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Abstract 

A procedure for extending the size of a Latin hypercube sample (LHS) with rank correlated variables is described 
and illustrated. The extension procedure starts with an LHS of size m and associated rank correlation matrix C and 
constructs a new LHS of size 2m that contains the elements of the original LHS and has a rank correlation matrix 
that is close to the original rank correlation matrix C. The procedure is intended for use in conjunction with 
uncertainty and sensitivity analysis of computationally demanding models in which it is important to make efficient 
use of a necessarily limited number of model evaluations. 

Key Words: Experimental design, Latin hypercube sample, Monte Carlo analysis, Rank correlation, Sample size 
extension, Sensitivity analysis, Uncertainty analysis. 
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1. Introduction 

The evaluation of the uncertainty associated with analysis outcomes is now widely recognized as an important 
part of any modeling effort. 1-11 A number of approaches to such evaluations are in use, including differential analy­
sis,12-17 response surface methodology,18-Z6 variance decomposition procedures,27-3 1 and Monte Carlo (i.e., sam­
pling-based) procedures.32-42 Additional information is available in a number ofreviews.43-51 Monte Carlo analy­
sis employing Latin hypercube sampling52, 53 is one of the most popular and effective approaches for the evaluation 
of the uncertainty associated with analysis outcomes and is the focus of this presentation. 

Conceptually, an analysis can be formally represented by a function of the form 

Y = f(x), (1.1) 

where 

(1.2) 

is a vector of analysis inputs and 

Y = [Y1' Y2, · · ·, Y p] (1.3) 

is a vector of analysis results. In tum, uncertainty with respect to the appropriate values to use for the elements ofx 
leads to uncertainty with respect to the values for the elements of y. Most analyses use probability to characterize 
the uncertainty associated with the elements of x and hence the uncertainty associated with the elements of y. In 
particular, a sequence of probability distributions 

(1.4) 

is used to characterize the uncertainty associated with the elements of x, where the distribution Dj characterizes the 
uncertainty associated with the element xj of x. The definition of the preceding distributions is often accomplished 
through an expert review process and can be accompanied by the specification of correlations and other restrictions 
involving the interplay of the possible values for the elements of x. 54-69 

In a Monte Carlo (i.e., sampling-based) analysis, a sample 

(1.5) 

is generated from the possible values for x in consistency with the distributions indicated in Eq. (1.4) and any asso­
ciated restrictions. In tum, the evaluations 

Yi =f(xd,i=l,2, ... ,m, (1.6) 

create a mapping 

[xi, yJ i = 1, 2, ... , m, (1.7) 

between analysis inputs and analysis outcomes that forms the basis for uncertainty analysis (i.e., the determination 
of the uncertainty in the elements of y that derives from uncertainty in the elements of x) and sensitivity analysis 
(i.e., the determination of how the uncertainty in individual elements ofx contributes to the uncertainty in elements 
ofy). 
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As previously indicated, Latin hypercube sampling is a very popular method for the generation of the sample 
indicated in Eq. (1.5). Further, this generation is often performed in conjunction with a procedure introduced by 
Iman and Conover to induce a desired rank correlation structure on the resultant sample.70· 71 As a result of this 
popularity, the original paper introducing Latin hypercube sampling was recently declared a Technometrics classic 
in experimental design.72 The effectiveness of Latin hypercube sampling, and hence the cause of its popularity, 
derives from the fact that it provides a dense stratification over the range of each uncertain variable with a relatively 
small sample size while preserving the desirable probabilistic features of simple random sampling. More specifi­
cally, Latin hypercube sampling combines the desirable features of simple random sampling with the desirable fea­
tures of a multilevel, highly fractionated fractional factorial design. Latin hypercube sampling accomplishes this by 
using a highly structured, randomized procedure to generate the sample indicated in Eq. (1.5) in consistency with 
the distributions indicated in Eq. (1.4). 

A drawback to Latin hypercube sampling is that its highly structured form makes it difficult to increase the size 
of an already generated sample while simultaneously preserving the stratification properties that make Latin hyper­
cube sampling so effective. Unlike simple random sampling, the size of a Latin hypercube sample (LHS) cannot be 
increased simply by generating additional sample elements as the new sample containing the original LHS and the 
additional sample elements will no longer have the structure of an LHS. For the new sample to also be an LHS, the 
additional sample elements must be generated with a procedure that takes into account the existing LHS that is be­
ing increased in size and the definition of Latin hypercube sampling. 

The purpose of this presentation is to describe a procedure for the extension of the size of an LHS that results in 
a new LHS with a correlation structure close to that of the original LHS. The basic idea is to start with an LHS 

Xi = [ xil, xi2 , 00., xin ], i = 1, 2, 00., m, (1.8) 

of size m and then to generate a second sample 

ii = [xil, .Xn, ... , .Xin ], i = 1, 2, ... , m, (1.9) 

of size m such that 

for i = 1, 2, 00 . , m 

for i = m + 1, m + 2, ... , 2m 
(1.10) 

is an LHS of size 2m and also such that the correlation structures associated with the original LHS in Eq. (1.8) and 
the extended LHS in Eq. (1.10) are similar. A related extension technique for LHSs has been developed by C. 
Tong73 but does not consider correlated variables. Extensions to other integer multiples of the original sample size 
are also possible. 

There are at least three reasons why such extensions of the size of an LHS might be desirable. First, an analysis 
could have been performed with a sample size that was subsequently determined to be too small. The extension 
would permit the use of a larger LHS without the loss of any of the already performed, and possibly quite expen­
sive, calculations. Second, the implementation of the Iman and Conover procedure to induce a desired rank correla­
tion structure on an LHS of size m requires the inversion of an m x m matrix. This inversion can be computationally 
demanding when a large sample is to be generated. The presented extension procedure provides a way to generate 
an LHS of size 2m with a specified correlation structure at a computational expense that is approximately equal to 
that of generating two LHSs of size m with the desired correlation structure. Third, the extension procedure pro­
vides a way to perform replicated Latin hypercube sampling74, 75 to test the stability of results that enhances the 
quality of results obtained when the replicates are pooled. 
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2. Definition of Latin Hypercube Sampling 

Latin hypercube sampling operates in the following manner to generate a sample of size m from n variables 
with the distributions Dl> D2, ... , Dn indicated in Eq. (1.4). The range Xj of each variable xj is divided into m con­
tiguous intervals 

xij, i= 1, 2, ... , m, (2.1) 

of equal probability in consistency with the corresponding distribution Di A value for the variable xj is selected at 
random from the interval Xij in consistency with the distribution Dj fori= 1, 2, ... , m andj = 1, 2, ... , n. Then, the 
m values for x1 are combined at random and without replacement with them values for x2 to produce the ordered 
pairs 

[ Xn , xi2 ], i ::: 1, 2, ... , m. (2.2) 

Then, the preceding pairs are combined at random and without replacement with the m values for x3 to produce the 
ordered triples 

(2.3) 

The process continues in the same manner through all n variables. The resultant sequence 

xi = [xn, xi2, ... , xin ], i == 1, 2, ... , m, (2.4) 

is an LHS of size m from the n variables xl> x2, ... , xn generated in consistency with the distributions D1o D2, ... , Dn-

The Iman and Conover restricted pairing procedure70, 71 provides a way to generate an LHS with a rank corre­
lation structure close to a correlation structure specified by a matrix 

[ell c12 ... 
c,. I 

C= ~21 czz ... czn 
(2.5) . ' 

Cn1 Cnz Cnn 

where crs is the desired rank (i.e., Spearman) correlation between xr and xs. The details of this procedure are not 
needed in the development of the extension algorithm and therefore will not be presented. Additional information 
on this procedure is available in the original article70 and also in a recent review on Latin hypercube sampling.52 

When the LHS indicated in Eq. (2.4) is generated with the Iman and Conover procedure with a target correla­
tion structure defined by the matrix C in Eq. (2.5), the resultant rank correlation structure can be represented by the 
matrix 

du d12 ... 

d'"] D= 
d21 dzz ... dzn 

(2.6) . ' 

dn1 dn2 dnn 

where drs is the rank correlation between xr and xs in the sample. Specifically, 
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m 

L[r(xir) -( m + 1)/2 ][r(xis) -( m + 1 )/2 J 
i=l (2.7) 

where r(xir) and r(xis) denote the rank-transformed values of xir and xis' respectively. Use of the Iman and Conover 
procedure results in the correlation matrix D being similar to, but usually not equal to, the target correlation matrix 
C. 
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3. Extension Algorithm 

The extension algorithm starts with an LHS of size m of the form indicated in Eq. (2.4) and an associated rank 
correlation matrix 0 1 as indicated in Eq. (2.6) generated with the Iman and Conover procedure so that 0 1 is close to 
the target correlation matrix C. The problem under consideration is how to extend this sample to an LHS of size 2m 
with a rank correlation matrix 0 that is again close to C. This extension can be accomplished by application of the 
following algorithm: 

Step 1. Let lj be a discrete variable with a uniform distribution on the set 'Xj = {1, 2, ... , m} forj = 1, 2, ... , n. 
Use the Iman and Conover procedure to generate an LHS 

(3.1) 

from k1, k2, ... , kn with a rank correlation matrix 0 2 close to the candidate correlation matrix C. In tum, the vectors 
ki = [kib ka, ... , kin] define n-dimensional rectangular solids 

(3.2) 

in the space Xi X x2 X ... X Xm where the sets 'Eij = xk·-j• j = 1, 2, ... , n, correspond to strata indicated in Eq. (2.1) 
and used in the generation of the original LHS. In essen~e, an LHS 

(3.3) 

with a rank correlation matrix 0 2 close to the specified correlation matrix Cis being generated from the strata used 
to obtain the original LHS. 

Step 2. For each i, divide then-dimensional rectangular solid Si defined in Eq. (3.2) into 2n equal probability 
rectangular solids by dividing each edge 'EiJ of Si into two nonoverlapping intervals of equal probability on the basis 
of the corresponding probability distribution Dj. Specifically, Si = 'En x <£12 x ... x 'Ein as indicated in Eq. (3.2), and 
each of the 2n equal probability sets is of the form 

(3.4) 

where 'EiJl u 'EiJ2 = ~· 'EiJl n 'EiJ2 = 0, prob('EiJ1) = prob('EiJ2) = prob('EiJ)/2 with prob(-) denoting probability, 
and I= [lb !2, ... , lnl is an element of L = L 1 X £ 2 x ... x Ln with Lj = {1, 2}. In tum, 

(3.5) 

where the 'Ij1 are disjoint, equal probability rectangular solids. 

Step 3. For each i, identify then-dimensional rectangular solid 

(3.6) 

constructed in Step 2 such that xi} ~ 'EiJl j for j = 1, 2, ... , n. For each i, there is exactly one such set 'If. 

Step 4. For each i, obtain the vector 

(3.7) 
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by randomly sampling xiJ from the interval P,iJlJ in consistency with the distribution D1 forj = 1, 2, ... , n. 

Step 5. Extend the original LHS in Eq. (2.4) by 

for i = I, 2, ... , m 

for i = m +I, m + 2, ... , 2m 
(3.8) 

to obtain the desired LHS of size 2m. 

For an integer k > 2, minor modifications of the preceding algorithm can be used to extend an LHS of size m to 

an LHS of size k x m. 

12 



4. Illustration of Extension Algorithm 

The extension algorithm is illustrated for the generation of LHSs from 

(4.1) 

with (i) x1 having a triangular distribution on [0, 1] with mode at 0.5, (ii) x2 having a triangular distribution on 
[1, 10] with mode at 7.0, and (iii) x1 and x2 having a rank correlation of -0.7. Thus, n = 2 in Eq. (1.2); the distribu­
tions D 1 and D2 in Eq. (1.4) correspond to triangular distributions; and 

c = [ 1.0 -0.7] 
-0.7 1.0 

(4.2) 

is the correlation matrix in Eq. (2.5). The extension of an LHS of size m = 10 to an LHS of size 2m = 20 is illus­
trated. 

The illustration starts with the generation of the LHS 

xi = [xi!, xi2 J, i = 1, 2, ... , m = 10, (4.3) 

from X= [xb x2] consistent with the distributions D1 and D 2 and the specified rank correlation between x1 and x2. 
The resulting sample matrix Sb rank transformed sample matrix RS1 and rank correlation matrix 0 1 are given by 

XI xn x12 0.297 8.726 

x2 X2] x22 0.358 8.147 

SI= (4.4) 

Xg Xgj xn 0.404 4.020 

XIO x!O,I xl0,2 0.728 6.924 

r(xi) r( x11 ) r( x12 ) 2 10 

r(x2) r( x21 ) r( x22) 3 9 

RSI= (4.5) 

r(x9) r(x9I) r(x92 ) 4 2 

r(x10 ) r( x10,!) r( x10,2) 9 6 

and 

D = [ 1.000 
1 -0.612 

-0.612]. 
1.000 

(4.6) 

The full sample is shown in Fig. 1. The object is now to extend this sample to an LHS of size 2m = 20 with an as­
sociated rank correlation matrix close to the correlation matrix C in Eq. (4.2). 

Step 1. The Iman and Conover procedure is used to generate an LHS 

ki =[kil, ki2], i = 1, 2, ... , m = 10, (4.7) 
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Fig. I. Generation ofLHS of size m = 10: (a) raw (i.e., untransformed) values, and (b) rank transformed values. 

from discrete variables k1 and k2 that are uniformly distributed on { I, 2, ... , 10} and have a rank correlation of -0.7. 
The resulting sample matrix RS2 and rank correlation matrix 0 2 are given by 

kl kll kl2 7 6 

k2 k21 k22 10 

RS2 = = (4.8) 

k9 ~I ~2 4 5 

k lO k10,1 k10,2 8 2 

and 

D = [ 1.000 
2 -0.758 

-0.758]. 
1.000 

(4.9) 

In turn, the vectors k; = [k;l> k,1l define rectangles (in the general case, n-dimensional rectangular solids) 

( 4.1 0) 

as indicated in Eq. (3.2) and illustrated in Fig. 2. In particular, the sets S; correspond to the shaded areas in Fig. 2, 
and the sets 'E;1 and 'Ei2 correspond to the edges of S; a long the x 1 and x2 axes, respectively. 

Step 2. Each rectangleS; defined in Eq. (4.10) and illustrated in Fig. 2a is divided into 22 = 4 equal probability 
rectangles by dividing each edge of S; (i.e., 'En and 'E;2) into two nonoverlapping intervals of equal probability on 
the basis of the corresponding probability distributions D 1 and D2 (Fig. 3). As a result of this division, each S; can 
be expressed as 

S; = ~.[1,1] u~.[1,2] u~.[2,1] u~.[2,2]' ( 4.11) 
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Fig. 2. Overlay of initial LHS X;= [x;L> x;2], i = 1, 2, ... , 10, and rectangles S; = 'E;1 x 'Ei2 generated in Step 1 of 
extension algorithm. 

where (i) 'E;11 and 'Eil 2 are the equal probability intervals into which 'Eil is divided, (ii) <£121 and 'Ei22 are the equal 
probability intervals into which 'Ei2 is divided, and (iii) 'lf,[I,IJ = 'E;11 x 'Ei21, '4,[1,2) = 'Eilt x 'Em, '4,[2,1) ='Em x 
'E;2t• and '4,[2,2) = 'Em x 'Er22- Thus, the rectangles interior to the S; in Fig. 3 correspond to the sets 'lf,[l,IJ• '4,[2,1)• 

'4,[2,1] and '4,[2,2]• which in tum are defmed by the intervals (i.e., edges) 'Eilt, 'Em, tz;11 and 'Em-

Step 3. For each i, the rectangle 

(4.12) 

constructed at Step 2 is identified such thatx;1 EO 'E;tr and x;2 EO 'Eils (Fig. 4). This selection excludes intervals that 
contain values for x1 and x2 in the original LHS. 

Step 4. For each i, the vector 

(4.13) 

is obtained by randomly sampling .Xn and i;2 from the intervals 'Eilr and 'E;2s, respectively, associated with the 
definition of the rectangle '1j in Eq. (4.12). The resulting sample matrix 5 2 is 

x , XII x12 0.571 6.860 

x 2 x21 x22 0.816 2.993 

5 2= (4.14) 

x 9 ~I xn 0.429 6.056 

XJO x10,1 XJ0,2 0.662 4.096 

the corresponding rank correlation matrix 0 2 is shown in Eq. (4.9), and the full sample is shown in Fig. 5. 
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Step 5. The original LHS X;. i = I, 2, ... , 10, in Eq. (4.3) is combined with the LHS X;, i = I, 2, ... , 10, in Eq. 
(4.13) to produce the extended LHS 

{

X · 
X;= -' 

X ;- m 

for i = 1, 2, ... , I 0 

for i = 11, 12, ... , 20 

of size 20. The associated rank correlation matrix 

D = [ 1.000 -0.654] 
-0.654 1.000 

(4.15) 

(4.16) 

is reasonably close to the desired correlation matrix C in Eq. (4.2). The individual elements of the extended LHS 
correspond to the points shown in Fig. 5. 
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5. Correlation 

The extension algorithm described in Sect. 3 and illustrated in Sect. 4 starts with an initial LHS of size m with a 
rank correlation matrix 0 1, generates a second LHS of size m with a rank correlation matrix 0 2, and then constructs 
an LHS of size 2m that includes the elements of the first LHS and has a rank correlation matrix 0 close to (01 + 
0 2)/2. This section demonstrates that the resultant rank correlation matrix 0 is indeed close to (01 + 0 2)/2. 

This demonstration is based on considering variables u and v that are elements of the vector X in Eq. (1.2) and 
the results of using the extension algorithm to extend an LHS of size m from x to an LHS of size 2m. In this exten­
siOn, 

[ ui, vi J, i = 1, 2, ... , m, (5.1) 

are the values for u and v in the first LHS; 

[ ui' vi], i = 1, 2, ... ' m, (5.2) 

are the values for u and v in the second LHS, and 

[
U· v·J={[ui,vi] fori=1,2, ... ,m 
l' l - .... . 

[ ui-m, vi-m J for 1 = m + 1, m + 2, ... , 2m 
(5.3) 

are the values for u and v in the extended LHS. 

The rank correlations associated with the samples in Eqs. (5.1)- (5.3) are given by 

PI= I[11 (ui )-(m+ 1)/2 ][11 (vi )-(m+ 1)/2 J/[ m( m
2 

-1 )/12 ], 
z=l 

(5.4) 

(5.5) 

and 

p = ~[r(ui )-(2m+1)/2 J[r(vi )-(2m+1)/2 J/[ m( 4m2 
-1)/6 J 

z=l 

(5.6) 

respectively, where rl> r 2 and r denote the rank transforms associated with the individual samples. The object of 
this section is to show that p is close to (p1 + P2)/2. 

Associated with the first LHS are pairs 

[vi' 'Vi], i = 1, 2, ... ' m, (5.7) 

of equal probability intervals such that ui E vi and vi E 'Vj. In tum, vi and 'Vi can be subdivided into nonoverlap­
ping left and right equal probability subintervals Vu, Vir- 'Vit> 'Vir such that 

(5.8) 

The first LHS can then be more specifically associated with the sequence 
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[ Vn, ~1 ], i = 1, 2, ... , m, 

where 

", _ {va Vii-
vir 

if viE~/ 

if viE ~r· 

Similarly, the second LHS can be associated with the sequence 

[ vi2' ~2 ], i = 1, 2, 0 0 0' m, 

where 

if viE V11 

if viE 1/Jr· 

(5.9) 

(5.10) 

If desired, the second LHS can be ordered so that either Vi= Vn u Vi2 fori= 1, 2, ... , m or 'Vf = 'Vf1 u ~2 fori= 

1, 2, ... , m; however, it is not possible to have both equalities hold. 

The rank transforms associated with the three samples are related by 

fori= 1, 2, ... , m, where 

<5, 0 ={1 
Ul 0 

if Vn = Vu _ _ {1 
. "' "' '5ui-tf Vil =Vir 0 

tJ·={1 Vl 0 
if rvf1 = 1/rl - _ {1 
. "J ,., J ' 5vi -
tf -vn =-vir 0 

ifVi2 =VJI 

if vi2 = vjr 

if 'Vf2 = 'VJI 

if ~2 = '{)jr . 

(5.11) 

(5.12) 

Specifically, 5ui = 1 if ui is in the left interval Vu associated with Vi, and 5ui = 0 if ui is the right interval vir associ­

ated with vi. The variables JUi' t\t and Jvi are defined similarly for Ut, vi and vi. 

If the second sample is ordered so that Vi = Vil u Vi2, then 

(5.13) 

Similarly, if the second sample is ordered so that 'Vi= 'Vf1 u ~2, then 

(5.14) 

However, as previously indicated, the concurrent existence of both orderings is not possible. 

The representation for pin Eq. (5.6) can now be written as 
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p = {~[ 2~ (u1 )-0.1 -(2m+ 1)/2 ][ 2~ ( v1 )-0,1 -(2m+ 1)/2 J 

+ ~[ 2r2 (ui )-Jui -(2m +1)/2 ][ 2r2 (vi )-Jvi -(2m+ 1)/2 J }{m( 4m2 -1 )/6ri 

= {~[ri (ui) -( m+ oui + 1/2)/2 J[ri (vi)-( m + ovi + 1/2 )/2 J 

(5.15) 

where the first equality results from the representations for r(u), r(vi), r(uJ and r(vi) in Eqs. (5.11)- (5.12) and the 
second equality results from factoring 4 out of the numerator. 

Because the ratio 

(5.16) 

converges to 1/2 very rapidly (e.g., q = 0.496 form= 10 and q = 0.499 form= 20), a very good approximation to 
the representation for pin Eq. (5.15) is given by 

m [r2 (ui )-(m+Jui +1/2)/2 ][r2 (vi )-(m+Jvi +1/2)/2 J} 
+L 2 

i=I m(m -1)j12 
(5.17) 

= _!_{f [ h ( ui)- Oui /2 + 1/4) -(m + 1)/2 ][ h (vi)- ovi /2 + 1/4) -( m + 1)/2 J 
2 i=I m(m

2 -1)j12 

m [(r2 ( ui)- gui /2+ 1/4) -( m + 1)/2 ][ (r2 (vi) _gvi/2 + 1/4) -( m + 1)/2 J} 
+L 2 

i=I m(m -1)j12 
(5.18) 

(5.19) 

where PI and jJ2 correspond to the preceding summations involving ri and r 2, respectively. 

The first summation in Eqs. (5.17) and (5.18), which corresponds to PJ., is an approximation to PI in Eq. (5.4); 
similarly, the second summation in Eqs. (5.17) and (5.18), which corresponds to p2, is an approximation to P2 in 
Eq. (5.5). The quantities Oub Jui' Ovi and Jvi randomly vary between 0 and 1, with each of these values being 
equally likely. As shown in Eq. (5.17), this causes the term (m + 1)/2 in Eqs. (5.4) and (5.5) that corresponds to the 
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mean of the rank transformed variables to randomly oscillate between (m + 112)/2 and (m + 3/2)/2; further, the ex­
pected value of these oscillations is (m + 1)/2. An alternate, but equivalent, representation is given in Eq. (5.18). In 
this representation, the term corresponding to the rank transformed value of a variable oscillates between the correct 
value minus 114 and the correct value plus 114, with the expected value of these oscillations being the correct rank 
transformed value. As a result, 

(5.20) 

which is the desired outcome of the extension algorithm. 

A more formal assessment of the relationship between p and (p1 + p2)12 is also possible. This assessment is 
based on considering the statistical behavior of A -PI and p2 - p2 . 

The difference p1 - PI can be expressed as 

_ f ['i (ui )-(m+l)/2 ]['i (vi )-(m+l)/2 J 
i=l m ( m

2 
-1) j12 

= [A+ B Jj[ m ( m
2 

-1) j12 J, (5.21) 

where 

m m 

A= Ih (ui )-(m+ 1)/2 ][1/4-b'vi/2]+ L['i (vi )-(m+ 1)/2 J[l/4-b'ui/2] 
i=l i=l 

m 

B = L [1/4-b'vi/2] [1/4-b'ui/2]. 
i=l 

The terms A and B are now considered individually. 

There exist sequences ofintegersji, i = 1, 2, ... , m, and ki, i = 1, 2, ... , m, such that 

'i ( u Ji ) = i and 'i ( vki ) = i (5.22) 

fori= 1, 2, ... , m. As a result, the term A in Eq. (5.21) can be written in the form 
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A= f[rt (uji )-(m+l)/2 ][1/4-bvji /2 ]+ f[rt (vki )-(m+l)/2 ][1/4-buki /2 J 
i=l i=l 

m m 

= L[i-(m+l)/2 ][1/4-bvji /2 ]+ L[i-(m+l)/2 ][1/4-buki /2 J 
i=l i=l 

m 

= L[i-(m+l)j2]si 
i=l 

(5.23) 

where 

and 

The terms buk· and bvji are mutually independent and independent of their subscripts; further, s i takes on values of 
-1/2, 0, and 1/2 with probabilities of 1/4, 1/2, and 1/4, respectively, and thus has an expected value of E(si) = 0 and 
a variance of V(si) = 1/8. In tum, the expected value and variance for each Ai are given by 

(5.24) 

and 

(5.25) 

respectively. 

The variance V(A) of A can be expressed in terms of the variances V(Ai) for the Ai and is given by 

m 

V(A)= LV(Ai) 
i=l 

m 2/. 
= L[i-(m+l)/2] ;8 

i=l 

= [ m ( m
2 -1) j12 J/8 

= m ( m
2 -1) /96. (5.26) 

Now, by the Lindeberg generalization of the central limit theorem (see Theorem 3, p. 262, Ref. 76), 
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(5.27) 

asymptotically approaches a standard normal distribution as m increases. 

The term Bin Eq. (5.21) is now considered. Specifically, the expected value E(B) and V(B) forB are given by 

E(B) = 0 and V(B) = m/256, (5.28) 

respectively. As a result, V(B)IV(A) goes to zero as m increases, and thus B is asymptotically inconsequential in Eq. 
(5.21). 

The difference p2 - p2 can be handled similarly to the difference p1 - PJ in Eq. (5.21). Specifically, Pz- Pz 
can be expressed as 

A m [(rz (iii )-Jui/2+ 1/4 )-(m+ 1)/2 ][(rz (vi )-Jvi/2+ 1/4 )-(m+ 1)/2 J 
~-~=~ ( 2 I i=l m m -1) 12 

_ f [rz (iii )-(m+1)/2 J[r2 (vi )-(m+1)/2 J 
i=l m(m2 

-1)j12 

= [ A+EJ/[ m( m2 
-1)j12 ], (5.29) 

where A and B are defined analogously to A and Bin Eq. (5.21). Similarly to the development for A and B, it 
follows that 

(5.30) 

asymptotically approaches a standard normal distribution and that B is asymptotically inconsequential in Eq. 
(5.29). 

The statistical behavior of the difference p- (p1 + Pz)/2 can now be assessed. Specifically, 

= {[A +Blj[ m( m2 
-1 )/12 ]+[A+ sJ[ m( m2 

-1 )/12 J}/2 

= [A+ AJ/[ m( m2 
-1 )j24] 

= [ AjV(A)+ Ajv( A) J/ 4~m( m2 -1 )/96, (5.31) 

where (i) the first approximation follows from Eq. (5.19), (ii) the first equality is the result of an algebraic rear­
rangement of the preceding expression, (iii) the second equality follows from the representations in Eqs. (5.21) and 
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(5.29), (iv) the following approximate relationship results from the asymptotic disappearance of the effects associ­
ated with Band jj, and (v) the final equality is the result of an algebraic rearrange of the preceding expression to 
isolate the asymptotically standard normal variables A/V(A) and AIV(A). Thus, it follows from the final expres­
sion in Eq. (5.31) that p- (p1 + fJ2)/2 approximately follows a normal distribution with mean zero with increasing 
values form; further, the variance associated with this distribution decreases rapidly with increasing values form. 

In consistency with the normality results associated with Eq. (5.31), numerical simulations show that the poten­
tial differences between p and (p1 + fJ2)/2 are small and decrease rapidly as the initial sample size m increases. As 
an example, results obtained for the doubling of samples with initial sizes from 10 to 100 for two correlated vari­
ables are shown in Fig. 6. For each sample size considered, a target rank correlation of -0.7 is used and a sample of 
the desired size is generated for the target correlation. Then, the extension algorithm is used to generate a sample of 
twice the initial size. To obtain an assessment of the stability of the results, the extension procedure is repeated 
1000 times. As shown in Fig. 6, the difference between the rank correlation coefficient in an extended sample of 
size 2m and the average of the rank correlation coefficients for the two underlying samples of size m (i.e., p - (pi + 
fJ2)/2 is small and decreases as m increases (Fig. 6a), and the rank correlation coefficient in an extended sample of 
size 2m (i.e., p) is close to the target rank correlation and the variability around the target correlation decreases as m 
increases (Fig. 6b ). 
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underlying samples of size m (i.e., p- (p1 + fJ2)/2, and (b) Rank correlation coefficient in extended sample 
of size 2m (i.e., p). 
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6. Discussion 

Latin hypercube sampling is the preferred sampling procedure for the assessment of the implications of epis­
temic uncertainty in complex analyses because of its probabilistic character (i.e., each sample element has a weight 
equal to the reciprocal of the sample size that can be used in estimating probability-based quantities such as means, 
standard deviations, distribution functions, and standardized regression coefficients) and efficient stratification 
properties (i.e., a dense stratification exists over the range of each sampled variable). As a result, Latin hypercube 
sampling has been used in a number of large and computationally demanding analyses, including (i) the U.S. Nu­
clear Regulatory Commission's (NRC's) reassessment of the risk from commercial nuclear power plants (i.e., the 
NUREG-1150 analyses),77-82 (ii) an extensive probabilistic risk assessment for the La Salle Nuclear Power Plant 
carried out as part of the NRC's Risk Methods Integration and Evaluation Program (RMEIP),83 (iii) the U.S. De­
partment of Energy's (DOE's) performance assessment for the Waste Isolation Pilot Plant (WIPP) in support of a 
compliance certification application to the U.S. Environmental Protection Agency (EPA),84, 85 and (iv) performance 
assessments carried out in support of the DOE's development of a repository for high-level radioactive waste at 
Yucca Mountain, Nevada.86, 87 Analyses of this type involve multiple complex, computationally demanding mod­
els, from 1 0' s to 1 00' s of uncertain analysis inputs, and large numbers of analysis outcomes of interest. 

Because of the large computational cost associated with analyses of the type just indicated, the sample size that 
can be used is necessarily limited. Further, the determination of an adequate sample size is complicated by the large 
number of uncertain analysis inputs and the potentially large number of analysis results to be studied. As a result, it 
is difficult to determine an appropriate sample size before an analysis is carried out. If too small a sample is used, 
the analysis can lack the necessary resolution to provide the desired uncertainty and sensitivity analysis results. If 
the sample size is too large, the analysis will incur unnecessary computational cost. Indeed, if the estimated size of 
the required sample is too large, the entire analysis may be abandoned owing to the anticipated computational cost. 
Fortunately, the necessary sample size for most analyses is not as large as is often thought. 88-90 

The extension procedure for LHSs described in this presentation provides a way to address the sample size 
problem sequentially. Specifically, an analysis can be performed initially with a relatively small sample size. If 
acceptable results are obtained with this sample, the analysis is over. However, if the results are felt to lack ade­
quate resolution, the extension procedure can be used to generate a larger LHS. This approach is computationally 
efficient because the original sample elements are part of the extended LHS, and thus all of the original, and poten­
tially expensive, calculated results remain part of the analysis. If necessary, the extension procedure could be em­
ployed multiple times until an acceptable level of resolution was obtained. 

An approach to assessing the adequacy of an LHS of size m is to generate k replicated (e.g., k = 3) LHSs of size 
m and then check for consistency of results obtained with the replicated samplesJ4, 75 For example, the t-test can 
be used to obtain confidence intervals for mean results. A minor modification of the extension algorithm described 
in Sect. 3 can be used to generate the k replicated LHSs of size m so that their pooling will result in an LHS of size k 
x m. Then, after an assessment of sample size adequacy is made, a final presentation uncertainty and sensitivity 
analysis can be performed with the results of the pooled samples, which corresponds to using an LHS of size k x m. 
This approach permits an assessment of sample size adequacy and also provides final results with a higher resolu­
tion than obtained from any of the individual replicated samples. 

The extension procedure can also be used in the generation of very large LHSs with a specified correlation 
structure. For example, if an LHS of size k x m is desired, a possible implementation strategy is to use the extension 
procedure to generate k LHSs of size m so that their pooling will result in an LHS of size k x m. As a result of the 
inversion of a large matrix in the !man/Conover correlation control procedure, the approach of generating and pool­
ing k LHSs of size m can require less computational effort than generating a single LHS of size k x m. 
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