Appendix H

NUCLEAR
WASTE
MANAGEMENT
Sandia PROGRAM
National

Validation Document Criteria Form

Form Number: NP 19-1-7

Page 1 of 1

Laboratories				
1. Software Name:	SANTOS		.	
2. Software Version:	2.1.7			
3. Document Version:				
4. ERMS #:			· · · · · · · · · · · · · · · · · · ·	
	530091			· · · · · · · · · · · · · · · · · · ·
		propriately addressed by	\prime the code sponsor so t	hat " Yes " or " N/A "
may be checked. Inclu				
	nformation included, v	• •		
	ram and version tested		<u>⊠</u> Yes □	N/A
	ware and operating sys	tem used		N/A
(c) test equipment	and calibrations		☐ Yes 🗹	N/A
(d) date of test (e) tester or data r			.⊠ Yes □ ⊠ Yes □ □ Yes ਯ	N/A N/A
(f) simulation mod			Za Yes □ □ Yes Za	N/A N/A
	put and output files		∑ Yes □	N/A
(h) results and acc			∑a Yes □	N/A
	connection with any de	viations noted	Yes 🔀	N/A
6. Test Result Valid				
		lowing (check one or mo	re,	
	as based on code funct	ionality):		
- hand calculation	•		Yes ∐	N/A
- manual inspection		and the same	∑ Yes ☐	N/A
- calculations usin	g comparable proven p information from confire	robiems,		N/A N/A
	ions and/or technical lit		∐ Yes 🖾	IN/A
	oftware of similar purpo		☐ Yes 🗷	N/A
	nt software of similar pu		⊠ Yes □	N/A
	ion Acceptability		¥ Yes	
		tified in the approved VV	/P?	•
	ion Repeatability		∑a Yes	
	mented in sufficient det	tail such that		
they can be repea				
9. Computer File Do			🔀 Yes	
	nput and output files inc	cluded in the		
Validation Docume			∏ Yes	
	y of Documentation	and conclusions docume		11
	dependent, technically			•
be understood by an n	dependent, teenmeany	competent marriadar:		
11.	•	0/2	ubl	11-1
Byoung Yoon Park		Jan 1	t- lando	6/30/03
Code Team/Sp	onsor (print)	Signatuje -	7 1	Date
12.				1/21/2
Janis Trone		LIMB TIM	Ч	6/00/03
Technical Rev	ewer (print)	Signature		Date
13.		0	1 1	1 1 - 1
David Kessel		1 January 10	mel	6/30/03
Responsible Ma	inager (print)	Signature		Date
14.	"	<u> </u>		1 11
Jennifer Long		(len nila ó	lano	6130103
SCM Coordin	ator (print)	Signature		Date
	V- · · · · · /			

Key for check boxes above:

Check Yes for each item reviewed and found acceptable

Check N/A for items not applicable

Appendix D

NUCLEAR Form Number: Verification and Validation Plan WASTE NP 19-1-3 **MANAGEMENT** Criteria Form **PROGRAM** Sandia Page 1 of 1 National Laboratories **Software Name: SANTOS** Software Version: 2.1.7 3. **Document Version:** 1.20 ERMS #: 530091 Prior to sign-off of the VVP, all items shall be appropriately addressed by the code sponsor so that "Yes" or "N/A" may be checked. Include this form as part of the VVP **Sufficient Test Cases** X Yes Does the VVP identify sufficient test cases and acceptance criteria to ensure the final software and end product satisfies the requirements of the approved RD? (Check Yes if peer review is identified to fulfill the validation requirements) **Adequacy of Test Cases** X Yes Do the test cases demonstrate that the code adequately performs all intended functions and produces valid results for problems encompassing the range of permitted usage? **Operational Control** X Yes If the software is used for operational control, do tests demonstrate required performance over the range of operation of the controlled function or process? **Unintended Functions** Yes Yes Do the test cases show that the code does not perform any unintended function that either by itself or in combination with other functions can degrade the intended outcomes of the software? Test Result Validation. (check one or more, where applicable as based on code functionality) The test results will be compared to the following: - hand calculations Yes N/A Yes N/A - manual inspection, - calculations using comparable proven problems. Yes N/A - empirical data and information from confirmed published data N/A and correlation's and/or technical literature, - other validated software of similar purpose, Yes N/A N/A N/A - other independent software of similar purpose. Yes A documented peer review will be performed. Yes Yes Do the test cases describe how the code results will be validated? 10. Does the VVP specify the following, where applicable as based on code functionality? (a) required tests and test sequence Yes N/A (b) required ranges of input parameters Yes (c) identification of the stages at which testing is required Yes N/A $\overline{\mathbf{x}}$ N/A (d) criteria for establishing test cases Yes (e) requirements for testing logic branches Yes N/A N/A (f) requirements for hardware integration Yes N/A (g) anticipated output values Yes (h) acceptance criteria Yes 11. Installation and Regression Testing X Yes Are test cases which are suitable for installation testing and regression testing identified in the set of verification and validation test cases? 12. Byoung Yoon Park Code Team/Sponsor's Name (print) 13. Technical Reviewer's Name (print) 14. David Kessel Responsible Manager's Name (print) Stanature 15. Jennifer Long SCM Coordinator's Name (print) nature Key for check boxes above: Check Yes for each item reviewed and found acceptable

Check N/A for items not applicable, where applicable as based on code functionality

Appendix A

NUCLEAR WASTE

Form Number:

Review the document applying the criteria specified below, and complete items 7 and 8. Return DRC to review requester/delegate. REVIEW REQUESTER/DELEGATE: If there are comments requiring response, prepare response to each comment on following page(s); complete item 9, and return to reviewer. REVIEWER: Review responses to comments. Indicate acceptance or rejection on the DRC and complete item 10. NOTE: REVIEWER AND REVIEW REQUESTER/DELEGATE are encouraged to discuss comments. If comment(s) cannot be resolved, refer the issue(s) to management. Entries must be complete, legible, and in reproducible ink or completed electronically. 2. Rev. # 1. Document Title VERIFICATION AND VALIDATION PLAN/VALIDATION DOCUMENT for SANTOS (Version 2.1.7) Software QA Document Software QA Document	MANAGEME Sandia PROGRA National Laboratories	Document review and comment torci	NP 6-1-1 Page 1 of <u>2</u>
REVIEWER: Review the document applying the criteria specified below, and complete items 7 and 8. Return DRC to review requester/delegate. Return DRC to review requester/delegate. Review REQUESTRE/DELEGATE: If there are comments requiring response, prepare response to each comment on following page(s); complete item 9, and return to reviewer. Review responses to comments. Indicate acceptance or rejection on the DRC and complete item 10. NOTE: REVIEWER AND REVIEW REQUESTER/DELEGATE are encouraged to discuss comments. If comment(s) cannot be resolved, refer the issue(s) to management. Entries must be complete, legible, and in reproducible ink or completed electronically. 1. Document Title VERIFICATION AND VALIDATION PLAN/VALIDATION DOCUMENT for SANTOS (Version 2.1.7) 2. Rev. # (if applicable) 3. Document Description: (e.g. abstract, procedure, SAND report) 3. Document Description: (e.g. abstract, procedure, SAND report) 4. Type of Review 8. Criteria 4. Criteria 4. Criteria 4. Criteria 5. And (Compliance and completeness) 5. Are equations/calculations accurate? 9. Ones logic lead to reasonable conclusions? 9. Are the results drawn from the data supported by data presented? 9. Data/fables/figures: Are they easily understood? Are legends complete? 9. Compliance and complete and complete and complete and correctness) 1. Segment (Compliance and completeness) 1. Are applicable OA requirements adequately cited incorporated and relicontent, reviews? 1. Segment (Compliance and completeness) 1. Are applicable OA requirements adequately cited incorporated and relicontent, reviews? 1. Segment (Completeness) 1. Segment (Completen	Complete items 1-	-6 .	
REVIEW REQUESTER/DELEGATE If there are comments requiring response, prepare response to each comment on following page(s); complete item 9, and return to reviewer. Review responses to comments. Indicate acceptance or rejection on the DRC and complete item 10. NOTE: REVIEWER AND REVIEW REQUESTER/DELEGATE are encouraged to discuss comments. If comment(s) cannot be resolved, refer the issue(s) to management. Review responses to comments. Indicate acceptance or rejection on the DRC and complete item 10. NOTE: REVIEWER AND REVIEW REQUESTER/DELEGATE are encouraged to discuss comments. If comment(s) cannot be resolved, refer the issue(s) to management. Reviewers and return to reviewer. Reviewers AND REVIEW REQUESTER/DELEGATE are encouraged to discuss comments. If comment(s) cannot be resolved, refer the issue(s) to management. Reviewers AND REVIEW ReQUESTER/DELEGATE are encouraged to discuss comments. If comment(s) cannot be resolved, refer the issue(s) to management. Reviewers AND REVIEW ReQUESTER/DELEGATE are encouraged to discuss comments. If comment(s) cannot be resolved, refer the issue(s) to management. Reviewers AND REVIEW Requester Sean DOCUMENT for SANTOS (Version 2.1.7) If (if applicable) and in reproducible in the resolved represented and tufflided? - Are consensative and completeness and completeness. Are equations/calculations accurate? - Are equations/calculations accurate? - Are the results drawn from the data supported by data presented? - Are the results drawn from the data supported by data presented? - Are the results drawn from the data supported by data presented? - Are the results drawn from the data supported by data presented? - Are the results drawn from the data supported by data presented? - Are the results drawn from the data supported by data presented? - Are the results drawn from the data supported by data presented? - Are the results drawn from the data supported by data presented? - Are the results drawn from the data supported by data presented? - Basel Reviewer'	REVIEWER: Review the docum	nent applying the criteria specified below, and complete items 7 and 8.	
NOTE: REVIEWER AND REVIEW REQUESTER/DELEGATE are encouraged to discuss comments. If comment(s) cannot be resolved, refer the issue(s) to management. Entries must be complete, legible, and in reproducible ink or completed electronically. 1. Document Title	REVIEW REQUESTER If there are common REVIEWER:	R/DELEGATE: ents requiring response, prepare response to each comment on following page(s); complete item 9, and return to reviewer.	
2. Rev. # (if applicable) 1.2 1. Document Title VERIFICATION AND VALIDATION PLAN/VALIDATION DOCUMENT for SANTOS (Version 2.1.7) 2. Rev. # (if applicable) 3. Document Description: (e.g. abstract, procedure, SAND report) 3. Document Description: (e.g. abstract, procedure, SAND report) 3. Document Description: (e.g. abstract, procedure, SAND report) 4. Type of Review 8. Criteria Technical (Technical adequacy, accuracy, completeness) Are objectives clearly stated and fulfilled? Is the technical activity clearly described? Are equations/calculations accurate? Does logic lead to reasonable conclusions? Are the results drawn from the data supported by data presented? Does logic lead to reasonable conclusions? Are the results drawn from the data supported by data presented? Does logic lead to reasonable conclusions? Are the results drawn from the data supported by data presented? Does the document meet applicable criteria? Does the document meet applicable criteria? Does the document meet applicable criteria? Additional criteria (if applicable) 5. Additional criteria (if applicable) 6. Review Requester Sean Dunagan Date: 6/25/03 Date Acviewer's Printed Name Reviewer's Signature This section to be left blank if there are no comments requiring a response) 9. Response to comments prepared by: Review Requester's Delegate's Printed Name Review Requester's Delegate's Signature 10. Response Concurrence:			issue(s) to management.
1. Document Title VERIFICATION AND VALIDATION PLAN/VALIDATION DOCUMENT for SANTOS (Version 2.1.7) 3. Document Description: (e.g. abstract, procedure, SAND report) Software QA Document 4. Type of Review 8. Criteria Corectness) Las the technical review been performed by someone who is "independent"? (See NP 6-1, Section 2.2) Coes the document meet applicable criteria? Coes the documents meet applicabl			(,
4. Type of Review & Criteria	1.Document Title		ole)1.2
**Criteria	3. Document Description	on: (e.g. abstract, procedure, SAND report) Software QA Document	
6. Review Requester Sean Dunagan 7. Review Prepared by: David Kessel Reviewer's Printed Name 8. One of the following boxes must be checked: (This section to be left blank if there are no comments requiring a response) 9. Response to comments prepared by: Sean Dunagan Review Requester Sprinted Name 6. Review Requester Sean Dunagan Reviewer's Signature 6. Review Requester Signature 6. Review Req	d Olliena	-Are objectives clearly stated and fulfilled? -Is the technical activity clearly described? -Are equations/calculations accurate? -Does logic lead to reasonable conclusions? -Are the results drawn from the data supported by data presented? -Are applicable QA requirements adequately cited/ incorporated and met (content, reviews)? -Is ther -Is t	rectness) ort consistent with policy? re consensus with other program nents?
7. Review Prepared by: David Kessel Reviewer's Printed Name 8. One of the following boxes must be checked: (This section to be left blank if there are no comments requiring a response) 9. Response to comments prepared by: Sean Journagan Review Requester's Delegate's Printed Name Review Requester's Delegate's Printed Name Review Requester's Delegate's Signature Org. 6/26/03 6/26/03 6/26/03 6/26/03 6/26/03 6/26/03 6/26/03 6/26/03 6/26/03 6/26/03 6/26/03			
7. Review Prepared by: David Kessel Reviewer's Printed Name Reviewer's Signature 8. One of the following No comments Sometime Comments; record on following pages. 9. Response to comments prepared by: Sean Journagan Review Requester's Delegate's Printed Name 10. Response Concurrence: 11. Response Concurrence: 12. Review Prepared by: Reviewer's Signature Signature Reviewer's Signat	5. Additional criteria (if		Date: <u>6/25/03</u>
8. One of the following No comments Scomments; record on following pages. (This section to be left blank if there are no comments requiring a response) 9. Response to comments prepared by: Sean Science Sequence Sequence	7. Review Prepared by	y: David Kessel	
9. Response to comments prepared by: Sean Science Review Requester's Delegate's Printed Name Review Requester's Delegate's Printed Name Review Requester's Delegate's Signature Org.			
Review Requester's/Delegate's Printed Name Review Requester's/Delegate's Printed Name Review Requester's/Delegate's Signature Org. Date 6/26/03	•		1521 (11/183
10. Response Concurrence: (a) (4) (4) (5) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	Response to comme		Org. 0 (10 0)
	10. Response Concurr	rence:	6/26/03 Date

			Document Review and Com	nment ([ORC)	·	ĺ	m Numb NP 6-1-1	
				•			Page	of	
Type of Revi	ew	☐ Technic	al □ QA ⊠ Management □ Other				-		
Document Ti		VERIFICAT 2.1.7)	TION AND VALIDATION PLAN/VALIDATION DOCUMENT for	SANTOS (Vers	ion ————	Rev. # 1.2			
R	evie	wer's Comme	ents (Enter "LAST COMMENT" in row below last entry)		Review f	Requester's/Delegate's Response		Revie Resp	
Comment#	*	Location	Comment	Accept	Reject			Accept	Reject
1	N	тос	Introduction is repeated	×		Corrected		DSee	
			Last comment						
								!	
				i i					
		_							
									٠
<u></u>			·						
L									

^{*} Mark Y (Yes) for comments requiring a response from the Review Requester/Delegate.

Mark N (No) for comments not requiring a response from the Review Requester/Delegate.

Appendix A

NUCLEAR WASTE MANAGEMENT **PROGRAM**

Document Review and Comment (DRC)

Form Number: NP 6-1-1

Date

Page 1 of 2 Sandia **National** Laboratories REVIEW REQUESTER (e.g., author/Sandia contact) Complete items 1-6. Provide the DRC and review document to the reviewer. REVIEWER: Review the document applying the criteria specified below, and complete items 7 and 8. Return DRC to review requester/delegate. REVIEW REQUESTER/DELEGATE: If there are comments requiring response, prepare response to each comment on following page(s); complete item 9, and return to reviewer. REVIEWER: Review responses to comments. Indicate acceptance or rejection on the DRC and complete item 10. NOTE: REVIEWER AND REVIEW REQUESTER/DELEGATE are encouraged to discuss comments. If comment(s) cannot be resolved, refer the issue(s) to management. Entries must be complete, legible, and in reproducible ink or completed electronically. 2. Rev. # (if applicable) 1.Document Title SANTOS, Version 2.1.7., Verification and Validation Plan/Validation Document 1.20 3. Document Description: (e.g. abstract, procedure, SAND report) software document □ Technical (Technical adequacy, accuracy, completeness) ☐ QA (Compliance and completeness) 4. Type of Review -Are objectives clearly stated and fulfilled? -Are applicable QA requirements adequately cited/ correctness) & Criteria -Is the technical activity clearly described? incorporated and met (content, reviews)? -Is report consistent with policy? -Are equations/calculations accurate? - Has the technical review been performed by -Is there consensus with other program -Does logic lead to reasonable conclusions? someone who is "independent"? documents? -Are the results drawn from the data supported by data presented? (see NP 6-1, Section 2.2) -Does the document meet applicable criteria? -Data/tables/figures: Are they easily understood? Are legends complete? Other type of review (please specify or leave blank if not applicable) 5. Additional criteria (if applicable) 6. Review Requester Sean Dunagan Date: 6/24/03 (Printed Name) 7. Review Prepared by: Janis Trone 6/24/03 Reviewer's Printed Name Reviewer's Signature Date 8. One of the following ☐ No comments Comments; record on following pages. boxes must be checked: (This section to be left blank if there are no comments requiring a response) 9. Response to comments prepared by: Sean Dunagan 6/25/03 Review Requester's/Delegate's Signature Review Requester's/Delegate's Printed Name Date 10. Response Concurrence: 6/26/03

Reviewer's Stanature

Document	Review	and	Comment	(DRC)	ļ
-----------------	---------------	-----	----------------	-------	---

Form Number: NP 6-1-1

Page <u>2</u> of <u>2</u>

Type of Revi	ew		al QA Management Other					
Document Ti	tle	SANTOS, V	ersion 2.1.7., Verification and Validation Plan/Validation Documer	nt		Rev. # 1.20		
R	evie	wer's Comme	ents (Enter "LAST COMMENT" in row below last entry)		Review I	Requester's/Delegate's Response	1	ewer's oonse
Comment#	*	Location	Comment		Accept	Reject		
Note	Z	All	A review of the SANTOS –Verification and Qualification Plan was completed by Billy Joe Thorne on 5/9/96. The analytic solutions for the 21 test cases have not changed since the Thorne review, therefore this review will focus on the validation portion (comparison of results to the analytic solutions). I will not be re-verifying the analytic solutions.					
1	Y	6.1.2	Does figure show rotation of 90 degrees?		x	Figure shows how the cube moves to 90 degrees over 10 increments. It shows the cube at an incremental stage before 90 degrees.	X	
2	Υ	Figure 6.3.3	Text states displacement increases from 0 to .216, but figure shows displacement decreasing from 0 to around21	х		Explained in 6.3.5.	X	
3	Υ	Figures 6.4.3. and 6.4.4	Reverse the two figures to match the order of the text description.	X		Reversed	X	
4	Υ	6.7.5	A conclusion of the codes adequacy is not stated.	x		Added	X	
5	Υ	6.8.5	Text states that it appears SANTOS is working correctly. Suggest removing the word appears and state the conclusion more confidently.	x		Reworded	X	
6	Y	6.9.5, 6.15.5 and 6.19.5	A conclusion of the code adequacy is not stated.	x		Added	X	
			Last comment					

^{*} Mark Y (Yes) for comments requiring a response from the Review Requester/Delegate.

Mark N (No) for comments not requiring a response from the Review Requester/Delegate.

WIPP PA

VERIFICATION AND VALIDATION PLAN/ VALIDATION DOCUMENT

for

SANTOS (Version 2.1.7)

Document Version 1.20

ERMS# 530091

June 2003

Information Only

TABLE OF CONTENTS

LIST OF F	FIGURES	3
1.0 IN	TRODUCTION	6
2.0 RE	EQUIREMENTS DOCUMENT	7
3.0 AI	DDITIONAL FUNCTIONALITY TO BE TESTED	9
4.0 FU	NCTIONALITY NOT TESTED	9
5.0 TE	STING ENVIRONMENT	9
6.0 FU	INCTIONAL TESTING	10
7.0 IN	STALLATION AND REGRESSION TESTING	.117
	EFERENCES	
APPENDI	X A	.121
APPENDI	X B	.137
APPENDI	X C	.147
APPENDI	X D	.159
APPENDI	X E	.167
APPENDI	X F	.176
APPENDI	X G	.182
APPENDI	X H	.196
APPENDI	X I	.205
APPENDI	X J	.231
APPENDI	X K	.249
APPENDI	X L	.273
APPENDI	X M	.287
APPENDI	X N	.296
APPENDI	X O	.303
APPENDI	X P	.314
APPENDI	X Q	.323
APPENDI	X R	.330
APPENDI	X S	.349
APPENDI	X T	.365
APPENDI	X U	.384
APPENDI	Υ Δ Δ	404

LIST OF FIGURES

FIGURE 6.1.1	TEST GEOMETRY AND BOUNDARY CONDITIONS	. 10
FIGURE 6.1.2	ROTATED STRESS PLOT	
FIGURE 6.2.1	TEST GEOMETRY AND BOUNDARY CONDITIONS	. 13
FIGURE 6.2.2	FINITE ELEMENT MESH	
FIGURE 6.2.3	SUPPORT REACTION PLOT	. 15
FIGURE 6.3.1	FINITE ELEMENT MESH	. 16
FIGURE 6.3.2	CONCENTRATED LOAD	. 17
FIGURE 6.3.3	END-POINT DISPLACEMENT	. 18
FIGURE 6.3.4	SUPPORT SHEAR REACTION	. 18
FIGURE 6.4.1	FINITE ELEMENT MESH	. 19
FIGURE 6.4.2	DISTRIBUTED LOAD	. 20
FIGURE 6.4.3	SUPPORT REACTION FORCE	. 21
FIGURE 6.4.4	AXIAL DISPLACEMENT	. 22
FIGURE 6.5.1	FINITE ELEMENT MESH	. 23
FIGURE 6.5.2	GEOMETRY AND BOUNDARY CONDITIONS	. 24
FIGURE 6.5.3	Pressure Versus Volume	. 25
FIGURE 6.6.1	GEOMETRY AND BOUNDARY CONDITIONS	. 26
FIGURE 6.6.2	FINITE ELEMENT MESH	. 26
FIGURE 6.6.3	ELASTIC SOLUTION	
FIGURE 6.7.1	CANTILEVER BEAN WITH PRESSURE LOAD	
FIGURE 6.7.2	CANTILEVER BEAM WITH GRAVITY LOAD	. 29
FIGURE 6.7.3	FINITE ELEMENT MESH UNDERFORMED	
FIGURE 6.7.4	GRAVITY BEAM AND END-POINT DISPLACEMENTS	
FIGURE 6.7.5	PRESSURE BEAM END-POINT DISPLACEMENTS	
FIGURE 6.7.6	DEFORMED GRAVITY-LOADED BEAM	
FIGURE 6.8.1	PROBLEM GEOMETRY AND BOUNDARY CONDITIONS	
FIGURE 6.8.2	FINITE ELEMENT MESH	
FIGURE 6.8.3	PLOT OF VERTICAL SUPPORT REACTION	
FIGURE 6.9.1	GEOMETRY AND BOUNDARY CONDITIONS	
FIGURE 6.9.2	FINITE ELEMENT MESH.	
FIGURE 6.9.3	Free Body Diagram of Forces	
FIGURE 6.9.4	END-POINT HORIZONTAL DISPLACEMENTS	
FIGURE 6.10.1	GEOMETRY AND BOUNDARY CONDITIONS	
FIGURE 6.10.2	DEFORMED GEOMETRY	
FIGURE 6.10.3	FINITE ELEMENT MESH	
FIGURE 6.10.4	DIFFERENTIAL FORCE ELEMENT – TOP BEAM	
FIGURE 6.10.5	END-POINT DISPLACEMENTS FOR CASE 1	
FIGURE 6.10.6	END-POINT DISPLACEMENTS FOR CASE 2	
FIGURE 6.11.1	GEOMETRY AND BOUNDARY CONDITIONS FOR PRESSURIZED CASES	
FIGURE 6.11.2	FINITE ELEMENT MESH	. 52

	_	_	_	_
P	aj	36	3	4

FIGURE 6.11.3	ELASTIC/PERFECTLY PLASTIC HOLLOW SPHERE	
FIGURE 6.11.4	ELASTIC/PLASTIC HOLLOW SPHERE WITH LINEAR HARDENING	
FIGURE 6.11.5	ELASTIC/PERFECTLY PLASTIC HOLLOW SPHERE – TEMPERATURE CASE	
FIGURE 6.12.1	EFFECTIVE STRESS COMPARISON	
FIGURE 6.13.1	GEOMETRY AND BOUNDARY CONDITIONS	
FIGURE 6.13.2	FINITE ELEMENT MESH.	
FIGURE 6.13.3	EFFECTIVE STRESS PLOT	
FIGURE 6.14.1	THICK-WALLED CYLINDER AXIALLY DEFORMED AT T=0.	
FIGURE 6.14.2	Von Mises Stress Plot – Power Creep Law	
FIGURE 6.15.1	GEOMETRY AND BOUNDARY CONDITIONS	
FIGURE 6.15.2	FINITE ELEMENT MESH.	69
FIGURE 6.15.3	RADIAL STRESS PLOT	
FIGURE 6.15.4	CIRCUMFERENTIAL STRESS PLOT	71
FIGURE 6.16.1	FINITE ELEMENT MESH NEAR THE SHAFT OPENING	72
FIGURE 6.16.2	PROBLEM GEOMETRY AND BOUNDARY CONDITIONS	73
FIGURE 6.16.3	PER-CENT CLOSURE OF SHAFT SANTOS RESULTS	75
FIGURE 6.17.1	MESH DISCRETIZATION AND BOUNDARY CONDITIONS	76
FIGURE 6.17.2	PLOTS OF THE DEFORMING BILLET AT VARIOUS TIMES DURING THE UPSET	78
FIGURE 6.17.3	FINAL DEFORMED SHAPE OF THE BILLET AFTER 60% UPSET	
FIGURE 6.17.4	COMPARISON OF SANTOS CALCULATION WITH NUMERICAL RESULTS TAKEN	
FROM TAYL	OR [22] FOR THE UPSET OF A CYLINDRICAL BILLET.	
FIGURE 6.18.1	BENCHMARK II ISOTHERMAL DRIFT CONFIGURATION [24]	
FIGURE 6.18.2	VERTICAL CLOSURE HISTORY RESULTS FROM BENCHMARK II EXERCISE –	
ISOTHERMA	L Drift [24]	83
	MIDPILLAR HORIZONTAL DISPLACEMENT HISTORY RESULTS FROM BENCHMAR	
	- ISOTHERMAL DRIFT [24]	
FIGURE 6.18.4	SANTOS MESH USED FOR BENCHMARK II ISOTHERMAL TEST	
	VERTICAL CLOSURE HISTORY COMPUTED WITH SANTOS FOR BENCHMARK II	
	L TEST	
FIGURE 6.18.6	MIDPILLAR HORIZONTAL DISPLACEMENT HISTORY COMPUTED WITH SANTOS	
	MARK II ISOTHERMAL TEST	
FIGURE 6.19.1		
	THERMAL MESH USED FOR BENCHMARK II HEATED	
	VERTICAL CLOSURE HISTORY RESULTS FROM BENCHMARK II EXERCISE –	-
	IFT [24]	93
FIGURE 6.19.4	MIDPILLAR HORIZONTAL DISPLACEMENT HISTORY RESULTS FROM BENCHMAR	≀K
=	- HEATED DRIFT [24]	
FIGURE 6.19.5	SANTOS MESH USED FOR BENCHMARK II HEATED TEST	94
	VERTICAL CLOSURE HISTORY COMPUTED WITH SANTOS FOR BENCHMARK II	
	ST	
	MIDPILLAR HORIZONTAL DISPLACEMENT HISTORY COMPUTED WITH SANTO	
	MARK II HEATED TEST	
	PARALLEL CALCULATION – ISOTHERMAL DRIFT CONFIGURATION [29]	

FIGURE 6.20.2	MIDPILLAR HORIZONTAL DISPLACEMENT HISTORY RESULTS FROM PARALLEL
CALCULATI	ON EXERCISE – ISOTHERMAL DRIFT [29]
FIGURE 6.20.3	VERTICAL CLOSURE HISTORY RESULTS FOR PARALLEL CALCULATION EXERCISE
- Isothern	102 MAL DRIFT [29]
	SANTOS MESH USED FOR PARALLEL CALCULATION ISOTHERMAL TEST 103
FIGURE 6.20.5	VERTICAL CLOSURE HISTORY COMPUTED WITH SANTOS FOR PARALLEL
CALCULATI	ON ISOTHERMAL TEST
FIGURE 6.20.6	MIDPILLAR HORIZONTAL DISPLACEMENT HISTORY COMPUTED WITH SANTOS
FOR PARAL	LEL CALCULATION ISOTHERMAL TEST104
FIGURE 6.21.1	PARALLEL CALCULATION – HEATED DRIFT CONFIGURATION [29] 107
FIGURE 6.21.2	THERMAL MESH USED FOR HEATED PARALLEL CALCULATION
FIGURE 6.21.3	VERTICAL CLOSURE HISTORY RESULTS FROM PARALLEL CALCULATION
Exercise -	HEATED DRIFT [29]
	MIDPILLAR HORIZONTAL DISPLACEMENT HISTORY RESULTS FROM PARALLEL
CALCULATI	ON EXERCISE – HEATED DRIFT [29]
FIGURE 6.21.5	SANTOS MESH USED FOR HEATED PARALLEL CALCULATION
	VERTICAL CLOSURE HISTORY COMPUTED WITH SANTOS FOR PARALLEL
CALCULATI	ON HEATED TEST
	MIDPILLAR HORIZONTAL DISPLACEMENT HISTORY COMPUTED WITH SANTOS
FOR PARAL	LEL CALCULATION HEATED TEST115

1.0 INTRODUCTION

This document describes a suite of tests, which have been solved with the SANTOS finite element computer program, and, as such, the SANTOS theory and user's manual [1] is incorporated herewith as the primary reference for all of the tests described herein. They range from simple single-element tests that are used to verify specific features or constitutive model implementations in the code to the highly nonlinear, large deformation, complex geomechanics tests of previous benchmarking exercises. The range of tests solved is intended to thoroughly exercise SANTOS, and thus result in a code that has been extensively validated for WIPP applications. Each of the following tests is relatively self-contained. The test and specific aspects of the code that are exercised are first described. The analytic solution (for the case of verification tests) or solutions from other codes (for the regression tests) are then presented and discussed. The SANTOS solution along with all input/output is then presented. The SANTOS solution is then compared to the analytic or other solutions, and the results of the comparison are discussed. A final section for each test contains references for all other cited literature.

1.1 Software Identifier

Code name:

SANTOS

WIPP Prefix:

SANTOS

Version:

2.1.7

1.2 Points of Contact

Code Sponsors:

Byoung-Yoon Park, 505-234-0001

Code Consultant:

Charles M. Stone, 505-844-5116

Tester/Evaluator:

Jianjun Lin, 505-284-0088

1.3 Description

SANTOS is a finite element program designed to compute the quasistatic, large deformation, inelastic response of two-dimensional planar or axisymmetric solids or engineering structures. The code is derived from the transient dynamic code PRONTO 2D [2]. The solution strategy used to compute the equilibrium states is based on a self-adaptive dynamic relaxation solution scheme, which is based on explicit central difference pseudo-time integration and artificial mass proportional damping. The element used in SANTOS is a uniform strain 4-node quadrilateral element with an hourglass solution scheme to control the spurious deformation modes. Finite strain constitutive models for many common engineering materials are available. A robust master-slave contact algorithm for modeling sliding contact is implemented. An interface for coupling to an external code is also provided.

2.0 REQUIREMENTS DOCUMENT

The requirements of the SANTOS code are described in Sections 2.1 through 2.5. The requirements coverage by test case is shown in Table 2-1.

2.1 Functional Requirements

SANTOS is required to perform the following functions:

- R.1 Compute the quasistatic, inelastic response of two-dimensional plain strain or axisymmetric solids.
- R.2 Handle problems involving large deformations.
- R.3 Handle problems involving large strains.
- R.4 and R.5- Model the inelastic response of materials, including:
 - R.4 Consolidation of porous materials.
 - R.5 Time-dependent deformation (creep) of geological media.
- R.6 through R.10 Handle the following types of boundary conditions:
 - R.6 Kinematic boundary conditions.
 - R.7 Traction boundary conditions.
 - R.8 Thermal boundary conditions.
 - R.9 Distributed load boundary conditions.
 - R.10 Initial Stress boundary conditions.
- R.11 Handle multilayered media of large physical extent.
- R.12 Contain a provision for including the pressurization effects of gas or brine within cavities.
- R.13 Model contacts and separations of interfaces with zero tensile strength.

2.2 Performance Requirements

There are no performance requirements for SANTOS.

Design Constraints

SANTOS has already been developed; therefore, there are no design constraints.

Attribute Requirements

There are no attribute requirements for SANTOS

External Interface Requirements

SANTOS must satisfy the following external interface requirements:

- R.14 Read user supplied commands from an ASCII input file.
- R.15 Read finite element mesh data created by the FASTQ [3] code.
- R.16 Read transient nodal temperature data from an external file (this data may be created by the COYOTE II [4] and interpolated to the nodes of the structural mesh by the MERLIN II [5] code).
- R.17 SANTOS uses routines from, and therefore must be linked with, the following machine-specific libraries: SUPES, SUPLIB, XHELP, PLT, and SVDI. These libraries are described in Reference [6].
- R.18 Include an interface for coupling to user-supplied subroutines which, could be used for defining an initial stress state or an adaptive pressure routine.
- R.19 Produce a binary plot file containing all pertinent results.
- R.20 Produce an ASCII output file that echoes the input data and descriptive information about the problem, provides convergence tracking information, and summarizes the CPU usage.
- R.21- SANTOS is a part of the Sandia National Laboratories ACCESS system [7].

TABLE 2.1 Requirements Coverage By Test Case

Require	ement	Te	st (Case	es*																	
Type	Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Functional	R.1 R.2 R.3 R.4	X X	X	X	X			X X	Х	X	X							X	X X	X	X	X X X X
	R.5 R.6 R.7 R.8	X X	X	X	X	X	X	X X	X X	XX	X X	X X X	X X X	X X	X	X X	X X X	x	X X	X X X	X X	X X X
	R.9 R.10 R.11 R.12		X			X	X	X	ļ		x					х	X		X X X	X X X	X X X	X X X
External Interface	R.12 R.13 R.14	X	x	x	x	X	x	х	X X	X X	X X	X	X	X	X	X	X	X X	X X	X X	X X	X X
	R.15 R.16 R.17 R.18	X	X	X	X	X X X	X	X	X	X	X X	X X	X X	X	X	X X	X X X	X X	X X X	X X X	X X X	X X X X
	R.19 R.20 R.21	X X X																				

3.0 ADDITIONAL FUNCTIONALITY TO BE TESTED

There is no additional functionality to be tested.

4.0 FUNCTIONALITY NOT TESTED

All functionality will be tested.

5.0 TESTING ENVIRONMENT

Hardware Platform: i686

Operating System Distribution: Red Hat Linux release 7.2 (Enigma)

Kernel 2.4.18-27.7

Compiler: Lahey/Fujitsu Fortran 95 Compiler Release L6.10a

Host: warthog.sandia.gov

Configuration Management SMCS library WP\$CMSROOT:[SANTOS]

6.0 FUNCTIONAL TESTING

The test set of SANTOS consists of 21 test cases. The cases have been designed to verify that SANTOS satisfies the requirement specified in section 2 of this document.

6.1 Test Case 1: Large Rotation

6.1.1 Test Objective

This test demonstrates that SANTOS can correctly analyze the stress state in a large rotation.

6.1.2 Test Procedure

A unit cube is initially loaded with a pressure on its top horizontal face (equal in value to its initial vertical stress). The other faces are not loaded. The cube is then rotated 90 degrees clockwise, as shown in Figure 6.1.1. The cube is rotated in ten increments from its original starting position.

Figure 6.1.1 Test Geometry and Boundary Conditions

6.1.3 Input/Output

Test Discretization

A single element (4-node quadrilateral) is used in the analysis.

Input Data

A listing of the SANTOS input file is given in APPENDIX A.

Output Listing

A partial listing of the printed output showing pertinent test information is given in APPENDIX A.

6.1.4 Acceptance Criteria

The two-dimensional stress state in the body can be expressed by the following equations taken from Fung [8].

$$\sigma'_{xx} = \sigma_{xx} \cos^2 \theta + \sigma_{yy} \sin^2 \theta + \tau_{xy} \sin(2\theta)$$
 (EQ 1.1)

$$\sigma'_{yy} = \sigma_{xx} \sin^2 \theta + \sigma_{yy} \cos^2 \theta - \tau_{xy} \sin(2\theta)$$
 (EQ 1.2)

$$\tau_{xy}' = \left(\frac{-\sigma_{xx} + \sigma_{yy}}{2}\right) \sin(2\theta) + \tau_{xy} \cos(2\theta)$$
 (EQ 1.3)

where the unprimed stresses are those in the unrotated cube.

A value of 10,000 is used for the pressure in this specific example and the cube is treated as an elastic material with a Young's modulus of 1.0E6. Notice that, σ_{xx} and τ_{xy} are equal to zero, meaning that initially both the horizontal and the shear stresses in the system are zero. Because of the value of pressure used in this example, the initial vertical stress in the cube is -10,000. However, as the cube is rotated, the analytic solution given by Equations 1.1, 1.2, and 1.3 indicates that:

- The horizontal stress will increase with θ to a final value of -10,000 at a value of θ = 90°;
- The vertical stress will decrease with θ to a final value of zero at a value of $\theta = 90^{\circ}$; and
- The shear stress will increase with θ to a maximum, at a value of $\theta = 45^{\circ}$, and then will decrease back to zero at $\theta = 90^{\circ}$.

6.1.5 Evaluation

A comparison of analytically-derived results and those predicted by SANTOS is shown in Figure 6.1.2. The SANTOS predictions are the same as the analytical ones, demonstrating that SANTOS correctly handles large rotation stress transformations.

Figure 6.1.2 Rotated Stress Plot

6.2 Test Case 2: Delete Material Option

6.2.1 Test Objective

This test case checks the delete material option in SANTOS by removing materials from a hanging bar and observing changes in the support reactions due to the change in body mass.

6.2.2 Test Procedure

A linear, elastic isotropic rod is hanging from a pinned support in a constant gravity field, as shown in Figure 6.2.1. The rod is composed of five materials each with the same volume and mechanical properties. The materials are sequentially deleted, starting with the material farthest from the pinned support and continuing until one material remains.

Figure 6.2.1 Test Geometry and Boundary Conditions

6.2.3 Input/Output

Test Discretization

A 160 element (4-node quadrilateral) mesh is used in the SANTOS calculations and is shown in Figure 6.2.2.

Figure 6.2.2 Finite Element Mesh

Input Data

A listing of the input table for SANTOS can be found in APPENDIX B.

Output Listing

A partial listing of the SANTOS output can be found in APPENDIX B.

6.2.4 Acceptance Criteria

The delete option is considered to be working properly if it correctly computes the vertical support reaction in the body after each material deletion. The reaction can be computed analytically as follows:

$$R = \sum_{i=1}^{N} \rho_{g} V_{i} - \sum_{j=1}^{N^{*}} \rho_{g} V_{j}$$
 (EQ 2.1)

where N is the total number of material blocks and N^* is the number of material blocks removed. The above equation applies for $0 < N^* \le N$.

Specific values used for this example were: $\rho = 1.0$; g = 5.0; and N=5. An elastic material with $E = 1.0 \times 10^4$ and the geometric dimensions shown in Figure 2.1 was used. Thus, before any material is removed, R=200. This value decreases by 40 with every material block removed. After material blocks 1 to 4 are removed, the reaction reaches a final value of 40.

Information Only

6.2.5 Evaluation

The plot of computed reaction forces versus the analytical solution (the solid line) is shown in Figure 6.2.3. The stair-step shape with time is a result of removing one material block at each specific time. Thus, the first material block, consisting of 32 elements in the SANTOS analysis, was removed at t=1.0; then the second material block of 32 elements was removed at t=2.0, and so forth. The delete option is seen to work correctly in SANTOS.

Figure 6.2.3 Support Reaction Plot

6.3 Test Case 3: Prescribed Force Option

6.3.1 **Test Objective**

This test case tests the SANTOS prescribed force option.

Information Only

SUPPORT REACTION - REACTION LOAD

6.3.2 Test Procedure

A slender cantilever beam of linear, elastic, isotropic material is loaded at its tip with a concentrated load that varies with time, i.e., the load starts off at zero and linearly increases with time to some final value. The vertical endpoint displacement and vertical (shear) reaction of the beam are computed analytically and compared with the SANTOS solution.

6.3.3 Input/Output

Test Discretization

A 120 element (4-node quadrilateral) mesh is used in the SANTOS analysis and is shown in Figure 6.3.1.

Figure 6.3.1 Finite Element Mesh

Input Data

A listing of the SANTOS input file is given in APPENDIX C.

Output Listing

A partial listing of the printed output from SANTOS, showing pertinent test information, is also given in APPENDIX C.

6.3.4 Acceptance Criteria

The model geometry and boundary conditions are shown in Figure 6.3.2. The shear force at the support is equal to the concentrated load. The vertical displacement of the end point of the beam, at any time, is computed using the following formula taken from Young [9]:

$$\Delta = \frac{PL^3}{3EI} \tag{EQ 3.1}$$

where P is the concentrated load, L is the beam length, I is the beam's moment of inertia, and E is the Young's modulus. The solution given by Equation 3.1 above is valid for slender beams; consequently, the beam is given a length to depth ratio of 30 to 1.

Figure 6.3.2 Concentrated Load

For specific comparisons between analytic and computed solutions, P is defined to start off at a value of zero, initially, and to increase linearly to a final value of 20 at a time of 2.0. In addition, a value of 1.0E7 is used for E, and a value of 1/12 is used for E. With these values, the analytic solution of Equation 3.1 indicates that the vertical displacement of the end point should increase linearly from a value of zero, initially, to a final value of 0.216. Similarly, the vertical reaction at the left end should increase linearly from a value of zero, initially, to a final value of 20.

6.3.5 Evaluation

The plots of end point vertical displacement and vertical reaction with time (It should be noted that time here really only corresponds to increase in load, P) are shown in Figure 6.3.3 and Figure 6.3.4. The symbols represent the computed values, while the solid line represents the analytic solution. Comparison of the computed and analytic results shown in the figures indicates that the implementation of the prescribed force option in SANTOS is correct. Because of the orientation of the y-axis in Figure 6.3.2 the displacement in Figure 6.3.3 is in the negative direction. Therefore direction and the magnitude of the displacement are as expected.

Figure 6.3.3 End-Point Displacement

Figure 6.3.4 Support Shear Reaction

Information Only

6.4 Test Case 4: Distributed Load Function

6.4.1 Test Objective

This test case verifies the SANTOS distributed load function option. This option specifies that an external file is to be read. Said file contains nodal values of a distributed force per unit volume. The value of force per unit volume is multiplied by the "nodal volume" (i.e., one-fourth of the volume of each surrounding element containing the node in question) to obtain the magnitude of the required loading.

6.4.2 Test Procedure

A two-dimensional cube of linear, elastic, isotropic material is loaded vertically with a uniformly distributed load that varies with time, i.e., the load starts off at zero and linearly increases with time to some final value. The vertical displacement and vertical reaction force of the cube are computed analytically and compared with the SANTOS solution.

6.4.3 Input/Output

Test Discretization

A 16 element (4-node quadrilateral) mesh is used in the analysis and is shown in Figure 6.4.1.

Figure 6.4.1 Finite Element Mesh

Input Data

A listing of the SANTOS input file is given in APPENDIX D. The distributed loads input into SANTOS were created by using a separate FORTRAN program DISTLF, written specifically for the verification test. DISTLF generates the external file required and read by SANTOS when the distributed load option is used. The listing of the FORTRAN program DISTLF used to generate the external file is given in APPENDIX D.

Output Listing

A partial listing of the printed output showing pertinent test information is given in APPENDIX D.

6.4.4 Acceptance Criteria

The model geometry and boundary conditions are shown in Figure 6.4.2. The reaction forces are computed by multiplying the area of the load surface by the distributed load.

Figure 6.4.2 Distributed Load

The vertical displacement of the top surface of the cube is computed with the following formula:

$$u = \frac{wL^2}{AE}$$
 (EQ 4.1)

where w is the distributed load, L is the in-plane cube length (a unit depth out-of-plane is used), A is the cross-sectional area under the applied load, and E is the Young's modulus.

Specific values used in this example were: L=4.0; $E = 1.0 \times 10^7$; v=0 (Poisson's ratio, v, is set to zero to produce one-dimensional response); and w starting off at zero and linearly increasing with time to a maximum value of 200 at time 2.0. According to the analytic solution, with the use of these values, the vertical reaction should start off at zero and linearly increase to a maximum value of 800 at time 2.0, and the vertical displacement should start off at zero and increase linearly to a value of 8.0E-5.

6.4.5 Evaluation

The plots of vertical displacement and reaction force are shown in Figure 6.4.3 and Figure 6.4.4., respectively, for both the computed and analytic solutions (the analytic solution is shown as the solid line in both figures). Agreement of computed and analytic results, as seen in the figures, indicates that the implementation of the distributed load option in SANTOS is correct.

Figure 6.4.3 Support Reaction Force

Page 22

Figure 6.4.4 Axial Displacement

6.5 Test Case 5: Adaptive Pressure Option

6.5.1 Test Objective

This test checks the adaptive pressure option in SANTOS by comparing the pressure behavior of an ideal gas in an expanding spherical cavity with a numerical solution.

6.5.2 Test Procedure

A linear elastic hollow sphere is initially pressurized with P_0 , and the internal surface of the sphere expands radially outward increasing the volume of the cavity. Under adiabatic conditions the pressure of the gas will decrease in direct proportion to the volume expansion of the cavity.

6.5.3 Input/Output

Test Discretization

A 400 element mesh (4 node-quadrilaterals) is used in the SANTOS calculations and is shown in Figure 6.5.1.

Input Data

A listing of the SANTOS input file is given in APPENDIX E. In order to use the adaptive pressure option in SANTOS the user is required to write a subroutine that describes the geometry and pressure boundary conditions that are relevant to the calculations. The subroutine is compiled into the SANTOS code at the time of execution. A listing of the FORTRAN subroutine used to solve the verification test is also given in APPENDIX E.

Output Listing

A partial listing of the printed output showing pertinent test information is given in APPENDIX E.

6.5.4 Acceptance Criteria

The behavior of an ideal gas can be described by the following formula [10]:

$$\frac{PV}{T} = K \tag{EQ 5.1}$$

where P is the pressure, V is the volume, T is the absolute temperature, and K is the universal gas constant. Because adiabatic conditions are assumed in this verification test, pressure is solely a

Information Only

function of volume change. This relationship between pressure and volume can be written as follows:

$$P = P_o \frac{V_o}{V}$$
 (EQ 5.2)

where P_0 and V_0 represent the initial pressure and initial volume, respectively. Figure 6.5.2 shows the specific geometry and boundary conditions of the test considered here. Also, the material properties used in this analysis correspond to those for an elastic material with: $E = 1X10^7$ and v = 0.3.

Figure 6.5.2 Geometry and Boundary Conditions

6.5.5 Evaluation

The comparison of the pressure versus volume predictions made with the analytic solution (the solid line) and SANTOS is shown in Figure 6.5.3. From the graph it can be seen that the SANTOS adaptive pressure option is working correctly.

Figure 6.5.3 Pressure Versus Volume

6.6 Test Case 6: Spinning Disk

6.6.1 Test Objective

This calculation demonstrates that SANTOS can correctly analyze centrifugal acceleration problems in an axisymmetric geometry. The radial displacement profile predicted by SANTOS is compared to the analytic solution.

6.6.2 Test Procedure

A linear elastic hollow disk is spun at a constant angular velocity and the calculation determines the radial displacement of the disk. The geometry of the test and boundary conditions are shown in Figure 6.6.1.

Figure 6.6.1 Geometry and Boundary Conditions

6.6.3 Input/Output

Test Discretization

The finite element mesh used in the SANTOS analysis is shown in Figure 6.6.2. It contains 640 four-node quadrilateral elements.

Figure 6.6.2 Finite Element Mesh

Input Data

A listing of the SANTOS input file is given in APPENDIX F.

Output Listing

A listing of the printed output showing pertinent test information is given in APPENDIX F.

6.6.4 Acceptance Criteria

The radial displacement function for the spinning disk is taken from Timoshenko [11] and is shown below as.

$$u = -N\frac{r^3}{8} + C_1 r + \frac{C_2}{r}$$
 (EQ 6.1)

Information Only

where the constants N, C_1 , and C_2 are defined as:

$$N = (1 - v^2) \frac{\gamma \omega^2}{gE}$$
, (EQ 6.2)

$$C_1 = \frac{3+v}{8(1+v)} (a^2 + b^2) N$$
, and (EQ 6.3)

$$C_2 = \frac{3+\nu}{8(1-\nu)} a^2 b^2 N$$
. (EQ 6.4)

The geometry and material constants used in the above equations are as follows:

a = inner radius of the disk,

b =outer radius of the disk,

v = Poisson's ratio,

E =Young's Modulus,

g = gravitational acceleration,

 γ = weight density of the disk (Force/Length³),

 ω = angular velocity of the disk, and

r = radial distance $(a \le r \le b)$.

For specific comparisons between analytic and computed solutions, the following values were used in this example:

$$a = 1.0$$
; $b = 2.0$; $v = 0.3$; $E = 2.07x10^{11}$; $g = 9.8066$; $\gamma = 21250$; and $\omega = 100$.

6.6.5 Evaluation

A comparison of analytic results (shown as the solid line) and those predicted by SANTOS is shown in Figure 6.6.3. The SANTOS predictions are essentially the same as the analytical ones, demonstrating that SANTOS correctly analyzes axisymmetric centrifugal acceleration problems.

Figure 6.6.3 Elastic Solution

6.7 Test Case 7: Pressure and Gravity Loaded Beam

6.7.1 Test Objective

In this test SANTOS solves an elastic beam-bending problem for two loading conditions. The beam undergoes large bending deformation that tests the stability of the hourglass algorithm in SANTOS, as well as the capability of SANTOS to analyze large deformation problems.

6.7.2 Test Procedure

A thin cantilever beam (30 to 1 length/depth ratio) is loaded with a pressure on its top horizontal surface in one load case, as shown in Figure 6.7.1, and is gravity-loaded in another case, as shown in Figure 6.7.2. The gravity and pressure loads are made large enough that the elastic beam undergoes a large displacement. An elastic analytic solution to the large displacement-rotation problem has been developed by Holden [12] and the SANTOS results are compared to Holden's solution.

Figure 6.7.1 Cantilever Bean With Pressure Load

Figure 6.7.2 Cantilever Beam with Gravity Load

6.7.3 Input/Output

Test Discretization

A 102-element mesh was used for the SANTOS calculation and is shown in Figure 6.7.3. The beam model has a length to depth ratio of 30 to 1, which insures the deflection of the beam is governed by bending and is comparable with verification calculations done with the JAC2D finite element code [13].

Figure 6.7.3 Finite Element Mesh Underformed

Information Only

Input Data

A listing of the SANTOS input file is given in APPENDIX G.

Output Listing

A partial listing of the printed output showing pertinent test information is given in APPENDIX G.

6.7.4 Acceptance Criteria

For the gravity-loaded test Holden uses the following equation:

$$\frac{d^2\theta}{d^2\bar{s}} = -k\bar{s}\cos\theta\,, ag{EQ 7.1}$$

developed from the Euler-Bernouilli theory of beam bending for the slope of the elastic beam in his calculations. For the pressure-loading case the following expression was solved to find the deflected shape of the beam:

$$\frac{d^2\theta}{d^2\bar{s}} = -k\bar{s} , \qquad (EQ 7.2)$$

where the variables used in the above equation are defined as follows:

 θ = slope of the beam's neutral axis to the reference x-axis,

 \bar{s} = the non-dimensional coordinate system, with $\bar{s} = x/L$,

L = length of the beam,

k = the non-dimensional load parameter, with $k=wL^3/EI$),

w = the load per unit beam length (the gravity load,, or the pressure, P),

E =Young's modulus, and

I = moment of inertia.

Equations 7.1 and 7.2 are ordinary differential equation that can be solved when subjected to the boundary conditions for a cantilever beam. The boundary conditions are:

$$\frac{d\theta}{d\bar{s}} = 0$$
 at $\bar{s} = 0$ (the free end and) (EQ 7.3)

$$\theta = 0$$
 at $\bar{s} = 1$ (the fixed end). (EQ 7.4)

The normalized horizontal and vertical displacements of the free-end of the cantilever can then be represented, respectively, by the following integral expressions:

$$\frac{h}{L} = \int_{0}^{1} \cos \theta d\overline{s} \text{ and } (EQ 7.5)$$

$$\frac{\delta}{L} = \int_{0}^{1} \sin \theta d\overline{s} . \qquad (EQ 7.6)$$

Numerical integration of Equations 7.5 and 7.6 leads to the "analytic" solution for the horizontal and vertical displacements.

To generate the analytic solution for the gravity-loaded beam, the following specific values were used in this example problem: L = 30; I = 1/12; $E = 1.0x10^7$; v = 0; $\rho = 400$; and g in the y-direction that varies linearly with time, starting at zero and reaching a maximum value of -1.55 at time t = 1.55. Similarly, to generate the analytic solution for the pressure-loaded beam, the following specific values were used in this example problem:

L=30; I=1/12; $E=1.0x10^7$; v=0; and P that varies linearly with time, starting at zero and reaching a maximum value of 620 at time t=1.55. Using these specific values yields a k that ranges from 0 to approximately 20, for comparison with Holden's Solution.

6.7.5 Evaluation

The situation analyzed with SANTOS also considers load cases with k varying from 0 to 20, as was the case for the analytic solution. The plots of the free-end deflections for both the analytic and the SANTOS computed solutions are shown in Figure 6.7.4, for the gravity-loaded case and in Figure 6.7.5, for the pressure-loaded case, respectively. The gravity analysis indicates a very close correspondence between the predictions made with SANTOS and the results from the analytic solution. A sample deformed mesh of the SANTOS gravity-load test is also shown in Figure 6.7.6 for k equal to 6.5. From these calculations it can be seen that the hourglass algorithm in SANTOS is working correctly.

Figure 6.7.4 Gravity Beam and End-Point Displacements

Figure 6.7.5 Pressure Beam End-Point Displacements

In the pressure load calculation there is good agreement between SANTOS and the analytical solution up to k = 10, where the two solutions diverge. The SANTOS results appear to be stiffer than the analytic results under higher loads. The JAC2D analysis of the same test produced the same results. Biffle and Blanford [13] suggest that this difference is due to the beam bending back upon itself such that the radius of curvature of the bending is no longer as large as the depth of the beam. The analytical solution is to a one-dimensional model wherein the thickness of the beam does not explicitly enter into the calculation.

Figure 6.7.6 Deformed Gravity-Loaded Beam

Magnipied by 1.000 ELEMENT BLOCKS ACTIVE

TIME 0.5000

6.8 Test Case 8: Tension Releases Option

6.8.1 Test Objective

This test verifies the SANTOS tension release option in the contact surface algorithm by analyzing the forced separation of two elastic blocks.

6.8.2 Test Procedure

Two elastic bodies are initially in contact, one resting on the other, with a frictionless interface between them. The smaller body is subjected to a tensile traction on its top surface that linearly increases from 0 at t = 0 to 10,000 at t = 1. The nodal tensile release force, f_r , on the contact surface is set for 1,000. This means that once the force at a node on the contact surface reaches

this value, it will release. The tensile release option should work correctly by releasing the top block once all the nodes on the interface reach this force value. The separation of the two blocks will be reflected in the step drop of the vertical reaction at the bottom supports. The geometry and boundary conditions of the problem are shown in Figure 6.8.1.

Figure 6.8.1 Problem Geometry and Boundary Conditions

6.8.3 Input/Output

Test Discretization

The finite element mesh used in the SANTOS calculation is shown in Figure 6.8.2 and is composed of 26 elements (4 node quadrilaterals). A single element is used to model the lower body, containing the master surface, and 25 elements make up the upper body, containing the slave surface. Thus, there are four "internal" and two "external" nodes on the interface for a total of six slave nodes.

Figure 6.8.2 Finite Element Mesh

Input Data

The listings of the SANTOS input file for the calculation is given in APPENDIX H

Output Listing

The output listing for the analysis is in APPENDIX H.

6.8.4 Acceptance Criteria

The vertical reaction will increase linearly to a value of 5,000 and then step drop to 0 at time, t=0.5. Both elastic bodies had a Young's modulus of $E = 30x10^6$ and a Poisson's ratio of v = 0.3.

6.8.5 Evaluation

The support reaction predicted by the SANTOS analysis is plotted against the closed-form solution (dashed line) in Figure 6.8.3. At t = 0.5, the four internal nodes on the interface each reach a value of 1,000 and release. Immediately thereafter, the load is transferred to the two external nodes causing the force in each of them to reach a value of 1,000 and release as well. The SANTOS results show excellent agreement with the analytical solution. From these calculations it can be seen that the tensile release option of the contact surface algorithm in SANTOS is working correctly.

Figure 6.8.3 Plot of Vertical Support Reaction

Support Reaction with Tension Release = 1000

6.9 Test Case 9: Rigid Sliding Surface Option

6.9.1 Test Objective

This problem tests the SANTOS rigid sliding surface option by analyzing the slippage of an elastic beam on a rigid surface with different coefficients of friction.

6.9.2 Test Procedure

An elastic beam is resting upon a rigid half-space. It is restrained against horizontal movement on its left edge and is subjected to an initial vertical downward displacement on its top surface. It is pulled by a horizontal pressure on its right edge. The displacement of the right edge of the beam is resisted by the frictional force developed on the interface of the beam and the rigid surface upon which it rests. The vertical displacement is constant and the horizontal pressure is linearly increased to a magnitude that exceeds the maximum frictional resistance of the beam. Figure 6.9.1 shows the geometry and boundary conditions of the problem.

Figure 6.9.1 Geometry and Boundary Conditions

6.9.3 Input/Output

Test Discretization

The finite element mesh used in the SANTOS analysis is shown in Figure 9.3 and is composed of 160 elements (4 node quadrilaterals).

Input Data

The listings of the SANTOS input files for the calculations are given in APPENDIX I.

ELERENT BLOCKS ACTIVES

Output Listing

The output listings for the analyses are in APPENDIX I.

6.9.4 Acceptance Criteria

The formulation of a closed-form solution of the problem begins with the static summation of forces in the horizontal direction:

$$\Sigma F_{x} = 0 = \rho ht - \mu px. \qquad (EQ 9.1)$$

This is shown on the free body diagram in Figure 6.9.3, where ρ is the horizontal pressure, h is the beam thickness, p is the vertical pressure (arising from the vertical displacement boundary condition), μ is the coefficient of friction, x is the slipping length of the beam,

Figure 6.9.3 Free Body Diagram of Forces

and t is the non-dimensional time parameter. The slipped length of the beam can be computed by rearranging the above equation to yield:

$$x = \frac{\rho ht}{\mu p} \,. \tag{EQ 9.2}$$

An equation relating the displacement of the beam to the applied forces can be derived from a functional, developed from energy principles (It is assumed the beam is one-dimensional, which greatly simplifies the solution):

$$J(u) = \frac{1}{2} \int \frac{L}{O} \left[Eh \left(\frac{\partial u}{\partial x} \right)^2 \right] dx + \int \frac{L}{O} \mu p u dx - F \cdot u(L) . \tag{EQ 9.3}$$

Here E is the Young's modulus, L is the total length of the beam undergoing slippage, u is the displacement function, and F is the horizontal force applied to the right edge of the beam $(F = \rho ht)$. The beam is assumed to be of unit width. A differential equation describing the displacement function u can be derived by taking the first variation of the functional with respect to u, as follows:

$$\frac{\partial J}{\partial u} = -Eh \cdot \frac{\partial^2 u}{\partial x^2} + \mu p = 0.$$
 (EQ 9.4)

Integrating twice with respect to x, the following analytical expression for u is derived:

$$u = \frac{\mu p x^2}{Fh} + C_1 x + C_2.$$
 (EQ 9.5)

The integration constants C_1 and C_2 are derived from the following boundary conditions:

$$u(0) = 0 \Rightarrow C_2 = 0.$$
 (EQ 9.6)

and
$$\frac{\partial u(L)}{\partial x} = \frac{\rho ht}{Eh} = \frac{\mu pL}{Eh} + C_1$$
. (EQ 9.7)

Solving for C_1 yields:

$$C_1 = \frac{\rho ht - \mu pL}{Eh}.$$
 (EQ 9.8)

The general expression for horizontal displacement then becomes:

$$u = \frac{\mu p x^2}{2Eh} + \frac{\rho h t x}{Eh} - \frac{\mu p L x}{Eh}.$$
 (EQ 9.9)

The equation can be further simplified for the case of the displacement of the right-hand side of the beam by noting that:

$$L = \frac{\rho ht}{\mu p} \,. \tag{EQ 9.10}$$

and solving the general displacement equation for x = L. The result is the following equation:

$$u(L) = \frac{\rho^2 h t^2}{2 \mu n E}.$$
 (EQ 9.11)

Specific values used in this example to generate values for comparison with the SANTOS predictions were: $E = 1.0x10^4$; v = 0 (Poisson's ratio, v, set to zero); $\delta = 4.0x10^{-3}$ (which corresponds to p = 20); h = 2; and $\mu = 0.1$, 0.2, 0.5, 0.7 with respectively corresponding maximum values of $\rho = 35$, 58.75, 125, 170.

6.9.5 Evaluation

Four SANTOS analyses were performed using coefficients of friction of 0.1, 0.2, 0.5, and 0.7. A horizontal pressure was applied to the right-hand side of the beam, varying linearly in magnitude from a value of $\rho = 0$ at time, t = 0, to a maximum of $\rho =$ "P" at time, t = 1.0. The value of "P" was different for each analysis and was chosen to be large enough to induce full slip along the bottom of the beam and exceed the total frictional resistance of the beam. In order to simulate a one-dimensional geometry in the finite element model a vertical displacement boundary condition was used on the top surface of the beam in lieu of a vertical pressure. This was done because the finite element solutions begin to deviate from the analytic solutions when a vertical pressure boundary condition is used and friction coefficients exceed 0.5. This occurs because of shear distortions that arise in the beam as the frictional stresses that develop in the beam become more significant. Thus, although the downward vertical displacement of 0.004 units corresponds to a vertical pressure of $\rho = 20$, the use of a vertical displacement boundary condition rather than

a vertical pressure boundary condition decreases the amount of shear distortion in the mesh which arises from the horizontal pressure and frictional stresses on the beam. The horizontal end-point displacements are plotted in Figure 6.9.4. The figure shows excellent agreement between the SANTOS predictions of horizontal displacements and the analytic solutions (shown as the solid lines) and therefore SANTOS passes this test.

Figure 6.9.4 End-Point Horizontal Displacements

6.10 Test Case 10: Double Elastic Beam Contact Sliding Problem

6.10.1 Test Objective

This test verifies the SANTOS contact surface algorithm by analyzing the slippage of one elastic beam relative to another that it is in contact with (this system will be referred to herein as a double elastic beam). The computed results for relative slip are then compared to those obtained using a closed-form solution.

6.10.2 Test Procedure

Two elastic beams of depth, h, and original length, L, and possessing different Young's moduli (E_1 for the top beam and E_2 for the bottom beam) are held in contact by a pressure, P, acting uniformly along their length as shown in Figure 6.10.1. The softer top beam is

Figure 6.10.1 Geometry and Boundary Conditions

subjected to the vertical pressure on its top horizontal surface. The stiffer bottom beam rests upon frictionless roller supports that restrict vertical, but not horizontal displacements. Both beams are restrained against horizontal displacement on their left-hand sides and have the same cross-sectional areas. A tensile axial force, F, is applied to the right end of each beam, and this force increases linearly with time. The boundary conditions for the problem are also shown in Figure 6.10.1. When the loads are applied, slippage occurs on the interface of the beams due to differences in axial stiffness, i.e., the softer beam tends to elongate more than the stiffer beam. As a result, the softer beam now has a deformed length, l_1 , while the stiffer beam now has a deformed length, l_2 , as depicted in Figure 6.10.2. If a coordinate, x, along the length is taken to be measured with respect to an origin at the left end, the beams slip with respect to each other beyond some point (originally at L_0) which has now displaced to l_0 , but do not slip before that point is reached. The horizontal displacement of the beams at the point of application of the axial loads will be a function of the frictional forces developed on the interface (which has a coefficient of friction, μ , acting on it) and the axial stiffnesses of the two beams.

Figure 6.10.2 Deformed Geometry

6.10.3 Input/Output

Test Discretization

The finite element mesh is shown in Figure 6.10.3 and is composed of 130 elements (4 node quadrilaterals). In the finite element model the top beam is slightly shorter (24.8 units) than the bottom beam (25 units). This small deviation from the analytical model prevents node tracking problems in SANTOS. As the top beam slides over and off the bottom beam, the slide line algorithm can no longer track the end-point slave node. The shortened top beam geometry insures the slave node remains in contact with the master surface while not compromising the solution.

Figure 6.10.3 Finite Element Mesh

MAGNIPIED BY 1.000 ELEMENT BLOCKS ACTIVE:

71ME 0.0000

Two analysis cases are examined for different combinations of Young's modulus and coefficients of friction. The first case calculates end-point displacements for a coefficient of friction of 0.4 and a Young's modulus ratio (bottom beam modulus, $(E_2=9000)$, to top beam modulus, $(E_1=3000)$) of 3 to 1. The second calculation uses a coefficient of friction of 0.5 and a Young's modulus ratio of 10 $(E_2=8000)$ to 1 $(E_1=800)$. In both problems the Poisson ratios of both beam are set to zero (to minimize two-dimensional effects); the pressure is set to P=1; and the end force on each beam increases linearly from zero initially to F=10 at t=10. Both beams are also of unit height, h.

Input Data

The listings of the SANTOS input files for the calculations are given in APPENDIX J.

Output Listing

The output listings for the analyses are in APPENDIX J.

6.10.4 Acceptance Criteria

The analytic solution was originally developed by R. D. Krieg in 1986 at Sandia National Laboratories in a set of informal notes. Krieg's analytic solution is re-developed herein for the purpose of formally documenting it and so that it may be used to compare with the SANTOS results.

The analytic solution assumes a one-dimensional geometry and small displacements. Furthermore, it is assumed that the axial strains are constant in zones of slip and non-slip. The solution examines the problem in three parts. The first part examines displacements and stress states in the beams along the zone where there is no slip (i.e., $0 \le x \le l_0$; we will refer to this as Zone A). The second develops the relationship between stress and displacement in the "slipped-off" portion of the top beam ($l_2 \le x \le l_1$; referred to as Zone C), where the upper beam is no longer in contact with the lower beam and only Beam 1 exists for purposes of developing the displacement equation. The third examines the stress and displacement states in the portions of the upper and lower beams where slippage has occurred and both are still in contact with each other ($l_0 \le x \le l_2$; referred to as Zone B).

Zone A

The strains and displacements in the top beam (Beam 1) and bottom beam (Beam 2) are the same in the non-slip zone of the interface. This strain equivalence can be expressed as:

$$\varepsilon_1^A = \varepsilon_2^A . (EQ 10.1)$$

Using linear, elastic constitutive relationships Equation 10.1 can be rewritten as:

$$\sigma_1^A = \sigma_2^A \left(\frac{E_1}{E_2} \right), \qquad (EQ 10.2)$$

where E_1 and E_2 are the Young's moduli for Beam 1 and Beam 2, respectively, and σ_1^A and σ_2^A are the corresponding axial stresses in each beam throughout Zone A. The displacement of each beam at $x = l_0$ in the non-slip zone can be expressed as the integral of the constant axial strain over the length of the zone (l_0) ,

$$u_2^{x=l_0} = u_1^{x=l_0} = u_0 = \int_0^0 \varepsilon_1^A dx = \frac{\sigma_1^A l_0}{E_1}$$
 (EQ 10.3)

where $u_2^{x=l_0}$ is the displacement of Beam 2 at $x=l_0$ and $u_1^{x=l_0}$ is the displacement of Beam 1 at $x=l_0$ (hereafter, the superscript will be understood to denote the x-location along the respective beam, if lowercase, or the range of x, if uppercase).

Before proceeding, it is useful to introduce the following variables for defining the deformation of the beams:

$$l_0 = u_0 + L$$
, (EQ 10.4)

$$l_1 = u_1^{l_1} + L$$
, (EQ 10.5)

and
$$l_2 = u_2^{l_2} + L$$
, (EQ 10.6)

where L is the original (undeformed) length of the beams, u_0 is the displacement of both beams at $x = l_0$ (because up to this point, there is no relative slip between the two), $u_1^{l_1}$ is the displacement of the right end of the upper beam (at $x = l_1$), and $u_2^{l_2}$ is the displacement of the right end of the bottom beam (at $x = l_2$).

Zone C

The displacement of the top beam in Zone C is related to the displacement of the bottom beam through the following relationship:

$$u_1^{l_1} = u_2^{l_2} + \int_1^{l_1} \varepsilon_l^C dx = u_2^{l_2} + \varepsilon_1^C (l_1 - l_2)$$
 (EQ 10.7)

where ε_1^C is the axial strain in the top beam in Zone C. Using constitutive relations to substitute for the strain, ε_1^C , gives:

$$u_1^{l_1} = u_2^{l_2} + \frac{\sigma_1^C}{E_1}(l_1 - l_2)$$
 (EQ 10.8)

where σ_1^C is the axial stress in the top beam in Zone C. Substituting the axial force carried by the top beam for the axial stress, σ_1^C , yields:

$$u_1^{l_1} = u_2^{l_2} + \frac{F_1}{E_1 h} (l_1 - l_2).$$
 (EQ 10.9)

Zone B

A differential equation is created describing the displacement of the top beam in Zone B by requiring the horizontal forces acting upon a differential element of beam to equal zero (see Figure 6.10.4 for details):

$$df = \mu P dx . mtextbf{(EQ 10.10)}$$

Integrating both sides of the equation yields the following:

$$\int_{f_{1}^{s}}^{f_{1}^{s}} df = \int_{x}^{f_{2}} \mu P dx$$
 (EQ 10.11)

and

$$f_1^e - f_1^x = \mu P(l_2 - x)$$
 (EQ 10.12)

Figure 6.10.4 Differential Force Element – Top Beam

where f_1^x is the internal force in Beam 1 at some arbitrary location x within Zone B (the stresses are not constant in this zone) and f_1^e is the internal force in Beam 1 at the right end of Zone B. Substituting stresses for the internal force, f_1^x , we get:

$$f_1^e - \sigma_1^x h = \mu P(l_2 - x)$$
 (EQ 10.13)

where σ_1^x is the stress in Beam 1 at some arbitrary location x in Zone B. Noting that for $x = l_0$, we have $f_1^e = F_1$ (because of no-slip), so that the above equation becomes:

$$F_1 - \sigma_1^{l_0} h = \mu p(l_2 - l_0)$$
. (EQ 10.14)

Using the constitutive relationship to replace σ_1^x in Equation 10.13 creates the following displacement differential equation:

$$f_1^e - E_1 h \frac{du_1}{dx} = \mu P(l_2 - x)$$
. (EQ 10.15)

Rearranging variables and integrating both sides, we get:

$$E_1 h \int_{u_0}^{u_1^x} du_1 = \int_0^x \left[f_1^e - \mu P(l_2 - x) \right] dx$$
, or **(EQ 10.16)**

$$E_1 h \Big(u_1^x - u_0 \Big) = f_1^e(x - l_0) - \mu P \left[l_2(x - l_0) - \frac{(x^2 - l_0^2)}{2} \right] \quad (EQ 10.17)$$

where u_1^x is the displacement of Beam 1 at some arbitrary location x within Zone B. Evaluating the displacement at $x = l_2$ (the right end of Zone B) and noting that $f_1^e = F_1$ at $x = l_2$ gives the displacement relationship:

$$E_1 h \left(u_1^{l_2} - u_0 \right) = (l_2 - l_0) \left[F_1 - \frac{\mu P}{2} (l_2 - l_0) \right].$$
 (EQ 10.18)

Using the same methodology for the bottom beam (Beam 2) in Zone B, we get the following two equations:

$$F_2 - \sigma_2^{l_0} h = -\mu p(l_2 - l_0)$$
, and (EQ 10.19)

$$E_2 h \left(u_2^{l_2} - u_0 \right) = (l_2 - l_0) \left[F_1 - \frac{\mu P}{2} (l_2 - l_0) \right].$$
 (EQ 10.20)

Six equations (Equations 10.2, 10.3, 10.14, 10.18, 10.19, and 10.20) in six unknowns have been have been developed that will define the end-point displacements of both beams, because for small displacements we recognize that $l_1 = l_2 = L$. Furthermore, we also note that

 $F_1 = F_2 = F$; $\sigma_1^{l_0} = \sigma_2^{l_0}$; and $\sigma_2^{l_0} = \sigma_2^A$. The six equations thus become:

$$\sigma_1^A = \sigma_2^A \left(\frac{E_1}{E_2} \right),$$
 (EQ 10.21)

$$u_0 = \frac{\sigma_1^A l_0}{E_1}$$
, (EQ 10.22)

$$F - \sigma_1^A h = \mu p(L - l_0),$$
 (EQ 10.23)

$$E_1 h \left(u_1^L - u_0 \right) = (L - l_0) \left[F - \frac{\mu P}{2} (L - l_0) \right],$$
 (EQ 10.24)

$$F - \sigma_2^A h = -\mu p(L - l_0),$$
 (EQ 10.25)

and
$$E_2 h(u_2^L - u_0) = (L - l_0) \left[F + \frac{\mu P}{2} (L - l_0) \right].$$
 (EQ 10.26)

The six unknowns, σ_1^A , σ_2^A , u_0 , l_0 , u_1^L , and u_2^L , can be found by simultaneous solution of the above six equations. Doing so results in the displacement formulas for variables u_0 , u_1^L , and u_2^L as follows:

$$u_0 = \frac{2F}{h(E_1 + E_2)} \left[L - \frac{F(E_2 - E_1)}{\mu P(E_1 + E_2)} \right],$$
 (EQ 10.27)

$$u_1^L = u_0 + \frac{F^2(E_2 - E_1)}{\mu PhE_1(E_1 + E_2)} \left[\frac{3E_1 + E_2}{2(E_1 + E_2)} \right],$$
 (EQ 10.28)

and
$$u_2^L = u_0 + \frac{F^2(E_2 - E_1)}{\mu PhE_2(E_1 + E_2)} \left[\frac{E_1 + 3E_2}{2(E_1 + E_2)} \right]$$
. (EQ 10.29)

The variables u_0 , u_1^L and u_2^L , as defined by Equations 10.27, 10.28, and 10.29, represent the non-slip horizontal displacement of the beams, the end-point displacement of the bottom beam, respectively.

6.10.5 Evaluation

The end-point displacements predicted by the SANTOS analyses are plotted against the closed-form solutions in Figure 6.10.5, for the first case, and Figure 6.10.6, for the second case. The SANTOS results show excellent agreement with the analytic solution (shown as the solid lines in both figures), and it is concluded that the sliding part of the contact algorithm is working correctly in SANTOS.

Figure 6.10.5 End-Point Displacements for Case 1

Figure 6.10.6 End-Point Displacements for Case 2

6.11 Test Case 11: Elastic/Plastic Analysis of a Thick-Walled Hollow Sphere

6.11.1 Test Objective

This problem tests the elastic/plastic constitutive model in SANTOS by analyzing both the pressurization and the thermal loading of a hollow sphere. Three cases are analyzed: an isothermal pressurized elastic/perfectly-plastic sphere, an isothermal pressurized elastic/ plastic with linear strain hardening sphere, and an thermally loaded elastic/perfectly-plastic sphere.

6.11.2 Test Procedure

The sphere analyzed in all three cases has an internal radius of one and an outer radius of two, as shown in Figure 6.11.1. For the isothermal loading cases, the internal pressure on the inner surface of the sphere is such that the sphere starts off at initial yield on the inner surface. The pressure is then increased until the sphere becomes fully plastic through the thickness. In the thermal problem a radial temperature gradient is applied that causes initial yield on the inner surface of the sphere and the temperature is increased, expanding the plastic zone.

Figure 6.11.1 Geometry and Boundary Conditions For Pressurized Cases

Test Discretization

The finite element mesh used in the SANTOS analyses is shown in Figure 11.5 and is composed of 600 elements (4 node quadrilaterals)

Input Data

A listing of the input file is given in APPENDIX K

Output Listing

A partial listing of the printed output showing pertinent problem information is given in APPENDIX K.

ELEMENT BLOCKS RCIIVC:

6.11.4 Acceptance Criteria

Pressure Loading Cases

The analytic solutions for these problems were derived by Mendelson [14]. For the isothermal pressurized loading cases the elastic/plastic interface expands radially outward from the inner

surface of the sphere according to the equations below, taken from Mendelson. The first equation:

$$P = 2 \ln \rho_c + \frac{2}{3} \left(1 - \frac{1}{\beta_c^3} \right),$$
 (EQ 11.1)

is for the elastic/perfectly-plastic material, and the second equation

$$P = \frac{\frac{4m}{3}(1-\nu)(1-1/\beta^3)\rho_c^3 + 2(1-m)\ln\rho_c + \frac{2}{3}(1-m)(1-1/\beta_c^3)}{1-m+2m(1-\nu)}$$
 (EQ 11.2)

is for a linear strain hardening material. The non-dimensional variables used in the above equations are:

 $P = p / \sigma_{y}$, ratio of applied internal pressure to material yield stress,

 $\rho_c = c/a$, ratio of elastic/plastic interface radius to the sphere's internal radius,

 $\beta_c = b/c$, ratio of sphere's outer radius to the elastic/plastic interface radius,

 $\beta = b/a$, ratio of sphere's outer to inner radii,

m = ratio of the hardening modulus to the Youngs' modulus, and

v= Poisson's ratio.

Expressions for the non-dimensional effective stress functions for both the elastic/perfectly-plastic case and the elastic/plastic with linear strain hardening case can also be found in Mendelson [14]. However, Biffle and Blanford [13] discovered that the effective stress function for the linear strain hardening material in Mendelson is incorrect, and the corrected equation from the JAC2D manual [13] is shown below. The expression:

$$S = |\sigma_{\theta} - \sigma_{r}| / \sigma_{y}, \qquad (EQ 11.3)$$

gives the dimensionless effective stress in the outer elastic region of elastic/perfectly-plastic material, which simply reduces to:

$$S = c^3 / r^3$$
, (EQ 11.4)

once the interface radius, c, is computed. By definition, the dimensionless effective stress is unity in the plastic region for the elastic/perfectly plastic case. For the elastic/plastic with linear hardening case, the dimensionless effective stress in the elastic region is the same as given above. In the plastic region, the dimensionless effective stress for this case is given by:

$$S = \frac{1 - m + 2m(1 - \nu)c^3 / r^3}{1 - m + 2m(1 - \nu)}.$$
 (EQ 11.5)

Specific values used in this example to generate a solution for comparison with computed results from SANTOS for the elastic/perfectly-plastic case are:

 $\sigma_y = 1.0x10^4$; a = 1.0; b = 2.0; $E = 2.07x10^{11}$; and v = 0.3. The applied internal pressure used in the SANTOS analysis is shown in Table 6.11.1. The load increases with time to produce a plastic zone in the sphere that initiates at the inner surface and eventually encompasses the entire thickness.

Table 6.11.1 Applied Pressure History for Elastic/ Perfectly-Plastic Case	
Time	Pressure, p
0.0	0.0
1.0	5833.0
1.25	9501.9
1.5	11963.5
1.75	13392.8
2.0	13900.0

Similarly, specific values used in this example to generate a solution for comparison with computed results from SANTOS for the elastic/plastic with linear hardening case are: $\sigma_y = 1.0x10^4$; a = 1.0; b = 2.0; m = 0.1; $E = 2.07x10^{11}$; and v = 0.3. The applied internal pressure used in the SANTOS analysis is shown in Table 6.11.2. Again, the load increases with time to produce a plastic zone in the sphere that initiates at the inner surface of the sphere and eventually envelopes the entire thickness. However, because of the strain hardening in this case, a higher final pressure is required to yield the entire thickness of the sphere. Figure 6.11.2 and Figure 6.11.3 show the non-dimensional analytic effective stresses using these values, plotted as a function of radius, for loadings starting from plastic yield on the inner surface of the sphere to full plastic yielding of the sphere (the analytical solutions are plotted as solid lines).

Table 6.11.2	Applied Pressure History for
Elastic/Plastic	With Linear Hardening Case

Time	Pressure, p
0.0	0.0
1.0	5833.0
1.25	9756.5
1.5	13003.2
1.75	15798.4
2.0	18278.8

Figure 6.11.3 Elastic/Perfectly Plastic Hollow Sphere

Figure 6.11.4 Elastic/Plastic Hollow Sphere with Linear Hardening

Temperature Loading Case

The temperature gradient used in the thermal analysis of an elastic/perfectly-plastic hollow sphere is derived from the steady-state solution of a hollow sphere with a constant temperature of T_0 on the inner surface and zero temperature on the outer surface. The radial temperature gradient is given in Mendelson as:

$$T = \frac{T_0 a}{(b-a)} \left(\frac{b}{r} - 1\right)$$
 (EQ 11.5)

where a,b are the inner and outer radii of the sphere and r is the radial distance, such that $(a \le r \le b)$. The thermal problem differs from the previous elastic/plastic calculations in that two plastic zones are created with higher temperatures.

Initially yield occurs on the inner radius of the sphere due to compressive tangential stresses, and the elastic/plastic interface expands radially outward with higher thermal loads. The temperature required to initiate yielding on the inner surface of the sphere can be found by solving the following dimensionless thermal load equation:

$$\tau = \frac{E\alpha T_0}{\sigma_v(1-v)},$$
 (EQ 11.7)

for T_0 , where $\tau(T_0)$ is found by setting c = a in the following equation:

$$\tau = 2\left(\frac{c}{a} - \frac{c}{b}\right) \left[\frac{1 - c^3/b^3 + \ln(c^3/a^{3)}}{(2 + c/b)(1 - c/b)^2}\right],$$
 (EQ 11.8)

which is used for determining the radius c of the initial elastic/plastic interface. In the foregoing, α is the linear coefficient of thermal expansion and E is the Young's Modulus. In this specific example, we use: $\alpha = 1.0x10^{-5}$; $E = 1.0x10^{7}$; v = 0.3; $\sigma_y = 1.0x10^{4}$; a = 1.0; and b = 2.0. Using these values, the inner surface temperature, T_0 , required to initiate yielding, at r = a, is 98°.

When the plastic boundary (expanding radially outward) has advanced to a radius c_1 as determined by solving the following equation:

$$\ln \frac{c_1}{a} = \frac{2b}{3c_1} \left(1 - \frac{c_1}{b} \right)^2$$
 (EQ 11.9)

for c_1 , a second yield surface is initiated at the outer surface of the sphere due to tensile tangential stresses. For this specific example, c_1 has a value of 1.197 and occurs at an inner surface temperature of 264.8° as determined by use of Equation 11.8. Above this critical temperature, the elastic/plastic interface from the second yield zone expands radially inward with increasing temperatures while the inner plastic zone continues to spread outward. An elastic region is sandwiched between the expanding plastic zones.

The dimensionless effective stress in both plastic zones is equal to unity and the following equation:

$$S = \left| B \frac{3b^3}{2r^3} - \tau \frac{ab}{2r(b-a)} \right|$$
 (EQ 11.10)

is used to define the dimensionless stress in the elastic zone, with B defined as follows:

$$B = \frac{2c^3}{b^3} \left[\frac{1 - c/b + \ln(c/a)}{(2 + c/b)(1 - c/b)^2} \right].$$
 (EQ 11.11)

However, B as determined with Equation 11.11 is the elastic stress function that can be used only prior to the creation of the second plastic zone. When there are two plastic zones, Equation 11.8 is no longer valid and the locations of both elastic/plastic interfaces have to be solved-for simultaneously using the following two equations [13]

$$\tau = 2\left(\frac{d}{a} - \frac{d}{b}\right)\left(1 + \frac{c^2/d^2}{1 - c/d}\right)$$
, and (EQ 11.12)

$$\ln\left(\frac{cd}{ab}\right) = \frac{2c}{3d}\left[\frac{d}{c} - 1\right]^2,$$
 (EQ 11.13)

where d is the radius to the second elastic/plastic interface. The resulting new B function to be used in the dimensionless effective stress function (Equation 11.10) above is:

$$B = \frac{2c^3}{b^3} \left[\frac{d/c}{3(1-c/d)} \right].$$
 (EQ 11.14)

Using the specific values for the thermal problem as detailed above, Figure 11.4 shows the analytic nondimensional effective stress (solid lines) for this case as T_0 increases from 98° to 600° .

Page 59

Figure 6.11.5 Elastic/Perfectly Plastic Hollow Sphere – Temperature Case

6.11.5 Evaluation

The results predicted by SANTOS are also shown in Figures 6.11.3 and 6.11.5. As can be seen in the plots of the normalized effective stresses, the computed results match the analytic results almost exactly. It can be concluded that the implementation of the elastic/plastic constitutive model in SANTOS is correct for isothermal and temperature dependent problems. It is should be noted in Figure 6.11.3 that for the plot of effective stresses in the case where the sphere is fully plastic, the SANTOS solution does not predict a fully plastic sphere. The normalized effective stress for the element on the outer radius of the sphere is slightly less than one although the pressure input to SANTOS is the theoretical value that could induce full plastic yield of the sphere. For a load case where the sphere becomes fully plastic, the solution continues to iterate because the material is flowing in an unrestrained manner.

6.12 Test Case 12: Restart Option

6.12.1 Test Objective

This test verifies the SANTOS restart (read and write) option by re-analyzing the elastic/perfectly plastic hollow sphere temperature problem described in Test Case 11.

6.12.2 Test Procedure

A hollow sphere made of elastic/perfectly plastic material is loaded by a radial temperature gradient that initiates plastic yield on both the outer and inner radii of the sphere. This problem was analyzed in Test Case 11.

6.12.3 Input/Output

Test Discretization

The finite element mesh is shown in Figure 6.11.5 and is composed of 600 elements (4 node quadrilaterals)

Input Data

A listing of the SANTOS input files for both the restart write and restart read calculations are given in APPENDIX L.

Output Listing

The output listings for both the restart write and restart read analyses are listed in APPENDIX L.

6.12.4 Acceptance Criteria

See Test Case 11 for the analytic solution and for specific material properties and geometric parameters used for this example.

6.12.5 Evaluation

To test the restart option in SANTOS two analyses were performed. The first produced the restart tape and was run to time 3 (the original calculation was run out to time 5). The second calculation restarts the first at time 3 and concludes at time 5. Figure 6.12.1 shows the non-dimensional effective stress plots for times 3, 4, and 5 produced by the restart analysis along with those from the original continuous analysis. The results are shown to overlay, meaning that the restart option (read and write) in SANTOS is working correctly.

Figure 6.12.1 Effective Stress Comparison

Effective Stress - Hollow Sphere

6.13 Test Case 13: Sloping Roller Option

6.13.1 Test Objective

This test checks the sloping roller option in SANTOS by comparing the stresses computed using this option to those produced by a calculation using a complete geometric description of the body in question.

6.13.2 Test Procedure

A hollow sphere of elastic/perfectly plastic material is loaded with radial thermal gradients that create plastic and elastic zones through the thickness of the sphere. This test was analyzed in Test Case 11 using a hemispherical model of the sphere. In this calculation a 36° wedge of the sphere is modeled using the sloping roller option. Figure 6.13.1 depicts the geometry and boundary conditions used in the sloping roller calculation.

6.13.3 Input/Output

In this specific example, we use the same material and geometric parameters as for Problem 11: $\alpha = 1.0x10^{-5}$; $E = 1.0x10^{7}$; v = 0.3; $\sigma_y = 1.0x10^{4}$; a = 1.0; and b = 2.0.

Test Discretization

A 240 element mesh (4 node-quadrilateral) is used in the SANTOS calculation and is shown in Figure 6.13.2.

Figure 6.13.2 Finite Element Mesh

Input Data

A listing of the SANTOS input file is given in APPENDIX M.

Output Listing

A partial listing of the printed output showing pertinent test information is given in APPENDIX M.

6.13.4 Acceptance Criteria

The analytical solution to this test was derived by Mendelson [14] and is discussed in greater detail in Test Case 11.

6.13.5 Evaluation

The calculation using the sloping roller option in SANTOS successfully recreated the effective stress profiles, as shown in Figure 6.13.3, that were plotted in Test Case 11. The sloping roller option is correctly working in SANTOS.

Effective Stress - Sphere Wedge

6.14 Test Case 14: Creep Relaxation

6.14.1 Test Objective

This test verifies SANTOS power law creep constitutive model by analyzing a creep relaxation problem.

6.14.2 Test Procedure

A stress-free, isotropic, and homogeneous hollow cylinder undergoes an axial displacement d at time zero. The calculation determines the axial creep stress relaxation in the cylinder over time when d is kept constant.

6.14.3 Input/Output

Test Discretization

A single element (4-mode quadrilateral) is used in the analysis and the problem geometry and boundary conditions are shown in Figure 6.14.1.

Figure 6.14.1 Thick-Walled Cylinder Axially Deformed at t=0.

Input Data

A listing of the SANTOS input file is given in APPENDIX N.

Output Listing

A partial listing of the printed output showing pertinent problem information is given in APPENDIX N.

6.14.4 Acceptance Criteria

This problem was used to verify the power law creep model in SANCHO [15]. The total strain rate can be decomposed into elastic and inelastic (creep) parts as follows:

$$\dot{\mathcal{E}}_{tot} = \dot{\mathcal{E}}_{el} + \dot{\mathcal{E}}_{c} \quad . \tag{EQ 14.1}$$

The total strain rate is zero for the stress relaxation problem in question, after the displacement, d, is initially applied. This being the case, the governing equation becomes:

$$\dot{\varepsilon}_{el} = \dot{\varepsilon}_c$$
, or, $-\frac{\dot{\sigma}}{E} = \dot{\varepsilon}_c$ (EQ 14.2)

where E is the Young's modulus. The effective creep strain rate using the power law creep model is defined as follows:

$$\dot{\varepsilon}_c = D\sigma^n e^{\left(\frac{-Q}{RT}\right)}.$$
 (EQ 14.3)

The parameters D and n are material constants. They, along with the remaining parameters used in the above equation, are further defined as follows:

D is the leading coefficient,

 σ is the effective stress (and in this case equal to the axial stress),

n is the power on the effective stress,

Q is the activation energy,

R is the universal gas constant,

and T is the reference temperature.

Substitution of Equation 14.3 into Equation 14.2 leads to an ordinary differential equation. Integration of the equation, following separation of variables, leads to the closed form solution for the axial stress as a function of time. This is given by:

$$\sigma_{z}(t) = \left[\sigma_{z}^{1-n}(0) + EDe^{\frac{-Q}{RT}}(n-1)t \right]^{\frac{1}{1-n}}$$
(EQ 14.4)

where $\sigma_z(t)$ is the axial stress as a function of time and $\sigma_z(0)$ is the elastic axial stress value induced initially by the application of the displacement, d.

Specific values used in this example are as follows:

 $\delta = 0.001$; $E = 24.75 \times 10^9$; v = 0; $D = 5.79 \times 10^{-36}$; n = 4.9; and Q/(RT) = 20.13. Using these specific values, the elastic response induced by application of the displacement d at time zero is found to lead to an initial axial stress of 24.75 MPa. The axial stress relaxes thereafter monotonically with time, attempting to reach a steady-state value.

6.14.5 Evaluation

A comparison of analytically derived Von Mises stresses with those predicted by SANTOS is shown in Figure 6.14.2. The SANTOS solution follows the analytical solution of Equation 14.4 (shown as the solid line) very closely, verifying that the SANTOS implementation of the power-creep law is functioning correctly.

Figure 6.14.2 Von Mises Stress Plot – Power Creep Law

6.15 Test Case 15: Linear Viscoelastic Constitutive Model Implementation

6.15.1 Test Objective

This test checks the implementation of a linear viscoelastic constitutive model [16] into SANTOS by analyzing an internally pressurized thick-walled cylinder.

6.15.2 Test Procedure

A thick-walled cylinder representing a rocket motor is subjected to an instantaneous pressure on its inner surface. The solid propellant is modeled as a linear viscoelastic material with an elastic bulk response and is assumed to behave as a Maxwell body in shear. The propellant is restrained on its outer radius by a thin steel casing. It is desired to know the time dependent response of the propellant under the pressure load. Figure 6.15.1 shows the problem geometry and boundary conditions.

Figure 6.15.1 Geometry and Boundary Conditions

6.15.3 Input/Output

Test Discretization

A 23 element mesh (4 node-quadrilateral) is used in the calculation and is shown in Figure 6.15.2.

Input Data

A listing of the SANTOS input file is given in APPENDIX O.

Output Listing

A partial listing of the printed output showing pertinent problem information is given in APPENDIX O.

Figure 6.15.2 Finite Element Mesh

6.15.4 Acceptance Criteria

An analytical solution to this problem has been developed by Lee et al. [17] and Stone and Costin [16] used this problem to test their linear viscoelastic constitutive model implementation in the SANCHO finite element program [15]. Lee et al. make use of the Laplace transform to generate the following equation:

$$\overline{\sigma}_{rr} = -\frac{P}{p} \frac{\left[333p^2 + 656p + 320\right] + \left(b^2 / r^2\right) \left[147p^2 + 144p\right]}{921p^2 + 1232p + 320}$$
 (EQ 15.1)

in terms of the transform parameter, p, for the transformed radial stress, and

$$\overline{\sigma}_{\theta\theta} = -\frac{P}{p} \frac{\left[333 p^2 + 656 p + 320\right] - \left(b^2 / r^2\right) \left[147 p^2 + 144 p\right]}{921 p^2 + 1232 p + 320}$$
 (EQ 15.2)

for the transformed circumferential stress, where P is the applied internal pressure, b is the outer radius, and r is the radial distance. The equations can be inverted directly to give, for example:

$$\overline{\sigma}_{rr} = -P \left[\left\{ 0.3616 + \frac{0.005282}{0.9849} \left(1 - e^{-0.9849t} \right) + \frac{0.2233}{0.3528} \left(1 - e^{-0.3528t} \right) \right\}$$

$$+ \frac{b^2}{r^2} \left\{ 0.1596 - \frac{0.001320}{0.9849} \left(1 - e^{-0.9849t} \right) - \frac{0.05583}{0.3528} \left(1 - e^{-0.3528t} \right) \right\} \right]$$

for the actual radial stress (that will be used to compare with the SANTOS solution), and a similar equation can also be found for the actual circumferential stress. Note that these equations

assume the use of specific values for material and geometric properties in both the propellant and the casing. The equivalent values used in the SANTOS analysis for the propellant are as follows: a=2; b=4; $K=1\times10^5$; $K^{\infty}=1\times10^5$; $\beta^k=1$; $G^{\infty}=0$: $G_1=3.75\times10^4$; $G_2=G_3=0$; $\beta_1^s=\beta_2^s=\beta_3^s=1$; $C_1=7.6$; $C_2=277$; and $C_2=373$. The values used for the casing were as follows: $C_2=3\times10^7$; $C_2=3\times10^7$

6.15.5 Evaluation

In Figure 6.15.3 and Figure 6.15.4 the normalized radial and circumferential stress profiles, respectively, are plotted for different times after the application of the pressure load, P. As it can be seen in the plots, the SANTOS stress predictions match the analytic solutions (shown as the solid curves) very well and therefore SANTOS passes this test.

Figure 6.15.3 Radial Stress Plot

Figure 6.15.4 Circumferential Stress Plot

6.16 Test Case 16: M-D Constitutive Model Implementation

6.16.1 Test Objective

This test verifies the SANTOS implementation of the M-D constitutive model with a Tresca flow condition, as described by Munson et al. [18], on a shaft closure analysis. The SANTOS results are compared to those computed with the SPECTROM-32 code [19]. This configuration was chosen because it tests the implementation of the model itself without including the additional complexities and influences of stratigraphy and sliding surfaces into the solution that would be inherent in a disposal-room-type problem.

6.16.2 Test Procedure

A vertical shaft of 6.5 m diameter is assumed to be excavated instantaneously at time zero at a depth of 655.3 m in bedded salt. The material at the depth of interest is subject to an in situ lithostatic stress of -15 MPa and immediately begins to close the shaft opening as it begins to creep. An analysis is done to determine the rate and amount of closure of the shaft at this depth.

6.16.3 Input/Output

Test Discretization

A 128 element (4-node quadrilateral) mesh is used in the SANTOS analysis and is shown in Figure 6.16.1. The figure shows only a "close-up" of the mesh near the shaft opening, because the full mesh is very large.

Figure 6.16.1 Finite Element Mesh near the Shaft Opening

Input Data

A listing of the SANTOS input is in APPENDIX P.

Output Listing

A partial listing of the printed output showing pertinent problem information is given in APPENDIX P.

6.16.4 Acceptance Criteria (Other Solution In Lieu of Analytic Solution)

There is no analytic solution to this problem. Consequently, to gauge the adequacy of the solution, the percent closure of the shaft computed with SANTOS is compared to that found in Munson et al. [20]. The results from that analysis were computed with SPECTROM-32. Figure 6.16.2 shows the problem geometry used in both the present and the Munson et al. analyses. Specific values of inner and outer radii (a and b, respectively), initial stress (σ_o), and applied pressure (p) used in the analysis are also shown on the figure.

Figure 6.16.2 Problem Geometry and Boundary Conditions

The elastic and creep properties used in this analysis are shown in Table 6.16.1 and Table 6.16.2, respectively. The creep parameters listed in the table are those given by Munson, et al. [18] for clean salt.

Table 6.16.1 Elastic Properties					
G Mpa	E Mpa	v			
12,400	31,000	0.25			

Table 6.16.2 Creep Properties				
Parameters Clean (units) Salt				
A ₁ (/sec)	8.386E22			
Q_1 (cal/mole)	25,000			
n_1	5.5			
<i>B</i> ₁ (/sec)	6.086E6			
A_2 (/sec)	9.672E12			
Q_2 (cal/mole)	10,000			
n_2	5.0			
B_2 (/sec)	3.034E-2			
s _o (MPa)	20.57			
q	5,335			
M	3.0			
K_{o}	6.275E5			
c (/T)	9.198E-3			
α	-17.37			
В	-7.738			
δ	0.58			

6.16.5 Evaluation

The SANTOS predictions of shaft closure are shown in Figure 6.16.3 and compare very well with the SPECTROM-32 results (shown as the solid line) that were presented in Munson et al. [20] for the first two years of the analysis. The agreement between the predictions indicates that the implementation of the M-D constitutive model in SANTOS is correct.

Figure 6.16.3 Per-Cent Closure of Shaft SANTOS Results

6.17 Test Case 17: Upsetting of a Cylindrical Billet

6.17.1 Test Objective

This test case examines the behavior of a cylindrical metallic billet that has undergone a 60% upset by compression between two flat, rigid dies. This is the standard test case for a metal forming application defined in Lippmann [21]. The time history of the die force is to be compared to computational results by Taylor [22]. The die force is governed by large deformation, inelastic material behavior in conjunction with complex contact surface response.

6.17.2 Test Procedure

This test examines the behavior of a cylindrical metallic billet that has undergone a 60% upset by compression between two flat, rigid dies. The billet has as initial dimensions a length of 30 mm and a diameter of 20 mm. The die material is assumed to be elastic-plastic with linear strain hardening. The material properties are taken from Lippmann [21]. The billet has a Young's modulus of 200 GPa and a Poisson's ratio of 0.3. The initial yield stress of the material is 700 MPa with a hardening modulus of 300 MPa.

6.17.3 Input/Output

Test Discretization

The axisymmetric option in SANTOS is used and only the top half of the billet is modeled since the middle surface of the billet can be viewed as a plane of symmetry. The middle surface of the billet is given a prescribed 9.0 mm vertical displacement which compresses the billet against the top rigid die. The rigid die is modeled using the RIGID SURFACE option in SANTOS. The die surface is assumed to be rough which results in a no slip condition between the billet and die. This behavior can be achieved by specifying the friction value as FIXED on the RIGID SURFACE option. During deformation it is expected that the external surface of the billet will fold and come into contact with the rigid die, which means that the definition of the side set associated with the rigid surface must include both elements along the top of the billet and elements along the external radial boundary. One hundred load steps were taken for this analysis.

The finite element mesh used in this analysis is shown in Figure 6.17.1. Also shown on the figure are the applied boundary conditions. The mesh contains 247 nodes and 216 uniform strain, quadrilateral elements.

Figure 6.17.1 Mesh Discretization and Boundary Conditions

ELEMENT BLOCKS RCIIVE

Input Data

A complete listing of the input data file that was used for the cylindrical billet analysis is given in APPENDIX Q.

Output Listing

The SANTOS printed output for the upsetting of a cylindrical billet test is also provided as a section in APPENDIX Q.

6.17.4 Acceptance Criteria (Other Solutions In Lieu of Analytic Solution)

The nonlinear nature of this calculation precludes the use of an analytic solution. The upset die force vs. die displacement curve is compared to computational results obtained by Taylor [22].

6.17.5 Evaluation

Figure 6.17.2 shows the deformed shape of the billet at several different times during the upset process. The folding of the billet's external surface is clearly seen as well as its contact with the rigid die. A close-up of the billet's final deformed shape at 60% upset is shown in Figure 6.17.3. Figure 6.17.4 shows a comparison of the upset force vs. die displacement with results taken from Taylor [22]. The agreement is seen to be excellent until the die displacement reaches 7.0 mm. At this value of displacement, the billet is folding and the first nodal point on the external surface is just coming into contact with the rigid surface. The slight difference in the upset force seen in the figure at die displacements greater than 7.0 mm is related to the contact occurring between the folding billet and the rigid surface. This agreement of the SANTOS results with those of Taylor [22] suggests that SANTOS is adequate for performing metal-forming applications analyses.

Figure 6.17.2 Plots of the Deforming Billet at Various Times During the Upset

Figure 6.17.3 Final Deformed Shape of the Billet After 60% Upset

71ME 1.000

Figure 6.17.4 Comparison of SANTOS Calculation With Numerical Results Taken From Taylor [22] for the Upset of a Cylindrical Billet.

6.18 Test Case 18: Isothermal WIPP Benchmak II

6.18.1 Test Objective

This test is a geomechanics test in which the creep response of a long series of parallel underground tunnels (drifts) is modeled. The drifts are surrounded by rock salt and other rock layers similar to those found at the storage horizon of the Waste Isolation Pilot Plant (WIPP). The WIPP is a research and development facility authorized to demonstrate the safe disposal of low-level radioactive wastes arising from the defense activities of the United States. It is being developed by the U.S. Department of Energy (DOE) and is located in southeastern New Mexico in a bedded salt formation at a depth of about 650 m below the surface.

This test considers large displacements, large strains, and power law creep for an unheated drift configuration in a complicated stratigraphy. At the time that the problem was originally devised [23], the isothermal drift was considered to be representative of a configuration that might be used for storing nonheat-producing transuranic (TRU) waste at the WIPP. As such, it is included here because it is one of four WIPP qualification problems traditionally used to assess a code's adequacy for performing salt repository analyses.

6.18.2 Test Procedure

The problem geometry allows the use of a vertical plane of symmetry passing through the center of a drift and a symmetry plane between drifts to produce an equivalent single drift plane strain model. The boundary conditions and the layered stratigraphy are shown in Figure 6.18.1 [24]. The drift is rectangular in cross-section, with a height of 3.96 m and a width of 10.06 m. The horizontal extent from the center of the drift to the symmetry plane between drifts is 20.27 m. The upper and lower boundaries are approximately 50 m above and below the drift, respectively. These distances were chosen so that room response would not be affected by boundary conditions.

Boundary conditions, because of symmetry, were such that horizontal displacements were specified to be zero along the vertical boundaries. Along the upper and lower boundaries, uniform pressures were specified. Although the loads were specified such that the drift configuration was in static equilibrium, vertical constraints were needed to preclude rigid body motion. Thus, the top anhydrite layer was fixed along the edge at the pillar centerline, as indicated on the figure. The surfaces of the room were traction-free, and the room was assumed to appear instantaneously at time zero. The initial temperature throughout the configuration was 300 K and remained constant throughout the 10-year simulation.

The stratigraphy was comprised of five different geologic materials. The layers identified as halite, argillaceous halite, and 10% anhydrite/polyhalite-90% halite were modeled using an elastic-secondary creep model of the form:

$$\dot{\varepsilon} = D\sigma^n e^{-\frac{Q}{RT}}$$
 (EQ 18.1)

Figure 6.18.1 Benchmark II Isothermal Drift Configuration [24]

where $\dot{\varepsilon}$ is the effective creep strain rate and σ is the effective stress ($\sigma = \sqrt{\frac{3}{2}\sigma'_{ij}\sigma'_{ij}}$), with the variables, σ_{ij} and σ'_{ij} , being the components of the stress tensor and the deviatoric stress tensor, respectively. The parameters D and n are material constants determined from creep data analysis. T is the temperature in degrees Kelvin, Q is the activation energy in cal/mole, and R is the universal gas constant (1.987 cal/mole-K). The anhydrite and polyhalite layers were assumed to respond elastically. The mechanical material properties used for this analysis are given in Table 6.18.1.

Material	Young's Modulus (Pa)	Poisson's Ratio	D (Pa ^{-4.9} sec ⁻¹)	n	Q (kcal/mole)
Halite	2.48E+10	0.25	5.79E-36	4.9	12
Argillaceous					
Halite	2.48E+10	0.25	1.74E-35	4.9	12
10% A-P,					
90% H	2.65E+10	0.25	5.21E-36	4.9	12
Anhydrite	7.24E+10	0.33			
Polyhalite	7.24E+10	0.33			

The initial stress state was assumed to be lithostatic with $\sigma_x = \sigma_{yy} = \sigma_{zz} = -21252y$, where y is the depth in meters and stresses are in pascals. The mechanical loads acting on the model consisted of the overburden uniform pressures specified along the top and bottom boundaries (12.71 and 15.00 MPa, respectively) and body force loads due to gravity. There were four active clay seams which were modeled using contact surfaces with the coefficient of friction, μ , set to zero.

6.18.3 Input/Output

Test Discretization

The finite element mesh used in this analysis is shown in Figure 6.18.4. Also shown on the figure are the applied boundary conditions. The mesh contains 1,371 nodes and 1,204 elements. The grading of the mesh, in general, is such that finer elements occur near the room where the stress gradients will be higher. In some of the layers, however, the gradation in the vertical direction was dictated by the locations of the layer boundaries.

Figure 6.18.2 Vertical Closure History Results from Benchmark II Exercise – Isothermal Drift [24]

Input Data

A complete listing of the input data file that was used for the Benchmark II isothermal analysis is given in APPENDIX R. Also included in this appendix, as a separate section, is a listing of the FORTRAN subroutine "INITST" that was used to compute the initial stresses in the configuration for the analysis.

Output Listing

The SANTOS printed output for the Benchmark II isothermal test is also provided as a section in APPENDIX R.

6.18.4 Acceptance Criteria (In Lieu of Analytic Solution)

The nonlinear nature of repository calculations makes it difficult to demonstrate that the codes being used for performing the design and evaluation of these facilities are accurate; the reason for this being that exact solutions for long-term repository calculations of this type do not exist. Consequently, the WIPP project has determined that benchmarking against other codes is an

acceptable first step in demonstrating the adequacy of a code for performing these types of analyses. Figure 6.18.2 and Figure 6.18.3 show some results from a previous benchmark exercise [24] that used nine codes to solve the isothermal problem described herein. The results from that benchmark study for vertical closure and pillar midheight horizontal displacement are provided for comparison to the results from the present analysis.

6.18.5 Evaluation

Figure 6.18.5 and Figure 6.18.6 show the SANTOS vertical closure and pillar midheight horizontal displacement history results, respectively, along with two digitized curves from the Benchmark II study to allow the reader to see where the SANTOS results fall within the Benchmark II range. A comparison of the SANTOS results with the entire range of results predicted in the Benchmark II exercise is given in Table 6.18.2 for times of 1 year, 5 years, and 10 years. The table shows that in all cases, the SANTOS results fall within the Benchmark II exercise ranges, indicating that SANTOS gives comparable results for the isothermal drift problem.

Figure 6.18.3 Midpillar Horizontal Displacement History Results from Benchmark II Exercise – Isothermal Drift [24]

Table 18.2 Comparison of SANTOS Results For The Isothermal Problem With Those Computed In Benchmark II Exercise

Time	(years)	Vertical Closure (meter)	Midpillar Horizontal Displacement (meters)
	Benchmark II Range	0.06 to 0.28	-0.03 to -0.06
1.0	SANTOS Value	0.099	-0.045
	Benchmark II Range	0.22 to 0.46	-0.11 to -0.21
5.0	SANTOS Value	0.346	-0.175
	Benchmark II Range	0.39 to 0.77	-0.21 to -0.38
10.0	SANTOS Value	0.617	-0.322

Figure 6.18.4 Santos Mesh Used For Benchmark II Isothermal Test

Figure 6.18.5 Vertical Closure History Computed With SANTOS for Benchmark II Isothermal Test

Figure 6.18.6 Midpillar Horizontal Displacement History Computed With SANTOS for Benchmark II Isothermal Test

6.19 Test Case 19: Heated WIPP Benchmark II

6.19.1 Test Objective

Again, as for the isothermal case of Test Case 18, this test models a repository horizon that consists of a long series of parallel drifts at the WIPP. Once again, it considers large displacements, large strains, and power law creep but this time for a heated drift configuration in a complicated stratigraphy. At the time that the problem was originally devised [23], the heated drift was considered to be representative of a configuration that might be used for emplacing heat-producing high-level waste experiments at the WIPP. This drift had different dimensions than the isothermal one and it was located at a different depth in the geologic formation. However, the boundary conditions and applied loads were basically the same as those for the isothermal drift. It is included in this document because it also is one of four WIPP qualification problems traditionally used to assess a code's adequacy for performing salt repository analyses.

6.19.2 Test Procedure

Two separate two-dimensional models were used for the heated Benchmark II analysis: a thermal model and a structural model. Only one-way coupling between the thermal and structural responses was considered, i.e., the thermal response was assumed to be unaffected by the structural deformations. The thermal model was used to compute temperatures in the configuration around the opening for the 5-year simulation period. The finite element code COYOTE II [25] was used for this calculation. The temperatures were then used as input to SANTOS so that thermal expansion and creep property changes induced by changes in temperature could be included in the structural response. Because high temperature and stress gradients occur in different regions, the thermal and structural calculations required mesh refinement in different areas. Thus, the thermal and structural finite element meshes used for the heated Benchmark II calculation were different, and nodal temperatures computed in the COYOTE II calculation had to be interpolated to the nodes of the structural mesh. The interpolation code MERLIN II [26] was used to perform this task.

As was the case for the isothermal problem, the geometry for the heated configuration allows us to use a vertical plane of symmetry passing through the center of a drift and a symmetry plane between drifts to produce an equivalent single drift plane strain model. The problem definition and stratigraphy are shown in Figure 6.19.1. The drift is again rectangular in cross-section, with a height of 4.57 m and a width of 4.58 m. The horizontal extent from the center of the drift to the symmetry plane between drifts is 22.86 m. The upper and lower boundaries are approximately 50 m above and below the drift, respectively. These distances were chosen so that the room response would not be affected by the boundary conditions.

Thermal Model

In the thermal model, all boundaries were assumed to be adiabatic, and the entire formation was prescribed to have an initial temperature of 300 K. The thermal load was applied at time zero as a heat source that was modeled to simulate waste canisters placed at regular intervals beneath the floor. This led to a temperature increase with time throughout the simulation. The heat source was modeled as being continuously distributed along the drift length and had a time-dependent output of the form:

Figure 6.19.1 Benchmark II Heated Drift Configuration [24]

$$q = 169.5 \exp(-7.326 \times 10^{-10} t)$$
 (EQ 19.1)

where q is the thermal load in watts/meter along the drift centerline and t is the time in seconds. The waste was idealized as a plane source with no x-direction dimension. The heat output was uniformly distributed over the 1.83 m height of the source. The thermal properties of all stratigraphic materials were assumed to be the same as those for halite. This assumption, which simplified the meshing for the thermal calculation, is a slight deviation from the Benchmark II definition for the thermal aspects of the heated problem but was appropriate because previous calculations [27] have shown that thermal responses computed with an all-salt stratigraphy and with a layered stratigraphy are essentially the same. Heat transfer through the salt was modeled with a nonlinear thermal conductivity of the form:

$$k = \lambda_0 \left(\frac{\theta}{300}\right)^r$$
 (EQ 19.2)

where k is the conductivity, θ is the absolute temperature in Kelvin, and λ_0 and γ are material constants. The room area was assumed to consist of an "equivalent thermal material" with a conductivity that allows radiation heat transfer in the room to be simulated by conduction. Thus, thermal radiation between the surfaces of the drift was simulated by an artificial thermal "material" in the drift with an "equivalent conductance." This "material" provided no structural support and, in fact, was used only in the thermal model but not in the structural model. The thermal finite element mesh used for the analysis is shown in Figure 6.19.2 and consists of four-node, isoparametric, quadrilateral elements.

The mesh contains 960 elements and 1029 nodal points. The room area modeled with the "equivalent thermal material" is outlined by the heavy line in the figure. The thermal properties of halite and the "equivalent thermal material," which were used in this calculation, are presented in Table 6.19.1.

Figure 6.19.2 Thermal Mesh Used For Benchmark II Heated

Table 6.19.1 Material Properties Used for Benchmark II Heated Problem – Thermal Analysis

Material	Density, p, kg/m ³	Specific Heat, C _p , J/(kg-K)	Thermal Conduct Parameter, λ_0 , W/(m-K)	Thermal Conduct Parameter, γ
Halite	2167	860	5.0	1.14
"Equiv. Thermal Material"	1.000	1000	50.0	0.00

Structural Model

In the structural model, boundary conditions were such that horizontal displacements were specified to be zero along the vertical boundaries, as shown in Figure 6.19.1. Along the upper and lower boundaries, uniform pressures were specified. As was the case for the isothermal problem, vertical constraints were needed to preclude rigid body motion, thus, the top anhydrite layer was fixed along the edge at the pillar centerline, as indicated on the figure. The surfaces of the room were traction-free, and the room was assumed to appear instantaneously at time zero. The initial stress state was assumed to be lithostatic with $\sigma_{xx} = \sigma_{yy} = \sigma_{zz} = -21252y$, where y is the depth in meters and stresses are in pascals.

The entire stratigraphy was used in the structural model and was comprised of five different geologic materials. The layers identified as halite, argillaceous halite, and 10% anhydrite/polyhalite-90% halite were modeled using an elastic-secondary creep model of the form:

$$\dot{\varepsilon} = D\sigma^n e^{-\frac{Q}{RT}}, \qquad (EQ 19.3)$$

where $\dot{\varepsilon}$ is the effective creep strain rate and σ is the effective stress ($\sigma = \sqrt{\frac{3}{2}\sigma'_{ij}\sigma'_{ij}}$), with

the variables, σ_{ij} and σ'_{ij} , being the components of the stress tensor and the deviatoric stress tensor, respectively. The parameters D and n are material constants determined from creep data analysis. T is the temperature in degrees Kelvin, Q is the activation energy in cal/mole, and R is the universal gas constant (1.987 cal/mole-K). The anhydrite and polyhalite layers were assumed to respond elastically. The mechanical material properties used for this analysis are given in Table 6.19.2.

The mechanical loads acting on the model consisted of the overburden uniform pressures specified along the top and bottom boundaries (12.71 and 15.01 MPa, respectively) and body force loads due to gravity. There were four active clay seams which were modeled using contact surfaces with the coefficient of friction, μ , set to zero.

Table 6.19.2 Material Properties Used for Benchmark II Heated
Problem – Structural Analysis

Material	Young's Modulus (Pa)	Poisson's Ratio	D (Pa ^{-4.9} sec ⁻¹)	n	Q (kcal/mole)	Coeff. Of Linear Thermal Exp., α , K^{-1}
Halite	2.48E+10	0.25	5.79E-36	4.9	12.0	45.0E-6
Argillaceous Halite	2.48E+10	0.25	1.74E-35	4.9	12.0	40.0E-6
10% A-P, 90% H	2.65E+10	0.25	5.21E-36	4.9	12.0	42.7E-6
Anhydrite	7.24E+10	0.33				20.0E-6
Polyhalite	7.24E+10	0.33				24.0E-6

6.19.3 Input/Output

Test Discretization

The finite element mesh used in this analysis is shown in Figure 6.19.5. Also shown on the figure are the applied boundary conditions. The mesh contains 926 nodes and 798 elements. The grading of the mesh, in general, is such that finer elements occur near the room where the stress gradients will be higher. In some of the layers, however, the gradation in the vertical direction was dictated by the locations of the layer boundaries.

Figure 6.19.3 Vertical Closure History Results from Benchmark II Exercise – Heated Drift [24]

Figure 6.19.4 Midpillar Horizontal Displacement History Results from Benchmark II Exercise – Heated Drift [24]

Figure 6.19.5 Santos Mesh Used For Benchmark II Heated Test

Input Data

A complete listing of the input data file that was used for the Benchmark II heated analysis is given in APPENDIX S. Also included in this appendix is a listing of the FORTRAN subroutine "INITST" that was used to compute the initial stresses in the configuration

Output Listing

The SANTOS printed output for the Benchmark II heated problem is also provided as a section in APPENDIX S.

6.19.4 Acceptance Criteria (In Lieu of Analytic Solution)

The nonlinear nature of repository calculations makes it difficult to demonstrate that the codes being used for performing the design and evaluation of these facilities are accurate, because the exact solution for a long-term repository calculation of this type does not exist. Consequently, the WIPP project has determined that benchmarking against other codes is an acceptable first step in demonstrating the adequacy of a code for performing these types of analyses. Figure 6.19.3 and Figure 6.19.4 show some results from a previous benchmark exercise [24] that used nine structural codes to solve the heated problem described herein. The results from that benchmark study for vertical closure and pillar midheight horizontal displacement are provided for comparison to the results from the present analysis.

6.19.5 Evaluation

Figure 6.19.6 and Figure 6.19.7 show the SANTOS vertical closure and pillar midheight displacement history results along with two digitized curves from the Benchmark II study to allow the reader to see where the SANTOS results fall within the Benchmark II range. A comparison of the SANTOS results with the entire range of results predicted in the Benchmark II exercise is given in Table 6.19.3 for times of 1 year, 3 years, and 10 years. Because the SANTOS results are very near the Benchmark II numbers this test is passed.

Figure 6.19.6 Vertical Closure History Computed With SANTOS for Benchmark II Heated Test

Figure 6.19.7 Midpillar Horizontal Displacement History Computed With SANTOS for Benchmark II Heated Test

Table 6.19.3 Comparison of SANTOS Results For The Heated Problem With Those Computed In Benchmark II Exercise					
Time (years)		Vertical Closure (meters)	Midpillar		
			Horizontal		
			Displacement		
			(meter)		
1.0	Benchmark II Range	0.07 to 0.11	~-0.02		
	SANTOS Value	0.083	-0.013		
3.0	Benchmark II Range	0.18 to 0.23	~-0.03		
	SANTOS Value	0.188	-0.025		
10.0	Benchmark II Range	0.45 to 0.53	-0.04 to -0.05		
	SANTOS Value	0.488	-0.063		

The table shows that for the case of vertical closure, the SANTOS results fall within the Benchmark II exercise ranges, and for the mid-pillar displacement, they are of the same order (being only slightly larger at the end of the 5-year simulation). The table thus indicates that SANTOS yields results that are comparable to those from the codes that participated in the Benchmark II exercise for the heated drift problem.

6.20 Test Case 20: Isothermal WIPP Parallel Calculation

6.20.1 Test Objective

This test is a geomechanics problem in which the creep response of a long series of parallel underground tunnels (drifts) is modeled. The drifts are surrounded by rock salt and other rock layers similar to those found at the storage horizon of the Waste Isolation Pilot Plant (WIPP). The WIPP is a research and development facility authorized to demonstrate the safe disposal of low-level radioactive wastes arising from the defense activities of the United States. It is being developed by the U.S. Department of Energy (DOE) and is located in southeastern New Mexico in a bedded salt formation at a depth of about 650 m below the surface.

This problem again considers large displacements, large strains, and power law creep for an unheated drift configuration in a complicated stratigraphy. This problem was originally chosen [28] because it represented one of the proposed storage room configurations at the WIPP. This isothermal drift was considered to be representative of a typical room in an infinite panel of rooms designed for storing nonheat-producing transuranic (TRU) waste at the WIPP site. It is included here because it is one of four WIPP qualification problems traditionally used to assess a code's adequacy for performing salt repository analyses.

6.20.2 Test Procedure

The two-dimensional planar configuration shown in Figure 6.20.1 was used in the isothermal calculation as the idealization of a single, long room in an infinite array of long, parallel rooms. The left boundary represents a symmetry plane through the center of the room, while the right boundary represents a symmetry plane through the center of the pillar separating adjacent rooms. The distance between the left and right boundaries is 20.27 m, and the room is 3.96 m high by 10.06 m wide. The floor level of the room is 6.40 m below Clay G, the reference from which all vertical distances are measured. Clay G is 650.43 m below the ground surface. The upper and lower boundaries are approximately 50 m above and below the drift, respectively. These distances were chosen so that room response would not be affected by boundary conditions.

Boundary conditions were such that horizontal displacements were specified to be zero along the vertical boundaries. A pressure of 13.57 MPa, which represents the weight of the overlying

rock, is applied to the top boundary. An average overburden density of 2320 kg/ m³ and a gravitational acceleration of 9.79 m/s² were used to determine this pressure. An average density of 2300 kg/m³ was used for all stratigraphic layers to compute the pressure of 15.96 MPa applied at the bottom boundary. Body forces representing the weight of the rock were also applied, as was an initial lithostatic stress state that varied linearly with depth. The overburden density and average configuration density defined above were used to compute the initial stress state. Although the loads were specified such that the drift configuration was in static equilibrium, vertical constraints were needed to preclude rigid body motion. Thus, the top anhydrite layer was fixed along the edge at the pillar centerline, as indicated on the figure. In the out-of-plane direction, the room was considered to be infinitely long so that a plane strain condition could be assumed. The surfaces of the room were traction-free, and the room was assumed to appear instantaneously at time zero. The initial temperature throughout the configuration was 300 K and remained constant throughout the 10-year simulation.

Figure 6.20.1 Parallel Calculation – Isothermal Drift Configuration [29]

The stratigraphy was comprised of five different geologic materials: halite, argillaceous halite, anhydrite, polyhalite, and clay seams. The layers identified as halite and argillaceous halite, were modeled using an elastic–secondary creep model of the form:

$$\dot{\varepsilon} = D\sigma^n e^{\frac{Q}{RT}} , \qquad (EQ 20.1)$$

where $\dot{\varepsilon}$ is the effective creep strain rate and σ is the effective stress ($\sigma = \sqrt{\frac{3}{2}}\sigma'_{ij}\sigma'_{ij}$), with the variables, σ_{ij} and σ'_{ij} , being the components of the stress tensor and the deviatoric stress tensor,

respectively. The parameters D and n are material constants determined from creep data analysis. T is the temperature in degrees Kelvin, Q is the activation energy in cal/mole, and R is the universal gas constant (1.987 cal/mole-K). The anhydrite and polyhalite layers were assumed to respond elastically. The clay seams in the stratigraphy are very thin layers between layers of more competent rock. Structurally, these seams represent interfaces where the more competent layers can slip with respect to each other. A dry friction model, with a coefficient of friction, μ =0.4, was specified for describing clay seam behavior. Of the 12 clay seams shown in the figure, only Clays D through J were modeled. The mechanical material properties used for this analysis are given in Table 6.20.1.

Table 6.20.1 Material Properties Used for Parallel Calculation									
	Isothermal Analysis								
	Young's		D						
	Modulus	Poisson's	(Pa ^{-4.9} sec ⁻¹	')	Q				
Material	(Pa)	Ratio		n	(kcal/mole)				
Halite	3.10E10	0.25	5.79E-36	4.9	12.0				
Argillaceous	3.10E10	0.25	1.74E-35	4.9	12.0				
Halite									
		·	-		_				
Anhydrite	7.51E10	0.35							
Polyhalite	5.53E10	0.36							

6.20.3 Input/Output

Test Discretization

The finite element mesh used in this analysis is shown in Figure 6.20.4. Also shown on the figure are the applied boundary conditions. The mesh contains 1,761 nodes and 1,476 elements. The grading of the mesh, in general, is such that finer elements occur near the room where the stress gradients will be higher. In some of the layers, however, the gradation in the vertical direction was dictated by the locations of the layer boundaries.

Figure 6.20.2 Midpillar Horizontal Displacement History Results from Parallel Calculation Exercise – Isothermal Drift [29]

Input Data

A complete listing of the input data file that was used for the Parallel Calculation isothermal analysis is given in APPENDIX T. Also included in this appendix, as a separate section, is a listing of the FORTRAN subroutine "INITST" that was used to compute the initial stresses in the configuration for the analysis.

Output Listing

The SANTOS printed output for the Parallel Calculation isothermal test is also provided as a section in APPENDIX T.

6.20.4 Acceptance Criteria (In Lieu of Analytic Solution)

The nonlinear nature of repository calculations makes it difficult to demonstrate that the codes being used for performing the design and evaluation of these facilities are accurate; the reason for this being that exact solutions for long-term repository calculations of this type do not exist. Consequently, the WIPP project has determined that benchmarking against other codes is an acceptable first step in demonstrating the adequacy of a code for performing these types of analyses. Figure 6.20.2 and Figure 6.20.3 show some results from a previous benchmark exercise [29] that used three codes to solve the isothermal problem described herein. The results from that benchmark study for vertical closure and pillar midheight horizontal displacement are provided for comparison to the results from the present analysis.

Figure 6.20.3 Vertical Closure History Results for Parallel Calculation Exercise – Isothermal Drift [29]

6.20.5 Evaluation

Figure 6.20.5 and Figure 6.20.6 show the SANTOS vertical closure and pillar midheight horizontal displacement history results, respectively, along with two digitized curves from the Parallel Calculation exercise to allow the reader to see where the SANTOS results fall within the Parallel Calculation range. A comparison of the SANTOS results with the entire range of results predicted in the Parallel Calculation exercise is given in Table 6.20.2 for times of 1 year, 5 years, and 10 years. The table shows that in all cases, the SANTOS results fall very close to the lower end of the Parallel Calculation exercise ranges, indicating that SANTOS gives comparable results for the isothermal drift problem.

Figure 6.20.4 Santos Mesh Used For Parallel Calculation Isothermal Test

Figure 6.20.5 Vertical Closure History Computed With SANTOS for Parallel Calculation Isothermal Test

Figure 6.20.6 Midpillar Horizontal Displacement History Computed With SANTOS for Parallel Calculation Isothermal Test

Table 6.20.2 Comparison of SANTOS Results For The Isothermal Problem With Those Computed in Parallel

Calculation Exercise							
Time	(years)	Vertical Closure	Midpillar Horizontal				
		(meters)	Displacement (meters)				
1.0	Parallel Calculation	0.06 to 0.09	-0.03 to -0.05				
	Exercise Range						
	SANTOS Value	0.060	-0.030				
5.0	Parallel Calculation	0.18 to 0.20	-0.11 to -0.13				
	Exercise Range						
	SANTOS Value	0.173	-0.103				
10.0	Parallel Calculation	0.28 to 0.35	-0.19 to -0.23				
	Exercise Range						
	SANTOS Value	0.285	-0.181				

6.21 Test Case 21: Heated WIPP Parallel Calculation

6.21.1 Test Objective

This test is another of the tests analyzed in the Parallel Calculation exercise and is the heated room companion to Test Case 20. Once again it models a repository horizon that consists of a long series of parallel drifts. It considers large displacements, large strains, and power law creep for a heated drift configuration in a complicated stratigraphy. This problem was originally chosen [28] because it was representative of a drift configuration at the WIPP in which experiments with higher heat loads were to be performed to provide data for the commercial waste program that was at one time considering storing high-level waste in salt. This heated drift was considered to be representative of a typical room in an infinite array of rooms subjected to a thermal load of 18 W/m². This thermal load corresponded to the heat load applied to the central room of a three-room array that comprises a large-scale experiment at the WIPP [30]. It is included here because it is again one of four WIPP qualification problems traditionally used to assess a code's adequacy for performing salt repository analyses.

6.21.2 Test Procedure

Two separate two-dimensional models were used for the heated Parallel Calculation: a thermal model and a structural model. Only one-way coupling between the thermal and structural

responses was considered, i.e., the thermal response was assumed to be unaffected by the structural deformations. The thermal model was used to compute temperatures in the configuration around the opening for the 5-year simulation period. The finite element code COYOTE II [25] was used for this calculation. The temperatures were then used as input to SANTOS so that thermal expansion and creep property changes induced by changes in temperature could be included in the structural response. Because high temperature and stress gradients occur in different regions, the thermal and structural calculations required mesh refinement in different areas. Thus, the thermal and structural finite element meshes used for the heated Parallel Calculation were different, and nodal temperatures computed in the COYOTE II calculation had to be interpolated to the nodes of the structural mesh. The interpolation code MERLIN II [26] was used to perform this task.

As was the case for the isothermal problem, the geometry for the heated configuration allows us to use a vertical plane of symmetry passing through the center of a drift and a symmetry plane between drifts to produce an equivalent single drift plane strain model. The problem definition and stratigraphy are shown in Figure 6.21.1. The upper and lower boundaries are approximately 50 m above and below the drift, respectively. These distances were chosen so that the room response would not be affected by the boundary conditions. The room is square in cross-section, with a height and width of 5.50 m. The horizontal extent from the center of the drift to the symmetry plane between drifts is 11.75 m. The room is infinitely long in the out-of-plane direction. The floor is located 1.08 m below Clay G in the same stratigraphy as was used in the isothermal calculation. The room was subjected to thermal loading provided by heaters placed beneath the floor, as shown in the figure, and spaced at regular intervals in the out-of-plane direction. These discrete heaters were approximated, in the calculation, as a continuous heat source in the out-of-plane direction.

Figure 6.21.1 Parallel Calculation – Heated Drift Configuration [29]

Thermal Model

In the thermal model, all boundaries were assumed to be adiabatic, and the entire formation was prescribed to have an initial temperature of 300 K. The configuration remained at this temperature for the first six months of the simulation, during which isothermal creep closure was taking place. Then heating of the salt began. The heaters were modeled as a volumetric heat source with a thirty-year half-life. The source was prescribed to be 2.316 m long and 0.61 m in diameter, with its center positioned 5.41 m below Clay G and 1.145 m from the left symmetry plane, as shown in Figure 6.21.1. Each heater was prescribed to have an output of 0.47 kW, and spacing between the heaters in the out-of-plane direction was defined to be 2.29 m. Using this information, the equivalent uniformly distributed heat flux to be used in the planar calculation could be computed. The resulting flux was of the form:

$$q = 145.3 \exp(-7.327 \times 10^{-10}t)$$
 (EQ 21.1)

where q is the heat flux in W/m³ and t is the time in seconds. The thermal response was computed for the 4.5 year period following the initial six month unheated period. In the thermal calculation, the thermal properties of all stratigraphic materials were assumed to be the same as those for halite. This assumption, which simplified the meshing for the thermal calculation, was appropriate because previous calculations have shown that thermal responses computed with an all-salt stratigraphy and with a layered stratigraphy are essentially the same [27]. Only heat transfer by conduction was considered, and the salt was prescribed to have a nonlinear thermal conductivity of the form:

$$k = \lambda \left(\frac{300}{\theta}\right)^{\gamma}$$
 (EQ 21.2)

where k is the conductivity, θ is the absolute temperature in Kelvin, and λ_0 and γ are material constants. The room area was assumed to consist of an "equivalent thermal material" with a conductivity that allows radiation heat transfer in the room to be simulated by conduction. Thus, thermal radiation between the surfaces of the drift was simulated by an artificial thermal "material" in the drift with an "equivalent conductance." This "material" provided no structural support and, in fact, was used only in the thermal model but not in the structural model. The thermal finite element mesh used for the analysis is shown in Figure 21.2, and consists of four-node, isoparametric, quadrilateral elements. The mesh contains 774 elements and 836 nodal points. The thermal properties of halite and the "equivalent thermal material," which were used in this calculation, are presented in Table 6.21.1.

Structural Model

In the structural model, boundary conditions were such that horizontal displacements were specified to be zero along the vertical boundaries, as shown in Figure 6.21.1. A pressure of 13.57 MPa, which represents the weight of the overlying rock, is applied to the top boundary. An average overburden density of 2320 kg/m³ and a gravitational acceleration of 9.79 m/s² were

used to determine this pressure. An average density of 2300 kg/m³ was used for all stratigraphic layers to compute the pressure of 15.95 MPa applied at the bottom boundary. Body forces representing the weight of the rock were also applied, as was an initial lithostatic stress state that varied linearly with depth. The overburden density and average configuration density defined above were used to compute the initial stress state. Although the loads were specified such that the drift configuration was in static equilibrium, vertical constraints were needed to preclude rigid body motion. Thus, the top anhydrite layer was fixed along the edge at the pillar centerline, as indicated on the figure. In the out-of-plane direction, the room was considered to be infinitely long so that a plane strain condition could be assumed. The surfaces of the room were traction-free, and the room was assumed to appear instantaneously at time zero.

Figure 6.21.2 Thermal Mesh Used For Heated Parallel Calculation

Table 6.21.1 Material Properties Used for Heated Parallel						
Calculation - Thermal Analysis						

Material	Density, p, Kg/m ³	Specific Heat, C _p , J/(kg-K)	Thermal Conduct, Parameter λ_0 , W/(m-K)	Thermal Conduct Parameter γ
Halite	2300	860	5.0	1.14
"Equiv. Thermal Material"	1.000	1000	50.0	0.00

The entire stratigraphy was used in the structural model and was comprised of five different geologic materials: halite, argillaceous halite, anhydrite, polyhalite, and clay seams. The layers identified as halite and argillaceous halite were modeled using an elastic-secondary creep model of the form:

$$\dot{\varepsilon} = D\sigma^n e^{\frac{Q}{RT}} , \qquad (EQ 21.3)$$

where $\dot{\varepsilon}$ is the effective creep strain rate and σ is the effective stress ($\sigma = \sqrt{\frac{3}{2}\sigma'_{ij}\sigma'_{ij}}$), with the

variables, σ_{ij} and σ'_{ij} , being the components of the stress tensor and the deviatoric stress tensor, respectively. The parameters D and n are material constants determined from creep data analysis. T is the temperature in degrees Kelvin, Q is the activation energy in cal/mole, and R is the universal gas constant (1.987 cal/mole-K). The mechanical material properties of halite and argillaceous halite used for this analysis are given in Table 6.21.2.

The anhydrite and polyhalite layers were assumed this time to have elastic volumetric behavior and elastic-plastic deviatoric behavior (instead of as isotropic and elastic materials in the isothermal calculation). The deviatoric yield stress was a function of the mean stress with the pressure dependence defined by the Drucker-Prager yield criterion:

$$\sqrt{J_2'} = C - aJ_1$$
, (EQ 21.4)

where J'_2 is the second invariant of the deviatoric stress ($\sqrt{J'_2} = \sigma/\sqrt{3}$), J_1 is the first stress invariant ($J_1 = \sigma_{ii}$), and C and a are constants. The mechanical material properties of anhydrite and polyhalite used for this analysis are given in Table 6.21.3

Table 6.21.2 Material Properties for Halite and Arg. Halite Used in Heated Parallel Calculation – Structural Analysis

Material	Young's Modulus (Pa)	Poisson's Ratio	D (Pa ^{-4.9} sec ⁻¹)	N	Q (kcal/mole)	Coeff. Of Linear Thermal Exp., α , K^{-1}
Halite	3.10E+10	0.25	5.79E-36	4.9	12.0	45.0E-6
Argillaceous Halite	3.10E+10	0.25	1.74E-35	4.9	12.0	40.0E-6

Table 6.21.3 Material Properties for Anhydrite and Polyhalite Used

In Heated Parallel Calculation – Structural Analysis

Material	Young's Modulus (Pa)	Poisson's Ratio	C Mpa	a	Coeff. Of Linear Thermal Exp., α, K ⁻¹
Anhydrite	7.51E1+0	0.35	1.35	0.450	20.0E-6
Polyhalite	5.53 ^E +10	0.36	1.42	0.473	24.0E-6

The clay seams in the stratigraphy are very thin layers between layers of more competent rock. Structurally, these seams represent interfaces where the more competent layers can slip with respect to each other. A dry friction model, with a coefficient of friction, μ =0.4, was specified

for describing clay seam behavior. Of the 12 clay seams shown in the figure, only Clays D through L were modeled.

6.21.3 Input/Output

Test Discretization

The finite element mesh used in this analysis is shown in Figure 21.5. Also shown on the figure are the applied boundary conditions. The mesh contains 1,675 nodes and 1,396 elements. The grading of the mesh, in general, is such that finer elements occur near the room where the stress gradients will be higher. In some of the layers, however, the gradation in the vertical direction was dictated by the locations of the layer boundaries

Input Data

A complete listing of the input data file that was used for the Parallel Calculation heated problem is given in APPENDIX U. Also included in this appendix is a listing of the FORTRAN subroutine "INITST" used to compute the initial stresses in the configuration.

Output Listing

The SANTOS printed output for the Parallel Calculation heated test is also provided as a section in APPENDIX U.

6.21.4 Acceptance Criteria (In Lieu of Analytic Solution)

The nonlinear nature of repository calculations makes it difficult to demonstrate that the codes being used for performing the design and evaluation of these facilities are accurate, because the exact solution for a long term repository calculation of this type does not exist. Consequently, the WIPP project has determined that benchmarking against other codes is an acceptable first step in demonstrating the adequacy of a code for performing these types of analyses. Figure 6.21.3 and Figure 6.21.4 show some results from a previous benchmark exercise [29] that used three structural codes to solve the heated problem described herein. The results from that benchmark study for vertical closure and pillar midheight horizontal displacement are provided for comparison to the results from the present analysis.

Figure 6.21.3 Vertical Closure History Results from Parallel Calculation Exercise – Heated Drift [29]

Figure 6.21.4 Midpillar Horizontal Displacement History Results from Parallel Calculation Exercise – Heated Drift [29]

6.21.5 Evaluation

Figure 6.21.6 and Figure 6.21.7 show the SANTOS vertical closure and pillar midheight displacement history results, respectively, along with two digitized curves from the Parallel Calculation exercise to allow the reader to see where the SANTOS results fall within the Parallel

Calculation range. A comparison of the SANTOS results with the entire range of results predicted in the Parallel Calculation exercise is given in Table 6.21.4 or times of 1 year, 3 years, and 5 years. The table shows that in all cases, the SANTOS results fall very close to the lower end of the Parallel Calculation exercise ranges, indicating that SANTOS gives comparable results for the heated drift problem.

Figure 6.21.5 SANTOS Mesh Used For Heated Parallel Calculation

Figure 6.21.6 Vertical Closure History Computed With SANTOS for Parallel Calculation Heated Test

Figure 6.21.7 Midpillar Horizontal Displacement History Computed With SANTOS for Parallel Calculation Heated Test

Table 6.21.4 Comparison of SANTOS Results For The Heated Problem With Those Computed In Parallel Calculation Exercise

Tim	e (years)	Vertical Closure (meters)	Midpillar Horizontal Displacement (meters)
1.0	Parallel Calculation Exercise Range	0.11 to 0.13	-0.06 to -0.07
	SANTOS Value	0.107	-0.053
3.0	Parallel Calculation Exercise Range	0.45 to 0.55	-0.25 to -0.31
	SANTOS Value	0.435	-0.236
5.0	Parallel Calculation Exercise Range	0.95 to 1.25	-0.52 to -0.71
	SANTOS Value	0.909	-0.509

7.0 INSTALLATION AND REGRESSION TESTING

Test Cases 1-21 are suitable for installation and regression testing.

8.0 REFERENCES

- 1. Stone, C. M., SANTOS A Two-Dimensional Finite Element Program for the Quasistatic, Large Deformation, Inelastic Response of Solids, SAND90-0543, Sandia National Laboratories, Albuquerque, New Mexico, 1995.
- 2. L. M. Taylor and D. P. Flanagan, *PRONTO 2D A Two-Dimensional Transient Solid Dynamic Program*, SAND86-0594, Sandia National Laboratories, Albuquerque, New Mexico, March 1987.
- 3. T. D. Blacker, <u>FASTQ User's Manual, Version 2.1</u>, SAND88-1326, Sandia National Laboratories, Albuquerque, New Mexico, July 1988.
- 4. D. K. Gartling and R. E. Hogan, <u>COYOTE II A Finite Element Computer Program for Nonlinear Heat Conduction Problems</u>, SAND94-1179, Sandia National Laboratories, Albuquerque, New Mexico, October 1994.
- 5. D. K. Gartling, <u>MERLIN II A Computer Program to Transfer Solution Data Between Finite Element Meshes</u>, SAND89-2989, Sandia National Laboratories, Albuquerque, New Mexico, July 1991.
- 6. Memo, B.M. Butcher to J. T. Holmes, "Supplemental QA Documentation for SANTOS Version 2.0.0," March 22, 1996.
- 7. G. D. Sjaardema, <u>Overview of the SANDIA National Laboratories Analysis Code Access System</u>, SAND92-2292, Sandia National Laboratories, Albuquerque, New Mexico, August 1994.
- 8. Fung, Y. C., Foundations of Solid Mechanics, Prentice-Hall, 1965.
- 9. Young, W. C., Roark's Formulas for Stress & Strain, 6th ed., McGraw-Hill, 1989, pp100.
- 10. Resnick, R., and D. Halliday, Physics Part I, John Wiley & Sons, Inc., NY, 1966
- 11. Timoshenko, S., Strength of Materials, Part II, Advanced Theory and Problems, Van Norstrand Reinhold Company, 1958, pp. 214-215.
- 12. Holden, J. T., "On the Finite Deflections of Thin Beams," *International Journal of Solids and Structures*," vol. 8, pp. 1051-1055, 1972.

- 13. Biffle, J. H. and M. L. Blanford, JAC2D-A Two-Dimensional Finite Element Computer Program for the Nonlinear Quasi-Static Response of Solids with the Conjugate Gradient Method, SAND93-1891, Sandia National Laboratories, Albuquerque, NM, May, 1994.
- 14. Mendelson, A., *PLASTICITY: Theory and Application*, Macmillan Co., NY, 1968.
- 15. Stone, C. M., R. D. Krieg, and Z. E. Beisinger, SANCHO A Finite Element Computer Program for the Quasistatic, Large Deformation, Inelastic Response of Two-Dimensional Solids, SAND84-2618, Sandia National Laboratories, Albuquerque, New Mexico, April 1985.
- 16. Stone, C. M. and L. S. Costin, *A Linear Viscoelastic Material Model for SANCHO*, SAND85-1836, Sandia National Laboratories, Albuquerque, New Mexico., October,1985.
- 17. Lee, E. H., J. R. M. Radock, and W. B. Woodward,"Stress Analysis for Linear Viscoelastic Materials," *Transactions of the Society of Rheology*, III, 1959, pp. 41-59.
- 18. Munson, D. E., A. F. Fossum, and P. E. Senseny, Advances in Resolution of Discrepancies Between Predicted and Measured In Situ WIPP Room Closures, SAND88-2948, Sandia National Laboratories, Albuquerque, New Mexico, February 1989.
- 19. Callahan, G. D., A. F. Fossum, and D. K. Svalstad, *Documentation of SPECTROM 32: A Finite Element Thermomechanical Stress Analysis Program*, RSI-0269, RE/SPEC Inc., Rapid City, South Dakota, 1986.
- 20. Munson, D. E., K. L. De Vries, D. M. Schiermeister, W. F. De Yonge, and R. L. Jones, "Measured and Calculated Closures of Open and Brine Filled Shafts and Deep Vertical Boreholes in Salt," *Proceedings of the 33rd U. S. Symposium on Rock Mechanics*, Tillerson & Wawersik (eds), Balkema, Rotterdam, 1992
- 21. Lippmann, H., Metal Forming Plasticity, Springer Verlag, Berlin, 1979
- 22. Taylor, L. M., A Finite Element Analysis for Large Deformation Metal Forming Problems Involving Contact and Friction, Ph.D. Thesis, University of Texas at Austin, 1981.
- Krieg, R. D., H. S. Morgan, and T. O. Hunter, *Second Benchmark Problem for WIPP Structural Computations*, SAND80–1331, Sandia National Laboratories, Albuquerque, New Mexico, December 1980.
- 24. Morgan, H. S., R. D. Krieg, and R. V. Matalucci, *Comparative Analysis of Nine Structural Codes Used in the Second WIPP Benchmark Problem*, SAND81–1389, Sandia National Laboratories, Albuquerque, New Mexico, November 1981.

- 25. Gartling, D. K. and R. E. Hogan, COYOTE II A Finite Element Computer Program for Nonlinear Heat Conduction Problems, SAND94–1179, Sandia National Laboratories, Albuquerque, New Mexico, October 1994.
- 26. Gartling, D. K., MERLIN II A Computer Program to Transfer Solution Data Between Finite Element Meshes, SAND89–2989, Sandia National Laboratories, Albuquerque, New Mexico, July 1991
- 27. Stone, C. M., "Analyses of the Heated WIPP In-Situ Experiments," Memo to D. E. Munson, Sandia National Laboratories, Albuquerque, New Mexico, February 16, 1983.
- 28. Munson, D. E. and H. S. Morgan, Methodology for Performing Parallel Design Calculations (Nuclear Waste Repository Application), SAND85-0324, Sandia National Laboratories, Albuquerque, New Mexico, May 1986.
- 29. Morgan, H. S., M. Wallner, and D. E. Munson, Results of an International Parallel Calculations Exercise Comparing Creep Responses Predicted With Three Computer Codes for Two Excavations in Rock Salt, SAND87–2125, Sandia National Laboratories, Albuquerque, New Mexico, November 1987.
- 30. Munson, D. E., *Test Plan: 12-W/m*² Mockup for Defense High-Level Waste (DHLW), Sandia National Laboratories, Albuquerque, New Mexico, June 1983.

APPENDIX A

Input/Output Data For Test Case 1

The following two sections present the input data and the formatted output for the single-element large rotation test case.

FASTQ and SANTOS Input Data For The Large Rotation Problem

This section presents a listing of the FASTQ and SANTOS input data files that were used for the mesh generation and analysis of the large rotation problem.

```
sant_onerot.fsq
TITLE
 ONE ELEMENT ROTATION PROBLEM - SANTOS QA TEST PROBLEM - 10/21/94
POINT
             0.
                      1.
POINT
       2
             1.
                      1.
             1.
POINT
       3
                      0.
            Ο.
POINT
       4
                      Ο.
       1 STR 1 2
                          0
                                 1.0
LINE
       2 STR 2 3 0
                            1 1.0
LINE
     3 STR 3 4 0 1 1.0
LINE
     4 STR 4 1 0 1 1.0
LINE
POINBC 4
POINBC 3
           3
ELEMBC 5
          1
SCHEME 0 MP
REGION 1 1 -1 -2 -3 -4
EXIT
sant_onerot.i
TITLE
 SANTOS QA PROBLEM - ONE ELEMENT ROTATION - 10/21/94
PLANE STRAIN
MAXIMUM ITERATIONS 400
RESIDUAL TOLERANCE .01
INITIAL STRESS, CONSTANT, 0., -10000., 0., 0.
MATERIAL, 1, ELASTIC, 1.
YOUNGS MODULUS 1.0E06
POISSONS RATIO 0.
END
FUNCTION, 2
 0.0000000, 0.0000000
 0.4000000, 0.0123117
0.8000000, 0.0489436
 1.2000000, 0.1089938
 1.6000000, 0.1909835
 2.0000000, 0.2928941
 2.4000000, 0.4122159
 2.8000000, 0.5460110
 3.6000000, 0.8435554
 4.0000000, 0.9999833
```



```
END
FUNCTION, 3
 0.0000000, 0.0000000
 0.4000000, 0.1564346
 0.8000000, 0.3090174
 1.2000000, 0.4539911
 1.6000000, 0.5877860
 2.0000000, 0.7071076
 2.4000000, 0.8090178
 2.8000000, 0.8910072
 3.2000000, 0.9510553
 3.6000000, 0.9876868
 4.0000000, 1.0000000
END
FUNCTION, 4
  0. 10000.
  4. 10000.
STEP CONTROL
 10 4.
END
PLOT TIME
 14.
END
OUTPUT TIME
 14.
END
PRESCRIBED DISPLACEMENT X 4 2 1.
PRESCRIBED DISPLACEMENT Y 4 3 1.
NO DISPLACEMENT X 3
NO DISPLACEMENT Y 3
PRESSURE 5 4 1.
EXIT
```

SANTOS Output For The Large Rotation Problem

The following section presents a portion of the SANTOS printed output for the single-element large rotation analysis. Because all pertinent information and results from the analysis are written to the plot file for post-processing, the printed output file simply echoes input data and problem—descriptive information at the beginning, followed by information that tracks the convergence behavior of the solution, and a summary of CPU usage at the end. For this reason, only a partial listing, consisting of approximately the first 500 lines of output and the last 100 lines of output, is provided.

sant_onerot.o

SSSSSS	AAA	AAA	N	NN	TTTTTT	000	000	SSSSSS
SS	AA	AA	NN	NN	TT	00	00	SS
SS	AA	AA	NNN	NN	${f TT}$	00	00	SS
SSSSS	AAAA	AAA	NN N	J NN	\mathtt{TT}	00	00	SSSSS
SS	AA	AA	NN	NNN	$ extbf{T}$ T	00	00	SS
SS	AA	AA	NN	NN	${f TT}$	00	00	SS
SSSSSS	AA	AA	NN	N	\mathtt{TT}	000	000	SSSSS

VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE ENGINEERING SCIENCES CENTER SANDIA NATIONAL LABORATORIES ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030610 AT 11:38:47 RUN ON A i686 UNDER Lx2.4.20

```
1: TITLE
      SANTOS QA PROBLEM - ONE ELEMENT ROTATION - 10/21/94
 3: PLANE STRAIN
 4: MAXIMUM ITERATIONS 600
 5: RESIDUAL TOLERANCE .01
 6: INITIAL STRESS, CONSTANT, 0., -10000., 0., 0.
 7: MATERIAL, 1, ELASTIC, 1.
 8: YOUNGS MODULUS 1.0E06
 9: POISSONS RATIO 0.
10: END
11: FUNCTION, 2
12: 0.0000000, 0.0000000
13: 0.4000000, 0.0123117
14: 0.8000000, 0.0489436
15: 1.2000000, 0.1089938
16: 1.6000000, 0.1909835
17:
     2.0000000, 0.2928941
18: 2.4000000, 0.4122159
19: 2.8000000, 0.5460110
20: 3.6000000, 0.8435554
21: 4.0000000, 0.9999833
22: END
23: FUNCTION, 3
24: 0.0000000, 0.0000000
25: 0.4000000, 0.1564346
26: 0.8000000, 0.3090174
27: 1.2000000, 0.4539911
28: 1.6000000, 0.5877860
29: 2.0000000, 0.7071076
30: 2.4000000, 0.8090178
31:
     2.8000000, 0.8910072
32: 3.2000000, 0.9510553
33: 3.6000000, 0.9876868
34: 4.0000000, 1.0000000
35: END
36: FUNCTION, 4
37:
      0. 10000.
38:
      4. 10000.
39: STEP CONTROL
40:
     10 4.
41: END
42: PLOT TIME
43: 14.
```

June 2003 Page 124

```
44 END
 45: OUTPUT TIME
 46: 14.
 47: END
 48: PRESCRIBED DISPLACEMENT X 4 2 1.
 49: PRESCRIBED DISPLACEMENT Y 4 3 1.
 50: NO DISPLACEMENT X 3
 51: NO DISPLACEMENT Y 3
 52: PRESSURE 5 4 1.
 53: EXIT
                                   INPUT STREAM IMAGES
LINE -----
 56: SANTOS QA PROBLEM - ONE ELEMENT ROTATION - 10/21/94
 57: PLANE STRAIN
 58: MAXIMUM ITERATIONS 600
 59: RESIDUAL TOLERANCE .01
 60: INITIAL STRESS, CONSTANT, 0., -10000., 0., 0.
 61: MATERIAL, 1, ELASTIC, 1.
 62: YOUNGS MODULUS 1.0E06
 63: POISSONS RATIO 0.
 64: END
 65: FUNCTION, 2
 66: 0.0000000, 0.0000000
 67: 0.4000000, 0.0123117
 68: 0.8000000, 0.0489436
 69: 1.2000000, 0.1089938
 70: 1.6000000, 0.1909835
71: 2.0000000, 0.2928941
72: 2.4000000, 0.4122159
73: 2.8000000, 0.5460110
 74: 3.6000000, 0.8435554
 75: 4.0000000, 0.9999833
 76: END
 77: FUNCTION, 3
 78: 0.0000000, 0.0000000
 79: 0.4000000, 0.1564346
 80: 0.8000000, 0.3090174
 81: 1.2000000, 0.4539911
 82: 1.6000000, 0.5877860
 83: 2.0000000, 0.7071076
 84: 2.4000000, 0.8090178
 85: 2.8000000, 0.8910072
 86: 3.2000000, 0.9510553
 87: 3.6000000, 0.9876868
88: 4.0000000, 1.0000000
 89: END
 90: FUNCTION, 4
91: 0. 10000.
92:
     4. 10000.
93: STEP CONTROL
     10 4.
 95: END
 96: PLOT TIME
 97: 1 4.
98: END
99: OUTPUT TIME
100: 1 4.
```

101: END 102: PRESCRIBED DISPLACEMENT X 4 2 1. 103: PRESCRIBED DISPLACEMENT Y 4 3 1. 104: NO DISPLACEMENT X 3 105: NO DISPLACEMENT Y 3 106: PRESSURE 5 4 1. 107: EXIT

PROBLEM TITLE

SANTOS QA PROBLEM - ONE ELEMENT ROTATION - 10/21/94

PROBLEM DEFINITION

NUMBER OF ELEMENTS	1
NUMBER OF NODES	4
NUMBER OF MATERIALS	1
NUMBER OF FUNCTIONS	3
NUMBER OF CONTACT SURFACES	0
NUMBER OF RIGID SURFACES	0
NUMBER OF MATERIAL POINTS MONITORED	0
ANALYSIS TYPE	PLANE STRAIN
GLOBAL CONVERGENCE MEASURE	
RESIDUAL TOLERANCE	1.000E-02
MAXIMUM NUMBER OF ITERATIONS	600
ITERATIONS FOR INTERMEDIATE PRINT	8
MAXIMUM RESIDUAL TOLERANCE	6.000E-01
PREDICTOR SCALE FACTOR FUNCTION	0
MINIMUM DAMPING FACTOR	2.000E-01
EFFECTIVE MODULUS STATUS	CONSTANT
INITIAL STRESS DISTRIBUTION APPLIED	
SCALE FACTOR APPLIED TO TIME STEP	1.000E+00
STRAIN SOFTENING SCALE FACTOR	1.000E+00
HOURGLASS STIFFNESS FACTOR	5.000E-02
HOURGLASS VISCOSITY FACTOR	0.000E+00

LOAD STEP DEFINITIONS

TIME NO. OF STEPS TIME 4.000E+00 0.000E+00 10

PRINTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PRINTS TIME 1 , 0.000E+00 4.000E+00

PLOTTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PLOTS TIME 0.000E+00 1 4.000E+00

MATERIAL DEFINITIONS

FUNCTION DEFINITIONS

FUNCTION ID NUMBER OF POINTS N S F(S) 0.000E+00 0.000E+00 1 4.000E-01 1.231E-02 2 3 8.000E-01 4.894E-02 1.200E+00 1.090E-01 1.600E+00 1.910E-01 5 2.000E+00 2.929E-01 · 7 2.400E+00 4.122E-01 8 2.800E+00 5.460E-01 9 3.600E+00 8.436E-01 10 4.000E+00 1.000E+00 FUNCTION ID 3 NUMBER OF POINTS 11 N S F(S)0.000E+00 0.000E+00 1.564E-01 2 4.000E-01 3 8.000E-01 3.090E-01 1.200E+00 4.540E-01 1.600E+00 5.878E-01 7.071E-01 6 2.000E+00 7 2.400E+00 8.090E-01 8 2.800E+00 8.910E-01 9 3.200E+00 9.511E-01 10 3.600E+00 9.877E-01 11 4.000E+00 1.000E+00

FUNCTION ID 4 NUMBER OF POINTS 2

N S F(S) 1 0.000E+00 1.000E+04 2 4.000E+00 1.000E+04

NO DISPLACEMENT BOUNDARY CONDITIONS

NODE SET FLAG DIRECTION
3 X
Y

PRESCRIBED DISPLACEMENT BOUNDARY CONDITIONS

NODE SET	DIRECTION	FUNCTION	SCALE	A0	в0
FLAG		ID	FACTOR		
4	X	2	1.000E+00	-	-
4	Y	3	1.000E+00	_	· -

PRESSURE BOUNDARY CONDTIONS

SURFACE FUNCTION SCALE
FLAG NUMBER FACTOR
5 4 1.000E+00

E N D O F D A T A I N P U T P H A S E 3.000E-02 CPU SECONDS USED 270 WORDS ALLOCATED

E N D O F D A T A I N I T I A L I Z A T I O N P H A S E 0.000E+00 CPU SECONDS USED 13188 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

NODAL	ELEMENT	GLOBAL
-		
DISPLX	SIGXX	FX
DISPLY	SIGYY	FY
	SIGZZ	RX
	TAUXY	RY
		ITER
		RMAG

**** PLOT TAPE WRITTEN FOR THE INITIAL STATE AT TIME = 0.000E+00 ****

STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
8	4.000E-01	3.993E-01	8.001E-01	7.057E+03	5.080E+04	719.87	8
16	4.000E-01	4.000E-01	8.000E-01	6.973E+03	1.094E+04	156.83	16
24	4.000E-01	4.000E-01	8.016E-01	7.039E+03	9.640E+03	136.96	24
32	4.000E-01	4.000E-01	8.000E-01	7.142E+03	6.977E+03	97.69	32
40	4.000E-01	4.000E-01	8.141E-01	7.118E+03	7.293E+03	102.46	40
48	4.000E-01	4.000E-01	8.016E-01	6.989E+03	6.703E+03	95.91	48
56	4.000E-01	4.000E-01	9.000E-01	7.047E+03	5.483E+03	77.81	56
64	4.000E-01	4.000E-01	8.004E-01	7.139E+03	5.001E+03	70.05	64
72	4.000E-01	4.000E-01	9.000E-01	7.082E+03	4.086E+03	57.70	72
80	4.000E-01	4.000E-01	8.004E-01	7.019E+03	3.728E+03	53.10	80
88	4.000E-01	4.000E-01	8.000E-01	7.071E+03	3.055E+03	43.20	88
96	4.000E-01	4.000E-01	8.250E-01	7.110E+03	2.784E+03	39.15	96
104	4.000E-01	4.000E-01	8.001E-01	7.066E+03	2.270E+03	32.13	104
112	4.000E-01	4.000E-01	8.000E-01	7.046E+03	1.811E+03	25.70	112
120	4.000E-01	4.000E-01	8.008E-01	7.079E+03	1.684E+03	23.79	120
128	4.000E-01	4.000E-01	8.000E-01	7.089E+03	1.355E+03	19.11	128
136	4.000E-01	4.000E-01	8.063E-01	7.063E+03	1.244E+03	17.61	136
144	4.000E-01	4.000E-01	8.000E-01	7.059E+03	1.015E+03	14.38	144
152	4.000E-01	4.000E-01	.8.500E-01	7.079E+03	8.858E+02	12.51	152
160	4.000E-01	4.000E-01	8.002E-01	7.079E+03	7.605E+02	10.74	160
168	4.000E-01	4.000E-01	8.000E-01	7.065E+03	6.234E+02	8.82	168
176	4.000E-01	4.000E-01	8.016E-01	7.066E+03	5.675E+02	8.03	176
184	4.000E-01	4.000E-01	8.000E-01	7.076E+03	4.640E+02	6.56	184
192	4.000E-01	4.000E-01	8.125E-01	7.074E+03	4.168E+02	5.89	192
200	4.000E-01	4.000E-01	8.000E-01	7.067E+03	3.460E+02	4.90	200
208	4.000E-01	4.000E-01	9.000E-01	7.070E+03	2.811E+02	3.98	208
216	4.000E-01	4.000E-01	8.004E-01	7.075E+03	2.588E+02	3.66	216
224	4.000E-01	4.000E-01	8.000E-01	7.072E+03	2.106E+02	2.98	224
232	4.000E-01	4.000E-01	8.031E-01	7.068E+03	1.942E+02	2.75	232
240	4.000E-01	4.000E-01	8.000E-01	7.071E+03	1.574E+02	2.23	240
248	4.000E-01	4.000E-01	8.250E-01	7.073E+03	1.441E+02	2.04	248
256	4.000E-01	4.000E-01	8.001E-01	7.071E+03	1.173E+02	1.66	256
264	4.000E-01	4.000E-01	8.000E-01	7.070E+03	9.366E+01	1.32	264
272	4.000E-01	4.000E-01	8.008E-01	7.071E+03	8.714E+01	1.23	272
280	4.000E-01	4.000E-01	8.000E-01	7.072E+03	7.006E+01	0.99	280
288	4.000E-01	4.000E-01	8.063E-01	7.071E+03	6.434E+01	0.91	288
296	4.000E-01	4.000E-01	8.000E-01	7.070E+03	5.248E+01	0.74	296
304	4.000E-01	4.000E-01	8.000E-01	7.071E+03	4.334E+01	0.61	304
312	4.000E-01	4.000E-01	8.063E-01	7.071E+03	3.818E+01	0.54	312
320	4.000E-01	4.000E-01	8.000E-01	7.071E+03	3.244E+01	0.46	320

,	uı	ıc	2	•	v
	p,	10	•	1 ′)

	328	4.000E-01	4.000E-01	8.500E-01	7.071E+03	2.740E+01	0.39	328
	336	4.000E-01	4.000E-01	8.002E-01	7.071E+03	2.412E+01	0.34	336
	344	4.000E-01	4.000E-01	8.000E-01	7.071E+03	1.935E+01	0.27	344
	352	4.000E-01	4.000E-01	8.016E-01	7.071E+03	1.784E+01	0.25	352
	360	4.000E-01	4.000E-01	8.000E-01	7.071E+03	1.455E+01	0.21	360
	368	4.000E-01	4.000E-01	8.125E-01	7.071E+03	1.298E+01	0.18	368
	376	4.000E-01	4.000E-01	8.000E-01	7.071E+03	1.095E+01	0.15	376
	384	4.000E-01	4.000E-01	9.000E-01	7.071E+03	8.697E+00	0.12	384
	392	4.000E-01	4.000E-01	8.004E-01	7.071E+03	8.261E+00	0.12	392
	400	4.000E-01	4.000E-01	8.000E-01	7.071E+03	6.464E+00	0.09	400
	408	4.000E-01	4.000E-01	8.031E-01	7.071E+03	6.237E+00	0.09	408
	416	4.000E-01	4.000E-01	8.000E-01	7.071E+03	4.806E+00	0.07	416
	424	4.000E-01	4.000E-01	8.250E-01	7.071E+03	4.640E+00	0.07	424
	432	4.000E-01	4.000E-01	8.001E-01	7.071E+03	3.574E+00	0.05	432
	440	4.000E-01	4.000E-01	8.000E-01	7.071E+03	3.018E+00	0.04	440
	448	4.000E-01	4.000E-01	8.008E-01	7.071E+03	2.658E+00	0.04	448
	456	4.000E-01	4.000E-01	8.000E-01	7.071E+03	2.253E+00	0.03	456
	464	4.000E-01	4.000E-01	8.063E-01	7.071E+03	1.972E+00	0.03	464
	472	4.000E-01	4.000E-01	8.000E-01	7.071E+03	1.679E+00	0.02	472
	480	4.000E-01	4.000E-01	8.000E-01	7.071E+03	1.332E+00	0.02	480
	488	4.000E-01	4.000E-01	8.000E-01	7.071E+03	1.097E+00	0.02	488
	496	4.000E-01	4.000E-01	8.016E-01	7.071E+03	9.990E-01	0.01	496
	504	4.000E-01	4.000E-01	8.000E-01	7.071E+03	8.154E-01	0.01	504
	512	4.000E-01	4.000E-01	8.125E-01	7.071E+03	7.337E-01	0.01	512
1	SA	NTOS, VERSI	ON 2.1.7-DP	, RUN ON 20	030610, AT	11:38:47		
	S	ANTOS QA PR	OBLEM - ONE	ELEMENT RO	TATION - 10	/21/94		
	***	*******	*****	******	*****	*****	*****	
	SUM	MARY OF DAT	A AT STEP N	JMBER 1	, TIME = 4 .	000E-01		
	NUM	BER OF ITER	ATIONS =	515, TO	TAL NUMBER	OF ITERATIONS	5 = 5	15
	FIN.	AL CONVERGE	NCE TOLERAN	CE = 9.755E	-03			
	SUM	OF EXTERNA	L FORCES IN	X-DIRECTIO	N = -1.564E +	03		
	SUM	OF EXTERNA	L FORCES IN	Y-DIRECTIO	N = -9.877E +	03		

**** PLOT TAPE WRITTEN AT TIME = 4.000E-01 STEP NUMBER 1 ****

SUM OF REACTION FORCES IN X-DIRECTION =-7.826E+02 SUM OF REACTION FORCES IN Y-DIRECTION =-4.939E+03

STEP	TIME	TIME	DAMPING FACTOR	APPLIED	RESIDUAL	PERCENT IMBALANCE	TOTAL STEPS
_		STEP					
8	8.000E-01	4.035E-01	8.008E-01	7.464E+03	4.567E+04	611.85	523
16	8.000E-01	4.037E-01	8.000E-01	7.089E+03	3.950E+04	557.24	531
24	8.000E-01	4.039E-01	9.250E-01	6.735E+03	2.959E+04	439.35	539
32	8.000E-01	4.041E-01	7.911E-01	7.019E+03	1.706E+04	243.01	547
40	8.000E-01	4.041E-01	8.000E-01	7.261E+03	1.408E+04	193.92	555
48	8.000E-01	4.041E-01	8.000E-01	7.100E+03	1.142E+04	160.81	563
56	8.000E-01	4.042E-01	8.250E-01	6.930E+03	1.040E+04	150.05	571
64	8.000E-01	4.042E-01	8.001E-01	7.074E+03	8.422E+03	119.05	579
72	8.000E-01	4.042E-01	8.000E-01	7.166E+03	6.726E+03	93.86	587
80	8.000E-01	4.042E-01	8.008E-01	7.057E+03	6.253E+03	88.60	595
88	8.000E-01	4.042E-01	8.000E-01	7.003E+03	5.016E+03	71.63	603
96	8.000E-01	4.042E-01	8.063E-01	7.094E+03	4.608E+03	64.95	611
104	8.000E-01	4.042E-01	8.000E-01	7.120E+03	3.746E+03	52.62	619

Page	13
1 ago	J

	_				-		
112	8.000E-01	4.042E-01	8.500E-01	7.048E+03	3.288E+03	46.65	627
120	8.000E-01	4.042E-01	8.002E-01	7.038E+03	2.801E+03	39.80	635
128	8.000E-01	4.042E-01	8.000E-01	7.090E+03	2.311E+03	32.60	643
136	8.000E-01	4.042E-01	8.016E-01	7.093E+03	2.088E+03	29.44	651
144	8.000E-01	4.042E-01	8.000E-01	7.054E+03	1.722E+03	24.41	659
152	8.000E-01	4.042E-01	8.125E-01	7.058E+03	1.532E+03	21.71	667
160	8.000E-01	4.042E-01	8.000E-01	7.086E+03	1.284E+03	18.12	675
168	8.000E-01	4.042E-01	9.000E-01	7.079E+03	1.033E+03	14.60	683
176	8.000E-01	4.042E-01	8.004E-01	7.059E+03	9.601E+02	13.60	691
184	8.000E-01	4.042E-01	8.000E-01	7.067E+03	7.743E+02	10.96	699
192	8.000E-01	4.042E-01	9.000E-01	7.079E+03	6.242E+02	8.82	707
200	8.000E-01	4.042E-01	8.004E-01	7.073E+03	5.879E+02	8.31	715
208	8.000E-01	4.042E-01	8.000E-01	7.065E+03	4.627E+02	6.55	723
216	8.000E-01	4.042E-01	8.031E-01	7.071E+03	4.445E+02	6.29	731
224	8.000E-01	4.042E-01	8.000E-01	7.076E+03	3.435E+02	4.86	739
232	8.000E-01	4.042E-01	8.250E-01	7.070E+03	3.311E+02	4.68	747
240	8.000E-01	4.042E-01	8.001E-01	7.068E+03	2.551E+02	3.61	755
248	8.000E-01	4.042E-01	8.000E-01	7.072E+03	2.155E+02	3.05	763
256	8.000E-01	4.042E-01	8.008E-01	7.074E+03	1.895E+02	2.68	771
264	8.000E-01	4.042E-01	8.000E-01	7.070E+03	1.611E+02	2.28	779
272	8.000E-01	4.042E-01	8.063E-01	7.069E+03	1.404E+02	1.99	787
280	8.000E-01	4.042E-01	8.000E-01	7.003E+03	1.202E+02	1.70	795
288	8.000E-01	4.042E-01	8.500E-01	7.072E+03	1.007E+02	1.42	803
296	8.000E-01	4.042E-01	8.002E-01	7.070E+03	8.943E+01	1.26	811
304	8.000E-01	4.042E-01	8.000E-01	7.070E+03	7.114E+01	1.01	819
312	8.000E-01	4.042E-01	8.016E-01	7.072E+03	6.618E+01	0.94	827
320	8.000E-01	4.042E-01	8.000E-01	7.071E+03	5.347E+01	0.76	835
328	8.000E-01	4.042E-01	8.125E-01	7.071E+03	4.817E+01	0.68	843
336	8.000E-01	4.042E-01	8.000E-01	7.071E+03	4.027E+01	0.57	851
344	8.000E-01	4.042E-01	9.000E-01	7.071E+03	3.225E+01	0.46	859
352	8.000E-01	4.042E-01	8.004E-01	7.071E+03	3.040E+01	0.43	867
360	8.000E-01	4.042E-01	8.000E-01	7.071E+03	2.395E+01	0.34	875
368	8.000E-01	4.042E-01	8.031E-01	7.071E+03	2.298E+01	0.33	883
376	8.000E-01	4.042E-01	8.000E-01	7.071E+03	1.778E+01	0.25	891
384	8.000E-01	4.042E-01	8.250E-01	7.071E+03	1.712E+01	0.24	899
392	8.000E-01	4.042E-01	8.001E-01	7.071E+03	1.320E+01	0.19	907
400	8.000E-01	4.042E-01	8.000E-01	7.071E+03	1.115E+01	0.16	915
408	8.000E-01	4.042E-01	8.008E-01	7.071E+03	9.799E+00	0.14	923
416	8.000E-01	4.042E-01	8.000E-01	7.071E+03	8.334E+00	0.12	931
424	8.000E-01	4.042E-01	8.000E-01	7.071E+03	6.546E+00	0.09	939
432	8.000E-01	4.042E-01	8.500E-01	7.071E+03	5.774E+00	0.08	947
440	8.000E-01	4.042E-01	8.002E-01	7.071E+03	4.924E+00	0.07	955
448	8.000E-01	4.042E-01	8.000E-01	7.071E+03	4.060E+00	0.06	963
456	8.000E-01	4.042E-01	8.016E-01	7.071E+03	3.673E+00	0.05	971
464	8.000E-01	4.042E-01	8.000E-01	7.071E+03	3.025E+00	0.04	979
472	8.000E-01	4.042E-01	8.125E-01	7.071E+03	2.696E+00	0.04	987
480	8.000E-01	4.042E-01	8.000E-01	7.071E+03	2.256E+00	0.03	995
488	8.000E-01	4.042E-01	9.000E-01	7.071E+03	1.819E+00	0.03	1003
496	8.000E-01	4.042E-01	8.004E-01	7.071E+03	1.687E+00	0.02	1011
504	8.000E-01	4.042E-01	8.000E-01	7.071E+03	1.363E+00	0.02	1019
512	8.000E-01	4.042E-01	8.031E-01	7.071E+03	1.265E+00	0.02	1027
520	8.000E-01	4.042E-01	8.000E-01	7.071E+03	1.020E+00	0.01	1035
528	8.000E-01	4.042E-01	8.250E-01	7.071E+03	9.374E-01	0.01	1043
536	8.000E-01	4.042E-01	8.001E-01	7.071E+03	7.608E-01	0.01	1051
		ON 2.1.7-DP					

SANTOS QA PROBLEM - ONE ELEMENT ROTATION - 10/21/94

**** PLOT TAPE WRITTEN AT TIME = 8.000E-01 STEP NUMBER 2 ****

STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
8	1.200E+00	4.075E-01	8.008E-01	7.728E+03	6.520E+04	843.74	1062
16	1.200E+00	4.079E-01	8.000E-01	7.238E+03	5.604E+04	774.21	1070
24	1.200E+00	4.087E-01	7.544E-01	6.786E+03	2.649E+04	390.40	1078
32	1.200E+00	4.089E-01	7.248E-01	6.968E+03	1.388E+04	199.23	1086
40	1.200E+00	4.089E-01	8.997E-01	7.202E+03	1.169E+04	162.36	1094
48	1.200E+00	4.089E-01	8.004E-01	7.141E+03	1.042E+04	145.91	1102
56	1.200E+00	4.090E-01	8.000E-01	6.971E+03	8.371E+03	120.08	1110
64	1.200E+00	4.090E-01	8.031E-01	7.038E+03	7.914E+03	112.45	1118
72	1.200E+00	4.090E-01	8.000E-01	7.154E+03	6.185E+03	86.46	1126
80	1.200E+00	4.090E-01	8.250E-01	7.086E+03	5.904E+03	83.31	1134
88	1.200E+00	4.090E-01	8.001E-01	7.008E+03	4.579E+03	65.33	1142
96	1.200E+00	4.090E-01	8.000E-01	7.068E+03	3.837E+03	54.29	1150
104	1.200E+00	4.090E-01	8.000E-01	7.114E+03	3.029E+03	42.58	1158
112	1.200E+00	4.090E-01	7.987E-01	7.075E+03	2.071E+03	29.28	1166
120	1.200E+00	4.090E-01	8.000E-01	7.049E+03	1.571E+03	22.29	1174
128	1.200E+00	4.090E-01	8.008E-01	7.072E+03	1.475E+03	20.86	1182
136	1.200E+00	4.090E-01	8.000E-01	7.088E+03	1.184E+03	16.71	1190
144	1.200E+00	4.090E-01	8.063E-01	7.068E+03	1.089E+03	15.41	1198
152	1.200E+00	4.090E-01	8.000E-01	7.059E+03	8.853E+02	12.54	1206
160	1.200E+00	4.090E-01	8.500E-01	7.075E+03	7.781E+02	11.00	1214
168	1.200E+00	4.090E-01	8.002E-01	7.080E+03	6.614E+02	9.34	1222
176	1.200E+00	4.090E-01	6.500E-01	7.070E+03	4.908E+02	6.94	1230
184	1.200E+00	4.090E-01	7.994E-01	7.067E+03	2.713E+02	3.84	1238
192	1.200E+00	4.090E-01	8.000E-01	7.072E+03	2.388E+02	3.38	1246
200	1.200E+00	4.090E-01	7.823E-01	7.073E+03	1.414E+02	2.00	1254
208	1.200E+00	4.090E-01	7.999E-01	7.071E+03	1.011E+02	1.43	1262
216	1.200E+00	4.090E-01	8.000E-01	7.070E+03	8.267E+01	1.17	1270
224	1.200E+00	4.090E-01	8.063E-01	7.071E+03	7.571E+01	1.07	1278
232	1.200E+00	4.090E-01	8.563E-01	7.072E+03	7.244E+01	1.02	1286
240	1.200E+00	4.090E-01	8.002E-01	7.071E+03	6.630E+01	0.94	1294
248	1.200E+00	4.090E-01	8.000E-01	7.070E+03	5.200E+01	0.74	1302
256	1.200E+00	4.090E-01	8.016E-01	7.071E+03	4.903E+01	0.69	1310
264	1.200E+00	4.090E-01	8.000E-01	7.071E+03	3.905E+01	0.55	1318
272	1.200E+00	4.090E-01	8.125E-01	7.071E+03	3.571E+01	0.51	1326
280	1.200E+00	4.090E-01	8.000E-01	7.071E+03	2.939E+01	0.42	1334
288	1.200E+00	4.090E-01	9.000E-01	7.071E+03	2.392E+01	0.34	1342
296	1.200E+00	4.090E-01	8.004E-01	7.071E+03	2.220E+01	0.31	1350
304	1.200E+00	4.090E-01	8.000E-01	7.071E+03	1.775E+01	0.25	1358
312	1.200E+00	4.090E-01	8.031E-01	7.071E+03	1.680E+01	0.24	1366
320	1.200E+00	4.090E-01	8.000E-01	7.071E+03	1.316E+01	0.19	1374
328	1.200E+00	4.090E-01	8.000E-01	7.071E+03	1.089E+01	0.15	1382

Page 132

0.09	1390
0.08	1398
0.07	1406
0.06	1414
0.05	1422
0.04	1430
0.04	1438
0.02	1446

1454

0.02

392 1.200E+00 4.090E-01 7.984E-01 7.071E+03 1.646E+00
400 1.200E+00 4.090E-01 7.995E-01 7.071E+03 1.153E+00
408 1.200E+00 4.090E-01 8.008E-01 7.071E+03 1.071E+00
416 1.200E+00 4.090E-01 8.070E-01 7.071E+03 1.067E+00 0.02 1462 0.02 1470 424 1.200E+00 4.090E-01 8.000E-01 7.071E+03 9.292E-01 0.01 1478 432 1.200E+00 4.090E-01 8.500E-01 7.071E+03 7.707E-01 1486 0.01 SANTOS, VERSION 2.1.7-DP, RUN ON 20030610, AT 11:38:47

SANTOS QA PROBLEM - ONE ELEMENT ROTATION - 10/21/94

SUMMARY OF DATA AT STEP NUMBER 3, TIME = 1.200E+00NUMBER OF ITERATIONS = 438, TOTAL NUMBER OF ITERATIONS =

FINAL CONVERGENCE TOLERANCE = 9.835E-03 SUM OF EXTERNAL FORCES IN X-DIRECTION =-4.540E+03

336 1.200E+00 4.090E-01 7.563E-01 7.071E+03 6.601E+00 344 1.200E+00 4.090E-01 7.998E-01 7.071E+03 5.743E+00

352 1.200E+00 4.090E-01 8.250E-01 7.071E+03 5.135E+00

360 1.200E+00 4.090E-01 8.001E-01 7.071E+03 4.180E+00

368 1.200E+00 4.090E-01 8.000E-01 7.071E+03 3.355E+00

376 1.200E+00 4.090E-01 8.008E-01 7.071E+03 3.108E+00

384 1.200E+00 4.090E-01 8.000E-01 7.071E+03 2.504E+00

SUM OF EXTERNAL FORCES IN Y-DIRECTION =-8.910E+03

SUM OF REACTION FORCES IN X-DIRECTION =-2.270E+03 SUM OF REACTION FORCES IN Y-DIRECTION =-4.455E+03

**** PLOT TAPE WRITTEN AT TIME = 1.200E+00 STEP NUMBER

STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
8	1.600E+00	4.148E-01	7.914E-01	7.396E+03	3.759E+04	508.25	1500
16	1.600E+00	4.143E-01	9.000E-01	7.532E+03	5.104E+04	677.65	1508
24	1.600E+00	4.148E-01	9.004E-01	6.715E+03	3.751E+04	558.63	1516
32	1.600E+00	4.149E-01	8.004E-01	6.880E+03	3.455E+04	502.15	1524
40	1.600E+00	4.151E-01	8.000E-01	7.410E+03	2.652E+04	357.87	1532
48	1.600E+00	4.153E-01	7.906E-01	7.211E+03	1.329E+04	184.25	1540
56	1.600E+00	4.153E-01	8.000E-01	6.956E+03	1.143E+04	164.32	1548
64	1.600E+00	4.153E-01	8.000E-01	6.996E+03	8.950E+03	127.93	1556
72	1.600E+00	4.153E-01	8.000E-01	7.154E+03	7.324E+03	102.37	1564
80	1.600E+00	4.153E-01	8.000E-01	7.117E+03	5.910E+03	83.04	1572
88.	1.600E+00	4.153E-01	8.031E-01	7.003E+03	5.531E+03	78.98	1580
96	1.600E+00	4.153E-01	8.000E-01	7.048E+03	4.403E+03	62.47	1588
104	1.600E+00	4.153E-01	8.250E-01	7.126E+03	4.088E+03	57.37	1596
112	1.600E+00	4.153E-01	8.001E-01	7.082E+03	3.288E+03	46.43	1604
120	1.600E+00	4.153E-01	8.000E-01	7.035E+03	2.654E+03	37.72	1612
128	1.600E+00	4.153E-01	8.008E-01	7.069E+03	2.448E+03	34.63	1620
136	1.600E+00	4.153E-01	8.000E-01	7.099E+03	1.977E+03	27.85	1628
144	1.600E+00	4.153E-01	8.063E-01	7.068E+03	1.814E+03	25.67	1636
152	1.600E+00	4.153E-01	8.000E-01	7.051E+03	1.476E+03	20.93	1644
160	1.600E+00	4.153E-01	8.500E-01	7.077E+03	1.297E+03	18.33	1652
168	1.600E+00	4.153E-01	8.002E-01	7.086E+03	1.101E+03	15.54	1660
176	1.600E+00	4.153E-01	8.000E-01	7.066E+03	9.141E+02	12.94	1668
184	1.600E+00	4.153E-01	8.016E-01	7.061E+03	8.197E+02	11.61	1676
192	1.600E+00	4.153E-01	8.000E-01	7.076E+03	6.822E+02	9.64	1684

Page 133

```
200 1.600E+00 4.153E-01 8.125E-01 7.078E+03 6.009E+02
                                                                           8.49
                                                                                       1692
    208 1.600E+00 4.153E-01 8.000E-01 7.066E+03 5.095E+02
                                                                         7.21
                                                                                       1700
    216 1.600E+00 4.153E-01 9.000E-01 7.067E+03 4.050E+02
                                                                         5.73
                                                                                      1708
    224 1.600E+00 4.153E-01 5.004E-01 7.075E+03 3.811E+02
                                                                          5.39
                                                                                      1716
    224 1.600E+00 4.153E-01 5.004E-01 7.075E+03 3.811E+02
232 1.600E+00 4.153E-01 7.988E-01 7.073E+03 1.960E+02
240 1.600E+00 4.153E-01 8.000E-01 7.070E+03 1.649E+02
248 1.600E+00 4.153E-01 8.000E-01 7.070E+03 1.305E+02
256 1.600E+00 4.153E-01 8.000E-01 7.072E+03 1.077E+02
264 1.600E+00 4.153E-01 6.959E-01 7.072E+03 8.615E+01
272 1.600E+00 4.153E-01 8.996E-01 7.070E+03 6.107E+01
280 1.600E+00 4.153E-01 9.004E-01 7.071E+03 5.683E+01
                                                                          2.77
                                                                                      1724
                                                                          2.33
                                                                                      1732
                                                                          1.85
                                                                                      1740
                                                                          1.52
                                                                                      1748
                                                                           1.22
                                                                                       1756
                                                                           0.86
                                                                                       1764
                                                                        0.80
0.85
0.67
                                                                                       1772
         1.600E+00 4.153E-01 8.035E-01 7.072E+03 6.011E+01
    288
                                                                                      1780
    296 1.600E+00 4.153E-01 8.000E-01 7.071E+03 4.757E+01
                                                                                      1788
    304 1.600E+00 4.153E-01 8.250E-01 7.070E+03 4.431E+01
                                                                         0.63
                                                                                      1796
    312 1.600E+00 4.153E-01 8.001E-01 7.071E+03 3.559E+01
                                                                         0.50
                                                                                      1804
    320 1.600E+00 4.153E-01 8.000E-01 7.071E+03 2.874E+01
                                                                         0.41
                                                                                      1812
    328 1.600E+00 4.153E-01 8.008E-01 7.071E+03 2.653E+01
                                                                         0.38
                                                                                      1820
    336 1.600E+00 4.153E-01 8.000E-01 7.071E+03 2.143E+01
                                                                         0.30
                                                                                      1828
    344 1.600E+00 4.153E-01 8.063E-01 7.071E+03 1.966E+01
                                                                         0.28
    352 1.600E+00 4.153E-01 8.000E-01 7.071E+03 1.599E+01
                                                                         0.23
    360 1.600E+00 4.153E-01 8.500E-01 7.071E+03 1.406E+01
                                                                         0.20
                                                                                      1852
    368 1.600E+00 4.153E-01 8.002E-01 7.071E+03 1.194E+01
                                                                         0.17
                                                                                      1860
    376 1.600E+00 4.153E-01 8.000E-01 7.071E+03 9.907E+00
                                                                         0.14
                                                                                      1868
    384 1.600E+00 4.153E-01 8.016E-01 7.071E+03 8.884E+00
                                                                          0.13
                                                                                      1876
    392 1.600E+00 4.153E-01 8.000E-01 7.071E+03 7.395E+00
                                                                          0.10
                                                                                      1884
         1.600E+00 4.153E-01 8.125E-01 7.071E+03 6.512E+00
1.600E+00 4.153E-01 7.625E-01 7.071E+03 3.686E+00
1.600E+00 4.153E-01 7.999E-01 7.071E+03 2.889E+00
         1.600E+00 4.153E-01 7.625E-01
4.153E-01 7.999E-01
                                                                           0.09
                                                                                      1892
                                                                           0.05
                                                                                       1900
                                                                           0.04
                                                                                       1908
                                             7.071E+03 2.387E+00
         1.600E+00 4.153E-01 8.000E-01
                                                                           0.03
                                                                                       1916
                                             7.071E+03 1.890E+00
         1.600E+00 4.153E-01 8.000E-01
                                                                           0.03
                                                                                      1924
         1.600E+00 4.153E-01 8.000E-01 7.071E+03 1.568E+00
                                                                           0.02
                                                                                      1932
         1.600E+00 4.153E-01 7.820E-01
                                             7.071E+03 1.044E+00
                                                                           0.01
                                                                                      1940
    456 1.600E+00 4.153E-01 7.999E-01 7.071E+03 8.472E-01
                                                                          0.01
                                                                                      1948
    464 1.600E+00 4.153E-01 8.125E-01 7.071E+03 7.483E-01
                                                                          0.01
                                                                                      1956
1
      SANTOS, VERSION 2.1.7-DP, RUN ON 20030610, AT 11:38:47
       SANTOS OA PROBLEM - ONE ELEMENT ROTATION - 10/21/94
     *******************
     SUMMARY OF DATA AT STEP NUMBER 4, TIME = 1.600E+00
     NUMBER OF ITERATIONS = 467, TOTAL NUMBER OF ITERATIONS = 1959
     FINAL CONVERGENCE TOLERANCE = 9.952E-03
     SUM OF EXTERNAL FORCES IN X-DIRECTION =-5.878E+03
     SUM OF EXTERNAL FORCES IN Y-DIRECTION =-8.090E+03
```

**** PLOT TAPE WRITTEN AT TIME = 1.600E+00 STEP NUMBER 4 ***

SUM OF REACTION FORCES IN X-DIRECTION =-2.939E+03 SUM OF REACTION FORCES IN Y-DIRECTION =-4.045E+03

STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
8	2.000E+00	4.216E-01	6.757E-01	7.885E+03	6.197E+04	785.94	1967
16	2.000E+00	4.216E-01	8.245E-01	7.605E+03	6.209E+04	816.47	1975
24	2.000E+00	4.229E-01	7.907E-01	6.903E+03	2.524E+04	365.57	1983

•	•		_	_	v	•	_
	P	a	g	е	1	3	4

32	2.000E+00	4.230E-01	·8.000E-01	6.876E+03	2.121E+04	308.46	1991
40	2.000E+00	4.231E-01	8.000E-01	7.232E+03	1.637E+04	226.30	1999
48	2.000E+00	4.231E-01	8.000E-01	7.202E+03	1.320E+04	183.35	2007
56	2.000E+00	4.231E-01	8.000E-01	6.964E+03	1.078E+04	154.79	2015
64	2.000E+00	4.231E-01	8.031E-01	6.996E+03	9.994E+03	142.84	2023
72	2.000E+00	4.231E-01	8.000E-01	7.165E+03	7.916E+03	110.48	2031
80	2.000E+00	4.231E-01	8.250E-01	7.116E+03	7.444E+03	104.61	2039
88	2.000E+00	4.231E-01	8.001E-01	6.997E+03	5.848E+03	83.58	2047
96	2.000E+00	4.231E-01	8.000E-01	7.050E+03	4.838E+03	68.63	2055
104	2.000E+00	4.232E-01	8.008E-01	7.130E+03	4.312E+03	60.47	2063
112	2.000E+00	4.232E-01	8.000E-01	7.080E+03	3.632E+03	51.30	2071
120	2.000E+00	4.232E-01	8.000E-01	7.031E+03	2.873E+03	40.85	2079
128	2.000E+00	4.232E-01	8.000E-01	7.069E+03	2.381E+03	33.69	2087
136	2.000E+00	4.232E-01	8.000E-01	7.098E+03	1.886E+03	26.57	2095
144	2.000E+00	4.232E-01	8.000E-01	7.071E+03	1.568E+03	22.18	2103
152	2.000E+00	4.232E-01	8.500E-01	7.053E+03	1.312E+03	18.60	2111
160	2.000E+00	4.232E-01	8.002E-01	7.074E+03	1.177E+03	16.64	2119
168	2.000E+00	4.232E-01	8.000E-01	7.084E+03	9.234E+02	13.04	2127
176	2.000E+00	4.232E-01	8.016E-01	7.067E+03	8.749E+02	12.38	2135
184	2.000E+00	4.232E-01	8.000E-01	7.062E+03	6.912E+02	9.79	2143
192	2.000E+00	4.232E-01	8.125E-01	7.075E+03	6.385E+02	9.02	2151
200	2.000E+00	4.232E-01	8.000E-01	7.077E+03	5.192E+02	7.34	2159
208	2.000E+00	4.232E-01	8.000E-01	7.068E+03	4.282E+02	6.06	2167
216	2.000E+00	4.232E-01	8.000E-01	7.067E+03	3.409E+02	4.82	2175
224	2.000E+00	4.232E-01	8.000E-01	7.074E+03	2.812E+02	3.98	2183
232	2.000E+00	4.232E-01	8.000E-01	7.073E+03	2.246E+02	3.18	2191
240	2.000E+00	4.232E-01	8.000E-01	7.069E+03	1.845E+02	2.61	2199
248	2.000E+00	4.232E-01	8.031E-01	7.070E+03	1.715E+02	2.43	2207
256	2.000E+00	4.232E-01	8.000E-01	7.073E+03	1.364E+02	1.93	2215
264	2.000E+00	4.232E-01	8.250E-01	7.072E+03	1.282E+02	1.81	2223
272	2.000E+00	4.232E-01	8.001E-01	7.070E+03	1.010E+02	1.43	2231
280	2.000E+00	4.232E-01	8.000E-01	7.071E+03	8.364E+01	1.18	2239
288	2.000E+00	4.232E-01	8.000E-01	7.072E+03	6.684E+01	0.95	2247
296	2.000E+00	4.232E-01	8.000E-01	7.071E+03	5.501E+01	0.78	2255
304	2.000E+00	4.232E-01	8.000E-01	7.070E+03	4.388E+01	0.62	2263
312	2.000E+00	4.232E-01	8.000E-01	7.071E+03	3.624E+01	0.51	2271
320	2.000E+00	4.232E-01	8.063E-01	7.072E+03	3.183E+01	0.45	2279
328	2.000E+00	4.232E-01	8.000E-01	7.071E+03	2.727E+01	0.39	2287
336	2.000E+00	4.232E-01	8.500E-01	7.071E+03	2.270E+01	0.32	2295
344	2.000E+00	4.232E-01	8.002E-01	7.071E+03	2.039E+01	0.29	2303
352	2.000E+00	4.232E-01	8.000E-01	7.071E+03	1.600E+01	0.23	2311
360	2.000E+00	4.232E-01	8.016E-01	7.071E+03	1.515E+01	0.21	2319
368	2.000E+00	4.232E-01	8.000E-01	7.071E+03	1.197E+01	0.17	2327
376	2.000E+00	4.232E-01	8.000E-01	7.071E+03	9.965E+00	0.14	2335
384	2.000E+00	4.232E-01	8.000E-01	7.071E+03	7.879E+00	0.11	2343
392	2.000E+00	4.232E-01	8.000E-01	7.071E+03	6.545E+00	0.09	2351
400	2.000E+00	4.232E-01 4.232E-01	8.000E-01	7.071E+03	5.189E+00	0.07	2359
408	2.000E+00	4.232E-01	9.000E-01	7.071E+03	4.297E+00	0.06	2367
416	2.000E+00	4.232E-01	8.004E-01	7.071E+03	3.927E+00	0.06	2375
424	2.000E+00	4.232E-01	8.000E-01	7.071E+03	3.188E+00	0.05	2383
432	2.000E+00	4.232E-01 4.232E-01	8.031E-01	7.071E+03	2.973E+00	0.04	2391
440	2.000E+00	4.232E-01 4.232E-01	8.000E-01	7.071E+03	2.363E+00	0.03	2399
448	2.000E+00 2.000E+00	4.232E-01 4.232E-01	8.000E-01	7.071E+03	1.928E+00	0.03	2407
456	2.000E+00	4.232E-01 4.232E-01	8.250E-01	7.071E+03	1.787E+00	0.03	2415
464	2.000E+00 2.000E+00	4.232E-01 4.232E-01	8.230E-01 8.001E-01	7.071E+03	1.432E+00	0.03	2423
472	2.000E+00	4.232E-01 4.232E-01	8.000E-01	7.071E+03	1.161E+00	0.02	2431
480	2.000E+00 2.000E+00	4.232E-01 4.232E-01	8.000E-01	7.071E+03	9.521E-01	0.01	2439
488	2.000E+00	4.232E-01	8.000E-01	7.071E+03	7.602E-01	0.01	2447
±00	2.0000-00	4,2J2H-UI	3.000E-01	,.U,IE+03	,.QUZE UI	0.01	

**** PLOT TAPE WRITTEN AT TIME = 2.000E+00 STEP NUMBER

STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
8	2.400E+00	4.256E-01	8.570E-01	9.402E+03	1.314E+05	1397.25	2458
16	2.400E+00	4.274E-01	8.002E-01	8.341E+03	1.116E+05	1337.70	2466
24	2.400E+00	4.321E-01	7.250E-01	6.916E+03	2.939E+04	424.91	2474
32	2.400E+00	4.322E-01	7.997E-01	6.797E+03	2.814E+04	413.97	2482
40	2.400E+00	4.323E-01	8.031E-01	7.315E+03	2.216E+04	302.94	2490
48	2.400E+00	4.324E-01	8.000E-01	7.243E+03	1.807E+04	249.54	2498
56	2.400E+00	4.324E-01	8.250E-01	6.881E+03	1.704E+04	247.59	2506
64	2.400E+00	4.324E-01	8.001E-01	6.983E+03	1.342E+04	192.11	2514
72	2.400E+00	4.324E-01	8.000E-01	7.208E+03	1.093E+04	151.60	2522
80	2.400E+00	4.325E-01	8.008E-01	7.120E+03	9.924E+03	139.37	2530
88	2.400E+00	4.325E-01	8.000E-01	6.966E+03	8.091E+03	116.16	2538
96	2.400E+00	4.325E-01	8.063E-01	7.057E+03	7.324E+03	103.79	2546
104	2.400E+00	4.325E-01	8.000E-01	7.155E+03	5.996E+03	83.81	2554
112	2.400E+00	4.325E-01	8.500E-01	7.071E+03	5.246E+03	74.19	2562
120	2.400E+00	4.325E-01	8.002E-01	7.009E+03	4.460E+03	63.63	2570
128	2.400E+00	4.325E-01	8.000E-01	7.076E+03	3.691E+03	52.16	2578
136	2.400E+00	4.325E-01	8.016E-01	7.117E+03	3.305E+03	46.44	2586
144	2.400E+00	4.325E-01	8.000E-01	7.062E+03	2.763E+03	39.13	2594
152	2.400E+00	4.325E-01	8.125E-01	7.039E+03	2.416E+03	34.32	2602
160	2.400E+00	4.325E-01	8.000E-01	7.083E+03	2.066E+03	29.17	2610
168	2.400E+00	4.325E-01	8.000E-01	7.091E+03	1.625E+03	22.91	2618
176	2.400E+00	4.325E-01	9.000E-01	7.062E+03	1.353E+03	19.16	2626
184	2.400E+00	4.325E-01	8.004E-01	7.058E+03	1.230E+03	17.42	2634
192	2.400E+00	4.325E-01	8.000E-01	7.080E+03	1.004E+03	14.18	2642
200	2.400E+00	4.325E-01	8.031E-01	7.080E+03	9.304E+02	13.14	2650
208	2.400E+00	4.325E-01	8.000E-01	7.063E+03	7.449E+02	10.55	2658
216	2.400E+00	4.325E-01	8.250E-01	7.066E+03	6.949E+02	9.83	2666
224	2.400E+00	4.325E-01	8.001E-01	7.078E+03	5.512E+02	7.79	2674
232	2.400E+00	4.325E-01	8.000E-01	7.074E+03	4.534E+02	6.41	2682
240	2.400E+00	4.325E-01	8.000E-01	7.066E+03	3.649E+02	5.16	2690
248	2.400E+00	4.325E-01	8.008E-01	7.070E+03	3.343E+02	4.73	2698
256	2.400E+00	4.325E-01	8.000E-01	7.075E+03	2.724E+02	3.85	2706
264	2.400E+00	4.325E-01	8.063E-01	7.071E+03	2.481E+02	3.51	2714
272	2.400E+00	4.325E-01	8.000E-01	7.068E+03	2.030E+02	2.87	2722
280	2.400E+00	4.325E-01	8.500E-01	7.071E+03	1.778E+02	2.51	2730
288	2.400E+00	4.325E-01	8.002E-01	7.073E+03	1.512E+02	2.14	2738
296	2.400E+00	4.325E-01	8.000E-01	7.071E+03	1.254E+02	1.77	2746

1

304	2.400E+00	4.325E-01	8.016E-01	7.070E+03	1.123E+02	1.59	2754	
312	2.400E+00	4.325E-01	8.000E-01	7.071E+03	9.381E+01	1.33	2762	
320	2.400E+00	4.325E-01	8.125E-01	7.072E+03	8.213E+01	1.16	2770	
328	2.400E+00	4.325E-01	8.000E-01	7.071E+03	7.019E+01	0.99	2778	
336	2.400E+00	4.325E-01	9.000E-01	7.070E+03	5.527E+01	0.78	2786	
344	2.400E+00	4.325E-01	8.004E-01	7.072E+03	5.259E+01	0.74	2794	
352	2.400E+00	4.325E-01	8.000E-01	7.072E+03	4.136E+01	0.58	2802	
360	2.400E+00	4.325E-01	8.031E-01	7.071E+03	3.945E+01	0.56	2810	
368	2.400E+00	4.325E-01	8.000E-01	7.071E+03	3.095E+01	0.44	2818	
376	2.400E+00	4.325E-01	8.250E-01	7.071E+03	2.921E+01	0.41	2826	
384	2.400E+00	4.325E-01	8.001E-01	7.071E+03	2.314E+01	0.33	2834	
392	2.400E+00	4.325E-01	8.000E-01	7.071E+03	1.895E+01	0.27	2842	

SANTOS, VERSION 2.1.7-DP, RUN ON 20030610, AT 11:38:47 SANTOS QA PROBLEM - ONE ELEMENT ROTATION - 10/21/94

SUMMARY OF DATA AT STEP NUMBER 10, TIME = 4.000E+00

NUMBER OF ITERATIONS = 520, TOTAL NUMBER OF ITERATIONS = 5190

FINAL CONVERGENCE TOLERANCE = 9.881E-03

SUM OF EXTERNAL FORCES IN X-DIRECTION =-1.000E+04

SUM OF EXTERNAL FORCES IN Y-DIRECTION = 2.856E+00

SUM OF REACTION FORCES IN X-DIRECTION =-4.998E+03

SUM OF REACTION FORCES IN Y-DIRECTION = 1.217E+00

**** PLOT TAPE WRITTEN AT TIME = 4.000E+00 STEP NUMBER 10 ****

10 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

E N D O F S O L U T I O N P H A S E
2.100E-01 CPU SECONDS USED
13298 WORDS ALLOCATED

Page 137

APPENDIX B

Input/Output Data For Test Case 2

The following two sections present the input data and the formatted output for the delete material option verification test.

FASTQ and SANTOS Input Data For The Delete Material Option Problem

This section presents a listing of the FASTQ and SANTOS input data files that were used for the mesh generation and analysis of the delete material option problem.

```
sant delete.fsq
TITLE
 GRAVITY LOAD PROBLEM - DELETE OPTION TEST - SANTOS QA
POINT 1 0.
                        0.
               1.
                         0.
POINT
                         0.
      3
POINT
               2.
      4
               0.
                        -4.
POINT
POINT
      5
                        -4.
               2.
POINT
        6
               0.
                        -8.
        7
POINT
                2.
                        -8.
        8
                0.
POINT
                       -12.
POINT
        9
                2.
                       -12.
POINT
       10
                0.
                       -16.
POINT
       11
                2.
                       -16.
                0.
POINT
       12
                       -20.
                       -20.
       13
                2.
POINT
           STR 1
                                    2 1.0
                     2
LINE
       1
LINE
       2
           STR 2 3
                                    2 1.0
      3 STR 1 4 0 8 1.0
LINE
     3 STR 1 4 0 8 1.0
4 STR 3 5 0 8 1.0
5 STR 4 5 0 4 1.0
6 STR 4 6 0 8 1.0
7 STR 5 7 0 8 1.0
8 STR 6 7 0 4 1.0
9 STR 6 8 0 8 1.0
10 STR 7 9 0 8 1.0
11 STR 8 9 0 4 1.0
12 STR 8 10 0 8 1.0
13 STR 9 11 0 8 1.0
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
                       11
LINE
                            0
           STR 10
                       11
                                       1.0
LINE
       14
                       12 0
       15 STR 10
                                       1.0
LINE
       16 STR 11
LINE
                       13 0
                                        1.0
       17
            STR 12
LINE
POINBC 1
            2
NODEBC 2
           1 2
SCHEME 0
           MP
            5 -1 -2 -4
REGION 1
                             -5
                                 -3
REGION 2
            4 -5 -7 -8
                             -6
REGION 3
REGION 4
            3 -8 -10 -11
                             -9
            2 -11 -13 -14 -12
REGION 5
           1 -14 -16 -17 -15
```



```
END
sant_delete.i
TITLE
GRAVITY LOAD PROBLEM - DELETE OPTION TEST - SANTOS OA
PLANE STRAIN
MAXIMUM ITERATIONS, 1000
RESIDUAL TOLERANCE 0.1
MATERIAL, 1, ELASTIC, 1.
YOUNGS MODULUS 10000.
POISSONS RATIO 0.
END
MATERIAL, 2, ELASTIC, 1.
YOUNGS MODULUS 10000.
POISSONS RATIO 0.
MATERIAL, 3, ELASTIC, 1.
YOUNGS MODULUS 10000.
POISSONS RATIO 0.
END
MATERIAL, 4, ELASTIC, 1.
YOUNGS MODULUS 10000.
POISSONS RATIO 0.
END
MATERIAL, 5, ELASTIC, 1.
YOUNGS MODULUS 10000.
POISSONS RATIO 0.
END
DELETE MATERIAL 1 1.001
DELETE MATERIAL 2 2.001
DELETE MATERIAL 3 3.001
DELETE MATERIAL 4 4.001
FUNCTION. 1
  0.,1.
  5.,1.
END
STEP CONTROL
  10,5.
END
PLOT TIME
 1,5.
END
OUTPUT TIME
  2,5.
END
GRAVITY, 1, 0., -5., 0.
NO DISPLACEMENT, X, 1
NO DISPLACEMENT, Y, 2
```

SANTOS Output For The Delete Material Option Problem

The following section presents the SANTOS printed output for the delete material option analysis. Because all pertinent information and results from the analysis are written to the plot file for post-processing, the printed output file simply echoes input data and problem—descriptive information at the beginning, followed by information that tracks the convergence behavior of the solution, and a summary of CPU usage at the end.

sant_delete.o

SSSSSS	AAA	AAA	N	NN	TTTTTT	000	000	SSSSSS
SS	AA	AA	NN	NN	TT	00	00	SS
SS	AA	AA	NNN	NN	$ extbf{T}$	00	00	SS
SSSSS	AAA	AAA	NN N	I NN	$ extbf{T}$	00	00	SSSSS
SS	AA	AA	NN	NNN	${f TT}$	00	00	SS
SS	AA	AA	NN	NN	$ extbf{T}$ T	00	00	SS
SSSSS	AA	AA	NN	N	$\mathbf{T}\mathbf{T}$	000	000	SSSSSS

VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE ENGINEERING SCIENCES CENTER SANDIA NATIONAL LABORATORIES ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030612 AT 10:22:09 RUN ON A i686 UNDER Lx2.4.20

- 1: TITLE
- 2: GRAVITY LOAD PROBLEM DELETE OPTION TEST SANTOS QA
- 3: PLANE STRAIN
- 4: MAXIMUM ITERATIONS, 1000
- 5: RESIDUAL TOLERANCE 0.1
- 6: MATERIAL, 1, ELASTIC, 1.
- 7: YOUNGS MODULUS 10000.
- 8: POISSONS RATIO 0.
- 9: END
- 10: MATERIAL, 2, ELASTIC, 1.
- 11: YOUNGS MODULUS 10000.
- 12: POISSONS RATIO 0.
- 13: END
- 14: MATERIAL, 3, ELASTIC, 1.
- 15: YOUNGS MODULUS 10000.
- 16: POISSONS RATIO 0.
- 17: END
- 18: MATERIAL, 4, ELASTIC, 1.
- 19: YOUNGS MODULUS 10000.
- 20: POISSONS RATIO 0.
- 21: END
- 22: MATERIAL, 5, ELASTIC, 1.
- 23: YOUNGS MODULUS 10000.
- 24: POISSONS RATIO 0.
- 25: END

Page 140

```
26: DELETE MATERIAL 1 1.001
 27: DELETE MATERIAL 2 2.001
28: DELETE MATERIAL 3 3.001
 29: DELETE MATERIAL 4 4.001
 30: FUNCTION, 1
 31: 0.,1.
 32:
     5.,1.
 33: END
 34: STEP CONTROL
 35: 10,5.
 36: END
 37: PLOT TIME
 38: 1,5.
 39: END
 40: OUTPUT TIME
 41: 2,5.
 42: END
 43: GRAVITY, 1, 0., -5., 0.
 44: NO DISPLACEMENT, X, 1
 45: NO DISPLACEMENT, Y, 2
 46: EXIT
                                 INPUT STREAM IMAGES
LINE -----
 48: TITLE
 49: GRAVITY LOAD PROBLEM - DELETE OPTION TEST - SANTOS QA
 50: PLANE STRAIN
 51: MAXIMUM ITERATIONS, 1000
 52: RESIDUAL TOLERANCE 0.1
 53: MATERIAL, 1, ELASTIC, 1.
 54: YOUNGS MODULUS 10000.
 55: POISSONS RATIO 0.
 56: END
 57: MATERIAL, 2, ELASTIC, 1.
 58: YOUNGS MODULUS 10000.
 59: POISSONS RATIO 0.
 60: END
 61: MATERIAL, 3, ELASTIC, 1.
 62: YOUNGS MODULUS 10000.
 63: POISSONS RATIO 0.
 64: END
 65: MATERIAL, 4, ELASTIC, 1.
 66: YOUNGS MODULUS 10000.
 67: POISSONS RATIO 0.
 68: END
 69: MATERIAL, 5, ELASTIC, 1.
 70: YOUNGS MODULUS 10000.
 71: POISSONS RATIO 0.
 72: END
 73: DELETE MATERIAL 1 1.001
 74: DELETE MATERIAL 2 2.001
 75: DELETE MATERIAL 3 3.001
 76: DELETE MATERIAL 4 4.001
 77: FUNCTION, 1
 78: 0.,1.
 79: 5.,1.
 80: END
 81: STEP CONTROL
 82: 10,5.
```

1

83: END
84: PLOT TIME
85: 1,5.
86: END
87: OUTPUT TIME
88: 2,5.
89: END
90: GRAVITY,1,0.,-5.,0.
91: NO DISPLACEMENT,X,1
92: NO DISPLACEMENT,Y,2
93: EXIT

PROBLEM TITLE

GRAVITY LOAD PROBLEM - DELETE OPTION TEST - SANTOS QA

PROBLEM DEFINITION

NUMBER OF ELEMENTS	160
NUMBER OF NODES	205
NUMBER OF MATERIALS	5
NUMBER OF FUNCTIONS	1 ·
NUMBER OF CONTACT SURFACES	0
NUMBER OF RIGID SURFACES	0
NUMBER OF MATERIAL POINTS MONITORED	0
ANALYSIS TYPE	PLANE STRAIN
GLOBAL CONVERGENCE MEASURE	
RESIDUAL TOLERANCE	1.000E-01
MAXIMUM NUMBER OF ITERATIONS	1000
ITERATIONS FOR INTERMEDIATE PRINT	410
MAXIMUM RESIDUAL TOLERANCE	6.000E-01
PREDICTOR SCALE FACTOR FUNCTION	0
MINIMUM DAMPING FACTOR	2.000E-01
EFFECTIVE MODULUS STATUS	CONSTANT
GRAVITY LOADS APPLIED	
SCALE FACTOR APPLIED TO TIME STEP	1.000E+00
STRAIN SOFTENING SCALE FACTOR	1.000E+00
HOURGLASS STIFFNESS FACTOR	5.000E-02
HOURGLASS VISCOSITY FACTOR	0.000E+00

LOAD STEP DEFINITIONS

TIME NO. OF STEPS TIME 0.000E+00 10 5.000E+00

PRINTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PRINTS TIME 0.000E+00 2 5.000E+00

PLOTTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PLOTS TIME 0.000E+00 1 5.000E+00

MATERIAL DEFINITIONS

POISSONS RATIO = 0.000E+00

YOUNGS MODULUS = 1.000E+04 POISSONS RATIO = 0.000E+00

 MATERIAL TYPE
 ELASTIC

 MATERIAL ID
 2

 DENSITY
 1.000E+00

 MATERIAL PROPERTIES:

YOUNGS MODULUS = 1.000E+04 POISSONS RATIO = 0.000E+00

YOUNGS MODULUS = 1.000E+04 POISSONS RATIO = 0.000E+00

ELEMENT MATERIAL BLOCK DELETION

MATERIAL ID	DELETION TIME
1	1.000E+01
2	4.001E+00
3	3.001E+00
4	2.001E+00
5	1.001E+00

FUNCTION DEFINITIONS

FUNCTION	ID	• • • • • •	• • •	1	NUMBER	OF	POINTS	• • • •	2
		N		s	F(S)				
		1	0.0	00E+00	1.000E+	00			
		2	5.0	00E+00	1.000E+	00			

$\begin{smallmatrix} \mathsf{N} & \mathsf{O} \end{smallmatrix} \ \mathsf{D} \ \mathsf{I} \ \mathsf{S} \ \mathsf{P} \ \mathsf{L} \ \mathsf{A} \ \mathsf{C} \ \mathsf{E} \ \mathsf{M} \ \mathsf{E} \ \mathsf{N} \ \mathsf{T} \\ \mathsf{B} \ \mathsf{O} \ \mathsf{U} \ \mathsf{N} \ \mathsf{D} \ \mathsf{A} \ \mathsf{R} \ \mathsf{Y} \\ \mathsf{C} \ \mathsf{O} \ \mathsf{N} \ \mathsf{D} \ \mathsf{I} \ \mathsf{T} \ \mathsf{I} \ \mathsf{O} \ \mathsf{N} \ \mathsf{S} \\ \\ \end{smallmatrix}$

NODE	SET	FLAG	DIRECTION
	1		X
	2		Y

E N D O F D A T A I N P U T P H A S E 3.000E-02 CPU SECONDS USED 1686 WORDS ALLOCATED

END OF DATA INITIALIZATION PHASE 0.000E+00 CPU SECONDS USED 25340 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

NODAL ELEMENT GLOBAL

Page 144

		ISPLY ISPLY	SIGXX SIGYY SIGZZ TAUXY STATUS	FX FY RX RY ITER RMAG	
	**** PLOT TAPE WRITT	EN FOR THE	INITIAL STATE	AT TIME = 0.00	0E+00 ****
	**** PLOT TAPE WRITT	EN AT TIME	= 5.000E-01	STEP NUMBER	1 ****
1	SANTOS, VERSION 2.1 GRAVITY LOAD PROBLE	.7-DP, RUN			
	SUMMARY OF DATA AT S' NUMBER OF ITERATIONS FINAL CONVERGENCE TO: SUM OF EXTERNAL FORC: SUM OF EXTERNAL FORC: SUM OF REACTION FORC: SUM OF REACTION FORC:	TEP NUMBER = 35 LERANCE = 9 ES IN X-DIR ES IN Y-DIR ES IN X-DIR ES IN Y-DIR	2, TIME = 9, TOTAL NUMB .899E-02 ECTION = 0.00 ECTION =-2.00 ECTION = 1.22 ECTION =-2.00	1.000E+00 ER OF ITERATION 0E+00 0E+02 9E-15 2E+02	S = 741
	**** PLOT TAPE WRITT	EN AT TIME	= 1.000E+00	STEP NUMBER	2 ****
	**** PLOT TAPE WRITT	EN AT TIME	= 1.500E+00	STEP NUMBER	3 ****
1	SANTOS, VERSION 2.1 GRAVITY LOAD PROBLE		•		
	************************ SUMMARY OF DATA AT S' NUMBER OF ITERATIONS FINAL CONVERGENCE TO: SUM OF EXTERNAL FORC: SUM OF EXTERNAL FORC: SUM OF REACTION FORC: SUM OF REACTION FORC:	TEP NUMBER = 28 LERANCE = 8 ES IN X-DIR ES IN Y-DIR ES IN X-DIR ES IN Y-DIR	4, TIME = 9, TOTAL NUMB .411E-02 ECTION = 0.00 ECTION =-2.00 ECTION = 2.87 ECTION =-1.62	2.000E+00 ER OF ITERATION 0E+00 0E+02 7E-15 5E+02	S = 1301
	**** PLOT TAPE WRITT	EN AT TIME	= 2.000E+00	STEP NUMBER	4 ****
	**** PLOT TAPE WRITT	EN AT TIME	= 2.500E+00	STEP NUMBER	5 ****

1	SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 10:22:09 GRAVITY LOAD PROBLEM - DELETE OPTION TEST - SANTOS QA

	**** PLOT TAPE WRITTEN AT TIME = 3.000E+00 STEP NUMBER 6 ****
	**** PLOT TAPE WRITTEN AT TIME = 3.500E+00 STEP NUMBER 7 ****
1	SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 10:22:09 GRAVITY LOAD PROBLEM - DELETE OPTION TEST - SANTOS QA

	SUMMARY OF DATA AT STEP NUMBER 8, TIME = 4.000E+00 NUMBER OF ITERATIONS = 191, TOTAL NUMBER OF ITERATIONS = 2074 FÎNAL CONVERGENCE TOLÉRANCE = 9.959E-02 SUM OF EXTERNAL FORCES IN X-DIRECTION = 0.000E+00 SUM OF EXTERNAL FORCES IN Y-DIRECTION =-2.000E+02 SUM OF REACTION FORCES IN X-DIRECTION =-7.392E-16 SUM OF REACTION FORCES IN Y-DIRECTION =-8.261E+01 ***********************************
	**** PLOT TAPE WRITTEN AT TIME = 4.000E+00 STEP NUMBER 8 ****
	**** PLOT TAPE WRITTEN AT TIME = 4.500E+00 STEP NUMBER 9 ****
1	SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 10:22:09 GRAVITY LOAD PROBLEM - DELETE OPTION TEST - SANTOS QA

Page 146

**** PLOT TAPE WRITTEN AT TIME = 5.000E+00 STEP NUMBER 10 ****

10 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

E N D O F S O L U T I O N P H A S E 2.000E+00 CPU SECONDS USED 31810 WORDS ALLOCATED

APPENDIX C

Input/Output Data For Test Case 3

The following two sections present the input data and the formatted output for the prescribed force option problem.

FASTQ and SANTOS Input Data For The Prescribed Force Option Problem

This section presents a listing of the FASTQ and SANTOS input data files that were used for the mesh generation and analysis of the prescribed force option problem.

```
beamf.fsq
TITLE
BEAM PROBLEM - 30 TO 1 BEAM - FORCE B.C. - SANTOS QA - 11/30/94
POINT 1 0. 0.
POINT
       2 30.
                  Ο.
POINT 3 30. 0.5
POINT
       4 30.
                  1
       5
POINT
            Ο.
                1.
           STR
                 1 2 0
                                 30
LINE
       1
       2 STR 2 3 0
3 STR 3 4 0
4 STR 4 5 0
5 STR 1 5 0
LINE
LINE
LINE
                                 30
LINE
                                 4
POINBC 1
            3
NODEBC 2 5
SCHEME OMP
REGION 1 1 -1
                     -2 -3
EXIT
sant_beamf.i
TITLE
30 TO 1 BEAM WITH CONCENTRATED FORCE - SANTOS QA - 11/30/94
PLANE STRAIN
RESIDUAL TOLERANCE, 0.1
MAXIMUM ITERATIONS, 20000
MAXIMUM TOLERANCE, 1000
NO DAMPING, 120, 20
MATERIAL, 1, ELASTIC, 1.0
YOUNGS MODULUS = 1.0E+7
POISSONS RATIO = 0.0
FUNCTION, 1 $ FUNCTION USED TO DEFINE PRESCRIBED FORCE
  0. 0.
  2. 20.
END
STEP CONTROL
 400,2.
END
PLOT TIME
 100,2.
END
```


OUTPUT TIME
400,2.
END
NO DISPLACEMENT Y,2
NO DISPLACEMENT X,2
PRESCRIBED FORCE,Y,1,1,-1.
EXIT
PRESCRIBED FORCE,Y,1,1,-1.

SANTOS Output For The Prescribed Force Option Problem

The following section presents a portion of the SANTOS printed output for the prescribed force option analysis. Because all pertinent information and results from the analysis are written to the plot file for post-processing, the printed output file simply echoes input data and problem—descriptive information at the beginning, followed by information that tracks the convergence behavior of the solution, and a summary of CPU usage at the end. For this reason, only a partial listing, consisting of approximately the first 500 lines of output and the last 100 lines of output, is provided.

sant_beamf.o

SSSSSS	AA	AAA	N ·	NN	TTTTTT	000	000	SSSSSS	
SS	AA	. AA	NN	NN	${f TT}$	00	00	SS	
SS	AA	AA	NNN	NN	${f TT}$	00	00	SS	
SSSSS	AAA	AAAA	NN N	NN	${f TT}$	00	00	SSSSS	
SS	AA	AA	NN	NNN	${f TT}$	00	00	SS	
SS	AA	AA	NN	NN	${f TT}$	00	00	SS	
SSSSSS	AA	AA	NN	N	$\mathbf{T}\mathbf{T}$	000	000	SSSSSS	

VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE ENGINEERING SCIENCES CENTER SANDIA NATIONAL LABORATORIES ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030612 AT 10:26:26 RUN ON A i686 UNDER Lx2.4.20

1: TITLE

2: 30 TO 1 BEAM WITH CONCENTRATED FORCE - SANTOS QA - 11/30/94

3: PLANE STRAIN

4: MAXIMUM ITERATIONS, 20000 5: MAXIMUM TOLERANCE, 1000

6: NO DAMPING, 120, 20


```
7: MATERIAL, 1, ELASTIC, 1.0
   8: YOUNGS MODULUS = 1.0E+7
   9: POISSONS RATIO = 0.0
  10: END
  11: FUNCTION, 1 $ FUNCTION USED TO DEFINE PRESCRIBED FORCE
  12: 0. 0.
  13:
        2. 20.
  14: END
  15: STEP CONTROL
  16: 400,2.
  17: END
  18: PLOT TIME
  19: 100,2.
  20: END
  21: OUTPUT TIME
  22: 400,2.
  23: END
  24: NO DISPLACEMENT Y, 2
  25: NO DISPLACEMENT X, 2
  26: PRESCRIBED FORCE, Y, 1, 1, -1.
  27: EXIT
7
                                 INPUT STREAM IMAGES
 LINE ------
  29: TITLE
  30: 30 TO 1 BEAM WITH CONCENTRATED FORCE - SANTOS QA - 11/30/94
  31: PLANE STRAIN
  32: MAXIMUM ITERATIONS, 20000
  33: MAXIMUM TOLERANCE, 1000
  34: NO DAMPING, 120, 20
  35: MATERIAL, 1, ELASTIC, 1.0
  36: YOUNGS MODULUS \approx 1.0E+7
  37: POISSONS RATIO = 0.0
  38: END
  39: FUNCTION, 1 $ FUNCTION USED TO DEFINE PRESCRIBED FORCE
  40: 0. 0.
  41:
         2. 20.
  42: END
  43: STEP CONTROL
  44: 400,2.
  45: END
  46: PLOT TIME
  47: 100,2.
  48: END
  49: OUTPUT TIME
  50: 400,2.
  51: END
  52: NO DISPLACEMENT Y, 2
  53: NO DISPLACEMENT X,2
  54: PRESCRIBED FORCE, Y, 1, 1, -1.
  55: EXIT
1
```

30 TO 1 BEAM WITH CONCENTRATED FORCE - SANTOS QA - 11/30/94

PROBLEM TITLE

PROBLEM DEFINITION

NUMBER OF ELEMENTS	120
NUMBER OF NODES	155
NUMBER OF MATERIALS	1
NUMBER OF FUNCTIONS	1
NUMBER OF CONTACT SURFACES	0
NUMBER OF RIGID SURFACES	0
NUMBER OF MATERIAL POINTS MONITORED	0
ANALYSIS TYPE	PLANE STRAIN
GLOBAL CONVERGENCE MEASURE	
RESIDUAL TOLERANCE	5.000E-01
MAXIMUM NUMBER OF ITERATIONS	20000
ITERATIONS FOR INTERMEDIATE PRINT	310
MAXIMUM RESIDUAL TOLERANCE	1.000E+03
PREDICTOR SCALE FACTOR FUNCTION	0
MINIMUM DAMPING FACTOR	2.000E-01
EFFECTIVE MODULUS STATUS	CONSTANT
NO DAMPING OPTION	ACTIVE
NUMBER OF NO DAMPING ITERATIONS	120
NUMBER OF LOAD STEPS WITH NO DAMPING .	20
SCALE FACTOR APPLIED TO TIME STEP	1.000E+00
STRAIN SOFTENING SCALE FACTOR	1.000E+00
HOURGLASS STIFFNESS FACTOR	5.000E-02
HOURGLASS VISCOSITY FACTOR	0.000E+00

LOAD STEP DEFINITIONS

TIME NO. OF STEPS TIME 0.000E+00 400 2.000E+00

PRINTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PRINTS TIME 0.000E+00 400 2.000E+00

PLOTTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PLOTS TIME 0.000E+00 100 2.000E+00

MATERIAL DEFINITIONS

MATERIAL TYPEELASTIC

MATERIAL ID 1

DENSITY 1.000E+00

MATERIAL PROPERTIES:

= 1.000E+07 = 0.000E+00 YOUNGS MODULUS

POISSONS RATIO

FUNCTION DEFINITIONS

FUNCTION ID 1 NUMBER OF POINTS 2

2.000E+01

S N F(S) 0.000E+00 0.000E+00 2.000E+00

NO DISPLACEMENT BOUNDARY CONDITIONS

NODE SET FLAG DIRECTION

> 2 Y 2 Х

PRESCRIBED NODAL FORCE BOUNDARY CONDITIONS

A0 NODE SET DIRECTION FUNCTION SCALE ID FACTOR FLAG 1 -1.000E+00 1 Y

> END OF DATA INPUT PHASE 1.000E-02 CPU SECONDS USED 1222 WORDS ALLOCATED

END OF DATA INITIALIZATION PHASE 0.000E+00 CPU SECONDS USED 21646 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

NODAL	ELEMENT	GLOBAL
DISPLX	SIGXX	FX
DISPLY	SIGYY	FY
	SIGZZ	RX
	TAUXY	RY
		ITER
		RMAG

**** PLOT TAPE WRITTEN FOR THE INITIAL STATE AT TIME = 0.000E+00 ****

STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
310	5.000E-03	5.000E-03	1.000E+00	5.000E-02	1.512E-02	30.25	310
620	5.000E-03	5.000E-03	9.915E-01	5.000E-02	1.119E-02	22.38	620
930	5.000E-03	5.000E-03	9.970E-01	5.000E-02	1.030E-02	20.60	930
1240	5.000E-03	5.000E-03	9.993E-01	5.000E-02	9.320E-03	18.64	1240
1550	5.000E-03	5.000E-03	9.969E-01	5.000E-02	8.638E-03	17.28	1550
1860	5.000E-03	5.000E-03	9.970E-01	5.000E-02	8.180E-03	16.36	1860
2170	5.000E-03	5.000E-03	1.000E+00	5.000E-02	8.042E-03	16.08	2170
2480	5.000E-03	5.000E-03	9.992E-01	5.000E-02	7.971E-03	15.94	2480
2790	5.000E-03	5.000E-03	9.995E-01	5.000E-02	7.915E-03	15.83	2790
3100	5.000E-03	5.000E-03	9.995E-01	5.000E-02	7.738E-03	15.48	3100
3410	5.000E-03	5.000E-03	9.997E-01	5.000E-02	7.553E-03	15.11	3410
3720	5.000E-03	5.000E-03	9.996E-01	5.000E-02	7.303E-03	14.61	3720
4030	5.000E-03	5.000E-03	9.996E-01	5.000E-02	7.028E-03	14.06	4030
4340	5.000E-03	5.000E-03	9.995E-01	5.000E-02	6.802E-03	13.60	4340
4650	5.000E-03	5.000E-03	9.995E-01	5.000E-02	6.514E-03	13.03	4650
4960	5.000E-03	5.000E-03	9.994E-01	5.000E-02	6.246E-03	12.49	4960
5270	5.000E-03	5.000E-03	9.994E-01	5.000E-02	5.983E-03	11.97	5270
5580	5.000E-03	5.000E-03	9.994E-01	5.000E-02	5.696E-03	11.39	5580
5890	5.000E-03	5.000E-03	9.994E-01	5.000E-02	5.447E-03	10.89	5890
6200	5.000E-03	5.000E-03	9.994E-01	5.000E-02	5.211E-03	10.42	6200
6510	5.000E-03	5.000E-03	9.994E-01	5.000E-02	4.967E-03	9.93	6510
6820	5.000E-03	5.000E-03	9.995E-01	5.000E-02	4.728E-03	9.46	6820
7130	5.000E-03	5.000E-03	9.995E-01	5.000E-02	4.480E-03	8.96	7130
7440	5.000E-03	5.000E-03	9.995E-01	5.000E-02	4.238E-03	8.48	7440
7750	5.000E-03	5.000E-03	9.995E-01	5.000E-02	4.013E-03	8.03	7750
8060	5.000E-03	5.000E-03	9.995E-01	5.000E-02	3.794E-03	7.59	8060
8370	5.000E-03	5.000E-03	9.995E-01	5.000E-02	3.587E-03	7.17	8370
8680	5.000E-03	5.000E-03	9.994E-01	5.000E-02	3.385E-03	6.77	8680
8990	5.000E-03	5.000E-03	9.994E-01	5.000E-02	3.196E-03	6.39	8990
9300	5.000E-03	5.000E-03	9.994E-01	5.000E-02	3.014E-03	6.03	9300
9610	5.000E-03	5.000E-03	9.994E-01	5.000E-02	2.841E-03	5.68	9610
9920	5.000E-03	5.000E-03	9.994E-01	5.000E-02	2.684E-03	5.37	9920
10230	5.000E-03	5.000E-03	9.994E-01	5.000E-02	2.527E-03	5.05	10230
10540	5.000E-03	5.000E-03	9.995E-01	5.000E-02	2.381E-03	4.76	10540
10850	5.000E-03	5.000E-03	9.995E-01	5.000E-02	2.235E-03	4.47	10850
11160	5.000E-03	5.000E-03	9.995E-01	5.000E-02	2.095E-03	4.19	11160
11470	5.000E-03	5.000E-03	9.995E-01	5.000E-02	1.969E-03	3.94	11470

				-			
11780	5.000E-03	5.000E-03	9.995E-01	5.000E-02	1.846E-03	3 60	11700
12090	5.000E-03	5.000E-03	9.995E-01 9.994E-01	5.000E-02	1.730E-03	3.69 3.46	11780 12090
12400	5.000E-03	5.000E-03	9.994E-01	5.000E-02	1.624E-03	3.25	12400
12710	5.000E-03	5.000E-03	9.994E-01	5.000E-02	1.520E-03		
				5.000E-02		3.04	12710
13020	5.000E-03	5.000E-03	9.994E-01		1.426E-03	2.85	13020
13330	5.000E-03	5.000E-03	9.994E-01	5.000E-02	1.337E-03	2.67	13330
13640	5.000E-03	5.000E-03	9.994E-01	5.000E-02	1.251E-03		13640
13950	5.000E-03	5.000E-03	9.994E-01	5.000E-02	1.174E-03	2.35	13950
14260	5.000E-03	5.000E-03	9.995E-01	5.000E-02	1.098E-03	2.20	14260
14570	5.000E-03	5.000E-03	9.995E-01	5.000E-02	1.025E-03	2.05	14570
14880	5.000E-03	5.000E-03	9.995E-01	5.000E-02	9.584E~04	1.92	14880
15190	5.000E-03	5.000E-03	9.995E-01	5.000E-02	8.937E-04	1.79	15190
15500	5.000E-03	5.000E-03	9.995E-01	5.000E-02	8.355E-04	1.67	15500
15810	5.000E-03	5.000E-03	9.994E-01	5.000E-02	7.803E-04	1.56	15810
16120	5.000E-03	5.000E-03	9.994E-01	5.000E-02	7.274E-04	1.45	16120
16430	5.000E-03	5.000E-03	9.994E-01	5.000E-02	6.798E-04	1.36	16430
16740	5.000E-03	5.000E-03	9.994E-01	5.000E-02	6.345E-04	1.27	16740
17050	5.000E-03	5.000E-03	9.994E-01	5.000E-02	5.919E-04	1.18	17050
17360	5.000E-03	5.000E-03	9.994E-01	5.000E-02	5.531E-04	1.11	17360
17670	5.000E-03	5.000E-03	9.994E-01	5.000E-02	5.157E-04	1.03	17670
17980	5.000E-03	5.000E-03	9.995E-01	5.000E~02	4.809E-04	0.96	17980
18290	5.000E-03	5.000E-03	9.995E-01	5.000E-02	4.482E-04	0.90	18290
18600	5.000E-03	5.000E-03	9.995E-01	5.000E-02	4.169E-04	0.83	18600
18910	5.000E-03	5.000E-03	9.995E-01	5.000E-02	3.885E-04	0.78	18910
19220	5.000E-03	5.000E-03	9.995E-01	5.000E-02	3.617E-04	0.73	19220
19530	5.000E-03	5.000E-03	9.994E-01	5.000E-02	3.367E-04	0.67	19220
19840	5.000E-03	5.000E-03	9.994E-01	5.000E-02	3.135E-04	0.63	19840
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
SIEF	1 1.1111						
		Carre	P. V. ALLIAND		LOAD MODM	I MIRAL AND 'H'	CALLOC
310	1 000E-02	STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
310	1.000E-02	5.000E-03	1.000E+00	1.000E-01	4.686E-03	4.69	20310
620	1.000E-02	5.000E-03 5.000E-03	1.000E+00 1.000E+00	1.000E-01 1.000E-01	4.686E-03 3.840E-03	4.69 3.84	20310 20620
620 930	1.000E-02 1.000E-02	5.000E-03 5.000E-03 5.000E-03	1.000E+00 1.000E+00 1.000E+00	1.000E-01 1.000E-01 1.000E-01	4.686E-03 3.840E-03 1.941E-03	4.69 3.84 1.94	20310 20620 20930
620 930 1240	1.000E-02 1.000E-02 1.000E-02	5.000E-03 5.000E-03 5.000E-03 5.000E-03	1.000E+00 1.000E+00 1.000E+00 1.000E+00	1.000E-01 1.000E-01 1.000E-01 1.000E-01	4.686E-03 3.840E-03 1.941E-03 1.344E-03	4.69 3.84 1.94 1.34	20310 20620 20930 21240
620 930 1240 1550	1.000E-02 1.000E-02 1.000E-02 1.000E-02	5.000E-03 5.000E-03 5.000E-03 5.000E-03	1.000E+00 1.000E+00 1.000E+00 1.000E+00	1.000E-01 1.000E-01 1.000E-01 1.000E-01	4.686E-03 3.840E-03 1.941E-03 1.344E-03 3.507E-03	4.69 3.84 1.94 1.34 3.51	20310 20620 20930 21240 21550
620 930 1240 1550 1860	1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02	5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01	4.686E-03 3.840E-03 1.941E-03 1.344E-03 3.507E-03 4.757E-03	4.69 3.84 1.94 1.34 3.51 4.76	20310 20620 20930 21240 21550 21860
620 930 1240 1550 1860 2170	1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02	5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01	4.686E-03 3.840E-03 1.941E-03 1.344E-03 3.507E-03 4.757E-03 4.458E-03	4.69 3.84 1.94 1.34 3.51 4.76 4.46	20310 20620 20930 21240 21550 21860 22170
620 930 1240 1550 1860 2170 2480	1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02	5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01	4.686E-03 3.840E-03 1.941E-03 1.344E-03 3.507E-03 4.757E-03 4.458E-03 2.762E-03	4.69 3.84 1.94 1.34 3.51 4.76 4.46 2.76	20310 20620 20930 21240 21550 21860 22170 22480
620 930 1240 1550 1860 2170 2480 2790	1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02	5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01	4.686E-03 3.840E-03 1.941E-03 1.344E-03 3.507E-03 4.757E-03 4.458E-03 2.762E-03 1.083E-03	4.69 3.84 1.94 1.34 3.51 4.76 4.46 2.76 1.08	20310 20620 20930 21240 21550 21860 22170 22480 22790
620 930 1240 1550 1860 2170 2480	1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02	5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01	4.686E-03 3.840E-03 1.941E-03 1.344E-03 3.507E-03 4.757E-03 4.458E-03 2.762E-03	4.69 3.84 1.94 1.34 3.51 4.76 4.46 2.76	20310 20620 20930 21240 21550 21860 22170 22480
620 930 1240 1550 1860 2170 2480 2790	1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02	5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01	4.686E-03 3.840E-03 1.941E-03 1.344E-03 3.507E-03 4.757E-03 4.458E-03 2.762E-03 1.083E-03	4.69 3.84 1.94 1.34 3.51 4.76 4.46 2.76 1.08	20310 20620 20930 21240 21550 21860 22170 22480 22790
620 930 1240 1550 1860 2170 2480 2790 3100	1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02	5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01	4.686E-03 3.840E-03 1.941E-03 1.344E-03 3.507E-03 4.757E-03 4.458E-03 2.762E-03 1.083E-03 2.751E-03	4.69 3.84 1.94 1.34 3.51 4.76 4.46 2.76 1.08 2.75	20310 20620 20930 21240 21550 21860 22170 22480 22790 23100
620 930 1240 1550 1860 2170 2480 2790	1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02	5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01	4.686E-03 3.840E-03 1.941E-03 1.344E-03 3.507E-03 4.757E-03 4.458E-03 2.762E-03 1.083E-03 2.751E-03	4.69 3.84 1.94 1.34 3.51 4.76 4.46 2.76 1.08 2.75	20310 20620 20930 21240 21550 21860 22170 22480 22790 23100
620 930 1240 1550 1860 2170 2480 2790 3100	1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02	5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01	4.686E-03 3.840E-03 1.941E-03 1.344E-03 3.507E-03 4.757E-03 4.458E-03 2.762E-03 1.083E-03 2.751E-03 RESIDUAL LOAD NORM	4.69 3.84 1.94 1.34 3.51 4.76 4.46 2.76 1.08 2.75	20310 20620 20930 21240 21550 21860 22170 22480 22790 23100 TOTAL STEPS
620 930 1240 1550 1860 2170 2480 2790 3100 STEP	1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02	5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 DAMPING FACTOR 1.000E+00	1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 APPLIED LOAD NORM 5.000E-01	4.686E-03 3.840E-03 1.941E-03 1.344E-03 3.507E-03 4.757E-03 4.458E-03 2.762E-03 1.083E-03 2.751E-03 RESIDUAL LOAD NORM 1.265E-02	4.69 3.84 1.94 1.34 3.51 4.76 4.46 2.76 1.08 2.75 PERCENT IMBALANCE 2.53	20310 20620 20930 21240 21550 21860 22170 22480 22790 23100 TOTAL STEPS 24820
620 930 1240 1550 1860 2170 2480 2790 3100 STEP	1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 TIME 5.000E-02 5.000E-02	5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 TIME STEP 5.000E-03 5.000E-03	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 DAMPING FACTOR 1.000E+00	1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 APPLIED LOAD NORM 5.000E-01 5.000E-01	4.686E-03 3.840E-03 1.941E-03 1.344E-03 3.507E-03 4.757E-03 4.458E-03 2.762E-03 1.083E-03 2.751E-03 RESIDUAL LOAD NORM 1.265E-02 8.421E-03	4.69 3.84 1.94 1.34 3.51 4.76 4.46 2.76 1.08 2.75 PERCENT IMBALANCE 2.53 1.68	20310 20620 20930 21240 21550 21860 22170 22480 22790 23100 TOTAL STEPS 24820 25130
620 930 1240 1550 1860 2170 2480 2790 3100 STEP 310 620 930	1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 TIME 5.000E-02 5.000E-02	5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 TIME STEP 5.000E-03 5.000E-03	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 DAMPING FACTOR 1.000E+00 1.000E+00 9.758E-01	1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 5.000E-01 5.000E-01	4.686E-03 3.840E-03 1.941E-03 1.344E-03 3.507E-03 4.757E-03 4.458E-03 2.762E-03 1.083E-03 2.751E-03 RESIDUAL LOAD NORM 1.265E-02 8.421E-03 9.238E-03	4.69 3.84 1.94 1.34 3.51 4.76 4.46 2.76 1.08 2.75 PERCENT IMBALANCE 2.53 1.68 1.85	20310 20620 20930 21240 21550 21860 22170 22480 22790 23100 TOTAL STEPS 24820 25130 25440
620 930 1240 1550 1860 2170 2480 2790 3100 STEP 310 620 930 1240	1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 TIME 5.000E-02 5.000E-02 5.000E-02	5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 DAMPING FACTOR 1.000E+00 1.000E+00 9.758E-01 1.000E+00	1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 5.000E-01 5.000E-01 5.000E-01	4.686E-03 3.840E-03 1.941E-03 1.344E-03 3.507E-03 4.757E-03 4.458E-03 2.762E-03 1.083E-03 2.751E-03 RESIDUAL LOAD NORM 1.265E-02 8.421E-03 9.238E-03 1.106E-02	4.69 3.84 1.94 1.34 3.51 4.76 4.46 2.76 1.08 2.75 PERCENT IMBALANCE 2.53 1.68 1.85 2.21	20310 20620 20930 21240 21550 21860 22170 22480 22790 23100 TOTAL STEPS 24820 25130 25440 25750
620 930 1240 1550 1860 2170 2480 2790 3100 STEP 310 620 930 1240 1550	1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02	5.000E-03	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 DAMPING FACTOR 1.000E+00 1.000E+00 9.758E-01 1.000E+00	1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01	4.686E-03 3.840E-03 1.941E-03 1.344E-03 3.507E-03 4.757E-03 4.458E-03 2.762E-03 1.083E-03 2.751E-03 RESIDUAL LOAD NORM 1.265E-02 8.421E-03 9.238E-03 1.106E-02 1.270E-02	4.69 3.84 1.94 1.34 3.51 4.76 4.46 2.76 1.08 2.75 PERCENT IMBALANCE 2.53 1.68 1.85 2.21 2.54	20310 20620 20930 21240 21550 21860 22170 22480 22790 23100 TOTAL STEPS 24820 25130 25440 25750 26060
620 930 1240 1550 1860 2170 2480 2790 3100 STEP 310 620 930 1240 1550 1860	1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02	5.000E-03	1.000E+00	1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01	4.686E-03 3.840E-03 1.941E-03 1.344E-03 3.507E-03 4.757E-03 4.458E-03 2.762E-03 1.083E-03 2.751E-03 RESIDUAL LOAD NORM 1.265E-02 8.421E-03 9.238E-03 1.106E-02 1.270E-02 1.051E-02	4.69 3.84 1.94 1.34 3.51 4.76 4.46 2.76 1.08 2.75 PERCENT IMBALANCE 2.53 1.68 1.85 2.21 2.54 2.10	20310 20620 20930 21240 21550 21860 22170 22480 22790 23100 TOTAL STEPS 24820 25130 25440 25750 26060 26370
620 930 1240 1550 1860 2170 2480 2790 3100 STEP 310 620 930 1240 1550 1860 2170	1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02	5.000E-03	1.000E+00	1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01	4.686E-03 3.840E-03 1.941E-03 1.344E-03 3.507E-03 4.757E-03 4.458E-03 2.762E-03 1.083E-03 2.751E-03 RESIDUAL LOAD NORM 1.265E-02 8.421E-03 9.238E-03 1.106E-02 1.270E-02 1.051E-02 8.155E-03	4.69 3.84 1.94 1.34 3.51 4.76 4.46 2.76 1.08 2.75 PERCENT IMBALANCE 2.53 1.68 1.85 2.21 2.54 2.10 1.63	20310 20620 20930 21240 21550 21860 22170 22480 22790 23100 TOTAL STEPS 24820 25130 25440 25750 26060 26370 26680
620 930 1240 1550 1860 2170 2480 2790 3100 STEP 310 620 930 1240 1550 1860 2170 2480	1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02	5.000E-03	1.000E+00	1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01	4.686E-03 3.840E-03 1.941E-03 1.344E-03 3.507E-03 4.757E-03 4.458E-03 2.762E-03 1.083E-03 2.751E-03 RESIDUAL LOAD NORM 1.265E-02 8.421E-03 9.238E-03 1.106E-02 1.270E-02 1.051E-02 8.155E-03 7.432E-03	4.69 3.84 1.94 1.34 3.51 4.76 4.46 2.76 1.08 2.75 PERCENT IMBALANCE 2.53 1.68 1.85 2.21 2.54 2.10 1.63 1.49	20310 20620 20930 21240 21550 21860 22170 22480 22790 23100 TOTAL STEPS 24820 25130 25440 25750 26060 26370 26680 26990
620 930 1240 1550 1860 2170 2480 2790 3100 STEP 310 620 930 1240 1550 1860 2170 2480 2790	1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02	5.000E-03	1.000E+00	1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01	4.686E-03 3.840E-03 1.941E-03 1.344E-03 3.507E-03 4.757E-03 4.458E-03 2.762E-03 1.083E-03 2.751E-03 RESIDUAL LOAD NORM 1.265E-02 8.421E-03 9.238E-03 1.106E-02 1.270E-02 1.051E-02 8.155E-03 7.432E-03 9.770E-03	4.69 3.84 1.94 1.34 3.51 4.76 4.46 2.76 1.08 2.75 PERCENT IMBALANCE 2.53 1.68 1.85 2.21 2.54 2.10 1.63 1.49 1.95	20310 20620 20930 21240 21550 21860 22170 22480 22790 23100 TOTAL STEPS 24820 25130 25440 25750 26060 26370 26680 26990 27300
620 930 1240 1550 1860 2170 2480 2790 3100 STEP 310 620 930 1240 1550 1860 2170 2480 2790 3100	1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02	5.000E-03	1.000E+00	1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01	4.686E-03 3.840E-03 1.941E-03 1.344E-03 3.507E-03 4.757E-03 4.458E-03 2.762E-03 1.083E-03 2.751E-03 RESIDUAL LOAD NORM 1.265E-02 8.421E-03 9.238E-03 1.106E-02 1.270E-02 1.051E-02 8.155E-03 7.432E-03 9.770E-03 1.160E-02	4.69 3.84 1.94 1.34 3.51 4.76 4.46 2.76 1.08 2.75 PERCENT IMBALANCE 2.53 1.68 1.85 2.21 2.54 2.10 1.63 1.49 1.95 2.32	20310 20620 20930 21240 21550 21860 22170 22480 22790 23100 TOTAL STEPS 24820 25130 25440 25750 26060 26370 26680 26990 27300 27610
620 930 1240 1550 1860 2170 2480 2790 3100 STEP 310 620 930 1240 1550 1860 2170 2480 2790 3100 3410	1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02	5.000E-03	1.000E+00	1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01	4.686E-03 3.840E-03 1.941E-03 1.344E-03 3.507E-03 4.757E-03 4.458E-03 2.762E-03 1.083E-03 2.751E-03 RESIDUAL LOAD NORM 1.265E-02 8.421E-03 9.238E-03 1.106E-02 1.270E-02 1.051E-02 8.155E-03 7.432E-03 9.770E-03 1.160E-02 1.207E-02	4.69 3.84 1.94 1.34 3.51 4.76 4.46 2.76 1.08 2.75 PERCENT IMBALANCE 2.53 1.68 1.85 2.21 2.54 2.10 1.63 1.49 1.95 2.32 2.41	20310 20620 20930 21240 21550 21860 22170 22480 22790 23100 TOTAL STEPS 24820 25130 25440 25750 26060 26370 26680 26990 27300 27610 27920
620 930 1240 1550 1860 2170 2480 2790 3100 STEP 310 620 930 1240 1550 1860 2170 2480 2790 3100 3410 3720	1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 5.000E-02	5.000E-03	1.000E+00	1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01	4.686E-03 3.840E-03 1.941E-03 1.344E-03 3.507E-03 4.757E-03 4.458E-03 2.762E-03 1.083E-03 2.751E-03 RESIDUAL LOAD NORM 1.265E-02 8.421E-03 9.238E-03 1.106E-02 1.270E-02 1.051E-02 8.155E-03 7.432E-03 9.770E-03 1.160E-02 1.207E-02 1.207E-02 1.044E-02	4.69 3.84 1.94 1.34 3.51 4.76 4.46 2.76 1.08 2.75 PERCENT IMBALANCE 2.53 1.68 1.85 2.21 2.54 2.10 1.63 1.49 1.95 2.32 2.41 2.09	20310 20620 20930 21240 21550 21860 22170 22480 22790 23100 TOTAL STEPS 24820 25130 25440 25750 26060 26370 26680 26990 27300 27610 27920 28230
620 930 1240 1550 1860 2170 2480 2790 3100 STEP 310 620 930 1240 1550 1860 2170 2480 2790 3100 3410	1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02	5.000E-03	1.000E+00	1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 1.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01 5.000E-01	4.686E-03 3.840E-03 1.941E-03 1.344E-03 3.507E-03 4.757E-03 4.458E-03 2.762E-03 1.083E-03 2.751E-03 RESIDUAL LOAD NORM 1.265E-02 8.421E-03 9.238E-03 1.106E-02 1.270E-02 1.051E-02 8.155E-03 7.432E-03 9.770E-03 1.160E-02 1.207E-02	4.69 3.84 1.94 1.34 3.51 4.76 4.46 2.76 1.08 2.75 PERCENT IMBALANCE 2.53 1.68 1.85 2.21 2.54 2.10 1.63 1.49 1.95 2.32 2.41	20310 20620 20930 21240 21550 21860 22170 22480 22790 23100 TOTAL STEPS 24820 25130 25440 25750 26060 26370 26680 26990 27300 27610 27920

STEP 310	TIME 9.000E-02	TIME STEP 5.000E-03	DAMPING FACTOR 1.000E+00	APPLIED LOAD NORM 9.000E-01	RESIDUAL LOAD NORM 2.420E-02	PERCENT IMBALANCE 2.69	TOTAL STEPS 30177
620	9.000E-02	5.000E-03	1.000E+00	9.000E-01	2.911E-02	3.23	30487
930	9.000E-02	5.000E-03	1.000E+00	9.000E-01	4.337E-02	4.82	30797
1240	9.000E-02	5.000E-03	1.000E+00	9.000E-01	4.410E-02	4.90	31107
1550	9.000E-02	5.000E-03	1.000E+00	9.000E-01	3.155E-02	3.51	31417
1860	9.000E-02	5.000E-03	1.000E+00	9.000E-01	2.058E-02	2.29	31727
2170	9.000E-02	5.000E-03	1.000E+00	9.000E-01	3.645E-02	4.05	32037
2480	9.000E-02	5.000E-03	1.000E+00	9.000E-01	5.245E-02	5.83	32347
2790	9.000E-02	5.000E-03	1.000E+00	9.000E-01	5.637E-02	6.26	32657
3100	9.000E-02	5.000E-03	1.000E+00	9.000E-01	4.513E-02	5.01	32967
3410	9.000E-02	5.000E-03	1.000E+00	9.000E-01	2.600E-02	2.89	33277
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
310	1.750E-01	5.000E-03	1.000E+00	1.750E+00	2.108E-02	1.20	34705
620	1.750E-01	5.000E-03	9.999E-01	1.750E+00	1.205E-02	0.69	35015
930	1.750E-01	5.000E-03	1.000E+00	1.750E+00	1.434E-02	0.82	35325
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
310	2.000E-01	5.000E-03	1.000E+00	2.000E+00	3.017E-02	1.51	36216
620	2.000E-01	5.000E-03	1.000E+00	2.000E+00	1.286E-02	0.64	36526
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
SIBE	IIME	STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
310	2.150E-01	5.000E-03	1.000E+00	2.150E+00	2.754E-02	1.28	37142
620	2.150E-01 2.150E-01	5.000E-03	1.000E+00	2.150E+00 2.150E+00	1.388E-02	0.65	37452
020	2.1302 01	3.0002 03	1.0001.00	2.1302100	1.3002 02	0.03	37132
***	* PLOT TAPE	WRITTEN AT	TIME = 5.0	000E-01 ST	EP NUMBER	100 ****	
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
STEP	TIME	TIME STEP	DAMPING FACTOR	APPLIED LOAD NORM	RESIDUAL LOAD NORM	PERCENT IMBALANCE	TOTAL STEPS
STEP	TIME 7.350E-01						
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
310	7.350E-01	STEP 5.000E-03	FACTOR 1.000E+00	LOAD NORM 7.350E+00 7.350E+00	LOAD NORM 7.627E-02	IMBALANCE 1.04	STEPS 41011
310 620	7.350E-01 7.350E-01	STEP 5.000E-03 5.000E-03	FACTOR 1.000E+00 1.000E+00	LOAD NORM 7.350E+00	LOAD NORM 7.627E-02 5.694E-02	IMBALANCE 1.04 0.77	STEPS 41011 41321
310 620 930	7.350E-01 7.350E-01 7.350E-01	STEP 5.000E-03 5.000E-03 5.000E-03	FACTOR 1.000E+00 1.000E+00 1.000E+00	LOAD NORM 7.350E+00 7.350E+00 7.350E+00	LOAD NORM 7.627E-02 5.694E-02 6.723E-02	IMBALANCE 1.04 0.77 0.91	STEPS 41011 41321 41631
310 620 930 1240 1550	7.350E-01 7.350E-01 7.350E-01 7.350E-01 7.350E-01	STEP 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03	FACTOR 1.000E+00 1.000E+00 1.000E+00 1.000E+00	LOAD NORM 7.350E+00 7.350E+00 7.350E+00 7.350E+00 7.350E+00	LOAD NORM 7.627E-02 5.694E-02 6.723E-02 8.193E-02 6.455E-02	1.04 0.77 0.91 1.11 0.88	STEPS 41011 41321 41631 41941 42251
310 620 930 1240	7.350E-01 7.350E-01 7.350E-01 7.350E-01	STEP 5.000E-03 5.000E-03 5.000E-03 5.000E-03 5.000E-03	FACTOR 1.000E+00 1.000E+00 1.000E+00 1.000E+00 DAMPING	LOAD NORM 7.350E+00 7.350E+00 7.350E+00 7.350E+00 7.350E+00	LOAD NORM 7.627E-02 5.694E-02 6.723E-02 8.193E-02 6.455E-02	IMBALANCE 1.04 0.77 0.91 1.11 0.88	STEPS 41011 41321 41631 41941 42251
310 620 930 1240 1550	7.350E-01 7.350E-01 7.350E-01 7.350E-01 7.350E-01	STEP 5.000E-03 5.000E-03 5.000E-03 5.000E-03 TIME STEP	FACTOR 1.000E+00 1.000E+00 1.000E+00 1.000E+00 DAMPING FACTOR	LOAD NORM 7.350E+00 7.350E+00 7.350E+00 7.350E+00 7.350E+00 APPLIED LOAD NORM	LOAD NORM 7.627E-02 5.694E-02 6.723E-02 8.193E-02 6.455E-02 RESIDUAL LOAD NORM	1.04 0.77 0.91 1.11 0.88 PERCENT IMBALANCE	STEPS 41011 41321 41631 41941 42251 TOTAL STEPS
310 620 930 1240 1550 STEP	7.350E-01 7.350E-01 7.350E-01 7.350E-01 7.350E-01 TIME 7.400E-01	STEP 5.000E-03 5.000E-03 5.000E-03 5.000E-03 TIME STEP 5.000E-03	FACTOR 1.000E+00 1.000E+00 1.000E+00 1.000E+00 DAMPING FACTOR 1.000E+00	LOAD NORM 7.350E+00 7.350E+00 7.350E+00 7.350E+00 7.350E+00 APPLIED LOAD NORM 7.400E+00	LOAD NORM 7.627E-02 5.694E-02 6.723E-02 8.193E-02 6.455E-02 RESIDUAL LOAD NORM 5.409E-02	1.04 0.77 0.91 1.11 0.88 PERCENT IMBALANCE 0.73	STEPS 41011 41321 41631 41941 42251 TOTAL STEPS 42836
310 620 930 1240 1550 STEP 310 620	7.350E-01 7.350E-01 7.350E-01 7.350E-01 7.350E-01 TIME 7.400E-01 7.400E-01	STEP 5.000E-03 5.000E-03 5.000E-03 5.000E-03 TIME STEP 5.000E-03 5.000E-03	FACTOR 1.000E+00 1.000E+00 1.000E+00 1.000E+00 DAMPING FACTOR 1.000E+00 1.000E+00	LOAD NORM 7.350E+00 7.350E+00 7.350E+00 7.350E+00 7.350E+00 APPLIED LOAD NORM 7.400E+00 7.400E+00	LOAD NORM 7.627E-02 5.694E-02 6.723E-02 8.193E-02 6.455E-02 RESIDUAL LOAD NORM 5.409E-02 8.156E-02	1.04 0.77 0.91 1.11 0.88 PERCENT IMBALANCE 0.73 1.10	STEPS 41011 41321 41631 41941 42251 TOTAL STEPS 42836 43146
310 620 930 1240 1550 STEP 310 620 930	7.350E-01 7.350E-01 7.350E-01 7.350E-01 7.350E-01 TIME 7.400E-01 7.400E-01 7.400E-01	STEP 5.000E-03 5.000E-03 5.000E-03 5.000E-03 TIME STEP 5.000E-03 5.000E-03 5.000E-03	FACTOR 1.000E+00 1.000E+00 1.000E+00 1.000E+00 DAMPING FACTOR 1.000E+00 1.000E+00	LOAD NORM 7.350E+00 7.350E+00 7.350E+00 7.350E+00 7.350E+00 APPLIED LOAD NORM 7.400E+00 7.400E+00 7.400E+00	LOAD NORM 7.627E-02 5.694E-02 6.723E-02 8.193E-02 6.455E-02 RESIDUAL LOAD NORM 5.409E-02 8.156E-02 7.488E-02	1.04 0.77 0.91 1.11 0.88 PERCENT IMBALANCE 0.73 1.10 1.01	TOTAL STEPS 41011 41321 41631 41941 42251 TOTAL STEPS 42836 43146 43456
310 620 930 1240 1550 STEP 310 620 930 1240	7.350E-01 7.350E-01 7.350E-01 7.350E-01 7.350E-01 TIME 7.400E-01 7.400E-01 7.400E-01 7.400E-01	STEP 5.000E-03 5.000E-03 5.000E-03 5.000E-03 TIME STEP 5.000E-03 5.000E-03 5.000E-03	FACTOR 1.000E+00 1.000E+00 1.000E+00 1.000E+00 DAMPING FACTOR 1.000E+00 1.000E+00	LOAD NORM 7.350E+00 7.350E+00 7.350E+00 7.350E+00 7.350E+00 APPLIED LOAD NORM 7.400E+00 7.400E+00 7.400E+00 7.400E+00	LOAD NORM 7.627E-02 5.694E-02 6.723E-02 8.193E-02 6.455E-02 RESIDUAL LOAD NORM 5.409E-02 8.156E-02 7.488E-02 8.544E-02	1.04 0.77 0.91 1.11 0.88 PERCENT IMBALANCE 0.73 1.10 1.01	TOTAL STEPS 41011 41321 41631 41941 42251 TOTAL STEPS 42836 43146 43456 43766
310 620 930 1240 1550 STEP 310 620 930	7.350E-01 7.350E-01 7.350E-01 7.350E-01 7.350E-01 TIME 7.400E-01 7.400E-01 7.400E-01	STEP 5.000E-03 5.000E-03 5.000E-03 5.000E-03 TIME STEP 5.000E-03 5.000E-03 5.000E-03	FACTOR 1.000E+00 1.000E+00 1.000E+00 1.000E+00 DAMPING FACTOR 1.000E+00 1.000E+00	LOAD NORM 7.350E+00 7.350E+00 7.350E+00 7.350E+00 7.350E+00 APPLIED LOAD NORM 7.400E+00 7.400E+00 7.400E+00	LOAD NORM 7.627E-02 5.694E-02 6.723E-02 8.193E-02 6.455E-02 RESIDUAL LOAD NORM 5.409E-02 8.156E-02 7.488E-02	1.04 0.77 0.91 1.11 0.88 PERCENT IMBALANCE 0.73 1.10 1.01	TOTAL STEPS 41011 41321 41631 41941 42251 TOTAL STEPS 42836 43146 43456

							_ r ugo
04.50		5 000- 00					
2170	7.400E-01	5.000E-03	9.986E-01	7.400E+00	8.286E-02	1.12	44696
2480	7.400E-01	5.000E-03	1.000E+00	7.400E+00	8.095E-02	1.09	45006
2790	7.400E-01	5.000E-03	1.000E+00	7.400E+00	8.610E-02	1.16	45316
3100	7.400E-01	5.000E-03	1.000E+00	7.400E+00	7.019E-02	0.95	45626
3410	7.400E-01	5.000E-03	1.000E+00	7.400E+00	6.198E-02	0.84	45936
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
5151	11110	STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
310	7.700E-01	5.000E-03	9.997E-01	7.700E+00	4.450E-02	0.58	46646
620	7.700E-01 7.700E-01	5.000E-03	1.000E+00	7.700E+00	4.265E-02	0.55	46956
020	7.700E-01	J.000E-03	1.000E+00	7.700E+00	4.2056-02	0.55	40330
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
310	7.750E-01	5.000E-03	1.000E+00	7.750E+00	6.642E-02	0.86	47527
620	7.750E-01	5.000E-03	1.000E+00	7.750E+00	7.396E-02	0.95	47837
930	7.750E-01	5.000E-03	1.000E+00	7.750E+00	6.622E-02	0.85	48147
1240	7.750E-01	5.000E-03	1.000E+00	7.750E+00	7.426E-02	0.96	48457
1550	7.750E-01	5.000E-03	9.998E-01	7.750E+00	6.917E-02	0.89	48767
1860	7.750E-01	5.000E-03	1.000E+00	7.750E+00	5.202E-02	0.67	49077
2170	7.750E-01	5.000E-03	1.000E+00	7.750E+00	5.476E-02	0.71	49387
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
3101	1 11115	STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
310	7.800E-01	5.000E-03	1.000E+00	7.800E+00	9.836E-02	1.26	49836
620	7.800E-01 7.800E-01	5.000E-03	1.000E+00	7.800E+00	9.414E-02	1.21	50146
930	7.800E-01 7.800E-01	5.000E-03	1.000E+00	7.800E+00	7.683E-02	0.99	50456
1240	7.800E-01 7.800E-01	5.000E-03	1.000E+00	7.800E+00	8.371E-02	1.07	50766
		5.000E-03	1.000E+00	7.800E+00 7.800E+00			
1550	7.800E-01				6.146E-02	0.79	51076
1860	7.800E-01	5.000E-03	1.000E+00	7.800E+00	6.605E-02	0.85	51386
2170	7.800E-01	5.000E-03	1.000E+00	7.800E+00	9.970E-02	1.28	51696
2480	7.800E-01	5.000E-03	1.000E+00	7.800E+00	8.841E-02	1.13	52006
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
310	8.200E-01	5.000E-03	1.000E+00	8.200E+00	4.274E-02	0.52	52818
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
310	8.250E-01	5.000E-03	1.000E+00	8.250E+00	5.651E-02	0.69	53212
620	8.250E-01	5.000E-03	1.000E+00	8.250E+00	4.739E-02	0.57	53522
930	8.250E-01	5.000E-03	1.000E+00	8.250E+00	4.671E-02	0.57	53832
1240	8.250E-01	5.000E-03	9.983E-01	8.250E+00	4.674E-02	0.57	54142
1550	8.250E-01	5.000E-03	9.996E-01	8.250E+00	4.572E-02	0.55	54452
1860	8.250E-01	5.000E-03	9.996E-01	8.250E+00	4.416E-02	0.54	54762
2170	8.250E-01	5.000E-03	9.996E-01	8.250E+00	4.334E-02	0.53	55072
2480	8.250E-01	5.000E-03	9.995E-01	8.250E+00	4.239E-02	0.51	55382
		-		2 -	-	-	
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
310	8.300E-01	5.000E-03	1.000E+00	8.300E+00	6.544E-02	0.79	55779
620	8.300E-01	5.000E-03	1.000E+00	8.300E+00	7.876E-02	0.79	56089
930	8.300E-01	5.000E-03	9.993E-01	8.300E+00	7.682E-02	0.93	56399
220	0.5006-01	J. 000E-03	ン・フンフローロエ	0.500E+00	/.UUZE-UZ	0.33	30393

1040			4 000= 00			0.01		
1240	8.300E-01	5.000E-03	1.000E+00	8.300E+00	6.683E-02	0.81	56709	
1550	8.300E-01	5.000E-03	1.000E+00	8.300E+00	5.380E-02	0.65	57019	
1860	8.300E-01	5.000E-03	1.000E+00	8.300E+00	4.703E-02	0.57	57329	
STEP	лтме	TIME	DAMBING	APPLIED	DECEDIAL	DEDCEME	moma r	
SIEF	TIME	STEP	DAMPING FACTOR	LOAD NORM	RESIDUAL LOAD NORM	PERCENT IMBALANCE	TOTAL STEPS	
310	8.350E-01	5.000E-03	1.000E+00	8.350E+00	4.483E-02	0.54	57885	
310	6.330E-01	3.000E-03	1.000E+00	6.330E+00	4.463E-02	0.54	37663	
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL	
0121	111111	STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS	
310	8.400E-01	5.000E-03	1.000E+00	8.400E+00	4,528E-02	0.54	58407	
310	0.4001 01	3.0002 03	1.0001.00	0.4001.00	4.5200 02	0.54	30407	
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL	
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS	
310	9.400E-01	5.000E-03	1.000E+00	9.400E+00	5.008E-02	0.53	60948	
620	9.400E-01	5.000E-03	9.999E-01	9.400E+00	4.963E-02	0.53	61258	
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL	
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS	
310	9.450E-01	5.000E-03	9.996E-01	9.450E+00	5.072E-02	0.54	61737	
620	9.450E-01	5.000E-03	1.000E+00	9.450E+00	4.981E-02	0.53	62047	
930	9.450E-01	5.000E-03	1.000E+00	9.450E+00	4.882E-02	0.52	62357	
1240	9.450E-01	5.000E-03	9.996E-01	9.450E+00	4.831E-02	0.51	62667	
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL	
24.0		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS	
310	9.500E-01	5.000E-03	1.000E+00	9.500E+00	6.120E-02	0.64	63161	
CMED	m TMD	m = 1.45	DAMPING	3 DD4 TDD	DEGIDINA	DDD CEVE	moma r	
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL STEPS	
310	9.550E-01	STEP 5.000E-03	FACTOR 1.000E+00	LOAD NORM 9.550E+00	LOAD NORM 1.070E-01	IMBALANCE 1.12	63738	
620	9.550E-01 9.550E-01	5.000E-03	1.000E+00	9.550E+00	9.719E-02	1.12	64048	
930	9.550E-01	5.000E-03	1.000E+00	9.550E+00	8.582E-02	0.90	64358	
930	9.330E-01	3.000E-03	1.0005+00	9.550E+00	0.3026-02	0.90	04336	
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL	
	1 1110	STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS	
310	9.600E-01			9.600E+00		0.64	64906	
620	9.600E-01		1.000E+00		1.139E-01	1.19	65216	
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL	
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS	
310	9.650E-01	5.000E-03	1.000E+00	9.650E+00	6.040E-02	0.63	65797	
***	* PLOT TAPE	WRITTEN AT	TIME = 1.0	000E+00 ST	EP NUMBER	200 ****		

STEP TIME TIME DAMPING APPLIED RESIDUAL PERCENT TOTAL

		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
310	1.065E+00	5.000E-03	1.000E+00	1.065E+01	8.974E-02	0.84	66886
620	1.065E+00	5.000E-03	9.950E-01	1.065E+01	9.388E-02	0.88	67196
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
310	1.070E+00	5.000E-03	1.000E+00	1.070E+01	1.585E-01	1.48	67814
620	1.070E+00	5.000E-03	1.000E+00	1.070E+01	1.832E-01	1.71	68124
930	1.070E+00	5.000E-03	1.000E+00	1.070E+01	1.414E-01	1.32	68434
1240	1.070E+00	5.000E-03	1.000E+00	1.070E+01	1.482E-01	1.39	68744
1550	1.070E+00	5.000E-03	9.999E-01	1.070E+01	1.559E-01	1.46	69054
1860	1.070E+00	5.000E-03	1.000E+00	1.070E+01	1.088E-01	1.02	69364
2170	1.070E+00	5.000E-03	1.000E+00	1.070E+01	1.830E-01	1.71	69674
2480	1.070E+00	5.000E-03	1.000E+00	1.070E+01	1.737E-01	1.62	69984
2790	1.070E+00	5.000E-03	1.000E+00	1.070E+01	1.343E-01	1.26	70294
3100	1.070E+00	5.000E-03	1.000E+00	1.070E+01	1.655E-01	1.55	70604
3410	1.070E+00	5.000E-03	9.995E-01	1.070E+01	7.469E-02		
3720		5.000E-03	1.000E+00	1.070E+01		0.70 1.35	70914
3720	1.070E+00	5.000E-03	1.0006+00	1.0/02+01	1.449E-01	1.35	71224
		•					
	m=145						
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
310	1.095E+00	5.000E-03	1.000E+00	1.095E+01	6.435E-02	0.59	71803
620	1.095E+00	5.000E-03	1.000E+00	1.095E+01	6.336E-02	0.58	72113
930	1.095E+00	5.000E-03	1.000E+00	1.095E+01	6.206E-02	0.57	72423
1240	1.095E+00	5.000E-03	9.997E-01	1.095E+01	6.096E-02	0.56	72733
1550	1.095E+00	5.000E-03	9.995E-01	1.095E+01	5.985E-02	0.55	73043
1860	1.095E+00	5.000E-03	9.994E-01	1.095E+01	5.896E-02	0.54	73353
2170	1.095E+00	5.000E-03	9.995E-01	1.095E+01	5.751E-02	0.53	73663
2480	1.095E+00	5.000E-03	9.995E-01	1.095E+01	5.498E-02	0.50	73973
						-	
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
310	1.100E+00	5.000E-03	1.000E+00	1.100E+01	7.057E~02	0.64	74316
620	1.100E+00	5.000E-03	1.000E+00	1.100E+01	6.369E-02	0.58	74626
930	1.100E+00	5.000E-03	1.000E+00	1.100E+01	6.261E-02	0.57	74936
1240	1.100E+00	5.000E-03	1.000E+00	1.100E+01	6.435E-02	0.59	75246
1550	1.100E+00	5.000E-03	1.000E+00	1.100E+01	6.175E-02	0.56	75556
1860	1.100E+00	5.000E-03	9.990E-01	1.100E+01	5.922E-02	0.54	75866
2170	1.100E+00	5.000E-03	9.996E-01	1.100E+01	5.786E-02	0.53	76176
		•					
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
~		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
310	1.105E+00	5.000E-03	1.000E+00	1.105E+01	6.293E-02	0.57	76620
620	1.105E+00	5.000E-03	1.000E+00	1.105E+01	5.724E-02	0.52	76930
020	1.1032.00	3.0002 03	1.0002.00	1.10001	0.,212 02	0.02	, 0,500
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
OTH	1 11111	STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
310	1.110E+00	5.000E-03	1.000E+00	1.110E+01	5.724E-02	0.52	77433
210	T. TTOE-00	J.000E-03	1.000E100	1.1100+01	J. / 24D-02	0.52	,,,,,,
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
SIEP	TIME	STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
310	1.435E+00	5.000E-03	1.000E+00	1.435E+01	9.762E-02	0.68	80006
210	1.433570	J.000E-03	1.0005+00	T.400E+0I	J.102E-02	0.00	00000

	TIME 1.445E+00 1.445E+00	5.000E-03		LOAD NORM 1.445E+01	RESIDUAL LOAD NORM 9.182E-02 1.310E-01		TOTAL STEPS 80648 80958
STEP 310	TIME 1.465E+00		FACTOR	LOAD NORM	RESIDUAL LOAD NORM 8.078E-02	IMBALANCE	TOTAL STEPS 81671
***	* PLOT TAPE	WRITTEN AT	TIME = 1.	500E+00 ST	EP NUMBER	300 ****	
STEP 310 620 930 1240		TIME STEP 5.000E-03 5.000E-03 5.000E-03	DAMPING FACTOR 1.000E+00 1.000E+00 1.000E+00 9.928E-01	LOAD NORM 1.805E+01 1.805E+01 1.805E+01	RESIDUAL LOAD NORM 1.325E-01 2.079E-01 3.305E-01 1.709E-01		
30	NTOS, VERSI TO 1 BEAM	5.000E-03 ON 2.1.7-DP WITH CONCEN	FACTOR 1.000E+00 , RUN ON 20 TRATED FOR	LOAD NORM 1.825E+01 0030612, AT CE - SANTOS	RESIDUAL LOAD NORM 9.342E-02 10:26:26 QA - 11/30/	IMBALANCE 0.51	TOTAL STEPS 84998
SUM NUM FIN SUM SUM SUM	MARY OF DAT BER OF ITER AL CONVERGE OF EXTERNA OF EXTERNA OF REACTIO	A AT STEP N ATIONS = NCE TOLERAN L FORCES IN L FORCES IN N FORCES IN	UMBER 40 22, To CE = 4.997 X-DIRECTIO Y-DIRECTIO X-DIRECTIO	0, TIME = 2 OTAL NUMBER E-01 ON = 0.000E ON =-2.000E ON = 2.259E	.000E+00 OF ITERATIO +00 +01 -01	NS = 862	282

4 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

E N D O F S O L U T I O N P H A S E 7.363E+01 CPU SECONDS USED 26226 WORDS ALLOCATED

**** PLOT TAPE WRITTEN AT TIME = 2.000E+00 STEP NUMBER 400 ****

APPENDIX D

Input/Output Data For Test Case 4

The following three sections present the input data, the distributed force subroutine, and the formatted output, respectively, for the distributed load function verification test.

FASTQ and SANTOS Input Data For The Distributed Load Function Problem

This section presents a listing of the FASTQ and SANTOS input data files that were used for the mesh generation and analysis of the distributed load function problem. Test Case 4 also required sant_beandl.dist and sant_distl.dist as input files. These files are binary and can be found in LIBSANTOS in CMS.

```
sant_distl.fsq
TITLE
  DISTRIBUTED LOAD PROBLEM - 16 ELEMENT
POINT 1
            0.
                   0.
POINT 2
            4.
                   0.
POINT 3
                   4.
            4.
POINT 4
                   4.
            Ο.
            str 1
LINE
                           Ω
                                   1.0
      1
            str 2
LINE
                                   1.0
      2
                      3 0
            str 3
LINE 3
                      4 0
                                   1.0
            str 1
LINE 4
                                  1.0
NODEBC 1 4
NODEBC
        2 1
SCHEME MP
                     -2
REGION 1
            1
                -1
                          -3 -4
END
sant_distl.i
TITLE
DISTRIBUTED LOAD PROBLEM - SANTOS QA - 12/4/94
PLANE STRAIN
MAXIMUM ITERATIONS, 10000
MAXIMUM TOLERANCE, 1000
MATERIAL, 1, ELASTIC, 1.0
YOUNGS MODULUS = 1.0E+7
POISSONS RATIO = 0.0
END
DISTRIBUTED LOAD
STEP CONTROL
  4,2.
END
PLOT TIME
 1,2.
END
OUTPUT TIME
 4,2.
END
NO DISPLACEMENT Y, 2
NO DISPLACEMENT X,1
```


EXIT

Distributed Force Subroutine For The Distributed Load Function Problem

This section presents a listing of the DISTL subroutine that was used in SANTOS to specify the distributed loading for the distributed load function problem analysis.

```
c.....program distl
c....this program calculates the distributed force for the qa test
c....problem for santos
c....programmer: J. F. Holland, Technadyne 12/1/94
      dimension fx(500), fy(500)
      common /gpa/ coord(500,2),numnod,numel
      character*16 ofile,mfile,jfile
c....open files
      ofile = 'sant_distl.dist'
      mfile = `sant_distl.g'
      jfile = 'sant_distl.log'
      open(unit=12, file=ofile, status='new', form='unformatted')
      open(unit=11, file=mfile, status='old', form='unformatted')
      open(unit=13, file=jfile, status='new', form='formatted')
С
      wa = 100.
      wb = 100.
      call genny
      write(*,25) numel, numnod
      format(/,t5,'# of elements = ',i5,2x,'# of nodes = ',i5)
 25
      i = 0
      do while (i.le. 2)
         fac = i
         n = 0
         do while ( n .lt. numnod )
            n = n + 1
            fx(n) = 0.
            fy(n) = 0.
        enddo
        mm = 21
        do while ( mm .1t. 25 )
          fy(mm) = fy(mm) + 114.286*fac
          fy(mm+1) = fy(mm+1) + 114.286*fac
          mm = mm + 1
        enddo
        write(12) fac, (fx(k), k = 1, numnod), (fy(m), m = 1, numnod)
c....force check
         fsum = 0.
         n = 0
         do while ( n .1t. numnod)
            n = n + 1
            fsum = fsum + fy(n)
```


Page 161

```
enddo
         write(*,30) fac,fsum
 30
         format(/,t10,'time = ',e11.4,2x,'total load = ',e11.4,/)
         write(13,35) fac
         write(13,40) (n, fy(n), n = 1, numnod)
 35
         format(/,t5,'time = ',e11.4,/)
         format(t10, 'node = ', i5, 2x, 'fy = ', e11.4)
         i = i + 1
      enddo
C
      close (11)
      close (12)
      close (13)
C
C
      stop
      end
С
C
      SUBROUTINE GENNY
С
C.....THIS SUBROUTINE READS THE FASTQ GENESIS DATA BASE
С
      COMMON /GPA/ COORD(500,2), NUMNOD, NUMEL
C
C....READ DATA FROM THE GENESIS FILE
С
      READ (11)
C
С
      READ (11) NUMNOD, NDIM, NUMEL, NELBLK, NUMNPS, LNPSNL, NUMESS, LESSEL,
     *LESSNL, IVERS
C
C....READ IN THE COORDINATE DATA
С
      READ (11) ( (COORD(I,J), I = 1,NUMNOD), J = 1,NDIM)
С
С
      return
      end
```

SANTOS Output For The Distributed Load Function Problem

The following section presents the SANTOS printed output for the distributed load function analysis. Because all pertinent information and results from the analysis are written to the plot file for post-processing, the printed output file simply echos input data and problem—descriptive information at the beginning, followed by information that tracks the convergence behavior of the solution, and a summary of CPU usage at the end.

```
sant_distl.o
```

SSSSSS	AAA	AAA	N	NN	TTTTTT	000	000	SSSSSS
SS	AA	AA	NN	NN	${f TT}$	00	00	SS
SS	AA	AA	NNN	NN	\mathbf{TT}	00	00	SS
SSSSS	AAAA	AAA	NN N	NN	${f TT}$	00	00	SSSSS
99	ΔΔ	Δ Δ	MM	MMM	ጥጥ	$\cap \cap$	00	99

June 2003 Page 162

SS AA AA NN NN TT OO OO SS SSSSSS AA AA NN N TT OOOOO SSSSSS

> VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE ENGINEERING SCIENCES CENTER SANDIA NATIONAL LABORATORIES ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030618 AT 14:40:44
RUN ON A 1686 UNDER Lx2.4.20

```
1: TITLE
 2: DISTRIBUTED LOAD PROBLEM - SANTOS QA - 12/4/94
 3: PLANE STRAIN
 4: MAXIMUM ITERATIONS, 10000
 5: MAXIMUM TOLERANCE, 1000
 6: MATERIAL, 1, ELASTIC, 1.0
 7: YOUNGS MODULUS = 1.0E+7
 8: POISSONS RATIO = 0.0
 9: END .
 10: DISTRIBUTED LOAD
 11: STEP CONTROL
12: 4,2.
13: END
14: PLOT TIME
15: 1,2.
16: END
17: OUTPUT TIME
18: 4,2.
19: END
20: NO DISPLACEMENT Y,2
 21: NO DISPLACEMENT X,1
22: EXIT
                              INPUT STREAM IMAGES
LINE --------
24: TITLE
25: DISTRIBUTED LOAD PROBLEM - SANTOS QA - 12/4/94
26: PLANE STRAIN
27: MAXIMUM ITERATIONS, 10000
28: MAXIMUM TOLERANCE, 1000
29: MATERIAL, 1, ELASTIC, 1.0
30: YOUNGS MODULUS = 1.0E+7
31: POISSONS RATIO = 0.0
32: END
33: DISTRIBUTED LOAD
```

1

34: STEP CONTROL
35: 4,2.
36: END
37: PLOT TIME
38: 1,2.
39: END
40: OUTPUT TIME
41: 4,2.
42: END
43: NO DISPLACEMENT Y,2
44: NO DISPLACEMENT X,1
45: EXIT

PROBLEM TITLE

DISTRIBUTED LOAD PROBLEM - SANTOS QA - 12/4/94

PROBLEM DEFINITION

NUMBER OF ELEMENTS	16
NUMBER OF NODES	25
NUMBER OF MATERIALS	1
NUMBER OF FUNCTIONS	0
NUMBER OF CONTACT SURFACES	0
NUMBER OF RIGID SURFACES	0
NUMBER OF MATERIAL POINTS MONITORED	0
ANALYSIS TYPE	PLANE STRAIN
GLOBAL CONVERGENCE MEASURE	
RESIDUAL TOLERANCE	5.000E-01
MAXIMUM NUMBER OF ITERATIONS	10000
ITERATIONS FOR INTERMEDIATE PRINT	50
MAXIMUM RESIDUAL TOLERANCE	1.000E+03
PREDICTOR SCALE FACTOR FUNCTION	0
MINIMUM DAMPING FACTOR	2.000E-01
EFFECTIVE MODULUS STATUS	CONSTANT
DISTRIBUTED BODY LOADS APPLIED	
SCALE FACTOR APPLIED TO TIME STEP	1.000E+00
STRAIN SOFTENING SCALE FACTOR	1.000E+00
HOURGLASS STIFFNESS FACTOR	5.000E-02
HOURGLASS VISCOSITY FACTOR	0.000E+00

LOAD STEP DEFINITIONS

TIME NO. OF STEPS TIME 0.000E+00 4 2.000E+00

PRINTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PRINTS TIME 0.000E+00 4 2.000E+00

PLOTTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PLOTS TIME
1 2.000E+00 0.000E+00

MATERIAL DEFINITIONS

MATERIAL TYPEELASTIC

MATERIAL ID

DENSITY 1.000E+00

MATERIAL PROPERTIES:

YOUNGS MODULUS = 1.000E+07 POISSONS RATIO = 0.000E+00

NO DISPLACEMENT BOUNDARY CONDITIONS

NODE SET FLAG DIRECTION

2 Y

1

END OF DATA INPUT PHASE 2.000E-02 CPU SECONDS USED 274 WORDS ALLOCATED

END OF DATA INITIALIZATION PHASE 0.000E+00 CPU SECONDS USED 14198 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

June	2	00	13
Page	е	16	5

		NODAL DISPLX DISPLY	ELEMENTSIGXX SIGYY SIGZZ TAUXY	GLOBAL FX FY RX RY		
	**** PLOT TAPE WI	RITTEN FOR THE	INITIAL STATE	ITER RMAG AT TIME = 0.00)OE+00 ****	
s	TEP TIME 50 5.000E-01 5		OR LOAD NOR	M LOAD NORM	IMBALANCE	TOTAL STEPS 50
	**** PLOT TAPE WI	RITTEN AT TIME	= 5.000E-01	STEP NUMBER	1 ****	
	**** PLOT TAPE W	RITTEN AT TIME	= 1.000E+00	STEP NUMBER	2 ****	
	**** PLOT TAPE WI			·	3 ****	
1	SANTOS, VERSION DISTRIBUTED LOAI					
	SUMMARY OF DATA AND OF ITERATION OF ITERATION OF EXTERNAL IN SUM OF EXTERNAL IN SUM OF EXTERNAL IN SUM OF REACTION IN	AT STEP NUMBER IONS = E TOLERANCE = 2 FORCES IN X-DIR FORCES IN Y-DIR	4, TIME = 3, TOTAL NUMB: .583E-01 ECTION = 0.00 ECTION = 8.00	2.000E+00 ER OF ITERATION 0E+00 0E+02		62

Market Market Commence

4 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

**** PLOT TAPE WRITTEN AT TIME = 2.000E+00 STEP NUMBER 4 ****

SUM OF REACTION FORCES IN Y-DIRECTION = 7.958E+02

APPENDIX E

Input/Output Data For Test Case 5

The following three sections present the input data, the pressure subroutine, and the formatted output, respectively, for the adaptive pressure option verification test.

FASTQ and SANTOS Input Data For The Adaptive Pressure Option Problem

This section presents a listing of the FASTQ and SANTOS input data files that were used for the mesh generation and analysis of the adaptive pressure option problem.

```
sant_adapt_fine.fsq
TITLE
HOLLOW SPHERE - SANTOS QA TEST PROBLEM - 03/27/03
POINT 1 0.
                 0.
POINT 2
            1.
                     0.
POINT 3
           0.
                     1.
          0.
POINT 4
                     1.5
            1.5
POINT 5
                    0.
       1 CIRC 2 3
                              38
                                  1.0
LINE
                         1
       2 STR 3 4 0
                             10
                                  1.0
LINE
          CIRC 5 4 1 38
STR 2 5 0 10
LINE
       3
                                 1.0
LINE
      4
                                  1.0
NODEBC
      1
          2
NODEBC 2
          4
NODEBC
ELEMBC
SCHEME
      0
          MP
               -1 -2 -3 -4
REGION 1
          1
EXIT
sant_adapt.i
TITLE
 SANTOS OA PROBLEM - ADAPTIVE PRESSURE PROBLEM - AXISYMMETRIC
AXISYMMETRIC
MAXIMUM ITERATIONS 80000
MATERIAL, 1, ELASTIC, 1.
YOUNGS MODULUS, 1.E+7
POISSONS RATIO, 0.3
END
FUNCTION 2 $ DISPLACEMENT FUNCTION
  0. 0.
  1.E-4
         0.
 10.
         0.25
END
STEP CONTROL
   1 1.E-4
       10.
   15
END
OUTPUT TIME
  0
     1.E-4
```


Page 168

```
0 10.
END
PLOT TIME
1 1.E-4
1 10.
END
ADAPTIVE PRESSURE 3 0. 0.
PRESCRIBED DISPLACEMENT RADIAL 4 2 1. 0. 0.
NO DISPLACEMENT Y 2
NO DISPLACEMENT X 1
```

Pressure Subroutine For The Adaptive Pressure Option Problem

This section presents a listing of the FPRES subroutine that was used in SANTOS to specify the pressure within a cavity for the adaptive pressure option analysis.

```
c....subroutine fpres
c....this subroutine is used to develop pressure within a cavity
c....for qa test of the adpative pressure function
c....programmer: J. F. Holland, Technadyne
      subroutine fpres(volume, time, pgas)
C
      INCLUDE 'precision.blk'
C
c....voll is taken from NUMBERS evaluation of Genesis file
      vol1 = 1.425
     po = 10.
C
c....this assumes the gas behaves as an ideal gas. When the volume
c....of the cavity increases there is a proportional decrease in the
c....pressure of the gas
C
      pgas = po*vol1/volume
С
      return
      end
```

SANTOS Output For The Adaptive Pressure Option Problem

The following section presents a portion of the SANTOS printed output for the adaptive pressure option analysis. Because all pertinent information and results from the analysis are written to the plot file for post-processing, the printed output file simply echoes input data and problem—descriptive information at the beginning, followed by information that tracks the convergence behavior of the solution, and a summary of CPU usage at the end. For this reason, only a partial listing, consisting of the first few hundred lines of output and the last few tens of line of output, is provided

sant_adapt.o

SSSSSS	AAA	AAA	N	NN	TTTTTT	000	000	SSSSSS	į
SS	AA	AA	NN	NN	TТ	00	00	SS	
SS	AA	AA	NNN	NN	${f TT}$	00	00	SS	
SSSSS	AAA	AAAA	NN I	NN N	${f TT}$	00	00	SSSSS	
SS	AA	AA	NN	NNN	${f TT}$	00	00	SS	ļ
SS	AA	AA	NN	NN	${f TT}$	00	00	SS	j
SSSSSS	AA	AA	NN	N	тт	000	റററ	SSSSSS	

VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE ENGINEERING SCIENCES CENTER SANDIA NATIONAL LABORATORIES ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030612 AT 10:40:26 RUN ON A i686 UNDER Lx2.4.20

```
1: TITLE
 2: SANTOS QA PROBLEM - ADAPTIVE PRESSURE PROBLEM - AXISYMMETRIC
 3: AXISYMMETRIC
 4: MAXIMUM ITERATIONS 40000
 5: MATERIAL, 1, ELASTIC, 1.
 6: YOUNGS MODULUS, 1.E+7
 7: POISSONS RATIO, 0.3
8: END
9: FUNCTION 2 $ DISPLACEMENT FUNCTION
10: 0. 0.
11:
     1.E-4 0.
12:
    10. 0.25
13: END
14: STEP CONTROL
15:
     1 1.E-4
     20 10.
16:
17: END
18: OUTPUT TIME
19: 0 1.E-4
     0 10.
20:
21: END
22: PLOT TIME
23: 1 1.E-4
24: 1 10.
25: END
26: ADAPTIVE PRESSURE 3 0. 0.
27: PRESCRIBED DISPLACEMENT RADIAL 4 2 1. 0. 0.
28: NO DISPLACEMENT Y 2
29: NO DISPLACEMENT X 1
```

```
30: EXIT
                               INPUT STREAM IMAGES
 LINE -----
  32: TITLE
      SANTOS QA PROBLEM - ADAPTIVE PRESSURE PROBLEM - AXISYMMETRIC
  34: AXISYMMETRIC
  35: MAXIMUM ITERATIONS 40000
  36: MATERIAL, 1, ELASTIC, 1.
  37: YOUNGS MODULUS, 1.E+7
  38: POISSONS RATIO, 0.3
  39: END
  40: FUNCTION 2 $ DISPLACEMENT FUNCTION
  41: 0. 0.
42: 1.E-4 0.
  43:
       10.
              0.25
  44: END
  45: STEP CONTROL
  46: 1 1.E-4
      20 10.
  47:
  48: END
  49: OUTPUT TIME
  50: 0 1.E-4
  51: 0 10.
  52: END
  53: PLOT TIME
  54: 1 1.E-4
  55: 1 10.
  56: END
  57: ADAPTIVE PRESSURE 3 0. 0.
  58: PRESCRIBED DISPLACEMENT RADIAL 4 2 1. 0. 0.
  59: NO DISPLACEMENT Y 2
  60: NO DISPLACEMENT X 1
  61: EXIT
1
```

PROBLEM TITLE

SANTOS QA PROBLEM - ADAPTIVE PRESSURE PROBLEM - AXISYMMETRIC

PROBLEM DEFINITION

NUMBER OF ELEMENTS	380
NUMBER OF NODES	429
NUMBER OF MATERIALS	1
NUMBER OF FUNCTIONS	1
NUMBER OF CONTACT SURFACES	0
NUMBER OF RIGID SURFACES	0
NUMBER OF MATERIAL POINTS MONITORED	0
ANALYSIS TYPE	AXISYMMETRIC
GLOBAL CONVERGENCE MEASURE	
RESIDUAL TOLERANCE	5.000E-01
MAXIMUM NUMBER OF ITERATIONS	40000
ITERATIONS FOR INTERMEDIATE PRINT	858
MAXIMUM RESIDUAL TOLERANCE	6.000E-01
PREDICTOR SCALE FACTOR FUNCTION	0

MINIMUM DAMPING FACTOR	2.000E-01
EFFECTIVE MODULUS STATUS	CONSTANT
ADAPTIVE PRESSURE B. C. APPLIED	
SCALE FACTOR APPLIED TO TIME STEP	1.000E+00
STRAIN SOFTENING SCALE FACTOR	1.000E+00
HOURGLASS STIFFNESS FACTOR	1.000E-02
HOURGLASS VISCOSITY FACTOR	3.000E-02

LOAD STEP DEFINITIONS

TIME	NO. OF STEPS	TIME
0.000E+00	1	1.000E-04
1.000E-04	20	1.000E+01

PRINTED OUTPUT FREQUENCY

TIME	STEPS	BETWEEN	PRINTS	TIME
0.000E+00		0		1.000E-04
1.000E-04		0		1.000E+01

PLOTTED OUTPUT FREQUENCY

TIME	STEPS	BETWEEN	PLOTS	TIME
0.000E+00		1		1.000E-04
1.000E-04		1		1.000E+01

MATERIAL DEFINITIONS

MATERIAL TYPE		E	LASTIC
MATERIAL ID			1
DENSITY			1.000E+00
MATERIAL PROPERTIES:			
YOUNGS MODULUS	=	1.000	E+07
DOISSONS BATTO	=	3 000	E-01

FUNCTION DEFINITIONS

FUNCTION ID 2 NUMBER OF POINTS 3

N	S	F(S)
1	0.000E+00	0.000E+00
2	1.000E-04	0.000E+00
3	1.000E+01	2.500E-01

NO DISPLACEMENT BOUNDARY CONDITIONS

NODE SET FLAG DIRECTION 2 Y X

PRESCRIBED DISPLACEMENT BOUNDARY CONDITIONS

NODE SET	DIRECTION	FUNCTION	SCALE	A0	в0
FLAG		ID	FACTOR		
4	RAD	2	1.000E+00	0.000E+00	0.000E+00

ADAPTIVE PRESSURE BOUNDARY CONDITIONS

SURFACE REFERENCE
FLAG VALUE
3 0.000E+00 0.000E+00 0.000E+00

E N D O F D A T A I N P U T P H A S E 2.000E-02 CPU SECONDS USED . 4074 WORDS ALLOCATED

END OF DATA INITIALIZATION PHASE
1.000E-02 CPU SECONDS USED
39406 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

NODAL ELEMENT GLOBAL

		DISPL DISPL		SIGXX SIGYY SIGZZ TAUXY	RX RY ITE RMA PGA	.G		
**** p	LOT TAPE	WRITTEN F	OR THE	INITIAI	STATE AT	TIME = 0.00	0E+00	***
**** P	LOT TAPE	WRITTEN A	T TIME	= 1.000	E-04 STEP	NUMBER	1 ***	*
**** P	LOT TAPE	WRITTEN A	r TIME	= 5.001	E-01 STEP	NUMBER	2 ***	*
**** P	LOT TAPE	WRITTEN A	г тіме	= 1.000	E+00 STEP	NUMBER	3 ***	*
**** P	LOT TAPE		r time	= 1.500	E+00 STEP	NUMBER	4 ***	*
**** P	LOT TAPE	WRITTEN A	r time	= 2.000	E+00 STEP	NUMBER	5 ***	*
**** P	LOT TAPE	WRITTEN A	r time	= 2.500	E+00 STEP	NUMBER	6 ***	*
**** P	LOT TAPE	WRITTEN A	r TIME	= 3.000	E+00 STEP	NUMBER	7 ***	*
**** p	LOT TAPE	WRITTEN A	r TIME	= 3.500	E+00 STEP		8 ***	*
**** P	LOT TAPE	WRITTEN A	r TIME	= 4.000	E+00 STEP	NUMBER	9 ***	*

****	PLOT	TAPE	WRITTEN	АТ	TIME	=	4.500E+00	STEP	NUMBER	10	****
***	PLOT	TAPE	WRITTEN	ΑТ	TIME	=	5.000E+00	STEP	NUMBER	11	***
***	PLOT	TAPE	WRITTEN	ΑТ	TIME	=	5.500E+00	STEP	NUMBER	12	****
***	PLOT	TAPE	WRITTEN	ΑТ	TIME	=	6.000E+00	STEP	NUMBER	13	***
***	PLOT	TAPE	WRITTEN	ΑТ	TIME	=	6.500E+00	STEP	NUMBER	14	***
***	PLOT	TAPE	WRITTEN	ΑТ	TIME	=	7.000E+00	STEP	NUMBER	15	***
***	PLOT	TAPE	WRITTEN	ΑT	TIME	=	7.500E+00	STEP	NUMBER	16	****
***	PLOT	TAPE	WRITTEN	АТ	TIME	=	8.000E+00	STEP	NUMBER	17	***
***	PLOT	TAPE	WRITTÈN	ΑТ	TIME	=	8.500E+00	STEP	NUMBER	18	***
***	PLOT	TAPE	WRITTEN	АТ	TIME	=	9.000E+00	STEP	NUMBER	19	****
***	PLOT	TAPE	WRITTEN	ΑТ	TIME	=	9.500E+00	STEP	NUMBER	20	***

SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 10:40:26
SANTOS QA PROBLEM - ADAPTIVE PRESSURE PROBLEM - AXISYMMETRIC

**** PLOT TAPE WRITTEN AT TIME = 1.000E+01 STEP NUMBER 21 ****

21 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

E N D O F S O L U T I O N P H A S E 1.151E+01 CPU SECONDS USED 52026 WORDS ALLOCATED

APPENDIX F

Input/Output Data For Test Case 6

The following two sections present the input data and the formatted output for the spinning disk verification test.

FASTQ and SANTOS Input Data For The Spinning Disk Problem

This section presents a listing of the FASTQ and SANTOS input data files that were used for the mesh generation and analysis of the spinning disk problem.

```
sant_spind.fsq
TITLE
 SPINNING DISK - SANTOS QA TEST PROBLEM - 10/14/94 - QUAD MESH
POINT 1 1. 0.
POINT
                      0.1
             1.
POINT 3
            2.
                     0.1
         2.
POINT 4
                     0.
       1 STR 1 2
LINE
                              8 1.0
LINE 2 STR 2 3 0 80 1.0
LINE 3 STR 3 4 0 8 1.0
LINE 4 STR 4 1 0 80 1.0
NODEBC 1 2
NODEBC 2 4
SCHEME 0 MP
REGION 1 1 -1 -2 -3 -4
EXIT
sant_spind.i
TITLE
  SANTOS QA PROBLEM - SPINNING DISK - 01/27/03
AXISYMMETRIC
MAXIMUM ITERATIONS, 10000
RESIDUAL TOLERANCE 0.1
MATERIAL, 1, ELASTIC, 2.1669E+03
YOUNGS MODULUS 2.07E+11
POISSONS RATIO 0.3
END
FUNCTION, 1
  0.,1.
 1.,1.
END
STEP CONTROL
 1,1.
END
PLOT TIME
1,1.
END
OUTPUT TIME
1.1.
END
$ NO DISPLACEMENT, Y, 1
NO DISPLACEMENT, Y, 2
```


GRAVITY,1,0.,0.,100. GLOBAL CONVERGENCE,1.E-8 EXIT

SANTOS Output For The Spinning Disk Problem

The following section presents the SANTOS printed output for the spinning disk analysis. Because all pertinent information and results from the analysis are written to the plot file for post-processing, the printed output file simply echoes input data and problem—descriptive information at the beginning, followed by information that tracks the convergence behavior of the solution, and a summary of CPU usage at the end.

sant_spind.o

SSSSSS	AAA	AAA	N	NN	TTTTTT	000	000	SSSSSS
SS	AA	AA	NN	NN	${f TT}$	00	00	SS
SS	AA	AΑ	NNN	NN	${f TT}$	00	00	SS
SSSSS	AAA	AAAA	NN I	NN K	TT	00	00	SSSSS
SS	AA	AA	NN	NNN	${f TT}$	00	00	SS
SS	AA	AA	NN	NN	TT	00	00	SS
SSSSSS	ΔΔ	AΑ	NN	N	ጥጥ	000	000	SSSSSS

VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE ENGINEERING SCIENCES CENTER SANDIA NATIONAL LABORATORIES ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030612 AT 10:41:55 RUN ON A 1686 UNDER Lx2.4.20

- 1: TITLE
 2: SANTOS QA PROBLEM SPINNING DISK 10/14/94
 3: AXISYMMETRIC
 4: MAXIMUM ITERATIONS,2000
 5: RESIDUAL TOLERANCE 0.1
 6: MATERIAL,1,ELASTIC,2.1669E+03
 7: YOUNGS MODULUS 2.07E+11
 8: POISSONS RATIO 0.3
- 9: END 10: FUNCTION,1 11: 0.,1. 12: 1.,1.

Page 178

```
13: END
14: STEP CONTROL
 15: 1,1.
 16: END
 17: PLOT TIME
18: 1,1.
19: END
20: OUTPUT TIME
 21: 1,1.
 22: END
 23: $ NO DISPLACEMENT, Y, 1
 24: NO DISPLACEMENT, Y, 2
 25: GRAVITY, 1, 0., 0., 100.
 26: GLOBAL CONVERGENCE, 1.E-8
 27: EXIT
                                  INPUT STREAM IMAGES
LINE -----
 29: TITLE
 30: SANTOS QA PROBLEM - SPINNING DISK - 10/14/94
 31: AXISYMMETRIC
 32: MAXIMUM ITERATIONS, 2000
 33: RESIDUAL TOLERANCE 0.1
 34: MATERIAL, 1, ELASTIC, 2.1669E+03
 35: YOUNGS MODULUS 2.07E+11
 36: POISSONS RATIO 0.3
 37: END
 38: FUNCTION, 1
39: 0.,1.
40: 1.,1.
 41: END
 42: STEP CONTROL
 43:
     1,1.
 44: END
 45: PLOT TIME
 46: 1,1.
 47: END
 48: OUTPUT TIME
 49: 1,1.
 50: END
 51: $ NO DISPLACEMENT, Y, 1
 52: NO DISPLACEMENT, Y, 2
 53: GRAVITY, 1, 0., 0., 100.
 54: GLOBAL CONVERGENCE, 1.E-8
 55: EXIT
```

PROBLEM TITLE

SANTOS QA PROBLEM - SPINNING DISK - 10/14/94

PROBLEM DEFINITION

NUMBER OF	ELEMENTS	640
NUMBER OF	NODES	729
NUMBER OF	MATERIALS	1

Page 179

NUMBER OF FUNCTIONS	1
NUMBER OF CONTACT SURFACES	0
NUMBER OF RIGID SURFACES	0
NUMBER OF MATERIAL POINTS MONITORED	
ANALYSIS TYPE	AXISYMMETRIC
GLOBAL CONVERGENCE MEASURE	
RESIDUAL TOLERANCE	1.000E-01
MAXIMUM NUMBER OF ITERATIONS	2000
ITERATIONS FOR INTERMEDIATE PRINT	1458
MAXIMUM RESIDUAL TOLERANCE	6.000E-01
PREDICTOR SCALE FACTOR FUNCTION	0
MINIMUM DAMPING FACTOR	2.000E-01
EFFECTIVE MODULUS STATUS	CONSTANT
GRAVITY LOADS APPLIED	
SCALE FACTOR APPLIED TO TIME STEP	1.000E+00
STRAIN SOFTENING SCALE FACTOR	1.000E+00
HOURGLASS STIFFNESS FACTOR	1.000E-02
HOURGLASS VISCOSITY FACTOR	3.000E-02

LOAD STEP DEFINITIONS

TIME NO. OF STEPS TIME 0.000E+00 1 1.000E+00

PRINTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PRINTS TIME 0.000E+00 1 1.000E+00

PLOTTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PLOTS TIME 0.000E+00 1 1.000E+00

MATERIAL DEFINITIONS

FUNCTION DEFINITIONS

N S F(S) 1 0.000E+00 1.000E+00 2 1.000E+00 1.000E+00

NO DISPLACEMENT BOUNDARY CONDITIONS

NODE SET FLAG DIRECTION 2 Y

E N D O F D A T A I N P U T P H A S E 2.000E-02 CPU SECONDS USED 6050 WORDS ALLOCATED

E N D O F D A T A I N I T I A L I Z A T I O N P H A S E
1.000E-02 CPU SECONDS USED
56998 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

NODAL	ELEMENT	GLOBAL
		-
DISPLX	SIGXX	FX
DISPLY	SIGYY	FY
	SIGZZ	RX
	TAUXY	RY
		ITER
		RMAG

**** PLOT TAPE WRITTEN FOR THE INITIAL STATE AT TIME = 0.000E+00 ****

_								
	STEP	TIME	TIME	DAMPING	APPLIED	RESTOIIAL	PERCENT	TOTAL
	5151	111111				LOAD NORM	IMBALANCE	
	1458	1.000E+00			- · · · - ·		0.43	
1	SA	NTOS, VERSI	ON 2.1.7-DE	RUN ON 2	0030612. AT	10:41:55	****	
	S	ANTOS OA PR	OBLEM - SPI	NNING DISK	- 10/14/94			
		~					•	
	***	*****	******	*****	*****	*****	*****	
	SUM	MARY OF DAT	A AT STEP N	TUMBER	1, TIME = 1	.000E+00		
	NUM	BER OF ITER	ATIONS =	1781, т	OTAL NUMBER	OF ITERATIO	NS = 17	781
	FIN	AL CONVERGE	NCE TOLERAN	ICE = 9.994	E-02			
	SUM	OF EXTERNA	L FORCES IN	X-DIRECTI	ON = 5.058E	+06		
	SUM	OF EXTERNA	L FORCES IN	1 Y-DIRECTI	ON = 0.000E	+00		
	SUM	OF REACTIO	N FORCES IN	X-DIRECTI	ON = 0.000E	+00		
	SUM	OF REACTIO	N FORCES IN	I Y-DIRECTI	ON = 6.454E	+01		
	***	*****	******	*****	*****	******	*****	
				1				
	***	* PLOT TAPE	WKITTEN AT	TTME = T	OOOE+OO ST	EP NUMBER	1 ****	

1 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

E N D O F S O L U T I O N P H A S E 8.840E+00 CPU SECONDS USED 80148 WORDS ALLOCATED

APPENDIX G

Input/Output Data For Test Case 7

The following two sections present the input data and the formatted output for the pressure and gravity loaded beam verification tests.

FASTQ and SANTOS Input Data For The Pressure and Gravity Loaded Beam Problems

This section presents a listing of each of the FASTQ and SANTOS input data files that were used for the mesh geneartion and analysis of the pressure and gravity loaded beam problems.

beam.fsq TITLE JAC BEAM SAMPLE PROBLEM - 30 TO 1 BEAM POINT 1 0. 0. POINT 2 30. 0. POINT 3 30. 1. POINT 4 0. 1. LINE 1 STR 1 LINE 2 STR 2 LINE 3 STR 4 3 0 LINE 4 STR 1 4 0 30 4 0 REGION 1 1 -1 -2 -3 -4 NODEBC 1 1 NODEBC 2 2 3 NODEBC 3 NODEBC 4 ELEMBC 10 ELEMBC 20 ELEMBC 30 3 . 4 ELEMBC 40 SCHEME EXIT

Gravity Loaded Beam

```
beamg.i
TITLE
30 TO 1 BEAM WITH GRAVITY LOADS - SANTOS QA PROBLEM
RESIDUAL TOLERANCE, 0.5
MAXIMUM ITERATIONS, 3000
INTERMEDIATE PRINT, 100
MAXIMUM TOLERANCE, 1000
NO DAMPING, 100, 50
PLANE STRAIN
STEP CONTROL
310 1.55
END
PLOT TIME
10 1.55
END
```


OUTPUT TIME

EXIT

```
1 1.55
END
PLOT NODAL DISPLACEMENT
PLOT ELEMENT STRESS, VONMISES
NO DISPLACEMENT Y, 4
NO DISPLACEMENT X, 4
GRAVITY, 1, 0., 1., 0.
FUNCTION, 1 $ FUNCTION TO DEFINE GRAVITY LOADS
0. 0.
2. -2.
END
MATERIAL, 1, ELASTIC, 400.
YOUNGS MODULUS = 1.E7
POISSONS RATIO = 0.0
END
EXIT
Pressure Loaded Beam
beamp.i
TITLE
30 TO 1 BEAM WITH APPLIED PRESSURE
RESIDUAL TOLERANCE, 0.5
MAXIMUM ITERATIONS, 3000
INTERMEDIATE PRINT, 100
MAXIMUM TOLERANCE, 1000
NO DAMPING, 100, 50
PLANE STRAIN
STEP CONTROL
1550 1.55
END
PLOT TIME
10 1.55
END
OUTPUT TIME
1 1.55
END
PLOT NODAL DISPLACEMENT
PLOT ELEMENT STRESS, VONMISES
NO DISPLACEMENT Y, 4
NO DISPLACEMENT X, 4
PRESSURE, 30, 1, 400.
FUNCTION, 1 $ FUNCTION TO DEFINE PRESCRIBED DISPLACEMENT
0. 0.
2. 2.
END
MATERIAL, 1, ELASTIC, 2167.
YOUNGS MODULUS = 1.E7
POISSONS RATIO = 0.0
END
```

SANTOS Output For The Pressure and Gravity Loaded Beam Problems

The following section presents a portion of the SANTOS printed output for the pressure and gravity loaded beam analyses. Because all pertinent information and results from the analysis are written to the plot file for post-processing, the printed output file simply echoes input data and problem—descriptive information at the beginning, followed by information that tracks the convergence behavior of the solution, and a summary of CPU usage at the end. For this reason, only a partial listing, consisting of approximately the first 500 lines of output and the last 100 lines of output, is provided.

Gravity Loaded Beam

beamg.o

1

SSSSSS	AA	AAA	N	NN	TTTTTT	000	000	SSSSSS
SS	AA	AA	NN	NN	${f TT}$	00	00	SS
SS	AA	AA	NNN	NN	${f TT}$	00	00	SS
SSSSS	AAA	AAAA	NN 1	NN I	${f TT}$	00	00	SSSSS
SS	AA	AA	NN	NNN	${f TT}$	00	00	SS
SS	AA	AA	NN	NN	${f TT}$	00	00	SS
SSSSSS	AA	AA	NN	N	${f T}{f T}$	000	000	SSSSSS

VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE ENGINEERING SCIENCES CENTER SANDIA NATIONAL LABORATORIES ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030612 AT 10:43:46 RUN ON A 1686 UNDER Lx2.4.20

- 1: TITLE
- 2: 30 TO 1 BEAM WITH GRAVITY LOADS SANTOS QA PROBLEM
- 3: RESIDUAL TOLERANCE, 0.5
- 4: MAXIMUM ITERATIONS, 3000
- 5: INTERMEDIATE PRINT, 100
- 6: MAXIMUM TOLERANCE, 1000
- 7: NO DAMPING, 100, 50
- 8: PLANE STRAIN
- 9: STEP CONTROL
- 10: 310 1.55 11: END
- 12: PLOT TIME
- 13: 10 1.55
- 14: END
- 15: OUTPUT TIME

```
16: 1 1.55
 17: END
 18: PLOT NODAL DISPLACEMENT
 19: PLOT ELEMENT STRESS, VONMISES
 20: NO DISPLACEMENT Y, 4
 21: NO DISPLACEMENT X, 4
 22: GRAVITY,1,0.,1.,0.
 23: FUNCTION, 1 $ FUNCTION TO DEFINE GRAVITY LOADS
 24: 0. 0.
 25: 2. -2.
 26: END
 27: MATERIAL, 1, ELASTIC, 400.
 28: YOUNGS MODULUS = 1.E7
 29: POISSONS RATIO = 0.0
 30: END
 31: EXIT
                                 INPUT STREAM IMAGES
LINE -----
 34: 30 TO 1 BEAM WITH GRAVITY LOADS - SANTOS QA PROBLEM
 35: RESIDUAL TOLERANCE, 0.5
 36: MAXIMUM ITERATIONS, 3000
 37: INTERMEDIATE PRINT, 100
 38: MAXIMUM TOLERANCE, 1000
 39: NO DAMPING, 100, 50
 40: PLANE STRAIN
 41: STEP CONTROL
 42: 310 1.55
43: END
 44: PLOT TIME
 45: 10 1.55
 46: END
 47: OUTPUT TIME
 48: 1 1.55
 49: END
 50: PLOT NODAL DISPLACEMENT
 51: PLOT ELEMENT STRESS, VONMISES
 52: NO DISPLACEMENT Y, 4
 53: NO DISPLACEMENT X, 4
 54: GRAVITY, 1, 0., 1., 0.
 55: FUNCTION, 1 $ FUNCTION TO DEFINE GRAVITY LOADS
 56: 0. 0.
 57: 2. -2.
 58: END
 59: MATERIAL, 1, ELASTIC, 400.
 60: YOUNGS MODULUS = 1.E7
 61: POISSONS RATIO = 0.0
 62: END
 63: EXIT
```

PROBLEM TITLE

30 TO 1 BEAM WITH GRAVITY LOADS - SANTOS QA PROBLEM

PROBLEM DEFINITION

NUMBER OF ELEMENTS 120
NUMBER OF NODES
NUMBER OF MATERIALS 1
NUMBER OF FUNCTIONS 1
NUMBER OF CONTACT SURFACES
NUMBER OF RIGID SURFACES
NUMBER OF MATERIAL POINTS MONITORED 0
ANALYSIS TYPE PLANE STRAIN
GLOBAL CONVERGENCE MEASURE
RESIDUAL TOLERANCE 5.000E-01
MAXIMUM NUMBER OF ITERATIONS 3000
ITERATIONS FOR INTERMEDIATE PRINT 100
MAXIMUM RESIDUAL TOLERANCE 1.000E+03
PREDICTOR SCALE FACTOR FUNCTION 0
MINIMUM DAMPING FACTOR 2.000E-01
EFFECTIVE MODULUS STATUS CONSTANT
NO DAMPING OPTION ACTIVE
NUMBER OF NO DAMPING ITERATIONS 100
NUMBER OF LOAD STEPS WITH NO DAMPING . 50
GRAVITY LOADS APPLIED
SCALE FACTOR APPLIED TO TIME STEP 1.000E+00
STRAIN SOFTENING SCALE FACTOR 1.000E+00
HOURGLASS STIFFNESS FACTOR 5.000E-02
HOURGLASS VISCOSITY FACTOR 0.000E+00

LOAD STEP DEFINITIONS

TIME NO. OF STEPS TIME 0.000E+00 310 1.550E+00

PRINTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PRINTS TIME 0.000E+00. 1 1.550E+00

PLOTTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PLOTS TIME 0.000E+00 10 1.550E+00

MATERIAL DEFINITIONS

MATERIAL TYPEELASTIC

MATERIAL PROPERTIES:

YOUNGS MODULUS = 1.000E+07POISSONS RATIO = 0.000E+00

FUNCTION DEFINITIONS

N S F(S) 1 0.000E+00 0.000E+00 2 2.000E+00 -2.000E+00

NO DISPLACEMENT BOUNDARY CONDITIONS

NODE SET FLAG DIRECTION
4 Y
X

E N D O F D A T A I N P U T P H A S E 3.000E-02 CPU SECONDS USED 2330 WORDS ALLOCATED

E N D O F D A T A I N I T I A L I Z A T I O N P H A S E 0.000E+00 CPU SECONDS USED 22728 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

NODAL	ELEMENT	GLOBAL
DISPLX	SIGXX	FX
DISPLY	SIGYY	FY
	SIGZZ	RX
	TAUXY	RY

VONMISES

ITER RMAG

**** PLOT TAPE WRITTEN FOR THE INITIAL STATE AT TIME = 0.000E+00 ****

	STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
			STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
	100	5.000E-03	5.000E-03	1.000E+00	5.081E+00	4.815E+00	94.77	100
	200	5.000E-03	5.000E-03	9.971E-01	5.081E+00	4.664E+00	91.79	200
	300	5.000E-03	5.000E-03	9.976E-01	5.081E+00	4.585E+00	90.25	300
	400	5.000E-03	5.000E-03	9.979E-01	5.081E+00	4.445E+00	87.49	400
	500	5.000E-03	5.000E-03	9.983E-01	5.081E+00	4.362E+00	85.86	500
	600	5.000E-03	5.000E-03	9.983E-01	5.081E+00	4.339E+00	85.40	600
	700	5.000E-03	5.000E-03	9.985E-01	5.081E+00	4.267E+00	83.98	700
	800	5.000E-03	5.000E-03	9.987E-01	5.081E+00	4.161E+00	81.89	800
	900	5.000E-03	5.000E-03	9.989E-01	5.081E+00	4.041E+00	79.55	900
	1000	5.000E-03	5.000E-03	9.988E-01	5.081E+00	3.967E+00	78.08	1000
	1100	5.000E-03	5.000E-03	9.991E-01	5.081E+00	3.912E+00	76.99	1100
	1200	5.000E-03	5.000E-03	9.989E-01	5.081E+00	3.851E+00	75.79	1200
	1300	5.000E-03	5.000E-03	9.988E-01	5.081E+00	3.848E+00	75.73	1300
	1400	5.000E-03	5.000E-03	9.988E-01	5.081E+00	3.847E+00	75.71	1400
	1500	5.000E-03	5.000E-03	9.989E-01	5.081E+00	3.792E+00	74.63	1500
	1600	5.000E-03	5.000E-03	9.990E-01	5.081E+00	3.735E+00	73.52	1600
	1700	5.000E-03	5.000E-03	9.990E-01	5.081E+00	3.762E+00	74.05	1700
	1800	5.000E-03	5.000E-03	9.991E-01	5.081E+00	3.740E+00	73.61	1800
	1900	5.000E-03	5.000E-03	9.993E-01	5.081E+00	3.749E+00	73.80	1900
	2000	5.000E-03	5.000E-03	9.994E-01	5.081E+00	3.741E+00	73.63	2000
	2100	5.000E-03	5.000E-03	9.995E-01	5.081E+00		72.76	2100
	2200	5.000E-03	5.000E-03	9.999E-01	5.081E+00	3.670E+00	72.24	2200
	2300	5.000E-03	5.000E-03	1.000E+00	5.081E+00	3.631E+00	71.47	2300
	2400	5.000E-03	5.000E-03	1.000E+00	5.081E+00	3.563E+00	70.13	2400
	2500	5.000E-03	5.000E-03	1.000E+00	5.081E+00	3.541E+00	69.70	2500
	2600	5.000E-03	5.000E-03	1.000E+00	5.081E+00	3.492E+00	68.73	2600
	2700	5.000E-03	5.000E-03	9.999E-01			68.32	2700
	2800	5.000E-03	5.000E-03	9.998E-01	5.081E+00	3.420E+00	67.31	2800
	2900	5.000E-03	5.000E-03	9.997E-01	5.081E+00	3.345E+00	65.83	2900
1	SA	NTOS, VERSI	ON 2.1.7-DP			10:43:46		
	30	TO 1 BEAM	WITH GRAVIT	Y LOADS - :	SANTOS QA PI	ROBLEM		
	***	*****	*****	****	*****	******	*****	
	SUM	MARY OF DAT	A AT STEP N	UMBER :	1, TIME = 5	.000E-03		
	NUM	BER OF ITER	RATIONS =	3000, то	OTAL NUMBER	OF ITERATIO	NS = 3	000
	FIN	AL CONVERGE	ENCE TOLERAN	CE = 6.5001	E+01			
	SUM	OF EXTERNA	L FORCES IN	X-DIRECTION	O.000E	+00		
	SUM	OF EXTERNA	L FORCES IN	Y-DIRECTION	ON = -6.000E	+01	,	
	SUM	OF REACTIO	N FORCES IN	X-DIRECTION	ON = 9.400E	-02	•	

FINAL CONVERGENCE TOLERANCE = 6.500E+01							
SUM OF EXTERNAL FORCES IN X-DIRECTION = 0.000E+00							
SUM OF EXTERNAL FORCES IN Y-DIRECTION =-6.000E+01							
SUM OF REACTION FORCES IN X-DIRECTION = 9.400E-02							
SUM OF REACTION FORCES IN Y-DIRECTION =-2.977E+01							

STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
100	1.000E-02	5.000E-03	1.000E+00	1.016E+01	1.416E+02	1393.45	3100
200	1.000E-02	5.000E-03	9.992E-01	1.016E+01	2.950E+01	290.29	3200

Page	1	8
------	---	---

300	1.000E-02	5.000E-03	1.000E+00	1.016E+01	2.617E+01	257.58	3300
400	1.000E-02	5.000E-03	1.000E+00	1.016E+01	2.984E+01	293.62	3400
500	1.000E-02	5.000E-03	1.000E+00	1.016E+01	1.287E+01	126.65	3500
600	1.000E-02	5.000E-03	1.000E+00	1.016E+01	2.746E+01	270.23	3600

SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 10:43:46 30 TO 1 BEAM WITH GRAVITY LOADS - SANTOS QA PROBLEM

SUMMARY OF DATA AT STEP NUMBER 310, TIME = 1.550E+00

NUMBER OF ITERATIONS = 871, TOTAL NUMBER OF ITERATIONS = 238005

FINAL CONVERGENCE TOLERANCE = 4.937E-01

SUM OF EXTERNAL FORCES IN X-DIRECTION = 0.000E+00

SUM OF EXTERNAL FORCES IN Y-DIRECTION =-1.860E+04

SUM OF REACTION FORCES IN X-DIRECTION =-5.824E+01

SUM OF REACTION FORCES IN Y-DIRECTION =-1.863E+04

**** PLOT TAPE WRITTEN AT TIME = 1.550E+00 STEP NUMBER 310 ****

31 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

ENDOF SOLUTION PHASE
2.042E+02 CPU SECONDS USED
27346 WORDS ALLOCATED

31 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

E N D O F S O L U T I O N P H A S E 7.301E+02 CPU SECONDS USED 14138 WORDS ALLOCATED

Pressure Loaded Beam

beamp.o

SSSSSS	AAA	AA	N	NN	TTTTTT	000	000	SSSSSS	
SS	AA	AA	NN	NN	${f TT}$	00	00	SS	
SS	AA	AA	NNN	NN	$\mathbf{T}\mathbf{T}$	00	00	SS	
SSSSS	AAA	AAA	NN N	NN	TT	00	00	SSSSS	

SS AA AA NN NNN TT 00 00 SS SS AA AA NN NN TT 00 00 SS SSSSSS AA AA NN N TT 00000 SSSSSS

> VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE ENGINEERING SCIENCES CENTER SANDIA NATIONAL LABORATORIES ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030612 AT 10:47:48 RUN ON A i686 UNDER Lx2.4.20

```
1: TITLE
 2: 30 TO 1 BEAM WITH APPLIED PRESSURE
 3: RESIDUAL TOLERANCE, 0.5
 4: MAXIMUM ITERATIONS, 3000
 5: INTERMEDIATE PRINT, 100
 6: MAXIMUM TOLERANCE, 1000
 7: NO DAMPING, 100, 50
 8: PLANE STRAIN
 9: STEP CONTROL
 10: 1550 1.55
 11: END
 12: PLOT TIME
 13: 10 1.55
 14: END
 15: OUTPUT TIME
 16: 1 1.55
 17: END
 18: PLOT NODAL DISPLACEMENT
 19: PLOT ELEMENT STRESS, VONMISES
 20: NO DISPLACEMENT Y, 4
 21: NO DISPLACEMENT X, 4
 22: PRESSURE, 30, 1, 400.
 23: FUNCTION, 1 $ FUNCTION TO DEFINE PRESCRIBED DISPLACEMENT
 24: 0. 0.
 25: 2.
 26: END
 27: MATERIAL, 1, ELASTIC, 2167.
 28: YOUNGS MODULUS = 1.E7
 29: POISSONS RATIO = 0.0
 30: END
 31: EXIT
                              INPUT STREAM IMAGES
LINE -----
```

1

```
33: TITLE
34: 30 TO 1 BEAM WITH APPLIED PRESSURE
35: RESIDUAL TOLERANCE, 0.5
36: MAXIMUM ITERATIONS, 3000
37: INTERMEDIATE PRINT, 100
38: MAXIMUM TOLERANCE, 1000
39: NO DAMPING, 100, 50
40: PLANE STRAIN
41: STEP CONTROL
42: 1550 1.55
43: END
44: PLOT TIME
45: 10 1.55
46: END
47: OUTPUT TIME
48: 1 1.55
49: END
50: PLOT NODAL DISPLACEMENT
51: PLOT ELEMENT STRESS, VONMISES
52: NO DISPLACEMENT Y, 4
53: NO DISPLACEMENT X, 4
54: PRESSURE, 30, 1, 400.
55: FUNCTION, 1 $ FUNCTION TO DEFINE PRESCRIBED DISPLACEMENT
56: 0. 0.
57: 2.
58: END
59: MATERIAL, 1, ELASTIC, 2167.
60: YOUNGS MODULUS = 1.E7
61: POISSONS RATIO = 0.0
62: END
63: EXIT
```

PROBLEM TITLE

30 TO 1 BEAM WITH APPLIED PRESSURE

1

PROBLEM DEFINITION

NUMBER OF	ELEMENTS	120
NUMBER OF	NODES	155
NUMBER OF	MATERIALS	1
NUMBER OF	FUNCTIONS	1
NUMBER OF	CONTACT SURFACES	0
NUMBER OF	RIGID SURFACES	0
NUMBER OF	MATERIAL POINTS MONITORED	0
ANALYSIS T	YPE	PLANE STRAIN
GLOBAL CON	VERGENCE MEASURE	
RESIDUAL TO	OLERANCE	5.000E-01
MAXIMUM NU	MBER OF ITERATIONS	3000
ITERATIONS	FOR INTERMEDIATE PRINT	100
MAXIMUM RE	SIDUAL TOLERANCE	1.000E+03
PREDICTOR :	SCALE FACTOR FUNCTION	0
MINIMUM DAI	MPING FACTOR	2.000E-01
EFFECTIVE 1	MODULUS STATUS	CONSTANT

NO DAMPING OPTION	ACTIVE
NUMBER OF NO DAMPING ITERATIONS	100
NUMBER OF LOAD STEPS WITH NO DAMPING .	50
SCALE FACTOR APPLIED TO TIME STEP	1.000E+00
STRAIN SOFTENING SCALE FACTOR	1.000E+00
HOURGLASS STIFFNESS FACTOR	5.000E-02
HOURGLASS VISCOSITY FACTOR	0.000E+00

LOAD STEP DEFINITIONS

TIME NO. OF STEPS TIME 0.000E+00 1550 1.550E+00

PRINTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PRINTS TIME 0.000E+00 1 1.550E+00

PLOTTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PLOTS TIME 0.000E+00 10 1.550E+00

MATERIAL DEFINITIONS

YOUNGS MODULUS = 1.000E+07 POISSONS RATIO = 0.000E+00

FUNCTION DEFINITIONS

N S F(S) 1 0.000E+00 0.000E+00

2 2.000E+00 2.000E+00

NO DISPLACEMENT BOUNDARY CONDITIONS

NODE	SET	FLAG	DIRECTION
	4		. Y
	4		Х

PRESSURE BOUNDARY CONDTIONS

SURFACE	FUNCTION	SCALE
FLAG	NUMBER	FACTOR
30	1	4.000E+02

END OF DATA INPUT PHASE 2.000E-02 CPU SECONDS USED 2336 WORDS ALLOCATED

END OF DATA INITIALIZATION PHASE 1.000E-02 CPU SECONDS USED 22734 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

NODAL	ELEMENT	GLOBAL
-		-
DISPLX	SIGXX	FX
DISPLY	SIGYY	FY
	SIGZZ	RX
	TAUXY	RY
	VONMISES	ITER
		RMAG

**** PLOT TAPE WRITTEN FOR THE INITIAL STATE AT TIME = 0.000E+00 ****

						_	
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
100	1.000E-03	1.000E-03	1.000E+00		4.084E+00	188.00	100
200	1.000E-03	1.000E-03	1.000E+00	2.173E+00	4.510E+00	207.59	200
300	1.000E-03	1.000E-03	1.000E+00	2.173E+00	3.048E+00	140.29	300
400	1.000E-03	1.000E-03	1.000E+00	2.173E+00	4.364E+00	200.87	400
500	1.000E-03	1.000E-03	1.000E+00	2.173E+00	4.520E+00	208.07	500
600	1.000E-03	1.000E-03	1.000E+00	2.173E+00	3.608E+00	166.09	600
700	1.000E-03	1.000E-03	1.000E+00	2.173E+00	3.636E+00	167.34	700
800	1.000E-03	1.000E-03	1.000E+00	2.173E+00	4.253E+00	195.76	800
900	1.000E-03	1.000E-03	1.000E+00	2.173E+00	3.338E+00	153.66	900
1000	1.000E-03	1.000E-03	1.000E+00	2.173E+00	4.229E+00	194.66	1000
1100	1.000E-03	1.000E-03	1.000E+00	2.173E+00	4.476E+00	206.02	1100
1200	1.000E-03	1.000E-03	1.000E+00	2.173E+00	3.380E+00	155.56	1200
1300	1.000E-03	1.000E-03	1.000E+00	2.173E+00	4.206E+00	193.58	1300
1400	1.000E-03	1.000E-03	1.000E+00	2.173E+00	4.478E+00	206.14	1400
1500	1.000E-03	1.000E-03	1.000E+00	2.173E+00	3.449E+00	158.77	1500
1600	1.000E-03	1.000E-03	1.000E+00	2.173E+00	3.728E+00	171.62	1600
1700	1.000E-03	1.000E-03	1.000E+00	2.173E+00	4.683E+00	215.55	1700
1800	1.000E-03	1.000E-03	1.000E+00	2.173E+00	3.133E+00	144.19	1800
1900	1.000E-03	1.000E-03	1.000E+00	2.173E+00	3.905E+00	179.74	1900
2000	1.000E-03	1.000E-03	1.000E+00	2.173E+00	3.061E+00	140.89	2000
2100	1.000E-03	1.000E-03	1.000E+00	2.173E+00	3.644E+00	167.73	2100
2200	1.000E-03	1.000E-03	9.967E-01	2.173E+00	3.312E+00	152.44	2200
2300	1.000E-03	1.000E-03	9.651E-01	2.173E+00	1.523E+00	70.09	2300
2400	1.000E-03	1.000E-03	1.000E+00	2.173E+00	7.333E-01	33.75	2400
2500	1.000E-03	1.000E-03	1.000E+00		7.212E-01	33.20	2500
2600	1.000E-03	1.000E-03	9.994E-01	2.173E+00	7.127E-01	32.80	2600
2700	1.000E-03	1.000E-03	9.998E-01		7.064E-01	32.52	2700
2800	1.000E-03	1.000E-03	9.965E-01		6.990E-01	32.17	2800
2900		1.000E-03	9.955E-01	2.173E+00	6.897E-01	31.75	2900
	ANTOS, VERSI		•	0030612, AT	10:47:48		
3	0 TO 1 BEAM	WITH APPLIE	D PRESSURE				
	*****					*****	
	MMARY OF DAT			1, TIME = 1		-	
	MBER OF ITER				OF ITERATIO	NS = 3	000
	NAL CONVERGE						
	M OF EXTERNA						
	M OF EXTERNA						
	M OF REACTIO						
	M OF REACTIO						
**	*****	*****	*****	******	* * * * * * * * * * * *	****	
CMED	m T M E	MTME	DAMDING	ADDI TED	DECIDIAL		moma r
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL LOAD NORM	PERCENT	TOTAL STEPS
100	2.000E-03	STEP 1.000E-03	FACTOR 1.000E+00	LOAD NORM 4.345E+00	7.374E+00	IMBALANCE 169.70	3100
100 200		1.000E-03	9.989E-01	4.345E+00	1.355E+00	31.19	3200
300	2.000E-03	1.000E-03	9.989E-01 1.000E+00	4.345E+00	1.355E+00 1.351E+00	31.19	3300
400	2.000E-03	1.000E-03	9.998E-01	4.345E+00 4.345E+00	1.351E+00 1.340E+00	30.84	3400
500	2.000E-03	1.000E-03	1.000E+00	4.345E+00	1.326E+00	30.54	3500
600	2.000E-03	1.000E-03	9.991E-01	4.345E+00	1.326E+00 1.313E+00	30.22	3600
600	2.0006-03	T.000E-03	3.331E-01	4.3456+00	1.3135700	30.22	3000

SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 10:47:48 30 TO 1 BEAM WITH APPLIED PRESSURE

**** PLOT TAPE WRITTEN AT TIME = 1.550E+00 STEP NUMBER 1550 ****

155 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

ENDOFSOLUTION PHASE
2.434E+02 CPU SECONDS USED
27042 WORDS ALLOCATED

APPENDIX H

Input/Output Data For Test Case 8

The following two sections present the input data and the formatted output for the tension release option verification test

FASTQ and SANTOS Input Data For The Tension Release Option Problem

This section presents a listing of the FASTQ and SANTOS input data files that were used for the mesh generation and analysis of the tension release option problem.

```
TITLE

TEST OF CONTACT SURFACE TENSION RELEASE
POINT 1 0.0 0.0
POINT 2 2.0 0.0
POINT 3 2.0 2.0
POINT 5 0.5 2.0
POINT 6 1.5 2.0
POINT 7 1.5 3.0
POINT 8 0.5 3.0
LINE 1 STR 1 2 0 1
LINE 2 STR 2 3 0 1
LINE 3 STR 3 4 0 1
LINE 3 STR 1 4 0 1
LINE 4 STR 1 4 0 1
LINE 5 STR 5 6 0 5
LINE 6 STR 6 7 0 5
LINE 7 STR 8 7 0 5
LINE 7 STR 8 7 0 5
LINE 8 STR 5 8 0 5
REGION 1 1 -1 -2 -3 -4
REGION 2 2 -5 -6 -7 -8
NODEBC 1 1
NODEBC 2 2
NODEBC 3 3
NODEBC 4 4
SIDEBC 100 3
SIDEBC 200 5
SCHEME
EXIT
```

sant_tension.i

TITLE
SANTOS QA PROBLEM - TENSION RELEASE CHECK
PLANE STRAIN
MAXIMUM ITERATIONS 5000
RESIDUAL TOLERANCE,1.
INTERMEDIATE PRINT = 100
MAXIMUM TOLERANCE = 100000.


```
MATERIAL, 1, ELASTIC, 1.
YOUNGS MODULUS 30.e+6
POISSIONS RATIO 0.3
END
MATERIAL, 2, ELASTIC PLASTIC, 1.
YOUNGS MODULUS 10.e+6
POISSIONS RATIO 0.3
YIELD STRESS 1.0e+4
HARDENING MODULUS 17000.
BETA 0.
END
PLOT, NODAL, DISPLACEMENTS, RESIDUALS
PLOT, ELEMENT, STRESS
PLOT, STATE, EQPS
FUNCTION 1
   0.,0.0
   1.,1.
END
STEP CONTROL
 100,1.
END
OUTPUT TIME
  1,1.
END
PLOT TIME
  1.1.
PRESSURE, 10, 1, -20000.
NO DISPLACEMENT X 1
NO DISPLACEMENT X 2
NO DISPLACEMENT X 3
NO DISPLACEMENT X 4
NO DISPLACEMENT Y 1
NO DISPLACEMENT Y 2
NO DISPLACEMENT Y 3
NO DISPLACEMENT Y 4
CONTACT SURFACE 100 200 0. 1.e-6 1000.
```

SANTOS Output For The Tension Release Option Problem

The following section presents a portion of the SANTOS printed output for the tension release option analysis. Because all pertinent information and results from the analysis are written to the plot file for post-processing, the printed output file simply echoes input data and problem—descriptive information at the beginning, followed by information that tracks the convergence behavior of the solution, and a summary of CPU usage at the end. For this reason, only a partial listing, consisting of approximately the first 500 lines of output and the last 100 lines of output, is provided.

```
sant_tension.o
```

SSSSS	AAA	AA	N	NN	TTTTTT	000	000	SSSSSS
SS	AA	AA	NN	NN	$\mathbf{T}\mathbf{T}$	00	00	SS
SS	AA	AA	NNN	NN	TT	00	00	SS
SSSSS	AAAA	AAA	NN N	NN	$ extbf{T} extbf{T}$	00	00	SSSSS
SS	AA	AA	NN	NNN	${f TT}$	00	00	SS

> VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE ENGINEERING SCIENCES CENTER SANDIA NATIONAL LABORATORIES ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030612 AT 10:52:33 RUN ON A i686 UNDER Lx2.4.20

1: TITLE 2: SANTOS QA PROBLEM - TENSION RELEASE CHECK 3: PLANE STRAIN 4: MAXIMUM ITERATIONS 5000 5: RESIDUAL TOLERANCE, 1. 6: INTERMEDIATE PRINT = 100 7: MAXIMUM TOLERANCE = 100000. 8: MATERIAL, 1, ELASTIC, 1. 9: YOUNGS MODULUS 30.e+6 10: POISSIONS RATIO 0.3 11: END 12: MATERIAL, 2, ELASTIC PLASTIC, 1. 13: YOUNGS MODULUS 10.e+6 14: POISSIONS RATIO 0.3 15: YIELD STRESS 1.0e+4 16: HARDENING MODULUS 17000. 17: BETA 0. 18: END 19: PLOT, NODAL, DISPLACEMENTS, RESIDUALS 20: PLOT, ELEMENT, STRESS 21: PLOT, STATE, EQPS 22: FUNCTION 1 23: 0.,0.0 24: 1.,1. 25: END 26: STEP CONTROL 27: 100,1. 28: END 29: OUTPUT TIME 30: 1,1. 31: END 32: PLOT TIME 33: 1,1. 34: END

```
35: PRESSURE, 10, 1, -10000.
 36: NO DISPLACEMENT X 1
 37: NO DISPLACEMENT X 2
 38: NO DISPLACEMENT X 3
 39: NO DISPLACEMENT X 4
 40: NO DISPLACEMENT Y 1
 41: NO DISPLACEMENT Y 2
 42: NO DISPLACEMENT Y 3
 43: NO DISPLACEMENT Y 4
 44: CONTACT SURFACE 100 200 0. 1.e-6 1000.
 45: EXIT
                                INPUT STREAM IMAGES
LINE -----
 47: TITLE
 48: SANTOS QA PROBLEM - TENSION RELEASE CHECK
 49: PLANE STRAIN
 50: MAXIMUM ITERATIONS 5000
 51: RESIDUAL TOLERANCE, 1.
 52: INTERMEDIATE PRINT = 100
 53: MAXIMUM TOLERANCE = 100000.
 54: MATERIAL, 1, ELASTIC, 1.
 55: YOUNGS MODULUS 30.e+6
 56: POISSIONS RATIO 0.3
 57: END
 58: MATERIAL, 2, ELASTIC PLASTIC, 1.
 59: YOUNGS MODULUS 10.e+6
 60: POISSIONS RATIO 0.3
 61: YIELD STRESS 1.0e+4
 62: HARDENING MODULUS 17000.
 63: BETA 0.
 64: END
 65: PLOT, NODAL, DISPLACEMENTS, RESIDUALS
 66: PLOT, ELEMENT, STRESS
 67: PLOT, STATE, EOPS
 68: FUNCTION 1
       0.,0.0
70:
       1.,1.
71: END
72: STEP CONTROL
73: 100,1.
74: END
75: OUTPUT TIME
 76: 1,1.
 77: END
 78: PLOT TIME
 79: 1,1.
 80: END
 81: PRESSURE, 10, 1, -10000.
 82: NO DISPLACEMENT X 1
83: NO DISPLACEMENT X 2
84: NO DISPLACEMENT X 3
85: NO DISPLACEMENT X 4
86: NO DISPLACEMENT Y 1
87: NO DISPLACEMENT Y 2
88: NO DISPLACEMENT Y 3
 89: NO DISPLACEMENT Y 4
 90: CONTACT SURFACE 100 200 0. 1.e-6 1000.
91: EXIT
```


1 .

PROBLEM TITLE

SANTOS QA PROBLEM - TENSION RELEASE CHECK

PROBLEM DEFINITION

NUMBER OF ELEMENTS	26
NUMBER OF NODES	40
NUMBER OF MATERIALS	2
NUMBER OF FUNCTIONS	1
NUMBER OF CONTACT SURFACES	1
NUMBER OF RIGID SURFACES	0
NUMBER OF MATERIAL POINTS MONITORED	0
ANALYSIS TYPE	PLANE STRAIN
GLOBAL CONVERGENCE MEASURE	
RESIDUAL TOLERANCE	1.000E+00
MAXIMUM NUMBER OF ITERATIONS	5000
ITERATIONS FOR INTERMEDIATE PRINT	100
MAXIMUM RESIDUAL TOLERANCE	1.000E+05
PREDICTOR SCALE FACTOR FUNCTION	0
MINIMUM DAMPING FACTOR	2.000E-01
EFFECTIVE MODULUS STATUS	CONSTANT
SCALE FACTOR APPLIED TO TIME STEP	1.000E+00
STRAIN SOFTENING SCALE FACTOR	1.000E+00
HOURGLASS STIFFNESS FACTOR	5.000E-02
HOURGLASS VISCOSITY FACTOR	0.000E+00

LOAD STEP DEFINITIONS

TIME NO. OF STEPS TIME 0.000E+00 100 1.000E+00

PRINTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PRINTS TIME 0.000E+00 1 1.000E+00

PLOTTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PLOTS TIME 0.000E+00 1 1.000E+00

MATERIAL DEFINITIONS

FUNCTION DEFINITIONS

NO DISPLACEMENT BOUNDARY CONDITIONS

NODE	SET	FLAG	DIRECTION
	1		Х
	2		Х
	3		Х
	4		Х
	1		Y
	2		Y
	3		Y
	4		Y

CONTACT SURFACES

ERMS# 530091 June 2003 Page 202

SURFACE	SURFACE 1	SURFACE 2	2 PENALTY	COEFFICIENT	PENETRATION	TENSION
NUMBER	FLAG	FLAG	FACTOR	OF FRICTION	MULTIPLIER	RELEASE
1	100	200	0.000E+00	0.000E+00	1.000E-06	1.000E+03

PRESSURE BOUNDARY CONDTIONS

SURFACE	FUNCTION	SCALE
FLAG	NUMBER	FACTOR
10	1	-1.000E+04

E N D O F D A T A I N P U T P H A S E 3.000E-02 CPU SECONDS USED 768 WORDS ALLOCATED

END OF DATA INITIALIZATION PHASE 0.000E+00 CPU SECONDS USED 18192 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

NODAL	ELEMENT	GLOBAL
DISPLX	SIGXX	FX
DISPLY	SIGYY	FY
RESIDX	SIGZZ	RX
RESIDY	TAUXY	RY
RESID	EQPS	ITER
		RMAG

**** PLOT TAPE WRITTEN FOR THE INITIAL STATE AT TIME = 0.000E+00 ****

SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 10:52:33
SANTOS QA PROBLEM - TENSION RELEASE CHECK

SUM OF REACTION FORCES IN Y-DIRECTION = 1.010E+02 ************************************	
**** PLOT TAPE WRITTEN AT TIME = 1.000E-02 STEP NUMBER 1 ****	
SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 10:52:33 SANTOS QA PROBLEM - TENSION RELEASE CHECK	
SUMMARY OF DATA AT STEP NUMBER 2, TIME = 2.000E-02 NUMBER OF ITERATIONS = 3, TOTAL NUMBER OF ITERATIONS = FINAL CONVERGENCE TOLERANCE = 7.000E-01 SUM OF EXTERNAL FORCES IN X-DIRECTION = 3.375E-12 SUM OF EXTERNAL FORCES IN Y-DIRECTION = 2.000E+02 SUM OF REACTION FORCES IN X-DIRECTION = 0.000E+00 SUM OF REACTION FORCES IN Y-DIRECTION = 2.025E+02	67
**** PLOT TAPE WRITTEN AT TIME = 2.000E-02 STEP NUMBER 2 ****	
SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 10:52:33 SANTOS QA PROBLEM - TENSION RELEASE CHECK	
SUMMARY OF DATA AT STEP NUMBER 3, TIME = 3.000E-02	
**** PLOT TAPE WRITTEN AT TIME = 3.000E-02 STEP NUMBER 3 ****	
SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 10:52:33 SANTOS QA PROBLEM - TENSION RELEASE CHECK	
**************************************	74
	**** PLOT TAPE WRITTEN AT TIME = 1.000E-02 STEP NUMBER 1 **** SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 10:52:33 SANTOS QA PROBLEM - TENSION RELEASE CHECK **** SUMMARY OF DATA AT STEP NUMBER 2, TIME = 2.000E-02 NUMBER OF ITERATIONS = 3, TOTAL NUMBER OF ITERATIONS = FINAL CONVERCENCE TOLERANCE = 7.00E-01 SUM OF EXTERNAL FORCES IN X-DIRECTION = 2.000E+02 SUM OF EXTERNAL FORCES IN X-DIRECTION = 0.000E+02 SUM OF REACTION FORCES IN X-DIRECTION = 2.00E+02 SUM OF REACTION FORCES IN Y-DIRECTION = 2.025E+02 **** PLOT TAPE WRITTEN AT TIME = 2.000E-02 STEP NUMBER 2 **** SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 10:52:33 SANTOS QA PROBLEM - TENSION RELEASE CHECK **** SUMMARY OF DATA AT STEP NUMBER 3, TIME = 3.000E-02 NUMBER OF ITERATIONS = FINAL CONVERGENCE TOLERANCE = 9.313E-01 SUM OF EXTERNAL FORCES IN X-DIRECTION = 2.398E-12 SUM OF EXTERNAL FORCES IN Y-DIRECTION = 2.398E-12 SUM OF EXERNAL FORCES IN Y-DIRECTION = 3.000E+02 SUM OF REACTION FORCES IN X-DIRECTION = 3.000E+02 SUM OF REACTION FORCES IN Y-DIRECTION = 3.000E+02 SUM OF REACTION FORCES IN Y-DIRECTION = 3.000E+02 **** PLOT TAPE WRITTEN AT TIME = 3.000E-02 STEP NUMBER 3 **** SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 10:52:33 SANTOS QA PROBLEM - TENSION RELEASE CHECK **** PLOT TAPE WRITTEN AT TIME = 3.000E-02 STEP NUMBER 3 **** SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 10:52:33 SANTOS QA PROBLEM - TENSION RELEASE CHECK **** PLOT TAPE WRITTEN AT TIME = 4.000E-02 NUMBER OF ITERATIONS = 4, TOTAL NUMBER OF ITERATIONS = FINAL CONVERGENCE TOLERANCE = 9.436E-01 SUM OF REACTION FORCES IN Y-DIRECTION = 8.171E-12 SUM OF EXTERNAL FORCES IN Y-DIRECTION = 8.171E-12 SUM OF EXTERNAL FORCES IN Y-DIRECTION = 0.000E+00 SUM OF REACTION FORCES IN Y-DIRECTION = 0.000E+00

Information Only

**** PLOT TAPE WRITTEN AT TIME = 4.000E-02 STEP NUMBER

1 SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 10:52:33 SANTOS QA PROBLEM - TENSION RELEASE CHECK

SUMMARY OF DATA AT STEP NUMBER 100, TIME = 1.000E+00

NUMBER OF ITERATIONS = 5000, TOTAL NUMBER OF ITERATIONS = 255322

FINAL CONVERGENCE TOLERANCE = 6.371E+01

SUM OF EXTERNAL FORCES IN X-DIRECTION =-6.120E+03 SUM OF EXTERNAL FORCES IN Y-DIRECTION = 7.226E+03 SUM OF REACTION FORCES IN X-DIRECTION = 0.000E+00

SUM OF REACTION FORCES IN Y-DIRECTION = 0.000E+00

**** PLOT TAPE WRITTEN AT TIME = 1.000E+00 STEP NUMBER 100 ****

100 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

E N D O F S O L U T I O N P H A S E 6.603E+01 CPU SECONDS USED 19320 WORDS ALLOCATED

APPENDIX I

Input/Output Data For Test Case 9

The following two sections present the input data and the formatted output for the rigid sliding surface option verification problem.

FASTQ and SANTOS Input Data For The Rigid Sliding Surface Option Problem

This section presents a listing of the FASTQ and SANTOS input data files that were used for mesh generation and for each of the analyses of the rigid sliding surface option problem.

```
sant_singd.fsq
TITLE
 FRICTIONAL SLIP PROBLEM - ONE BEAM - SANTOS QA TEST PROBLEM - v. disp
POINT 1 0. 0.
POINT
             0.
                      2.
           20.
POINT 3
                     2.
           20.
POINT 4
LINE 1 STR 1 2 0 4 1.0
LINE 2 STR 2 3 0 40 1.0
LINE 3 STR 3 4 0 4 1.0
LINE 4 STR 4 1 0 40 1.0
NODEBC 1 1
         2
NODEBC 3
          3
ELEMBC 4
ELEMBC 5
SCHEME 0
          MP
         1 -1 -2 -3 -4
REGION 1
EXIT
Case of \mu = 0.1
sant sing01.i
TITLE
 SANTOS QA PROBLEM - SINGLE BEAM FRICTION MU = 0.1
PLANE STRAIN
MAXIMUM ITERATIONS, 20000
RESIDUAL TOLERANCE 0.1
TIME STEP SCALE 1.0
MATERIAL, 1, ELASTIC, 1.
YOUNGS MODULUS 10000.
POISSONS RATIO 0.
END
FUNCTION, 1
 0.,1.
 1.,1.
FUNCTION, 2
  0.,0.
  1.,1.
END
```



```
STEP CONTROL
 1000.,1.
PLOT TIME
 10.,1.
END
OUTPUT TIME
1000.,1.
END
NO DISPLACEMENT, X, 1
PRESCRIBED DISPLACEMENT Y 3 1 -4.E-3 0. 0.
PRESSURE, 4, 2, -35.
RIGID SURFACE, 5, 0., 0., 0., 1., 0.1
EXIT
Case of \mu = 0.2
sant_sing02.i
TITLE
  SANTOS QA PROBLEM - SINGLE BEAM FRICTION MU = 0.2
PLANE STRAIN
MAXIMUM ITERATIONS, 20000
RESIDUAL TOLERANCE 0.1
TIME STEP SCALE 1.0
MATERIAL, 1, ELASTIC, 1.
YOUNGS MODULUS 10000.
POISSONS RATIO 0.
FUNCTION, 1
  0.,1.
  1.,1.
END
FUNCTION, 2
   0.,0.
   1.,1.
STEP CONTROL
  1000.,1.
END
PLOT TIME
10.,1.
END
OUTPUT TIME
 1000.,1.
END
NO DISPLACEMENT, X, 1
PRESCRIBED DISPLACEMENT Y 3 1 -4.E-3 0. 0.
PRESSURE, 4, 2, -58.75
RIGID SURFACE, 5, 0., 0., 0., 1., 0.2
Case of \mu = 0.5
sant_sing05.i
TITLE
  SANTOS QA PROBLEM - SINGLE BEAM FRICTION MU = 0.5
PLANE STRAIN
MAXIMUM ITERATIONS, 20000
```

RESIDUAL TOLERANCE 0.1

Page 207

```
TIME STEP SCALE 1.05
MATERIAL, 1, ELASTIC, 1.
YOUNGS MODULUS 10000.
POISSONS RATIO 0.
END
FUNCTION, 1
  0.,1.
  1.,1.
END
FUNCTION, 2
   0.,0.
   1.,1.
END
STEP CONTROL
  1000.,1.
END
PLOT TIME
10.,1.
END
OUTPUT TIME
1000.,1.
END
NO DISPLACEMENT, X, 1
PRESCRIBED DISPLACEMENT Y 3 1 -4.E-3 0. 0.
PRESSURE, 4, 2, -125.
RIGID SURFACE, 5, 0., 0., 0., 1., 0.5
Case of \mu = 0.7
sant_sing07.i
  SANTOS QA PROBLEM - SINGLE BEAM FRICTION MU = 0.7
PLANE STRAIN
MAXIMUM ITERATIONS, 20000
RESIDUAL TOLERANCE 0.1
TIME STEP SCALE 1.05
MATERIAL, 1, ELASTIC, 1.
YOUNGS MODULUS 10000.
POISSONS RATIO 0.
END
FUNCTION, 1
  0.,1.
  1.,1.
END
FUNCTION, 2
   0.,0.
   1.,1.
STEP CONTROL
  1000.,1.
END
PLOT TIME
10.,1.
END
OUTPUT TIME
1000.,1.
END
NO DISPLACEMENT, X, 1
```


PRESCRIBED DISPLACEMENT Y 3 1 -4.E-3 0. 0. PRESSURE,4,2,-170. RIGID SURFACE,5,0.,0.,0.,1.,0.7 EXIT

SANTOS Output For The Rigid Sliding Surface Option Problem

The following section presents a portion of the SANTOS printed output for each of the rigid sliding surface option analyses. Because all pertinent information and results from the analysis are written to the plot file for post-processing, the printed output file simply echoes input data and problem—descriptive information at the beginning, followed by information that tracks the convergence behavior of the solution, and a summary of CPU usage at the end. For this reason, only a partial listing, consisting of approximately the first 500 lines of output and the last 100 lines of output, is provided.

Case of $\mu = 0.1$ sant_sing01.0

SSSSSS	AAA	AAA	N	NN	TTTTTT	000	000	SSSSSS
SS	AA	AA	NN	NN	$\mathbf{T}\mathbf{T}$	00	00	SS
SS	AA	AA	NNN	NN	${f TT}$	00	00	SS
SSSSS	AAAA	AAA	NN N	I NN	${f TT}$	00	00	SSSSS
SS	AA	AA	NN	NNN	${f TT}$	00	00	SS
SS	AA	AA	NN	NN	${f TT}$	00	00	SS
SSSSSS	AA	AA	NN	N	${f TT}$	000	000	SSSSSS

VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE ENGINEERING SCIENCES CENTER SANDIA NATIONAL LABORATORIES ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030612 AT 10:54:47 RUN ON A i686 UNDER Lx2.4.20

- 1: TITLE
- 2: SANTOS QA PROBLEM SINGLE BEAM FRICTION MU = 0.1
- 3: PLANE STRAIN
- 4: MAXIMUM ITERATIONS, 20000
- 5: RESIDUAL TOLERANCE 0.1
- 6: TIME STEP SCALE 1.0
- 7: MATERIAL, 1, ELASTIC, 1.
- 8: YOUNGS MODULUS 10000.
- 9: POISSONS RATIO 0.

Page 209

```
10: END
   11: FUNCTION, 1
  12: 0.,1.
  13: 1.,1.
  14: END
  15: FUNCTION, 2
  16:
        0.,0.
   17:
         1.,1.
   18: END
   19: STEP CONTROL
  20: 1000.,1.
  21: END
  22: PLOT TIME
  23: 10.,1.
  24: END
  25: OUTPUT TIME
  26: 1000.,1.
  27: END
  28: NO DISPLACEMENT, X, 1
  29: PRESCRIBED DISPLACEMENT Y 3 1 -4.E-3 0. 0.
  30: PRESSURE, 4, 2, -35.
  31: RIGID SURFACE, 5, 0., 0., 0., 1., 0.1
  32: EXIT
1
                                  INPUT STREAM IMAGES
 LINE --------
  34: TITLE
  35: SANTOS QA PROBLEM - SINGLE BEAM FRICTION MU = 0.1
  36: PLANE STRAIN
   37: MAXIMUM ITERATIONS, 20000
   38: RESIDUAL TOLERANCE 0.1
  39: TIME STEP SCALE 1.0
  40: MATERIAL, 1, ELASTIC, 1.
  41: YOUNGS MODULUS 10000.
  42: POISSONS RATIO 0.
  43: END
  44: FUNCTION, 1
  45: 0.,1.
  46: 1.,1.
   47: END
   48: FUNCTION, 2
   49: 0.,0.
  50:
         1.,1.
  51: END
  52: STEP CONTROL
  53: 1000.,1.
  54: END
  55: PLOT TIME
  56: 10.,1.
  57: END
  58: OUTPUT TIME
  59: 1000.,1.
  60: END
  61: NO DISPLACEMENT, X, 1
  62: PRESCRIBED DISPLACEMENT Y 3 1 -4.E-3 0. 0.
  63: PRESSURE, 4, 2, -35.
  64: RIGID SURFACE, 5, 0., 0., 0., 1., 0.1
  65: EXIT
```

Page 210

1

PROBLEM TITLE

SANTOS QA PROBLEM - SINGLE BEAM FRICTION MU = 0.1

PROBLEM DEFINITION

NUMBER OF ELEMENTS	160
NUMBER OF NODES	205
NUMBER OF MATERIALS	1
NUMBER OF FUNCTIONS	2
NUMBER OF CONTACT SURFACES	0
NUMBER OF RIGID SURFACES	1
NUMBER OF MATERIAL POINTS MONITORED	0
ANALYSIS TYPE	PLANE STRAIN
GLOBAL CONVERGENCE MEASURE	
RESIDUAL TOLERANCE	1.000E-01
MAXIMUM NUMBER OF ITERATIONS	20000
ITERATIONS FOR INTERMEDIATE PRINT	410
MAXIMUM RESIDUAL TOLERANCE	6.000E-01
PREDICTOR SCALE FACTOR FUNCTION	0
MINIMUM DAMPING FACTOR	2.000E-01
EFFECTIVE MODULUS STATUS	CONSTANT
SCALE FACTOR APPLIED TO TIME STEP	1.000E+00
STRAIN SOFTENING SCALE FACTOR	1.000E+00
HOURGLASS STIFFNESS FACTOR	5.000E-02
HOURGLASS VISCOSITY FACTOR	0.000E+00

LOAD STEP DEFINITIONS

TIME NO. OF STEPS TIME 0.000E+00 1000 1.000E+00

PRINTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PRINTS TIME 0.000E+00 1.000E+00

PLOTTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PLOTS TIME 0.000E+00 10 1.000E+00

MATERIAL DEFINITIONS

MATERIAL TYPE ELASTIC MATERIAL ID

DENSITY 1.000E+00

MATERIAL PROPERTIES:

YOUNGS MODULUS = 1.000E+04 POISSONS RATIO = 0.000E+00

FUNCTION DEFINITIONS

N S F(S) 1 0.000E+00 1.000E+00 2 1.000E+00 1.000E+00

FUNCTION ID 2 NUMBER OF POINTS 2

N S F(S) 1 0.000E+00 0.000E+00 2 1.000E+00 1.000E+00

NO DISPLACEMENT BOUNDARY CONDITIONS

NODE SET FLAG DIRECTION 1 X

PRESCRIBED DISPLACEMENT BOUNDARY CONDITIONS

NODE SET DIRECTION FUNCTION SCALE A0 B0 FLAG ID FACTOR - -

RIGID SURFACES

SURFACE SIDE SET COEFFICIENT X0 Y0 NX NY

NUMBER FLAG OF FRICTION

5 0.100 0.000E+00 0.000E+00 0.000E+00 1.000E+00

PRESSURE BOUNDARY CONDTIONS

SURFACE	FUNCTION	SCALE
FLAG	NUMBER	FACTOR
4	2	-3.500E+01

END OF DATA INPUT PHASE 2.000E-02 CPU SECONDS USED 2398 WORDS ALLOCATED

END OF DATA INITIALIZATION PHASE 0.000E+00 CPU SECONDS USED 25312 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

NODAL	ELEMENT	GLOBAL
DISPLX	SIGXX	FX
DISPLY	SIGYY	FY
	SIGZZ	RX
	TAUXY	RY
		ITER
		RMAG

**** PLOT TAPE WRITTEN FOR THE INITIAL STATE AT TIME = 0.000E+00 ****

**** PLOT TAPE WRITTEN AT TIME = 1.000E-02 STEP NUMBER

**** PLOT TAPE WRITTEN AT TIME = 2.000E-02 STEP NUMBER 20 ****

**** PLOT TAPE WRITTEN AT TIME = 1.000E+00 STEP NUMBER 1000 ****

100 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

E N D O F S O L U T I O N P H A S E 3.270E+01 CPU SECONDS USED 31196 WORDS ALLOCATED

Case of $\mu = 0.2$ sant_sing02.0

SSSSSS	AAA	AAA	N	NN	TTTTTT	000	000	SSSSSS
SS	AA	AA	NN	NN	${f TT}$	00	00	SS
SS	AA	AA	NNN	NN	${f TT}$	00	00	SS
SSSSS	AAAA	AAA	NN N	1 NN	${f TT}$	00	00	SSSSS
SS	AA	AA	NN	NNN	TT	00	00	SS
SS	AA	AA	NN	NN	$\mathbf{T}\mathbf{T}$	00	00	SS
SSSSSS	AA	AA	NN	N	${f TT}$	000	000	SSSSSS

Page 214

VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE
ENGINEERING SCIENCES CENTER
SANDIA NATIONAL LABORATORIES
ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030612 AT 10:55:20 RUN ON A i686 UNDER Lx2.4.20

```
SANTOS QA PROBLEM - SINGLE BEAM FRICTION MU = 0.2
 2:
 3: PLANE STRAIN
 4: MAXIMUM ITERATIONS, 20000
 5: RESIDUAL TOLERANCE 0.1
 6: TIME STEP SCALE 1.0
 7: MATERIAL, 1, ELASTIC, 1.
 8: YOUNGS MODULUS 10000.
 9: POISSONS RATIO 0.
10: END
11: FUNCTION, 1
12: 0.,1.
13: 1.,1.
14: END
15: FUNCTION, 2
16: 0.,0.
     1.,1.
17:
18: END
19: STEP CONTROL
20: 1000.,1.
21: END
22: PLOT TIME
23: 10.,1.
24: END
25: OUTPUT TIME
26: 1000.,1.
27: END
28: NO DISPLACEMENT, X, 1
29: PRESCRIBED DISPLACEMENT Y 3 1 -4.E-3 0. 0.
30: PRESSURE, 4, 2, -58.75
31: RIGID SURFACE, 5, 0., 0., 0., 1., 0.2
32: EXIT
                                  INPUT STREAM IMAGES
35: SANTOS QA PROBLEM - SINGLE BEAM FRICTION MU = 0.2
36: PLANE STRAIN
37: MAXIMUM ITERATIONS, 20000
38: RESIDUAL TOLERANCE 0.1
39: TIME STEP SCALE 1.0
40: MATERIAL, 1, ELASTIC, 1.
```

1

```
41: YOUNGS MODULUS 10000.
42: POISSONS RATIO 0.
43: END
44: FUNCTION, 1
45: 0.,1.
46: 1.,1.
47: END
48: FUNCTION, 2
49: 0.,0.
50:
     1.,1.
51: END
52: STEP CONTROL
53: 1000.,1.
54: END
55: PLOT TIME
56: 10.,1.
57: END
58: OUTPUT TIME
59: 1000.,1.
60: END
61: NO DISPLACEMENT, X, 1
62: PRESCRIBED DISPLACEMENT Y 3 1 -4.E-3 0. 0.
63: PRESSURE, 4, 2, -58.75
64: RIGID SURFACE, 5, 0., 0., 0., 1., 0.2
65: EXIT
```

PROBLEM TITLE

SANTOS QA PROBLEM - SINGLE BEAM FRICTION MU = 0.2

PROBLEM DEFINITION

NUMBER OF ELEMENTS	160
NUMBER OF NODES	205
NUMBER OF MATERIALS	1
NUMBER OF FUNCTIONS	2
NUMBER OF CONTACT SURFACES	0
NUMBER OF RIGID SURFACES	1
NUMBER OF MATERIAL POINTS MONITORED	0
ANALYSIS TYPE	PLANE STRAIN
GLOBAL CONVERGENCE MEASURE	
RESIDUAL TOLERANCE	1.000E-01
MAXIMUM NUMBER OF ITERATIONS	20000
ITERATIONS FOR INTERMEDIATE PRINT	410
MAXIMUM RESIDUAL TOLERANCE	6.000E-01
PREDICTOR SCALE FACTOR FUNCTION	0
MINIMUM DAMPING FACTOR	2.000E-01
EFFECTIVE MODULUS STATUS	CONSTANT
SCALE FACTOR APPLIED TO TIME STEP	1.000E+00
STRAIN SOFTENING SCALE FACTOR	1.000E+00
HOURGLASS STIFFNESS FACTOR	5.000E-02
HOURGLASS VISCOSITY FACTOR	0.000E+00

LOAD STEP DEFINITIONS

TIME NO. OF STEPS TIME 0.000E+00 1000 1.000E+00

PRINTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PRINTS TIME 0.000E+00 1000 1.000E+00

PLOTTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PLOTS TIME 0.000E+00 10 1.000E+00

MATERIAL DEFINITIONS

FUNCTION DEFINITIONS

NO DISPLACEMENT BOUNDARY CONDITIONS

NODE SET FLAG DIRECTION X

PRESCRIBED DISPLACEMENT BOUNDARY CONDITIONS

NODE SET	DIRECTION	FUNCTION	SCALE	A0	в0
FLAG		ID	FACTOR		
3	Y	1	-4.000E-03	-	_

RIGID SURFACES

SURFACE	SIDE SET	COEFFICIENT	X0	Y0	NX	NY
NUMBER	FLAG	OF FRICTION				
1	5	0.200	0.000E+00	0.000E+00	0.000E+00	1.000E+00

PRESSURE BOUNDARY CONDTIONS

SURFACE	FUNCTION	SCALE
FLAG	NUMBER	FACTOR
4	2	-5.875E+01

E N D O F D A T A I N P U T P H A S E 3.000E-02 CPU SECONDS USED 2398 WORDS ALLOCATED

END OF DATA INITIALIZATION PHASE 0.000E+00 CPU SECONDS USED . 25312 WORDS ALLOCATED

40 ****

VARIABLES ON PLOTTING DATA BASE

NODAL	ELEMENT	GLOBAL
DISPLX	SIGXX	FX
DISPLY	SIGYY	FY
	SIGZZ	RX
	TAUXY	RY
		ITER
		RMAG

**** PLOT TAPE WRITTEN AT TIME = 1.000E-02 STEP NUMBER 10 ****

**** PLOT TAPE WRITTEN AT TIME = 2.000E-02 STEP NUMBER 20 ****

**** PLOT TAPE WRITTEN AT TIME = 3.000E-02 STEP NUMBER 30 ****

SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 10:55:20 SANTOS QA PROBLEM - SINGLE BEAM FRICTION MU = 0.2

**** PLOT TAPE WRITTEN AT TIME = 4.000E-02 STEP NUMBER

**** PLOT TAPE WRITTEN AT TIME = 1.000E+00 STEP NUMBER 1000 ****

100 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

E N D O F S O L U T I O N P H A S E 3.215E+01 CPU SECONDS USED 31196 WORDS ALLOCATED

Case of $\mu = 0.5$ sant_sing05.0

SSSSS	AAA	AAA	N	NN	TTTTTT	000	000	SSSSSS	
SS	AA	AΑ	NN	NN	${f TT}$	00	00	SS	
SS	AA	AA	NNN	NN	${f TT}$	00	00	SS	
SSSSS	AAAA	AAAA	NN N	I NN	${f TT}$	00	00	SSSSS	
SS	AA	AA	NN	NNN	${f TT}$	00	00	SS	
SS	AA	AA	NN	NN	${f TT}$	00	00	SS	
SSSSSS	AA	AA	NN	N	$\mathbf{T}\mathbf{T}$	000	000	SSSSSS	

VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE
ENGINEERING SCIENCES CENTER
SANDIA NATIONAL LABORATORIES
ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030612 AT 10:55:53 RUN ON A i686 UNDER Lx2.4.20

- 1: TITLE
- 2: SANTOS QA PROBLEM SINGLE BEAM FRICTION MU = 0.5
- 3: PLANE STRAIN
- 4: MAXIMUM ITERATIONS, 20000
- 5: RESIDUAL TOLERANCE 0.1
- 6: TIME STEP SCALE 1.05
- 7: MATERIAL, 1, ELASTIC, 1.
- 8: YOUNGS MODULUS 10000.
- 9: POISSONS RATIO 0.
- 10: END
- 11: FUNCTION, 1
- 12: 0.,1.
- 13: 1.,1.

```
14: END
  15: FUNCTION, 2
  16: 0.,0.
  17:
        1.,1.
  18: END
  19: STEP CONTROL
  20: 1000.,1.
  21: END
  22: PLOT TIME
  23: 10.,1.
  24: END
  25: OUTPUT TIME
  26: 1000.,1.
  27: END
  28: NO DISPLACEMENT, X, 1
  29: PRESCRIBED DISPLACEMENT Y 3 1 -4.E-3 0. 0.
  30: PRESSURE, 4, 2, -125.
  31: RIGID SURFACE, 5, 0., 0., 0., 1., 0.5
  32: EXIT
                                 INPUT STREAM IMAGES
 LINE -----
  34: TITLE
        SANTOS QA PROBLEM - SINGLE BEAM FRICTION MU = 0.5
  36: PLANE STRAIN
  37: MAXIMUM ITERATIONS, 20000
  38: RESIDUAL TOLERANCE 0.1
  39: TIME STEP SCALE 1.05
  40: MATERIAL, 1, ELASTIC, 1.
   41: YOUNGS MODULUS 10000.
   42: POISSONS RATIO 0.
   43: END
   44: FUNCTION, 1
   45: 0.,1.
  46: 1.,1.
  47: END
  48: FUNCTION, 2
  49: 0.,0.
  50:
        1.,1.
  51: END
  52: STEP CONTROL
  53: 1000.,1.
  54: END
  55: PLOT TIME
  56: 10.,1.
  57: END
  58: OUTPUT TIME
  59: 1000.,1.
  60: END
  61: NO DISPLACEMENT, X, 1
  62: PRESCRIBED DISPLACEMENT Y 3 1 -4.E-3 0. 0.
  63: PRESSURE, 4, 2, -125.
  64: RIGID SURFACE, 5, 0., 0., 0., 1., 0.5
  65: EXIT
1
```

PROBLEM TITLE

SANTOS QA PROBLEM - SINGLE BEAM FRICTION MU = 0.5

PROBLEM DEFINITION

NUMBER OF ELEMENTS	160
NUMBER OF NODES	205
NUMBER OF MATERIALS	1
NUMBER OF FUNCTIONS	2
NUMBER OF CONTACT SURFACES	0
NUMBER OF RIGID SURFACES	1
NUMBER OF MATERIAL POINTS MONITORED	0
ANALYSIS TYPE	PLANE STRAIN
GLOBAL CONVERGENCE MEASURE	
RESIDUAL TOLERANCE	1.000E-01
MAXIMUM NUMBER OF ITERATIONS	20000
ITERATIONS FOR INTERMEDIATE PRINT	410
MAXIMUM RESIDUAL TOLERANCE	6.000E-01
PREDICTOR SCALE FACTOR FUNCTION	0
MINIMUM DAMPING FACTOR	2.000E-01
EFFECTIVE MODULUS STATUS	CONSTANT
SCALE FACTOR APPLIED TO TIME STEP	1.050E+00
STRAIN SOFTENING SCALE FACTOR	1.000E+00
HOURGLASS STIFFNESS FACTOR	5.000E-02
HOURGLASS VISCOSITY FACTOR	0.000E+00

LOAD STEP DEFINITIONS

TIME NO. OF STEPS TIME 0.000E+00 1000 1.000E+00

PRINTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PRINTS TIME 0.000E+00 1.000E+00

PLOTTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PLOTS TIME 0.000E+00 10 1.000E+00

MATERIAL DEFINITIONS

MATERIAL TYPEELASTIC

DENSITY 1.000E+00

MATERIAL PROPERTIES:

YOUNGS MODULUS = 1.000E+04 POISSONS RATIO = 0.000E+00

FUNCTION DEFINITIONS

N S F(S) 1 0.000E+00 1.000E+00 2 1.000E+00 1.000E+00

FUNCTION ID 2 NUMBER OF POINTS 2

N S F(S) 1 0.000E+00 0.000E+00 2 1.000E+00 1.000E+00

NO DISPLACEMENT BOUNDARY CONDITIONS

NODE SET FLAG DIRECTION X

PRESCRIBED DISPLACEMENT BOUNDARY CONDITIONS

NODE SET DIRECTION FUNCTION SCALE A0 B0 FLAG ID FACTOR - -

RIGID SURFACES

SURFACE SIDE SET COEFFICIENT X0 Y0 NX NY NUMBER FLAG OF FRICTION 0.000E+00 0.000E+00 0.000E+00 1.000E+00

PRESSURE BOUNDARY CONDTIONS

SURFACE FUNCTION SCALE
FLAG NUMBER FACTOR
4 2 -1.250E+02

END OF DATA INPUT PHASE · 3.000E-02 CPU SECONDS USED 2398 WORDS ALLOCATED

E N D O F D A T A I N I T I A L I Z A T I O N P H A S E 0.000E+00 CPU SECONDS USED 25312 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

NODAL	ELEMENT	GLOBAL
DISPLX	SIGXX	FX
DISPLY	SIGYY	FY
	SIGZZ	RX
	YXUAT	RY
		ITER
		RMAG

**** PLOT TAPE WRITTEN FOR THE INITIAL STATE AT TIME = 0.000E+00 ****

**** PLOT TAPE WRITTEN AT TIME = 1.000E-02 STEP NUMBER 10 ****

**** PLOT TAPE WRITTEN AT TIME = 2.000E-02 STEP NUMBER 20 ****

**** PLOT TAPE WRITTEN AT TIME = 3.000E-02 STEP NUMBER 30 ****

100 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

E N D O F S O L U T I O N P H A S E 2.981E+01 CPU SECONDS USED 31196 WORDS ALLOCATED

Case of $\mu = 0.7$ sant_sing07.0

SSSSSS	AAA	AAA	N	NN	TTTTTT	000	000	SSSSS	S
SS	AA	AA	NN	NN	${f TT}$	00	00	SS	
SS	AA	AA	NNN	NN	${f TT}$	00	00	SS	
SSSSS	AAAA	AAAA	NN I	NN N	\mathbf{TT}	00	00	SSSSS	
SS	AA	AA	NN	NNN	${f TT}$	00	00	S	S
SS	AA	AA	NN	NN	${f TT}$	00	00	S	S
SSSSSS	AA	AΑ	NN	N	ጥጥ	000	000	SSSSSS	

VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE ENGINEERING SCIENCES CENTER SANDIA NATIONAL LABORATORIES ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030612 AT 10:56:23 RUN ON A i686 UNDER Lx2.4.20

```
1: TITLE
  2: SANTOS QA PROBLEM - SINGLE BEAM FRICTION MU = 0.7
  3: PLANE STRAIN
  4: MAXIMUM ITERATIONS, 20000
  5: RESIDUAL TOLERANCE 0.1
  6: TIME STEP SCALE 1.05
  7: MATERIAL, 1, ELASTIC, 1.
  8: YOUNGS MODULUS 10000.
 9: POISSONS RATIO 0.
 10: END
 11: FUNCTION, 1
 12: 0.,1.
 13:
     1.,1.
 14: END
 15: FUNCTION, 2
 16:
      0.,0.
 17:
       1.,1.
 18: END
 19: STEP CONTROL
 20: 1000.,1.
 21: END
 22: PLOT TIME
 23: 10.,1.
 24: END
 25: OUTPUT TIME
 26: 1000.,1.
 27: END
 28: NO DISPLACEMENT, X, 1
 29: PRESCRIBED DISPLACEMENT Y 3 1 -4.E-3 0. 0.
 30: PRESSURE, 4, 2, -170.
 31: RIGID SURFACE, 5, 0., 0., 0., 1., 0.7
 32: EXIT
                                INPUT STREAM IMAGES
LINE -----
 34: TITLE
 35: SANTOS QA PROBLEM - SINGLE BEAM FRICTION MU = 0.7
 36: PLANE STRAIN
 37: MAXIMUM ITERATIONS, 20000
 38: RESIDUAL TOLERANCE 0.1
 39: TIME STEP SCALE 1.05
 40: MATERIAL, 1, ELASTIC, 1.
 41: YOUNGS MODULUS 10000.
 42: POISSONS RATIO 0.
 43: END
 44: FUNCTION, 1
```

. 1

```
45: 0.,1.
46: 1.,1.
47: END
48: FUNCTION, 2
49: 0.,0.
50:
    1.,1.
51: END
52: STEP CONTROL
53: 1000.,1.
54: END
55: PLOT TIME
56: 10.,1.
57: END
58: OUTPUT TIME
59: 1000.,1.
60: END
61: NO DISPLACEMENT, X, 1
62: PRESCRIBED DISPLACEMENT Y 3 1 -4.E-3 0. 0.
63: PRESSURE, 4, 2, -170.
64: RIGID SURFACE, 5, 0., 0., 0., 1., 0.7
65: EXIT
```

PROBLEM TITLE

SANTOS QA PROBLEM - SINGLE BEAM FRICTION MU = 0.7

PROBLEM DEFINITION

NUMBER OF ELEMENTS	160
NUMBER OF NODES	205
NUMBER OF MATERIALS	1
NUMBER OF FUNCTIONS	2
NUMBER OF CONTACT SURFACES	0
NUMBER OF RIGID SURFACES	1
NUMBER OF MATERIAL POINTS MONITORED	0
ANALYSIS TYPE	PLANE STRAIN
GLOBAL CONVERGENCE MEASURE	
RESIDUAL TOLERANCE	1.000E-01
MAXIMUM NUMBER OF ITERATIONS	20000
ITERATIONS FOR INTERMEDIATE PRINT	410
MAXIMUM RESIDUAL TOLERANCE	6.000E-01
PREDICTOR SCALE FACTOR FUNCTION	0
MINIMUM DAMPING FACTOR	2.000E-01
EFFECTIVE MODULUS STATUS	CONSTANT
SCALE FACTOR APPLIED TO TIME STEP	1.050E+00
STRAIN SOFTENING SCALE FACTOR	1.000E+00
HOURGLASS STIFFNESS FACTOR	5.000E-02
HOURGLASS VISCOSITY FACTOR	0.000E+00

LOAD STEP DEFINITIONS

TIME 0.000E+00	NO. OF STEPS	TIME 1.000E+00	
PRIN	TED OUT	PUT FREQUENC	Y
	PS BETWEEN PRI	NTS TIME 1.000E+00	
PLOT	TED OUT	PUT FREQUENC	Y
TIME STE	PS BETWEEN PLO 10	TS TIME 1.000E+00	
мате	RIAL DE	FINITIONS	
MATERIAL ID . DENSITY MATERIAL PROP YOUNGS	ERTIES:	ELASTIC	
FUNC	TION DEF	INITIONS	
FUNCTION ID	1	NUMBER OF POINTS	2
N 1 2	S 0.000E+00 1.000E+00	F(S) 1.000E+00 1.000E+00	
FUNCTION ID	2	NUMBER OF POINTS	2
N 1 2	S 0.000E+00 1.000E+00	F(S) 0.000E+00 1.000E+00	

NO DISPLACEMENT BOUNDARY CONDITIONS

NODE SET FLAG DIRECTION 1 .

х

PRESCRIBED DISPLACEMENT BOUNDARY CONDITIONS

A0 B0 NODE SET DIRECTION FUNCTION SCALE FLAG ID FACTOR Y 3 1 -4.000E-03

RIGID SURFACES

SURFACE SIDE SET COEFFICIENT X0 Y0 NX NY NUMBER FLAG OF FRICTION 1 5

PRESSURE BOUNDARY CONDTIONS

SURFACE FUNCTION SCALE FLAG NUMBER FACTOR 2 -1.700E+02

> END OF DATA INPUT PHASE 2.000E-02 CPU SECONDS USED 2398 WORDS ALLOCATED

END OF DATA INITIALIZATION PHASE 0.000E+00 CPU SECONDS USED 25312 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

NODAL

ELEMENT

GLOBAL

	PLY	SIGXX SIGYY SIGZZ TAUXY	FX FY RX RY ITER RMAG	
**** PLOT TAPE WRITTEN	FOR THE	INITIAL STAT	E AT TIME = 0.0	000E+00 ****
**** PLOT TAPE WRITTEN	AT TIME	= 1.000E-02	STEP NUMBER	10 ****
**** PLOT TAPE WRITTEN	AT TIME	= 2.000E-02	STEP NUMBER	20 ****
**** PLOT TAPE WRITTEN	AT TIME	= 3.000E-02	STEP NUMBER	30 ****
**** PLOT TAPE WRITTEN	AT TIME	= 4.000E-02	STEP NUMBER	40 ***
SANTOS, VERSION 2.1.7 SANTOS QA PROBLEM -				
SUMMARY OF DATA AT STE NUMBER OF ITERATIONS = FINAL CONVERGENCE TOLE SUM OF EXTERNAL FORCES SUM OF EXTERNAL FORCES SUM OF REACTION FORCES SUM OF REACTION FORCES	P NUMBER RANCE = { IN X-DII IN Y-DII IN X-DII IN Y-DII IN Y-DII	1000, TIME = 33, TOTAL NUMB 3.010E-02 RECTION = 3.39 RECTION = 3.39 RECTION = -4.09	= 1.000E+00 BER OF ITERATIO 93E+02 17E+00 94E+02 54E+02	ONS = 24097
**** PLOT TAPE WRITTEN	AT TIME	= 1.000E+00	STEP NUMBER 1	.000 ****

100 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

E N D O F S O L U T I O N P H A S E 2.915E+01 CPU SECONDS USED 31196 WORDS ALLOCATED

APPENDIX J

Input/Output Data For Test Case 10

The following two sections present the input data and the formatted output for the double elastic beam contact sliding verification test.

FASTQ and SANTOS Input Data For The Double Elastic Beam Contact Sliding Problem

This section presents a listing of the FASTQ and SANTOS input data files that were used for mesh generation and for each of the analyses of the double elastic beam contact sliding problem.

```
sant double.fsq
TITLE
FRICTIONAL SLIP PROBLEM - DOUBLE BEAM - SANTOS QA TEST PROBLEM
POINT
         0. 1.
POINT
            Ο.
                    2.
POINT 3
           25.
                   2.
           25.
POINT 4
                   1.
          0.
POINT 5
                    1.
POINT 6
            0.
                    0.
POINT
      7
           25.5
                    0.
POINT 8
           25.5
                    1.
         STR 1
STR 2
STR 3
                        0
                             1
                                1.0
LINE
      1
LINE
                        0
                            65
                                1.0
                  4 0
1 0
         STR
LINE
                           1
                                1.0
         STR 4
                           65
LINE
                                1.0
      5 STR 5
                  6 0
                               1.0
                           1
LINE
      6 STR 6 7 0
7 STR 7 8 0
                               1.0
                            65
LINE
LINE
                           1
                               1.0
      8 STR 8 5 0 65 1.0
LINE
NODEBC 1
         1
NODEBC 2
NODEBC
          5
ELEMBC
          2
ELEMBC
         3
ELEMBC
          4
ELEMBC
      6
          8
ELEMBC
SCHEME
      0
         MΡ
REGION 1
          1
              -1 -2 -3 -4
REGION 2
             -5 -8 -7 -6
EXIT
```

Case 1 Input

```
sant_doubl1.i
```

```
TITLE
SANTOS QA PROBLEM - DOUBLE BEAM FRICTION - MU = 0.4 - E2/E1 = 3
PLANE STRAIN
MAXIMUM ITERATIONS = 3000
RESIDUAL TOLERANCE = 0.50
```



```
MAXIMUM TOLERANCE = 1000.0
ELASTIC SOLUTION
$ PREDICTOR SCALE FACTOR = 3
TIME STEP SCALE = 0.30
MATERIAL, 1, ELASTIC, 1.
YOUNGS MODULUS 3000.
POISSONS RATIO 0.
END
MATERIAL, 2, ELASTIC, 1.
YOUNGS MODULUS 9000.
POISSONS RATIO 0.
END
FUNCTION, 1
  0.,1.
 10.,1.
END
FUNCTION, 2
  0.,0.
  10.,1.
END
FUNCTION, 3
  0. 1.
  5. 1.
 5.5 0.7
 10. 0.5
END
STEP CONTROL
  100.,10.
PLOT TIME
 1.,10.
END
OUTPUT TIME
10.,10.
END
PLOT NODAL, REACTION, RESIDUAL
NO DISPLACEMENT, X, 1
NO DISPLACEMENT, X, 8
NO DISPLACEMENT, Y, 2
CONTACT SURFACE, 6, 5, 0.4, 1.E-3, 1.E+40
PRESSURE, 3, 1, 1.
PRESSURE, 4, 2, -10.
PRESSURE, 7, 2, -10.
EXIT
Case 2 Input
sant_doubl2.i
TITLE
 SANTOS QA PROBLEM - DOUBLE BEAM FRICTION - MU = 0.5 - E2/E1 = 10
PLANE STRAIN
MAXIMUM ITERATIONS = 3000
RESIDUAL TOLERANCE = 0.50
MAXIMUM TOLERANCE = 1000.0
ELASTIC SOLUTION
PREDICTOR SCALE FACTOR = 3
$ TIME STEP SCALE = 0.70
```

```
TIME STEP SCALE = 0.1
MATERIAL, 1, ELASTIC, 1.
YOUNGS MODULUS 800.
POISSONS RATIO 0.
MATERIAL, 2, ELASTIC, 1.
YOUNGS MODULUS 8000.
POISSONS RATIO 0.
END
FUNCTION, 1
   0.,1.
  10.,1.
END
FUNCTION, 2
   0.,0.
  10.,1.
FUNCTION, 3
  0. 0.7
  5. 0.7
  5.5 0.5
 10. 0.25
STEP CONTROL
  100.,10.
PLOT TIME
 1.,10.
END
OUTPUT TIME
 10.,10.
END
PLOT NODAL, REACTION, RESIDUAL
NO DISPLACEMENT, X, 1
NO DISPLACEMENT, X, 8
NO DISPLACEMENT, Y, 2
CONTACT SURFACE, 6, 5, 0.5, 1.E-3, 1.E+40
PRESSURE, 3, 1, 1.
PRESSURE, 4, 2, -10.
PRESSURE, 7, 2, -10.
EXIT
```

SANTOS Output For The Double Elastic Beam Contact Sliding Problem

The following section presents a portion of the SANTOS printed output for each of the double elastic beam contact sliding analyses. Because all pertinent information and results from the analysis are written to the plot file for post-processing, the printed output file simply echos input data and problem—descriptive information at the beginning, followed by information that tracks the convergence behavior of the solution, and a summary of CPU usage at the end. For this reason, only a partial listing, consisting of approximately the first 500 lines of output and the last 100 lines of output, is provided.

Case 1 Output sant_doubl1.o

SSSSSS	AAA	AA.	N	NN	TTTTTT	000	000	SSSSSS
SS	AA	AA	NN	NN	\mathbf{TT}	00	00	SS
SS	AA	AA	NNN	NN	${f TT}$	00	00	SS
SSSSS	AAA	AAA	NN N	1 NN	${f TT}$	00	00	SSSSS
SS	AA	AA	NN	NNN	${f TT}$	00	00	SS
SS	AA	AA	NN	NN	TT	00	00	SS
SSSSSS	AA	AA	NN	N	${f TT}$	000	000	SSSSSS

VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE ENGINEERING SCIENCES CENTER SANDIA NATIONAL LABORATORIES ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030618 AT 14:49:31 RUN ON A i686 UNDER Lx2.4.20

```
1: TITLE
2: SANTOS QA PROBLEM - DOUBLE BEAM FRICTION - MU = 0.4 - E2/E1 = 3
3: PLANE STRAIN
 4: MAXIMUM ITERATIONS = 3000
 5: RESIDUAL TOLERANCE = 0.50
 6: MAXIMUM TOLERANCE = 1000.0
 7: ELASTIC SOLUTION
8: $ PREDICTOR SCALE FACTOR = 3
9: TIME STEP SCALE = 0.30
10: MATERIAL, 1, ELASTIC, 1.
11: YOUNGS MODULUS 3000.
12: POISSONS RATIO 0.
13: END
14: MATERIAL, 2, ELASTIC, 1.
15: YOUNGS MODULUS 9000.
16: POISSONS RATIO 0.
17: END
18: FUNCTION, 1
19:
     0.,1.
20: 10.,1.
21: END
22: FUNCTION, 2
23:
     0.,0.
24:
    10.,1.
25: END
```

```
26: FUNCTION, 3
  27: 0. 1.
  28:
       5. 1.
  29: 5.5 0.7
  30: 10. 0.5
  31: END
  32: STEP CONTROL
  33:
       100.,10.
   34: END
  35: PLOT TIME
  36: 1.,10.
  37: END
  38: OUTPUT TIME
  39: 10.,10.
  40: END
  41: PLOT NODAL, REACTION, RESIDUAL
  42: NO DISPLACEMENT, X, 1
  43: NO DISPLACEMENT, X, 8
  44: NO DISPLACEMENT, Y, 2
  45: CONTACT SURFACE, 6, 5, 0.4, 1.E-3, 1.E+40
  46: PRESSURE, 3, 1, 1.
  47: PRESSURE, 4, 2, -10.
  48: PRESSURE, 7, 2, -10.
  49: EXIT
1
                                   INPUT STREAM IMAGES
 LINE -------
  51: TITLE
  52: SANTOS QA PROBLEM - DOUBLE BEAM FRICTION - MU = 0.4 - E2/E1 = 3
  53: PLANE STRAIN
  54: MAXIMUM ITERATIONS = 3000
  55: RESIDUAL TOLERANCE = 0.50
  56: MAXIMUM TOLERANCE = 1000.0
  57: ELASTIC SOLUTION
  58: $ PREDICTOR SCALE FACTOR = 3
  59: TIME STEP SCALE = 0.30
  60: MATERIAL, 1, ELASTIC, 1.
  61: YOUNGS MODULUS 3000.
  62: POISSONS RATIO 0.
  63: END
  64: MATERIAL, 2, ELASTIC, 1.
  65: YOUNGS MODULUS 9000.
  66: POISSONS RATIO 0.
  67: END
  68: FUNCTION, 1
  69: 0.,1.
  70: 10.,1.
  71: END
  72: FUNCTION, 2
  73: 0.,0.
  74: 10.,1.
  75: END
  76: FUNCTION, 3
  77: 0. 1.
  78: 5. 1.
  79: 5.5 0.7
80: 10. 0.5
  81: END
  82: STEP CONTROL
```

1

```
83: 100.,10.
84: END
85: PLOT TIME
86: 1.,10.
87: END
88: OUTPUT TIME
89: 10.,10.
90: END
91: PLOT NODAL, REACTION, RESIDUAL
92: NO DISPLACEMENT, X, 1
93: NO DISPLACEMENT, X, 8
94: NO DISPLACEMENT, Y, 2
95: CONTACT SURFACE, 6, 5, 0.4, 1.E-3, 1.E+40
96: PRESSURE, 3, 1, 1.
97: PRESSURE, 4, 2, -10.
98: PRESSURE, 7, 2, -10.
99: EXIT
```

PROBLEM TITLE

SANTOS QA PROBLEM - DOUBLE BEAM FRICTION - MU = 0.4 - E2/E1 = 3

PROBLEM DEFINITION

*	
NUMBER OF ELEMENTS	130
NUMBER OF NODES	264
NUMBER OF MATERIALS	2
NUMBER OF FUNCTIONS	3
NUMBER OF CONTACT SURFACES	1
NUMBER OF RIGID SURFACES	0
NUMBER OF MATERIAL POINTS MONITORED	0
ANALYSIS TYPE	PLANE STRAIN
GLOBAL CONVERGENCE MEASURE	
RESIDUAL TOLERANCE	5.000E-01
MAXIMUM NUMBER OF ITERATIONS	3000
ITERATIONS FOR INTERMEDIATE PRINT	528
MAXIMUM RESIDUAL TOLERANCE	1.000E+03
PREDICTOR SCALE FACTOR FUNCTION	0
MINIMUM DAMPING FACTOR	2.000E-01
EFFECTIVE MODULUS STATUS	CONSTANT
ELASTIC SOLUTION REQUESTED	
SCALE FACTOR APPLIED TO TIME STEP	
STRAIN SOFTENING SCALE FACTOR	
HOURGLASS STIFFNESS FACTOR	
HOURGLASS VISCOSITY FACTOR	0.000E+00

LOAD STEP DEFINITIONS

TIME NO. OF STEPS TIME 0.000E+00 100 1.000E+01

PRINTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PRINTS TIME 0.000E+00 10 1.000E+01

PLOTTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PLOTS TIME 0.000E+00 1 1.000E+01

MATERIAL DEFINITIONS

FUNCTION DEFINITIONS

YOUNGS MODULUS

POISSONS RATIO

Information Only

= 9.000E+03

= 0.000E+00

FUNCTION ID		3	NUMBER OF POINTS	4
	N	S	F(S)	
	1	0.000E+00	1.000E+00	
	2	5.000E+00	1.000E+00	
	3	5.500E+00	7.000E-01	
	4	1.000E+01	5.000E-01	

NO DISPLACEMENT BOUNDARY CONDITIONS

NODE SET FLAG	DIRECTION
1	X
8	X
2	Y

CONTACT SURFACES

SURFACE	SURFACE 1	SURFACE 2	2 PENALTY	COEFFICIENT	PENETRATION	TENSION
NUMBER	FLAG	FLAG	FACTOR	OF FRICTION	MULTIPLIER	RELEASE
1	6	5	0.000E+00	4.000E-01	1.000E-03	INF

PRESSURE BOUNDARY CONDTIONS

SURFACE	FUNCTION	SCALE
FLAG	NUMBER	FACTOR
3	1	1.000E+00
4	2	-1.000E+01
7	2	-1 000E+01

ENDOFDATAINPUT PHASE
3.000E-02 CPU SECONDS USED
5124 WORDS ALLOCATED

END OF DATA INITIALIZATION PHASE
1.000E-02 CPU SECONDS USED
70366 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

NODAL	ELEMENT	GLOBAL
DISPLX	SIGXX	FX
DISPLY	SIGYY	FY
RESIDX	SIGZZ	RX (
RESIDY	TAUXY	RY
RESID		ITER
REACTX		RMAG
REACTY		

5	TEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
			STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
	528	0.000E+00	1.000E-01	6.252E-01	3.089E+00	6.135E-01	19.86	528
	1056	0.000E+00	1.000E-01	3.926E-01	3.089E+00	5.851E-01	18.94	1056
	1584	0.000E+00	1.000E-01	9.073E-01	3.089E+00	5.710E-01	18.48	1584
	2112	0.000E+00	1.000E-01	6.549E-01	3.089E+00	3.351E-01	10.85	2112
	2640	0.000E+00	1.000E-01	4.684E-01	3.089E+00	2.507E-01	8.12	2640
1	SZ	ANTOS, VERSI	ON 2.1.7-DP	RUN ON 20	0030618. AT	14:49:31		

SANTOS QA PROBLEM - DOUBLE BEAM FRICTION - MU = 0.4 - E2/E1 = 3

SUMMARY OF DATA AT STEP NUMBER 0, TIME = 0.000E+00

NUMBER OF ITERATIONS = 3000, TOTAL NUMBER OF ITERATIONS = 3000

FINAL CONVERGENCE TOLERANCE = 1.303E+01

SUM OF EXTERNAL FORCES IN X-DIRECTION =-2.604E-05

SUM OF EXTERNAL FORCES IN Y-DIRECTION =-2.500E+01

SUM OF REACTION FORCES IN X-DIRECTION = 3.293E-04 SUM OF REACTION FORCES IN Y-DIRECTION =-2.421E+01

**** PLOT TAPE WRITTEN AT TIME = 0.000E+00 STEP NUMBER 0 ****

STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
528	1.000E-01	9.998E-02	7.086E-01	3.091E+00	5.630E-01	18.22	3528
1056	1.000E-01	9.998E-02	5.674E-01	3.091E+00	3.124E-01	10.11	4056
1584	1.000E-01	9.998E-02	6.467E-01	3.091E+00	3.506E-01	11.34	4584
2112	1.000E-01	9.998E-02	6.403E-01	3.091E+00	3.376E-01	10.92	5112
2640	1.000E-01	9.998E-02	6.986E-01	3.091E+00	3.110E-01	10.06	5640

**** PLOT TAPE WRITTEN AT TIME = 1.000E-01 STEP NUMBER 1 ****

TIME STEP TIME DAMPING APPLIED RESIDUAL PERCENT TOTAL STEP FACTOR LOAD NORM LOAD NORM IMBALANCE

			۰
Page	2	4	ĺ

							Page 240
F20	2.000E-01	1 0000 01	0.3500.01	3 005 = 100		16.00	6520
528		1.000E-01	9.359E-01	3.095E+00		16.89	6528
1056 1584	2.000E-01 2.000E-01	1.000E-01 1.000E-01	7.148E-01 9.678E-01	3.095E+00		10.51 14.83	7056 7584
2112	2.000E-01 2.000E-01	1.000E-01		3.095E+00 3.095E+00		11.12	8112
2640	2.000E-01 2.000E-01	1.000E-01		3.095E+00		29.25	8640
2040	2.000E-01	1.000E-01	5.672E-01	3.095E+00	9.053E-01	29.25	8640
* * *	* PLOT TAPE	WRITTEN AT	TIME = 2.0	000E-01 ST	EP NUMBER	2 ****	
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
528	3.000E-01	1.000E-01	5.150E-01	3.104E+00	5.953E-01	19.18	9528
1056	3.000E-01	1.000E-01	4.768E-01	3.104E+00	3.285E-01	10.58	10056
1584	3.000E-01	1.000E-01	3.559E-01	3.104E+00	3.570E-01	11.50	10584
2112	3.000E-01	1.000E-01	8.879E-01	3.104E+00	5.935E-01	19.12	11112
2640	3.000E-01	1.000E-01	8.734E-01	3.104E+00	3.028E-01	9.76	11640
***	* PLOT TAPE	WRTጥጥEN Aጥ	TTME = 3.0	000E-01 ST	EP NUMBER	3 ****	
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
528	4.000E-01	1.000E-01	8.472E-01			12.44	12528
1056	4.000E-01	1.000E-01	9.708E-01			20.09	13056
1584	4.000E-01	1.000E-01	7.061E-01				13584
2112	4.000E-01	1.000E-01	7.387 <u>E</u> -01	3.115E+00		29.24	14112
2640	4.000E-01	1.000E-01	6.617E-01	3.115E+00	2.972E-01	9.54	14640
***	* PLOT TAPE	WRITTEN AT	TIME = 4.0	000E-01 ST	EP NUMBER	4 ****	
	1201 11112	***************************************	11110 - 410	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Di MONDEN	-	
•							
1 SA	NTOS, VERSI	ON 2.1.7-DP	, RUN ON 20	0030618, AT	14:49:31		
SA	NTOS QA PRO	BLEM - DOUB	LE BEAM FR	CTION - MU	= 0.4 - E2/	E1 = 3	
***	*****	*****	*****	****	*****	*****	
SUM	MARY OF DAT	A AT STEP N	UMBER 100), TIME = 1	.000E+01		
NUM	BER OF ITER	ATIONS =	3000, TO	TAL NUMBER	OF ITERATIO	NS = 303	000
FIN	AL CONVERGE	NCE TOLERAN	CE = 6.511B	E+00			
SUM	OF EXTERNA	L FORCES IN	X-DIRECTIO	ON = 2.000E	+01		
SUM	OF EXTERNA	L FORCES IN	Y-DIRECTIO	ON = -2.505E	+01		
SUM	OF REACTIO	N FORCES IN	X-DIRECTIO	0N = 1.992E	+01		
	OF REACTION						
* * *	*****	*****	******	******	*****	*****	

**** PLOT TAPE WRITTEN AT TIME = 1.000E+01 STEP NUMBER 100 ****

101 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

ENDOF SOLUTION PHASE 7.975E+02 CPU SECONDS USED 77230 WORDS ALLOCATED

Case 2 Output sant_doubl2.o

SSSSSS	AAA	AA	N	NN	TTTTTT	000	000	SSSSS	S
SS	AA	AA	NN	NN	TT	00	00	SS	
SS	AA	AA	NNN	NN	TT	00	00	SS	
SSSSS	AAAA	AAA	NN N	NN	$ extbf{T}$	00	00	SSSSS	
SS	AA	AA	NN	NNN	$\mathbf{T}\mathbf{T}$	00	00	S	S
SS	AA	AA	NN	NN	TT	00	00	S	S
SSSSSS	AA	AA	NN	N	${f TT}$	000	000	SSSSSS	

VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE
ENGINEERING SCIENCES CENTER
SANDIA NATIONAL LABORATORIES
ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030618 AT 15:12:27 RUN ON A i686 UNDER Lx2.4.20

- 1: TITLE
- 2: SANTOS QA PROBLEM DOUBLE BEAM FRICTION MU = 0.5 E2/E1 = 10
- 3: PLANE STRAIN
- 4: MAXIMUM ITERATIONS = 3000
- 5: RESIDUAL TOLERANCE = 0.50
- 6: MAXIMUM TOLERANCE = 1000.0
- 7: ELASTIC SOLUTION
- 8: PREDICTOR SCALE FACTOR = 3
- 9: \$ TIME STEP SCALE = 0.70
- 10: TIME STEP SCALE = 0.1
- 11: MATERIAL, 1, ELASTIC, 1.
- 12: YOUNGS MODULUS 800.
- 13: POISSONS RATIO 0.
- 14: END

```
15: MATERIAL, 2, ELASTIC, 1.
16: YOUNGS MODULUS 8000.
17: POISSONS RATIO 0.
18: END
19: FUNCTION, 1
20: 0.,1.
21:
     10.,1.
22: END
23: FUNCTION, 2
 24: 0.,0.
 25:
     10.,1.
 26: END
 27: FUNCTION, 3
28: 0. 0.7
29: 5. 0.7
      5.5 0.5
 30:
31: 10. 0.25
32: END
33: STEP CONTROL
34: 100.,10.
35: END
 36: PLOT TIME
 37: 1.,10.
 38: END
 39: OUTPUT TIME
 40: 10.,10.
 41: END
 42: PLOT NODAL, REACTION, RESIDUAL
 43: NO DISPLACEMENT, X, 1
 44: NO DISPLACEMENT, X, 8
 45: NO DISPLACEMENT, Y, 2
 46: CONTACT SURFACE, 6, 5, 0.5, 1.E-3, 1.E+40
 47: PRESSURE, 3, 1, 1.
 48: PRESSURE, 4, 2, -10.
 49: PRESSURE, 7, 2, -10.
50: EXIT
                                 INPUT STREAM IMAGES
52: TITLE
 53: SANTOS OA PROBLEM - DOUBLE BEAM FRICTION - MU = 0.5 - E2/E1 = 10
 54: PLANE STRAIN
 55: MAXIMUM ITERATIONS = 3000
 56: RESIDUAL TOLERANCE = 0.50
 57: MAXIMUM TOLERANCE = 1000.0
 58: ELASTIC SOLUTION
 59: PREDICTOR SCALE FACTOR = 3
 60: $ TIME STEP SCALE = 0.70
 61: TIME STEP SCALE = 0.1
 62: MATERIAL, 1, ELASTIC, 1.
 63: YOUNGS MODULUS 800.
 64: POISSONS RATIO 0.
 65: END
 66: MATERIAL, 2, ELASTIC, 1.
 67: YOUNGS MODULUS 8000.
 68: POISSONS RATIO 0.
 69: END
 70: FUNCTION, 1
 71: 0.,1.
```

```
72: 10.,1.
 73: END
 74: FUNCTION, 2
 75: 0.,0.
 76:
       10.,1.
 77: END
 78: FUNCTION, 3
 79: 0. 0.7
80: 5. 0.7
      5.5 0.5
 81:
 82: 10. 0.25
 83: END
 84: STEP CONTROL
 85: 100.,10.
 86: END
 87: PLOT TIME
 88: 1.,10.
 89: END
 90: OUTPUT TIME
 91: 10.,10.
 92: END
 93: PLOT NODAL, REACTION, RESIDUAL
 94: NO DISPLACEMENT, X, 1
 95: NO DISPLACEMENT, X, 8
 96: NO DISPLACEMENT, Y, 2
 97: CONTACT SURFACE, 6, 5, 0.5, 1.E-3, 1.E+40
 98: PRESSURE, 3, 1, 1.
 99: PRESSURE, 4, 2, -10.
100: PRESSURE, 7, 2, -10.
101: EXIT
```

PROBLEM TITLE

1

SANTOS QA PROBLEM - DOUBLE BEAM FRICTION - MU = 0.5 - E2/E1 = 10

PROBLEM DEFINITION

NUMBER OF ELEMENTS		130
NUMBER OF NODES		264
NUMBER OF MATERIALS		2
NUMBER OF FUNCTIONS		3
NUMBER OF CONTACT SURFACE	ES	1
NUMBER OF RIGID SURFACES		0
NUMBER OF MATERIAL POINTS	MONITORED	0
ANALYSIS TYPE		PLANE STRAIN
GLOBAL CONVERGENCE MEASUR	RE	
RESIDUAL TOLERANCE		5.000E-01
MAXIMUM NUMBER OF ITERATI	ONS	3000
ITERATIONS FOR INTERMEDIA	TE PRINT	528
MAXIMUM RESIDUAL TOLERANO	E	1.000E+03
PREDICTOR SCALE FACTOR FU	NCTION	3
MINIMUM DAMPING FACTOR		2.000E-01
EFFECTIVE MODULUS STATUS		CONSTANT
ELASTIC SOLUTION REQUESTE	ED	

SCALE FACTOR APPLIED TO TIME STEP	1 0000-01
STRAIN SOFTENING SCALE FACTOR	1.000E+00
HOURGLASS STIFFNESS FACTOR	5.000E-02
HOURGLASS VISCOSITY FACTOR	0.000E+00

LOAD STEP DEFINITIONS

TIME NO. OF STEPS TIME 0.000E+00 100 1.000E+01

PRINTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PRINTS TIME 0.000E+00 10 1.000E+01

PLOTTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PLOTS TIME 0.000E+00 1 1.000E+01

MATERIAL DEFINITIONS

YOUNGS MODULUS = 8.000E+02 POISSONS RATIO = 0.000E+00

MATERIAL PROPERTIES:

YOUNGS MODULUS = 8.000E+03 POISSONS RATIO = 0.000E+00

FUNCTION DEFINITIONS

FUNCTION I	D	1	NUMBER OF	POINTS	• • • •	2
	N 1 (S 0.000E+00	F(S) 1.000E+00			
	2 :	1.000E+01	1.000E+00			
FUNCTION I	D	2	NUMBER OF	POINTS		2
	N	S	F(S)			
	1 (0.000E+00	0.000E+00			
		1.000E+01	1.000E+00			
FUNCTION I	D	3	NUMBER OF	POINTS		4
	N	S	F(S)			
		0.000E+00	7.000E-01			
	_	5.000E+00	7.000E-01			
		5.500E+00	5.000E-01			
		L.000E+01	2.500E-01			
			2.3000-01			

NO DISPLACEMENT BOUNDARY CONDITIONS

NODE	SET	FLAG	DIRECTION
	1		X
	8		X
	2		Y

CONTACT SURFACES

SURFACE	SURFACE 1	SURFACE :	2 PENALTY	COEFFICIENT	PENETRATION	TENSION
NUMBER	FLAG	FLAG	FACTOR	OF FRICTION	MULTIPLIER	RELEASE
1	6	5	0.000E+00	5.000E-01	1.000E-03	INF

PRESSURE BOUNDARY CONDTIONS

SURFACE	FUNCTION	SCALE
FLAG	NUMBER	FACTOR
3	1	1.000E+00
4	2	-1.000E+01
7	2	-1.000E+01

ENDOFDATA INPUT PHASE 3.000E-02 CPU SECONDS USED 5124 WORDS ALLOCATED

ENDOF DATA INITIALIZATION PHASE 1.000E-02 CPU SECONDS USED 70366 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

NODAL	ELEMENT	GLOBAL
DISPLX	SIGXX	FX
DISPLY	SIGYY	FY
RESIDX	SIGZZ	RX
RESIDY	TAUXY	RY
RESID		ITER
REACTX		RMAG
REACTY		

	STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
			STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
	528	0.000E+00	1.000E-01	4.815E-01	3.089E+00	7.956E-01	25.76	528
	1056	0.000E+00	1.000E-01	7.883E-01	3.089E+00	6.394E-01	20.70	1056
	1584	0.000E+00	1.000E-01	9.090E-01	3.089E+00	3.434E-01	11.12	1584
	2112	0.000E+00	1.000E-01	7.556E-01	3.089E+00	7.714E-01	24.97	2112
	2640	0.000E+00	1.000E-01	6.106E-01	3.089E+00	3.508E-01	11.36	2640
L	SAI	NTOS, VERSI	ON 2.1.7-DP	, RUN ON 2	0030618, AT	15:12:27		

SANTOS QA PROBLEM - DOUBLE BEAM FRICTION - MU = 0.5 - E2/E1 = 10

NUMBER OF ITERATIONS = 3000, TOTAL NUMBER OF ITERATIONS = 3000 FINAL CONVERGENCE TOLERANCE = 3.026E+01

1

SUM OF EXTERNAL FORCES IN X-DIRECTION = 5.944E-06

SUM OF EXTERNAL FORCES IN Y-DIRECTION =-2.500E+01

SUM OF REACTION FORCES IN X-DIRECTION =-2.301E-05

SUM OF REACTION FORCES IN Y-DIRECTION =-2.409E+01

**** PLOT TAPE WRITTEN AT TIME = 0.000E+00 STEP NUMBER 0 ****

STEP TIME TIME DAMPING APPLIED RESIDUAL PERCENT TOTAL STEP FACTOR LOAD NORM LOAD NORM IMBALANCE STEPS 528 1.000E-01 9.996E-02 6.783E-01 3.091E+00 4.045E-01 13.09 3528

			_				Pa
1056	1.000E-01	9.996E-02	6.530E-01	3.091E+00	9.218E-01	29.83	4056
1584	1.000E-01	9.996E-02	8.244E-01	3.091E+00	4.039E-01	13.07	4584
2112	1.000E-01	9.996E-02	7.125E-01	3.091E+00	7.720E-01	24.98	5112
2640	1.000E-01	9.996E-02	6.926E-01	3.091E+00	4.135E-01	13.38	5640
**	** PLOT TAPE	: WRITTEN AT	TIME = 1.0	000E-01 ST	EP NUMBER	1 ****	
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
528	2.000E-01	1.000E-01	4.869E-01	3.095E+00	6.601E-01	21.33	652
1056	2.000E-01	1.000E-01	3.706E-01	3.095E+00	4.205E-01	13.58	705
1584	2.000E-01	1.000E-01	5.422E-01	3.095E+00	6.284E-01	20.30	758
2112	2.000E-01	1.000E-01	6.986E-01	3.095E+00	3.976E-01	12.84	811:
2640	2.000E-01	1.000E-01	7.943E-01	3.095E+00	5.770E-01	18.64	864
:	** PLOT TAPE	WRITTEN AT	TIME = 2.0	00E-01 ST	EP NUMBER	2 **	
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
528	3.000E-01	1.000E-01	7.528E-01	3.104E+00	6.147E-01	19.81	952
1056	3.000E-01	1.000E-01	8.930E-01	3.104E+00	1.029E+00	33.16	1005
1584	3.000E-01	1.000E-01	5.660E-01	3.104E+00	9.387E-01	30.25	1058
2112	3.000E-01	1.000E-01	5.320E-01	3.104E+00	4.133E-01	13.32	1111
2640	3.000E-01	1.000E-01	8.658E-01	3.104E+00	6.997E-01	22.54	1164
1	** PLOT TAPE	WRITTEN AT	TIME = 3.0	00E-01 ST	EP NUMBER	3 **	
STEP	TIME	TIME STEP	DAMPING FACTOR	APPLIED LOAD NORM	RESIDUAL	PERCENT	TOTAL STEPS
528	4.000E-01	1.000E-01			LOAD NORM 7.350E-01	IMBALANCE 23.60	1252
1056		1.000E-01	5.894E-01		6.188E-01	19.87	1305
		1.000E-01			5.648E-01	18.13	1358
						13.33	1411
2640					4.151E-01 6.552E-01	21.04	1411
2040	4.000E-01	1.0006-01	0.993E-01	3.1136+00	0.5526-01	21.04	1404
1	** PLOT TAPE	WRITTEN AT	TIME = 4.0	00E-01 ST	EP NUMBER	4 **	
				030618, AT			

SUMMARY OF DATA AT STEP NUMBER 100, TIME = 1.000E+01

Page 248

NUMBER OF ITERATIONS = 3000, TOTAL NUMBER OF ITERATIONS = 303000

FINAL CONVERGENCE TOLERANCE = 5.815E+00

SUM OF EXTERNAL FORCES IN X-DIRECTION = 1.998E+01

SUM OF EXTERNAL FORCES IN Y-DIRECTION =-2.514E+01

SUM OF REACTION FORCES IN X-DIRECTION = 1.965E+01

SUM OF REACTION FORCES IN Y-DIRECTION =-2.408E+01

**** PLOT TAPE WRITTEN AT TIME = 1.000E+01 STEP NUMBER 100 ****

101 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

E N D O F S O L U T I O N P H A S E 7.915E+02 CPU SECONDS USED 77230 WORDS ALLOCATED

APPENDIX K

Input/Output Data For Test Case 11

The following two sections present the input data and the formatted output for the elastic/ plastic analysis of a thick-walled hollow sphere.

FASTQ and SANTOS Input Data For The Elastic/Plastic Analysis of a Thick-Walled Hollow Sphere

This section presents a listing of the FASTQ and SANTOS input data files that were used for the mesh generation and analysis of each case of the elastic/plastic thick-walled hollow sphere problem. The binary file sant_temp.th is an input file for Test Case 11 that can be found in LIBSANTOS in CMS.

```
sant_plastic.fsq
TITLE
HOLLOW CYLINDER - SANTOS QA TEST PROBLEM
POINT 1 0.
                0.
POINT 2
           1.
                   0.
POINT 3
          0.
                  1.
         0.
2.
POINT 4
POINT 5
                 0.
LINE 1 CIRC 2 3
                        20 1.0
LINE
    2 STR 3 4 0 30 1.0
    3 CIRC 5 4 1
4 STR 2 5 0
                        20
                             1.0
LINE
LINE
                             1.0
NODEBC 1
NODEBC 2
         4
ELEMBC 3
         1
SCHEME 0
         MΡ
             -1 -2 -3 -4
REGION 1
        1
EXIT
```

Elastic/Perfectly-Plastic

```
sant_plastic.i
TITLE
  SANTOS QA PROBLEM - HOLLOW SPHERE - 9/18/95
AXISYMMETRIC
MAXIMUM ITERATIONS 20000
RESIDUAL TOLERANCE .01
MATERIAL, 1, ELASTIC PLASTIC, 1.0
YOUNGS MODULUS 2.07E+11
POISSONS RATIO 0.3
YIELD STRESS 10000.
HARDENING MODULUS 0.
BETA 0.
END
FUNCTION, 1
            0.
 0.
  1.
         5833.
```


9501.9

11963.5

1.25

1.5

Page 250

```
1.75 13392.8
        13900.0
  2.
STEP CONTROL
  1,1.
  1,1.25
 1,1.50
 1,1.75
  1,2.0
END
PLOT TIME
1,1.
 1,1.25
1,1.50
 1,1.75
1,2.0
END
OUTPUT TIME
1,1.
 1,1.25
1,1.50
1,1.75
1,2.0
END
NO DISPLACEMENT, X, 1
NO DISPLACEMENT, Y, 2
PRESSURE, 3, 1, 1.
Elastic/Plastic with Hardening
sant hard.i
TITLE
  SANTOS QA PROBLEM - HOLLOW SPHERE - 10/26/94 - HARDENING M = 0.1
AXISYMMETRIC
MAXIMUM ITERATIONS 20000
RESIDUAL TOLERANCE .01
MATERIAL, 1, ELASTIC PLASTIC, 1.0
YOUNGS MODULUS 2.07E+11
POISSONS RATIO 0.3
YIELD STRESS 10000.
HARDENING MODULUS 2.07E+10
BETA 0.
END
FUNCTION, 1
 0.
            0.
         5833.
  1.
  1.25
        9756.5
        13003.2
  1.5
  1.75 15798.4
  2.
        18278.8
END
STEP CONTROL
  1,1.
  1,1.25
  1,1.50
  1,1.75
```

June 2003 Page 251

```
1,2.0
END
PLOT TIME
 1,1.
 1,1.25
 1,1.50
 1,1.75
 1,2.0
END
OUTPUT TIME
 1,1.
 1,1.25
 1,1.50
 1,1.75
 1,2.0
END
NO DISPLACEMENT, X, 1
NO DISPLACEMENT, Y, 2
PRESSURE, 3, 1, 1.
EXIT
Elastic/Perfectly-Plastic with Temperature
sant_temp.i
TITLE
  SANTOS QA PROBLEM - HOLLOW SPHERE - 12/14/94 - TEMPERATURE PROBLEM
AXISYMMETRIC
MAXIMUM ITERATIONS 20000
RESIDUAL TOLERANCE .5
MATERIAL, 1, ELASTIC PLASTIC, 1.0, 1, 1.
YOUNGS MODULUS 1.E+7
POISSONS RATIO 0.3
YIELD STRESS 10000.
HARDENING MODULUS 0.
BETA 0.
END
THERMAL STRESS EXTERNAL 1000.
PLOT ELEMENT STRESS TEMPERATURE
FUNCTION 1 $ THERMAL STRAIN FOR ALPHA = 1.E-5
     0.
           0.
  1000.
           1.E-2
END
STEP CONTROL
  4,1.
  4,2,
  4,3.
  4,4.
  4,5.
END
PLOT TIME
  1,1.
  4,2.
  4,3.
  4,4.
  4,5.
END
OUTPUT TIME
  4,1.
  4,2.
```


4,3. 4,4. 4,5. END NO DISPLACEMENT,X,1 NO DISPLACEMENT,Y,2

SANTOS Output For The Elastic/Plastic Analysis of a Thick-Walled Hollow Sphere

The following section presents a portion of the SANTOS printed output for each case of the elastic/plastic analysis of a thick-walled hollow sphere. Because all pertinent information and results from the analysis are written to the plot file for post-processing, the printed output file simply echoes input data and problem—descriptive information at the beginning, followed by information that tracks the convergence behavior of the solution, and a summary of CPU usage at the end. For this reason, only a partial listing, consisting of approximately the first 500 lines of output and the last 100 lines of output, is provided.

Elastic/Perfectly-Plastic sant_plastic.o

SSSSSS	AAA	AAA	N	NN	TTTTTT	000	000	SSSSSS
SS	AA	AA	NN	NN	${f TT}$	00	00	SS
SS	AA	AA	NNN	NN	${f TT}$	00	00	SS
SSSSS	AAA	AAA	NN N	NN I	${f TT}$	00	00	SSSSS
SS	AA	AA	NN	NNN	\mathbf{TT}	00	00	SS
SS	AA	AA	NN	NN	${f TT}$	00	00	SS
SSSSSS	AA	AA	NN	N	TT	000	000	SSSSSS

VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE ENGINEERING SCIENCES CENTER SANDIA NATIONAL LABORATORIES ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030612 AT 11:11:30 RUN ON A i686 UNDER Lx2.4.20

1: TITLE

2: SANTOS QA PROBLEM - HOLLOW SPHERE - 9/18/95

3: AXISYMMETRIC

4: MAXIMUM ITERATIONS 20000


```
5: RESIDUAL TOLERANCE .01
  6: MATERIAL, 1, ELASTIC PLASTIC, 1.0
  7: YOUNGS MODULUS 2.07E+11
  8: POISSONS RATIO 0.3
 9: YIELD STRESS 10000.
 10: HARDENING MODULUS 0.
 11: BETA 0.
 12: END
 13: FUNCTION, 1
 14: 0. 0.
15: 1. 5833.
16: 1.25 9501.9
17: 1.5 11963.5
18: 1.75 13392.8
19: 2. 13900.0
20: END
 21: STEP CONTROL
22: 1,1.
 23: 1,1.25
 24: 1,1.50
 25: 1,1.75
 26: 1,2.0
27: END
28: PLOT TIME
29: 1,1.
30: 1,1.25
31: 1,1.50
32: 1,1.75
33: 1,2.0
34: END
35: OUTPUT TIME
36: 1,1.
37: 1,1.25
38: 1,1.50
39: 1,1.75
40: 1,2.0
 41: END
 42: NO DISPLACEMENT, X, 1
 43: NO DISPLACEMENT, Y, 2
 44: PRESSURE, 3, 1, 1.
45: EXIT
                                 INPUT STREAM IMAGES
LINE ----------
 48: SANTOS QA PROBLEM - HOLLOW SPHERE - 9/18/95
 49: AXISYMMETRIC
50: MAXIMUM ITERATIONS 20000
51: RESIDUAL TOLERANCE .01
52: MATERIAL, 1, ELASTIC PLASTIC, 1.0
53: YOUNGS MODULUS 2.07E+11
54: POISSONS RATIO 0.3
55: YIELD STRESS 10000.
56: HARDENING MODULUS 0.
57: BETA 0.
58: END
59: FUNCTION, 1
60: 0.
                0.
61: 1.
             5833.
```

```
62: 1.25 9501.9
63: 1.5 11963.5
64: 1.75 13392.8
65: 2.
          13900.0
66: END
67: STEP CONTROL
68: 1,1.
69: 1,1.25
70: 1,1.50
71: 1,1.75
72:
    1,2.0
73: END
74: PLOT TIME
75: 1,1.
76: 1,1.25
77: 1,1.50
78: 1,1.75
79: 1,2.0
80: END
81: OUTPUT TIME
82: 1,1.
83: 1,1.25
84: 1,1.50
85: 1,1.75
86: 1,2.0
87: END
88: NO DISPLACEMENT, X, 1
89: NO DISPLACEMENT, Y, 2
90: PRESSURE, 3, 1, 1.
91: EXIT
```

PROBLEM TITLE

SANTOS QA PROBLEM - HOLLOW SPHERE - 9/18/95

1

PROBLEM DEFINITION

NUMBER OF ELEMENTS	600
NUMBER OF NODES	651
NUMBER OF MATERIALS	1
NUMBER OF FUNCTIONS	1
NUMBER OF CONTACT SURFACES	0
NUMBER OF RIGID SURFACES	0
NUMBER OF MATERIAL POINTS MONITORED	0
ANALYSIS TYPE	AXISYMMETRIC
GLOBAL CONVERGENCE MEASURE	
RESIDUAL TOLERANCE	1.000E-02
MAXIMUM NUMBER OF ITERATIONS	20000
ITERATIONS FOR INTERMEDIATE PRINT	1302
MAXIMUM RESIDUAL TOLERANCE	6.000E-01
PREDICTOR SCALE FACTOR FUNCTION	0
MINIMUM DAMPING FACTOR	2.000E-01
EFFECTIVE MODULUS STATUS	CONSTANT
SCALE FACTOR APPLIED TO TIME STEP	1.000E+00

STRAIN SOF	TENING SC	ALE FACT	OR	1.000E+00
HOURGLASS	STIFFNESS	FACTOR		1.000E-02
HOURGLASS	VISCOSITY	FACTOR		3.000E-02

LOAD STEP DEFINITIONS

TIME	NO. OF STEPS	TIME
0.000E+00	1	1.000E+00
1.000E+00	1	1.250E+00
1.250E+00	1	1.500E+00
1.500E+00	1	1.750E+00
1.750E+00	1	2.000E+00

PRINTED OUTPUT FREQUENCY

TIME	STEPS	BETWEEN	PRINTS	TIME
0.000E+00		1		1.000E+00
1.000E+00		1		1.250E+00
1.250E+00		1		1.500E+00
1.500E+00		1		1.750E+00
1.750E+00		1		2.000E+00

PLOTTED OUTPUT FREQUENCY

TIME	STEPS	BETWEEN	PLOTS	TIME
0.000E+00		1		1.000E+00
1.000E+00		1		1.250E+00
1.250E+00		1		1.500E+00
1.500E+00		1		1.750E+00
1.750E+00		1		2.000E+00

MATERIAL DEFINITIONS

MATERIAL TYPE		
DENSITY		1.000E+00
MATERIAL PROPERTIES:		
YOUNGS MODULUS	=	2.070E+11
POISSONS RATIO	=	3.000E-01
YIELD STRESS	=	1.000E+04
HARDENING MODULUS	=	0.000E+00
BETA	=	0.000E+00

FUNCTION DEFINITIONS

FUNCTION ID		1	NUMBER OF POINTS	6
	N	s	F(S)	
	1	0.000E+00	0.000E+00	
	2	1.000E+00	5.833E+03	
	3	1.250E+00	9.502E+03	
	4	1.500E+00	1.196E+04	
	5	1.750E+00	1.339E+04	
	6	2.000E+00	1.390E+04	

NO DISPLACEMENT BOUNDARY CONDITIONS

NODE SET FLAG DIRECTION
1 X
2 Y

PRESSURE BOUNDARY CONDTIONS

SURFACE FUNCTION SCALE FLAG NUMBER FACTOR 1.000E+00

E N D O F D A T A I N P U T P H A S E 3.000E-02 CPU SECONDS USED 5666 WORDS ALLOCATED

ENDOFDATA INITIALIZATION PHASE
1.000E-02 CPU SECONDS USED
60576 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

NODAL

		DISPLX	SIGXX	FX	
		DISPLY	SIGYY	FY	
			SIGZZ	RX	
	•		TAUXY	RY	
				ITER	
				RMAG	
1	**** PLOT TAPE WRI			AT TIME = 0.000E+00 ****	
-	SANTOS QA PROBLE	M - HOLLOW SP	HERE - 9/18/9	5	
	******	******	******	******	
	SUMMARY OF DATA AT	STEP NUMBER	1. TIME =	1.000E+00	
				ER OF ITERATIONS = 90	00
				ER OF TIERATIONS - 9	00
	FINAL CONVERGENCE				
	SUM OF EXTERNAL FO	RCES IN X-DIR	ECTION = 4.57	7E+03	
	SUM OF EXTERNAL FO	RCES IN Y-DIR	ECTION = 2.91	7E+03	
	SUM OF REACTION FO				
	SUM OF REACTION FO				

	* * * * * * * * * * * * * * * * * * * *		*****		
	**** PLOT TAPE WRI	TTEN AT TIME	= 1.000E+00	STEP NUMBER 1 ****	
1	SANTOS, VERSION 2 SANTOS QA PROBLE	="	•		
	*********	******	******	*******	
	SUMMARY OF DATA AT	STEP NUMBER	2. TIME =	1.250E+00	
				ER OF ITERATIONS = 130	٥1
				EK OF TIEKATIONS = 130	O I
	FINAL CONVERGENCE				
	SUM OF EXTERNAL FO				
	SUM OF EXTERNAL FO	RCES IN Y-DIR	ECTION = 4.75	1E+03	
	SUM OF REACTION FO	RCES IN X-DIR	ECTION = 0.00	0E+00	
	SUM OF REACTION FO	RCES IN Y-DIR	ECTION = 4.74	9E+03	

	**** PLOT TAPE WRI	TTEN AT TIME	= 1.250E+00	STEP NUMBER 2 ****	
1	SANTOS, VERSION 2 SANTOS QA PROBLE	•	•		
	******	*****	*****	******	
	SUMMARY OF DATA AT	STEP NUMBER	3, TIME =	1.500E+00	
				ER OF ITERATIONS = 180	69
			•	- 100 - 100 - 100	· /
	FINAL CONVERGENCE				
	SUM OF EXTERNAL FO				
	SUM OF EXTERNAL FO	RCES IN Y-DIR	ECTION = 5.98	2E+03	
	SUM OF REACTION FO				
	SUM OF REACTION FO				
	SOM OF REACTION FO	WCES IN I-DIK	LCIION - J.90	J1. 0J	

ELEMENT

GLOBAL

```
**** PLOT TAPE WRITTEN AT TIME = 1.500E+00 STEP NUMBER 3 ****
   SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:11:30
    SANTOS QA PROBLEM - HOLLOW SPHERE - 9/18/95
   *******************
   SUMMARY OF DATA AT STEP NUMBER 4, TIME = 1.750E+00
   NUMBER OF ITERATIONS = 534, TOTAL NUMBER OF ITERATIONS = 2403
   FINAL CONVERGENCE TOLERANCE = 9.556E-03
   SUM OF EXTERNAL FORCES IN X-DIRECTION = 1.051E+04
   SUM OF EXTERNAL FORCES IN Y-DIRECTION = 6.696E+03
   SUM OF REACTION FORCES IN X-DIRECTION = 0.000E+00
   SUM OF REACTION FORCES IN Y-DIRECTION = 6.693E+03
   **** PLOT TAPE WRITTEN AT TIME = 1.750E+00 STEP NUMBER
                   TIME DAMPING APPLIED RESIDUAL PERCENT TOTAL STEP FACTOR LOAD NORM LOAD NORM IMBALANCE STEPS
STEP
          TIME

    1302
    2.000E+00
    2.500E-01
    9.986E-01
    3.405E+03
    2.574E+00
    0.08

    2604
    2.000E+00
    2.500E-01
    9.991E-01
    3.405E+03
    2.535E+00
    0.07

    3906
    2.000E+00
    2.500E-01
    1.000E+00
    3.405E+03
    1.104E+00
    0.03

                                                                              3705
                                                                               5007
                                                                               6309
 5208 2.000E+00 2.500E-01 1.000E+00 3.405E+03 9.098E-01
                                                                    0.03
                                                                               7611
 6510 2.000E+00 2.500E-01 1.000E+00 3.405E+03 8.857E-01
                                                                    0.03
                                                                               8913
 7812 2.000E+00 2.500E-01 1.000E+00 3.405E+03 5.340E-01
                                                                   0.02
                                                                              10215
 9114 2.000E+00 2.500E-01 1.000E+00 3.405E+03 4.475E-01
                                                                   0.01
                                                                            11517
    SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:11:30
     SANTOS QA PROBLEM - HOLLOW SPHERE - 9/18/95
   *******************
   SUMMARY OF DATA AT STEP NUMBER 5, TIME = 2.000E+00
   NUMBER OF ITERATIONS = 9981, TOTAL NUMBER OF ITERATIONS = 12384
   FINAL CONVERGENCE TOLERANCE = 9.333E-03
   SUM OF EXTERNAL FORCES IN X-DIRECTION = 1.091E+04
   SUM OF EXTERNAL FORCES IN Y-DIRECTION = 6.950E+03
   SUM OF REACTION FORCES IN X-DIRECTION = 0.000E+00
   SUM OF REACTION FORCES IN Y-DIRECTION = 6.947E+03
```

5 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

**** PLOT TAPE WRITTEN AT TIME = 2.000E+00 STEP NUMBER 5 ****

E N D O F S O L U T I O N P H A S E 6.085E+01 CPU SECONDS USED 79924 WORDS ALLOCATED

Elastic/Plastic with Hardening sant_hard.o

SSSSSS	AAZ	AAA	N	NN	TTTTTT	OÒO	000	SSSSSS
SS	AA	AA	NN	NN	${f TT}$	00	00	SS
SS	AA	AA	NNN	NN	$\mathbf{T}\mathbf{T}$	00	00	SS
SSSSS	AAA	AAAA	NN N	1 NN	${f TT}$	00	00	SSSSS
SS	AA	AA	NN	NNN	${f TT}$	00	00	SS
SS	AA	AA	NN	NN	${f TT}$	00	00	SS
222222	AΑ	AΑ	NN	N	ጥጥ	000	റററ	SSSSSS

VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE ENGINEERING SCIENCES CENTER SANDIA NATIONAL LABORATORIES ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030612 AT 11:12:31 RUN ON A 1686 UNDER Lx2.4.20

2: SANTOS QA PROBLEM - HOLLOW SPHERE - 10/26/94 - HARDENING M = 0.1 3: AXISYMMETRIC 4: MAXIMUM ITERATIONS 20000 5: RESIDUAL TOLERANCE .01 6: MATERIAL, 1, ELASTIC PLASTIC, 1.0 7: YOUNGS MODULUS 2.07E+11 8: POISSONS RATIO 0.3 9: YIELD STRESS 10000. 10: HARDENING MODULUS 2.07E+10 11: BETA 0. 12: END 13: FUNCTION, 1 14: 0. 0. 5833. 15: 1. 16: 1.25 9756.5 17: 1.5 13003.2 18: 1.75 15798.4 19: 2. 18278.8

Page 260

```
20: END
  21: STEP CONTROL
  22: 1,1.
  23: 1,1.25
  24: 1,1.50
  25: 1,1.75
  26: 1,2.0
  27: END
  28: PLOT TIME
  29: 1,1.
30: 1,1.25
31: 1,1.50
32: 1,1.75
33: 1,2.0
  34: END
  35: OUTPUT TIME
  36: 1,1.
  37: 1,1.25
  38: 1,1.50
  39: 1,1.75
  40: 1,2.0
  41: END
  42: NO DISPLACEMENT, X, 1
  43: NO DISPLACEMENT, Y, 2
  44: PRESSURE, 3, 1, 1.
  45: EXIT
1
                                 INPUT STREAM IMAGES
 LINE ------
  47: TITLE
  48: SANTOS OA PROBLEM - HOLLOW SPHERE - 10/26/94 - HARDENING M = 0.1
   49: AXISYMMETRIC
  50: MAXIMUM ITERATIONS 20000
  51: RESIDUAL TOLERANCE .01
  52: MATERIAL, 1, ELASTIC PLASTIC, 1.0
  53: YOUNGS MODULUS 2.07E+11
  54: POISSONS RATIO 0.3
  55: YIELD STRESS 10000.
  56: HARDENING MODULUS 2.07E+10
  57: BETA 0.
  58: END
  59: FUNCTION,1
  60: 0. 0.
  61: 1.
              5833.
  62: 1.25 9756.5
  63: 1.5 13003.2
64: 1.75 15798.4
       2.
  65:
              18278.8
  66: END
  67: STEP CONTROL
  68: 1,1.
  69: 1,1.25
  70: 1,1.50
  71: 1,1.75
  72: 1,2.0
  73: END
  74: PLOT TIME
  75: 1,1.
76: 1,1.25
```

1

77: 1,1.50
78: 1,1.75
79: 1,2.0
80: END
81: OUTPUT TIME
82: 1,1.
83: 1,1.25
84: 1,1.50
85: 1,1.75
86: 1,2.0
87: END
88: NO DISPLACEMENT, X, 1
89: NO DISPLACEMENT, Y, 2
90: PRESSURE, 3, 1, 1.
91: EXIT

PROBLEM TITLE

SANTOS QA PROBLEM - HOLLOW SPHERE - 10/26/94 - HARDENING M = 0.1

PROBLEM DEFINITION

NUMBER OF ELEMENTS	600
NUMBER OF NODES	651
NUMBER OF MATERIALS	1
NUMBER OF FUNCTIONS	1
NUMBER OF CONTACT SURFACES	0
NUMBER OF RIGID SURFACES	0
NUMBER OF MATERIAL POINTS MONITORED	0
ANALYSIS TYPE	AXISYMMETRIC
GLOBAL CONVERGENCE MEASURE	
RESIDUAL TOLERANCE	1.000E-02
MAXIMUM NUMBER OF ITERATIONS	20000
ITERATIONS FOR INTERMEDIATE PRINT	1302
MAXIMUM RESIDUAL TOLERANCE	6.000E-01
PREDICTOR SCALE FACTOR FUNCTION	0
MINIMUM DAMPING FACTOR	2.000E-01
EFFECTIVE MODULUS STATUS	CONSTANT
SCALE FACTOR APPLIED TO TIME STEP	1.000E+00
STRAIN SOFTENING SCALE FACTOR	1.000E+00
HOURGLASS STIFFNESS FACTOR	1.000E-02
HOURGLASS VISCOSITY FACTOR	3.000E-02

LOAD STEP DEFINITIONS

TIME	NO. OF STEPS	TIME
0.000E+00	1	1.000E+00
1.000E+00	1	1.250E+00
1.250E+00	1	1.500E+00
1.500E+00	1	1.750E+00

1.750E+00	1	2.000E+00
1./302700		2.0005700

PRINTED OUTPUT FREQUENCY

TIME	STEPS	BETWEEN	PRINTS	TIME
0.000E+00		1		1.000E+00
1.000E+00		1		1.250E+00
1.250E+00		1		1.500E+00
1.500E+00		1		1.750E+00
1.750E+00		1		2.000E+00

PLOTTED OUTPUT FREQUENCY

TIME	STEPS	BETWEEN	PLOTS	TIME
0.000E+00		1		1.000E+00
1.000E+00		1		1.250E+00
1.250E+00		1		1.500E+00
1.500E+00		1		1.750E+00
1.750E+00		1		2.000E+00

MATERIAL DEFINITIONS

MATERIAL TYPE		
DENSITY		1.000E+00
MATERIAL PROPERTIES:		
YOUNGS MODULUS	=	2.070E+11
POISSONS RATIO	=	3.000E-01
YIELD STRESS	=	1.000E+04
HARDENING MODULUS	=	2.070E+10
BETA	=	0.000E+00

FUNCTION DEFINITIONS

FUNCTION II		1	NUMBER OF	POINTS	 6
	N	s	F(S)		
	1	0.000E+00	0.000E+00		
	2	1.000E+00	5.833E+03		
	3	1.250E+00	9.756E+03		
	4	1.500E+00	1.300E+04		
	5	1.750E+00	1.580E+04		

6 2.000E+00 1.828E+04

NO DISPLACEMENT BOUNDARY CONDITIONS

NODE	SET	FLAG	DIRECTION
	1		X
	2		v

PRESSURE BOUNDARY CONDTIONS

SURFACE	FUNCTION		SCALE
FLAG	NUMBER		FACTOR
3	1	1	0005+00

END OF DATA INPUT PHASE 3.000E-02 CPU SECONDS USED 5666 WORDS ALLOCATED

END OF DATA INITIALIZATION PHASE 0.000E+00 CPU SECONDS USED 60576 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

NODAL	ELEMENT	GLOBAL
DISPLX	SIGXX	FX
DISPLY	SIGYY	FY
	SIGZZ	RX
	TAUXY	RY
		ITER
		RMAG

**** PLOT TAPE WRITTEN FOR THE INITIAL STATE AT TIME = 0.000E+00 ****

SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:12:31 SANTOS QA PROBLEM - HOLLOW SPHERE - 10/26/94 - HARDENING M = 0.1

SUMMARY OF DATA AT STEP NUMBER 1, TIME = 1.000E+00 NUMBER OF ITERATIONS = 640, TOTAL NUMBER OF ITERATIONS = 640 FINAL CONVERGENCE TOLERANCE = 9.987E-03 SUM OF EXTERNAL FORCES IN X-DIRECTION = 4.577E+03 SUM OF EXTERNAL FORCES IN Y-DIRECTION = 2.917E+03 SUM OF REACTION FORCES IN X-DIRECTION = 0.000E+00 SUM OF REACTION FORCES IN Y-DIRECTION = 2.918E+03 ************************ **** PLOT TAPE WRITTEN AT TIME = 1.000E+00 STEP NUMBER 1 **** SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:12:31 SANTOS QA PROBLEM - HOLLOW SPHERE - 10/26/94 - HARDENING M = 0.1 SUMMARY OF DATA AT STEP NUMBER 2, TIME = 1.250E+00NUMBER OF ITERATIONS = 499, TOTAL NUMBER OF ITERATIONS = 1139 FINAL CONVERGENCE TOLERANCE = 9.886E-03 SUM OF EXTERNAL FORCES IN X-DIRECTION = 7.655E+03 SUM OF EXTERNAL FORCES IN Y-DIRECTION = 4.878E+03 SUM OF REACTION FORCES IN X-DIRECTION = 0.000E+00 SUM OF REACTION FORCES IN Y-DIRECTION = 4.876E+03**** PLOT TAPE WRITTEN AT TIME = 1.250E+00 STEP NUMBER SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:12:31 SANTOS QA PROBLEM - HOLLOW SPHERE - 10/26/94 - HARDENING M = 0.1 *************** SUMMARY OF DATA AT STEP NUMBER 3, TIME = 1.500E+00 NUMBER OF ITERATIONS = 324, TOTAL NUMBER OF ITERATIONS = FINAL CONVERGENCE TOLERANCE = 9.830E-03 SUM OF EXTERNAL FORCES IN X-DIRECTION = 1.020E+04 SUM OF EXTERNAL FORCES IN Y-DIRECTION = 6.502E+03SUM OF REACTION FORCES IN X-DIRECTION = 0.000E+00 SUM OF REACTION FORCES IN Y-DIRECTION = 6.499E+03 **** PLOT TAPE WRITTEN AT TIME = 1.500E+00 STEP NUMBER 3 **** SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:12:31 SANTOS QA PROBLEM - HOLLOW SPHERE - 10/26/94 - HARDENING M = 0.1 ******************* SUMMARY OF DATA AT STEP NUMBER 4, TIME = 1.750E+00NUMBER OF ITERATIONS = 385, TOTAL NUMBER OF ITERATIONS = 1848 FINAL CONVERGENCE TOLERANCE = 9.661E-03 SUM OF EXTERNAL FORCES IN X-DIRECTION = 1.240E+04 SUM OF EXTERNAL FORCES IN Y-DIRECTION = 7.899E+03

5 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

E N D O F S O L U T I O N P H A S E 1.204E+01 CPU SECONDS USED 79924 WORDS ALLOCATED

Elastic/Perfectly-Plastic with Temperature sant_temp.o

SSSSSS	AAA	AAA	N	NN	TTTTTT	000	000	SSSSSS	
SS	AA	AA	NN	NN	$ extbf{T}$ T	00	00	SS	
SS	AA	AA	NNN	NN	$ extbf{T}$ T	00	00	SS	
SSSSS	AAA	AAAA	NN N	1 NN	$\mathbf{T}\mathbf{T}$	00	00	SSSSS	
SS	AA	AA	NN	NNN	$\mathbf{T}\mathbf{T}$	00	00	SS	
SS	AA	AA	NN	NN	${f TT}$	00	00	SS	
SSSSSS	AA	AA	NN	N	TT	000	000	SSSSSS	

VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

Page 266

PROGRAMMED BY:

CHARLES M. STONE ENGINEERING SCIENCES CENTER SANDIA NATIONAL LABORATORIES ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030612 AT 11:12:43 RUN ON A i686 UNDER Lx2.4.20

```
1: TITLE
2: SANTOS QA PROBLEM - HOLLOW SPHERE - 12/14/94 - TEMPERATURE PROBLEM
3: AXISYMMETRIC
 4: MAXIMUM ITERATIONS 20000
 5: RESIDUAL TOLERANCE .5
 6: MATERIAL, 1, ELASTIC PLASTIC, 1.0, 1, 1.
7: YOUNGS MODULUS 1.E+7
8: POISSONS RATIO 0.3
9: YIELD STRESS 10000.
10: HARDENING MODULUS 0.
11: BETA 0.
12: END
13: THERMAL STRESS EXTERNAL 1000.
14: PLOT ELEMENT STRESS TEMPERATURE
15: FUNCTION 1 $ THERMAL STRAIN FOR ALPHA = 1.E-5
     0.
            0.
17:
    1000.
             1.E-2
18: END
19: STEP CONTROL
20: 4,1.
21: 4,2,
22: 4.3.
23: 4,4.
24: 4,5.
25: END
26: PLOT TIME
27: 1,1.
28: 4,2.
29: 4,3.
30: 4,4.
31:
    4,5.
32: END
33: OUTPUT TIME
34: 4,1.
35:
    4,2.
36:
    4,3.
37:
    4,4.
38:
    4,5.
39: END
40: NO DISPLACEMENT, X, 1
41: NO DISPLACEMENT, Y, 2
42: EXIT
                                INPUT STREAM IMAGES
44: TITLE
```

```
SANTOS QA PROBLEM - HOLLOW SPHERE - 12/14/94 - TEMPERATURE PROBLEM
46: AXISYMMETRIC
47: MAXIMUM ITERATIONS 20000
48: RESIDUAL TOLERANCE .5
49: MATERIAL, 1, ELASTIC PLASTIC, 1.0, 1, 1.
50: YOUNGS MODULUS 1.E+7
51: POISSONS RATIO 0.3
52: YIELD STRESS 10000.
53: HARDENING MODULUS 0.
54: BETA 0.
55: END
56: THERMAL STRESS EXTERNAL 1000.
57: PLOT ELEMENT STRESS TEMPERATURE
58: FUNCTION 1 $ THERMAL STRAIN FOR ALPHA = 1.E-5
           0.
59:
      Ο.
     1000.
            1.E-2
60:
61: END
62: STEP CONTROL
63: 4,1.
64: 4,2,
65: 4,3.
66: 4,4.
67: 4,5.
68: END
69: PLOT TIME
70: 1,1.
71: 4,2.
72: 4,3.
73: 4,4.
74:
    4,5.
75: END
76: OUTPUT TIME
77:
    4,1.
78:
    4,2.
79:
    4,3.
80:
    4,4.
81:
    4,5.
82: END
83: NO DISPLACEMENT, X, 1
84: NO DISPLACEMENT, Y, 2
85: EXIT
```

PROBLEM TITLE

1

SANTOS QA PROBLEM - HOLLOW SPHERE - 12/14/94 - TEMPERATURE PROBLEM

PROBLEM DEFINITION

NUMBER OF	ELEMENTS	600
NUMBER OF	NODES	651
NUMBER OF	MATERIALS	1
NUMBER OF	FUNCTIONS	1
NUMBER OF	CONTACT SURFACES	0
NUMBER OF	RIGID SURFACES	0

1707-1 0- 1117-111	•
NUMBER OF MATERIAL POINTS MONITORED	
ANALYSIS TYPE	AXISYMMETRIC
GLOBAL CONVERGENCE MEASURE	
RESIDUAL TOLERANCE	5.000E-01
MAXIMUM NUMBER OF ITERATIONS	20000
ITERATIONS FOR INTERMEDIATE PRINT	1302
MAXIMUM RESIDUAL TOLERANCE	6.000E-01
PREDICTOR SCALE FACTOR FUNCTION	0
MINIMUM DAMPING FACTOR	2.000E-01
EFFECTIVE MODULUS STATUS	CONSTANT
THERMAL STRESS ANALYSIS PERFORMED	EXTERNAL
THERMAL FORCE MAGNITUDE	1.000E+03
SCALE FACTOR APPLIED TO TIME STEP	1.000E+00
STRAIN SOFTENING SCALE FACTOR	1.000E+00
HOURGLASS STIFFNESS FACTOR	1.000E-02
HOURGLASS VISCOSITY FACTOR	3.000E-02

LOAD STEP DEFINITIONS

TIME	NO. OF STEPS	TIME
0.000E+00	4	1.000E+00
1.000E+00	4	2.000E+00
2.000E+00	4	3.000E+00
3.000E+00	4	4.000E+00
4.000E+00	4 .	5.000E+00

PRINTED OUTPUT FREQUENCY

TIME	STEPS	BETWEEN	PRINTS	TIME
0.000E+00		4		1.000E+00
1.000E+00		4		2.000E+00
2.000E+00		4		3.000E+00
3.000E+00		4		4.000E+00
4.000E+00		4		5.000E+00

PLOTTED OUTPUT FREQUENCY

TIME	STEPS	BETWEEN	PLOTS	TIME
0.000E+00		1		1.000E+00
1.000E+00		4		2.000E+00
2.000E+00		4		3.000E+00
3.000E+00		4		4.000E+00
4.000E+00		4		5.000E+00

MATERIAL DEFINITIONS

FUNCTION DEFINITIONS

NO DISPLACEMENT BOUNDARY CONDITIONS

NODE SET FLAG DIRECTION
1 X
2 Y

ENDOFDATA INPUT PHASE
2.000E-02 CPU SECONDS USED
5644 WORDS ALLOCATED

END OF DATA INITIALIZATION PHASE
1.000E-02 CPU SECONDS USED
60554 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

1

	NODAL		GLOBAL	
	DISPLX DISPLY	SIGYY SIGZZ TAUXY TEMP	FX FY RX RY ITER RMAG	
**** PLOT TAPE WE	ITTEN FOR THE	INITIAL STATE	E AT TIME = 0.00	00E+00 ****
**** PLOT TAPE WE	ITTEN AT TIME	= 2.500E-01	STEP NUMBER	1 ****
**** PLOT TAPE WF	ITTEN AT TIME	= 5.000E-01	STEP NUMBER	2 ****
**** PLOT TAPE WE	ITTEN AT TIME	= 7.500E-01	STEP NUMBER	3 ****
SANTOS, VERSION SANTOS QA PROBL	•		AT 11:12:43 '94 - TEMPERATUR	RE PROBLEM
****************** SUMMARY OF DATA A NUMBER OF ITERATI FINAL CONVERGENCE SUM OF EXTERNAL F SUM OF EXTERNAL F SUM OF REACTION F SUM OF REACTION F	T STEP NUMBER ONS = 4 TOLERANCE = 4 ORCES IN X-DIF ORCES IN Y-DIF ORCES IN X-DIF ORCES IN Y-DIF	4, TIME = 48, TOTAL NUME 1.621E-01 RECTION = 0.00 RECTION = 0.00 RECTION = -3.84	= 1.000E+00 BER OF ITERATION 00E+00 00E+00 00E+00 13E+01	JS = 793
**** PLOT TAPE WE	ITTEN AT TIME	= 1.000E+00	STEP NUMBER	4 ****
SANTOS, VERSION SANTOS QA PROBI			AT 11:12:43 94 - TEMPERATUR	RE PROBLEM
******************* SUMMARY OF DATA A NUMBER OF ITERATI FINAL CONVERGENCE SUM OF EXTERNAL F SUM OF EXTERNAL F SUM OF REACTION F SUM OF REACTION F	T STEP NUMBER ONS = 9 TOLERANCE = 4 ORCES IN X-DIF ORCES IN Y-DIF ORCES IN X-DIF ORCES IN Y-DIF	8, TIME = 06, TOTAL NUME 1.923E-01 RECTION = 0.00 RECTION = 0.00 RECTION = 5.31	2.000E+00 BER OF ITERATION 00E+00 00E+00 00E+00 .9E+01	IS = 1235

	**** PLOT TAPE WRITTEN AT TIME = 2.000E+00 STEP NUMBER 8 ****
1	SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:12:43 SANTOS QA PROBLEM - HOLLOW SPHERE - 12/14/94 - TEMPERATURE PROBLEM

	SUMMARY OF DATA AT STEP NUMBER 12, TIME = 3.000E+00 NUMBER OF ITERATIONS = 523, TOTAL NUMBER OF ITERATIONS = 1975 FINAL CONVERGENCE TOLERANCE = 4.848E-01 SUM OF EXTERNAL FORCES IN X-DIRECTION = 0.000E+00 SUM OF EXTERNAL FORCES IN Y-DIRECTION = 0.000E+00 SUM OF REACTION FORCES IN X-DIRECTION = 0.000E+00 SUM OF REACTION FORCES IN Y-DIRECTION = 5.199E+01
	**** PLOT TAPE WRITTEN AT TIME = 3.000E+00 STEP NUMBER 12 ****
1	SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:12:43 SANTOS QA PROBLEM - HOLLOW SPHERE - 12/14/94 - TEMPERATURE PROBLEM
	SUMMARY OF DATA AT STEP NUMBER 16, TIME = 4.000E+00 NUMBER OF ITERATIONS = 464, TOTAL NUMBER OF ITERATIONS = 3839 FINAL CONVERGENCE TOLERANCE = 4.617E-01 SUM OF EXTERNAL FORCES IN X-DIRECTION = 0.000E+00 SUM OF EXTERNAL FORCES IN Y-DIRECTION = 0.000E+00 SUM OF REACTION FORCES IN X-DIRECTION = 0.000E+00 SUM OF REACTION FORCES IN Y-DIRECTION = -2.340E+01
	**** PLOT TAPE WRITTEN AT TIME = 4.000E+00 STEP NUMBER 16 ****
1	SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:12:43 SANTOS QA PROBLEM - HOLLOW SPHERE - 12/14/94 - TEMPERATURE PROBLEM
	SUMMARY OF DATA AT STEP NUMBER 20, TIME = 5.000E+00 NUMBER OF ITERATIONS = 32, TOTAL NUMBER OF ITERATIONS = 4227 FINAL CONVERGENCE TOLERANCE = 4.983E-01 SUM OF EXTERNAL FORCES IN X-DIRECTION = 0.000E+00 SUM OF EXTERNAL FORCES IN Y-DIRECTION = 0.000E+00 SUM OF REACTION FORCES IN X-DIRECTION = 0.000E+00 SUM OF REACTION FORCES IN Y-DIRECTION =-5.381E+01 ***********************************
	·

**** PLOT TAPE WRITTEN AT TIME = 5.000E+00 STEP NUMBER

8 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

E N D O F S O L U T I O N P H A S E 2.204E+01 CPU SECONDS USED 87408 WORDS ALLOCATED

APPENDIX L

Input/Output Data For Test Case 12

The following two sections present the input data and the formatted output for the restart option verification test.

FASTQ and SANTOS Input Data For The Restart Option Problem

This section presents a listing of the FASTQ and SANTOS input data files that were used for mesh generation and for each part of the analysis of the restart option problem. The binary file sant_temp.th is an input file for Test Case 11 that can be found in LIBSANTOS in CMS.

```
sant_plastic.fsq
TITLE
HOLLOW CYLINDER - SANTOS QA TEST PROBLEM
POINT 1 0.
             0.
POINT 2
          1.
                 0.
POINT 3
          0.
               1.
POINT 4 0. 2.
POINT 5 2. 0.
LINE 1 CIRC 2 3
                    1 20 1.0
LINE 2 STR 3 4 0 30 1.0
LINE 3 CIRC 5 4 1 20 1.0
LINE 4 STR 2 5 0 30 1.0
NODEBC 1 2
NODEBC 2 4
ELEMBC 3
       1
SCHEME 0 MP
REGION 1 1 -1 -2 -3 -4
EXIT
```

Restart Write

```
sant_rsout.i
TITLE
  SANTOS QA PROBLEM - HOLLOW SPHERE - TEMPERATURE PROBLEM - RESTART WRITE
AXISYMMETRIC
MAXIMUM ITERATIONS 20000
RESIDUAL TOLERANCE .5
MATERIAL, 1, ELASTIC PLASTIC, 1.0, 1, 1.
YOUNGS MODULUS 1.E+7
POISSONS RATIO 0.3
YIELD STRESS 10000.
HARDENING MODULUS 0.
BETA 0.
THERMAL STRESS EXTERNAL 1000.
PLOT ELEMENT STRESS TEMPERATURE
FUNCTION 1 $ THERMAL STRAIN FOR ALPHA = 1.E-5
    0. 0.
  1000.
          1.E-2
END
```


Page 274

```
STEP CONTROL
  4,1.
  4,2,
  4,3.
END
PLOT TIME
  1,1.
  4,2.
  4,3.
END
OUTPUT TIME
  4,1.
  4,2.
  4,3.
END
WRITE RESTART 1
NO DISPLACEMENT, X, 1
NO DISPLACEMENT, Y, 2
EXIT
Restart Read
sant rsin.i
TITLE
  SANTOS QA PROBLEM - HOLLOW SPHERE - TEMPERATURE PROBLEM - RESTART READ
AXISYMMETRIC
MAXIMUM ITERATIONS 20000
RESIDUAL TOLERANCE .5
MATERIAL, 1, ELASTIC PLASTIC, 1.0, 1, 1.
YOUNGS MODULUS 1.E+7
POISSONS RATIO 0.3
YIELD STRESS 10000.
HARDENING MODULUS 0.
BETA 0.
END
THERMAL STRESS EXTERNAL 1000.
PLOT ELEMENT STRESS TEMPERATURE
FUNCTION 1 $ THERMAL STRAIN FOR ALPHA = 1.E-5
     0.
           0.
  1000.
           1.E-2
END
STEP CONTROL
  4,3.
  4,4.
  4,5.
END
PLOT TIME
  4,3.
  4,4.
  4,5.
END
OUTPUT TIME
  4,3.
  4,4.
  4,5.
END
READ RESTART, 12
NO DISPLACEMENT, X, 1
```

NO DISPLACEMENT, Y, 2 EXIT

SANTOS Output For The Restart Option Problem

The following section presents the SANTOS printed output for each part of the restart option analysis. Because all pertinent information and results from the analysis are written to the plot file for post-processing, the printed output file simply echoes input data and problem—descriptive information at the beginning, followed by information that tracks the convergence behavior of the solution, and a summary of CPU usage at the end.

Restart Write

sant_rsout.o

SSSSSS	AAA	AAA	N	NN	TTTTTT	000	000	SSSSSS
SS	AA	AA	NN	NN	${f TT}$	00	00	SS
SS	AA	AA	NNN	NN	${f TT}$	00	00	SS
SSSSS	AAA	AAAA	NN N	NN I	${f TT}$	00	00	SSSSS
SS	AA	AA	NN	NNN	${f TT}$	00	00	SS
SS	AA	AA	NN	NN	${f TT}$	00	00	SS
SSSSSS	AΑ	AΑ	NN	N	ጥጥ	000	000	SSSSSS

VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE ENGINEERING SCIENCES CENTER SANDIA NATIONAL LABORATORIES ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030612 AT 11:14:56 RUN ON A i686 UNDER Lx2.4.20

- 1: TITLE
- 2: SANTOS OA PROBLEM HOLLOW SPHERE TEMPERATURE PROBLEM RESTART WRITE
- 3: AXISYMMETRIC
- 4: MAXIMUM ITERATIONS 20000
- 5: RESIDUAL TOLERANCE .5
- 6: MATERIAL, 1, ELASTIC PLASTIC, 1.0, 1, 1.
- 7: YOUNGS MODULUS 1.E+7
- 8: POISSONS RATIO 0.3
- 9: YIELD STRESS 10000.
- 10: HARDENING MODULUS 0.
- 11: BETA 0.

June 2003 Page 276

```
12: END
  13: THERMAL STRESS EXTERNAL 1000.
  14: PLOT ELEMENT STRESS TEMPERATURE
  15: FUNCTION 1 $ THERMAL STRAIN FOR ALPHA = 1.E-5
           0.
               0.
  17: 1000.
                1.E-2
  18: END
  19: STEP CONTROL
  20: 4,1.
  21: 4,2,
  22: 4,3.
  23: END
  24: PLOT TIME
  25: 1,1.
       4,2.
  26:
  27:
       4,3.
  28: END
  29: OUTPUT TIME
  30:
       4,1.
       4,2.
  31:
  32: 4,3.
  33: END
  34: WRITE RESTART 1
  35: NO DISPLACEMENT, X, 1
  36: NO DISPLACEMENT, Y, 2
  37: EXIT
1
                                 INPUT STREAM IMAGES
 LINE -----
  39: TITLE
  40: SANTOS QA PROBLEM - HOLLOW SPHERE - TEMPERATURE PROBLEM - RESTART WRITE
  41: AXISYMMETRIC
  42: MAXIMUM ITERATIONS 20000
  43: RESIDUAL TOLERANCE .5
  44: MATERIAL, 1, ELASTIC PLASTIC, 1.0, 1, 1.
  45: YOUNGS MODULUS 1.E+7
  46: POISSONS RATIO 0.3
  47: YIELD STRESS 10000.
  48: HARDENING MODULUS 0.
  49: BETA 0.
  50: END
  51: THERMAL STRESS EXTERNAL 1000.
  52: PLOT ELEMENT STRESS TEMPERATURE
  53: FUNCTION 1 $ THERMAL STRAIN FOR ALPHA = 1.E-5
  54:
        0. 0.
  55:
       1000.
               1.E-2
  56: END
  57: STEP CONTROL
  58: 4,1.
59: 4,2,
  60: 4,3.
  61: END
  62: PLOT TIME
  63: 1,1.
  64: 4,2.
  65: 4,3.
  66: END
  67: OUTPUT TIME
  68: 4,1.
```

69: 4,2. 70: 4,3. 71: END

72: WRITE RESTART 1
73: NO DISPLACEMENT, X, 1
74: NO DISPLACEMENT, Y, 2

75: EXIT

/J. EAI

PROBLEM TITLE

SANTOS QA PROBLEM - HOLLOW SPHERE - TEMPERATURE PROBLEM - RESTART WRITE

PROBLEM DEFINITION

NUMBER OF ELEMENTS	600
NUMBER OF NODES	
	=
NUMBER OF MATERIALS	1
NUMBER OF FUNCTIONS	1
NUMBER OF CONTACT SURFACES	0
NUMBER OF RIGID SURFACES	0
NUMBER OF MATERIAL POINTS MONITORED	0
ANALYSIS TYPE	AXISYMMETRIC
GLOBAL CONVERGENCE MEASURE	
RESIDUAL TOLERANCE	5.000E-01
MAXIMUM NUMBER OF ITERATIONS	20000
ITERATIONS FOR INTERMEDIATE PRINT	1302
MAXIMUM RESIDUAL TOLERANCE	6.000E-01
PREDICTOR SCALE FACTOR FUNCTION	0
MINIMUM DAMPING FACTOR	2.000E-01
EFFECTIVE MODULUS STATUS	CONSTANT
THERMAL STRESS ANALYSIS PERFORMED	EXTERNAL
THERMAL FORCE MAGNITUDE	1.000E+03
INCREMENTS BETWEEN RESTART TIMES	1
SCALE FACTOR APPLIED TO TIME STEP	1.000E+00
STRAIN SOFTENING SCALE FACTOR	1.000E+00
HOURGLASS STIFFNESS FACTOR	1.000E-02
HOURGLASS VISCOSITY FACTOR	3.000E-02

LOAD STEP DEFINITIONS

TIME	NO. OF STEPS	TIME
0.000E+00	4	1.000E+00
1.000E+00	4	2.000E+00
2.000E+00	4	3.000E+00

PRINTED OUTPUT FREQUENCY

TIME	STEPS	BETWEEN	PRINTS	TIME
0.000E+00		4		1.000E+00
1.000E+00		4		2.000E+00
2.000E+00		4		3.000E+00

PLOTTED OUTPUT FREQUENCY

TIME	STEPS	BETWEEN	PLOTS	TIME
0.000E+00		1		1.000E+00
1.000E+00		4		2.000E+00
2.000E+00		4		3.000E+00

MATERIAL DEFINITIONS

MATERIAL TYPE MATERIAL ID DENSITY THERMAL STRAIN ID THERMAL STRAIN SCALE FACTOR MATERIAL PROPERTIES:		1 1.000E+00 1
YOUNGS MODULUS	=	1.000E+07
POISSONS RATIO	=	3.000E-01
YIELD STRESS	=	1.000E+04
HARDENING MODULUS	=	0.000E+00
BETA	=	0.000E+00

FUNCTION DEFINITIONS

FUNCTION 3	ID		. 1	NUMBER (OF	POINTS	 2
	N	1	S	F(S)			
	1	. 0.0	000E+00	0.000E+0	0		
•	2	1.0	00E+03	1.000E-0	2		

NO DISPLACEMENT BOUNDARY CONDITIONS

NODE	SET	FLAG	DIRECTION
	1		X
	2		Y

Page 279

E N D O F D A T A I N P U T P H A S E 2.000E-02 CPU SECONDS USED 5614 WORDS ALLOCATED

END OF DATA INITIALIZATION PHASE 1.000E-02 CPU SECONDS USED 60524 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

NODAL	ELEMENT	GLOBAL
~	-	
DISPLX	SIGXX	FX
DISPLY	SIGYY	FY
	SIGZZ	RX
	TAUXY	RY
	TEMP	ITER
		RMAG

**** PLOT TAPE WRITTEN FOR THE INITIAL STATE AT TIME = 0.000E+00 ****

**** PLOT TAPE WRITTEN AT TIME = 2.500E-01 STEP NUMBER 1 ****

**** RESTART TAPE WRITTEN AT TIME = 2.500E-01 STEP NUMBER 1 ****

**** PLOT TAPE WRITTEN AT TIME = 5.000E-01 STEP NUMBER 2 ****

**** RESTART TAPE WRITTEN AT TIME = 5.000E-01 STEP NUMBER 2 ****

**** PLOT TAPE WRITTEN AT TIME = 7.500E-01 STEP NUMBER 3 ****

**** RESTART TAPE WRITTEN AT TIME = 7.500E-01 STEP NUMBER 3 ****

SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:14:56

SANTOS OA PROBLEM - HOLLOW SPHERE - TEMPERATURE PROBLEM - RESTART WRITE

	SUMMARY OF DATA AT STEP NUMBER 4, TIME = 1.000E+00 NUMBER OF ITERATIONS = 48, TOTAL NUMBER OF ITERATIONS =	703
	FINAL CONVERGENCE TOLERANCE = 4.621E-01	133
	SUM OF EXTERNAL FORCES IN X-DIRECTION = 0.000E+00	
	SUM OF EXTERNAL FORCES IN Y-DIRECTION = 0.000E+00	
	SUM OF REACTION FORCES IN X-DIRECTION = 0.000E+00	
	SUM OF REACTION FORCES IN Y-DIRECTION =-3.843E+01	
	*****************	+ *
	**** PLOT TAPE WRITTEN AT TIME = 1.000E+00 STEP NUMBER 4 ****	
	**** RESTART TAPE WRITTEN AT TIME = 1.000E+00 STEP NUMBER	4 ****
•	++++ DEGENER ENDE (DIEGEN NE ETVE 1 050E.00 GEED NEWEDD	5 ****
	**** RESTART TAPE WRITTEN AT TIME = 1.250E+00 STEP NUMBER	5 ^^^
	**** RESTART TAPE WRITTEN AT TIME = 1.500E+00 STEP NUMBER	6 ****
	**** RESTART TAPE WRITTEN AT TIME = 1.750E+00 STEP NUMBER	7 ****
1	SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:14:56	
	SANTOS QA PROBLEM - HOLLOW SPHERE - TEMPERATURE PROBLEM - RESTART	WRITE
	*****************	* *
	SUMMARY OF DATA AT STEP NUMBER 8, TIME = 2.000E+00	
	NUMBER OF ITERATIONS = 96, TOTAL NUMBER OF ITERATIONS =	1235
	FINAL CONVERGENCE TOLERANCE = 4.923E-01	
	SUM OF EXTERNAL FORCES IN X-DIRECTION = 0.000E+00	
	SUM OF EXTERNAL FORCES IN Y-DIRECTION = 0.000E+00	
	SUM OF REACTION FORCES IN X-DIRECTION = 0.000E+00	
	SUM OF REACTION FORCES IN Y-DIRECTION = 5.319E+01	
	*******************	**
	**** PLOT TAPE WRITTEN AT TIME = 2.000E+00 STEP NUMBER 8 ****	
	****	0 4444
	**** RESTART TAPE WRITTEN AT TIME = 2.000E+00 STEP NUMBER	8 ****
	**** RESTART TAPE WRITTEN AT TIME = 2.250E+00 STEP NUMBER	9 ****
		-
	**** RESTART TAPE WRITTEN AT TIME = 2.500E+00 STEP NUMBER	LO ****
1		11 ****
_	SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:14:56 SANTOS OA PROBLEM - HOLLOW SPHERE - TEMPERATURE PROBLEM - RESTART	ፕላፓጋ Tጥፑ
	DAN 100 QA I MODDON SIINDM TENI DIMI DIMI I MODDON MODILINI	WICETE
	******************	**
	SUMMARY OF DATA AT STEP NUMBER 12, TIME = 3.000E+00	
	NUMBER OF ITERATIONS = 523, TOTAL NUMBER OF ITERATIONS =	1975
	FINAL CONVERGENCE TOLERANCE = 4.848E-01	
•	SUM OF EXTERNAL FORCES IN X-DIRECTION = 0.000E+00	
	SUM OF EXTERNAL FORCES IN Y-DIRECTION = 0.000E+00	
	SUM OF REACTION FORCES IN X-DIRECTION = 0.000E+00	
	SUM OF REACTION FORCES IN Y-DIRECTION = 5.199E+01	

**** PLOT TAPE WRITTEN AT TIME = 3.000E+00 STEP NUMBER 12 ****

**** RESTART TAPE WRITTEN AT TIME = 3.000E+00 STEP NUMBER 12 ****

6 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

E N D O F S O L U T I O N P H A S E 1.030E+01 CPU SECONDS USED 87378 WORDS ALLOCATED

Restart Read sant_rsin.o

SSSSSS	AAAAA		N	NN	TTTTTT	00000		SSSSSS
SS	AA	AA	NN	NN	${f TT}$	00	00	SS
SS	AA	AA	NNN	NN	${f TT}$	00	00	SS
SSSSS	AAA	AAAA	NN I	NN I	TT	00	00	SSSSS
SS	AA	AA	NN	NNN	${f TT}$	00	00	SS
SS	AA	AA	NN	NN	${f TT}$	00	00	SS
SSSSSS	AA	AA	NN	N	${f TT}$	000	000	SSSSSS

VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE ENGINEERING SCIENCES CENTER SANDIA NATIONAL LABORATORIES ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030612 AT 11:15:06 RUN ON A i686 UNDER Lx2.4.20

- 1: TITLE
- 2: SANTOS QA PROBLEM HOLLOW SPHERE TEMPERATURE PROBLEM RESTART READ
- 3: AXISYMMETRIC
- 4: MAXIMUM ITERATIONS 20000
- 5: RESIDUAL TOLERANCE .5


```
6: MATERIAL, 1, ELASTIC PLASTIC, 1.0, 1, 1.
  7: YOUNGS MODULUS 1.E+7
  8: POISSONS RATIO 0.3
  9: YIELD STRESS 10000.
 10: HARDENING MODULUS 0.
 11: BETA 0.
 12: END
 13: THERMAL STRESS EXTERNAL 1000.
 14: PLOT ELEMENT STRESS TEMPERATURE
 15: FUNCTION 1 $ THERMAL STRAIN FOR ALPHA = 1.E-5
      0. 0.
 17:
     1000.
              1.E-2
 18: END
 19: STEP CONTROL
 20:
      4,3.
     4,4.
 21:
     4,5.
22:
23: END
24: PLOT TIME
25: 4,3.
26: 4,4.
 27: 4,5.
 28: END
 29: OUTPUT TIME
 30: 4,3.
 31: 4,4.
 32: 4,5.
 33: END
 34: READ RESTART, 12
 35: NO DISPLACEMENT, X, 1
 36: NO DISPLACEMENT, Y, 2
 37: EXIT
                                INPUT STREAM IMAGES
LINE -----
 39: TITLE
 40: SANTOS QA PROBLEM - HOLLOW SPHERE - TEMPERATURE PROBLEM - RESTART READ
 41: AXISYMMETRIC
 42: MAXIMUM ITERATIONS 20000
 43: RESIDUAL TOLERANCE .5
 44: MATERIAL, 1, ELASTIC PLASTIC, 1.0, 1, 1.
 45: YOUNGS MODULUS 1.E+7
 46: POISSONS RATIO 0.3
 47: YIELD STRESS 10000.
 48: HARDENING MODULUS 0.
 49: BETA 0.
 50: END
 51: THERMAL STRESS EXTERNAL 1000.
 52: PLOT ELEMENT STRESS TEMPERATURE
 53: FUNCTION 1 $ THERMAL STRAIN FOR ALPHA = 1.E-5
      0. 0.
 54:
              1.E-2
 55:
     1000.
 56: END
 57: STEP CONTROL
 58: 4,3.
 59: 4,4.
 60:
     4,5.
 61: END
 62: PLOT TIME
```


1

63: 4,3.
64: 4,4.
65: 4,5.
66: END
67: OUTPUT TIME
68: 4,3.
69: 4,4.
70: 4,5.
71: END
72: READ RESTART,12
73: NO DISPLACEMENT,X,1
74: NO DISPLACEMENT,Y,2
75: EXIT

PROBLEM TITLE

SANTOS QA PROBLEM - HOLLOW SPHERE - TEMPERATURE PROBLEM - RESTART READ

PROBLEM DEFINITION

ATTANDO OF STRUCTURE	
NUMBER OF ELEMENTS	600
NUMBER OF NODES	651
NUMBER OF MATERIALS	1
NUMBER OF FUNCTIONS	1
NUMBER OF CONTACT SURFACES	0
NUMBER OF RIGID SURFACES	0
NUMBER OF MATERIAL POINTS MONITORED	0
ANALYSIS TYPE	AXISYMMETRIC
GLOBAL CONVERGENCE MEASURE	
RESIDUAL TOLERANCE	5.000E-01
MAXIMUM NUMBER OF ITERATIONS	20000
ITERATIONS FOR INTERMEDIATE PRINT	1302
MAXIMUM RESIDUAL TOLERANCE	6.000E-01
PREDICTOR SCALE FACTOR FUNCTION	0
MINIMUM DAMPING FACTOR	2.000E-01
EFFECTIVE MODULUS STATUS	CONSTANT
THERMAL STRESS ANALYSIS PERFORMED	EXTERNAL
THERMAL FORCE MAGNITUDE	1.000E+03
RESTART DATA READ AT STEP NUMBER	12
SCALE FACTOR APPLIED TO TIME STEP	1.000E+00
STRAIN SOFTENING SCALE FACTOR	1.000E+00
HOURGLASS STIFFNESS FACTOR	1.000E-02
HOURGLASS VISCOSITY FACTOR	3.000E-02

LOAD STEP DEFINITIONS

TIME	NO. OF STEPS	TIME
0.000E+00	4	3.000E+00
3.000E+00	4	4.000E+00
4.000E+00	4	5.000E+00

PRINTED OUTPUT FREQUENCY

TIME	STEPS	BETWEEN	PRINTS	TIME
0.000E+00		4		3.000E+00
3.000E+00		4	-	4.000E+00
4.000E+00		4		5.000E+00

PLOTTED OUTPUT FREQUENCY

TIME	STEPS	BETWEEN	PLOTS	TIME
0.000E+00		4		3.000E+00
3.000E+00		4		4.000E+00
4.000E+00		4		5.000E+00

MATERIAL DEFINITIONS

MATERIAL TYPE		ELASTIC PLASTIC
MATERIAL ID		1
DENSITY		1.000E+00
THERMAL STRAIN ID		1
THERMAL STRAIN SCALE FACTOR		1.000E+00
MATERIAL PROPERTIES:		
YOUNGS MODULUS	=	1.000E+07
POISSONS RATIO	=	3.000E-01
YIELD STRESS	=	1.000E+04
HARDENING MODULUS	=	0.000E+00
BETA	=	0.000E+00

FUNCTION DEFINITIONS

FUNCTION ID	• • • • •	1	NUMBER OF	POINTS .	2
	N	S	F(S)		
	1	0.000E+00	0.000E+00		
	2	1.000E+03	1.000E-02		

NO DISPLACEMENT BOUNDARY CONDITIONS

NODE SET FLAG DIRECTION
1 X
2 Y

E N D O F D A T A I N P U T P H A S E 2.000E-02 CPU SECONDS USED 5614 WORDS ALLOCATED

END OF DATA INITIALIZATION PHASE
1.000E-02 CPU SECONDS USED
60524 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

NODAL	ELEMENT	GLOBAL
DISPLX	SIGXX	FX
DISPLY	SIGYY	FY
	SIGZZ	RX
	TAUXY	RY
	TEMP	ITER
		RMAG

**** THIS JOB WAS RESTARTED AT TIME = 3.000E+00 STEP NUMBER 12 ****

SANTOS, VERSIÓN 2.1.7-DP, RUN ON 20030612, AT 11:15:06

SANTOS QA PROBLEM - HOLLOW SPHERE - TEMPERATURE PROBLEM - RESTART READ

SUMMARY OF DATA AT STEP NUMBER 16, TIME = 4.000E+00

NUMBER OF ITERATIONS = 464, TOTAL NUMBER OF ITERATIONS = 3839

FINAL CONVERGENCE TOLERANCE = 4.617E-01

SUM OF EXTERNAL FORCES IN X-DIRECTION = 0.000E+00

SUM OF EXTERNAL FORCES IN Y-DIRECTION = 0.000E+00

SUM OF REACTION FORCES IN X-DIRECTION = 0.000E+00

SUM OF REACTION FORCES IN Y-DIRECTION = -2.340E+01

**** PLOT TAPE WRITTEN AT TIME = 4.000E+00 STEP NUMBER 16 ****

SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:15:06
SANTOS QA PROBLEM - HOLLOW SPHERE - TEMPERATURE PROBLEM - RESTART READ

SUMMARY OF DATA AT STEP NUMBER 20, TIME = 5.000E+00

NUMBER OF ITERATIONS = 32, TOTAL NUMBER OF ITERATIONS = 4227

FINAL CONVERGENCE TOLERANCE = 4.983E-01

SUM OF EXTERNAL FORCES IN X-DIRECTION = 0.000E+00

SUM OF EXTERNAL FORCES IN Y-DIRECTION = 0.000E+00

SUM OF REACTION FORCES IN X-DIRECTION = 0.000E+00

SUM OF REACTION FORCES IN Y-DIRECTION = -5.381E+01

**** PLOT TAPE WRITTEN AT TIME = 5.000E+00 STEP NUMBER 20 ****

2 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

E N D O F S O L U T I O N P H A S E
1.161E+01 CPU SECONDS USED
87378 WORDS ALLOCATED

APPENDIX M

Input/Output Data For Test Case 13

The following two sections present the input data and the formatted output for the sloping roller option verification test.

FASTQ and SANTOS Input Data For The Sloping Roller Option Problem

This section presents a listing of the FASTQ and SANTOS input data files that were used for the mesh generation and analysis of the sloping roller option problem. The binary file sant_qtemp.th is an input file for Test Case 11 that can be found in LIBSANTOS in CMS.

```
sant_qtempf.fsq
TITLE
HOLLOW SPHERE - SANTOS QA TEST PROBLEM - QUARTER SPHERE
                   0.
POINT 1 0.
      2
              1.
POINT
                            0.
           1. 0.809016994 0.58//03232
1.618033989 1.175570505
2. 0. 1 8 1
      3
POINT
POINT
       5
POINT
       1 CIRC 2 3 1
2 STR 3 4 0
3 CIRC 5 4 1
LINE
LINE
                                 30
                                      1.0
                                     1.0
LINE
                                 8
                  2 5 0
          STR
                                 30
                                      1.0
LINE
        4
NODEBC 1
NODEBC 2
ELEMBC 3
           1
SCHEME 0 MP
REGION 1 1 -1 -2 -3 -4
EXIT
sant_qtempf.i
TITLE
  SANTOS OA PROBLEM - HOLLOW SPHERE - 11/1/94 - OUADRANT TEMPERATURE PROBLEM
AXISYMMETRIC
MAXIMUM ITERATIONS 20000
RESIDUAL TOLERANCE .5
MATERIAL, 1, ELASTIC PLASTIC, 1.0, 1, 1.
YOUNGS MODULUS 1.E+7
POISSONS RATIO 0.3
YIELD STRESS 1.E+4
HARDENING MODULUS 0.
BETA 0.
END
THERMAL STRESS EXTERNAL 1000.
PLOT ELEMENT STRESS TEMPERATURE
FUNCTION 1 $ THERMAL STRAIN FOR ALPHA = 1.E-5
          0.
     0.
  1000.
           1.E-2
END
```



```
STEP CONTROL
  4,1.
  4,2,
  4,3.
  4,4.
  4,5.
END
PLOT TIME
  1,1.
  4,2.
  4,3.
  4,4.
  4,5.
END
OUTPUT TIME
  1,1.
  4,2.
  4,3.
  4,4.
  4,5.
END
SLOPING ROLLER, 1, -0.5877853, 0.809017
NO DISPLACEMENT, Y, 2
EXIT
```

SANTOS Output For The Sloping Roller Option Problem

The following section presents the SANTOS printed output for the sloping roller option analysis. Because all pertinent information and results from the analysis are written to the plot file for post-processing, the printed output file simply echoes input data and problem—descriptive information at the beginning, followed by information that tracks the convergence behavior of the solution, and a summary of CPU usage at the end.

sant_qtempf.o

SSSS	SS	AAA	AAA	N	NN	TTTTTT	000	000	SSSSS	S
SS		AA	AA	NN	NN	${f TT}$	00	00	SS	
SS		AA	AA	NNN	NN	${f TT}$	00	00	SS	
SSSS	S	AAA	AAAA	NN N	I NN	${f TT}$	00	00	SSSSS	;
	SS	AA	AA	NN	NNN	${f TT}$	00	00	S	S
	SS	AA	AA	NN	NN	${f TT}$	00	00	S	S
SSSSS	S	AA	AA	NN	N	$\mathbf{T}\mathbf{T}$	000	000	SSSSSS	;

VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE ENGINEERING SCIENCES CENTER SANDIA NATIONAL LABORATORIES ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030612 AT 11:15:26 RUN ON A i686 UNDER Lx2.4.20

```
2: SANTOS QA PROBLEM - HOLLOW SPHERE - 11/1/94 - QUADRANT TEMPERATURE PROBLEM
 3: AXISYMMETRIC
 4: MAXIMUM ITERATIONS 20000
 5: RESIDUAL TOLERANCE .5
 6: MATERIAL, 1, ELASTIC PLASTIC, 1.0, 1, 1.
 7: YOUNGS MODULUS 1.E+7
 8: POISSONS RATIO 0.3
 9: YIELD STRESS 1.E+4
10: HARDENING MODULUS 0.
11: BETA 0.
12: END
13: THERMAL STRESS EXTERNAL 1000.
14: PLOT ELEMENT STRESS TEMPERATURE
15: FUNCTION 1 $ THERMAL STRAIN FOR ALPHA = 1.E-5
16: 0. 0.
17:
    1000. 1.E-2
18: END
19: STEP CONTROL
20: 4,1.
21:
     4,2,
22:
     4,3.
23:
     4,4.
24:
     4,5.
25: END
26: PLOT TIME
27: 1,1.
28: 4,2.
29: 4,3.
30: 4,4.
31: 4,5.
32: END
33: OUTPUT TIME
34: 1,1.
35: 4,2.
36: 4,3.
37: 4,4.
38:
     4,5.
40: SLOPING ROLLER, 1, -0.5877853, 0.809017
41: NO DISPLACEMENT, Y, 2
42: EXIT
                                 INPUT STREAM IMAGES
45: SANTOS QA PROBLEM - HOLLOW SPHERE - 11/1/94 - QUADRANT TEMPERATURE PROBLEM
46: AXISYMMETRIC
47: MAXIMUM ITERATIONS 20000
48: RESIDUAL TOLERANCE .5
49: MATERIAL, 1, ELASTIC PLASTIC, 1.0, 1, 1.
50: YOUNGS MODULUS 1.E+7
```

```
51: POISSONS RATIO 0.3
52: YIELD STRESS 1.E+4
53: HARDENING MODULUS 0.
54: BETA 0.
55: END
56: THERMAL STRESS EXTERNAL 1000.
57: PLOT ELEMENT STRESS TEMPERATURE
58: FUNCTION 1 $ THERMAL STRAIN FOR ALPHA = 1.E-5
59:
     0. 0.
60:
    1000.
             1.E-2
61: END
62: STEP CONTROL
63:
     4,1.
    4,2,
64:
65:
    4,3.
66:
    4,4.
67:
     4,5.
68: END
69: PLOT TIME
70:
    1,1.
71:
    4,2.
72:
    4,3.
73:
    4,4.
74:
     4,5.
75: END
76: OUTPUT TIME
77: 1,1.
78:
     4,2.
79:
     4,3.
80:
     4,4.
81:
     4,5.
82: END
83: SLOPING ROLLER, 1, -0.5877853, 0.809017
84: NO DISPLACEMENT, Y, 2
85: EXIT
```

PROBLEM TITLE

1

SANTOS QA PROBLEM - HOLLOW SPHERE - 11/1/94 - QUADRANT TEMPERATURE PROBLEM

PROBLEM DEFINITION

NUMBER OF ELEMENTS	240
NUMBER OF NODES	279
NUMBER OF MATERIALS	_
NUMBER OF FUNCTIONS	1
NUMBER OF CONTACT SURFACES	0
NUMBER OF RIGID SURFACES	0
NUMBER OF MATERIAL POINTS MONITORED	0
ANALYSIS TYPE	AXISYMMETRIC
GLOBAL CONVERGENCE MEASURE	
RESIDUAL TOLERANCE	5.000E-01
MAXIMUM NUMBER OF ITERATIONS	20000
ITERATIONS FOR INTERMEDIATE PRINT	558

MAXIMUM RESIDUAL TOLERANCE	6.000E-01
PREDICTOR SCALE FACTOR FUNCTION	0
MINIMUM DAMPING FACTOR	2.000E-01
EFFECTIVE MODULUS STATUS	CONSTANT
THERMAL STRESS ANALYSIS PERFORMED	EXTERNAL
THERMAL FORCE MAGNITUDE	1.000E+03
SCALE FACTOR APPLIED TO TIME STEP	1.000E+00
STRAIN SOFTENING SCALE FACTOR	1.000E+00
HOURGLASS STIFFNESS FACTOR	1.000E-02
HOURGLASS VISCOSITY FACTOR	3 000E-02

LOAD STEP DEFINITIONS

TIME	NO. OF STEPS	TIME
0.000E+00	4	1.000E+00
1.000E+00	4	2.000E+00
2.000E+00	4	3.000E+00
3.000E+00	4	4.000E+00
4.000E+00	4	5.000E+00

PRINTED OUTPUT FREQUENCY

TIME	STEPS B	ETWEEN	PRINTS		TIME
0.000E+00		1		1.	000E+00
1.000E+00		4		2.	000E+00
2.000E+00		4		3.	000E+00
3.000E+00		4		4.	000E+00
4.000E+00		4		5.	000E+00

PLOTTED OUTPUT FREQUENCY

TIME	STEPS	BETWEEN	PLOTS	TIME
0.000E+00		1		1.000E+00
1.000E+00		4		2.000E+00
2.000E+00		4		3.000E+00
3.000E+00		4		4.000E+00
4.000E+00		4		5.000E+00

MATERIAL DEFINITIONS

MATERIAL	TYPE .	 	ELASTIC	PLASTIC
MATERIAL	ID	 		1

ERMS# 530091 June 2003 Page 292

 DENSITY
 1.000E+00

 THERMAL STRAIN ID
 1

 THERMAL STRAIN SCALE FACTOR
 1.000E+00

MATERIAL PROPERTIES:

YOUNGS MODULUS = 1.000E+07
POISSONS RATIO = 3.000E-01
YIELD STRESS = 1.000E+04
HARDENING MODULUS = 0.000E+00
BETA = 0.000E+00

FUNCTION DEFINITIONS

N S F(S) 1 0.000E+00 0.000E+00 2 1.000E+03 1.000E-02

NO DISPLACEMENT BOUNDARY CONDITIONS

NODE SET FLAG DIRECTION
2 Y

PRESCRIBED DISPLACEMENT BOUNDARY CONDITIONS

NODE SET DIRECTION FUNCTION SCALE A0 B0
FLAG ID . FACTOR
1 ROL 0 0.000E+00 -5.878E-01 8.090E-01

E N D O F D A T A I N P U T P H A S E 3.000E-02 CPU SECONDS USED 2570 WORDS ALLOCATED

ENDOF DATA INITIALIZATION PHASE
0.000E+00 CPU SECONDS USED
32688 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

NODAL	ELEMENT	GLOBAL
DISPLX	SIGXX	FX
DISPLY	SIGYY	FY
	SIGZZ	RX
	TAUXY	RY
	TEMP	ITER
		RMAG

**** PLOT TAPE WRITTEN FOR THE INITIAL STATE AT TIME = 0.000E+00 ****

SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:15:26
SANTOS QA PROBLEM - HOLLOW SPHERE - 11/1/94 - QUADRANT TEMPERATURE PROBLEM

SUMMARY OF DATA AT STEP NUMBER 1, TIME = 2.500E-01

NUMBER OF ITERATIONS = 519, TOTAL NUMBER OF ITERATIONS = 519

FINAL CONVERGENCE TOLERANCE = 4.338E-01

SUM OF EXTERNAL FORCES IN X-DIRECTION = 0.000E+00

SUM OF EXTERNAL FORCES IN Y-DIRECTION = 0.000E+00

SUM OF REACTION FORCES IN X-DIRECTION =-1.969E+01 SUM OF REACTION FORCES IN Y-DIRECTION =-4.142E+01

**** PLOT TAPE WRITTEN AT TIME = 2.500E-01 STEP NUMBER 1 ****

SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:15:26
SANTOS QA PROBLEM - HOLLOW SPHERE - 11/1/94 - QUADRANT TEMPERATURE PROBLEM

NUMBER OF ITERATIONS = 50, TOTAL NUMBER OF ITERATIONS = 569

FINAL CONVERGENCE TOLERANCE = 4.991E-01

SUM OF EXTERNAL FORCES IN X-DIRECTION = 0.000E+00

SUM OF EXTERNAL FORCES IN Y-DIRECTION = 0.000E+00

SUM OF REACTION FORCES IN X-DIRECTION =-2.185E+00

SUM OF REACTION FORCES IN Y-DIRECTION =-4.615E+00

**** PLOT TAPE WRITTEN AT TIME = 5.000E-01 STEP NUMBER 2 ****

SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:15:26
SANTOS QA PROBLEM - HOLLOW SPHERE - 11/1/94 - QUADRANT TEMPERATURE PROBLEM

SUMMARY OF DATA AT STEP NUMBER 3, TIME = 7.500E-01

NUMBER OF ITERATIONS = 39, TOTAL NUMBER OF ITERATIONS = 608

FINAL CONVERGENCE TOLERANCE = 4.382E-01

Page 294

SUM OF EXTERNAL FORCES IN X-DIRECTION = 0.000E+00 SUM OF EXTERNAL FORCES IN Y-DIRECTION = 0.000E+00 SUM OF REACTION FORCES IN X-DIRECTION = 7.926E+00 SUM OF REACTION FORCES IN Y-DIRECTION = 1.664E+01 **** PLOT TAPE WRITTEN AT TIME = 7.500E-01 STEP NUMBER SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:15:26 SANTOS QA PROBLEM - HOLLOW SPHERE - 11/1/94 - QUADRANT TEMPERATURE PROBLEM ******************* SUMMARY OF DATA AT STEP NUMBER 4, TIME = 1.000E+00 NUMBER OF ITERATIONS = 52, TOTAL NUMBER OF ITERATIONS = 660 FINAL CONVERGENCE TOLERANCE = 4.860E-01 SUM OF EXTERNAL FORCES IN X-DIRECTION = 0.000E+00 SUM OF EXTERNAL FORCES IN Y-DIRECTION = 0.000E+00 SUM OF REACTION FORCES IN X-DIRECTION = 4.793E+00 SUM OF REACTION FORCES IN Y-DIRECTION = 1.004E+01 **** PLOT TAPE WRITTEN AT TIME = 1.000E+00 STEP NUMBER SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:15:26 SANTOS QA PROBLEM - HOLLOW SPHERE - 11/1/94 - QUADRANT TEMPERATURE PROBLEM ******************* SUMMARY OF DATA AT STEP NUMBER 8, TIME = 2.000E+00 NUMBER OF ITERATIONS = 187, TOTAL NUMBER OF ITERATIONS = FINAL CONVERGENCE TOLERANCE = 4.835E-01 SUM OF EXTERNAL FORCES IN X-DIRECTION = 0.000E+00 SUM OF EXTERNAL FORCES IN Y-DIRECTION = 0.000E+00 SUM OF REACTION FORCES IN X-DIRECTION =-2.810E+01 SUM OF REACTION FORCES IN Y-DIRECTION =-5.918E+01 **** PLOT TAPE WRITTEN AT TIME = 2.000E+00 STEP NUMBER 8 **** SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:15:26 SANTOS QA PROBLEM - HOLLOW SPHERE - 11/1/94 - QUADRANT TEMPERATURE PROBLEM ***************** SUMMARY OF DATA AT STEP NUMBER 12, TIME = 3.000E+00 NUMBER OF ITERATIONS = . 37, TOTAL NUMBER OF ITERATIONS = 1430 FINAL CONVERGENCE TOLERANCE = 3.727E-01 SUM OF EXTERNAL FORCES IN X-DIRECTION = 0.000E+00 SUM OF EXTERNAL FORCES IN Y-DIRECTION = 0.000E+00 SUM OF REACTION FORCES IN X-DIRECTION =-1.906E+01 SUM OF REACTION FORCES IN Y-DIRECTION =-4.018E+01

Information Only

	**** PLOT TAPE WRITTEN AT TIME = 3.000E+00 STEP NUMBER 12 ****
1	SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:15:26 SANTOS QA PROBLEM - HOLLOW SPHERE - 11/1/94 - QUADRANT TEMPERATURE PROBLEM

	SUMMARY OF DATA AT STEP NUMBER 16, TIME = 4.000E+00 NUMBER OF ITERATIONS = 465, TOTAL NUMBER OF ITERATIONS = 2459 FINAL CONVERGENCE TOLERANCE = 4.648E-01 SUM OF EXTERNAL FORCES IN X-DIRECTION = 0.000E+00
	SUM OF EXTERNAL FORCES IN Y-DIRECTION = 0.000E+00 SUM OF REACTION FORCES IN X-DIRECTION =-8.319E+00 SUM OF REACTION FORCES IN Y-DIRECTION =-1.761E+01

	**** PLOT TAPE WRITTEN AT TIME = 4.000E+00 STEP NUMBER 16 ****
1	SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:15:26 SANTOS QA PROBLEM - HOLLOW SPHERE - 11/1/94 - QUADRANT TEMPERATURE PROBLEM

	SUMMARY OF DATA AT STEP NUMBER 20, TIME = 5.000E+00
	NUMBER OF ITERATIONS = 11, TOTAL NUMBER OF ITERATIONS = 2549 FINAL CONVERGENCE TOLERANCE = 4.806E-01
	SUM OF EXTERNAL FORCES IN X-DIRECTION = 0.000E+00
	SUM OF EXTERNAL FORCES IN Y-DIRECTION = 0.000E+00
	SUM OF REACTION FORCES IN X-DIRECTION = 4.511E+01
	SUM OF REACTION FORCES IN Y-DIRECTION = 9.473E+01
	**** DIOM MADE GERTMERN AM MINE — 5 000E+00 CMED NIIMDED 20 ****

8 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

E N D O F S O L U T I O N P H A S E 5.160E+00 CPU SECONDS USED 44062 WORDS ALLOCATED

APPENDIX N

Input/Output Data For Test Case 14

The following two sections present the input data and the formatted output for the creep relaxation verification problem.

FASTQ and SANTOS Input Data For The Creep Relaxation Problem

This section presents a listing of the FASTQ and SANTOS input data files that were used for the mesh generation and analysis of the single-element creep relaxation problem.

```
sant_crelax.fsq
TITLE
CREEP RELAXATION PROBLEM - SANTOS - AXISYMMETRIC
POINT
       1 1.
                    0.
POINT
       2
           1.5
                    0.
       3 1.5
POINT
                    1.
       4 1.
POINT
                    1.
       1 STR 1
                        0
                              1 1.
LINE
       2 STR 2 3
                              1 1.
                        0
LINE
      3 STR 4 3
                        0 1 1.
LINE
       4 STR 1 4
LINE
NODEBC 2
NODEBC 3
           3
SCHEME 0 MP
REGION 1 1 -1 -2 -3 -4
EXIT
sant_crelax.i
TITLE
 SANTOS QA PROBLEM - CREEP RELAXATION PROBLEM - AXISYMMETRIC - 11/9/94
AXISYMMETRIC
ELASTIC SOLUTION
MAXIMUM ITERATIONS 40000
MATERIAL, 1, POWER LAW CREEP, 1.
TWO MU 24.75E+9
BULK MODULUS 8.25E+9
CREEP CONSTANT 5.79E-36
STRESS EXPONENT 4.9
THERMAL CONSTANT 20.13
FUNCTION 1 $ PRESCRIBED DISPLACEMENT FUNCTION
  0. -0.001
  2.592E+6 -0.001
END
STEP CONTROL
  1 1.
 90 2.592E+6
OUTPUT TIME
```

```
0 1.
0 2.592E+6
END
PLOT TIME
1 1.
1 2.592E+6
END
PRESCRIBED DISPLACEMENT Y 3 1 1.0
NO DISPLACEMENT Y 2
PLOT ELEMENT STRESS VONMISES
EXIT
```

SANTOS Output For The Creep Relaxation Problem

The following section presents a portion of the SANTOS printed output for the single-element creep relaxation analysis. Because all pertinent information and results from the analysis are written to the plot file for post-processing, the printed output file simply echoes input data and problem—descriptive information at the beginning, followed by information that tracks the convergence behavior of the solution, and a summary of CPU usage at the end. For this reason, only a partial listing, consisting of approximately the first 500 lines of output and the last 100 lines of output, is provided.

sant_crelax.o

SSSSSS	AA	AAA	N	NN	TTTTTT	000	000	SSSSSS	
SS	AA	AA	NN	NN	${f TT}$	00	00	SS	
SS	AA	AA	NNN	NN	${f TT}$	00	00	SS	
SSSSS	AAA	AAAA	NN I	1 NN	${f TT}$	00	00	SSSSS	
SS	AA	AA	NN	NNN	${f TT}$	00	00	SS	
SS	AA	AA	NN	NN	${f TT}$	00	00	SS	
SSSSSS	AA	AA	NN	N	TT	000	000	SSSSSS	

VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE ENGINEERING SCIENCES CENTER SANDIA NATIONAL LABORATORIES ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030612 AT 11:17:03 RUN ON A i686 UNDER Lx2.4.20

1: TITLE

2: SANTOS OA PROBLEM - CREEP RELAXATION PROBLEM - AXISYMMETRIC - 11/9/94

3: AXISYMMETRIC 4: ELASTIC SOLUTION


```
5: MAXIMUM ITERATIONS 40000
 6: MATERIAL, 1, POWER LAW CREEP, 1.
7: TWO MU 24.75E+9
8: BULK MODULUS 8.25E+9
9: CREEP CONSTANT 5.79E-36
10: STRESS EXPONENT 4.9
11: THERMAL CONSTANT 20.13
12: END
13: FUNCTION 1 $ PRESCRIBED DISPLACEMENT FUNCTION
14: 0. -0.001
15: 2.592E+6 -0.001
15:
      2.592E+6 -0.001
16: END
17: STEP CONTROL
18: 1 1.
19: 90 2.592E+6
20: END
21: OUTPUT TIME
22: 0 1.
23: 0 2.592E+6
24: END
25: PLOT TIME
26: 1 1.
27: 1 2.592E+6
28: END
29: PRESCRIBED DISPLACEMENT Y 3 1 1.0
30: NO DISPLACEMENT Y 2
31: PLOT ELEMENT STRESS VONMISES
32: EXIT
                                INPUT STREAM IMAGES
34: TITLE
35: SANTOS QA PROBLEM - CREEP RELAXATION PROBLEM - AXISYMMETRIC - 11/9/94
36: AXISYMMETRIC
37: ELASTIC SOLUTION
38: MAXIMUM ITERATIONS 40000
39: MATERIAL, 1, POWER LAW CREEP, 1.
40: TWO MU 24.75E+9
41: BULK MODULUS 8.25E+9
42: CREEP CONSTANT 5.79E-36
43: STRESS EXPONENT 4.9
44: THERMAL CONSTANT 20.13
45: END
46: FUNCTION 1 $ PRESCRIBED DISPLACEMENT FUNCTION
47: 0. -0.001
48: 2.592E+6 -0.001
49: END
50: STEP CONTROL
     1 1.
51:
    90 2.592E+6
52:
53: END
54: OUTPUT TIME
55: 0 1.
56: 0 2.592E+6
57: END
58: PLOT TIME
59: 1 1.
60: 1 2.592E+6
61: END
```

62: PRESCRIBED DISPLACEMENT Y 3 1 1.0

63: NO DISPLACEMENT Y 2

64: PLOT ELEMENT STRESS VONMISES

65: EXIT

00. 2...

. 1

PROBLEM TITLE

SANTOS QA PROBLEM - CREEP RELAXATION PROBLEM - AXISYMMETRIC - 11/9/94

PROBLEM DEFINITION

NUMBER OF ELEMENTS	1
NUMBER OF NODES	4
NUMBER OF MATERIALS	1
NUMBER OF FUNCTIONS	. 1
NUMBER OF CONTACT SURFACES	0
NUMBER OF RIGID SURFACES	0
NUMBER OF MATERIAL POINTS MONITORED	0
ANALYSIS TYPE	AXISYMMETRIC
GLOBAL CONVERGENCE MEASURE	
RESIDUAL TOLERANCE	5.000E-01
MAXIMUM NUMBER OF ITERATIONS	40000
ITERATIONS FOR INTERMEDIATE PRINT	8
MAXIMUM RESIDUAL TOLERANCE	6.000E-01
PREDICTOR SCALE FACTOR FUNCTION	0
MINIMUM DAMPING FACTOR	2.000E-01
EFFECTIVE MODULUS STATUS	CONSTANT
ELASTIC SOLUTION REQUESTED	
SCALE FACTOR APPLIED TO TIME STEP	1.000E+00
STRAIN SOFTENING SCALE FACTOR	1.000E+00
HOURGLASS STIFFNESS FACTOR	1.000E-02
HOURGLASS VISCOSITY FACTOR	3.000E-02

LOAD STEP DEFINITIONS

TIME	NO. OF STEPS	TIME
0.000E+00	1	1.000E+00
1.000E+00	90	2.592E+06

$\verb"PRINTED" OUTPUT" FREQUENCY" \\$

TIME	STEPS	BETWEEN	PRINTS	TIME
0.000E+00		0		1.000E+00
1.000E+00		0		2.592E+06

PLOTTED OUTPUT FREQUENCY

TIME	STEPS	BETWEEN	PLOTS	TIME
0.000E+00		1		1.000E+00
1.000E+00		1		2.592E+06

MATERIAL DEFINITIONS

MATERIAL TYPE		POWER I	AW CREEP
MATERIAL ID			1
DENSITY		1.000	E+00
MATERIAL PROPERTIES:			
TWO MU	=	2.475E+10	
BULK MODULUS	=	8.250E+09	
CREEP CONSTANT	=	5.790E-36	
STRESS EXPONENT	=	4.900E+00	
THERMAL CONSTANT	=	2.013E+01	

FUNCTION DEFINITIONS

FUNCTION	ID	• • • • • •	• • •	1	I	NUMBER	OF	POINTS	• • • •	2
		N		S		F(S)				
		1	0.0	00E+00	-1	.000E-	03			
		2	2 5	92E+UE	_1	000E-	nα			

NO DISPLACEMENT BOUNDARY CONDITIONS

NODE SET FLAG DIRECTION 2 Y

PRESCRIBED DISPLACEMENT BOUNDARY CONDITIONS

В0	A0	SCALE	FUNCTION	DIRECTION	NODE SET
		FACTOR	ID		FLAG
_	-	1.000E+00	1	Y	3

E N D O F D A T A I N P U T P H A S E 2.000E-02 CPU SECONDS USED 152 WORDS ALLOCATED

E N D O F D A T A I N I T I A L I Z A T I O N P H A S E 0.000E+00 CPU SECONDS USED 13082 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

NODAL	ELEMENT	GLOBAL
DISPLX	SIGXX	FX
DISPLY	SIGYY	FY
	SIGZZ	RX
	TAUXY	RY
	VONMISES	ITER
•		RMAG

SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:17:03
SANTOS QA PROBLEM - CREEP RELAXATION PROBLEM - AXISYMMETRIC - 11/9/94

SUMMARY OF DATA AT STEP NUMBER 0, TIME = 0.000E+00

NUMBER OF ITERATIONS = 3, TOTAL NUMBER OF ITERATIONS =

FINAL CONVERGENCE TOLERANCE = 3.975E-06

SUM OF EXTERNAL FORCES IN X-DIRECTION = 0.000E+00

SUM OF EXTERNAL FORCES IN Y-DIRECTION = 0.000E+00

SUM OF REACTION FORCES IN X-DIRECTION = 0.000E+00

SUM OF REACTION FORCES IN Y-DIRECTION = -1.548E+07

**** PLOT TAPE WRITTEN AT TIME = 0.000E+00 STEP NUMBER

**** PLOT TAPE WRITTEN AT TIME = 1.000E+00 STEP NUMBER 1 ****

 STEP
 TIME
 TIME
 DAMPING
 APPLIED
 RESIDUAL
 PERCENT
 TOTAL

 STEP
 FACTOR
 LOAD NORM
 LOAD NORM
 IMBALANCE
 STEPS

 8
 2.880E+04
 2.881E+04
 8.012E-01
 7.679E+06
 2.784E+06
 36.25
 14

 16
 2.880E+04
 2.881E+04
 8.250E-01
 7.795E+06
 7.954E+05
 10.20
 22

**** PLOT TAPE WRITTEN AT TIME = 2.880E+04 STEP NUMBER 2 ****

		8		+04	TIME STEP 2.881E+0 2.881E+0	4	FACTC 8.552E	R -01	LOA	D NO 820E	RM +06		NORM BE+06	IME	ERCENT BALANCI 63.39 24.94	E	TOTAL STEPS 38 46
	2	4	5.760E	+04	2.881E+0 2.881E+0	4	7.723E	-01	6.	821E	+06	4.579	E+05		6.71		54 62
	*	***	PLOT	TAPE	WRITTEN	АТ	TIME =	5.	760E	+04	STE	EP NUME	BER	3	***		
;	STEP		TIM	Έ			DAMPI										TOTAL
		٥	9 640	0.4	2.881E+C		FACTO								3ALANC) 13.07	_	STEPS 74
					2.881E+0										5.14		82
					2.881E+0												90
	*	***	PLOT	TAPE	WRITTEN	ΑТ	TIME =	8.6	540E	+04	STE	EP NUME	BER	4	***		
1	;		•		ON 2.1.7- OBLEM - C			. –		- ,				RIC	- 11/	9/94	
					******** AT STEF									***	****	* *	
	-	-			AT STEP ATIONS =									NS =	:	39	3
	F	INA	T CONA	ERGE	ICE TOLER	ANC	E = 9.	9691	E-02								
					FORCES												
					FORCES						-						
					FORCES												
				_	*****								****	***	****	* *	

92 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

**** PLOT TAPE WRITTEN AT TIME = 2.592E+06 STEP NUMBER

E N D O F S O L U T I O N P H A S E 8.000E-02 CPU SECONDS USED 13196 WORDS ALLOCATED

91 ****

APPENDIX O

SHEAR ONE 3.75E+04

Input/Output Data For Test Case 15

The following two sections present the input data and the formatted output for the linear viscoelastic constitutive model implementation verification test.

FASTQ and SANTOS Input Data For The Linear Viscoelastic Constitutive Model Implementation Problem

This section presents a listing of the FASTQ and SANTOS input data files that were used for the mesh geneartion and analysis of the linear viscoelastic constitutive model implementation problem.

```
sant_rocket.fsq
 SANTOS VERIFICATION - ROCKET MOTOR PROBLEM - LINEAR VISCOSITY
POINT 1 0.500 0.
POINT 2 0.500
                     0.25
POINT 3 1.000
                      0.25
                     0.25
POINT
       4
            1.03125
       5 1.03125
                     0.
POINT
POINT
       6 1.000
                      0.
LINE 1 STR 1
                   2
                      0
                          1
                              1.0
      2 STR
              2
                      0 20
0 3
                   3
LINE
                              1.1
         STR
LINE
      3
                               1.0
LINE
          STR
                   5
                              1.0
      4
                         3
LINE
      5
          STR
               5
                   6
                      0
                               1.0
                       0 20
LINE
      6
          STR
               1
                   6
                              1.1
              3
                              1.0
LINE
      7
          STR
                   6
ELEMBC 4
          1
NODEBC 1
           2
SCHEME OMP
REGION 1
                  -<u>2</u>
               -1
                      -7
REGION 2
END
sant_rocket.i
TITLE
 SANTOS VERIFICATION - ROCKET MOTOR PROBLEM - LINEAR VISCOSITY
AXISYMMETRIC
ELASTIC SOLUTION
RESIDUAL TOLERANCE 0.5
MAXIMUM ITERATIONS 10000
MAXIMUM TOLERANCE 0.5
INTERMEDIATE PRINT 10
MATERIAL, 1, LINEAR VISCOELASTIC, 15.6
                                   $ ROCKET PROPELLANT
BULK 1.E+05
BULK INF 1.E+05
BULK RELAX 1.
SHEAR INF 0.
```



```
SHEAR TWO 0.
SHEAR THREE 0.
RELAX ONE 1.
RELAX TWO 1.
RELAX THREE 1.
C1 7.6
C2 277.
TEMP0 373.
END
MATERIAL, 2, ELASTIC PLASTIC, 98. $ STEEL OUTER CASING
YOUNGS MODULUS 3.E+07
POISSONS RATIO 0.3015
YIELD STRESS 1.E+06
HARDENING MODULUS 1.E+06
BETA 1
END
FUNCTION 1
            $ PRESSURE HISTORY
 0.,1000.
 10.,1000.
END
STEP CONTROL
  10,1.
   9,10.
END
OUTPUT TIME
  1,1.
  1,10.
END
PLOT TIME
  1,1.
  1,10.
END
PLOT, NODAL, DISPLACEMENT, RESIDUAL
PLOT, ELEMENT, STRESS, STRAIN
PLOT, STATE, BLKDECAY, DECAYX1, DECAYY1, DECAYZ1, DECAYX2, DECAYY2, DECAYZ2
PRESSURE, 4, 1, 1.
NO DISPLACEMENT, Y, 1
EXIT
```

SANTOS Output For The Linear Viscoelastic Constitutive Model Implementation Problem

The following section presents a portion of the SANTOS printed output for the linear viscoelastic constitutive model implementation analysis. Because all pertinent information and results from the analysis are written to the plot file for post-processing, the printed output file simply echoes input data and problem—descriptive information at the beginning, followed by information that tracks the convergence behavior of the solution, and a summary of CPU usage at the end. For this reason, only a partial listing, consisting of approximately the first 500 lines of output and the last 100 lines of output, is provided.

```
sant_rocket.o
```

SSSSSS	AAAAA	N	NN	TTTTTT	000	000	SSSSSS
SS	AA A	A NN	NN	${f TT}$	00	00	SS
SS	AA A	NNN A	NN	${f TT}$	00	00	SS
SSSSS	AAAAAA	NN I	NN I	$\mathbf{T}\mathbf{T}$	00	00	SSSSS
SS	AA A	NN A	NNN	${f TT}$	00	00	SS
SS	AA A	A NN	NN	${f TT}$	00	00	SS

35: STEP CONTROL

SSSSSS AA AA NN N TT 00000 SSSSSS

VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE
ENGINEERING SCIENCES CENTER
SANDIA NATIONAL LABORATORIES
ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030612 AT 11:17:47 RUN ON A i686 UNDER Lx2.4.20

1: TITLE 2: SANTOS VERIFICATION - ROCKET MOTOR PROBLEM - LINEAR VISCOSITY 3: AXISYMMETRIC 4: ELASTIC SOLUTION 5: RESIDUAL TOLERANCE 0.5 6: MAXIMUM ITERATIONS 5000 7: MAXIMUM TOLERANCE 0.5 8: INTERMEDIATE PRINT 10 9: MATERIAL, 1, LINEAR VISCOELASTIC, 15.6 \$ ROCKET PROPELLANT 10: BULK 1.E+05 11: BULK INF 1.E+05 12: BULK RELAX 1. 13: SHEAR INF 0. 14: SHEAR ONE 3.75E+04 15: SHEAR TWO 0. 16: SHEAR THREE 0. 17: RELAX ONE 1. 18: RELAX TWO 1. 19: RELAX THREE 1. 20: C1 7.6 21: C2 277. 22: TEMP0 373. 23: END 24: MATERIAL, 2, ELASTIC PLASTIC, 98. \$ STEEL OUTER CASING 25: YOUNGS MODULUS 3.E+07 26: POISSONS RATIO 0.3015 27: YIELD STRESS 1.E+06 28: HARDENING MODULUS 1.E+06 29: BETA 1 30: END 31: FUNCTION 1 \$ PRESSURE HISTORY 32: 0.,1000. 33: 10.,1000. 34: END

```
36: 10,1.
 37: 9,10.
 38: END
 39: OUTPUT TIME
 40: 1,1.
 41: 1,10.
 42: END
 43: PLOT TIME
 44: 1,1.
 45:
     1,10.
 46: END
 47: PLOT, NODAL, DISPLACEMENT, RESIDUAL
 48: PLOT, ELEMENT, STRESS, STRAIN
 49: PLOT, STATE, BLKDECAY, DECAYX1, DECAYY1, DECAYX1, DECAYX2, DECAYX2, DECAYX2
 50: PRESSURE, 4, 1, 1.
 51: NO DISPLACEMENT, Y, 1
 52: EXIT
                                INPUT STREAM IMAGES
LINE -----
 55: SANTOS VERIFICATION - ROCKET MOTOR PROBLEM - LINEAR VISCOSITY
 56: AXISYMMETRIC
 57: ELASTIC SOLUTION
 58: RESIDUAL TOLERANCE 0.5
 59: MAXIMUM ITERATIONS 5000
 60: MAXIMUM TOLERANCE 0.5
 61: INTERMEDIATE PRINT 10
 62: MATERIAL, 1, LINEAR VISCOELASTIC, 15.6 $ ROCKET PROPELLANT
 63: BULK 1.E+05
 64: BULK INF 1.E+05
 65: BULK RELAX 1.
 66: SHEAR INF 0.
 67: SHEAR ONE 3.75E+04
 68: SHEAR TWO 0.
 69: SHEAR THREE 0
 70: RELAX ONE 1.
 71: RELAX TWO 1.
 72: RELAX THREE 1.
 73: C1 7.6
 74: C2 277.
 75: TEMPO 373.
 77: MATERIAL, 2, ELASTIC PLASTIC, 98. $ STEEL OUTER CASING
 78: YOUNGS MODULUS 3.E+07
 79: POISSONS RATIO 0.3015
 80: YIELD STRESS 1.E+06
 81: HARDENING MODULUS 1.E+06
 82: BETA 1
 83: END
 84: FUNCTION 1
                 $ PRESSURE HISTORY
 85: 0.,1000.
 86: 10.,1000.
 87: END
 88: STEP CONTROL
 89: 10,1.
 90:
      9,10.
 91: END
 92: OUTPUT TIME
```

1

93: 1,1.
94: 1,10.
95: END
96: PLOT TIME
97: 1,1.
98: 1,10.
99: END
100: PLOT,NODAL,DISPLACEMENT,RESIDUAL
101: PLOT,ELEMENT,STRESS,STRAIN
102: PLOT,STATE,BLKDECAY,DECAYX1,DECAYX1,DECAYX1,DECAYX2,DECAYY2,DECAYZ2
103: PRESSURE,4,1,1.
104: NO DISPLACEMENT,Y,1
105: EXIT

PROBLEM TITLE

SANTOS VERIFICATION - ROCKET MOTOR PROBLEM - LINEAR VISCOSİTY

PROBLEM DEFINITION

NUMBER OF B	ELEMENTS	23
NUMBER OF N	NODES	48
NUMBER OF N	MATERIALS	2
NUMBER OF B	FUNCTIONS	1
NUMBER OF C	CONTACT SURFACES	. 0
NUMBER OF F	RIGID SURFACES	0
NUMBER OF N	MATERIAL POINTS MONITORED	0
ANALYSIS TY	YPE	AXISYMMETRIC
GLOBAL CON	VERGENCE MEASURE	
RESIDUAL TO	DLERANCE	5.000E-01
MUN MUMIXAM	MBER OF ITERATIONS	5000
ITERATIONS	FOR INTERMEDIATE PRINT	10
MAXIMUM RES	SIDUAL TOLERANCE	5.000E-01
PREDICTOR S	SCALE FACTOR FUNCTION	0
MINIMUM DAN	MPING FACTOR	2.000E-01
EFFECTIVE N	MODULUS STATUS	CONSTANT
ELASTIC SOI	LUTION REQUESTED	
SCALE FACTO	OR APPLIED TO TIME STEP	1.000E+00
STRAIN SOFT	TENING SCALE FACTOR	1.000E+00
HOURGLASS S	STIFFNESS FACTOR	1.000E-02
HOURGLASS V	JISCOSITY FACTOR	3.000E-02

LOAD STEP DEFINITIONS

TIME	NO. OF STEPS	TIME
0.000E+00	10	1.000E+00
1.000E+00	9	1.000E+01

PRINTED OUTPUT FREQUENCY

TIME	STEPS	BETWEEN	PRINTS	TIME
0.000E+00		1		1.000E+00
1.000E+00		. 1		1.000E+01

PLOTTED OUTPUT FREQUENCY

TIME	STEPS	BETWEEN	PLOTS	TIME
0.000E+00		1		1.000E+00
1.000E+00		1		1.000E+01

MATERIAL DEFINITIONS

MATERIAL TYPE		1
MATERIAL PROPERTIES:		
BULK	=	1.000E+05
BULK INF	=	1.000E+05
BULK RELAX	=	1.000E+00
SHEAR INF	=	0.000E+00
SHEAR ONE	=	3.750E+04
SHEAR TWO	=	0.000E+00
SHEAR THREE	=	0.000E+00
RELAX ONE	=	1.000E+00
RELAX TWO	=	1.000E+00
RELAX THREE	=	1.000E+00
C1	=	7.600E+00
C2	=	2.770E+02
TEMPO	=	3.730E+02
MATERIAL TYPE		
MATERIAL ID		
DENSITY	• • • • • • •	9.800E+01
MATERIAL PROPERTIES:		2 0005.07
YOUNGS MODULUS		
POISSONS RATIO	=	3.0150 01
YIELD STRESS		1.000E+06
ILLIDENTALIO LIODOSCO	=	1.000E+06
BETA .	=	1.000E+00

FUNCTION DEFINITIONS

FUNCTION ID 1 NUMBER OF POINTS 2

N S F(S) 1 0.000E+00 1.000E+03 2 1.000E+01 1.000E+03

NO DISPLACEMENT BOUNDARY CONDITIONS

NODE SET FLAG DIRECTION 1 Y

PRESSURE BOUNDARY CONDTIONS

SURFACE FUNCTION SCALE FLAG NUMBER FACTOR 1 1.000E+00

E N D O F D A T A I N P U T P H A S E 3.000E-02 CPU SECONDS USED 662 WORDS ALLOCATED

END OF DATA INITIALIZATION PHASE
0.000E+00 CPU SECONDS USED
16124 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

NODAL	ELEMENT	GLOBAL
DISPLX	SIGXX	FX
DISPLY	SIGYY	FY
RESIDX	SIGZZ	RX
RESIDY	TAUXY	RY
RESID	EPSXX	ITER
	EPSYY	RMAG
	EPSZZ	
	EPSXY	
	BLKDECAY	

DECAYX1 DECAYY1 DECAYX2 DECAYX2 DECAYY2 DECAYZ2

Time								
10	STEP	TIME			APPLIED			
20								
30								
40 0.000E+00 9.955E-02 8.250E-01 8.892E+01 5.962E+01 67.05 40 60.000E+00 9.951E-02 8.520E-01 8.893E+01 5.414E+01 60.88 50 60 0.000E+00 9.952E-02 9.624E+01 8.892E+01 5.432E+01 61.69 60 70 0.000E+00 9.950E-02 9.976E-01 8.892E+01 5.432E+01 61.08 70 80 0.000E+00 9.950E-02 9.976E-01 8.892E+01 5.432E+01 60.20 90 100 0.000E+00 9.952E-02 8.246E-01 8.891E+01 5.352E+01 60.20 90 100 0.000E+00 9.952E-02 8.000E-01 8.891E+01 5.098E+01 57.33 100 110 0.000E+00 9.952E-02 8.000E-01 8.891E+01 5.098E+01 57.33 100 110 0.000E+00 9.952E-02 9.976E-01 8.891E+01 5.098E+01 56.92 110 120 0.000E+00 9.952E-02 9.992E-01 8.891E+01 5.040E+01 56.69 120 130 0.000E+00 9.952E-02 9.992E-01 8.891E+01 5.040E+01 56.69 120 130 0.000E+00 9.952E-02 1.000E+00 8.892E+01 4.927E+01 55.41 140 150 0.000E+00 9.951E-02 1.000E+00 8.892E+01 4.927E+01 55.41 140 150 0.000E+00 9.951E-02 1.000E+00 8.892E+01 4.927E+01 55.85 1150 160 0.000E+00 9.951E-02 1.000E+00 8.892E+01 4.927E+01 53.85 150 150 0.000E+00 9.951E-02 1.000E+00 8.893E+01 4.927E+01 49.36 170 180 0.000E+00 9.951E-02 1.000E+00 8.893E+01 4.390E+01 49.36 170 180 0.000E+00 9.951E-02 1.000E+00 8.893E+01 4.390E+01 49.36 170 180 0.000E+00 9.951E-02 1.000E+00 8.895E+01 3.509E+01 49.36 170 120 0.000E+00 9.951E-02 1.000E+00 8.895E+01 3.509E+01 39.45 200 0.000E+00 9.950E-02 1.000E+00 8.895E+01 3.509E+01 39.45 200 0.000E+00 9.950E-02 1.000E+00 8.895E+01 3.509E+01 31.25 220 0.000E+00 9.950E-02 1.000E+00 8.895E+01 3.509E+01 31.25 220 0.000E+00 9.950E-02 1.000E+00 8.895E+01 1.974E+01 22.18 240 0.000E+00 9.950E-02 1.000E+00 8.995E-01 1.974E+01 22.18 240 0.000E+00 9.950E-02 1.000E+00 8.995E-01 1.542E+01 17.33 250 0.000E+00 9.950E-02 1.000E+00 8.90E+01 1.542E+01 17.33 250 0.000E+00 9.949E-02 1.000E+00 8.90E+01 1.542E+01 17.33 250 0.000E+00 9.949E-02 1.000E+00 8.90E+01 1.542E+01 17.33 250 0.000E+00 9.949E-02 1.000E+00 8.90E+01 1.542E+01 17.33 250 0.000E+00 9.948E-02 9.99E-01 8.90E+01 1.542E+01 19.19 320 330 0.000E+00 9.948E-02 9.99E-01 8.90E+01 1.574E+01 22.18 240 330 0.000E+00 9.948E-02 9.99E-01 8.90E+01 1.574E+01 22.18 240								
S0								
60 0.000E+00 9.952E-02 9.624E-01 8.892E+01 5.486E+01 61.69 60 70 0.000E+00 9.952E-02 9.976E-01 8.892E+01 5.432E+01 61.08 70 80 0.000E+00 9.952E-02 9.976E-01 8.891E+01 5.715E+01 64.28 80 90 0.000E+00 9.952E-02 8.246E-01 8.891E+01 5.352E+01 60.20 90 100 0.000E+00 9.952E-02 8.060E-01 8.891E+01 5.061E+01 56.92 110 110 0.000E+00 9.952E-02 9.976E-01 8.891E+01 5.061E+01 56.92 110 120 0.000E+00 9.952E-02 9.972E-01 8.891E+01 5.061E+01 56.92 110 121 0.000E+00 9.952E-02 9.992E-01 8.891E+01 5.061E+01 56.92 110 122 0.000E+00 9.951E-02 1.000E+00 8.892E+01 4.927E+01 55.41 140 150 0.000E+00 9.951E-02 1.000E+00 8.892E+01 4.927E+01 55.41 140 150 0.000E+00 9.951E-02 1.000E+00 8.892E+01 4.789E+01 51.67 160 170 0.000E+00 9.951E-02 1.000E+00 8.892E+01 4.789E+01 51.67 160 170 0.000E+00 9.951E-02 1.000E+00 8.892E+01 4.99E+01 49.36 170 180 0.000E+00 9.951E-02 1.000E+00 8.893E+01 4.390E+01 49.36 170 180 0.000E+00 9.951E-02 1.000E+00 8.893E+01 4.376E+01 43.08 190 200 0.000E+00 9.951E-02 1.000E+00 8.893E+01 3.509E+01 31.65 200 210 0.000E+00 9.951E-02 1.000E+00 8.895E+01 3.76E+01 35.71 210 220 0.000E+00 9.951E-02 1.000E+00 8.895E+01 3.76E+01 35.71 210 220 0.000E+00 9.951E-02 1.000E+00 8.895E+01 3.76E+01 35.71 210 220 0.000E+00 9.950E-02 1.000E+00 8.895E+01 3.76E+01 35.71 210 220 0.000E+00 9.950E-02 1.000E+00 8.899E+01 1.76E+01 35.71 210 220 0.000E+00 9.950E-02 1.000E+00 8.899E+01 1.76E+01 35.71 210 220 0.000E+00 9.950E-02 1.000E+00 8.899E+01 3.76E+01 31.25 220 320 0.000E+00 9.950E-02 1.000E+00 8.99E+01 3.76E+01 35.71 210 220 0.000E+00 9.950E-02 1.000E+00 8.899E+01 3.76E+01 35.71 210 220 0.000E+00 9.950E-02 1.000E+00 8.99E+01 3.76E+01 35.71 210 220 0.000E+00 9.950E-02 1.000E+00 8.99E+01 3.76E+01 35.71 210 220 0.000E+00 9.950E-02 1.000E+00 8.99E+01 3.76E+01 35.71 20 230 0.000E+00 9.950E-02 1.000E+00 8.99E+01 3.76E+01 35.25 350 320 0.000E+00 9.94E-02 1.000E+00 8.99E+01 3.73E+01 35.42E+01 35.25 350 320 0.000E+00 9.94E-02 1.000E+00 8.99E+01 3.73E+01 32.25 350 320 0.000E+00 9.94E-02 1								
70 0.000E+00 9.952E-02 9.624E-01 8.892E+01 5.432E+01 61.08 70 80 0.000E+00 9.952E-02 8.246E-01 8.891E+01 5.352E+01 60.20 90 100 0.000E+00 9.952E-02 8.065E-01 8.891E+01 5.098E+01 57.33 100 110 0.000E+00 9.952E-02 8.00E-01 8.891E+01 5.040E+01 56.92 110 120 0.000E+00 9.952E-02 9.992E-01 8.891E+01 5.040E+01 56.69 120 130 0.000E+00 9.952E-02 9.992E-01 8.891E+01 5.040E+01 56.69 120 140 0.000E+00 9.951E-02 1.000E+00 8.892E+01 4.789E+01 53.85 150 160 0.000E+00 9.951E-02 1.000E+00 8.893E+01 4.4789E+01 51.67 160 170 0.000E+00 9.951E-02 1.000E+00 8.893E+01 4.370E+01 46.63 180 180 0.000E+00 9.951E-0								
80 0.000E+00 9.950E-02 8.976E-01 8.892E+01 5.715E+01 64.28 80 90 0.000E+00 9.952E-02 8.246E-01 8.891E+01 5.352E+01 60.20 90 100 0.000E+00 9.952E-02 8.066E-01 8.891E+01 5.061E+01 56.92 110 120 0.000E+00 9.952E-02 9.547E-01 8.891E+01 5.061E+01 56.69 120 130 0.000E+00 9.952E-02 9.992E-01 8.891E+01 5.061E+01 56.24 130 140 0.000E+00 9.951E-02 1.000E+00 8.892E+01 4.927E+01 55.41 140 150 0.000E+00 9.951E-02 1.000E+00 8.892E+01 4.789E+01 51.67 160 170 0.000E+00 9.951E-02 1.000E+00 8.893E+01 4.594E+01 51.67 160 180 0.000E+00 9.951E-02 1.000E+00 8.893E+01 4.147E+01 49.36 170 180 0.000E+00 9.951E-02 1.000E+00 8.894E+01 3.509E+01 33.09E+01 43.08 19								
90								
100								
110								
120								
130								
140								
150								
160								
170 0.000E+00 9.951E-02 1.000E+00 8.893E+01 4.390E+01 49.36 170 180 0.000E+00 9.951E-02 1.000E+00 8.893E+01 4.147E+01 46.63 180 190 0.000E+00 9.951E-02 1.000E+00 8.895E+01 3.509E+01 39.45 200 210 0.000E+00 9.951E-02 1.000E+00 8.895E+01 3.509E+01 39.45 200 210 0.000E+00 9.950E-02 1.000E+00 8.895E+01 3.176E+01 35.71 210 220 0.000E+00 9.950E-02 1.000E+00 8.895E+01 2.780E+01 31.25 220 230 0.000E+00 9.950E-02 1.000E+00 8.897E+01 2.386E+01 26.61 230 240 0.000E+00 9.950E-02 1.000E+00 8.897E+01 1.974E+01 22.18 240 250 0.000E+00 9.949E-02 1.000E+00 8.899E+01 1.542E+01 17.33 250 260 0.000E+00 9.949E-02 1.000E+00 8.991E+01 6.405E+00 7.20 270 280 0.000E+00 9.949E-02 1.000E+00 8.901E+01 6.405E+00 7.20 270 280 0.000E+00 9.949E-02 1.000E+00 8.901E+01 6.405E+00 7.20 270 280 0.000E+00 9.948E-02 1.000E+00 8.902E+01 2.947E+00 3.31 280 290 0.000E+00 9.948E-02 1.000E+00 8.903E+01 1.272E+01 19.19 300 0.000E+00 9.948E-02 9.968E-01 8.904E+01 8.651E+00 9.72 300 310 0.000E+00 9.948E-02 9.968E-01 8.905E+01 1.272E+01 14.28 310 320 0.000E+00 9.948E-02 1.000E+00 8.905E+01 1.272E+01 14.28 310 330 0.000E+00 9.948E-02 1.000E+00 8.905E+01 1.709E+01 19.19 320 330 0.000E+00 9.948E-02 1.000E+00 8.905E+01 1.709E+01 19.19 320 330 0.000E+00 9.947E-02 1.000E+00 8.905E+01 1.709E+01 19.19 320 330 0.000E+00 9.947E-02 1.000E+00 8.905E+01 1.709E+01 19.19 320 330 0.000E+00 9.947E-02 1.000E+00 8.905E+01 1.709E+01 32.25 350 360 0.000E+00 9.947E-02 1.000E+00 8.905E+01 1.709E+01 32.625 350 360 0.000E+00 9.947E-02 1.000E+00 8.905E+01 1.709E+01 32.53E+01 36.29 360 370 0.000E+00 9.947E-02 1.000E+00 8.905E+01 1.709E+01 32.53E+01 32.25 350 360 0.000E+00 9.947E-02 1.000E+00 8.905E+01 1.709E+01 42.40 380 390 0.000E+00 9.946E-02 1.000E+00 8.91E+01 4.55E+01 42.40 380 390 0.000E+00 9.946E-02 1.000E+00 8.91E+01 4.55E+01 51.03 420 430 0.000E+00 9.946E-02 1.000E+00 8.91E+01 4								
180 0.000E+00 9.951E-02 1.000E+00 8.893E+01 4.147E+01 46.63 180 190 0.000E+00 9.951E-02 1.000E+00 8.895E+01 3.831E+01 43.08 190 200 0.000E+00 9.951E-02 1.000E+00 8.895E+01 3.509E+01 39.45 200 210 0.000E+00 9.950E-02 1.000E+00 8.895E+01 3.176E+01 35.71 210 220 0.000E+00 9.950E-02 1.000E+00 8.895E+01 2.780E+01 31.25 220 230 0.000E+00 9.950E-02 1.000E+00 8.895E+01 2.368E+01 26.61 230 240 0.000E+00 9.950E-02 1.000E+00 8.895E+01 1.974E+01 22.18 240 250 0.000E+00 9.950E-02 1.000E+00 8.899E+01 1.542E+01 17.33 250 260 0.000E+00 9.949E-02 1.000E+00 8.899E+01 1.071E+01 12.04 260 270 0.000E+00 9.949E-02 1.000E+00 8.90E+01 1.071E+01 12.04 260 270 0.000E+00 9.949E-02 1.000E+00 8.90E+01 1.071E+01 12.04 260 270 0.000E+00 9.949E-02 1.000E+00 8.90E+01 6.405E+00 7.20 270 280 0.000E+00 9.949E-02 1.000E+00 8.902E+01 2.947E+00 3.31 280 290 0.000E+00 9.948E-02 9.968E-01 8.903E+01 4.274E+00 4.80 290 300 0.000E+00 9.948E-02 9.968E-01 8.905E+01 8.651E+00 9.72 300 310 0.000E+00 9.948E-02 9.923E-01 8.905E+01 1.779E+01 14.28 310 320 0.000E+00 9.948E-02 9.923E-01 8.905E+01 1.779E+01 19.19 320 330 0.000E+00 9.948E-02 1.000E+00 8.905E+01 1.779E+01 19.19 320 330 0.000E+00 9.947E-02 1.000E+00 8.905E+01 1.779E+01 19.19 320 330 0.000E+00 9.947E-02 1.000E+00 8.905E+01 3.535E+01 36.29 360 370 0.000E+00 9.947E-02 1.000E+00 8.908E+01 2.533E+01 36.29 360 370 0.000E+00 9.947E-02 1.000E+00 8.908E+01 3.778E+01 36.29 360 370 0.000E+00 9.947E-02 1.000E+00 8.908E+01 3.738E+01 36.29 360 370 0.000E+00 9.946E-02 1.000E+00 8.91E+01 4.258E+01 45.05 390 400 0.000E+00 9.946E-02 1.000E+00 8.91E+01 4.258E+01 45.05 390 400 0.000E+00 9.946E-02 1.000E+00 8.91E+01 4.553E+01 51.09 430 400 0.000E+00 9.946E-02 1.000E+00 8.91E+01 4.553E+01 51.03 450 400 0.000E+00 9.946E-02 1.000E+00 8.91E+01 4.553E+01 51.03 450 440 0.000E+00 9.946E-02 1.000E+00 8.91								
190 0.000E+00 9.951E-02 1.000E+00 8.894E+01 3.831E+01 43.08 190 200 0.000E+00 9.951E-02 1.000E+00 8.895E+01 3.509E+01 39.45 200 210 0.000E+00 9.950E-02 1.000E+00 8.895E+01 3.176E+01 35.71 210 220 0.000E+00 9.950E-02 1.000E+00 8.895E+01 3.176E+01 31.25 220 230 0.000E+00 9.950E-02 1.000E+00 8.897E+01 2.368E+01 26.61 230 240 0.000E+00 9.950E-02 1.000E+00 8.898E+01 1.974E+01 22.18 240 250 0.000E+00 9.950E-02 1.000E+00 8.899E+01 1.542E+01 17.33 250 260 0.000E+00 9.949E-02 1.000E+00 8.899E+01 1.071E+01 12.04 260 270 0.000E+00 9.949E-02 1.000E+00 8.901E+01 6.405E+00 7.20 270 280 0.000E+00 9.949E-02 1.000E+00 8.902E+01 2.947E+00 3.31 280 290 0.000E+00 9.948E-02 1.000E+00 8.902E+01 4.274E+00 4.80 290 300 0.000E+00 9.948E-02 9.968E-01 8.904E+01 4.274E+00 4.80 290 310 0.000E+00 9.948E-02 9.968E-01 8.905E+01 1.272E+01 14.28 310 320 0.000E+00 9.948E-02 9.923E-01 8.905E+01 1.272E+01 14.28 310 320 0.000E+00 9.948E-02 9.923E-01 8.905E+01 1.272E+01 14.28 310 320 0.000E+00 9.947E-02 1.000E+00 8.905E+01 1.272E+01 14.28 310 320 0.000E+00 9.947E-02 1.000E+00 8.905E+01 1.272E+01 14.28 310 320 0.000E+00 9.947E-02 1.000E+00 8.905E+01 2.523E+01 28.32 340 350 0.000E+00 9.947E-02 1.000E+00 8.905E+01 2.523E+01 32.25 350 360 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.233E+01 36.29 360 370 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.778E+01 42.40 380 390 0.000E+00 9.946E-02 1.000E+00 8.91E+01 4.014E+01 45.05 390 400 0.000E+00 9.946E-02 1.000E+00 8.91E+01 4.258E+01 51.09 430 440 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.558E+01 51.09 430 440 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.558E+01 51.04 460 470 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.558E+01 51.04 460 470 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.558E+01 51.04 460 470 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.548E+01 50.43 470								
200 0.000E+00 9.951E-02 1.000E+00 8.895E+01 3.509E+01 39.45 200 210 0.000E+00 9.950E-02 1.000E+00 8.895E+01 3.176E+01 35.71 210 220 0.000E+00 9.951E-02 9.999E-01 8.896E+01 2.780E+01 31.25 220 230 0.000E+00 9.950E-02 1.000E+00 8.897E+01 2.368E+01 26.61 230 240 0.000E+00 9.950E-02 1.000E+00 8.898E+01 1.974E+01 22.18 240 250 0.000E+00 9.949E-02 1.000E+00 8.898E+01 1.542E+01 17.33 250 260 0.000E+00 9.949E-02 1.000E+00 8.901E+01 6.405E+00 7.20 270 280 0.000E+00 9.948E-02 1.000E+00 8.903E+01 2.947E+00 3.31 280 290 0.000E+00 9.948E-02 1.000E+00 8.903E+01 4.274E+00 4.80 290 310 0.000E+00 9.948E-								
210 0.000E+00 9.950E-02 1.000E+00 8.895E+01 3.176E+01 35.71 210 220 0.000E+00 9.951E-02 9.999E-01 8.896E+01 2.780E+01 31.25 220 230 0.000E+00 9.950E-02 1.000E+00 8.897E+01 2.368E+01 2.366E+01 230 240 0.000E+00 9.950E-02 1.000E+00 8.897E+01 2.368E+01 22.18 240 250 0.000E+00 9.949E-02 1.000E+00 8.899E+01 1.974E+01 22.18 240 250 0.000E+00 9.949E-02 1.000E+00 8.900E+01 1.071E+01 12.04 260 270 0.000E+00 9.949E-02 1.000E+00 8.901E+01 6.405E+00 7.20 270 280 0.000E+00 9.949E-02 1.000E+00 8.901E+01 6.405E+00 7.20 270 280 0.000E+00 9.948E-02 1.000E+00 8.903E+01 4.274E+00 4.80 290 0.000E+00 9.948E-02 1.000E+00 8.903E+01 4.274E+00 4.80 290 300 0.000E+00 9.948E-02 9.968E-01 8.904E+01 8.651E+00 9.72 300 310 0.000E+00 9.948E-02 9.923E-01 8.905E+01 1.272E+01 14.28 310 320 0.000E+00 9.948E-02 1.000E+00 8.905E+01 1.272E+01 14.28 310 320 0.000E+00 9.948E-02 1.000E+00 8.905E+01 1.272E+01 14.28 310 330 0.000E+00 9.948E-02 1.000E+00 8.905E+01 1.272E+01 14.28 310 340 0.000E+00 9.948E-02 1.000E+00 8.905E+01 1.272E+01 14.28 310 340 0.000E+00 9.947E-02 1.000E+00 8.905E+01 2.523E+01 28.32 340 350 0.000E+00 9.947E-02 1.000E+00 8.905E+01 2.523E+01 32.25 350 360 0.000E+00 9.947E-02 1.000E+00 8.905E+01 2.872E+01 32.25 350 360 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.233E+01 36.29 360 370 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.233E+01 36.29 360 370 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.235E+01 39.67 370 380 0.000E+00 9.946E-02 9.999E-01 8.910E+01 4.014E+01 45.05 390 400 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.227E+01 47.43 400 410 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.258E+01 48.91 410 420 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.553E+01 51.09 430 440 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.553E+01 51.09 430 440 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.558E+01 51.38 440 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.558E+01 51.38 440 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.558E+01 51.38 440 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.548E+01 51.34 450 450 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.548E+01 51.34 450 450 0.000E+00 9								
220 0.000E+00 9.951E-02 9.999E-01 8.896E+01 2.780E+01 31.25 220 230 0.000E+00 9.950E-02 1.000E+00 8.897E+01 2.366E+01 26.61 230 240 0.000E+00 9.950E-02 1.000E+00 8.898E+01 1.974E+01 22.18 240 250 0.000E+00 9.949E-02 1.000E+00 8.899E+01 1.542E+01 17.33 250 260 0.000E+00 9.950E-02 9.995E-01 8.900E+01 1.071E+01 12.04 260 270 0.000E+00 9.949E-02 1.000E+00 8.901E+01 6.405E+00 7.20 270 280 0.000E+00 9.948E-02 1.000E+00 8.902E+01 2.947E+00 3.31 280 290 0.000E+00 9.948E-02 1.000E+00 8.903E+01 4.274E+00 4.80 290 310 0.000E+00 9.948E-02 1.000E+00 8.904E+01 8.651E+00 9.72 300 310 0.000E+00 9.948E-02 1.000E+00 8.905E+01 1.709E+01 14.28 310		- · · · · · · · - · - · · · · · · · · ·						
230 0.000E+00 9.950E-02 1.000E+00 8.897E+01 2.368E+01 26.61 230 240 0.000E+00 9.950E-02 1.000E+00 8.898E+01 1.974E+01 22.18 240 250 0.000E+00 9.949E-02 1.000E+00 8.899E+01 1.542E+01 17.33 250 260 0.000E+00 9.949E-02 1.000E+00 8.990E+01 1.542E+01 17.33 250 260 0.000E+00 9.949E-02 1.000E+00 8.901E+01 6.405E+00 7.20 270 280 0.000E+00 9.949E-02 1.000E+00 8.901E+01 6.405E+00 7.20 270 280 0.000E+00 9.948E-02 1.000E+00 8.903E+01 2.947E+00 3.31 280 290 0.000E+00 9.948E-02 1.000E+00 8.903E+01 2.947E+00 4.80 290 300 0.000E+00 9.948E-02 9.968E-01 8.904E+01 8.651E+00 9.72 300 310 0.000E+00 9.948E-02 9.923E-01 8.905E+01 1.272E+01 14.28 310 320 0.000E+00 9.948E-02 1.000E+00 8.905E+01 1.7709E+01 19.19 320 0.300 0.00E+00 9.948E-02 1.000E+00 8.905E+01 1.709E+01 19.19 320 330 0.000E+00 9.948E-02 1.000E+00 8.905E+01 1.709E+01 19.19 320 330 0.000E+00 9.947E-02 1.000E+00 8.907E+01 2.523E+01 24.17 330 340 0.000E+00 9.947E-02 1.000E+00 8.907E+01 2.523E+01 28.32 340 350 0.000E+00 9.947E-02 1.000E+00 8.907E+01 2.523E+01 28.32 340 350 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.535E+01 39.67 370 380 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.535E+01 39.67 370 380 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.535E+01 42.40 380 390 0.000E+00 9.947E-02 1.000E+00 8.91E+01 4.014E+01 45.05 390 400 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.014E+01 45.05 390 400 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.558E+01 50.03 420 430 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.558E+01 50.03 420 430 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.565E+01 51.38 440 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.565E+01 51.38 440 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.565E+01 51.38 440 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.565E+01 51.04 450 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.548E+01 50.03 420 450 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.548E+01 50.04 450 0.000E+00 9.946E-0								
240 0.000E+00 9.950E-02 1.000E+00 8.898E+01 1.974E+01 22.18 240 250 0.000E+00 9.949E-02 1.000E+00 8.899E+01 1.542E+01 17.33 250 260 0.000E+00 9.950E-02 9.995E-01 8.900E+01 1.071E+01 12.04 260 270 0.000E+00 9.949E-02 1.000E+00 8.901E+01 6.405E+00 7.20 270 280 0.000E+00 9.949E-02 1.000E+00 8.902E+01 2.947E+00 3.31 280 290 0.000E+00 9.948E-02 1.000E+00 8.903E+01 4.274E+00 4.80 290 300 0.000E+00 9.948E-02 1.000E+00 8.905E+01 1.272E+01 14.28 310 310 0.000E+00 9.948E-02 1.000E+00 8.905E+01 1.272E+01 14.28 310 320 0.000E+00 9.948E-02 1.000E+00 8.906E+01 2.153E+01 19.19 320 330 0.000E+00 9.947E-02 1.000E+00 8.906E+01 2.153E+01 19.19 32 340								
250 0.000E+00 9.949E-02 1.000E+00 8.899E+01 1.542E+01 17.33 250 260 0.000E+00 9.950E-02 9.995E-01 8.900E+01 1.071E+01 12.04 260 270 0.000E+00 9.949E-02 1.000E+00 8.901E+01 6.405E+00 7.20 270 280 0.000E+00 9.949E-02 1.000E+00 8.902E+01 2.947E+00 3.31 280 290 0.000E+00 9.948E-02 1.000E+00 8.902E+01 2.947E+00 4.80 290 300 0.000E+00 9.948E-02 9.968E-01 8.904E+01 8.651E+00 9.72 300 310 0.000E+00 9.948E-02 9.968E-01 8.905E+01 1.272E+01 14.28 310 320 0.000E+00 9.948E-02 1.000E+00 8.905E+01 1.709E+01 19.19 320 330 0.000E+00 9.948E-02 1.000E+00 8.905E+01 1.709E+01 19.19 320 330 0.000E+00 9.948E-02 1.000E+00 8.906E+01 2.153E+01 24.17 330 340 0.000E+00 9.947E-02 1.000E+00 8.906E+01 2.523E+01 24.17 330 340 0.000E+00 9.947E-02 1.000E+00 8.907E+01 2.872E+01 32.25 350 360 0.000E+00 9.947E-02 1.000E+00 8.908E+01 2.872E+01 32.25 350 360 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.233E+01 36.29 360 370 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.233E+01 36.29 360 370 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.778E+01 42.40 380 390 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.778E+01 42.40 380 390 0.000E+00 9.947E-02 9.999E-01 8.910E+01 3.778E+01 42.40 380 390 0.000E+00 9.946E-02 9.999E-01 8.910E+01 4.014E+01 45.05 390 400 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.258E+01 48.91 410 420 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.558E+01 51.09 430 440 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.565E+01 51.23 450 460 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.565E+01 51.04 460 470 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.565E+01 51.04 460								
260 0.000E+00 9.950E-02 9.995E-01 8.900E+01 1.071E+01 12.04 260 270 0.000E+00 9.949E-02 1.000E+00 8.901E+01 6.405E+00 7.20 270 280 0.000E+00 9.948E-02 1.000E+00 8.902E+01 2.947E+00 3.31 280 290 0.000E+00 9.948E-02 1.000E+00 8.903E+01 4.274E+00 4.80 290 300 0.000E+00 9.948E-02 9.968E-01 8.905E+01 1.272E+01 14.28 310 310 0.000E+00 9.948E-02 1.000E+00 8.905E+01 1.272E+01 14.28 310 320 0.000E+00 9.948E-02 1.000E+00 8.905E+01 1.709E+01 19.19 320 330 0.000E+00 9.948E-02 1.000E+00 8.906E+01 2.153E+01 24.17 330 340 0.000E+00 9.947E-02 1.000E+00 8.908E+01 2.872E+01 32.25 350 360 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.233E+01 36.29 360 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>								
270 0.000E+00 9.949E-02 1.000E+00 8.901E+01 6.405E+00 7.20 270 280 0.000E+00 9.949E-02 1.000E+00 8.902E+01 2.947E+00 3.31 280 290 0.000E+00 9.948E-02 1.000E+00 8.903E+01 4.274E+00 4.80 290 300 0.000E+00 9.948E-02 9.923E-01 8.905E+01 1.272E+01 14.28 310 310 0.000E+00 9.948E-02 1.000E+00 8.905E+01 1.272E+01 14.28 310 320 0.000E+00 9.948E-02 1.000E+00 8.905E+01 1.709E+01 19.19 320 330 0.000E+00 9.947E-02 1.000E+00 8.905E+01 2.153E+01 24.17 330 340 0.000E+00 9.947E-02 1.000E+00 8.907E+01 2.523E+01 28.32 340 350 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.535E+01 36.29 360 370 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.535E+01 39.67 370 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>								
280 0.000E+00 9.949E-02 1.000E+00 8.902E+01 2.947E+00 3.31 280 290 0.000E+00 9.948E-02 1.000E+00 8.903E+01 4.274E+00 4.80 290 300 0.000E+00 9.948E-02 9.968E-01 8.904E+01 8.651E+00 9.72 300 310 0.000E+00 9.948E-02 9.923E-01 8.905E+01 1.272E+01 14.28 310 320 0.000E+00 9.948E-02 1.000E+00 8.905E+01 1.709E+01 19.19 320 330 0.000E+00 9.948E-02 1.000E+00 8.906E+01 2.153E+01 24.17 330 340 0.000E+00 9.947E-02 1.000E+00 8.907E+01 2.523E+01 28.32 340 350 0.000E+00 9.947E-02 1.000E+00 8.907E+01 2.872E+01 32.25 350 360 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.233E+01 36.29 360 370 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.233E+01 39.67 370 380 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.535E+01 39.67 370 380 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.535E+01 42.40 380 390 0.000E+00 9.947E-02 1.000E+00 8.910E+01 4.014E+01 45.05 390 400 0.000E+00 9.946E-02 9.997E-01 8.910E+01 4.227E+01 47.43 400 410 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.227E+01 47.43 400 410 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.553E+01 50.03 420 430 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.553E+01 51.38 440 400 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.553E+01 51.38 440 450 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.565E+01 51.38 440 450 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.565E+01 51.38 440 450 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.565E+01 51.23 450 460 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.548E+01 51.04 460 470 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.548E+01 51.04								
290 0.000E+00 9.948E-02 1.000E+00 8.903E+01 4.274E+00 4.80 290 300 0.000E+00 9.948E-02 9.968E-01 8.904E+01 8.651E+00 9.72 300 310 0.000E+00 9.948E-02 9.923E-01 8.905E+01 1.272E+01 14.28 310 320 0.000E+00 9.948E-02 1.000E+00 8.905E+01 1.709E+01 19.19 320 330 0.000E+00 9.948E-02 1.000E+00 8.905E+01 2.153E+01 24.17 330 340 0.000E+00 9.947E-02 1.000E+00 8.907E+01 2.523E+01 28.32 340 350 0.000E+00 9.947E-02 1.000E+00 8.908E+01 2.872E+01 32.25 350 360 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.235E+01 36.29 360 370 0.000E+00 9.946E-02 1.000E+00 8.909E+01 3.535E+01 39.67 370 380 0.000E+00 9.946E-02 9.997E-01 8.910E+01 4.014E+01 45.05 390 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
300 0.000E+00 9.948E-02 9.968E-01 8.904E+01 8.651E+00 9.72 300 310 0.000E+00 9.948E-02 9.923E-01 8.905E+01 1.272E+01 14.28 310 320 0.000E+00 9.948E-02 1.000E+00 8.905E+01 1.709E+01 19.19 320 330 0.000E+00 9.948E-02 1.000E+00 8.906E+01 2.153E+01 24.17 330 340 0.000E+00 9.947E-02 1.000E+00 8.907E+01 2.523E+01 28.32 340 350 0.000E+00 9.947E-02 1.000E+00 8.908E+01 2.872E+01 32.25 350 360 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.233E+01 36.29 360 370 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.535E+01 39.67 370 380 0.000E+00 9.946E-02 9.997E-01 8.910E+01 4.014E+01 45.05 390 400 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.227E+01 47.43 400 <								
310 0.000E+00 9.948E-02 9.923E-01 8.905E+01 1.272E+01 14.28 310 320 0.000E+00 9.948E-02 1.000E+00 8.905E+01 1.709E+01 19.19 320 330 0.000E+00 9.948E-02 1.000E+00 8.906E+01 2.153E+01 24.17 330 340 0.000E+00 9.947E-02 1.000E+00 8.907E+01 2.523E+01 28.32 340 350 0.000E+00 9.947E-02 1.000E+00 8.908E+01 2.872E+01 32.25 350 360 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.233E+01 36.29 360 370 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.535E+01 39.67 370 380 0.000E+00 9.946E-02 9.997E-01 8.910E+01 4.014E+01 45.05 390 400 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.227E+01 47.43 400 410 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.558E+01 51.09 430								
320 0.000E+00 9.948E-02 1.000E+00 8.905E+01 1.709E+01 19.19 320 330 0.000E+00 9.948E-02 1.000E+00 8.906E+01 2.153E+01 24.17 330 340 0.000E+00 9.947E-02 1.000E+00 8.907E+01 2.523E+01 28.32 340 350 0.000E+00 9.947E-02 1.000E+00 8.908E+01 2.872E+01 32.25 350 360 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.233E+01 36.29 360 370 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.535E+01 39.67 370 380 0.000E+00 9.946E-02 9.999E-01 8.910E+01 3.778E+01 42.40 380 390 0.000E+00 9.946E-02 9.997E-01 8.910E+01 4.014E+01 45.05 390 400 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.227E+01 47.43 400 410 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.553E+01 51.09 430								
330 0.000E+00 9.948E-02 1.000E+00 8.906E+01 2.153E+01 24.17 330 340 0.000E+00 9.947E-02 1.000E+00 8.907E+01 2.523E+01 28.32 340 350 0.000E+00 9.947E-02 1.000E+00 8.908E+01 2.872E+01 32.25 350 360 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.233E+01 36.29 360 370 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.535E+01 39.67 370 380 0.000E+00 9.946E-02 9.999E-01 8.910E+01 3.778E+01 42.40 380 390 0.000E+00 9.947E-02 9.997E-01 8.910E+01 4.014E+01 45.05 390 400 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.227E+01 47.43 400 410 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.358E+01 48.91 410 420 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.553E+01 51.09 430								
340 0.000E+00 9.947E-02 1.000E+00 8.907E+01 2.523E+01 28.32 340 350 0.000E+00 9.947E-02 1.000E+00 8.908E+01 2.872E+01 32.25 350 360 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.233E+01 36.29 360 370 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.535E+01 39.67 370 380 0.000E+00 9.946E-02 9.999E-01 8.910E+01 3.778E+01 42.40 380 390 0.000E+00 9.947E-02 9.997E-01 8.910E+01 4.014E+01 45.05 390 400 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.227E+01 47.43 400 410 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.358E+01 48.91 410 420 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.553E+01 51.09 430 440 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.578E+01 51.38 440								
350 0.000E+00 9.947E-02 1.000E+00 8.908E+01 2.872E+01 32.25 350 360 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.233E+01 36.29 360 370 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.535E+01 39.67 370 380 0.000E+00 9.946E-02 9.999E-01 8.910E+01 3.778E+01 42.40 380 390 0.000E+00 9.947E-02 9.997E-01 8.910E+01 4.014E+01 45.05 390 400 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.227E+01 47.43 400 410 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.358E+01 48.91 410 420 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.458E+01 50.03 420 430 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.553E+01 51.09 430 440 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.565E+01 51.38 440								
360 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.233E+01 36.29 360 370 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.535E+01 39.67 370 380 0.000E+00 9.946E-02 9.999E-01 8.910E+01 3.778E+01 42.40 380 390 0.000E+00 9.947E-02 9.997E-01 8.910E+01 4.014E+01 45.05 390 400 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.227E+01 47.43 400 410 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.358E+01 48.91 410 420 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.553E+01 50.03 420 430 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.553E+01 51.09 430 440 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.578E+01 51.38 440 450 0.000E+00 9.946E-02 5.406E-01 8.911E+01 4.548E+01 51.04 450								
370 0.000E+00 9.947E-02 1.000E+00 8.909E+01 3.535E+01 39.67 370 380 0.000E+00 9.946E-02 9.999E-01 8.910E+01 3.778E+01 42.40 380 390 0.000E+00 9.947E-02 9.997E-01 8.910E+01 4.014E+01 45.05 390 400 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.227E+01 47.43 400 410 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.358E+01 48.91 410 420 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.458E+01 50.03 420 430 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.553E+01 51.09 430 440 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.578E+01 51.38 440 450 0.000E+00 9.946E-02 5.406E-01 8.911E+01 4.565E+01 51.23 450 460 0.000E+00 9.946E-02 9.972E-01 8.911E+01 4.548E+01 51.04 460								
380 0.000E+00 9.946E-02 9.999E-01 8.910E+01 3.778E+01 42.40 380 390 0.000E+00 9.947E-02 9.997E-01 8.910E+01 4.014E+01 45.05 390 400 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.227E+01 47.43 400 410 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.358E+01 48.91 410 420 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.458E+01 50.03 420 430 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.553E+01 51.09 430 440 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.578E+01 51.38 440 450 0.000E+00 9.946E-02 5.406E-01 8.911E+01 4.565E+01 51.23 450 460 0.000E+00 9.946E-02 9.972E-01 8.911E+01 4.548E+01 51.04 460 470 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.548E+01 50.43 470 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
390 0.000E+00 9.947E-02 9.997E-01 8.910E+01 4.014E+01 45.05 390 400 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.227E+01 47.43 400 410 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.358E+01 48.91 410 420 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.458E+01 50.03 420 430 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.553E+01 51.09 430 440 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.578E+01 51.38 440 450 0.000E+00 9.946E-02 5.406E-01 8.911E+01 4.565E+01 51.23 450 460 0.000E+00 9.946E-02 9.972E-01 8.911E+01 4.548E+01 51.04 460 470 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.494E+01 50.43 470								
400 0.000E+00 '9.946E-02 1.000E+00 8.911E+01 4.227E+01 47.43 400 410 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.358E+01 48.91 410 420 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.458E+01 50.03 420 430 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.553E+01 51.09 430 440 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.578E+01 51.38 440 450 0.000E+00 9.946E-02 5.406E-01 8.911E+01 4.565E+01 51.23 450 460 0.000E+00 9.946E-02 9.972E-01 8.911E+01 4.548E+01 51.04 460 470 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.494E+01 50.43 470								
410 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.358E+01 48.91 410 420 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.458E+01 50.03 420 430 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.553E+01 51.09 430 440 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.578E+01 51.38 440 450 0.000E+00 9.946E-02 5.406E-01 8.911E+01 4.565E+01 51.23 450 460 0.000E+00 9.946E-02 9.972E-01 8.911E+01 4.548E+01 51.04 460 470 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.494E+01 50.43 470								
420 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.458E+01 50.03 420 430 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.553E+01 51.09 430 440 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.578E+01 51.38 440 450 0.000E+00 9.946E-02 5.406E-01 8.911E+01 4.565E+01 51.23 450 460 0.000E+00 9.946E-02 9.972E-01 8.911E+01 4.548E+01 51.04 460 470 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.494E+01 50.43 470								
430 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.553E+01 51.09 430 440 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.578E+01 51.38 440 450 0.000E+00 9.946E-02 5.406E-01 8.911E+01 4.565E+01 51.23 450 460 0.000E+00 9.946E-02 9.972E-01 8.911E+01 4.548E+01 51.04 460 470 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.494E+01 50.43 470								
440 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.578E+01 51.38 440 450 0.000E+00 9.946E-02 5.406E-01 8.911E+01 4.565E+01 51.23 450 460 0.000E+00 9.946E-02 9.972E-01 8.911E+01 4.548E+01 51.04 460 470 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.494E+01 50.43 470								
450 0.000E+00 9.946E-02 5.406E-01 8.911E+01 4.565E+01 51.23 450 460 0.000E+00 9.946E-02 9.972E-01 8.911E+01 4.548E+01 51.04 460 470 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.494E+01 50.43 470								
460 0.000E+00 9.946E-02 9.972E-01 8.911E+01 4.548E+01 51.04 460 470 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.494E+01 50.43 470								
470 0.000E+00 9.946E-02 1.000E+00 8.911E+01 4.494E+01 50.43 470								
	480	0.000E+00	9.946E-02	9.990E-01	8.911E+01	4.401E+01	49.38	480

					_	_	Page 31
490	0.000E+00	9.946E-02	1.000E+00	8.911E+01	4.264E+01	47.86	490
500	0.000E+00	9.946E-02	9.987E-01	8.910E+01	4.090E+01	45.90	500
510	0.000E+00	9.946E-02	9.911E-01	8.910E+01	3.882E+01	43.56	510
520	0.000E+00	9.947E-02	1.000E+00	8.909E+01	3.640E+01	40.86	520
530	0.000E+00	9.947E-02	1.000E+00	8.909E+01	3.368E+01	37.80	530
540	0.000E+00	9.947E-02	1.000E+00	8.908E+01	3.073E+01	34.50	540
550	0.000E+00	9.947E-02	1.000E+00	8.908E+01	2.755E+01	30.93	550
560	0.000E+00	9.947E-02	9.999E-01	8.907E+01	2.416E+01	27.12	560
570	0.000E+00	9.947E-02	9.999E-01	8.906E+01	2.063E+01	23.17	570
580	0.000E+00	9.948E-02	9.999E-01	8.905E+01	1.700E+01	19.09	580
590	0.000E+00	9.948E-02	9.996E-01	8.905E+01	1.327E+01	14.91	590
600	0.000E+00	9.948E-02	9.993E-01	8.904E+01	9.559E+00	10.74	600
610	0.000E+00	9.948E-02	9.994E-01	8.903E+01	5.874E+00	6.60	610
620	0.000E+00	9.949E-02	9.987E-01	8.902E+01	2.289E+00	2.57	620
SA	NTOS, VERSI	ON 2.1.7-DP	, RUN ON 20	030612, AT	11:17:47		
SI	NTOS VERIFI	CATION - RO	CKET MOTOR	PROBLEM - L	INEAR VISCOS	ΙΤΥ	
***	*****	*****	*****	*****	*****	*****	
SUN	MARY OF DAT	A AT STEP N	UMBER 0	, TIME = 0 .	000E+00		
NUN	MBER OF ITER	ATIONS =	626, TO	TAL NUMBER	OF ITERATIONS	S = 62	26
FIN	IAL CONVERGE	NCE TOLERAN	CE = 3.514E	-01			
	I OF EXTERNA						
SUN	I OF EXTERNA	L FORCES IN	Y-DIRECTIO	N = 5.591E -	14		
SUN	I OF REACTIO	N FORCES IN	X-DIRECTIO	N = 0.000E +	00		
	OF REACTIO						
***	*****	*****	*****	*****	*****	*****	

**** PLOT TAPE WRITTEN AT TIME = 0.000E+00 STEP NUMBER 0 ****

STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
10	1.000E-01	1.000E-01	9.148E-01	8.957E+01	1.081E+02	120.69	636
20	1.000E-01	1.000E-01	7.872E-01	8.949E+01	5.979E+01	66.81	646
30	1.000E-01	1.000E-01	9.998E-01	8.940E+01	7.418E+01	82.97	656
40	1.000E-01	1.000E-01	1.000E+00	8.924E+01	6.636E+01	74.36	666
50	1.000E-01	1.000E-01	1.000E+00	8.906E+01	8.584E+01	96.39	676
60	1.000E-01	1.000E-01	1.000E+00	8.891E+01	1.100E+02	123.77	686
70	1.000E-01	1.000E-01	9.603E-01	8.883E+01	9.567E+01	107.69	696
80	1.000E-01	1.000E-01	9.588E-01	8.885E+01	8.825E+01	99.33	706
90	1.000E-01	1.000E-01	9.326E-01	8.891E+01	7.907E+01	88.93	716
100	1.000E-01	1.000E-01	9.228E-01	8.899E+01	6.763E+01	76.00	726
110	1.000E-01	1.000E-01	9.355E-01	8.906E+01	5.865E+01	65.86	736
120	1.000E-01	1.000E-01	9.360E-01	8.911E+01	4.996E+01	56.07	746
130	1.000E-01	1.000E-01	9.434E-01	8.915E+01	4.370E+01	49.02	756
140	1.000E-01	1.000E-01	9.706E-01	8.917E+01	4.037E+01	45.27	766
150	1.000E-01	1.000E-01	9.888E-01	8.917E+01	3.908E+01	43.83	776
160	1.000E-01	1.000E-01	9.998E-01	8.917E+01	3.823E+01	42.87	786
170	1.000E-01	1.000E-01	9.820E-01	8.916E+01	3.837E+01	43.04	796
180	1.000E-01	1.000E-01	9.678E-01	8.914E+01	3.874E+01	43.46	806
190	1.000E-01	1.000E-01	9.736E-01	8.913E+01	3.890E+01	43.64	816
200	1.000E-01	1.000E-01	9.971E-01	8.912E+01	3.855E+01	43.26	826
210	1.000E-01	1.000E-01	9.998E-01	8.911E+01	3.744E+01	42.01	836
220	1.000E-01	1.000E-01	9.000E-01	8.911E+01	3.533E+01	39.65	846
230	1.000E-01	1.000E-01	9.288E-01	8.911E+01	3.387E+01	38.00	856

Page 312

				•			
240	1.000E-01	1.000E-01	9.438E-01	8.912E+01	3.283E+01	36.84	866
250	1.000E-01	1.000E-01	9.733E-01	8.912E+01	3.181E+01	35.69	876
260	1.000E-01	1.000E-01	9.255E-01	8.912E+01	3.105E+01	34.84	886
270	1.000E-01	1.000E-01	9.717E-01	8.912E+01	3.055E+01	34.28	896
280	1.000E-01	1.000E-01	1.000E+00	8.912E+01	3.010E+01	33.78	906
290	1.000E-01	1.000E-01	1.000E+00	8.912E+01	2.941E+01	33.78	916
300	1.000E-01	1.000E-01	9.967E-01	8.912E+01	2.846E+01	31.93	926
310	1.000E-01	1.000E-01	9.828E-01	8.911E+01	2.739E+01	30.73	936
320	1.000E-01	1.000E-01	9.752E-01	8.911E+01	2.628E+01	29.49	946
330	1.000E-01	1.000E-01	9.781E-01	8.911E+01	2.522E+01	28.31	956
340	1.000E-01	1.000E-01	9.789E-01	8.911E+01	2.415E+01	27.11	966
350	1.000E-01	1.000E-01	9.790E-01	8.910E+01	2.307E+01	25.89	976
360	1.000E-01	1.000E-01	9.866E-01	8.910E+01	2.201E+01	24.70	986
370	1.000E-01	1.000E-01	9.856E-01	8.910E+01	2.088E+01	23.43	996
380	1.000E-01	1.000E-01	9.868E-01	8.910E+01	1.968E+01	22.09	1006
390	1.000E-01	1.000E-01	9.920E-01	8.909E+01	1.847E+01	20.74	1016
400	1.000E-01	1.000E-01	9.837E-01	8.909E+01	1.723E+01	19.33	1026
410	1.000E-01	1.000E-01	9.821E-01	8.909E+01	1.602E+01	17.98	1036
420	1.000E-01	1.000E-01	9.806E-01	8.909E+01	1.490E+01	16.72	1046
430	1.000E-01	1.000E-01	9.774E-01	8.908E+01	1.386E+01	15.55	1056
440	1.000E-01	1.000E-01	9.787E-01	8.908E+01	1.291E+01	14.49	1066
450	1.000E-01	1.000E-01	9.785E-01	8.908E+01	1.206E+01	13.54	1076
460	1.000E-01	1.000E-01	9.779E-01	8.908E+01	1.126E+01	12.64	1086
470	1.000E-01	1.000E-01	9.832E-01	8.908E+01	1.052E+01	11.81	1096
		1.000E-01 1.000E-01					
480	1.000E-01		9.829E-01	8.908E+01	9.819E+00	11.02	1106
490	1.000E-01	1.000E-01	9.835E-01	8.907E+01	9.141E+00	10.26	1116
500	1.000E-01	1.000E-01	9.864E-01	8.907E+01	8.478E+00	9.52	1126
510	1.000E-01	1.000E-01	9.837E-01	8.907E+01	7.830E+00	8.79	1136
520,	1.000E-01	1.000E-01	9.832E-01	8.907E+01	7.216E+00	8.10	1146
530	1.000E-01	1.000E-01	9.826E-01	8.907E+01	6.642E+00	7.46	1156
540	1.000E-01	1.000E-01	9.788E-01	8.907E+01	6.106E+00	6.85	1166
550	1.000E-01	1.000E-01	9.792E-01	8.907E+01	5.627E+00	6.32	1176
560	1.000E-01	1.000E-01	9.784E-01	8.907E+01	5.198E+00	5.84	1186
570	1.000E-01	1.000E-01	9.776E-01	8.907E+01	4.807E+00	5.40	1196
580	1.000E-01	1.000E-01	9.803E-01	8.906E+01	4.454E+00	5.00	1206
590	1.000E-01	1.000E-01	9.812E-01	8.906E+01	4.129E+00	4.64	1216
600	1.000E-01	1.000E-01	9.830E-01	8.906E+01	3.822E+00	4.29	1226
610	1.000E-01	1.000E-01	9.861E-01	8.906E+01	3.532E+00	3.97	1236
620	1.000E-01	1.000E-01	9.834E-01	8.906E+01	3.250E+00	3.65	1246
630	1.000E-01	1.000E-01	9.833E-01	8.906E+01	2.983E+00	3.35	1256
640	1.000E-01	1.000E-01	9.828E-01	8.906E+01	2.733E+00 '		1266
650	1.000E-01	1.000E-01	9.798E-01	8.906E+01	2.501E+00	2.81	1276
660	1.000E-01	1.000E-01	9.798E-01	8.906E+01	2.291E+00	2.57	1286
670	1.000E-01	1.000E-01	9.792E-01	8.906E+01	2.103E+00	2.36	1296
680	1.000E-01	1.000E-01	9.779E-01	8.906E+01	1.933E+00	2.17	1306
690	1.000E-01	1.000E-01	9.795E-01	8.906E+01	1.782E+00	2.00	1316
700	1.000E-01	1.000E-01	9.799E-01	8.906E+01	1.644E+00	1.85	1326
		1.000E-01 1.000E-01	9.799E=01 9.810E-01	8.906E+01		1.70	1336
710	1.000E-01 1.000E-01				1.516E+00		
720		1.000E-01	9.840E-01	8.906E+01	1.399E+00	1.57	1346
730	1.000E-01	1.000E-01	9.837E-01	8.906E+01	1.286E+00	1.44	1356
740	1.000E-01	1.000E-01	9.835E-01	8.906E+01	1.179E+00	1.32	1366
750	1.000E-01	1.000E-01	9.838E-01	8.906E+01	1.079E+00	1.21	1376
760	1.000E-01	1.000E-01	9.808E-01	8.906E+01	9.857E-01	1.11	1386
770	1.000E-01	1.000E-01	9.801E-01	8.906E+01	9.001E-01	1.01	1396
780	1.000E-01	1.000E-01	9.798E-01	8.906E+01	8.232E-01	0.92	1406
790	1.000E-01	1.000E-01	9.780E-01	8.906E+01	7.539E-01	0.85	1416
800	1.000E-01	1.000E-01	9.793E-01	8.906E+01	6.922E-01	0.78	1426
810	1.000E-01	1.000E-01	9.796E-01	.8.906E+01	6.365E-01	0.71	1436

J	u	n	е	2	U	V	J
	P	a	g	е	3	1	3

			Page 313
	820 1.000E-01 1.000E-01 9.795E-01 8.906E+01 5.858E-01	0.66	1446
	830 1.000E-01 1.000E-01 9.829E-01 8.906E+01 5.394E-01	0.61	1456
	840 1.000E-01 1.000E-01 9.828E-01 8.906E+01 4.959E-01	0.56	1466
	850 1.000E-01 1.000E-01 9.829E-01 8.906E+01 4.549E-01	0.51	1476
1	SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:17:47		
	SANTOS VERIFICATION - ROCKET MOTOR PROBLEM - LINEAR VISCOSIT	Ϋ́	
	•		
	**************************************	*****	
	SUMMARY OF DATA AT STEP NUMBER 1, TIME = 1.000E-01	1.4	70
	NUMBER OF ITERATIONS = 853, TOTAL NUMBER OF ITERATIONS FINAL CONVERGENCE TOLERANCE = 4.975E-01	= 14	79
	SUM OF EXTERNAL FORCES IN X-DIRECTION = 1.259E+02 SUM OF EXTERNAL FORCES IN Y-DIRECTION = 0.000E+00		
	SUM OF REACTION FORCES IN X-DIRECTION = 0.000E+00 SUM OF REACTION FORCES IN Y-DIRECTION = 3.162E-14		

	**** PLOT TAPE WRITTEN AT TIME = 1.000E-01 STEP NUMBER 1	***	
	THOU THE WALLES IN THE TOOL OF BILL HOUBER	-	
•			
•			
•	CANADOR (EDOCTOR O 1 7 DD DED ON 00000010 AM 11 17 AT		
1	SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:17:47		
	SANTOS VERIFICATION - ROCKET MOTOR PROBLEM - LINEAR VISCOSIT	ΥY	
	************	*****	
	SUMMARY OF DATA AT STEP NUMBER 19, TIME = 1.000E+01		
	NUMBER OF ITERATIONS = 286, TOTAL NUMBER OF ITERATIONS	- 04	E 2
	FINAL CONVERGENCE TOLERANCE = 4.969E-01	_ 54	32
	SUM OF EXTERNAL FORCES IN X-DIRECTION = 1.273E+02		
	SUM OF EXTERNAL FORCES IN X-DIRECTION = 1.275E+02 SUM OF EXTERNAL FORCES IN Y-DIRECTION = 0.000E+00		
	SUM OF REACTION FORCES IN Y-DIRECTION = 0.000E+00		
	SUM OF REACTION FORCES IN Y-DIRECTION =-5.611E-14	*****	

20 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

**** PLOT TAPE WRITTEN AT TIME = 1.000E+01 STEP NUMBER 19 ****

'E N D O F S O L U T I O N P H A S E 2.890E+00 CPU SECONDS USED 17510 WORDS ALLOCATED

APPENDIX P

Input/Output Data For Test Case 16

The following two sections present the input data and the formatted output for the M-D constitutive model implementation test.

FASTQ and SANTOS Input Data For The M-D Constitutive Model Implementation Test Problem

This section presents a listing of the FASTQ and SANTOS input data files that were used for the mesh generation and analysis of the M-D constitutive model implementation test problem.

```
shaft.fsq
TITLE
SHAFT MESH 128 ELEMENTS - SANTOS/SANCHO CHECK
POINT 1 3.2500000000E+00 0.000000000E+00
POINT
         2
                1625.
                                     0.000000000E+00
                                     3.2500000000E+00
POINT
         3
                1625.
              3.2500000000E+00
POINT
         4
                                     3.2500000000E+00
             STR
                     1 2 0 128 1.0250
LINE
         1
                                     1 1.0000
128 1.0250
1 1.0000
LINE
             STR
                                 0
LINE
          3
             STR
                     4
                           3
                                 0
LINE
          4
             STR
                     4
                           1
                                 0
REGION
          1
                1
                     -1
                           -2
                                 -3
                                       -4
SCHEME
         0 M
BODY
          1
LINEBC
LINEBC
          2
                      3
                1
LINEBC
SIDEBC
SIDEBC
           2
                      3
SIDEBC
          3
EXIT
shaft.i
TITLE
     SHAFT M-D CREEP SANTOS VERIFICATION CALCULATION (2/13/95)
AXISYM
STEP CONTROL
3650 3.1536E8
END
OUTPUT TIME
  1 3.1536E8
END
PLOT TIME
1 3.1536E8
END
ELASTIC SOLUTION
RESIDUAL TOLERANCE = .01
```

MAXIMUM ITERATIONS = 5000


```
INTERMEDIATE PRINT = 100
MAXIMUM TOLERANCE = 100.
MINIMUM DAMPING FACTOR = .2
INITIAL STRESS = CONSTANT = -15.E6 = -15.E6 = -15.0E6 = 0.
HOURGLASS STIFFENING = .005
AUTO STEP 0.02 2.592e6 NOREDUCE 1.E-3
PLOT NODAL DISPLACEMENT
PLOT ELEMENT STRESS
PLOT STATE EQCS
FUNCTION 1
 0.1.
7.22E8 1.
END
PRESSURE, 3, 1, 15.0E6
NO DISPLACEMENT, Y, 2
MATERIAL, 1, M-D CREEP MODEL, 2300.
TWO MU = 24.8E9
BULK MODULUS = 20.66E9
A1 = 8.386E22
Q1/R = 41.94
N1 = 5.5
B1 = 6.086E6
A2 = 9.672E12
Q2/R = 16.776
N2 = 5.0
B2 = 3.034E-2
SIG0 = 20.57E6
QLC = 5335.
M = 3.0
K0 = 6.275E5
C = 2.759
ALPHA = -17.37
BETA = -7.738
DELTLC = 0.58
RN3 = 2.0
AMULT \approx 0.95
END
EXIT
```

SANTOS Output For The M-D Constitutive Model Implementation Test Problem

The following section presents a portion of the SANTOS printed output for the M-D constitutive model implementation test problem. Because all pertinent information and results from the analysis are written to the plot file for post-processing, the printed output file simply echoes input data and problem—descriptive information at the beginning, followed by information that tracks the convergence behavior of the solution, and a summary of CPU usage at the end. For this reason, only a partial listing, consisting of approximately the first 500 lines of output and the last 100 lines of output, is provided.

shaft.o

SSSSSS	AAAA	N	NN	TTTTTT	000	000	SSSSSS
SS	AA AA	NN	NN	\mathbf{TT}	00	00	SS
SS ·	AA AA	NNN	NN	${f TT}$	00	00	SS
SSSSS	AAAAAA	NN 1	NN 1	${f TT}$	00	00	SSSSS
SŞ	AA AA	NN	NNN	${f TT}$	00	00	SS
SŚ	AA AA	NN	NN	TT	00	00	SS

Page 316

SSSSS AA AA NN N TT 00000 SSSSSS

VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE ENGINEERING SCIENCES CENTER SANDIA NATIONAL LABORATORIES ALBUOUEROUE, NEW MEXICO 87185

RUN ON 20030612 AT 11:18:30 RUN ON A i686 UNDER Lx2.4.20

1: TITLE 2: SHAFT M-D CREEP SANTOS VERIFICATION CALCULATION (2/13/95) 3: AXISYM 4: STEP CONTROL 5: 3650 3.1536E8 6: END 7: OUTPUT TIME 8: 1 3.1536E8 9: END 10: PLOT TIME 11: 1 3.1536E8 12: END 13: ELASTIC SOLUTION 14: RESIDUAL TOLERANCE = .01 15: MAXIMUM ITERATIONS = 5000 16: INTERMEDIATE PRINT = 100 17: MAXIMUM TOLERANCE = 100. 18: MINIMUM DAMPING FACTOR = .2 19: INITIAL STRESS = CONSTANT = -15.E6 = -15.E6 = -15.0E6 = 0. 20: HOURGLASS STIFFENING = .005 21: AUTO STEP 0.02 2.592e6 NOREDUCE 1.E-3 22: PLOT NODAL DISPLACEMENT 23: PLOT ELEMENT STRESS 24: PLOT STATE EQCS 25: FUNCTION 1 26: 0.1. 27: 7.22E8 1. 28: END 29: PRESSURE, 3, 1, 15.0E6 30: NO DISPLACEMENT, Y, 2 31: MATERIAL, 1, M-D CREEP MODEL, 2300. 32: TWO MU = 24.8E933: BULK MODULUS = 20.66E9 34: A1 = 8.386E2235: Q1/R = 41.94

```
36: N1 = 5.5
37: B1 = 6.086E6
38: A2 = 9.672E12
39: Q2/R = 16.776
40: N2 = 5.0
41: B2 = 3.034E-2
42: SIG0 = 20.57E6
43: OLC = 5335.
44: M = 3.0
45: K0 = 6.275E5
46: C = 2.759
47: ALPHA = -17.37
48: BETA = -7.738
49: DELTLC = 0.58
50: RN3 = 2.0
51: AMULT = 0.95
52: END
53: EXIT
                                  INPUT STREAM IMAGES
56: SHAFT M-D CREEP SANTOS VERIFICATION CALCULATION (2/13/95)
57: AXISYM
58: STEP CONTROL
59: 3650 3.1536E8
60: END
61: OUTPUT TIME
62: 1 3.1536E8
63: END
64: PLOT TIME
65: 1 3.1536E8
66: END
67: ELASTIC SOLUTION
68: RESIDUAL TOLERANCE = .01
69: MAXIMUM ITERATIONS = 5000
70: INTERMEDIATE PRINT = 100
71: MAXIMUM TOLERANCE = 100.
72: MINIMUM DAMPING FACTOR = .2
73: INITIAL STRESS = CONSTANT = -15.E6 = -15.E6 = -15.0E6 = 0.
74: HOURGLASS STIFFENING = .005
75: AUTO STEP 0.02 2.592e6 NOREDUCE 1.E-3
76: PLOT NODAL DISPLACEMENT
77: PLOT ELEMENT STRESS
78: PLOT STATE EQCS
79: FUNCTION 1
80: 0.1.
81: 7.22E8 1.
82: END
83: PRESSURE, 3, 1, 15.0E6
84: NO DISPLACEMENT, Y, 2
85: MATERIAL, 1, M-D CREEP MODEL, 2300.
86: TWO MU = 24.8E9
87: BULK MODULUS = 20.66E9
88: A1 = 8.386E22
89: Q1/R = 41.94
90: N1 = 5.5
91: B1 = 6.086E6
92: A2 = 9.672E12
```

Page 318

93: Q2/R = 16.776 94: N2 = 5.0 95: B2 = 3.034E-2 96: SIG0 = 20.57E6 97: QLC = 5335. 98: M = 3.0 99: K0 = 6.275E5 100: C = 2.759 101: ALPHA = -17.37 102: BETA = -7.738 103: DELTLC = 0.58 104: RN3 = 2.0 105: AMULT = 0.95 106: END 107: EXIT

PROBLEM TITLE

SHAFT M-D CREEP SANTOS VERIFICATION CALCULATION (2/13/95)

PROBLEM DEFINITION

128
258
1
1
_
0
0
0
AXISYMMETRIC
1.000E-02
5000
100
1.000E+02
0
2.000E-01
CONSTANT
1.000E+00
1.000E+00
5.000E-03
0.000E+00

LOAD STEP DEFINITIONS

TIME NO. OF STEPS TIME 0.000E+00 3650 3.154E+08

Page 319

PRINTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PRINTS TIME 0.000E+00 1 3.154E+08

PLOTTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PLOTS TIME .000E+00 1 3.154E+08 0.000E+00

MATERIAL DEFINITIONS

MATERIAL ID DENSITY 2.300E+03 MATERIAL PROPERTIES: TWO MU = 2.480E+10 = 2.066E+10 BULK MODULUS 8.386E+22 = A1 Q1/R 4.194E+01 = N1 = 5.500E+00 В1 = 6.086E+06A2 = 9.672E+12 Q2/R 1.678E+01 N2 = 5.000E+00 В2 = 3.034E-02 = 2.057E+07SIG0 QLC = 5.335E+033.000E+00 M = 6.275E+05 ŔΟ = Ċ = 2.759E+00 ALPHA = -1.737E+01 BETA -7.738E+00 5.800E-01 DELTLC = 2.000E+00

FUNCTION DEFINITIONS

RN3

AMULT

N

S

FUNCTION ID 1 NUMBER OF POINTS

==

= 9.500E-01

Information Only

F(S)

1 0.000E+00 1.000E+00 2 7.220E+08 1.000E+00

NO DISPLACEMENT BOUNDARY CONDITIONS

NODE SET FLAG DIRECTION 2 Y

PRESSURE BOUNDARY CONDTIONS

SURFACE FUNCTION SCALE FLAG NUMBER FACTOR 1.500E+07

E N D O F D A T A I N P U T P H A S E 4.000E-02 CPU SECONDS USED 5882 WORDS ALLOCATED

END OF DATA INITIALIZATION PHASE 0.000E+00 CPU SECONDS USED 30478 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

NODAL	ELEMENT	GLOBAL
DISPLX	SIGXX	FX
DISPLY	SIGYY	FY
	SIGZZ	RX
	TAUXY	RY
	EQCS	ITER
		PMAG

SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:18:30
SHAFT M-D CREEP SANTOS VERIFICATION CALCULATION (2/13/95)

SUMMARY OF DATA AT STEP NUMBER 0, TIME = 0.000E+00 NUMBER OF ITERATIONS = 52, TOTAL NUMBER OF ITERATIONS = 52 FINAL CONVERGENCE TOLERANCE = 9.441E-03


```
SUM OF EXTERNAL FORCES IN X-DIRECTION =-7.922E+10
SUM OF EXTERNAL FORCES IN Y-DIRECTION = 0.000E+00
SUM OF REACTION FORCES IN X-DIRECTION = 0.000E+00
SUM OF REACTION FORCES IN Y-DIRECTION = 2.747E-03
**** PLOT TAPE WRITTEN AT TIME = 0.000E+00 STEP NUMBER 0 ****
SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:18:30
    SHAFT M-D CREEP SANTOS VERIFICATION CALCULATION (2/13/95)
**********************
SUMMARY OF DATA AT STEP NUMBER 1, TIME = 1.000E-03
NUMBER OF ITERATIONS = 55, TOTAL NUMBER OF ITERATIONS = 107
FINAL CONVERGENCE TOLERANCE = 8.537E-03
SUM OF EXTERNAL FORCES IN X-DIRECTION =-7.922E+10
SUM OF EXTERNAL FORCES IN Y-DIRECTION = 0.000E+00
SUM OF REACTION FORCES IN X-DIRECTION = 0.000E+00
SUM OF REACTION FORCES IN Y-DIRECTION = 2.747E-03
**** PLOT TAPE WRITTEN AT TIME = 1.000E-03 STEP NUMBER
SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:18:30
    SHAFT M-D CREEP SANTOS VERIFICATION CALCULATION (2/13/95)
******************
SUMMARY OF DATA AT STEP NUMBER 2, TIME = 2.000E-03
NUMBER OF ITERATIONS = 8, TOTAL NUMBER OF ITERATIONS = 115
FINAL CONVERGENCE TOLERANCE = 9.653E-03
SUM OF EXTERNAL FORCES IN X-DIRECTION =-7.922E+10
SUM OF EXTERNAL FORCES IN Y-DIRECTION = 0.000E+00
SUM OF REACTION FORCES IN X-DIRECTION = 0.000E+00
SUM OF REACTION FORCES IN Y-DIRECTION =-5.066E-03
**** PLOT TAPE WRITTEN AT TIME = 2.000E-03 STEP NUMBER 2 ****
SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:18:30
    SHAFT M-D CREEP SANTOS VERIFICATION CALCULATION (2/13/95)
*************
SUMMARY OF DATA AT STEP NUMBER 3, TIME = 3.000E-03
NUMBER OF ITERATIONS = 15, TOTAL NUMBER OF ITERATIONS = 130
FINAL CONVERGENCE TOLERANCE = 9.796E-03
SUM OF EXTERNAL FORCES IN X-DIRECTION =-7.922E+10
SUM OF EXTERNAL FORCES IN Y-DIRECTION = 0.000E+00
SUM OF REACTION FORCES IN X-DIRECTION = 0.000E+00
SUM OF REACTION FORCES IN Y-DIRECTION = 6.653E-03
*****************
```

	**** PLOT TAPE WRITTEN AT TIME = 3.000E-03 STEP NUMBER 3 ****
1	SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:18:30 SHAFT M-D CREEP SANTOS VERIFICATION CALCULATION (2/13/95)

	**** PLOT TAPE WRITTEN AT TIME = 4.000E-03 STEP NUMBER 4 ***
•	
1	SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:18:30 SHAFT M-D CREEP SANTOS VERIFICATION CALCULATION (2/13/95)

	SUMMARY OF DATA AT STEP NUMBER 204, TIME = 3.154E+08 NUMBER OF ITERATIONS = 3, TOTAL NUMBER OF ITERATIONS = 32607 FINAL CONVERGENCE TOLERANCE = 9.630E-03 SUM OF EXTERNAL FORCES IN X-DIRECTION =-7.922E+10 SUM OF EXTERNAL FORCES IN Y-DIRECTION = 0.000E+00 SUM OF REACTION FORCES IN X-DIRECTION = 0.000E+00 SUM OF REACTION FORCES IN Y-DIRECTION = 1.322E-02
	**** PLOT TAPE WRITTEN AT TIME = 3.154E+08 STEP NUMBER 204 ****

205 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

E N D O F S O L U T I O N P H A S E
2.320E+02 CPU SECONDS USED
36926 WORDS ALLOCATED

APPENDIX Q

1,1

Input/Output Data For Test Case 17

The following sections present the input data and the formatted output for the upsetting of a cylindrical billet test.

FASTQ and SANTOS Input Data For The Problem of Upsetting of a Cylindrical Billet

This section presents a listing of the FASTQ and SANTOS input data files that were used for the mesh generation and analysis of the upset of a cylindrical billet.

```
billet17.fsq
TITLE
         STEEL BILLET
        1 0.000E+00
                                   0.000E+00
POINT
POINT
                  1.000E+01
                                   0.000E+00
              1.000E+01
0.000E+00
         3
POINT
                                   1.500E+01
POINT
          4
                                  1.500E+01
        1 STR 1 2 0 12 1.0000
2 STR 2 3 0 18 1.0000
3 STR 3 4 0 12 1.0000
4 STR 4 1 0 18 1.0000
1 1 -1 -2 -3 -4
LINE
LINE
LINE
LINE
REGION 1
SCHEME 0 M
LINEBC 1 1
LINEBC 2 2
LINEBC 3 3
LINEBC 4 4
SIDEBC 100 1
SIDEBC 300 3
SIDEBC 200 2
SIDEBC 400 4
SIDEBC 500 2 3
EXIT
billet17.i
  UPSETTING OF A CYLINDRICAL BILLET
AXISYMMETRIC
STEP CONTROL
100,1
END
INTERMEDIATE PRINT= 100
MAXIMUM ITERATIONS = 3000
RESIDUAL TOLERANCE = 0.5
MAXIMUM TOLERANCE = 100.0
OUTPUT TIME
5,1
END
PLOT TIME
```



```
END
PLOT NODAL = DISPLACEMENT, REACTION, RESIDUAL
PLOT ELEMENT = VONMISES, PRESSURE
PLOT STATE = EQPS
NO DISPLACEMENT, X = 4
PRESCRIBED DISPLACMENT, Y = 1,1,9.
FUNCTION = 1
0,0
1,1
END
RIGID SURFACE = 500 , 0., 15., 0., -1., FIXED
MATERIAL, 1, ELASTIC PLASTIC, 7.833E-6
YOUNGS MODULUS = 200 , POISSONS RATIO = .3
YIELD STRESS = .7 , HARDENING MODULUS = .3 , BETA = 1
END
EXIT
```

SANTOS Output For The Problem of Upsetting of a Cylindrical Billet

The following section presents a portion of the SANTOS printed output for the problem of upsetting of a cylindrical billet. Because all pertinent information and results from the analysis are written to the plot file for post-processing, the printed output file simply echoes input data and problem—descriptive information at the beginning, followed by information that tracks the convergence behavior of the solution, and a summary of CPU usage at the end. For this reason, only a partial listing, consisting of approximately the first 500 lines of output and the last 100 lines of output, is provided.

billet17.0

SSSSSS	AAA	AAA	N	NN	TTTTTT	000	000	SSSSSS
SS	AA	AA	NN	NN	$ extbf{T}$	00	00	SS
SS	AA	AA	NNN	NN	$\mathbf{T}\mathbf{T}$	00	00	SS
SSSSS	AAAA	AAA	NN N	NN	$ extbf{T}$ T	00	00	SSSSS
SS	AA	AA	NN	NNN	${f TT}$	00	00	SS
SS	AA	AA	NN	NN	\mathbf{TT}	00	00	SS
SSSSSS	AA	AA	NN	N	${f TT}$	000	000	SSSSS

VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE ENGINEERING SCIENCES CENTER SANDIA NATIONAL LABORATORIES ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030612 AT 11:18:59 RUN ON A i686 UNDER Lx2.4.20


```
1: TITLE
  2: UPSETTING OF A CYLINDRICAL BILLET
  3: AXISYMMETRIC
  4: STEP CONTROL
  5: 100,1
  6: END
  7: INTERMEDIATE PRINT= 100
  8: MAXIMUM ITERATIONS = 3000
  9: RESIDUAL TOLERANCE = 0.5
 10: MAXIMUM TOLERANCE = 100.0
 11: OUTPUT TIME
 12: 5,1
 13: END
 14: PLOT TIME
15: 1,1
16: END
17: PLOT NODAL = DISPLACEMENT, REACTION, RESIDUAL
18: PLOT ELEMENT = VONMISES, PRESSURE
19: PLOT STATE = EOPS
 20: NO DISPLACEMENT, X = 4
 21: PRESCRIBED DISPLACMENT, Y = 1,1,9.
 22: FUNCTION = 1
 23: 0,0
 24: 1,1
 25: END
 26: RIGID SURFACE = 500 , 0., 15., 0., -1., FIXED
 27: MATERIAL, 1, ELASTIC PLASTIC, 7.833E-6
 28: YOUNGS MODULUS = 200 , POISSONS RATIO = .3
 29: YIELD STRESS = .7 , HARDENING MODULUS = .3 , BETA = 1
 30: END
 31: EXIT
                                INPUT STREAM IMAGES
LINE ------
 33: TITLE
34: UPSETTING OF A CYLINDRICAL BILLET
 35: AXISYMMETRIC
36: STEP CONTROL
 37: 100,1
 38: END
 39: INTERMEDIATE PRINT= 100
 40: MAXIMUM ITERATIONS = 3000
 41: RESIDUAL TOLERANCE = 0.5
 42: MAXIMUM TOLERANCE = 100.0
 43: OUTPUT TIME
 44: 5,1
 45: END
 46: PLOT TIME
 47: 1,1
 48: END
 49: PLOT NODAL = DISPLACEMENT, REACTION, RESIDUAL
 50: PLOT ELEMENT = VONMISES, PRESSURE
 51: PLOT STATE = EQPS
 52: NO DISPLACEMENT, X = 4
 53: PRESCRIBED DISPLACMENT, Y = 1, 1, 9.
 54: FUNCTION = 1
 55: 0,0
 56: 1,1
```


Page 326

57: END
58: RIGID SURFACE = 500 , 0., 15., 0., -1., FIXED
59: MATERIAL,1,ELASTIC PLASTIC,7.833E-6
60: YOUNGS MODULUS = 200 , POISSONS RATIO = .3
61: YIELD STRESS = .7 , HARDENING MODULUS = .3 , BETA = 1
62: END
63: EXIT

1

PROBLEM TITLE

UPSETTING OF A CYLINDRICAL BILLET

PROBLEM DEFINITION

NUMBER OF ELEMENTS	216
NUMBER OF NODES	247
NUMBER OF MATERIALS	1
NUMBER OF FUNCTIONS	1
NUMBER OF CONTACT SURFACES	0
NUMBER OF RIGID SURFACES	1
NUMBER OF MATERIAL POINTS MONITORED	0
ANALYSIS TYPE	AXISYMMETRIC
GLOBAL CONVERGENCE MEASURE	
RESIDUAL TOLERANCE	5.000E-01
MAXIMUM NUMBER OF ITERATIONS	3000
ITERATIONS FOR INTERMEDIATE PRINT	100
MAXIMUM RESIDUAL TOLERANCE	1.000E+02
PREDICTOR SCALE FACTOR FUNCTION	0
MINIMUM DAMPING FACTOR	2.000E-01
EFFECTIVE MODULUS STATUS	CONSTANT
SCALE FACTOR APPLIED TO TIME STEP	1.000E+00
STRAIN SOFTENING SCALE FACTOR	1.000E+00
HOURGLASS STIFFNESS FACTOR	1.000E-02
HOURGLASS VISCOSITY FACTOR	3.000E-02

LOAD STEP DEFINITIONS

TIME NO. OF STEPS TIME 0.000E+00 100 1.000E+00

PRINTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PRINTS TIME 0.000E+00 5 1.000E+00

PLOTTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PLOTS TIME 0.000E+00 1 1.000E+00

MATERIAL DEFINITIONS

MATERIAL TYPEELASTIC PLASTIC

DENSITY 7.833E-06

MATERIAL PROPERTIES:

YOUNGS MODULUS = 2.000E+02
POISSONS RATIO = 3.000E-01
YIELD STRESS = 7.000E-01
HARDENING MODULUS = 3.000E-01
BETA = 1.000E+00

FUNCTION DEFINITIONS

FUNCTION ID 1 NUMBER OF POINTS 2

N S F(S) 1 0.000E+00 0.000E+00 2 1.000E+00 1.000E+00

NO DISPLACEMENT BOUNDARY CONDITIONS

NODE SET FLAG DIRECTION 4 X

PRESCRIBED DISPLACEMENT BOUNDARY CONDITIONS

NODE SET DIRECTION FUNCTION SCALE A0 B0 FLAG ID FACTOR 1 Y 1 9.000E+00 - -

RIGID SURFACES

SURFACE	SIDE SET	COEFFICIENT	X0	Y0	NX	NY
NUMBER	FLAG	OF FRICTION				
1	500	FIXED	0.000E+00	1.500E+01	0.000E+00-1	.000E+00

E N D O F D A T A I N P U T P H A S E 3.000E-02 CPU SECONDS USED 3474 WORDS ALLOCATED

E N D O F D A T A I N I T I A L I Z A T I O N P H A S E 0.000E+00 CPU SECONDS USED 31726 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

NODAL	ELEMENT	GLOBAI
DISPLX	PRESSURE	FX
DISPLY	VONMISES	FY
RESIDX	EQPS	RX
RESIDY		RY
RESID		ITER
REACTX		RMAG
REACTY		

**** PLOT TAPE WRITTEN FOR THE INITIAL STATE AT TIME = 0.000E+00 ****

STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
100	1.000E-02	9.999E-03	8.930E-01	1.146E+01	5.317E-01	4.64	100
200	1.000E-02	9.999E-03	9.331E-01	1.137E+01	1.011E-01	0.89	200

**** PLOT TAPE WRITTEN AT TIME = 1.000E-02 STEP NUMBER 1 ****

STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
100	2.000E-02	1.000E-02	8.881E-01	1.155E+01	1.862E-01	1.61	327

**** PLOT TAPE	WRITTEN AT	TIME = 2 .	000E-02 SI	EP NUMBER	2 ****	
STEP TIME	ΨΤΜΕ	DAMPING	משד זממג	RESIDUAL	DEDCENT	ጥ ጥ አ ፣
SIEF IIME				LOAD NORM		
100 3.000E-02	1.000E-02	9.573E-01	1.164E+01	6.329E-02	0.54	509
**** PLOT TAPE	WRITTEN AT	TIME = 3 .	000E-02 ST	EP NUMBER	3 ****	
		,				
		•				

**** PLOT TAPE	WRITTEN AT	TIME = 4 .	000E-02 S1	EP NUMBER	4 ****	
STEP TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
100 1.000E+00				LOAD NORM		
SANTOS, VERSI					2.08	18672
UPSETTING OF	A CYLINDRI	CAL BILLET				
********	*****	*****	*****	*****	****	
SUMMARY OF DAT			•			
NUMBER OF ITER FINAL CONVERGE		•		OF ITERATIO	NS = 186	590
SUM OF EXTERNA	-· -	: -:	=	:+00		
SUM OF EXTERNA						
SUM OF REACTION SUM OF REACTION						
2011 01 11210120	01.020 211			-		

100 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

**** PLOT TAPE WRITTEN AT TIME = 1.000E+00 STEP NUMBER 100 ****

E N D O F S O L U T I O N P H A S E 3.563E+01 CPU SECONDS USED 38714 WORDS ALLOCATED

APPENDIX R

Input/Output Data For Test Case 18

The following three sections present the input data, the initial stress subroutine, and the formatted output, respectively, for the Isothermal WIPP Benchmark II verification problem.

FASTQ and SANTOS Input Data For The Isothermal WIPP Benchmark II Problem

This section presents a listing of the FASTQ and SANTOS input data files that were used for the mesh generation and analysis of the Benchmark II isothermal drift problem.

bm2isonew.fsq

TITLE			
ISOTH	ERMAL	BENCHMARK II MESH	
POINT	1	0.00000000E+00	-5.9802001953E+02
POINT	2	5.0300002098E+00	-5.9802001953E+02
POINT	3	2.0270000458E+01	-5.9802001953E+02
POINT	4	0.000000000E+00	-6.0259002686E+02
POINT	5	5.0300002098E+00	-6.0259002686E+02
POINT	6	2.0270000458E+01	-6.0259002686E+02
POINT	7	0.00000000E+00	-6.3885998535E+02
POINT	8	5.0300002098E+00	-6.3885998535E+02
POINT	9	2.0270000458E+01	-6.3885998535E+02
POINT	10	0.000000000E+00	-6.4276000977E+02
POINT	11	5.0300002098E+00	-6.4276000977E+02
POINT	12	2.0270000458E+01	-6.4276000977E+02
POINT	13	0.000000000E+00	-6.4297998047E+02
POINT	14	5.0300002098E+00	-6.4297998047E+02
POINT	15	2.0270000458E+01	-6.4297998047E+02
POINT	16	5.0300002098E+00	-6.4297998047E+02
POINT	17	0.000000000E+00	-6.4992999268E+02
POINT	18	5.0300002098E+00	-6.4992999268E+02
POINT	19	2.0270000458E+01	-6.4992999268E+02
POINT	20	0.000000000E+00	-6.5020001221E+02
POINT	21	5.0300002098E+00	-6.5020001221E+02
POINT	22	2.0270000458E+01	-6.5020001221E+02
POINT	23	5.0300002098E+00	-6.5020001221E+02
POINT	24	0.000000000E+00	-6.5503997803E+02
POINT	25	5.0300002098E+00	-6.5503997803E+02
POINT	26	2.0270000458E+01	-6.5503997803E+02
POINT	27	0.000000000E+00	-6.590000000E+02
POINT	28	5.0300002098E+00	-6.590000000E+02
POINT	29	2.0270000458E+01	-6.590000000E+02
POINT	30	0.000000000E+00	-6.6010998535E+02
POINT	31	5.0300002098E+00	-6.6010998535E+02
POINT	32	2.0270000458E+01	-6.6010998535E+02
POINT	33	0.000000000E+00	-6.6102001953E+02
POINT	34	5.0300002098E+00	-6.6102001953E+02
POINT	35	2.0270000458E+01	-6.6102001953E+02
POINT	36	5.0300002098E+00	-6.6102001953E+02
POINT	37	0.000000000E+00	-6.6909997559E+02

POINT	38	_	030000	2098E+0	١٨	<i>c c</i>	909997559E	A 3
POINT	39			0458E+0			909997559E	
POINT	40			2098E+0			909997559E	
	41						365997314E	
POINT	42			0000E+0				
POINT				2098E+0			365997314E	
POINT	43 44			0458E+0			365997314E	
POINT				0000E+0			677001953E	
POINT	45			2098E+0			677001953E	
POINT	46 1			0458E+0	0		677001953E 1.0000	1+02
LINE	2	STR STR	1 2	2 3	0	7 13	1.0500	
LINE LINE	3	STR	4	1	0	3	1.0000	
LINE	4	STR	5	2	0	3	1.0000	
LINE	5	STR	6	3	0	3	1.0000	
LINE	6	STR	4	5	0	7	1.0000	
LINE	7	STR	5	6	0	13	1.0500	
LINE	8	STR	7	4	0	12	1.0500	
LINE	9	STR	8	5	0	12	1.0500	
LINE	10	STR	9	6	0	12	1.0500	
LINE	11	STR	7	8	0	7	1.0000	
LINE	12	STR	8	9	0	13	1.0500	
LINE	13	STR	10	7	0	4	1.0000	
LINE	14	STR	11	8	Ö	4	1.0000	
LINE	15	STR	12	9	0	4	1.0000	
LINE	16	STR	10	11	0	7	1.0000	
LINE	17	STR	11	12	Ö	13	1.0500	
LINE	18	STR	13	10	Ö	1	1.0000	
LINE	19	STR	14	11	ő	1	1.0000	
LINE	20	STR	15	12	ő	1	1.0000	
LINE	21	STR	13	14	Ö	7	1.0000	
LINE	22	STR	14	15	Ö	13	1.0500	
LINE	23	STR	13	16	Ö	7	1.0000	
LINE	24	STR	16	15	0	13	1.0500	
LINE	25	STR	17	13	Ö	-6	1.0000	
LINE	26	STR	18	16	0	6	1.0000	
LINE	27	STR	19	15	Ó	6	1.0000	
LINE	28	STR	17	18	0	7	1.0000	
LINE	29	STR	18	19	0	13	1.0500	
LINE	30	STR	20	17	0	1	1.0000	
LINE	31	STR	21	18	0	1	1.0000	
LINE	32	STR	22	19	0	1	1.0000	
LINE	33	STR	20	21	0	7	1.0000	
LINE	34	STR	21	22	0	13	1.0500	
LINE	35	STR	20	23	0	7	1.0000	
LINE	36	STR	23	22	0	13	1.0500	
LINE	37	STR	24	20	0	4	1.0000	
LINE	38	STR	25	23	0	4	1.0000	
LINE	39	STR	26	22	0	4	1.0000	
LINE	40	STR	24	25	0 .	7	1.0000	•
LINE	41	STR	25	26	0	13	1.0500	
LINE	42	STR	28	25	0	8	1.0000	
LINE	43	STR	29	26	0	8	1.0000	
LINE	44	STR	28.	29	0	13	1.0500	
LINE	45	STR	27	28	0	7	1.0000	
LINE	46	STR	30	27	0	3	1.0000	
LINE	47	STR	31	28	0	3	1.0000	
LINE	48	STR	32	29	0	3	1.0000	
LINE	49	STR	30	31	0	7	1.0000	

	_											Г	age 334
	<u>.</u>												
LINE	50	STR	31	32	0	13	1.0500						
LINE	51	STR	33	30	0	3	1.0000						
LINE	52	STR	34	31	. 0	3	1.0000						
LINE	53	STR	35	32	0	3	1.0000						
LINE	54	STR	33	34	0	7	1.0000						
LINE	55 56	STR	34	35 36	0	13	1.0500						
LINE LINE	56 57	STR	33 36	35	0	7 13	1.0000						
LINE	58	STR STR	37	33	0	13 5	1.0500 0.9000						
LINE	59	STR	38	36	0 0	5	0.9000						
LINE	60	STR	39	35	0	5	0.9000						
LINE	61	STR	37	38	0	7	1.0000						
LINE	62	STR	38	39	Ö	13	1.0500				,		
LINE	63	STR	37	40	0	7	1.0000						
LINE	64	STR	40	39	0	13	1.0500						
LINE	65	STR	41	37	Ö	10	0.9000						
LINE	66	STR	42	40	0	10	0.9000						
LINE	67	STR	43	39	Ö	10	0.9000						
LINE	68	STR	41	42	Ő	7	1.0000						
LINE	69	STR	42	43	0	13	1.0500						
LINE	70	STR	44	41	0	3	1.0000						
LINE	71	STR	45	42	0	3	1.0000						
LINE	72	STR	46	43	0	3	1.0000						
LINE	73	STR	44	45	0	7	1.0000						
LINE	74	STR	45	46	0	13	1.0500						
REGION	1	4	-6	-4	-1	-3							
REGION	2	4	-7	-5	-2	-4							
REGION	3	2	-11	-9	-6	-8							
REGION	4	2	-12	-10	-7	-9							
REGION	5	. 1	-16	-14	-11	-13							
REGION	6	1	-17	-15	-12	-14							
REGION	7	. 4	-21	-19	-16	-18							
REGION	8	4	-22	-20	-17	-19							
REGION	9	1	-28	-26	-23	-25							
REGION	10	1	-29	-27	-24	-26							
REGION	11	4	-33	-31	-28	-30							
REGION	12	4	-34	-32	-29	-31							
REGION	13	1	-40	-38	-35	-37							
REGION	14	1	-41	-39	-36	-38							
REGION	15	1	-44	-43	-41	-42							
REGION	16	1	-49	-47	-45	-46							
REGION	17	1	-50	-48	-44	-47							
REGION	18	4 4	-54	-52	-49 50	-51							
REGION REGION	19 20	3	-55 -61	-53 -59	-50 -56	-52 -58							
REGION	21	3	-62	-60	-57	-59	•						
REGION	22	1	-68	-66	-63	-65							
REGION	23	1	-69	-67	-64	-66							
REGION	24	4	-73	-71	-68	-70							
REGION	25	4	-74	-72	-69	-71							
SCHEME	0 M				33								
BODY	1	2	3	4	5	6	7	8	9	10	11	12 *	
13	14	15	16	17	18	19	20	21	22	23	24	25	
LINEBC	2	5				_,		_		-			
LINEBC	3	3	8	13	18	25	30	37	46	51	58	65 *	
10	15	20	27	32	39	43	48	53	60	67	72		
LINEBC	3	70											
SIDEBC	1	1	2										

June 2003 Page 333

```
SIDEBC
                21
                      22
SIDEBC
           5
                23
                      24
SIDEBC
           6
                33
                      34
SIDEBC
                35
                      36
SIDEBC
          8
                54
SIDEBC
          9
                56
                      57
          10
SIDEBC
                61
                      62
SIDEBC
          11
                63
                      64
                      74
SIDEBC
          22
                73
EXIT
bm2isonew.i
TITLE
  BENCHMARK II ISOTHERMAL PROBLEM - SANTOS VERIFICATION (1/9/95)
RESIDUAL TOLERANCE = .5
MAXIMUM ITERATIONS = 20000
INTERMEDIATE PRINT = 100
MAXIMUM TOLERANCE = 5.
PLANE STRAIN
TIME STEP SCALE = 0.4
PREDICTOR SCALE FACTOR = 2
$HOURGLASS STIFFENING = 0.0005
EFFECTIVE MODULUS = VARIABLE
INITIAL STRESS = USER
GRAVITY = 1 = 0. = -9.8066 = 0.
STEP CONTROL
 400 3.157E8
END
PLOT TIME
1 3.157E8
END
OUTPUT TIME
100 3.157E8
PLOT NODAL DISPLACEMENT, RESIDUAL
PLOT ELEMENT STRESS, VONMISES, EFFMOD
PLOT STATE EQCS
NO DISPLACEMENT X, 3
NO DISPLACEMENT X, 2
NO DISPLACEMENT Y, 2
FUNCTION = 1
0.1.
4.E8 1.
FUNCTION = 2
0. 0.
4.E8 0.
PRESSURE, 1, 1, 12.71E6
PRESSURE, 22, 1, 15.00E6
CONTACT SURFACE, 4, 5, 0., .02, 1.E40
CONTACT SURFACE, 7, 6, 0., .02, 1.E40
CONTACT SURFACE, 9, 8, 0., .02, 1.E40
CONTACT SURFACE, 10, 11, 0., .02, 1.E40
MATERIAL, 1, POWER LAW CREEP, 2167.
TWO MU = 19.84E9
BULK MODULUS = 16.53E9
CREEP CONSTANT = 5.79E-36
```

```
STRESS EXPONENT = 4.9
THERMAL CONSTANT = 20.13
END
MATERIAL, 2, POWER LAW CREEP, 2167.
TWO MU = 19.84E9
BULK MODULUS = 16.53E9
CREEP CONSTANT = 1.74E-35
STRESS EXPONENT = 4.9
THERMAL CONSTANT = 20.13
MATERIAL, 3, POWER LAW CREEP, 2167.
TWO MU = 21.2E9
BULK MODULUS = 17.66E9
CREEP CONSTANT = 5.21E-36
STRESS EXPONENT = 4.9
THERMAL CONSTANT = 20.13
MATERIAL, 4, ELASTIC, 2167.
YOUNGS MODULUS = 72.4E9
POISSONS RATIO = .33
END
EXIT
```

Initial Stress Subroutine For The Isothermal WIPP Benchmark II Problem

This section presents a listing of the INITST subroutine that was used in SANTOS to specify the initial stresses for the Benchmark II isothermal drift analysis.

```
SUBROUTINE INITST ( SIG, COORD, LINK, DATMAT, KONMAT, SCREL )
C
С
С
   DESCRIPTION:
C
    THIS ROUTINE PROVIDES AN INITIAL STRESS STATE TO SANTOS
C
C
   FORMAL PARAMETERS:
C
    SIG
         REAL
                       ELEMENT STRESS ARRAY WHICH MUST BE RETURNED
С
                       WITH THE REQUIRED STRESS VALUES
С
    COORD REAL
                       GLOBAL NODAL COORDINATE ARRAY
C
    LINK
            INTEGER
                       CONNECTIVITY ARRAY
C
    DATMAT REAL
                       MATERIAL PROPERTIES ARRAY
C
    KONMAT INTEGER
                       MATERIAL PROPERTIES INTEGER ARRAY
C
C
  CALLED BY: INIT
C
 ********************
С
C
     INCLUDE 'params.blk'
     INCLUDE 'psize.blk'
     INCLUDE 'contrl.blk'
     INCLUDE 'bsize.blk'
     INCLUDE 'timer.blk'
С
    DIMENSION LINK (NELNS, NUMEL), KONMAT(10, NEMBLK), COORD(NNOD, NSPC),
             SIG(NSYMM, NUMEL), DATMAT(MCONS, *), SCREL(NEBLK, *)
C·
     DO 1000 I = 1, NEMBLK
       MATID = KONMAT(1, I)
```



```
MKIND = KONMAT(2, I)
        ISTRT = KONMAT(3, I)
        IEND = KONMAT(4,I)
           DO 500 J = ISTRT, IEND
              II = LINK(1,J)
              JJ = LINK(2,J)
              KK = LINK(3,J)
              LL = LINK(4,J)
              ZAVG = 0.25 * (COORD(II,2) + COORD(JJ,2) + COORD(KK,2) +
                   COORD(LL,2) )
              STRESS = 21252. * ( ZAVG )
              SIG(1,J) = STRESS
              SIG(2,J) = STRESS
              SIG(3,J) = STRESS
              SIG(4,J) = 0.0
500
           CONTINUE
1000 CONTINUE
    RETURN
     END
```

SANTOS Output For The Isothermal WIPP Benchmark II Problem

The following section presents a portion of the SANTOS printed output for the Benchmark II isothermal drift analysis. Because all pertinent information and results from the analysis are written to the plot file for post-processing, the printed output file simply echoes input data and problem—descriptive information at the beginning, followed by information that tracks the convergence behavior of the solution, and a summary of CPU usage at the end. For this reason, only a partial listing, consisting of approximately the first 500 lines of output and the last 100 lines of output, is provided.

bm2isonew.i

1

SSSSSS	AA/	AAA	N	NN	TTTTTT	000	000	SSSSSS
SS	AA	AA	NN	NN	${f TT}$	00	00	SS
SS	AA	AA	NNN	NN	TT	00	00	SS
SSSSS	AAA	AAAA	NN 1	NN N	${f TT}$	00	00	SSSSS
SS	AA	AA	NN	NNN	${f TT}$	00	00	SS
SS	AA	AA	NN	NN	$ extbf{T}$	00	00	SS
SSSSSS	AA	AA	NN	N	${f TT}$	000	000	SSSSSS

VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE ENGINEERING SCIENCES CENTER SANDIA NATIONAL LABORATORIES ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030612 AT 11:20:43 RUN ON A 1686 UNDER Lx2.4.20

1: TITLE 2: BENCHMARK II ISOTHERMAL PROBLEM - SANTOS VERIFICATION (1/9/95) 3: RESIDUAL TOLERANCE = .5 4: MAXIMUM ITERATIONS = 50000 5: INTERMEDIATE PRINT = 100 6: MAXIMUM TOLERANCE = 5. 7: PLANE STRAIN 8: TIME STEP SCALE = 0.4 9: PREDICTOR SCALE FACTOR = 2 10: \$HOURGLASS STIFFENING = 0.0005 11: EFFECTIVE MODULUS = VARIABLE 12: INITIAL STRESS = USER 13: GRAVITY = 1 = 0. = -9.8066 = 0. 14: STEP CONTROL 15: 400 3.157E8 16: END 17: PLOT TIME 18: 1 3.157E8 19: END 20: OUTPUT TIME 21: 100 3.157E8 22: END 23: PLOT NODAL DISPLACEMENT, RESIDUAL 24: PLOT ELEMENT STRESS, VONMISES, EFFMOD 25: PLOT STATE EQCS 26: NO DISPLACEMENT X, 3 27: NO DISPLACEMENT X, 2 28: NO DISPLACEMENT Y, 2 29: FUNCTION = 130: 0. 1. 31: 4.E8 1. 32: END 33: FUNCTION = 234: 0. 0. 35: 4.E8 0. 36: END 37: PRESSURE, 1, 1, 12.71E6 38: PRESSURE, 22, 1, 15.00E6 39: CONTACT SURFACE, 4, 5, 0., .02, 1.E40 40: CONTACT SURFACE, 7, 6, 0., .02, 1.E40 41: CONTACT SURFACE, 9, 8, 0., .02, 1.E40 42: CONTACT SURFACE, 10, 11, 0., .02, 1.E40 43: MATERIAL, 1, POWER LAW CREEP, 2167. 44: TWO MU = 19.84E945: BULK MODULUS = 16.53E9 46: CREEP CONSTANT = 5.79E-36 47: STRESS EXPONENT = 4.9 48: THERMAL CONSTANT = 20.13 49: END 50: MATERIAL, 2, POWER LAW CREEP, 2167. 51: TWO MU = 19.84E952: BULK MODULUS = 16.53E9

June 2003 Page 337

```
53: CREEP CONSTANT = 1.74E-35
 54: STRESS EXPONENT = 4.9
 55: THERMAL CONSTANT = 20.13
 56: END
 57: MATERIAL, 3, POWER LAW CREEP, 2167.
 58: TWO MU = 21.2E9
 59: BULK MODULUS = 17.66E9
 60: CREEP CONSTANT = 5.21E-36
 61: STRESS EXPONENT = 4.9
 62: THERMAL CONSTANT = 20.13
 63: END
 64: MATERIAL, 4, ELASTIC, 2167.
 65: YOUNGS MODULUS = 72.4E9
 66: POISSONS RATIO = .33
 67: END
 68: EXIT
                                   INPUT STREAM IMAGES
 71: BENCHMARK II ISOTHERMAL PROBLEM - SANTOS VERIFICATION (1/9/95)
 72: RESIDUAL TOLERANCE = .5
 73: MAXIMUM ITERATIONS = 50000
 74: INTERMEDIATE PRINT = 100
 75: MAXIMUM TOLERANCE = 5.
 76: PLANE STRAIN
 77: TIME STEP SCALE = 0.4
 78: PREDICTOR SCALE FACTOR = 2
 79: $HOURGLASS STIFFENING = 0.0005
 80: EFFECTIVE MODULUS = VARIABLE
 81: INITIAL STRESS = USER
 82: GRAVITY = 1 = 0. = -9.8066 = 0.
 83: STEP CONTROL
 84: 400 3.157E8
 85: END
 86: PLOT TIME
 87: 1 3.157E8
 88: END
 89: OUTPUT TIME
 90: 100 3.157E8
 91: END
 92: PLOT NODAL DISPLACEMENT, RESIDUAL
 93: PLOT ELEMENT STRESS, VONMISES, EFFMOD
 94: PLOT STATE EQCS
 95: NO DISPLACEMENT X, 3
 96: NO DISPLACEMENT X, 2
 97: NO DISPLACEMENT Y, 2
 98: FUNCTION = 1
 99: 0. 1.
100: 4.E8 1.
101: END
102: FUNCTION = 2
103: 0. 0.
104: 4.E8 0.
105: END
106: PRESSURE, 1, 1, 12.71E6
107: PRESSURE, 22, 1, 15.00E6
108: CONTACT SURFACE, 4, 5, 0., .02, 1.E40 109: CONTACT SURFACE, 7, 6, 0., .02, 1.E40
```

```
110: CONTACT SURFACE, 9, 8, 0., .02, 1.E40
111: CONTACT SURFACE, 10, 11, 0., .02, 1.E40
112: MATERIAL, 1, POWER LAW CREEP, 2167.
113: TWO MU = 19.84E9
114: BULK MODULUS = 16.53E9
115: CREEP CONSTANT = 5.79E-36
116: STRESS EXPONENT = 4.9
117: THERMAL CONSTANT = 20.13
118: END
119: MATERIAL, 2, POWER LAW CREEP, 2167.
120: TWO MU = 19.84E9
121: BULK MODULUS = 16.53E9
122: CREEP CONSTANT = 1.74E-35
123: STRESS EXPONENT = 4.9
124: THERMAL CONSTANT = 20.13
125: END
126: MATERIAL, 3, POWER LAW CREEP, 2167.
127: TWO MU = 21.2E9
128: BULK MODULUS = 17.66E9
129: CREEP CONSTANT = 5.21E-36
130: STRESS EXPONENT = 4.9
131: THERMAL CONSTANT = 20.13
132: END
133: MATERIAL, 4, ELASTIC, 2167.
134: YOUNGS MODULUS = 72.4E9
135: POISSONS RATIO = .33
136: END
137: EXIT
```

PROBLEM TITLE

BENCHMARK II ISOTHERMAL PROBLEM - SANTOS VERIFICATION (1/9/95)

PROBLEM DEFINITION

NUMBER OF ELEMENTS	1204
NUMBER OF NODES	1371
NUMBER OF MATERIALS	4
NUMBER OF FUNCTIONS	2
NUMBER OF CONTACT SURFACES	4
NUMBER OF RIGID SURFACES	0
NUMBER OF MATERIAL POINTS MONITORED	0
ANALYSIS TYPE	PLANE STRAIN
GLOBAL CONVERGENCE MEASURE	
RESIDUAL TOLERANCE	5.000E-01
MAXIMUM NUMBER OF ITERATIONS	50000
ITERATIONS FOR INTERMEDIATE PRINT	100
MAXIMUM RESIDUAL TOLERANCE	5.000E+00
PREDICTOR SCALE FACTOR FUNCTION	2
MINIMUM DAMPING FACTOR	2.000E-01
EFFECTIVE MODULUS STATUS	VARIABLE
INITIAL STRESS DISTRIBUTION APPLIED	
GRAVITY LOADS APPLIED	
SCALE FACTOR APPLIED TO TIME STEP	'4.000E-01

STRAIN SOFTENING SCALE FACTOR	1.000E+00
HOURGLASS STIFFNESS FACTOR	5.000E-02
HOURGLASS VISCOSITY FACTOR	0.000E+00

LOAD STEP DEFINITIONS

TIME NO. OF STEPS TIME 0.000E+00 400 3.157E+08

PRINTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PRINTS TIME 0.000E+00 100 3.157E+08

PLOTTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PLOTS TIME 0.000E+00 1 3.157E+08

MATERIAL DEFINITIONS

MATERIAL TYPE POWER LAW CREEP MATERIAL ID 1

BULK MODULUS = 1.653E+10
CREEP CONSTANT = 5.790E-36
STRESS EXPONENT = 4.900E+00
THERMAL CONSTANT = 2.013E+01

DENSITY 2.167E+03

MATERIAL PROPERTIES:

TWO MU = 2.120E+10
BULK MODULUS = 1.766E+10
CREEP CONSTANT = 5.210E-36
STRESS EXPONENT = 4.900E+00
THERMAL CONSTANT = 2.013E+01

FUNCTION DEFINITIONS

N S F(S) 1 0.000E+00 1.000E+00 2 4.000E+08 1.000E+00

FUNCTION ID 2 NUMBER OF POINTS 2

N S F(S) 1 0.000E+00 0.000E+00 2 4.000E+08 0.000E+00

NO DISPLACEMENT BOUNDARY CONDITIONS

NODE SET FLAG DIRECTION
3 X
2 X
7

CONTACT SURFACES

SURFACE	SURFACE 1	SURFACE	2 PENALTY	COEFFICIENT	PENETRATION	TENSION
NUMBER	FLAG	FLAG	FACTOR	OF FRICTION	MULTIPLIER	RELEASE
1	4	5	0.000E+00	0.000E+00	2.000E-02	INF
2	7	6	0.000E+00	0.000E+00	2.000E-02	INF

3	9	8	0.000E+00	0.000E+00	2.000E-02	INF
4	10	11	0.000E+00	0.000E+00	2.000E-02	INF

PRESSURE BOUNDARY CONDTIONS

SURFACE	FUNCTION	SCALE
FLAG	NUMBER	FACTOR
1	1	1.271E+07
22 '	1	1.500E+07

ENDOF DATA INPUT PHASE 5.000E-02 CPU SECONDS USED 16384 WORDS ALLOCATED

END OF DATA INITIALIZATION PHASE 1.000E-02 CPU SECONDS USED 155982 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

NODAL	ELEMENT	GLOBAL
DISPLX	SIGXX	FX
DISPLY	SIGYY	FY
RESIDX	SIGZZ	RX
RESIDY	TAUXY	RY
RESID	VONMISES	ITER
	EFFMOD	RMAG
	EQCS	

**** PLOT TAPE WRITTEN FOR THE INITIAL STATE AT TIME = 0.000E+00 ****

STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
100	7.892E+05	7.891E+05	9.416E-01	9.083E+07	1.123E+07	12.36	100
200	7.892E+05	7.891E+05	8.288E-01	9.083E+07	4.254E+07	46.84	200
300	7.892E+05	7.890E+05	7.480E-01	9.083E+07	1.583E+07	17.43	300
400	7.892E+05	7.890E+05	9.566E-01	9.083E+07	8.889E+07	97.87	400
500	7.892E+05	7.890E+05	8.052E-01	9.083E+07	1.975E+07	21.74	500

Page	34
Page	244

600	7.892E+05	7.890E+05	8.592E-01	9.083E+07	1.484E+07	16.34	600
700	7.892E+05	7.890E+05	7.473E-01	9.083E+07	1.862E+08	205.01	700
800	7.892E+05	7.890E+05	8.567E-01	9.083E+07	1.371E+08	150.89	800
900	7.892E+05	7.890E+05	9.334E-01	9.083E+07	5.117E+07	56.33	900
1000	7.892E+05	7.890E+05	9.343E-01	9.083E+07	6.483E+08	713.82	1000
1100	7.892E+05	7.890E+05	6.362E-01	9.083E+07	2.427E+07	26.72	1100
	7.892E+05	7.890E+05					1200
1200			6.959E-01	9.083E+07	3.582E+07	39.43	
1300	7.892E+05	7.890E+05	9.662E-01	9.083E+07	3.534E+08	389.13	1300
1400	7.892E+05	7.890E+05	8.168E-01	9.083E+07	4.245E+07	46.74	1400
1500	7.892E+05	7.890E+05	9.140E-01	9.083E+07	7.774E+07	85.59	1500
1600	7.892E+05	7.890E+05	8.435E-01	9.083E+07	2.690E+07	29.62	1600
1700	7.892E+05	7.890E+05	9.949E-01	9.083E+07	5.582E+07	61.45	1700
1800	7.892E+05	7.890E+05	8.813E-01	9.083E+07	1.263E+08	139.02	1800
1900	7.892E+05	7.890E+05	7.849E-01	9.083E+07	4.581E+07	50.43	1900
2000	7.892E+05	7.890E+05	8.453E-01	9.083E+07	1.038E+08	114.32	2000
2100	7.892E+05	7.890E+05	7.702E-01	9.083E+07	7.210E+07	79.38	2100
2200	7.892E+05	7.890E+05	7.341E-01	9.083E+07	3.678E+07	40.49	2200
2300	7.892E+05	7.890E+05	7.640E-01	9.083E+07	1.238E+07	13.63	2300
2400	7.892E+05	7.890E+05	7.889E-01	9.083E+07	4.765E+07	52.46	2400
2500	7.892E+05	7.890E+05	7.783E-01	9.083E+07	7.985E+07	87.91	2500
2600	7.892E+05	7.890E+05	8.071E-01	9.083E+07	4.304E+07	47.38	2600
2700	7.892E+05	7.890E+05	8.108E-01	9.083E+07	3.052E+07	33.60	2700
2800	7.892E+05	7.890E+05	9.151E-01	9.083E+07	2.390E+07	26.32	2800
	7.892E+05						2900
2900		7.890E+05	7.884E-01	9.083E+07	8.108E+07	89.27	
3000	7.892E+05	7.890E+05	9.326E-01	9.083E+07	9.185E+06	10.11	3000
3100	7.892E+05	7.890E+05	6.958E-01	9.083E+07	1.392E+07	15.32	3100
3200	7.892E+05	7.890E+05	9.154E-01	9.083E+07	2.750E+07	30.27	3200
3300	7.892E+05	7.890E+05	9.150E-01	9.083E+07	8.809E+06	9.70	3300
3400	7.892E+05	7.890E+05	8.212E-01	9.083E+07	3.100E+07	34.13	3400
3500	7.892E+05	7.890E+05	8.399E-01	9.083E+07	3.377E+07	37.18	3500
3600	7.892E+05	7.890E+05	6.786E-01	9.083E+07	1.869E+07	20.58	3600
3700	7.892E+05	7.890E+05	8.845E-01	9.083E+07	1.125E+07	12.38	3700
3800	7.892E+05	7.890E+05	8.912E-01	9.083E+07	1.279E+07	14.08	3800
3900	7.892E+05	7.890E+05	7.943E-01	9.083E+07	3.241E+07	35.68	3900
4000	7.892E+05	7.890E+05	8.841E-01	9.083E+07	2.815E+07	31.00	4000
4100	7.892E+05	7.890E+05	6.534E-01	9.083E+07	2.820E+07	31.05	4100
4200	7.892E+05	7.890E+05	7.311E-01	9.083E+07	2.143E+07	23.59	4200
4300	7.892E+05	7.889E+05	8.000E-01	9.083E+07	8.187E+06	9.01	4300
4400	7.892E+05	7.889E+05	9.058E-01	9.083E+07	4.344E+07	47.83	4400
4500	7.892E+05	7.889E+05	8.020E-01	9.083E+07	1.376E+07	15.15	4500
4600	7.892E+05	7.889E+05	9.526E-01	9.083E+07	1.130E+07	12.44	4600
4700	7.892E+05	7.889E+05	8.428E-01	9.083E+07	1.611E+06	1.77	4700
4800	7.892E+05	7.889E+05	9.604E-01	9.083E+07	1.963E+06	2.16	4800
4900	7.892E+05	7.889E+05	9.551E-01	9.083E+07	3.280E+06	3.61	4900
5000	7.892E+05	7.889E+05	8.109E-01	9.083E+07	2.427E+06	2.67	5000
5100	7.892E+05	7.889E+05	9.077E-01	9.083E+07	1.136E+06		5100
						1.25	5200
5200 5300	7.892E+05	7.889E+05	8.874E-01	9.083E+07	1.594E+06	1.75	
	7.892E+05	7.889E+05	7.935E-01	9.083E+07	3.198E+06	3.52	5300
5400	7.892E+05	7.889E+05	6.660E-01	9.083E+07	1.622E+06	1.79	5400
5500	7.892E+05	7.889E+05	6.857E-01	9.083E+07	9.636E+05	1.06	5500
5600	7.892E+05	7.889E+05	8.114E-01	9.083E+07	1.054E+06	1.16	5600
5700	7.892E+05	7.889E+05	9.102E-01	9.083E+07	3.445E+06	3.79	5700
5800	7.892E+05	7.889E+05	6.683E-01	9.083E+07	3.688E+06	4.06	5800
5900	7.892E+05	7.889E+05	9.095E-01	9.083E+07	4.269E+06	4.70	5900
6000	7.892E+05	7.889E+05	8.357E-01	9.083E+07	1.557E+07	17.14	6000
6100	7.892E+05	7.889E+05	8.491E-01	9.083E+07	6.926E+05	0.76	6100
6200	7.892E+05	7.889E+05	8.362E-01	9.083E+07	1.145E+06	1.26	6200
6300	7.892E+05	7.889E+05	6.950E-01	9.083E+07	4.620E+06	5.09	6300

	_						
6400	7.892E+05	7.889E+05	8.987E-01	9.083E+07	1.271E+06	1.40	6400
6500	7.892E+05	7.889E+05	9.971E-01	9.083E+07	1.500E+06	1.65	6500
6600	7.892E+05	7.889E+05	9.916E-01	9.083E+07	5.790E+05	0.64	6600
6700	7.892E+05	7.889E+05	9.261E-01	9.083E+07	6.100E+05	0.67	6700
6800	7.892E+05	7.889E+05	8.226E-01	9.083E+07	1.591E+06	1.75	6800
6900	7.892E+05	7.889E+05	8.830E-01	9.083E+07	4.416E+06	4.86	6900
7000	7.892E+05	7.889E+05	7.058E-01	9.083E+07	2.082E+06	2.29	
							7000
7100	7.892E+05	7.889E+05	9.508E-01	9.083E+07	7.819E+06	8.61	7100
7200	7.892E+05	7.889E+05	9.776E-01	9.083E+07	1.156E+07	12.73	7200
7300	7.892E+05	7.889E+05	7.684E-01	9.083E+07	6.565E+06	7.23	7300
7400	7.892E+05	7.889E+05	9.508E-01	9.083E+07	1.938E+07	21.34	7400
7500	7.892E+05	7.889E+05	7.753E-01	9.083E+07	1.357E+07	14.94	7500
7600	7.892E+05	7.889E+05	7.159E-01	9.083E+07	2.278E+07	25.08	7600
7700	7.892E+05	7.889E+05	9.153E-01	9.083E+07	3.600E+07	39.64	7700
7800	7.892E+05	7.889E+05	6.958E-01	9.083E+07	9.122E+06	10.04	7800
7900	7.892E+05	7.889E+05	8.957E-01	9.083E+07	2.531E+07	27.87	7900
8000	7.892E+05	7.889E+05	7.213E-01	9.083E+07	2.008E+07	22.11	8000
8100	7.892E+05	7.889E+05	8.283E-01	9.083E+07	1.748E+07	19.24	8100
8200	7.892E+05	7.889E+05	6.411E-01	9.083E+07	1.399E+07	15.41	8200
8300	7.892E+05	7.889E+05	7.362E-01	9.083E+07	5.251E+07	57.81	8300
8400	7.892E+05	7.889E+05	7.475E-01	9.083E+07	2.484E+07	27.35	8400
8500	7.892E+05	7.889E+05	7.011E-01	9.083E+07	3.175E+07	34.96	8500
8600	7.892E+05	7.889E+05	7.202E-01	9.083E+07	2.637E+07	29.03	8600
8700	7.892E+05	7.889E+05	7.419E-01	9.083E+07	2.723E+07	29.98	8700
8800	7.892E+05	7.889E+05	7.906E-01	9.083E+07	5.225E+07	57.53	8800
8900	7.892E+05	7.889E+05	8.957E-01	9.083E+07	1.185E+07	13.05	8900
9000	7.892E+05	7.889E+05	7.529E-01	9.083E+07	8.862E+06	9.76	9000
9100	7.892E+05	7.889E+05	9.225E-01	9.083E+07	1.381E+07	15.20	9100
9200	7.892E+05	7.889E+05	8.843E-01	9.083E+07	8.863E+07	97.58	9200
9300	7.892E+05	7.889E+05	8.003E-01	9.083E+07	3.700E+07	40.74	9300
9400	7.892E+05	7.889E+05	9.319E-01	9.083E+07	8.303E+06	9.14	9400
9500	7.892E+05	7.889E+05	9.355E-01	9.083E+07	2.274E+07	25.04	9500
9600	7.892E+05	7.889E+05	5.604E-01	9.083E+07	2.170E+07	23.89	9600
9700	7.892E+05	7,889E+05	8.595E-01	9.083E+07	3.081E+07	33.92	9700
9800	7.892E+05	7.889E+05	8.474E-01	9.083E+07	9.328E+06	10.27	9800
9900	7.892E+05	7.889E+05	6.999E-01	9.083E+07	1.332E+07	14.66	9900
10000	7.892E+05	7.889E+05	8.850E-01	9.083E+07	6.796E+06	7.48	10000
10100	7.892E+05	7.889E+05	8.313E-01	9.083E+07	8.703E+06	9.58	10100
10200	7.892E+05	7.889E+05	8.097E-01	9.083E+07	2.653E+07	29.21	10200
10300	7.892E+05	7.889E+05	7.645E-01	9.083E+07	1.319E+07	14.52	10300
10400	7.892E+05	7.889E+05	8.309E-01	9.083E+07	1.199E+07	13.20	10400
10500	7.892E+05	7.889E+05	8.723E-01	9.083E+07	7.501E+06	8.26	10500
10600	7.892E+05	7.889E+05	8.442E-01	9.083E+07	1.387E+07	15.27	10600
10700	7.892E+05	7.889E+05	7.675E-01	9.083E+07	1.992E+07	21.93	10700
10800	7.892E+05	7.889E+05	9.759E-01	9.083E+07	1.119E+07	12.32	10800
10900	7.892E+05	7.889E+05	7.667E-01	9.083E+07	5.962E+07	65.64	10900
11000	7.892E+05	7.889E+05	7.950E-01	9.083E+07	4.545E+07	50.04	11000
11100	7.892E+05	7.889E+05	6.797E-01	9.083E+07	5.514E+07	60.71	11100
11200	7.892E+05	7.889E+05	7.220E-01	9.083E+07	4.658E+07	51.29	11200
11300	7.892E+05	7.889E+05	7.312E-01	9.083E+07	2.915E+07	32.09	11300
11400	7.892E+05	7.889E+05	7.996E-01	9.083E+07	2.337E+07	25.72	11400
11500	7.892E+05	7.889E+05	9.751E-01	9.083E+07	1.446E+07	15.92	11500
11600	7.892E+05	7.889E+05	8.800E-01	9.083E+07	2.969E+07	32.69	11600
11700	7.892E+05	7.889E+05	7.921E-01	9.083E+07	2.184E+07	24.05	11700
11800	7.892E+05	7.889E+05	8.956E-01	9.083E+07	2.104E+07 2.917E+07	32.12	11800
11900	7.892E+05	7.889E+05	8.715E-01	9.083E+07	4.975E+06	5.48	11900
12000	7.892E+05	7.889E+05	9.593E-01	9.083E+07	1.358E+07	14.95	12000
12100	7.892E+05	7.889E+05	8.423E-01	9.083E+07	1.188E+07	13.08	12100
12100	7.09ZET03	,.UUJETUJ	0.450E-01	J.003E+07	1.1005+07	10.00	12100

			•		_		187 -
12200	7.892E+05	7.889E+05	8.872E-01	9.083E+07	2.263E+07	24.91	12200
12300	7.892E+05	7.889E+05	5.651E-01	9.083E+07	4.529E+07	49.86	12300
12400	7.892E+05	7.889E+05	9.070E-01	9.083E+07	1.637E+07	18.02	12400
12500	7.892E+05	7.889E+05	9.708E-01	9.083E+07	6.228E+06	6.86	12500
12600	7.892E+05	7.889E+05	5.412E-01	9.083E+07	2.141E+07	23.58	12600
12700	7.892E+05	7.889E+05	8.223E-01	9.083E+07	7.652E+07	84.25	12700
12800	7.892E+05	7.889E+05	9.804E-01	9.083E+07	4.275E+07	47.07	12800
12900	7.892E+05	7.889E+05	8.122E-01	9.083E+07	6.301E+06	6.94	. 12900
13000	7.892E+05	7.889E+05	7.705E-01	9.083E+07		38.49	13000
13100	7.892E+05	7.889E+05	7.950E-01	9.083E+07	5.550E+07	61.11	13100
13200	7.892E+05	7.889E+05	8.423E-01	9.083E+07	3.156E+07	34.75	13200
13300	7.892E+05	7.889E+05	9.557E-01	9.083E+07	6.090E+07	67.05	13300
13400	7.892E+05	7.889E+05	8.101E-01	9.083E+07	4.076E+07	44.88	13400
13500	7.892E+05	7.889E+05	7.546E-01	9.083E+07	1.791E+08	197.19	13500
13600	7.892E+05	7.889E+05	7.155E-01	9.083E+07	6.763E+07	74.46	13600
13700	7.892E+05	7.889E+05	9.531E-01	9.083E+07	4.462E+07	49.13	13700
13800	7.892E+05	7.889E+05	6.895E-01	9.083E+07	4.244E+07	46.73	13800
13900	7.892E+05	7.889E+05	5.039E-01	9.083E+07	6.910E+07	76.07	13900
14000	7.892E+05	7.889E+05	8.299E-01	9.083E+07	1.904E+07	20.96	14000
14100	7.892E+05	7.889E+05	7.637E-01	9.083E+07	3.283E+07	36.15	14100
14200	7.892E+05	7.889E+05	5.104E-01	9.083E+07	1.407E+07	15.49	14200
14300	7.892E+05	7.889E+05	8.895E-01	9.083E+07	5.394E+06	5.94	14300
14400	7.892E+05	7.889E+05	9.661E-01	9.083E+07	1.082E+07	11.91	14400
14500	7.892E+05	7.889E+05	9.826E-01	9.083E+07	2.289E+07	25.20	14500
14600	7.892E+05	7.889E+05	9.934E-01	9.083E+07	8.891E+06	9.79	14600
14700	7.892E+05	7.889E+05	8.430E-01	9.083E+07	1.135E+07	12.49	14700
14800	7.892E+05	7.889E+05	9.366E-01	9.083E+07	2.410E+06	2.65	14800
14900	7.892E+05	7.889E+05	8.511E-01	9.083E+07	4.828E+07	53.15	14900
15000	7.892E+05	7.889E+05	8.018E-01	9.083E+07	7.790E+06	8.58	15000
15100	7.892E+05	7.889E+05	7.655E÷01	9.083E+07	1.862E+06	2.05	15100
15200	7.892E+05	7.889E+05	4.962E-01	9.083E+07	1.338E+07	14.73	15200
15300	7.892E+05	7.889E+05	9.013E-01	9.083E+07	7.392E+06	8.14	15300
15400	7.892E+05	7.889E+05	8.932E-01	9.083E+07	8.606E+06	9.47	15400
15500	7.892E+05	7.889E+05	6.949E-01	9.083E+07	9.113E+06	10.03	15500
15600	7.892E+05	7.889E+05	7.619E-01	9.083E+07	2.789E+07	30.70	15600
15700	7.892E+05	7.889E+05	7.860E-01	9.083E+07	5.890E+06	6.48	15700
15800	7.892E+05	7.889E+05	8.713E-01	9.083E+07	6.957E+07	76.59	15800
15900	7.892E+05	7.889E+05	7.440E-01	9.083E+07	4.471E+07	49.22	15900
16000	7.892E+05	7.889E+05	6.235E-01	9.083E+07	2.768E+07	30.47	16000
16100	7.892E+05	7.889E+05	7.473E-01	9.083E+07	1.853E+07	20.40	16100
16200	7.892E+05	7.889E+05	6.294E-01	9.083E+07	1.650E+07	18.17	16200
16300	7.892E+05	7.889E+05	8.784E-01	9.083E+07	2.843E+07	31.30	16300
16400	7.892E+05	7.889E+05	9.033E-01	9.083E+07	2.814E+07	30.98.	16400
16500	7.892E+05	7.889E+05	7.278E-01	9.083E+07	1.576E+07	17.35	16500
16600	7.892E+05	7.889E+05	7.703E-01	9.083E+07	8.906E+06	9.81	16600
16700	7.892E+05	7.889E+05	5.991E-01	9.083E+07	3.606E+06	3.97	16700
16800	7.892E+05	7.889E+05	8.908E-01	9.083E+07	2.387E+07	26.28	16800
16900	7.892E+05	7.889E+05	7.623E-01	9.083E+07	7.964E+06	8.77	16900
17000	7.892E+05	7.889E+05	7.710E-01	9.083E+07	1.947E+07	21.43	17000
17100	7.892E+05	7.889E+05	6.896E-01	9.083E+07	5.191E+07	57.15	17100
17200	7.892E+05	7.889E+05	9.185E-01	9.083E+07	1.703E+07	18.75	17200
17300	7.892E+05	7.889E+05	6.384E-01	9.083E+07	2.190E+07	24.11	17300
17400	7.892E+05	7.889E+05	6.742E-01	9.083E+07	1.725E+07	19.00	17400
17500	7.892E+05	7.889E+05	9.583E-01	9.083E+07	6.963E+06	7.67	17500
17600	7.892E+05	7.889E+05	7.236E-01	9.083E+07	1.212E+07	13.35	17600
17700	7.892E+05	7.889E+05	9.548E-01	9.083E+07	1.206E+07	13.28	17700
17800	7.892E+05	7.889E+05	7.379E-01	9.083E+07	3.813E+07	41.98	17800
17900	7.892E+05	7.889E+05	8.005E-01	9.083E+07	1.545E+07	17.01	17900
1,300	,.UJZETUJ	, 	0.0005-01	J. 0035707	T.7475TV	11.01	1,700

18000	7.892E+05	7.889E+05	6.676E-01	0 0025.07	5.571E+07	61.34	18000
18100		7.889E+05	9.161E-01	9.083E+07 9.083E+07	1.253E+06	1.38	18100
18200		7.889E+05	8.557E-01	9.083E+07	1.485E+07	16.35	18200
18300		7.889E+05	8.646E-01	9.083E+07	1.403E+07	17.77	18300
18400		7.889E+05	7.416E-01	9.083E+07	4.095E+07	45.09	18400
18500		7.889E+05	8.722E-01	9.083E+07	7.622E+07	83.92	18500
18600		7.889E+05	6.663E-01	9.083E+07	4.782E+07	52.65	18600
18700		7.889E+05	8.965E-01	9.083E+07	2.030E+07	22.35	18700
18800		7.889E+05	9.344E-01	9.083E+07	2.485E+07	27.36	18800
18900		7.889E+05	6.641E-01	9.083E+07	2.465E+07 2.376E+07	26.16	18900
19000		7.889E+05	7.295E-01	9.083E+07	2.379E+07	26.19	19000
			8.123E-01	9.083E+07	1.160E+07		
19100 19200		7.889E+05 7.889E+05	7.836E-01	9.083E+07	2.013E+07	12.77	19100 19200
						22.16	
19300		7.889E+05	9.502E-01	9.083E+07	1.173E+07	12.92	19300
19400		7.889E+05	7.974E-01	9.083E+07	2.175E+07	23.95	19400
19500		7.889E+05	7.302E-01	9.083E+07	8.591E+06	9.46	19500
19600		7.889E+05	7.601E-01	9.083E+07	1.037E+07	11.42	19600
19700		7.889E+05	9.553E-01	9.083E+07	4.533E+06	4.99	19700
19800		7.889E+05	8.805E-01	9.083E+07	2.979E+06	3.28	19800
19900		7.889E+05	8.365E-01	9.083E+07	2.590E+06	2.85	19900
20000		7.889E+05	6.210E-01	9.083E+07	5.998E+06	6.60	20000
20100		7.889E+05	9.028E-01	9.083E+07	3.515E+06	3.87	20100
20200		7.889E+05	7.136E-01	9.083E+07	6.840E+06	7.53	20200
20300		7.889E+05	7.401E-01	9.083E+07	3.469E+06	3.82	20300
20400		7.889E+05	9.059E-01	9.083E+07	1.113E+07	12.25	20400
20500		7.889E+05	7.796E-01	9.083E+07	9.581E+06	10.55	20500
20600		7.889E+05	8.722E-01	9.083E+07	2.748E+06	3.03	20600
20700		7.889E+05	7.583E-01	9.083E+07	1.468E+07	16.17	20700
20800		7.889E+05	7.636E-01	9.083E+07	1.618E+07	17.82	20800
20900		7.889E+05	7.560E-01	9.083E+07	2.988E+07	32.90	20900
21000		7.889E+05	7.158E-01	9.083E+07	5.407E+06	5.95	21000
21100		7.889E+05	7.835E-01	9.083E+07	2.565E+07	28.24	21100
21200		7.889E+05	8.988E-01	9.083E+07	1.958E+07	21.56	21200
21300		7.889E+05	7.905E-01	9.083E+07	1.627E+07	17.91	21300
21400		7.889E+05	6.587E-01	9.083E+07	1.608E+07	17.71	21400
21500		7.889E+05	7.007E-01	9.083E+07	3.410E+07	37.54	21500
21600		7.889E+05	8.326E-01	9.083E+07	2.763E+07	30.42	21600
21700		7.889E+05	8.421E-01	9.083E+07	3.765E+07	41.45	21700
21800		7.889E+05	9.591E-01	9.083E+07	1.031E+08	113.48	21800
21900		7.889E+05	9.113E-01	9.083E+07	3.749E+07	41.28	21900
22000		7.889E+05	9.096E-01	9.083E+07	2.888E+07	31.79	22000
22100		7.889E+05	7.178E-01	9.083E+07	6.045E+06	6.66	22100
22200		7.889E+05	7.788E-01	9.083E+07	1.253E+07	13.80	22200
22300		7.889E+05	7.175E-01	9.083E+07	4.698E+06	5.17	22300
22400	7.892E+05	7.889E+05	6.856E-01	9.083E+07	1.735E+07	19.10	22400
22500		7.889E+05	8.563E-01	9.083E+07	2.866E+07	31.55	22500
22600		7.889E+05	8.579E-01	9.083E+07	1.035E+07	11.39	22600
22700		7.889E+05	8.522E-01	9.083E+07	1.009E+07	11.11	22700
22800		7.889E+05	7.618E-01	9.083E+07	7.605E+06	8.37	22800
22900		7.889E+05	8.279E-01	9.083E+07	1.628E+07	17.92	22900
23000		7.889E+05	9.578E-01	9.083E+07	1.296E+07	14.27	23000
23100		7.889E+05	8.108E-01	9.083E+07	1.072E+08	118.02	23100
23200		7.889E+05	8.118E-01	9.083E+07	1.350E+08	148.59	23200
23300		7.889E+05	7.885E-01	9.083E+07	1.086E+07	11.96	23300
23400		7.889E+05	9.176E-01	9.083E+07	3.846E+06	4.23	23400
23500		7.889E+05	8.864E-01	9.083E+07	7.522E+06	8.28	23500
23600		7.889E+05	8.449E-01	9.083E+07	1.090E+07	12.00	23600
23700	7.892E+05	7.889E+05	6.061E-01	9.083E+07	1.456E+07	16.03	23700

23800	7.892E+05	7.889E+05	7.991E-01	9.083E+07	1.431E+07	15.75	23800
23900	7.892E+05	7.889E+05	7.044E-01	9.083E+07	3.252E+07	35.80	23900
24000	7.892E+05	7.889E+05	6.721E-01	9.083E+07	5.113E+07	56.29	24000
24100	7.892E+05	7.889E+05	8.488E-01	9.083E+07	1.969E+07	21.68	24100
24200	7.892E+05	7.889E+05	8.825E-01	9.083E+07	4.576E+07	50.39	24200
24300	7.892E+05	7.889E+05	8.121E-01	9.083E+07	1.036E+08	114.05	24300
24400	7.892E+05	7.889E+05	7.390E-01		9.305E+07		24400
				9.083E+07		102.45	
24500	7.892E+05	7.889E+05	8.512E-01	9.083E+07	7.842E+07	86.34	24500
24600	7.892E+05	7.889E+05	8.474E-01	9.083E+07	6.832E+07	75.22	24600
24700	7.892E+05	7.889E+05	8.489E-01	9.083E+07	6.976E+07	76.81	24700
24800	7.892E+05	7.889E+05	9.260E-01	9.083E+07	2.816E+07	31.00	24800
24900	7.892E+05	7.889E+05	7.957E-01	9.083E+07	1.482E+07	16.32	24900
25000	7.892E+05	7.889E+05	9.554E-01	9.083E+07	1.076E+07	11.85	25000
25100	7.892E+05	7.889E+05	8.771E-01	9.083E+07	1.201E+07	13.22	25100
25200	7.892E+05	7.889E+05	9.014E-01	9.083E+07	2.012E+07	22.15	25200
25300	7.892E+05	7.889E+05	6.184E-01	9.083E+07	5.119E+07	56.36	25300
25400	7.892E+05	7.889E+05	7.195E-01	9.083E+07	5.266E+07	57.98	25400
25500	7.892E+05	7.889E+05	8.986E-01	9.083E+07	4.829E+07	53.17	25500
25600	7.892E+05	7.889E+05	7.459E-01	9.083E+07	9.216E+06	10.15	25600
25700	7.892E+05	7.889E+05	7.932E-01	9.083E+07	6.265E+06	6.90	25700
25800	7.892E+05	7.889E+05	8.857E-01	9.083E+07	5.650E+07	62.20	25800
25900	7.892E+05	7.889E+05	8.112E-01	9.083E+07	3.101E+07	34.14	25900
26000	7.892E+05	7.889E+05	9.450E-01	9.083E+07	2.095E+07	23.07	26000
26100	7.892E+05	7.889E+05	8.364E-01	9.083E+07	4.240E+07	46.69	26100
26200	7.892E+05	7.889E+05		9.083E+07	2.219E+07	24.43	26200
26300	7.892E+05	7.889E+05	8.928E-01	9.083E+07	3.158E+07	34.77	26300
26400	7.892E+05	7.889E+05	8.230E-01	9.083E+07	1.387E+07	15.27	26400
26500	7.892E+05	7.889E+05			1.204E+07	13.26	26500
			9.850E-01	9.083E+07			
26600	7.892E+05	7.889E+05	7.314E-01	9.083E+07	2.663E+06	2.93	26600
26700	7.892E+05	7.889E+05	8.755E-01	9.083E+07	1.117E+07	12.30	26700
26800	7.892E+05	7.889E+05	8.228E-01	9.083E+07	9.015E+06	9.93	26800
26900	7.892E+05	7.889E+05	7.607E-01	9.083E+07	1.447E+07	15.93	26900
27000	7.892E+05	7.889E+05	7.104E-01	9.083E+07	9.331E+06	10.27	27000
27100	7.892E+05	7.889E+05	9.256E-01	9.083E+07	6.553E+06	7.21	27100
27200	7.892E+05	7.889E+05	8.944E-01	9.083E+07	1.520E+07	16.73	27200
27300	7.892E+05	7.889E+05	8.251E-01	9.083E+07	3.130E+07	34.46	27300
27400	7.892E+05	7.889E+05	8.891E-01	9.083E+07	9.912E+06	10.91	27400
27500	7.892E+05	7.889E+05	8.864E-01	9.083E+07	1.180E+07	12.99	27500
27600	7.892E+05	7.889E+05	8.075E-01	9.083E+07	2.555E+07	28.13	27600
27700							
	7.892E+05	7.889E+05	8.521E-01	9.083E+07	5.460E+07	60.11	27700
27800	7.892E+05	7.889E+05	7.686E-01	9.083E+07	1.123E+08	123.63	27800
27900	7.892E+05	7.889E+05	7.428E-01	9.083E+07	6.793E+07	74.79	27900
28000	7.892E+05	7.889E+05	8.571E-01	9.083E+07	2.332E+07	25.67	28000
28100	7.892E+05	7.889E+05	8.681E-01	9.083E+07	1.300E+07	14.31	28100
28200	7.892E+05	7.889E+05	8.015E-01	9.083E+07	1.660E+07	18.27	28200
28300	7.892E+05	7.889E+05	7.183E-01	9.083E+07	1.508E+07	16.60	28300
28400	7.892E+05	7.889E+05	6.730E-01	9.083E+07	1.429E+07	15.73	28400
28500	7.892E+05	7.889E+05	7.041E-01	9.083E+07	1.105E+07	12.17	28500
28600	7.892E+05	7.889E+05	9.023E-01	9.083E+07	1.581E+07	17.40	28600
28700	7.892E+05	7.889E+05	6.807E-01	9.083E+07	2.370E+07	26.09	28700
28800	7.892E+05	7.889E+05	9.533E-01	9.083E+07	2.609E+07	28.72	28800
28900	7.892E+05	7.889E+05	8.751E-01	9.083E+07	2.353E+07	25.72	28900
	7.892E+05						
29000		7.889E+05	7.935E~01	9.083E+07	6.448E+06	7.10	29000
29100	7.892E+05	7.889E+05	7.765E-01	9.083E+07	1.407E+07	15.50	29100
29200	7.892E+05	7.889E+05	9.648E-01	9.083E+07	8.536E+06	9.40	29200
29300	7.892E+05	7.889E+05	7.407E-01	9.083E+07	1.553E+08	171.04	29300
29400	7.892E+05	7.889E+05	7.991E-01	9.083E+07	5.254E+07	57.84	29400
29500	7.892E+05	7.889E+05	8.244E-01	9.083E+07	2.794E+07	30.77	29500

```
29600 7.892E+05 7.889E+05 8.141E-01 9.083E+07 1.034E+07
                                                                                                                                   11.38
                                                                                                                                                          29600
 29700 7.892E+05 7.889E+05 8.904E-01 9.083E+07 1.089E+07
                                                                                                                                   11.99
                                                                                                                                                       29700
                                                                                                                                    8.86
 29800 7.892E+05 7.889E+05 6.707E-01 9.083E+07 8.050E+06
                                                                                                                                                        29800
 29900 7.892E+05 7.889E+05 6.488E-01 9.083E+07 2.158E+06
                                                                                                                                      2.38
 30000 7.892E+05 7.889E+05 7.780E-01 9.083E+07 1.317E+07 14.50 30100 7.892E+05 7.889E+05 8.133E-01 9.083E+07 3.045E+06 3.35
                                                                                                                                                       30000

      30100
      7.892E+05
      7.889E+05
      8.133E-01
      9.083E+07
      3.045E+06
      3.35

      30200
      7.892E+05
      7.889E+05
      7.465E-01
      9.083E+07
      6.432E+06
      7.08

      30300
      7.892E+05
      7.889E+05
      9.026E-01
      9.083E+07
      4.272E+07
      47.03

      30400
      7.892E+05
      7.889E+05
      6.692E-01
      9.083E+07
      2.433E+07
      26.79

      30500
      7.892E+05
      7.889E+05
      7.945E-01
      9.083E+07
      5.795E+07
      63.80

      30600
      7.892E+05
      7.889E+05
      7.847E-01
      9.083E+07
      4.790E+06
      7.51

      30700
      7.892E+05
      7.889E+05
      5.548E-01
      9.083E+07
      4.790E+06
      5.27

      30800
      7.892E+05
      7.889E+05
      9.381E-01
      9.083E+07
      3.122E+06
      3.44

      30900
      7.892E+05
      7.889E+05
      7.979E-01
      9.083E+07
      9.293E+06
      10.23

      31000
      7.892E+05
      7.889E+05
      8.504E-01
      9.083E+07
      4.544E+06
      5.00

      31200
      7.892E+05
      7.889E+05
      8.504E-01
      9.083E+07
      1.066E+07
      11.74

                                                                                                                                  3.35
                                                                                                                                                       30100
                                                                                                                                                       30200
                                                                                                                                                       30300
                                                                                                                                                       30400
                                                                                                                                                        30500
                                                                                                                                                        30600
                                                                                                                                                          30700
                                                                                                                                                          30800
                                                                                                                                                          30900
                                                                                                                                                          31000
                                                                                                                                                          31100
                                                                                                                                                          31200
                                                                                                                                                          31300
                                                                                                                                                       31400
                                                                                                                                                       31500
                                                                                                                                                       31600
                                                                                                                                                       31700
                                                                                                                                  30.08 31800
                                                                                                                                                       31900
 32000 7.892E+05 7.889E+05 9.006E-01 9.083E+07 4.366E+06
                                                                                                                                     4.81
                                                                                                                                                       32000
 32100 7.892E+05 7.889E+05 9.113E-01 9.083E+07 1.794E+06
                                                                                                                                     1.98
                                                                                                                                                       32100
 32200 7.892E+05 7.889E+05 6.154E-01 9.083E+07 5.684E+06
                                                                                                                                     6.26
 32300 7.892E+05 7.889E+05 9.522E-01 9.083E+07 1.764E+07
                                                                                                                                  19.42
                                                                                                                                                      32300
 32400 7.892E+05 7.889E+05 7.394E-01 9.083E+07 2.445E+07
                                                                                                                                   26.92 32400
 32500 7.892E+05 7.889E+05 7.800E-01 9.083E+07 5.628E+05
                                                                                                                                     0.62
                                                                                                                                                          32500
```

**** PLOT TAPE WRITTEN AT TIME = 7.892E+05 STEP NUMBER 1 ****

```
SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:20:43
BENCHMARK II ISOTHERMAL PROBLEM - SANTOS VERIFICATION (1/9/95)
```

**** PLOT TAPE WRITTEN AT TIME = 3.157E+08 STEP NUMBER 400 ****

400 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

E N D O F S O L U T I O N P H A S E 3.477E+04 CPU SECONDS USED 198720 WORDS ALLOCATED

Page 349

APPENDIX S

Input/Output Data For Test Case 19

The following three sections present the input data, the initial stress subroutine, and the formatted output, respectively, for the Heated WIPP Benchmark II verification problem.

FASTQ and SANTOS Input Data For The Heated WIPP Benchmark II Problem

This section presents a listing of the FASTQ and SANTOS input data files that were used for the mesh generation and analysis of the Benchmark II heated drift problem. The binary file struct.th is an input file for Test Case 11 that can be found in LIBSANTOS in CMS.

bm2struct.fsq

HEATED BENCHMARK II MESH (Structural - 1/17/95) POINT 0.0000000E+00 -6.4742999E+02 1 2.2900000E+00 -6.4742999E+02 POINT POINT 2.2900000E+00 -6.5200000E+02 POINT 7 0.000000E+00 -6.5200000E+02 109 -6.4992999E+02 POINT 2.2900000E+00 POINT 110 2.2850001E+00 -6.5020001E+02 -6.4696997E+02 POINT 11 0.000000E+00 -6.4696997E+02 2.2900000E+00 POINT 12 -6.4696997E+02 POINT 13 3.2500000E+00 3.2500000E+00 -6.4742999E+02 POINT 14 POINT 115 3.2500000E+00 -6.4992999E+02 POINT 116 3.2500000E+00 -6.5020001E+02 POINT 17 3.2500000E+00 -6.5200000E+02 3.2500000E+00 -6.5291998E+02 POINT 2.2900000E+00 POINT 19 -6.5291998E+02 -6.5291998E+02 POINT 20 0.000000E+00 2.2900000E+00 POINT 121 -6.5020001E+02 POINT 122 3.2500000E+00 -6.5020001E+02 POINT 123 0.000000E+00 -6.4297998E+02 POINT 0.000000E+00 -6.4297998E+02 124 POINT 126 9.2500000E+00 -6.4297998E+02 9.2500000E+00 -6.499299E+02 POINT 127 POINT 128 9.2500000E+00 -6.5020001E+02 9.2500000E+00 -6.5020001E+02 POINT 129 POINT 30 0.000000E+00 -6.5500000E+02 POINT 31 0.0000000E+00 -6.5683002E+02 POINT 132 2.2860001E+01 -6.4297998E+02 33 9.2500000E+00 -6.5683002E+02 POINT 2.2860001E+01 134 -6.4297998E+02 POINT POINT 135 2.2860001E+01 -6.4992999E+02 POINT 136 2.2860001E+01 -6.5020001E+02 POINT 137 2.2860001E+01 -6.5020001E+02 POINT 38 0.000000E+00 -6.6010999E+02 39 9.2500000E+00 -6.6010999E+02 POINT POINT 40 2.2860001E+01 -6.6010999E+02 POINT 2.2860001E+01 -6.5683002E+02

DOTNE	1.0		00000	005.00		00000	007.00
POINT	46			00E+00			02E+02
POINT	47			01E+01			02E+02
POINT	48			00E+00			03E+02
POINT	49			01E+01			03E+02
POINT	50	0.	00000	00E+00	-6.	19229	98E+02
POINT	51	2.	28600	01E+01	-6.	19229	98E+02
POINT	52	0.	00000	00E+00	-6.	23770	02E+02
POINT	53	2.	28600	01E+01	-6.	23770	02E+02
POINT	54	0.	00000	00E+00	-6.	32760	01E+02
POINT	55			01E+01			01E+02
POINT	156			00E+00			99E+02
POINT	157			01E+01			99E+02
POINT	158			00E+00		-	99E+02
POINT	159			01E+01			99E+02
POINT	60			00E+00			01E+02
POINT	61			01E+01			01E+02
POINT	162			00E+00			02E+02
POINT	163	2.	28600	01E+01	-6.	61020	02E+02
POINT	164	0.	00000	00E+00	-6.	61020	02E+02
POINT	165	2.	28600	01E+01	-6.	61020	02E+02
POINT	166	0.	00000	00E+00	-6.	69099	98E+02
POINT	167	2.	28600	01E+01	-6.	69099	98E+02
POINT	168	0.	00000	00E+00	-6.	69099	98E+02
POINT	169	2.	28600	01E+01	-6.	69099	98E+02
POINT	70			00E+00			99E+02
POINT	71			01E+01			99E+02
POINT	72			00E+00			02E+02
POINT	73			01E+01			02E+02
POINT	74			01E+01			97E+02
POINT	75 26			01E+01			97E+02
POINT	76			00E+00			02E+02
POINT	77			01E+01			02E+02
POINT	178			00E+00			02E+02
LINE	2	STR	1	3	0	4	0.000000
LINE	5	STR	109	3	0	5	0.000000
LINE	6	STR	121	109	0	1	0.000000
LINE	7	STR	6	110	0	4	0.000000
LINE	8	STR	7	6	0	4	0.000000
LINE	10	STR	1	11	0	1	0.000000
LINEBC	1	10					
LINE	11	STR	11	12	0	4	0.000000
LINE	13	STR	12	13	0	2	0.000000
LINE	14	STR	14	13	0	1	0.000000
LINE	15	STR	3	14	Ō	2	0.000000
LINE	16	STR	115	14	Ö	5	0.000000
LINE	17	STR	109	115	Ö	2	0.000000
LINE	19	STR	110	122	0	2	0.000000
SIDEBC	8	19	110	122	v	2	0.000000
LINE	20	STR	17	122	0	4	0.000000
LINE	21	STR	6 10	17 17	0	2	0.000000
LINE	22	STR	18	17	0	2	0.000000
LINE	23	STR	19	18	0	2	0.000000
LINE	25	STR	20	19	0	4	0.000000
LINE	26	STR	20	7	0	2	0.000000
LINEBC	1	26			_		
LINE	27	STR	121	116	0	2	0.000000
SIDEBC	9	27			_		
LINE	28	STR	11	123	0	7	1.030000

LINEDO	1	20					
LINEBC	1	28	100	4.00	^		
LINE	29	STR	123	132	0	13	0.000000
SIDEBC	11	29				_	
LINE	30	STR	13	126	0	7	1.100000
LINE	31	STR	127	126	0	6	1.050000
LINE	32	STR	115	127	0	7.	1.050000
LINE	33	STR	116	128	0	7	1.050000
SIDEBC	9	33					
LINE	34	STR	122	129	0	7	1.050000
SIDEBC	8	34					
LINE	35	STR	123	126	0	6	1.150000
SIDEBC	10	35					
LINE	37	STR	20	30	0	3	1.050000
LINEBC	1	37					
LINE	38	STR	30	31	0	3	0.000000
LINEBC	1	38					
LINE	40	STR	18	33	0	7	1.100000
LINE	42	STR	126	132	Ö	7	1.050000
SIDEBC	10	42	120	-5-	Ū	,	1.050000
LINE	43	STR	129	33	0	6	1.050000
LINE	44	STR	128	136	0	7	1.050000
SIDEBC	9	44	120	130	U	′	1.030000
			120	126	0	7	1.050000
LINE	45	STR	129	136	U	′	1.050000
SIDEBC	8	45	125	120	•	_	1 050000
LINE	46	STR	135	132	0	6	1.050000
LINEBC	1	46	126	125	^	1	0 000000
LINE	47	STR	136	135	0	1	0.00000
LINEBC	1	47				_	
LINE	48	STR	127	135	0	7	1.050000
LINE	49	STR	38	31	0	4	0.000000
LINEBC	1	49					
LINE	50	STR	38	39	0	6	1.050000
LINE	51	STR	39	40	0	7	1.050000
LINE	52	STR	136	41	0	6	1.050000
LINEBC	1	52	,				
LINE	53	STR	40	41	0	3	1.050000
LINEBC	1	53					
LINE	54	STR	39	33	0	3	1.050000
LINE	58	STR	162	38	0	1	0.000000
LINEBC	1	58					
LINE	59	STR	163	40	0	1	0.000000
LINEBC	1	59					
LINE	60	STR	162	178	0	6	1.050000
SIDEBC	15	60					
LINE	61	STR	178	163	0	7	1.050000
SIDEBC	15	61					
LINE	62	STR	162	163	0	13	0.000000
SIDEBC	16	62					
LINE	63	STR	162	166	0	4	1.200000
LINEBC	1	63	-:-				
LINE	64	STR	163	167	0	4	1.200000
LINEBC	1	64			•		
LINE	65	STR	166	167	0	13	0.000000
SIDEBC	19	65		_ • •	•		
LINE	66	STR	166	167	0	13	0.000000
SIDEBC	20	66		,	•		2.00000
LINE	67	STR	70	166	0	3	0.000000
LINEBC	1	67	, 0		v	,	3.30000
	_	5,					

LINE	68	STR	71	167	0	3	0.000000
LINEBC	1	68	7 1	10/	U	3	0.000000
LINEBC	69		70	71	0	13	0.000000
		STR					
LINE	70	STR	72	70	0	2	0.000000
LINEBC	1	70	7.3	71	^	^	0 000000
LINE	71	STR	73	71	0	2	0.000000
LINEBC	1	71	70	7.2	^	1.7	0 000000
LINE	72	STR	· 72	73	0	13	0.000000
LINE	73	STR	74	72	0	4	0.000000
LINEBC	1	73			^		0 000000
LINE	74	STR	75	73	0	4	0.000000
LINEBC	1	74	24	2.5	^	1.0	0 000000
LINE	75	STR	74	75	0	13	0.000000
LINE	76	STR	76	74	0	2	0.000000
LINEBC	1	76			•	•	
LINE	77	STR	77	75	0	2	0.000000
LINEBC	1	77					
LINE	78	STR	76	77	0	13	0.000000
SIDEBC	14	78 ~==	4.5	4.5			
LINE	79	STR	46	47	0	13	0.000000
SIDEBC	13	79	4.0	4.0	•		
LINE	80	STR	48	46	0	3	0.000000
LINEBC	1	80	40	4.5	•	_	
LINE	81	STR	49	47	0	3	0.000000
LINEBC	12	81	40	4.0	•	1.3	0 000000
LINE	82	STR	48	49	0	13	0.000000
LINE	83	STR	50	48	0	4	0.000000
LINEBC	1	83	-1	40	•	4	0 000000
LINE	84 1	STR	51	49	0	4	0.000000
LINEBC		84	50	E 1	^	. 13	0 000000
LINE	85 86	STR		51. 50	0 0	13	0.000000
LINE	1	STR 86	52	50	U	2	0.000000
LINEBC LINE	87	STR	53	51	0	2	0.000000
LINEBC	1	87	53	31	U	2	0.000000
			52	53	0	1 2	0.000000
LINE LINE	88 89	STR	54	53 52	0	13 3	0.000000
LINEBC	1	STR 89	54	52	. 0	3	0.000000
LINE	90	STR	55	53	0	3	0.000000
LINEBC	1	90	33	33	U	3	0.000000
LINE	91	STR	54	55	0	13	0.00000
LINE	92	STR	156	54	, 0	3	0.000000
LINEBC	1	92	130	74	U	3	0.000000
LINE	93	STR	157	55	0	3	0.000000
LINEBC	1	93	13,	33	Ū	3	0.000000
LINE	94	STR	156	157	0	13	0.000000
SIDEBC	17	94	100		ŭ	10	0.000000
LINE	95	STR	156	157	0	13	0.000000
SIDEBC	18	95			ŭ	10	0.00000
LINE	96	STR	60	156	0	3	1.300000
LINEBC	1	96			-	_	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
LINE	97	STR	61	157	0	3	1.300000
LINEBC	1	97					
LINE	98	STR	60	61	0	13	0.000000
LINE	99	STR	123	60	0	1	0.000000
LINEBC	1	99					
LINE	100	STR	132	61	0	1	0.000000
LINEBC	1	100					

June 2003 Page 353

```
SIDE
                20
                      22
                25
SIDE
          2
                      23
SIDE
                37
                      38
                             49
SIDE
               11
                      13
                2
                      15
SIDE
SIDE
               25
                      23
          7
SIDE
                - 8
                      21
SIDE
          8
               17
                      32
                             48
          9
               27
                      33
                             44
SIDE
                43
         10
                      54
SIDE
         11
               53
                      52
SIDE
SIDE
         12
                54
                      40
                60
SIDE
         13
                      61
SIDE
         14
                50
                      51
REGION
          2
                1
                     -10
                                  -14
                                  -22
REGION
          3
                     -26
                              6
                                           7
                                  -50
REGION
          4
                 1
                      2
                             3
                                         12
                                   11
REGION
          5
                1
                      10
                           -51
                                        -45
                      -5
                           -15
                                  -16
                                        -17
REGION
          6
                1
                      -7
                           -19
                                  -20
                                        -21
          7
REGION
                1
                4
                      -6
                            9
                                  -47
          8
                                         8
REGION
                                        -30
                                               -35
          9
                 1
                     -28
                           -11
                                  -13
REGION
REGION
         10
                     -32
                           -31
                                  -30
                                        -14
                                               -16
                     -31
                            -48
                                  -46
                                        -42
REGION
         11
REGION
         12
                      1
                            -40
                                  -43
                                        -34
                                  -59
REGION
         13
                 4
                     -58
                            13
                                         14
                 3
                                  -64
                                        -62
REGION
         14
                     -63
                            -65
REGION
         15
                 1
                     -67
                            -69
                                  -68
                                        -65
                     -70
                            -72
                                  -71
                                        -69
                 4
REGION
         16
                     -73
                            -75
                                  -74
                                        -72
REGION
         17
                 1
         18
                 5
                     -76
                            -78
                                  -77
                                        -75
REGION
REGION
         19
                 4
                     -80
                            -82
                                  -81
                                        -79
                     -83
                                  -84
                                        -82
REGION
         20
                 2
                            -85
REGION
         21
                     -86
                            -88
                                  -87
                                        -85
                 4
REGION
         22
                 1
                     -89
                            -91
                                  -90
                                        -88
                                  -93
                                        -91
REGION
         23
                 2
                     -92
                            -94
                                  -97
                                        -95
REGION
         24
                 1
                     -96
                            -98
                                        -98
         25
                     -99
                            -29
                                -100
REGION
SCHEME
EXIT
struct.i
TITLE
  BENCHMARK II HEATED PROBLEM - SANTOS VERIFICATION (1/17/95)
RESIDUAL TOLERANCE = .50
MAXIMUM ITERATIONS = 10000
INTERMEDIATE PRINT = 100
MAXIMUM TOLERANCE = 5.
THERMAL STRESS, EXTERNAL
PLANE STRAIN
TIME STEP SCALE = .10
PREDICTOR SCALE FACTOR = 3
EFFECTIVE MODULUS = VARIABLE
INITIAL STRESS = USER
GRAVITY = 1 = 0. = -9.8066 = 0.
STEP CONTROL
 1000 3.157E8
END
```

```
PLOT TIME
10 3.157E8
OUTPUT TIME
10 3.157E8
END
PLOT NODAL DISPLACEMENT, REACTION, RESIDUAL
PLOT ELEMENT STRESS, VONMISES, TEMPERATURE, EFFMOD
PLOT STATE EQCS
NO DISPLACEMENT X, 1
NO DISPLACEMENT X, 12
NO DISPLACEMENT Y, 12
FUNCTION = 1
0.1.
4.E8 1.
END
FUNCTION = 2
299.,-.02
350.,1.
END
FUNCTION = 3
0. 0.
4.E8 0.
END
PRESSURE, 13, 1, 12.71E6
PRESSURE, 14, 1, 15.01E6
CONTACT SURFACE, 8, 9, 0., .02, 1.E40
CONTACT SURFACE, 11, 10, 0., .02, 1.E40
CONTACT SURFACE, 15, 16, 0., .02, 1.E40
CONTACT SURFACE, 18, 17, 0., .02, 1.E40
MATERIAL, 1, POWER LAW CREEP, 2167., 2, 2.25E-3
TWO MU = 19.84E9
BULK MODULUS = 16.53E9
CREEP CONSTANT = 5.79E-36
STRESS EXPONENT = 4.9
THERMAL CONSTANT = 6039.
END
MATERIAL, 2, POWER LAW CREEP, 2167., 2, 2.E-3
TWO MU = 19.84E9
BULK MODULUS = 16.53E9
CREEP CONSTANT = 1.74E-35
STRESS EXPONENT = 4.9
THERMAL CONSTANT = 6039.
END
MATERIAL, 3, POWER LAW CREEP, 2167., 2, 2.135E-3
TWO MU = 21.2E9
BULK MODULUS = 17.66E9
CREEP CONSTANT = 5.21E-36
STRESS EXPONENT = 4.9
THERMAL CONSTANT = 6039.
MATERIAL, 4, ELASTIC, 2167., 2, 1.E-3
YOUNGS MODULUS = 72.4E9
POISSONS RATIO = .33
END
MATERIAL, 5, ELASTIC, 2167., 2, 1.2E-3
YOUNGS MODULUS = 72.4E9
POISSONS RATIO = .33
```


END EXIT

Initial Stress Subroutine For The Heated WIPP Benchmark II Problem

This section presents a listing of the INITST subroutine that was used in SANTOS to specify the initial stresses for the Benchmark II heated drift analysis.

```
SUBROUTINE INITST ( SIG, COORD, LINK, DATMAT, KONMAT, SCREL )
С
  ********************
С
С
C
    DESCRIPTION:
С
      THIS ROUTINE PROVIDES AN INITIAL STRESS STATE TO SANTOS
С
С
   FORMAL PARAMETERS:
С
      SIG
           \mathtt{REAL}
                           ELEMENT STRESS ARRAY WHICH MUST BE RETURNED
                           WITH THE REQUIRED STRESS VALUES
С
     COORD REAL GLOBAL NODAL COORDINATE ARRAY
LINK INTEGER CONNECTIVITY ARRAY
DATMAT REAL MATERIAL PROPERTIES ARRAY
KONMAT INTEGER MATERIAL PROPERTIES INTEGER ARRAY
С
С
С
С
С
   CALLED BY: INIT
С
  ******************
С
С
      INCLUDE 'params.blk'
      INCLUDE 'psize.blk'
      INCLUDE 'contrl.blk'
      INCLUDE 'bsize.blk'
      INCLUDE 'timer.blk'
С
      DIMENSION LINK (NELNS, NUMEL), KONMAT (10, NEMBLK), COORD (NNOD, NSPC),
                SIG(NSYMM, NUMEL), DATMAT(MCONS, *), SCREL(NEBLK, *)
С
      DO 1000 I = 1, NEMBLK
         MATID = KONMAT(1,I)
         MKIND = KONMAT(2, I)
         ISTRT = KONMAT(3, I)
         IEND = KONMAT(4,I)
            DO 500 J = ISTRT, IEND
               II = LINK(1,J)
               JJ = LINK(2,J)
               KK = LINK(3,J)
               LL = LINK(4,J)
               ZAVG = 0.25 * (COORD(II,2) + COORD(JJ,2) + COORD(KK,2) +
                    COORD(LL,2) )
               STRESS = 21252. * (ZAVG)
               SIG(1,J) = STRESS
               SIG(2,J) = STRESS
               SIG(3,J) = STRESS
               SIG(4,J) = 0.0
  500
            CONTINUE
 1000 CONTINUE
      RETURN
      END
```

SANTOS Output For The Heated WIPP Benchmark II Problem

The following section presents a portion of the SANTOS printed output for the Benchmark II heated drift analysis. Because all pertinent information and results from the analysis are written to the plot file for post-processing, the printed output file simply echoes input data and problem—descriptive information at the beginning, followed by information that tracks the convergence behavior of the solution, and a summary of CPU usage at the end. For this reason, only a partial listing, consisting of approximately the first 500 lines of output and the last 100 lines of output, is provided.

struct.o

15: 1000 3.157E8

SSSSSS	AAA	AAA	N	NN	TTTTTT	000	000	SSSSSS
SS	AA	AA	NN	NN	TТ	00	00	SS
SS	AA	AA	NNN	NN	TТ	00	00	SS
SSSSS	AAA	AAAA	NN N	1 NN	TТ	00	00	SSSSS
SS	AA	AA	NN	NNN	${f TT}$	00	00	SS
SS	AA	AA	NN	NN	TТ	00	00	SS
SSSSS	AA	AA	NN	N	${f TT}$	000	000	SSSSSS

VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE ENGINEERING SCIENCES CENTER SANDIA NATIONAL LABORATORIES ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030612 AT 11:21:51 RUN ON A i686 UNDER Lx2.4.20

1: TITLE
2: BENCHMARK II HEATED PROBLEM - SANTOS VERIFICATION (1/17/95)
3: RESIDUAL TOLERANCE = .50
4: MAXIMUM ITERATIONS = 10000
5: INTERMEDIATE PRINT = 100
6: MAXIMUM TOLERANCE = 5.
7: THERMAL STRESS, EXTERNAL
8: PLANE STRAIN
9: TIME STEP SCALE = .10
10: PREDICTOR SCALE FACTOR = 3
11: EFFECTIVE MODULUS = VARIABLE
12: INITIAL STRESS = USER
13: GRAVITY = 1 = 0. = -9.8066 = 0.
14: STEP CONTROL

Page 357

16: END 17: PLOT TIME 18: 10 3.157E8 19: END 20: OUTPUT TIME 21: 10 3.157E8 22: END 23: PLOT NODAL DISPLACEMENT, REACTION, RESIDUAL 24: PLOT ELEMENT STRESS, VONMISES, TEMPERATURE, EFFMOD 25: PLOT STATE EQCS 26: NO DISPLACEMENT X, 1 27: NO DISPLACEMENT X, 12 28: NO DISPLACEMENT Y, 12 29: FUNCTION = 130: 0. 1. 31: 4.E8 1. 32: END 33: FUNCTION = 234: 299.,-.02 35: 350.,1. 36: END 37: FUNCTION = 338: 0. 0. 39: 4.E8 0. 40: END 41: PRESSURE, 13, 1, 12.71E6 42: PRESSURE, 14, 1, 15.01E6 43: CONTACT SURFACE, 8, 9, 0., .02, 1.E40 44: CONTACT SURFACE, 11, 10, 0., .02, 1.E40 45: CONTACT SURFACE, 15, 16, 0., .02, 1.E40 46: CONTACT SURFACE, 18, 17, 0., .02, 1.E40 47: MATERIAL, 1, POWER LAW CREEP, 2167., 2, 2.25E-3 48: TWO MU = 19.84E949: BULK MODULUS = 16.53E9 50: CREEP CONSTANT = 5.79E-36 51: STRESS EXPONENT = 4.9 52: THERMAL CONSTANT = 6039. 53: END 54: MATERIAL, 2, POWER LAW CREEP, 2167., 2, 2.E-3 55: TWO MU = 19.84E956: BULK MODULUS = 16.53E9 57: CREEP CONSTANT = 1.74E-35 58: STRESS EXPONENT = 4.9 59: THERMAL CONSTANT = 6039. 60: END 61: MATERIAL, 3, POWER LAW CREEP, 2167., 2, 2.135E-3 62: TWO MU = 21.2E963: BULK MODULUS = 17.66E9 64: CREEP CONSTANT = 5.21E-36 65: STRESS EXPONENT = 4.9 66: THERMAL CONSTANT = 6039. 67: END 68: MATERIAL, 4, ELASTIC, 2167., 2, 1.E-3 69: YOUNGS MODULUS = 72.4E9 70: POISSONS RATIO = .33 72: MATERIAL, 5, ELASTIC, 2167., 2, 1.2E-3

73: YOUNGS MODULUS = 72.4E9

129: THERMAL CONSTANT = 6039.

130: END

74: POISSONS RATIO = .33 75: END 76: EXIT INPUT STREAM IMAGES LINE -----78: TITLE 79: BENCHMARK II HEATED PROBLEM - SANTOS VERIFICATION (1/17/95) 80: RESIDUAL TOLERANCE = .50 81: MAXIMUM ITERATIONS = 10000 82: INTERMEDIATE PRINT = 100 83: MAXIMUM TOLERANCE = 5. 84: THERMAL STRESS, EXTERNAL 85: PLANE STRAIN 86: TIME STEP SCALE = .10 87: PREDICTOR SCALE FACTOR = 3 88: EFFECTIVE MODULUS = VARIABLE 89: INITIAL STRESS = USER 90: GRAVITY = 1 = 0. = -9.8066 = 0. 91: STEP CONTROL 92: 1000 3.157E8 93: END 94: PLOT TIME 95: 10 3.157E8 96: END 97: OUTPUT TIME 98: 10 3.157E8 99: END 100: PLOT NODAL DISPLACEMENT, REACTION, RESIDUAL 101: PLOT ELEMENT STRESS, VONMISES, TEMPERATURE, EFFMOD 102: PLOT STATE EQCS 103: NO DISPLACEMENT X, 1 104: NO DISPLACEMENT X, 12 105: NO DISPLACEMENT Y, 12 106: FUNCTION = 1107: 0. 1. 108: 4.E8 1. 109: END 110: FUNCTION = 2111: 299.,-.02 112: 350.,1. 113: END 114: FUNCTION = 3115: 0. 0. 116: 4.E8 0. 117: END 118: PRESSURE, 13, 1, 12.71E6 119: PRESSURE, 14, 1, 15.01E6 120: CONTACT SURFACE, 8, 9, 0., .02, 1.E40 121: CONTACT SURFACE, 11, 10, 0., .02, 1.E40 122: CONTACT SURFACE, 15, 16, 0., .02, 1.E40 123: CONTACT SURFACE, 18, 17, 0., .02, 1.E40 124: MATERIAL, 1, POWER LAW CREEP, 2167., 2, 2.25E-3 125: TWO MU = 19.84E9126: BULK MODULUS = 16.53E9 127: CREEP CONSTANT = 5.79E-36 128: STRESS EXPONENT = 4.9

```
131: MATERIAL, 2, POWER LAW CREEP, 2167., 2, 2.E-3
  132: TWO MU = 19.84E9
  133: BULK MODULUS = 16.53E9
  134: CREEP CONSTANT = 1.74E-35
  135: STRESS EXPONENT = 4.9
  136: THERMAL CONSTANT = 6039.
  137: END
  138: MATERIAL, 3, POWER LAW CREEP, 2167., 2, 2.135E-3
  139: TWO MU = 21.2E9
  140: BULK MODULUS = 17.66E9
  141: CREEP CONSTANT = 5.21E-36
 142: STRESS EXPONENT = 4.9
 143: THERMAL CONSTANT = 6039.
 144: END
 145: MATERIAL, 4, ELASTIC, 2167., 2, 1.E-3
 146: YOUNGS MODULUS = 72.4E9
 147: POISSONS RATIO = .33
 148: END
 149: MATERIAL, 5, ELASTIC, 2167., 2, 1.2E-3
 150: YOUNGS MODULUS = 72.4E9
 151: POISSONS RATIO = .33
 152: END
 153: EXIT
1
```

PROBLEM TITLE

BENCHMARK II HEATED PROBLEM - SANTOS VERIFICATION (1/17/95)

PROBLEM DEFINITION

NUMBER OF ELEMENTS	798
NUMBER OF NODES	926
NUMBER OF MATERIALS	5
NUMBER OF FUNCTIONS	3
NUMBER OF CONTACT SURFACES	· 4
NUMBER OF RIGID SURFACES	0
NUMBER OF MATERIAL POINTS MONITORED	0
ANALYSIS TYPE	PLANE STRAIN
GLOBAL CONVERGENCE MEASURE	
RESIDUAL TOLERANCE	5.000E-01
MAXIMUM NUMBER OF ITERATIONS	10000
ITERATIONS FOR INTERMEDIATE PRINT	100
MAXIMUM RESIDUAL TOLERANCE	5.000E+00
PREDICTOR SCALE FACTOR FUNCTION	3
MINIMUM DAMPING FACTOR	2.000E-01
EFFECTIVE MODULUS STATUS	VARIABLE
THERMAL STRESS ANALYSIS PERFORMED	EXTERNAL
THERMAL FORCE MAGNITUDE	0.000E+00
INITIAL STRESS DISTRIBUTION APPLIED	
GRAVITY LOADS APPLIED	
SCALE FACTOR APPLIED TO TIME STEP	1.000E-01
STRAIN SOFTENING SCALE FACTOR	1.000E+00
HOURGLASS STIFFNESS FACTOR	5.000E-02
HOURGLASS VISCOSITY FACTOR	0.000E+00

LOAD STEP DEFINITIONS

TIME NO. OF STEPS TIME 0.000E+00 1000 3.157E+08

PRINTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PRINTS TIME 0.000E+00 10 3.157E+08

PLOTTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PLOTS TIME .000E+00 10 3.157E+08 0.000E+00

MATERIAL DEFINITIONS

MATERIAL TYPEPOWER LAW CREEP MATERIAL ID DENSITY 2.167E+03 THERMAL STRAIN ID THERMAL STRAIN SCALE FACTOR 2.250E-03 MATERIAL PROPERTIES: = 1.984E+10 TWO MU BULK MODULUS = 1.653E+10 CREEP CONSTANT = 5.790E-36 STRESS EXPONENT = 4.900E+00 THERMAL CONSTANT = 6.039E+03 MATERIAL TYPEELASTIC MATERIAL ID DENSITY 2.167E+03 THERMAL STRAIN ID THERMAL STRAIN SCALE FACTOR 1.000E-03 MATERIAL PROPERTIES: = 7.240E+10 = 3.300E-01 YOUNGS MODULUS

MATERIAL TYPEPOWER LAW CREEP

POISSONS RATIO

MATERIAL ID DENSITY THERMAL STRAIN ID THERMAL STRAIN SCALE FACTOR MATERIAL PROPERTIES:	2.167E+03
TWO MU	= 2.120E+10
BULK MODULUS	= 1.766E+10
CREEP CONSTANT	
STRESS EXPONENT	
THERMAL CONSTANT	= 6.039E+03
ℓ	
MATERIAL TYPE	ELASTIC
MATERIAL ID	
DENSITY	
THERMAL STRAIN ID	
THERMAL STRAIN SCALE FACTOR	1.200E-03
MATERIAL PROPERTIES:	
YOUNGS MODULUS	= 7.240E+10
POISSONS RATIO	
TOTOGOMS Idillo	- 3.3001 01
,	
MATERIAL TYPE	
MATERIAL ID	
DENSITY	2.167E+03
THERMAL STRAIN ID	
THERMAL STRAIN SCALE FACTOR	2.000E-03
MATERIAL PROPERTIES:	
TWO MU	= 1.984E+10
BULK MODULUS	= 1.653E+10
CREEP CONSTANT	= 1.740E-35
STRESS EXPONENT	
THERMAL CONSTANT	= 4.900E+00 = 6.039E+03
THERMAL CONSTANT	= 6.039E+03
·	
FUNCTION DEF	TNITIONS
FUNCTION ID 1	NUMBER OF POINTS 2
n s	F(S)
1 0.000E+00	1.000E+00
2 4.000E+08	1.000E+00
FUNCTION ID 2	NUMBER OF POINTS 2
N S	F(S)
1 2.990E+02	-2.000E-02
2 3.500E+02	1.000E+00
5.5001102	=
EUNICHION ID	NUMBER OF BOTHER
FUNCTION ID 3	NUMBER OF POINTS 2
N S	F(S)
. 1 0.000E+00	0.000E+00

2 4.000E+08 0.000E+00

NO DISPLACEMENT BOUNDARY CONDITIONS

NODE SET FLAG	DIRECTION
1	X
12	X
12	Y

CONTACT SURFACES

SURFACE	SURFACE 1	SURFACE	2 PENALTY	COEFFICIENT	PENETRATION	TENSION
NUMBER	FLAG	FLAG	FACTOR	OF FRICTION	MULTIPLIER	RELEASE
1	* 8	9	0.000E+00	0.000E+00	2.000E-02	INF
2	11	10	0.000E+00	0.000E+00	2.000E-02	INF
3	15	16	0.000E+00	0.000E+00	2.000E-02	INF
4	18	17	0.000E+00	0.000E+00	2.000E-02	INF

PRESSURE BOUNDARY CONDTIONS

SURFACE	FUNCTION	SCALE
FLAG	NUMBER	FACTOR
13	1	1.271E+07
14	1	1.501E+07

 $\hbox{\tt E} \hbox{\tt N} \hbox{\tt D} \hbox{\tt O} \hbox{\tt F} \hbox{\tt D} \hbox{\tt A} \hbox{\tt T} \hbox{\tt A} \hbox{\tt I} \hbox{\tt N} \hbox{\tt P} \hbox{\tt U} \hbox{\tt T} \hbox{\tt P} \hbox{\tt H} \hbox{\tt A} \hbox{\tt S} \hbox{\tt E}$ 9.000E-02 CPU SECONDS USED 11620 WORDS ALLOCATED

END OF DATA INITIALIZATION PHASE 3.000E-02 CPU SECONDS USED 110968 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

NODAL ELEMENT

GLOBAL

DISPLX	SIGXX	FX
DISPLY	SIGYY	FY
RESIDX	SIGZZ	RX
RESIDY	TAUXY	RY
RESID	TEMP	ITER
REACTX	VONMISES	RMAG
REACTY	EFFMOD	
	EQCS	

**** PLOT TAPE WRITTEN FOR THE INITIAL STATE AT TIME = 0.000E+00 ****

	STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
			STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
	100	3.157E+05	3.157E+05	9.484E-01	1.223E+08	1.303E+07	10.66	100
	200	3.157E+05	3.157E+05	9.700E-01	1.223E+08	9.171E+06	7.50	200
	300	3.157E+05	3.157E+05	9.801E-01	1.223E+08	7.326E+06	5.99	300
	400	3.157E+05	3.157E+05	9.823E-01	1.223E+08	5.850E+06	4.78	400
	500	3.157E+05	3.157E+05	9.847E-01	1.223E+08	4.561E+06	3.73	500
	600	3.157E+05	3.156E+05	9.862E-01	1.223E+08	3.411E+06	2.79	600
	700	3.157E+05	3.156E+05	9.867E-01	1.223E+08	2.494E+06	2.04	700
	800	3.157E+05	3.156E+05	9.865E-01	1.223E+08	1.859E+06	1.52	800
	900	3.157E+05	3.156E+05	9.912E-01	1.223E+08	1.457E+06	1.19	900
	1000	3.157E+05	3.156E+05	9.883E-01	1.223E+08	1.172E+06	0.96	1000
	1100	3.157E+05	3.156E+05	9.872E-01	1.223E+08	9.596E+05	0.78	1100
	1200	3.157E+05	3.156E+05	9.877E-01	1.223E+08	8.028E+05	0.66	1200
	1300	3.157E+05	3.156E+05	9.771E-01	1.223E+08	6.925E+05	0.57	1300
	STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
			STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
	100	6.314E+05	1.512E+04	9.938E-01	1.223E+08	1.695E+07	13.86	1484
•	200	6.314E+05	3.673E+04	9.950E-01	1.223E+08	1.380E+07	11.29	1584
	300	6.314E+05	8.081E+04	9.915E-01	1.223E+08	9.325E+06	7.63	1684
	400	6.314E+05	1.441E+05	9.998E-01	1.223E+08	6.020E+06	4.92	1784
	500	6.314E+05	1.938E+05	9.659E-01	1.223E+08	4.187E+06	3.42	1884
	600	6.314E+05	2.253E+05	9.933E-01	1.223E+08	3.062E+06	2.50	1984
	700	6.314E+05	2.616E+05	9.896E-01	1.223E+08	2.299E+06	1.88	2084
	800	6.314E+05	2.768E+05	9.883E-01	1.223E+08	1.875E+06	1.53	2184
	800 900	6.314E+05 6.314E+05	2.768E+05 2.819E+05	9.883E-01 9.905E-01	1.223E+08 1.223E+08	1.875E+06 1.555E+06	1.53 1.27	2184 2284
	900 1000 1100	6.314E+05	2.819E+05	9.905E-01	1.223E+08	1.555E+06	1.27	2284
	900 1000	6.314E+05 6.314E+05	2.819E+05 2.838E+05	9.905E-01 9.903E-01	1.223E+08 1.223E+08	1.555E+06 1.252E+06	1.27 1.02	2284 2384

SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:21:51 BENCHMARK II HEATED PROBLEM - SANTOS VERIFICATION (1/17/95)

SUMMARY OF DATA AT STEP NUMBER 1000, TIME = 3.157E+08NUMBER OF ITERATIONS = 3577, TOTAL NUMBER OF ITERATIONS = 2951435FINAL CONVERGENCE TOLERANCE = 4.997E-01

SUM OF EXTERNAL FORCES IN X-DIRECTION =-4.262E+04
SUM OF EXTERNAL FORCES IN Y-DIRECTION =-2.997E+04
SUM OF REACTION FORCES IN X-DIRECTION = 1.378E+06
SUM OF REACTION FORCES IN Y-DIRECTION = 1.027E+07

**** PLOT TAPE WRITTEN AT TIME = 3.157E+08 STEP NUMBER 1000 ****

100 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

E N D O F S O L U T I O N P H A S E 3.403E+04 CPU SECONDS USED 150040 WORDS ALLOCATED

APPENDIX T

Input/Output Data For Test Case 20

The following three sections present the input data, the initial stress subroutine, and the formatted output, respectively, for the Isothermal WIPP Parallel Calculation verification problem.

FASTQ and SANTOS Input Data For The Isothermal WIPP Parallel Calculation

This section presents a listing of the FASTQ and SANTOS input data files that were used for the mesh generation and analysis of the Parallel Calculation isothermal drift problem.

reference.fsq

TITLE			
	ISOTHERMAL	REFERENCE CALCUI	LATION
POINT	1	0.000000E+00	5.2869999E+01
POINT	2	0.0000000E+00	4.9380001E+01
POINT	3	0.0000000E+00	3.1860001E+01
POINT	4	0.000000E+00	2.8299999E+01
POINT	5	0.000000E+00	1.3580000E+01
POINT	6	0.0000000E+00	1.0670000E+01
POINT	7	0.0000000E+00	9.3500004E+00
POINT	8	0.0000000E+00	9.1599998E+00
POINT	9	0.000000E+00	7.770000E+00
POINT	10	0.000000E+00	6.7100000E+00
POINT	11	0.000000E+00	4.270000E+00
POINT	12	0.000000E+00	2.3099999E+00
POINT	13	0.000000E+00	2.0999999E+00
POINT	14	0.000000E+00	0.000000E+00
POINT	15	0.0000000E+00	-2.4360001E+00
POINT	16	0.0000000E+00	-6.3979998E+00
POINT	17	0.0000000E+00	-7.770000E+00
POINT	18	0.0000000E+00	-8.6300001E+00
POINT	19	0.0000000E+00	-1.1370000E+01
POINT	20	0.0000000E+00	-1.4020000E+01
POINT	21	0.0000000E+00	-1.6330000E+01
POINT	22	0.0000000E+00	-1.6410000E+01
POINT	23	0.0000000E+00	-2.6209999E+01
POINT	24	0.0000000E+00	-3.0600000E+01
POINT	25	0.0000000E+00	-4.9990002E+01
POINT	26	0.0000000E+00	~5.4189999E+01
POINT	27	5.0300002E+00	1.3580000E+01
POINT	28	5.0300002E+00	1.0670000E+01
POINT	29	5.0300002E+00	9.3500004E+00
POINT	30	5.0300002E+00	9.1599998E+00
POINT	31	5.0300002E+00	9.1599998E+00
POINT	32	5.0300002E+00	7.770000E+00
POINT	33	5.0300002E+00	6.7100000E+00
POINT	34	5.0300002E+00	6.7100000E+00
POINT	35	5.0300002E+00	4.2700000E+00
POINT	36	5.0300002E+00	4.2700000E+00
POINT	37	5.0300002E+00	2.3099999E+00

POINT	38	5.0300002E+00	2.0999999E+00
POINT	39	5.0300002E+00	2.0999999E+00
POINT	40	5.0300002E+00	0.0000000E+00
POINT	41	5.0300002E+00	0.0000000E+00
POINT	42	5.0300002E+00	-2.4360001E+00
POINT	43	5.0300002E+00	-2.900001E+00
POINT	44	5.0279999E+00	-2.9000001E+00
POINT	45	5.0300002E+00	-3.7200000E+00
POINT	46	5.0300002E+00	-6.3979998E+00
POINT	47	5.0300002E+00	-7.7700000E+00
POINT	48	5.0300002E+00	-8.6300001E+00
POINT	49	5.0300002E+00	-8.6300001E+00
POINT	50	5.0300002E+00	-1.1370000E+01
POINT	51	5.0300002E+00	-1.1370000E+01
POINT	52		
		5.0300002E+00	-1.4020000E+01
POINT	53	2.0270000E+01	5.2869999E+01
POINT	54	2.0270000E+01	4.9380001E+01
POINT	55	2.0270000E+01	3.1860001E+01
POINT	56	2.0270000E+01	2.8299999E+01
POINT	57	2.0270000E+01	1.3580000E+01
POINT	58	2.0270000E+01	1.0670000E+01
POINT	59	2.0270000E+01	9.3500004E+00
POINT	60	2.0270000E+01	9.1599998E+00
POINT	61	2.0270000E+01	7.770000Œ+00
POINT	62	2.0270000E+01	6.7100000E+00
POINT	63	2.0270000E+01	4.2700000E+00
POINT	64	2.0270000E+01	2.3099999E+00
POINT	65	2.0270000E+01	2.0999999E+00
POINT	66	2.0270000E+01	0.000000E+00
POINT	67	2.0270000E+01	-2.4360001E+00
POINT	68	2.0270000E+01	-2.900001E+00
POINT	69	2.0270000E+01	-3.7200000E+00
POINT	70	2.0270000E+01	-6.3979998E+00
POINT	71	2.0270000E+01	-7.7700000E+00
POINT	72	2.0270000E+01	-8.6300001E+00
POINT	73	2.0270000E+01	-1.1370000E+01
POINT	74	2.0270000E+01	-1.4020000E+01
POINT	75	2.0270000E+01	-1.6330000E+01
POINT	76	2.0270000E+01	-1.6410000E+01
POINT	77	2.0270000E+01	-2.6209999E+01
POINT	78	2.0270000E+01	-3.0600000E+01
POINT	79	2.0270000E+01	-4.9990002E+01
POINT	80	2.0270000E+01	-5.4189999E+01
POINT	81	5.0300002E+00	-1.6330000E+01
POINT	82	5.0300002E+00	-1.6410000E+01
POINT	84	5.0300002E+00	-1.4020000E+01
POINT	86	5.0300002E+00	1.3580000E+01
POINT	87	5.0300002E+00	2.8299999E+01
POINT	88	5.0300002E+00	3.1860001E+01
POINT	89	5.0300002E+00	4.9380001E+01
POINT	90	5.0300002E+00	5.2869999E+01
POINT	91	5.0300002E+00	-1.6410000E+01
POINT	92	5.0300002E+00	-2.6209999E+01
POINT	93	5.0300002E+00	-3.0600000E+01
POINT	94	5.0300002E+00	-4.9990002E+01
POINT	95	5.0300002E+00	-5.4189999E+01
POINT	96	5.0300002E+00	-5.8109999E+00
POINT	97	2.0270000E+01	-5.8109999E+00
- 0 - 114 1	21	2.02/0000101	3.3137772100

LINE	1	STR	1	2	0	2	0.000000
LINEBC	1	1					
LINE	2	STR	2	3	0	9	0.000000
LINEBC	1	2					
LINE	3	STR	3	4	0	2	0.000000
LINEBC	1	3					
LINE	4	STR	4	5	0	9	0.970000
LINEBC	1	4	•	•	•	-	
LINE	5	STR	5	6	0	2	0.000000
LINEBC	1	5	,	J	U		0,00000
	6		6	7	0	2	0.000000
LINE		STR	0	,	U	2	0.000000
LINEBC	1	6	_	^	•		0 000000
LINE	7	STR	7	8	0	1	0.000000
LINEBC	1	7	_	_	_	_	
LINE	8	STR	8	9	0	2	0.000000
LINEBC	1	8					
LINE	9	STR	9	10	0	2	0.000000
LINEBC	1	9					
LINE	10	STR	10	11	0	3	0.000000
LINEBC	1	10					
LINE	11	STR	11	12	0	3	0.000000
LINEBC	1	11					
LINE	12	STR	12	13	0	1	0.000000
LINEBC	1	12			•	_	
LINE	13	STR	13	14	0	3	0.000000
LINEBC	1	13	13	14	V	,	0.00000
			1.4	1 5	0	4	0.000000
LINE	14	STR	14	15	υ	4	0.000000
LINEBC	1	14			^	_	0 000000
LINE	15	STR	16	17	0	3	0.000000
LINEBC	1	15				_	
LINE	16	STR	17	18	0	2	0.000000
LINEBC	1	16					
LINÉ	17	STR	18	19	0	4	0.000000
LINEBC	1	17				•	
LINE	18	STR	19	20	0	3	0.000000
LINEBC	1	18	,				
LINE	19	STR	20	21	0	3	0.000000
LINEBC	1	19					
LINE	20	STR	21	22	0	1	0.000000
LINEBC	1	20			_	-	
LINE	21	STR	22	23	0	6	1.050000
LINEBC	1	21			Ū	·	2.050000
LINE	22	STR	23	24	0	3	0.000000
	1	22	23	24	U	,	0.000000
LINEBC			2.4	2.5	0	9	0.000000
LINE	23	STR	24	25	U	9	0.000000
LINEBC	1	23			•	_	
LINE	24	STR	25	26	0	2	0.000000
LINEBC	1	24					
LINE	25	STR	42	43	0	2	0.000000
LINE	26	STR	44	45	0	2	0.000000
LINE	27	STR	45	96	0	3	0.000000
LINE	28	STR	53	54	0	2	0.000000
LINEBC	2	28					
LINE	29	STR	54	55	0	9	0.000000
LINEBC	1	29					
LINE	30	STR	55	56	0	2	0.000000
LINEBC	1	30					
LINE	31	STR	56	57	0	9	0.970000
	_						

·							
LINEBC	1	31					
LINE	32	STR	57	58	0	2	0.000000
LINEBC	1	32					
LINE	33	STR	58	59	0	2	0.000000
LINEBC	1	33					
LINE	34	STR	59	60	0	1	0.000000
LINEBC	1	34					
LINE	35	STR	60	61	0	2	0.000000
LINEBC	1	35					
LINE	36	STR	61	62	0	2	0.000000
LINEBC	1	36			•	•	
LINE	37	STR	62	63	0	3	0.00000
LINEBC LINE	1 38	37 STR	63	64	0	3	0.000000
LINEBC	1	38	0.3	04	U	3	0.000000
LINE	39	STR	64	65	0	1	0.000000
LINEBC	1	39	04	05	J	•	0.00000
LINE	40	STR	65	66	0	3	0.000000
LINEBC	1	40			·	_	
LINE	41	STR	66	67	0	4	0.000000
LINEBC	1	41					
LINE	42	STR	67	68	0	2	0.000000
LINEBC	1	42					
LINE	43	STR	68	69	0	2	0.000000
LINEBC	1	43					
LINE	44	STR	69	97	0	3	0.000000
LINEBC	1	44			_	_	
LINE	45	STR	70	71	0	3	0.000000
LINEBC	1	45	71	72	^	2	0 000000
LINE LINEBC	46 1	STR 46	7 1	12	0	2	0.000000
LINE	47	STR	72	73 °	0	4	0.000000
LINEBC	1	47	72	73	U	-	0.00000
LINE	48	STR	73	74	0	3	0.000000
LINEBC	1	48			_	_	
LINE	49	STR	74	75	0	3	0.000000
LINEBC	1	49					
LINE	50	STR	75	76	0	1	0.000000
LINEBC	1	50					
LINE	51	STR	76	77	0	6	1.050000
LINEBC	1	51			_	_	
LINE	52	STR	77	78	0	3	0.000000
LINEBC	1	52	7.8	70	^	0	0 000000
LINE	53	STR 53	78	79	0	9	0.000000
LINEBC LINE	1 54	STR	79	80	0	2	0.000000
LINEBC	1	518	,,	00	U	2	0.000000
LINE	55	STR	1	90	0	6	0.900000
SIDEBC	3	55	_		ŭ	J	0.120000
LINE	56	STR	2	89	0 .	6	0.900000
LINE	57	STR	3	88	0	6	0.900000
LINE	58	STR	4	87	0	6	0.900000
LINE	59	STR	5	86	0	6	0.900000
SIDEBC	105	59		_			
LINE	60	STR	5	27	0	6	0.900000
SIDEBC	106	60	0.5		^	11	1 150000
LINE	61	STR	27	57	0	11	1.150000
SIDEBC	106	61					

	C 2	amp	_	2.0	•	_	0 000000
LINE	62 63	STR	6 28	28 58	0	6 11	0.900000 1.150000
LINE	64	STR STR	28 7	29	0 0	6	0.900000
LINE			29	29 59	0		
LINE	65	STR				11	1.150000
LINE	66	STR	8	30	0	6	0.900000
SIDEBC	107	66	2.0	C 0	^	11	1 150000
LINE	67	STR	30	60	0	11	1.150000
SIDEBC	107	67	_	2.4	•	_	
LINE	68	STR	8	31	0	6	0.900000
SIDEBC	108	68			_		
LINE	69	STR	31	60	0	11	1.150000
SIDEBC	108	69			_	_	
LINE	70	STR	9	32	0	6	0.900000
LINE	71	STR	32	61	0	11	1.150000
LINE	72	STR	10	33	0	6	0.900000
SIDEBC	109	72					
LINE	73	STR	33	62	0	11	1.150000
SIDEBC	109	73			_	_	
LINE	74	STR	10	34	0	6	0.900000
SIDEBC	110	74					
LINE	75	STR	34	62	0	11	1.150000
SIDEBC	110	75				_	
LINE	76	STR	11	35	0	6	0.900000
SIDEBC	111	76					
LINE	77	STR	35	63	0	11	1.150000
SIDEBC	111	77	2.			_	
LINE	78	STR	11	36	0	6	0.900000
SIDEBC	112	78			_		
LINE	79	STR	36	63	0	11	1.150000
SIDEBC	112	79	10	2.5	•	_	
LINE	80	STR	12	37	0	6	0.900000
LINE	81	STR	37	64	0	11	1.150000
LINE	82	STR	13	38	0	6	0.900000
SIDEBC	113	82	2.0	6	^	11	1 150000
LINE	83	STR	38	65	0	11	1.150000
SIDEBC	113 84	83 STR	13	39	0	6	0.900000
LINE	114	84	13	39	U	0	0.900000
SIDEBC			39	65	0	11	1.150000
LINE	85 114	STR 85	39	63	U	11	1.130000
SIDEBC LINE	86	STR	14	40	0	6	0.900000
SIDEBC	115	86	14	40	v	U	0.900000
LINE	87	STR	40	66	0	11	1.150000
SIDEBC	115	87	40	00	v		1.130000
LINE	88	STR	14	41	0	6	0.900000
SIDEBC	116	88			Ū	Ŭ	0.50000
LINE	89	STR	41	66	0	11	1.150000
SIDEBC	116	89	,	• •	·		2.20000
LINE	90	STR	15	42	0	6	0.900000
LINE	91	STR	42	67	0	11	1.150000
LINE	92	STR	43	68	0	11	1.150000
SIDEBC	117	92	F				
LINE	93	STR	44	68	0	11	1.150000
SIDEBC	118	93					
LINE	94	STR	45	69	0	11	1.150000
LINE	95	STR	46	70	0	11	1.150000
LINE	96	STR	17	47	0	6	0.900000
LINE	97	STR	47	71	0	11	1.150000

LINE	98	STR	18	48	0	6	0.900000
SIDEBC	119	98	10	40	. 0	U	0.500000
LINE	99	STR	48	72	.0	11	1.150000
SIDEBC	119	99				,	
LINE	100	STR	18	49	0	6	0.900000
SIDEBC	120	100					
LINE	101	STR	49	72	0	11	1.150000
SIDEBC	120	101					
LINE	102	STR	19	50	0	6	0.900000
SIDEBC	121	102					
LINE	103	STR	50	73	0	11	1.150000
SIDEBC	121	103					
LINE	104	STR	19	51	0	6 '	0.900000
SIDEBC	122	104					
LINE	105	STR	51	73	0	11	1.150000
SIDEBC	122	105					
LINE	106	STR	20	52	0	6	0.900000
SIDEBC	123	106					
LINE	107	STR	52	74	0	11	1.150000
SIDEBC	123	107					
LINE	108	STR	20	84	0	6	0.900000
SIDEBC	124	108					
LINE	109	STR	21	81	0	6	0.900000
LINE	110	STR	22	82	0	6	0.900000
SIDEBC	125	110					
LINE	111	STR	23	92	0	6	0.900000
LINE	112	STR	24	93	0	6	0.900000
LINE	113	STR	25	94	0	6	0.900000
LINE	114	STR	26	95	0	6	0.900000
SIDEBC	4	114			_	_	
LINE	115	STR	16	46	0	6	0.900000
LINE	116	STR	81	75	0	11	1.150000
LINE	117	STR	82	76	0	11	1.150000
SIDEBC	125	117	0.1	7.6	^		1 150000
LINE	118	STR	91	76	. 0	11	1.150000
SIDEBC LINE	126	118	0.4	7.4	^	11	1.150000
	120	STR	84	74	0	11	1.150000
SIDEBC LINE	124 121	120	0.6	5 7	^	11	1 150000
	105	STR 121	86	57	0	. 11	1.150000
SIDEBC LINE	122	STR	87	56	0	11	1.150000
LINE	123	STR	88	55	0	11	1.150000
LINE	124	STR	89	54	0	11	1.150000
LINE	125	STR	90	53	0	11	1.150000
SIDEBC	3	125	20	33	•		1.150000
LINE	126	STR	95	80	0	11	1.150000
SIDEBC	4	126	,,,		Ū		1.155555
LINE	127	STR	94	79	0	11	1.150000
	128	STR	93	78	0	11	1.150000
LINE	129	STR	92	77	0	11	1.150000
LINE	130	STR	22	91	0	6	0.900000
SIDEBC	126	130					
LINE	131	STR	96	46	0	2	0.000000
LINE	132	STR	97	70	0	2	0.000000
LINEBC	1	132					
SIDE	1	60	61				
SIDE	2	62	63				
SIDE	3	64	65				

			_			
GIDE	4		60			
SIDE	4 5	66 68	67 69			
SIDE SIDE	6	70	71			
	7		73			
SIDE		72				,
SIDE	8 9	74 76	75			
SIDE			77			
SIDE	10	78	79 01			
SIDE SIDE	11 12	80 82	81			
			83			
SIDE SIDE	13 14	84 86	85 87			
SIDE	15 16	88 90	89 91			
SIDE						
SIDE	17	115	95 07			
SIDE	18	96	97			
SIDE	19	98	99			
SIDE	20	100	101			
SIDE	21	102	103			
SIDE	22	104	105			
SIDE	23	106	107			
SIDE	24	108	120			
SIDE	25	109	116			
SIDE	26	110	117			
SIDE	27	59	121			
SIDE	28	58	122			
SIDE	29	57	123			
SIDE	30	56	124			
SIDE	31	55	125			
SIDE	32	130	118			
SIDE	33	111	129			
SIDE	34	112	128			
SIDE	35	113	127			
SIDE	36	114	126			
SIDE	37	27	131			
SIDE	38	44	132	1	20	20
REGION	1	3	31	-1 -2	30 29	-28 -29
REGION	2	1	30			
REGION	3	3	29	-3	28	-30
REGION	4	1	28	-4	27	-31
REGION	5	2	1	-5	2	-32
REGION	6	1	2	-6	3 4	-33
REGION	7	3	3	-7		-34
REGION	8 9	2	5 6	-8 -9	6 7	-35 -36
REGION		1				-30 -37
REGION	10	1 1	8	-10 -11	9 11	-38
REGION REGION	11 12		10	-11		-39
REGION	13	3 1	11 13	-13	12 14	-39 -40
REGION	14	1	15	-13 -14	16	-41
REGION	15 16	1 2	-91 -93	-25 -26	-92 -94	-42 -43
REGION REGION	16 17	1	-93 -94	-26 37	-94 -95	38
REGION		1	-94 17	-15	-95 18	-45
REGION	18 19	3	18	-15 -16	18 19	-45 -46
	20	3 1	20	-16 -17	21	-40 -47
REGION REGION	21	1	20	-17 -18	23	-48
REGION	21	1	24	-18 -19	25 25	-48 -49
REGION	23	3	25	-19 -20	26	-50
KEGION	43	3	4 5	-20	20	-50

```
REGION
          24
                          -21
                                        -51
                      32
         25
                                       -52
 REGION
                3 33 -22
 REGION
         26
                     34 -23
                                   35
                                       -53
 REGION
         27
                  4 35 -24
                                   36
                                       -54
         0
 SCHEME
 EXIT
 refiso.i
 TITLE
   REFERENCE PARALLEL ISOTHERMAL PROBLEM - SANTOS VERIFICATION (1/24/95)
 RESIDUAL TOLERANCE = .5
 MAXIMUM ITERATIONS = 20000
 INTERMEDIATE PRINT = 100
 MAXIMUM TOLERANCE = 5.
 PLANE STRAIN
 TIME STEP SCALE = 0.7
 PREDICTOR SCALE FACTOR = 2
 EFFECTIVE MODULUS = VARIABLE
 INITIAL STRESS = USER
 GRAVITY = 1 = 0. = -9.790 = 0.
 STEP CONTROL
  400 3.157E8
 END
 PLOT TIME
  1 3.157E8
 END
 OUTPUT TIME
  100 3.157E8
 END
 PLOT NODAL DISPLACEMENT, REACTION, RESIDUAL
 PLOT ELEMENT STRESS, VONMISES, EFFMOD
 PLOT STATE EQCS
 NO DISPLACEMENT X, 1
 NO DISPLACEMENT X, 2
 NO DISPLACEMENT Y, 2
 FUNCTION = 1
 0.1.
 4.E8 1.
 END
 FUNCTION = 2
 0.0.
 4.E8 0.
 END
 PRESSURE, 3, 1, 13.57E6
 PRESSURE, 4, 1, 15.96E6
 CONTACT SURFACE, 105, 106, FIXED,
 CONTACT SURFACE, 107, 108, FIXED,
 CONTACT SURFACE, 109, 110, 0.4,
 CONTACT SURFACE, 111, 112, 0.4,
 CONTACT SURFACE, 113, 114, 0.4,
- CONTACT SURFACE, 115, 116, 0.4,
 CONTACT SURFACE, 118, 117, 0.4,
 CONTACT SURFACE, 119, 120, 0.4,
 CONTACT SURFACE, 121, 122, 0.4, CONTACT SURFACE, 123, 124, FIXED,
 CONTACT SURFACE, 125, 126, FIXED,
 MATERIAL, 1, POWER LAW CREEP, 2300.
                                     $ HALITE
 TWO MU = 24.8E9
```

```
BULK MODULUS = 20.7E9
CREEP CONSTANT = 5.79E-36
STRESS EXPONENT = 4.9
THERMAL CONSTANT = 20.13
END
MATERIAL, 2, POWER LAW CREEP, 2300. $ ARGILLACEOUS HALITE
TWO MU = 24.8E9
BULK MODULUS = 20.7E9
CREEP CONSTANT = 1.74E-35
STRESS EXPONENT = 4.9
THERMAL CONSTANT = 20.13
END
                          $ ANHYDRITE
MATERIAL, 3, ELASTIC, 2300.
YOUNGS MODULUS = 75.1E9
POISSONS RATIO = .35
END
MATERIAL, 4, ELASTIC, 2300. $ POLYHALITE
YOUNGS MODULUS = 55.3E9
POISSONS RATIO = .36
END
EXIT
```

Initial Stress Subroutine For The Isothermal WIPP Parallel Calculation

This section presents a listing of the INITST subroutine that was used in SANTOS to specify the initial stresses for the Parallel Calculation isothermal drift analysis.

```
SUBROUTINE INITST ( SIG, COORD, LINK, DATMAT, KONMAT, SCREL )
С
С
  DESCRIPTION:
С
    THIS ROUTINE PROVIDES AN INITIAL STRESS STATE TO SANTOS
C
  FORMAL PARAMETERS:
С
                      ELEMENT STRESS ARRAY WHICH MUST BE RETURNED
С
   SIG REAL
С
                       WITH THE REQUIRED STRESS VALUES
                       GLOBAL NODAL COORDINATE ARRAY
С
    COORD REAL
             INTEGER CONNECTIVITY ARRAY

PEAL MATERIAL PROPERTIES ARRAY

PROPERTIES INTEG:
С
    LINK
    DATMAT REAL
С
    KONMAT INTEGER
                       MATERIAL PROPERTIES INTEGER ARRAY
C
C
  CALLED BY: INIT
С
 ******************
С
     INCLUDE 'params.blk'
     INCLUDE 'psize.blk'
     INCLUDE 'contrl.blk'
     INCLUDE 'bsize.blk'
     INCLUDE 'timer.blk'
     DIMENSION LINK (NELNS, NUMEL), KONMAT (10, NEMBLK), COORD (NNOD, NSPC),
              SIG (NSYMM, NUMEL), DATMAT (MCONS, *), SCREL (NEBLK, *)
С
     DO 1000 I = 1, NEMBLK
       MATID = KONMAT(1, I)
       MKIND = KONMAT(2,I)
```



```
ISTRT = KONMAT(3,I)
       IEND = KONMAT(4,I)
          DO 500 J = ISTRT, IEND
             II = LINK(1,J)
              JJ = LINK(2,J)
             KK = LINK(3,J)
              LL = LINK(4,J)
              ZAVG = 0.25 * (COORD(II, 2) + COORD(JJ, 2) + COORD(KK, 2) +
                   COORD(LL,2) )
              STRESS = -2.256E4 * (655. - ZAVG)
              SIG(1,J) = STRESS
              SIG(2,J) = STRESS
              SIG(3,J) = STRESS
              SIG(4,J) = 0.0
500
           CONTINUE
1000 CONTINUE
    RETURN
    F.ND
```

SANTOS Output For The Isothermal WIPP Parallel Calculation

The following section presents a portion of the SANTOS printed output for the Parallel Calculation isothermal drift analysis. Because all pertinent information and results from the analysis are written to the plot file for post-processing, the printed output file simply echoes input data and problem—descriptive information at the beginning, followed by information that tracks the convergence behavior of the solution, and a summary of CPU usage at the end. For this reason, only a partial listing, consisting of approximately the first 500 lines of output and the last 100 lines of output, is provided.

refiso.o

SSSSSS	AAA	AAA	N	ŃΝ	TTTTTT	000	000	SSSSS	SS
SS	AA	AA	NN	NN	${f TT}$	00	00	SS	
SS	AA	AA	NNN	NN	${f TT}$	00	00	SS	
SSSSS	AAA	AAAA	NN N	1 NN	${f TT}$	00	00	SSSSS	S
SS	AA	AA	NN	NNN	${f TT}$	00	00	S	SS
SS	AA	AA	NN	NN	${f TT}$	00	00	5	SS
SSSSSS	AA	AA	NN	N	${f TT}$	000	000	SSSSS	S

VERSION 2.1.7-DP COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE ENGINEERING SCIENCES CENTER SANDIA NATIONAL LABORATORIES ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030612 AT 11:22:54 RUN ON A i686 UNDER Lx2.4.20

1: TITLE 2: REFERENCE PARALLEL ISOTHERMAL PROBLEM - SANTOS VERIFICATION (1/24/95) 3: RESIDUAL TOLERANCE = .5 4: MAXIMUM ITERATIONS = 20000 5: INTERMEDIATE PRINT = 100 6: MAXIMUM TOLERANCE = 5. 7: PLANE STRAIN 8: TIME STEP SCALE = 0.7 9: PREDICTOR SCALE FACTOR = 2 10: EFFECTIVE MODULUS = VARIABLE 11: INITIAL STRESS = USER 12: GRAVITY = 1 = 0. = -9.790 = 0. 13: STEP CONTROL 14: 400 3.157E8 15: END 16: PLOT TIME 17: 1 3.157E8 18: END 19: OUTPUT TIME 20: 100 3.157E8 21: END 22: PLOT NODAL DISPLACEMENT, REACTION, RESIDUAL 23: PLOT ELEMENT STRESS, VONMISES, EFFMOD 24: PLOT STATE EQCS 25: NO DISPLACEMENT X, 1 26: NO DISPLACEMENT X, 2 27: NO DISPLACEMENT Y, 2 28: FUNCTION = 129: 0. 1. 30: 4.E8 1. 31: END 32: FUNCTION = 233: 0. 0. 34: 4.E8 0. 35: END 36: PRESSURE, 3, 1, 13.57E6 37: PRESSURE, 4, 1, 15.96E6 38: CONTACT SURFACE, 105, 106, FIXED, 39: CONTACT SURFACE, 107, 108, FIXED, 40: CONTACT SURFACE, 109, 110, 0.4, 41: CONTACT SURFACE, 111, 112, 0.4, 42: CONTACT SURFACE, 113, 114, 0.4, 43: CONTACT SURFACE, 115, 116, 0.4, 44: CONTACT SURFACE, 118, 117, 0.4, 45: CONTACT SURFACE, 119, 120, 0.4, 46: CONTACT SURFACE, 121, 122, 0.4, 47: CONTACT SURFACE, 123, 124, FIXED, 48: CONTACT SURFACE, 125, 126, FIXED, 49: MATERIAL, 1, POWER LAW CREEP, 2300. \$ HALITE 50: TWO MU = 24.8E951: BULK MODULUS = 20.7E9 52: CREEP CONSTANT = 5.79E-36 53: STRESS EXPONENT = 4.9 54: THERMAL CONSTANT = 20.13

```
55: END
56: MATERIAL, 2, POWER LAW CREEP, 2300. $ ARGILLACEOUS HALITE
57: TWO MU = 24.8E9
58: BULK MODULUS = 20.7E9
59: CREEP CONSTANT = 1.74E-35
60: STRESS EXPONENT = 4.9
61: THERMAL CONSTANT = 20.13
62: END
63: MATERIAL, 3, ELASTIC, 2300. $ ANHYDRITE
64: YOUNGS MODULUS = 75.1E9
65: POISSONS RATIO = .35
66: END
67: MATERIAL, 4, ELASTIC, 2300.
                                 $ POLYHALITE
68: YOUNGS MODULUS = 55.3E9
69: POISSONS RATIO = .36
70: END
71: EXIT
                                  INPUT STREAM IMAGES
      REFERENCE PARALLEL ISOTHERMAL PROBLEM - SANTOS VERIFICATION (1/24/95)
75: RESIDUAL TOLERANCE = .5
76: MAXIMUM ITERATIONS = 20000
77: INTERMEDIATE PRINT = 100
78: MAXIMUM TOLERANCE = 5.
79: PLANE STRAIN
 80: TIME STEP SCALE = 0.7
 81: PREDICTOR SCALE FACTOR = 2
82: EFFECTIVE MODULUS = VARIABLE
83: INITIAL STRESS = USER
 84: GRAVITY = 1 = 0. = -9.790 = 0.
85: STEP CONTROL
86: 400 3.157E8
87: END
 88: PLOT TIME
 89: 1 3.157E8
90: END
91: OUTPUT TIME
92: 100 3.157E8
93: END
 94: PLOT NODAL DISPLACEMENT, REACTION, RESIDUAL
 95: PLOT ELEMENT STRESS, VONMISES, EFFMOD
 96: PLOT STATE EOCS
97: NO DISPLACEMENT X, 1
98: NO DISPLACEMENT X, 2
99: NO DISPLACEMENT Y, 2
100: FUNCTION = 1
101: 0. 1.
102: 4.E8 1.
103: END
104: FUNCTION = 2
105: 0. 0.
106: 4.E8 0.
107: END
108: PRESSURE, 3, 1, 13.57E6
109: PRESSURE, 4, 1, 15.96E6
110: CONTACT SURFACE, 105, 106, FIXED,
111: CONTACT SURFACE, 107, 108, FIXED,
```

```
112: CONTACT SURFACE, 109, 110, 0.4,
  113: CONTACT SURFACE, 111, 112, 0.4,
  114: CONTACT SURFACE, 113, 114, 0.4,
  115: CONTACT SURFACE, 115, 116, 0.4,
  116: CONTACT SURFACE, 118, 117, 0.4,
  117: CONTACT SURFACE, 119, 120, 0.4,
  118: CONTACT SURFACE, 121, 122, 0.4,
  119: CONTACT SURFACE, 123, 124, FIXED, 120: CONTACT SURFACE, 125, 126, FIXED,
  121: MATERIAL, 1, POWER LAW CREEP, 2300.
                                            $ HALITE
  122: TWO MU = 24.8E9
  123: BULK MODULUS = 20.7E9
  124: CREEP CONSTANT = 5.79E-36
  125: STRESS EXPONENT = 4.9
  126: THERMAL CONSTANT = 20.13
  127: END
  128: MATERIAL, 2, POWER LAW CREEP, 2300. $ ARGILLACEOUS HALITE
  129: TWO MU = 24.8E9
  130: BULK MODULUS = 20.7E9
  131: CREEP CONSTANT = 1.74E-35
  132: STRESS EXPONENT = 4.9
  133: THERMAL CONSTANT = 20.13
  134: END
  135: MATERIAL, 3, ELASTIC, 2300.
                                  $ ANHYDRITE
  136: YOUNGS MODULUS = 75.1E9
  137: POISSONS RATIO = .35
  138: END
                                  $ POLYHALITE
  139: MATERIAL, 4, ELASTIC, 2300.
  140: YOUNGS MODULUS = 55.3E9
  141: POISSONS RATIO = .36
  142: END
 143: EXIT
1
```

PROBLEM TITLE

REFERENCE PARALLEL ISOTHERMAL PROBLEM - SANTOS VERIFICATION (1/24/95)

PROBLEM DEFINITION

NUMBER OF ELEMENTS	1476
NUMBER OF NODES	
NUMBER OF MATERIALS	4
NUMBER OF FUNCTIONS	2
NUMBER OF CONTACT SURFACES	11
NUMBER OF RIGID SURFACES	0
NUMBER OF MATERIAL POINTS MONITORED	0
ANALYSIS TYPE	PLANE STRAIN
GLOBAL CONVERGENCE MEASURE	
RESIDUAL TOLERANCE	5.000E-01
MAXIMUM NUMBER OF ITERATIONS	20000
ITERATIONS FOR INTERMEDIATE PRINT	100
MAXIMUM RESIDUAL TOLERANCE	5.000E+00
PREDICTOR SCALE FACTOR FUNCTION	2
MINIMUM DAMPING FACTOR	2.000E-01

EFFECTIVE MODULUS STATUS	VARIABLE
INITIAL STRESS DISTRIBUTION APPLIED	
GRAVITY LOADS APPLIED	
SCALE FACTOR APPLIED TO TIME STEP	7.000E-01
STRAIN SOFTENING SCALE FACTOR	1.000E+00
HOURGLASS STIFFNESS FACTOR	5.000E-02
HOURGLASS VISCOSITY FACTOR	0.000E+00

LOAD STEP DEFINITIONS

TIME NO. OF STEPS 0.000E+00 400 3.157E+08

PRINTED OUTPUT FREQUENCY

TIME TIME STEPS BETWEEN PRINTS 0.000E+00 100 3.157E+08

PLOTTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PLOTS TIME
1 3.157E+08 0.000E+00

MATERIAL DEFINITIONS

MATERIAL TYPEELASTIC MATERIAL ID DENSITY 2.300E+03 MATERIAL PROPERTIES:

YOUNGS MODULUS = 7.510E+10 POISSONS RATIO = 3.500E-01

MATERIAL TYPEPOWER LAW CREEP DENSITY 2.300E+03

MATERIAL PROPERTIES: TWO MU = 2.480E+10 BULK MODULUS = 2.070E+10 CREEP CONSTANT = 5.790E-36 STRESS EXPONENT = 4.900E+00 THERMAL CONSTANT = 2.013E+01

MATERIAL ID 2 DENSITY 2.300E+03 MATERIAL PROPERTIES: 2.480E+10 TWO MU TWO MU = 2.480E+10
BULK MODULUS = 2.070E+10
CREEP CONSTANT = 1.740E-35
STRESS EXPONENT = 4.900E+00
THERMAL CONSTANT = 2.013E+01 = MATERIAL TYPEELASTIC MATERIAL ID DENSITY 2.300E+03 MATERIAL PROPERTIES: YOÙNGS MODULUS = 5.530E+10 POISSONS RATIO = 3.600E-01 FUNCTION DEFINITIONS FUNCTION ID 1 NUMBER OF POINTS S F(S) 1 0.000E+00 1.000E+00 2 4.000E+08 1.000E+00

MATERIAL TYPEPOWER LAW CREEP

NO DISPLACEMENT BOUNDARY CONDITIONS

FUNCTION ID 2 NUMBER OF POINTS

1 0.000E+00 0.000E+00 2 4.000E+08 0.000E+00

F(S)

NODE SET FLAG DIRECTION
1 X
2 X
Y

S

N

CONTACT SURFACES

SURFACE SURFACE 1 SURFACE 2 PENALTY COEFFICIENT PENETRATION TENSION NUMBER FLAG FLAG FACTOR OF FRICTION MULTIPLIER RELEASE 1 105 106 0.000E+00 FIXED 1.000E-02 1.000E+30

2	107	108	0.000E+00	FIXED	1.000E-02	1.000E+30 .
3	109	110	0.000E+00	4.000E-01	1.000E-02	1.000E+30
4	111	112	0.000E+00	4.000E-01	1.000E-02	1.000E+30
5	113	114	0.000E+00	4.000E-01	1.000E-02	1.000E+30
6	115	116	0.000E+00	4.000E-01	1.000E-02	1.000E+30
7	118	117	0.000E+00	4.000E-01	1.000E-02	1.000E+30
8	119	120	0.000E+00	4.000E-01	1.000E-02	1.000E+30
9	121	122	0.000E+00	4.000E-01	1.000E-02	1.000E+30
10	123	124	0.000E+00	FIXED	1.000E-02	1.000E+30
11	125	126	0.000E+00	FIXED	1.000E-02	1.000E+30

PRESSURE BOUNDARY CONDTIONS

SURFACE	FUNCTION	SCALE
FLAG	NUMBER	FACTOR
3	1	1.357E+07
4	1	1.596E+07

E N D O F D A T A I N P U T P H A S E 1.200E-01 CPU SECONDS USED 22772 WORDS ALLOCATED

END OF DATA INITIALIZATION PHASE 2.000E-02 CPU SECONDS USED 249420 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

NODAL	ELEMENT	GLOBAL
DISPLX	SIGXX	FX
DISPLY	SIGYY	FY
RESIDX	SIGZZ	RX
RESIDY	TAUXY	RY
RESID	VONMISES	ITER
REACTX	EFFMOD	RMAG
REACTY	EQCS	

**** PLOT TAPE WRITTEN FOR THE INITIAL STATE AT TIME = 0.000E+00 ****

STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
100	7.892E+05	7.890E+05	8.078E-01	1.097E+08	2.346E+07	21.39	100
200	7.892E+05	7.890E+05	9.398E-01	1.097E+08	2.140E+07	19.51	200
300	7.892E+05	7.890E+05	8.960E-01	1.097E+08	8.387E+06	7.65	300
400	7.892E+05	7.889E+05	6.396E-01	1.097E+08	3.863E+06	3.52	400
500	7.892E+05	7.889E+05	9.509E-01	1.097E+08	4.651E+06	4.24	500
600	7.892E+05	7.889E+05	8.724E-01	1.097E+08	1.006E+07	9.17	600
700	7.892E+05	7.889E+05	9.353E-01	1.097E+08	6.387E+06	5.82	700
800	7.892E+05	7.889E+05	7.465E-01	1.097E+08	1.519E+07	13.85	800
900	7.892E+05	7.889E+05	9.632E-01	1.097E+08	2.753E+06	2.51	900
1000	7.892E+05	7.889E+05	5.406E-01	1.097E+08	2.683E+06	2.45	1000
1100	7.892E+05	7.889E+05	8.111E-01	1.097E+08	1.740E+06	1.59	1100
1200	7.892E+05	7.889E+05	8.503E-01	1.097E+08	9.304E+05	0.85	1200
1300	7.892E+05	7.889E+05	8.525E-01	1.097E+08	8.692E+05	0.79	1300
1400	7.892E+05	7.889E+05	7.870E-01	1.097E+08	7.771E+05	0.71	1400
1500	7.892E+05	7.889E+05	8.492E-01	1.097E+08	6.929E+05	0.63	1500
1600	7.892E+05	7.889E+05	8.063E-01	1.097E+08	6.355E+05	0.58	1600
1700	7.892E+05	7.889E+05	9.865E-01	1.097E+08	5.933E+05	0.54	1700
1800	7.892E+05	7.889E+05	9.084E-01	1.097E+08	7.023E+05	0.64	1800

**** PLOT TAPE WRITTEN AT TIME = 7.892E+05 STEP NUMBER 1 *

problems may exist in tracking for slave node 947

STEP	TIME '	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
100	1.578E+06	2.184E+05	9.714E-01	1.097E+08	7.981E+06	7.28	1979
200	1.578E+06	2.030E+05	9.870E-01	1.097E+08	4.273E+06	3.90	2079
300	1.578E+06	6.799E+05	7.774E-01	1.097E+08	3.109E+06	2.83	2179
400	1.578E+06	6.762E+05	8.328E-01	1.097E+08	2.654E+06	2.42	2279
500	1.578E+06	6.735E+05	8.639E-01	1.097E+08	1.760E+06	1.60	2379
600	1.578E+06	6.515E+05	9.700E-01	1.097E+08	2.837E+06	2.59	2479
700	1.578E+06	6.379E+05	6.311E-01	1.097E+08	2.986E+06	2.72	2579
800	1.578E+06	6.291E+05	7.290E-01	1.097E+08	2.429E+06	2.21	2679
900	1.578E+06	6.236E+05	8.732E-01	1.097E+08	1.353E+06	1.23	2779
1000	1.578E+06	6.186E+05	8.593E-01	1.097E+08	1.149E+06	1.05 '	2879
1100	1.578E+06	6.150E+05	8.931E-01	1.097E+08	9.910E+05	0.90	2979
1200	1.578E+06	6.126E+05	8.820E-01	1.097E+08	9.424E+05	0.86	3079
1300	1.578E+06	6.108E+05	8.481E-01	1.097E+08	8.640E+05	. 0.79	3179
1400	1.578E+06	6.099E+05	9.839E-01	1.097E+08	8.151E+05	0.74 -	3279
1500	1.578E+06	6.092E+05	9.372E-01	1.097E+08	7.917E+05	0.72	3379
1600	1.578E+06	6.089E+05	9.963E-01	1.097E+08	1.441E+06	1.31	3479
1700	1.578E+06	6.088E+05	9.712E-01	1.097E+08	6.873E+05	0.63	3579
1800	1.578E+06	6.088E+05	9.878E-01	1.097E+08	6.873E+05	0.63	3679
1900	1.578E+06	6.089E+05	9.844E-01	1.097E+08	6.454E+05	0.59	3779
2000	1.578E+06	6.092E+05	9.939E-01	1.097E+08	8.108E+05	0.74	3879
2100	1.578E+06	6.099E+05	9.709E-01	1.097E+08	7.223E+05	0.66	3979
2200	1.578E+06	6.103E+05	9.608E-01	1.097E+08	9.296E+05	0.85	4079
2300	1.578E+06	6.106E+05	9.848E-01	1.097E+08	9.467E+05	0.86	4179
2400	1.578E+06	6.109E+05	8.948E-01	1.097E+08	9.494E+05	0.87	4279
2500	1.578E+06	6.111E+05	8.926E-01	1.097E+08	8.902E+05	0.81	4379
2600	1.578E+06	6.113E+05	9.476E-01	1.097E+08	1.288E+06	1.17	4479
2700	1.578E+06	6.115E+05	9.835E-01	1.097E+08	6.398E+05	0.58	4579

Page 382

```
2800 1.578E+06 6.118E+05 9.777E-01 1.097E+08 5.710E+05 0.52 4679

**** PLOT TAPE WRITTEN AT TIME = 1.578E+06 STEP NUMBER 2 ****
```

TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
	STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
2.368E+06	1.375E+05	8.760E-01	1.097E+08	6.609E+06	6.03	4823
2.368E+06	2.941E+05	9.515E-01	1.097E+08	3.240E+06	2.95	4923
2.368E+06	3.144E+05	9.976E-01	1.097E+08	2.089E+06	1.90	5023
2.368E+06	6.733E+05	8.730E-01	1.097E+08	1.409E+06	1.28	5123
2.368E+06	6.721E+05	9.230E-01	1.097E+08	1.036E+06	0.94	5223
2.368E+06	6.762E+05	9.434E-01	1.097E+08	9.323E+05	0.85	5323
2.368E+06	6.810E+05	8.104E-01	1.097E+08	8.781E+05	0.80	5423
2.368E+06	6.867E+05	7.438E-01	1.097E+08	9.046E+05	0.82	5523
2.368E+06	6.909E+05	8.272E-01	1.097E+08	7.764E+05	0.71	5623
2.368E+06	6.950E+05	9.612E-01	1.097E+08	7.432E+05	0.68	5723
2.368E+06	6.993E+05	7.450E-01	1.097E+08	7.104E+05	0.65	5823
2.368E+06	7.026E+05	9.949E-01	1.097E+08	6.855E+05	0.62	5923
2.368E+06	7.066E+05	9.627E-01	1.097E+08	6.791E+05	0.62	6023
2.368E+06	7.100E+05	8.482E-01	1.097E+08	7.080E+05	0.65	6123
2.368E+06	7.123E+05	6.345E-01	1.097E+08	6.318E+05	0.58	6223
2.368E+06	7.147E+05	8.903E-01	1.097E+08	6.207E+05	0.57	6323
2.368E+06	7.168E+05	9.592E-01	1.097E+08	6.022E+05	0.55	6423
2.368E+06	7.193E+05	8.114E-01	1.097E+08	6.257E+05	0.57	6523
2.368E+06	7.211E+05	9.042E-01	1.097E+08	5.965E+05	0.54	6623
2.368E+06	7.229E+05	8.011E-01	1.097E+08	5.731E+05	0.52	6723
2.368E+06	7.248E+05	7.413E-01	1.097E+08	6.717E+05	0.61	6823
	2.368E+06 2.368E+06	STEP 2.368E+06	STEP FACTOR 2.368E+06 1.375E+05 8.760E-01 2.368E+06 2.941E+05 9.515E-01 2.368E+06 3.144E+05 9.976E-01 2.368E+06 6.733E+05 8.730E-01 2.368E+06 6.721E+05 9.230E-01 2.368E+06 6.762E+05 9.434E-01 2.368E+06 6.810E+05 8.104E-01 2.368E+06 6.867E+05 7.438E-01 2.368E+06 6.909E+05 8.272E-01 2.368E+06 6.993E+05 9.612E-01 2.368E+06 7.026E+05 9.949E-01 2.368E+06 7.026E+05 9.627E-01 2.368E+06 7.100E+05 8.482E-01 2.368E+06 7.123E+05 6.345E-01 2.368E+06 7.147E+05 8.903E-01 2.368E+06 7.147E+05 8.903E-01 2.368E+06 7.147E+05 8.903E-01 2.368E+06 7.193E+05 8.114E-01 2.368E+06 7.229E+05 8.011E-01	STEP FACTOR LOAD NORM 2.368E+06 1.375E+05 8.760E-01 1.097E+08 2.368E+06 2.941E+05 9.515E-01 1.097E+08 2.368E+06 3.144E+05 9.976E-01 1.097E+08 2.368E+06 6.733E+05 8.730E-01 1.097E+08 2.368E+06 6.721E+05 9.230E-01 1.097E+08 2.368E+06 6.810E+05 8.104E-01 1.097E+08 2.368E+06 6.867E+05 7.438E-01 1.097E+08 2.368E+06 6.909E+05 8.272E-01 1.097E+08 2.368E+06 6.950E+05 9.612E-01 1.097E+08 2.368E+06 6.993E+05 7.450E-01 1.097E+08 2.368E+06 7.026E+05 9.949E-01 1.097E+08 2.368E+06 7.066E+05 9.627E-01 1.097E+08 2.368E+06 7.100E+05 8.482E-01 1.097E+08 2.368E+06 7.147E+05 8.903E-01 1.097E+08 2.368E+06 7.147E+05 8.903E-01 1.097E+08 2.368E+06 <td< td=""><td>STEP FACTOR LOAD NORM LOAD NORM 2.368E+06 1.375E+05 8.760E-01 1.097E+08 6.609E+06 2.368E+06 2.941E+05 9.515E-01 1.097E+08 3.240E+06 2.368E+06 3.144E+05 9.976E-01 1.097E+08 2.089E+06 2.368E+06 6.733E+05 8.730E-01 1.097E+08 1.409E+06 2.368E+06 6.721E+05 9.230E-01 1.097E+08 1.036E+06 2.368E+06 6.762E+05 9.434E-01 1.097E+08 9.323E+05 2.368E+06 6.810E+05 8.104E-01 1.097E+08 8.781E+05 2.368E+06 6.867E+05 7.438E-01 1.097E+08 8.764E+05 2.368E+06 6.909E+05 8.272E-01 1.097E+08 7.764E+05 2.368E+06 6.950E+05 9.612E-01 1.097E+08 7.104E+05 2.368E+06 6.993E+05 7.450E-01 1.097E+08 6.855E+05 2.368E+06 7.026E+05 9.627E-01 1.097E+08 6.791E+05 2.368E+06 7.102E+05 8.</td><td>STEP FACTOR LOAD NORM LOAD NORM IMBALANCE 2.368E+06 1.375E+05 8.760E-01 1.097E+08 6.609E+06 6.03 2.368E+06 2.941E+05 9.515E-01 1.097E+08 3.240E+06 2.95 2.368E+06 3.144E+05 9.976E-01 1.097E+08 2.089E+06 1.90 2.368E+06 6.733E+05 8.730E-01 1.097E+08 1.409E+06 1.28 2.368E+06 6.721E+05 9.230E-01 1.097E+08 1.036E+06 0.94 2.368E+06 6.762E+05 9.434E-01 1.097E+08 9.323E+05 0.85 2.368E+06 6.810E+05 8.104E-01 1.097E+08 9.323E+05 0.85 2.368E+06 6.867E+05 7.438E-01 1.097E+08 9.046E+05 0.80 2.368E+06 6.999E+05 8.272E-01 1.097E+08 7.764E+05 0.71 2.368E+06 6.993E+05 7.450E-01 1.097E+08 7.104E+05 0.68 2.368E+06 7.026E+05 9.949E-01 1.097E+08 6.791E+05</td></td<>	STEP FACTOR LOAD NORM LOAD NORM 2.368E+06 1.375E+05 8.760E-01 1.097E+08 6.609E+06 2.368E+06 2.941E+05 9.515E-01 1.097E+08 3.240E+06 2.368E+06 3.144E+05 9.976E-01 1.097E+08 2.089E+06 2.368E+06 6.733E+05 8.730E-01 1.097E+08 1.409E+06 2.368E+06 6.721E+05 9.230E-01 1.097E+08 1.036E+06 2.368E+06 6.762E+05 9.434E-01 1.097E+08 9.323E+05 2.368E+06 6.810E+05 8.104E-01 1.097E+08 8.781E+05 2.368E+06 6.867E+05 7.438E-01 1.097E+08 8.764E+05 2.368E+06 6.909E+05 8.272E-01 1.097E+08 7.764E+05 2.368E+06 6.950E+05 9.612E-01 1.097E+08 7.104E+05 2.368E+06 6.993E+05 7.450E-01 1.097E+08 6.855E+05 2.368E+06 7.026E+05 9.627E-01 1.097E+08 6.791E+05 2.368E+06 7.102E+05 8.	STEP FACTOR LOAD NORM LOAD NORM IMBALANCE 2.368E+06 1.375E+05 8.760E-01 1.097E+08 6.609E+06 6.03 2.368E+06 2.941E+05 9.515E-01 1.097E+08 3.240E+06 2.95 2.368E+06 3.144E+05 9.976E-01 1.097E+08 2.089E+06 1.90 2.368E+06 6.733E+05 8.730E-01 1.097E+08 1.409E+06 1.28 2.368E+06 6.721E+05 9.230E-01 1.097E+08 1.036E+06 0.94 2.368E+06 6.762E+05 9.434E-01 1.097E+08 9.323E+05 0.85 2.368E+06 6.810E+05 8.104E-01 1.097E+08 9.323E+05 0.85 2.368E+06 6.867E+05 7.438E-01 1.097E+08 9.046E+05 0.80 2.368E+06 6.999E+05 8.272E-01 1.097E+08 7.764E+05 0.71 2.368E+06 6.993E+05 7.450E-01 1.097E+08 7.104E+05 0.68 2.368E+06 7.026E+05 9.949E-01 1.097E+08 6.791E+05

**** PLOT TAPE WRITTEN AT TIME = 2.368E+06 STEP NUMBER 3 ****

SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:22:54
REFERENCE PARALLEL ISOTHERMAL PROBLEM - SANTOS VERIFICATION (1/24/95)

**** PLOT TAPE WRITTEN AT TIME = 3.157E+08 STEP NUMBER 400 ****

400 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

E N D O F S O L U T I O N P H A S E 1.414E+04 CPU SECONDS USED 303618 WORDS ALLOCATED

APPENDIX U

Input/Output Data For Test Case 21

The following three sections present the input data, the initial stress subroutine, and the formatted output, respectively, for the Heated Parallel Calculation verification problem.

FASTQ and SANTOS Input Data For The Heated WIPP Parallel Calculation

This section presents a listing of the FASTQ and SANTOS input data files that were used for the mesh generation and analysis of the Parallel Calculation heated drift problem. The binary file struct.th is an input file for Test Case 11 that can be found in LIBSANTOS in CMS.

refheated.fsq

POINT

TITLE REFERENCE PARALLEL HEATED CACULATION (Structural - 1/19/95) POINT 0.0000000E+00 -5.4189999E+01 2.7500000E+00 POINT -5.4189999E+01 POINT 1.1750000E+01 3 -5.4189999E+01 POINT 4 0.000000E+00 -4.9990002E+01 POINT 5 2.7500000E+00 -4.9990002E+01 POINT 6 1.1750000E+01 -4.9990002E+01 POINT 0.000000E+00 -3.0600000E+01 POINT 8 2.7500000E+00 -3.0600000E+01 POINT 9 1.1750000E+01 -3.0600000E+01 POINT 10 2.7500000E+00 -3.0600000E+01 POINT 11 0.000000E+00 -2.6209999E+01 POINT 12 2.7500000E+00 -2.6209999E+01 POINT 13 1.1750000E+01 -2.6209999E+01 POINT 14 0.000000E+00 -1.6410000E+01 POINT 15 2.7500000E+00 -1.6410000E+01 POINT 1.1750000E+01 -1.6410000E+01 POINT 17 2.7500000E+00 -1.6410000E+01 POINT 18 0.000000E+00 -1.6330000E+01 POINT 19 2.7500000E+00 -1.6330000E+01 20 POINT 1.1750000E+01 -1.6330000E+01 POINT 21 0.000000E+00 -1.1370000E+01 POINT 22 2.7500000E+00 -1.1370000E+01 -1.1370000E+01 POINT 23 1.1750000E+01 POINT 2.7500000E+00 -1.1370000E+01 POINT 25 0.000000E+00 -8.6300001E+00 POINT 26 2.7500000E+00 -8.6300001E+00 POTNT 27 1.1750000E+01 -8.6300001E+00 POINT 28 2.7500000E+00 -8.6300001E+00 POINT 29 0.000000E+00 -7.7700000E+00 POINT 2.7500000E+00 -7.7700000E+00 POINT 31 1.1750000E+01 -7.7700000E+00 POINT 32 0.000000E+00 -3.7200000E+00 POINT 33 2.7500000E+00 -3.7200000E+00 POINT 34 1.1750000E+01 -3.7200000E+00 POINT 35 0.000000E+00 -2.9000001E+00

2.7500000E+00

-2.9000001E+00

277	1	175000	25.01		_	00000	01.0	. 00
	1.	1750000	DE+01					
51	٫2.	7000000	DE+00		4	.27000	00E-	۰00
52	1.	1750000	DE+01		4	.27000	00E-	+00
53	2.	7500000)E+00		4	.42000	01E+	۰00
54	1.	1750000	DE+01		4	.42000	01E+	-00
55	0.	0000000	DE+00		4	.42000	01E+	+00
56	0.	0000000	E+00		6	.71000	00E+	+00
57	2.	7500000	E+00		6	.71000	00E+	-00
58	1.	1750000	E+01		6	.71000	00E+	-00
59	2.	7500000	DE+00		6	.71000	00E+	-00
60	0.	0000000	E+00		7	.77000	00E+	-00
61	2.	7500000	DE+00		7	.77000	00E+	-00
	1.	1750000	DE+01		7	.77000	00E+	+00
	0.	0000000	DE+00		9	.15999	98E+	۰00
64	2.	7500000	E+00		9	.15999	98E+	-00
65	1.	1750000	E+01		9	.15999	98E+	+00
66	2.	7500000	E+00		9	.15999	98E+	-00
	0.	0000000	E+00		9	.35000	04E+	-00
68	2.	7500000	E+00		9	.35000	04E+	-00
69	1.	1750000	E+01		9	.35000	04E+	-00
70	0.	0000000	E+00		1	.06700	00E+	-01
	2.	7500000	DE+00		1	.06700	00E+	-01
					1	.35800	00E+	-01
78								
79	1.	1750000	E+01		2	.82999	99E+	-01
	1.	1750000	E+01					
					4	.93800	01E+	-01
						-		
				(6		000000
		_	_	Ì		-		
		2	3	()	10	1.	100000
1	2	1						
3	STR	1	4	()	1	0.	000000
	53 54 55 57 58 59 61 62 63 64 65 66 67 77 77 77 77 77 77 77 77 77 77 77	38	38	38	38	38	38	38

LINEBC	2	3	_		_		
LINE	4	STR	2	5	0	1	0.000000
LINE	5	STR	3	6	0	1	0.00000
LINEBC	2	5		_	_	_	
LINE	6	STR	4	5	0	6	0.000000
LINE	7	STR	5	6	0	10	1.100000
LINE	8	STR	4	7	0	5	0.000000
LINEBC	2	8					
LINE	9	STR	5	8	0	5	0.000000
LINE	10	STR	6	9	0	5	0.000000
LINEBC	2	10					
LINE	11	STR	7	8	0	6	0.000000
SIDEBC	1011	11					
LINE	12	STR	8	9	0	10	1.100000
SIDEBC	1011	12					
LINE	13	STR	7	10	0	6	0.000000
SIDEBC	1013	13					
LINE	14	STR	10	9	0	10	1.100000
SIDEBC	1013	14					
LINE	15	STR	7	11	0	3	0.000000
LINEBC	2	15					
LINE	16	STR	10	12	0	3	0.000000
LINE	17	STR	9	13	0	3	0.000000
LINEBC	2	17					
LINE	18	STR	11	12	0	6	0.000000
LINE	19	STR	12	13	0	10	1.100000
LINE	20	STR	11	14	0	8	0.000000
LINEBC	2	20					
LINE	21	STR	12	15	0	8	0.000000
LINE	22	STR	13	16	0	8	0.000000
LINEBC	2	22					
LINE	23	STR	14	15	0	6	0.00000
SIDEBC	1023	23			-		
LINE	24	STR	15	16	0	10	1.100000
SIDEBC	1023	24	_		-		
LINE	25	STR	14	17	0	6	0.000000
SIDEBC	1025	25					
LINE	26	STR	17	16	0	10	1.100000
SIDEBC	1025	26	- '		•	-•	
LINE	27	STR	14	18	0	1	0.000000
LINEBC	2	27			-	_	
LINE	28	STR	17	19	0	1	0.000000
LINE	29	STR	16	20	0	1	0.000000
LINEBC	2	29			ŭ	_	0.00000
LINE	30	STR	18	19	0	6	0.000000
LINE	31	STR	19	20	Ö	10	1.100000
LINE	32	STR	18	21	Ō	7	0.000000
LINEBC	2	32			•	•	0.00000
LINE	33	STR	19	22	0	7	0.000000
LINE	34	STR	20	23	Ö	7	0.000000
LINEBC	2	34			-		***************************************
LINE	35	STR	21	22	0	6	0.000000
SIDEBC	1035	35			-	,	
LINE	36	STR	22	23	0	10	1.100000
SIDEBC	1035	36	<u>-</u>		-		
LINE	37	STR	21	24	0	6	0.000000
SIDEBC	1037	37			-	-	-
LINE	38	STR	24	23	0	10	1.100000

arn==a	1025	20					
SIDEBC LINE	1037 39	38 STR	21	25	0	5	0.00000
LINEBC	2	39	21	25	U	J	0.000000
LINE	40	STR	24	26	0	5	0.000000
LINE	41	STR	23	27	Ö	5	0.000000
LINEBC	2	41	-5	2.	J	•	0.00000
LINE	42	STR	25	26	0	6	0.000000
SIDEBC	1042	42				-	
LINE	43	STR	26	27	0	10	1.100000
SIDEBC	1042	43					
LINE	44	STR	25	28	0	6	0.000000
SIDEBC	1044	44					
LINE	45	STR	28	27	0	10	1.100000
SIDEBC	1044	45					
LINE	46	STR	25	29	0	2	0.000000
LINEBC	2	46					
LINE	47	STR	28	30	0	2	0.000000
LINE	48	STR	27	31	0	2	0.000000
LINEBC	2	48	0.0	2.0	•	_	
LINE	49	STR	29	30	0	6	0.000000
LINE	50	STR	30	31	0	10	1.100000
LINE	51 2	STR 51	29	32	0	8	0.000000
LINEBC LINE	52	STR	30	33	0	8	0.000000
LINE	53	STR	31	33 34	0	8	0.000000
LINEBC	2	53	31	34	U	O	0.000000
LINE	54	STR	32	33	0	6	0.000000
LINE	55	STR	33	34	Ö	10	1.100000
LINE	56	STR	32	35	Ö	2	0.000000
LINEBC	2	56					
LINE	57	STR	33	36	0	2	0.000000
LINE	58	STR	34	37	. 0	2	0.000000
LINEBC	2	. 58					
LINE	59	STR	35	36	0	6	0.000000
SIDEBC	1059	59					
LINE	60	STR	36	37	0	10	1.100000
SIDEBC	1059	60	*				
LINE	61	STR	35	38	0	6	0.000000
SIDEBC	1061	61					
LINE	62	STR	38	37	0	10	1.100000
SIDEBC	1061	62 STR	35	39	0	5	0.000000
LINE LINEBC	2	63	33	39	U	3	0.000000
LINE	64	STR	38	40	0	5	0.000000
LINE	65	STR	37	41	0	5	0.000000
LINEBC	2	65	3 /		Ū	J	3.00000
LINE	66	STR	39	40	0	6	0.000000
LINE	67	STR	40	41	0	10	1.100000
LINE	68	STR	40	42	0	2	0.000000
LINE	69	STR	41	44	0	2	0.000000
LINEBC	2	69					
LINE	70	STR	42	44	0	10	1.100000
SIDEBC	1070	70					
LINE	71	STR	43	44	0	10	1.100000
SIDEBC	1071	71	4 -		_	_	
LINE	72	STR	43	45	0	3	0.000000
LINE	73	STR	44	47	0	3	0.00000
LINEBC	2	73					

T T	7.4	- CMD	4.5	47		1.0	1 100000
LINE	74 1074	STR 74	45	47	0	10	1.100000
SIDEBC LINE	75	STR	46	47	0	10	1.100000
SIDEBC	1075	75	40	4.	U	10	1.100000
LINE	76	STR	46	48	0	1	0.000000
LINE	77	STR	47	49	0	1	0.000000
LINEBC	2	77	T /	37	U	_	0.00000
LINE	78	STR	48	49	0	10	1.100000
LINE	79	STR	48	50	0	3	0.000000
LINE	80	STR	49	52	0	3	0.000000
LINEBC	2	80	12	72	·	,	0.00000
LINE	81	STR	50	52	0	10	1.100000
SIDEBC	1081	81	30	32	·	20	2.20000
LINE	82	STR	51	52	0	10	1.100000
SIDEBC	1082	82	J.	••	·		1110000
LINE	83	STR	51	53	0	1	0.000000
LINE	84	STR	52	54	Ö	ĩ	0.000000
LINEBC	2	84	-	0.	_	_	
LINE	85	STR	55 ·	53	0	6	0.00000
LINE	185	STR	53	54	0	10	1.100000
LINE	86	STR	55	56	Ō	4	0.00000
LINEBC	2	86				_	
LINE	87	STR	53	57	0	4	0.00000
LINE	88	STR	54	58	0	4	0.00000
LINEBC	2	88	-		-		
LINE	89	STR	56	57	0	6	0.000000
SIDEBC	1089	89					
LINE	90	STR	57	58	0	10	1.100000
SIDEBC	1089	90					
LINE	91	STR	56	59	0	6	0.000000
SIDEBC	1091	91					
LINE	92	STR	59	58	0	10	1.100000
SIDEBC	1091	92					
LINE	93	STR	56	60	0	2	0.00000
LINEBC	2	93					
LINE	94	STR	59	61	0	2	0.000000
LINE	95	STR	58	62	0	2	0.000000
LINEBC	2	95					
LINE	96	STR	60	61	0	6	0.000000
LINE	97	STR	61	62	0	10.	1.100000
LINE	98	STR	60	63	0	3	0.000000
LINEBC	2	98					
LINE	99	STR	61	64	0	3	0.000000
LINE	100	STR	62	65	0	3	0.00000
LINEBC	2	100					•
LINE	101	STR	63	64	0	6	0.000000
SIDEBC	1101	101			_		
LINE	102	STR	64	65	0	10	1.100000
SIDEBC	1101	102			•	_	
LINE	103	STR	63	66	0	6	0.000000
SIDEBC	1103	103		65	^	10	1 100000
LINE	104	STR	66	65	0	10	1.100000
SIDEBC	1103	104	63	67	^	4	0 000000
LINE	105	STR	63	67	0	1	0.000000
LINEBC	106	105	<i>e e</i>	<i>6</i> 0	^	4	0.00000
LINE	106	STR	66 65	68 69	0	1 1	0.000000 0.000000
LINE LINEBC	107 2	STR	65	09	U	7	0.000000
TIMEBC	2	107					

							_ .
LINE	108	STR	67	68	0	6	0.000000
LINE	109		68	69			1.100000
		STR			0	10	
LINE	110	STR	67	70	0	3	0.000000
LINEBC	2	110	60		•	_	
LINE	111	STR	68	71	0	3	0.00000
LINE	112	STR	69	72	0	3	0.00000
LINEBC	2	112					
LINE	113	STR	70	71	0	6	0.000000
LINE	114	STR	71	72	0	10	1.100000
LINE	115	STR	70	73	0	5	0.000000
LINEBC	2	115					
LIÑE	116	STR	71	74	0	5	0.000000
LINE	117	STR	72	75	0	5	0.000000
LINEBC	2	117					
LINE	118	STR	73	74	0	6	0.000000
SIDEBC	1118	118					
LINE	119	STR	74	75	0	10	1.100000
SIDEBC	1118	119					
LINE	120	STR	73	76	0 .	6	0.000000
SIDEBC	1120	120					
LINE	121	STR	76	75	0	10	1.100000
SIDEBC	1120	121	, 0	, ,	·		2.100000
LINE	122	STR	73	77	0	7	0.000000
LINEBC	2	122	, 5	, ,	V	,	0.00000
LINE	123	STR	76	78	0	7	0.000000
	124	STR	75	79	0	7	0.000000
LINE			75	19	U	′	0.000000
LINEBC	2	124	77	70	^	_	0 000000
LINE	125	STR	77	78	0	6	0.000000
SIDEBC	1125	125					
LINE	126	STR	78	79	0	10	1.100000
SIDEBC	1125	126			_	_	
LINE	127	STR	77	80	0	6	0.000000
SIDEBC	1127	127	•				
LINE	128	STR	80	79	0	10	1.100000
SIDEBC	1127	128					
LINE	129	STR	77	81	0	2	0.000000
LINEBC	2	129					
LINE	130	STR	80	82	0	2	0.000000
LINE	131	STR	79	83	0	2	0.000000
LINEBC	2	131					
LINE	132	STR	81	82	0	6	0.000000
LINE	133	STR	82	83	0	10	1.100000
LINE	134	STR	81	84	0	5	0.000000
LINEBC	2	134					
LINE	135	STR	82	85	0	5	0.000000
LINE	136	STR	83	86	0	5	0.000000
LINEBC	2	136					
LINE	137	STR	84	85	0	6	0.000000
LINE	138	STR	85	86	0	10	1.100000
LINE	139	STR	84	87	0	2	0.000000
LINEBC	2	139					
LINE	140	STR	85	88	0	2	0.000000
LINE	141	STR	86	89	0	2	0.000000
LINEBC	4	141			-	-	
LINE	142	STR	87	88	0	6	0.000000
SIDEBC	3	142			-	-	
LINE	143	STR	88	89	0	10	1.100000
SIDEBC	3	143	- •		-		

			-			
		_	_			
SIDE	201	1	2			
SIDE	202	6	7			
SIDE	203	11	12			
SIDE	204	13	14			
SIDE	205	18	19			
SIDE	206	23	24			
SIDE	207	25	26			
SIDE	208	30	31			
			36			
SIDE	209	35				
SIDE	210	37	38			
SIDE	211	42	43			
SIDE	212	44	45			
SIDE	213	49	50			
SIDE	214	54	55			
SIDE	215	59	60			
SIDE	216	61	62			
SIDE	217	66	67			
SIDE	218	85	185		*	
SIDE	219	89	90			
SIDE	220	91	92			
SIDE	221	96	97			
SIDE	222	101	102			
SIDE	223	103	104			
SIDE	224	108	109			
SIDE	225	113	114			
SIDE	226	118	119			
SIDE	227	120	121			
SIDE	228	125	126			
SIDE	229	127				
			128			
SIDE	230	132	133			
SIDE	231	137	138			
SIDE	232	142	143	_		_
REGION	1	4	201	-5	202	-3
REGION	2	1	202	-10	203	-8 '
REGION	3	3	204	-17	205	-15
REGION	4	1	205	-22	206	-20
REGION	5	3	207	~29	208	-27
REGION	6	1	208	-34	209	-32
REGION	7	1	210	-41	211	-39
REGION	8	3	212	-48	213	-46
REGION	9	1	213	-53	214	-51
REGION	10	2	214	-58	215	-56
REGION	11	1	216	-65	217	-63
REGION	12	1	-67	-69	-70	-68
REGION	13	1	-71	-73	-74	-72
REGION	14	3	-75	-77	-78	-76
REGION	15	1	-78	-80	-81	-79
REGION	16	1	-82	-84	-185	-83
REGION	17	1	218	-88	219	-86
REGION	18	1	220	-95	221	-93
REGION	19	2	221	-100	222	-98
REGION	20	3	223	-107	224	-105
REGION	21	1	224	-112	225	-110
REGION	22	2	225	-112	226	-115
	23					
REGION		1	227	-124	228	-122
REGION	24	3	229	-131	230	-129
REGION	25	1	230	-136	231	-134
REGION	26	3	231	-141	232	-139

```
SCHEME
EXIT
struct.i
  REFERENCE PARALLEL HEATED PROBLEM - SANTOS VERIFICATION (1/27/95)
RESIDUAL TOLERANCE = .5
MAXIMUM ITERATIONS = 20000
INTERMEDIATE PRINT = 100
MAXIMUM TOLERANCE = 5.
THERMAL STRESS, EXTERNAL
PLANE STRAIN
TIME STEP SCALE = .50
PREDICTOR SCALE FACTOR = 3
EFFECTIVE MODULUS = VARIABLE
INITIAL STRESS = USER
GRAVITY = 1 = 0. = -9.790 = 0.
STEP CONTROL
 400 1.5785E8
END
PLOT TIME
 4 1.5785E8
END
OUTPUT TIME
 10 1.5785E8
END
PLOT NODAL DISPLACEMENT, REACTION, RESIDUAL
PLOT ELEMENT STRESS, VONMISES, TEMPERATURE, EFFMOD, PRESSURE
PLOT STATE EQCS, EVMAX, EVFRAC, EV, NUM
NO DISPLACEMENT X, 2
NO DISPLACEMENT X, 4
NO DISPLACEMENT Y, 4
FUNCTION = 1
0.1.
4.E8 1.
END
FUNCTION = 2
299 -.01
400 1.
END
FUNCTION = 3
0.0.
4.E8 0.
END
PRESSURE, 3, 1, 13.57E6
PRESSURE, 1, 1, 15.95E6
CONTACT SURFACE, 1013, 1011, FIXED,
CONTACT SURFACE, 1025, 1023, FIXED,
CONTACT SURFACE, 1037, 1035, 0.4.
CONTACT SURFACE, 1044, 1042, 0.4
CONTACT SURFACE, 1061, 1059, 0.4
CONTACT SURFACE, 1071, 1070, 0.4
CONTACT SURFACE, 1075, 1074, 0.4
CONTACT SURFACE, 1082, 1081, 0.4
CONTACT SURFACE, 1091, 1089, 0.4
CONTACT SURFACE, 1103, 1101, 0.4
CONTACT SURFACE, 1120, 1118, 0.4
CONTACT SURFACE, 1127, 1125, FIXED,
```

```
MATERIAL, 1, POWER LAW CREEP, 2300., 2, 4.5E-3 $ HALITE
TWO MU = 24.8E9
BULK MODULUS = 20.7E9
CREEP CONSTANT = 5.79E-36
STRESS EXPONENT = 4.9
THERMAL CONSTANT = 6039.
END
MATERIAL, 2, POWER LAW CREEP, 2300., 2, 4.E-3 $ ARGILLACEOUS HALITE
TWO MU = 24.8E9
BULK MODULUS = 20.7E9
CREEP CONSTANT = 1.74E-35
STRESS EXPONENT = 4.9
THERMAL CONSTANT = 6039.
END
MATERIAL, 3, SOIL N FOAMS, 2300., 2, 2.E-3 $ ANHYDRITE
TWO MU = 55.630E9
BULK MODULUS = 83.444E9
A0 = 2.3383E6
A1 = 2.3383
A2 = 0.0
PRESSURE CUTOFF = -1.0E6
FUNCTION ID = 0
END
MATERIAL, 4, SOIL N FOAMS, 2300., 2, 2.4E-3 $ POLYHALITE
TWO MU = 40.662E9
BULK MODULUS = 65.833E9
A0 = 2.4595E6
A1 = 2.4578
A2 = 0.0
PRESSURE CUTOFF = -1.0E6
FUNCTION ID = 0
END
EXIT
```

Initial Stress Subroutine For The Heated WIPP Parallel Calculation

This section presents a listing of the INITST subroutine that was used in SANTOS to specify the initial stresses for the Parallel Calculation heated drift analysis.

```
SUBROUTINE INITST ( SIG, COORD, LINK, DATMAT, KONMAT, SCREL )
C
 *****************
С
С
С
С
      THIS ROUTINE PROVIDES AN INITIAL STRESS STATE TO SANTOS
С
С
   FORMAL PARAMETERS:
     SIG REAL
                         ELEMENT STRESS ARRAY WHICH MUST BE RETURNED
С
     WITH THE REQUIRED STRESS VALUES

COORD REAL GLOBAL NODAL COORDINATE ARRAY

LINK INTEGER CONNECTIVITY ARRAY

DATMAT REAL MATERIAL PROPERTIES ARRAY

KONMAT INTEGER MATERIAL PROPERTIES INTEGER ARRAY
С
С
С
С
С
C
С
   CALLED BY: INIT
С
```



```
Page 393
```

```
INCLUDE 'params.blk'
      INCLUDE 'psize.blk'
      INCLUDE 'contrl.blk'
      INCLUDE 'bsize.blk'
      INCLUDE 'timer.blk'
С
      DIMENSION LINK (NELNS, NUMEL), KONMAT (10, NEMBLK), COORD (NNOD, NSPC),
                SIG(NSYMM, NUMEL), DATMAT(MCONS, *), SCREL(NEBLK, *)
С
      DO 1000 I = 1, NEMBLK
         MATID = KONMAT(1,I)
         MKIND = KONMAT(2,I)
         ISTRT = KONMAT(3,I)
         IEND = KONMAT(4, I)
            DO 500 J = ISTRT, IEND
               II = LINK(1,J)
               JJ = LINK(2,J)
               KK = LINK(3,J)
               LL = LINK(4,J)
               ZAVG \approx 0.25 * (COORD(II,2) + COORD(JJ,2) + COORD(KK,2) +
                     COORD(LL,2) )
               STRESS = -2.256E4 * (655. - ZAVG)
               SIG(1,J) = STRESS
               SIG(2,J) = STRESS
               SIG(3,J) = STRESS
               SIG(4,J) = 0.0
  500
            CONTINUE
 1000 CONTINUE
      RETURN
      END
```

SANTOS Output For The Heated WIPP Parallel Calculation

The following section presents a portion of the SANTOS printed output for the Parallel Calculation heated drift analysis. Because all pertinent information and results from the analysis are written to the plot file for post-processing, the printed output file simply echoes input data and problem—descriptive information at the beginning, followed by information that tracks the convergence behavior of the solution, and a summary of CPU usage at the end. For this reason, only a partial listing, consisting of approximately the first 500 lines of output and the last 100 lines of output, is provided.

struct.o

SSSSSS	AAA	AAA	N	NN	TTTTTT	000	000	SSSSSS
SS	AA	AA	NN	NN	\mathbf{TT}	00	00	SS
SS	AA	AA	NNN	NN	${f TT}$	00	00	SS
SSSSS	AAA	AAAA	NN N	I NN	${f TT}$	00	00	SSSSS
SS	AA	AA	NN	NNN	${f TT}$	00	00	SS
SS	AA	AA	NN	NN	${f TT}$	00	00	SS
SSSSS!	AA	AA	NN	N	$\mathbf{T}\mathbf{T}$	000	000	SSSSSS

VERSION 2.1.7-DP

COPYRIGHT 1995, SANDIA CORPORATION

PROGRAMMED BY:

CHARLES M. STONE
ENGINEERING SCIENCES CENTER
SANDIA NATIONAL LABORATORIES
ALBUQUERQUE, NEW MEXICO 87185

RUN ON 20030612 AT 11:26:16 RUN ON A i686 UNDER Lx2.4.20

```
1: TITLE
 2: REFERENCE PARALLEL HEATED PROBLEM - SANTOS VERIFICATION (1/27/95)
 3: RESIDUAL TOLERANCE = .5
 4: MAXIMUM ITERATIONS = 10000
 5: INTERMEDIATE PRINT = 100
 6: MAXIMUM TOLERANCE = 5.
 7: THERMAL STRESS, EXTERNAL
8: PLANE STRAIN
9: TIME STEP SCALE = .50
10: PREDICTOR SCALE FACTOR = 3
11: EFFECTIVE MODULUS = VARIABLE
12: INITIAL STRESS = USER
13: GRAVITY = 1 = 0. = -9.790 = 0.
14: STEP CONTROL
15: 400 1.5785E8
16: END
17: PLOT TIME
18: 4 1.5785E8
19: END
20: OUTPUT TIME
21: 10 1.5785E8
22: END
23: PLOT NODAL DISPLACEMENT, REACTION, RESIDUAL
24: PLOT ELEMENT STRESS, VONMISES, TEMPERATURE, EFFMOD, PRESSURE
25: PLOT STATE EQCS, EVMAX, EVFRAC, EV, NUM
26: NO DISPLACEMENT X, 2
27: NO DISPLACEMENT X, 4
28: NO DISPLACEMENT Y, 4
29: FUNCTION = 1
30: 0. 1.
31: 4.E8 1.
32: END
33: FUNCTION = 2
34: 299 -.01
35: 400 1.
36: END
37: FUNCTION = 3
38: 0. 0.
39: 4.E8 0.
40: END
41: PRESSURE, 3, 1, 13.57E6
42: PRESSURE, 1, 1, 15.95E6
```

```
43: CONTACT SURFACE, 1013, 1011, FIXED,
44: CONTACT SURFACE, 1025, 1023, FIXED,
45: CONTACT SURFACE, 1037, 1035, 0.4
46: CONTACT SURFACE, 1044, 1042, 0.4
47: CONTACT SURFACE, 1061, 1059, 0.4
48: CONTACT SURFACE, 1071, 1070, 0.4
49: CONTACT SURFACE, 1075, 1074, 0.4
50: CONTACT SURFACE, 1082, 1081, 0.4
51: CONTACT SURFACE, 1091, 1089, 0.4
52: CONTACT SURFACE, 1103, 1101, 0.4
53: CONTACT SURFACE, 1120, 1118, 0.4
54: CONTACT SURFACE, 1127, 1125, FIXED,
55: MATERIAL, 1, POWER LAW CREEP, 2300., 2, 4.5E-3 $ HALITE
56: TWO MU = 24.8E9
57: BULK MODULUS = 20.7E9
58: CREEP CONSTANT = 5.79E-36
59: STRESS EXPONENT = 4.9
60: THERMAL CONSTANT = 6039.
61: END
62: MATERIAL, 2, POWER LAW CREEP, 2300., 2, 4.E-3 $ ARGILLACEOUS HALITE
63: TWO MU = 24.8E9
64: BULK MODULUS = 20.7E9
65: CREEP CONSTANT = 1.74E-35
66: STRESS EXPONENT = 4.9
67: THERMAL CONSTANT = 6039.
68: END
69: MATERIAL, 3, SOIL N FOAMS, 2300., 2, 2.E-3
                                                  $ ANHYDRITE
70: TWO MU = 55.630E9
71: BULK MODULUS = 83.444E9
72: A0 = 2.3383E6
73: A1 = 2.3383
74: A2 = 0.0
75: PRESSURE CUTOFF = -1.0E6
76: FUNCTION ID = 0
77: END
78: MATERIAL, 4, SOIL N FOAMS, 2300., 2, 2.4E-3 $ POLYHALITE
79: TWO MU = 40.662E9
80: BULK MODULUS = 65.833E9
81: A0 = 2.4595E6
82: A1 = 2.4578
83: A2 = 0.0
84: PRESSURE CUTOFF = -1.0E6
85: FUNCTION ID = 0
86: END
87: EXIT
                                 INPUT STREAM IMAGES
90: REFERENCE PARALLEL HEATED PROBLEM - SANTOS VERIFICATION (1/27/95)
91: RESIDUAL TOLERANCE = .5
92: MAXIMUM ITERATIONS = 10000
93: INTERMEDIATE PRINT = 100
94: MAXIMUM TOLERANCE = 5.
95: THERMAL STRESS, EXTERNAL
96: PLANE STRAIN
97: TIME STEP SCALE = .50
98: PREDICTOR SCALE FACTOR = 3
99: EFFECTIVE MODULUS = VARIABLE
```

```
100: INITIAL STRESS = USER
101: GRAVITY = 1 = 0. = -9.790 = 0.
102: STEP CONTROL
103: 400 1.5785E8
104: END
105: PLOT TIME
106: 4 1.5785E8
107: END
108: OUTPUT TIME
109: 10 1.5785E8
110: END
111: PLOT NODAL DISPLACEMENT, REACTION, RESIDUAL
112: PLOT ELEMENT STRESS, VONMISES, TEMPERATURE, EFFMOD, PRESSURE
113: PLOT STATE EQCS, EVMAX, EVFRAC, EV, NUM
114: NO DISPLACEMENT X, 2
115: NO DISPLACEMENT X, 4
116: NO DISPLACEMENT Y, 4
117: FUNCTION = 1
118: 0. 1.
119: 4.E8 1.
120: END
121: FUNCTION = 2
122: 299 -.01
123: 400 1.
124: END
125: FUNCTION = 3
126: 0. 0.
127: 4.E8 0.
128: END
129: PRESSURE, 3, 1, 13.57E6
130: PRESSURE, 1, 1, 15.95E6
131: CONTACT SURFACE, 1013, 1011, FIXED,
132: CONTACT SURFACE, 1025, 1023, FIXED,
133: CONTACT SURFACE, 1037, 1035, 0.4
134: CONTACT SURFACE, 1044, 1042, 0.4
135: CONTACT SURFACE, 1061, 1059, 0.4
136: CONTACT SURFACE, 1071, 1070, 0.4
137: CONTACT SURFACE, 1075, 1074, 0.4
138: CONTACT SURFACE, 1082, 1081, 0.4
139: CONTACT SURFACE, 1091, 1089, 0.4
140: CONTACT SURFACE, 1103, 1101, 0.4
141: CONTACT SURFACE, 1120, 1118, 0.4
142: CONTACT SURFACE, 1127, 1125, FIXED,
143: MATERIAL, 1, POWER LAW CREEP, 2300., 2, 4.5E-3 $ HALITE
144: TWO MU = 24.8E9
145: BULK MODULUS = 20.7E9
146: CREEP CONSTANT = 5.79E-36
147: STRESS EXPONENT = 4.9
148: THERMAL CONSTANT = 6039.
149: END
150: MATERIAL, 2, POWER LAW CREEP, 2300., 2, 4.E-3 $ ARGILLACEOUS HALITE
151: TWO MU = 24.8E9
152: BULK MODULUS = 20.7E9
153: CREEP CONSTANT = 1.74E-35
154: STRESS EXPONENT = 4.9
155: THERMAL CONSTANT = 6039.
156: END
157: MATERIAL, 3, SOIL N FOAMS, 2300., 2, 2.E-3
                                                     $ ANHYDRITE
```

1

```
158: TWO MU = 55.630E9
159: BULK MODULUS = 83.444E9
160: A0 = 2.3383E6
161: A1 = 2.3383
162: A2 = 0.0
163: PRESSURE CUTOFF = -1.0E6
164: FUNCTION ID = 0
165: END
166: MATERIAL, 4, SOIL N FOAMS, 2300., 2, 2.4E-3 $ POLYHALITE
167: TWO MU = 40.662E9
168: BULK MODULUS = 65.833E9
169: A0 = 2.4595E6
170: A1 = 2.4578
171: A2 = 0.0
172: PRESSURE CUTOFF = -1.0E6
173: FUNCTION ID = 0
174: END
175: EXIT
```

PROBLEM TITLE

REFERENCE PARALLEL HEATED PROBLEM - SANTOS VERIFICATION (1/27/95)

PROBLEM DEFINITION

NUMBER OF ELEMENTS	1396
NUMBER OF NODES	1675
NUMBER OF MATERIALS	4
NUMBER OF FUNCTIONS	3
NUMBER OF CONTACT SURFACES	12
NUMBER OF RIGID SURFACES	0
NUMBER OF MATERIAL POINTS MONITORED	0
ANALYSIS TYPE	PLANE STRAIN
GLOBAL CONVERGENCE MEASURE	
RESIDUAL TOLERANCE	5.000E-01
MAXIMUM NUMBER OF ITERATIONS	10000
ITERATIONS FOR INTERMEDIATE PRINT	100
MAXIMUM RESIDUAL TOLERANCE	5.000E+00
PREDICTOR SCALE FACTOR FUNCTION	3
MINIMUM DAMPING FACTOR	2.000E-01
EFFECTIVE MODULUS STATUS	VARIABLE
THERMAL STRESS ANALYSIS PERFORMED	
THERMAL FORCE MAGNITUDE	0.000E+00
INITIAL STRESS DISTRIBUTION APPLIED	
GRAVITY LOADS APPLIED	
SCALE FACTOR APPLIED TO TIME STEP	5.000E-01
STRAIN SOFTENING SCALE FACTOR	1.000E+00
HOURGLASS STIFFNESS FACTOR	•
HOURGLASS VISCOSITY FACTOR	0.000E+00

LOAD STEP DEFINITIONS

June 2003 Page 398

TIME NO. OF STEPS 0.000E+00 400 400

1.578E+08

PRINTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PRINTS TIME
10 1.578E+08

0.000E+00

PLOTTED OUTPUT FREQUENCY

TIME STEPS BETWEEN PLOTS TIME
4 1.578E+08

0.000E+00 4

MATERIAL DEFINITIONS

MATERIAL TYPESOIL N FOAMS MATERIAL ID DENSITY 2.300E+03 THERMAL STRAIN ID THERMAL STRAIN SCALE FACTOR 2.400E-03 MATERIAL PROPERTIES: = 4.066E+10 TWO MU BULK MODULUS = 6.583E+10 A0 = 2.460E+06 Α1 = 2.458E+00 A2 = 0.000E+00FUNCTION ID = 0.000E+00
PRESSURE CUTOFF = -1.000E+06

CONICAL YIELD SURFACE

MAXIMUM TENSILE PRESSURE -1.000E+06

PEAK PRESSURE USED FOR

QUADRATIC PRESSURE YIELD 6.583E+12

MATERIAL TYPEPOWER LAW CREEP MATERIAL ID 1 DENSITY 2.300E+03 THERMAL STRAIN ID THERMAL STRAIN SCALE FACTOR 4.500E-03 MATERIAL PROPERTIES:

TWO MU = 2.480E+10 BULK MODULUS BULK MODULUS = 2.070E+10 CREEP CONSTANT = 5.790E-36 STRESS EXPONENT = 4.900E+00

THERMAL CONSTANT	= 6.039E+03	
MATERIAL TYPE		
DENSITY	2.300E+03	
THERMAL STRAIN ID		
THERMAL STRAIN SCALE FACTO	OR 2.000E-03	
MATERIAL PROPERTIES:	- 5 562E+10	
TWO MU BULK MODULUS	= 5.563E+10 $=$ 8.344E+10	
A0	= 2.338E+06	
A1	= 2.338E+00	
A2	= 0.000E+00	
FUNCTION ID	= 0.000E+00 = -1.000E+06	
	= -1.000E+06	
CONICAL YIELD SURFACE	1 0007:06	
MAXIMUM TENSILE PRESSURE PEAK PRESSURE USED FOR	-1.000E+06	
QUADRATIC PRESSURE YIELD	8 344E+12	
QONDIANTIC TREBBORE TIEBD	0.344112	
MATERIAL TYPE		
MATERIAL ID		
DENSITY		
THERMAL STRAIN ID		
THERMAL STRAIN SCALE FACTO MATERIAL PROPERTIES:	JR 4.000E-03	
	= 2.480E+10	
BULK MODULUS	= 2.400E+10 = 2.070E+10 - 1.740E-35	
CREEP CONSTANT	= 1.740E-35	
STRESS EXPONENT	= 4.900E+00	
THERMAL CONSTANT	= 6.039E+03	
FUNCTION DE	FINITIONS	
FUNCTION ID 1	NUMBER OF POINTS	2
	- (3)	
N S 1 0.000E+00	F(S) 1.000E+00	
1 0.000E+00 2 4.000E+08	1.000E+00	
2 4.0001700	1.0001100	
FUNCTION ID 2	NUMBER OF POINTS	2
' N S	F(S)	
1 2.990E+02	-1.000E-02	
2 4.000E+02	1.000E+00	
DIRECTON TO	NUMBER OF BOINGS	2

Information Only

F(S)

FUNCTION ID 3 NUMBER OF POINTS

0.000E+00 0.000E+00

S

2 4.000E+08 0.000E+00

NO DISPLACEMENT BOUNDARY CONDITIONS

NODE	SET	FLAG	DIRECTION
	2		X
	4		X
	4		Y

CONTACT SURFACES

SURFACE	SURFACE 1	SURFACE	2 PENALTY	COEFFICIEN	r PENETRATIO	ON TENSION
NUMBER	FLAG	FLAG	FACTOR	OF FRICTION	MULTIPLIE	R RELEASE
1	1013	1011	0.000E+00	FIXED	1.000E-02	1.000E+30
2	1025	1023	0.000E+00	FIXED	1.000E-02	1.000E+30
3	1037	1035	0.000E+00	4.000E-01	1.000E-02	1.000E+30
4	1044	1042	0.000E+00	4.000E-01	1.000E-02	1.000E+30
5	1061	1059	0.000E+00	4.000E-01	1.000E-02	1.000E+30
6	1071	1070	0.000E+00	4.000E-01	1.000E-02	1.000E+30
7	1075	1074	0.000E+00	4.000E-01	1.000E-02	1.000E+30
8	1082	1081	0.000E+00	4.000E-01	1.000E-02	1.000E+30
9	1091	1089	0.000E+00	4.000E-01	1.000E-02	1.000E+30
10	1103	1101	0.000E+00	4.000E-01	1.000E-02	1.000E+30
11	1120	1118	0.000E+00	4.000E-01	1.000E-02	1.000E+30
12	1127	1125	0.000E+00	FIXED	1.000E-02	1.000E+30

PRESSURE BOUNDARY CONDTIONS

SURFACE	FUNCTION	SCALE
FLAG	NUMBER	FACTOR
3	1	1.357E+07
1	1	1.595E+07

E N D O F D A T A I N P U T P H A S E 1.000E-01 CPU SECONDS USED 21824 WORDS ALLOCATED

E N D O F D A T A I N I T I A L I Z A T I O N P H A S E 1.000E-02 CPU SECONDS USED

241570 WORDS ALLOCATED

VARIABLES ON PLOTTING DATA BASE

NODAL	ELEMENT	GLOBAL
DISPLX	SIGXX	FX
DISPLY	SIGYY	FY
RESIDX	SIGZZ	RX
RESIDY	TAUXY	RY
RESID	TEMP	ITER
REACTX	PRESSURE	RMAG
REACTY	VONMISES	
	EFFMOD	
	EQCS	
	EVMAX	
	EVFRAC	
	EV	
	NUM	

**** PLOT TAPE WRITTEN FOR THE INITIAL STATE AT TIME = 0.000E+00 ****

STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL
		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
100	3.946E+05	3.944E+05	9.292E-01	6.429E+07	4.314E+06	6.71	100
200	3.946E+05	3.944E+05	9.549E-01	6.429E+07	2.015E+06	3.13	200
300	3.946E+05	3.944E+05	8.681E-01	6.429E+07	1.546E+06	2.41	300
400	3.946E+05	3.944E+05	9.554E-01	6.429E+07	1.372E+06	2.13	400
500	3.946E+05	3.944E+05	9.141E-01	6.429E+07	1.072E+06	1.67	500
600	3.946E+05	3.944E+05	8.801E-01	6.429E+07	9.493E+05	1.48	600
700	3.946E+05	3.944E+05	9.746E-01	6.429E+07	8.961E+05	1.39	700
800	3.946E+05	3.944E+05	9.594E-01	6.429E+07	8.304E+05	1.29	800
900	3.946E+05	3.944E+05	8.429E-01	6.429E+07	7.809E+05	1.21	900
1000	3.946E+05	3.944E+05	8.737E-01	6.429E+07	7.303E+05	1.14	1000
1100	3.946E+05	3.944E+05	9.708E-01	6.429E+07	6.918E+05	1.08	1100
1200	3.946E+05	3.944E+05	9.803E-01	6.429E+07	5.617E+05	0.87	1200
1300	3.946E+05	3.944E+05	9.601E-01	6.429E+07	4.945E+05	0.77	1300
1400	3.946E+05	3.944E+05	1.000E+00	6.429E+07	4.598E+05	0.72	1400
1500	3.946E+05	3.944E+05	9.730E-01	6.429E+07	4.357E+05	0.68	1500
1600	3.946E+05	3.944E+05	8.802E-01	6.429E+07	4.152E+05	0.65	1600
1700	3.946E+05	3.944E+05	9.774E-01	6.429E+07	3.994E+05	0.62	1700
1800	3.946E+05	3.944E+05	9.977E-01	6.429E+07	3.860E+05	0.60	1800
1900	3.946E+05	3.944E+05	9.196E-01	6.429E+07	3.709E+05	0.58	1900
2000	3.946E+05	3.944E+05	8.722E-01	6.429E+07	3.624E+05	0.56	2000
2100	3.946E+05	3.944E+05	8.716E-01	6.429E+07	3.567E+05	0.55	2100
2200	3.946E+05	3.944E+05	8.414E-01	6.429E+07	3.526E+05	0.55	2200
2300	3.946E+05	3.944E+05	1.000E+00	6.429E+07	3.476E+05	0.54	2300
2400	3.946E+05	3.944E+05	1.000E+00	6.429E+07	3.222E+05	0.50	2400
		e e					
STEP	TIME	TIME	DAMPING	APPLIED	RESIDUAL	PERCENT	TOTAL

Page 402

		STEP	FACTOR	LOAD NORM	LOAD NORM	IMBALANCE	STEPS
100	7.892E+05	1.456E+05	9.743E-01	6.429E+07	4.540E+06	7.06	2503
200	7.892E+05	2.479E+05	9.499E-01	6.429E+07	2.097E+06	3.26	2603
300	7.892E+05	3.356E+05	9.927E-01	6.429E+07	1.268E+06	1.97	2703
400	7.892E+05	3.396E+05	9.718E-01	6.429E+07	8.266E+05	1.29	2803
500	7.892E+05	3.396E+05	9.915E-01	6.429E+07	6.825E+05	1.06	2903
600	7.892E+05	3.396E+05	9.170E-01	6.429E+07	5.760E+05	0.90	3003
700	7.892E+05	3.396E+05	9.287E-01	6.429E+07	5.255E+05	0.82	3103
800	7.892E+05	3.396E+05	9.591E-01	6.429E+07	4.896E+05	0.76	3203
900	7.892E+05	3.396E+05	9.675E-01	6.429E+07	4.589E+05	0.71	3303
1000	7.892E+05	3.396E+05	9.390E-01	6.429E+07	4.463E+05	0.69	3403
1100	7.892E+05	3.396E+05	9.970E-01	6.429E+07	4.187E+05	0.65	3503
1200	7.892E+05	3.396E+05	9.618E-01	6.429E+07	4.085E+05	0.64	3603
1300	7.892E+05	3.396E+05	9.558E-01	6.429E+07	5.794E+05	0.90	3703
1400	7.892E+05	3.396E+05	9.722E-01	6.429E+07	3.929E+05	0.61	3803
1500	7.892E+05	3.396E+05	8.803E-01	6.429E+07	6.230E+05	0.97	3903
1600	7.892E+05	3.396E+05	9.961E-01	6.429E+07	6.944E+05	1.08	4003
1700	7.892E+05	3.396E+05	9.305E-01	6.429E+07	3.596E+05	0.56	4103
1800	7.892E+05	3.396E+05	9.946E-01	6.429E+07	3.845E+05	0.60	4203
1900	7.892E+05	3.396E+05	8.254E-01	6.429E+07	3.760E+05	0.58	4303
2000	7.892E+05	3.396E+05	9.954E-01	6.429E+07	3.494E+05	0.54	4403
2100	7.892E+05	3.396E+05	9.992E-01	6.429E+07	5.311E+05	0.83	4503
2200	7.892E+05	3.396E+05	9.068E-01	6.429E+07	4.934E+05	0.77	4603
2300	7.892E+05	3.396E+05	8.137E-01	6.429E+07	5.438E+05	0.85	4703

SANTOS, VERSION 2.1.7-DP, RUN ON 20030612, AT 11:26:16
REFERENCE PARALLEL HEATED PROBLEM - SANTOS VERIFICATION (1/27/95)

**** PLOT TAPE WRITTEN AT TIME = 1.578E+08 STEP NUMBER 400 ****

100 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

E N D O F S O L U T I O N P H A S E
3.812E+04 CPU SECONDS USED
311518 WORDS ALLOCATED

100 TIME STEPS WERE WRITTEN TO THE PLOTTING DATA BASE

E N D O F S O L U T I O N P H A S E 6.586E+04 CPU SECONDS USED 1675 WORDS ALLOCATED

APPENDIX AA

Generation of SANTOS Executables

Normally, SANTOS runs using the default executable. When the ACCESS system is installed, the source code for SANTOS is compiled into an object library. This object library is linked to create the default SANTOS executable.

Some test cases in this validation document require the use of user subroutines in addition to the SANTOS code. For these test cases, the SANTOS object library is linked with the compiled user subroutine to create a "local" executable for that test case. The re-linking of SANTOS does not alter the object files in the SANTOS library. Thus, the SANTOS subroutines are identical in both the default and the local executables.

Table AA.1 lists the executable used for each test case, its path, its size and the date the executable was created.

Table AA.1 Executables used in SANTOS validation tests

Test	Executable	Path	Size and Date
Case	Name		
1	santos	/data/ACCESS/bin	885509 (6/9/03 12:46)
2	santos	/data/ACCESS/bin	885509 (6/9/03 12:46)
3	santos	/data/ACCESS/bin	885509 (6/9/03 12:46)
4	santos	/data/ACCESS/bin	885509 (6/9/03 12:46)
5	santos (local)	/home/jialin/santos-2.1.7_test/test_05	884934 (6/12/03 10:40)
6	santos	/data/ACCESS/bin	885509 (6/9/03 12:46)
. 7	santos	/data/ACCESS/bin	885509 (6/9/03 12:46)
8	santos	/data/ACCESS/bin	885509 (6/9/03 12:46)
9	santos	/data/ACCESS/bin .	885509 (6/9/03 12:46)
10	santos	/data/ACCESS/bin	885509 (6/9/03 12:46)
11	santos	/data/ACCESS/bin	885509 (6/9/03 12:46)
12	santos	/data/ACCESS/bin	885509 (6/9/03 12:46)
13	santos	/data/ACCESS/bin	885509 (6/9/03 12:46)
14	santos	/data/ACCESS/bin	885509 (6/9/03 12:46)
15	santos	/data/ACCESS/bin	885509 (6/9/03 12:46)
16	santos	/data/ACCESS/bin	885509 (6/9/03 12:46)
17	santos	/data/ACCESS/bin	885509 (6/9/03 12:46)
18	santos (local)	/home/jialin/santos-2.1.7_test/test_18	885581 (6/12/03 11:20)
19	santos (local)	/home/jialin/santos-2.1.7_test/test_19	885851 (6/12/03 11:21)
20	santos (local)	/home/jialin/santos-2.1.7_test/test_20	885613 (6/12/03 11:22)
21	santos (local)	/home/jialin/santos-2.1.7_test/test_21	885851 (6/12/03 11:26)

(local) indicates that the executable was created in a local directory

The subroutine, fpres.f, was used in Test Case 5. Its path is /home/jialin/santos-2.1.7_test/test_05.

```
fpres.f
c.....subroutine fpres
c....this subroutine is used to develop pressure within a cavity
c....for qa test of the adpative pressure function
c....programmer: J. F. Holland, Technadyne
      subroutine fpres(volume, time, pgas)
     INCLUDE 'precision.blk'
c....voll is taken from NUMBERS evaluation of Genesis file
     vol1 = 1.425
     po = 10.
c....this assumes the gas behaves as an ideal gas. When the volume
c....of the cavity increases there is a proportional decrease in the
c....pressure of the gas
     pgas = po*vol1/volume
С
С
     return
```

The subroutine, initst.f, was used in Test Case 18. Its path is /home/jialin/santos-2.1.7_test/test_18.

```
initst.f
     SUBROUTINE INITST ( SIG, COORD, LINK, DATMAT, KONMAT, SCREL )
C ********************************
С
С
  DESCRIPTION:
    THIS ROUTINE PROVIDES AN INITIAL STRESS STATE TO SANTOS
C
С
С
  FORMAL PARAMETERS:
C
                     ELEMENT STRESS ARRAY WHICH MUST BE RETURNED
    SIG REAL
С
                     WITH THE REQUIRED STRESS VALUES
    COORD REAL
С
                     GLOBAL NODAL COORDINATE ARRAY
           INTEGER CONNECTIVITY ARRAY
REAL MATERIAL PROPERTIES ARRAY
С
    LINK
С
   DATMAT REAL
С
   KONMAT INTEGER MATERIAL PROPERTIES INTEGER ARRAY
С
С
  CALLED BY: INIT
    **********
     INCLUDE 'precision.blk'
     INCLUDE 'params.blk'
```



```
INCLUDE 'psize.blk'
      INCLUDE 'contrl.blk'
      INCLUDE 'bsize.blk'
      INCLUDE 'timer.blk'
C
     DIMENSION LINK (NELNS, NUMEL), KONMAT (10, NEMBLK), COORD (NNOD, NSPC),
                SIG (NSYMM, NUMEL), DATMAT (MCONS, *), SCREL (NEBLK, *)
С
      DO 1000 I = 1, NEMBLK
         MATID = KONMAT(1, I)
         MKIND = KONMAT(2,I)
         ISTRT = KONMAT(3, I)
         IEND = KONMAT(4, I)
            DO 500 J = ISTRT, IEND
               II = LINK(1,J)
               JJ = LINK(2,J)
               KK = LINK(3,J)
               LL = LINK(4,J)
               ZAVG = 0.25 * (COORD(II, 2) + COORD(JJ, 2) + COORD(KK, 2) +
                    COORD(LL,2) )
               STRESS = 21252. * (ZAVG)
CCC
                  STRESS = -14.8E6
CCC
                  IF ( MATID .NE. 1 ) THEN
CCC
                     STRESS = 0.
CCC
                  END IF
               SIG(1,J) = STRESS
               SIG(2,J) = STRESS
               SIG(3,J) = STRESS
               SIG(4,J) = 0.0
  500
            CONTINUE
 1000 CONTINUE
      RETURN
      END
```

The subroutine, initst.f, was used in Test Case 19. Its path is /home/jialin/santos-2.1.7_test/test_19.

```
initst.f
     SUBROUTINE INITST ( SIG, COORD, LINK, DATMAT, KONMAT, SCREL )
C ***********************
C
С
   DESCRIPTION:
C
     THIS ROUTINE PROVIDES AN INITIAL STRESS STATE TO SANTOS
С
С
  FORMAL PARAMETERS:
С
    SIG
         REAL
                       ELEMENT STRESS ARRAY WHICH MUST BE RETURNED
С
                       WITH THE REQUIRED STRESS VALUES
             REAL
C
     COORD
                       GLOBAL NODAL COORDINATE ARRAY
C
             INTEGER
     LINK
                       CONNECTIVITY ARRAY
     DATMAT
С
                      MATERIAL PROPERTIES ARRAY
             REAL
C
    KONMAT INTEGER
                       MATERIAL PROPERTIES INTEGER ARRAY
С
 CALLED BY: INIT
```



```
C
      INCLUDE 'precision.blk'
      INCLUDE 'params.blk'
      INCLUDE 'psize.blk'
      INCLUDE 'contrl.blk'
      INCLUDE 'bsize.blk'
      INCLUDE 'timer.blk'
С
     DIMENSION LINK(NELNS, NUMEL), KONMAT(10, NEMBLK), COORD(NNOD, NSPC),
                SIG(NSYMM, NUMEL), DATMAT(MCONS, *), SCREL(NEBLK, *)
C
      RL = -5.980200E+02 + 7.067700E+02
      BL = -7.067700E + 02
      P1 = -12.71E+06
      P2 = -15.01E+06
C
      DO 1000 I = 1, NEMBLK
         MATID = KONMAT(1, I)
         MKIND = KONMAT(2, I)
         ISTRT = KONMAT(3,I)
         IEND = KONMAT(4,I)
            DO 500 J = ISTRT, IEND
               II = LINK(1,J)
               JJ = LINK(2,J)
               KK = LINK(3,J)
               LL = LINK(4,J)
               ZAVG = 0.25 * (COORD(II, 2) + COORD(JJ, 2) + COORD(KK, 2) +
                    COORD(LL,2) )
               S = (ZAVG - BL)/RL
               STRESS = P1*S + P2*(1. - S)
C
               SIG(1,J) = STRESS
               SIG(2,J) = STRESS
               SIG(3,J) = STRESS
               SIG(4,J) = 0.0
  500
            CONTINUE
 1000 CONTINUE
      RETURN
      END
```

The subroutine, initst.f, was used in Test Case 20. Its path is /home/jialin/santos-2.1.7_test/test_20.


```
С
                           WITH THE REQUIRED STRESS VALUES
     COORD REAL
С
                         GLOBAL NODAL COORDINATE ARRAY
    LINK INTEGER CONNECTIVITY ARRAY

DATMAT REAL MATERIAL PROPERTIES ARRAY

KONMAT INTEGER MATERIAL PROPERTIES INTEGER ARRAY
С
С
С
С
С
   CALLED BY: INIT
С
С
  ******************
      INCLUDE 'precision.blk'
      INCLUDE 'params.blk'
      INCLUDE 'psize.blk'
      INCLUDE 'contrl.blk'
      INCLUDE 'bsize.blk'
      INCLUDE 'timer.blk'
С
      DIMENSION LINK (NELNS, NUMEL), KONMAT (10, NEMBLK), COORD (NNOD, NSPC),
                SIG(NSYMM, NUMEL), DATMAT(MCONS, *), SCREL(NEBLK, *)
С
      DO 1000 I = 1, NEMBLK
         MATID = KONMAT(1,I)
         MKIND = KONMAT(2,I)
         ISTRT = KONMAT(3,I)
         IEND = KONMAT(4,I)
            DO 500 J = ISTRT, IEND
               II = LINK(1,J)
               JJ = LINK(2,J)
               KK = LINK(3,J)
               LL = LINK(4,J)
               ZAVG = 0.25 * (COORD(II,2) + COORD(JJ,2) + COORD(KK,2) +
                    COORD(LL,2) )
               STRESS = -2.256E4 * (655. - ZAVG)
               SIG(1,J) = STRESS
               SIG(2,J) = STRESS
               SIG(3,J) = STRESS
               SIG(4,J) = 0.0
  500
            CONTINUE
 1000 CONTINUE
      RETURN
      END
```

The subroutine, initst.f, was used in Test Case 21. Its path is /home/jialin/santos-2.1.7_test/test_21.

Page 409

```
C
     SIG
                          ELEMENT STRESS ARRAY WHICH MUST BE RETURNED
              REAL
С
                          WITH THE REQUIRED STRESS VALUES
С
     COORD
              REAL
                          GLOBAL NODAL COORDINATE ARRAY
С
     LINK
              INTEGER
                          CONNECTIVITY ARRAY
C
     DATMAT
              REAL
                          MATERIAL PROPERTIES ARRAY
C
     KONMAT
              INTEGER
                          MATERIAL PROPERTIES INTEGER ARRAY
C
C
   CALLED BY: INIT
C
С
    ******************
      INCLUDE 'precision.blk'
      INCLUDE 'params.blk'
      INCLUDE 'psize.blk'
      INCLUDE 'contrl.blk'
      INCLUDE 'bsize.blk'
      INCLUDE 'timer.blk'
С
     DIMENSION LINK (NELNS, NUMEL), KONMAT (10, NEMBLK), COORD (NNOD, NSPC),
               SIG (NSYMM, NUMEL), DATMAT (MCONS, *), SCREL (NEBLK, *)
С
     RL = 52.87 + 54.19
     BL = -54.19
      P1 = -13.57E + 06
      P2 = -15.95E+06
С
     DO 1000 I = 1, NEMBLK
        MATID = KONMAT(1,I)
        MKIND = KONMAT(2,I)
        ISTRT = KONMAT(3,I)
         IEND = KONMAT(4,I)
           DO 500 J = ISTRT, IEND
               II = LINK(1,J)
              JJ = LINK(2,J)
              KK = LINK(3,J)
              LL = LINK(4,J)
              ZAVG = 0.25 * (COORD(II,2) + COORD(JJ,2) + COORD(KK,2) +
                    COORD(LL,2) )
               S = (ZAVG - BL)/RL
               STRESS = P1*S + P2*(1. - S)
С
              SIG(1,J) = STRESS
              SIG(2,J) = STRESS
               SIG(3,J) = STRESS
               SIG(4,J) = 0.0
  500
           CONTINUE
 1000 CONTINUE
     RETURN
      END
```