Sandia National Laboratories Waste Isolation Pilot Plant

Thermodynamic Model for the Na–B(OH)₃–Cl–SO₄ system, Revision 1, Superseding ERMS 55811

558111 YX/10/30/12

Work Carried Out under Task 10 of AP-155: Analysis Plan for Thermodynamic Properties Including Pitzer Parameters for Solubility Studies of Borate. To be included in the AP-155 records package

Author:

Yonghaf Xiof ongliang Xiong, Org. 6212

Technical Reviewer:

oselle, Org. 6212

QA Reviewer:

Management Reviewer:

Christi D. Leigh, Org. 6212

Shelly R/ Nielsen, Org. 6210

October 29, 20/2 Date

10/29/2012 Date

10/30/12

WIPP: 1.4.2.2: TD: QA-L: RECERT: 555261

Information

TABLE OF CONTENTS

1 INTRODUCTION	5
2 METHODS	9
3 RESULTS	16
4 CONCLUSIONS	
5 REFERENCES	

LIST OF FIGURES

Figure 1. A plot showing $[\log \beta_1^I + 2D]$ as a function of ionic strengths, where $\log \beta_1^I$ denotes conditional formation constants of NaB(OH)₄(aq) at certain ionic strengths from Reardon (1976).

LIST OF TABLES

Table 1. Abbreviations, Acronyms, and Initialisms. 6
Table 2. Experimental results concerning solubility of sodium tetraborate in NaCl solutions
produced at SNL at 22.5 ± 1.5 °C (from Xiong, 2012a)* 12
Table 3. Solubility data of sodium tetraborate in Na ₂ SO ₄ solutions 25 °C (Sborgi et al., 1924). 14
Table 4. Equilibrium Constants for Complex Formation Reaction 15
Table 5. Locations of the Excel Spreadsheets, EQ3/6 I/O Files Associated with Calculations
for This Analysis15
Table 6. The revised thermodynamic model for the Na–B(OH) ₃ –Cl–SO ₄ system developed in
this study*16
Table 7. Comparison of independent, experimental equilibrium compositions for multiple
equilibrium assemblages containing sodium tetraborate (Na ₂ B ₄ O ₇ •10H ₂ O) (borax) with predicted
compositions in mixtures of NaCl and Na ₂ SO ₄ at 25 °C* 17

1 INTRODUCTION

This analysis report (AR) provides the results of derivation of thermodynamic properties including Pitzer parameters based on solubility of sodium tetraborate (borax) in NaCl and Na₂SO₄ solutions. Sodium tetraborate and borax are used interchangeably in this AR.

The computer code EQ3/6 Version 8.0a (Wolery, 2008; Wolery et al., 2010; Xiong, 2011) was used for this analysis. Wolery (2008), Wolery et al. (2010) and Xiong (2011b) completed the qualification of Version 8.0a of EQ3/6 according to Sandia National Laboratories' (SNL's) WIPP quality assurance (QA) procedures for WIPP compliance-related actinide solubility calculations, and US EPA approved it on September 27, 2011.

This analysis was carried out under Task 10 of AP-155 (Xiong, 2011c). There are two deviations from AP-155. The first deviation is that the literature data from Sborgi et al. (1924) and Reardon (1976) are also used for derivation of thermodynamic parameters, in addition to experimental data produced at SNL Carlsbad Facility. The second deviation is that the Python script developed by Kirchner (2012) is used instead of the one developed by Nemer (2010).

Table 1 (see next page) defines the generic abbreviations, acronyms, and initialisms used in this report and other analysis reports.

The author recently found out that the EQ6 output files for comparison of the model developed in this work with the literature data were produced by using the database, data0.pd1, without incorporation of the parameters generated in this work. In this revision, the EQ6 output files have been reproduced by using the data0.pd1 in which the parameters determined in this study have been incorporated, and the affected table is updated.

Abbreviation, Acronym, or Initialism	Definition
acetate	CH_3COO^- or $CH_3CO_2^-$
Am, Am(III)	americium, americium in the +III oxidation state
am	amorphous
anhydrite	CaSO ₄
AP	analysis plan
aq	aqueous
aragonite	$\dot{CaCO_3}$, a polymorph of $CaCO_3$ that is metastable with respect to calcite
atm	atmosphere(s)
B, B(III)	boron, boron in the +III oxidation state
Br, $Br(-I)$	bromine, bromine in the –I oxidation state
brucite	$Mg(OH)_2$
С	carbon
Ca, Ca(II), Ca ²⁺	calcium, calcium in the +II oxidation state, calcium ion
calcite	CaCO ₃ , the thermodynamically stable polymorph of CaCO ₃
citrate	$(CH_2COO)_2C(OH)(COO)^3$ or $(CH_2CO_2)_2C(OH)(CO_2)^3$
Cl, Cl(-I), Cl ⁻	chlorine, chlorine in the -I oxidation state, chloride ion
CMS	(Sandia/WIPP software) Configuration Management System
CO ₂	carbon dioxide
CO_{3}^{2-}	carbonate
CRA-2009	the second WIPP Compliance Recertification Application, submitted to the EPA in March 2009
DB	(thermodynamic) database
DOE	(U.S.) Department of Energy
dolomite	$CaMg(CO_3)_2$, a carbonate mineral that is nucleates and grows slowly under low-temperature conditions and is often suppressed (prevented from forming) in geochemical modeling calculations
DRZ	disturbed rock zone
EDTA	ethylenediaminetetraacetate, $(CH_2COO)_2N(CH_2)_2N(CH_2COO)_2)^{4-}$ or $(CH_2CO_2)_2N(CH_2)_2N(CH_2CO_2)^{4-}$
EPA	(U.S.) Environmental Protection Agency
EQ3/6	a geochemical software package for speciation and solubility calculations (EQ3NR) and reaction-path calculations (EQ6)

Table 1. Abbreviations, Acronyms, and Initialisms.

Table 1 continued on next page

Abbreviation, Acronym, or Initialism	Definition
ERDA-6	Energy Research and Development Administration (WIPP Well) 6, a synthetic brine representative of fluids in Castile brine reservoirs
f _{CO2}	fugacity (similar to the partial pressure) of CO_2
Fm.	Formation
FMT	Fracture-Matrix Transport, a geochemical speciation and solubility code
GWB	Generic Weep Brine, a synthetic brine representative of intergranular Salado brines at or near the stratigraphic horizon of the repository
gypsum	CaSO ₄ ·2H ₂ O
$H \text{ or } H_2, H^+$	hydrogen or hydrogen ion
halite	NaCl
H ₂ O	water (aq, g, or contained in solid phases)
hydromagnesite	$Mg_5(CO_3)_4(OH)_2 \cdot 4H_2O$
I	ionic strength
K, K(I)	potassium, potassium in the +I oxidation state
kg	kilogram(s)
М	molar
m	meter(s) or molal
magnesite	MgCO ₃
Mg, Mg(II) MgO	magnesium, magnesium in the +II oxidation state magnesium oxide, used to refer to the WIPP engineered barrier, which includes periclase as the primary constituent and various impurities
mM	millimolar
Na, Na(I), Na $^+$	sodium, sodium in the +I oxidation state, sodium ion
nesquehonite	MgCO ₃ ·3H ₂ O
Np, Np(V)	neptunium, neptunium in the +V oxidation state
O or O_2	oxygen
OH, OH ⁻	hydroxide or hydroxide ion
oxalate	$(COO)^{2-}$ or $C_2O_4^{2-}$
PA	performance assessment
PABC	Performance Assessment Baseline Calculations

Table 1. Abbreviations, Acronyms, and Initialisms (continued).

Table 1 continued on next page

Abbreviation, Acronym, or Initialism	Definition
periclase	pure, crystalline MgO, the primary constituent of the WIPP
17	engineered barrier
pH	the negative, common logarithm of the activity of H^+
pcH	the negative, common logarithm of the molar concentration of H^+
phase 3	$Mg_2Cl(OH)_3 \cdot 4H_2O$
phase 5	$Mg_3(OH)_5Cl \cdot 4H_2O$
polyhalite	$K_2MgCa_2(SO_4)_4 \cdot 2H_2O$
QA	quality assurance
Rev.	revision
RH	relative humidity
S, S(VI), SO_4^{2-}	sulfur, sulfur in the +VI oxidation state, sulfate ion
S	solid
SCA	S. Cohen and Associates
SNL	Sandia National Laboratories
Th, Th(IV)	thorium, thorium in the +IV oxidation state
TIC	total inorganic C
WIPP	(U.S. DOE) Waste Isolation Pilot Plant
wt %	weight percent
μ^0/RT	dimensionless standard chemical potential

Table 1. Abbreviations, Acronyms, and Initialisms (continued).

2 METHODS

The objective of this analysis was to derive thermodynamic properties in the Na⁺– $B(OH)_3$ –CI– SO_4^{2-} system based on solubility data of sodium tetraborate in NaCl solutions produced at SNL (Xiong, 2012a) and in Na₂SO₄ solutions from the literature (Sborgi et al., 1924). Table 2 lists experimental data in NaCl solutions from Xiong (2012a), and Table 3 lists experimental data in Na₂SO₄ solutions from Sborgi et al. (1924).

Felmy and Weare (1986) developed a thermodynamic model concerning borate in the system Na—K—Ca—Mg—H—Cl—SO₄—CO₂—B(OH)₄—H₂O, based on literature data. This model will be abbreviated as the FW86 model hereafter. Their model is an extension of the Harvie et al. (1984) model to include borate species. In the FW86 model, the species, NaB(OH)₄(aq), was not explicitly considered. However, numerous researchers have suggested the existence of this complex in solutions containing sodium (e.g., Reardon, 1976; Corti et al., 1980; Rowe et al., 1989; Pokrowski et al., 1995; Akinfiev et al., 2006). Therefore, this complex could be important in Na-rich solutions.

In the work of Reardon (1976), the formation constants for the reaction,

$$Na^{+} + B(OH)_{4}^{-} = NaB(OH)_{4}(aq)$$
⁽¹⁾

were determined in NaCl solutions with ionic strengths ranging from 0.165 m to 0.499 m at temperatures from 10 °C to 50 °C. To obtain the thermodynamic formation constants at infinite dilution, Reardon (1976) used the activity coefficients of HCO_3^- and $H_3BO_3(aq)$ to approximate those of $B(OH)_4^-$ and $NaB(OH)_4(aq)$, respectively. The thermodynamic formation constant at 25 °C for Reaction (1) obtained by Reardon (1976) was 0.22 ± 0.10 .

In this study, conditional formation constants for Reaction (1) generated by Reardon (1976) are re-evaluated by using the specific ion interaction theory (SIT) model, following the methodology of Grenthe et al. (1992). The log β_l at 25 °C obtained is 0.25 ± 0.01 (Figure 1 and Table 4). Based on $\Delta \epsilon = -0.04 \pm 0.02$, the log β_l at 10 °C, 40 °C and 50 °C are also obtained (Table 4). These values are in agreement with those of Pokrowski et al. (1995). The spreadsheet for calculation of these parameters is named XIONG_NaB(OH)4(aq)_SIT.xls and is located in the zip file Task10_DataPackage_Borate.zip.

The above log β_1 for NaB(OH)₄(aq), the experimental solubility data for borax in NaCl gathered under TP 10-01 and reported the milestone report (Xiong, 2012a), and solubility data of borax in Na₂SO₄ from Sborgi et al. (1924), are utilized to derive the Pitzer parameters and log K_{sp} for borax with the aid of the computer code EQ3/6 Version 8.0a (Wolery et al., 2010; Xiong,

2011b). The essence of the modeling is to minimize the difference between experimental and model predicted values. The log K_{sp} for borax dissolution refers to the following reaction,

$$Na_{2}B_{4}O_{7} \bullet 10H_{2}O = 2Na^{+} + 4B(OH)_{4}^{-} + 2H^{+} + H_{2}O(I)$$
(2)

Using experimental solubility data of sodium tetraborate for NaCl solutions (Xiong, 2012a), log K_{sp} for sodium tetraborate and $\lambda_{Na^+-NaB(OH)_4(aq)}$ are obtained. The values for these two parameters are evaluated by using the Python script (Na2B4O7_NaCl_Brute_PSD.py) which runs the EQ3CodeModule optimization routine (Kirchner, 2012) with EQ3NR input files NaTC-1.3i through NaTC-85.3i. These files are located in the folder labeled as "EQ3_NaCl" in the zip file "Task10_DataPackage_Borate.zip". The optimization results indicate that the residual is minimized to be 0.26 when log K_{sp} is -24.80 and $\lambda_{Na^+-NaB(OH)_4(aq)}$ is between 0.093-0.098 (see Results_Na2B4O7_NaCl_Brute_PSD.txt, which is located in the folder named as "EQ3_NaCl"). An uncertainty of ±0.10 is assigned to log K_{sp} , and of 0.005 is assigned to $\lambda_{Na^+-NaB(OH)_4(aq)}$. The EQ3CodeModule optimization routine has been independently validated (Xiong, 2012b). The provisional database for the modeling is data0.psd, which is the precursor of data0.pd1 (see comment lines in data0.pd1 in Domski, 2012).

The experimental data of sodium tetraborate from Sborgi et al. (1924) (Table 3) are used to evaluate Ψ_{ijk} for the interaction of SO₄⁻²—B₄O₅(OH)₄⁻²—Na⁺. In the evaluation, θ_{ij} for B(OH)₄⁻—SO₄⁻² was set to 0.17 ± 0.03, similar to the values for B₃O₃(OH)₄⁻—SO₄⁻² and B₄O₅(OH)₄²—SO₄⁻² (Felmy and Weare, 1986). The Ψ_{ijk} for the interaction of SO₄⁻²— B₄O₅(OH)₄²—Na⁺ is evaluated as 0.1 ± 0.2 using the Python script (Na2B4O7_Na2SO4_BRUTE_OneParameter_data0psd.py) with EQ3NR input files SO4-1.3i through SO4-7.3i. These input files are located in the folder labeled as "EQ3_Na2SO4" in the zip file "Task10_DataPackage_Borate.zip". The value selected for the Ψ_{ijk} parameter is 0.1 ± 0.2 with a residual of 0.14-0.19 (see Results_Na2B4O7_Na2SO4_Brute_PSD.txt, which is located in the folder "EQ3_Na2SO4").

Figure 1. A plot showing $[\log \beta_1^{l} + 2D]$ as a function of ionic strengths, where $\log \beta_1^{l}$ denotes conditional formation constants of NaB(OH)₄(aq) at certain ionic strengths from Reardon (1976).

Experimental Number	Supporting Medium, NaCl, molal	Experimental time, days	pmH**	Molal solubility of sodium tetraborate expressed as total boron concentrations, $m_{\Sigma B}$
Na ₂ B ₄ O ₇ -NaCl-0.01-1	0.010	132	9.10	0.515
Na ₂ B ₄ O ₇ -NaCl-0.01-2	0.010	132	9.03	0.509
Na ₂ B ₄ O ₇ -NaCl-0.1-1	0.10	132	8.97	0.435
Na ₂ B ₄ O ₇ -NaCl-0.1-2	0.10	132	8.95	0.417
Na ₂ B ₄ O ₇ -NaCl-1.0-1	1.0	132	8.70	0.179
Na ₂ B ₄ O ₇ -NaCl-1.0-2	1.0	132	8.72	0.194
Na ₂ B ₄ O ₇ -NaCl-2.0-1	2.1	132	8.66	0.157
Na2B4O7-NaCl-2.0-2	2.1	132	8.81	0.147
Na2B4O7-NaCl-3.0-1	3.2	132	8.81	0.139
Na ₂ B ₄ O ₇ -NaCl-3.0-2	3.2	132	8.77	0.143
Na ₂ B ₄ O ₇ -NaCl-4.0-1	4.4	132	8.88	0.165
Na ₂ B ₄ O ₇ -NaCl-4.0-2	4.4	132	8.89	0.151
Na ₂ B ₄ O ₇ -NaCl-5.0-1	5.0	132	8.80	0.145
Na ₂ B ₄ O ₇ -NaCl-5.0-2	5.0	132	8.79	0.146
Na2B4O7-NaCl-0.01-1	0.010	278	9.28	0.488
Na ₂ B ₄ O ₇ -NaCl-0.01-2	0.010	278	9.28	0.495
Na ₂ B ₄ O ₇ -NaCl-0.1-1	0.10	278	9.26	0.411
Na ₂ B ₄ O ₇ -NaCl-0.1-2	0.10	278	9.24	0.415
Na ₂ B ₄ O ₇ -NaCl-1.0-1	1.0	278	9.04	0.190
Na ₂ B ₄ O ₇ -NaCl-1.0-2	1.0	278	9.03	0.099
Na ₂ B ₄ O ₇ -NaCl-2.0-1	2.1	278	9.00	0.155
Na ₂ B ₄ O ₇ -NaCl-2.0-2	2.1	278	8.98	0.152
Na ₂ B ₄ O ₇ -NaCl-3.0-1	3.2	278	8.96	0.143
Na ₂ B ₄ O ₇ -NaCl-3.0-2	3.2	278	8.93	0.140
Na ₂ B ₄ O ₇ -NaCl-4.0-1	4.4	278	9.06	0.139
Na ₂ B ₄ O ₇ -NaCl-4.0-2	4.4	278	9.05	0.142
Na ₂ B ₄ O ₇ -NaCl-5.0-1	5.0	278	8.96	0.141
Na ₂ B ₄ O ₇ -NaCl-5.0-2	5.0	278	8.96	0.142
Na2B4O7-NaCl-0.01-1	0.010	327	9.33	0.482
Na ₂ B ₄ O ₇ -NaCl-0.01-2	0.010	327	9.28	0.508
Na ₂ B ₄ O ₇ -NaCl-0.1-1	0.10	327	9.26	0.436

Table 2. Experimental results concerning solubility of sodium tetraborate in NaCl solutions produced at SNL at 22.5 ± 1.5 °C (from Xiong, 2012a)*.

Na ₂ B ₄ O ₇ -NaCl-0.1-2	0.10	327	9.22	0.430
Na ₂ B ₄ O ₇ -NaCl-1.0-1	1.0	327	9.09	0.207
Na ₂ B ₄ O ₇ -NaCl-1.0-2	1.0	327	9.10	0.210
Na ₂ B ₄ O ₇ -NaCl-2.0-1	2.1	327	8.99	0.160
Na ₂ B ₄ O ₇ -NaCl-2.0-2	2.1	327	9.00	0.161
Na ₂ B ₄ O ₇ -NaCl-3.0-1	3.2	327	9.00	0.151
Na ₂ B ₄ O ₇ -NaCl-3.0-2	3.2	327	8.95	0.157
Na ₂ B ₄ O ₇ -NaCl-4.0-1	4.4	327	9.10	0.151
Na ₂ B ₄ O ₇ -NaCl-4.0-2	4.4	327	9.11	0.147
Na2B4O7-NaCl-5.0-1	5.0	327	8.97	0.151
Na ₂ B ₄ O ₇ -NaCl-5.0-2	5.0	327	9.01	0.158
Na2B4O7-NaCl-0.01-1	0.010	377	9.39	0.513
Na2B4O7-NaCl-0.01-2	0.010	377	9.38	0.509
Na ₂ B ₄ O ₇ -NaCl-0.1-1	0.10	377	9.32	0.468
Na ₂ B ₄ O ₇ -NaCl-0.1-2	0.10	377	9.33	0.482
Na ₂ B ₄ O ₇ -NaCl-1.0-1	1.0	377	9.09	0.214
Na ₂ B ₄ O ₇ -NaCl-1.0-2	1.0	377	9.09	0.231
Na ₂ B ₄ O ₇ -NaCl-2.0-1	2.1	377	9.03	0.168
Na ₂ B ₄ O ₇ -NaCl-2.0-2	2.1	377	9.03	0.171
Na2B4O7-NaCl-3.0-1	3.2	377	9.01	0.153
Na ₂ B ₄ O ₇ -NaCl-3.0-2	3.2	377	9.00	0.149
Na2B4O7-NaC1-4.0-1	4.4	377	9.08	0.152
Na2B4O7-NaC1-4.0-2	4.4	377	9.09	0.146
Na ₂ B ₄ O ₇ -NaCl-5.0-1	5.0	377	9.00	0.152
Na ₂ B ₄ O ₇ -NaCl-5.0-2	5.0	377	9.02	0.149
Na ₂ B ₄ O ₇ -NaCl-0.01-1	0.010	425	9.35	0.514
Na2B4O7-NaCl-0.01-2	0.010	425	9.31	0.532
Na ₂ B ₄ O ₇ -NaCl-0.1-1	0.10	425	9.26	0.531
Na ₂ B ₄ O ₇ -NaCl-0.1-2	0.10	425	9.25	0.458
Na ₂ B ₄ O ₇ -NaCl-1.0-1	1.0	425	9.04	0.221
Na ₂ B ₄ O ₇ -NaCl-1.0-2	1.0	425	9.03	0.222
Na ₂ B ₄ O ₇ -NaCl-2.0-1	2.1	425	8.96	0.171
Na ₂ B ₄ O ₇ -NaCl-2.0-2	2.1	425	8.97	0.171
Na ₂ B ₄ O ₇ -NaCl-3.0-1	3.2	425	8.95	0.161
Na2B4O7-NaCl-3.0-2	3.2	425	8.93	0.156
Na ₂ B ₄ O ₇ -NaCl-4.0-1	4.4	425	9.02	0.158
Na ₂ B ₄ O ₇ -NaCl-4.0-2	4.4	425	9.04	0.154
Na ₂ B ₄ O ₇ -NaCl-5.0-1	5.0	425	8.96	0.159

Na ₂ B ₄ O ₇ -NaCl-5.0-2	5.0	425	8.97	0.162
Na2B4O7-NaCl-0.01-1	0.010	567	9.28	0.489
Na2B4O7-NaCl-0.01-2	0.010	567	9.28	0.497
Na ₂ B ₄ O ₇ -NaCl-0.1-1	0.10	567	9.24	0.429
Na ₂ B ₄ O ₇ -NaCl-0.1-2	0.10	567	9.23	0.426
Na ₂ B ₄ O ₇ -NaCl-1.0-1	1.0	567	9.00	0.199
Na ₂ B ₄ O ₇ -NaCl-1.0-2	1.0	567	9.00	0.203
Na ₂ B ₄ O ₇ -NaCl-2.0-1	2.1	567	8.94	0.157
Na ₂ B ₄ O ₇ -NaCl-2.0-2	2.1	567	8.94	0.167
Na ₂ B ₄ O ₇ -NaCl-3.0-1	3.2	567	8.93	0.160
Na ₂ B ₄ O ₇ -NaCl-3.0-1R	3.2	567	8.92	0.155
Na ₂ B ₄ O ₇ -NaCl-3.0-2	3.2	567	8.90	0.154
Na ₂ B ₄ O ₇ -NaCl-4.0-1	4.4	567	8.99	0.148
Na ₂ B ₄ O ₇ -NaCl-4.0-2	4.4	567	9.01	0.152
Na ₂ B ₄ O ₇ -NaCl-5.0-1	5.0	567	8.93	0.158
Na ₂ B ₄ O ₇ -NaCl-5.0-2	5.0	567	8.93	0.154

*Experimental data at 567 days were not reported in Xiong (2012a). They were generated after that report (see Pages 10–11 of WIPP–Borate–5).

**In Xiong (2012a), pH reading were reported. Values of pmH reported in this analysis report are calculated by using the correction factors (A_M) for pH readings, and conversion factors (Θ) from molarity to molality, pmH = pH_{ob} + A_M – log Θ (Xiong et al., 2010). The correction factors are from Rai et al. (1995). The conversion factors are calculated from densities for NaCl solutions, which are from Sőhnel and Novotný (1985). Please see the spreadsheet "XIONG_Na2B4O7_NaCl_Paper.xls".

Table 3. Solubility data of sodium tetraborate in Na₂SO₄ solutions at 25 °C (Sborgi et al., 1924).

Molal solubility of sodium tetraborate expressed as total boron concentrations, $m_{\Sigma B}$	Molality of SO4 ²⁻	Molality of Na^+
0.3344*	0.0000*	0.1672*
0.2868	0.08711	0.3176
0.2281	0.2393	0.5927
0.1699	0.7633	1.6115
0.1585	1.036	2.151
0.1576	1.318	2.715
0.1573	1.439	2.956
0.1572	1.503	3.085

*These data were not used for calculation, because there was no SO_4^{2-} in solution.

Reaction	$\log \beta_l$ at 25 °C unless otherwise noted
$Na^+ + B(OH)_4^- = NaB(OH)_4(aq)$	$0.29 \pm 0.01 (10 \ ^{\circ}\text{C})$ $0.25 \pm 0.01 (25 \ ^{\circ}\text{C}) \text{ with}$ $\Delta \varepsilon = -0.04 \pm 0.02$ $0.24 \pm 0.01 (40 \ ^{\circ}\text{C})$ $0.26 \pm 0.02 (50 \ ^{\circ}\text{C})$

Table 4. Equilibrium Constants for Complex Formation Reaction

Table 5.Locations of the Excel Spreadsheets, EQ3/6 I/O Files Associated with
Calculations for This Analysis.

Description or Title of File(s)	Location of File(s)
Spreadsheet XIONG_NaB(OH)4(aq)_SIT.xls	In zip file Task10_DataPackage_Borate.zip, library LIBAP155
Spreadsheet XIONG_Na2B4O7_NaCl_Paper.xls	In zip file Task10_DataPackage_Borate.zip, library LIBAP155
EQ3/6 DB DATA0.PSD EQ3/6 DB DATA0.PD1	In zip file Task10_DataPackage_Borate.zip, library LIBAP155
EQ3/6 I/O files: NaTC-1.3i/o through NaTC-85.3i/o SO4-1.3i/o through SO4-7.3i/o ClSO4-1.3i/o through ClSO4-8.3i/o ClSO4-1.6i/o through ClSO4-8.6i/o	In zip file Task10_DataPackage_Borate.zip, library LIBAP155
Python scripts: Na2B4O7_NaCl_BRUTE_PSD.py Na2B4O7_Na2SO4_BRUTE_OneParameter_data0psd.py	In zip file Task10_DataPackage_Borate.zip, library LIBAP155
EQ3/6 DB DATA0.PD1 containing the parameters obtained in this work	In zip file Task10_AR_Rev1_DataPKG.zip, library LIBAP155
EQ3/6 I/O files: CISO4-1.6i/o through CISO4-8.6i/o; produced by using DATA0.PD1 containing the parameters obtained in this work	In zip file Task10_AR_Rev1_DataPKG.zip, library LIBAP155

The EQ3/6 thermodynamic databases (DB) DATA0.FM1 and DATA0.PSD were used for this analysis. The DATA0.FM1 (Xiong, 2001a) has the Felmy and Weare (1986) model on

borate species. The DATA0.PSD database contains the revised parameters for the borate species generated in this analysis. The DATA0.PSD database is in Task10_DataPackage_Borate.zip, LIBAP155, in the CMS. All supporting EQ3/6 input and output (I/O) files are also located in the above zip file.

3 RESULTS

Table 6 provides the Pitzer parameters and $\log K_{sp}$ derived in this study.

Table 7 provides the comparison between the FW86 model and the revised model developed in this study. These two models are benchmarked versus the independent experimental data. The comparison demonstrates that the model developed in this study is superior in prediction of solubilities of sodium tetraborate in concentrated brines to ionic strengths of ~8 m. The EQ3/6 input and output files for the model comparison are CISO4-1.3i/o through CISO4-8.3i/o, and CISO4-1.6i/o through CISO4-8.6i/o. respectively. In the folder labeled as "Felmy" in the zip file "Task10_DataPackage_Borate.zip", output files were generated by using the officially released database, data0.fm1 (Xiong, 2011a). In the folder labeled as "Xiong_Yongliang" in the zip file "Task10_DataPackage_Borate.zip", output files were generated by using the provisional database, DATA0.PD1 (Domski, 2012), in which the data0.fm1 has been modified by incorporating the respective parameters described in this report. As data0.fm1 has been officially released, it is not included in the zip file.

Table 6. The revised thermodynamic model for the Na–B(OH) ₃ –Cl–SO ₄ system developed in
this study*.

Pitzer Mixing Parameters and Interaction Parameters Involving Neutral Species						
Species, i	Species, j	Species, k	θ_{ij} or λ_{ij}	Ψ_{ijk} or ζ_{ijk}		
$B(OH)_4^-$	SO_4^{-2}		0.17 ± 0.03			
NaB(OH) ₄ (aq)	Na ⁺		0.093 ± 0.005			
$B_4O_5(OH)_4^{-2}$	SO_4^{-2}	Na ⁺		0.1 ± 0.2		
Equilibrium Constants for Solubility and Complex Formation Reactions						
Reaction			$\log K$ or $\log \beta_l$	$\log K$ or $\log \beta_l$ at 25 °C unless		
		otherwise noted	otherwise noted			
$Na_2B_4O_7 \bullet 10H_2O$	$P = 2Na^+ + 4B(OH)$	-24.80 ± 0.10 (2)	-24.80 ± 0.10 (2 σ)			
$Na^{+} + B(OH)_{4}^{-} =$	= NaB(OH) ₄ (aq)	0.25 ± 0.01 (25	°C)			

*Unless otherwise noted, other parameters, which are not listed, are the same as those in Felmy and Weare (1986) model.

Table 7. Comparison of independent, experimental equilibrium compositions for multiple equilibrium assemblages containing sodium tetraborate (Na₂B₄O₇•10H₂O) (borax) with predicted compositions in mixtures of NaCl and Na₂SO₄ at 25 °C*

Experimental data for equilibrium compositions							
m _{Na}	m _{Cl}	m _{SO4}	m _{ΣB}	Equilibrium Assemblage**	References		
				BRX+HLT+THNDT	Van't Hoff		
					and		
					Blasdale		
6.967	5.516	0.694	0.125		(1905)		
				BRX+HLT	Grushvitski		
					and		
					Flerinskava		
6.355	5.925	0.183	0.128		(1932)		
6.527	5.408	0.526	0.134	BRX+HLT	ibid.		
6.716	5.286	0.673	0.167	BRX+HLT	ibid.		
6.939	5.441	0.716	0.132	BRX+HLT+THNDT	ibid.		
6.603	4.723	0.903	0.149	BRX	ibid.		
6.477	3.168	1.619	0.141	BRX+MRBLT+THNDT	ibid.		
3.774	0.248	1.734	0.117	BRX+MRBLT	ibid.		
Equilibrium compositions predicted by the Felmy and Weare (1986) model, produced by							
using data0	.fm1	-			· · ·		
m _{Na}	m _{Cl}	m _{SO4}	$m_{\Sigma B}$	Equilibrium			
				Assemblage**			
6.971	5.484	0.691	0.212	BRX+HLT+THNDT			
6.364	5.896	0.182	0.206	BRX+HLT			
6.532	5.381	0.523	0.209	BRX+HLT			
6.704	5.260	0.670	0.211	BRX+HLT			
6.943	5.413	0.712	0.212	BRX+HLT+THNDT			
6.602	4.699	0.898	0.214	BRX			
6.367	3.229	1.512	0.229	BRX+MRBLT+THNDT			
3.833	0.246	1.721	0.289	BRX+MRBLT			
Equilibriun	n composition	ns predicted	by the mode	l developed in this study, pro	oduced by		
using data0	.pd1				-		
m _{Na}	m _{Cl}	m _{SO4}	m _{ΣB}	Equilibrium			
				Assemblage**			
6.947	5.494	0.692	0.136	BRX+HLT+THNDT			
6.347	5.906	0.183	0.151	BRX+HLT			
6.512	5.393	0.524	0.141	BRX+HLT			
6.683	5.272	0.671	0.137	BRX+HLT			
6.922	5.426	0.714	0.136	BRX+HLT+THNDT			
6.577	4.711	0.900	0.131	BRX			
6.284	3.273	1.475	0.120	BRX+MRBLT+THNDT			

0.700	0.0.17	1 700	0.454			
3.780	0.247	1.728	0.151	BRX+MRBLT		
Difference in %** between experimental values and those predicted by the FW86 model						
∆Na in %	∆Cl in %	∆SO₄ in %	$\Delta\Sigma B$ in %	Equilibrium		
				Assemblage**		
0.060	-0.586	-0.507	69.788	BRX+HLT+THNDT		
0.133	-0.483	-0.482	60.851	BRX+HLT		
0.084	-0.496	-0.497	55.925	BRX+HLT		
-0.170	-0.504	-0.503	26.362	BRX+HLT		
0.072	-0.508	-0.507	60.305	BRX+HLT+THNDT		
-0.016	-0.514	-0.515	43.776	BRX		
-1.701	1.941	-6.656	62.343	BRX+MRBLT+THNDT		
1.555	-0.725	-0.725	145.848	BRX+MRBLT		
Difference in %*** between experimental values and those predicted by the model						
developed in this study						
∆Na in %	∆Cl in %	∆SO₄ in %	$\Delta\Sigma B$ in %	Equilibrium		
				Assemblage**		
-0.290	-0.402	-0.274	9.240	BRX+HLT+THNDT		
-0.121	-0.309	-0.308	18.448	BRX+HLT		
-0.227	-0.284	-0.285	5.249	BRX+HLT		
-0.495	-0.275	-0.274	-18.006	BRX+HLT		
-0.245	-0.273	-0.272	2.587	BRX+HLT+THNDT		
-0.392	-0.259	-0.260	-11.967	BRX		
-2.974	3.327	-8.884	-14.637	BRX+MRBLT+THNDT		
0.145	-0.307	-0.307	28.758	BRX+MRBLT		

*Comparison was performed by running EQ3/6 calculations. In EQ3NR calculations, input compositions for total Na⁺, total Cl⁻, and total SO₄²⁻ are the same as the experimental values, and for total B(OH)₄⁻ is at trace level (1×10^{-20} m). In EQ6 calculations, the above compositions are in equilibrium with sodium tetraborate (borax), and a new set of compositions for total Na⁺, total Cl⁻,total SO_4^{2-} , and total $B(OH)_4^{-}$ is obtained.

**Abbreviations for minerals: BRX, borax (Na₂B₄O₇•10H₂O); HLT, halite (NaCl); MRBLT, mirabilite (Na₂SO₄•10H₂O); THNDT, thenardite (Na₂SO₄).

***Difference in % is defined as, using concentrations of sodium on molal scale as an example,

 $\Delta \text{Na in } \% = 100 \times \frac{m_{Na,Model} - m_{Na,Experimental}}{m_{Na,Experimental}}$

4 CONCLUSIONS

In this analysis report, a thermodynamic model with high precision is developed for the $Na^+-B(OH)_3-Cl^--SO_4^{2-}$ system, based on new experimental data. This model is validated by independent experimental data in ternary mixtures of NaCl and Na₂SO₄. With this model, solubilities of borax in concentrated NaCl, Na₂SO₄, and NaCl+Na₂SO₄ solutions can be accurately modeled.

5 REFERENCES

- Akinfiev, N.N., Voromin, M.V., Zotov, A.V., Prokof'ev, V.Y., 2006. Experimental investigation of the stability of a chloroborate complex and thermodynamic description of aqueous species in the B-Na-Cl-O-H system up to 350 °C. Geochemistry International, 44, 867–878.
- Corti, H., Crovetto, R., and Fernandez-Prini, R., 1980. Mobilities and ion-pairing in Li(OH)₄ and NaB(OH)₄ aqueous solutions. A conductivity study. Journal of Solution Chemistry, **9**, 617–62.
- Domski, P., 2012. "Memo AP-155, Task 10 EQ3/6 Database Update". Memo to the Record Center, July 17, 2012. Carlsbad, NM. Sandia National Laboratories.
- Felmy, A.R., Weare, J.H., 1986. The prediction of borate mineral equilibria in natural waters: Applications to Searles Lake, California. Geochimica et Cosmochimica Acta, 50, 2771– 2783.
- Grenthe I, Fuger J, Konings RJM, Lemire RJ, Muller AB, Nguyen-Trung C, Wanner H, 1992. Chemical Thermodynamics of Uranium New York: Elsevier Science Publishers; 714 pp.
- Grushvitski, V.E., and Flerinskava, E.M., 1932. Tr. Vses. Nauch.-Issled. Inst. Gal., cited in Silcock, H., 1979. Solubilities of Inorganic and Organic Compounds, Volume 3, Part 2, Page 585, Pergamon Press, New York.
- Harvie, C.E., Møller, N., and Weare, J.H., 1984. The Prediction of Mineral Solubilities in Natural Waters: The Na-K-Mg-Ca-H-Cl-SO₄-OH-HCO₃-CO₃-CO₂-H₂O System to High Ionic Strengths at 25 °C. Geochimica et Cosmochimica Acta, **48**, 723-751.
- Kirchner, T.B., 2012. User's Manual for The EQ3CodeModule Version 1.00. Carlsbad, NM: Sandia National Laboratories. ERMS 557360.
- Nemer, M., 2010. "Optimize_logK (A Python script runs EQ3NR Version 8.0a)." Memo to Record Center, ERMS # 553206.
- Pokrovski, G.S., Schott, J., Sergeyev, A.S., 1995. Experimental determination of the stability constants of NaSO₄⁻ and NaB(OH)₄^o in hydrothermal solutions using a new high-temperature sodium-selective glass electrode—Implications for boron isotopic fractionation. Chemical Geology, **124**, 253–265.
- Rai, D., Felmy, A.R. Juracich, S.I., Rao, F.F., 1995. Estimating the hydrogen ion concentration in concentrated NaCl and Na₂SO₄ electrolytes. SAND94-1949. Sandia National Laboratories, Albuquerque, NM.

- Reardon, E.J., 1976. Dissociation constants for alkali earth and sodium borate ion pairs from 10 to 50°C. Chemical Geology, 18, 309–325.
- Rowe, L.M., Tran, L.B., and Atkinson, G., 1989. The effect of pressure on the dissociation of boric acid and sodium borate ion pairs at 25°C. Journal of Solution Chemistry, 18, 675–689.
- Sborgi, U., Bovalini, E., and Cappellini, L., 1924. Per lo stuio della doppia decomposizione (NH₄)₂ + Na₂SO₄ ↔ Na₂B₄O₇ + (NH₄)₂SO₄ in soluzione acqusa. Parte III. Sistema ternario Na₂B₄O₇, Na₂SO₄, H₂O. Gazzetta chimica Italiana, 54:298-322.
- Silcock, H., 1979. Solubilities of Inorganic and Organic Compounds, Volume 3, Pergamon Press, New York.
- Sőhnel, O, Novotný, P., 1985, Densities of aqueous solutions of inroganic substances. Elsevier, New York, 335 p.
- Van't Hoff, I.H., and Blasdale, W.C., 1905, Examination on the formation conditions of oceanic salt deposits. XLV. The occurrence of tincal and octaedric borax. SITZUNGSBERICHTE DER KONIGLICH PREUSSISCHEN AKADEMIE DER WISSENSCHAFTEN, 252:1086-1090. Cited in Silcock, H., 1979. Solubilities of Inorganic and Organic Compounds, Volume 3, Part 2, Page 584, Pergamon Press, New York.
- Wolery, T.J. 2008. "Analysis Plan for EQ3/6 Analytical Studies." AP-140, Rev. 0, May 15, 2008, Carlsbad, NM: Sandia National Laboratories. ERMS 548930.
- Wolery, T.J., and R.L. Jarek. 2003. "Software User's Manual: EQ3/6, Version 8.0." Software Document No. 10813-UM-8.0-00. Albuquerque, NM: Sandia National Laboratories.
- Wolery, T.J., Y.-L. Xiong, and J.J. Long. 2010. "Verification and Validation Plan/Validation Document for EQ3/6 Version 8.0a for Actinide Chemistry, Document Version 8.10." Carlsbad, NM: Sandia National laboratories. ERMS 550239.
- Xiong, Y.-L., Deng, H.-R., Nemer, M., and Johnsen, S., 2010. Experimental determination of the solubility constant for magnesium chloride hydroxide hydrate (Mg₃Cl(OH)₅·4H₂O), phase 5) at room temperature, and its importance to nuclear waste isolation in geological repositories in salt formations. Geochimica et Cosmochimica Acta 74 (16), 4605-46011.
- Xiong, Y.-L. 2011a. "Release of DATA0.FM1 Database." E-mail to J.J. Long, March 15, 2011. Carlsbad, NM: Sandia National Laboratories. ERMS 555152.

- Xiong, Y.-L., 2011b. "WIPP Verification and Validation Plan/Validation Document for EQ3/6 Version 8.0a for Actinide Chemistry, Revision 1. Supersedes ERMS 550239." May 12, 2011. Carlsbad, NM. Sandia National Laboratories. ERMS 555358.
- Xiong, Y.-L. 2011c. "Analysis Plan for Derivation of Thermodynamic Properties Including Pitzer Parameters for Solubility Studies of Borate, AP-155." Carlsbad, NM: Sandia National Laboratories. ERMS 555534.
- Xiong, Y.-L., 2012a. Second Milestone Report on Test Plan TP 10-01, "Experimental Study of Thermodynamic Parameters of Borate in WIPP Relevant Brines at Sandia National Laboratories Carlsbad Facility". Carlsbad, NM. Sandia National Laboratories. ERMS 557333.
- Xiong, Y.-L., 2012b. "Validation Tests for the Python Script EQ3CodeModule". Memo to the Record Center, May 17, 2012. Carlsbad, NM. Sandia National Laboratories. ERMS 557531.