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ABSTRACT 

SANTOS is a finite element program designed to compute the quasistatic, large deformation, inelastic response of 
two-dimensional planar or axisymmetric solids. The code is derived from the transient dynamic code PRONTO 2D. 
The solution strategy used to compute the equilibrium states is based on a self-adaptive dynamic relaxation solution 
scheme, which is based on explicit central difference pseudo-time integration and artificial mass proportional 
damping. The element used in SANTOS is a uniform strain 4-node quadrilateral element with an hourglass control 
scheme to control the spurious deformation modes. Finite strain constitutive models for many common engineering 
materials are included. A robust master-slave contact algorithm for modeling sliding contact is implemented. An 
interface for coupling to an external code is also provided. 
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1.0 INTRODUCTION 

SANTOS is a finite element program developed for quasistatic, large deformation, inelastic analysis of two­

dimensional solids. It is a powerful analysis tool that allows the user to address the solution of complex problems 

that include both material and geometric nonlinearities. The wide variety of constitutive models in the code allows 

SANTOS to be used for a wide class of problems from geomechanics to metal forming. 

In 1986, Taylor and Flanagan at Sandia National Laboratories/New Mexico developed a new transient 

dynamics finite element code, which they named PRONTO (Taylor and Flanagan, 1987), that replaced the widely 

used HONDO II (Key et al., 1978) code. PRONTO employed the same explicit central difference time integration 

operator as HONDO II in addition to some new state-of-the-art features such as a uniform strain quadrilateral 

element with single point integration, improved critical time step estimates, and more robust contact surfaces. The 

code was written in a modular fashion with an easy-to-use interface for adding new constitutive models. The code 

architecture and storage schemes in PRONTO were also developed to take advantage of vector processing on the 

CRA Y computer and to allow for the solution of extremely large problems. It seemed only natural, therefore, to 

take advantage of the development work of Taylor and Flanagan and adapt PRONTO for the solution of quasistatic 

problems by adding a self-adaptive dynamic relaxation scheme. A similar procedure was employed when adapting 

HONDO II to produce the SANCHO (Stone et al., 1985) quasistatic finite element code. The development and use 

of SANCHO showed that the same excellent results obtained for highly nonlinear transient dynamics problems 

using explicit methods could be achieved for quasistatic problems using an explicit method such as dynamic 

relaxation. 

SANTOS belongs to a small but growing class of special purpose finite element codes which use iterative or 

indirect solution methods to achieve quasistatic solutions. A companion code to SANTOS is JAC (Biffie and 

Blanford, 1994) which utilizes a nonlinear conjugate gradient iterative scheme for obtaining quasistatic solutions. 

The solution algorithm in SANTOS is based on a self-adaptive dynamic relaxation scheme with uniform mesh 

homogenization which is identical to the method used in SANCHO. Because SANTOS is explicit in nature, there 

is no stiffness matrix to form or to factorize which reduces the amount of computer storage necessary for execution. 

Dynamic relaxation is not a new quasistatic solution technique with some of the early introductory papers on 

dynamic relaxation appearing in the mid-1960s. Dynamic relaxation is attractive for three reasons: 1) it is 

vectorizable, 2) it is versatile, and 3) it is reliable. Because it can be made explicit, it is highly vectorizable for 

modern digital calculations. In an explicit form, it is ideal for dealing with large deformations, finite strains, 

inelastic material behavior and contact surfaces. It is reliable in that if the algorithm converges and equilibrium is 

achieved, then the solution obtained will be good. An early introduction of the idea is given by Otter et al. ( 1966), 

but a more recent work which summarizes all of the significant contributions on the topic since Otter et al. can be 

found in Underwood (1983). Additional information on dynamic relaxation can be found in the paper by 

Papadrakakis (1981). 

There are many features and capabilities in SANTOS that make it a very versatile and user-friendly computer 

program. The code has a user-oriented data input scheme based on a free-field reader with keyword descriptors 

that allow the user to define a complex problem with very few commands. The material library in SANTOS 

contains several nonlinear constitutive models that can be used to model many different engineering materials from 
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metals to foams. The material model interface is also well documented so that new materials may be easily added. 

SANTOS has the capability to accept temperature history data from an external source for solving thermal stress 

problems. If the temperature history changes only in time and is uniform throughout the structure, it can be 

generated within SANTOS itself. The contact or sliding of two surfaces with friction can also be modeled using 

SANTOS. Surfaces can open or close as the solution dictates, which allows many physical processes to be 

realistically modeled. Fixed contact surfaces may be used to join two regions with different mesh discretizations. 

A code interface (Taylor and Flanagan, 1988) is provided which allows an external, user-generated code to pass 

data to SANTOS and to access internally computed SANTOS variables. An example of such coupling would be a 

porous flow code providing a pore pressure field to SANTOS and SANTOS providing updated nodal coordinates 

and stress components to the external code. 

SANTOS resides and is maintained in the Sandia National Laboratories Engineering Analysis Code Access 

System (SEACAS) (Sjaardema, 1993). The program is designed to work with a separate mesh generation program 

that produces geometry and connectivity information in the SEACO format (Taylor and Flanagan, 1987). The 

results from a SANTOS calculation are written in the SEACO format to a separate file for processing by separate 

graphical post-processing and visualization software. SANTOS is written in standard FORTRAN with any 

system-dependent coding contained in the SUPES (Red-Horse et al., 1990) utilities package. 

In the following sections of this report, a description of the theory and the computational models used in 

SANTOS are given. A description of the available constitutive models is also provided. Because SANTOS is 

derived directly from PRONTO, many of the theoretical sections are taken directly from the PRONTO theoretical 

report. An input guide for use of the program is included along with several sample problems and their solutions. 
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2.0 GOVERNING EQUATIONS 

In this chapter, we present the underlying continuum mechanics concepts necessary to follow the development 

of the numerical algorithms in the following chapters. Bold face characters denote tensors. The order of the tensor 

is implied by the context of the equation. 

2.1 Kinematics 

A material point in the reference configuration Bo with position vector X occupies position x at time t in the 

deformed configuration B. Hence we write x = X(X,t). The motion from the original configuration to the deformed 

configuration shown in Figure 2.1.1 has a deformation gradient F given by 

F= ax 
ax· 

Applying the polar decomposition theorem to F: 

det(F) > 0 

F=VR=RU 

(2.1.1) 

(2.1.2) 

where V and U are the symmetric, positive definite left and right stretch tensors, respectively, and R is a proper 

orthogonal rotation tensor. Figure 2.1.1 illustrates the intermediate orientations defined by the two alternate 

decompositions ofF defined by Equation (2.1.2). The determination of R as defined by Equation (2.1.2) presents a 

significant numerical challenge. In Section 3.3, we describe the incremental algebraic algorithm that we use to 
determine R. 

The velocity of the material point X is written as v = :X where the superposed dot indicates time differentiation 

holding the material point fixed. The velocity gradient is denoted by L and may be expressed as 

(2.1.3) 

The velocity gradient can be written in terms of the symmetric {D) and antisymmetric (W) parts, respectively, 

L=D+W. (2.1.4) 

Using the right decomposition from Equation (2.1.2) in Equation (2.1.3) gives 

(2.1.5) 

Dienes (1979) denoted the first term on the right-hand side of Equation (2.1.5) by Q: 

(2.1.6) 
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R 
= 

TRI-6348-2-0 

Figure 2.1.1. Original, deformed, and intermediate configurations of a body. 

Both W and Q are antisymmetric and represent a rate of rotation (or angular velocity) about some axes. In 

general, Q i= W. The difference arises when the last term of Equation (2.1.5) is not symmetric. The symmetric part 

of iJ u-1 is the unrotated deformation rate tensor d as defined below (note that both iJ and u-1 are symmetric). 

d = ~ ( U u-1 + u-I U) = R T D R (2.1.7) 

There are two possible cases which can cause rotation of a materia1line element: rigid body rotation and shear. 

Because total shear vanishes along the axes of principal stretch, the rotation of these axes defines the total rigid body 

rotation of a material point. 

It is a simple exercise in vector analysis to show that Equation (2.1.6) represents the rate of rigid body rotation 

at a material point as shown by Dienes ( 1979). It is equally simple to show that W represents the rate of rotation of 

the principal axes of the rate of deformation D. Since D and W have no sense of the history of deformation, they are 

not sufficient to define the rate of rotation in a finite deformation context. 

Line elements where the rate of shear vanishes rotate solely due to rigid body rotations. These line elements are 

along the principal axes of iJ. We will apply a similar observation below as we derive Dienes' (1979) expression 

for calculating n: 
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Using the left decomposition of Equation (2.1.2) in Equation (2.1.3) gives 

L = v v-1 + v n v-1 (2.1.8) 

Postmultiplying by V yields an expression which defines the decomposition of L into V and 0: 

(2.1.9) 

When the dual vector of the above expression is taken, the symmetric V vanishes to yield a set of three linear 

equations for the three independent components of Q. 

The antisymmetric part of a tensor may be expressed in terms of its dual vector and the permutation tensor eijk· 

Define the following dual vectors; 

(2.1.10) 

(2.1.11) 

Using Equations (2.1.4 ), (2.1.1 0), and (2.1.11) in Equation (2.1.9) results in the expression that Dienes ( 1979) 

gave for determining Q from W and V; 

ro = w- 2[V- I tr(V)]-1 z (2.1.12) 

where 

(2.1.13) 

We observe from the above expressions that .Q = W if and only if the product V Dis symmetric. This condition 

requires that the principal axes of the deformation rate D coincide with the principal axes of the current stretch V. 

Clearly, a pure rotation is a special case of this condition since D, and consequently Equation (2.1.13), vanish. 

2.2 Stress and Strain Rates 

Our constitutive model architecture is posed in terms of the conventional Cauchy stress, but we adopt the 

approach of Johnson and Hammann (1984) and define a Cauchy stress in the unrotated configuration. The reader 

seeking more detail than is presented here should see Flanagan and Taylor (1987). The "true" stress in the deformed 

configuration is denoted by T. The Cauchy stress in the unrotated configuration is denoted by cr. These two stress 

measures are related by 

(2.2.1) 

Each material point in the unrotated configuration has its own reference frame which rotates such that the 

deformation in this frame is a pure stretch. Then T is simply the tensor cr in the fixed global reference frame. The 

conjugate strain rate measures to T and cr are D and d, respectively. These strain rates were defined by Equations 

(2.1.4) and (2.1.7), respectively. 
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conjugate strain rate measures toT and cr are D and d, respectively. These strain rates were defined by Equations 

(2.1.4) <md (2.1.7), respectively. 

The Principal of Material Frame Indifference (or objectivity) stipulates that a constitutive law must be 

insensitive to a change of reference frame (Truesdell, 1966). This requires that only objective quantities may be 

used in a constitutive law. An objective quantity is one which transforms in the same manner as the energy 

conjugate stress and strain rate pair under a superposed rigid body motion. The fundamental advantage of the 

unrotated stress over the true stress is that the material derivative of cr is objective, whereas the material derivative 

ofT is not. 

The Jaumann rate defined below is frequently used in constitutive relationships to resolve the need for an 

objective rate of Cauchy stress. 

T=T-WT+TW (2.2.2) 

A similar stress rate, called the Green-Naghdi rate by Jolmson and Bammann (1984) can be derived by 

transforming the rate of the unrotated Cauchy stress to the fixed global frame as follows: 

(2.2.3) 

The Jaumann rate and tl1e Green-Naghdi rate are very similar in form. The important difference between the two 

is that tl1e Green-Naghdi rate is kinematically consistent with the rate of Cauchy stress, while the Jaumann rate }s 

not. By tlris statement we mean that cr is identical to T in the absence of rigid body rotations. It is clear that T 
need not equal T under the same conditions since W need not vanish with rigid body rotations. 

The simple shear problem presented by Dienes (1979) serves as an excellent demonstration of the symptoms 

which can occur due to the deficiency of the Jaumann rate. Figure 2.2.1 shows a body which undergoes the 

following motion: 

x( t) = X + k t Y, y(t) = Y, z(t) = Z . (2.2.4) 

Dienes applied a simple linear isotropic hypoelastic material law to botll the JaUDlallll rate (2.2.2) and the Green­
Nagbdi rate (2.2.3). The analytic solution for the true stresses as a function of time using the Jaumann rate is 

shown in Figure 2.2.1. The Green-Naghdi rate solution is shown in Figure 2.2.2 and demonstrates a monotonic 
increase in stress with increasing shear strain, while the Jaumann rate results in a harmonic oscillation of tlle 

stress. The reason tl1at tl1e Jaumann rate produces tlris oscillation in stress is that W gives a constant rate of 

rotation for the motion defined by Equation (2.2.4), while n vanishes with time. Clearly, the body experiences 

rotations wlrich diminish over time, but tl1e Jaumann rate continues to drive the stress convection terms at a 

constant rate. This leads to tl1e oscillatory behavior of the stresses shown in Figure 2.2.1. 

A distinct advantage of tlle unrotated reference frame is that all constitutive models are cast without regard to 

fitrite rotations. This greatly simplifies tl1e numerical implementation of new constitutive models. The rotations of 
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Figure 2.2.1. Computed stress-strain curves for a body undergoing simple shear using the Jaumann rate. 
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Figure 2.2.2. Computed stress-strain curves for a body undergoing simple shear using the Green-Naghdi rate. 
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global state variables (e.g., stress and strain) are dealt with on a global level which ensures that all constitutive 

models are consistent. Internal state variables (e.g., backstress) see no rotations whatsoever. 

The drawback to working in the unrotated reference frame is that we must accurately determine the rotation 

tensor, R, which is not a straightforward numerical calculation. We present an incremental, algebraic algorithm to 

accomplish this task in Section 3.4. 

2.3 Fundamental Equations 

The equilibrium equation for the body is 

div T + pb =0 (2.3.1) 

where p is the mass density per unit volume and b is a specific body force vector. 

We seek the solution to Equation (2.3.1) subject to the boundary conditions 

u = f(t) on Su (2.3.2) 

where Su represents the portion of the boundary on which kinematic quantities are specified (displacement). In 

addition to satisfying the kinematic boundary conditions given by Equation (2.3.2), we must satisfy the traction 

boundary conditions 

T • n = s( t) on ST (2.3.3) 

where ST represents the portion o~ the boundary on which tractions are specified. The boundary of the body is given 

by the union of Su and ST, and we note that for a valid mechanics problem Su and ST have a null intersection. 

The jump conditions at all contact discontinuities must satisfy the relation 

(2.3.4) 

where Sc represents the contact surface intersection and the subscripts "+" and "-" denote different sides of the 
contact surface. 

To utilize dynamic relaxation as a solution strategy for quasistatics problems, we must first convert the 

equilibrium equations into equations of motion by adding an acceleration term. Thus, 

divT + pb = pii (2.3.5) 

where ii is the acceleration of the material point. Now, all that remains is to introduce the concept of mesh 

homogenization and artificial damping as well as integrate forward in time from initial conditions until the transient 

dynamic response has damped out to the static result with equilibrium satisfied. Further description of the 

implementation of the dynamic relaxation method will be discussed in a later section (Section 3.7). 
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3.0 NUMERICAL FORMULATION 

In this chapter, we describe the finite element formulation of the problem and the numerical algorithms required 

to perform the spatial and temporal integration of the equations of motion. 

3.1 Four-Node Uniform Strain Element 

The four-node two-dimensional isoparametric element is widely used in computational mechanics. Optimal 

integration schemes for these elements, however, present a dilemma. A one-point integration of the element under­

integrates the element, resulting in a rank deficiency for the element which manifests itself in spurious zero energy 

modes, commonly referred to as hourglass modes. A two-by-two integration of the element over-integrates the 

element and can lead to serious problems of element locking in fully plastic and incompressible problems. The four­

point integration also carries a tremendous computational penalty compared to the one-point rule. We use the one­

point integration of the element and implement an hourglass control scheme to eliminate the spurious modes. The 

development presented below follows directly from Flanagan and Belytschko (1981). We assume that the reader is 

somewhat familiar with the finite element method and will not go into a complete description of the method. The 

reader can consult numerous texts on the method (Hughes, 1987). 

The quadrilateral element relates the spatial coordinates Xi to the nodal coordinates xil through the isoparametric 

shape functions ch as follows: 

(3.1.1) 

In accordance with indicia! notation convention, repeated subscripts imply summation over the range of that 

subscript. The lowercase subscripts have a range of two, corresponding to the two-dimensional spatial coordinate 

directions. Uppercase subscripts have a range of four, corresponding to the element nodes. 

The same shape functions are used to define the element displacement field in terms of the nodal displacements 

UiJ 

(3.1.2) 

Since the same shape functions apply to both spatial coordinates and displacements, their material derivative 

(represented by a superposed dot) must vanish. Hence, the velocity field may be given by 

(3.1.3) 

and likewise for the acceleration field 

(3.1.4) 

The velocity gradient tensor, L, is defined in terms of nodal velocities as 

(3.1.5) 
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By convention, a comma preceding a lowercase subscript denotes differentiation with respect to the spatial 

coordinates (e.g., ui,j denotes aui I ax j)· 

The two-dimensional isoparametric-shape functions map the unit square in l;-11 to an arbitrary quadrilateral in x­

y, as shown in Figure 3.1.1. We choose to center the unit square at the origin in !;-11 space so that the shape functions 

may be conveniently expanded in terms of an orthogonal set of base vectors, given in Table 3.1, as follows: 

(3.1.6) 

Table 3.1 

node 1; 11 

-.5 -.5 -1 -1 I 

2 .5 -.5 -1 -1 

3 .5 .5 

4 -.5 .5 -1 -1 

The above vectors represent the displacement modes of a unit square. The first vector, LJ. accounts for rigid 

body translation. We call I. the summation vector since it may be employed in indicia! notation to represent the 

algebraic sum of a vector. 

The linear base vectors Ail may be readily combined to define the uniform normal strains and shear strain in the 

element. We refer to Ail as the volumetric base vectors since, as we will illustrate below, they are the only base 

vectors that appear in the element area expression. 

The last vector, r1. gives rise to linear strain modes that are neglected in the uniform strain integration. This 

vector defines the hourglass patterns for a unit cube. The displacement modes represented by the vectors in Table 

3.1 are also shown in Figure 3.1.1. 

lO 
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Figure 3.1.1. Mode shapes for the four-node constant strain quadrilateral element. 

3.1.1 Plane Strain Case 

In the finite element method, we replace the momentum Equation (235) with a weak form of the equation. 

Using the principal of virtual work, we write the weak form of the equation as 

If (T · · + pb · - pli · \hu · dV = 0 v ~J 1 1r 1 e e 
(3.1.7) 

where oui represents an arbitrary virtual displacement field, with the same interpolation as Equation (3.1.2), which 

satisfies the kinematic constraints. In plane strain, the thickness of the body is considered uniform and arbitrary and 

therefore can be eliminated from the preceding expression. Integrating by parts and applying Gauss' divergence 

theorem to Equation (3.1.7) then gives 

. (3.1.8) 

The summation symbol represents the assembly of element force vectors into a global nodal force array. We assume 

that the reader understands the details of this assembly; we will not discuss it further in this document. 
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The second integral in the preceding equation is used to define the element internal force vector fil as 

8u·I h =J T· 8u· · dA 1 1 Ae IJ l,J 
(3.1.9) 

The first and third integrals define the external force vector, and the fourth integral defines the inertial response. 

We perform one-point integration by neglecting the nonlinear portion of the element displacement field, thereby 

considering a state of uniform strain and stress. The preceding expression is approximated by 

(3.1.10) 

where we have eliminated the arbitrary virtual displacements, and Tij represents the assumed uniform stress tensor. 

By neglecting the nonlinear displacements, we have assumed that the mean stresses depend only on the mean strains. 

Mean kinematic quantities are defined by integrating over the element as follows: 

..:.. 1 J . dA U· ·=- U· · l.J A v l.J (3.1.11) 

We now define the discrete gradient operator as 

(3.1.12) 

The mean velocity gradient, applying Equation (3.1.5), is given by 

..:.. 1 . B 
ui,j = A uil ji (3.1.13) 

Combining Equations (3.1.10) and (3.1.12), we may express the nodal forces by 

f.I = T:· B "I I lJ J (3.1.14) 

Computing nodal forces with this integration scheme requires evaluation of the gradient operator and the 

element area. These two tasks are linked since 

x·. -s .. 
l,j - IJ 

where Oij is the Kroneker delta. Equations (3.1.1), (3.1.12), and (3.1.15) yield 

xi1 B ji = fv cxil «PI) .j dA = Aoij 
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Consequently, the gradient operator may be expressed by 

(3.1.17) 

To integrate the element area in closed form, we use the Jacobian of the isoparametric transformation to 

transform the integral in x-y space to an integral over the unit square: 

f
+lf2f+l/2 J: A= J dll d-., 
-1/2 -1/2 

(3.1.18) 

where 

(3.1.19) 

Therefore, Equation (3.1.18) can be written as 

(3.1.20) 

where 

c = f 112 f 112(a<P1 a<P1 _ a<P1 a<P1 J d d~ 
u -1/2 -1/2 a~ ih1 ih1 a~ 11 (3.1.21) 

In light of Equation (3.1.6), the above integration involves at most bilinear functions. Therefore, only the 

constant term does not vanish and the integration yields 

(3.1.22) 

Note that Cu is antisymmetric: 

Cu = -Cu . (3.1.23) 

Evaluating Equation (3.1.22), we obtain the following explicit representation for Cu: 

1 -1 0 1 0 

[ 
0 1 0 -1] 

Cu = 2 o -1 o 1 
1 0 -1 0 

(3.1.24) 

Substituting the above expression into Equation (3.1.20), we obtain the familiar expression for the area of a 

quadrilateral: 
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(3.1.25) 

Using this result in Equation (3.1.17), the B matrix may be expressed as 

(3.1.26) 

The mean stress approach used here gives the same result in two dimensions as the one-point quadrature rule for the 

quadrilateral because the Jacobian is at most bilinear. 

3.1.2 Axisymmetric Case 

The axisymmetric quadrilateral poses a special problem for the finite element method in that we must reduce a 

three-dimensional variational Equation (3.1.7) to a two-dimensional element domain. The formulation is 

complicated by the fact that the variational principle is cast in cylindrical, rather than Cartesian coordinates. 

We will start by defining the cylindrical coordinate system as follows: 

ret = (r,z,S) . (3.1.27) 

While the above ordering of the coordinates is unconventional (and not right-handed), it degrades cleanly to the 

axisymmetric case. Note that Greek indices have a range of three and that superscripts and subscripts indicate 

contravariant and covariant tensor components, respectively. 

The shape functions of the axisymmetric uniform strain quadrilateral are the same as those for the plane strain 

case (Table 3.1) and are defined implicitly in terms of the nodal coordinates 

(3.1.28) 

Note that lowercase English indices have a range of two and that, since the two-dimensional coordinate system is 

Cartesian, there is no distinction between covariant and contravariant tensor components. 

In our Lagrangian formulation, the same shape functions are applied to the displacement fields. This implies 
that the material derivatives of the shape functions vanish. As a result, these shape functions also apply to the 

velocity field, just as in the plane strain case: 

(3.1.29) 

The weak form given by Equation (3.1.7) is expressed in cylindrical coordinates as 

(3.1.30) 
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We are now faced with a three-dimensional variational principle, but only a two-dimensional element. Because 

the differential of volume imposes a factor of r on the differential of area (dV = 2nrdA), there is an implicit r 

weighting on the integrand of the weak form in Equation (3.1.30). This means that the integrand vanishes near the 

axis of symmetry (r = 0) regardless of the variations! This also means that the discretized equations generated by the 

finite element method become ill-conditioned near the axis. 

This difficulty is resolved by dividing the integrand of Equation (3.1.30) by r to reduce the integration to the 

element domain. However, we~ must carry this weighting factor in order to apply Gauss' theorem in three 

dimensions. This technique was referred to as a Petrov-Galerkin, or area-weighted finite element, formulation by 

Goudreau and Hallquist (1982). 

(3.1.31) 

Integrating by parts and applying Gauss' theorem yields the following: 

(3.1.32) 

Evaluating the covariant derivative in the preceding equation yields 

(3.1.33) 

where r~ are the Euclidian Christoffel symbols associated with the cylindrical coordinate system. The only 

nonzero components are 

1 
r33 = -r 

(3.1.34) 

We are now in a position to degenerate the variational equations to the axisymmetric case. The axisymmetry 

conditions require that variations and derivatives in e vanish. Combining Equations (3.1.32) to (3.1.34) and 

enforcing axisymmetry gives 
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""'[f T·n·Bu·dS-f (T·Bu· · +rT33Bu1 -lT1Bu·)ctA £.J S IJ J I A IJ l,j f I I 
e e e 

(3.1.35) 

Note that we have dropped the contravariant superscript notation for English indices in going from Equations 

(3.1.32) to (3.1.35) because as we stated previously, there is no distinction between contravariant and covariant 

components in our two-dimensional coordinate system. 

A byproduct of the Petrov-Galerkin formulation is that the resulting weak form for the axisymmetric case, 

Equation (3.1.35), is nearly identical to that of the plane strain case, Equation (3.1.8). The only difference is the 

addition of the last two terms to the internal force expression, which is the second integral above. This is clearly a 

major architectural advantage to SANTOS. 

Note that the last term of the axisymmetric internal force expression is not associated with strain. These forces 

are analogous to the covected force term which appears in the stress divergence as shown below. 

(3.1.36) 

If the 1/r correction is omitted in Equation (3.1.31 ), the final term in the axisymmetric internal force disappears. 

It is convenient for a finite element program to work with physical, rather than tensoral, stress components. In 

our formulation, the hoop stress is the only component which requires such a distinction. The physical hoop stress 

T33 is given by 

The internal forces are then given by 

Evaluating all these integrals with single-point integration yields 

where 

- 1 ~ r=-..:...r. 
4 I 
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(3.1.38) 

(3.1.39) 
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We now see that the internal force vector for the axisymmetric case, Equation (3.1.39), is the same as that for the 

plane strain case, Equation (3.1.14), with the addition of the hoop stress and covected forces. 

The velocity gradient in cylindrical coordinates is 

(3.1.41) 

Substituting Equation (3.1.34) into the above equation and enforcing axisymmetry leaves only five nonzero 

components: the four in-plane components, and the physical hoop strain rate D33· This additional strain rate 

component is defined conjugate to Equation (3.1.37) as 

D I · Ut 
33 =-u313 =-

r2 r 

We evaluate this quantity with one-point integration as follows: 

where r is given by Equation (3.1.40) and 

3.1.3 Lumped Mass Matrix 

(3.1.42) 

(3.1.43) 

(3.1.44) 

One of the aforementioned advantages of using the Petrov-Galerkin method for the axisymmetric case is that the 

inertial terms in the variational statement of the boundary value problem are identical for both the plane strain, 

Equation (3.1.8), and axisymmetric, Equation (3.1 j5), cases. Therefore, we can treat both cases at one time. 

To reap the benefits of an explicit architecture, we must diagonalize the mass matrix. We do this by integrating 

the inertial energy variation as follows: 

(3.1.45) 

where 

rnu = pAou (3.1.46) 

and OIJ is the Kroneker delta. Clearly, the assembly process for the global mass matrix from the individual element 

matrices results in a global mass matrix which is diagonal and can be expressed as a vector, MJ. 
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3.2 Explicit Time Integration 

SANTOS uses a modified central difference scheme to integrate the equations of motion through time. By this 

we mean that the velocities are integrated with a forward difference, while the displacements are integrated with a 

backward difference. The integration scheme for a node is expressed as 

(3.2.1) 

(3.2.2) 

and 

(3.2.3) 

where f F and f Fare the external and internal nodal forces, respectively, M is the nodal point lumped mass, 

and Dot is the time increment. 

The central difference operator is conditionally stable. It can be shown that the Courant stability limit for the 

operator is given in terms of the highest eigenvalue in the system (COmax): 

~t~-2-
0lmax 

(3.2.4) 

In Section 3.5, we discuss how the highest eigenvalue is approximated and how we determine a stable time 

increment. 

3.3 Finite Rotation Algorithm 

We stated in Section 2.2 that one of our fundamental numerical challenges in the development of an accurate 

algorithm for finite rotations was the determination of R, the rotation tensor defined by the polar decomposition of 

the deformation gradient F. We developed an incremental algorithm for reasons of computational efficiency and 

numerical accuracy. The validity of the unrotated reference frame is based on the orthogonal transformation given 

by Equation (2.2.1 ). Therefore, the crux of integrating Equation (2.1.6) for R is to maintain the orthogonality of R. 

If one integrates R = OR via a forward difference scheme, the orthogonality of R degenerates rapidly no matter 

how fine the time increments. We instead adapted the algorithm of Hughes and Winget (1980) for integrating 

incremental rotations as follows. 

A rigid body rotation over a time increment D.t may be represented by 

(3.3.1) 

where QD.t is a proper orthogonal tensor with the same rate of rotation as R given by Equation (2.1.6). The total 

rotation R is updated via the highly accurate expression below. 
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(3.3.2) 

For a constant rate of rotation, the midpoint velocity and the midpoint coordinates are related by 

(3.3.3) 

Combining Equations (3.3.1) and (3.3.3) yields 

(3.3.4) 

Since Xt is arbitrary in Equation (3.3.4), it may be eliminated. We then solve for Qat· The result is 

(3.3.5) 

The accuracy of this integration scheme is dependent on the accuracy of the midpoint relationship of Equation 

(3.3.3). The rate of rotation must not vary significantly over the time increment. Furthermore, Hughes and Winget 

(1980) showed that the conditioning of Equation (3.3.5) degenerates as atn grows. 

Our complete numerical algorithm for a single time step is as follows: 

1. CalculateD and W. 

2. Compute z· I = eijk Vjm Dmk , 

(1) = w- 2[V- I tr(V)]-1 z , and 

0··-IJ- -} eijk ~ · 

3. Solve (I - ~t .Q )R t +at = (I + ~t Q )R t 

4. Calculate v = (D + W) v- vn 

5. Update Vt+Llt = Vt + Llt V Llt 

6. Compute d=RTDR 

7.' Integrate a= f(d,cr) 

8. Compute T=RcrRT. 

This algorithm requires that the tensors V and R be stored in memory for each element. 
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3.4 Determination of Effective Moduli 

Algorithms for calculating the stable time increment and hourglass control require dilatational and shear moduli. 

In SANTOS, we use an algorithm for adaptively determining the effective dilatational and shear moduli of the 

material. 

Because SANTOS uses an explicit integration algorithm, the constitutive response over a time step can be recast 

a posteriori as a hypoelastic relationship. We approximate this relationship as isotropic. This defines effective 

moduli, i and ,1 in terms of the hypoelastic stress increment and strain increment as follows: 

Llcr · · = Llt(j;_d kk o · · + 211 d ··) IJ lJ I""' lJ (3.4.1) 

Equation (3.4.1) can be rewritten in terms of volumetric and deviatoric parts as 

Llcrkk = Llt(3j;_+2ft) dkk (3.4.2) 

and 

Sij = Llt 2ft Ejj (3.4.3) 

where 

Sij = t1crij -1 i1crkk. Oij (3.4.4) 

and 

E·· = d·· _l dkk 0·· IJ IJ 3 IJ (3.4.5) 

The effective bulk modulus follows directly from Equation (3.4.2) as 

A A Llcr 
3K = 3A.+2Jl = A dkk 

ut mm 
(3.4.6) 

Taking the inner product of Equation (3.4.3) with itself and solving for the effective shear modulus 2~ gives 

2Jl = 
S·· S·· lJ IJ (3.4.7) 

Using the result of Equation (3.4.6) with Equation (3.4.7), we can calculate the effective dilatational modulus 

i+2,:i: 

(3.4.8) 
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If the strain increments are insignificant, Equations (3.4.6) and (3.4.7) will not yield numerically meaningful 

results. In this circumstance, SANTOS sets the dilatational modulus to an initial estimate, 1..0 + 2J.10 . An initial 

estimate for the dilatational modulus is, therefore, the only parameter which every constitutive model is required to 

provide to the time step control algorithm. 

In a case where the volumetric strain increment is significant but the deviatoric increment is not, the effective 

shear modulus can be estimated by rearranging Equation (3.4.8) as follows: 

(3.4.9) 

If neither strain increment is significant, SANTOS sets the effective shear modulus to the initial dilatational 

modulus. The algorithm that SANTOS follows to estimate the effective dilatational and shear moduli is summarized 

in Table 3.2. 

Table 3.2 

6-tdkk > w-6 6.t2E··E·· > w-12 IJ IJ i+2Ji 2!1 

Yes Yes (3.4.8) (3.4.7) 

Yes No l..o + 2J.Lo (3.4.9) 

No Yes Ao+ 2J.1o (3.4.7) 

No No Ao+2J.1o l..o + 2J.1o 

3.5 Determination of the Stable Time Increment 

Hanagan and Belytschko (1984) provided eigenvalue estimates for the uniform strain quadrilateral described in 

Section 3.1. They showed that the maximum eigenvalue was bounded by 

(3.5.1) 

Using the effective dilatational modulus from Section 3.4 with the eigenvalue estimates of Equation (3.5.1) allows us 

to write the stability criteria of Equation (3.2.4) as 

(3.5.2) 
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The stable time increment is determined from Equation (3.5.2) as the minimum over all elements. 

The estimate of the critical time increment given in the preceding equation is for the case where there is no 

damping present in the system. If we define £ as the fraction of critical damping in the highest element mode, the 

stability criterion of Equation (3.5.2) becomes 

(3.5.3) 

Conventional estimates of the critical time increment size have been based on the transit time of the dilatational 

wave over the shortest dimension of an element or zone. For the undamped case, this gives 

Llt =ftc (3.5.4) 

where c is the dilatational wave speed and f. is the shortest element dimension. 

There are two fundamental and important differences between the time increment limits given by Equations 

(3.5.2) and (3.5.4). First, our time increment limit is dependent on a characteristic element dimension, which is 

based on the finite element gradient operator and does not require an ad hoc guess of this dimension. This 

characteristic element dimension, f, is defined by inspection of Equation (3.5.2) as 

€ =A I ~Bii Bn (3.5.5) 

Second, the sound speed used in the estimate is based on the current response of the material and not on the 

original elastic sound speed. For materials that experience a reduction in stiffness due to plastic flow, this can result 

in significant increases in the critical time increment. 

It should be noted that the stability analysis performed at each time step predicts the critical time increment for 

the next step. Our assumption is that the conservativeness of this estimate compensates for any reduction in the 

stable time increment over a single time step. 

3.6 Hourglass Control Algorithm 

The mean stress-strain formulation of the uniform strain element considers only a fully linear velocity field. The 
remaining portion of the nodal velocity field is the so-called hourglass field. Excitation of these modes may lead to 

severe, unresisted mesh distortion. The hourglass control algorithm described here is taken directly from Flanagan 

and Belytschko ( 1981 ). The method isolates the hourglass modes so that they may be treated independently of the 

rigid body and uniform strain modes. 

A fully linear velocity field for the quadrilateral can be described by 

-lin ..:... ..:... ( -) U· = U· + U· · X·- X· I I I,J J J (3.6.1) 
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The mean coordinates Xi correspond to the center of the element and are defined as 

(3.6.2) 

The mean translational velocity is similarly defined by 

(3.6.3) 

The linear portion of the nodal velocity field may be expressed by specializing Equation (3.6.1) to the nodes as 

follows: 

(3.6.4) 

where LI is used to maintain consistent index notation and indicates that Uj and Xj are independent of position 

within the element. From Equations (3.l.l6) and (3.6.4) and the orthogonality of the base vectors, it follows that 

and 

. "" . lin "" 4..:.. Uii k. I = uil k. I = Ui 

. B -lin B A-'-
uir ji = uir ji = ui,j 

The hourglass field U ~g may now be defined by removing the linear portion of the nodal velocity field: 

. hg _ . . lin 
uii - uir - un 

Equations (3.6.5) through (3.6.7) prove that LI and Bji are orthogonal to the hourglass field: 

. hg "" 0 uil k. r= 

(3.6.5) 

(3.6.6) 

(3.6.7) 

(3.6.8) 

(3.6.9) 

Furthermore, it can be shown that the B matrix is a linear combination of the volumetric base vectors, AI, so 

Equation (3.6.9) can be written as 

. hgA 0 
uil I= (3.6.10) 
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Equations (3.6.8) and (3.6.10) show that the hourglass field is orthogonal to all the base vectors in Table 3.1 

except the hourglass base vectors. Therefore, uGg may be expanded as a linear combination of the hourglass base 

vectors as follows: 

. hg 1 . r 
uii = -qi I 

2 
(3.6.11) 

The hourglass nodal velocities are represented by CJ.i above (the leading constant is added to normalize ri)· We now 

define the hourglass-shape vector 'YI such that 

(3.6.12) 

By substituting Equations (3.6.4), (3.6.7), and (3.6.12) into (3.6.11), then multiplying by r1 and using the 

orthogonality of the base vectors, we obtain the following: 

u·1 r 1 - u· . x .I ri - u·I'Y I l,J J - I I (3.6.13) 

With the definition of the mean velocity gradient, Equation (3.1.13), we can eliminate the nodal velocities above. As 

a result, we can compute 'YI from the following expression: 

(3.6.14) 

The difference between the hourglass-base vectors r I and the hourglass-shape vectors 'YI is very important. 

They are identical if and only if the quadrilateral is a parallelogram. For a general shape, rl is orthogonal to Bji 

while 'YJ is orthogonal to the linear velocity field uan . While rl defines the hourglass pattern, 'YJ is necessary to 

accurately detect hourglassing. Equation (3.6.14) is simple enough for the quadrilateral that it can be written 

explicitly as 

(3.6.15) 

For the purpose of controlling the hourglass modes, we define generalized forces Qi• which are conjugate to CJ.i so 

that the rate of work is 

. fhg Q . 
Uil il = i qi (3.6.16) 
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for arbitrary Uii. Using Equation (3.6.12), it follows that the contribution of the hourglass resistance to the nodal 

forces is given by 

(3.6.17) 

Two types of hourglass resistance are used in SANTOS: artificial stiffness and artificial damping. We express 

this combination as 

In terms of the tunable stiffness (K) and viscosity (€) factors, these resistances are given by 

Q. ~ = K 211 Bil Bn q· . 
I 2 I""' A I 

Q( = E~max(0,2Ci) m <ii 

(3.6.18) 

(3.6.19) 

(3.6.20) 

Note that the stiffness expression must be integrated, which further requires that this resistance be stored in a global 

array. 

Observe that the nodal antihourglass forces of Equation (3.6.17) have the shape of y1 rather than ri. This fact is 

essential since the antihourglass forces should be orthogonal to the linear velocity field, so that no energy is 

transferred to or from the rigid body and uniform strain modes by the antihourglassing scheme. 

We would prefer to use only hourglass stiffness and, in fact, this is what is used for the plane strain case (K = .05 

and£= 0.0). Unfortunately, the nonstrain terms in the Petrov-Galerkin formulation give rise to an instability which 

is best stabilized using hourglass viscosity. For the axisymmetric case, values of K = .01 and € = .03 are used. 

3. 7 Dynamic Relaxation 

As a solution strategy for quasistatic mechanics problems, dynamic relaxation involves first converting the 

equilibrium equations into equations of motion by adding an acceleration term, secondly, introducing an artificial 

damping, and finally, integrating forward in time from initial conditions until the transient dynamic response has 

damped out to the static result with equilibrium satisfied. To produce the transient dynamic problem, an acceleration 

term is added to the equilibrium Equation (2.3.1 ), thus becoming 

(3.7.1) 

where u is the displacement of the material point and r is a spatially varying density selected to minimize the number 

of iteration steps needed to reach equilibrium. The temporal quantity 't is a pseudo-time scale connected with the 

dynamic relaxation process· but distinct from real time t. The acceleration term is discretized the same way that it 

would be in a true dynamics calculation. This leads us to write the discrete dynamic system as 
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M(r) q = fEXT -fiNT (3.7.2) 

where M(r) is the mass matrix, q = ii(t), f INT is the divergence of the stress field, and f EXT is the vector of 

prescribed body forces and surface tractions. The mass matrix is computed using the fictitious density, r. This 

density is different for each element, and it is selected such that the element has the same transit time for a 

dilatational wave as every other element in the mesh. This process is called mesh homogenization, and it is effective 

in minimizing the number of iterations for convergence. 

At time tn, equilibrium is satisfied such that f ~ = f ;XT. A new solution is initiated by incrementing the 

load to its value at time tn+ 1. In general, equilibrium will not initially be satisfied so that the force imbalance will be 

represented by the acceleration term: 

M( ) .. fEXT fiNT 
r q= n+1 - n+1· (3.7 .3) 

Central difference expressions are introduced first for the acceleration in terms of the velocity, ii and then for 

the velocity in terms of the displacement, u. The resulting equations are 

• • A MC )-1 (rExT riNT) u't+~:t = u't + u't r 't - 't 

(3.7 .4) 

The dynamic relaxation algorithm is based on these two expressions (Equation (3.7.4). It is a convenient time to 

introduce the concept of the equilibrium iteration. As the load is incremented to a new value at tn+ 1, the iteration 

process begins with calculation of the internal forces f INT and the calculation of the force imbalance. If the force 

imbalance is greater than a user-specified tolerance, then another iteration through the solution sequence is required. 

When equilibrium is reached the iteration process stops and new loads are calculated for the next time increment. 

The central difference expressions above must be solved at each iteration with the appropriate amount of damping to 

reach the quasistatic solution. These equations take the following form for iteration, i, with the self-adaptive 

damping parameter, 0. 

i+1 i A • j 
U 't+Ll't = U t + u'tU 't+Ll't (3.7.5) 

Every iteration i leads to a new trial configuration and trial stress state. The path in solution space traced out by 

the steps is artificial; it is a by-product of the dynamic relaxation, as is the advance in time 't. The trial states i 

represent equilibrium iterations. Figure 3.7.1 depicts the process in a multidimensional solution space of the nodal 

point coordinates. The point n is an equilibrium solution and the point n+ 1 is the equilibrium state being sought. 

26 



TRI-6348-6-0 

Figure 3.7.1. A model equilibrium iteration sequence in a multi-dimensional configuration space of nodal point 
positions developed with dynamic relaxation showing convergence at load step n+ I. The straight 
line path from n to the last step calculated from dynamic relaxation is the interval over which the 
stress is evaluated using the real time step Llt. 

The curved path between n and n+ 1 traces out the true solution_ The spiral path marked with the tics and 

parameterized by steps in 't is the sequence of trial states generated by the dynamic relaxation method. The straight 

line from n to the last step calculated from dynamic relaxation is the interval over which the stress is evaluated using 

the real time step At. This is an important point in the implementation of the dynamic relaxation scheme. The 

internal forces riNT are re-evaluated at each step i using the trial geometry and when equilibrium is achieved; a 

straight line approximation to the true path between n and n+ 1 is used for the constitutive model calculations. This 

scheme uncouples the path dependence and real-time dependence of the constitutive behavior from the arbitrary 

sequence of trial states generated by the dynamic relaxation method. 

Convergence is based on achieving an acceptably small equilibrium imbalance. Because the converged solution 

is a straight line approximation, the true state at n+ 1 will not be found, but a nearby equilibrium state will be found 

nonetheless. This truncation error is common to the more conventional finite element methods and can be reduced 

by decreasing the time step size. The only questions remaining are how to select the variable density r, the pseudo­

time step A't, and the damping parameter 0 to find a converged solution in the minimum number of steps. 

The performance of dynamic relaxation is tied to the minimum natural frequency roo and the maximum natural 

frequency rol of the discrete equations. The damping per cycle is frequency dependent. For a given damping factor 

0, the decrease in amplitude per cycle is greatest for the lowest frequency component. The damping is then chosen 

to provide critical damping for the lowest frequency. By looking at the characteristic equation associated with the 
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iteration matrix which relates the velocities and displacements at step n+ 1 to those at step n, the expression for the 

damping parameter, o, is found to be 

(3.7.6) 

The allowable range on o is (0, I). A stability analysis on this set of explicit equations produces a critical 

pseudo-time step given by 

(3.7.7) 

If the problem is linear so roo and ro 1 are fixed, then the number of time steps, N, required to reduce the 

vibration amplitude by a factor of ten is 

(3.7.8) 

From this equation, it is seen that any effort to reduce the ratio ro I /roo speeds convergence. 

From the linear problem and a uniform mesh of dimension M, the maximum frequency ro I is given by 

ro1 = 2c I Ax= 21 L~:t (3.7.9) 

In this expression, c is the dilatational wave speed given by 

c =(A. +2~) I r (3.7.10) 

and r is the pseudo-density used for the computation of the fictitious mass. If we substitute the quantity 2/ !!..• foRD I 

and remember that ro I >> roo, then the expression for the damping parameter becomes 

(3.7.11) 

The fundamental frequency roo is continuously estimated using an approximate value found using the Rayleigh 

Quotient. At each iteration i in the dynamic relaxation scheme, a new estimate (roo)i is computed as 

(3.7.12) 

where K is a diagonal stiffness matrix whose jth component is computed from 

f.jlNT _ f.jiNT 
I I-1 = -=---""7":.......::._ 

.:~.:mL 
(3.7.13) 

With each estimate ofthe fundamental frequency, a new value of the damping is computed. This has the virtue 

that the lowest active mode will be found in the event that the fundamental mode is not participating (Underwood, 

1983). 
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3.8 Convergence Measures 

When an iterative method, such as dynamic relaxation, is used to solve for static equilibrium, some criterion 

must be used to determine when the estimated solution is sufficiently close to the actual solution. Convergence of 

the equilibrium iteration process is achieved when a measure of the problem force imbalance reaches a value less 

than or equal to a user-supplied error tolerance. The force imbalance is the sum of the external and internal nodal 

forces which at equilibrium should sum to zero. 

In SANTOS, two different convergence error measures are available to the analyst. The first error measure is 

based on satisfying the following inequality: 

IIRjll <TOL 
IIFnll-

(3.8.1) 

where II o II denotes the L2 norm of a vector, Rj is the residual or imbalance force vector at iteration j, and F n is the 

external force vector at step n which is composed of applied tractions, body forces (gravity forces), thermal forces, 

and the reactions at nodes where zero displacement boundary conditions are applied. Equation 3.8.1 is a measure of 

how close the problem is to a state of equilibrium. The quantity TOL is input by the analyst as a means of 

identifying the relative imbalance the analyst is willing to accept in the solution. In SANTOS, TOL is set by default 

to a value of 0.5 percent. This error is called the GLOBAL CONVERGENCE measure and is the default error 

measure. 

The second error measure implemented in SANTOS is based on satisfying the error tolerance on a node-by-node 

basis. This error measure is called the LOCAL CONVERGENCE measure. The rationale for this criterion is that 

what is an acceptable force imbalance in one portion of the problem may be unacceptable at another location. For 

example, further reduction of a set of force residuals acting in a region of the problem where the elements are large 

and stiff may produce only a small change in the element stresses in this region. If, however, the same set of force 

residuals was present at a different location where the element sizes were much smaller and the material was much 

more flexible, further reduction of the residuals could produce a large change in the element stresses. To address 

these concerns, the LOCAL CONVERGENCE error measure is included as an option. 

The error measure for each component i and iteration j of the residual force vector is defined as: 

(3.8.2) 

where R j is the residual or imbalance force, F~ is the external force, fj is the internal force, and f min is the 

minimum internal force in an element produced by a reference hydrostatic stress state specified by the analyst. The 

minimum internal force is introduced to ensure that the denominator is never zero and to prevent elements with 

negligible stresses from controlling the convergence of the problem. The internal force contribution is summed over 
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all the elements, e, connected to node i. This error measure is satisfied when each component of the force vector 

satisfies the criterion. 
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4.0 CONSTITUTIVE MODELS 

One of the primary reasons for developing SANTOS was to take advantage of the many state-of-the-art features 

available in PRONTO and adapt them to quasistatic mechanics problems. One of those features is the flexible 

material model interface which allows a constitutive model to be added to the code with minimal effort. The 

constitutive developer does not have to be familiar with the internal workings of SANTOS but only needs to modify 

a few well documented subroutines to add a new material model. The material model implementation requires the 

user to provide entries in a few data statements to define the limits of the internal data structure. The code also 

requires the constitutive developer to provide estimates of the initial dilatational and shear moduli so that the 

program can compute an initial stable time step. The material model may contain internal state variables that define 

the state or evolution of the material. The implementation requires that the developer provide names and any 

required initialization for the internal state variables. The internal state variable names for each material currently 

implemented are provided in the User Guide section. These quantities may be individually selected for output to the 

plotting data base. The final changes to the material model subroutines require the developer to provide names for 

any necessary input quantities such as Young's modulus or Poisson's ratio. The input names for the material models 

currently implemented are given in the User Guide section. The code currently contains twelve continuum material 

models with more models being developed as our applications require them. The models range from purely elastic 

behavior to time-dependent viscoplastic response. 

SANTOS utilizes an indirect solution technique which can require hundreds of thousands of calls to the 

constitutive model during a complex analysis. Thus, efficient implementation of the constitutive model is a primary 

concern. Considerable effort has gone into writing each material model subroutine such that the routine vectorizes 

on a vector supercomputer. The material model routine is written in terms of the unrotated Cauchy stress, a, and the 

deformation rate in the unrotated configuration, d. The basic assumption is that the deformation or strain rate is 

constant over the step. The deformation rate that is available to the constitutive subroutine is the mechanical strain 

rate, i.e., any thermal strain rate contribution to the total strain rate has already been removed. During each iteration, 

the latest kinematic quantities are used to update the stress. Stresses written to the plotting data base are rotated to 

the current configuration. 

4.1 Integration of the Rate Equations 

The constitutive models are written in a rate form and must be integrated forward at each time step. In 

. SANTOS, a forward Euler or a backward Euler integration of the rate equations is used for many of the constitutive 

models. The forward Euler integration assumes that 

(4.1.1) 

where f is the quantity to be integrated, n refers to the current step for which values of f are available and n+ 1 refers 

to the next step for which values of f are being sought. The quantity f is defined using the known quantities at step 

n, and .:\t is the time step increment. The forward Euler scheme is simple and computationally efficient but is 

conditionally stable. The time step size allowed is controlled by a stability criterion that varies with each material 

model. 
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The backward Euler integrator has the following form 

(4.1.2) 

where the term f is evaluated at step n+ 1. This solution method is implicit and therefore requires some type of 

iterative method such as Newton-Raphson to solve for f n+ 1_ The method is computationally more demanding than 

forward Euler, but the scheme is unconditionally stable. The only restriction on the time step size is accuracy of the 

solution. 

The time-dependent material models implemented in SANTOS, such as the creep and viscoplastic models, use 

the forward Euler operator even though the method is conditionally stable. The implementations rely on 

subincrementation within the global time step, dt, to maintain numerical stability. In most instances, the user­

specified global solution step, dt, is larger than the time step needed for accuracy and stability. Economic 

considerations do not allow the user to take the number of global solution time steps needed to ensure an accurate 

and stable solution; therefore, the global solution time step is broken into subincrements for integrating the 

constitutive model. The size of each subincrement adapts to the change in stress occurring within the global solution 

step. So although this subincrementation process maintains the direction and magnitude of the total strain increments 

as constant for the global step, it allows the stress components to change over the step. That is, after each 

subincremental time step, the stresses and inelastic strain rates as well as the critical time step are updated before 

computing the solution for the next subincrement. 

The implementation of this algorithm is designed to take advantage of the vector architecture of the Cray 

computer. The constitutive model is called with the total strain rates for the step and the stress from the previous 

step. Processing is done on a block of 64 elements, one block at a time. There are two FORTRAN loops involved in 

this approach. The outer loop is an implicit loop that adapts the size of the subincrement as the stresses change 

within the global solution step. This loop is not vectorizable. The inner loop computes the stresses for a block of 

NE elements, with NE having a maximum of 64. This loop is vectorizable. An additional feature of this approach, 

which is unique to indirect solution schemes, is that each element block may have its own unique number of 

subincrements. Thus, the amount of computation is minimal for elements in regions where the stress is small and the 

computational effort is concentrated where the stress is largest. 

The key to the scheme is the accurate determination of the stable time step which is accomplished using the 

work of Cormeau (1975) who developed a method for analytically determining the stable time step fora particular 

constitutive model. To determine the analytical expression for the stable time step size, we introduce the following 

linearized differential equation 

(4.1.3) 

where the quantity. crt• represents the deviatoric stress at time t. This equation represents a first-order Taylor series 

expansion about the stress state at time t. This equation can be rewritten as 

y+Ay = f (4.1.4) 
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where y is a column vector containing the stress components and A is a square matrix defined by 

A stability analysis of the forward Euler integrator shows that the time interval is stable if .6-t < n where 
max 

'-max is the largest eigenvalue of the square matrix A. Once we have the analytic expression for the stable time step, 

we can write an efficient, vectorized material model subroutine for implementation into SANTOS. 

4.2 Adaptive Time Stepping 

One important feature available for the time-dependent material models in SANTOS is the capability to do 

adaptable time stepping. This feature is desirable when the mechanics of the problem dictate small time steps during 

the early stress transient, but the stress reaches a steady state at later times and the analyst desires to use larger time 

steps. If we consider a function f(t) which is analytic in the neighborhood of a point t: 

2 3 
f(t+h)=f(t)+hf'(t)+h2 f"(t)+~! f"'(t)+ ... (4.2.1) 

The forward Euler method is obtained by taking the first two terms of the series: 

f(t +h)= f(t) + hf'(t) + 0( h2 ) (4.2.2) 

where O(h2) is the error associated with the truncation. The above equation can be rewritten in a slightly different 

form: 

where ti < ~ < t + h or 

2 
f(t+h)=f(t)+hf'(t)+~ f"(~) 

and ti < ~<ti+ 1 where the last term is the truncation error per step. 

(4.2.3) 

(4.2.4) 

If it is assumed that f" is fairly constant over the ith step interval, ari estimate of the truncation error ET at the ith 

step can be obtained from 

(4.2.5) 

where f" is evaluated at~= ti. 
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The criterion for the time step control is 

(4.2.6) 

where E is some small number. Replacing Elj in the above expression with h; fi" and solving for the time step, h, 

gives the following expression 

h< (4.2.7) 

In SANTOS, we choose to control the time step with the effective stress so that the above equation becomes 

h ~2Ecri < -,, cr· 1 

(4.2.8) 

The accuracy of the method depends on the value of E chosen. For example, we might restrict the error to 1 

percent of cri at the beginning of the step so E would be selected as 0.0 1. Experience has shown that values of E in 

the range .01 - .02 produce acceptable results. 

4.3 Basic Definitions and Assumptions 

The constitutive models implemented in SANTOS are described in the following sections. The fundamental 

assumptions used in developing the models are presented along with some details of their implementation. The 

nomenclature used for the descriptions will be presented first. Several of the models have their descriptions taken 

from other sources, and we will follow the nomenclature of those sources where appropriate. Throughout the report, 

components of tensors will appear using indicia! notation, crij, while equivalent scalar quantities appear with a bar, 

cr. 

The material model development makes the fundamental assumption of an additive strain rate decomposition of 

the total strain rate components, dij• into elastic and inelastic parts. 

d .. _ d··el +d··in 
lj - IJ IJ (4.3.1) 

The resulting stress rate, crij• is determined from the elastic part of the strain rate using Hooke's law 

(4.3.2) 

where C is a 4th order tensor of Hookean elastic constants. The stress rate can be broken into two independent parts 

representing volumetric and deviatoric behavior. The volumetric behavior is assumed for most material models to be 

purely elastic with the volumetric strain rate, dkk, linearly related to the pressure, p, through the relation 
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. crkk Kct p=--= kk 
3 

(4.3.3) 

where K is the bulk modulus of the material. Because the strain rates are assumed constant over the step, the 

pressure at the end of the step can be easily found from the expression 

Pn+l = Pn + Kdkk~t (4.3.4) 

where Lit is the time step size and Pn is the pressure at the beginning of the step. There are material models in 

SANTOS that do not have a linear bulk response. These exceptions include the volumetric creep model, soil and 

crushable foam model, and low density foam model. The particular volumetric response for each of these models 

will be discussed in each individual section. 

The deviatoric stress rate, Sjj, is computed from the relation 

(4.3.5) 

where Oij is the Kronecker delta. If we rewrite the equation for the stress rate in terms of the deviatoric stress part, 

we have 

(4.3.6) 

where Ejj is the deviatoric component of the strain rate, dij· The deviatoric strain rate components are similarly 

calculated. 

(4.3.7) 

In most of the material models currently implemented in SANTOS, we assume von Mises flow, and we can define 

the equivalent von Mises stress, cr = ~!sipij' and the equivalent deviatoric strain rate, E = ~J/·iiij 0 It is 

convenient to introduce the idea of an elastic "trial" stress state for the end of the time step. This stress state is used 

in the plasticity models to determine if yielding will occur during the step, and it is also used for the time-dependent 

models. Given the deviatoric stress state at the beginning of the step, S~, the elastic "trial" stress state 
lJ 

for the end of the step is 

s .. tr = S··n + 211P··~t IJ IJ r-'!j (4.3.8) 

where Jl is the shear modulus, Llt is the time step increment, and Ejj is the deviatoric strain rate. If yielding does not 

occur during the time step, then the trial stress becomes the final stress state at s~+ 1. 
lJ 
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4.4 Elastic Material, Hooke's Law 

A linear elastic material is defined using Hooke's Law. In a rate form, this is written as 

cr·· = A.(ctkk)b·· +2 .. d·· u u ~ u (4.4.1) 

where A, and J.1. are the elastic Lame material constants. The stress rate equation is integrated forward using the 

backward Euler integrator. The model has no internal state variables. 

The PROP array for this material contains the following entries: 

PROP(l)- Young's modulus, E 

PROP(2)- Poisson's ratio, v 

PROP(3)- A. 

PROP(4)- 2J.1. 

4.5 Elastic Plastic Material with Combined Kinematic and Isotropic Hardening 

The elastic plastic model is based on a standard von Mises yield condition and uses combined kinematic and 

isotropic hardening. Isotropic hardening is the behavior where the radius of the yield surface grows equally in all 

directions due to plastic straining. Kinematic hardening is the behavior where the radius of the yield surface remains 

constant, but the center of the yield surface translates in the direction of the plastic strain rate. In this discussion of 

the elastic plastic material model, .we assume that the material is yielding and that plastic straining will occur. In the 

event that yielding does not occur, the material behavior is elastic and the stress is computed using Hooke's Law as 

described in Section 4.4. This model is widely used in many finite element computer programs, and the current 

derivation is taken from Taylor and Flanagan (1987). 

Some definitions and assumptions are outlined here. Referring to Figure 4.5.1, which shows the yield surface in 

deviatoric stress space, we define the backstress (the center of the yield surface) by the tensor, a. 

If 0' is the current value of the stress, we define the deviatoric part of the current stress by 

(4.5.1) 

We define the stress difference measured by subtracting the backstress from the deviatoric stress by 

~=cr-a (4.5.2) 

The magnitude of the stress difference, R, is defined by 

R=I~I=M (4.5.3) 
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Q 

TRI-6348-7-0 

Figure 4.5.1. Yield surface in deviatoric stress space. 

where we denote the inner product of second order tensors by S:S = Sij Sij· Note that if the backstress is zero 

(isotropic hardening case), the stress difference is equal to the deviatoric part of the current stress, S. 

The von Mises yield surface is defined as 

(4.5.4) 

The von Mises effective stress, a, is defined by 

(4.5.5) 

Since R is the magnitude of the deviatoric stress tensor when a = 0, it follows that 

(4.5.6) 

The normal to the yield surface can be determined from Equation (4.5.4) 

(4.5.7) 

We assume that the strain rate can be decomposed into elastic and plastic parts by an additive decomposition 

(4.5.8) 
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and assume that the plastic part of the strain rate is given by a normality condition 

(4.5.9) 

when the scalar multiplier,"(, must be determined. 

A scalar measure of equivalent plastic strain rate is defined by 

(4.5.10) 

which is chosen such that 

(4.5.11) 

The stress rate is assumed to be purely due to the elastic part of the strain rate and is expressed in terms of 

Hooke's law by 

(4.5.12) 

where A. and J..L are the Lame constants for the material. 

Below, we develop the theory for the cases of isotropic hardening, kinematic hardening, and combined 

hardening separately so that the reader can see the details for each case. 

4.5.1 Isotropic Hardening 

In the isotropic hardening case, the backstress is zero and the stress difference is equal to the deviatoric stress, S. 

We write a consistency condition by taking the rate of Equation (4.5.4) 

(4.5.13) 

By consistency we mean that the state of stress must remain on the yield surface at all times. We use the chain rule 

and the definition of the normal to the yield surface given by Equation (4.5.7) to obtain 

and from Equations (4.5.3) and (4.5.4) 

f. < ) a f . I a f IQ . cr = acr:cr= acr :cr 

~~~~=lSI= R 

Combining Equations (4.5.13), (4.5.14), and (4.5.15) 
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(4.5.16) 

Because s is deviatoric, S: cr = S: S and 

s·s = ..d..(l. s·s)= _g_(cr
2 
J = 2. cr a . dt 2 . dt 3 3 (4.5.17) 

Then Equation (4.5.16) can be written as 

(4.5.18) 

where H' is the slope of the yield stress versus equivalent plastic strain (cr versus £P1). This is derivable from the 
data from a uniaxial tension test as shown in Figure 4.5_.2. 

The consistency condition, Equation (4.5.16) and Equation (4.5.18), result in 

(4.5.19) 

We define the trial elastic stress rate 0' tr by 

(4.5.20) 

1 
1 

E E' 
H'=---...,..._ 

E- E' 
TRI-6348-8·0 

Figure 4.5.2. Conversion of data from a uniaxial tension test to equivalent plastic strain versus 
von Mises stress. 
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where C is the fourth order tensor of elastic coefficients defined by Equation (4.5.12). Combining the strain rate 

decomposition defined in Equation (4.5.8) with Equations (4.5.19) and (4.5.20) yields 

(4.5.21) 

We note that because Q is deviatoric, C:Q = 2~ Q and Q:C:Q = 2~. Then using the normality condition, 

Equation (4.5.9), the definition of equivalent plastic strain, Equation (4.5.10), and Equation (4.5.21) 

(4.5.22) 

and since Q is deviatoric ( Q: o-tr = 2J..l Q: d), we can determine"( from Equation (4.5.22) as 

y = (1 + J. /3J..l) Q:d (4.5.23) 

The current normal to the yield surface, Q, and the total strain rate, d, are known quantities. Hence, from 

Equation (4.5.23), y can be determined which can be used in Equation (4.5.9) to determine the plastic part of the 

strain rate which, with the additive strain rate decomposition and the elastic stress rate of Equations (4.5.8) and 

(4.5.12), completes the definition of the rate equations. 

We still must explain how to integrate the rate equations subject to the constraint that the stress must remain on 

the yield surface. We will show how that is accomplished in Section 4.5.4. 

4.5.2 Kinematic Hardening 

Just as before with the isotropic hardening case, we write a von Mises yield condition but now in terms of the 

stress difference 

(4.5.24) 

It is important to remember that a and ~ are devia~oric tensors. The consistency condition is written for 

kinematic hardening as 

(4.5.25) 

because the size of the yield surface does not grow with kinematic hardening; therefore, K = 0. Using the chain rule 

on Equation (4.5.25) 

(4.5.26) 
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and 

af =I af IQ = R Q 
a~ a~ 

Combining Equations (4.5.26) and (4.5.27) and assuming that R 'I= 0 

Q:~=O 

or 

Q:(S-a) =O 

(4.5.27) 

(4.5.28) 

(4.5.29) 

A geometric interpretation of Equation (4.5.29) is shown in Figure 4.5.3, where it can be seen that the backstress 

moves in a direction parallel to the normal to the yield surface. 

We must now decide how a is defined. Recall that for the isotropic hardening case, Equation (4.5.29), 

a 
• s 

• 
Q:S 

I 

I 
I 

I 

I 
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Figure 4.5.3. Geometric interpretation of the consistency condition for kinematic hardening. 
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The kinematic hardening condition assumes that 

(4.5.31) 

where q, is a material parameter. Equation (4.5.31) combined with Equation (4.5.29) gives a result identical to the 

isotropic hardening case, Equation (4.5.30), if$ is chosen to be 1-H'. Hence, either Equation (4.5.30) or (4.5.31) 

gives us a scalar condition on a . Note that both of these are assumptions and must be shown to be reasonable. Of 

course, experience with material models based on these assumptions has proven them to be reasonable 

representations of material behavior. 

Using Equation (4.5.30), the strain rate decomposition, Equation (4.5.8), and the elastic strain rate, Equation 

(4.5.12), in the consistency condition for kinematic hardening, Equation (4.5.29) gives 

(4.5.32) 

Taking the tensor inner product of both sides of Equation (4.5.32) with Q gives 

(4.5.33) 

Again, because Q is deviatoric; C:Q = 21! Q and Q:C:Q = 21!. 

Solving Equation (4.5.33) for"( gives 

(4.5.34) 

which is the same result as was obtained for the isotropic hardening case. 

4.5.3 Combined Isotropic and Kinematic Hardening 

For the combined hardening case, we define a scalar parameter, ~. which determines the amount of each type of 

hardening. We require that 

(4.5.35) 

Figure 4.5.4 illustrates the uniaxial response which will be computed for a for different choices of~· When 

13 = 0 we have only kinematic hardening, and when 13 = 1 we have only isotropic hardening. 

42 



E 

TRI-6348-10-0 

Figure 4.5.4_ Effect of the choice of the hardening parameter, f3, on the computed uniaxial response. 

(4.5.36) 

and 

(4.5.37) 

As before, we write a consistency condition 

Q:~=R (4.5.38) 

-or 

(4.5.39) 

Using the elastic stress rate and the additive strain rate decomposition with Equation (4.2.56) and taking the tensor 

product with the normal, Q 

Q:atr -·yQ:C:Q-Q:[~ H'y(l-~)}Q=Q{ .Jt H'.Jt ~Y }Q (4.5.40) 
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Solving for y 

which is the same result obtained for each of the independent cases. 

We summarize the governing equations for the combined theory: 

1 {0, elastic; f(~) < K
2 

dp = 

yQ, plastic; f(~) ~ K 2 

'Y = (1+ J. /~) Q:d 

4.5.4 Numerical Implementation 

(4.5.41) 

(4.5.42) 

(4.5.43) 

(4.5.44) 

(4.5.45) 

(4.5.46) 

(4.5.47) 

Our finite element algorithm requires an incremental form of Equations (4.5.41) through (4.5.43). Additionally, 

we must have an algorithm which integrates the incremental equations subject to the constraint that the stress remains 

on the yield surface. 

The incremental analogs of Equations (4.5.42) through (4.5.44) are 

(4.5.48) 

(4.5.49) 

and 

(4.5.50) 

where !:J.y represents the product of the time increment and the equivalent plastic strain rate (!:J.y = !:J.t y). 

44 



The subscripts nand n+ I refer to the beginning and end of a time step, respectively. 

We also need an incremental analog to the rate forms of the consistency condition given by Equations (4.5.13), 

(4.5.25), and (4.5.39). At the end of the time step, we insist that the stress state must be on the yield surface. Hence, 

the incremental consistency condition is 

(4.5.51) 

Equation (4.5.51) is shown graphically in Figure 4.5.5. 

Substituting the definitions given by Equations (4.5.48) through (4.5.50) into the consistency condition of 

Equation (4.5.51) 

Taking the. tensor product of both sides of Equation ( 4.5.52) with Q and solving for ,~;y 

TRI-6348·11-0 

Figure 4.5.5. Geometric interpretation of the incremental form of the consistency condition for 
combined hardening. 
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It follows from Equation (4.5.53) that the plastic strain increment is proportional to the magnitude of the excursion 

of the elastic trial stress past the yield surface (see Figure 4.5.6). 

Using the result of Equation (4.5.53) in Equations (4.5.48) through (4.5.50) completes the algorithm. In 

addition we can compute 

(4.5.54) 

and 

(4.5.55) 

The results of Equation (4.5.53) applied to Equation (4.5.48) show that the final stress is calculated by returning 

the elastic trial stress radially to the final yield surface at the end of the time step (hence the derivation of the name 

Radial Return Method). Estimates of the accuracy of this method and other methods for similarly integrating the rate 

equations are available in Krieg and Krieg ( 1977) and Schreyer et a!. ( 1979) Note that the last term in Equation 

(4.5.48) (the radial return correction) is purely deviatoric. 

Figure 4.5.6. Geometric interpretation of the radial return correction. 
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The elastic plastic material model uses six internal state variables: 

EQPS 

RADIUS 

ALPHA11 

ALPHA22 

ALPHA33 

ALPHA12 

- equivalent plastic strain 

- current radius of yield surface 

- 1,1 component ofbackstress in unrotated configuration 

- 2,2 component ofbackstress in unrotated configuration 

3,3 component ofbackstress in unrotated configuration 

- 1,2 component ofbackstress in unrotated configuration. 

Tile PROP array for this material contains the following entries: 

PROP(l) - Young's modulus, E 

PROP(2) - Poisson's ratio, v 

PROP(3) - Yield Stress, cryd 

PROP(4) - Hardening Modulus, H 

PROP(5) - p 

*PROP(6) - 2jl 

*PROP(7) - 3j.J. 

*PROP(8) - l/(21J.{l + H'/31J.)) (Note: H' = H/(1- EIH)) 

*PROP(9) - A. 

*PROP(lO) - 2P H'/3 

*PROP(ll) - 2(1 - p)H'/3 

4.6 Soils and Crushable Foams Model 

The soils and crushable foams model in SANTOS is a direct descendant of the model developed by Krieg 

(1978). One major difficulty with the original version of this material model which has confounded users is that 

the pressure dependence of the yield stress is expressed in terms of J2, the second invariant of the stress tensor. We 

have reformulated the model so that the yield stress is written directly in terms of the pressure. NOTE: this means 

that old data must be converted. 

The yield surface assumed is a surface of revolution .;1bout the hydrostat in principal stress space as shown in 

Figure 4.6.1. In addition, a planar end cap on the normally open end is assumed. The yield stress is specified as a 

polynomial in pressure, p {positive in compression) 

(4.6.1) 

The determination of the yield stress from Equation ( 4. 3 .1) places severe restrictions on the admissible values of 

ao. a 1, and a2. There are three valid cases as shown in Figure 4.6.2. First, the user may specify a positive ao, and 

a 1 and a2 equal to zero as shown in Figure 4.6.2a. This gives an elastic-perfectly plastic deviatoric response, and 

the yield surface is a cylinder oriented along the hydrostat in principal stress space. Second, a conical yield surface 
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Figure 4.6.1. Pressure-dependent yield surface for the soils and crushable foams material model. 

(Figure 4.6.2b) is given by setting a2 to zero and entering appropriate values of ao and a1. The program checks the 

user's input to determine whether a valid (negative) tensile fracture pressure, Pfr. results from the input data. The 

third case results when all three constants are nonzero and the program detects that a valid negative tensile failure 

pressure can be derived from the data. This case is shown in Figure 4.6.2c. A valid set of constants for the third 

case results in a parabola as shown in Figure 4.6.2c. We have drawn the descending portion of the curve with a 

dashed line, indicating that the program does not use that portion of the curve. Instead, when the pressure exceeds 

P*, the yield stress is held constant as shown at the maximum value. 

The plasticity theories for the volumetric and deviatoric parts of the material response are completely uncoupled. 

The volumetric response is computed first. The mean pressure, p, is assumed to be positive in compression, and a 

yield function is written for the volumetric response as 

(4.6.2) 

where fp(Ev) defines the volumetric stress-strain curve for the pressure as shown in Figure 4.6.3. This function is 

defined by the user with the restriction that the slope of the function must be less than or equal to the unloading bulk 

modulus, Ko. everywhere. If the user wishes the volumetric response to be purely elastic, he simply specifies no 

function identification (e.g., FUNCTION ID = 0). The yield function, IJ>p, determines the motion of the end cap 

along the hydrostat. 
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Figure 4.6.2. Forms of valid yield surface which can be defined for the soils and crushable foams 
material modeL 
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Figure 4.6.3. Pressure versus volumetric strain curve in terms of a user-defined curve, F(Ev), for the soils and 

crushable foams material model. 
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The mean volumetric strain is updated as 

(4.6.3) 

where Ev is the volumetric part of the strain rate ( E v = ~ tr d) . 

There are three possible regimes of the pressure-volumetric strain response. Tensile failure is assumed to occur 

if the pressure becomes smaller (more negative) than Pfr· The quantity Efr is initialized to -PfrlKo by the program. 

If tensile failure is detected, the pressure is set to -Pfr· Remember, pressure is negative in tension! Failure by 

monotonic tensile loading is shown in Figure 4.6.4a. As long as Ev < Efr, the pressure will remain equal to -Pfr. 

If the volumetric strain exceeds Efro a check is then made to see if 

(4.6.4) 

where Eu is the most positive (compressive) volumetric-strain previously experienced by the material, set initially to 

zero by the program. If Equation (4.6.4) is satisfied, the step is elastic and 

This elastic response is shown in Figure 4.6.4b. 

If Equation (4.6.4) is not satisfied, the volumetric response is along the curve defined by fp(Ev) and 

and we set 

E - En+l u- v 

(4.6.5) 

(4.6.6) 

(4.6.7) 

This response is shown in Figure 4.6.4c. Note, that if Equation (4.6.5) is used to determine p, we also drag Efr along 

so that if we unload from the curve, fp(Ev), we will fracture at the appropriate strain level as shown in Figure 4.6.4d. 

The deviatoric part of the response is computed next and uses a conventional plasticity theory with radial return. 

See Krieg and Krieg ( 1977). The trial elastic deviatoric stresses are computed as 

(4.6.8) 

where e is the deviatoric part of the strain rate. The current value of yield stress is calculated using Equation 

( 4.6.1 ), and the von Mises effective stress, cr, is computed as 
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Figure 4.6.4. Possible loading cases for the pressure versus volumetric strain response using the soils and 
crushable foams material mode. 

52 



(4.6.9) 

The yield condition is checked to determine whether cr < cryd 0 If this is the case, the trial stress is the correct 

deviatoric stress at the end of the time step, Sn+ 1 = str. If yield is exceeded, a simple radial return is performed to 

calculate the deviatoric stress at the end of the time step 

cr yd tr 
Sn+l =-=-S cr 

Finally, the total stress is determined by 

The Soils and Crushable Foams model uses four internal state variables: 

EVMAX 

EVFRAC 

EV 

- maximum compressive volumetric strain experienced (always positive), 

- current value of volumetric fracture strain (positive in compression), 

- current value of volumetric strain (positive in compression), 

(4.6.10) 

(4.6.11) 

NUM - integer pointing to the last increment in the pressure function where the interpolate was 

found. 

The PROP array contains the following entries for this material: 

PROP(l) - 211 

PROP(2) - Bulk Modulus, K 

PROP(3) -ao 
PROP(4) - al 

PROP(5) - a2 

PROP(6) - Function ID number. 

4. 7 Low Density Foams 

The low density foams model presented here was developed by Neilsen, Morgan, and Krieg (1987) and is based 

on results from experimental tests on low density, closed-cell polyurethane foams. These foams having densities 

ranging from 2 to 10 pounds per cubic foot have been proposed for use as energy absorbers in nuclear waste 

shipping containers. Representative responses of closed-cell polyurethane foams for various hydrostatic, uniaxial, 

and triaxial laboratory test conditions are shown in Figures 4.7.1 and 4.7.2. These results indicate that the 

volumetric response of the foam is highly dependent on load history. This implies that typical decompositions of 

total foam response into an independent volumetric part and a mean stress (pressure) dependent deviatoric part are 

not valid for this class of foam. Many "soil and crushable foam" models, including the other foam model described 
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Figure 4.7.1. Foam volume strain versus mean stress for 6602 foam at various confining pressures. 
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Figure 4.7.2. Foam volume strain versus mean stress for 9505 foam at various confining pressures. 
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in Section 4.6, use such decompositions and hence are not valid for low-density, closed-cell polyurethane foams. 

The model presented here reproduces experimental test responses more accurately for this class of foams than the 

model in Section 4.6. 

The experimental tests on which this model is based were performed by the Civil Engineering Research Facility 

of the University of New Mexico with the results reported in (Neilsen et al., 1987). Foam samples were subjected to 

static, compressive stresses during these tests. In most of the tests, air was trapped in the closed cells of the foams 

and could not escape because the samples were jacketed with an impervious material. In this constitutive model, the 

total foam response is decomposed into contributions from the skeleton and from air trapped in the closed cells of 

the foam. The contribution of the air to the total foam response is dependent on the application. If the foam is used 

in a vented application where the air can escape, the contribution of the air is zero and the foam and skeleton 

responses are identical. If the foam is used in an application where the air cannot escape (such as a sealed shipping 

container) the foam pressure is considered to be the sum of pressure carried by the skeleton and the air pressure. 

That is, 

Pf = Psk +Pair (4.7.1) 

where Pf and Psk are the mean stresses (first invariants of the stress tensor divided by three) of the foam and 

skeleton, respectively. The mean stresses and air pressure are assumed positive in tension. The air pressure is 

determined from 

Po'Y 
Pair=-"---"---

l+y-<1> 
(4.7.2) 

where'( is the engineering volume strain (first invariant of the total strains), which is positive in tension and p0 and cj> 

are model parameters. The parameter p0 is the initial foam pressure (usually atmospheric pressure of 14.7 psi), and 

«1> is the ratio of the foam density to the polymer density from which the foam is produced. 

Test data indicate that the skeleton response in any principal stress direction is independent of loading in any 

other principal stress direction. Thus, Poisson's ratio for the skeleton is equal to zero. Test data also indicate that the 

yield strength of the skeleton in any principal stress direction can be expressed in terms of the engineering volume 

strain and the second invariant of the deviatoric strains with the following relationship 

{

A+ B(l + Cy); II'£> 0 
fi = 

B(l + Cy); II'£= 0 
(4.7.3) 

where II£ is the second invariant of the deviatoric strain tensor; y is the engineering volume strain as in Equation 

(4.7.2); A, B, and Care constants determined from fitting Equation (4.7.3) to the laboratory data. Constants Band C 

are determined from hydrostatic test data where II'E is zero, and A is determined from any test where the loading is 

deviatoric. 

Numerical implementation of the model is as follows. Foam stresses and strains from the previous time increment 

are saved. At the beginning of the next time increment, the old skeleton stresses are computed from the old foam 
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stresses and the old air pressure. The strain rates for the new time increment are used to determine new strain 

increments and trial elastic stress increments for the skeleton. These stress increments are added to the old skeleton 

stresses to produce new trial stresses for the skeleton. The trial skeleton stresses are then rotated to principal stress 

directions and compared with the yield stress determined from Equation (4.7.3). If yield occurs, the skeleton stresses 

are set to the yield stress. If yield does not occur, the trial skeleton principal stresses become the final skeleton 

principal stresses. The final skeleton stresses are obtained by rotating the final skeleton principal stresses back to the 

unrotated configuration .. Then, the final foam .stresses are obtained by adding the air pressure contribution for the 

new strain state to the new skeleton stresses. 

Input parameters for the model are the constants E, p0 , <\>. A, B, and C, which are defined above. If the foam is 

used in an application where the air can escape, p0 should be input as zero. Otherwise, Po is the atmospheric 

pressure at the beginning of the simulation. 

There are no internal state variables for this model. 

The PROP array contains the following entries for this material type: 

PROP(l) - Young's modulus, E 

PROP(2) - A 
PROP(3) - B 
PROP(4) - c 
PROP(5) - NAIR 

PROP(6) - Po 
PROP(7) - <\>. 

4.8 Elastic-Plastic Power Law Hardening Material 

One of the more commonly used models in the SANTOS material library is the elastic-plastic combined 

isotropic/kinematic hardening model. This model considers the hardening modulus to be a constant, which means 

that the post-yield effective stress, cr, versus effective plastic strain, Ep, relationship is linear. For a large class of 

important problems, a linear cr versus Ep relationship may be adequate for the post-yield behavior over the range of 

interest. This, however, places a severe restriction on the materials to be modeled or requires a priori information 

about the expected strain levels in the problem so that an approximate hardening modulus may be selected to 

produce a good approximation to the correct stress state based on the expected strain values. In addition, the strain 

range of interest must be small (no large strain gradients) so that the linear hardening relationship is applicable. 

However, there are classes of problems in which the linear approximation for plastic hardening is inadequate. A 

constant hardening modulus cannot adequately describe the post-yield behavior to predict structural behavior in the 

detail required. Determination of limit load response is an example of a class of problems for which linear hardening 

is inappropriate. 

To overcome these restrictions, a variable hardening plasticity model (Stone et al., 1990) has been included in 

SANTOS. The use of piecewise linear segments to represent the hardening curve was an initial consideration based 

on the capability to match any material hardening behavior, but the resulting material model subroutine was not 
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not amenable to vectorization. Vectorization requirements limit the form of the model to a functional relationship 

between effective stress and effective plastic strain. The form of the current implementation considers the post­

yield stress to be described by a power law involving the equivalent plastic strain with the option to include a 

Liiders strain segment. The form of the hardening model was selected for its simplicity and ability to match the 

post-yield behavior of many engineering materials. The model has the form during a plastic loading process 

(4.8.1) 

where A and m are material constants, Ep is the equivalent plastic strain, cr is the effective stress, crys is the initial 

yield stress, and EL is the Liiders strain or yield plateau strain. The use of brackets in the above equation denotes 

the use of a Heaviside function. The function is zero until the arithmetic expression within the brackets becomes 

positive. The material constants for this model can be determined from the measured stress versus strain data 

through simple curve fitting techniques. By suitably choosing the material constants A and m, the form of the 

model can represent either elastic/perfectly plastic or linear hardening material behavior in addition to the power 

law hardening response. The proposed material model is strictly valid for isotropic hardening behavior where the 

radius of the yield surface grows equally in all directions due to plastic straining. 

Many engineering materials exhibit the phenomenon of Liiders straining. A typical stress versus strain curve 

for such a material is shown in Figure 4.8.1. In reality, Liiders strain does not occur at constant stress but rather in 

a serrated fashion. Each serration corresponds to the formation of a new Liiders band. The serrations are small 

enough that a constant stress representation is adequate. In common ferrous alloys, Liiders strain as well as other. 

yield point phenomena are generally associated with the interaction between solute atoms and dislocations. 

The constitutive routine is entered with the stress state at the beginning of the step, S~, the strain-rate over the 
lj 

step, Eii, and the time step, At. An elastic trial stress, S~~, is computed and a von Mises yield criterion is used to 
:J lj 

compute a trial effective stress, crtr, which is compared to the current radius of the yield surface. If the trial 

effective stress is less than the radius of the yield surface, then the load step is elastic and the trial stress becomes 

the final stress, S ij + 1 
. If the effective stress is greater than the radius of the yield surface, then plastic straining 

will occur over the step and the final stress state and plastic strain increment remain to be computed. 

The expression for the stress at the end of the step is 

s~+ 1 = s~ + s .. (s~+ 1 )tt.t 
lj lj lj lj 

(4.8.2) 

· n+l where we have used a backward Euler integration for the stress. The stress rate at the end of the step, Sij , is 

computed as follows 

(4.8.3) 

where Ep·· are the components of plastic strain. 
IJ 
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Figure 4.8.1. Stress versus strain curve for a typical ferritic steel exhibiting Ltiders strain. 

For von Mises flow, we can write the above as 

· n+ 1 . 3y ij 

( 

Sn+l J 
sij = 2J..t£ij -2~ 2 (jn+l (4.8.4) 

where 'Y is a scalar quantity. 

S b . . h b . s: s· n+ 1 . h . s: sn+ 1 1 . u stltutmg t e a ove expressiOn tor . . mto t e expression tOr . . resu ts m u u 
s!"!+l 

n+l n · D 
Sij =Sij +2Jl£ij.6.t-3~-n+l .6.y 

. (J 
(4.8.5) 

where !:l."f = "(l:!.t. The first two expressions on the right-hand-side of the equatio~ define the trial stress s~~ so that the 
lJ 

final expression becomes 

( 

5n+l J s~+ 1 = sr~- 3"-ij_~Y 
IJ IJ ,..... -n+l (j 

(4.8.6) 
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We make use of the following identity 

sP+1 s~ 
IJ IJ ---=--

-n+l 
(j 

to get the final expression for the stress at the end of the step 

sP+l = s~r(I- 3~y) 
IJ IJ -tr 

(j 

(4.8.7) 

(4.8.8) 

The plastic strain increment ll.y, is the only unknown in the equation. To solve for the plastic strain increment, 

we must go back to our expression for the yield function. Combining the yield function with the expression for 

s~+l and making use of the identity, we get 
lJ 

-tr (-n A, )m cr - 3~y = cr ys +A Ep + u"f- E L (4.8.9) 

which is solved for !::J:y using Newton Raphson iteration. The computed value of ll.y is substituted back into the 

expression for S~+ l, Equation (4.8.8). 
lj 

The bulk response is assumed to be linear elastic. The pressure at the end of the step is calculated using the 

volumetric strain rate, dkk, through the relation 

Pn+l = Pn + Kdkk~t (4.8.10) 

where K is the bulk modulus of the material, ll.t is the time step size, and pn is the pressure at the beginning of the 

step. The stress from the deviatoric and bulk responses are combined to give the final stress state. 

The power law hardening material uses two internal state variables: 

RADIUS 

EQPS 

- current radius of the yield surface 

- equivalent plastic strain. 

The PROP array for this material contains the following entries: 

PROP( I) - Young's modulus, E 

PROP(2) - Poisson's ratio, v 

PROP(3) - Yield Stress, crys 

PROP(4) - Hardening constant, A 

PROP(5) - Hardening exponent, m 

PROP(6) - Liiders strain, £L 

* PROP(7) - 2Jl 

* PROP(8) - 3Jl 

* PROP(9) - A.. 
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4.9 Power Law Creep Material Model 

The power law creep material model described here is commonly used to model the time-dependent behavior of 

metals, brazes, or solders at high homologous temperatures as well as the time-dependent behavior of geologic 

materials such as salt. The model is cast as a conventional power law secondary creep model of the form 

(4.9.1) 

where a is the effective deviatoric stress, A and m are material constants, 9 is the absolute temperature, R is the 

universal gas constant { 1.987 m~~~K), and Q is the activation energy. 

We choose to write the expression for the deviatoric stress at the end of the step as 

where we have used a forward Euler integration for the stress. We can write the stress rate at step n as 

where Ec .. are the creep strain rate components. The creep strain rate components for von Mises flow are 
IJ 

(4.9.2) 

(4.9.3) 

(4.9.4) 

where Ec is the effective or equivalent creep strain rate. Substituting into the expression for the stress rate gives 

S. n 2 (· 3 A (-Qfm-lsn) .. = 11 E · · -- exp - cr ·· 
lJ ,.... lJ 2 R8 lJ (4.9.5) 

where a is evaluated at step n. The stress rate is computed and stored as a state variable for use during step n+ 1. 

Numerical analysis of the forward Euler operator shows that the method is conditionally stable. It is possible to 

calculate an estimate of the critical time step for stability of the forward Euler operator based on the form of the flow 

potential and the elastic constants (Cormeau, 1975). Following procedures outlined in Cormeau (1975), the critical 

time step for stability is calculated to be 

A 4(1+ U) 
otst < ( ) 

3EA exp -Q mcrm-l 
R8 

(4.9.6) 

where E and u are Young's modulus and Poisson's ratio, respectively. Accuracy of the method is assured if the time 

steps are sufficiently small. but the stable time step does not guarantee an accurate solution. However, our 

experience with the method has shown that the solution obtained using Lltst is indeed accurate. The standard power 
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law secondary creep model is requested in SANTOS by using the material name POWER LAW CREEP while the 

adaptive time-stepping version is requested by using the name ADAPTIVE PL CREEP. 

The volumetric behavior of the material is assumed to be linearly elastic as shown below 

(4.9.7) 

where K is the bulk modulus, dkk is the volumetric strain rate, Lit is the time step size, and pn is(4.9.6) 

the pressure at the beginning of the step. The stress from the deviatoric and bulk responses is combined to give the 

final stress state for the material. 

The power law creep material uses a single state variable: 

EQCS - equivalent creep strain. 

The PROP array for this material contains the following entries: 

PROP( I) 

PROP(2) 

PROP(3) 

PROP(4) 

PROP(5) 

- 2~ 

- K 
- A 
- m 

- R~ if isothermal or ~ if not. 

4.1 0 Thermoelastic Material Model 

This material model represents the behavior of an elastic material with temperature-dependent material 

constants. Both Young's modulus and Poisson's ratio are allowed to vary with temperature. The values of Young's 

modulus and Poisson's ratio at the beginning (step n) and end (step n+ 1) of the time step are stored as state variables. 

The relationship between the property value and temperature is specified using a FUNCTION definition. 

We will choose to separate the stress and strain behavior into bulk and deviatoric response. The resulting 

equation for the elastic deviatoric stress response is 

S~+1 = 2J.L(E>n+1)E~+1 
IJ IJ (4.10.1) 

where the shear modulus ~ is a function of the temperature, en+ 1, at the end of the step. For our numerical 

implementation, we will cast the problem in an incremental form. The stress at the end of the step now becomes 

Sn+1 sn s' (sn+1) A ij = ij + ij ij ut 
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We choose to write the stress rate term, Sij, as 

(4.10.3) 

with the expression for Ji( en+ I) defined as 

(4.10.4) 

This definition for the stress increment is neither a pure forward or backward Euler representation but a hybrid 
method where we choose to use the total strain at the beginning of the step along with a backward difference for 

s~ . 

Ji( en+ I) . If we employ the fact that Eij = ( lJ n) , we can write the final expression for the deviatoric stress as 
211 e 

(

ll(en+l)l 
s!1+l = s!1 +2n(en+l \; .. .6.t 

lJ lJ ( n) ,.., /lJ 
J.18 

(4.10.5) 

The temperature-dependent elastic bulk response is computed in a similar fashion. The equation for the bulk 

response at step n+ 1 is 

(4.10.6) 

We can write the above equation in an incremental form that is more suitable for numerical implementation. 

(

K(en+l)J 
crn+l = O'n + 3K{en+l \.; .6.t 

kk kk ( n) /kk K8 

The stress from the deviatoric and bulk responses is combined to give the final stress state. 

The thermoelastic material uses the following state variables: 

YMO 

YMl 

XNUO 

XNUl 

- Young's modulus at the beginning of the step 

- Young's modulus at the end of the step 

- Poisson's ratio at the beginning of the step 

Poisson's ratio at the end of the step. 

The PROP array for this material contains the following entries: 

PROP(l) 

PROP(2) 

- Young's modulus, E 

- Poisson's ratio, v 
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PROP(3) 

PROP(4) 

- Modulus function identification 

- Poisson's ratio function identification. 

4.11 Thermoelastic-Plastic Power Law Hardening Material Model 

This material model represents the behavior of an elastic-plastic power law hardening material with temperature­

dependent material constants. Both Young's modulus and Poisson's ratio are allowed to vary with temperature along 

with the material yield stress. The values of Young's modulus, Poisson's ratio, and yield stress at the beginning and 

end of the time step are stored as state variables. The relationship between the material property value and 

temperature is specified using a FUNCTION definition. 

We will separate the material behavior into deviatoric and bulk responses. If we consider only deviatoric 

behavior, the model has the following form during a plastic loading process 

(4.11.1) 

where A and m are material constants, O"ys is the temperature-dependent initial yield stress, Ep is the equivalent 

plastic strain, a is the effective stress, and EL is the Liiders strain or yield plateau strain. The use of brackets in the 

above expression denotes the use of a Heaviside function. The function is zero until the arithmetic expression within 

the brackets becomes positive. The material constants for this model can be determined from measured stress versus 

strain data through simple curve-fitting procedures. By suitably choosing the material constants A and m, the form 

of the model can represent either elastic/perfectly plastic or linear hardening material behavior in addition to the 

power law hardening response. The temperature dependence is captured by allowing the initial yield stress and 

elastic constants to be a function of temperature. 

The expression for the stress at the end of the step is 

s.. = s .. + s .. s.. ~t n+l n · (" n+1) 
IJ IJ IJ IJ 

where we have used a backward Euler integration for the stress. The stress rate at the end of the step, 

defined as follows 

s .. = 2~(en+IYe!1-en )+2J.L(en+I)ce·· -£ ) 
IJ A. IJ Pij IJ Pij 

(4.11.2) 

s~+l, is 
lJ 

(4.11.3) 

where Ep·· are the components of the plastic strain. We choose to use this expression for the stress rate because in 
IJ 

the absence of plastic strain we recover the same expression for the stress as derived for the thermoelastic model. 

We define the difference expression for ~( 0 n+ 1 ) as 

ll(en+l )-ll(en) 
J.i(en+l) = ~t (4.11.4) 
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For von Mises flow, we can write the above as 

(4.11.5) 

where 'Y is a scalar quantity. 

S b . . h b . ., s' n+l. h . ., sn+l l . u stttutmg t e a ove express tOn .or . . mto t e expressiOn .or . . resu ts tn 
ij ij 

[

Jl(en+l )J sn+I 
s!1+l = S!1 + 211(en+l \c. ··~t- 3••(en+l )_jj__~v 

IJ IJ ( n ) ,... /•J ,... - n +I ' J.10 cr 
(4.11.6) 

where !l."( = -y!l.t. The first two expressions on the right-hand-side of the equation define the trial stress s~~ so that the 
lj 

final expression becomes 

We make use of the following identity 

to get the final expression for the stress at the end of the step 

s ~+I = s !r [~- _3Jl_;_( e_n_+ 1-'--)~_Y J 
IJ IJ -tr · cr 

(4.11.7) 

(4.11.8) 

(4.11.9) 

The plastic strain increment, !l.y, is the only unknown in the equation. To solve for the plastic strain increment, 
we must go back to our expression for the yield function. Combining the yield function with the expression for 

. sij+ 1 and making use of the identity, we get 

(4.11.10) 

which is solved for !l.-y using Newton Raphson iteration. The computed value of !l.-y is substituted back into the 
expression for s~+ l, Equation ( 4.11.9). 

lJ 

The bulk response is assumed to be linear elastic. The pressure at the end of the step is calculated using the 
volumetric strain, Ekk, through the relation 
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(j n+l 3K(an+l \ ... n+l 
kk = \'::J jkk (4.11.11) 

where K( en+ 1 ) is the temperature-dependent bulk modulus at the end of the step. Following the procedure 

outlined for the thermoelastic material model, we can arrive at the final expression for the bulk response. 

The stress from the deviatoric and bulk responses is combined to give the final stress state. 

The thermoelastic-plastic material uses the following state variables: 

EQPS 

YMO 

YM1 

XNUO 

XNUl 

YSO 

YS1 

RADIUS 

- Equivalent plastic strain 

- Young's modulus at the beginning of the step 

- Young's modulus at the end of the step 

- Poisson's ratio at the beginning of the step 

- Poisson's ratio at the end of the step 

- Yield stress at the beginning of the step 

- Yield stress at the end of the step 

- Radius of the yield surface. 

The PROP array for this material contains the following entries: 

PROP(1) 

PROP(2) 

PROP(3) 

PROP(4) 

PROP(5) 

PROP(6) 

PROP(7) 

PROP(8) 

PROP(9) 

- Young's modulus, E 

- Poisson's ration, v 

- Yield stress, cry 

- Modulus function identification 

- Pr function identification 

- Yield function identification 

- Hardening constant, A 

- Hardening exponent, m 

- Luders strain, EL· 

4.12 Multi-mechanism Deformation (M-D) Creep Model 

(4.11.12) 

A multi-mechanism deformation (M-D) model proposed by Munson and Dawson (1979, 1982, 1984) and 

extended by Munson et al. ( 1988) has been included in SANTOS to model the creep behavior of rock salt. This 

model, which is based on the deformation map for salt, describes the relationship between the steady-state creep rate, 

stress, and temperature in terms of three deformation mechanisms in salt. Two of these mechanisms are dislocation 

glide and dislocation climb. The effects of a third mechanism are also included in the M-D model. Although this 

mechanism has not been characterized in terms of microstructural processes, its effects are observed in creep 
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experiments. Transient workhardening and recovery responses are incorporated through a state variable function 

that modifies the steady-state creep rates. 

In the M-D model, the equivalent creep strain rate at steady-state, Es, is assumed to be equal to the sum of three 

terms, each arising from one of the three mechanisms described above, i.e., 

(4.12.1) 

The three equivalent strain rates appearing on the right-hand-side of the above equation are given by the 

following functions: 

(4.12.2) 

(4.12.3) 

(4.12.4) 

where the Ai's, Bi's and ni's are constants, the Qj'S are activation energies, e is the absolute temperature, R is the 

universal gas constant, 1.1. is the elastic shear modulus, ae is the equivalent stress, q is a constant, a 0 is the stress limit 

of the dislocation slip mechanism, and H is the Heaviside step function. In the above equation, Es1 represents the 

effects of the dislocation climb mechanism, Es2 represents the effects of the unidentified mechanism, and Es3 

represents the effects of the glide mechanism. The relationship between Oe and the components of the stress tensor 

under general loading conditions depends on the choice of the stress generalization and will be discussed later. 

Transient creep is incorporated in the M-D model through the use of a scaling function F, which modifies the 

steady-state creep rate. The total equivalent creep rate E. is given by: 

(4.12.5) 

The arguments of the transient scaling function are equivalent stress, temperature, and an internal state variable, 

~· The evolution of ~ is described by a separate rate equation. Three branches of the function F can be identified: 

(I) a workhardening branch where F assumes a value greater than unity, (2) an equilibrium branch where F is equal 

to unity, and (3) a recovery branch where F is less than tJnity. The expression for F is 

(4.12.6) 

* F = 1 for c; = £ t (4.12.7) 
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(4.12.8) 

In the above equations, ll and 8 are referred to as the workhardening and recovery functions, respectively, 
* while st is referred to as the transient strain limit. The workhardening and recovery functions are assumed to be 

of the form 

~ = <lw + ~w lo~ cr!le) 

6 = <lr + ~r log( cr!le) 

The transient strain limit is a function of temperature and stress given by 

e; = K 0 exp(ce>( ":f 
where Ko and c are constants. Finally, the evolution equation for the internal variable l;; is 

(4.12.9) 

(4.12.10) 

(4.12.11) 

(4.12.12) 

To complete the generalization of the M-D constitutive model, an equivalent stress and flow rule for the creep 

strain rate must be defined. These two definitions provide the necessary linkage among the three-dimensional 

stress state, the creep strain rate, and the invariant creep relationships described earlier. According to Munson et 

al. (1988), the Tresca stress generalization provides the most appropriate definition of the equivalent stress for rock 

salt. With the Tresca stress generalization, the equivalent stress becomes 

(4.12.13) 

where \II is the Lode angle defined by 

In the two preceding equations, J2 and J3 are the second and third invariants of the deviatoric part of the stress 

tensor, and cr1 and cr3 are the maximum and minimum principal stresses, respectively. The flow is assumed to be 

associative so that the direction oft is normal to the Tresca flow surface. Unfortunately, the normal is undefined 

as 'V = ± ~ where sharp comers exist in the Tresca flow surface. At these locations, the flow is assumed to be 

normal to the von Mises flow surface. The von Mises flow surface is characterized by a constant value of cr vm e 
where 
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Note that cr~m = cr~ for 'If=~. 

The expression for the effective or equivalent creep strain rate, ~-.for Tresca flow is 
lJ 

E~ = e[ cos28 S·· + sine.J3 (s· s . -2J 2 0··)] 
IJ COS 38.jf; IJ COS 38J 2 lp PJ 3 IJ 

where e can be replaced by F£5 . The resulting expression for the stress rate, S~} now becomes 

· n 2 ( · F · [ cos 28 S n sin e.J3 (s n S n 2J 2 s: )]) Sij = ~ Eij- Es fT ij + 38J ip pj ---uij 
cos38-vJ 2 cos 2 3 

which is highly nonlinear. 

(4.12.14) 

(4.12.15) 

(4.12.16) 

Integration of this equation and the evolutionary equation governing the rate of change of ~ requires the use of a 

numerical procedure. Studies of various numerical integration methods have revealed that simple forward Euler 

integration is as effective as any method. Following the methodology outlined previously for the Power Law Creep 

Model, the stress at step n+ 1 is simply 

(4.12.17) 

and in a similar fashion 

(4.12.18) 

The forward Euler operator is conditionally stable. The critical time step for stability can be determined using 

the method of Cormeau ( 1975) based on the form of the flow potential and the elastic constants. This has been done 

for the M-D model. Two estimates for the critical time step are computed, and the minimum of the two is used for 

the calculation. These time step estimates are given by 

(4.12.19) 

and 

(4.12.20) 

where 'tmax = cose.Jf2 = ~. The equivalent Tresca stress, a, is the value at the end of step n. 
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Accuracy of the method is assured if the time steps are sufficiently small, but using the stable time step cannot 

be guaranteed to always produce an accurate solution. However, comparison of results using this integration method 

with known solutions for complex two- and three-dimensional creep problems has shown the method to be very 

accurate when the stable time step is used. 

For a typical application, the time increment, .:ltstl• is smallest when a is largest, and as the effective stress 

decreases, such as when the problem approaches steady-state creep, the critical time step increases. In most 

instances, the user-specified time step, .:lt, will be larger than the time step needed for stability, min(Llfstt, Lltst2)· 

Therefore, the solution time step is broken into subincrements for integrating the constitutive model with the size of 

each subincrement changing with the stress. The subincrementation procedure is discussed at the beginning of this 

chapter. 

The transient creep part of the M-D model causes the stress to change rapidly, which causes the time step to be 

very small. The adaptive time step feature was developed to accommodate the small time step initially and allow it 

to grow as the solution proceeds toward steady state. Experience has shown that an initial time step size of 1.0 x 1 o-
5 seconds works well with a tolerance of 0.01. The maximum time step size depends on the time scale of the 

problem and the degree of nonlinearity. 

The M-D creep model uses the following state variables: 

EQCS 

ZETA 

SDOT 

TRESCA 

ETSTAR 

- equivalent creep strain 

- current values of the evolutionary parameter 

- stress rate for the current time step 

- equivalent stress computed using TRESCA criterion 

- transient strain limit. 

The PROP array for this material contains the following entries: 

PROP(l) - 211 

PROP(2) - K 
PROP(3) - AI 

PROP(4) Ql 
R 

PROP(5) - nl 

PROP(6) - Bl 

PROP(7) A2 

PROP(8) 
Q2 
R 

PROP(9) - n2 

PROP(IO) - B2 

PROP(ll) - O"Q 

PROP(l2) - q 

PROP(l3) - m 

PROP(l4) -Ko 
PROP(l5) - ce 
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PROP(16) 

PROP(l7) 

PROP(l8) 

PROP(l9) 

PROP(20) 

-<Xw 
- ~w 
- () 

- RN3, exponent of workhardening and recovery term used to compute F 

- AMUL T, scalar multiplier of time step needed for stability (default 0.98) 

4.13 Volumetric Creep Model 

The consolidation behavior of geomaterials and salt, in particular, is of interest to analysts because of the use of 

these materials as backfill and as a sealing material in waste disposal applications. The volumetric creep model 

implemented in SANTOS is based on the work of Sjaardema and Krieg (1987), who developed their model based on 

the hydrostatic consolidation tests of salt with added water by Holcomb and Shields (1987). Time-dependent 

behavior is included in both the volumetric and the deviatoric response. The form of the model is such that the 

mechanical response of the consolidated material becomes identical to that of the intact material as the density 

approaches that of the intact material. The elastic moduli were found from the tests to depend on the density, p, of 

the material through relationships of the form 

K = K0 exp(K1p) (4.13.1) 

!l = !lo exp(!liP) (4.13.2) 

where KQ, K 1, J.IO• and 111 are material constants. 

For the discussion of the volumetric creep model, it is appropriate to decompose the total strain rate into 

volumetric and deviatoric parts. Because intact salt creeps deviatorically when subjected to a deviatoric stress state, 

crushed salt should logically be expected to creep deviatorically. This expectation becomes more reasonable as the 

density increases because, in the limit, the crushed salt becomes intact salt. The deviatoric crushed salt creep model 

presented here is based on the power law secondary creep model, which has been used to describe the creep behavior 

of intact salt. This model is described in Section 4.9, Power Law Creep Material Model. 

The development proceeds by envisioning that the porous crushed salt uniaxial sample is composed of cylinders 

of salt, each of which has the intact salt secondary creep behavior separated by areas of open space. The local stress 

acting on the salt cylinders is then stated in terms of the average stress on the porous sample. The cross-sectional 

area of the porous sample is expressed in terms of the net cross-sectional area of the salt cylinders. The final 

resulting continuum model for the rate of the deviatoric stress of crushed salt is then 

(4.13.3) 

where the constants A, Q, m, and Poo refer to values for the intact material. The integration of the deviatoric part of 

the stress is performed using the forward Euler operator. The integration method is the same as used for the power 

law creep model, and the details of the integration may be found in Section 4."9, Power Law Creep Material Model. 
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The volumetric part of the model can be written as the sum of elastic and inelastic parts as shown below 

(4.13.4) 

where dkk is the volumetric strain rate, p = cr~k is the rate of change of the pressure, dh is the volumetric creep 

strain rate, and K (p) is the density-dependent bulk modulus. Laboratory consolidation tests on crushed salt have 

shown the volumetric creep strain rate to be fit well by an expression of the form 

(4.13.5) 

where Bo, B 1, and A are material constants obtained from the experiments. The density p is computed from the 

relationship 

(4.13.6) 

where PO is the density at time to. Equation (4.13.4) is solved for p and combined with the definition of the 

volumetric creep strain rate, Equation (4.13.5), to produce 

(4.13.7) 

which is the expression to be integrated. 

The expression for the pressure is integrated using the backward Euler operator. This operator is 

unconditionally stable for any time step size. The expression for the pressure at the end of the step is 

(4.13.8) 

which can be rewritten using the above equation as 

(4.13.9) 

Let us define a trial pressure as ptr = pn + K{pn+ 1 )ctkkdt, which lets us rewrite the above expression as 

(4.13.10) 
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We need to solve the above expression for the pressure, pn+l, for which we have chosen to use a Newton 

Raphson scheme with a fixed number of iterations. Once we have the pressure at the end of the step, it is combined 

with the deviatoric stresses to produce a trial stress state for the material. The trial stresses are accepted as the final 

stresses if: (1) the mean stress is tensile; (2) the out-of-plane trial stress is compressive; or (3) the mean stress is 

compressive, and the out-of-plane trial stress is tensile but is less than 10% of the absolute value of the mean stress. 

If these conditions are not met, then the deviatoric stresses are scaled back so that the out-of-plane stress is equal to 

10% of the absolute value of the mean stress. 

The volumetric creep material model uses the following state variables: 

EQCS - equivalent creep strain 

DENSITY - current density of the consolidating material. 

The PROP array for this material contains the following entries: 

PROP(l) - 2J.!. 

PROP(2) - K 

PROP{3) - A, creep constant 

PROP(4) - m stress exponent 

PROP(5) - R~ if isothermal or ~ if not 

PROP(6) - Ill, shear exponent 

PROP(7) - K 1, bulk exponent 

PROP(8) - Bo 

PROP(9) - BJ 

PROP(IO) - At 

PROP(ll) - Pintact• intact density 
PROP(l2) - PO• initial density. 

4.14 Viscoelastic Material Model 

The mechanical response of many plastics, rubbers, epoxies, glasses, and other polymeric compounds can be 

described quite well by a linear viscoelastic constitutive law. In the absence of any changes in temperature, the stress 

at timet in a linear material with memory depends only on the past strain history. This can be expressed in general 

terms as 

t 

sij = 2 J G(t- 't)Eij('t)d't (4.14.1) 

-oo 

for the shear response and 

t 

akk = 3 J K( t- 't )tkk ( 't)d't (4.14.2) 
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for the bulk response, where G(t) and K(t) are the shear and bulk relaxation moduli, respectively. 

Unlike elastic constitutive equations in which the material moduli are constants, viscoelastic relations employ 
moduli that relax over some period of time. A specific form for the relaxation moduli is obtained by considering the 

mechanical analogy of the standard linear viscoelastic solid shown in Figure 4.14.1. The springs represent the elastic 

response and the dashpots represent the viscous response. By stringing together N such elements the relaxation 

moduli can be written as (Ferry, 1970) 

Ns 
G(t) =Goo+ L (Ga- Goo~ -{3~ (t) 

a= I 

(4.14.3) 

TRI·6348·42·0 

Figure 4. I 4.1 Mechanical analogy of the standard linear solid. 
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and 

Nb 
K(t) = Koo + L {Ka- Koo ~-j3~(t) 

a=1 

(4.14.4) 

where the Ws are relaxation constants (1/~ =relaxation time) and Goo and Koo are the long-time moduli. Since the 

bulk and shear behaviors are assumed to be independent, Nb may be different from Ns and the same goes for j3b's 

and the j3S's. Ideally, an arbitrary number of elements could be used to gain the most accurate representation of the 

behavior of the material. However, because of computer storage considerations, modeling of the bulk response is 

limited to one term while the shear response is limited to a three-term representation. It should be noted that 

Equations (4.14.3) and (4.14.4) differ slightly from the usual representation in that the long-time modulus is 

subtracted from each relaxation modulus. This was done to simplify the data format, but caution should be used in 

determining material property data for the material model to ensure that it conforms to the form of Equations 

(4.14.3) and (4.14.4). 

The constitutive law discussed above is based on the assumption that the entire body remains at a uniform 

temperature. The relaxation moduli and the material parameters necessary to evaluate them can be regarded as 

having been determined at a base-line temperature, eo. To evaluate the effects of temperature changes, first let us 

consider the modifications to the constitutive law if a uniform change in temperature is allowed. To do this, let G(t, 

e) be the shear relaxation modulus at the constant temperature, e. The remainder of the theory will be developed 

using the shear modulus as an example. The modifications to the bulk modulus are handled in the same manner and 

will not be repeated. 

Using a change of variable, the shear modulus at the base-line temperature can be written as a function of log t. 

We can now apply the hypothesis of temperature-time equivalence (Ferry, 1970; Leaderman, 1943; Ferry, 1950), 

which states that all response functions (e.g., relaxation moduli) are affected by the uniform temperature change only 

within a corresponding uniform shift of the logarithmic time scale. Materials exhibiting this kind of behavior have 

come to be termed "thermorheologically simple" materials (Schwarz) and Staverman, 1952) This leads to the 

following form for the relaxation moduli: 

G( t, E>) = L[log t + qJ(E>)] 

where 'P(e) is the "shift function" and is usually written as 

\{i(E>) =log <p(E>) 

where the "shift factor," <p(e), conforms to 

If we now define a "reduced time" by 

d <p(El0 ) = l,<p(E>) > o,-<p > o 
dE> 

~ = t<p(E>) 
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then 

G(t.0)=G(~). (4.14.9) 

This means that the entire family of response functions can be determined by one member G(t) = G(t, E>o). 

provided the shift factor is known. The shift factor is assumed to be a material property that can be determined 

experimentally. It should be noted that the temperature dependence of the responses in shear and in bulk could be 

governed by two different shift functions. However, this is ruled out by the assumption of a thermorheologically 

simple material because the relaxation modulus in tension displays the shift property only if the bulk and shear shift 

functions are identical (Muki and Sternberg, 1961). 

An additional modification required to account for varying temperature is that the concept of reduced time has 

to be redefined. Morland and Lee ( 1960) have shown that if the reduced time is defined as 

t 

~(x,t)= J<~>[e(x.A.)]dA. (4.14.10) 

0 

then a generalized relaxation integral law can be derived from Equations (4.14.3) and (4.14.4). Assuming no 

deformation has taken place before time, t = 0, the constitutive model can be written in the following form: 

t 

~(x.t)= J <p(e(x,A.)]dA. 
0 

t 

Sij(x, t)= 2 f G(~ -~')£ij(x, -r)d-r 
0 

t 

crkk(x. t) = 3 J K(~ -~')£kk(x;t)d't 
0 

N 

G(~-~')=Goo +I (Ga -Goo~-~~(~-~') 
a=l 

(4.14.11) 

For problems where changes in temperature are important, the shift factor must be specified. For convenience, a 

specific form of the shift factor is incorporated into the material subroutine. An empirical equation which has been 
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been shown to reflect accurately the behavior of many polymers near the glass transition temperature is used. This 

equation, known as the WLF equation (Ferry, 1970; Williams, 1955; Williams et al., 1955) is given by 

(4.14.12) 

where c? and C~ are WLF constants which have been determined for many common polymers (Ferry, 1970). If 

a different shift factor is available for the material of interest, it can easily be incorporated into the subroutine in 

place of the WLF equation. 

Integration of the shear and bulk equations is done in an identical manner. The equations could, in principle, 

be integrated directly. However, this would require additional computer storage because the integration for each 

time step is over all previous history. The storage requirements for this method would be prohibitive. A better 

method for determining the stresses at each time step is based on the development of a recursion relation so that 

the stress at time n+ 1 can be determined from historical quantities at time n and the current value of the strain rate. 

The development of this recursive method as implemented in SANTOS is described in Costin and Stone (1985). 

The deviatoric and the bulk stress components are combined to give the final stress state for the material. 

Historical information for each stress component is stored as a state variable. The viscoelastic material has the 

following state variables: 

BLKDECAY single term bulk pressure 

DECAYX1 shear relaxation term 1 x-stress 

DECAYYl shear relaxation term 1 y-stress 

DECAYZ1 shear relaxation term 1 z-stress 

DECAYXY1 shear relaxation term 1 xy-stress 

DECAYX2 shear relaxation term 2 x-stress 

DECAYY2 shear relaxation term 2 y-stress 

DECAYZ2 shear relaxation term 2 z-stress 

DECAYXY2 shear relaxation term 2 xy-stress 

DECAYX3 shear relaxation term 3 x-stress 

DECAYY3 shear relaxation term 3 y-stress 

DECAYZ3 shear relaxation term 3 z-stress 

DECAYXY3 shear relaxation term 3 xy-stress. 

The PROP array for this material contains the following entries: 

PROP(1) 

PROP(2) 

PROP(3) 

PROP(4) 

PROP(5) 

PROP(6) 

- Short Time Bulk Modulus, K 

- Long Time Bulk Modulus, KCX) 

- Bulk Relaxation Constant, ~k 
- Long Time Shear Modulus, G<Xl 

- First Short Time Shear Modulus, G1 

- Second Short Time Shear Modulus, G2 
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PROP(7) - Third Short Time Shear Modulus, G3 

PROP(8) - First Shear Relaxation Constant, pf 
PROP(9) - Second Shear Relaxation Constant, J3~ 
PROP(IO) - Third Shear Relaxation Constant, J3~ 
PROP(ll) - First WLF constant, C 1 

PROP(12) - Second WLF constant, C2 

PROP(13) - Reference Temperature for Material Properties, To. 
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5.0 CONTACT SURFACES 

Many structures of interest are composed of two or more parts that are either in contact or may come into 

contact during service. After contact, these parts can also slide with respect to one another. In the field of 

computational mechanics, modeling contact and sliding behavior are done using contact surfaces, and there are 

several numerical approaches for modeling this behavior. One method utilizes a thin finite element with a special 

constitutive model to approximate gap and friction behavior (Goodman and Dubois, 1972). A second approach 

uses Lagrange multipliers to impose gap closure constraints and frictional stick-slip conditions (Hibbitt, Karlsson 

& Sorensen, Inc., 1992). In the setting of the dynamic relaxation algorithm, SANTOS employs a sliding contact 

surface algorithm using a master-slave approach. 

In the master-slave concept, the nodes on the designated slave surface are required by the algorithm to lie on 

the master surface. Any sliding or slip must occur along the master surface. In turn, nodal forces from the slave 

node are removed and applied to the master surface nodes. This transfer of forces maintains equilibrium at the 

interface. The tangential shear or friction force as well as the determination of slip or no slip is incorporated into 

this process involving the transfer of forces to the master surface. In SANTOS, the nodal forces are computed by 

the divergence of the stresses within an element. Therefore, nodal forces can be used in conjunction with a Mohr­

Coulomb model for the contact surface friction. SANTOS currently supports two types of master-slave contact 

surface boundary conditions: (1) a deformable surface against a rigid plane, and (2) two distinct deformable 

surfaces against each other. 

For a strict master-slave algorithm such as the one implemented in SANTOS, the user must specify which 

surface is the master surface and which surface is the slave. This choice can have a significant effect on the 

calculation and the efficiency of the solution. For example, the coarser mesh should be designated as the master 

surface when the two contacting materials are the same as shown in Figure 5 .Ia. If the master-slave surfaces are 

reversed as in Figure 5.lb, interpenetration that is not detected by the algorithm can result. The choice of master­

slave roles is less clear when the materials of the contacting bodies are different. The user should typically select 

the stiffer of the two materials to be the master surface but be prepared to reverse the roles if convergence is slow or 

interpenetration is observed. 

The contact surface algorithm is composed of two phases: (1) a location phase where the time, location, and 

amount of slave node penetration of the master surface is determined along with identification of the correct master 

surface segment and master surface nodes defining the segment, and (2) an application phase where the nodal 

force transfer from the slave node to the master surface nodes is performed along with a kinematic location of the 

slave node to the appropriate location on the master surface. 

5.1 Location Phase 

Contact location is accomplished by monitoring the displacements of the slave nodes throughout the· 

calculation for possible penetration of a master surface. SANTOS uses an algorithm called neighborhood 

identification to pair those slave nodes and master surfaces where potential contact is likely. The neighborhood 

identification is usually the most time-consuming part of the location phase. Obviously, the most robust approach 
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(a) Surface 1 is the master and 
surface 2 is the slave 

(b) Surface 1 is the slave and 
surface 2 is the master 

TRI-6348-2Q-O 

Figure 5.1. Schematic showing the effect of changing the master-slave designation between two surfaces. 

would be to check every slave node against every master surface at every time step. This, however, is inefficient. 
The current strategy is to use a global search to determine which slave nodes are in close proximity to a master 
surface. The search process accumulates these potential interactions by constructing a local neighborhood around 
the master surface and globally searching for all slave nodes that fall within the neighborhood. The algorithm is 
based on a particle search teclmique, Reinstein et al., 1993. It sorts the slave nodes by location and uses a binary 
search to construct a list of slave nodes in a master surface neighborhood. The search algorithm depends only on 
the number of slave nodes and not on the geometry of the problem. It takes advantage of the known positions of 
the slave nodes and master surfaces. 

After gathering a list of potential interactions, a detailed contact check is done for each slave-node/master 
surface pair. This check determines: ( 1) which of the candidate master surfaces is in contact with the slave node, 
(2) the point of contact (3) the ammmt of penetration, and (4) the direction the slave node should be pushed back. 
The contact check also tries to resolve pushback ambiguities that arise due to discretization of the master surface. 
A complete discussion of these ambiguities and their resolution can be found in Reinstein et al., 1993. 

The benefits of reducing the time spent in the contact surface algorithms can be significant. For iterative 
solvers. such as dynamic relaxation, inaccuracies in the location phase lead to an increase in the number of 
iterations required for convergence. These inaccuracies arise mainly from incorrectly determining the location of 
contact as a slave node slides across anotlter surface. For large finite element simulations with large numbers of 
slave nodes and master surfaces. as much as 50% of the total CPU time is spent in the location phase. Thus, the 
speed and efficiency of the contact detection algorithms are important. 
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5.2 Application Phase 

The operation of the master-slave scheme can be demonstrated in the following example where slave node I lies 

between master nodes M and N, as shown in Figure 5.2.1. The location phase algorithm has already determined that 

node I has penetrated the master surface segment connecting nodes M and N. Because node I has penetrated the 

master surface, the normal force (Rn) and tangential force (Rt) at node I are determined. The coefficient of friction, 

Jl, is used in conjunction with Rn to determine the threshold value for slip, flRn· If Rt is less than flRn,• then no slip 

occurs and both the values of Rn and Rt are transferred to the master surface nodes using a weighting procedure 

based on the position of the slave node along the master segment. 

Master 
Surface 

TRI-6348·2 1 ·0 

Figure 5.2.1. SchematiC showing the penetration of the master surface by slave node I. Node I is kinematically 

restored to the master surface, and its nodal forces are transferred to the master surface nodes M 
andN. 
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The enforcement of the contact constraint is done using nodal velocities rather than displacements. In addition, 

the constraint is not enforced in one iteration but over several iterations to improve the convergence of the nonlinear 

equilibrium iterations. The nodal velocity of slave node I is rotated into normal and tangential components. For the 

no-slip case, the tangential velocity of the slave node is assigned a new nodal velocity based on the tangential 

velocity of the corresponding point on the master surface. The normal velocity component of the slave node is given 

the normal velocity of the master surface modified by an incremental velocity based on the depth of penetration, 0, 

by the slave node. The incremental velocity is applied in a direction to move the slave node back towards the master 

surface. The resulting equation for the normal velocity component is computed as 

(5.2.1) 

The pushback factor of 0.1 ensures that the slave node is not pushed back to the master surface in a single iteration. 

For the case when Rt is greater than J.lRn, slip can occur. The tangential force Rt is reduced to its maximum 

allowable value of flRn which results in a force imbalance and allows movement of the slave node along the master 

surface to a new equilibrium position. The slave node forces, Rn and Rt, are again transferred to the master nodes. 

The normal velocity of the slave node is modified exactly as in the no-slip case while the tangential velocity 

component is not modified at all. 

The nodal mass associated with each contacting slave node is transferred to the appropriate master surface nodes 

using the weighting procedure used for transferring slave node forces. The transfer of mass is used by the solution 

algorithm during the calculation of the nodal accelerations, a = E. This transfer of mass, which is performed for 
m 

each iteration, allows the master surface nodal accelerations to reflect the presence of the slave surface. 

Incorporated within the contact surface model is the capability for two surfaces initially in contact to separate at 

a prescribed load level and for two distinct surfaces to contact and remain in contact during deformation. The user is 

allowed to specify the separation force level and to specify the separation tolerance with which both surfaces are 

assumed to be in contact. The default value of the separation force level is 1. x to40. The default value of the 

separation tolerance is .02 times the length of the master surface segment. Inclusion of friction does have the effect 

of increasing the number of iterations required for convergence in many cases. 
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6.0 LOADS AND BOUNDARY CONDITIONS 

SANTOS contains several types of loads and boundary conditions. Displacements, pressures, concentrated 

forces, and body forces may be prescribed. In this section, we describe how these are implemented in the program. 

· · 6.1 · Kinematic Boundary·Conditions 

The kinematic boundary conditions described below are all accomplished by altering the acceleration, velocities, 

and displacements of the nodal points. The application of these boundary conditions does not vectorize because they 

require a function look-up and a scatter of values. All of the kinematic boundary conditions are applied to nodal 

point sets. 

6.1.1 No-Displacement Boundary Conditions 

The no-displacement boundary conditions are accomplished by setting the appropriate component of the 

acceleration, velocity, and displacement of the node to zero. The imbalance force component for the node is 

accumulated with other no-displacement nodes to produce a total reaction force which is written as a global variable 

(RX and RY) at each load step. The imbalance force component for the node is then set to zero. 

6.1.2 Prescribed Displacement Boundary Conditions 

The prescribed displacement boundary conditions are accomplished by setting the displacement component of 

the node point to the required displacement value corresponding to the end of the step. The appropriate components 

of the acceleration and velocity of the nodal points are set to zero along with the imbalance force component. 

6.1.3 Sloping Roller Boundary Conditions 

This displacement boundary condition requires the nodal point set to displace along a line defined by the 

analyst. The analyst defines the line by providing the components of the surface outward normal. The acceleration 

and velocity of the node point are rotated into a coordinate system normal and tangential to the line. The normal 

acceleration and velocity components are set to zero, and the remaining tangential components are rotated back to 

the global coordinate system. The imbalance force associated with the node is also rotated into the normal and 

tangential coordinate system. The normal force component is set to zero, and the remaining tangential force is 

rotated back into the global coordinate system. 

6.2 Traction Boundary Conditions and Distributed Loads 

The boundary conditions described below apply external forces to selected nodes. The pressure boundary 

condition is associated with element side sets while the nodal force boundary condition applies to nodal point sets. 

Body forces (distributed loads) are applied to each node in proportion to the mass of the material that surrounds it. 
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6.2.1 Pressure 

The set of consistent nodal point forces arising from pressures distributed over an element side is defined via the 

principle of virtual work by 

8uirfir = 8uiiJ q,1(-pni)dA (6.2.1) 

s 

where the range of the lower-case subscripts is 1 to 2 and the upper-case subscripts 1 to 4. 

Since the virtual displacements are arbitrary, they may be eliminated to yield 

fir= -J tl>r pni dA (6.2.2) 

s 

The most general pressure distribution we allow is mapped from nodal point pressure values via the isoparametric 

shape functions. The resulting expression for the consistent nodal forces is 

fir = -pJ J tt>1tt>1 n1 dA (6.2.3) 
s 

For the four-node constant stress element used in PRONTO, «l>I is given by 

1 1 
--:S;~:S;-

2 2 
(6.2.4) 

where 

(6.2.5) 

and nini = 1. For the geometry and pressure distribution shown in Figure 6.2.1, it can be shown that 

(6.2.6) 
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n· n- = 1 I I 

TRI·6348·43-0 

Figure 6.2.1. Definition of a pressure boundary condition along an element side. 

and 

dX· 
n·dA = e· ·3 -

1 d~ = e· ·3 x ·K AK d~ I IJ dE. IJ J ..., 
J 

Then the consistent nodal forces can be written as 

1 

fii = -pJeij3 XjK AKJ21 <l>I<l>J d~ 
2 

Combining Equations (6.2.4), (6.2.5), and (6.2.8): 

The above expression is evaluated as 

N· = -e··3 x .K AK = {Yl -Y2} 
I IJ J X2- X1 
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(6.2.8) 

(6.2.9) 

(6.2.10) 



and 

f.I=N··_!_[2 l]·{P1} 1 1612 P2 
(6.2.11) 

The nodal values for the pressure are calculated using the user-supplied scale factor and time history function. The 

values are calculated for the beginning of the time step. 

The application of the pressure boundary conditions is fully vectorized. Blocks of element sides are processed 

in vector blocks using the scratch element space. After the consistent nodal point forces are calculated for a block of 

element sides, they are accumulated into the global nodal force array. 

6.2.2 Adaptive Pressure 

The adaptive pressure boundary condition in SANTOS allows the analyst to model the behavior of gas-filled 

cavities that change internal pressure as the cavity deforms. The analyst defines the cavity using a side set identifier, 

and the volume of the cavity is computed every iteration based on the current deformed shape. The cavity volume is 

passed to SUBROUTINE FPRES, which is user supplied, where the gas pressure is computed. This gas pressure is 

then applied to the defined side set as a pressure boundary condition. 

6.2.3 Nodal Forces 

Nodal point external forces are applied to each point in the node set. The magnitude of the force is determined 

by the user-supplied scale factor and a time history function. The time history function is evaluated at the end of the 

load step. If the analysis type is axisymmetric. then the nodal forces are input as force per radian. 

6.2.4 Gravity Forces, Body Forces, and Distributed Loads 

Gravity and body forces are computed using the third integral in Equation (3.1.8). The same routines that 

compute the diagonal mass matrix are used to form the gravity load vector. The density, p, is the input density for 

the specific material and not the fictitious density computer for the stable time increment. The component direction 

accelerations are specified on the GRAVITY input card. In addition to the x- and y-direction accelerations, the code 

supports an angular acceleration. The magnitude of the acceleration is determined by the user-supplied scale factor 

and a time history function. The time history function is evaluated at the end of the load step. 

The nodal values of the distributed loads are read from an externally written file, fort.38, in the following 

format: 

READ(38) TIME, (DISTX(l), 1=1,NNOD), (DISTY(I), I=l,NNOD) 

at the desired time intervals. DISTX and DISTY are the nodal point distributed load components in the x and y 

directions, respectively. These nodal values are in units of force per unit volume. This force/volume is multiplied by 

the appropriate nodal volume to obtain the magnitude of the nodal loading. The nodal volume is computed using the 
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diagonal mass matrix routines with a density equal to one. An example of this type of loading is the body force 

generated by the presence of a magnetic field. 

6.2.5 Thermal Forces 

Nodal point temperatures for performing thermal/structural analyses are input into SANTOS in two ways. The 

first method is to read an externally written temperature file, fort.56, in the following format: 

READ(56) TIME, (T(I), I= l,NNOD) 

where the temperature, T, is read for each nodal point. SANTOS interpolates linearly between thermal time steps to 

obtain the thermal solution for the time requested by the structural analysis. On the TIIERMAL STRESS input card, 

the entry type is set to EXTERNAL to request this method. 

The second method is best suited for problems where the structure is heated uniformly. The analyst can define 

the temperature history of the body using an input function, and SANTOS will interpolate the body temperature at 

the time requested by the structural analysis. On the THERMAL STRESS input card, the entry type is set to 

INTERNAL. 

SANTOS requires the analyst to input, for each material, the curve of thermal strain versus temperature. This 

curve is defined using an input function. With the temperature of each element known, it is a simple process to 

interpolate the thermal strain for each element. If we difference the thermal strain computed at the beginning and at 

the end of the load/time step and divide by ~t. we obtain a thermal strain rate. SANTOS computes the total strain 

rate, using the velocity gradients, which can be decomposed into mechanical and thermal strain rate components. 

The thermal strain rate is subtracted from the total strain rate to obtain the mechanical strain rate, which is passed 

into the SANTOS constitutive models. 
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SANTOS Users Manual 

Listed below, in the order they appear in the text, are all the key words used in the SANTOS input. 

1. TITle 
2. PLAne STRain 
3. AXIsymmetric 
4. STEP CONtrol 
S.AUToSTEp 
6. OUTput Time 
7. PLOT Time 
8. PLOT NODal 
9. PLOT ELement 
10. PLOT STate 
11. Time STep SCale 
12. RESidual TOLerance 
13. MAXimum ITerations 
14. INTermediate PRint 
15. MAXimum TOLerance 
16. GLObal CONvergence 
17. LOCal CONvergence 
18. ELAStic SOLution 
19. PREdictor SCAle FACtor 
20. DISTributed LOAds 
21. INITial STRess 
22. mERmal STRess 
23. GRAVity 
24. MINimum DAMping FACtor 
25. NO DAMping 
26. WRITe REStart 
27. READ REStart 
28. HOURglass STIFfening 
29.XBEGIN 
30. XEND 
31. EXIT 
32. FUNCtion 
33. NO DISplacement 
34. PREScribed DISPlacement 
35. SLOping ROLler 
36. PREScribed FORce 
37. PRESsure 
38. ADAptive PREssure 
39. CONtact SURface 
40. RIGid SURface 
41. MATerial 
42. MATerial POint 
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43. DELete MATerial 

The input data to SANTOS is in a free field form using key words. The key words are intended to 
define a user friendly program language input The input is order independent and can be entered 
in any order the user finds convenient. The words as typed below in UPPER CASE represent key­
words in the list above. Most of the words can be abbreviated to the first few characters. In the list 
above the upper case characters indicate the shortest abbreviation allowed. The words typed in 

lower case below indicate variables for which the user should enter a value. An example data file 
is shown below. 

The free field input allows the user to delineate entries by either a blank, a comma, or an equals 
sign. We find it useful to use blanks with commands (keywords), equal signs to separate keywords 
and/or lists, and commas for lists of values. The material data requires material cues and their 
associated values and equal signs are useful there. See the example input below. 

A dollar sign indicates that whatever follows on the line of input is a comment and is ignored. An 
asterisk indicates that the line is to be continued on the next line. 

1. TITLE 
(enter a suitable title on the next line) 

2. PLANE STRAIN 
Indicates that a plane strain analysis is to be performed. If the analysis type keyword is omitted 
then a plane strain analysis is selected as default. 

3. AXISYMMETRIC 
Indicates that an axisymmetric analysis is to be performed. 

4. STEP CONTROL 
n,tl 
m,t2 
. ' . . ' . 

END 

n ... number of load steps in interval 0 < t < tl 
tl ... end time for first load step interval 
m ... number of load steps in interval tl < t < t2 
t2 ... end time for second load step interval 

This command specifies the static load control parameters for the problem. The analysis is 
assumed to begin at t=O and take n steps to time tl. The code then will take m load steps to time 
t2. This set of input is completed by an END card. Any number of step-time cards is allowed. 

5. AUTO STEP, tol, dtmax, dtmin, dtinit 
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tol ... tolerance value used for controlling change of time step in material model 
dtmax ... maximum value of time step allowed. Values of dt computed to be greater than 

dtmax will be set to dtmax. 
dtmin ... minimum value of time step allowed. Computed time step cannot be smaller then this 

value. If the user does not wish the time step to shrink insert NO REDUCE in this 
field. 

dtinit ... initial value of time step to be used in the calculation 

This command can be used to automatically grow the solution time step for any time dependent 
material model that allows such a feature. The command specifies a solution tolerance change 
allowed over the step, along with allowable values of the time step (dtmax, dtmin, dtinit). The 
time step will grow and shrink according to satisfaction of tol. If the user does not wish to allow 
the time step to shrink, then insert the word NOREDUCE in place of dtmin. 

6. OUTPUT TIME 
n, t1 
m,t2 
. ' . 
. ' . 

END 

n ... frequency of printed output in interval 0 < t < t1 
tl ... end time for first output time control 
m ... frequency of printed output in interval t1 < t < t2 
t2 ... end time for second output time control 

This command specifies how often the requested printed output is to be written to the output file. 
The required information is an integer number specifying how often, not the number of outputs, 
the printed information is to be written. For example, if n or m is 1 then the output file will be 
written every load increment. If n or m is 2 then the file will be written every 2 load increments. 
Currently, the times t1 and t2 must match the values specified on the STEP CONTROL card. An 
END card terminates this section of input 

7.PLOTTIME 
n, t1 
m,t2 
. ' . 
. ' . 

END 

n ... frequency of plotted output in interval 0 < t < tl 
tl ... end time for first output time control 
m ... frequency of plotted output in interval tl < t < t2 
t2 ... end time for second output time control 

This command specifies how often the requested plotting output is to be written to the output file. 
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The required information is an integer number specifying how often, not the number of outputs, 
the plotting information is to be written. For example, if n or m is 1 then the output file will be 
written every load increment. If n or m is 2 then the file will be written every 2 load increments. 
Currently, the times tl and t2 must match the values specified on the STEP CONTROL card. An 
END card terminates this section of input 

8. PLOT NODAL, nodal name 1, nodal name 2, ••••• 
allowable nodal variable names: 

DISPLACEMENT - nodal displacements (DISPLX,DISPLY) 
RESIDUAL- nodal residuals (RESIDX, RESIDY) and a scalar value (RESID) 
MASS - nodal lumped masses (MASS) 
REACTION - nodal force reactions (FX, FY) 

The default nodal variables written on the plotting data base are the displacements whether 
requested or not The MASS specification results in having the lumped nodal masses written on 
the data base. The names in parenthesis indicate the alphanumeric name of the variables which 
are written on the plotting data base. 

9. PLOT ELEMENT, element variable 1, element variable 2, •.•. 
allowable element variable names: 

STRESS- stresses (SIGXX,SIGYY,SIGZZ,TAUXY) 
STRAIN - total strains (EPSXX,EPSYY,EPSZZ,EPSXY) 
RATEDFM - deformation rates (DXX,DYY,DZZ,DXY) 
STRETCH - material stretches: V ofF = V R (STRECHXX,STRECHYY,STRECHZZ,STRE-

CHXY) 
ROTATION - material rotations: R ofF = V R (COSTHETA,SINTHETA) 
DENSITY - current mass per unit volume (DENSITY) 
PRESSURE - pressures (PRESSURE) 
VONMISES - Von Mises equivalent stress (VONMISES) 
HG - hourglass resistance forces (HGX,HGY) 
EFFMOD- element effective modulus values used for the stable time step and mass scaling 

(EFFMOD) 
TEMPERATURE - element centroidal temperatures (TEMP) 

The names in parenthesis indicate the alphanumeric name of the variables which are written on 
the plotting data base. The default element variables are the stresses. 

10. PLOT STATE, state variable 1, state variable 2, •.••• 
The user can ask for any of the internal state variables to be written on the plotting data base. 
Since all materials do not have the same internal state variables (some have none), a zero will be 
written on the data base for an element using a material model that does not have a state variable 
which is specified by the user. Hence; if the user asks for EQPS (equivalent plastic strain) and 
ALPHAll,ALHA22,ALPHA33, and ALPHA12 (back stress components for kinematic harden­
ing) and he has a model where half the mesh uses the ELASTIC material and half the mesh uses 
the ELASTIC PLASTIC material, much of the data written on the plotting data base will contain 
zeros. The table below gives all the internal state variables names for all the material models. 
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See the theory section for definitions of the variables if they are not obvious. The default state 
variables are none. WARNING: Indiscriminate use of this option can create extremely large 
plotting data bases. 

allowable state variable names: 

ELASTIC= (no internal state variables) 
ELASTIC PLASTIC = EQPS ALPHA11 ALPHA22 ALPHA33 ALPHA12 RADIUS 
POWER LAW CREEP= EQCS 
LOW DEN FOAM= (no internal state variables) 
SOIL N FOAMS = EVMAX EVFRAC EV NUM 
EP POWER HARD= RADIUS EQPS 
LINEAR VISCOELASTIC = BLKDECAY DECAYX1 DECAYYl DECAYZl DECAYXY1 

DECAYX2DECAYY2DECAYZ2DECAYXY2DECAYX3DECAYY3DECAYZ3 
DECAYXY3 

THERMOEP=EQPSYMOYM1XNUOXNU1YSOYS1RADIUS 
THERMOELASTIC= YMO YM1 XNUO XNU1 
VOLUMETRIC CREEP= EQCS DENSITY 
M-D CREEP MODEL= EQCS ZETA SOOT TRESCA ETSTAR 

11. TIME STEP SCALE, scft 
scft ... scale factor to be applied to the internally calculated time step (default=l.O) 

12. RESIDUAL TOLERANCE, value 
value ... number, in percent, that is used to check for equilibrium and convergence of the 

solution. Default is 0.5. 

13. MAXIMUM ITERATIONS, value 
value ... number of iterations allowed for any solution step. Default is two times the number 

of nodes. 

14. INTERMEDIATE PRINT, value 
value ... frequency of intermediate print that provides information such as current equilibrium 

imbalance, number of steps, and applied load magnitudes. 

15. MAXIMUM TOLERANCE, value 
value ... when the maximum number of iterations is reached, if the convergence tolerance is 

less than value then the solution is assumed to be converged and the problem is 
advanced to the next solution step. 

16. GLOBAL CONVERGENCE 
This card specifies that a global convergence measure is to be used for determining satisfaction · 
of equilibrium. This is the default method. 

17. LOCAL CONVERGENCE, plocal 
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plocal ... threshold residual value to be used in computation of local convergence. Values of 
the nodal residual below this value will be replaced by plocal in the convergence 
check. The default is plocal =1.0. 

This card specifies that a local convergence measure will be used for determining satisfaction of 
equilibrium. The convergence check is done on a node by node basis and convergence is assumed 
if each nodal residual is below the specified value on the RESIDUAL TOLERANCE card. 

18. ELASTIC SOLUTION 
This specifies that a load step is requested using only time independent material response for the 
step. This card should be used only with the time-dependent material models. 

19. PREDICTOR SCALE FACTOR, function id 
function id ... function id controlling the definition of the predictor scale factor 

This option specifies the function id which defines the multiplier to be used for predicting the dis­
placements on the next load step. The multiplier is used on the incremental changes in displace­
ment over the previous load increment. The multiplier can be useful for reducing the number of 
iterations required for a solution. The default value of the multiplier is 1. 

20. DISTRIBUTED LOADS 
This option specifies that an external file 38 is to be read for nodal values of a distributed force per 
unit volume. This force/volume is multiplied by the nodal volume to obtain the magnitude of the · 
required loading. An example of this option is the body force generated by the presence of a mag­
netic field. 

21. INITIAL STRESS, type, sigl, sig2, sig3, sig4 
type ... specifies how the initial stress state will be specified. The choices are 'USER', or 

'CONSTANT'. If 'USER' is selected then a user written subroutine must be supplied. 
If type is 'CONSTANT' then the values of sigl, sig2, sig3, and sig4 must be provided. 
The stresses will be assigned to each element in the model. 

22. THERMAL STRESS, type, to, ithf, thforc 
type ... identifies that a thermal stress analysis is to be performed. Default is no thermal stress 

analysis. If type is 'EXTERNAL' then an external file56 is required in the proper for­
mat for use by the code. If type is 'INTERNAL' then the following input parameters 
are needed. · 

to ... initial stress free temperature. Default is 0. 
ithf ... function id controlling temperature time response 
thforc ... thermal load norm for use in convergence tests. This parameter will be used as the 

applied load norm. The default is 0. 

23.(;RA~Y,igrv~gravx,gravy,ornega 

igrvf ... function id controlling load time response 
gravx ... specified acceleration in x-direction 
gravy ... specified acceleration in y-direction 
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omega ... specified angular velocity 

24. MINIMUM DAMPING FACTOR, fac 
fac ... this option allows the user to define the minimum allowable damping factor used in the 

dynamic relaxation algorithm. The allowable values of damping range from zero to 
one. If a damping value is computed that is less than fac, then the value is set equal to 
fac. The default value is set to 0.2. 

25. NO DAMPING, iter, ndstep 
iter ... number of iterations with zero damping. 
ndstep ... number of load steps with zero damping 

This option is useful for problems with thin beam like behavior. The problem is allowed to 
deform without damping for a user specified number of iterations. This allows the problem to 
more quickly reach the fundamental deformation mode before damping begins. Iter should be 
selected as twice the number of elements meshed along the length direction. The normal damping 
algorithm can be initiated after performing ndstep load steps. 

26. WRITE RESTART, n 
n ... this option specifies that a SANTOS restart tape is to be written at a frequency of every n 

increments. This information is written to file 30. 

27. READ RESTART, n 
n ... this option specifies that a SANTOS restart tape is to be read at step n and a new analysis 

performed. Some internal checking is performed to insure that the restart tape is valid. 
The restart tape is assigned to file 32. 

28. HOURGLASS STIFFENING, hgstiff, hgvis 
hgstiff ... hourglass stiffening factor (default=.05 for plane strain and .01 for axisymmetric) 
hgvis ... hourglass viscosity factor (default=.O for plane strain and .03 for axisymmetric) 

29. XBEGIN, code name 
code name ... name of the external code to be coupled with SANTOS. 

This option indicates that the following lines are input data for the external code 

30. XEND 
This option indicates an end to the external code input data 

31. EXIT (required to terminate the input data) 

32. FUNCTION, function id 
function id ... any nonzero number you wish to identify with this function; after a FUNCTION 

statement you must enter a list of points defining your function: 
xl, f(xl) 
x2' f(x2) 
. ' . 
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. ' . 
xn, f(xn) 
END 

(The list is terminated by a line containing the word END as shown. Any other valid input cue 
will also work) 

H the function represents a time history function to be used with one of the nodal boundary con­
dition specifications (e.g. PRESCRIBED DISPLACEMENT) or with a PRESSURE boundary 
condition, if the value of time is not within the limits defined by xl and xn, no boundary condition 
will be applied until the current value of time falls within the limits. This means that you can have 
a boundary condition tum on at a specific time and/or tum off at a specific time. 

33. NO DISPLACEMENT, direction, node set ftag 
direction ... either X or Y 
node set flag ... identifying number from the input data base which identifies the nodes you 

want to have no displacement (note:_ this is a nodal be!) 

34. PRESCRIBED DISPLACEMENT, dir, node set ftag, function id, scale factor, aO, bO 
dir ... either X, Y, RADIAL, TANGENT, or NORMAL 
node set flag ... identifying number from the input data base which identifies the nodes you 

want to have this displacement (note: this is a nodal be!) 
function id ... identifying number of the function you want to use to specify the time depen­

dence of the displacement 
scale factor ... scale factor to be applied to the function (default=l.O) 
aO,bO ... not used (if direction= X or Y) center of cylinder of sphere (if direction= RADIAL 

or TANGENT) components of normal (if direction = NORMAL) 

35. SLOPING ROLLER, node set ftag, nl, n2 
node set flag ... identifying number from the input data base which identifies the nodes that 

have this be (note: this is a nodal be!) 
nl, n2 ... components of the surface outward normal 

36. PRESCRIBED FORCE, direction, node set ftag, function id, scale factor, aO, bO 
direction ... either X, Y, RADIAL, TANGENT, or NORMAL 
node set flag ... identifying number from the input data base which identifies the nodes you 

want to have this force (note: this is a nodal be!) 
function id ... identifying number of the function you want to use to prescribe the time depen­

dence of the force 
scale factor ... scale factor which will be applied to the function (default=l.O) 
aO,bO ... not used (if direction= X or Y) center of cylinder of sphere (if direction = RADIAL 

or TANGENT) components of normal (if direction =NORMAL) 

37. PRESSURE, side set ftag, function id, scale factor 
side set flag ... identifying number from the input data base which identifies the sides you 

want to have this pressure (note: this is a side or element be!) 
function id ... identifying number of the function you want to use to prescribe the time depen-
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dence of the pressure 
scale factor ... scale factor which will be applied to the function (default=l.O) 

38. ADAPTIVE PRESSURE, side set flag, xO, yO 
side set flag ... identifying side set flag from the input data base which identifies the sides you 

want to have this pressure 
xO,yO •.. coordinates of point used to determine cavity area 

This option allows the user to define a pressure boundary condition which depends on the solu­
tion. The user can write a subroutine FPRES which can adaptively apply a pressure boundary 
condition based on various factors. An example of this option is the application of pressure due to 
compression of an ideal gas. 

39. CONTACT SURFACE, side set flag 1, side set flag 2, mu,dis, tenrel 
side set flag 1 ... identifying number from the input data base which identifies the master sur­

face. (note: this is a side or element be!) 
side set flag 2 ... identifying number from the input data base which identifies the slave sur­

face. (note: this is a side or element be!) 
mu ... coefficient of friction (default= 0.) if mu =FIXED then the surfaces are treated as fixed 

surfaces 
dis ... fraction of element side length used to determine tolerance for proximity to master sur­

face check (default is l.e-8) 
tenrel ... residual normal force acting on the slave node used to determine release condi­

tions.(default = l.e40) 

40. RIGID SURFACE, slave flag, xO, yO, nx, ny, mu 
slave flag ... identifying number from the input data base which identifies sides that are slaved 

to the rigid surface (note: this is a side or element be!) 
xO,yO ..• coordinates of a point on the rigid surface 
nx,ny ... outward unit normal to the rigid surface 
mu ... coefficient of friction (default= 0.) If mu =FIXED then the surface is assumed to be 

fixed to the rigid surface. 

41. MATERIAL, material id flag, material name, density, func id, thermal strain scaling fac­
tor 

material id ... material identification number from the input data base 
material name ... valid material type name 

The current material types allowed in SANTOS are: 
ELASTIC 
ELASTIC PLASTIC 
POWER LAW CREEP 
LOWDEN FOAM 
SOILNFOAMS 
EP POWER HARD 
LINEAR VISCOELASTIC 
THERMOEP 
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THERMOELASTIC 
VOLUMETRIC CREEP 
M-D CREEP MODEL 

density ... material density 
june id ... function id to be used for specifying function number with proper thermal strain 

variation with temperature. This value needed for THERMAL STRESS problems. 
thermal strain ... scaling factor multiplier for function values given from thermal strain func­

tion. The default value of this factor is 1. 

The allowable material names and their required material cues are given below. The material data 
can be entered in any order separated by commas. An END statement is required to terminate the 
material data. The material constant associated with each material cue, as defined in Section 4, is 
given in parentheses. 

1. ELASTIC (number of cues=2) 

YOUNGS MODULUS (E) 
POISSONS RATIO ( v) 

2. ELASTIC PLASTIC (number of cues=5) 

YOUNGS MODULUS (E) 
POISSONS RATIO (v) 

YIELD STRESS ( crys) 

HARDENING MODULUS (H) 

BETA(~) 

3. POWER LAW CREEP (number of cues=5) 

TWOMU (21J.) 
BULK MODULUS (K) 

CREEP CONSTANT (A) 
STRESSEXPONENT(m) 

THERMAL CONSTANT ( R~ if isothermal or ~ if not) 

4. LOW DEN FOAM (number of cues=?) 

YOUNGS MODULUS (E) 

A 
B 
c 
NAIR (contribution of trapped ·air to foam response; 1 for yes, 0 for no contribution) 

PO 
PHI($) 

5. SOIL N FOAMS (number of cues=?) 
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TWOMU (2J.L) 
BULK MODULUS (K) 

AO 
Al 
A2 
FUNCTION ID (function number of curve defining pressure-volume strain relationship) 
PRESSURE CUTOFF (valid (negative) tensile fracture pressure) 

6. EP POWER HARD (number of cues=6) 
YOUNGS MODULUS (E) 
POISSONS RATIO (v) 

YIELD STRESS ( cr ys) 

HARDENING CONSTANT (A) 
HARDENINGEXPONENT(m) 

LUDERS STRAIN (EL) 

7. LINEAR VISCOELASTICITY (number of cues =13) 
BULK(K) 
BULK INF (Koo) 

BULK RELAX (~K) 
SHEAR INF (Goo) 

SHEAR ONE (G1 ) 

SHEAR TWO (G2 ) 

SHEAR THREE ( G3 ) 

RELAX ONE ( ~~ ) 
RELAX TWO ( ~;) 
RELAX THREE ( ~~) 
c1 ( c~) 
C2 (C~) 
TEMPO (reference temperature for the material properties) 

8. THERMO EP (number of cues = 9) 
YOUNGS MODULUS (E) 
POISSONS RATIO (v) 

YIELD STRESS (crys) 

MODULUS FUNCTION (function defining Young's modulus variation with E>) 

PR FUNCTION (function defining Poisson's ratio variation with E>) 

YIELD FUNCTION (function defining yield stress variation with E>) 

HARDENING CONSTANT (A) 
HARDENING EXPONENT (m) 
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9. THERMOELASTIC (number of cues= 4) 

YOUNGS MODULUS (E) 

POISSONS RATIO (v) 

MODULUS FUNCTION (function defining Young's modulus variation with E>) 

PR FUNCTION (function defining Poisson's ratio variation withE>) 

10. VOLUME1RIC CREEP (number of cues = 12) 

TWO MU (2J.L) 
BULK MODULUS (K) 

CREEP CONSTANT (A) 

STRESSEXPONENT(m) . 

THERMAL CONSTANT (R~ if isothermal or ~ if not) 

SHEAR EXPONENT ( J.L 1 ) 

BULK EXPONENT (K1 ) 

BO 
Bl 

Al 

INTACT DENSITY (p intact) 

INITIAL DENSITY ( p 0 ) 

11. M-D CREEP MODEL (number of cues = 20) 

TWO MU ( 2J.L) 
BULK MODULUS (K) 

Al 

Ql/R 
Nl 

Bl 

A2 
Q2/R 

N2 

B2 
SIGO (cr0 ) 

QLC (q) 

M(m) 

KO 

C (eEl) 

ALPHA(aw) 

BETA (~w) 
DELTLC (0) 
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RN3 (exponent of workhardening and recovery term used to compute F) 

AMULT (scalar multiplier of time step needed for stability, default 0.98) 

Examples for the ELASTIC PLASTIC material are given below to illustrate how the user might 
input the data in different forms. All three examples are identical as far as SANTOS is concerned. 

Example 1: 

MATERIAL, 1, ELASTZC PLASTZC, 1., 1, 5.E-6 
HARDENZNG MODULUS • 30. E4 
YOUNGS MODULUS = 30.E6 
BETA • .5 
POISSONS RATIO • .3 
YIELD STRESS • 30.E3 
END 

Example 2: 

MATERIAL,1,ELASTIC PLASTIC,1.,1,5.E-6 
YOUNGS MODULUS • 30.E6 POISSONS RATIO = .3 BETA =.5 
YIELD STRESS • 30.E3 HARDENING MODULUS = 30.E4 
END 

Example 3: 

MATERIAL,1,ELASTIC PLASTIC,1.,1,5.E-6 
YOUNGS MODULUS = 30.E6 POISSONS RATIO = .3 BETA = .5 
YIELD STRESS = 30.E3 HARDENING MODULUS = 30.E4 END 

42. MATERIAL POINT, x, y 
x, y ... coordinates of a material point which will be monitored and printed at the output inter­

vals, 

43. DELETE MATERIAL, material id, deletion time 
material id ... material identification number 
deletion time ... time at which all elements made up of this material should be deleted from 

the mesh. 

Example fuput File: 

TITLE 
- EXAMPLE ZNPU'l' P'ILE 

AXISYKMETRZC 
STEP CONTROL 

10 1. 
END 

. OUTPUT TIME 
2 1. 

END 
PLOT TIME 

1 1. 
END 
NO DISPLACEMENT,X = 1 
PRESCRZBED DISPLACEMENT,Y ,1,1,.05 

A-15 



FONCTION,1 
0,0 
1.,1. 
END 
MATERIAL,1,ELASTIC PLASTIC,1. $ 21-6-9 Stainless Steel 
YOUNGS HODULUS•29.4+6 POISSONS RATI0•.3 
YIELD STRESS•S8.0E+3 HARDENING MODULUS•29.4E+4 BETA•1. 
E~ 

MATERIAL,2,ELASTIC,1. $ Tape Jbint Piller (Steel) 
YOUNGS MODULUS•29.4E+6 POISSONS RATI0•.3 
END 
MATERIAL,3,ELASTIC,1. $ Equivalent mass elements simulating remainder 
YOUNGS HODULUS•30.E6 POISSONS RATI0•.3 END 
RIGID SURPACB • 100,0.,0.,0.,0.,1. 
CONTACT SURPACB • 101,102 
CONTACT SURPACB • 103,104 
CONTACT SURPACE • 105,106 
CONTACT SURPACB = 107,108 
EXIT 
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User Subroutines 

SANTOS allows the user to supply their own subroutines for defining an initial stress state 
(SUBROUTINE INITST) and an adaptive pressure routine (SUBROUTINE FPRES). The initial 
stress feature is particulary useful for geomechanics applications where an overburden stress is a 
function of depth. The adaptive pressure capability has been successfully used to define the 
pressure acting on the walls of a deforming cavity based on an assumption of ideal gas behavior. 

The call to SUBROUTINE INITST has the following form: 

SUBROUTINE INITST ( SIG, COORD, LINK, DATMAT, KONMAT,SCREL ) 
c 

c 

INCLUDE 'params.blk' 
INCLUDE 'psize.blk' 
INCLUDE 'contrl.blk' 
INCLUDE 'bsize.blk' 
INCLUDE 't~er.blk' 

DIMENSION LINK(NELNS,NUMEL),KONMAT(lO,NEMBLK), 
COORD(NNOD,NSPC),SIG(NSYMM,NUMEL),DATMAT(MCONS,*), 
SCREL(NEBLK,*) 

RETURN 
END 

where the calling arguments are defined as: 

SIG - element stress array which must be returned with the required stress values 

COORD- global nodal coordinate array 

LINK - element connectivity array 

DATMAT- material property array 

KONMAT - material property integer array 

SCREL- scratch element storage space 

The arguments contained in the DIMENSION statement are located in the COMMON blocks 
which will be included during the program MAKE operation. If the MAKE utility is not used then 
the COMMON blocks will have to be explicitly included. This subroutine is called once prior to 
beginning the calculation by SUBROUTINE INIT. An example of a typical routine used for a 
geomechanics application is shown below. In this example, only material #1 is being initialized 
with respect to depth. Other materials in the problem are having their initial stresses set to zero. 
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SUBROUTINE INITST( SIG,COORD,LINK,DATMAT,KONMAT,SCREL ) 
c 
c ********************************************************************** 
c 
C DESCRIPTION: 
C THIS ROUTINE PROVIDES AN INITIAL STRESS STATE TO SANTOS 
c 
C FORMAL PARAMETERS: 
C SIG REAL ELEMENT STRESS ARRAY WHICH MUST BE RETURNED 
C WITH THE REQUIRED STRESS VALUES 
C COORD REAL GLOBAL NODAL COORDINATE ARRAY 
C LINK INTEGER CONNECTIVITY ARRAY 
C DATMAT REAL MATERIAL PROPERTIES ARRAY 
C KONMAT INTEGER MATERIAL PROPERTIES INTEGER ARRAY 
c 
C CALLED BY: INIT 
c 
c ********************************************************************** 
c 

c 

c 

INCLUDE 'params.blk' 
INCLUDE 'psize.blk' 
INCLUDE 'contrl.blk' 
INCLUDE 'bsize.blk' 
INCLUDE 'timer.blk' 

DIMENSION LINK(NELNS,NUMEL),KONMAT(10,NEMBLK), 
COORD(NNOD,NSPC),SIG(NSYMM,NUMEL),DATMAT(MCONS,*), 
SCREL (NEBLK, *) 

DO 1000 I = 1,NEMBLK 

* 

MATID = KONMAT(1,I) 
MKIND = KONMAT(2,I) 
ISTRT = KONMAT(3,I) 
IEND = KONMAT(4,I) 
IF( MATID .EQ. 1 )THEN 

DO 500 J = ISTRT,IEND 
II = LINK ( 1, J ) 
JJ = LINK( 2,J ) 
KK = LINK( 3,J ) 
LL = LINK( 4,J ) 
ZAVG = 0.25 * ( COORD(II,2) + COORD(JJ,2) + COORD(KK,2) + 

COORD(LL,2) ) 
STRESS = - 2.256E4 * ( 655. - ZAVG ) 
SIG(1,J) = STRESS 
SIG(2,J) = STRESS. 
SIG(3,J) = STRESS 
SIG(4,J) = 0.0 

500 CONTINUE 
ELSE 

DO 600 J = ISTRT,IEND 
SIG(1,J) = 0.0 
SIG(2,J) = 0.0 
SIG(3,J) = 0.0 
SIG(4,J) = 0.0 
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600 CONTINUE 
END IF 

1000 CONTINUE 
RETURN 
END 

The call to SUBROUTINE FPRES has the following form: 

SUBROUTINE FPRES ( VOLUME, TIME, PGAS ) 

RETURN 
END 

where the calling arguments are defined as: 

VOLUME - computed volume of the cavity 

TIME- current analysis time 

PGAS - calculated gas pressure to be returned to calling program 

This subroutine is called each iteration from SUBROUTINE EXLOAD. An example of a typical 
routine used for a geomechanics application is shown below. In this example, the volume coming 
into the subroutine corresponds to one-quarter of the total cavity volume due to the use of 
symmetry modeling conditions. The gas generation rate varies with time. The volume is multiplied 
by 4 to get the correct volume and the volume of solids is subtracted to get the free volume. The 
ideal gas law is then used to compute the internal cavity gas pressure. 

SUBROUTINE FPRES ( VOLUME, TIME, PGAS ) 
c 
C THE PRESSURE IS COMPUTED ON THE BASIS OF THE IDEAL GAS LAW, 
C PV = NRT. THE TOTAL NUMBER OF MOLES OF GAS, N (EN) , PRESENT 
C AT ANY TIME IS DETERMINED ON THE BASIS OF A CONSTANT RATE OF GAS 
C GENERATION. R IS THE UNIVERSAL GAS CONSTANT AND THETA IS THE ROOM 
C TEMPERATURE, 3 0 0 K. V IS THE CURRENT VOLUME OF THE ROOM. THE VOLUME 
C MUST BE CORRECTED BY MULTIPLYING BY 2 OR 4 TO ACCOUNT FOR THE USE OF 
C •••• HALF OR QUARTER -SYMMETRY MODELS. THE VOLUME MUST ALSO BE MULTIPLIED 
C BY A FACTOR TO ACCOUNT FOR 3D LENGTH. 
c 
c 

c 

R = 8.314 
THETA = 300. 

IF( TIME .LT. 1.7325E10 }THEN 
PVALUE = 0.0 
RATE = 4.32E-4 
TSTAR = 0.0 
ELSE IF( TIME .LT. 3.3075E10 }THEN 
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c 

PVALUE = 7.48E6 
RATE = 2.16E-4 
TSTAR = 1.7325E10 
ELSE 
PVALUE = 1.0886e7 
RATE = 0.0 
TSTAR = 0.0 
END IF 

C CORRECT VOLUME AT THIS TIME TO GET VOLUME OF VOIDS 
c 

c 

EN = PVALUE + RATE * ( TIME - TSTAR ) 
SCALE = 1.0 
SYMFAC = 4. 
XLENG = 91. 44 

C ••.• THIS MODIFICATION REMOVES THE BACKFILL FROM VSOLID 
c 

c 

c 

VSOLID = 1229. 
VOLUME = SYMFAC * VOLUME * XLENG - VSOLID 

IF( VOLUME .LE. 0.0 )VOLUME = 1. 

PGAS = SCALE * EN * R * THETA I VOLUME 

RETURN 
END 
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Printed Output Description 

The SANTOS printed output begins with an echo of the input data stream from input unit 5. This 
is followed by the PROBLEM DEFINITION section that lists the number of elements, nodal 
points, number of materials, analysis type, etc. that pertain to defining the problem to be solved. 
The information presented in this section also includes the solution algorithm parameters such as 
convergence tolerances, houglass stiffness and viscosity values, and the effective modulus status. 
The amount of output written in this section depends on the analysis type and the options requested. 
An example of this output for a sample analysis is shown below. 

P R 0 B L E M D E F X N X T X 0 N 

NUMBER OF ELEMENTS •••••••••••••••••••••• 216 
NUMBER OF NODES • • • • • • • • • • • • • • • • • • • • • • • • • 24 7 
NUMBER OF MATERIALS ••••••••••••••••••••• 1 
NUMBER OF FUNCTIONS ••••••••••••••••••••• 1 
NUMBER OF CONTACT SURFACES ••.•••••..•••• 0 
NUMBER OF RIGID SURFACES •••••••••••••••• 2 
NUMBER OF MATERXAL POINTS MONITORED ••..• 0 
ANALYSIS TYPE .•••••.•••••.•••.•.••••..•• AXISYMMETRXC 
GLOBAL CONVERGENCE MEASURE •••••••.•••••• 
RESIDUAL TOLERANCE •••••••••••••••••••••• S.OOOE-01 
MAXIMUM NUMBER OF XTERATXONS •••••••••••• 3000 
ITERATIONS FOR INTERMEDIATE PRINT ••••••• 10 
MAXIMUM RESIDUAL TOLERANCE •••••••••••••• 5.000E+00 
PREDICTOR SCALE FACTOR FUNCTION ••••••••• 0 
MINIMUM DAMPING FACTOR •••••••••.•••••••• 2.000E-01 
EFFECTIVE MODULUS STATUS •••••••••••••••• CONSTANT 
SCALE FACTOR APPLXED TO TIME STEP ••••••• 1.000E+00 
STRAXN SOFTENING SCALE FACTOR •••••••••.• 
HOURGLASS STIFFNESS FACTOR 
HOURGLASS VISCOSITY FACTOR •••••••••••••• 

l.OOOE+OO 
1.000E-02 
3.000E-02 

Following the PROBLEM DEFINITION section are the definitions of the load steps, printed 
output frequency and the plotted output frequency. A sample output for these sections is shown 
below. LOAD STEP DEFINTIONS shows the number of steps taken between each defined time 
interval. The PRINTED OUTPUT FREQUENCY data echo shows the number of load steps 
between printed output dumps during the defined time interval. PLOTTED OUTPUT 
FREQUENCY echos the number of load steps between plot dumps during the defined time 
interval. 
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L 0 A D S T E P D E P I N I T I 0 N S 

TIME 
O.OOOE+OO 

NO. OP STEPS 
100 

TJ:ME 
1.000E+00 

P R I N T E D 0 U T P U T P R E Q U E N C Y 

TJ:ME STEPS BETWEEN PRJ:NTS 
O.OOOE+OO 1 

TIME 
l.OOOE+OO 

P L 0 T T E D 0 U T P U T P R E Q U E N C Y 

TIME STEPS BETWEEN. PLOTS 
O.OOOE+OO 1 

TIME 
l.OOOE+OO 

The next output grouping echos back the material type and material constants. Some additional 
constants which are computed by SANTOS within the constitutive model pre-processor are also · 
printed. 

M A T E R I A L D E P I N :I T I 0 N S 

MATERIAL TYPE •••••••••••••••••••••••• ELASTJ:C PLASTIC 
MA TERJ:AL I D • • • • • • • • • • • • • • • • • • • • • • • • • • 1 
DENSITY • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 7. 833E-06 
MATERIAL PROPERTJ:ES: 

YOUNGS MODULUS 
POISSONS RATJ:O 
YIELD STRESS 
HARDENING MODULUS 
BETA 

= .. .. 
= .. 

2.000E+02 
3.000E-01 
7.000E-01 
3.000E-01 
1.000E+00 

The next section of output echos back the processed input data regarding kinematic and traction 
boundary condition data. This data also includes function specifications and contact surface 
definitions. Distinction is made between NO DISPLACEMENT and PRESCRIBED 
DISPLACEMENT kinematic boundary conditions. 
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P U N C T I 0 N D E P I N I T I 0 N S 

PUNCTION ID 1 NUMBER OP POINTS •••• 2 

N 
1 
2 

s 
O.OOOE+OO 
1.000E+00 

P(S) 
O.OOOE+OO 
1.000E+00 

N 0 D I S P L A C E M E N T B 0 U N D A R Y C 0 N D I T I 0 N S 

NODE SET PLAG 
4 

DIRECTION 
X 

PRESCRIBED DISPLACEMENT BOUNDARY CONDITIONS 

NODE SET 
PLAG 

DIRECTION PUNCTION SCALE AO 
ID PACTOR 

1 Y 1 9.000E+00 

R I G I D SURPAC E S 

SURPACE SIDE SET COEPPICIENT xo YO 
NUMBER PLAG OP PRICTION 

1 300 PIXED O.OOOE+OO 1.500E+Ol 
2 200 PIXED O.OOOE+OO 1.500E+01 

BO 

NX NY 

O.OOOE+00-1.000E+00 
0.000E+00-1.000E+00 

The next grouping defines the quantities written to the plotting data base. The plotted output is 
grouped by whether the variable being written is a nodal, element, or global quantity. The global 
quantities, FX and FY, written to the data base refer to the sum of the applied loads in the x and 
y-directions, respectively. The quantities, RX and RY, refer to global reaction forces in the x and 
y-directions summed at nodes specified to have NO DISPLACEMENT boundary conditions 
applied. For axisymmetric analyses, the forces FX, FY, RX, and RY are output per radian. The 
nodal variables, RESIDX RESIDY RESID, refer to imbalance or residual forces acting at the 
nodes. The variables RESIDX and RESIDY refer to the x and y-component directions of the 
imbalance forces, respectively. The variable RESID is the scalar magnitude of the components. 
Material model state variables appear as element variables in the plotting data base. 
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VA R I A B L E S 0 N P L 0 T T I N G DATA B A S E 

NODAL ELEMENT GLOBAL 
------- ------

DISPLX PRESSURE P'X 
DISPLY VONMISES P'Y 
RESIDX EQPS RX 
RESIDY RY 
RESID ITER 

If the INTERMEDIATE PRINT option is in effect then the following output is obtained every n 
iterations. For this example, n is specified to be every 10 iterations. The values under the STEP 
column refer to the number of iterations taken relative to this load step. The column labeled TIME 
shows the problem time for which an equilibrium solution is being sought. The column labeled 
TIME STEP shows the stable time step internally computed within SANTOS which is being used 
to integrate the equations of motion. This number may change from one iteration to the next as the 
element is deformed. The column labeled DAMPING FACTOR provides the current adaptive 
dynamic relaxation damping parameter. The next two columns provide information regarding 
convergence of the load step. The APPLIED LOAD NORM refers to the L2 norm of the externally 
applied loads while the RESIDUAL LOAD NORM is the L2 norm of the imbalance forces at each 
node. The PERCENT IMBALANCE column is the result of dividing the RESIDUAL LOAD 
NORM by the APPLIED LOAD NORM which is the measure used to determine convergence of 
the iterative scheme. The column defined as TOTAL STEPS gives a running total of the number 
of iterations for the problem. 

STEP TIME TIME DAMPING APPLIED RESIDUAL PERCENT TOTAL 
STEP FACTOR LOAD NORM LOAD NORM I:MBALANCE STEPS 

10 1. OOOE-02 9.984E-03 7.105E-01 2.927E+01 1. 047E+02 357.71 10 
20 1.000E-02 9.991E-03 7.024E-01 2.395E+01 2.456E+01 102.55 20 
30 1.000E-02 9.994E-03 5 .261E-01 1.748E+01 7.866E+00 44.99 30 
40 1.000E-02 9.996E-03 9.896E-01 1.600E+01 4.727E+00 29.55 40 
50 l.OOOE-02 9.997E-03 9.574E-01 1.311E+01 2.591E+00 19.77 50 
60 1.000E-02 9.998E-03 9.069E-01 1.259E+01 2.011E+00 15.97 60 
70 l.OOOE-02 9.998E-03 9.428E-01 1.236E+01 1.604E+00 12.97 70 
80 1.000E-02 9.999E-03 9.346E-01 1.200E+01 1.096E+00 9.13 80 
90 1.000E-02 9.999E-03 8.438E-01 1.166E+01 7.562E-01 6.49 90 

The final output section to be described is the printed output that results when the iterative solution 
reaches equilibrium as measured by ~e PERCENT IMBALANCE. The printed output provides 
descriptive information about the problem such as when the problem was run, version of the 
software, title of the problem and a summary of information about the convergence of the load step. 
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1 SANTOS, VERSION SANTOS 2.0 ,RUN ON 01/20/95 ,AT 16:15:25 
UPSETTING OP A CYLINDRICAL BILLET 

********************************************************************* 
SUMMARY OP DATA AT STEP NUMBER 1, TIME = 1.000E-02 
NUMBER OP ITERATIONS • 212, TOTAL NUMBER OP ITERATIONS = 
PINAL CONVERGENCE TOLERANCE = 4.901E-Ol 
SUM OP EXTERNAL PORCES IN X-DIRECTION = O.OOOE+OO 
SUM OP EXTERNAL PORCES IN Y-DIRECTION = O.OOOE+OO 
SUM OP REACTION PORCES IN X-DIRECTION = O.OOOE+OO 
SUM OP REACTION PORCES IN Y-DIRECTION =-3.561E+01 
********************************************************************* 

**** PLOT TAPE WRITTEN AT TIME = 1.000E-02 STEP NUMBER 1 **** 
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Adding A New Constitutive Model to SANTOS 

A material interface subroutine has been incorporated which allows the constitutive model devel­
oper to add a new material model with very little effort. The interface has been designed so that 
the developer does not need to understand the internal workings of SANTOS especially with 
respect to allocation and management of computer memory. If the developer follows the instruc­
tions in subroutine MATINT, then SANTOS will handle all memory allocation, material data 
reading, and material data printing. There are three steps that should be followed when adding a 
new model. 

Step 1 

Subroutine MATINT contains instructions using FORTRAN comment cards which outline the 
steps that should be followed to add a new material model. Most of the required changes involve 
adding or changing numbers in DATA and PARAMETER statements. Since we have no prior 
knowledge of what the material constants represent for a particular material, the code requires 
that a few lines of FORTRAN be added to compute the initial dilatational modulus (A+ 211) and 

the initial shear modulus (211) for the material. The dilatational modulus and the shear modulus 
must be stored in the variables DATMOD and SHRMOD, respectively. At this same location in 
the code it is possible to calculate any combination of the input parameters that may be required in 
the constitutive subroutine (e.g. bulk modulus from Young's modulus and Poisson's ratio). 

There is a restriction to twenty characters in the material name, material cues, and internal state 
variable names which are defined in subroutine MATINT. The names may have blanks which 
means that multiple word cues are allowed. The names must be defined such that each word in the 
name is unique to the first three characters. This means that material cues Cl, C2, C3, etc., are 
legal; but CONI, CON2, CON3, etc., are not. 

Step 2 

This step is optional and is only required if the new material model contains internal state vari­
ables which must be initialized to some value other than zero (all internal state variables are ini­
tialized to zero by default). If state variables must be initialized, an ELSE IF statement must be 
added to subroutine SVINIT for this material. This statement should read: 

ELSE IF( MKIND .EQ. (new material number) ) THEN 

initialize internal 
state variables here 

This new material number corresponds to the position where the material resides in the list of 
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material names defined in subroutine MATINT. Generally, when adding a new material, the new 
material is the last one defined and its number will be the same as the number of materials defined 
in STEP 1. The application of this step should be obvious from inspecting the coding of the other 
material models. Please use comments to record changes to the code. 

Step 3 

In subroutine UPDSTR, the call to the new material model must be added. The material subrou­
tine may have any appropriate name, but current convention has been to name the material sub­
routines MATl, MAT2, MAT3, etc., where the number corresponds to the material number 
defined in Step 2. The call is included by adding an ELSE IF block to subroutine UPDSTR which 
should read: 

ELSE IF( MKIND .EQ. (new material number) ) THEN 
CALL new subroutine( ..... argument list .... ) 

The application of this step should be obvious from inspecting the coding of the other material 
models. Please use comments to record changes to the code. 
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Verification and Sample Problems 

Sample problems are included to demonstrate code verification and to acquaint the user with the 
SANTOS program. The problems were selected to exercise and demonstrate many of the major 
features and options in the code. 

Large Deflection Analysis of a Cantilever Beam 

The large deformation of an elastic cantilever beam is included for comparison with the analytical 
solution as formulated by Holden (1972). The beam problem is challenging for the uniform strain 
quadrilateral elements and for the dynamic relaxation (DR) algorithm. The beam has a length-to­
thickness ratio of30. The beam material is assumed to be elastic with a Young's modulus of 

1. x 10
7 

psi and a Poisson's ratio equal to zero. Both gravity and normal pressure loading 
conditions are considered. 

The first loading condition considered is the beam loaded with gravity, which keeps the direction 
of loading constant throughout the analysis. Following the notation and development of Holden, 
the equation for the slope of the beam is 

2 
de k- e - = - scos 1 

ds
2 

(EQ E-1) 

where e is the angle between the beam neutral axis and the x-axis; s = sl Lis the normalized arc 
3 

length along the beam neutral axis; k = w ~I is a nondimensionalloading parameter; L is the 

length of the beam; w is the loading intensity (load per unit length); E is Young's modulus; and I 
is the beam's moment of inertia. This equation describes the fmite deflection of uniform beams 
using the Euler-Bernoulli theory of bending subject to vertical (gravity) loading. Boundary 
conditions for the cantilevered beam are a specified zero rotation at the fixed end. 

The normalized horizontal and vertical deflections of the free end of the beam are then given by 

and 

1 

hi L = J cos8ds 

0 

1 

BIL = j sin8ds, 

0 

(EQ E-2) 

(EQE-3) 

respectively. Equation E-1 is solved using a Runge-Kutta procedure, the integrations for 
deflections are computed using adaptive quadrature, and the results are checked by comparison to 
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Holden's published solution. Figure E-1 shows a schematic of the beam geometry and boundary 
conditions. The beam has thirty elements along its length and four through the beam thickness. 
The nonlinear beam response is calculated with SANTOS (triangles and squares) and compared to 

Holden's published solution (solid line) in Figure E-2. The comparison for this case is excellent. 
The deformed shape of the beam corresponding to k = 0., 6.5, and 20. is shown in Figure E-3. 

y 

~ ~ 
~~--------------~ 

~ 
~~----------------------------~ 

L 

Figure E-1. Schematic of Cantilever Beam With Gravity Loading 
Showing the Geometry and Boundary Conditions 

-< ..c 
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8/L Verticd Displacement 
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k {=wl3 /El) 
20.0 

Figure E-2. Comparison of Analytic (solid line) and SANTOS (triangles and squares) 
Tip Displacements for the Beam With Gravity Loading. 
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To obtain a solution to the gravity loaded beam problem using DR, we must make use of the NO 
DAMPING option. This option turns off the damping for a specified number of iterations which 
allows the beam to take on a more correct deformed shape before damping begins. In addition, this 
option is invoked only for the first 50 load steps which corresponds to the tip of the beam reaching 
a deflection magnitude equal to the thickness of the beam. Some large imbalance forces are 
experienced with the early load steps but these quickly disappear as the beam deforms and the 
deformation mode changes from small-deformation bending behavior to large-deformation 
bending behavior. A total of 310 load steps were taken for the gravity loaded case with each load 
step averaging 733 iterations. The SANTOS input file for the gravity loaded beam problem is 
shown in Figure E-4. 

k=O 

Figure E-3. Deformed Shape of the Beam Under Gravity Loading. 
Deformed Shapes Correspond to k = 0.0, 6.5, and 20. 

The second loading condition is pressure applied along the top of the beam so that the loads 
remains normal to the surface throughout deformation. The beam theory equation for this case is 

(EQ E-4) 

with the same boundary conditions as before. For large load magnitudes, this configuration causes 
more severe bending of the beam as shown in Figure E-5. The analytic solution (solid line) is 
compared to the SANTOS solution (triangles and squares) in Figure E-6. For this load case the 
finite element model is stiffer than the Euler-Bernoulli beam theory predicts at the higher loads. 
This difference is probably due to the fact that when the beam starts bending back on itself, the 
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TITLE 
3 0 TO 1 BEAM WITH GRAVITY LOADS - SANTOS QA PROBLEM 

RESIDUAL TOLERANCE, 0.5 
MAXIMUM ITERATIONS, 3000 
INTERMEDIATE PRINT, 100 
MAXIMUM TOLERANCE, 1000 
NO DAMPING, 100, 50 
PLANE STRAIN 
STEP CONTROL 

310 1.55 
END 

PLOT TIME 
10 1.55 

END 
OUTPUT TIME 

1 1.55 
END 

PLOT NODAL DISPLACEMENT 
PLOT ELEMENT STRESS,VONMISES 
NO DISPLACEMENT Y, 4 
NO DISPLACEMENT X, 4 
GRAVITY,1,0.,1.,0. 
FUNCTION, 1 $ FUNCTION TO DEFINE GRAVITY LOADS 
0. 0. 
2. -2. 
END 
MATERIAL, 1, ELASTIC, 400. 
YOUNGS MODULUS = 1.E7 
POISSONS RATIO = 0.0 
END 
EXIT 

Figure E-4. SANTOS Input File for the Gravity Loaded Beam Verification 
Problem. 

radius of curvature is no longer large compared to the thickness of the beam. The SANTOS 
solution employed 1550 load steps with an average of 270 iterations per load step. The input file 
for this load case is shown in Figure E-7. 

Elastic-Plastic Thick-Walled Hollow Sphere 

The problem of a thick-walled hollow sphere loaded into the plastic range by an internal pressure 
serves as a good check of the elastic-plastic material model. The two cases analyzed are for an 
elastic-perfectly plastic sphere and an elastic-plastic sphere with linear strain hardening. The 
sphere analyzed has an internal radius of one and an outer radius of two. The internal pressure is 
increased from the start of initial yield at the inner surface and is increased until the sphere becomes 
fully plastic. The problem is analyzed using the axisymmetric option in SANTOS. In addition, 
symmetry boundary conditions are assumed so that only a quarter of the sphere is modeled as 
shown in Figure E-8. The mesh discretization uses 30 elements spaced uniformly in the radial 
direction and 20 elements spaced uniformly around the circumference for a total of 600 elements. 
The sphere material has a Young's modulus of 207. GPa and a Poisson's ratio of 0.3. The yield 
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Figure E-5. Deformed Shape of the Beam With Applied Pressure Loading. 
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Deformed Shapes Correspond to k = 0.0, 6.5, 13., and 20. 
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6/L Vertical Displacement 

h/L Horizontal Displacement 

I!> 
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0.0 4.0 8.0 12.0 16.0 20.0 

k (=wL3/EI) 
Figure E-6. Comparison of Analytic (solid line) and SANTOS (squares and triangles) 

Tip Displacements for the Beam With Applied Pressure Loading. 
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TITLE 
30 TO 1 BEAM WITH APPLIED PRESSURE 

RESIDUAL TOLERANCE, 0.5 
MAXIMUM ITERATIONS, 3000 
INTERMEDIATE PRINT, 100 
MAXIMUM TOLERANCE, 1000 
NO DAMPING, 100, 50 
PLANE STRAIN 
STEP CONTROL 

1550 1.55 
END 

PLOT TI:ME 
10 1.55 
END 

OUTPUT TI:ME 
1 1.55 
END 

PLOT NODAL DISPLACE:MEN'l' 
PLOT ELE:MENT STRESS,VONMISES 
NO DISPLACE:MENT Y, 4 
NO DISPLACE:MENT X, 4 
PRESSURE, 30, 1, 400. 
FUNCTION, 1 $ FUNCTION TO DEPINE PRESCRIBED DISPLACE:MENT 
o. o. 
2. 2. 
END 
MATERIAL, 1, ELASTIC, 2167. 
YOUNGS MODULUS = 1. E7 
POISSONS RATIO = 0.0 
END 
EXIT 

Figure E-7. SANTOS Input File for Pressure Loaded Beam Verification 
Problem. 

stress is set to 10000. and the hardening modulus is 20.7 GPa for the linear strain hardening 
problem. The hardening modulus is set to zero for the elastic-perfectly plastic analysis. 

The analytical solutions for these problems were derived by Mendelson (1968). For an internally 
pressurized sphere, the elastic/plastic interface expands radially outward from the inner surface of 

-the sphere according to the following equations taken from Mendelson. The first relation is for the 
elastic perfectly-plastic material and defmes the radius, c, of the elastic-plastic interface 

p = 2lnp + ~( 1 - _!_J 
c 3l ~~ 

(EQE-5) 

and the second equation defines the elastic-plastic interface for the linear strain hardening material. 
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4
-m(l- v)(l- .l)p 3 + 2{1- m)lnp + ~(1- m)ll- _!_J 
3 ~3 .c c 3 ~! 

p = --------------------~~--~-------------1 - m + 2m(l - v) 
(EQ E-6) 

The non-dimensional variables used in Equations E-5 and E-6 are: P = play is the ratio of 

applied internal pressure to material yield stress, cry; Pc = cl a is the ratio of the elastic-plastic 

interface radius to the sphere'sintemal radius, a; ~c = bl c is the ratio ofthe sphere's outer radius, 

b, to the elastic-plastic interface radius; ~ = b I a is the ratio of the sphere's outer to inner radii; 

m is the ratio of the hardening modulus to the Young's modulus; and v is Poisson's ratio. 

Figure E-8. Finite Element Mesh Discretization Used for the Thick­
Walled Hollow Sphere Analyses. 

In Figures E-9 and E-10, the non-dimensional effective stress is plotted as a function of radius for 
loadings starting from initial plastic yield at the sphere inner radius to full plastic yielding of the 
sphere. The analytical solutions are plotted as solid lines in the figures. As can be seen from the 
plots of normalized effective stress, the computed and analytical results match almost exactly. The 
only deviation between the solutions is seen in Figure E-9 for the case where the sphere should be 
fully plastic. The SANTOS solution does not predict a fully plastic sphere. The normalized 
effective stress for the element at the sphere outer surface does not yield although the pressure 
applied should induce full plastic yielding of the sphere. It appe~s that full plastic yielding results 
in an increase in the calculated outer radius by an amount to stop further yielding and obtain 
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p (r/a) 
Figure E-9. Normalized Effective Stress Results for the Internally Pressurized 

Elastic-Perfectly Plastic Thick-Walled Hollow Sphere 

equlibrium. In addition, if the sphere were to become fully plastic for an elastic-plastic material 
with no hardening, the solution would be difficult to converge since the material would be flowing 
in an unrestrained manner. The SANTOS input file for the internally pressurized elastic-plastic 
thick-walled hollow sphere is given in Figure E-11. 

Upsettin& of a Cylindrical Billet 

This verification problem examines the behavior of a cylindrical metallic billet that has undergone 
a 60% upset by compression between two flat, rigid dies. The billet has as initial dimensions a 
length of 30 mm and a diameter of 20 mm. The axisymmetric option in SANTOS is used and only 
the top half of the billet is modeled since the middle surface of the billet can be viewed as a plane 

of symmetry. The time history of the die force is· to be compared to computational results by other 
analysts (Taylor, 1981). 

The die material is assumed to be elastic-plastic with linear strain hardening. The material 
properties are taken from Lippmann (1979). The billet has a Young's modulus of 200 Gpa and a 
Poisson's ratio of 0.3. The initial yield stress of the material is 700 Mpa with a hardening modulus 
of 300 Mpa. A uniform mesh containing 216 quadrilateral elements is used. The mesh 
discretization and boundary conditions used are shown in Figure E-12. The middle surface of the 
billet is given a prescribed vertical displacement which compresses the billet against the top rigid 
die. The rigid die is modeled using the RIGID SURF ACE option in SANTOS. The die surface is 
assumed to be rough which results in a no slip condition between the billet and die. This behavior 
can be achieved by specifying the friction value as FIXED on the RIGID SURF ACE option. 
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Figure E-10. Nonnalized Effective Stress Results for the Internally 
Pressurized Elastic-Plastic Thick-Wailed Hollow Sphere 
With Linear Hardening. 

2.00 

During deformation it is expected that the external surface of the billet will fold and come into 
contact with the rigid die, which means that the definition of the side set associated with the rigid 
sutface must include both elements along the top of the billet and elements along the external 
boundary. One hundred load steps were taken for this analysis. 

Figure E-13 shows the defonned shape of the billet at several different times during the upset 
process. The folding of the billet's external sutface is clearly seen as well as its contact with the 
rigid die. A close-up of the billet's final defonned shape at 60% upset is shown in Figure E-14. 
Figure E-15 shows a comparison of the upset force vs. die displacement with results taken from 
Taylor (1981). The agreement is seen to be excellent until the die displacement reaches 7.0 rom. 
At this value of displacement, the billet is folding and the ftrSt nodal point on the external sutface 
is just coming into contact with the rigid sutface. The slight difference in the upset force seen in 
the figure at die displacements greater than 7.0 rom is related to the contact occurring between the 
folding billet and the rigid surface. The SANTOS input file for the upsetting of the cylindrical billet 
is given in Figure E-16. 

Closure of a 'Waste Qis.posaJ Rqom in a Salt Stratimphx 

Bedded salt is being considered as a storage medium for the long-tenn disposal of contact-handled 
transuranic wastes produced as a by-product of the defense activities of the United States. Salt was 
selected because of its propensity to creep under the action of deviatoric stresses. This creep 
deformation would eventually entomb the waste and isolate it from the biosphere. Under the 
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TJ:TLE 
SANTOS QA PROBLEM - HOLLOW SPHERE - 10/26/94 - HARDENJ:NG M = 0.1 

AXJ:SYMMETRJ:C 
MAXJ:MUM J:TERATJ:ONS 20000 
RESJ:DUAL TOLERANCE .01 
MATERJ:AL,1,ELASTJ:C PLASTJ:C,1.0 
YOUNGS MODULUS 2.07E+11 
POJ:SSONS RATIO 0.3 
YJ:ELD STRESS 10000. 
HARDENJ:NG MODULUS 2.07E+10 
BETA 0. 
END 
P'UNCTION,1 

o. o. 
1. 5833. 
1.25 9756.5 
1.5 13003.2 
1.75 15798.4 
2. 18278.8 

END 
STEP CONTROL 

1, 1. 
1, 1.25 
1,1.50 
1, 1. 75 
1,2.0 

END 
PLOT TJ:ME 
1,1. 
1, 1.25 
1, 1. 50 
1,1.75 
1,2.0 

END 

OUTPUT TJ:ME 
1,1. 
1,1.25 
1,1.50 
1,1.75 
1,2.0 

END 
NO DISPLACEMENT,X,1 
NO DJ:SPLACEMENT,Y,2 
PRESSURE,3,1,1. 
EXIT 

Figure E-11. SANTOS Input File for the Internally Pressurized Elastic-Plastic Thick­
Wailed Hollow Sphere With Linear Hardening. 

current plan, the wastes are to be stored in disposal rooms, which are part of a mined respository, 
650 m underground. The disposal rooms are 10.06 m wide by 3."96 m high and 91.44 min length. 
As part of the repository performance assessment activity, it was a requirement to determine the 
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Figure E-12. Mesh Discretization and Boundary Conditions Used for the 
Analysis of the Upsetting of a Cylindrical Billet. 

X X 
Figure E-13. Plots of the Deforming Billet at Various Times During the Upset. 

Plots Shown Correspond to Non-Dimensional Times of 0., 0.33, 
0.667, and 1.0. 
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Figure E-14. Final Deformed Shape of the Billet Mter 60% Upset. 
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Figure E-15. Comparison of SANTOS Calculation With Numerical Results 
Taken From Taylor (1981) for the Upset of a Cylindrical 
Billet. 

time required for the disposal room to creep closed. In answering this question, a model of a 
disposal room in an all salt stratigraphy was developed. 

In the disposal room model, it is assumed that the disposal room is one of infmite number of 
parallel rooms located at the respository horizon. This assumption allows the use of vertical planes 
of symmetry at the room centerline and in the center of the pillar between rooms which results in 
the problem geometry shown with the discretized mesh in Figure E-17. The horizontal mesh 
dimension between symmetry planes is 20.27 m. The vertical mesh boundaries are located 
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TI:TLE 
UPSETTI:NG OP A CYLI:NDRI:CAL BI:LLET 

AXI:S'YMMETRI:C 
STEP CONTROL 
100,1 
END 
I:NTERMEDI:ATE PRI:NT= 10 
MAXI:MUM I:TERATI:ONS = 3000 
RESI:DUAL TOLERANCE = 0.5 
MAXI:MUM TOLERANCE • 100.0 
OUTPUT TI:ME 
1,1 
END 
PLOT TIME 
1,1 
END 
PLOT NODAL = DI:SPLACEMENT,REACTJ:ON,RESI:DUAL 
PLOT ELEMENT = VONMI:SES,PRESSURE 
PLOT STATE • EQPS 
NO DI:SPLACEMENT,X • 4 
PRESCRI:BED DISPLACMENT,Y = 1,1,9.E-3 
PUNCTION = 1 
0,0 
1,1 
END 
RIGID SURFACE = 500 , 0., 15.E-3, 0., -1., PIXED 
MATERI:AL,1,ELASTI:C PLASTIC,7.833E-6 
YOUNGS MODULUS = 200e9 , POISSONS RATIO = .3 
YIELD STRESS • .7e9 , HARDENING MODULUS = .3a9 , BETA = 1 
END 
EXIT 

Figure E-16. SANTOS Input File Used for Analyzing the Upsetting of 
a Cylindrical Billet. 

approximately 50 m from the disposal room. The vertical extent of the problem is designed to 
remove the effect of the boundaries away from the disposal room. The problem has a traction 
representing the overburden load applied at the top boundary and the bottom boundary has a 
traction applied to equilibrate the overburden load plus the additional loads produced by applied 
gravity forces. An initial hydrostatic stress state is assumed to exist with the value of the stress set 
to the lithostatic stress. Vertical motion of the model is restrained at a location near the top surface 
as shown in Figure E-17. Contact surfaces are defined around the interior of the disposal room to 
accommodate contact that occurs during the large-deformation room closure. Contact pairings are 
defined between the roof-floor, pillar-roof, and pillar-floor. The coefficient of friction is assumed 
to be zero for this calculation. 

The salt is modeled using the M-D creep model from the SANTOS material library. The M-D 
model is a combined transient-secondary creep constitutive model for rock salt The model 
includes the effects of workhardening and recovery through a state variable function that modifies 
the steady-state creep rate. The Tresca stress generalization is used in the model for the effective 
stress definition. The M-D material constants for argillaceous salt are given in Table I. The AUTO 

E-15 



Ux =0.0 
Uy =0.0 

HttttiHttttllttt/ u, = 0.0 

Applied Traction 

Figure E-17. Geometry, Boundary Conditions and Mesh Discretization fqr 
Analyzing the Closure of a Disposal Room in Salt. 

STEP option is used with the M-D material model for this problem. The time step necessary for a 
stable and accurate solution for the M-D model is very small at the start of the analysis. The AUTO 

STEP option begins with a small initial time step, 1. x 10-5 
seconds, and allows it to grow to an 

analyst specified maximum of 2.592 x 106 
seconds. Without invoking the AUTO STEP option, it 

is very time consuming to perform this analysis. 

Figure E-18 shows the deformed shape of the disposal room at several different times from the 
initial undeformed state to final closure. The closure process is characterized by shortening of the 
pillar and an inward displacement of the disposal room roof and floor. Contact between the roof­
pillar and floor-pillar occurs near the room corners. As contact occurs, the rate of room closure 
slows as the pillar begins to support the roof and floor. A close-up of the disposal room at closure 
is shown in Figure E-19. The contact of the disposal room interior surfaces is clearly shown in this 
figure. Figure E-20 shows the time history of room closure as measured by the sum of the 
displacements of the floor and roof centerline nodal points. When the sum of the displacements 
reaches 3.96 m then the floor and roof have come into contact and the disposal room is assumed to 
be closed. Closure is seen to occur at approximately 57 years. The SANTOS input file for 
analyzing the closure of a waste disposal room in salt is given in Figure E-21. 
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Table 1: M-D Argillaceous Salt Creep Properties 

Parameters Parameter 
(units) Value 

G (MPa) 12,400 

E (MPa) 31,000 

v 0.25 

A1 (/sec) 1.407E23 

Q 1 ( cal/mo1e) 25,000 

nl 5.5 

B1 (/sec) 8.998E6 

A2 (/sec) 1.314E13 

Q2 (cal/mole) 10,000 

n2 5.0 

B2 (/sec) 4.289E-2 

<1
0 

(MPa) 20.57 

q 5,335 

M 3.0 

Ko 2.470E6 

c (ff) 9.198E-3 

a. -14.96 

~ -7.738 

8 0.58 
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Figure E-18. Plots of the Deforming Disposal Room at Selected Times From 
Initial Excavation to Final Closure. Times 0., 25. 50., and 80 Years. 

X 

Figure E-19. Deformed Shape of the Disposal Room 100 Years After 
Excavation. 
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Figure E-20. Closure History of the Disposal Room Centerline. Contact of the 
Floor and Roof is Reached at Approximately 57 Years. 
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TITLE 
DISPOSAL ROOM CALCULATION TO CLOSURE ALL SALT - M-D CREEP MODEL 

RESIDUAL TOLERANCE = 0.5 
MAXIMUM ITERATIONS • 3000 
INTERMEDIATE PRINT • 100 
MAXIMUM TOLERANCE = 10.0 
PLANE STRAIN 
ELASTIC SOLUTION 
INITIAL STRESS = USER 
GRAVITY • 1 = 0. = -9.8066 = 0. 
AUTO STEP .02 2.592E6 NOREDUCE 1.E-5 
HOURGLASS STIPPENING = .005 
STEP CONTROL 

4000 3.1SE9 
END 
PLOT TIME 

10 3.1SE9 
END 
OUTPUT TIME 

10 3.15E9 
END 
PLOT NODAL DISPLACEMENT, RESIDUAL 
PLOT ELEMENT STRESS, VONMISES, EPPMOD 
PLOT STATE EQCS 
NO DISPLACEMENT X, 1 
NO DISPLACEMENT X, 3 
NO DISPLACEMENT Y, 3 
PONCTION,1 
o. 1. 
10 .E9 1. 
END 
PRESSORE,4,1,13.57E6 
PRESSORE,2,1,15.96E6 
CONTACT SORPACE, 200, 100, 0., 1.E-6, 1.E40 
CONTACT SORPACE, 300, 200, 0., 1.E-6, 1.E40 
CONTACT SORPACE, 100, 300, 0., 1.E-6, 1.E40 
MATERIAL, 1, M-D CREEP MODEL, 2300. $ ARGILLACEOUS HALITE 
'lWO MO = 24.8E9 
BULK MODULUS = 20.66E9 
A1 = 1.407E23 
01/R • 41.94 
N1 • 5.5 
B1 • 8.998E6 
A2 = 1. 314E13 
02/R = 16.776 
N2 = 5.0 
B2 = 4.289E-2 
SIGO = 20.57E6 
QLC = 5335. 
M • 3.0 
KO • 2.47E6 
c = 2.759 
ALPHA = -14.96 
BETA • -7.738 
DELTLC = .58 
RN3 • 2. 
AMULT • .95 
END 
EXIT 

Figure E-21. SANTOS Input File for Analyzing the Closure of a Waste Disposal 
Room in Salt. 
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