610	1600
1211	1483	1484	1507	1507	1200	1524	1527	1560	1550	13	10	1597	1529	1611	1610
1212	1484 1705	1462 1702	1508	150/	1201	1527	1520	1561	1223	13	11	1599	1590	1612	1611
1213	1482	1400	1510	1508	1202	1537	1530	1567	1561	13	12	1580	1500	1613	1612
1214	1460	140/	1510	1509	1203	1520	15/0	1562	1567	13	12	1507	1501	1614	1612
1215	1400	1407	1512	1711	1204	1233	1040	1203	1002	1 13	15	1,7,70	1721	1014	1012

Table D-3. Element Block 1 Description (continue	ed))
--	-----	---

Element				
No.	•	Conne	ctivity	
1314	1591	1592	1615	1614
1315	1592	1593	1616	1615
1316	1593	1594	1617	1616
1317	1594	1595	1618	1617

Element		Conne	ctivity	
1318	1595	1596	1619	1618
1319	1596	1597	1620	1619
1320	1597	1598	1621	1620
1321	1598	1599	1622	1621

.

Element				
No.	(Conne	ctivity	
1322	1599	1600	1623	1622
1323	1600	1601	1624	1623
1324	1601	1602	1625	1624

۱

Flemont					Flomand				
No		Oppor	. *i 1,i*		No		Corre	otinid	
1225	<u> </u>			404	1272	517	LUNNE	cuvity	574
1325	461	462	485	484	13/3	510	512	535	534
1320	462	463	486	485	1374	512	513	536	232
1327	463	464	48/	486	1375	513	514	537	536
1328	464	465	488	48/	1376	514	515	538	537
1329	465	466	489	488	1377	515	516	539	538
1330	466	467	490	489	1378	516	517	540	539
1331	467	468	491	490	1379	517	518	541	540
1332	468	469	492	491	1380	518	519	542	541
1333	469	470	493	492	1381	519	520	543	542
1334	470	471	494	493	1382	520	521	544	543
1335	471	472	495	494	1383	521	522	545	544
1336	472	473	496	495	1384	522	523	546	545
1337	473	474	497	496	1385	523	524	547	546
1338	474	475	498	497	1386	524	525	548	547
1339	475	476	499	498	1387	525	526	549	548
1340	476	477	500	499	1388	526	527	550	549
1341	477	478	501	500	1389	527	528	551	550
1342	478	479	502	501	1390	528	529	552	551
1343	479	48 0	503	502	1391	530	531	554	553
1344	48 0	481	504	503	1392	531	532	555	554
1345	481	482	505	504	1393	532	533	556	555
1346	482	483	506	505	1394	533	534	557	556
1347	484	485	508	507	1395	534	535	558	557
1348	485	486	509	508	1396	535	536	559	558
1349	486	487	510	509	1397	536	537	560	559
1350	487	488	511	510	1398	537	538	561	560
1351	488	489	512	511	1399	538	539	562	561
1352	489	490	513	512	1400	539	540	563	562
1353	490	491	514	513	1401	540	541	564	563
1354	401	402	515	514	1402	541	547	565	565
1355	407	402	516	515	1402	547	542	566	565
1356	402	<u>40</u> 1	517	516	1404	543	544	567	565
1357	401 101	405	519	517	1405	511	545	568	567
1359	-+24 /05	795 706	510	510	1405	545	545	560	569
1350	775 706	<u>707</u>	520	510	1407	516	547	570	560
1360	490	47/ 100	520	520	1407	540	541	570	509
1361	47/ /10	470	522	520	1400	547	540 540	571	570
1301	470	477 500	522	521	1409	540	550	572	571
1302	499 500	500	525	522	1410	549	550	575	512
1303	500	501	524	525		550	551	5/4	5/5
1304	501	502	525	524	1412	1120	352	5/5	3/4
1365	502	503	526	525	1413	1120	1121	1715	1/14
1366	503	504	527	526	1414	1121	1122	1/16	1/15
1367	504	505	528	527	1415	1122	1123	1717	1716
1368	505	506	529	528	1416	1123	1124	1718	1717
1369	507	508	531	530	1417	1124	1125	1719	1718
1370	508	509	532	531	1418	1125	1126	1720	1719
1371	509	510	533	532	1419	1126	1127	1721	1720
1372	510	511	534	533	1420	1127	1128	1722	1721

110 Elements,	4	Nodes	per	Element

Connectivity								
1128	1129	1723	1722					
1129	1130	1724	1723					
1130	1131	1725	1724					
1131	1132	1726	1725					
1132	1133	1727	1726					
1133	1134	1728	1727					
1134	1135	1729	1728					
1135	1136	1730	1729					
1136	1137	1731	1730					
1137	1138	1732	1731					
1138	1139	1733	1732					
1139	1140	1734	1733					
1140	1141	1735	1734					
1141	1142	1736	1735					
	1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141	Conne 1128 1129 1129 1130 1130 1131 1131 1132 1132 1133 1132 1133 1133 1134 1134 1135 1135 1136 1136 1137 1137 1138 1139 1140 1140 1141 1141 1142	Connectivity 1128 1129 1723 1129 1130 1724 1130 1131 1725 1131 1132 1726 1132 1133 1727 1133 1134 1728 1134 1135 1729 1135 1136 1730 1136 1137 1731 1137 1138 1732 1138 1139 1733 1139 1140 1734 1140 1141 1736					

Table D-5. Element Block 3 Description

176 Elements, 4 Nodes per Element

Element						Element						Element				
No.	(Conne	ctivity			No.	(Conne	ctivity			No.	(Connee	ctivity	
1435	1028	1029	1052	1051		1483	1078	1079	1102	1101		1531	1722	1723	1746	1745
1436	1029	1030	1053	1052		1484	1079	1080	1103	1102		1532	1723	1724	1747	1746
1437	1030	1031	1054	1053		1485	1080	1081	1104	1103		1533	1724	1725	1748	1747
1438	1031	1032	1055	1054		1486	1081	1082	1105	1104		1534	1725	1726	1749	1748
1439	1032	1033	1056	1055		1487	1082	1083	1106	1105	i	1535	1726	1727	1750	1749
1440	1033	1034	1057	1056		1488	1083	1084	1107	1106		1536	1727	1728	1751	1750
1441	1034	1035	1058	1057		1489	1084	1085	1108	1107		1537	1728	1729	1752	1751
1442	1035	1036	1059	1058		1490	1085	1086	1109	1108		1538	1729	1730	1753	1752
1443	1036	1037	1060	1059		1491	1086	1087	1110	1109		1539	1730	1731	1754	1753
1444	1037	1038	1061	1060		1492	1087	1088	1111	1110		1540	1731	1732	1755	1754
1445	1038	1039	1062	1061		1493	1088	1089	1112	1111		1541	1732	1733	1756	1755
1446	1039	1040	1063	1062		1494	1089	1090	1113	1112		1542	1733	1734	1757	1756
1447	1040	1041	1064	1063		1495	1090	1091	1114	1113		1543	1734	1735	1758	1757
1448	1041	1042	1065	1064		1496	1091	1092	1115	1114		1544	1735	1736	1759	1758
1449	1042	1043	1066	1065		1497	1092	1093	1116	1115		1545	1737	1738	1761	1760
1450	1043	1044	1067	1066		1498	1093	1094	1117	1116		1546	1738	1739	1762	1761
1451	1044	1045	1068	1067		1499	1094	1095	1118	1117		1547	1739	1740	1763	1762
1452	1045	1046	1069	1068		1500	1095	1096	1119	1118		1548	1740	1741	1764	1763
1453	104̀6	1047	1070	1069		1501	1097	1098	1121	1120		1549	1741	1742	1765	1764
1454	1047	1048	1071	1070		1502	1098	1099	1122	1121		1550	1742	1743	1766	1765
1455	1048	1049	1072	1071		1503	1099	1100	1123	1122		1551	1743	1744	1767	1766
1456	1049	1050	1073	1072		1504	1100	1101	1124	1123		1552	1744	1745	1768	1767
1457	1051	1052	1075	1074		1505	1101	1102	1125	1124		1553	1745	1746	1769	1768
1458	1052	1053	1076	1075		1506	1102	1103	1126	1125		1554	1746	1747	1770	1769
1459	1053	1054	1077	1076		1507	1103	1104	1127	1126		1555	1747	1748	1771	1770
1460	1054	1055	1078	1077		1508	1104	1105	1128	1127		1556	1748	1749	1772	1771
1461	1055	1056	1079	1078		1509	1105	1106	1129	1128		1557	1749	1750	1773	1772
1462	1056	1057	1080	1079		1510	1106	1107	1130	1129		1558	1750	1751	1774	1773
1463	1057	1058	1081	1080		1511	1107	1108	1131	1130		1559	1751	1752	1775	1774
1464	1058	1059	1082	1081		1512	1108	1109	1132	1131		1560	1752	1753	1776	1775
1465	1059	1060	1083	1082		1513	1109	1110	1133	1132		1561	1753	1754	1777	1776
1466	1060	1061	1084	1083		1514	1110	1111	1134	1133		1562	1754	1755	1778	1777
1467	1061	1062	1085	1084		1515	1111	1112	1135	1134		1563	1755	1756	1779	1778
1468	1062	1063	1086	1085		1516	1112	1113	1136	1135		1564	1756	1757	1780	1779
1469	1063	1064	1087	1086		1517	1113	1114	1137	1136		1565	1757	1758	1781	1780
1470	1064	1065	1088	1087		1518	1114	1115	1138	1137		1566	1758	1759	1782	1781
1471	1065	1066	1089	1088		1519	1115	1116	1139	1138		1567	1760	1761	1784	1783
1472	1066	1067	1090	1089		1520	1116	1117	1140	1139		1568	1761	1762	1785	1784
1473	1067	1068	1091	1090		1521	1117	1118	1141	1140		1569	1762	1763	1786	1785
1474	1068	1069	1092	1091		1522	1118	1119	1142	1141		1570	1763	1764	1787	1786
1475	1069	1070	1093	1092		1523	1714	1715	1738	1737		1571	1764	1765	1788	1787
1476	1070	1071	1094	1093		1524	1715	1716	1739	1738		1572	1765	1766	1789	1788
1477	1071	1072	1095	1094		1525	1716	1717	1740	1739		1573	1766	1767	1790	1789
1478	1072	1073	1096	1095		1526	1717	1718	1741	1740		1574	1767	1768	1791	1790
1479	1074	1075	1098	1097	1	1527	1718	1719	1742	1741		1575	1768	1769	1792	1791
1480	1075	1076	1099	1098		1528	1719	1720	1743	1742	1	1576	1769	1770	1793	1792
1481	1076	1077	1100	1099	1	1529	1720	1721	1744	1743	1	1577	1770	1771	1794	1793
1482	1077	1078	1101	1100		1530	1721	1722	1745	1744	1	1578	1771	1772	1795	1794

Element							
No.	Connectivity						
1579	1772	1773	1796	1795			
1580	1773	1774	1797	1796			
1581	1774	1775	1798	1797			
1582	1775	1776	1799	1798			
1583	1776	1777	1800	1799			
1584	1777	1778	1801	1800			
1585	1778	1779	1802	1801			
1586	1779	1780	1803	1802			
1587	1780	1781	1804	1803			
1588	1781	1782	1805	1804			
1589	1783	1784	1144	1143			

Table D-5. Element Block 3 Description (continued)

Element							
No.	Connectivity						
1590	1784	1785	1145	1144			
1591	1785	1786	1146	1145			
1592	1 78 6	1787	1147	1146			
1593	1787	1788	1148	1147			
1594	1788	1789	1149	1148			
1595	1 78 9	1790	1150	1149			
1596	1 79 0	1791	1151	1150			
1597	1791	1792	1152	1151			
1598	1792	1793	1153	1152			
1599	1793	1794	1154	1153			
1600	1794	1795	1155	1154			

Element									
No.	Connectivity								
1601	1795	1796	1156	1155					
1602	1796	1797	1157	1156					
1603	1797	1798	1158	1157					
1604	1798	1799	1159	1158					
1605	1799	1800	1160	1159					
1606	1 8 00	1801	1161	1160					
1607	1801	1802	1162	1161					
1608	1802	1803	1163	1162					
1609	1803	1804	1164	1163					
1610	1804	1805	1165	1164					

Table D-6. Element Block 4 Description

Element No.		Connec	tivity	
1611	1626	1627	1638	1637
1612	1627	1628	1639	1638
1613	1628	1629	1640	1639
1614	1629	1630	1641	1640
1615	1630	1631	1642	1641
1616	1631	1632	1643	1642
1617	1632	1633	1644	1643
1618	1633	1634	1645	1644
1619	1634	1635	1646	1645
1620	1635	1636	1647	1646
1621	1637	1638	1649	1648
1622	1638	1639	1650	1649
1623	1639	1640	1651	1650
1624	1640	1641	1652	1651
1625	1641	1642	1653	1652
1626	1642	1643	1654	1653
1627	1643	1644	1655	1654
1628	1644	1645	1656	1655
1629	1645	1646	1657	1656
1630	1646	1647	1658	1657
1631	1648	1649	1660	1659
1632	1649	1650	1661	1660
1633	1650	1651	1662	1661
1634	1651	1652	1663	1662
1635	1652	1653	1664	1663
1636	1653	1654	1665	1664
1637	1654	1655	1666	1665
1638	1655	1656	1667	1666
1639	1656	1657	1668	1667
1640	1657	1658	1669	1668
1641	1659	1660	1671	1670
1642	1660	1661	1672	1671
1643	1661	1662	1673	1672
1644	1662	1663	1674	1673
1645	1663	1664	1675	1674
1646	1664	1665	1676	1675
1647	1665	1666	1677	1676
1648	1666	1667	1678	1677
1649	1667	1668	1679	1678
1650	1668	1669	1680	1679
1651	1670	1671	1682	1681
1652	1671	1672	1683	1682
1653	1672	1673	1684	1683
1654	1673	1674	1685	1684
1655	1674	1675	1686	1685
1656	1675	1676	1687	16 8 6
1657	1676	1677	1688	1687
1658	1677	1678	1689	1688

Element No.		Connect	tivity	
1659	1678	1679	1690	1689
1660	1679	1680	1691	1690
1661	1681	1682	1693	1692
1662	1682	1683	1694	1693
1663	1683	1684	1695	1694
1664	1684	1685	1696	1695
1665	1685	1686	1697	1696
1666	1686	1687	1698	1697
1667	1687	1688	1699	1698
1668	1688	1689	1700	1699
1669	1689	1690	1701	1700
1670	1690	1691	1702	1701
1671	1692	1693	1704	1703
1672	1693	1694	1705	1704
1673	1694	1695	1706	1705
1674	1695	1696	1707	1706
1675	1696	1697	1708	1707
1676	1697	1698	1709	1708
1677	1698	1699	1 71 0	1709
1678	1699	1700	1711	1710
1679	1700	1701	1712	1711
1680	1701	1702	1713	1712

70 Elements, 4 Nodes per Element

WIPP UC721 - DISTRIBUTION LIST SAND97-0796

Federal Agencies

US Department of Energy (4) Office of Civilian Radioactive Waste Mgmt. Attn: Deputy Director, RW-2 Acting Director, RW-10 Office of Human Resources & Admin. Director, RW-30 Office of Program Mgmt. & Integ. Director, RW-40 Office of Waste Accept., Stor., & Tran. Forrestal Building Washington, DC 20585

Attn: Project Director Yucca Mountain Site Characterization Office Director, RW-3 Office of Quality Assurance P.O. Box 30307 Las Vegas, NV 89036-0307

US Department of Energy Albuquerque Operations Office Attn: National Atomic Museum Library P.O. Box 5400 Albuquerque, NM 87185-5400

US Department of Energy Research & Waste Management Division Attn: Director P.O. Box E Oak Ridge, TN 37831

US Department of Energy (5) Carlsbad Area Office Attn: G. Dials D. Galbraith M. McFadden R. Lark J. A. Mewhinney P.O. Box 3090 Carlsbad, NM 88221-3090

US Department of Energy Office of Environmental Restoration and Waste Management Attn: M Frei, EM-30 Forrestal Building Washington, DC 20585-0002 US Department of Energy (3) Office of Environmental Restoration and Waste Management Attn: J. Juri, EM-34, Trevion II Washington, DC 20585-0002

US Department of Energy Office of Environmental Restoration and Waste Management Attn: S. Schneider, EM-342, Trevion II Washington, DC 20585-0002

US Department of Energy (2) Office of Environment, Safety & Health Attn: C. Borgstrom, EH-25 R. Pelletier, EH-231 Washington, DC 20585

US Department of Energy (2) Idaho Operations Office Fuel Processing & Waste Mgmt. Division 785 DOE Place Idaho Falls, ID 83402

US Environmental Protection Agency (2) Radiation Protection Programs Attn: M. Oge ANR-460 Washington, DC 20460

Boards

Defense Nuclear Facilities Safety Board Attn: D. Winters 625 Indiana Ave. NW, Suite 700 Washington, DC 20004

Nuclear Waste Technical Review Board (2) Attn: Chairman J. L. Cohon 1100 Wilson Blvd., Suite 910 Arlington, VA 22209-2297

State Agencies

Attorney General of New Mexico P.O. Drawer 1508 Santa Fe, NM 87504-1508

Environmental Evaluation Group (3) Attn: Library 7007 Wyoming NE Suite F-2 Albuquerque, NM 87109

NM Energy, Minerals, and Natural Resources Department Attn: Library 2040 S. Pacheco Santa Fe, NM 87505

NM Environment Department (3) Secretary of the Environment Attn: Mark Weidler 1190 St. Francis Drive Santa Fe, NM 87503-0968

NM Bureau of Mines & Mineral Resources Socorro, NM 87801

Laboratories/Corporations

Battelle Pacific Northwest Laboratories Battelle Blvd. Richland, WA 99352

Los Alamos National Laboratory Attn: B. Erdal, INC-12 P.O. Box 1663 Los Alamos, NM 87544

Tech Reps, Inc. (3) Attn: J. Chapman (1) Loretta Robledo (2) 5000 Marble NE, Suite 222 Albuquerque, NM 87110

Westinghouse Electric Corporation (5) Attn: Library J. Epstein J. Lee B. A. Howard R. Kehrman P.O. Box 2078 Carlsbad, NM 88221 S. Cohen & Associates Attn: Bill Thurber 1355 Beverly Road McLean, VA 22101

National Academy of Sciences, WIPP Panel

Howard Adler Oxyrase, Incorporated 7327 Oak Ridge Highway Knoxville, TN 37931

Tom Kiess Board of Radioactive Waste Management GF456 2101 Constitution Ave. Washington, DC 20418

Rodney C. Ewing Department of Geology University of New Mexico Albuquerque, NM 87131

Charles Fairhurst Department of Civil and Mineral Engineering University of Minnesota 500 Pillsbury Dr. SE Minneapolis, MN 55455-0220

B. John Garrick
PLG Incorporated
4590 MacArthur Blvd., Suite 400
Newport Beach, CA 92660-2027

Leonard F. Konikow US Geological Survey 431 National Center Reston, VA 22092

Carl A. Anderson, Director Board of Radioactive Waste Management National Research Council HA 456 2101 Constitution Ave. NW Washington, DC 20418

Christopher G. Whipple ICF Kaiser Engineers 1800 Harrison St., 7th Floor Oakland, CA 94612-3430 John O. Blomeke 720 Clubhouse Way Knoxville, TN 37909

Sue B. Clark University of Georgia Savannah River Ecology Lab P.O. Drawer E Aiken, SC 29802

Konrad B. Krauskopf Department of Geology Stanford University Stanford, CA 94305-2115

Della Roy Pennsylvania State University 217 Materials Research Lab Hastings Road University Park, PA 16802

David A. Waite CH₂ M Hill P.O. Box 91500 Bellevue, WA 98009-2050

Thomas A. Zordon Zordan Associates, Inc. 3807 Edinburg Drive Murrysville, PA 15668

Universities

University of New Mexico Geology Department Attn: Library 141 Northrop Hall Albuquerque, NM 87131

University of Washington College of Ocean & Fishery Sciences Attn: G. R. Heath 583 Henderson Hall, HN-15 Seattle, WA 98195

Libraries

Thomas Brannigan Library Attn: D. Dresp 106 W. Hadley St. Las Cruces, NM 88001 Government Publications Department Zimmerman Library University of New Mexico Albuquerque, NM 87131

New Mexico Junior College Pannell Library Attn: R. Hill Lovington Highway Hobbs, NM 88240

New Mexico State Library Attn: N. McCallan 325 Don Gaspar Santa Fe, NM 87503

New Mexico Tech Martin Speere Memorial Library Campus Street Socorro, NM 87810

WIPP Public Reading Room Carlsbad Public Library 101 S. Halagueno St. Carlsbad, NM 88220

Foreign Addresses

Atomic Energy of Canada, Ltd. Whiteshell Laboratories Attn: B. Goodwin Pinawa, Manitoba, CANADA R0E 1L0

Francois Chenevier (2) ANDRA Route de Panorama Robert Schumann B. P. 38 92266 Fontenay-aux-Roses, Cedex FRANCE

Claude Sombret Centre d'Etudes Nucleaires de la Vallee Rhone CEN/VALRHO S.D.H.A. B.P. 171 30205 Bagnols-Sur-Ceze FRANCE

Commissariat a L'Energie Atomique Attn: D. Alexandre Centre d'Etudes de Cadarache 13108 Saint Paul Lez Durance Cedex FRANCE Bundesanstalt fur Geowissenschaften und Rohstoffe Attn: M. Langer Postfach 510 153 D-30631 Hannover GERMANY

Bundesministerium fur Forschung und Technologie Postfach 200 706 5300 Bonn 2 GERMANY

Institut fur Tieflagerung Attn: K. Kuhn Theodor-Heuss-Strasse 4 D-3300 Braunschweig GERMANY

Gesellschaft fur Anlagen und Reaktorsicherheit (GRS) Attn: B. Baltes Schwertnergasse l D-50667 Cologne GERMANY

Shingo Tashiro Japan Atomic Energy Research Institute Tokai-Mura, Ibaraki-Ken, 319-11 JAPAN

Netherlands Energy Research Foundation ECN Attn: J. Prij 3 Westerduinweg P.O. Box 1 1755 ZG Petten THE NETHERLANDS

Svensk Karnbransleforsorjning AB Attn: F. Karlsson Project KBS (Karnbranslesakerhet) Box 5864 S-102 48 Stockholm SWEDEN

Nationale Genossenschaft fur die Lagerung Radioaktiver Abfalle (2) Attn: S. Vomvoris P. Zuidema Hardstrasse 73 CH-5430 Wettingen SWITZERLAND AEA Technology Attn: J. H. Rees D5W/29 Culham Laboratory Abington, Oxfordshire OX14 3DB UNITED KINGDOM

AEA Technology Attn: W. R. Rodwell 044/A31 Winfrith Technical Centre Dorchester, Dorset DT2 8DH UNITED KINGDOM

AEA Technology Attn: J. E. Tinson B4244 Harwell Laboratory Didcot, Oxfordshire OX11 ORA UNITED KINGDOM

Internal

<u>MS</u>	<u>Org.</u>	
1324	6115	P. B. Davies
1320	6831	E. J. Nowak
1322	6121	J. R. Tillerson
1328	6849	D. R. Anderson
1328	6848	H. N. Jow
1335	6801	M. Chu
1341	6832	J. T. Holmes
1395	6800	L. Shephard
1395	6821	M. Marietta
0443	9117	J. G. Arguello
0443	9117	C. M. Stone
0443	9117	A. Fossum
0443	9117	G. D. Sjaardema
0815	5932	F. T. Mendenhall
0425	5932	R. C. Lincoln
0716	6113	D. E. Munson
1341	6822	K. W. Larson
1395	6801	P. Swift
1341	6832	L. H. Brush
3128	6848	D. M. Stoelzel
1328	6849	P. Vaughn
1324	6115	A. R. Lappin
1324	6115	S. W. Webb
1345	6832	B. M. Butcher (5)
1330	6811	K. Hart (2)
1330	4415	NWM Library (20)
9018	8940-2	Central Technical Files
0899	4916	Technical Library (5)
0619	12690	Review and Approval Desk (2),
		For DOE/OSTI