DISCLAIMER

Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the U.S. Environmental Protection Agency.

SW-846 methods are designed to be used with equipment from any manufacturer that results in suitable method performance (as assessed by accuracy, precision, detection limits and matrix compatibility). In several SW-846 methods, equipment specifications and settings are given for the specific instrument used during method development, or subsequently approved for use in the method. These references are made to provide the best possible guidance to laboratories using this manual. Equipment not specified in the method may be used as long as the laboratory achieves equivalent or superior method performance. If alternate equipment is used, the laboratory must follow the manufacturer’s instructions for their particular instrument.

Since many types and sizes of glassware and supplies are commercially available, and since it is possible to prepare reagents and standards in many different ways, those specified in these methods may be replaced by any similar types as long as this substitution does not affect the overall quality of the analyses.
ABSTRACT

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846) provides test procedures and guidance which are recommended for use in conducting the evaluations and measurements needed to comply with the Resource Conservation and Recovery Act (RCRA), Public Law 94-580. These methods are approved by the U.S. Environmental Protection Agency for obtaining data to satisfy the requirements of 40 CFR Parts 122 through 270. This manual presents the state-of-the-art in routine analytical testing adapted for the RCRA program. It contains procedures for field and laboratory quality control, sampling, determining hazardous constituents in wastes, determining the hazardous characteristics of wastes (toxicity, ignitability, reactivity, and corrosivity), and for determining physical properties of wastes. It also contains guidance on how to select appropriate methods.

Several of the hazardous waste regulations under Subtitle C of RCRA require that specific testing methods described in SW-846 be employed for certain applications. Refer to 40 Code of Federal Regulations (CFR), Parts 260 through 270, for those specific requirements. Any reliable analytical method may be used to meet other requirements under Subtitle C of RCRA.
TABLE OF CONTENTS

VOLUME ONE

SECTION A

DISCLAIMER

ABSTRACT

TABLE OF CONTENTS

METHOD INDEX AND CONVERSION TABLE

PREFACE

ACKNOWLEDGEMENTS

PART I METHODS FOR ANALYTES AND PROPERTIES

CHAPTER ONE -- QUALITY CONTROL

1.0 Introduction
2.0 QA Project Plan
3.0 Field Operations
4.0 Laboratory Operations
5.0 Definitions
6.0 References

CHAPTER TWO -- CHOOSING THE CORRECT PROCEDURE

2.1 Purpose
2.2 Required Information
2.3 Implementing the Guidance
2.4 Characteristics
2.5 Ground Water
2.6 References

CHAPTER THREE -- METALLIC ANALYTES

3.1 Sampling Considerations
3.2 Sample Preparation Methods

Method 3005A: Acid Digestion of Waters for Total Recoverable or Dissolved Metals for Analysis by Flame Atomic Absorption (FLAA) or Inductively Coupled Plasma (ICP) Spectroscopy
Method 3010A: Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by Flame Atomic Absorption (FLAA) or Inductively Coupled Plasma (ICP) Spectroscopy
Method 3015: Microwave Assisted Acid Digestion of Aqueous Samples and Extracts

CONTENTS - 1
Revision 3
January 1995
3.3 Methods for Determination of Metals

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 3020A</td>
<td>Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by Graphite Furnace Atomic Absorption (GFAA) Spectroscopy</td>
</tr>
<tr>
<td>Method 3040</td>
<td>Dissolution Procedure for Oils, Greases, or Waxes</td>
</tr>
<tr>
<td>Method 3050A</td>
<td>Acid Digestion of Sediments, Sludges, and Soils</td>
</tr>
<tr>
<td>Method 3051</td>
<td>Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils</td>
</tr>
</tbody>
</table>

Method 6010A
Inductively Coupled Plasma-Atomic Emission Spectroscopy

Method 6020
Inductively Coupled Plasma - Mass Spectrometry

Method 7000A
Atomic Absorption Methods

Method 7020
Aluminum (AA, Direct Aspiration)

Method 7040
Antimony (AA, Direct Aspiration)

Method 7041
Antimony (AA, Furnace Technique)

Method 7060A
Arsenic (AA, Furnace Technique)

Method 7061A
Arsenic (AA, Gaseous Hydride)

Method 7062
Antimony and Arsenic (AA, Borohydride Reduction)

Method 7080A
Barium (AA, Direct Aspiration)

Method 7081
Barium (AA, Furnace Technique)

Method 7090
Beryllium (AA, Direct Aspiration)

Method 7091
Beryllium (AA, Furnace Technique)

Method 7130
Cadmium (AA, Direct Aspiration)

Method 7131A
Cadmium (AA, Furnace Technique)

Method 7140
Calcium (AA, Direct Aspiration)

Method 7190
Chromium (AA, Direct Aspiration)

Method 7191
Chromium (AA, Furnace Technique)

Method 7195
Chromium, Hexavalent (Coprecipitation)

Method 7196A
Chromium, Hexavalent (Colorimetric)

Method 7197
Chromium, Hexavalent (Chelation/Extraction)

Method 7198
Chromium, Hexavalent (Differential Pulse Polarography)

Method 7200
Cobalt (AA, Direct Aspiration)

Method 7201
Cobalt (AA, Furnace Technique)

Method 7210
Copper (AA, Direct Aspiration)

Method 7211
Copper (AA, Furnace Technique)

Method 7380
Iron (AA, Direct Aspiration)

Method 7381
Iron (AA, Furnace Technique)

Method 7420
Lead (AA, Direct Aspiration)

Method 7421
Lead (AA, Furnace Technique)

Method 7430
Lithium (AA, Direct Aspiration)

Method 7450
Magnesium (AA, Direct Aspiration)

Method 7460
Manganese (AA, Direct Aspiration)

Method 7461
Manganese (AA, Furnace Technique)

Method 7470A
Mercury in Liquid Waste (Manual Cold-Vapor Technique)

Method 7471A
Mercury in Solid or Semisolid Waste (Manual Cold-Vapor Technique)

Method 7480
Molybdenum (AA, Direct Aspiration)

Method 7481
Molybdenum (AA, Furnace Technique)

Method 7520
Nickel (AA, Direct Aspiration)

Method 7550
Osmium (AA, Direct Aspiration)

Method 7610
Potassium (AA, Direct Aspiration)

Method 7740
Selenium (AA, Furnace Technique)
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7741A</td>
<td>Selenium (AA, Gaseous Hydride)</td>
</tr>
<tr>
<td>7742</td>
<td>Selenium (AA, Borohydride Reduction)</td>
</tr>
<tr>
<td>7760A</td>
<td>Silver (AA, Direct Aspiration)</td>
</tr>
<tr>
<td>7761</td>
<td>Silver (AA, Furnace Technique)</td>
</tr>
<tr>
<td>7770</td>
<td>Sodium (AA, Direct Aspiration)</td>
</tr>
<tr>
<td>7780</td>
<td>Strontium (AA, Direct Aspiration)</td>
</tr>
<tr>
<td>7840</td>
<td>Thallium (AA, Direct Aspiration)</td>
</tr>
<tr>
<td>7841</td>
<td>Thallium (AA, Furnace Technique)</td>
</tr>
<tr>
<td>7870</td>
<td>Tin (AA, Direct Aspiration)</td>
</tr>
<tr>
<td>7910</td>
<td>Vanadium (AA, Direct Aspiration)</td>
</tr>
<tr>
<td>7911</td>
<td>Vanadium (AA, Furnace Technique)</td>
</tr>
<tr>
<td>7950</td>
<td>Zinc (AA, Direct Aspiration)</td>
</tr>
<tr>
<td>7951</td>
<td>Zinc (AA, Furnace Technique)</td>
</tr>
</tbody>
</table>

APPENDIX -- COMPANY REFERENCES

NOTE: A suffix of "A" in the method number indicates revision one (the method has been revised once). A suffix of "B" in the method number indicates revision two (the method has been revised twice). A suffix of "C" in the method number indicates revision three (the method has been revised three times). In order to properly document the method used for analysis, the entire method number including the suffix letter designation (e.g., A, B, or C) must be identified by the analyst. A method reference found within the RCRA regulations and the text of SW-846 methods and chapters refers to the latest promulgated revision of the method, even though the method number does not include the appropriate letter suffix.
CHAPTER ONE, REPRINTED -- QUALITY CONTROL

1.0 Introduction
2.0 QA Project Plan
3.0 Field Operations
4.0 Laboratory Operations
5.0 Definitions
6.0 References

CHAPTER FOUR -- ORGANIC ANALYTES

4.1 Sampling Considerations
4.2 Sample Preparation Methods

4.2.1 Extractions and Preparations

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3500A</td>
<td>Organic Extraction and Sample Preparation</td>
</tr>
<tr>
<td>3510B</td>
<td>Separatory Funnel Liquid-Liquid Extraction</td>
</tr>
<tr>
<td>3520B</td>
<td>Continuous Liquid-Liquid Extraction</td>
</tr>
<tr>
<td>3540B</td>
<td>Soxhlet Extraction</td>
</tr>
<tr>
<td>3541</td>
<td>Automated Soxhlet Extraction</td>
</tr>
<tr>
<td>3550A</td>
<td>Ultrasonic Extraction</td>
</tr>
<tr>
<td>3580A</td>
<td>Waste Dilution</td>
</tr>
<tr>
<td>5030A</td>
<td>Purge-and-Trap</td>
</tr>
<tr>
<td>5040A</td>
<td>Analysis of Sorbent Cartridges from Volatile Organic Sampling Train (VOST):</td>
</tr>
<tr>
<td></td>
<td>Gas Chromatography/Mass Spectrometry Technique</td>
</tr>
<tr>
<td>5041</td>
<td>Protocol for Analysis of Sorbent Cartridges from Volatile Organic Sampling</td>
</tr>
<tr>
<td></td>
<td>Train (VOST): Wide-bore Capillary Column Technique</td>
</tr>
</tbody>
</table>

4.2.2 Cleanup

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3600B</td>
<td>Cleanup</td>
</tr>
<tr>
<td>3610A</td>
<td>Alumina Column Cleanup</td>
</tr>
</tbody>
</table>
Method 3611A: Alumina Column Cleanup and Separation of Petroleum Wastes
Method 3620A: Florisil Column Cleanup
Method 3630B: Silica Gel Cleanup
Method 3640A: Gel-Permeation Cleanup
Method 3650A: Acid-Base Partition Cleanup
Method 3660A: Sulfur Cleanup
Method 3665: Sulfuric Acid/Permanganate Cleanup

4.3 Determination of Organic Analytes

4.3.1 Gas Chromatographic Methods

Method 8000A: Gas Chromatography
Method 8010B: Halogenated Volatile Organics by Gas Chromatography
Method 8011: 1,2-Dibromoethane and 1,2-Dibromo-3-chloropropene by Microextraction and Gas Chromatography
Method 8015A: Nonhalogenated Volatile Organics by Gas Chromatography
Method 8020A: Aromatic Volatile Organics by Gas Chromatography
Method 8021A: Halogenated Volatiles by Gas Chromatography Using Photoionization and Electrolytic Conductivity Detectors in Series: Capillary Column Technique
Method 8030A: Acrolein and Acrylonitrile by Gas Chromatography
Method 8031: Acrylonitrile by Gas Chromatography
Method 8032: Acrylamide by Gas Chromatography
Method 8040A: Phenols by Gas Chromatography
Method 8060: Phthalate Esters
Method 8061: Phthalate Esters by Capillary Gas Chromatography with Electron Capture Detection (GC/ECD)
Method 8070: Nitrosamines by Gas Chromatography
Method 8080A: Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography
Method 8081: Organochlorine Pesticides and PCBs as Aroclors by Gas Chromatography: Capillary Column Technique
Method 8090: Nitroaromatics and Cyclic Ketones
Method 8100: Polynuclear Aromatic Hydrocarbons
Method 8110: Haloethers by Gas Chromatography
Method 8120A: Chlorinated Hydrocarbons by Gas Chromatography
Method 8121: Chlorinated Hydrocarbons by Gas Chromatography: Capillary Column Technique
Method 8140: Organophosphorus Pesticides
Method 8141A: Organophosphorus Compounds by Gas Chromatography: Capillary Column Technique
Method 8150B: Chlorinated Herbicides by Gas Chromatography
Method 8151: Chlorinated Herbicides by GC Using Methylation or Pentafluorobenzylolation Derivatization: Capillary Column Technique
4.3.2 Gas Chromatographic/Mass Spectroscopic Methods

Method 8240B: Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)
Method 8250A: Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)
Method 8260A: Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS): Capillary Column Technique
Method 8270B: Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS): Capillary Column Technique
Method 8280: The Analysis of Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans

Appendix A: Signal-to-Noise Determination Methods
Appendix B: Recommended Safety and Handling Procedures for PCDDs/PCDFs

Method 8290: Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by High-Resolution Gas Chromatography/High-Resolution Mass Spectrometry (HRGC/HRMS)

Attachment A: Procedures for the Collection, Handling, Analysis, and Reporting of Wipe Tests Performed within the Laboratory

4.3.3 High Performance Liquid Chromatographic Methods

Method 8310: Polynuclear Aromatic Hydrocarbons
Method 8315: Determination of Carbonyl Compounds by High Performance Liquid Chromatography (HPLC)

Appendix A: Recrystallization of 2,4-Dinitrophenylhydrazine (DNPH)

Method 8316: Acrylamide, Acrylonitrile and Acrolein by High Performance Liquid Chromatography (HPLC)
Method 8318: N-Methylcarbamates by High Performance Liquid Chromatography (HPLC)
Method 8321: Solvent Extractable Non-Volatile Compounds by High Performance Liquid Chromatography/Thermospray/Mass Spectrometry (HPLC/TSP/MS) or Ultraviolet (UV) Detection
Method 8330: Nitroaromatics and Nitramines by High Performance Liquid Chromatography (HPLC)
Method 8331: Tetrazene by Reverse Phase High Performance Liquid Chromatography (HPLC)

4.3.4 Fourier Transform Infrared Methods

Method 8410: Gas Chromatography/Fourier Transform Infrared (GC/FT-IR) Spectrometry for Semivolatile Organics: Capillary Column
4.4 Miscellaneous Screening Methods

Method 3810: Headspace
Method 3820: Hexadecane Extraction and Screening of Purgeable Organics
Method 4010: Screening for Pentachlorophenol by Immunoassay
Method 8275: Thermal Chromatography/Mass Spectrometry (TC/MS) for Screening Semivolatile Organic Compounds

NOTE: A suffix of "A" in the method number indicates revision one (the method has been revised once). A suffix of "B" in the method number indicates revision two (the method has been revised twice). A suffix of "C" in the method number indicates revision three (the method has been revised three times). In order to properly document the method used for analysis, the entire method number including the suffix letter designation (e.g., A, B, or C) must be identified by the analyst. A method reference found within the RCRA regulations and the text of SW-846 methods and chapters refers to the latest promulgated revision of the method, even though the method number does not include the appropriate letter suffix.
CHAPTER ONE, REPRINTED -- QUALITY CONTROL

1.0 Introduction
2.0 QA Project Plan
3.0 Field Operations
4.0 Laboratory Operations
5.0 Definitions
6.0 References

CHAPTER FIVE -- MISCELLANEOUS TEST METHODS

Method 5050: Bomb Preparation Method for Solid Waste
Method 9010A: Total and Amenable Cyanide (Colorimetric, Manual)
Method 9012: Total and Amenable Cyanide (Colorimetric, Automated UV)
Method 9013: Cyanide Extraction Procedure for Solids and Oils
Method 9020B: Total Organic Halides (TOX)
Method 9021: Purgeable Organic Halides (POX)
Method 9022: Total Organic Halides (TOX) by Neutron Activation Analysis
Method 9030A: Acid-Soluble and Acid-Insoluble Sulfides
Method 9031: Extractable Sulfides
Method 9035: Sulfate (Colorimetric, Automated, Chloranilate)
Method 9036: Sulfate (Colorimetric, Automated, Methylthymol Blue, AA II)
Method 9038: Sulfate (Turbidimetric)
Method 9056: Determination of Inorganic Anions by Ion Chromatography
Method 9060: Total Organic Carbon
Method 9065: Phenolics (Spectrophotometric, Manual 4-AAP with Distillation)
Method 9066: Phenolics (Colorimetric, Automated 4-AAP with Distillation)
Method 9067: Phenolics (Spectrophotometric, MBTH with Distillation)
Method 9070: Total Recoverable Oil & Grease (Gravimetric, Separatory Funnel Extraction)
Method 9071A: Oil and Grease Extraction Method for Sludge and Sediment Samples
Method 9075: Test Method for Total Chlorine in New and Used Petroleum Products by X-Ray Fluorescence Spectrometry (XRF)
Method 9076: Test Method for Total Chlorine in New and Used Petroleum Products by Oxidative Combustion and Microcoulometry
CHAPTER SIX -- PROPERTIES

Method 1312: Synthetic Precipitation Leaching Procedure
Method 1320: Multiple Extraction Procedure
Method 1330A: Extraction Procedure for Oily Wastes
Method 9040B: pH Electrode Measurement
Method 9041A: pH Paper Method
Method 9045C: Soil and Waste pH
Method 9050: Specific Conductance
Method 9080: Cation-Exchange Capacity of Soils (Ammonium Acetate)
Method 9081: Cation-Exchange Capacity of Soils (Sodium Acetate)
Method 9090A: Compatibility Test for Wastes and Membrane Liners
Method 9095: Paint Filter Liquids Test
Method 9096: Liquid Release Test (LRT) Procedure

Appendix A: Liquid Release Test Pre-Test

Method 9100: Saturated Hydraulic Conductivity, Saturated Leachate

Conductivity, and Intrinsic Permeability

Method 9310: Gross Alpha and Gross Beta
Method 9315: Alpha-Emitting Radium Isotopes

PART II CHARACTERISTICS

CHAPTER SEVEN -- INTRODUCTION AND REGULATORY DEFINITIONS

7.1 Ignitability
7.2 Corrosivity
7.3 Reactivity

Test Method to Determine Hydrogen Cyanide Released from Wastes
Test Method to Determine Hydrogen Sulfide Released from Wastes

7.4 Toxicity Characteristic Leaching Procedure
CHAPTER EIGHT -- METHODS FOR DETERMINING CHARACTERISTICS

8.1 Ignitability

Method 1010: Pensky-Martens Closed-Cup Method for Determining Ignitability
Method 1020A: Setaflash Closed-Cup Method for Determining Ignitability

8.2 Corrosivity

Method 1110: Corrosivity Toward Steel

8.3 Reactivity

8.4 Toxicity

Method 1310A: Extraction Procedure (EP) Toxicity Test Method and Structural Integrity Test
Method 1311: Toxicity Characteristic Leaching Procedure

APPENDIX -- COMPANY REFERENCES

NOTE: A suffix of "A" in the method number indicates revision one (the method has been revised once). A suffix of "B" in the method number indicates revision two (the method has been revised twice). A suffix of "C" in the method number indicates revision three (the method has been revised three times). In order to properly document the method used for analysis, the entire method number including the suffix letter designation (e.g., A, B, or C) must be identified by the analyst. A method reference found within the RCRA regulations and the text of SW-846 methods and chapters refers to the latest promulgated revision of the method, even though the method number does not include the appropriate letter suffix.
CHAPTER ONE, REPRINTED -- QUALITY CONTROL

1.0 Introduction
2.0 QA Project Plan
3.0 Field Operations
4.0 Laboratory Operations
5.0 Definitions
6.0 References

PART III SAMPLING

CHAPTER NINE -- SAMPLING PLAN

9.1 Design and Development
9.2 Implementation

CHAPTER TEN -- SAMPLING METHODS

Method 0010: Modified Method 5 Sampling Train
Appendix A: Preparation of XAD-2 Sorbent Resin
Appendix B: Total Chromatographable Organic Material Analysis
Method 0020: Source Assessment Sampling System (SASS)
Method 0030: Volatile Organic Sampling Train

PART IV MONITORING

CHAPTER ELEVEN -- GROUND WATER MONITORING

11.1 Background and Objectives
11.2 Relationship to the Regulations and to Other Documents
11.3 Revisions and Additions
11.4 Acceptable Designs and Practices
11.5 Unacceptable Designs and Practices

CHAPTER TWELVE -- LAND TREATMENT MONITORING

12.1 Background
12.2 Treatment Zone
12.3 Regulatory Definition
CHAPTER THIRTEEN - INCINERATION

13.1 Introduction
13.2 Regulatory Definition
13.3 Waste Characterization Strategy
13.4 Stack-Gas Effluent Characterization Strategy
13.5 Additional Effluent Characterization Strategy
13.6 Selection of Specific Sampling and Analysis Methods
13.7 References

APPENDIX -- COMPANY REFERENCES

NOTE: A suffix of "A" in the method number indicates revision one (the method has been revised once). A suffix of "B" in the method number indicates revision two (the method has been revised twice). A suffix of "C" in the method number indicates revision three (the method has been revised three times). In order to properly document the method used for analysis, the entire method number including the suffix letter designation (e.g., A, B, or C) must be identified by the analyst. A method reference found within the RCRA regulations and the text of SW-846 methods and chapters refers to the latest promulgated revision of the method, even though the method number does not include the appropriate letter suffix.
<table>
<thead>
<tr>
<th>Method Number, Third Edition</th>
<th>Chapter Number, Third Edition</th>
<th>Method Number, Second Edition</th>
<th>Current Revision Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0010</td>
<td>Ten</td>
<td>0010</td>
<td>0</td>
</tr>
<tr>
<td>0020</td>
<td>Ten</td>
<td>0020</td>
<td>0</td>
</tr>
<tr>
<td>0030</td>
<td>Ten</td>
<td>0030</td>
<td>0</td>
</tr>
<tr>
<td>1010</td>
<td>Eight (8.1)</td>
<td>1010</td>
<td>0</td>
</tr>
<tr>
<td>1020</td>
<td>Eight (8.1)</td>
<td>1020</td>
<td>0</td>
</tr>
<tr>
<td>1110</td>
<td>Eight (8.2)</td>
<td>1110</td>
<td>0</td>
</tr>
<tr>
<td>1310</td>
<td>Eight (8.4)</td>
<td>1310</td>
<td>0</td>
</tr>
<tr>
<td>1320</td>
<td>Six</td>
<td>1320</td>
<td>0</td>
</tr>
<tr>
<td>1330</td>
<td>Six</td>
<td>1330</td>
<td>0</td>
</tr>
<tr>
<td>3005</td>
<td>Three</td>
<td>3005</td>
<td>0</td>
</tr>
<tr>
<td>3010</td>
<td>Three</td>
<td>3010</td>
<td>0</td>
</tr>
<tr>
<td>3020</td>
<td>Three</td>
<td>3020</td>
<td>0</td>
</tr>
<tr>
<td>3040</td>
<td>Three</td>
<td>3040</td>
<td>0</td>
</tr>
<tr>
<td>3050</td>
<td>Three</td>
<td>3050</td>
<td>0</td>
</tr>
<tr>
<td>3500</td>
<td>Four (4.2.1)</td>
<td>None (new method)</td>
<td>0</td>
</tr>
<tr>
<td>3510</td>
<td>Four (4.2.1)</td>
<td>3510</td>
<td>0</td>
</tr>
<tr>
<td>3520</td>
<td>Four (4.2.1)</td>
<td>3520</td>
<td>0</td>
</tr>
<tr>
<td>3540</td>
<td>Four (4.2.1)</td>
<td>3540</td>
<td>0</td>
</tr>
<tr>
<td>3550</td>
<td>Four (4.2.1)</td>
<td>3550</td>
<td>0</td>
</tr>
<tr>
<td>3580</td>
<td>Four (4.2.1)</td>
<td>None (new method)</td>
<td>0</td>
</tr>
<tr>
<td>3600</td>
<td>Four (4.2.2)</td>
<td>None (new method)</td>
<td>0</td>
</tr>
<tr>
<td>3610</td>
<td>Four (4.2.2)</td>
<td>None (new method)</td>
<td>0</td>
</tr>
<tr>
<td>3611</td>
<td>Four (4.2.2)</td>
<td>3570</td>
<td>0</td>
</tr>
<tr>
<td>3620</td>
<td>Four (4.2.2)</td>
<td>None (new method)</td>
<td>0</td>
</tr>
<tr>
<td>3630</td>
<td>Four (4.2.2)</td>
<td>None (new method)</td>
<td>0</td>
</tr>
<tr>
<td>3640</td>
<td>Four (4.2.2)</td>
<td>None (new method)</td>
<td>0</td>
</tr>
<tr>
<td>3650</td>
<td>Four (4.2.2)</td>
<td>None (new method)</td>
<td>0</td>
</tr>
<tr>
<td>3660</td>
<td>Four (4.2.2)</td>
<td>None (new method)</td>
<td>0</td>
</tr>
<tr>
<td>3810</td>
<td>Four (4.4)</td>
<td>5020</td>
<td>0</td>
</tr>
<tr>
<td>3820</td>
<td>Four (4.4)</td>
<td>None (new method)</td>
<td>0</td>
</tr>
<tr>
<td>5030</td>
<td>Four (4.2.1)</td>
<td>5030</td>
<td>0</td>
</tr>
<tr>
<td>5040</td>
<td>Four (4.2.1)</td>
<td>3720</td>
<td>0</td>
</tr>
<tr>
<td>6010</td>
<td>Three</td>
<td>6010</td>
<td>0</td>
</tr>
<tr>
<td>7000</td>
<td>Three</td>
<td>7000</td>
<td>0</td>
</tr>
<tr>
<td>7020</td>
<td>Three</td>
<td>7020</td>
<td>0</td>
</tr>
</tbody>
</table>

METHOD INDEX - 1

Revision 0

Date September 1986
<table>
<thead>
<tr>
<th>Method Number, Third Edition</th>
<th>Chapter Number, Third Edition</th>
<th>Method Number, Second Edition</th>
<th>Current Revision Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>7040</td>
<td>Three</td>
<td>7040</td>
<td>0</td>
</tr>
<tr>
<td>7041</td>
<td>Three</td>
<td>7041</td>
<td>0</td>
</tr>
<tr>
<td>7060</td>
<td>Three</td>
<td>7060</td>
<td>0</td>
</tr>
<tr>
<td>7061</td>
<td>Three</td>
<td>7061</td>
<td>0</td>
</tr>
<tr>
<td>7080</td>
<td>Three</td>
<td>7080</td>
<td>0</td>
</tr>
<tr>
<td>7090</td>
<td>Three</td>
<td>7090</td>
<td>0</td>
</tr>
<tr>
<td>7091</td>
<td>Three</td>
<td>7091</td>
<td>0</td>
</tr>
<tr>
<td>7130</td>
<td>Three</td>
<td>7130</td>
<td>0</td>
</tr>
<tr>
<td>7131</td>
<td>Three</td>
<td>7131</td>
<td>0</td>
</tr>
<tr>
<td>7140</td>
<td>Three</td>
<td>7140</td>
<td>0</td>
</tr>
<tr>
<td>7190</td>
<td>Three</td>
<td>7190</td>
<td>0</td>
</tr>
<tr>
<td>7191</td>
<td>Three</td>
<td>7191</td>
<td>0</td>
</tr>
<tr>
<td>7195</td>
<td>Three</td>
<td>7195</td>
<td>0</td>
</tr>
<tr>
<td>7196</td>
<td>Three</td>
<td>7196</td>
<td>0</td>
</tr>
<tr>
<td>7197</td>
<td>Three</td>
<td>7197</td>
<td>0</td>
</tr>
<tr>
<td>7198</td>
<td>Three</td>
<td>7198</td>
<td>0</td>
</tr>
<tr>
<td>7200</td>
<td>Three</td>
<td>7200</td>
<td>0</td>
</tr>
<tr>
<td>7201</td>
<td>Three</td>
<td>7201</td>
<td>0</td>
</tr>
<tr>
<td>7210</td>
<td>Three</td>
<td>7210</td>
<td>0</td>
</tr>
<tr>
<td>7380</td>
<td>Three</td>
<td>7380</td>
<td>0</td>
</tr>
<tr>
<td>7420</td>
<td>Three</td>
<td>7420</td>
<td>0</td>
</tr>
<tr>
<td>7421</td>
<td>Three</td>
<td>7421</td>
<td>0</td>
</tr>
<tr>
<td>7450</td>
<td>Three</td>
<td>7450</td>
<td>0</td>
</tr>
<tr>
<td>7460</td>
<td>Three</td>
<td>7460</td>
<td>0</td>
</tr>
<tr>
<td>7470</td>
<td>Three</td>
<td>7470</td>
<td>0</td>
</tr>
<tr>
<td>7471</td>
<td>Three</td>
<td>7471</td>
<td>0</td>
</tr>
<tr>
<td>7480</td>
<td>Three</td>
<td>7480</td>
<td>0</td>
</tr>
<tr>
<td>7481</td>
<td>Three</td>
<td>7481</td>
<td>0</td>
</tr>
<tr>
<td>7520</td>
<td>Three</td>
<td>7520</td>
<td>0</td>
</tr>
<tr>
<td>7550</td>
<td>Three</td>
<td>7550</td>
<td>0</td>
</tr>
<tr>
<td>7610</td>
<td>Three</td>
<td>7610</td>
<td>0</td>
</tr>
<tr>
<td>7740</td>
<td>Three</td>
<td>7740</td>
<td>0</td>
</tr>
<tr>
<td>7741</td>
<td>Three</td>
<td>7741</td>
<td>0</td>
</tr>
<tr>
<td>7760</td>
<td>Three</td>
<td>7760</td>
<td>0</td>
</tr>
<tr>
<td>7770</td>
<td>Three</td>
<td>7770</td>
<td>0</td>
</tr>
<tr>
<td>Method Number, Third Edition</td>
<td>Chapter Number, Third Edition</td>
<td>Method Number, Second Edition</td>
<td>Current Revision Number</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------------------</td>
<td>-----------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>7840</td>
<td>Three</td>
<td>7840</td>
<td>0</td>
</tr>
<tr>
<td>7841</td>
<td>Three</td>
<td>7841</td>
<td>0</td>
</tr>
<tr>
<td>7870</td>
<td>Three</td>
<td>7870</td>
<td>0</td>
</tr>
<tr>
<td>7910</td>
<td>Three</td>
<td>7910</td>
<td>0</td>
</tr>
<tr>
<td>7911</td>
<td>Three</td>
<td>7911</td>
<td>0</td>
</tr>
<tr>
<td>7950</td>
<td>Three</td>
<td>7950</td>
<td>0</td>
</tr>
<tr>
<td>8000</td>
<td>Four (4.3.1)</td>
<td>None (new method)</td>
<td>0</td>
</tr>
<tr>
<td>8010</td>
<td>Four (4.3.1)</td>
<td>8010</td>
<td>0</td>
</tr>
<tr>
<td>8015</td>
<td>Four (4.3.1)</td>
<td>8015</td>
<td>0</td>
</tr>
<tr>
<td>8020</td>
<td>Four (4.3.1)</td>
<td>8020</td>
<td>0</td>
</tr>
<tr>
<td>8030</td>
<td>Four (4.3.1)</td>
<td>8030</td>
<td>0</td>
</tr>
<tr>
<td>8040</td>
<td>Four (4.3.1)</td>
<td>8040</td>
<td>0</td>
</tr>
<tr>
<td>8060</td>
<td>Four (4.3.1)</td>
<td>8060</td>
<td>0</td>
</tr>
<tr>
<td>8080</td>
<td>Four (4.3.1)</td>
<td>8080</td>
<td>0</td>
</tr>
<tr>
<td>8090</td>
<td>Four (4.3.1)</td>
<td>8090</td>
<td>0</td>
</tr>
<tr>
<td>8100</td>
<td>Four (4.3.1)</td>
<td>8100</td>
<td>0</td>
</tr>
<tr>
<td>8120</td>
<td>Four (4.3.1)</td>
<td>8120</td>
<td>0</td>
</tr>
<tr>
<td>8140</td>
<td>Four (4.3.1)</td>
<td>8140</td>
<td>0</td>
</tr>
<tr>
<td>8150</td>
<td>Four (4.3.1)</td>
<td>8150</td>
<td>0</td>
</tr>
<tr>
<td>8240</td>
<td>Four (4.3.2)</td>
<td>8240</td>
<td>0</td>
</tr>
<tr>
<td>8250</td>
<td>Four (4.3.2)</td>
<td>8250</td>
<td>0</td>
</tr>
<tr>
<td>8270</td>
<td>Four (4.3.2)</td>
<td>8270</td>
<td>0</td>
</tr>
<tr>
<td>8280</td>
<td>Four (4.3.2)</td>
<td>None (new method)</td>
<td>0</td>
</tr>
<tr>
<td>8310</td>
<td>Four (4.3.3)</td>
<td>8310</td>
<td>0</td>
</tr>
<tr>
<td>9010</td>
<td>Five</td>
<td>9010</td>
<td>0</td>
</tr>
<tr>
<td>9020</td>
<td>Five</td>
<td>9020</td>
<td>0</td>
</tr>
<tr>
<td>9022</td>
<td>Five</td>
<td>9022</td>
<td>0</td>
</tr>
<tr>
<td>9030</td>
<td>Five</td>
<td>9030</td>
<td>0</td>
</tr>
<tr>
<td>9035</td>
<td>Five</td>
<td>9035</td>
<td>0</td>
</tr>
<tr>
<td>9036</td>
<td>Five</td>
<td>9036</td>
<td>0</td>
</tr>
<tr>
<td>9038</td>
<td>Five</td>
<td>9038</td>
<td>0</td>
</tr>
<tr>
<td>9040</td>
<td>Six</td>
<td>9040</td>
<td>0</td>
</tr>
<tr>
<td>9041</td>
<td>Six</td>
<td>9041</td>
<td>0</td>
</tr>
<tr>
<td>9045</td>
<td>Six</td>
<td>9045</td>
<td>0</td>
</tr>
<tr>
<td>9050</td>
<td>Six</td>
<td>9050</td>
<td>0</td>
</tr>
</tbody>
</table>

METHOD INDEX - 3

Revision 0
Date September 1986
<table>
<thead>
<tr>
<th>Method Number, Third Edition</th>
<th>Chapter Number, Third Edition</th>
<th>Method Number, Second Edition</th>
<th>Current Revision Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>9060</td>
<td>Five</td>
<td>9060</td>
<td>0</td>
</tr>
<tr>
<td>9065</td>
<td>Five</td>
<td>9065</td>
<td>0</td>
</tr>
<tr>
<td>9066</td>
<td>Five</td>
<td>9066</td>
<td>0</td>
</tr>
<tr>
<td>9067</td>
<td>Five</td>
<td>9067</td>
<td>0</td>
</tr>
<tr>
<td>9070</td>
<td>Five</td>
<td>9070</td>
<td>0</td>
</tr>
<tr>
<td>9071</td>
<td>Five</td>
<td>9071</td>
<td>0</td>
</tr>
<tr>
<td>9080</td>
<td>Six</td>
<td>9080</td>
<td>0</td>
</tr>
<tr>
<td>9081</td>
<td>Six</td>
<td>9081</td>
<td>0</td>
</tr>
<tr>
<td>9090</td>
<td>Six</td>
<td>9090</td>
<td>0</td>
</tr>
<tr>
<td>9095</td>
<td>Six</td>
<td>9095</td>
<td>0</td>
</tr>
<tr>
<td>9100</td>
<td>Six</td>
<td>9100</td>
<td>0</td>
</tr>
<tr>
<td>9131</td>
<td>Five</td>
<td>9131</td>
<td>0</td>
</tr>
<tr>
<td>9132</td>
<td>Five</td>
<td>9132</td>
<td>0</td>
</tr>
<tr>
<td>9200</td>
<td>Five</td>
<td>9200</td>
<td>0</td>
</tr>
<tr>
<td>9250</td>
<td>Five</td>
<td>9250</td>
<td>0</td>
</tr>
<tr>
<td>9251</td>
<td>Five</td>
<td>9251</td>
<td>0</td>
</tr>
<tr>
<td>9252</td>
<td>Five</td>
<td>9252</td>
<td>0</td>
</tr>
<tr>
<td>9310</td>
<td>Six</td>
<td>9310</td>
<td>0</td>
</tr>
<tr>
<td>9315</td>
<td>Six</td>
<td>9315</td>
<td>0</td>
</tr>
<tr>
<td>9320</td>
<td>Five</td>
<td>9320</td>
<td>0</td>
</tr>
<tr>
<td>HCN Test Method</td>
<td>Seven</td>
<td>HCN Test Method</td>
<td>0</td>
</tr>
<tr>
<td>H₂S Test Method</td>
<td>Seven</td>
<td>H₂S Test Method</td>
<td>0</td>
</tr>
</tbody>
</table>

METHOD INDEX - 4

Revision 0
Date September 1986
PURPOSE OF THE MANUAL

Test Methods for Evaluating Solid Waste (SW-846) is intended to provide a unified, up-to-date source of information on sampling and analysis related to compliance with RCRA regulations. It brings together into one reference all sampling and testing methodology approved by the Office of Solid Waste for use in implementing the RCRA regulatory program. The manual provides methodology for collecting and testing representative samples of waste and other materials to be monitored. Aspects of sampling and testing covered in SW-846 include quality control, sampling plan development and implementation, analysis of inorganic and organic constituents, the estimation of intrinsic physical properties, and the appraisal of waste characteristics.

The procedures described in this manual are meant to be comprehensive and detailed, coupled with the realization that the problems encountered in sampling and analytical situations require a certain amount of flexibility. The solutions to these problems will depend, in part, on the skill, training, and experience of the analyst. For some situations, it is possible to use this manual in rote fashion. In other situations, it will require a combination of technical abilities, using the manual as guidance rather than in a step-by-step, word-by-word fashion. Although this puts an extra burden on the user, it is unavoidable because of the variety of sampling and analytical conditions found with hazardous wastes.

ORGANIZATION AND FORMAT

This manual is divided into two volumes. Volume I focuses on laboratory activities and is divided for convenience into three sections. Volume IA deals with quality control, selection of appropriate test methods, and analytical methods for metallic species. Volume IB consists of methods for organic analytes. Volume IC includes a variety of test methods for miscellaneous analytes and properties for use in evaluating the waste characteristics. Volume II deals with sample acquisition and includes quality control, sampling plan design and implementation, and field sampling methods. Included for the convenience of sampling personnel are discussions of the ground water, land treatment, and incineration monitoring regulations.

Volume I begins with an overview of the quality control procedures to be imposed upon the sampling and analytical methods. The quality control chapter (Chapter One) and the methods chapters are interdependent. The analytical procedures cannot be used without a thorough understanding of the quality control requirements and the means to implement them. This understanding can be achieved only by reviewing Chapter One and the analytical methods together. It is expected that individual laboratories, using SW-846 as the reference

PREFACE - 1
Revision 0
Date September 1986
source, will select appropriate methods and develop a standard operating procedure (SOP) to be followed by the laboratory. The SOP should incorporate the pertinent information from this manual adopted to the specific needs and circumstances of the individual laboratory as well as to the materials to be evaluated.

The method selection chapter (Chapter Two) presents a comprehensive discussion of the application of these methods to various matrices in the determination of groups of analytes or specific analytes. It aids the chemist in constructing the correct analytical method from the array of procedures which may cover the matrix/analyte/concentration combination of interests. The section discusses the objective of the testing program and its relationship to the choice of an analytical method. Flow charts are presented along with tables to guide in the selection of the correct analytical procedures to form the appropriate method.

The analytical methods are separated into distinct procedures describing specific, independent analytical operations. These include extraction, digestion, cleanup, and determination. This format allows linking of the various steps in the analysis according to: the type of sample (e.g., water, soil, sludge, still bottom); analytes(s) of interest; needed sensitivity; and available analytical instrumentation. The chapters describing Miscellaneous Test Methods and Properties, however, give complete methods which are not amenable to such segmentation to form discrete procedures.

The introductory material at the beginning of each section containing analytical procedures presents information on sample handling and preservation, safety, and sample preparation.

Part II of Volume I (Chapters Seven and Eight) describes the characteristics of a waste. Sections following the regulatory descriptions contain the methods used to determine if the waste is hazardous because it exhibits a particular characteristic.

Volume II gives background information on statistical and nonstatistical aspects of sampling. It also presents practical sampling techniques appropriate for situations presenting a variety of physical conditions.

A discussion of the regulatory requirements with respect to several monitoring categories is also given in this volume. These include ground water monitoring, land treatment, and incineration. The purpose of this guidance is to orient the user to the objective of the analysis, and to assist in developing data quality objectives, sampling plans, and laboratory SOP's.

Significant interferences, or other problems, may be encountered with certain samples. In these situations, the analyst is advised to contact the Chief, Methods Section (WH-562B) Technical Assessment Branch, Office of Solid Waste, US EPA, Washington, DC 20460 (202-382-4761) for assistance. The manual is intended to serve all those with a need to evaluate solid waste. Your comments, corrections, suggestions, and questions concerning any material contained in, or omitted from, this manual will be gratefully appreciated. Please direct your comments to the above address.

PREFACE - 2

Revision 0
Date September 1986
ACKNOWLEDGEMENTS

The Office of Solid Waste thanks the following individuals and groups for their efforts, assistance and advice in the preparation of this manual:

Dr. William Loy, Chemist, Analytical Support Branch, EPA Region IV;
Mr. Theodore Martin, Research Chemist, EMSL-CI;
Dr. Nancy Rothman, Assistant Director, ERCO/A Division of ENSECO;
Ms. Ann Soule, Technical Editor, ERCO/A Division of ENSECO;
Ms. Dorothy Bell, Technical Editor, ERCO/A Division of ENSECO;
Ms. Margaret Layne, Technical Program Manager, Research Triangle Institute;
Mr. Alvia Gaskill, Senior Environmental Scientist, Research Triangle Institute;
Mr. Ronald Ramsey, Technical Program Manager, Dynamac Corp.;
Mr. Gene E. Fax, Managing Director, The Cadmus Group, Inc.;
Mr. Robert Hirsch, New Jersey Department of Environmental Protection;
Mr. Henry Hoffman, New Jersey Department of Environmental Protection;
Mr. David Bennett, Hazardous Substance Branch, EPA;
The EPA SW-846 Work Group.
CHAPTER ONE
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0 QA PROJECT PLAN</td>
<td>1</td>
</tr>
<tr>
<td>2.1 DATA QUALITY OBJECTIVES</td>
<td>2</td>
</tr>
<tr>
<td>2.2 PROJECT OBJECTIVES</td>
<td>2</td>
</tr>
<tr>
<td>2.3 SAMPLE COLLECTION</td>
<td>3</td>
</tr>
<tr>
<td>2.4 ANALYSIS AND TESTING</td>
<td>3</td>
</tr>
<tr>
<td>2.5 QUALITY CONTROL</td>
<td>3</td>
</tr>
<tr>
<td>2.6 PROJECT DOCUMENTATION</td>
<td>3</td>
</tr>
<tr>
<td>2.7 ORGANIZATION PERFORMING FIELD OR LABORATORY OPERATIONS</td>
<td>4</td>
</tr>
<tr>
<td>2.7.1 Performance Evaluation</td>
<td>5</td>
</tr>
<tr>
<td>2.7.2 Internal Assessment by QA Function</td>
<td>5</td>
</tr>
<tr>
<td>2.7.3 External Assessment</td>
<td>5</td>
</tr>
<tr>
<td>2.7.4 On-Site Evaluation</td>
<td>5</td>
</tr>
<tr>
<td>2.7.4.1 Field Activities</td>
<td>5</td>
</tr>
<tr>
<td>2.7.4.2 Laboratory Activities</td>
<td>6</td>
</tr>
<tr>
<td>2.7.5 QA Reports</td>
<td>7</td>
</tr>
<tr>
<td>3.0 FIELD OPERATIONS</td>
<td>8</td>
</tr>
<tr>
<td>3.1 FIELD LOGISTICS</td>
<td>8</td>
</tr>
<tr>
<td>3.2 EQUIPMENT/INSTRUMENTATION</td>
<td>9</td>
</tr>
<tr>
<td>3.3 OPERATING PROCEDURES</td>
<td>9</td>
</tr>
<tr>
<td>3.3.1 Sample Management</td>
<td>9</td>
</tr>
<tr>
<td>3.3.2 Reagent/Standard Preparation</td>
<td>9</td>
</tr>
<tr>
<td>3.3.3 Decontamination</td>
<td>9</td>
</tr>
<tr>
<td>3.3.4 Sample Collection</td>
<td>10</td>
</tr>
<tr>
<td>3.3.5 Field Measurements</td>
<td>10</td>
</tr>
<tr>
<td>3.3.6 Equipment Calibration And Maintenance</td>
<td>10</td>
</tr>
<tr>
<td>3.3.7 Corrective Action</td>
<td>10</td>
</tr>
<tr>
<td>3.3.8 Data Reduction and Validation</td>
<td>11</td>
</tr>
<tr>
<td>3.3.9 Reporting</td>
<td>11</td>
</tr>
<tr>
<td>3.3.10 Records Management</td>
<td>11</td>
</tr>
<tr>
<td>3.3.11 Waste Disposal</td>
<td>11</td>
</tr>
<tr>
<td>3.4 FIELD QA AND QC REQUIREMENTS</td>
<td>11</td>
</tr>
<tr>
<td>3.4.1 Control Samples</td>
<td>11</td>
</tr>
<tr>
<td>3.4.2 Acceptance Criteria</td>
<td>12</td>
</tr>
<tr>
<td>3.4.3 Deviations</td>
<td>12</td>
</tr>
<tr>
<td>3.4.4 Corrective Action</td>
<td>12</td>
</tr>
<tr>
<td>3.4.5 Data Handling</td>
<td>12</td>
</tr>
<tr>
<td>3.5 QUALITY ASSURANCE REVIEW</td>
<td>13</td>
</tr>
<tr>
<td>3.6 FIELD RECORDS</td>
<td>13</td>
</tr>
</tbody>
</table>

Revision 1
July 1992
TABLE OF CONTENTS
(continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0 LABORATORY OPERATIONS</td>
<td>14</td>
</tr>
<tr>
<td>4.1 FACILITIES</td>
<td>14</td>
</tr>
<tr>
<td>4.2 EQUIPMENT/INSTRUMENTATION</td>
<td>15</td>
</tr>
<tr>
<td>4.3 OPERATING PROCEDURES</td>
<td>15</td>
</tr>
<tr>
<td>4.3.1 Sample Management</td>
<td>16</td>
</tr>
<tr>
<td>4.3.2 Reagent/Standard Preparation</td>
<td>16</td>
</tr>
<tr>
<td>4.3.3 General Laboratory Techniques</td>
<td>16</td>
</tr>
<tr>
<td>4.3.4 Test Methods</td>
<td>16</td>
</tr>
<tr>
<td>4.3.5 Equipment Calibration and Maintenance</td>
<td>17</td>
</tr>
<tr>
<td>4.3.6 QC</td>
<td>17</td>
</tr>
<tr>
<td>4.3.7 Corrective Action</td>
<td>17</td>
</tr>
<tr>
<td>4.3.8 Data Reduction and Validation</td>
<td>18</td>
</tr>
<tr>
<td>4.3.9 Reporting</td>
<td>18</td>
</tr>
<tr>
<td>4.3.10 Records Management</td>
<td>18</td>
</tr>
<tr>
<td>4.3.11 Waste Disposal</td>
<td>18</td>
</tr>
<tr>
<td>4.4 LABORATORY QA AND QC PROCEDURES</td>
<td>18</td>
</tr>
<tr>
<td>4.4.1 Method Proficiency</td>
<td>18</td>
</tr>
<tr>
<td>4.4.2 Control Limits</td>
<td>19</td>
</tr>
<tr>
<td>4.4.3 Laboratory Control Procedures</td>
<td>19</td>
</tr>
<tr>
<td>4.4.4 Deviations</td>
<td>20</td>
</tr>
<tr>
<td>4.4.5 Corrective Action</td>
<td>20</td>
</tr>
<tr>
<td>4.4.6 Data Handling</td>
<td>20</td>
</tr>
<tr>
<td>4.5 QUALITY ASSURANCE REVIEW</td>
<td>21</td>
</tr>
<tr>
<td>4.6 LABORATORY RECORDS</td>
<td>21</td>
</tr>
<tr>
<td>5.0 DEFINITIONS</td>
<td>23</td>
</tr>
<tr>
<td>6.0 REFERENCES</td>
<td>29</td>
</tr>
<tr>
<td>INDEX</td>
<td>30</td>
</tr>
</tbody>
</table>
PART I METHODS FOR ANALYSES AND PROPERTIES

Revision 0
Date September 1986
CHAPTER ONE
QUALITY CONTROL

1.0 INTRODUCTION

It is the goal of the U.S. Environmental Protection Agency’s (EPA’s) quality assurance (QA) program to ensure that all data be scientifically valid, defensible, and of known precision and accuracy. The data should be of sufficient known quality to withstand scientific and legal challenge relative to the use for which the data are obtained. The QA program is management’s tool for achieving this goal.

For RCRA analyses, the recommended minimum requirements for a QA program and the associated quality control (QC) procedures are provided in this chapter.

The data acquired from QC procedures are used to estimate the quality of analytical data, to determine the need for corrective action in response to identified deficiencies, and to interpret results after corrective action procedures are implemented. Method-specific QC procedures are incorporated in the individual methods since they are not applied universally.

A total program to generate data of acceptable quality should include both a QA component, which encompasses the management procedures and controls, as well as an operational day-to-day QC component. This chapter defines fundamental elements of such a data collection program. Data collection efforts involve:

1. design of a project plan to achieve the data quality objectives (DQOs);
2. implementation of the project plan; and
3. assessment of the data to determine if the DQOs are met.

The project plan may be a sampling and analysis plan or a waste analysis plan if it covers the QA/QC goals of the Chapter, or it may be a Quality Assurance Project Plan as described later in this chapter.

This chapter identifies the minimal QC components that should be used in the performance of sampling and analyses, including the QC information which should be documented. Guidance is provided to construct QA programs for field and laboratory work conducted in support of the RCRA program.

2.0 QA PROJECT PLAN

It is recommended that all projects which generate environment-related data in support of RCRA have a QA Project Plan (QAPjP) or equivalent. In some instances, a sampling and analysis plan or a waste analysis plan may be equivalent if it covers all of the QA/QC goals outlined in this chapter. In addition, a separate QAPjP need not be prepared for routine analyses or activities where the procedures to be followed are described in a Standard
Operating Procedures manual or similar document and include the elements of a QAPJP. These documents should be available and referenced in the documentation and/or records for the analysis activities. The term "QAPJP" in this chapter refers to any of these QA/QC documents.

The QAPJP should detail the QA/QC goals and protocols for a specific data collection activity. The QAPJP sets forth a plan for sampling and analysis activities that will generate data of a quality commensurate with their intended use. QAPJP elements should include a description of the project and its objectives; a statement of the DQOs of the project; identification of those involved in the data collection and their responsibilities and authorities; reference to (or inclusion of) the specific sample collection and analysis procedures that will be followed for all aspects of the project; enumeration of QC procedures to be followed; and descriptions of all project documentation. Additional elements should be included in the QAPJP if needed to address all quality related aspects of the data collection project. Elements should be omitted only when they are inappropriate for the project or when absence of those elements will not affect the quality of data obtained for the project (see reference 1).

The role and importance of DQOs and project documentation are discussed below in Sections 2.1 through 2.6. Management and organization play a critical role in determining the effectiveness of a QA/QC program and ensuring that all required procedures are followed. Section 2.7 discusses the elements of an organization's QA program that have been found to ensure an effective program. Field operations and laboratory operations (along with applicable QC procedures) are discussed in Sections 3 and 4, respectively.

2.1 DATA QUALITY OBJECTIVES

Data quality objectives (DQOs) for the data collection activity describe the overall level of uncertainty that a decision-maker is willing to accept in results derived from environmental data. This uncertainty is used to specify the quality of the measurement data required, usually in terms of objectives for precision, bias, representativeness, comparability and completeness. The DQOs should be defined prior to the initiation of the field and laboratory work. The field and laboratory organizations performing the work should be aware of the DQOs so that their personnel may make informed decisions during the course of the project to attain those DQOs. More detailed information on DQOs is available from the U.S. EPA Quality Assurance Management Staff (QAMS) (see references 2 and 4).

2.2 PROJECT OBJECTIVES

A statement of the project objectives and how the objectives are to be attained should be concisely stated and sufficiently detailed to permit clear understanding by all parties involved in the data collection effort. This includes a statement of what problem is to be solved and the information required
in the process. It also includes appropriate statements of the DQOs (i.e., the acceptable level of uncertainty in the information).

2.3 SAMPLE COLLECTION

Sampling procedures, locations, equipment, and sample preservation and handling requirements should be specified in the QAPjP. Further details on quality assurance procedures for field operations are described in Section 3 of this chapter. The OSW is developing policies and procedures for sampling in a planned revision of Chapter Nine of this manual. Specific procedures for groundwater sampling are provided in Chapter Eleven of this manual.

2.4 ANALYSIS AND TESTING

Analytes and properties of concern, analytical and testing procedures to be employed, required detection limits, and requirements for precision and bias should be specified. All applicable regulatory requirements and the project DQOs should be considered when developing the specifications. Further details on the procedures for analytical operations are described in Section 4 of this chapter.

2.5 QUALITY CONTROL

The quality assurance program should address both field and laboratory activities. Quality control procedures should be specified for estimating the precision and bias of the data. Recommended minimum requirements for QC samples have been established by EPA and should be met in order to satisfy recommended minimum criteria for acceptable data quality. Further details on procedures for field and laboratory operations are described in Sections 3 and 4, respectively, of this chapter.

2.6 PROJECT DOCUMENTATION

Documents should be prepared and maintained in conjunction with the data collection effort. Project documentation should be sufficient to allow review of all aspects of the work being performed. The QAPjP discussed in Sections 3 and 4 is one important document that should be maintained.

The length of storage time for project records should comply with regulatory requirements, organizational policy, or project requirements, whichever is more stringent. It is recommended that documentation be stored for three years from submission of the project final report.

Documentation should be secured in a facility that adequately addresses/minimizes its deterioration for the length of time that it is to be retained. A system allowing for the expedient retrieval of information should exist.
Access to archived information should be controlled to maintain the integrity of the data. Procedures should be developed to identify those individuals with access to the data.

2.7 ORGANIZATION PERFORMING FIELD OR LABORATORY OPERATIONS

Proper design and structure of the organization facilitates effective and efficient transfer of information and helps to prevent important procedures from being overlooked.

The organizational structure, functional responsibilities, levels of authority, job descriptions, and lines of communication for all project activities should be established and documented. One person may cover more than one organizational function. Each project participant should have a clear understanding of his or her duties and responsibilities and the relationship of those responsibilities to the overall data collection effort.

The management of each organization participating in a project involving data collection activities should establish that organization's operational and QA policies. This information should be documented in the QAPjP. The management should ensure that (1) the appropriate methodologies are followed as documented in the QAPjPs; (2) personnel clearly understand their duties and responsibilities; (3) each staff member has access to appropriate project documents; (4) any deviations from the QAPjP are communicated to the project management and documented; and (5) communication occurs between the field, laboratory, and project management, as specified in the QAPjP. In addition, each organization should ensure that their activities do not increase the risk to humans or the environment at or about the project location. Certain projects may require specific policies or a Health and Safety Plan to provide this assurance.

The management of the participating field or laboratory organization should establish personnel qualifications and training requirements for the project. Each person participating in the project should have the education, training, technical knowledge, and experience, or a combination thereof, to enable that individual to perform assigned functions. Training should be provided for each staff member as necessary to perform their functions properly. Personnel qualifications should be documented in terms of education, experience, and training, and periodically reviewed to ensure adequacy to current responsibilities.

Each participating field organization or laboratory organization should have a designated QA function (i.e., a team or individual trained in QA) to monitor operations to ensure that the equipment, personnel, activities, procedures, and documentation conform with the QAPjP. To the extent possible, the QA monitoring function should be entirely separate from, and independent of, personnel engaged in the work being monitored. The QA function should be responsible for the QA review.
2.7.1 **Performance Evaluation**

Performance evaluation studies are used to measure the performance of the laboratory on unknown samples. Performance evaluation samples are typically submitted to the laboratory as blind samples by an independent outside source. The results are compared to predetermined acceptance limits. Performance evaluation samples can also be submitted to the laboratory as part of the QA function during internal assessment of laboratory performance. Records of all performance evaluation studies should be maintained by the laboratory. Problems identified through participation in performance evaluation studies should be immediately investigated and corrected.

2.7.2 **Internal Assessment by QA Function**

Personnel performing field and laboratory activities are responsible for continually monitoring individual compliance with the QAPjP. The QA function should review procedures, results and calculations to determine compliance with the QAPjP. The results of this internal assessment should be reported to management with requirements for a plan to correct observed deficiencies.

2.7.3 **External Assessment**

The field and laboratory activities may be reviewed by personnel external to the organization. Such an assessment is an extremely valuable method for identifying overlooked problems. The results of the external assessment should be submitted to management with requirements for a plan to correct observed deficiencies.

2.7.4 **On-Site Evaluation**

On-site evaluations may be conducted as part of both internal and external assessments. The focus of an on-site evaluation is to evaluate the degree of conformance of project activities with the applicable QAPjP. On-site evaluations may include, but are not limited to, a complete review of facilities, staff, training, instrumentation, procedures, methods, sample collection, analyses, QA policies and procedures related to the generation of environmental data. Records of each evaluation should include the date of the evaluation, location, the areas reviewed, the person performing the evaluation, findings and problems, and actions recommended and taken to resolve problems. Any problems identified that are likely to affect data integrity should be brought immediately to the attention of management.

2.7.4.1 **Field Activities**

The review of field activities should be conducted by one or more persons knowledgeable in the activities being reviewed and include evaluating, at a minimum, the following subjects:

Completeness of Field Reports -- This review determines whether all requirements for field activities in the QAPjP have been fulfilled, that complete records exist for each field activity, and that the procedures
specified in the QAPjP have been implemented. Emphasis on field
documentation will help assure sample integrity and sufficient technical
information to recreate each field event. The results of this
completeness check should be documented, and environmental data affected
by incomplete records should be identified.

Identification of Valid Samples -- This review involves interpretation and
evaluation of the field records to detect problems affecting the represen-
tativeness of environmental samples. Examples of items that might
indicate potentially invalid samples include improper well development,
improperly screened wells, instability of pH or conductivity, and collec-
tion of volatiles near internal combustion engines. The field records
should be evaluated against the QAPjP and SOPs. The reviewer should docu-
ment the sample validity and identify the environmental data associated
with any poor or incorrect field work.

Correlation of Field Test Data -- This review involves comparing any
available results of field measurements obtained by more than one method.
For example, surface geophysical methods should correlate with direct
methods of site geologic characterization such as lithologic logs
constructed during drilling operations.

Identification of Anomalous Field Test Data -- This review identifies any
anomalous field test data. For example, a water temperature for one well
that is 5 degrees higher than any other well temperature in the same
aquifer should be noted. The reviewer should evaluate the impact of
anomalous field measurement results on the associated environmental data.

Validation of Field Analyses -- This review validates and documents all
data from field analysis that are generated in situ or from a mobile
laboratory as specified in Section 2.7.4.2. The reviewer should document
whether the QC checks meet the acceptance criteria, and whether corrective
actions were taken for any analysis performed when acceptance criteria
were exceeded.

2.7.4.2 Laboratory Activities

The review of laboratory data should be conducted by one or more persons
knowledgeable in laboratory activities and include evaluating, at a minimum, the
following subjects:

Completeness of Laboratory Records -- This review determines whether: (1)
all samples and analyses required by the QAPjP have been processed, (2)
complete records exist for each analysis and the associated QC samples,
and that (3) the procedures specified in the QAPjP have been implemented.
The results of the completeness check should be documented, and
environmental data affected by incomplete records should be identified.

Evaluation of Data with Respect to Detection and Quantitation Limits --
This review compares analytical results to required quantitation limits.
Reviewers should document instances where detection or quantitation limits
exceed regulatory limits, action levels, or target concentrations specified in the QAPjP.

Evaluation of Data with Respect to Control Limits -- This review compares the results of QC and calibration check samples to control criteria. Corrective action should be implemented for data not within control limits. The reviewer should check that corrective action reports, and the results of reanalysis, are available. The review should determine whether samples associated with out-of-control QC data are identified in a written record of the data review, and whether an assessment of the utility of such analytical results is recorded.

Review of Holding Time Data -- This review compares sample holding times to those required by the QAPjP, and notes all deviations.

Review of Performance Evaluation (PE) Results -- PE study results can be helpful in evaluating the impact of out-of-control conditions. This review documents any recurring trends or problems evident in PE studies and evaluates their effect on environmental data.

Correlation of Laboratory Data -- This review determines whether the results of data obtained from related laboratory tests, e.g., Purgeable Organic Halides (POX) and Volatile Organics, are documented, and whether the significance of any differences is discussed in the reports.

2.7.5 QA Reports

There should be periodic reporting of pertinent QA/QC information to the project management to allow assessment of the overall effectiveness of the QA program. There are three major types of QA reports to project management:

Periodic Report on Key QA Activities -- Provides summary of key QA activities during the period, stressing measures that are being taken to improve data quality; describes significant quality problems observed and corrective actions taken; reports information regarding any changes in certification/accreditation status; describes involvement in resolution of quality issues with clients or agencies; reports any QA organizational changes; and provides notice of the distribution of revised documents controlled by the QA organization (i.e., procedures).

Report on Measurement Quality Indicators -- Includes the assessment of QC data gathered over the period, the frequency of analyses repeated due to unacceptable QC performance, and, if possible, the reason for the unacceptable performance and corrective action taken.

Reports on QA Assessments -- Includes the results of the assessments and the plan for correcting identified deficiencies; submitted immediately following any internal or external on-site evaluation or upon receipt of the results of any performance evaluation studies.

ONE - 7
Revision 1
July 1992
3.0 FIELD OPERATIONS

The field operations should be conducted in such a way as to provide reliable information that meets the DQOs. To achieve this, certain minimal policies and procedures should be implemented. The OSW is considering revisions of Chapter Nine and Eleven of this manual. Supplemental information and guidance is available in the RCRA Ground-Water Monitoring Technical Enforcement Guidance Document (TEGD) (Reference 3). The project documentation should contain the information specified below.

3.1 FIELD LOGISTICS

The QAPjP should describe the type(s) of field operations to be performed and the appropriate area(s) in which to perform the work. The QAPjP should address ventilation, protection from extreme weather and temperatures, access to stable power, and provision for water and gases of required purity.

Whenever practical, the sampling site facilities should be examined prior to the start of work to ensure that all required items are available. The actual area of sampling should be examined to ensure that trucks, drilling equipment, and personnel have adequate access to the site.

The determination as to whether sample shipping is necessary should be made during planning for the project. This need is established by evaluating the analyses to be performed, sample holding times, and location of the site and the laboratory. Shipping or transporting of samples to a laboratory should be done within a timeframe such that recommended holding times are met.

Samples should be packaged, labelled, preserved (e.g., preservative added, iced, etc.), and documented in an area which is free of contamination and provides for secure storage. The level of custody and whether sample storage is needed should be addressed in the QAPjP.

Storage areas for solvents, reagents, standards, and reference materials should be adequate to preserve their identity, concentration, purity, and stability prior to use.

Decontamination of sampling equipment may be performed at the location where sampling occurs, prior to going to the sampling site, or in designated areas near the sampling site. Project documentation should specify where and how this work is accomplished. If decontamination is to be done at the site, water and solvents of appropriate purity should be available. The method of accomplishing decontamination, including the required materials, solvents, and water purity should be specified.

During the sampling process and during on-site or in situ analyses, waste materials are sometimes generated. The method for storage and disposal of these waste materials that complies with applicable local, state and Federal regulations should be specified. Adequate facilities should be provided for the collection and storage of all wastes, and these facilities should be operated so

ONE - 8 Revision 1 July 1992
as to minimize environmental contamination. Waste storage and disposal facilities should comply with applicable federal, state, and local regulations.

The location of long-term and short-term storage for field records, and the measures to ensure the integrity of the data should be specified.

3.2 EQUIPMENT/INSTRUMENTATION

The equipment, instrumentation, and supplies at the sampling site should be specified and should be appropriate to accomplish the activities planned. The equipment and instrumentation should meet the requirements of specifications, methods, and procedures as specified in the QAPjP.

3.3 OPERATING PROCEDURES

The QAPjP should describe or make reference to all field activities that may affect data quality. For routinely performed activities, standard operating procedures (SOPs) are often prepared to ensure consistency and to save time and effort in preparing QAPjPs. Any deviation from an established procedure during a data collection activity should be documented. The procedures should be available for the indicated activities, and should include, at a minimum, the information described below.

3.3.1 Sample Management

The numbering and labeling system, chain-of-custody procedures, and how the samples are to be tracked from collection to shipment or receipt by the laboratory should be specified. Sample management procedures should also specify the holding times, volumes of sample required by the laboratory, required preservatives, and shipping requirements.

3.3.2 Reagent/Standard Preparation

The procedures describing how to prepare standards and reagents should be specified. Information concerning specific grades of materials used in reagent and standard preparation, appropriate glassware and containers for preparation and storage, and labeling and record keeping for stocks and dilutions should be included.

3.3.3 Decontamination

The procedures describing decontamination of field equipment before and during the sample collection process should be specified. These procedures should include cleaning materials used, the order of washing and rinsing with the cleaning materials, requirements for protecting or covering cleaned equipment, and procedures for disposing of cleaning materials.
3.3.4 Sample Collection

The procedures describing how the sampling operations are actually performed in the field should be specified. A simple reference to standard methods is not sufficient, unless a procedure is performed exactly as described in the published method. Methods from source documents published by the EPA, American Society for Testing and Materials, U.S. Department of the Interior, National Water Well Association, American Petroleum Institute, or other recognized organizations with appropriate expertise should be used, if possible. The procedures for sample collection should include at least the following:

- Applicability of the procedure,
- Equipment required,
- Detailed description of procedures to be followed in collecting the samples,
- Common problems encountered and corrective actions to be followed, and
- Precautions to be taken.

3.3.5 Field Measurements

The procedures describing all methods used in the field to determine a chemical or physical parameter should be described in detail. The procedures should address criteria from Section 4, as appropriate.

3.3.6 Equipment Calibration And Maintenance

The procedures describing how to ensure that field equipment and instrumentation are in working order should be specified. These describe calibration procedures and schedules, maintenance procedures and schedules, maintenance logs, and service arrangements for equipment. Calibration and maintenance of field equipment and instrumentation should be in accordance with manufacturers' specifications or applicable test specifications and should be documented.

3.3.7 Corrective Action

The procedures describing how to identify and correct deficiencies in the sample collection process should be specified. These should include specific steps to take in correcting deficiencies such as performing additional decontamination of equipment, resampling, or additional training of field personnel. The procedures should specify that each corrective action should be documented with a description of the deficiency and the corrective action taken, and should include the person(s) responsible for implementing the corrective action.
3.3.8 Data Reduction and Validation

The procedures describing how to compute results from field measurements and to review and validate these data should be specified. They should include all formulas used to calculate results and procedures used to independently verify that field measurement results are correct.

3.3.9 Reporting

The procedures describing the process for reporting the results of field activities should be specified.

3.3.10 Records Management

The procedures describing the means for generating, controlling, and archiving project-specific records and field operations records should be specified. These procedures should detail record generation and control and the requirements for record retention, including type, time, security, and retrieval and disposal authorities.

Project-specific records relate to field work performed for a project. These records may include correspondence, chain-of-custody records, field notes, all reports issued as a result of the work, and procedures used.

Field operations records document overall field operations and may include equipment performance and maintenance logs, personnel files, general field procedures, and corrective action reports.

3.3.11 Waste Disposal

The procedures describing the methods for disposal of waste materials resulting from field operations should be specified.

3.4 FIELD QA AND QC REQUIREMENTS

The QAP should describe how the following elements of the field QC program will be implemented.

3.4.1 Control Samples

Control samples are QC samples that are introduced into a process to monitor the performance of the system. Control samples, which may include blanks (e.g., trip, equipment, and laboratory), duplicates, spikes, analytical standards, and reference materials, can be used in different phases of the data collection process beginning with sampling and continuing through transportation, storage, and analysis.

Each day of sampling, at least one field duplicate and one equipment rinseate should be collected for each matrix sampled. If this frequency is not appropriate for the sampling equipment and method, then the appropriate changes...
should be clearly identified in the QAPjP. When samples are collected for volatile organic analysis, a trip blank is also recommended for each day that samples are collected. In addition, for each sampling batch (20 samples of one matrix type), enough volume should be collected for at least one sample so as to allow the laboratory to prepare one matrix spike and either one matrix duplicate or one matrix spike duplicate for each analytical method employed. This means that the following control samples are recommended:

- Field duplicate (one per day per matrix type)
- Equipment rinsate (one per day per matrix type)
- Trip blank (one per day, volatile organics only)
- Matrix spike (one per batch [20 samples of each matrix type])
- Matrix duplicate or matrix spike duplicate (one per batch)

Additional control samples may be necessary in order to assure data quality to meet the project-specific DQOs.

3.4.2 Acceptance Criteria

Procedures should be in place for establishing acceptance criteria for field activities described in the QAPjP. Acceptance criteria may be qualitative or quantitative. Field events or data that fall outside of established acceptance criteria may indicate a problem with the sampling process that should be investigated.

3.4.3 Deviations

All deviations from plan should be documented as to the extent of, and reason for, the deviation. Any activity not performed in accordance with procedures or QAPjPs is considered a deviation from plan. Deviations from plan may or may not affect data quality.

3.4.4 Corrective Action

Errors, deficiencies, deviations, certain field events, or data that fall outside established acceptance criteria should be investigated. In some instances, corrective action may be needed to resolve the problem and restore proper functioning to the system. The investigation of the problem and any subsequent corrective action taken should be documented.

3.4.5 Data Handling

All field measurement data should be reduced according to protocols described or referenced in the QAPjP. Computer programs used for data reduction should be validated before use and verified on a regular basis. All information used in the calculations should be recorded to enable reconstruction of the final result at a later date.

Data should be reported in accordance with the requirements of the end-user as described in the QAPjP.
3.5 QUALITY ASSURANCE REVIEW

The QA Review consists of internal and external assessments to ensure that QA/QC procedures are in use and to ensure that field staff conform to these procedures. QA review should be conducted as deemed appropriate and necessary.

3.6 FIELD RECORDS

Records provide the direct evidence and support for the necessary technical interpretations, judgments, and discussions concerning project activities. These records, particularly those that are anticipated to be used as evidentiary data, should directly support current or ongoing technical studies and activities and should provide the historical evidence needed for later reviews and analyses. Records should be legible, identifiable, and retrievable and protected against damage, deterioration, or loss. The discussion in this section (3.6) outlines recommended procedures for record keeping. Organizations which conduct field sampling should develop appropriate record keeping procedures which satisfy relevant technical and legal requirements.

Field records generally consist of bound field notebooks with prenumbered pages, sample collection forms, personnel qualification and training forms, sample location maps, equipment maintenance and calibration forms, chain-of-custody forms, sample analysis request forms, and field change request forms. All records should be written in indelible ink.

Procedures for reviewing, approving, and revising field records should be clearly defined, with the lines of authority included. It is recommended that all documentation errors should be corrected by drawing a single line through the error so it remains legible and should be initialed by the responsible individual, along with the date of change. The correction should be written adjacent to the error.

Records should include (but are not limited to) the following:

Calibration Records & Traceability of Standards/Reagents -- Calibration is a reproducible reference point to which all sample measurements can be correlated. A sound calibration program should include provisions for documentation of frequency, conditions, standards, and records reflecting the calibration history of a measurement system. The accuracy of the calibration standards is important because all data will be in reference to the standards used. A program for verifying and documenting the accuracy of all working standards against primary grade standards should be routinely followed.

Sample Collection -- To ensure maximum utility of the sampling effort and resulting data, documentation of the sampling protocol, as performed in the field, is essential. It is recommended that sample collection records contain, at a minimum, the names of persons conducting the activity, sample number, sample location, equipment used, climatic conditions, documentation of adherence to protocol, and unusual observations. The

ONE - 13 Revision 1 July 1992
actual sample collection record is usually one of the following: a bound field notebook with prenumbered pages, a pre-printed form, or digitized information on a computer tape or disc.

Chain-of-Custody Records -- The chain-of-custody involving the possession of samples from the time they are obtained until they are disposed or shipped off-site should be documented as specified in the QAPjP and should include the following information: (1) the project name; (2) signatures of samplers; (3) the sample number, date and time of collection, and grab or composite sample designation; (4) signatures of individuals involved in sample transfer; and (5) if applicable, the air bill or other shipping number.

Maps and Drawings -- Project planning documents and reports often contain maps. The maps are used to document the location of sample collection points and monitoring wells and as a means of presenting environmental data. Information used to prepare maps and drawings is normally obtained through field surveys, property surveys, surveys of monitoring wells, aerial photography or photogrammetric mapping. The final, approved maps and/or drawings should have a revision number and date and should be subject to the same controls as other project records.

QC Samples -- Documentation for generation of QC samples, such as trip and equipment rinsate blanks, duplicate samples, and any field spikes should be maintained.

Deviations -- All deviations from procedural documents and the QAPjP should be recorded in the site logbook.

Reports -- A copy of any report issued and any supporting documentation should be retained.

4.0 LABORATORY OPERATIONS

The laboratory should conduct its operations in such a way as to provide reliable information. To achieve this, certain minimal policies and procedures should be implemented.

4.1 FACILITIES

The QAPjP should address all facility-related issues that may impact project data quality. Each laboratory should be of suitable size and construction to facilitate the proper conduct of the analyses. Adequate bench space or working area per analyst should be provided. The space requirement per analyst depends on the equipment or apparatus that is being utilized, the number of samples that the analyst is expected to handle at any one time, and the number of operations that are to be performed concurrently by a single analyst. Other issues to be considered include, but are not limited to, ventilation, lighting,
control of dust and drafts, protection from extreme temperatures, and access to a source of stable power.

Laboratories should be designed so that there is adequate separation of functions to ensure that no laboratory activity has an adverse effect on the analyses. The laboratory may require specialized facilities such as a perchloric acid hood or glovebox.

Separate space for laboratory operations and appropriate ancillary support should be provided, as needed, for the performance of routine and specialized procedures.

As necessary to ensure secure storage and prevent contamination or misidentification, there should be adequate facilities for receipt and storage of samples. The level of custody required and any special requirements for storage such as refrigeration should be described in planning documents.

Storage areas for reagents, solvents, standards, and reference materials should be adequate to preserve their identity, concentration, purity, and stability.

Adequate facilities should be provided for the collection and storage of all wastes, and these facilities should be operated so as to minimize environmental contamination. Waste storage and disposal facilities should comply with applicable federal, state, and local regulations.

The location of long-term and short-term storage of laboratory records and the measures to ensure the integrity of the data should be specified.

4.2 EQUIPMENT/INSTRUMENTATION

Equipment and instrumentation should meet the requirements and specifications of the specific test methods and other procedures as specified in the QAPJP. The laboratory should maintain an equipment/instrument description list that includes the manufacturer, model number, year of purchase, accessories, and any modifications, updates, or upgrades that have been made.

4.3 OPERATING PROCEDURES

The QAPJP should describe or make reference to all laboratory activities that may affect data quality. For routinely performed activities, SOPs are often prepared to ensure consistency and to save time and effort in preparing QAPJPs. Any deviation from an established procedure during a data collection activity should be documented. It is recommended that procedures be available for the indicated activities, and include, at a minimum, the information described below.
4.3.1 **Sample Management**

The procedures describing the receipt, handling, scheduling, and storage of samples should be specified.

Sample Receipt and Handling -- These procedures describe the precautions to be used in opening sample shipment containers and how to verify that chain-of-custody has been maintained, examine samples for damage, check for proper preservatives and temperature, and log samples into the laboratory sample streams.

Sample Scheduling -- These procedures describe the sample scheduling in the laboratory and includes procedures used to ensure that holding time requirements are met.

Sample Storage -- These procedures describe the storage conditions for all samples, verification and documentation of daily storage temperature, and how to ensure that custody of the samples is maintained while in the laboratory.

4.3.2 **Reagent/Standard Preparation**

The procedures describing how to prepare standards and reagents should be specified. Information concerning specific grades of materials used in reagent and standard preparation, appropriate glassware and containers for preparation and storage, and labeling and recordkeeping for stocks and dilutions should be included.

4.3.3 **General Laboratory Techniques**

The procedures describing all essentials of laboratory operations that are not addressed elsewhere should be specified. These techniques should include, but are not limited to, glassware cleaning procedures, operation of analytical balances, pipetting techniques, and use of volumetric glassware.

4.3.4 **Test Methods**

Procedures for test methods describing how the analyses are actually performed in the laboratory should be specified. A simple reference to standard methods is not sufficient, unless the analysis is performed exactly as described in the published method. Whenever methods from SW-846 are not appropriate, recognized methods from source documents published by the EPA, American Public Health Association (APHA), American Society for Testing and Materials (ASTM), the National Institute for Occupational Safety and Health (NIOSH), or other recognized organizations with appropriate expertise should be used, if possible. The documentation of the actual laboratory procedures for analytical methods should include the following:

Sample Preparation and Analysis Procedures -- These include applicable holding time, extraction, digestion, or preparation steps as appropriate to the method; procedures for determining the appropriate dilution to
analyze; and any other information required to perform the analysis accurately and consistently.

Instrument Standardization -- This includes concentration(s) and frequency of analysis of calibration standards, linear range of the method, and calibration acceptance criteria.

Sample Data -- This includes recording requirements and documentation including sample identification number, analyst, data verification, date of analysis and verification, and computational method(s).

Precision and Bias -- This includes all analytes for which the method is applicable and the conditions for use of this information.

Detection and Reporting Limits -- This includes all analytes in the method.

Test-Specific QC -- This describes QC activities applicable to the specific test and references any applicable QC procedures.

4.3.5 Equipment Calibration and Maintenance

The procedures describing how to ensure that laboratory equipment and instrumentation are in working order should be specified. These procedures include calibration procedures and schedules, maintenance procedures and schedules, maintenance logs, service arrangements for all equipment, and spare parts available in-house. Calibration and maintenance of laboratory equipment and instrumentation should be in accordance with manufacturers' specifications or applicable test specifications and should be documented.

4.3.6 QC

The type, purpose, and frequency of QC samples to be analyzed in the laboratory and the acceptance criteria should be specified. Information should include the applicability of the QC sample to the analytical process, the statistical treatment of the data, and the responsibility of laboratory staff and management in generating and using the data. Further details on development of project-specific QC protocols are described in Section 4.4.

4.3.7 Corrective Action

The procedures describing how to identify and correct deficiencies in the analytical process should be specified. These should include specific steps to take in correcting the deficiencies such as preparation of new standards and reagents, recalibration and restandardization of equipment, reanalysis of samples, or additional training of laboratory personnel in methods and procedures. The procedures should specify that each corrective action should be documented with a description of the deficiency and the corrective action taken, and should include the person(s) responsible for implementing the corrective action.

ONE - 17
Revision 1
July 1992
4.3.8 Data Reduction and Validation

The procedures describing how to review and validate the data should be specified. They should include procedures for computing and interpreting the results from QC samples, and independent procedures to verify that the analytical results are reported correctly. In addition, routine procedures used to monitor precision and bias, including evaluations of reagent, equipment rinsate, and trip blanks, calibration standards, control samples, duplicate and matrix spike samples, and surrogate recovery, should be detailed in the procedures. More detailed validation procedures should be performed when required in the contract or QAPjP.

4.3.9 Reporting

The procedures describing the process for reporting the analytical results should be specified.

4.3.10 Records Management

The procedures describing the means for generating, controlling, and archiving laboratory records should be specified. The procedures should detail record generation and control, and the requirements for record retention, including type, time, security, and retrieval and disposal authorities.

Project-specific records may include correspondence, chain-of-custody records, request for analysis, calibration data records, raw and finished analytical and QC data, data reports, and procedures used.

Laboratory operations records may include laboratory notebooks, instrument performance logs and maintenance logs in bound notebooks with prenumbered pages; laboratory benchesheets; software documentation; control charts; reference material certification; personnel files; laboratory procedures; and corrective action reports.

4.3.11 Waste Disposal

The procedures describing the methods for disposal of chemicals including standard and reagent solutions, process waste, and samples should be specified.

4.4 LABORATORY QA AND QC PROCEDURES

The QAPjP should describe how the following required elements of the laboratory QC program are to be implemented.

4.4.1 Method Proficiency

Procedures should be in place for demonstrating proficiency with each analytical method routinely used in the laboratory. These should include procedures for demonstrating the precision and bias of the method as performed by the laboratory and procedures for determining the method detection limit.
(MDL). All terminology, procedures and frequency of determinations associated with the laboratory’s establishment of the MDL and the reporting limit should be well-defined and well-documented. Documented precision, bias, and MDL information should be maintained for all methods performed in the laboratory.

4.4.2 Control Limits

Procedures should be in place for establishing and updating control limits for analysis. Control limits should be established to evaluate laboratory precision and bias based on the analysis of control samples. Typically, control limits for bias are based on the historical mean recovery plus or minus three standard deviation units, and control limits for precision range from zero (no difference between duplicate control samples) to the historical mean relative percent difference plus three standard deviation units. Procedures should be in place for monitoring historical performance and should include graphical (control charts) and/or tabular presentations of the data.

4.4.3 Laboratory Control Procedures

Procedures should be in place for demonstrating that the laboratory is in control during each data collection activity. Analytical data generated with laboratory control samples that fall within prescribed limits are judged to be generated while the laboratory was in control. Data generated with laboratory control samples that fall outside the established control limits are judged to be generated during an "out-of-control" situation. These data are considered suspect and should be repeated or reported with qualifiers.

Laboratory Control Samples -- Laboratory control samples should be analyzed for each analytical method when appropriate for the method. A laboratory control sample consists of either a control matrix spiked with analytes representative of the target analytes or a certified reference material.

Laboratory control sample(s) should be analyzed with each batch of samples processed to verify that the precision and bias of the analytical process are within control limits. The results of the laboratory control sample(s) are compared to control limits established for both precision and bias to determine usability of the data.

Method Blank -- When appropriate for the method, a method blank should be analyzed with each batch of samples processed to assess contamination levels in the laboratory. Guidelines should be in place for accepting or rejecting data based on the level of contamination in the blank.

Procedures should be in place for documenting the effect of the matrix on method performance. When appropriate for the method, there should be at least one matrix spike and either one matrix duplicate or one matrix spike duplicate per analytical batch. Additional control samples may be necessary to assure data quality to meet the project-specific DQOs.
Matrix-Specific Bias -- Procedures should be in place for determining the bias of the method due to the matrix. These procedures should include preparation and analysis of matrix spikes, selection and use of surrogates for organic methods, and the method of standard additions for metal and inorganic methods. When the concentration of the analyte in the sample is greater than 0.1%, no spike is necessary.

Matrix-Specific Precision -- Procedures should be in place for determining the precision of the method for a specific matrix. These procedures should include analysis of matrix duplicates and/or matrix spike duplicates. The frequency of use of these techniques should be based on the DQO for the data collection activity.

Matrix-Specific Detection Limit -- Procedures should be in place for determining the MDL for a specific matrix type (e.g., wastewater treatment sludge, contaminated soil, etc).

4.4.4 Deviations

Any activity not performed in accordance with laboratory procedures or QAPJPs is considered a deviation from plan. All deviations from plan should be documented as to the extent of, and reason for, the deviation.

4.4.5 Corrective Action

Errors, deficiencies, deviations, or laboratory events or data that fall outside of established acceptance criteria should be investigated. In some instances, corrective action may be needed to resolve the problem and restore proper functioning to the analytical system. The investigation of the problem and any subsequent corrective action taken should be documented.

4.4.6 Data Handling

Data resulting from the analyses of samples should be reduced according to protocols described in the laboratory procedures. Computer programs used for data reduction should be validated before use and verified on a regular basis. All information used in the calculations (e.g., raw data, calibration files, tuning records, results of standard additions, interference check results, and blank- or background-correction protocols) should be recorded in order to enable reconstruction of the final result at a later date. Information on the preparation of the sample (e.g., weight or volume of sample used, percent dry weight for solids, extract volume, dilution factor used) should also be maintained in order to enable reconstruction of the final result at a later date.

All data should be reviewed by a second analyst or supervisor according to laboratory procedures to ensure that calculations are correct and to detect transcription errors. Spot checks should be performed on computer calculations to verify program validity. Errors detected in the review process should be referred to the analyst(s) for corrective action. Data should be reported in accordance with the requirements of the end-user. It is recommended that the supporting documentation include at a minimum:

ONE - 20

Revision 1
July 1992
• Laboratory name and address.

• Sample information (including unique sample identification, sample collection date and time, date of sample receipt, and date(s) of sample preparation and analysis).

• Analytical results reported with an appropriate number of significant figures.

• Detection limits that reflect dilutions, interferences, or correction for equivalent dry weight.

• Method reference.

• Appropriate QC results (correlation with sample batch should be traceable and documented).

• Data qualifiers with appropriate references and narrative on the quality of the results.

4.5 QUALITY ASSURANCE REVIEW

The QA review consists of internal and external assessments to ensure that QA/QC procedures are in use and to ensure that laboratory staff conform to these procedures. QA review should be conducted as deemed appropriate and necessary.

4.6 LABORATORY RECORDS

Records provide the direct evidence and support for the necessary technical interpretations, judgements, and discussions concerning project activities. These records, particularly those that are anticipated to be used as evidentiary data, should directly support technical studies and activities, and provide the historical evidence needed for later reviews and analyses. Records should be legible, identifiable, and retrievable, and protected against damage, deterioration, or loss. The discussion in this section (4.6) outlines recommended procedures for record keeping. Organizations which conduct field sampling should develop appropriate record keeping procedures which satisfy relevant technical and legal requirements.

Laboratory records generally consist of bound notebooks with prenumbered pages, personnel qualification and training forms, equipment maintenance and calibration forms, chain-of-custody forms, sample analysis request forms, and analytical change request forms. All records should be written in indelible ink.

Procedures for reviewing, approving, and revising laboratory records should be clearly defined, with the lines of authority included. Any documentation errors should be corrected by drawing a single line through the error so that it remains legible and should be initialed by the responsible individual, along with the date of change. The correction is written adjacent to the error.
Strip-chart recorder printouts should be signed by the person who performed the instrumental analysis. If corrections need to be made in computerized data, a system parallel to the corrections for handwritten data should be in place.

Records of sample management should be available to permit the re-creation of an analytical event for review in the case of an audit or investigation of a dubious result.

Laboratory records should include, at least, the following:

Operating Procedures -- Procedures should be available to those performing the task outlined. Any revisions to laboratory procedures should be written, dated, and distributed to all affected individuals to ensure implementation of changes. Areas covered by operating procedures are given in Sections 3.3 and 4.3.

Quality Assurance Plans -- The QAPjP should be on file.

Equipment Maintenance Documentation -- A history of the maintenance record of each system serves as an indication of the adequacy of maintenance schedules and parts inventory. As appropriate, the maintenance guidelines of the equipment manufacturer should be followed. When maintenance is necessary, it should be documented in either standard forms or in logbooks. Maintenance procedures should be clearly defined and written for each measurement system and required support equipment.

Proficiency -- Proficiency information on all compounds reported should be maintained and should include (1) precision; (2) bias; (3) method detection limits; (4) spike recovery, where applicable; (5) surrogate recovery, where applicable; (6) checks on reagent purity, where applicable; and (7) checks on glassware cleanliness, where applicable.

Calibration Records & Traceability of Standards/Reagents -- Calibration is a reproducible reference point to which all sample measurements can be correlated. A sound calibration program should include provisions for documenting frequency, conditions, standards, and records reflecting the calibration history of a measurement system. The accuracy of the calibration standards is important because all data will be in reference to the standards used. A program for verifying and documenting the accuracy and traceability of all working standards against appropriate primary grade standards or the highest quality standards available should be routinely followed.

Sample Management -- All required records pertaining to sample management should be maintained and updated regularly. These include chain-of-custody forms, sample receipt forms, and sample disposition records.

Original Data -- The raw data and calculated results for all samples should be maintained in laboratory notebooks, logs, benchsheets, files or other sample tracking or data entry forms. Instrumental output should be stored in a computer file or a hardcopy report.

ONE - 22

Revision 1
July 1992
QC Data -- The raw data and calculated results for all QC and field samples and standards should be maintained in the manner described in the preceding paragraph. Documentation should allow correlation of sample results with associated QC data. Documentation should also include the source and lot numbers of standards for traceability. QC samples include, but are not limited to, control samples, method blanks, matrix spikes, and matrix spike duplicates.

Correspondence -- Project correspondence can provide evidence supporting technical interpretations. Correspondence pertinent to the project should be kept and placed in the project files.

Deviations -- All deviations from procedural and planning documents should be recorded in laboratory notebooks. Deviations from QAPjPs should be reviewed and approved by the authorized personnel who performed the original technical review or by their designees.

Final Report -- A copy of any report issued and any supporting documentation should be retained.

5.0 DEFINITIONS

The following terms are defined for use in this document:

ACCURACY: The closeness of agreement between an observed value and an accepted reference value. When applied to a set of observed values, accuracy will be a combination of a random component and of a common systematic error (or bias) component.

BATCH: A group of samples which behave similarly with respect to the sampling or the testing procedures being employed and which are processed as a unit (see Section 3.4.1 for field samples and Section 4.4.3 for laboratory samples). For QC purposes, if the number of samples in a group is greater than 20, then each group of 20 samples or less will all be handled as a separate batch.

BIAS: The deviation due to matrix effects of the measured value \((x_m - x_u) \) from a known spiked amount. Bias can be assessed by comparing a measured value to an accepted reference value in a sample of known concentration or by determining the recovery of a known amount of contaminant spiked into a sample (matrix spike). Thus, the bias (B) due to matrix effects based on a matrix spike is calculated as:

\[
B = (x_m - x_u) - K
\]

where:

ONE - 23 Revision 1 July 1992
\[x_s = \text{measured value for spiked sample}, \]
\[x_u = \text{measured value for unspiked sample}, \]
\[K = \text{known value of the spike in the sample}. \]

Using the following equation yields the percent recovery (%R).

\[\% R = 100 \frac{(x_s - x_u)}{K} \]

BLANK:
see Equipment Rinsate, Method Blank, Trip Blank.

CONTROL SAMPLE:
A QC sample introduced into a process to monitor the performance of the system.

DATA QUALITY OBJECTIVES (DQOs):
A statement of the overall level of uncertainty that a decision-maker is willing to accept in results derived from environmental data (see reference 2, EPA/QAMS, July 16, 1986). This is qualitatively distinct from quality measurements such as precision, bias, and detection limit.

DATA VALIDATION:
The process of evaluating the available data against the project DQOs to make sure that the objectives are met. Data validation may be very rigorous, or cursory, depending on project DQOs. The available data reviewed will include analytical results, field QC data and lab QC data, and may also include field records.

DUPLICATE:
see Matrix Duplicate, Field Duplicate, Matrix Spike Duplicate.

EQUIPMENT BLANK:
see Equipment Rinsate.

EQUIPMENT RINSATE:
A sample of analyte-free media which has been used to rinse the sampling equipment. It is collected after completion of decontamination and prior to sampling. This blank is useful in documenting adequate decontamination of sampling equipment.

ESTIMATED QUANTITATION LIMIT (EQL):
The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. The EQL is generally 5 to 10 times the MDL. However, it may be nominally chosen within these guidelines to simplify data reporting. For many analytes the EQL analyte concentration is selected as the lowest non-zero standard in the calibration curve. Sample EQLs are highly matrix-dependent. The EQLs in SW-846 are provided for guidance and may not always be achievable.
FIELD DUPLICATES: Independent samples which are collected as close as possible to the same point in space and time. They are two separate samples taken from the same source, stored in separate containers, and analyzed independently. These duplicates are useful in documenting the precision of the sampling process.

LABORATORY CONTROL SAMPLE: A known matrix spiked with compound(s) representative of the target analytes. This is used to document laboratory performance.

MATRIX: The component or substrate (e.g., surface water, drinking water) which contains the analyte of interest.

MATRIX DUPLICATE: An intralaboratory split sample which is used to document the precision of a method in a given sample matrix.

MATRIX SPIKE: An aliquot of sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

MATRIX SPIKE DUPLICATIONS: Intralaboratory split samples spiked with identical concentrations of target analyte(s). The spiking occurs prior to sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

METHOD BLANK: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

For a method blank to be acceptable for use with the accompanying samples, the concentration in the blank of any analyte of concern should not be higher than the highest of either:

(1) The method detection limit, or

(2) Five percent of the regulatory limit for that analyte, or

(3) Five percent of the measured concentration in the sample.

METHOD DETECTION LIMIT (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from

ONE - 25
Revision 1
July 1992
analysis of a sample in a given matrix type containing the analyte.

For operational purposes, when it is necessary to determine the MDL in the matrix, the MDL should be determined by multiplying the appropriate one-sided 99% t-statistic by the standard deviation obtained from a minimum of three analyses of a matrix spike containing the analyte of interest at a concentration three to five times the estimated MDL, where the t-statistic is obtained from standard references or the table below.

<table>
<thead>
<tr>
<th>No. of samples:</th>
<th>t-statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6.96</td>
</tr>
<tr>
<td>4</td>
<td>4.54</td>
</tr>
<tr>
<td>5</td>
<td>3.75</td>
</tr>
<tr>
<td>6</td>
<td>3.36</td>
</tr>
<tr>
<td>7</td>
<td>3.14</td>
</tr>
<tr>
<td>8</td>
<td>3.00</td>
</tr>
<tr>
<td>9</td>
<td>2.90</td>
</tr>
<tr>
<td>10</td>
<td>2.82</td>
</tr>
</tbody>
</table>

Estimate the MDL as follows:
Obtain the concentration value that corresponds to:

a) an instrument signal/noise ratio within the range of 2.5 to 5.0, or

b) the region of the standard curve where there is a significant change in sensitivity (i.e., a break in the slope of the standard curve).

Determine the variance (S^2) for each analyte as follows:

$$S^2 = \frac{1}{n-1} \left[\sum_{i=1}^{n} (x_i - \bar{x})^2 \right]$$

where x_i = the ith measurement of the variable x and \bar{x} = the average value of x;
Determine the standard deviation (s) for each analyte as follows:

$$s = (S^2)^{1/2}$$

Determine the MDL for each analyte as follows:

$$\text{MDL} = t_{(n-1, \alpha = .99)}(s)$$

where $t_{(n-1, \alpha = .99)}$ is the one-sided t-statistic appropriate for the number of samples used to determine (s), at the 99 percent level.

For volatiles, all references to water in the methods refer to water in which an interferant is not observed at the method detection limit of the compounds of interest. Organic-free reagent water can be generated by passing tap water through a carbon filter bed containing about 1 pound of activated carbon. A water purification system may be used to generate organic-free deionized water. Organic-free reagent water may also be prepared by boiling water for 15 minutes and, subsequently, while maintaining the temperature at 90°C, bubbling a contaminant-free inert gas through the water for 1 hour.

For semivolatiles and nonvolatiles, all references to water in the methods refer to water in which an interferant is not observed at the method detection limit of the compounds of interest. Organic-free reagent water can be generated by passing tap water through a carbon filter bed containing about 1 pound of activated carbon. A water purification system may be used to generate organic-free deionized water.

The agreement among a set of replicate measurements without assumption of knowledge of the true value. Precision is estimated by means of duplicate/replicate analyses. These samples should contain concentrations of analyte above the MDL, and may involve the use of matrix spikes. The most commonly used estimates of precision are the relative standard deviation (RSD) or the coefficient of variation (CV),

$$\text{RSD} = \text{CV} = 100 \frac{S}{\bar{x}},$$
where:
\[x = \text{the arithmetic mean of the } x_i \text{ measurements, and } S = \text{variance; and the relative percent difference (RPD) when only two samples are available.} \]

\[\text{RPD} = 100 \left(\frac{(x_1 - x_2)\sqrt{2}}{(x_1 + x_2)/2} \right). \]

PROJECT:
Single or multiple data collection activities that are related through the same planning sequence.

QUALITY ASSURANCE PROJECT PLAN (QAPjP):
An orderly assemblage of detailed procedures designed to produce data of sufficient quality to meet the data quality objectives for a specific data collection activity.

RCRA:

REAGENT BLANK:
See Method Blank.

REAGENT GRADE:
Analytical reagent (AR) grade, ACS reagent grade, and reagent grade are synonymous terms for reagents which conform to the current specifications of the Committee on Analytical Reagents of the American Chemical Society.

REAGENT WATER:
Water that has been generated by any method which would achieve the performance specifications for ASTM Type II water. For organic analyses, see the definition of organic-free reagent water.

REFERENCE MATERIAL:
A material containing known quantities of target analytes in solution or in a homogeneous matrix. It is used to document the bias of the analytical process.

SPLIT SAMPLES:
Aliquots of sample taken from the same container and analyzed independently. In cases where aliquots of samples are impossible to obtain, field duplicate samples should be taken for the matrix duplicate analysis. These are usually taken after mixing or compositing and are used to document intra- or interlaboratory precision.

STANDARD ADDITION:
The practice of adding a known amount of an analyte to a sample immediately prior to analysis. It is typically used to evaluate interferences.

STANDARD CURVE:
A plot of concentrations of known analyte standards versus the instrument response to the analyte. Calibration standards are prepared by successively diluting a standard solution to produce working standards which cover the working range of the instrument. Standards should be prepared at the frequency specified in the appropriate
The calibration standards should be prepared using the same type of acid or solvent and at the same concentration as will result in the samples following sample preparation. This is applicable to organic and inorganic chemical analyses.

SURROGATE: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples.

TRIP BLANK: A sample of analyte-free media taken from the laboratory to the sampling site and returned to the laboratory unopened. A trip blank is used to document contamination attributable to shipping and field handling procedures. This type of blank is useful in documenting contamination of volatile organics samples.

6.0 REFERENCES

5. Preparing Perfect Project Plans, EPA/600/9-89/087, October 1989, Risk Reduction Engineering Laboratory (Guy Simes), Cincinnati OH.

7. Generation of Environmental Data Related to Waste Management Activities (Draft). February 1989. ASTM.
INDEX

Accuracy 1, 13, 22, 23', 24
Batch 12, 19, 21, 23'
Bias 2, 3, 17-20, 22, 23'-25, 28
Blank 11, 12, 14, 18-20, 23', 24, 25, 28, 29
 Equipment Rinsate 11, 12, 14, 18, 24'
 Method Blank 19, 24, 25', 28
 Reagent Blank 28'
 Trip Blank 12, 18, 24, 29'
Chain-of-Custody 9, 11, 13, 14, 18, 21, 22
Control Chart 18, 19
Control Sample 11, 12, 18, 19, 23, 24'
Data Quality Objectives (DQO) 1-3, 8, 12, 19, 20, 24', 28
Decision-maker 2, 24
Duplicate 11, 12, 14, 18-20, 23, 24', 25, 27, 28
 Field Duplicate 11, 12, 24, 25', 28
 Matrix Duplicate 12, 19, 20, 24, 25', 28
 Matrix Spike Duplicate 12, 19, 20, 23, 24, 25'
Equipment Blank 11, 24'
 Equipment Rinsate 11, 12, 14, 18, 24'
 Estimated Quantitation Limit (EQL) 24'
Field Duplicate 12, 24, 25', 28
Laboratory Control Sample 19, 25'
Matrix 11, 12, 18-20, 23-25', 26-28
Matrix Duplicate 12, 19, 20, 24, 25', 28
Matrix Spike 12, 18-20, 23, 25', 26, 27
Matrix Spike Duplicate 12, 19, 20, 23, 24, 25'
Method Blank 19, 24, 25', 28
Method Detection Limit (MDL) 18-20, 22, 24, 25'-27
Organic-Free Reagent Water 27', 28
Precision 1-3, 17-20, 22, 24, 25, 27', 28
Project 1-5, 7, 8, 11-14, 17-19, 21, 23, 24, 28'
Quality Assurance Project Plan (QAPjP) 1-9, 11, 12, 14, 15, 18, 20, 22, 23, 28'
RCRA 1, 8, 28'
Reagent Blank 28'
Reagent Grade 28'
Reagent Water 27, 28'
Reference Material 8, 11, 15, 18, 19, 28'
Split Samples 25, 28'
Standard Addition 20, 28'
Standard Curve 26, 28'
Surrogate 18, 20, 22, 29'
Trip Blank 12, 18, 24, 29'

Definition of term.
4.1 SAMPLING CONSIDERATIONS

4.1.1 Introduction

Following the initial and critical step of designing a sampling plan (Chapter Nine) is the implementation of that plan such that a representative sample of the solid waste is collected. Once the sample has been collected it must be stored and preserved to maintain the chemical and physical properties that it possessed at the time of collection. The sample type, type of containers and their preparation, possible forms of contamination, and preservation methods are all items which must be thoroughly examined in order to maintain the integrity of the samples. This section highlights considerations which must be addressed in order to maintain a sample's integrity and representativeness. This section is, however, applicable only to trace analyses.

Quality Control (QC) requirements need not be met for all compounds presented in the Table of Analytes for the method in use, rather, they must be met for all compounds reported. A report of non-detect is considered a quantitative report, and must meet all applicable QC requirements for that compound and the method used.

4.1.2 Sample Handling and Preservation

This section deals separately with volatile and semivolatile organics. Refer to Chapter Two and Table 4-1 of this section for sample containers, sample preservation, and sample holding time information.

Volatile Organics

Standard 40 mL glass screw-cap VOA vials with Teflon lined silicone septa may be used for both liquid and solid matrices. The vials and septa should be washed with soap and water and rinsed with distilled deionized water. After thoroughly cleaning the vials and septa, they should be placed in an oven and dried at 100°C for approximately one hour.

NOTE: Do not heat the septa for extended periods of time (i.e., more than one hour, because the silicone begins to slowly degrade at 105°C).

When collecting the samples, liquids and solids should be introduced into the vials gently to reduce agitation which might drive off volatile compounds. In general, liquid samples should be poured into the vial without introducing any air bubbles within the vial as it is being filled. Should bubbling occur as a result of violent pouring, the sample must be poured out and the vial refilled. The vials should be completely filled at the time of sampling, so that when the septum cap is fitted and sealed, and the vial inverted, no headspace is visible. The sample should be hermetically sealed in the vial at the time of sampling, and must not be opened prior to analysis to preserve their integrity.
due to differing solubility and diffusion properties of gases in LIQUID matrices at different temperatures, it is possible for the sample to generate some headspace during storage. This headspace will appear in the form of micro bubbles, and should not invalidate a sample for volatiles analysis.

The presence of a macro bubble in a sample vial generally indicates either improper sampling technique or a source of gas evolution within the sample. The latter case is usually accompanied by a buildup of pressure within the vial, (e.g. carbonate-containing samples preserved with acid). Studies conducted by the USEPA (EMSL-Ci, unpublished data) indicate that "pea-sized" bubbles (i.e., bubbles not exceeding 1/4 inch or 6 mm in diameter) did not adversely affect volatiles data. These bubbles were generally encountered in wastewater samples, which are more susceptible to variations in gas solubility than are groundwater samples.

At the time of analysis, the aliquot to be analyzed should be taken from the vial with a gas-tight syringe inserted directly through the septum of the vial. Only one analytical sample can be taken from each vial. If these guidelines are not followed, the validity of the data generated from the samples is suspect.

VOA vials for samples with solid or semi-solid matrices (e.g., sludges) should be completely filled as best as possible. The vials should be tapped slightly as they are filled to try and eliminate as much free air space as possible. Two vials should also be filled per sample location.

At least two VOA vials should be filled and labeled immediately at the point at which the sample is collected. They should NOT be filled near a running motor or any type of exhaust system because discharged fumes and vapors may contaminate the samples. The two vials from each sampling location should then be sealed in separate plastic bags to prevent cross-contamination between samples, particularly if the sampled waste is suspected of containing high levels of volatile organics. (Activated carbon may also be included in the bags to prevent cross-contamination from highly contaminated samples). VOA samples may also be contaminated by diffusion of volatile organics through the septum during shipment and storage. To monitor possible contamination, a trip blank prepared from organic-free reagent water (as defined in Chapter One) should be carried throughout the sampling, storage, and shipping process.

Semivolatile Organics (including Pesticides, PCBs and Herbicides.)

Containers used to collect samples for the determination of semivolatile organic compounds should be soap and water washed followed by methanol (or isopropanol) rinsing (see Sec. 4.1.4 for specific instructions on glassware cleaning). The sample containers should be of glass or Teflon, and have screw-caps with Teflon lined septa. In situations where Teflon is not available, solvent-rinsed aluminum foil may be used as a liner. However, acidic or basic samples may react with the aluminum foil, causing eventual contamination of the sample. Plastic containers or lids may NOT be used for the storage of samples due to the possibility of sample contamination from the phthalate esters and other hydrocarbons within the plastic. Sample containers should be filled with care so as to prevent any portion of the collected sample coming in contact with
the sampler's gloves, thus causing contamination. Samples should not be collected or stored in the presence of exhaust fumes. If the sample comes in contact with the sampler (e.g. if an automatic sampler is used), run organic-free reagent water through the sampler and use as a field blank.

4.1.3 Safety

Safety should always be the primary consideration in the collection of samples. A thorough understanding of the waste production process, as well as all of the potential hazards making up the waste, should be investigated whenever possible. The site should be visually evaluated just prior to sampling to determine additional safety measures. Minimum protection of gloves and safety glasses should be worn to prevent sample contact with the skin and eyes. A respirator should be worn even when working outdoors if organic vapors are present. More hazardous sampling missions may require the use of supplied air and special clothing.

4.1.4 Cleaning of Glassware

In the analysis of samples containing components in the parts per billion range, the preparation of scrupulously clean glassware is necessary. Failure to do so can lead to a myriad of problems in the interpretation of the final chromatograms due to the presence of extraneous peaks resulting from contamination. Particular care must be taken with glassware such as Soxhlet extractors, Kuderna-Danish evaporative concentrators, sampling-train components, or any other glassware coming in contact with an extract that will be evaporated to a smaller volume. The process of concentrating the compounds of interest in this operation may similarly concentrate the contaminating substance(s), which may seriously distort the results.

The basic cleaning steps are:

1. Removal of surface residuals immediately after use;
2. Hot soak to loosen and float most particulate material;
3. Hot water rinse to flush away floated particulates;
4. Soak with an oxidizing agent to destroy traces of organic compounds;
5. Hot water rinse to flush away materials loosened by the deep penetrant soak;
6. Distilled water rinse to remove metallic deposits from the tap water;
7. Alcohol, e.g., isopropanol or methanol, rinse to flush off any final traces of organic materials and remove the water; and
8. Flushing the item immediately before use with some of the same solvent that will be used in the analysis.

FOUR - 3
Revision 2
September 1994
Each of these eight fundamental steps are discussed here in the order in which they appeared on the preceding page.

1. As soon possible after glassware (i.e., beakers, pipets, flasks, or bottles) has come in contact with sample or standards, the glassware should be flushed with alcohol before it is placed in the hot detergent soak. If this is not done, the soak bath may serve to contaminate all other glassware placed therein.

2. The hot soak consists of a bath of a suitable detergent in water of 50°C or higher. The detergent, powder or liquid, should be entirely synthetic and not a fatty acid base. There are very few areas of the country where the water hardness is sufficiently low to avoid the formation of some hard-water scum resulting from the reaction between calcium and magnesium salts with a fatty acid soap. This hard-water scum or curd would have an affinity particularly for many chlorinated compounds and, being almost wholly water-insoluble, would deposit on all glassware in the bath in a thin film.

There are many suitable detergents on the wholesale and retail market. Most of the common liquid dishwashing detergents sold at retail are satisfactory but are more expensive than other comparable products sold industrially. Alconox, in powder or tablet form, is manufactured by Alconox, Inc., New York, and is marketed by a number of laboratory supply firms. Sparkleen, another powdered product, is distributed by Fisher Scientific Company.

3. No comments required.

4. The most common and highly effective oxidizing agent for removal of traces of organic compounds is the traditional chromic acid solution made up of concentrated sulfuric acid and potassium or sodium dichromate. For maximum efficiency, the soak solution should be hot (40-50°C). Safety precautions must be rigidly observed in the handling of this solution. Prescribed safety gear should include safety goggles, rubber gloves, and apron. The bench area where this operation is conducted should be covered with fluorocarbon sheeting because spattering will disintegrate any unprotected surfaces.

The potential hazards of using chromic-sulfuric acid mixture are great and have been well publicized. There are now commercially available substitutes that possess the advantage of safety in handling. These are biodegradable concentrates with a claimed cleaning strength equal to the chromic acid solution. They are alkaline, equivalent to ca. 0.1 N NaOH upon dilution, and are claimed to remove dried blood, silicone greases, distillation residues, insoluble organic residues, etc. They are further claimed to remove radioactive traces and will not attack glass or exert a corrosive effect on skin or clothing. One such product is "Chem Solv 2157," manufactured by Mallinckrodt and available through laboratory supply firms. Another comparable product is "Detex," a product of Borer-Chemie, Solothurn, Switzerland.
5, 6, and 7. No comments required.

8. There is always a possibility that between the time of washing and the next use, the glassware could pick up some contamination from either the air or direct contact. To ensure against this, it is good practice to flush the item immediately before use with some of the same solvent that will be used in the analysis.

The drying and storage of the cleaned glassware is of critical importance to prevent the beneficial effects of the scrupulous cleaning from being nullified. Pegboard drying is not recommended. It is recommended that laboratory glassware and equipment be dried at 100°C. Under no circumstances should such small items be left in the open without protective covering. The dust cloud raised by the daily sweeping of the laboratory floor can most effectively recontaminate the clean glassware.

As an alternate to solvent rinsing, the glassware can be heated to a minimum of 300°C to vaporize any organics. Do not use this high temperature treatment on volumetric glassware, glassware with ground glass joints, or sintered glassware.

4.1.5 High Concentration Samples

Cross contamination of trace concentration samples may occur when prepared in the same laboratory with high concentration samples. Ideally, if both type samples are being handled, a laboratory and glassware dedicated solely to the preparation of high concentration samples would be available for this purpose. If this is not feasible, as a minimum when preparing high concentration samples, disposable glassware should be used or, at least, glassware dedicated entirely to the high concentration samples. Avoid cleaning glassware used for both trace and high concentration samples in the same area.
<table>
<thead>
<tr>
<th>Analyte Class</th>
<th>Container</th>
<th>Preservative</th>
<th>Holding Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile Organics</td>
<td>Concentrated Waste Samples</td>
<td>125 mL widemouth glass container with Teflon lined lid</td>
<td>14 days</td>
</tr>
<tr>
<td>Liquid Samples</td>
<td>No Residual Chlorine Present</td>
<td>2 X 40 mL vials with Teflon lined septum caps</td>
<td>14 days</td>
</tr>
<tr>
<td>Residual Chlorine Present</td>
<td>2 X 40 mL vials with Teflon lined septum caps</td>
<td>Collect sample in a 125 mL container which has been pre-preserved with 4 drops of 10% sodium thiosulfate solution. Gently swirl to mix sample and transfer to a 40 mL VOA vial.</td>
<td>14 days</td>
</tr>
<tr>
<td>Acrolein and Acrylonitrile</td>
<td>2 X 40 mL vials with Teflon lined septum caps</td>
<td>Adjust to pH 4-5; cool, 4°C</td>
<td>14 days</td>
</tr>
<tr>
<td>Soil/Sediments and Sludges</td>
<td>125 mL widemouth glass container sealed with a septum</td>
<td>Cool, 4°C</td>
<td>14 days</td>
</tr>
</tbody>
</table>

1 Adjust pH <2 with H$_2$SO$_4$, HCl or solid NaHSO$_4$.

FOUR - 6

Revision 2
September 1994
<table>
<thead>
<tr>
<th>Analyte Class</th>
<th>Container</th>
<th>Preservative</th>
<th>Holding Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semivolatile Organics/Organochlorine Pesticides/PCBs and Herbicides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentrated Waste Samples</td>
<td>125 mL widemouth glass with Teflon lined lid</td>
<td>None</td>
<td>Samples must be extracted within 14 days and extracts analyzed within 40 days following extraction.</td>
</tr>
<tr>
<td>Water Samples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Residual Chlorine Present</td>
<td>1-gal. or 2 x 0.5-gal. or 4 x 1-L, amber glass container with Teflon lined lid</td>
<td>Cool, 4°C</td>
<td>Samples must be extracted within 7 days and extracts analyzed within 40 days following extraction.</td>
</tr>
<tr>
<td>Residual Chlorine Present</td>
<td>1-gal. or 2 x 0.5-gal. or 4 x 1-L, amber glass container with Teflon lined lid</td>
<td>Add 3 mL 10% sodium thiosulfate solution per gallon. Cool, 4°C</td>
<td>Samples must be extracted within 7 days and extracts analyzed within 40 days following extraction.</td>
</tr>
<tr>
<td>Soil/Sediments and Sludges</td>
<td>250 mL widemouth glass container with Teflon lined lid</td>
<td>Cool, 4°C</td>
<td>Samples must be extracted within 14 days and extracts analyzed within 40 days following extraction.</td>
</tr>
</tbody>
</table>

2 Pre-preservation may be performed in the laboratory prior to field use.
4.2 SAMPLE PREPARATION METHODS

4.2.1 EXTRACTIONS AND PREPARATIONS

The following methods are included in this section:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3500A</td>
<td>Organic Extraction and Sample Preparation</td>
</tr>
<tr>
<td>3510B</td>
<td>Separatory Funnel Liquid-Liquid Extraction</td>
</tr>
<tr>
<td>3520B</td>
<td>Continuous Liquid-Liquid Extraction</td>
</tr>
<tr>
<td>3540B</td>
<td>Soxhlet Extraction</td>
</tr>
<tr>
<td>3541</td>
<td>Automated Soxhlet Extraction</td>
</tr>
<tr>
<td>3550A</td>
<td>Ultrasonic Extraction</td>
</tr>
<tr>
<td>3580A</td>
<td>Waste Dilution</td>
</tr>
<tr>
<td>5030A</td>
<td>Purge-and-Trap</td>
</tr>
<tr>
<td>5040A</td>
<td>Analysis of Sorbent Cartridges from Volatile Organic Sampling Train (VOST): Gas Chromatography/Mass Spectrometry Technique</td>
</tr>
<tr>
<td>5041</td>
<td>Protocol for Analysis of Sorbent Cartridges from Volatile Organic Sampling Train (VOST): Wide-bore Capillary Column Technique</td>
</tr>
</tbody>
</table>
METHOD 3500A

ORGANIC EXTRACTION AND SAMPLE PREPARATION

1.0 SCOPE AND APPLICATION

1.1 The 3500 Methods are procedures for quantitatively extracting nonvolatile and semivolatile organic compounds from various sample matrices. Cleanup and/or analysis of the resultant extracts are described in Chapter Two, Sections 2.3.2 and 2.3.1, respectively.

1.2 Method 3580 describes a solvent dilution technique that may be used on non-aqueous nonvolatile and semivolatile organic samples prior to cleanup and/or analysis.

1.3 The 5000 Methods are procedures for preparing samples containing volatile organic compounds for quantitative analysis.

1.4 Refer to the specific method of interest for further details.

2.0 SUMMARY OF METHOD

2.1 3500 Methods: A sample of a known volume or weight is solvent extracted. The resultant extract is dried and then concentrated in a Kuderna-Danish apparatus (if necessary). Other concentration devices or techniques may be used in place of the Kuderna-Danish concentrator if the quality control requirements of the determinative methods are met (Method 8000, Section 8.0).

2.2 5000 Methods: Refer to the specific method of interest.

3.0 INTERFERENCES

3.1 Samples requiring analysis for volatile organic compounds, can be contaminated by diffusion of volatile organics (particularly chlorofluoro-carbons and methylene chloride) through the sample container septum during shipment and storage. A field blank prepared from organic-free reagent water and carried through sampling and subsequent storage and handling can serve as a check on such contamination.

3.2 Solvents, reagents, glassware, and other sample processing hardware may yield artifacts and/or interferences to sample analysis. All these materials must be demonstrated to be free from interferences under the conditions of the analysis by analyzing method blanks. Specific selection of reagents and purification of solvents by distillation in all-glass systems may be required. Refer to Chapter One for specific guidance on quality control procedures.

3.3 Interferences coextracted from the samples will vary considerably from source to source. If analysis of an extracted sample is prevented due to interferences, further cleanup of the sample extract may be necessary. Refer to Method 3600 for guidance on cleanup procedures.

3500A - 1
Revision 1
July 1992
3.4 Phthalate esters contaminate many types of products commonly found in the laboratory. Plastics, in particular, must be avoided because phthalates are commonly used as plasticizers and are easily extracted from plastic materials. Serious phthalate contamination may result at any time if consistent quality control is not practiced.

3.5 Glassware contamination resulting in analyte degradation: Soap residue on glassware may cause degradation of certain analytes. Specifically, aldrin, heptachlor, and most organophosphorus pesticides will degrade in this situation. This problem is especially pronounced with glassware that may be difficult to rinse (e.g., 500 mL K-D flask). These items should be hand-rinsed very carefully to avoid this problem.

4.0 APPARATUS AND MATERIALS

4.1 Refer to the specific method of interest for a description of the apparatus and materials needed.

5.0 REAGENTS

5.1 Refer to the specific method of interest for a description of the solvents needed.

5.2 Organic-free reagent water. All references to water in this method refer to organic-free reagent water as defined in Chapter One.

5.3 Stock standards: Stock solutions may be prepared from pure standard materials or purchased as certified solutions.

5.3.1 Purgeable stock standards: Prepare stock standards in methanol using assayed liquids or gases, as appropriate. Because of the toxicity of some of the organohalides, primary dilutions of these materials should be prepared in a hood.

5.3.1.1 Place about 9.8 mL of methanol in a 10-mL tared ground-glass-stoppered volumetric flask. Allow the flask to stand, unstoppered, for about 10 min or until all alcohol-wetted surfaces have dried. Weigh the flask to the nearest 0.0001 g.

5.3.1.2 Using a 100-μL syringe, immediately add two or more drops of assayed reference material to the flask, then reweigh. The liquid must fall directly into the alcohol without contacting the neck of the flask.

5.3.1.3 Reweigh, dilute to volume, stopper, then mix by inverting the flask several times. Calculate the concentration in milligrams per liter (mg/L) from the net gain in weight. When compound purity is assayed to be 96% or greater, the weight may be used without correction to calculate the concentration of the stock standard. Commercially prepared stock standards may be used at any concentration if they are certified by the manufacturer or by an independent source.
5.3.1.4 Transfer the stock standard solution into a Teflon-sealed screw-cap bottle. Store, with minimal headspace, at -10°C to -20°C and protect from light.

5.3.1.5 All standards must be replaced after 1 month, or sooner if comparison with check standards indicates a problem.

5.3.2 Semivolatile stock standards: Base/neutral and acid stock standards are prepared in methanol. Organochlorine pesticide standards are prepared in acetone.

5.3.2.1 Stock standard solutions should be stored in Teflon-sealed containers at 4°C. The solutions should be checked frequently for stability. These solutions must be replaced after six months, or sooner if comparison with quality control check samples indicate a problem.

5.4 Surrogate standards: A surrogate standard (i.e., a chemically inert compound not expected to occur in an environmental sample) should be added to each sample, blank, and matrix spike sample just prior to extraction or processing. The recovery of the surrogate standard is used to monitor for unusual matrix effects, gross sample processing errors, etc. Surrogate recovery is evaluated for acceptance by determining whether the measured concentration falls within the acceptance limits. Recommended surrogates for different analyte groups follow. However, these compounds, or others that better correspond to the analyte group, may be used for other analyte groups as well. Normally three or more standards are added for each analyte group.

5.4.1 Base/neutral and acid surrogate spiking solutions: The following are recommended surrogate standards.

<table>
<thead>
<tr>
<th>Base/neutral</th>
<th>Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Fluorobiphenyl</td>
<td>2-Fluorophenol</td>
</tr>
<tr>
<td>Nitrobenzene-\textsubscript{d\text{5}}</td>
<td>2,4,6-Tribromophenol</td>
</tr>
<tr>
<td>Terphenyl-\textsubscript{d\text{14}}</td>
<td>Phenol-\textsubscript{d\text{6}}</td>
</tr>
</tbody>
</table>

5.4.1.1 Prepare a surrogate standard spiking solution in methanol that contains the base/neutral compounds at a concentration of 100 mg/L, and the acid compounds at 200 mg/L for water and sediment/soil samples (low- and medium-level). For waste samples, the concentration should be 500 mg/L for base/neruals and 1000 mg/L for acids.

5.4.2 Organochlorine pesticide/PCB surrogate spiking solution: The following are recommended surrogate standards for organochlorine pesticides/PCBs.

<table>
<thead>
<tr>
<th>Organochlorine pesticides/PCBs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dibutylchlorendate (DBC) (if available)</td>
</tr>
<tr>
<td>2,4,5,6-Tetrachloro-meta-xylene (TCMX)</td>
</tr>
</tbody>
</table>

3500A - 3
Revision 1
July 1992
5.4.2.1 Prepare a surrogate standard spiking solution at a concentration of 1 mg/L in acetone for water and sediment/soil samples. For waste samples, the concentration should be 5 mg/L.

5.4.3 Purgeable surrogate spiking solution: The following are recommended surrogate standards for volatile organics.

Purgeable organics

- p-Bromofluorobenzene
- 1,2-Dichloroethane-\textsubscript{d}_4
- Toluene-\textsubscript{d}_6

5.4.3.1 Prepare a surrogate spiking solution (as described in Section 5.3.1 or through secondary dilution of the stock standard) in methanol containing the surrogate standards at a concentration of 25 mg/L.

5.5 Matrix spike standards: Select five or more analytes from each analyte group for use in a spiking solution. The following are recommended matrix spike standard mixtures for a few analyte groups. These compounds, or others that better correspond to the analyte group, may be used for other analyte groups as well.

5.5.1 Base/neutral and acid matrix spiking solution: Prepare a spiking solution in methanol that contains each of the following base/neutral compounds at 100 mg/L and the acid compounds at 200 mg/L for water and sediment/soil samples. The concentration of these compounds should be five times higher for waste samples.

Base/neutral compounds

<table>
<thead>
<tr>
<th>Base/nutruals</th>
<th>Acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>Pentachlorophenol</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>Phenol</td>
</tr>
<tr>
<td>2,4-Dinitrotoluene</td>
<td>2-Chlorophenol</td>
</tr>
<tr>
<td>Pyrene</td>
<td>4-Chloro-3-methylphenol</td>
</tr>
<tr>
<td>N-Nitroso-di-n-propylamine</td>
<td>4-Nitrophenol</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td></td>
</tr>
</tbody>
</table>

5.5.2 Organochlorine pesticide matrix spiking solution: Prepare a spiking solution in acetone or methanol that contains the following pesticides in the concentrations specified for water and sediment/soil. The concentration should be five times higher for waste samples.

Pesticide

<table>
<thead>
<tr>
<th>Pesticide</th>
<th>Concentration (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lindane</td>
<td>0.2</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>0.2</td>
</tr>
<tr>
<td>Aldrin</td>
<td>0.2</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>0.5</td>
</tr>
<tr>
<td>Endrin</td>
<td>0.5</td>
</tr>
<tr>
<td>4,4'-DDT</td>
<td>0.5</td>
</tr>
</tbody>
</table>

3500A - 4

Revision 1
July 1992
5.5.3 Purgeable matrix spiking solution: Prepare a spiking solution in methanol that contains the following compounds at a concentration of 25 mg/L.

Purgeable organics
1,1-Dichloroethene
Trichloroethene
Chlorobenzene
Toluene
Benzene

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1 See the introductory material to the Organic Analyte Chapter, Section 4.1.

7.0 PROCEDURE

7.1 Semivolatile organic sample extraction: Water, soil/sediment, sludge, and waste samples requiring analysis for base/neutral and acid extractables and/or organochlorine pesticides must undergo solvent extraction prior to analysis. This manual contains four methods that may be used for this purpose: Method 3510; Method 3520; Method 3540; and Method 3550. The method that should be used on a particular sample, is highly dependent upon the physical characteristics of that sample. Therefore, review these four methods prior to choosing one in particular. Appropriate surrogate standards and, if necessary, matrix spiking solutions are added to the sample prior to extraction for all four methods.

7.1.1 Method 3510: Applicable to the extraction and concentration of water-insoluble and slightly water-soluble organics from aqueous samples. A measured volume of sample is solvent extracted using a separatory funnel. The extract is dried, concentrated and, if necessary, exchanged into a solvent compatible with further analysis. Method 3520 should be used if an emulsion forms between the solvent-sample phases, which can not be broken up by mechanical techniques.

7.1.2 Method 3520: Applicable to the extraction and concentration of water-insoluble and slightly water-soluble organics from aqueous samples. A measured volume of sample is extracted with an organic solvent in a continuous liquid-liquid extractor. The solvent must have a density greater than that of the sample. The extract is dried, concentrated and, if necessary, exchanged into a solvent compatible with further analysis. The limitations of Method 3510 concerning solvent-sample phase separation do not interfere with this procedure.

7.1.3 Method 3540: This is a procedure for extracting nonvolatile and semivolatile organic compounds from solids such as soils, sludges, and wastes. A solid sample is mixed with anhydrous sodium sulfate, placed into an extraction thimble or between two plugs of glass wool, and extracted using an appropriate solvent in a Soxhlet extractor. The
extract is dried, concentrated and, if necessary, exchanged into a solvent compatible with further analysis.

7.1.4 Method 3550: This method is applicable to the extraction of nonvolatile and semivolatile organic compounds from solids such as soils, sludges, and wastes using the technique of ultrasonic extraction. Two procedures are detailed depending upon the expected concentration of organics in the sample; a low concentration and a high concentration method. In both, a known weight of sample is mixed with anhydrous sodium sulfate and solvent extracted using ultrasonic extraction. The extract is dried, concentrated and, if necessary, exchanged into a solvent compatible with further analysis.

7.1.5 Method 3580: This method describes the technique of solvent dilution of non-aqueous waste samples. It is designed for wastes that may contain organic chemicals at a level greater than 20,000 mg/kg and that are soluble in the dilution solvent. When using this method, the analyst must use caution in determining the correct concentration of spike and surrogate solution to avoid diluting out these compounds when diluting the sample. The loss of surrogate and spike data should only occur in samples containing a high concentration of analytes which is unknown at the time of extraction or where sample interferences could not be eliminated following the best attempts at extract cleanup by the laboratory.

7.2 Volatile organic sample preparation: There are three methods for volatile sample preparation: Method 5030; Method 5040; and direct injection. Method 5030 is the most widely applicable procedure for analysis of volatile organics, while the direct injection technique may have limited applicability to aqueous matrices.

7.2.1 Method 5030: This method describes the technique of purge-and-trap for the introduction of purgeable organics into a gas chromatograph. This procedure is applicable for use with aqueous samples directly and to solids, wastes, soils/sediments, and water-miscible liquids following appropriate preparation. An inert gas is bubbled through the sample, which will efficiently transfer the purgeable organics from the aqueous phase to the vapor phase. The vapor phase is swept through a sorbent trap where the purgeables are trapped. After purging is completed, the trap is heated and backflushed with the inert gas to desorb the purgeables onto a gas chromatographic column. Prior to application of the purge-and-trap procedure, all samples (including blanks, spikes, and duplicates) should be spiked with surrogate standards and, if required, with matrix spiking compounds.

7.2.2 Method 5040: This method is applicable to the investigation of sorbent cartridges from volatile organic sampling train (VOST).

7.3 Sample analysis: Following preparation of a sample by one of the methods described above, the sample is ready for further analysis. For samples requiring volatile organic analysis, application of one of the methods described above is followed directly by gas chromatographic analysis (Methods 8010, 8011, 8015, 8020, 8021, 8030, 8240 and 8260). Samples prepared for semivolatile analysis may, if necessary, undergo cleanup (See Method 3600) prior to application of a specific determinative method.
8.0 QUALITY CONTROL

8.1 Refer to Chapter One for specific guidance on quality control procedures.

8.2 Before processing any samples, the analyst should demonstrate through the analysis of a reagent water blank that all glassware and reagents are interference free. Each time a set of samples is processed, a method blank(s) should be processed as a safeguard against chronic laboratory contamination. The blank samples should be carried through all stages of the sample preparation and measurement.

8.3 Surrogate standards should be added to all samples when specified in the appropriate determinative method in Chapter Four, Section 4.3

8.4 A reagent blank, a matrix spike, and a duplicate or matrix spike duplicate must be performed for each analytical batch (up to a maximum of 20 samples) analyzed.

8.5 For GC or GC/MS analysis, the analytical system performance must be verified by analyzing quality control (QC) check samples. Method 8000, Section 8.0 discusses in detail the process of verification; however, preparation of the QC check sample concentrate is dependent upon the method being evaluated.

8.5.1 Volatile organic QC check samples: QC check sample concentrates containing each analyte of interest are spiked into reagent water (defined as the QC check sample) and analyzed by purge-and-trap (Method 5030). The concentration of each analyte in the QC check sample is 20 μg/L. The evaluation of system performance is discussed in detail in Method 8000, beginning with Paragraph 8.6

8.5.2 Semivolatile organic QC check samples: To evaluate the performance of the analytical method, the QC check samples must be handled in exactly the same manner as actual samples. Therefore, 1.0 mL of the QC check sample concentrate is spiked into each of four 1-L aliquots of reagent water (now called the QC check sample), extracted, and then analyzed by GC. The variety of semivolatile analytes which may be analyzed by GC is such that the concentration of the QC check sample concentrate is different for the different analytical techniques presented in the manual. Method 8000 discusses in detail the procedure of verifying the detection system once the QC check sample has been prepared. The concentrations of the QC check sample concentrate for the various methods are as follows:

8.5.2.1 Method 8040 - Phenols: The QC check sample concentrate should contain each analyte at a concentration of 100 mg/L in 2-propanol.

8.5.2.2 Method 8060 - Phthalate esters: The QC check sample concentrate should contain the following analytes at the following concentrations in acetone: butyl benzyl phthalate, 10 mg/L; bis(2-ethylhexyl) phthalate, 50 mg/L; di-n-octyl phthalate, 50 mg/L; and any other phthalate at 25 mg/L.
8.5.2.3 Method 8070 - Nitrosamines: The QC check sample concentrate should contain each analyte at 20 mg/L in methanol or some other water miscible solvent.

8.5.2.4 Method 8080 - Organochlorine pesticides and PCBs: The QC check sample concentrate should contain each single-component analyte at the following concentrations in acetone or some other water miscible solvent: 4,4’-DDD, 10 mg/L; 4,4’-DDT, 10 mg/L; endosulfan II, 10 mg/L; endosulfan sulfate, 10 mg/L; endrin, 10 mg/L; and any other single-component pesticide at 2 mg/L. If the method is only to be used to analyze PCBs, chlordane, or toxaphene, the QC check sample concentrate should contain the most representative multicomponent parameter at a concentration of 50 mg/L in acetone.

8.5.2.5 Method 8090 - Nitroaromatics and Cyclic Ketones: The QC check sample concentrate should contain each analyte at the following concentrations in acetone: each dinitrotoluene at 20 mg/L; and isophorone and nitrobenzene at 100 mg/L.

8.5.2.6 Method 8100 - Polynuclear aromatic hydrocarbons: The QC check sample concentrate should contain each analyte at the following concentrations in acetonitrile: naphthalene, 100 mg/L;acenaphthylene, 100 mg/L;acenaphthene, 100 mg/L;fluorene, 100 mg/L;phenanthrene, 100 mg/L;anthracene, 100 mg/L;benzo(k)fluoranthene, 5 mg/L;and any other PAH at 10 mg/L.

8.3.2.7 Method 8110 - Haloethers: The QC check sample concentrate should contain each analyte at a concentration of 20 mg/L in methanol or some other water miscible solvent.

8.5.2.8 Method 8120 - Chlorinated hydrocarbons: The QC check sample concentrate should contain each analyte at the following concentrations in acetone: hexachloro-substituted hydrocarbons, 10 mg/L; and any other chlorinated hydrocarbon, 100 mg/L.

8.3.2.9 Method 8140/8141 - Organophosphorus compounds: The QC check sample concentrate should contain each analyte in acetone at a concentration 1,000 times more concentrated than the selected spike concentration.

8.3.2.10 Method 8150 - Chlorinated herbicides: The QC check sample concentrate should contain each analyte in acetone at a concentration 1,000 times more concentrated than the selected spike concentration.

8.3.2.11 Method 8250/8270 - Semivolatile organics: The QC check sample concentrate should contain each analyte in acetone at a concentration of 100 mg/L.

8.3.2.12 Method 8310 - Polynuclear aromatic hydrocarbons: The QC check sample concentrate should contain each analyte at the following concentrations in acetonitrile: naphthalene, 100 mg/L;
acenaphthylene, 100 mg/L; acenaphthene, 100 mg/L; fluorene, 100 mg/L; phenanthrene, 100 mg/L; anthracene, 100 mg/L; benzo(k)fluoranthene, 5 mg/L; and any other PAH at 10 mg/L.

9.0 METHOD PERFORMANCE

9.1 The recovery of surrogate standards is used to monitor unusual matrix effects, sample processing problems, etc. The recovery of matrix spiking compounds indicates the presence or absence of unusual matrix effects.

9.2 The performance of this method will be dictated by the overall performance of the sample preparation in combination with the analytical determinative method.

10.0 REFERENCES

10.1 None required.
METHOD 3510B
SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION

1.0 SCOPE AND APPLICATION

1.1 This method describes a procedure for isolating organic compounds from aqueous samples. The method also describes concentration techniques suitable for preparing the extract for the appropriate determinative methods described in Sec. 4.3 of Chapter Four.

1.2 This method is applicable to the isolation and concentration of water-insoluble and slightly water-soluble organics in preparation for a variety of chromatographic procedures.

2.0 SUMMARY OF METHOD

2.1 A measured volume of sample, usually 1 liter, at a specified pH (see Table 1), is serially extracted with methylene chloride using a separatory funnel. The extract is dried, concentrated (if necessary), and, as necessary, exchanged into a solvent compatible with the cleanup or determinative method to be used (see Table 1 for appropriate exchange solvents).

3.0 INTERFERENCES

3.1 Refer to Method 3500.

3.2 Under basic extraction conditions required to separate analytes for the packed columns of Method 8250, the decomposition of some analytes has been demonstrated. Organochlorine pesticides may dechlorinate, phthalate esters may exchange, and phenols may react to form tannates. These reactions increase with increasing pH, and are decreased by the shorter reaction times available in Method 3510. Methods 3520/8270, 3510/8270, and 3510/8250, respectively, are preferred over Method 3520/8250 for the analysis of these classes of compounds.

4.0 APPARATUS AND MATERIALS

4.1 Separatory funnel - 2 liter, with Teflon stopcock.

4.2 Drying column - 20 mm ID Pyrex chromatographic column with Pyrex glass wool at bottom and a Teflon stopcock.

NOTE: Fritted glass discs are difficult to decontaminate after highly contaminated extracts have been passed through. Columns without frits may be purchased. Use a small pad of Pyrex glass wool to retain the adsorbent. Prewash the glass wool pad with 50 mL of acetone followed by 50 mL of elution solvent prior to packing the column with adsorbent.

3510B - 1
Revision 2
September 1994
4.3 Kuderna-Danish (K-D) apparatus.

4.3.1 Concentrator tube - 10 mL, graduated (Kontes K-570050-1025 or equivalent). A ground-glass stopper is used to prevent evaporation of extracts.

4.3.2 Evaporation flask - 500 mL (Kontes K-570001-500 or equivalent). Attach to concentrator tube with springs, clamps, or equivalent.

4.3.3 Snyder column - Three ball macro (Kontes K-503000-0121 or equivalent).

4.3.4 Snyder column - Two ball micro (Kontes K-569001-0219 or equivalent).

4.3.5 Springs - 1/2 inch (Kontes K-662750 or equivalent).

4.4 Boiling chips - Solvent extracted, approximately 10/40 mesh (silicon carbide or equivalent).

4.5 Water bath - Heated, with concentric ring cover, capable of temperature control (±5°C). The bath should be used in a hood.

4.6 Vials - 2 mL, glass with Teflon lined screw-caps or crimp tops.

4.7 pH indicator paper - pH range including the desired extraction pH.

4.8 Erlenmeyer flask - 250 mL.

4.9 Syringe - 5 mL.

4.10 Graduated cylinder - 1 liter.

5.0 REAGENTS

5.1 Reagent grade chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination. Reagents should be stored in glass to prevent the leaching of contaminants from plastic containers.

5.2 Organic-free reagent water - All references to water in this method refer to organic-free reagent water, as defined in Chapter One.

5.3 Sodium hydroxide solution (1ON), NaOH. Dissolve 40 g NaOH in organic-free reagent water and dilute to 100 mL.

5.4 Sodium sulfate (granular, anhydrous), Na₂SO₄. Purify by heating at 400°C for 4 hours in a shallow tray, or by precleaning the sodium sulfate with
methylene chloride. If the sodium sulfate is precleaned with methylene chloride, a method blank must be analyzed, demonstrating that there is no interference from the sodium sulfate.

5.5 Sulfuric acid solution (1:1 v/v), H₂SO₄. Slowly add 50 mL of H₂SO₄ (sp. gr. 1.84) to 50 mL of organic-free reagent water.

5.6 Extraction/exchange solvents

5.6.1 Methylene chloride, CH₂Cl₂ - Pesticide quality or equivalent.
5.6.2 Hexane, C₆H₁₄ - Pesticide quality or equivalent.
5.6.3 2-Propanol, CH₃CH(OH)CH₃ - Pesticide quality or equivalent.
5.6.4 Cyclohexane, C₆H₁₂ - Pesticide quality or equivalent.
5.6.5 Acetonitrile, CH₃CN - Pesticide quality or equivalent.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1 See the introductory material to this chapter, Organic Analytes, Sec. 4.1.

7.0 PROCEDURE

7.1 Using a 1 liter graduated cylinder, measure 1 liter (nominal) of sample and transfer it quantitatively to the separatory funnel. If high concentrations are anticipated, a smaller volume may be used and then diluted with organic-free reagent water to 1 liter. Add 1.0 mL of the surrogate standards to all samples, spikes, and blanks (see Method 3500 and the determinative method to be used, for details on the surrogate standard solution and the matrix spike solution). For the sample in each analytical batch selected for spiking, add 1.0 mL of the matrix spiking standard. For base/neutral–acid analysis, the amount added of the surrogates and matrix spiking compounds should result in a final concentration of 100 ng/µL of each base/neutral analyte and 200 ng/µL of each acid analyte in the extract to be analyzed (assuming a 1 µL injection). If Method 3640, Gel-Permeation Cleanup, is to be used, add twice the volume of surrogates and matrix spiking compounds since half the extract is lost due to loading of the GPC column.

7.2 Check the pH of the sample with wide-range pH paper and, if necessary, adjust the pH to that indicated in Table 1 for the specific determinative method that will be used to analyze the extract.

7.3 Add 60 mL of methylene chloride to the separatory funnel.

7.4 Seal and shake the separatory funnel vigorously for 1-2 minutes with periodic venting to release excess pressure.

3510B - 3

Revision 2
September 1994
NOTE: Methylene chloride creates excessive pressure very rapidly; therefore, initial venting should be done immediately after the separatory funnel has been sealed and shaken once. Venting of the separatory funnel should be into a hood to avoid needless exposure of the analyst to solvent vapors.

7.5 Allow the organic layer to separate from the water phase for a minimum of 10 minutes. If the emulsion interface between layers is more than one-third the size of the solvent layer, the analyst must employ mechanical techniques to complete the phase separation. The optimum technique depends upon the sample and may include stirring, filtration of the emulsion through glass wool, centrifugation, or other physical methods. Collect the solvent extract in an Erlenmeyer flask. If the emulsion cannot be broken (recovery of < 80% of the methylene chloride, corrected for the water solubility of methylene chloride), transfer the sample, solvent, and emulsion into the extraction chamber of a continuous extractor and proceed as described in Method 3520, Continuous Liquid-Liquid Extraction.

7.6 Repeat the extraction two more times using fresh portions of solvent (Secs. 7.3 through 7.5). Combine the three solvent extracts.

7.7 If further pH adjustment and extraction is required, adjust the pH of the aqueous phase to the desired pH indicated in Table 1. Serially extract three times with 60 mL of methylene chloride, as outlined in Secs. 7.3 through 7.5. Collect and combine the extracts and label the combined extract appropriately.

7.8 If performing GC/MS analysis (Method 8270), the acid/neutral and base extracts may be combined prior to concentration. However, in some situations, separate concentration and analysis of the acid/neutral and base extracts may be preferable (e.g. if for regulatory purposes the presence or absence of specific acid/neutral or base compounds at low concentrations must be determined, separate extract analyses may be warranted).

7.9 Perform the concentration (if necessary) using the Kuderna-Danish (K-D) Technique (Secs. 7.10.1 through 7.10.4).

7.10 K-D Technique

7.10.1 Assemble a Kuderna-Danish (K-D) concentrator by attaching a 10 mL concentrator tube to a 500 mL evaporation flask. Dry the extract by passing it through a drying column containing about 10 cm of anhydrous sodium sulfate. Collect the dried extract in a K-D concentrator. Rinse the Erlenmeyer flask, which contained the solvent extract, with 20-30 mL of methylene chloride and add it to the column to complete the quantitative transfer.

7.10.2 Add one or two clean boiling chips to the flask and attach a three ball Snyder column. Prewet the Snyder column by adding about 1 mL of methylene chloride to the top of the column. Place the K-D apparatus on a hot water bath (15-20°C above the boiling point of the solvent) so that the concentrator tube is partially immersed in the hot water and the entire lower rounded surface of the flask is bathed with hot
vapor. Adjust the vertical position of the apparatus and the water temperature as required to complete the concentration in 10-20 minutes. At the proper rate of distillation the balls of the column will actively chatter, but the chambers will not flood. When the apparent volume of liquid reaches 1 mL, remove the K-D apparatus from the water bath and allow it to drain and cool for at least 10 minutes.

7.10.3 If a solvent exchange is required (as indicated in Table 1), momentarily remove the Snyder column, add 50 mL of the exchange solvent, a new boiling chip, and reattach the Snyder column. Concentrate the extract, as described in Sec. 7.11, raising the temperature of the water bath, if necessary, to maintain proper distillation.

7.10.4 Remove the Snyder column and rinse the flask and its lower joints into the concentrator tube with 1-2 mL of methylene chloride or exchange solvent. If sulfur crystals are a problem, proceed to Method 3660 for cleanup. The extract may be further concentrated by using the technique outlined in Sec. 7.11 or adjusted to 10.0 mL with the solvent last used.

7.11 If further concentration is indicated in Table 1, either the micro-Snyder column technique (7.11.1) or nitrogen blowdown technique (7.11.2) is used to adjust the extract to the final volume required.

7.11.1 Micro-Snyder Column Technique

7.11.1.1 If further concentration is indicated in Table 1, add another clean boiling chip to the concentrator tube and attach a two ball micro-Snyder column. Prewet the column by adding 0.5 mL of methylene chloride or exchange solvent to the top of the column. Place the K-D apparatus in a hot water bath so that the concentrator tube is partially immersed in the hot water. Adjust the vertical position of the apparatus and the water temperature, as required, to complete the concentration in 5-10 minutes. At the proper rate of distillation the balls of the column will actively chatter, but the chambers will not flood. When the apparent volume of liquid reaches 0.5 mL, remove the K-D apparatus from the water bath and allow it to drain and cool for at least 10 minutes. Remove the Snyder column and rinse the flask and its lower joints into the concentrator tube with 0.2 mL of extraction solvent. Adjust the final volume to 1.0-2.0 mL, as indicated in Table 1, with solvent.

7.11.2 Nitrogen Blowdown Technique

7.11.2.1 Place the concentrator tube in a warm bath (35°C) and evaporate the solvent volume to 0.5 mL using a gentle stream of clean, dry nitrogen (filtered through a column of activated carbon).

CAUTION: New plastic tubing must not be used between the carbon trap and the sample, since it may introduce interferences.

3510B - 5
Revision 2
September 1994
7.11.2.2 The internal wall of the tube must be rinsed down several times with methylene chloride or appropriate solvent during the operation. During evaporation, the tube solvent level must be positioned to avoid water condensation. Under normal procedures, the extract must not be allowed to become dry.

CAUTION: When the volume of solvent is reduced below 1 ml, semivolatile analytes may be lost.

7.12 The extract may now be analyzed for the target analytes using the appropriate determinative technique(s) (see Sec. 4.3 of this Chapter). If analysis of the extract will not be performed immediately, stopper the concentrator tube and store refrigerated. If the extract will be stored longer than 2 days it should be transferred to a vial with a Teflon lined screw-cap or crimp top, and labeled appropriately.

8.0 QUALITY CONTROL

8.1 Any reagent blanks or matrix spike samples should be subjected to exactly the same analytical procedures as those used on actual samples.

8.2 Refer to Chapter One for specific quality control procedures and Method 3500 for extraction and sample preparation procedures.

9.0 METHOD PERFORMANCE

9.1 Refer to the determinative methods for performance data.

10.0 REFERENCES

TABLE 1.
SPECIFIC EXTRACTION CONDITIONS FOR VARIOUS DETERMINATIVE METHODS

<table>
<thead>
<tr>
<th>Determinative method</th>
<th>Initial extraction pH</th>
<th>Secondary extraction pH</th>
<th>Exchange solvent required for analysis</th>
<th>Exchange solvent required for cleanup</th>
<th>Volume of extract required for cleanup (mL)</th>
<th>Final extract volume for analysis (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8040</td>
<td><2</td>
<td>none</td>
<td>2-propanol</td>
<td>hexane</td>
<td>1.0</td>
<td>1.0, 10.0*</td>
</tr>
<tr>
<td>8060</td>
<td>as received</td>
<td>none</td>
<td>hexane</td>
<td>hexane</td>
<td>2.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8061</td>
<td>as received</td>
<td>none</td>
<td>hexane</td>
<td>hexane</td>
<td>2.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8070</td>
<td>as received</td>
<td>none</td>
<td>methylene chloride</td>
<td>hexane</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8080</td>
<td>5-9</td>
<td>none</td>
<td>hexane</td>
<td>hexane</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8081</td>
<td>5-9</td>
<td>none</td>
<td>hexane</td>
<td>hexane</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8090</td>
<td>5-9</td>
<td>none</td>
<td>hexane</td>
<td>hexane</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>8100</td>
<td>as received</td>
<td>none</td>
<td>none</td>
<td>cyclohexane</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>8110</td>
<td>as received</td>
<td>none</td>
<td>hexane</td>
<td>hexane</td>
<td>2.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8120</td>
<td>as received</td>
<td>none</td>
<td>hexane</td>
<td>hexane</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>8121</td>
<td>as received</td>
<td>none</td>
<td>hexane</td>
<td>hexane</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>8140</td>
<td>6-8</td>
<td>none</td>
<td>hexane</td>
<td>hexane</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8141</td>
<td>as received</td>
<td>none</td>
<td>hexane</td>
<td>hexane</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8250<sup>bc</sup></td>
<td>>11</td>
<td><2</td>
<td>none</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>8270<sup>bd</sup></td>
<td><2</td>
<td>>11</td>
<td>none</td>
<td>acetonitrile</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>8310</td>
<td>as received</td>
<td>none</td>
<td>methylene chloride</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>8321</td>
<td>as received</td>
<td>none</td>
<td>methylene chloride</td>
<td>methylene chloride</td>
<td>10.0</td>
<td>0.0 (dry)</td>
</tr>
</tbody>
</table>

a Phenols may be analyzed, by Method 8040, using a 1.0 mL 2-propanol extract by GC/FID. Method 8040 also contains an optional derivatization procedure for phenols which results in a 10 mL hexane extract to be analyzed by GC/ECD.

b The specificity of GC/MS may make cleanup of the extracts unnecessary. Refer to Method 3600 for guidance on the cleanup procedures available if required.

c Loss of phthalate esters, organochlorine pesticides and phenols can occur under these extraction conditions (see Sec. 3.2).

d Extraction pH sequence may be reversed to better separate acid and neutral waste components. Excessive pH adjustments may result in the loss of some analytes (see Sec. 3.2).
START

7.1 Add surrogate standards to all samples, spikes, and blanks.

7.2 Check and adjust pH.

7.3 - 7.6 Extract 3 times.

7.7 Collect and combine extracts and label.

7.8 GC/MS analysis (Method 8270) being performed?

7.9 - 7.11 Concentrate extract.

7.12 Ready for analysis.

7.8 Combine base/neutral extracts prior to concentration.

Further extractions required?

Yes

No

7.7 Collect and combine extracts and label.

Revision 2
September 1994
1.0 SCOPE AND APPLICATION

1.1 This method describes a procedure for isolating organic compounds from aqueous samples. The method also describes concentration techniques suitable for preparing the extract for the appropriate determinative steps described in Sec. 4.3 of Chapter Four.

1.2 This method is applicable to the isolation and concentration of water-insoluble and slightly soluble organics in preparation for a variety of chromatographic procedures.

1.3 Method 3520 is designed for extraction solvents with greater density than the sample. Continuous extraction devices are available for extraction solvents that are less dense than the sample. The analyst must demonstrate the effectiveness of any such automatic extraction device before employing it in sample extraction.

2.0 SUMMARY OF METHOD

2.1 A measured volume of sample, usually 1 liter, is placed into a continuous liquid-liquid extractor, adjusted, if necessary, to a specific pH (see Table 1), and extracted with organic solvent for 18-24 hours. The extract is dried, concentrated (if necessary), and, as necessary, exchanged into a solvent compatible with the cleanup or determinative method being employed (see Table 1 for appropriate exchange solvents).

3.0 INTERFERENCES

3.1 Refer to Method 3500.

3.2 Under basic extraction conditions required to separate analytes for the packed columns of Method 8250, the decomposition of some analytes has been demonstrated. Organochlorine pesticides may dechlorinate, phthalate esters may exchange, and phenols may react to form tannates. These reactions increase with increasing pH, and are decreased by the shorter reaction times available in Method 3510. Methods 3520/8270, 3510/8270, and 3510/8250, respectively, are preferred over Method 3520/8250 for the analysis of these classes of compounds.

4.0 APPARATUS AND MATERIALS

4.1 Continuous liquid-liquid extractor - Equipped with Teflon or glass connecting joints and stopcocks requiring no lubrication (Kontes 584200-0000, 584500-0000, 583250-0000, or equivalent).

4.2 Drying column - 20 mm ID Pyrex chromatographic column with Pyrex glass wool at bottom and a Teflon stopcock.
NOTE: Fritted glass discs are difficult to decontaminate after highly contaminated extracts have been passed through. Columns without frits may be purchased. Use a small pad of Pyrex glass wool to retain the adsorbent. Prewash the glass wool pad with 50 mL of acetone followed by 50 mL of elution solvent prior to packing the column with adsorbent.

4.3 Kuderna-Danish (K-D) apparatus

4.3.1 Concentrator tube - 10 mL graduated (Kontes K-570050-1025 or equivalent). A ground glass stopper is used to prevent evaporation of extracts.

4.3.2 Evaporation flask - 500 mL (Kontes K-570001-500 or equivalent). Attach to concentrator tube with springs, clamps, or equivalent.

4.3.3 Snyder column - Three ball macro (Kontes K-503000-0121 or equivalent).

4.3.4 Snyder column - Two ball micro (Kontes K-569001-0219 or equivalent).

4.3.5 Springs - 1/2 inch (Kontes K-662750 or equivalent).

4.4 Boiling chips - Solvent extracted, approximately 10/40 mesh (silicon carbide or equivalent).

4.5 Water bath - Heated, with concentric ring cover, capable of temperature control (± 5°C). The bath should be used in a hood.

4.6 Vials - 2 mL, glass with Teflon lined screw-caps or crimp tops.

4.7 pH indicator paper - pH range including the desired extraction pH.

4.8 Heating mantle - Rheostat controlled.

4.9 Syringe - 5 mL.

5.0 REAGENTS

5.1 Reagent grade chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination. Reagents should be stored in glass to prevent the leaching of contaminants from plastic containers.

5.2 Organic-free reagent water - All references to water in this method refer to organic-free reagent water, as defined in Chapter One.
5.3 Sodium hydroxide solution (10N), NaOH. Dissolve 40 g NaOH in organic-free reagent water and dilute to 100 mL.

5.4 Sodium sulfate (granular, anhydrous), Na₂SO₄. Purify by heating at 400°C for 4 hours in a shallow tray, or by precleaning the sodium sulfate with methylene chloride. If the sodium sulfate is precleaned with methylene chloride, a method blank must be analyzed, demonstrating that there is no interference from the sodium sulfate.

5.5 Sulfuric acid solution (1:1 v/v), H₂SO₄. Slowly add 50 mL of H₂SO₄ (sp. gr. 1.84) to 50 mL of organic-free reagent water.

5.6 Extraction/exchange solvents
 5.6.1 Methylene chloride, CH₂Cl₂ - Pesticide quality or equivalent.
 5.6.2 Hexane, C₆H₁₄ - Pesticide quality or equivalent.
 5.6.3 2-Propanol, (CH₃)₂CHOH - Pesticide quality or equivalent.
 5.6.4 Cyclohexane, C₆H₁₂ - Pesticide quality or equivalent.
 5.6.5 Acetonitrile, CH₃CN - Pesticide quality or equivalent.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1 See the introductory material to this chapter, Organic Analytes, Sec. 4.1.

7.0 PROCEDURE

7.1 Using a 1 liter graduated cylinder, measure out 1 liter (nominal) of sample and transfer it quantitatively to the continuous extractor. If high concentrations are anticipated, a smaller volume may be used and then diluted with organic-free reagent water to 1 liter. Check the pH of the sample with wide-range pH paper and adjust the pH, if necessary, to the pH indicated in Table 1 using 1:1 (V/V) sulfuric acid or 10 N sodium hydroxide. Pipet 1.0 mL of the surrogate standard spiking solution into each sample into the extractor and mix well. (See Method 3500 and the determinative method to be used, for details on the surrogate standard solution and the matrix spike solution.) For the sample in each analytical batch selected for spiking, add 1.0 mL of the matrix spiking standard. For base/neutral-acid analysis, the amount of the surrogates and matrix spiking compounds added to the sample should result in a final concentration of 100 ng/µL of each base/neutral analyte and 200 ng/µL of each acid analyte in the extract to be analyzed (assuming a 1 µL injection). If Method 3640, Gel-Permeation Cleanup, is to be used, add twice the volume of surrogates and matrix spiking compounds since half the extract is lost due to loading of the GPC column.

7.2 Add 300-500 mL of methylene chloride to the distilling flask. Add several boiling chips to the flask.
7.3 Add sufficient water to the extractor to ensure proper operation and extract for 18-24 hours.

7.4 Allow to cool; then detach the boiling flask. If extraction at a secondary pH is not required (see Table 1), the extract is dried and concentrated using one of the techniques referred to in Sec. 7.7.

7.5 Carefully, while stirring, adjust the pH of the aqueous phase to the second pH indicated in Table 1. Attach a clean distilling flask containing 500 mL of methylene chloride to the continuous extractor. Extract for 18-24 hours, allow to cool, and detach the distilling flask.

7.6 If performing GC/MS analysis (Method 8270), the acid/neutral and base extracts may be combined prior to concentration. However, in some situations, separate concentration and analysis of the acid/neutral and base extracts may be preferable (e.g. if for regulatory purposes the presence or absence of specific acid/neutral and base compounds at low concentrations must be determined, separate extract analyses may be warranted).

7.7 Perform concentration (if necessary) using the Kuderna-Danish (K-D) Technique (Secs. 7.8.1 through 7.8.4).

7.8 K-D Technique

7.8.1 Assemble a Kuderna-Danish (K-D) concentrator by attaching a 10 mL concentrator tube to a 500 mL evaporation flask. Dry the extract by passing it through a drying column containing about 10 cm of anhydrous sodium sulfate. Collect the dried extract in a K-D concentrator. Rinse the flask which contained the solvent extract with 20-30 mL of methylene chloride and add it to the column to complete the quantitative transfer.

7.8.2 Add one or two clean boiling chips to the flask and attach a three ball Snyder column. Prewet the Snyder column by adding about 1 mL of methylene chloride to the top of the column. Place the K-D apparatus on a hot water bath (15-20°C above the boiling point of the solvent) so that the concentrator tube is partially immersed in the hot water and the entire lower rounded surface of the flask is bathed with hot vapor. Adjust the vertical position of the apparatus and the water temperature, as required, to complete the concentration in 10-20 minutes. At the proper rate of distillation the balls of the column will actively chatter, but the chambers will not flood. When the apparent volume of liquid reaches 1 mL, remove the K-D apparatus from the water bath and allow it to drain and cool for at least 10 minutes. Remove the Snyder column and rinse the flask and its lower joints into the concentrator tube with 1-2 mL of extraction solvent.

7.8.3 If a solvent exchange is required (as indicated in Table 1), momentarily remove the Snyder column, add 50 mL of the exchange solvent, a new boiling chip, and reattach the Snyder column. Concentrate the extract, as described in Sec. 7.9, raising the temperature of the water bath, if necessary, to maintain proper distillation.
7.8.4 Remove the Snyder column and rinse the flask and its lower joints into the concentrator tube with 1-2 mL of methylene chloride or exchange solvent. If sulfur crystals are a problem, proceed to Method 3660 for cleanup. The extract may be further concentrated by using the techniques outlined in Sec. 7.9 or adjusted to 10.0 mL with the solvent last used.

7.9 If further concentration is indicated in Table 1, either the micro-Snyder column technique (7.9.1) or nitrogen blowdown technique (7.9.2) is used to adjust the extract to the final volume required.

7.9.1 Micro-Snyder Column Technique

7.9.1.1 Add another one or two clean boiling chips to the concentrator tube and attach a two ball micro-Snyder column. Prewet the column by adding 0.5 mL of methylene chloride or exchange solvent to the top of the column. Place the K-D apparatus in a hot water bath so that the concentrator tube is partially immersed in the hot water. Adjust the vertical position of the apparatus and the water temperature, as required, to complete the concentration in 5-10 minutes. At the proper rate of distillation the balls of the column will actively chatter, but the chambers will not flood. When the apparent volume of liquid reaches 0.5 mL, remove the K-D apparatus from the water bath and allow it to drain and cool for at least 10 minutes. Remove the Snyder column, rinse the flask and its lower joints into the concentrator tube with 0.2 mL of methylene chloride or exchange solvent, and adjust the final volume to 0.9 to 2.0 mL, as indicated in Table 1, with solvent.

7.9.2 Nitrogen Blowdown Technique

7.9.2.1 Place the concentrator tube in a warm bath (35°C) and evaporate the solvent volume to 0.5 mL using a gentle stream of clean, dry nitrogen (filtered through a column of activated carbon).

CAUTION: New plastic tubing must not be used between the carbon trap and the sample, since it may introduce interferences.

7.9.2.2 The internal wall of the tube must be rinsed down several times with methylene chloride or appropriate solvent during the operation. During evaporation, the tube solvent level must be positioned to avoid water condensation. Under normal procedures, the extract must not be allowed to become dry.

CAUTION: When the volume of solvent is reduced below 1 mL, semivolatile analytes may be lost.

7.10 The extract may now be analyzed for the target analytes using the appropriate determinative technique(s) (see Sec. 4.3 of this Chapter). If analysis of the extract will not be performed immediately, stopper the concentrator tube and store refrigerated. If the extract will be stored longer
than 2 days it should be transferred to a vial with a Teflon lined screw-cap or crimp top, and labeled appropriately.

8.0 QUALITY CONTROL

8.1 Any reagent blanks, matrix spike, or replicate samples should be subjected to exactly the same analytical procedures as those used on actual samples.

8.2 Refer to Chapter One for specific quality control procedures and Method 3500 for extraction and sample-preparation procedures.

9.0 METHOD PERFORMANCE

9.1 Refer to the determinative methods for performance data.

10.0 REFERENCES

<table>
<thead>
<tr>
<th>Determinative Method</th>
<th>Initial Extraction pH</th>
<th>Secondary Extraction pH</th>
<th>Exchange Solvent Required for Analysis</th>
<th>Exchange Solvent Required for Cleanup</th>
<th>Volume of Extract Required for Cleanup (mL)</th>
<th>Final Extract Volume for Analysis (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8040</td>
<td>2</td>
<td>none</td>
<td>2-propanol</td>
<td>hexane</td>
<td>1.0</td>
<td>1.0, 10.0*</td>
</tr>
<tr>
<td>8060</td>
<td>as received</td>
<td>none</td>
<td>hexane</td>
<td>hexane</td>
<td>2.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8061</td>
<td>as received</td>
<td>none</td>
<td>hexane</td>
<td>hexane</td>
<td>2.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8070</td>
<td>as received</td>
<td>none</td>
<td>methanol</td>
<td>methylene chloride</td>
<td>2.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8080</td>
<td>5-9</td>
<td>none</td>
<td>hexane</td>
<td>hexane</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8081</td>
<td>5-9</td>
<td>none</td>
<td>hexane</td>
<td>hexane</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8090</td>
<td>5-9</td>
<td>none</td>
<td>hexane</td>
<td>hexane</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>8100</td>
<td>as received</td>
<td>none</td>
<td>hexane</td>
<td>cyclohexane</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>8110</td>
<td>as received</td>
<td>none</td>
<td>hexane</td>
<td>hexane</td>
<td>2.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8120</td>
<td>as received</td>
<td>none</td>
<td>hexane</td>
<td>hexane</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>8121</td>
<td>as received</td>
<td>none</td>
<td>hexane</td>
<td>hexane</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>8140</td>
<td>6-8</td>
<td>none</td>
<td>hexane</td>
<td>hexane</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8141</td>
<td>as received</td>
<td>none</td>
<td>hexane</td>
<td>hexane</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8250<sup>b,c</sup></td>
<td>>11</td>
<td><2</td>
<td>none</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>8270<sup>b,d</sup></td>
<td><2</td>
<td>>11</td>
<td>none</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>8310</td>
<td>as received</td>
<td>none</td>
<td>acetonitrile</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>8321</td>
<td>as received</td>
<td>none</td>
<td>methanol</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>83410</td>
<td>as received</td>
<td>none</td>
<td>methylene chloride</td>
<td>methylene chloride</td>
<td>10.0</td>
<td>0.0 (dry)</td>
</tr>
</tbody>
</table>

* Phenols may be analyzed, by Method 8040, using a 1.0 mL 2-propanol extract by GC/FID. Method 8040 also contains an optional derivatization procedure for phenols which results in a 10 mL hexane extract to be analyzed by GC/ECD.

* The specificity of GC/MS may make cleanup of the extracts unnecessary. Refer to Method 3600 for guidance on the cleanup procedures available if required.

* Loss of phthalate esters, organochlorine pesticides and phenols can occur under these extraction conditions (see Sec. 3.2).

* If further separation of major acid and neutral components is required, Method 3650, Acid-Base Partition Cleanup, is recommended. Reversal of the Method 8270 pH sequence is not recommended as analyte losses are more severe under the base first continuous extraction (see Sec. 3.2).
7.1 Add appropriate surrogate and matrix spiking solutions.

7.2 Add methylene chloride to distilling flask.

7.3 Add reagent water to extractor; extract for 18-24 hours.

7.5 Adjust pH of aqueous phase; extract for 18-24 hours with clean flask.

7.6 GC/MS analysis (Method 8270) performed?
 Yes
 7.6 Combine acid and base/neutral extracts prior to concentration.
 No

7.7 - 7.8 Concentrate extract.

7.8.3 Is solvent exchange required?
 Yes
 7.8.3 Add exchange solvent; concentration extract.
 No

7.9 Further concentrate extract if necessary; adjust final volume.

7.10 Analyze using organic techniques.

8000 Series Methods
METHOD 3540B
SOXHLET EXTRACTION

1.0 SCOPE AND APPLICATION

1.1 Method 3540 is a procedure for extracting nonvolatile and semi-volatile organic compounds from solids such as soils, sludges, and wastes. The Soxhlet extraction process ensures intimate contact of the sample matrix with the extraction solvent.

1.2 This method is applicable to the isolation and concentration of water insoluble and slightly water soluble organics in preparation for a variety of chromatographic procedures.

2.0 SUMMARY OF METHOD

2.1 The solid sample is mixed with anhydrous sodium sulfate, placed in an extraction thimble or between two plugs of glass wool, and extracted using an appropriate solvent in a Soxhlet extractor. The extract is then dried, concentrated (if necessary), and, as necessary, exchanged into a solvent compatible with the cleanup or determinative step being employed.

3.0 INTERFERENCES

3.1 Refer to Method 3500.

4.0 APPARATUS AND MATERIALS

4.1 Soxhlet extractor - 40 mm ID, with 500 mL round bottom flask.

4.2 Drying column - 20 mm ID Pyrex chromatographic column with Pyrex glass wool at bottom.

NOTE: Fritted glass discs are difficult to decontaminate after highly contaminated extracts have been passed through. Columns without frits may be purchased. Use a small pad of Pyrex glass wool to retain the adsorbent. Prewash the glass wool pad with 50 mL of acetone followed by 50 mL of elution solvent prior to packing the column with adsorbent.

4.3 Kuderna-Danish (K-D) apparatus

4.3.1 Concentrator tube - 10 mL, graduated (Kontes K-570050-1025 or equivalent). A ground glass stopper is used to prevent evaporation of extracts.

4.3.2 Evaporation flask - 500 mL (Kontes K-570001-500 or equivalent). Attach to concentrator tube with springs, clamps, or equivalent.
4.3.3 Snyder column - Three ball macro (Kontes K-503000-0121 or equivalent).

4.3.4 Snyder column - Two ball micro (Kontes K-569001-0219 or equivalent).

4.3.5 Springs - 1/2 inch (Kontes K-662750 or equivalent).

4.4 Boiling chips - Solvent extracted, approximately 10/40 mesh (silicon carbide or equivalent).

4.5 Water bath - Heated, with concentric ring cover, capable of temperature control (± 5°C). The bath should be used in a hood.

4.6 Vials - Glass, 2 mL capacity, with Teflon lined screw or crimp top.

4.7 Glass or paper thimble or glass wool - Contaminant free.

4.8 Heating mantle - Rheostat controlled.

4.9 Disposable glass pasteur pipet and bulb.

4.10 Apparatus for determining percent dry weight.

4.10.1 Oven - Drying.

4.10.2 Desiccator.

4.10.3 Crucibles - Porcelain or disposable aluminum.

4.11 Apparatus for grinding

4.12 Analytical balance - 0.0001 g.

5.0 REAGENTS

5.1 Reagent grade inorganic chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.

5.2 Organic-free reagent water. All references to water in this method refer to organic-free reagent water, as defined in Chapter One.

5.3 Sodium sulfate (granular, anhydrous), Na₂SO₄. Purify by heating at 400°C for 4 hours in a shallow tray, or by precleaning the sodium sulfate with methylene chloride. If the sodium sulfate is precleaned with methylene chloride, a method blank must be analyzed, demonstrating that there is no interference from the sodium sulfate.
5.4 Extraction solvents

5.4.1 Soil/sediment and aqueous sludge samples shall be extracted using either of the following solvent systems:

5.4.1.1 Acetone/Hexane (1:1) (v/v), CH₃COCH₃/C₆H₁₄. Pesticide quality or equivalent.

NOTE: This solvent system has lower disposal cost and lower toxicity.

5.4.1.2 Methylene chloride/Acetone (1:1 v/v), CH₂Cl₂/CH₃COCH₃. Pesticide quality or equivalent.

5.4.2 Other samples shall be extracted using the following:

5.4.2.1 Methylene chloride, CH₂Cl₂. Pesticide quality or equivalent.

5.4.2.2 Toluene/Methanol (10:1) (v/v), C₆H₅CH₃/CH₃OH. Pesticide quality or equivalent.

5.5 Exchange solvents

5.5.1 Hexane, C₆H₁₄. Pesticide quality or equivalent.

5.5.2 2-Propanol, (CH₃)₂CHOH. Pesticide quality or equivalent.

5.5.3 Cyclohexane, C₆H₁₂. Pesticide quality or equivalent.

5.5.4 Acetonitrile, CH₃CN. Pesticide quality or equivalent.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1 See the introductory material to this chapter, Organic Analysis, Sec. 4.1.

7.0 PROCEDURE

7.1 Sample Handling

7.1.1 Sediment/soil samples - Decant and discard any water layer on a sediment sample. Mix sample thoroughly, especially composited samples. Discard any foreign objects such as sticks, leaves, and rocks.

7.1.2 Waste samples - Samples consisting of multiphases must be prepared by the phase separation method in Chapter Two before extraction. This procedure is for solids only.

7.1.3 Dry waste samples amenable to grinding - Grind or otherwise subdivide the waste so that it either passes through a 1 mm sieve or can
be extruded through a 1 mm hole. Introduce sufficient sample into the grinding apparatus to yield at least 10 g after grinding.

7.1.4 Gummy, fibrous, or oily materials not amenable to grinding should be cut, shredded, or otherwise broken up to allow mixing, and maximum exposure of the sample surfaces for extraction. The professional judgment of the analyst is required for handling these difficult matrices.

7.2 Determination of sample % dry weight - In certain cases, sample results are desired based on dry weight basis. When such data are desired, a portion of sample for this determination should be weighed out at the same time as the portion used for analytical determination.

WARNING: The drying oven should be contained in a hood or vented. Significant laboratory contamination may result from a heavily contaminated hazardous waste sample.

However, samples known or suspected to contain significant concentrations of toxic, flammable, or explosive constituents should not be oven dried because of concerns for personal safety. Laboratory discretion is advised. It may be prudent to delay oven drying of the weighed-out portion until other analytical results are available.

7.2.1 Immediately after weighing the sample for extraction, weigh 5-10 g of the sample into a tared crucible. Determine the % dry weight of the sample by drying overnight at 105°C. Allow to cool in a desiccator before weighing:

\[
\text{% dry weight} = \frac{\text{g of dry sample}}{\text{g of sample}} \times 100
\]

7.3 Blend 10 g of the solid sample with 10 g of anhydrous sodium sulfate and place in an extraction thimble. The extraction thimble must drain freely for the duration of the extraction period. A glass wool plug above and below the sample in the Soxhlet extractor is an acceptable alternative for the thimble. Add 1.0 mL of the surrogate standard spiking solution onto the sample (see Method 3500 for details on the surrogate standard and matrix spiking solutions). For the sample in each analytical batch selected for spiking, add 1.0 mL of the matrix spiking standard. For base/neutral-acid analysis, the amount added of the surrogates and matrix spiking compounds should result in a final concentration of 100 ng/μL of each base/neutral analyte and 200 ng/μL of each acid analyte in the extract to be analyzed (assuming a 1 μL injection). If Method 3640, Gel Permeation Chromatography Cleanup, is to be used, add twice the volume of surrogates and matrix spiking compounds since half the extract is lost due to loading of the GPC column.

7.4 Place approximately 300 mL of the extraction solvent (Sec. 5.4) into a 500 mL round bottom flask containing one or two clean boiling chips. Attach the flask to the extractor and extract the sample for 16-24 hours at 4-6 cycles/hr.

7.5 Allow the extract to cool after the extraction is complete.
7.6 Assemble a Kuderna-Danish (K-D) concentrator (if necessary) by attaching a 10 mL concentrator tube to a 500 mL evaporation flask.

7.7 Dry the extract by passing it through a drying column containing about 10 cm of anhydrous sodium sulfate. Collect the dried extract in a K-D concentrator. Wash the extractor flask and sodium sulfate column with 100 to 125 mL of extraction solvent to complete the quantitative transfer.

7.8 Add one or two clean boiling chips to the flask and attach a three ball Snyder column. Prewet the Snyder column by adding about 1 mL of methylene chloride to the top of the column. Place the K-D apparatus on a hot water bath (15-20°C above the boiling point of the solvent) so that the concentrator tube is partially immersed in the hot water and the entire lower rounded surface of the flask is bathed with hot vapor. Adjust the vertical position of the apparatus and the water temperature, as required, to complete the concentration in 10-20 minutes. At the proper rate of distillation the balls of the column will actively chatter, but the chambers will not flood. When the apparent volume of liquid reaches 1-2 mL, remove the K-D apparatus from the water bath and allow it to drain and cool for at least 10 minutes.

7.9 If a solvent exchange is required (as indicated in Table I), momentarily remove the Snyder column, add approximately 50 mL of the exchange solvent and a new boiling chip, and reattach the Snyder column. Concentrate the extract as described in Sec. 7.8, raising the temperature of the water bath, if necessary, to maintain proper distillation. When the apparent volume again reaches 1-2 mL, remove the K-D apparatus from the water bath and allow it to drain and cool for at least 10 minutes.

7.10 Remove the Snyder column and rinse the flask and its lower joints into the concentrator tube with 1-2 mL of methylene chloride or exchange solvent. If sulfur crystals are a problem, proceed to Method 3660 for cleanup. The extract may be further concentrated by using the techniques described in Sec. 7.11 or adjusted to 10.0 mL with the solvent last used.

7.11 If further concentration is indicated in Table 1, either micro Snyder column technique (Sec. 7.11.1) or nitrogen blowdown technique (Sec. 7.11.2) is used to adjust the extract to the final volume required.

7.11.1 Micro Snyder Column Technique

7.11.1.1 Add another one or two clean boiling chips to the concentrator tube and attach a two ball micro Snyder column. Prewet the column by adding about 0.5 mL of methylene chloride or exchange solvent to the top of the column. Place the K-D apparatus in a hot water bath so that the concentrator tube is partially immersed in the hot water. Adjust the vertical position of the apparatus and the water temperature, as required, to complete the concentration in 5-10 minutes. At the proper rate of distillation the balls of the column will actively chatter, but the chambers will not flood. When the apparent volume of liquid reaches 0.5 mL, remove the K-D apparatus from the water bath and allow it to drain and cool for at least 10 minutes. Remove the Snyder column and rinse the flask and its lower joints with about 0.2 mL of solvent and add to the
concentrator tube. Adjust the final volume to 1.0-2.0 mL, as indicated in Table 1, with solvent.

7.11.2 Nitrogen Blowdown Technique

7.11.2.1 Place the concentrator tube in a warm water bath (approximately 35°C) and evaporate the solvent volume to the required level using a gentle stream of clean, dry nitrogen (filtered through a column of activated carbon).

CAUTION: Do not use plasticized tubing between the carbon trap and the sample.

7.11.2.2 The internal wall of the tube must be rinsed down several times with the appropriate solvent during the operation. During evaporation, the solvent level in the tube must be positioned to prevent water from condensing into the sample (i.e., the solvent level should be below the level of the water bath). Under normal operating conditions, the extract should not be allowed to become dry.

CAUTION: When the volume of solvent is reduced below 1 mL, semivolatile analytes may be lost.

7.12 The extracts obtained may now be analyzed for the target analytes using the appropriate organic technique(s) (see Sec. 4.3 of this Chapter). If analysis of the extract will not be performed immediately, stopper the concentrator tube and store in a refrigerator. If the extract will be stored longer than 2 days, it should be transferred to a vial with a Teflon lined screw cap or crimp top, and labeled appropriately.

8.0 QUALITY CONTROL

8.1 Any reagent blanks or matrix spike samples should be subjected to exactly the same analytical procedures as those used on actual samples.

8.2 Refer to Chapter One for specific quality control procedures and Method 3500 for extraction and sample preparation procedures.

9.0 METHOD PERFORMANCE

9.1 Refer to the determinative methods for performance data.

10.0 REFERENCES

<table>
<thead>
<tr>
<th>Determinative method</th>
<th>Extraction pH</th>
<th>Exchange solvent required for analysis</th>
<th>Exchange solvent required for cleanup</th>
<th>Volume of extract required for cleanup (mL)</th>
<th>Final extract volume for analysis (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8040*</td>
<td>as received</td>
<td>2-propanol</td>
<td>hexane</td>
<td>1.0</td>
<td>1.0, 10.0</td>
</tr>
<tr>
<td>8060</td>
<td>as received</td>
<td>hexane</td>
<td>hexane</td>
<td>2.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8061</td>
<td>as received</td>
<td>hexane</td>
<td>hexane</td>
<td>2.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8070</td>
<td>as received</td>
<td>methanol</td>
<td>methylene chloride</td>
<td>2.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8080</td>
<td>as received</td>
<td>hexane</td>
<td>hexane</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8081</td>
<td>as received</td>
<td>hexane</td>
<td>hexane</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8090</td>
<td>as received</td>
<td>hexane</td>
<td>hexane</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>8100</td>
<td>as received</td>
<td>none</td>
<td>cyclohexane</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>8110</td>
<td>as received</td>
<td>hexane</td>
<td>hexane</td>
<td>2.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8120</td>
<td>as received</td>
<td>hexane</td>
<td>hexane</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8121</td>
<td>as received</td>
<td>hexane</td>
<td>hexane</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8140</td>
<td>as received</td>
<td>hexane</td>
<td>hexane</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>8141</td>
<td>as received</td>
<td>hexane</td>
<td>hexane</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8250**</td>
<td>as received</td>
<td>none</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>8270**</td>
<td>as received</td>
<td>none</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>8310</td>
<td>as received</td>
<td>acetonitrile</td>
<td>--</td>
<td>--</td>
<td>1.0</td>
</tr>
<tr>
<td>8321</td>
<td>as received</td>
<td>methanol</td>
<td>--</td>
<td>--</td>
<td>1.0</td>
</tr>
<tr>
<td>8410</td>
<td>as received</td>
<td>methylene chloride</td>
<td>methylene chloride</td>
<td>10.0</td>
<td>0.0 (dry)</td>
</tr>
</tbody>
</table>

* To obtain separate acid and base/neutral extracts, Method 3650 should be performed following concentration of the extract to 10.0 mL.

** Phenols may be analyzed by Method 8040 using a 1.0 mL 2-propanol extract and analysis by GC/FID. Method 8040 also contains an optical derivatization procedure for phenols which results in a 10 mL hexane extract to be analyzed by GC/ECD.

** The specificity of GC/MS may make cleanup of the extracts unnecessary. Refer to Method 3600 for guidance on the cleanup procedures available if required.
METHOD 3540B
SOXHLET EXTRACTION

Start

7.1 Use appropriate sample handling technique

7.2 Determine sample % dry weight

7.3 Add appropriate surrogate and matrix spiking standards

7.4 Add extraction solvent to flask; extract for 16-24 hours

7.5 Cool extract

7.6 Assemble K-D concentrator

7.7 Dry and collect extract in K-D concentrator

7.8 Concentrate using Snyder column and K-D apparatus

7.9 Is solvent exchange required?

No

7.10 Are sulfur crystals a problem?

No

Proceed to Method 3660 for cleanup

Yes

7.12 Analyze using organic techniques

8000 Series Methods

Yes

7.9 Add exchange solvent, reconcentrate extract

Revision 2
September 1994
1.0 SCOPE AND APPLICATION

1.1 Method 3541 describes the extraction of organic analytes from soil, sediment, sludges, and waste solids. The method uses a commercially available, unique, three stage extraction system to achieve analyte recovery comparable to Method 3540, but in a much shorter time. There are two differences between this extraction method and Method 3540. In the initial extraction stage of Method 3541, the sample-loaded extraction thimble is immersed into the boiling solvent. This ensures very rapid intimate contact between the specimen and solvent and rapid extraction of the organic analytes. In the second stage the thimble is elevated above the solvent, and is rinse-extracted as in Method 3540. In the third stage, the solvent is evaporated, as would occur in the Kuderna-Danish (K-D) concentration step in Method 3540. The concentrated extract is then ready for cleanup (Method 3600) followed by measurement of the organic analytes.

1.2 The method is applicable to the extraction and concentration of water insoluble or slightly water soluble polychlorinated biphenyls (PCBs) in preparation for gas chromatographic determination using either Method 8080 or 8081. This method is applicable to soils, clays, solid wastes and sediments containing from 1 to 50 μg of PCBs (measured as Arochlor) per gram of sample. It has been statistically evaluated at 5 and 50 μg/g of Aroclors 1254 and 1260, and found to be equivalent to Method 3540 (Soxhlet Extraction). Higher concentrations of PCBs are measured following volumetric dilution with hexane.

1.3 The method is also applicable the extraction and concentration of semivolatile organics in preparation for GC/MS analysis by Method 8270 or by analysis using specific GC or HPLC methods.

2.0 SUMMARY OF METHOD

2.1 PCBs: Moist solid samples (e.g., soil/sediment samples) may be air-dried and ground prior to extraction or chemically dried with anhydrous sodium sulfate. The prepared sample is extracted using 1:1 (v/v) acetone:hexane in the automated Soxhlet following the same procedure as outlined for semivolatile organics in Sec. 2.1. The extract is then concentrated and exchanged into pure hexane prior to final gas chromatographic PCB measurement.

2.2 Other semivolatile organics: A 10-g solid sample (the sample is pre-mixed with anhydrous sodium sulfate for certain matrices) is placed in an extraction thimble and usually extracted with 50 mL of 1:1 (v/v) acetone/hexane for 60 minutes in the boiling extraction solvent. The thimble with sample is then raised into the rinse position and extracted for an additional 60 minutes. Following the extraction steps, the extraction solvent is concentrated to 1 to 2 mL.
3.0 INTERFERENCES

3.1 Refer to Method 3500.

3.2 The extraction thimble and the o-rings used to seal the extraction cup are both a source of interference. Both should be checked by including a method blank and following the extraction procedure as written. Solvent rinsing or extraction, prior to use, may be necessary to eliminate or reduce interferences. Viton seals contributed least to the interference problem, however, even they contributed some interference peaks when the extraction solvent was analyzed by the electron capture detector. Use of butyl or EPDM rings are not recommended since they were found to contribute significant background when the extraction solvent was 1:1 v/v hexane/acetone or 1:1 v/v methylene chloride/acetone.

4.0 APPARATUS AND MATERIALS

4.1 Automated Soxhlet Extraction System - with temperature-controlled oil bath (Soxtec, or equivalent). Tecator bath oil (catalog number 1000-1886) should be used with the Soxtec. Silicone oil must not be used because it destroys the rubber parts. See Figure 1. The apparatus is used in a hood.

4.2 Accessories and consumables for the automated Soxhlet system. (The catalog numbers are Fisher Scientific based on the use of the Soxtec HT-6, however, other sources that are equivalent are acceptable.)

 4.2.1 Cellulose extraction thimbles - 26 mm ID x 60 mm contamination free, catalog number 1522-0034, or equivalent.

 4.2.2 Glass extraction cups (80 mL) - (set of six required for the HT-6), catalog number 1000-1820.

 4.2.3 Thimble adapters - (set of six required for the HT-6), catalog number 1000-1466.

 4.2.4 Viton seals - catalog number 1000-2516.

4.3 Syringes - 100 and 1000 µL and 5 mL.

4.4 Apparatus for Determining Percent Dry Weight

 4.4.1 Drying Oven.

 4.4.2 Desiccator.

 4.4.3 Crucibles, porcelain.

 4.4.4 Balance, analytical.

4.5 Apparatus for grinding - Fisher Cyclotec, Fisher Scientific catalog number 1093, or equivalent.

3541 - 2
Revision 0
September 1994
4.6 Spatula

4.7 Graduated cylinder - 100 mL.

4.8 Aluminum weighing dish - VWR Scientific catalog number 25433-008 or equivalent.

4.9 Graduated, conical-bottom glass tubes - 15 mL, Kimble catalog number 45166 or equivalent, or 10 mL KD concentrator tube.

5.0 REAGENTS

5.1 Reagent grade chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.

5.2 Organic-free reagent water. All references to water in this method refer to organic-free reagent water, as defined in Chapter One.

5.3 Sodium sulfate (granular, anhydrous), Na₂SO₄. Purify by heating at 400°C for 4 hours in a shallow tray, or by precleaning the sodium sulfate with methylene chloride. A method blank must be analyzed, demonstrating that there is no interference from the sodium sulfate.

5.4 Extraction solvents:

5.4.1 Organochlorine pesticides/PCB extraction:

5.4.1.1 Acetone/hexane (1:1 v/v), CH₃COCH₃/C₆H₁₄. Pesticide quality or equivalent.

5.4.2 Semivolatile organics extraction:

5.4.2.1 Acetone/hexane (1:1 v/v), CH₃COCH₃/C₆H₁₄. Pesticide quality or equivalent.

5.4.2.2 Acetone/methylene chloride (1:1 v/v), CH₃COCH₃/CH₂Cl₂. Pesticide quality or equivalent.

5.5 Hexane, C₆H₁₄. Pesticide quality or equivalent.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1 See the introductory material to this chapter, Organic Analytes, Sec. 4.1.
7.0 PROCEDURE

7.1 Sample handling

7.1.1 Sediment/soil samples - Decant and discard any water layer on a sediment sample. Mix sample thoroughly, especially composited samples. Discard any foreign objects such as sticks, leaves, and rocks.

7.1.1.1 PCBs or high-boiling organochlorine pesticides - Air-dry the sample at room temperature for 48 hours in a glass tray or on hexane-cleaned aluminum foil, or dry the sample by mixing with anhydrous sodium sulfate until a free-flowing powder is obtained (see Sec. 7.2).

NOTE: Dry, finely ground soil/sediment allows the best extraction efficiency for non-volatile, non-polar organics, e.g., PCBs, 4,4'-DDT, etc. Air-drying is not appropriate for the analysis of the more volatile organochlorine pesticides (e.g. the BHCs) or the more volatile of the semivolatile organics because of losses during the drying process.

7.1.2 Dried sediment/soil and dry waste samples amenable to grinding - Grind or otherwise subdivide the waste so that it either passes through a 1 mm sieve or can be extruded through a 1 mm hole. Introduce sufficient sample into the grinding apparatus to yield at least 20 g after grinding. Disassemble grinder between samples, according to manufacturer's instructions, and clean with soap and water, followed by acetone and hexane rinses.

NOTE: The same warning on loss of volatile analytes applies to the grinding process. Grinding should only be performed when analyzing for non-volatile organics.

7.1.3 Gummy, fibrous, or oily materials not amenable to grinding should be cut, shredded, or otherwise broken up to allow mixing, and maximum exposure of the sample surfaces for extraction. If grinding of these materials is preferred, the addition and mixing of anhydrous sodium sulfate with the sample (1:1) may improve grinding efficiency. The professional judgment of the analyst is required for handling such difficult matrices.

7.1.4 Multiple phase waste samples - Samples consisting of multiple phases must be prepared by the phase separation method in Chapter Two before extraction. This procedure is for solids only.

7.2 For sediment/soil (especially gummy clay) that is moist and cannot be air-dried because of loss of volatile analytes - Mix 5 g of sample with 5 g of anhydrous sodium sulfate in a small beaker using a spatula. Use this approach for any solid sample that requires dispersion of the sample particles to ensure greater solvent contact throughout the sample mass.

3541 - 4
Revision 0
September 1994
7.3 Determination of sample percent dry weight - In certain cases, sample results are desired based on dry weight basis. When such data are desired, a portion of sample for this determination should be weighed out at the same time as the portion used for analytical determination.

WARNING: The drying oven should be contained in a hood or vented. Significant laboratory contamination may result from the drying of a heavily contaminated hazardous waste sample.

7.3.1 Immediately after weighing the sample for extraction, weigh 5-10 g of the sample into a tared crucible. Determine the % dry weight of the sample by drying overnight at 105°C. Allow to cool in a desiccator before weighing:

\[
\text{% dry weight} = \frac{\text{g of dry sample}}{\text{g of sample}} \times 100
\]

7.4 Check the heating oil level in the automated Soxhlet unit and add oil if needed. See service manual for details. Set the temperature on the service unit at 140°C when using hexane-acetone (1:1, v/v) as the extraction solvent.

7.5 Press the "MAINS" button; observe that the switch lamp is now "ON".

7.6 Open the cold water tap for the reflux condensers. Adjust the flow to 2 L/min to prevent solvent loss through the condensers.

7.7 Weigh 10 g of sample into extraction thimbles. For samples mixed with anhydrous sodium sulfate, transfer the entire contents of the beaker (Sec. 7.2) to the thimble. Add surrogate spikes to each sample and the matrix spike/matrix spike duplicate to the selected sample.

NOTE: When surrogate spikes and/or matrix spikes contain relatively volatile compounds (e.g., trichlorobenzenes, BHCs, etc.), steps 7.8, 7.9, and 7.10 must be performed quickly to avoid evaporation losses of these compounds. As the spike is added to the sample in each thimble, the thimble should immediately be transferred to the condenser and lowered into the extraction solvent.

7.8 Immediately transfer the thimbles containing the weighed samples into the condensers. Raise the knob to the "BOILING" position. The magnet will now fasten to the thimble. Lower the knob to the "RINSING" position. The thimble will now hang just below the condenser valve.

7.9 Insert the extraction cups containing boiling chips, and load each with 50 mL of extraction solvent (normally 1:1 (v/v) hexane:acetone, see Sec. 5.4). Using the cup holder, lower the locking handle, ensuring that the safety catch engages. The cups are now clamped into position. (The seals must be pre-rinsed or pre-extracted with extraction solvent prior to initial use.)

7.10 Move the extraction knobs to the "BOILING" position. The thimbles are now immersed in solvent. Set the timer for 60 minutes. The condenser valves must be in the "OPEN" position. Extract for the preset time.
7.11 Move the extraction knobs to the "RINSING" position. The thimbles will now hang above the solvent surface. Set timer for 60 minutes. Condenser valves are still open. Extract for the preset time.

7.12 After rinse time has elapsed, close the condenser valves by turning each a quarter-turn, clockwise.

7.13 When all but 2 to 5 mL of solvent have been collected, open the system and remove the cups.

7.14 Transfer the contents of the cups to 15 mL graduated, conical-bottom glass tubes. Rinse the cups using hexane (methylene chloride if 1:1 methylene chloride-acetone was used for extraction and analysis is by GC/MS) and add the rinsates to the glass tubes. Concentrate the extracts to 1 to 10 mL. The final volume is dependent on the determinative method and the quantitation limit required. Transfer a portion to a GC vial and store at 4°C until analyses are performed.

NOTE: The recovery solvent volume can be adjusted by adding solvent at the top of the condensers. For more details concerning use of the extractor, see the operating manual for the automated extraction system.

7.15 Shutdown

7.15.1 Turn "OFF" main switch.

7.15.2 Turn "OFF" cold water tap.

7.15.3 Ensure that all condensers are free of solvent. Empty the solvent that is recovered in the evaporation step into an appropriate storage container.

7.16 The extract is now ready for cleanup or analysis, depending on the extent of interfering co-extractive. See Method 3600 for guidance on cleanup methods and Method 8000 for guidance on determinative methods. Certain cleanup and/or determinative methods may require a solvent exchange prior to cleanup and/or determination.

8.0 QUALITY CONTROL

8.1 Refer to Chapter One for general quality control procedures and to Method 3500 for specific extraction and sample preparation QC procedures.

8.2 Before processing any samples, the analyst should demonstrate through the analysis of an organic-free solid matrix (e.g., reagent sand) method blank that all glassware and reagents are interference-free. Each time a set of samples is extracted, or when there is a change in reagents, a method blank should be processed as a safeguard against chronic laboratory contamination. The blank samples should be carried through all stages of the sample preparation and measurement. This is especially important because of the possibility of interferences being extracted from the extraction cup seal.
8.3 Standard quality assurance practices should be used with this method. Field duplicates should be collected to validate the precision of the sampling technique. Each analysis batch of 20 or less samples must contain: a method blank, either a matrix spike/matrix spike duplicate or a matrix spike and duplicate sample analysis, and a laboratory control sample, unless the determinative method provides other guidance. Also, routinely check the integrity of the instrument seals.

8.4 Surrogate standards must be added to all samples when specified in the appropriate determinative method.

9.0 METHOD PERFORMANCE

9.1 Multi-laboratory accuracy and precision data were obtained for PCBs in soil. Eight laboratories spiked Arochlor 1254 and 1260 into three portions of 10 g of Fuller’s Earth on three non-consecutive days followed by immediate extraction using Method 3541. Six of the laboratories spiked each Arochlor at 5 and 50 mg/kg and two laboratories spiked each Arochlor at 50 and 500 mg/kg. All extracts were analyzed by Oak Ridge National Laboratory, Oak Ridge, TN, using Method 8081. These data are listed in a table found in Method 8081, and were taken from Reference 1.

9.2 Single-laboratory accuracy data were obtained for chlorinated hydrocarbons, nitroaromatics, haloethers, and organochlorine pesticides in a clay soil. The spiking concentrations ranged from 500 to 5000 µg/kg, depending on the sensitivity of the analyte to the electron capture detector. The spiking solution was mixed into the soil during addition and then immediately transferred to the extraction device and immersed in the extraction solvent. The data represents a single determination. Analysis was by capillary column gas chromatography/electron capture detector following Methods 8081 for the organochlorine pesticides, 8091 for the nitroaromatics, 8111 for the hydrocarbons, and 8121 for the chlorinated hydrocarbons. These data are listed in a table located in their respective methods and were taken from Reference 2.

9.3 Single-laboratory accuracy and precision data were obtained for semivolatile organics in soil by spiking at a concentration of 6 mg/kg for each compound. The spiking solution was mixed into the soil during addition and then allowed to equilibrate for approximately 1 hr prior to extraction. Three determinations were performed and each extract was analyzed by gas chromatography/mass spectrometry following Method 8270. The low recovery of the more volatile compounds is probably due to volatilization losses during equilibration. These data are listed in a Table located in Method 8270 and were taken from Reference 2.

10.0 REFERENCES

METHOD 3541
AUTOMATED SOXHLET EXTRACTION

7.1 Use appropriate sample handling technique.

7.2 Add anhydrous Na$_2$SO$_4$ if necessary

7.3 Determine percent dry weight.

7.4 Check oil level in Soxhlet unit.

A

7.5 Press "Mains" button.

7.6 Open Cold water tap. Adjust flow.

7.7 Weigh sample into extraction thimbles. Add surrogate spike.

7.8 Transfer samples into condensers. Adjust position of magnet and thimble.

7.9 Insert extraction cups and load with solvent.

7.10 Move extraction knobs to "Boiling" for 60 mins.

B

7.11 Move extraction knobs to "Rinsing" for 60 mins.

7.12 Close condenser valves.

7.13 Remove cups.

7.14 Transfer contents to collection vials, dilute or concentrate to volume.

7.15 Shutdown

Stop

Revision 0
September 1994
METHOD 3550A

ULTRASONIC EXTRACTION

See DISCLAIMER-1. See manufacturer's specifications for operational settings.

1.0 SCOPE AND APPLICATION

1.1 Method 3550 is a procedure for extracting nonvolatile and semi-volatile organic compounds from solids such as soils, sludges, and wastes. The ultrasonic process ensures intimate contact of the sample matrix with the extraction solvent.

1.2 The method is divided into two sections, based on the expected concentration of organics in the sample. The low concentration method (individual organic components of \(\leq 20 \text{ mg/kg} \)) uses a larger sample size and a more rigorous extraction procedure (lower concentrations are more difficult to extract). The medium/high concentration method (individual organic components of \(> 20 \text{ mg/kg} \)) is much simpler and therefore faster.

1.3 It is highly recommended that the extracts be cleaned up prior to analysis. See Chapter Four (Cleanup), Sec. 4.2.2, for applicable methods.

2.0 SUMMARY OF METHOD

2.1 Low concentration method - A 30 g sample is mixed with anhydrous sodium sulfate to form a free-flowing powder. This is solvent extracted three times using ultrasonic extraction. The extract is separated from the sample by vacuum filtration or centrifugation. The extract is ready for cleanup and/or analysis following concentration.

2.2 Medium/high concentration method - A 2 g sample is mixed with anhydrous sodium sulfate to form a free-flowing powder. This is solvent extracted once using ultrasonic extraction. A portion of the extract is removed for cleanup and/or analysis.

3.0 INTERFERENCES

3.1 Refer to Method 3500.

4.0 APPARATUS AND MATERIALS

4.1 Apparatus for grinding dry waste samples.

4.2 Ultrasonic preparation - A horn type device equipped with a titanium tip, or a device that will give equivalent performance, shall be used.

3550A - 1
Revision 1
September 1994
4.2.1 Ultrasonic Disrupter - The disrupter must have a minimum power wattage of 300 watts, with pulsing capability. A device designed to reduce the cavitation sound is recommended. Follow the manufacturers instructions for preparing the disrupter for extraction of samples with low and medium/high concentration.

Use a 3/4" horn for the low concentration method and a 1/8" tapered microtip attached to a 1/2" horn for the medium/high concentration method.

4.3 Sonabox - Recommended with above disrupters for decreasing cavitation sound (Heat Systems - Ultrasonics, Inc., Model 432B or equivalent).

4.4 Apparatus for determining percent dry weight.

4.4.1 Oven - Drying.

4.4.2 Desiccator.

4.4.3 Crucibles - Porcelain or disposable aluminum.

4.5 Pasteur glass pipets - 1 mL, disposable.

4.6 Beakers - 400 mL.

4.7 Vacuum or pressure filtration apparatus.

4.7.1 Buchner funnel.

4.7.2 Filter paper - Whatman No. 41 or equivalent.

4.8 Kuderna-Danish (K-D) apparatus.

4.8.1 Concentrator tube - 10 mL, graduated (Kontes K-570050-1025 or equivalent). A ground glass stopper is used to prevent evaporation of extracts.

4.8.2 Evaporation flask - 500 mL (Kontes K-57001-500 or equivalent). Attach to concentrator tube with springs, clamps, or equivalent.

4.8.3 Snyder column - Three ball macro (Kontes K-503000-0121 or equivalent).

4.8.4 Snyder column - Two ball micro (Kontes K-569001-0219 or equivalent).

4.8.5 Springs - 1/2 inch (Kontes K-662750 or equivalent).

4.9 Boiling chips - Solvent extracted, approximately 10/40 mesh (silicon carbide or equivalent).
4.10 Water bath - Heated, with concentric ring cover, capable of temperature control (± 5°C). The batch should be used in a hood.

4.11 Balance - Top loading, capable of accurately weighing to the nearest 0.01 g.

4.12 Vials - 2 mL, for GC autosampler, with Teflon lined screw caps or crimp tops.

4.13 Glass scintillation vials - 20 mL, with Teflon lined screw caps.

4.14 Spatula - Stainless steel or Teflon.

4.15 Drying column - 20 mm ID Pyrex chromatographic column with Pyrex glass wool at bottom.

NOTE: Fritted glass discs are difficult to decontaminate after highly contaminated extracts have been passed through. Columns without frits may be purchased. Use a small pad of Pyrex glass wool to retain the adsorbent. Prewash the glass wool pad with 50 mL of acetone followed by 50 mL of elution solvent prior to packing the column with adsorbent.

4.16 Syringe - 5 mL.

5.0 REAGENTS

5.1 Reagent grade inorganic chemicals shall be used in all tests. Unless otherwise specified, it is intended that all inorganic reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.

5.2 Organic-free reagent water. All references to water in this method refer to organic-free reagent water, as defined in Chapter One.

5.3 Sodium sulfate (granular, anhydrous), Na₂SO₄. Purify by heating at 400°C for 4 hours in a shallow tray, or by precleaning the sodium sulfate with methylene chloride. If the sodium sulfate is precleaned with methylene chloride, a method blank must be analyzed, demonstrating that there is no interference from the sodium sulfate.

5.4 Extraction solvents.

5.4.1 Low concentration soil/sediment and aqueous sludge samples shall be extracted using a solvent system that gives optimum, reproducible recovery for the matrix/analyte combination to be measured. Suitable solvent choices are given in Table 1.
5.4.2 Methylene chloride:Acetone, $\text{CH}_2\text{Cl}_2:\text{CH}_3\text{COCH}_3$ (1:1, v:v). Pesticide quality or equivalent.

5.4.3 Methylene chloride, CH_2Cl_2. Pesticide quality or equivalent.

5.4.4 Hexane, C_6H_{14}. Pesticide quality or equivalent.

5.5 Exchange solvents.

5.5.1 Hexane, C_6H_{14}. Pesticide quality or equivalent.

5.5.2 2-Propanol, $(\text{CH}_3)_2\text{CHOH}$. Pesticide quality or equivalent.

5.5.3 Cyclohexane, C_6H_{12}. Pesticide quality or equivalent.

5.5.4 Acetonitrile, CH_3CN. Pesticide quality or equivalent.

5.5.5 Methanol, CH_3OH. Pesticide quality or equivalent.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1 See the introductory material to this Chapter, Organic Analytes, Sec. 4.1.

7.0 PROCEDURE

7.1 Sample handling

7.1.1 Sediment/soil samples - Decant and discard any water layer on a sediment sample. Mix sample thoroughly, especially composited samples. Discard any foreign objects such as sticks, leaves, and rocks.

7.1.1.2 Determine the dry weight of the sample (Sec. 7.2) remaining after decanting. Measurement of soil pH may be required.

7.1.2 Waste samples - Samples consisting of multiphases must be prepared by the phase separation method in Chapter Two before extraction. This procedure is for solids only.

7.1.3 Dry waste samples amenable to grinding - Grind or otherwise subdivide the waste so that it either passes through a 1 mm sieve or can be extruded through a 1 mm hole. Introduce sufficient sample into the grinder to yield at least 100 g after grinding.

7.1.4 Gummy, fibrous or oily materials not amenable to grinding should be cut, shredded, or otherwise broken up to allow mixing, and maximum exposure of the sample surfaces for extraction. The professional judgment of the analyst is required for handling of these difficult matrices.
7.2 Determination of percent dry weight - In certain cases, sample results are desired based on a dry weight basis. When such data are desired, or required, a portion of sample for this determination should be weighed out at the same time as the portion used for analytical determination.

WARNING: The drying oven should be contained in a hood or vented. Significant laboratory contamination may result from drying a heavily contaminated hazardous waste sample.

However, samples known or suspected to contain significant concentrations of toxic, flammable, or explosive constituents should not be overdried because of concerns for personal safety. Laboratory discretion is advised. It may be prudent to delay overdrying of the weighed-out portion until other analytical results are available.

7.2.1 Immediately after weighing the sample for extraction, weigh 5-10 g of the sample into a tared crucible. Determine the % dry weight of the sample by drying overnight at 105°C. Allow to cool in a desiccator before weighing:

\[
\text{% dry weight} = \frac{g \text{ of dry sample}}{g \text{ of sample}} \times 100
\]

7.3 Extraction method for samples expected to contain low concentrations of organics and pesticides (≤ 20 mg/kg):

7.3.1 The following step should be performed rapidly to avoid loss of the more volatile extractables. Weigh approximately 30 g of sample into a 400 mL beaker. Record the weigh to the nearest 0.1 g. Nonporous or wet samples (gummy or clay type) that do not have a free-flowing sandy texture must be mixed with 60 g of anhydrous sodium sulfate, using a spatula. If required, more sodium sulfate may be added. After addition of sodium sulfate, the sample should be free flowing. Add 1 mL of surrogate standards to all samples, spikes, standards, and blanks (see Method 3500 for details on the surrogate standard solution and the matrix spike solution). For the sample in each analytical batch selected for spiking, add 1.0 mL of the matrix spiking standard. For base/neutral-acid analysis, the amount added of the surrogates and matrix spiking compounds should result in a final concentration of 100 ng/µL of each base/neutral analyte and 200 ng/µL of each acid analyte in the extract to be analyzed (assuming a 1 µL injection). If Method 3640, Gel-Permeation Cleanup, is to be used, add twice the volume of surrogates and matrix spiking compounds since half of the extract is lost due to loading of the GPC column. Immediately add 100 mL of 1:1 methylene chloride:acetone.

7.3.2 Place the bottom surface of the tip of the #207 3/4 in. disrupter horn about 1/2 in. below the surface of the solvent, but above the sediment layer.

7.3.3 Extract ultrasonically for 3 minutes, with output control knob set at 10 (full power) and with mode switch on Pulse (pulsing energy
rather than continuous energy) and percent-duty cycle knob set at 50% (energy on 50% of time and off 50% of time). Do not use microtip probe.

7.3.4 Decant the extract and filter it through Whatman No. 41 filter paper (or equivalent) in a Buchner funnel that is attached to a clean 500 mL filtration flask. Alternatively, decant the extract into a centrifuge bottle and centrifuge at low speed to remove particles.

7.3.5 Repeat the extraction two or more times with two additional 100 mL portions of solvent. Decant off the solvent after each ultrasonic extraction. On the final ultrasonic extraction, pour the entire sample into the Buchner funnel and rinse with extraction solvent. Apply a vacuum to the filtration flask, and collect the solvent extract. Continue filtration until all visible solvent is removed from the funnel, but do not attempt to completely dry the sample, as the continued application of a vacuum may result in the loss of some analytes. Alternatively, if centrifugation is used in Sec. 7.3.4, transfer the entire sample to the centrifuge bottle. Centrifuge at low speed, and then decant the solvent from the bottle.

7.3.6 Assemble a Kuderna-Danish (K-D) concentrator (if necessary) by attaching a 10 mL concentrator tube to a 500 mL evaporator flask. Transfer filtered extract to a 500 mL evaporator flask and proceed to the next section.

7.3.7 Add one to two clean boiling chips to the evaporation flask, and attach a three ball Snyder column. Prewet the Snyder column by adding about 1 mL methylene chloride to the top. Place the K-D apparatus on a hot water bath (80-90 °C) so that the concentrator tube is partially immersed in the hot water and the entire lower rounded surface of the flask is bathed with hot vapor. Adjust the vertical position of the apparatus and the water temperature, as required, to complete the concentration in 10-15 min. At the proper rate of distillation the balls of the column will actively chatter, but the chambers will not flood with condensed solvent. When the apparent volume of liquid reaches 1 mL, remove the K-D apparatus and allow it to drain and cool for at least 10 min.

7.3.8 If a solvent exchange is required (as indicated in Table 1), momentarily remove the Snyder column, add 50 mL of the exchange solvent and a new boiling chip, and re-attach the Snyder column. Concentrate the extract as described in Sec. 7.3.10, raising the temperature of the water bath, if necessary, to maintain proper distillation. When the apparent volume again reaches 1-2 mL, remove the K-D apparatus and allow it to drain and cool for at least 10 minutes.

7.3.9 Remove the Snyder column and rinse the flask and its lower joints into the concentrator tube with 1-2 mL of methylene chloride or exchange solvent. If sulfur crystals are a problem, proceed to Method 3660 for cleanup. The extract may be further concentrated by using the technique outlined in Sec. 7.3.10 or adjusted to 10.0 mL with the solvent last used.
7.3.10 If further concentration is indicated in Table 1, either micro Snyder column technique (Sec. 7.3.10.1) or nitrogen blow down technique (Sec. 7.3.10.2) is used to adjust the extract to the final volume required.

7.3.10.1 Micro Snyder Column Technique

7.3.10.1.1 Add a clean boiling chip and attach a two ball micro Snyder column to the concentrator tube. Prewet the column by adding approximately 0.5 mL of methylene chloride or exchange solvent through the top. Place the apparatus in the hot water bath. Adjust the vertical position and the water temperature, as required, to complete the concentration in 5-10 minutes. At the proper rate of distillation the balls of the column will actively chatter, but the chambers will not flood. When the liquid reaches an apparent volume of approximately 0.5 mL, remove the apparatus from the water bath and allow to drain and cool for at least 10 minutes. Remove the micro Snyder column and rinse its lower joint with approximately 0.2 mL of appropriate solvent and add to the concentrator tube. Adjust the final volume to the volume required for cleanup or for the determinative method (see Table 1).

7.3.10.2 Nitrogen Blowdown Technique

7.3.10.2.1 Place the concentrator tube in a warm water bath (approximately 35 °C) and evaporate the solvent volume to the required level using a gentle stream of clean, dry nitrogen (filtered through a column of activated carbon).

CAUTION: Do not use plasticized tubing between the carbon trap and the sample.

7.3.10.2.2 The internal wall of the tube must be rinsed down several times with the appropriate solvent during the operation. During evaporation, the solvent level in the tube must be positioned to prevent water from condensing into the sample (i.e., the solvent level should be below the level of the water bath). Under normal operating conditions, the extract should not be allowed to become dry.

CAUTION: When the volume of solvent is reduced below 1 mL, semivolatile analytes may be lost.

7.4 If analysis of the extract will not be performed immediately, stopper the concentrator tube and store refrigerated. If the extract will be stored longer than 2 days, it should be transferred to a vial with a Teflon lined cap and labeled appropriately.
7.5 Extraction method for samples expected to contain high concentrations of organics (> 20 mg/kg):

7.5.1 Transfer approximately 2 g (record weight to the nearest 0.1 g) of sample to a 20 mL vial. Wipe the mouth of the vial with a tissue to remove any sample material. Record the exact weight of sample taken. Cap the vial before proceeding with the next sample to avoid any cross contamination.

7.5.2 Add 2 g of anhydrous sodium sulfate to sample in the 20 mL vial and mix well.

7.5.3 Surrogate standards are added to all samples, spikes, and blanks (see Method 3500 for details on the surrogate standard solution and on the matrix spike solution). Add 1.0 mL of surrogate spiking solution to sample mixture. For the sample in each analytical batch selected for spiking, add 1.0 mL of the matrix spiking standard. For base/neutral-acid analysis, the amount added of the surrogates and matrix spiking compounds should result in a final concentration of 100 ng/µL of each base/neutral analyte and 200 ng/µL of each acid analyte in the extract to be analyzed (assuming a 1 µL injection). If Method 3640, Gel-Permeation Cleanup, is to be used, add twice the volume of surrogates and matrix spiking compounds since half the extract is lost due to loading of the GPC column.

7.5.4 Immediately add whatever volume of solvent is necessary to bring the final volume to 10.0 mL considering the added volume of surrogates and matrix spikes. Disrupt the sample with the 1/8 in. tapered microtip ultrasonic probe for 2 minutes at output control setting 5 and with mode switch on pulse and percent duty cycle at 50%. Extraction solvents are:

1. For nonpolar compounds (i.e., organochlorine pesticides and PCBs), use hexane or appropriate solvent.

2. For extractable priority pollutants, use methylene chloride.

7.5.5 Loosely pack disposable Pasteur pipets with 2 to 3 cm Pyrex glass wool plugs. Filter the extract through the glass wool and collect 5.0 mL in a concentrator tube if further concentration is required. Follow Sec. 7.3.10 for details on concentration. Normally, the 5.0 mL extract is concentrated to approximately 1.0 mL or less.

7.5.6 The extract is ready for cleanup or analysis, depending on the extent of interfering co-extractives.

8.0 QUALITY CONTROL

8.1 Any reagent blanks or matrix spike samples should be subjected to exactly the same analytical procedures as those used on actual samples.
8.2 Refer to Chapter One for specific quality control procedures and Method 3500 for extraction and sample preparation procedures.

9.0 METHOD PERFORMANCE

9.1 Refer to the determinative method for performance data.

10.0 REFERENCES

Table 1.
Efficiency of Extraction Solvent Systems

<table>
<thead>
<tr>
<th>Solvent System</th>
<th>Compound Type</th>
<th>CAS No.</th>
<th>Compound</th>
<th>CAS No.</th>
<th>ABN</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromophenyl phenyl ether</td>
<td>101-55-3</td>
<td>N</td>
<td>4.2</td>
<td>6.5</td>
<td>56.4</td>
<td>0.5</td>
<td>86.7</td>
<td>1.9</td>
<td>84.5</td>
<td>0.4</td>
</tr>
<tr>
<td>4-Chloro-3-methylphenol</td>
<td>59-50-7</td>
<td>A</td>
<td>66.7</td>
<td>6.4</td>
<td>74.3</td>
<td>2.8</td>
<td>97.4</td>
<td>3.4</td>
<td>89.4</td>
<td>3.8</td>
</tr>
<tr>
<td>bis(2-Chloroethoxy)methane</td>
<td>111-91-1</td>
<td>N</td>
<td>71.2</td>
<td>4.5</td>
<td>58.3</td>
<td>5.4</td>
<td>69.3</td>
<td>2.4</td>
<td>74.8</td>
<td>4.3</td>
</tr>
<tr>
<td>bis(2-Chloroethyl) ether</td>
<td>111-44-4</td>
<td>N</td>
<td>42.0</td>
<td>4.8</td>
<td>17.2</td>
<td>3.1</td>
<td>41.2</td>
<td>8.4</td>
<td>61.0</td>
<td>11.7</td>
</tr>
<tr>
<td>2-Chloronaphthalene</td>
<td>91-58-7</td>
<td>N</td>
<td>86.4</td>
<td>8.8</td>
<td>78.9</td>
<td>3.2</td>
<td>100.8</td>
<td>3.2</td>
<td>83.0</td>
<td>4.6</td>
</tr>
<tr>
<td>4-Chlorophenyl phenyl ether</td>
<td>7005-72-3</td>
<td>N</td>
<td>68.2</td>
<td>8.1</td>
<td>63.0</td>
<td>2.5</td>
<td>96.6</td>
<td>2.5</td>
<td>80.7</td>
<td>1.0</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>95-50-1</td>
<td>N</td>
<td>33.3</td>
<td>4.5</td>
<td>15.8</td>
<td>2.0</td>
<td>27.8</td>
<td>6.5</td>
<td>53.2</td>
<td>10.1</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>541-73-1</td>
<td>N</td>
<td>29.3</td>
<td>4.8</td>
<td>12.7</td>
<td>1.7</td>
<td>20.5</td>
<td>6.2</td>
<td>46.8</td>
<td>10.5</td>
</tr>
<tr>
<td>Diethyl phthalate</td>
<td>84-66-2</td>
<td>N</td>
<td>24.8</td>
<td>1.6</td>
<td>23.3</td>
<td>0.3</td>
<td>121.1</td>
<td>3.3</td>
<td>99.0</td>
<td>4.5</td>
</tr>
<tr>
<td>4,6-Dinitro-o-cresol</td>
<td>534-52-1</td>
<td>A</td>
<td>66.1</td>
<td>8.0</td>
<td>63.8</td>
<td>2.5</td>
<td>74.2</td>
<td>3.5</td>
<td>55.2</td>
<td>5.6</td>
</tr>
<tr>
<td>2,4-Dinitrotoluene</td>
<td>121-14-2</td>
<td>N</td>
<td>68.9</td>
<td>1.6</td>
<td>65.6</td>
<td>4.9</td>
<td>85.6</td>
<td>1.7</td>
<td>68.4</td>
<td>3.0</td>
</tr>
<tr>
<td>2,6-Dinitrotoluene</td>
<td>606-20-2</td>
<td>N</td>
<td>70.0</td>
<td>7.6</td>
<td>68.3</td>
<td>0.7</td>
<td>88.3</td>
<td>4.0</td>
<td>65.2</td>
<td>2.0</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>1024-57-3</td>
<td>N</td>
<td>65.5</td>
<td>7.8</td>
<td>58.7</td>
<td>1.0</td>
<td>86.7</td>
<td>1.0</td>
<td>84.8</td>
<td>2.5</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>118-74-1</td>
<td>N</td>
<td>62.1</td>
<td>8.8</td>
<td>56.5</td>
<td>1.2</td>
<td>95.8</td>
<td>2.5</td>
<td>89.3</td>
<td>1.2</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>87-68-3</td>
<td>N</td>
<td>55.8</td>
<td>8.3</td>
<td>41.0</td>
<td>2.7</td>
<td>63.4</td>
<td>4.1</td>
<td>76.9</td>
<td>8.4</td>
</tr>
<tr>
<td>Hexachlorocyclopentadiene</td>
<td>77-47-4</td>
<td>N</td>
<td>26.8</td>
<td>3.3</td>
<td>19.3</td>
<td>1.8</td>
<td>35.5</td>
<td>6.5</td>
<td>46.6</td>
<td>4.7</td>
</tr>
<tr>
<td>Hexachloroethane</td>
<td>67-72-1</td>
<td>N</td>
<td>28.4</td>
<td>3.8</td>
<td>15.5</td>
<td>1.6</td>
<td>31.1</td>
<td>7.4</td>
<td>57.9</td>
<td>10.4</td>
</tr>
<tr>
<td>5-Nitro-o-toluidine</td>
<td>99-55-8</td>
<td>B</td>
<td>52.6</td>
<td>26.7</td>
<td>64.6</td>
<td>4.7</td>
<td>74.7</td>
<td>4.7</td>
<td>27.9</td>
<td>4.0</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>98-95-3</td>
<td>N</td>
<td>59.8</td>
<td>7.0</td>
<td>38.7</td>
<td>5.5</td>
<td>46.9</td>
<td>6.3</td>
<td>60.6</td>
<td>6.3</td>
</tr>
<tr>
<td>Phenol</td>
<td>108-95-2</td>
<td>A</td>
<td>51.6</td>
<td>2.4</td>
<td>52.0</td>
<td>3.3</td>
<td>65.6</td>
<td>3.4</td>
<td>65.5</td>
<td>2.1</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>120-82-1</td>
<td>N</td>
<td>66.7</td>
<td>5.5</td>
<td>49.6</td>
<td>4.0</td>
<td>73.0</td>
<td>3.6</td>
<td>84.0</td>
<td>7.0</td>
</tr>
</tbody>
</table>

a Percent recovery of analytes spiked at 200 mg/kg into NIST sediment SRM 1645

b Chemical Abstracts Service Registry Number

c Compound Type: A = Acid, B = Base, N = neutral

d A = Methylene chloride

B = Methylene chloride/Acetone (1/1)

C = Hexane/Acetone (1/1)

D = Methyl t-butyl ether

E = Methyl t-butyl ether/Methanol (2/1)
<table>
<thead>
<tr>
<th>Determinative method</th>
<th>Extraction pH</th>
<th>Exchange solvent required for analysis</th>
<th>Exchange solvent required for cleanup</th>
<th>Volume of extract required for cleanup (mL)</th>
<th>Final extract volume for analysis (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8040*</td>
<td>as received</td>
<td>2-propanol</td>
<td>hexane</td>
<td>1.0</td>
<td>1.0, 10.0*</td>
</tr>
<tr>
<td>8060</td>
<td>as received</td>
<td>hexane</td>
<td>hexane</td>
<td>2.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8061</td>
<td>as received</td>
<td>hexane</td>
<td>hexane</td>
<td>2.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8070</td>
<td>as received</td>
<td>methanol</td>
<td>methylene chloride</td>
<td>2.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8080</td>
<td>as received</td>
<td>hexane</td>
<td>hexane</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8081</td>
<td>as received</td>
<td>hexane</td>
<td>hexane</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8090</td>
<td>as received</td>
<td>hexane</td>
<td>hexane</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>8100</td>
<td>as received</td>
<td>none</td>
<td>cyclohexane</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>8110</td>
<td>as received</td>
<td>hexane</td>
<td>hexane</td>
<td>2.0</td>
<td>10.0</td>
</tr>
<tr>
<td>8120</td>
<td>as received</td>
<td>hexane</td>
<td>hexane</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>8121</td>
<td>as received</td>
<td>hexane</td>
<td>hexane</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>8250*</td>
<td>as received</td>
<td>none</td>
<td>--</td>
<td>--</td>
<td>1.0</td>
</tr>
<tr>
<td>8270*</td>
<td>as received</td>
<td>none</td>
<td>--</td>
<td>--</td>
<td>1.0</td>
</tr>
<tr>
<td>8310</td>
<td>as received</td>
<td>acetonitrile</td>
<td>--</td>
<td>--</td>
<td>1.0</td>
</tr>
<tr>
<td>8321</td>
<td>as received</td>
<td>methanol</td>
<td>--</td>
<td>--</td>
<td>1.0</td>
</tr>
<tr>
<td>8410</td>
<td>as received</td>
<td>methylene chloride</td>
<td>methylene chloride</td>
<td>10.0</td>
<td>0.0 (dry)</td>
</tr>
</tbody>
</table>

* To obtain separate acid and base/neutral extracts, Method 3650 should be performed following concentration of the extract to 10.0 mL.

b Phenols may be analyzed, by Method 8040, using a 1.0 mL 2-propanol extract by GC/FID. Method 8040 also contains an optical derivatization procedure for phenols which results in a 10 mL hexane extract to be analyzed by GC/ECD.

c The specificity of GC/MS may make cleanup of the extracts unnecessary. Refer to Method 3600 for guidance on the cleanup procedures available if required.
METHOD 3550A
ULTRASONIC EXTRACTION

Start

7.1 Prepare samples using appropriate method for the waste matrix

7.2 Determine the percent dry weight of the sample

7.5.2 Add anhydrous sodium sulfate to sample

7.5.2 Is organic concentration expected to be ≤ 20 mg/kg?

No

7.5.3 Add surrogate standards to all samples, spikes, and blanks

Yes

7.5.4 Adjust volume: disrupt sample with tapered microtip ultrasonic probe

7.5.5 Is further concentration required?

No

7.5.5 Filter through glass wool

B

Yes

7.3.1 Add surrogate standards to all samples, spikes, and blanks

7.3.2 - 7.3.5 Sonicate sample at least 3 times

7.3.7 Dry and collect extract in K-D concentrator

7.3.8 Concentrate extract and collect in K-D concentrator

A

3550A - 12

Revision 1
September 1994
7.3.9 Add exchange solvent; concentrate extract

7.3.9 Is a solvent exchange required?

7.3.10 Use Method 3660 for cleanup

7.3.10 Do sulfur crystals form?

7.3.11 Further concentrate and/or adjust volume

Cleanup or analyze
METHOD 3580A

WASTE DILUTION

1.0 SCOPE AND APPLICATION

1.1 This method describes a solvent dilution of a non-aqueous waste sample prior to cleanup and/or analysis. It is designed for wastes that may contain organic chemicals at a concentration greater than 20,000 mg/kg and that are soluble in the dilution solvent.

1.2 It is recommended that an aliquot of the diluted sample be cleaned up. See this chapter, Organic Analytes, Section 4.2.2 (Cleanup).

2.0 SUMMARY OF METHOD

2.1 One gram of sample is weighed into a capped tube, and the sample is diluted to 10.0 mL with an appropriate solvent.

3.0 INTERFERENCES

3.1 Refer to Method 3500.

4.0 APPARATUS AND MATERIALS

4.1 Glass scintillation vials: At least 20 mL, with Teflon or aluminum foil lined screw-cap, or equivalent.

4.2 Spatula: Stainless steel or Teflon.

4.3 Balance: Capable of weighing 100 g to the nearest 0.01 g.

4.4 Vials and caps: 2 mL for GC autosampler.

4.5 Disposable pipets: Pasteur.

4.6 Test tube rack.

4.7 Pyrex glass wool.

4.8 Volumetric flasks, Class A: 10 mL (optional).

5.0 REAGENTS

5.1 Sodium sulfate (granular, anhydrous), Na₂SO₄. Purify by heating at 400°C for 4 hours in a shallow tray, or by precleaning the sodium sulfate with methylene chloride. If the sodium sulfate is precleaned with methylene chloride,
a method blank must be analyzed, demonstrating that there is no interference from the sodium sulfate.

5.2 Methylene chloride, CH₂Cl₂ - Pesticide quality or equivalent.

5.3 Hexane, C₆H₁₄ - Pesticide quality or equivalent.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1 See the introductory material to this chapter, Organic Analytes, Section 4.1.

7.0 PROCEDURE

7.1 Samples consisting of multiphases must be prepared by the phase separation method (Chapter Two) before extraction.

7.2 The sample dilution may be performed in a 10 mL volumetric flask. If disposable glassware is preferred, the 20 mL scintillation vial may be calibrated for use. Pipet 10.0 mL of extraction solvent into the scintillation vial and mark the bottom of the meniscus. Discard this solvent.

7.3 Transfer approximately 1 g of each phase of the sample to separate 20 mL vials or 10 mL volumetric flasks (record weight to the nearest 0.1 g). Wipe the mouth of the vial with a tissue to remove any sample material. Cap the vial before proceeding with the next sample to avoid any cross-contamination.

7.4 Add 2.0 mL surrogate spiking solution to all samples and blanks. For the sample in each analytical batch selected for spiking, add 2.0 mL of the matrix spiking standard. For base/neutral-acid analysis, the amount added of the surrogates and matrix spiking compounds should result in a final concentration of 200 ng/µL of each base/neutral analyte and 400 ng/µL of each acid analyte in the extract to be analyzed (assuming a 1 µL injection). If Method 3640, Gel-permeation cleanup, is to be used, add twice the volume of surrogates and matrix spiking compounds since half the extract is lost due to loading of the GPC column. See Method 3500 and the determinative method to be used for details on the surrogate standard and matrix spiking solutions.

7.5 Immediately dilute to 10 mL with the appropriate solvent. For compounds to be analyzed by GC/ECD, e.g., organochlorine pesticides and PCBs, the dilution solvent should be hexane. For base/neutral and acid semivolatile priority pollutants, use methylene chloride. If the dilution is to be cleaned up by gel permeation chromatography (Method 3640), use methylene chloride as the dilution solvent for all compounds.

7.6 Add 2.0 g of anhydrous sodium sulfate to the sample.

7.7 Cap and shake the sample for 2 min.
7.8 Loosely pack disposable Pasteur pipets with 2-3 cm glass wool plugs. Filter the extract through the glass wool and collect 5 mL of the extract in a tube or vial.

7.9 The extract is ready for cleanup or analysis, depending on the extent of interfering co-extractives.

8.0 QUALITY CONTROL

8.1 Any reagent blanks and matrix spike samples should be subjected to exactly the same analytical procedures as those used on actual samples.

8.2 Refer to Chapter One for specific quality control procedures and Method 3500 for extraction and sample preparation procedures.

9.0 METHOD PERFORMANCE

9.1 Refer to the determinative methods for performance data.

10.0 REFERENCES

10.1 None applicable.
METHOD 3580A
WASTE DILUTION

START

7 1 Does sample contain more than 1 phase? [Yes/No]

7 1 Use phase separation method (Chapter 2)

7 3 Transfer 1 g of each phase to separate vials or flasks

7 4 Add surrogate spiking solution to all samples and blanks

7 4 Add matrix spiking standard to sample selected for spiking

7 5 Dilute with appropriate solvent

7 6 Add anhydrous ammonium sulfate

7 7 Cap and shake

7 8 Filter through glass wool

Cleanup or analyze
METHOD 5030A

PURGE-AND-TRAP

1.0 SCOPE AND APPLICATION

1.1 This method describes sample preparation and extraction for the analysis of volatile organics by a purge-and-trap procedure. The gas chromatographic determinative steps are found in Methods 8010, 8015, 8020, 8021 and 8030. Although applicable to Methods 8240 and 8260, the purge-and-trap procedure is already incorporated into Methods 8240 and 8260.

1.2 Method 5030 can be used for most volatile organic compounds that have boiling points below 200°C and are insoluble or slightly soluble in water. Volatile water-soluble compounds can be included in this analytical technique; however, quantitation limits (by GC or GC/MS) are approximately ten times higher because of poor purging efficiency. The method is also limited to compounds that elute as sharp peaks from a GC column packed with graphitized carbon lightly coated with a carbowax or a coated capillary column. Such compounds include low molecular weight halogenated hydrocarbons, aromatics, ketones, nitriles, acetates, acrylates, ethers, and sulfides.

1.3 Water samples can be analyzed directly for volatile organic compounds by purge-and-trap extraction and gas chromatography. Higher concentrations of these analytes in water can be determined by direct injection of the sample into the chromatographic system.

1.4 This method also describes the preparation of water-miscible liquids, non-water-miscible liquids, solids, wastes, and soils/sediments for analysis by the purge-and-trap procedure.

2.0 SUMMARY OF METHOD

2.1 The purge-and-trap process: An inert gas is bubbled through the solution at ambient temperature, and the volatile components are efficiently transferred from the aqueous phase to the vapor phase. The vapor is swept through a sorbent column where the volatile components are adsorbed. After purging is completed, the sorbent column is heated and backflushed with inert gas to desorb the components onto a gas chromatographic column.

2.2 If the sample introduction technique in Section 2.1 is not applicable, a portion of the sample is dispersed in methanol to dissolve the volatile organic constituents. A portion of the methanolic solution is combined with water in a specially designed purging chamber. It is then analyzed by purge-and-trap GC following the normal water method.

3.0 INTERFERENCES

3.1 Impurities in the purge gas, and from organic compounds out-gassing from the plumbing ahead of the trap, account for the majority of contamination problems. The analytical system must be demonstrated to be free from...
contamination under the conditions of the analysis by running laboratory reagent blanks. The use of non-TFE plastic coating, non-TFE thread sealants, or flow controllers with rubber components in the purging device should be avoided.

3.2 Samples can be contaminated by diffusion of volatile organics (particularly methylene chloride and fluorocarbons) through the septum seal of the sample vial during shipment and storage. A trip blank prepared from organic-free reagent water and carried through sampling and handling protocols serves as a check on such contamination.

3.3 Contamination by carryover can occur whenever high-concentration and low-concentration samples are analyzed sequentially. Whenever an unusually concentrated sample is analyzed, it should be followed by an analysis of organic-free reagent water to check for cross-contamination. The trap and other parts of the system are subject to contamination. Therefore, frequent bake-out and purging of the entire system may be required.

3.4 The laboratory where volatile analysis is performed should be completely free of solvents.

4.0 APPARATUS AND MATERIALS

4.1 Microsyringes - 10 µL, 25 µL, 100 µL, 250 µL, 500 µL, and 1,000 µL. These syringes should be equipped with a 20 gauge (0.006 in ID) needle having a length sufficient to extend from the sample inlet to within 1 cm of the glass frit in the purging device. The needle length will depend upon the dimensions of the purging device employed.

4.2 Syringe valve - Two-way, with Luer ends (three each), if applicable to the purging device.

4.3 Syringe - 5 mL, gas-tight with shutoff valve.

4.4 Analytical balance - 0.0001 g.

4.5 Top-loading balance - 0.1 g.

4.6 Glass scintillation vials - 20 mL, with screw-caps and Teflon liners or glass culture tubes with screw-caps and Teflon liners.

4.7 Volumetric flasks, Class A - 10 mL and 100 mL, with ground-glass stoppers.

4.8 Vials - 2 mL, for GC autosampler.

4.9 Spatula - Stainless steel.

4.10 Disposable pipets - Pasteur.

4.11 Purge-and-trap device: The purge-and-trap device consists of three separate pieces of equipment: the sample purger, the trap, and the desorber. Several complete devices are commercially available.
4.11.1 The recommended purging chamber is designed to accept 5 mL samples with a water column at least 3 cm deep. The gaseous headspace between the water column and the trap must have a total volume of less than 15 mL. The purge gas must pass through the water column as finely divided bubbles with a diameter of less than 3 mm at the origin. The purge gas must be introduced no more than 5 mm from the base of the water column. The sample purger, illustrated in Figure 1, meets these design criteria. Alternate sample purge devices may be used, provided equivalent performance is demonstrated.

4.11.2 The trap must be at least 25 cm long and have an inside diameter of at least 0.105 in. Starting from the inlet, the trap must contain the following amounts of adsorbents: 1/3 of 2,6-diphenylene oxide polymer, 1/3 of silica gel, and 1/3 of coconut charcoal. It is recommended that 1.0 cm of methyl silicone-coated packing be inserted at the inlet to extend the life of the trap (see Figures 2 and 3). If it is not necessary to analyze for dichlorodifluoromethane or other fluoro-carbons of similar volatility, the charcoal can be eliminated and the polymer increased to fill 2/3 of the trap. If only compounds boiling above 35°C are to be analyzed, both the silica gel and charcoal can be eliminated and the polymer increased to fill the entire trap. Before initial use, the trap should be conditioned overnight at 180°C by backflushing with an inert gas flow of at least 20 mL/min. Vent the trap effluent to the hood, not to the analytical column. Prior to daily use, the trap should be conditioned for 10 min at 180°C with backflushing. The trap may be vented to the analytical column during daily conditioning; however, the column must be run through the temperature program prior to analysis of samples.

4.11.3 The desorber should be capable of rapidly heating the trap to 180°C for desorption. The polymer section of the trap should not be heated higher than 180°C, and the remaining sections should not exceed 220°C during bake-out mode. The desorber design illustrated in Figures 2 and 3 meet these criteria.

4.11.4 The purge-and-trap device may be assembled as a separate unit or may be coupled to a gas chromatograph, as shown in Figures 4 and 5.

4.11.5 Trap Packing Materials

4.11.5.1 2,6-Diphenylene oxide polymer - 60/80 mesh, chromatographic grade (Tenax GC or equivalent).

4.11.5.2 Methyl silicone packing - OV-1 (3%) on Chromosorb-W, 60/80 mesh or equivalent.

4.11.5.3 Silica gel - 35/60 mesh, Davison, grade 15 or equivalent.

4.11.5.4 Coconut charcoal - Prepare from Barnebey Cheney, CA-580-26 lot #M-2649, or equivalent, by crushing through 26 mesh screen.
4.12 Heater or heated oil bath - capable of maintaining the purging chamber to within 1°C, over a temperature range from ambient to 100°C.

5.0 REAGENTS

5.1 Organic-free reagent water - All references to water in this method refer to organic-free reagent water, as defined in Chapter One.

5.2 Methanol, CH₃OH - Pesticide quality or equivalent. Store away from other solvents.

5.3 Reagent Tetraglyme - Reagent tetraglyme is defined as tetraglyme in which interference is not observed at the method detection limit of the compounds of interest.

5.3.1 Tetraglyme (tetraethylene glycol dimethyl ether, Aldrich #17, 240-5 or equivalent), C₆H₁₂O₅. Purify by treatment at reduced pressure in a rotary evaporator. The tetraglyme should have a peroxide content of less than 5 ppm as indicated by EM Quant Test Strips (available from Scientific Products Co., Catalog No. P1126-8 or equivalent).

CAUTION: Glycol ethers are suspected carcinogens. All solvent handling should be done in a hood while using proper protective equipment to minimize exposure to liquid and vapor.

Peroxides may be removed by passing the tetraglyme through a column of activated alumina. The tetraglyme is placed in a round bottom flask equipped with a standard taper joint, and the flask is affixed to a rotary evaporator. The flask is immersed in a water bath at 90-100°C and a vacuum is maintained at < 10 mm Hg for at least two hours using a two stage mechanical pump. The vacuum system is equipped with an all glass trap, which is maintained in a dry ice/methanol bath. Cool the tetraglyme to ambient temperature and add 100 mg/L of 2,6-di-tert-butyl-4-methyl-phenol to prevent peroxide formation. Store the tetraglyme in a tightly sealed screw cap bottle in an area that is not contaminated by solvent vapors.

5.3.2 In order to demonstrate that all interfering volatiles have been removed from the tetraglyme, an organic-free reagent water/tetraglyme blank must be analyzed.

5.4 Polyethylene glycol, H(OCH₂CH₂)ₙOH. Free of interferences at the detection limit of the analytes.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1 Refer to the introductory material to this chapter, Organic Analytes, Section 4.1. Samples should be stored in capped bottles, with minimum headspace, at 4°C or less.
7.0 Procedure

7.1 Initial calibration: Prior to using this introduction technique for any GC method, the system must be calibrated. General calibration procedures are discussed in Method 8000, while the specific determinative methods and Method 3500 give details on preparation of standards.

7.1.1 Assemble a purge-and-trap device that meets the specification in Section 4.10. Condition the trap overnight at 180°C in the purge mode with an inert gas flow of at least 20 mL/min. Prior to use, condition the trap daily for 10 min while backflushing at 180°C with the column at 220°C.

7.1.2 Connect the purge-and-trap device to a gas chromatograph.

7.1.3 Prepare the final solutions containing the required concentrations of calibration standards, including surrogate standards, directly in the purging device. Add 5.0 mL of organic-free reagent water to the purging device. The organic-free reagent water is added to the purging device using a 5 mL glass syringe fitted with a 15 cm 20-gauge needle. The needle is inserted through the sample inlet shown in Figure 1. The internal diameter of the 14-gauge needle that forms the sample inlet will permit insertion of the 20-gauge needle. Next, using a 10 µL or 25 µL micro-syringe equipped with a long needle (Section 4.1), take a volume of the secondary dilution solution containing appropriate concentrations of the calibration standards. Add the aliquot of calibration solution directly to the organic-free reagent water in the purging device by inserting the needle through the sample inlet. When discharging the contents of the micro-syringe, be sure that the end of the syringe needle is well beneath the surface of the organic-free reagent water. Similarly, add 10 µL of the internal standard solution. Close the 2-way syringe valve at the sample inlet.

7.1.4 Carry out the purge-and-trap analysis procedure using the specific conditions given in Table 1.

7.1.5 Calculate response factors or calibration factors for each analyte of interest using the procedure described in Method 8000.

7.1.6 The average RF must be calculated for each compound. A system performance check should be made before this calibration curve is used. If the purge-and-trap procedure is used with Method 8010, the following five compounds are checked for a minimum average response factor: chloromethane; 1,1-dichloroethane; bromoform; 1,1,2,2-tetrachloroethane; and chlorobenzene. The minimum acceptable average RF for these compounds should be 0.300 (0.250 for bromoform). These compounds typically have RFs of 0.4-0.6, and are used to check compound stability and to check for degradation caused by contaminated lines or active sites in the system. Examples of these occurrences are:

7.1.6.1 Chloromethane: This compound is the most likely compound to be lost if the purge flow is too fast.

7.1.6.2 Bromoform: This compound is one of the compounds most likely to be purged very poorly if the purge flow is too slow.
Cold spots and/or active sites in the transfer lines may adversely affect response.

7.1.6.3 Tetrachloroethane and 1,1-dichloroethane: These compounds are degraded by contaminated transfer lines in purge-and-trap systems and/or active sites in trapping materials.

7.2 On-going calibration: Refer to Method 8000 for details on continuing calibration.

7.3 Sample preparation

7.3.1 Water samples

7.3.1.1 Screening of the sample prior to purge-and-trap analysis will provide guidance on whether sample dilution is necessary and will prevent contamination of the purge-and-trap system. Two screening techniques that can be utilized are: the use of an automated headspace sampler (modified Method 3810), interfaced to a gas chromatograph (GC), equipped with a photo ionization detector (PID), in series with an electrolytic conductivity detector (HECD); and extraction of the sample with hexadecane (Method 3820) and analysis of the extract on a GC with a FID and/or an ECD.

7.3.1.2 All samples and standard solutions must be allowed to warm to ambient temperature before analysis.

7.3.1.3 Assemble the purge-and-trap device. The operating conditions for the GC are given in Section 7.0 of the specific determinative method to be employed.

7.3.1.4 Daily GC calibration criteria must be met (Method 8000) before analyzing samples.

7.3.1.5 Adjust the purge gas flow rate (nitrogen or helium) to that shown in Table 1, on the purge-and-trap device. Optimize the flow rate to provide the best response for chloromethane and bromoform, if these compounds are analytes. Excessive flow rate reduces chloromethane response, whereas insufficient flow reduces bromoform response.

7.3.1.6 Remove the plunger from a 5 mL syringe and attach a closed syringe valve. Open the sample or standard bottle, which has been allowed to come to ambient temperature, and carefully pour the sample into the syringe barrel to just short of overflowing. Replace the syringe plunger and compress the sample. Open the syringe valve and vent any residual air while adjusting the sample volume to 5.0 mL. This process of taking an aliquot destroys the validity of the liquid sample for future analysis; therefore, if there is only one VOA vial, the analyst should fill a second syringe at this time to protect against possible loss of sample integrity. This second sample is maintained only until such time when the analyst has determined that the first sample has been analyzed properly. Filling one 20 mL syringe would allow the use of only one
syringe. If a second analysis is needed from a syringe, it must be analyzed within 24 hr. Care must be taken to prevent air from leaking into the syringe.

7.3.1.7 The following procedure is appropriate for diluting purgeable samples. All steps must be performed without delays until the diluted sample is in a gas-tight syringe.

7.3.1.7.1 Dilutions may be made in volumetric flasks (10 mL to 100 mL). Select the volumetric flask that will allow for the necessary dilution. Intermediate dilutions may be necessary for extremely large dilutions.

7.3.1.7.2 Calculate the approximate volume of organic-free reagent water to be added to the volumetric flask selected and add slightly less than this quantity of organic-free reagent water to the flask.

7.3.1.7.3 Inject the proper aliquot of samples from the syringe prepared in Section 7.3.1.5 into the flask. Aliquots of less than 1 mL are not recommended. Dilute the sample to the mark with organic-free reagent water. Cap the flask, invert, and shake three times. Repeat the above procedure for additional dilutions.

7.3.1.7.4 Fill a 5 mL syringe with the diluted sample as in Section 7.3.1.5.

7.3.1.8 Add 10.0 μL of surrogate spiking solution (found in each determinative method, Section 5.0) and, if applicable, 10 μL of internal standard spiking solution through the valve bore of the syringe; then close the valve. The surrogate and internal standards may be mixed and added as a single spiking solution. Matrix spiking solutions, if indicated, should be added (10 μL) to the sample at this time.

7.3.1.9 Attach the syringe-syringe valve assembly to the syringe valve on the purging device. Open the syringe valves and inject the sample into the purging chamber.

7.3.1.10 Close both valves and purge the sample for the time and at the temperature specified in Table 1.

7.3.1.11 At the conclusion of the purge time, attach the trap to the chromatograph, adjust the device to the desorb mode, and begin the gas chromatographic temperature program and GC data acquisition. Concurrently, introduce the trapped materials to the gas chromatographic column by rapidly heating the trap to 180°C while backflushing the trap with inert gas between 20 and 60 mL/min for the time specified in Table 1.

7.3.1.12 While the trap is being desorbed into the gas chromatograph, empty the purging chamber. Wash the chamber with a minimum of two 5 mL flushes of organic-free reagent water (or
methanol followed by organic-free reagent water) to avoid carryover of pollutant compounds into subsequent analyses.

7.3.1.13 After desorbing the sample, recondition the trap by returning the purge-and-trap device to the purge mode. Wait 15 sec; then close the syringe valve on the purging device to begin gas flow through the trap. The trap temperature should be maintained at 180°C for Methods 8010, 8020, 8021, 8240 and 8260 and 210°C for Methods 8015 and 8030. Trap temperatures up to 220°C may be employed. However, the higher temperatures will shorten the useful life of the trap. After approximately 7 min, turn off the trap heater and open the syringe valve to stop the gas flow through the trap. When cool, the trap is ready for the next sample.

7.3.1.14 If the initial analysis of a sample or a dilution of the sample has a concentration of analytes that exceeds the initial calibration range, the sample must be reanalyzed at a higher dilution. When a sample is analyzed that has saturated response from a compound, this analysis must be followed by a blank organic-free reagent water analysis. If the blank analysis is not free of interferences, the system must be decontaminated. Sample analysis may not resume until a blank can be analyzed that is free of interferences.

7.3.1.15 All dilutions should keep the response of the major constituents (previously saturated peaks) in the upper half of the linear range of the curve. Proceed to Method 8000 and the specific determinative method for details on calculating analyte response.

7.3.2 Water-miscible liquids:

7.3.2.1 Water-miscible liquids are analyzed as water samples after first diluting them at least 50-fold with organic-free reagent water.

7.3.2.2 Initial and serial dilutions can be prepared by pipetting 2 mL of the sample into a 100 mL volumetric flask and diluting to volume with organic-free reagent water. Transfer immediately to a 5 mL gas-tight syringe.

7.3.2.3 Alternatively, prepare dilutions directly in a 5 mL syringe filled with organic-free reagent water by adding at least 20 µL, but not more than 100 µL of liquid sample. The sample is ready for addition of surrogate and, if applicable, internal and matrix spiking standards.

7.3.3 Sediment/soil and waste samples: It is highly recommended that all samples of this type be screened prior to the purge-and-trap GC analysis. These samples may contain percent quantities of purgeable organics that will contaminate the purge-and-trap system, and require extensive cleanup and instrument downtime. See Section 7.3.1.1 for recommended screening techniques. Use the screening data to determine whether to use the low-concentration method (0.005-1 mg/kg) or the high-
concentration method (>1 mg/kg).

7.3.3.1 Low-concentration method: This is designed for samples containing individual purgeable compounds of <1 mg/kg. It is limited to sediment/soil samples and waste that is of a similar consistency (granular and porous). The low-concentration method is based on purging a heated sediment/soil sample mixed with organic-free reagent water containing the surrogate and, if applicable, internal and matrix spiking standards. Analyze all reagent blanks and standards under the same conditions as the samples.

7.3.3.1.1 Use a 5 g sample if the expected concentration is <0.1 mg/kg or a 1 g sample for expected concentrations between 0.1 and 1 mg/kg.

7.3.3.1.2 The GC system should be set up as in Section 7.0 of the specific determinative method. This should be done prior to the preparation of the sample to avoid loss of volatiles from standards and samples. A heated purge calibration curve must be prepared and used for the quantitation of all samples analyzed with the low-concentration method. Follow the initial and daily calibration instructions, except for the addition of a 40°C purge temperature for Methods 8010, 8020, and 8021.

7.3.3.1.3 Remove the plunger from a 5 mL Luerlock type syringe equipped with a syringe valve and fill until overflowing with organic-free reagent water. Replace the plunger and compress the reagent water to vent trapped air. Adjust the volume to 5.0 mL. Add 10 μL each of surrogate spiking solution and internal standard solution to the syringe through the valve. (Surrogate spiking solution and internal standard solution may be mixed together.) Matrix spiking solutions, if indicated, should be added (10 μL) to the sample at this time.

7.3.3.1.4 The sample (for volatile organics) consists of the entire contents of the sample container. Do not discard any supernatant liquids. Mix the contents of the sample container with a narrow metal spatula. Weigh the amount determined in Section 7.3.3.1.1 into a tared purge device. Note and record the actual weight to the nearest 0.1 g.

7.3.3.1.5 Determination of sample % dry weight - In certain cases, sample results are desired based on dry weight basis. When such data is desired, a portion of sample for this determination should be weighed out at the same time as the portion used for analytical determination.

WARNING: The drying oven should be contained in a hood or vented. Significant laboratory contamination may result from a heavily

5030A - 9 Revision 1 July 1992
contaminated hazardous waste sample.

7.3.3.1.5.1 Immediately after weighing the sample for extraction, weigh 5-10 g of the sample into a tared crucible. Determine the % dry weight of the sample by drying overnight at 105°C. Allow to cool in a desiccator before weighing:

\[
\% \text{ dry weight} = \frac{\text{g of dry sample}}{\text{g of sample}} \times 100
\]

7.3.3.1.6 Add the spiked organic-free reagent water to the purge device, which contains the weighed amount of sample, and connect the device to the purge-and-trap system.

NOTE: Prior to the attachment of the purge device, Sections 7.3.3.1.4 and 7.3.3.1.6 must be performed rapidly and without interruption to avoid loss of volatile organics. These steps must be performed in a laboratory free of solvent fumes.

7.3.3.1.7 Heat the sample to 40°C ± 1°C (Methods 8010, 8020 and 8021) or to 85°C ± 2°C (Methods 8015 and 8030) and purge the sample for the time shown in Table 1.

7.3.3.1.8 Proceed with the analysis as outlined in Sections 7.3.1.11-7.3.1.15. Use 5 mL of the same organic-free reagent water as in the reagent blank. If saturated peaks occurred or would occur if a 1 g sample were analyzed, the high-concentration method must be followed.

7.3.3.1.9 For matrix spike analysis of low-concentration sediment/soils, add 10 μL of the matrix spike solution to 5 mL of organic-free reagent water (Section 7.3.3.1.3). The concentration for a 5 g sample would be equivalent to 50 μg/kg of each matrix spike standard.

7.3.3.2 High-concentration method: The method is based on extracting the sediment/soil with methanol. A waste sample is either extracted or diluted, depending on its solubility in methanol. Wastes (i.e. petroleum and coke wastes) that are insoluble in methanol are diluted with reagent tetraglyme or polyethylene glycol (PEG). An aliquot of the extract is added to organic-free reagent water containing surrogate and, if applicable, internal and matrix spiking standards. This is purged at the temperatures indicated in Table 1. All samples with an expected concentration of >1.0 mg/kg should be analyzed by this method.

7.3.3.2.1 The sample (for volatile organics) consists of the entire contents of the sample container. Do not discard any supernatant liquids. Mix the contents of the sample container with a narrow metal spatula. For sediment/soil and waste that are insoluble in methanol, weigh

5030A - 10

Revision 1

July 1992
4 g (wet weight) of sample into a tared 20 mL vial. Use a top-loading balance. Note and record the actual weight to 0.1 gram and determine the percent dry weight of the sample using the procedure in Section 7.3.3.1.5. For waste that is soluble in methanol, tetraglyme, or PEG, weigh 1 g (wet weight) into a tared scintillation vial or culture tube or a 10 mL volumetric flask. (If a vial or tube is used, it must be calibrated prior to use. Pipet 10.0 mL of methanol into the vial and mark the bottom of the meniscus. Discard this solvent.)

7.3.3.2.2 For sediment/soil or solid waste, quickly add 9.0 mL of appropriate solvent; then add 1.0 mL of the surrogate spiking solution to the vial. For a solvent miscible sample, dilute the sample to 10 mL with the appropriate solvent after adding 1.0 mL of the surrogate spiking solution. Cap and shake for 2 min.

NOTE: Sections 7.3.3.2.1 and 7.3.3.2.2 must be performed rapidly and without interruption to avoid loss of volatile organics. These steps must be performed in a laboratory free from solvent fumes.

7.3.3.2.3 Pipet approximately 1 mL of the extract into a GC vial for storage, using a disposable pipet. The remainder may be discarded. Transfer approximately 1 mL of reagent methanol to a separate GC vial for use as the method blank for each set of samples. These extracts may be stored at 4°C in the dark, prior to analysis.

7.3.3.2.4 The GC system should be set up as in Section 7.0 of the specific determinative method. This should be done prior to the addition of the methanol extract to organic-free reagent water.

7.3.3.2.5 Table 2 can be used to determine the volume of methanol extract to add to the 5 mL of organic-free reagent water for analysis. If a screening procedure was followed, use the estimated concentration to determine the appropriate volume. Otherwise, estimate the concentration range of the sample from the low-concentration analysis to determine the appropriate volume. If the sample was submitted as a high-concentration sample, start with 100 µL. All dilutions must keep the response of the major constituents (previously saturated peaks) in the upper half of the linear range of the curve.

7.3.3.2.6 Remove the plunger from a 5.0 mL Luerlock type syringe equipped with a syringe valve and fill until overflowing with organic-free reagent water. Replace the plunger and compress the water to vent trapped air. Adjust the volume to 4.9 mL. Pull the plunger back to 5.0 mL to allow volume for the addition of the sample extract and of
standards. Add 10 μL of internal standard solution. Also add the volume of methanol extract determined in Section 7.3.3.2.5 and a volume of methanol solvent to total 100 μL (excluding methanol in standards).

7.3.3.2.7 Attach the syringe-syringe valve assembly to the syringe valve on the purging device. Open the syringe valve and inject the water/methanol sample into the purging chamber.

7.3.3.2.8 Proceed with the analysis as outlined in the specific determinative method. Analyze all reagent blanks on the same instrument as that used for the samples. The standards and blanks should also contain 100 μL of methanol to simulate the sample conditions.

7.3.3.2.9 For a matrix spike in the high-concentration sediment/soil samples, add 8.0 mL of methanol, 1.0 mL of surrogate spike solution and 1.0 mL of matrix spike solution. Add a 100 μL aliquot of this extract to 5 mL of water for purging (as per Section 7.3.3.2.6).

7.4 Sample analysis:

7.4.1 The samples prepared by this method may be analyzed by Methods 8010, 8015, 8020, 8021, 8030, 8240, and 8260. Refer to these methods for appropriate analysis conditions.

8.0 QUALITY CONTROL

8.1 Refer to Chapter One for specific quality control procedures and Method 3500 for sample preparation procedures.

8.2 Before processing any samples, the analyst should demonstrate through the analysis of a calibration blank that all glassware and reagents are interference free. Each time a set of samples is extracted, or there is a change in reagents, a method blank should be processed as a safeguard against chronic laboratory contamination. The blanks should be carried through all stages of the sample preparation and measurement.

8.3 Standard quality assurance practices should be used with this method. Field duplicates should be collected to validate the precision of the sampling technique. Laboratory replicates should be analyzed to validate the precision of the analysis. Spiked samples should be carried through all stages of sample preparation and measurement; they should be analyzed to validate the sensitivity and accuracy of the analysis. If the spiked samples do not indicate sufficient sensitivity to detect < 1 μg/g of the analytes in the sample, then the sensitivity of the instrument should be increased, or the sample should be subjected to additional cleanup.
9.0 METHOD PERFORMANCE

9.1 Refer to the determinative methods for performance data.

10.0 REFERENCES

TABLE 1
PURGE-AND-TRAP OPERATING PARAMETERS

<table>
<thead>
<tr>
<th>Analysis Method</th>
<th>8010</th>
<th>8015</th>
<th>8020/8021</th>
<th>8030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purge gas</td>
<td>Nitrogen or Helium</td>
<td>Nitrogen or Helium</td>
<td>Nitrogen or Helium</td>
<td>Nitrogen or Helium</td>
</tr>
<tr>
<td>Purge gas flow rate (mL/min)</td>
<td>40</td>
<td>20</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>Purge time (min)</td>
<td>(11.0 \pm 0.1)</td>
<td>(15.0 \pm 0.1)</td>
<td>(11.0 \pm 0.1)</td>
<td>(15.0 \pm 0.1)</td>
</tr>
<tr>
<td>Purge temperature (°C)</td>
<td>Ambient</td>
<td>85 ± 2</td>
<td>Ambient</td>
<td>85 ± 2</td>
</tr>
<tr>
<td>Desorb temperature (°C)</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>Backflush inert gas flow (mL/min)</td>
<td>20-60</td>
<td>20-60</td>
<td>20-60</td>
<td>20-60</td>
</tr>
<tr>
<td>Desorb time (min)</td>
<td>4</td>
<td>1.5</td>
<td>4</td>
<td>1.5</td>
</tr>
</tbody>
</table>
TABLE 2
QUANTITY OF METHANOL EXTRACT REQUIRED FOR ANALYSIS OF
HIGH-CONCENTRATION SOILS/SEDIMENTS

<table>
<thead>
<tr>
<th>Approximate Concentration Range</th>
<th>Volume of Methanol Extract<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>500-10,000 µg/kg</td>
<td>100 µL</td>
</tr>
<tr>
<td>1,000-20,000 µg/kg</td>
<td>50 µL</td>
</tr>
<tr>
<td>5,000-100,000 µg/kg</td>
<td>10 µL</td>
</tr>
<tr>
<td>25,000-500,000 µg/kg</td>
<td>100 µL of 1/50 dilution<sup>b</sup></td>
</tr>
</tbody>
</table>

Calculate appropriate dilution factor for concentrations exceeding this table.

^aThe volume of methanol added to 5 mL of water being purged should be kept constant. Therefore, add to the 5 mL syringe whatever volume of methanol is necessary to maintain a volume of 100 µL added to the syringe.

^bDilute an aliquot of the methanol extract and then take 100 µL for analysis.
Figure 1
Purging Chamber

Figure 1 includes a diagram of a purging chamber with various components labeled. The components include:

- Optional foam trap
- Exit ¾ inch O.D.
- 14 mm O.D.
- Inlet ½ inch O.D.
- Sample inlet
 - 2-Way Syringe Valve
 - 17 cm, 20 Gauge Syringe Needle
 - 6 mm O.D. Rubber Septum
- ¾ inch O.D. Exit
- ~10 mm O.D.
- 1/16 inch O.D. Stainless Steel
- 13x Molecular Sieve Purge Gas Filter
- Purge Gas Flow Control
- 10 mm Glass Frit Medium Permeability
- 10 cm 14 mm O.D.

Revision 1
July 1992
Figure 2
Trap Packing and Construction for Method 8010

Packing Procedure

- Glass Wool: 5 mm
- Activated Charcoal: 7.7 cm
- Grade 15 Silica Gel: 7.7 cm
- Tenax: 7.7 cm
- 3% OV-1: 1 cm
- Glass Wool: 5 mm

Construction

- 7Ω/Foot Resistance Wire Wrapped Solid (Double Layer)
- 7Ω/Foot Resistance Wire Wrapped Solid (Single Layer)
- Compression Fitting Nut and Ferrules
- Thermocouple/Controller Sensor
- Electronic Temperature Control and Pyrometer
- Tubing: 25 cm, 0.105 in. I.D., 0.125 in. O.D., Stainless Steel

Revision 1
July 1992
Figure 3
Trap Packing and Construction for Methods 8020 and 8030

Packing Procedure

Glass Wool 5 mm
Tenax 23 cm
3% OV-1 1 cm
Glass Wool 5 mm

Construction

Compression Fitting Nut and Ferrules
14 Ft. 7Ω/ Foot Resistance Wire Wrapped Solid
Thermocouple/Controller Sensor
Electronic Temperature Control and Pyrometer
Tubing 25 cm
0.105 In. I.D. 0.125 In. O.D. Stainless Steel

Revision 1
July 1992
Figure 4
Purge-and-Trap System
Purge-Sorb Mode
For Method 8010, 8020, and 8030

NOTE:
ALL LINES BETWEEN TRAP AND GC SHOULD BE HEATED TO 80°C.
Figure 5

Purge-and-Trap System
Desorb Mode
For Method 8010, 8020, and 8030

NOTE:
ALL LINES BETWEEN TRAP AND GC SHOULD BE HEATED TO 80°C.
METHOD 5030A
PURGE-AND-TRAP

7.1 Calibrate GC system.

7.1.2 Assemble purge-and-trap device and condition trap.

7.1.3 Connect to gas chromatograph.

7.1.4 Carry out purge-and-trap analysis.

7.1.5 Calculate response or calibration factors for each analyte (Method 8000).

7.1.6 Calculate average RF for each compound.

A

Revision 1
July 1992
METHOD 5030A
continued

7.3.3.1 Prepare samples and set-up GC system.

7.3.1 Screen samples prior to purge-and-trap analysis, dilute water-miscible liquids.

7.3.1.4 Weigh sample into tared device.

7.3.1.5 Weigh another sample and determine % dry weight.

7.3.1.6 Add spiked reagent water, connect device to system.

7.3.1.7 Heat and purge sample.

7.3.3.2 Add methanol extract to reagent water for analysis.

7.3.3.2 Add purgeable samples.

7.3.2.6 Fill syringe with reagent water, vent air and adjust volume.

7.3.3.2 Add internal standard and methanol extract.

7.3.2.6 Fill syringe with reagent water, vent air and start gas flow.

7.3.1.13 Stop gas flow and cool trap for next sample.

7.3.1.13 Recommission trap and start gas flow.

Heat and purge sample.

Add surrogate and internal spiking solutions (if indicated).

Analyze according to determinative method.

Analyze according to determinative method.

7.3.3.19 Inject sample into chamber, purge.

7.3.3.1.4 Weigh sample into tared device.

7.3.1.5 Weigh another sample and determine % dry weight.

7.3.1.6 Add spiked reagent water, connect device to system.

7.3.1.7 Heat and purge sample.

7.3.3.2 Add methanol extract to reagent water for analysis.

7.3.3.2 Add purgeable samples.

7.3.2.6 Fill syringe with reagent water, vent air and adjust volume.

7.3.3.2 Add internal standard and methanol extract.

7.3.2.6 Fill syringe with reagent water, vent air and start gas flow.

7.3.1.13 Stop gas flow and cool trap for next sample.

7.3.1.13 Recommission trap and start gas flow.

Heat and purge sample.

Add surrogate and internal spiking solutions (if indicated).

Analyze according to determinative method.

Analyze according to determinative method.

Low concentration

7.3.3.1 Prepare samples and set-up GC system.

7.3.1 Screen samples prior to purge-and-trap analysis, dilute water-miscible liquids.

7.3.1.4 Weigh sample into tared device.

7.3.1.5 Weigh another sample and determine % dry weight.

7.3.1.6 Add spiked reagent water, connect device to system.

7.3.1.7 Heat and purge sample.

7.3.3.2 Add methanol extract to reagent water for analysis.

7.3.3.2 Add purgeable samples.

7.3.2.6 Fill syringe with reagent water, vent air and adjust volume.

7.3.3.2 Add internal standard and methanol extract.

7.3.2.6 Fill syringe with reagent water, vent air and start gas flow.

7.3.1.13 Stop gas flow and cool trap for next sample.

7.3.1.13 Recommission trap and start gas flow.

Heat and purge sample.

Add surrogate and internal spiking solutions (if indicated).

Analyze according to determinative method.

Analyze according to determinative method.

High concentration

7.3.3.1 Prepare samples and set-up GC system.

7.3.1 Screen samples prior to purge-and-trap analysis, dilute water-miscible liquids.

7.3.1.4 Weigh sample into tared device.

7.3.1.5 Weigh another sample and determine % dry weight.

7.3.1.6 Add spiked reagent water, connect device to system.

7.3.1.7 Heat and purge sample.

7.3.3.2 Add methanol extract to reagent water for analysis.

7.3.3.2 Add purgeable samples.

7.3.2.6 Fill syringe with reagent water, vent air and adjust volume.

7.3.3.2 Add internal standard and methanol extract.

7.3.2.6 Fill syringe with reagent water, vent air and start gas flow.

7.3.1.13 Stop gas flow and cool trap for next sample.

7.3.1.13 Recommission trap and start gas flow.

Heat and purge sample.

Add surrogate and internal spiking solutions (if indicated).

Analyze according to determinative method.

Analyze according to determinative method.
METHOD 5040A

ANALYSIS OF SORBENT CARTRIDGES FROM VOLATILE ORGANIC SAMPLING TRAIN (VOST): GAS CHROMATOGRAPHY/MASS SPECTROMETRY TECHNIQUE

1.0 SCOPE AND APPLICATION

1.1 Method 5040 was formerly Method 3720 in the Second Edition of this manual.

1.2 This method covers the determination of volatile principal organic hazardous constituents (POHCs), collected on Tenax and Tenax/charcoal sorbent cartridges using a volatile organic sampling train, VOST (1). Much of the description for purge-and-trap GC/MS analysis is described in Method 8240 of this chapter. Because the majority of gas streams sampled using VOST will contain a high concentration of water, the analytical method is based on the quantitative thermal desorption of volatile POHCs from the Tenax and Tenax/charcoal traps and analysis by purge-and-trap GC/MS. For the purposes of definition, volatile POHCs are those POHCs with boiling points less than 100°C.

1.3 This method is applicable to the analysis of Tenax and Tenax/charcoal cartridges used to collect volatile POHCs from wet stack gas effluents from hazardous waste incinerators.

1.4 The sensitivity of the analytical method for a particular volatile POHC depends on the level of interferences and the presence of detectable levels of volatile POHCs in blanks. The desired target detection limit of the analytical method is 0.1 ng/L (20 ng on a single pair of traps) for a particular volatile POHC desorbed from either a single pair of Tenax and Tenax/charcoal cartridges or by thermal desorption of up to six pairs of traps onto a single pair of Tenax and Tenax/charcoal traps. The resulting single pair of traps is then thermally desorbed and analyzed by purge-and-trap GC/MS.

1.5 This method is recommended for use only by experienced mass spectroscopists or under the close supervision of such qualified persons.

2.0 SUMMARY OF METHOD

2.1 A schematic diagram of the analytical system is shown in Figure 1. The contents of the sorbent cartridges are spiked with an internal standard and thermally desorbed for 10 min at 180°C with organic-free nitrogen or helium gas (at a flow rate of 40 mL/min), bubbled through 5 mL of organic-free reagent water, and trapped on an analytical adsorbent trap. After the 10 min. desorption, the analytical adsorbent trap is rapidly heated to 180°C, with the carrier gas flow reversed so that the effluent flow from the analytical trap is directed into the GC/MS. The volatile POHCs are separated by temperature programmed gas chromatography and detected by low-resolution mass spectrometry. The concentrations of volatile POHCs are calculated using the internal standard technique.
3.0 INTERFERENCES

3.1 Refer to Methods 3500 and 8240.

4.0 APPARATUS AND MATERIALS

4.1 Thermal desorption unit:

4.1.1 The thermal desorption unit (for Inside/Inside VOST cartridges, use Supelco "clamshell" heater; for Inside/Outside VOST cartridges, user-fabricated unit is required) should be capable of thermally desorbing the sorbent resin tubes. It should also be capable of heating the tubes to 180 ± 10°C with flow of organic-free nitrogen or helium through the tubes.

4.2 Purge-and-trap unit:

4.2.1 The purge-and-trap unit consists of three separate pieces of equipment: the sample purger, trap, and the desorber. It should be capable of meeting all requirements of Method 5030 for analysis of purgeable organic compounds from water.

4.3 GC/MS system: As described in Method 8240.

5.0 REAGENTS

5.1 Organic-free reagent water. All references to water in this method refer to organic-free reagent water, as defined in Chapter One.

5.2 Methanol, CH₃OH - Pesticide grade, or equivalent.

5.3 Analytical trap reagents:

5.3.1 2,6-Diphenylene oxide polymer: Tenax (60/80 mesh), chromatographic grade or equivalent.

5.3.2 Methyl silicone packing: 3% OV-1 on Chromosorb W (60/80 mesh) or equivalent.

5.3.3 Silica gel: Davison Chemical (35/00 mesh), Grade 15, or equivalent.

5.3.4 Charcoal: Petroleum-based (SKC Lot 104 or equivalent).

5.4 Stock standard solution:

5.4.1 Stock standard solutions will be prepared from pure standard materials or purchased as certified solutions. The stock standards should be prepared in methanol using assayed liquids or gases, as appropriate. Because of the toxicity of some of the organohalides, primary dilutions of these materials should be prepared in a hood. A NIOSH/MESA approved toxic...
gas respirator should be used when the analyst handles high concentrations of such materials.

5.4.2 Fresh stock standards should be prepared weekly for volatile POHCs with boiling points of <35°C. All other standards must be replaced monthly, or sooner if comparison with check standards indicates a problem.

5.5 Secondary dilution standards:

5.5.1 Using stock standard solutions, prepare, in methanol, secondary dilution standards that contain the compounds of interest, either singly or mixed together. The secondary dilution standards should be prepared at concentrations such that the desorbed calibration standards will bracket the working range of the analytical system.

5.6 4-Bromofluorobenzene (BFB) standard:

5.6.1 Prepare a 25 ng/μL solution of BFB in methanol.

5.7 Deuterated benzene:

5.7.1 Prepare a 25 ng/μL solution of benzene-d₆ in methanol.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1 Refer to Method 0030, Chapter Ten.

6.2 Sample trains obtained from the VOST should be analyzed within 2-6 weeks of sample collection.

7.0 PROCEDURE

7.1 Assembly of PTD device:

7.1.1 Assemble a purge-and-trap desorption device (PTD) that meets all the requirements of Method 5030 (refer to Figure 1).

7.1.2 Connect the thermal desorption device to the PTD device. Calibrate the PTD-GC/MS system using the internal standard technique.

7.2 Internal standard calibration procedure:

7.2.1 This approach requires the use of deuterated benzene as the internal standard for these analyses. Other internal standards may be proposed for use in certain situations. The important criteria for choosing a particular compound as an internal standard are that it be similar in analytical behavior to the compounds of interest and that it can be demonstrated that the measurement of the internal standard be unaffected by method or matrix interferences. Other internal standards that have been used are ethylbenzene-d₁₀ and, 1,2-dichloroethane-d₄. One adds 50 ng of BFB to all sorbent cartridges (in addition to one or more
internal standards) to provide continuous monitoring of the GC/MS performance relative to BFB.

7.2.2 Prepare calibration standards at a minimum of three concentration levels for each analyte of interest.

7.2.3 The calibration standards are prepared by spiking a blank Tenax or Tenax/charcoal trap with a methanolic solution of the calibration standards (including 50 ng of the internal standard, such as deuterated benzene), using the flash evaporation technique. The flash evaporation technique requires filling the needle of a 5.0 μL syringe with clean methanol and drawing air into the syringe to the 1.0 μL mark. This is followed by drawing a methanolic solution of the calibration standards (containing 25 μg/μL of the internal standard) to the 2.0 μL mark. The glass traps should be attached to the injection port of a gas chromatograph while maintaining the injector temperature at 160°C. The carrier gas flow through the traps should be maintained at about 50 mL/min.

7.2.4 After directing the gas flow through the trap, the contents of the syringe should be slowly expelled through the gas chromatograph injection port over about 15 sec. After 25 sec have elapsed, the gas flow through the trap should be shut off, the syringe removed, and the trap analyzed by the PTD-GC/MS procedure outlined in Method 8240. The total flow of gas through the traps during addition of calibration standards to blank cartridges, or internal standards to sample cartridges, should be 25 mL or less.

7.2.5 Analyze each calibration standard for both Tenax and Tenax/charcoal cartridges according to Section 7.3. Tabulate the area response of the characteristic ions of each analyte against the concentration of the internal standard and calculate the response factor (RF) for each compound, using Equation 1.

\[
RF = \frac{A_s C_{is}}{A_{is} C_s} \tag{1}
\]

where:

\[A_s = \text{Area of the characteristic ion for the analyte to be measured.}\]

\[A_{is} = \text{Area of the characteristic ion for the internal standard.}\]

\[C_{is} = \text{Amount (ng) of the internal standard.}\]

\[C_s = \text{Amount (ng) of the volatile POHC in calibration standard.}\]

If the RF value over the working range is a constant (<10% RSD), the RF can be assumed to be invariant, and the average RF can be used for calculations. Alternatively, the results can be used to plot a calibration curve of response ratios, \(A_s/A_{is}\) versus RF.
7.2.6 The working calibration curve or RF must be verified on each working day by the measurement of one or more of the calibration standards. If the response varies by more than ±25% for any analyte, a new calibration standard must be prepared and analyzed for that analyte.

7.3 The schematic of the PTD-GC/MS system is shown in Figure 1. The sample cartridge is placed in the thermal desorption apparatus (for Inside/Inside VOST cartridges, use Supelco "clamshell" heater; for Inside/Outside VOST cartridges, user fabricated unit is required) and desorbed in the purge-and-trap system by heating to 180°C for 10 min at a flow rate of 40 mL/min. The desorbed components pass into the bottom of the water column, are purged from the water, and collected on the analytical adsorbent trap. After the 10 min desorption period, the compounds are desorbed from the analytical adsorbent trap into the GC/MS system according to the procedures described in Method 8240.

7.4 Qualitative analysis

7.4.1 The qualitative identification of compounds determined by this method is based on retention time, and on comparison of the sample mass spectrum, after background correction, with characteristic ions in a reference mass spectrum. The reference mass spectrum must be generated by the laboratory using the conditions of this method. The characteristic ions from the reference mass spectrum are defined to be the three ions of greatest relative intensity, or any ions over 30% relative intensity if less than three such ions occur in the reference spectrum. Compounds should be identified as present when the criteria below are met.

7.4.1.1 The intensities of the characteristic ions of a compound maximize in the same scan or within one scan of each other. Selection of a peak by a data system target compound search routine, where the search is based on the presence of a target chromatographic peak containing ions specific for the target compound at a compound-specific retention time, will be accepted as meeting this criterion.

7.4.1.2 The RRT of the sample component is within ±0.06 RRT units of the RRT of the standard component.

7.4.1.3 The relative intensities of the characteristic ions agree within 30% of the relative intensities of these ions in the reference spectrum. (Example: For an ion with an abundance of 50% in the reference spectrum, the corresponding abundance in a sample spectrum can range between 20% and 80%.)

7.4.1.4 Structural isomers that produce very similar mass spectra should be identified as individual isomers if they have sufficiently different GC retention times. Sufficient GC resolution is achieved if the height of the valley between two isomer peaks is less than 25% of the sum of the two peak heights. Otherwise, structural isomers are identified as isomeric pairs.

7.4.1.5 Identification is hampered when sample components are not resolved chromatographically and produce mass spectra
containing ions contributed by more than one analyte. When gas chromatographic peaks obviously represent more than one sample component (i.e., a broadened peak with shoulder(s) or a valley between two or more maxima), appropriate selection of analyte spectra and background spectra is important. Examination of extracted ion current profiles of appropriate ions can aid in the selection of spectra, and in qualitative identification of compounds. When analytes coelute (i.e., only one chromatographic peak is apparent), the identification criteria can be met, but each analyte spectrum will contain extraneous ions contributed by the coeluting compound.

7.4.2 For samples containing components not associated with the calibration standards, a library search may be made for the purpose of tentative identification. The necessity to perform this type of identification will be determined by the type of analyses being conducted. Guidelines for making tentative identification are:

(1) Relative intensities of major ions in the reference spectrum (ions > 10% of the most abundant ion) should be present in the sample spectrum.

(2) The relative intensities of the major ions should agree within ± 20%. (Example: For an ion with an abundance of 50% in the standard spectrum, the corresponding sample ion abundance must be between 30 and 70%).

(3) Molecular ions present in the reference spectrum should be present in the sample spectrum.

(4) Ions present in the sample spectrum but not in the reference spectrum should be reviewed for possible background contamination or presence of coeluting compounds.

(5) Ions present in the reference spectrum but not in the sample spectrum should be reviewed for possible subtraction from the sample spectrum because of background contamination or coeluting peaks. Data system library reduction programs can sometimes create these discrepancies.

Computer generated library search routines should not use normalization routines that would misrepresent the library or unknown spectra when compared to each other. Only after visual comparison of the sample with the nearest library searches will the mass spectral interpretation specialist assign a tentative identification.

7.5 Quantitative analysis

7.5.1 When an analyte has been qualitatively identified, quantitation should be based on the integrated abundance from the EICP of the primary characteristic ion chosen for that analyte. If the sample produces an interference for the primary characteristic ion, a secondary characteristic ion should be used.
7.5.1.1 Using the internal standard calibration procedure, the amount of analyte in the sample cartridge is calculated using the response factor (RF) determined in Section 7.2.5 and Equation 2.

\[
\text{Amount of POHC} = \frac{A_s C_{is}}{A_{is} RF}
\] \hspace{1cm} (2)

where:

- \(A_s\) = Area of the characteristic ion for the analyte to be measured.
- \(A_{is}\) = Area for the characteristic ion of the internal standard.
- \(C_{is}\) = Amount (ng) of internal standard.

7.5.1.2 The choice of methods for evaluating data collected using VOST for incinerator trial burns is a regulatory decision. The procedures used extensively by one user are outlined below.

7.5.1.3 The total amount of the POHCs of interest collected on a pair of traps should be summed.

7.5.1.4 The observation of high concentrations of POHCs of interest in blank cartridges indicates possible residual contamination of the sorbent cartridges prior to shipment to and use at the site. Data that fall in this category (especially data indicating high concentrations of POHCs in blank sorbent cartridges) should be qualified with regard to validity, and blank data should be reported separately. The applicability of data of this type to the determination of DRE is a regulatory decision. Continued observation of high concentrations of POHCs in blank sorbent cartridges indicates that procedures for cleanup, monitoring, shipment, and storage of sorbent cartridges by a particular user be investigated to eliminate this problem.

7.5.1.5 If any internal standard recoveries fall outside the control limits established in Section 8.4, data for all analytes determined for that cartridge(s) must be qualified with the observation.

8.0 QUALITY CONTROL

8.1 Refer to Chapter One for specific quality control procedures and Method 0030 for sample preparation procedures.

8.2 Each laboratory that uses this method is required to operate a formal quality control program. The minimum requirements of this program consist of an initial demonstration of laboratory capability and the analysis of blank Tenax and Tenax/charcoal cartridges spiked with the analytes of interest. The laboratory is required to maintain performance records to define the quality of...
data that are generated. Ongoing performance checks must be compared with established performance criteria to determine if results are within the expected precision and accuracy limits of the method.

8.2.1 Before performing any analyses, the analyst must demonstrate the ability to generate acceptable precision and accuracy with this method. This ability is established as described in Section 7.2.

8.2.2 The laboratory must spike all Tenax and Tenax/charcoal cartridges with the internal standard(s) to monitor continuing laboratory performance. This procedure is described in Section 7.2.

8.3 To establish the ability to generate acceptable accuracy and precision, the analyst must spike blank Tenax and Tenax/charcoal cartridges with the analytes of interest at two concentrations in the working range.

8.3.1 The average response factor (RF) and the standard deviation (s) for each must be calculated.

8.3.2 The average recovery and standard deviation must fall within the expected range for determination of volatile POHCs using this method. The expected range for recovery of volatile POHCs using this method is 50-150%.

8.4 The analyst must calculate method performance criteria for the internal standard(s).

8.4.1 Calculate upper and lower control limits for method performances using the average area response (A) and standard deviation(s) for internal standard:

Upper Control Limit (UCL) = A + 3s
Lower Control Limit (LCL) = A - 3s

The UCL and LCL can be used to construct control charts that are useful in observing trends in performance. The control limits must be replaced by method performance criteria as they become available from the U.S. EPA.

8.5 The laboratory is required to spike all sample cartridges (Tenax and Tenax/charcoal) with internal standard.

8.6 Each day, the analyst must demonstrate through analysis of blank Tenax and Tenax/charcoal cartridges and organic-free reagent water that interferences from the analytical system are under control.

8.7 The daily GC/MS performance tests required for this method are described in Method 8240.

9.0 METHOD PERFORMANCE

9.1 Refer to the determinative methods for performance data.
10.0 REFERENCES

Flow to GC/MS

Flow During Desorption

He or N₂

Flow During Adsorption

Analytical Trap with Heating Coil (0.3 cm diameter by 25 cm long)

Vent

N₂

Thermal Desorption Chamber

H₂O Purge Column

Frit

Heated Line

1 2 3 4

1. 3% OV-1 (1 cm)
2. Tenax (7.7 cm)
3. Silica Gel (7.7 cm)
4. Charcoal (7.7 cm)

Figure 1. Schematic diagram of trap desorption/analysis system.
METHOD 5040A
ANALYSIS OF SORBENT CARTRIDGES FROM VOLATILE ORGANIC SAMPLING TRAIN (VOST):
GAS CHROMATOGRAPHY/MASS SPECTROMETRY TECHNIQUE

Start

7.1.1 Assemble purge and trap desorption device.

7.1.2 Connect thermal desorption device; calib. system.

7.2.1 Select internal standard.

7.2.3 Prepare calibration standards using flash evaporat. technique.

7.2.4 Direct gas flow through traps.

7.2.5 Analyze each calib. standard for both cartridges (see 7.3).

7.2.6 Verify response factor each day.

7.2.4 Expel contents of syringe through GC injection port.

7.2.4 Analyze trap by P-T-D GC/MS procedure.

7.2.5 Tabulate area response and calculate response factor.

7.3 Place sample cartridge in desorp. apparatus; desorb in P-T.

7.3 Desorb into GC/MS system.

7.4.1 Quantitatively identify volatile POHCs.

7.5.1 Use primary characteristic ion for quantitation.

7.5.1.1 Calculate amount of analyte in sample.

7.5.1.3 Sum amount of POHCs of interest for each pair of traps.

7.5.1.4 Examine blanks data for signs of residual contamination.

7.5.1.5 Compare int. std. recoveries to Section 8.4 control limits.

Stop

7.5.1.6 Compare Int. std. recoveries to Section 8.4 control limits.

7.6.1.1 Calculate amount of analyte in sample.

7.6.1.6 Compare Int. std. recoveries to Section 8.4 control limits.

7.5.1.3 Sum amount of POHCs of interest for each pair of traps.

7.6.1.3 Examine blanks data for signs of residual contamination.

7.6.1.5 Compare Int. std. recoveries to Section 8.4 control limits.

Stop

7.5.1.3 Sum amount of POHCs of interest for each pair of traps.

7.6.1.3 Examine blanks data for signs of residual contamination.

7.6.1.5 Compare Int. std. recoveries to Section 8.4 control limits.
1.0 SCOPE AND APPLICATION

1.1 This method describes the analysis of volatile principal organic hazardous constituents (POHCs) collected from the stack gas effluents of hazardous waste incinerators using the VOST methodology (1). For a comprehensive description of the VOST sampling methodology see Method 0030. The following compounds may be determined by this method:

```
<table>
<thead>
<tr>
<th>Compound Name</th>
<th>CAS No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>67-64-1</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>107-13-1</td>
</tr>
<tr>
<td>Benzene</td>
<td>71-43-2</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>75-27-4</td>
</tr>
<tr>
<td>Bromoform(^b)</td>
<td>75-25-2</td>
</tr>
<tr>
<td>Bromomethane(^c)</td>
<td>74-83-9</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>75-15-0</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>56-23-5</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>108-90-7</td>
</tr>
<tr>
<td>Chlorodibromomethane</td>
<td>124-48-1</td>
</tr>
<tr>
<td>Chloroethane(^c)</td>
<td>75-00-3</td>
</tr>
<tr>
<td>Chloroform</td>
<td>67-66-3</td>
</tr>
<tr>
<td>Chloromethane(^c)</td>
<td>74-87-3</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>74-95-3</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>75-35-3</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>107-06-2</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>75-35-4</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>156-60-5</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>78-87-5</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>10061-01-5</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>10061-02-6</td>
</tr>
<tr>
<td>Ethylbenzene(^b)</td>
<td>100-41-4</td>
</tr>
<tr>
<td>Iodomethane</td>
<td>74-88-4</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>75-09-2</td>
</tr>
<tr>
<td>Styrene(^b)</td>
<td>100-42-5</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane(^b)</td>
<td>79-34-5</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>127-18-4</td>
</tr>
<tr>
<td>Toluene</td>
<td>108-88-3</td>
</tr>
</tbody>
</table>
```

(continued)
<table>
<thead>
<tr>
<th>Compound Name</th>
<th>CAS No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>71-55-6</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>79-00-5</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>79-01-6</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>75-69-4</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>96-18-4</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>75-01-4</td>
</tr>
<tr>
<td>Xylenes</td>
<td></td>
</tr>
</tbody>
</table>

a Chemical Abstract Services Registry Number.

b Boiling point of this compound is above 132°C. Method 0030 is not appropriate for quantitative sampling of this analyte.

c Boiling point of this compound is below 30°C. Special precautions must be taken when sampling for this analyte by Method 0030. Refer to Sec. 1.3 for discussion.

1.2 This method is most successfully applied to the analysis of non-polar organic compounds with boiling points between 30°C and 100°C. Data are applied to the calculation of destruction and removal efficiency (DRE), with limitations discussed below.

1.3 This method may be applied to analysis of many compounds which boil above 100°C, but Method 0030 is always inappropriate for collection of compounds with boiling points above 132°C. All target analytes with boiling points greater than 132°C are so noted in the target analyte list presented in Sec. 1.1. Use of Method 0030 for collection of compounds boiling between 100°C and 132°C is often possible, and must be decided based on case by case inspection of information such as sampling method collection efficiency, tube desorption efficiency, and analytical method precision and bias. An organic compound with a boiling point below 30°C may break through the sorbent under the conditions used for sample collection. Quantitative values obtained for compounds with boiling points below 30°C must be qualified, since the value obtained represents a minimum value for the compound if breakthrough has occurred. In certain cases, additional QC measures may have been taken during sampling very low boilers with Method 0030. This information should be considered during the data interpretation stage.

When Method 5041 is used for survey analyses, values for compounds boiling above 132°C may be reported and qualified since the quantity obtained represents a minimum value for the compound. These minimum values should not be used for trial burn DRE calculations or to prove insignificant risk.

1.4 The VOST analytical methodology can be used to quantitate volatile organic compounds that are insoluble or slightly soluble in water. When volatile, water soluble compounds are included in the VOST organic compound analyte list, quantitation limits can be expected to be approximately ten times
higher than quantitation limits for water insoluble compounds (if the compounds can be recovered at all) because the purging efficiency from water (and possibly from Tenax-GC®) is poor.

1.5 Overall sensitivity of the method is dependent upon the level of interferences encountered in the sample and the presence of detectable concentrations of volatile POHCs in blanks. The target detection limit of this method is 0.1 µg/m³ (ng/L) of flue gas, to permit calculation of a DRE equal to or greater than 99.99% for volatile POHCs which may be present in the waste stream at 100 ppm. The upper end of the range of applicability of this method is limited by the dynamic range of the analytical instrumentation, the overall loading of organic compounds on the exposed tubes, and breakthrough of the volatile POHCs on the sorbent traps used to collect the sample. Table 1 presents retention times and characteristic ions for volatile compounds which can be determined by this method. Table 2 presents method detection limits for a range of volatile compounds analyzed by the wide-bore VOST methodology.

1.6 The wide-bore VOST analytical methodology is restricted to use by, or under the supervision of, analysts experienced in the use of sorbent media, purge-and-trap systems, and gas chromatograph/mass spectrometers, and skilled in the interpretation of mass spectra and their use as a quantitative tool.

2.0 SUMMARY OF METHOD

2.1 The sorbent tubes are thermally desorbed by heating and purging with organic-free helium. The gaseous effluent from the tubes is bubbled through pre-purged organic-free reagent water and trapped on an analytical sorbent trap in a purge-and-trap unit (Figure 2). After desorption, the analytical sorbent trap is heated rapidly and the gas flow from the analytical trap is directed to the head of a wide-bore column under subambient conditions. The volatile organic compounds desorbed from the analytical trap are separated by temperature programmed high resolution gas chromatography and detected by continuously scanning low resolution mass spectrometry (Figure 3). Concentrations of volatile organic compounds are calculated from a multi-point calibration curve, using the method of response factors.

3.0 INTERFERENCES

3.1 Sorbent tubes which are to be analyzed for volatile organic compounds can be contaminated by diffusion of volatile organic compounds (particularly Freon® refrigerants and common organic solvents) through the external container (even through a Teflon® lined screw cap on a glass container) and the Swagelok® sorbent tube caps during shipment and storage. The sorbent tubes can also be contaminated if organic solvents are present in the analytical laboratory. The use of blanks is essential to assess the extent of any contamination. Field blanks must be prepared and taken to the field. The end caps of the tubes are removed for the period of time required to exchange two pairs of traps on the VOST sampling apparatus. The tubes are recapped and shipped and handled exactly as the actual field samples are shipped and handled. At least one pair of field blanks is included with each six pairs of sample cartridges collected.
3.2 At least one pair of blank cartridges (one Tenax-GC®, one Tenax-GC®/charcoal) shall be included with shipment of cartridges to a hazardous waste incinerator site as trip blanks. These trip blanks will be treated like field blanks except that the end caps will not be removed during storage at the site. This pair of traps will be analyzed to monitor potential contamination which may occur during storage and shipment.

3.3 Analytical system blanks are required to demonstrate that contamination of the purge-and-trap unit and the gas chromatograph/mass spectrometer has not occurred or that, in the event of analysis of sorbent tubes with very high concentrations of organic compounds, no compound carryover is occurring. Tenax® from the same preparation batch as the Tenax® used for field sampling should be used in the preparation of the method (laboratory) blanks. A sufficient number of cleaned Tenax® tubes from the same batch as the field samples should be reserved in the laboratory for use as blanks.

3.4 Cross contamination can occur whenever low-concentration samples are analyzed after high-concentration samples, or when several high-concentration samples are analyzed sequentially. When an unusually concentrated sample is analyzed, this analysis should be followed by a method blank to establish that the analytical system is free of contamination. If analysis of a blank demonstrates that the system is contaminated, an additional bake cycle should be used. If the analytical system is still contaminated after additional baking, routine system maintenance should be performed: the analytical trap should be changed and conditioned, routine column maintenance should be performed (or replacement of the column and conditioning of the new column, if necessary), and bakeout of the ion source (or cleaning of the ion source and rods, if required). After system maintenance has been performed, analysis of a blank is required to demonstrate that the cleanliness of the system is acceptable.

3.5 Impurities in the purge gas and from organic compounds out-gassing in tubing account for the majority of contamination problems. The analytical system must be demonstrated to be free from contamination under the conditions of the analysis by analyzing two sets of clean, blank sorbent tubes with organic-free reagent purge water as system blanks. The analytical system is acceptably clean when these two sets of blank tubes show values for the analytes which are within one standard deviation of the normal system blank. Use of plastic coatings, non-Teflon® thread sealants, or flow controllers with rubber components should be avoided.

3.6 VOST tubes are handled in the laboratory to spike standards and to position the tubes within the desorption apparatus. When sorbent media are handled in the laboratory atmosphere, contamination is possible if there are organic solvents in use anywhere in the laboratory. It is therefore necessary to make daily use of system blanks to monitor the cleanliness of the sorbents and the absence of contamination from the analytical system. A single set of system blank tubes shall be exposed to normal laboratory handling procedures and analyzed as a sample. This sample should be within one standard deviation of normal VOST tube blanks to demonstrate lack of contamination of the sorbent media.

3.7 If the emission source has a high concentration of non-target organic compounds (for example, hydrocarbons at concentrations of hundreds of ppm), the
presence of these non-target compounds will interfere with the performance of the VOST analytical methodology. If one or more of the compounds of interest saturates the chromatographic and mass spectrometric instrumentation, no quantitative calculations can be made and the tubes which have been sampled under the same conditions will yield no valid data for any of the saturated compounds. In the presence of a very high organic loading, even if the compounds of interest are not saturated, the instrumentation is so saturated that the linear range has been surpassed. When instrument saturation occurs, it is possible that compounds of interest cannot even be identified correctly because a saturated mass spectrometer may mis-assign masses. Even if compounds of interest can be identified, accurate quantitative calculations are impossible at detector saturation. No determination can be made at detector saturation, even if the target compound itself is not saturated. At detector saturation, a negative bias will be encountered in analytical measurements and no accurate calculation can be made for the Destruction and Removal Efficiency if analytical values may be biased negatively.

3.8 The recoveries of the surrogate compounds, which are spiked on the VOST tubes immediately before analysis, should be monitored carefully as an overall indicator of the performance of the methodology. Since the matrix of stack emissions is so variable, only a general guideline for recovery of 50-150% can be used for surrogates. The analyst cannot use the surrogate recoveries as a guide for correction of compound recoveries. The surrogates are valuable only as a general indicator of correct operation of the methodology. If surrogates are not observed or if recovery of one or more of the surrogates is outside the 50-150% range, the VOST methodology is not operating correctly. The cause of the failure in the methodology is not obvious. The matrix of stack emissions contains large amounts of water, may be highly acidic, and may contain large amounts of target and non-target organic compounds. Chemical and surface interactions may be occurring on the tubes. If recoveries of surrogate compounds are extremely low or surrogate compounds cannot even be identified in the analytical process, then failure to observe an analyte may or may not imply that the compound of interest has been removed from the emissions with a high degree of efficiency (that is, the Destruction and Removal Efficiency for that analyte is high).

4.0 APPARATUS AND MATERIALS

4.1 Tube desorption apparatus: Acceptable performance of the methodology requires: 1) temperature regulation to ensure that tube temperature during desorption is regulated to 180°C ± 10°C; 2) good contact between tubes and the heating apparatus to ensure that the sorbent bed is thoroughly and uniformly heated to facilitate desorption of organic compounds; and 3) gas-tight connections to the ends of the tubes to ensure flow of desorption gas through the tubes without leakage during the heating/desorption process. A simple clamshell heater which will hold tubes which are 3/4" in outer diameter will perform acceptably as a desorption apparatus.

4.2 Purge-and-trap device: The purge-and-trap device consists of three separate pieces of equipment: a sample purge vessel, an analytical trap, and a desorber. Complete devices are commercially available from a variety of sources, or the separate components may be assembled. The cartridge thermal desorption
apparatus is connected to the sample purge vessel by 1/8" Teflon® tubing (unheated transfer line). The tubing which connects the desorption chamber to the sample purge vessel should be as short as is practical.

4.2.1 The sample purge vessel is required to hold 5 mL of organic-free reagent water, through which the gaseous effluent from the VOST tubes is routed. The water column should be at least 3 cm deep. The gaseous headspace between the water column and the analytical trap must have a total volume of less than 15 mL. The purge gas must pass through the water column as finely divided bubbles with a diameter of less than 3 mm at the origin. The sample purger shown in Figure 4 meets these requirements. Alternate sample purging vessels may be used if equivalent performance is demonstrated.

4.2.2 The analytical trap must be at least 25 cm and have an internal diameter of at least 0.105 in. The analytical trap must contain the following components:

- 2,6-diphenylene oxide polymer: 60/80 mesh, chromatograph grade (Tenax-GC®, or equivalent)
- methyl silicone packing: OV-1 (3%) on Chromosorb-W 60/80 mesh, or equivalent
- silica gel: 35/60 mesh, Davison grade 15 or equivalent
- coconut charcoal: prepare from Barneby Cheney, CA-580-26, or equivalent, by crushing through 26 mesh screen.

The proportions are: 1/3 Tenax-GC®, 1/3 silica gel, and 1/3 charcoal, with approximately 1.0 cm of methyl silicone packing. The analytical trap should be conditioned for four hours at 180°C with gas flow (10 mL/min) prior to use in sample analysis. During conditioning, the effluent of the trap should not be vented to the analytical column. The thermal desorption apparatus is connected to the injection system of the mass spectrometer by a transfer line which is heated to 100°C.

4.2.3 The desorber must be capable of rapidly heating the analytical trap to 180°C for desorption. The polymer section of the trap should not exceed 180°C, and the remaining sections should not exceed 220°C, during bake-out mode.

4.3 Gas chromatograph/mass spectrometer/data system:

4.3.1 Gas chromatograph: An analytical system complete with a temperature programmable oven with sub-ambient temperature capabilities and all required accessories, including syringes, analytical columns, and gases.
4.3.2 Chromatographic column: 30 m x 0.53 mm ID wide-bore fused silica capillary column, 3 μm film thickness, DB-624 or equivalent.

4.3.3 Mass spectrometer: capable of scanning from 35-260 amu every second or less, using 70 eV (nominal) electron energy in the electron ionization mode and producing a mass spectrum that meets all of the criteria in Table 3 when 50 ng of 4-bromofluorobenzene (BFB) is injected into the water in the purge vessel.

4.3.4 Gas chromatograph/mass spectrometer interface: Any gas chromatograph to mass spectrometer interface that gives acceptable calibration points at 50 ng or less per injection of each of the analytes, and achieves the performance criteria for 4-bromofluorobenzene shown in Table 3, may be used. If a glass jet separator is used with the wide-bore column, a helium make-up flow of approximately 15 mL, introduced after the end of the column and prior to the entrance of the effluent to the separator, will be required for optimum performance.

4.3.5 Data system: A computer system that allows the continuous acquisition and storage on machine readable media of all mass spectra obtained throughout the duration of the chromatographic program must be interfaced to the mass spectrometer. The computer must have software that allows searching any gas chromatographic/mass spectrometric data file for ions of a specified mass and plotting such ion abundances versus time or scan number. This type of plot is defined as an Extracted Ion Current Profile (EICP). Software must also be available that allows the integration of the ion abundances in any EICP between specified time or scan number limits. The most recent version of the EPA/NIST Mass Spectral Library should also be available.

4.4 Wrenches: 9/16", 1/2", 7/16", and 5/16".

4.5 Teflon® tubing: 1/8" diameter.

4.6 Syringes: 25 μL syringes (2), 10 μL syringes (2).

4.7 Fittings: 1/4" nuts, 1/8" nuts, 1/16" nuts, 1/4" to 1/8" union, 1/4" to 1/4" union, 1/4" to 1/16" union.

4.8 Adjustable stand to raise the level of the desorption unit, if required.

4.9 Volumetric flasks: 5 mL, class A with ground glass stopper.

4.10 Injector port or equivalent, heated to 180°C for loading standards onto VOST tubes prior to analysis.

4.11 Vials: 2 mL, with Teflon® lined screw caps or crimp tops.

4.12 Syringe: 5 mL, gas-tight with shutoff valve.

5041 - 7
Revision 0
September 1994
5.0 REAGENTS

5.1 Reagent grade chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.

5.2 Organic-free reagent water - All references to water in this method refer to organic-free reagent water, as defined in Chapter One.

5.2.1 It is advisable to maintain the stock of organic-free reagent water generated for use in the purge-and-trap apparatus with a continuous stream of inert gas bubbled through the water. Continuous bubbling of the inert gas maintains a positive pressure of inert gas above the water as a safeguard against contamination.

5.3 Methanol, CH₃OH. Pesticide quality or equivalent. To avoid contamination with other laboratory solvents, it is advisable to maintain a separate stock of methanol for the preparation of standards for VOST analysis and to regulate the use of this methanol very carefully.

5.4 Stock standard solutions - Can be prepared from pure standard materials or can be purchased as certified solutions. Stock standard solutions must be prepared in high purity methanol. All preparation of standards should take place in a hood, both to avoid contamination and to ensure safety of the analyst preparing the standards.

5.4.1 Place about 4 mL of high purity methanol in a 5 mL volumetric flask. Allow the flask to stand, unstoppered, for about 10 min, or until all alcohol wetted surfaces have dried.

5.4.1.1 Add appropriate volumes of neat liquid chemicals or certified solutions, using a syringe of the appropriate volume. Liquid which is added to the volumetric flask must fall directly into the alcohol without contacting the neck of the flask. Gaseous standards can be purchased as methanol solutions from several commercial vendors.

5.4.1.2 Dilute to volume with high purity methanol, stopper, and then mix by inverting the flask several times. Calculate concentration by the dilution of certified solutions or neat chemicals.

5.4.2 Transfer the stock standard solution into a Teflon® sealed screw cap bottle. An amber bottle may be used. Store, with minimal headspace, at -10°C to -20°C, and protect from light.

5.4.3 Prepare fresh standards every two months for gases. Reactive compounds such as styrene may need to be prepared more frequently. All other standards must be replaced after six months, or sooner if comparison with check standards indicates a problem.

5041 - 8
Revision 0
September 1994
5.5 Secondary dilution standards: Using stock standard solutions, prepare, in high purity methanol, secondary dilution standards containing the compounds of interest, either singly or mixed together. Secondary dilution standards must be stored with minimal headspace and should be checked frequently for signs of degradation or evaporation, especially just prior to preparing calibration standards from them.

5.6 Surrogate standards: The recommended surrogates are toluene-d₈, 4-bromofluorobenzene, and 1,2-dichloroethane-d₄. Other compounds may be used as surrogate compounds, depending upon the requirements of the analysis. Surrogate compounds are selected to span the elution range of the compounds of interest. Isotopically labeled compounds are selected to preclude the observation of the same compounds in the stack emissions. More than one surrogate is used so that surrogate measurements can still be made even if analytical interferences with one or more of the surrogate compounds are encountered. However, at least three surrogate compounds should be used to monitor the performance of the methodology. A stock surrogate compound solution in high purity methanol should be prepared as described in Sec. 5.4, and a surrogate standard spiking solution should be prepared from the stock at a concentration of 250 µg/10 mL in high purity methanol. Each pair of VOST tubes (or each individual VOST tube, if the tubes are analyzed separately) must be spiked with 10 µL of the surrogate spiking solution prior to GC/MS analysis.

5.7 Internal standards: The recommended internal standards are bromochloromethane, 1,4-difluorobenzene, and chlorobenzene-d₈. Other compounds may be used as internal standards as long as they have retention times similar to the compounds being analyzed by GC/MS. The internal standards should be distributed through the chromatographic elution range. Prepare internal standard stock and secondary dilution standards in high purity methanol using the procedures described in Secs. 5.2 and 5.3. The secondary dilution standard should be prepared at a concentration of 25 mg/L of each of the internal standard compounds. Addition of 10 µL of this internal standard solution to each pair of VOST tubes (or to each VOST tube, if the tubes are analyzed individually) is the equivalent of 250 ng total.

5.8 4-Bromofluorobenzene (BFB) standard: A standard solution containing 25 ng/µL of BFB in high purity methanol should be prepared for use as a tuning standard.

5.9 Calibration standards: Calibration standards at a minimum of five concentrations will be required from the secondary dilution of stock standards (see Secs. 5.2 and 5.3). A range of concentrations for calibration can be obtained by use of different volumes of a 50 mg/L methanol solution of the calibration standards. One of the concentrations used should be at a concentration near, but above, the method detection limit. The remaining concentrations should correspond to the expected range of concentrations found in field samples but should not exceed the linear range of the GC/MS analytical system (a typical range for a calibration would be 10, 50, 100, 350, and 500 ng, for example). Each calibration standard should contain each analyte for detection by this method. Store calibration standards for one week only in a vial with no headspace.
5.10 Great care must be taken to maintain the integrity of all standard solutions. All standards of volatile compounds in methanol must be stored at -10° to -20°C in amber bottles with Teflon® lined screw caps or crimp tops. In addition, careful attention must be paid to the use of syringes designated for a specific purpose or for use with only a single standard solution since cross contamination of volatile organic standards can occurs very readily.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1 See Method 0030 for the VOST Sampling Methodology.

6.2 VOST samples are collected on paired cartridges. The first of the pair of sorbent cartridges is packed with approximately 1.6 g of Tenax-GC® resin. The second cartridge of the pair is packed with Tenax-GC® and petroleum based charcoal (3:1 by volume; approximately 1 g of each). In sampling, the emissions gas stream passes through the Tenax-GC® layer first and then through the charcoal layer. The Tenax-GC® is cleaned and reused; charcoal is not reused when tubes are prepared. Sorbent is cleaned and the tubes are packed. The tubes are desorbed and subjected to a blank check prior to being sent to the field. When the tubes are used for sampling (see Figure 5 for a schematic diagram of the Volatile Organic Sampling Train (VOST)), cooling water is circulated to the condensers and the temperature of the cooling water is maintained near 0°C. The end caps of the sorbent cartridges are placed in a clean, screw capped glass container during sample collection.

6.3 After the apparatus is leak checked, sample collection is accomplished by opening the valve to the first condenser, turning on the pump, and sampling at a rate of 1 liter/min for 20 minutes. The volume of sample for any pair of traps should not exceed 20 liters. An alternative set of conditions for sample collection requires sampling at a reduced flow rate, where the overall volume of sample collected is 5 liters at a rate of 0.25 L/min for 20 minutes. The 20 minute period is required for collecting an integrated sample.

6.4 Following collection of 20 liters of sample, the train is leak checked a second time at the highest pressure drop encountered during the run to minimize the chance of vacuum desorption of organics from the Tenax®.

6.5 The train is returned to atmospheric pressure and the two sorbent cartridges are removed. The end caps are replaced and the cartridges are placed in a suitable environment for storage and transport until analysis. The sample is considered invalid if the leak test does not meet specifications.

6.6 A new pair of cartridges is placed in the VOST, the VOST is leak checked, and the sample collection process is repeated until six pairs of traps have been exposed.

6.7 All sample cartridges are kept in coolers on cold packs after exposure and during shipment. Upon receipt at the laboratory, the cartridges are stored in a refrigerator at 4°C until analysis.
7.0 PROCEDURE

7.1 Recommended operating conditions for cartridge desorber, purge-and-trap unit, and gas chromatograph/mass spectrometer using the wide-bore column are:

<table>
<thead>
<tr>
<th>Cartridge Desorption Oven</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desorb Temperature</td>
<td>180°C</td>
</tr>
<tr>
<td>Desorb Time</td>
<td>11 minutes</td>
</tr>
<tr>
<td>Desorption Gas Flow</td>
<td>40 mL/min</td>
</tr>
<tr>
<td>Desorption/Carrier Gas</td>
<td>Helium, Grade 5.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Purge-and-Trap Concentrator</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Trap Desorption Flow</td>
<td>2.5 mL/min helium</td>
</tr>
<tr>
<td>Purge Temperature</td>
<td>Ambient</td>
</tr>
<tr>
<td>Purge Time</td>
<td>11 minutes</td>
</tr>
<tr>
<td>Analytical Trap Desorb Temperature</td>
<td>180°C</td>
</tr>
<tr>
<td>Analytical Trap Desorb Time</td>
<td>5 minutes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gas Chromatograph</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td>DB-624, 0.53 mm ID x 30 m thick film (3 μm) fused silica capillary, or equivalent</td>
</tr>
<tr>
<td>Carrier Gas Flow</td>
<td>15 mL/min</td>
</tr>
<tr>
<td>Makeup Gas Flow</td>
<td>15 mL/min</td>
</tr>
<tr>
<td>Injector Temperature</td>
<td>200°C</td>
</tr>
<tr>
<td>Transfer Oven Temperature</td>
<td>240°C</td>
</tr>
<tr>
<td>Initial Temperature</td>
<td>5°C</td>
</tr>
<tr>
<td>Initial Hold Time</td>
<td>2 minutes</td>
</tr>
<tr>
<td>Program Rate</td>
<td>6°C/min</td>
</tr>
<tr>
<td>Final Temperature</td>
<td>240°C</td>
</tr>
<tr>
<td>Final Hold Time</td>
<td>1 minute, or until elution ceases</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mass Spectrometer</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manifold Temperature</td>
<td>105°C</td>
</tr>
<tr>
<td>Scan Rate</td>
<td>1 sec/cycle</td>
</tr>
<tr>
<td>Mass Range</td>
<td>35-260 amu</td>
</tr>
<tr>
<td>Electron Energy</td>
<td>70 eV (nominal)</td>
</tr>
<tr>
<td>Source Temperature</td>
<td>According to manufacturer's specifications</td>
</tr>
</tbody>
</table>

7.2 Each GC/MS system must be hardware tuned to meet the criteria in Table 3 for a 50 ng injection of 4-bromofluorobenzene (2 μL injection of the BFB standard solution into the water of the purge vessel). No analyses may be initiated until the criteria presented in Table 3 are met.

7.3 Assemble a purge-and-trap device that meets the specifications in Method 5030. Condition the analytical trap overnight at 180°C in the purge mode, with an inert gas flow of at least 20 mL/min. Prior to use each day, condition the trap for 10 minutes by backflushing at 180°C, with the column at 220°C.

7.4 Connect the purge-and-trap device to a gas chromatograph.
7.5 Assemble a VOST tube desorption apparatus which meets the requirements of Sec. 4.1.

7.6 Connect the VOST tube desorption apparatus to the purge-and-trap unit.

7.7 Calibrate the instrument using the internal standard procedure, with standards and calibration compounds spiked onto cleaned VOST tubes for calibration.

7.7.1 Compounds in methanolic solution are spiked onto VOST tubes using the flash evaporation technique. To perform flash evaporation, the injector of a gas chromatograph or an equivalent piece of equipment is required.

7.7.1.1 Prepare a syringe with the appropriate volume of methanolic standard solution (either surrogates, internal standards, or calibration compounds).

7.7.1.2 With the injector port heated to 180°C, and with an inert gas flow of 10 mL/min through the injector port, connect the paired VOST tubes (connected as in Figure 1, with gas flow in the same direction as the sampling gas flow) to the injector port; tighten with a wrench so that there is no leakage of gas. If separate tubes are being analyzed, an individual Tenax® or Tenax®/charcoal tube is connected to the injector.

7.7.1.3 After directing the gas flow through the VOST tubes, slowly inject the first standard solution over a period of 25 seconds. Wait for 5 sec before withdrawing the syringe from the injector port.

7.7.1.4 Inject a second standard (if required) over a period of 25 seconds and wait for 5 sec before withdrawing the syringe from the injector port.

7.7.1.5 Repeat the sequence above as required until all of the necessary compounds are spiked onto the VOST tubes.

7.7.1.6 Wait for 30 seconds, with gas flow, after the last spike before disconnecting the tubes. The total time the tubes are connected to the injector port with gas flow should not exceed 2.5 minutes. Total gas flow through the tubes during the spiking process should not exceed 25 mL to prevent breakthrough of adsorbed compounds during the spiking process. To allow more time for connecting and disconnecting tubes, an on/off valve may be installed in the gas line to the injector port so that gas is not flowing through the tubes during the connection/disconnection process.

7.8 Prepare the purge-and-trap unit with 5 mL of organic-free reagent water in the purge vessel.

5041 - 12
Revision 0
September 1994
7.9 Connect the paired VOST tubes to the gas lines in the tube desorption unit. The tubes must be connected so that the gas flow during desorption will be opposite to the flow of gas during sampling: i.e., the tube desorption gas passes through the charcoal portion of the tube first. An on/off valve may be installed in the gas line leading to the tube desorption unit in order to prevent flow of gas through the tubes during the connection process.

7.10 Initiate tube desorption/purge and heating of the VOST tubes in the desorption apparatus.

7.11 Set the oven of the gas chromatograph to subambient temperatures by cooling with liquid nitrogen.

7.12 Prepare the GC/MS system for data acquisition.

7.13 At the conclusion of the tube/water purge time, attach the analytical trap to the gas chromatograph, adjust the purge-and-trap device to the desorb mode, and initiate the gas chromatographic program and the GC/MS data acquisition. Concurrently, introduce the trapped materials to the gas chromatographic column by rapidly heating the analytical trap to 180°C while backflushing the trap with inert gas at 2.5 mL/min for 5 min. Initiate the program for the gas chromatograph and simultaneously initiate data acquisition on the GC/MS system.

7.14 While the analytical trap is being desorbed into the gas chromatograph, empty the purging vessel. Wash the purging vessel with a minimum of two 5 mL flushes of organic-free reagent water (or methanol followed by organic-free reagent water) to avoid carryover of analytes into subsequent analyses.

7.15 After the sample has been desorbed, recondition the analytical trap by employing a bake cycle on the purge-and-trap unit. The analytical trap may be baked at temperatures up to 220°C. However, extensive use of high temperatures to recondition the trap will shorten the useful life of the analytical trap. After approximately 11 minutes, terminate the trap bake and cool the trap to ambient temperatures in preparation for the next sample. This procedure is a convention for reasonable samples and should be adequate if the concentration of contamination does not saturate the analytical system. If the organic compound concentration is so high that the analytical system is saturated beyond the point where even extended system bakeout is not sufficient to clean the system, a more extensive system maintenance must be performed. To perform extensive system maintenance, the analytical trap is replaced and the new trap is conditioned. Maintenance is performed on the GC column by removing at least one foot from the front end of the column. If the chromatography does not recover after column maintenance, the chromatographic column must be replaced. The ion source should be baked out and, if the bakeout is not sufficient to restore mass spectrometric peak shape and sensitivity, the ion source and the quadrupole rods must be cleaned.

7.16 Initial calibration for the analysis of VOST tubes: It is essential that calibration be performed in the mode in which analysis will be performed. If tubes are being analyzed as pairs, calibration standards should be prepared
on paired tubes. If tubes are being analyzed individually, a calibration should be performed on individual Tenax® only tubes and Tenax®/charcoal tubes.

7.16.1 Prepare the calibration standards by spiking VOST tubes using the procedure described in Sec. 7.7.1. Spike each pair of VOST tubes (or each of the individual tubes) immediately before analysis. Perform the calibration analyses in order from low concentration to high to minimize the compound carryover. Add 5.0 mL of organic-free reagent water to the purging vessel. Initiate tube desorb/purge according to the procedure described above.

7.16.2 Tabulate the area response of the characteristic primary ions (Table 1) against concentration for each target compound, each surrogate compound, and each internal standard. The first criterion for quantitative analysis is correct identification of compounds. The compounds must elute within ± 0.06 retention time units of the elution time of the standard analyzed on the same analytical system on the day of the analysis. The analytes should be quantitated relative to the closest eluting internal standard, according to the scheme shown in Table 4. Calculate response factors (RF) for each compound relative to the internal standard shown in Table 4. The internal standard selected for the calculation of RF is the internal standard that has a retention time closest to the compound being measured. The RF is calculated as follows:

\[
RF = \frac{A_x/C_m}{A_{m}/C_x}
\]

where:

\(A_x\) = area of the characteristic ion for the compound being measured.

\(A_m\) = area of the characteristic ion for the specific internal standard.

\(C_m\) = concentration of the specific internal standard.

\(C_x\) = concentration of the compound being measured.

7.16.3 The average RF must be calculated for each compound. A system performance check should be made before the calibration curve is used. Five compounds (the System Performance Check Compounds, or SPCCs) are checked for a minimum average response factor. These compounds are chloromethane, 1,1-dichloroethane, bromoform, 1,1,2,2-tetrachloroethane, and chlorobenzene. The minimum acceptable average RF for these compounds should be 0.300 (0.250 for bromoform). These compounds typically have RFs of 0.4 - 0.6, and are used to check compound instability and check for degradation caused by contaminated lines or active sites in the system. Examples of these occurrences are:

7.16.3.1 Chloromethane: This compound is the most likely compound to be lost if the purge flow is too fast.
7.16.3.2 Bromoform: This compound is one of the compounds most likely to be purged very poorly if the purge flow is too slow. Cold spots and/or active sites in transfer lines may adversely affect response. Response of the primary quantitation ion (m/z 173) is directly affected by the tuning for 4-bromofluorobenzene at the ions of masses 174 and 176. Increasing the ratio of ions 174 and 176 to mass 95 (the base peak of the mass spectrum of bromofluorobenzene) may improve bromoform response.

7.16.3.3 1,1,2,2-Tetrachloroethane and 1,1-dichloroethane: These compounds are degraded by contaminated transfer lines in purge-and-trap systems and/or active sites in trapping materials.

7.16.4 Using the response factors from the initial calibration, calculate the percent relative standard deviation (%RSD) for the Calibration Check Compounds (CCCs).

\[
\%RSD = \left(\frac{SD}{\bar{RF}} \right) \times 100
\]

where:

\%RSD = percent relative standard deviation
\(RF_i\) = individual RF measurement
\(\bar{RF}\) = mean of 5 initial RFs for a compound (the 5 points over the calibration range)
SD = standard deviation of average RFs for a compound, where SD is calculated:

\[
SD = \sqrt{\frac{\sum_{i=1}^{N} (RF_i - \bar{RF})^2}{N-1}}
\]

The %RSD for each individual CCC should be less than 30 percent. This criterion must be met in order for the individual calibration to be valid. The CCCs are: 1,1-dichloroethene, chloroform, 1,2-dichloropropane, toluene, ethylbenzene, and vinyl chloride.

7.17 Daily GC/MS Calibration

7.17.1 Prior to the analysis of samples, purge 50 ng of the 4-bromofluorobenzene standard. The resultant mass spectrum for the BFB must meet all of the criteria given in Table 3 before sample analysis begins. These criteria must be demonstrated every twelve hours of operation.

7.17.2 The initial calibration curve (Sec. 7.16) for each compound of interest must be checked and verified once every twelve hours of analysis time. This verification is accomplished by analyzing a
calibration standard that is at a concentration near the midpoint concentration for the working range of the GC/MS and checking the SPCC (Sec. 7.16.3) and CCC (Sec. 7.16.4).

7.17.3 System Performance Check Compounds (SPCCs): A system performance check must be made each twelve hours of analysis. If the SPCC criteria are met, a comparison of response factors is made for all compounds. This is the same check that is applied during the initial calibration. If the minimum response factors are not achieved, the system must be evaluated, and corrective action must be taken before analysis is allowed to begin. The minimum response factor for volatile SPCCs is 0.300 (0.250 for bromoform). If these minimum response factors are not achieved, some possible problems may be degradation of the standard mixture, contamination of the injector port, contamination at the front end of the analytical column, and active sites in the column or chromatographic system. If the problem is active sites at the front end of the analytical column, column maintenance (removal of approximately 1 foot from the front end of the column) may remedy the problem.

7.17.4 Calibration Check Compounds: After the system performance check has been met, CCCs listed in Sec. 7.16.4 are used to check the validity of the initial calibration. Calculate the percent difference using the following equation:

\[
\text{% Difference} = \left(\frac{RF_i - RF_c}{RF_i} \right) \times 100
\]

where:

- \(RF_i \) = average response factor from initial calibration
- \(RF_c \) = response factor from current calibration check standard.

If the percent difference for any compound is greater than 20, the laboratory should consider this a warning limit. Benzene, toluene, and styrene will have problems with response factors if Tenax® decomposition occurs (either as a result of sampling exposure or temperature degradation), since these compounds are decomposition products of Tenax®. If the percent difference for each CCC is less than 25%, the initial calibration is assumed to be valid. If the criterion of percent difference less than 25% is not met for any one CCC, corrective action MUST be taken. Problems similar to those listed under SPCCs could affect this criterion. If a source of the problem cannot be determined after corrective action is taken, a new five-point calibration curve MUST be generated. The criteria for the CCCs MUST be met before quantitative analysis can begin.

7.17.5 Internal standard responses and retention times in the check calibration standard must be evaluated immediately after or during data acquisition. If the retention time for any internal standard changes by more than 30 seconds from the last check calibration (12 hr), the chromatographic system must be inspected for malfunctions and corrections.
must be made, as required. A factor which may influence the retention times of the internal standards on sample tubes is the level of overall organic compound loading on the VOST tubes. If the VOST tubes are very highly loaded with either a single compound or with multiple organic compounds, retention times for standards and compounds of interest will be affected. If the area for the primary ion of any of the internal standards changes by a factor of two (-50% to +100%) from the last daily calibration check, the gas chromatograph and mass spectrometer should be inspected for malfunctions and corrections must be made, as appropriate. If the level of organic loading of samples is high, areas for the primary ions of both compounds of interest and standards will be adversely affected. Calibration check standards should not be subject to variation, since the concentrations of organic compounds on these samples are set to be within the linear range of the instrumentation. If instrument malfunction has occurred, analyses of samples performed under conditions of malfunction may be invalidated.

7.18 GC/MS Analysis of Samples

7.18.1 Set up the cartridge desorption unit, purge-and-trap unit, and GC/MS as described above.

7.18.2 BFB tuning criteria and daily GC/MS calibration check criteria must be met before analyzing samples.

7.18.3 Adjust the helium purge gas flow rate (through the cartridges and purge vessel) to approximately 40 mL/min. Optimize the flow rate to provide the best response for chloromethane and bromoform, if these compounds are analytes. A flow rate which is too high reduces the recovery of chloromethane, and an insufficient gas flow rate reduces the recovery of bromoform.

7.18.4 The first analysis performed after the tuning check and the calibration or daily calibration check is a method blank. The method blank consists of clean VOST tubes (both Tenax® and Tenax®/charcoal) which are spiked with surrogate compounds and internal standards according to the procedure described in Sec. 7.7.1. The tubes which are used for the method blanks should be from the same batch of sorbent as the sorbent used for the field samples. After the tubes are cleaned and prepared for shipment to the field, sufficient pairs of tubes should be retained from the same batch in the laboratory to provide method blanks during the analysis.

7.18.5 The organic-free reagent water for the purge vessel for the analysis of each of the VOST samples should be supplied from the laboratory inventory which is maintained with constant bubbling of inert gas to avoid contamination.

7.18.6 If the analysis of a pair of VOST tubes has a concentration of analytes that exceeds the initial calibration range, no reanalysis of desorbed VOST tubes is possible. An additional calibration point can be added to bracket the higher concentration encountered in the samples so that the calibration database encompasses six or more points.
Alternatively, the data may be flagged in the report as "extrapolated beyond the upper range of the calibration." The use of the secondary ions shown in Table 1 is permissible only in the case of interference with the primary quantitation ion. Use of secondary ions to calculate compound concentration in the case of saturation of the primary ion is not an acceptable procedure, since a negative bias of an unpredictable magnitude is introduced into the quantitative data when saturation of the mass spectrum of a compound is encountered. If high organic loadings, either of a single compound or of multiple compounds, are encountered, it is vital that a method blank be analyzed prior to the analysis of another sample to demonstrate that no compound carryover is occurring. If concentrations of organic compounds are sufficiently high that carryover problems are profound, extensive bakeout of the purge-and-trap unit will be required. Complete replacement of the contaminated analytical trap, with the associated requirement for conditioning the new trap, may also be required for VOST samples which show excessive concentrations of organic compounds. Other measures which might be required for decontamination of the analytical system include bakeout of the mass spectrometer, replacement of the filament of the mass spectrometer, cleaning of the ion source of the mass spectrometer, and/or (depending on the nature of the contamination) maintenance of the chromatographic column or replacement of the chromatographic column, with the associated requirement for conditioning the new chromatographic column.

7.19 Data Interpretation

7.19.1 Qualitative analysis:

7.19.1.1 The qualitative identification of compounds determined by this method is based on retention time, and on comparison of the sample mass spectrum, after background correction, with characteristic ions in a reference mass spectrum. The reference mass spectrum must be generated by the laboratory using the conditions of this method. The characteristic ions from the reference mass spectrum are defined to be the three ions of greatest relative intensity, or any ions over 30% relative intensity if less than three such ions occur in the reference spectrum. Compounds should be identified as present when the criteria below are met.

7.19.1.1.1 The intensities of the characteristic ions of a compound maximize in the same scan or within one scan of each other. Selection of a peak by a data system target compound search routine where the search is based on the presence of a target chromatographic peak containing ions specific for the target compound at a compound specific retention time will be accepted as meeting this criterion.

7.19.1.1.2 The RRT of the sample component is ± 0.06 RRT units of the RRT of the standard component.

7.19.1.1.3 The relative intensities of the characteristic ions agree within 30% of the relative intensities of these ions in the reference spectrum. (Example: For an ion with an abundance of 50% in the
reference spectrum, the corresponding abundance in a sample spectrum can range between 20% and 80%.)

7.19.1.1.4 Structural isomers that produce very similar mass spectra should be identified as individual isomers if they have sufficiently different GC retention times. Sufficient GC resolution is achieved if the height of the valley between two isomer peaks is less than 25% of the sum of the two peak heights. Otherwise, structural isomers are identified as isomeric pairs.

7.19.1.1.5 Identification is hampered when sample components are not resolved chromatographically and produce mass spectra containing ions contributed by more than one analyte. When gas chromatographic peaks obviously represent more than one sample component (i.e., a broadened peak with shoulder(s) or a valley between two or more maxima), appropriate selection of analyte spectra and background spectra is important. Examination of extracted ion current profiles of appropriate ions can aid in the selection of spectra, and in qualitative identification of compounds. When analytes coelute (i.e., only one chromatographic peak is apparent), the identification criteria can be met, but each analyte spectrum will contain extraneous ions contributed by the coeluting compound.

7.19.1.2 For samples containing components not associated with the calibration standards, a library search may be made for the purpose of tentative identification. The necessity to perform this type of identification will be determined by the type of analyses being conducted. Guidelines for making tentative identification are:

1. Relative intensities of major ions in the reference spectrum (ions > 10% of the most abundant ion) should be present in the sample spectrum.

2. The relative intensities of the major ions should agree within ±20%. (Example: For an ion with an abundance of 50% in the standard spectrum, the corresponding sample ion abundance must be between 30 and 70%).

3. Molecular ions present in the reference spectrum should be present in the sample spectrum.

4. Ions present in the sample spectrum but not in the reference spectrum should be reviewed for possible background contamination or presence of coeluting compounds.

5. Ions present in the reference spectrum but not in the sample spectrum should be reviewed for possible subtraction from the sample spectrum because of background contamination or coeluting peaks. Data system library reduction programs can sometimes create these discrepancies.

5041 - 19

Revision 0
September 1994
Computer generated library search routines should not use normalization routines that would misrepresent the library or unknown spectra when compared to each other. Only after visual comparison of sample with the nearest library searches will the mass spectral interpretation specialist assign a tentative identification.

7.19.2 Quantitative analysis:

7.19.2.1 When a compound has been identified, the quantitative analysis of that compound will be based on the integrated abundance from the extracted ion current profile of the primary characteristic ion for that compound (Table 1). In the event that there is interference with the primary ion so that quantitative measurements cannot be made, a secondary ion may be used.

NOTE: Use of a secondary ion to perform quantitative calculations in the event of the saturation of the primary ion is not an acceptable procedure because of the unpredictable extent of the negative bias which is introduced. Quantitative calculations are performed using the internal standard technique. The internal standard used to perform quantitative calculations shall be the internal standard nearest the retention time of a given analyte (see Table 4).

7.19.2.2 Calculate the amount of each identified analyte from the VOST tubes as follows:

\[
\text{Amount (ng)} = \frac{(A_s C_{is})}{(A_{is} RF)}
\]

where:

\(A_s\) = area of the characteristic ion for the analyte to be measured.

\(A_{is}\) = area of the characteristic ion of the internal standard.

\(C_{is}\) = amount (ng) of the internal standard.

7.19.2.3 The choice of methods for evaluating data collected using the VOST methodology for incinerator trial burns is a regulatory decision. Various procedures are used to decide whether blank correction should be performed and how blank correction should be performed. Regulatory agencies to which VOST data are submitted also vary in their preferences for data which are or which are not blank corrected.

7.19.2.4 The total amount of the POHCs of interest collected on a pair of traps should be summed.
7.19.2.5 The occurrence of high concentrations of analytes on method blank cartridges indicates possible residual contamination of sorbent cartridges prior to shipment and use at the sampling site. Data with high associated blank values must be qualified with respect to validity, and all blank data should be reported separately. No blank corrections should be made in this case. Whether or not data of this type can be applied to the determination of destruction and removal efficiency is a regulatory decision. Continued observation of high concentrations of analytes on blank sorbent cartridges indicates that procedures for cleanup and quality control for the sampling tubes are inadequate. Corrective action MUST be applied to tube preparation and monitoring procedures to maintain method blank concentrations below detection limits for analytes.

7.19.2.6 Where applicable, an estimate of concentration for noncalibrated components in the sample may be made. The formulae for quantitative calculations presented above should be used with the following modifications: The areas A_y and A_n should be from the total ion chromatograms, and the Response Factor for the noncalibrated compound should be assumed to be 1. The nearest eluting internal standard free from interferences in the total ion chromatogram should be used to determine the concentration. The concentration which is obtained should be reported indicating: (1) that the value is an estimate; and (2) which internal standard was used.

7.19.2.7 If any internal standard recoveries fall outside the control limits established in Sec. 8.4, data for all analytes determined for that cartridge(s) must be qualified with the observation. Report results without correction for surrogate compound recovery data. When duplicates are analyzed, report the data obtained with the sample results.

8.0 QUALITY CONTROL

8.1 Each laboratory that uses these methods is required to operate a formal quality control program. The minimum quality control requirements are specified in Chapter One. In addition, this program should consist of an initial demonstration of laboratory capability and an ongoing analysis of check samples to evaluate and document data quality. The laboratory must maintain records to document the quality of the data generated. Ongoing data quality checks are compared with established performance criteria to determine if the results of analyses meet the performance characteristics of the method. When sample analyses indicate atypical method performance, a quality control check standard (spiked method blank) must be analyzed to confirm that the measurements were performed in an in-control mode of instrument operation.

8.2 Before processing any samples, the analyst should demonstrate, through the analysis of a method blank (laboratory blank sorbent tubes, reagent water purge) that interferences from the analytical system, glassware, sorbent tube preparation, and reagents are under control. Each time a new batch of
sorbent tubes is analyzed, a method blank should be processed as a safeguard against chronic laboratory contamination. Blank tubes which have been carried through all the stages of sorbent preparation and handling should be used in the analysis.

8.3 The experience of the analyst performing the GC/MS analyses is invaluable to the success of the analytical methods. Each day that the analysis is performed, the daily calibration check standard should be evaluated to determine if the chromatographic and tube desorption systems are operating properly. Questions that should be asked are: Do the peaks look normal? Is the system response obtained comparable to the response from previous calibrations? Careful examination of the chromatogram of the calibration standard can indicate whether column maintenance is required or whether the column is still usable, whether there are leaks in the system, whether the injector septum requires replacing, etc. If changes are made to the system (such as change of a column), a calibration check must be carried out and a new multipoint calibration must be generated.

8.4 Required instrument quality control is found in the following sections:

8.4.1 The mass spectrometer must be tuned to meet the specifications for 4-bromofluorobenzene in Sec. 7.2 (Table 3).

8.4.2 An initial calibration of the tube desorption/purge-and-trap/GC/MS must be performed as specified in Sec. 7.7.

8.4.3 The GC/MS system must meet the SPCC criteria specified in Sec. 7.16.3 and the CCC criteria in Sec. 7.16.4 each twelve hours of instrument operation.

8.5 To establish the ability to generate acceptable accuracy and precision, the analyst must perform the following operations.

8.5.1 A quality control (QC) check sample concentrate is required containing each analyte at a concentration of 10 mg/L in high purity methanol. The QC check sample concentrate may be prepared from pure standard materials or purchased as certified solutions. If the QC check sample concentrate is prepared by the laboratory, the QC check sample concentrate must be prepared using stock standards prepared independently from the stock standards used for calibration.

8.5.2 Spike four pairs of cleaned, prepared VOST tubes with 10 µL of the QC check sample concentrate and analyze these spiked VOST tubes according to the method beginning in Sec. 7.0.

8.5.3 Calculate the average recovery (X) in ng and the standard deviation of the recovery (s) in ng for each analyte using the results of the four analyses.

8.5.4 The average recovery and standard deviation must fall within the expected range for determination of volatile organic compounds using the VOST analytical methodology. The expected range for recovery of
volatile organic compounds using this method is 50-150%. Standard deviation will be compound dependent, but should, in general, range from 15 to 30 ng. More detailed method performance criteria must be generated from historical records in the laboratory or from interlaboratory studies coordinated by the Environmental Protection Agency. Since the additional steps of sorbent tube spiking and desorption are superimposed upon the methodology of Method 8260, direct transposition of Method 8260 criteria is questionable. If the recovery and standard deviation for all analytes meet the acceptance criteria, the system performance is acceptable and the analysis of field samples may begin. If any individual standard deviation exceeds the precision limit or any individual recovery falls outside the range for accuracy, then the system performance is unacceptable for that analyte.

NOTE: The large number of analytes listed in Table 1 presents a substantial probability that one or more will fail at least one of the acceptance criteria when all analytes for this method are determined.

8.5.5 When one or more of the analytes tested fails at least one of the acceptance criteria, the analyst must proceed according to one of the alternatives below.

8.5.5.1 Locate and correct the source of any problem with the methodology and repeat the test for all the analytes beginning with Sec. 8.5.2.

8.5.5.2 Beginning with Sec. 8.5.2, repeat the test only for those analytes that have failed to meet acceptance criteria. Repeated failure, however, will confirm a general problem either with the measurement system or with the applicability of the methodology to the particular analyte (especially if the analyte in question is not listed in Table 1). If the problem is identified as originating in the measurement system, locate and correct the source of the problem and repeat the test for all compounds of interest beginning with Sec. 8.5.2.

8.6 To determine acceptable accuracy and precision limits for surrogate standards, the following procedure should be performed.

8.6.1 For each sample analyzed, calculate the percent recovery of each surrogate compound in the sample.

8.6.2 Once a minimum of thirty samples has been analyzed, calculate the average percent recovery (p) and the standard deviation of the percent recovery (s) for each of the surrogate compounds.

8.6.3 Calculate the upper and lower control limits for method performance for each surrogate standard. This calculation is performed as follows:

\[
\text{Upper Control Limit (UCL)} = p + 3s \\
\text{Lower Control Limit (LCL)} = p - 3s
\]
For reference, the comparable control limits for recovery of the surrogate compounds from water and soil in Method 8240 are:

<table>
<thead>
<tr>
<th>Surrogate Compound</th>
<th>Water Recovery</th>
<th>Soil Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromofluorobenzene</td>
<td>86-115%</td>
<td>74-121%</td>
</tr>
<tr>
<td>1,2-Dichloroethane-d₄</td>
<td>76-114%</td>
<td>70-121%</td>
</tr>
<tr>
<td>Toluene-d₆</td>
<td>88-110%</td>
<td>81-117%</td>
</tr>
</tbody>
</table>

The control limits for the VOST methodology would be expected to be similar, but exact data are not presently available. Individual laboratory control limits can be established by the analysis of replicate samples.

8.6.4 If surrogate recovery is not within the limits established by the laboratory, the following procedures are required: (1) Verify that there are no errors in calculations, preparation of surrogate spiking solutions, and preparation of internal standard spiking solutions. Also, verify that instrument performance criteria have been met. (2) Recalculate the data and/or analyze a replicate sample, if replicates are available. (3) If all instrument performance criteria are met and recovery of surrogates from spiked blank VOST tubes (analysis of a method blank) is acceptable, the problem is due to the matrix. Emissions samples may be highly acidic and may be highly loaded with target and non-target organic compounds. Both of these conditions will affect the ability to recover surrogate compounds which are spiked on the field samples. The surrogate compound recovery is thus a valuable indicator of the interactions of sampled compounds with the matrix. If surrogates spiked immediately before analysis cannot be observed with acceptable recovery, the implications for target organic analytes which have been sampled in the field must be assessed very carefully. If chemical or other interactions are occurring on the exposed tubes, the failure to observe an analyte may not necessarily imply that the Destruction and Removal Efficiency for that analyte is high.

8.7 It is recommended that the laboratory adopt additional quality assurance practices for use with this method. The specific practices that are most productive depend upon the needs of the laboratory and the nature of the samples analyzed. Field duplicates may be analyzed to assess the precision of the environmental measurements. When doubt exists over the identification of a peak on the chromatogram, confirmatory techniques such as gas chromatography with a dissimilar column or a different ionization mode using a mass spectrometer may be used, if replicate samples showing the same compound are available. Whenever possible, the laboratory should analyze standard reference materials and participate in relevant performance evaluation studies.

9.0 METHOD PERFORMANCE

9.1 The method detection limit (MDL) is defined in Chapter One. The MDL concentrations listed in Table 2 were obtained using cleaned blanked VOST tubes and reagent water. Similar results have been achieved with field samples. The MDL actually achieved in a given analysis will vary depending upon instrument sensitivity and the effects of the matrix. Preliminary spiking studies indicate that under these conditions, the method detection limit for spiked compounds in extremely complex matrices may be larger by a factor of 500-1000.
10.0 REFERENCES

<table>
<thead>
<tr>
<th>Compound</th>
<th>Retention Time (min)</th>
<th>Primary Ion Mass</th>
<th>Secondary Ion(s) Mass(es)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.1</td>
<td>43</td>
<td>58</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>8.6</td>
<td>53</td>
<td>52, 51</td>
</tr>
<tr>
<td>Benzene</td>
<td>13.0</td>
<td>78</td>
<td>52, 77</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>12.0</td>
<td>128</td>
<td>49, 130, 51</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>16.0</td>
<td>83</td>
<td>85, 129</td>
</tr>
<tr>
<td>4-Bromofluorobenzene</td>
<td>23.4</td>
<td>95</td>
<td>174, 176</td>
</tr>
<tr>
<td>Bromoform</td>
<td>22.5</td>
<td>173</td>
<td>171, 175, 252</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>4.1</td>
<td>94</td>
<td>96, 79</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>7.1</td>
<td>76</td>
<td>78</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>12.6</td>
<td>117</td>
<td>119, 121</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>20.5</td>
<td>112</td>
<td>114, 77</td>
</tr>
<tr>
<td>Chlorodibromomethane</td>
<td>19.3</td>
<td>129</td>
<td>208, 206</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>4.2</td>
<td>64</td>
<td>66, 49</td>
</tr>
<tr>
<td>Chloroform</td>
<td>12.2</td>
<td>83</td>
<td>85, 47</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>3.0</td>
<td>50</td>
<td>52, 49</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>15.4</td>
<td>93</td>
<td>174, 95</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>10.0</td>
<td>63</td>
<td>65, 83</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>13.3</td>
<td>62</td>
<td>64, 98</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>6.4</td>
<td>96</td>
<td>61, 98</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>8.6</td>
<td>96</td>
<td>61, 98</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>15.2</td>
<td>63</td>
<td>62, 41</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>17.0</td>
<td>75</td>
<td>77, 39</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>18.2</td>
<td>75</td>
<td>77, 39</td>
</tr>
<tr>
<td>1,4-Difluorobenzene</td>
<td>14.2</td>
<td>114</td>
<td>63, 88</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>21.1</td>
<td>106</td>
<td>91</td>
</tr>
<tr>
<td>Iodomethane</td>
<td>7.0</td>
<td>142</td>
<td>127, 141</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>8.1</td>
<td>84</td>
<td>49, 51, 86</td>
</tr>
<tr>
<td>Styrene</td>
<td>22.3</td>
<td>104</td>
<td>78, 103</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>24.0</td>
<td>83</td>
<td>85, 131, 133</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>18.6</td>
<td>164</td>
<td>129, 131, 166</td>
</tr>
<tr>
<td>Toluene</td>
<td>17.4</td>
<td>92</td>
<td>91, 65</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>12.4</td>
<td>97</td>
<td>99, 117</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>18.4</td>
<td>97</td>
<td>83, 85, 99</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>14.5</td>
<td>130</td>
<td>95, 97, 132</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>5.1</td>
<td>101</td>
<td>103, 66</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>24.0</td>
<td>75</td>
<td>110, 77, 61</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>3.2</td>
<td>62</td>
<td>64, 61</td>
</tr>
<tr>
<td>Xylenes*</td>
<td>22.2</td>
<td>106</td>
<td>91</td>
</tr>
</tbody>
</table>

* The retention time given is for m- and p-xylene, which coelute on the wide-bore column. o-Xylene elutes approximately 50 seconds later.
<table>
<thead>
<tr>
<th>Compound</th>
<th>CAS Number</th>
<th>Detection Limit, ng</th>
<th>Boiling Point, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloromethane</td>
<td>74-87-3</td>
<td>58</td>
<td>-24</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>74-83-9</td>
<td>26</td>
<td>4</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>75-01-4</td>
<td>14</td>
<td>-13</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>75-00-3</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>75-09-2</td>
<td>9</td>
<td>40</td>
</tr>
<tr>
<td>Acetone</td>
<td>67-64-1</td>
<td>35</td>
<td>56</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>75-15-0</td>
<td>11</td>
<td>46</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>75-35-4</td>
<td>14</td>
<td>32</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>75-35-3</td>
<td>12</td>
<td>57</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>156-60-5</td>
<td>11</td>
<td>48</td>
</tr>
<tr>
<td>Chloroform</td>
<td>67-66-3</td>
<td>11</td>
<td>62</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>107-06-2</td>
<td>13</td>
<td>83</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>71-55-6</td>
<td>8</td>
<td>74</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>56-23-5</td>
<td>8</td>
<td>77</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>75-27-4</td>
<td>11</td>
<td>88</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>79-34-5</td>
<td>23</td>
<td>146</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>78-87-5</td>
<td>12</td>
<td>95</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>10061-02-6</td>
<td>17</td>
<td>112</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>79-01-6</td>
<td>11</td>
<td>87</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>124-48-1</td>
<td>21</td>
<td>122</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>79-00-5</td>
<td>26</td>
<td>114</td>
</tr>
<tr>
<td>Benzene</td>
<td>71-43-2</td>
<td>26</td>
<td>80</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>10061-01-5</td>
<td>27</td>
<td>112</td>
</tr>
<tr>
<td>Bromoform</td>
<td>75-25-2</td>
<td>26</td>
<td>150</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>127-18-4</td>
<td>11</td>
<td>121</td>
</tr>
<tr>
<td>Toluene</td>
<td>108-88-3</td>
<td>15</td>
<td>111</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>108-90-7</td>
<td>15</td>
<td>132</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>100-41-4</td>
<td>21</td>
<td>136</td>
</tr>
<tr>
<td>Styrene</td>
<td>100-42-5</td>
<td>46</td>
<td>145</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>75-69-4</td>
<td>17</td>
<td>24</td>
</tr>
<tr>
<td>Iodomethane</td>
<td>74-88-4</td>
<td>9</td>
<td>43</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>107-13-1</td>
<td>13</td>
<td>78</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>74-95-3</td>
<td>14</td>
<td>97</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>96-18-4</td>
<td>37</td>
<td>157</td>
</tr>
<tr>
<td>total Xylenes</td>
<td></td>
<td>22</td>
<td>138-144</td>
</tr>
</tbody>
</table>

* The method detection limit (MDL) is defined as the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix containing the analyte. The detection limits cited above were determined according to Title 40 CFR, Part 136, Appendix B, using standards spiked onto clean VOST tubes. Since clean VOST tubes were used, the values cited above represent the best that the methodology can achieve. The presence of an emissions matrix will affect the ability of the methodology to perform at its optimum level.

** Not appropriate for quantitative sampling by Method 0030.
<table>
<thead>
<tr>
<th>Mass</th>
<th>Ion Abundance Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>15 to 40% of mass 95</td>
</tr>
<tr>
<td>75</td>
<td>30 to 60% of mass 95</td>
</tr>
<tr>
<td>95</td>
<td>base peak, 100% relative abundance</td>
</tr>
<tr>
<td>96</td>
<td>5 to 9% of mass 95</td>
</tr>
<tr>
<td>173</td>
<td>less than 2% of mass 174</td>
</tr>
<tr>
<td>174</td>
<td>greater than 50% of mass 95</td>
</tr>
<tr>
<td>175</td>
<td>5 to 9% of mass 174</td>
</tr>
<tr>
<td>176</td>
<td>greater than 95%, but less than 101% of mass 174</td>
</tr>
<tr>
<td>177</td>
<td>5 to 9% of mass 176</td>
</tr>
<tr>
<td>VOLATILE INTERNAL STANDARDS WITH CORRESPONDING ANALYTES ASSIGNED FOR QUANTITATION</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>1,4-Difluorobenzene</td>
</tr>
<tr>
<td>Acetone</td>
<td>Benzene</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>Bromodichloromethane</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>Bromoform</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>Carbon tetrachloride</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>Chlorodibromomethane</td>
</tr>
<tr>
<td>Chloroform</td>
<td>Dibromomethane</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1,2-Dichloropropane</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>cis-1,3-Dichloropropene</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>trans-1,3-Dichloropropene</td>
</tr>
<tr>
<td>1,2-Dichloroethane-d$_4$ (surrogate)</td>
<td>1,1,1-Trichloroethane</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>1,1,2-Trichloroethane</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td></td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td></td>
</tr>
<tr>
<td>Iodomethane</td>
<td></td>
</tr>
<tr>
<td>Methylene chloride</td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td></td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene-d$_5$</td>
<td></td>
</tr>
<tr>
<td>4-Bromofluorobenzene (surrogate)</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td></td>
</tr>
<tr>
<td>Styrene</td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td></td>
</tr>
<tr>
<td>Toluene-d$_8$ (surrogate)</td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td></td>
</tr>
<tr>
<td>Xylenes</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Cartridge Desorption Flow
Figure 3. Schematic Diagram of Overall Analytical System
Figure 4. Sample Purge Vessel

5041 - 33
Revision 0
September 1994
Figure 5. Schematic of Volatile Organic Sampling Train (VOST)
METHOD 5041
PROTOCOL FOR ANALYSIS OF SORBENT CARTRIDGES FROM VOLATILE ORGANIC
SAMPLING TRAIN: WIDE-BORE CAPILLARY COLUMN TECHNIQUE

7.10 Initiate tube desorption/purge and heating.

7.11 Set the GC oven to subambient temperature with liquid nitrogen.

7.12 Prepare the GC/MS system for data acquisition.

7.13 After the tube/water purge time, attach the analytical trap to the GC/MS for desorption.

7.14 Wash purging vessel with two 5 mL flushes of organic-free reagent water.

7.15 Recondition the analytical trap by making it cut at temps up to 220°C for 11 min. Trap replacement may be necessary if the analytical trap is saturated beyond cleanup.

7.16.1 Prepare calibration stds. as in 7.7.1. Add water to vessel and desorb.

7.16.2 Tabulate the area response of all compounds of interest.

7.16.3 Calculate the average RF for each compound of interest.

7.16.4 Calculate the %RSD for the CCCs. The %RSD must be <30%.

7.18 GC/MS analysis of samples.

7.19.1 Qualitative analysis of data and ident. guidelines of compounds.

7.19.2 Quantitative analysis of data for the compounds of interest.

Stop
4.2 SAMPLE PREPARATION METHODS

4.2.2 CLEANUP

The following methods are included in this section:

- **Method 3600B**: Cleanup
- **Method 3610A**: Alumina Column Cleanup
- **Method 3611A**: Alumina Column Cleanup and Separation of Petroleum Wastes
- **Method 3620A**: Florisil Column Cleanup
- **Method 3630B**: Silica Gel Cleanup
- **Method 3640A**: Gel-Permeation Cleanup
- **Method 3650A**: Acid-Base Partition Cleanup
- **Method 3660A**: Sulfur Cleanup
- **Method 3665**: Sulfuric Acid/Permanganate Cleanup
1.0 SCOPE AND APPLICATION

1.1 Method 3600 provides general guidance on selection of cleanup methods that are appropriate for the target analytes of interest. Cleanup methods are applied to the extracts prepared by one of the extraction methods, to eliminate sample interferences. The following table lists the cleanup methods and provides a brief description of the type of cleanup.

SW-846 CLEANUP METHODS

<table>
<thead>
<tr>
<th>Method #</th>
<th>Method Name</th>
<th>Cleanup Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3610</td>
<td>Alumina Cleanup</td>
<td>Adsorption</td>
</tr>
<tr>
<td>3611</td>
<td>Alumina Cleanup & Separation</td>
<td>Adsorption</td>
</tr>
<tr>
<td></td>
<td>for Petroleum Waste</td>
<td></td>
</tr>
<tr>
<td>3620</td>
<td>Florisil Cleanup</td>
<td>Adsorption</td>
</tr>
<tr>
<td>3630</td>
<td>Silica Gel Cleanup</td>
<td>Adsorption</td>
</tr>
<tr>
<td>3640</td>
<td>Gel-Permeation Cleanup</td>
<td>Size-Separation</td>
</tr>
<tr>
<td>3650</td>
<td>Acid-Base Partition Cleanup</td>
<td>Acid-Base Partitioning</td>
</tr>
<tr>
<td>3660</td>
<td>Sulfur Cleanup</td>
<td>Oxidation/Reduction</td>
</tr>
<tr>
<td>3665</td>
<td>Sulfuric Acid/Permanganate Cleanup</td>
<td>Oxidation/Reduction</td>
</tr>
</tbody>
</table>

1.2 The purpose of applying a cleanup method to an extract is to remove interferences and high boiling material that may result in: (1) errors in quantitation (data may be biased low because of analyte adsorption in the injection port or front of the GC column or biased high because of overlap with an interference peak); (2) false positives because of interference peaks falling within the analyte retention time window; (3) false negatives caused by shifting the analyte outside the retention time window; (4) rapid deterioration of expensive capillary columns; and, (5) instrument downtime caused by cleaning and rebuilding of detectors and ion sources. Most extracts of soil and waste require some degree of cleanup, whereas, cleanup for water extracts may be unnecessary. Highly contaminated extracts (e.g. sample extracts of oily waste or soil containing oily residue) often require a combination of cleanup methods. For example, when analyzing for organochlorine pesticides and PCBs, it may be necessary to use gel permeation chromatography (GPC), to eliminate the high boiling material and a micro alumina or Florisil column to eliminate interferences with the analyte peaks on the GC/ECD.
1.3 The following techniques have been applied to extract purification: adsorption chromatography; partitioning between immiscible solvents; gel permeation chromatography; oxidation of interfering substances with acid, alkali, or oxidizing agents. These techniques may be used individually or in various combinations, depending on the extent and nature of the co-extractives.

1.3.1 Adsorption column chromatography - Alumina (Methods 3610 and 3611), Florisil (Method 3620), and silica gel (Method 3630) are useful for separating analytes of a relatively narrow polarity range away from extraneous, interfering peaks of a different polarity. These are primarily used for cleanup of a specific chemical group of relatively non-polar analytes, i.e., organochlorine pesticides, polynuclear aromatic hydrocarbons (PAHs), nitrosamines, etc.. Solid phase extraction cartridges have been added as an option.

1.3.2 Acid-base partitioning (Method 3650) - Useful for separating acidic or basic organics from neutral organics. It has been applied to analytes such as the chlorophenoxy herbicides and phenols. It is very useful for separating the neutral PAHs from the acidic phenols when analyzing a site contaminated with creosote and pentachlorophenol.

1.3.3 Gel permeation chromatography (GPC) (Method 3640) - The most universal cleanup technique for a broad range of semivolatile organics and pesticides. It is capable of separating high molecular-weight, high boiling material from the sample analytes. It has been used successfully for all the semivolatile base, neutral, and acid compounds associated with the EPA Priority Pollutant and the Superfund Target Compound list prior to GC/MS analysis for semivolatiles and pesticides. GPC may not be applicable to elimination of extraneous peaks on a chromatogram which interfere with the analytes of interest. It is, however, useful for the removal of high boiling materials which would contaminate injection ports and column heads, prolonging column life, stabilizing the instrument, and reducing column reactivity.

1.3.4 Sulfur cleanup (Method 3660) - Useful in eliminating sulfur from sample extracts, which may cause chromatographic interference with analytes of interest.

1.4 Several of the methods are also useful for fractionation of complex mixtures of analytes. Use the solid phase extraction cartridges in Method 3630 (Silica Gel) for separating the PCBs away from most organochlorine pesticides. Method 3611 (Alumina) is for the fractionation of aliphatic, aromatic and polar analytes. Method 3620 (Florisil) provides fractionation of the organochlorine pesticides.

1.5 Cleanup capacity is another factor that must be considered in choosing a cleanup technique. The adsorption methods (3610, 3620, and 3630) provide the option of using standard column chromatography techniques or solid phase extraction cartridges. The decision process in selecting between the different options available generally depends on the amount of interferences/high boiling material in the sample extract and the degree of cleanup required by the determinative method. The solid phase extraction cartridges require less elution solvent and less time, however, their cleanup capacity is drastically reduced when comparing a 0.5 g or 1.0 g Florisil cartridge to a 20 g standard Florisil.
1.6 Table 1 indicates the recommended cleanup techniques for the indicated groups of compounds. This information can also be used as guidance for compounds that are not listed. Compounds that are chemically similar to these groups of compounds should behave similarly when taken through the cleanup procedure, however, this must be demonstrated by determining recovery of standards taken through the method.

2.0 SUMMARY OF METHOD

2.1 Refer to the specific cleanup method for a summary of the procedure.

3.0 INTERFERENCES

3.1 Analytical interferences may be caused by contaminants in solvents, reagents, glassware, and other sample processing hardware. All of these materials must be routinely demonstrated to be free of interferences, under the conditions of the analysis, by running laboratory reagent blanks.

3.2 More extensive procedures than those outlined in the methods may be necessary for reagent purification.

4.0 APPARATUS AND MATERIALS

4.1 Refer to the specific cleanup method for apparatus and materials needed.

5.0 REAGENTS

5.1 Refer to the specific cleanup method for the reagents needed.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1 See the introductory material to this chapter, Organic Analytes, Section 4.1.

7.0 PROCEDURE

7.1 Prior to using the cleanup procedures, samples normally undergo solvent extraction. Chapter Two, Section 2.0, may be used as a guide for choosing the appropriate extraction procedure based on the physical composition of the waste and on the analytes of interest in the matrix (see also Method 3500 for a general description of the extraction technique). For some organic liquids, extraction prior to cleanup may not be necessary.
7.2 Most soil/sediment and waste sample extracts will require some degree of cleanup. The extract is then analyzed by one of the determinative methods. If interferences still preclude analysis for the analytes of interest, additional cleanup may be required.

7.3 Many of the determinative methods specify cleanup methods that should be used when determining particular analytes (e.g. Method 8061, gas chromatography of phthalate esters, recommends using either Method 3610 (Alumina column cleanup) or Method 3620 (Florisil column cleanup) if interferences prevent analysis. However, the experience of the analyst may prove invaluable in determining which cleanup methods are needed. As indicated in Section 1.0 of this method, many matrices may require a combination of cleanup procedures in order to ensure proper analytical determinations.

7.4 Guidance for cleanup is specified in each of the methods that follow. The amount of extract cleanup required prior to the final determination depends on the concentration of interferences in the sample, the selectivity of both the extraction procedure and the determinative method and the required detection limit.

7.5 Following cleanup, the sample is concentrated to whatever volume is required in the determinative method. Analysis follows as specified in the determinative procedure.

8.0 QUALITY CONTROL

8.1 Refer to Chapter One for specific quality control procedures.

8.2 The analyst must demonstrate that the compounds of interest are being quantitatively recovered by the cleanup technique before the cleanup is applied to actual samples. For sample extracts that are cleaned up, the associated quality control samples (e.g. spikes, blanks, replicates, and duplicates) must also be processed through the same cleanup procedure.

8.3 The analysis using each determinative method (GC, GC/MS, HPLC) specifies instrument calibration procedures using stock standards. It is recommended that cleanup also be performed on a series of the same type of standards to validate chromatographic elution patterns for the compounds of interest and to verify the absence of interferences from reagents.

9.0 METHOD PERFORMANCE

9.1 Refer to the specific cleanup method for performance data.

10.0 REFERENCES

10.1 Refer to the specific cleanup method.
TABLE 1.
RECOMMENDED CLEANUP TECHNIQUES FOR INDICATED GROUPS OF COMPOUNDS

<table>
<thead>
<tr>
<th>Analyte Group</th>
<th>Determinative Method</th>
<th>Cleanup Method Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenols</td>
<td>8040</td>
<td>3630<sup>b</sup>, 3640, 3650, 8040<sup>c</sup></td>
</tr>
<tr>
<td>Phthalate esters</td>
<td>8060/8061</td>
<td>3610, 3620, 3640</td>
</tr>
<tr>
<td>Nitrosamines</td>
<td>8070</td>
<td>3610, 3620, 3640</td>
</tr>
<tr>
<td>Organochlorine pesticides & PCBs</td>
<td>8080/8081</td>
<td>3620, 3640, 3660</td>
</tr>
<tr>
<td>PCBs</td>
<td>8080/8081</td>
<td>3665</td>
</tr>
<tr>
<td>Nitroaromatics and cyclic ketones</td>
<td>8090</td>
<td>3620, 3640</td>
</tr>
<tr>
<td>Polynuclear aromatic hydrocarbons</td>
<td>8100/8310</td>
<td>3611, 3630, 3640</td>
</tr>
<tr>
<td>Chlorinated hydrocarbons</td>
<td>8120/8121</td>
<td>3620, 3640</td>
</tr>
<tr>
<td>Organophosphorus pesticides</td>
<td>8140/8141</td>
<td>3620</td>
</tr>
<tr>
<td>Chlorinated herbicides</td>
<td>8150/8151</td>
<td>8150<sup>d</sup>, 8151<sup>d</sup>, 3620</td>
</tr>
<tr>
<td>Semivolatile organics</td>
<td>8250/8270</td>
<td>3640, 3650, 3660</td>
</tr>
<tr>
<td>Petroleum waste</td>
<td>8250/8270</td>
<td>3611, 3650</td>
</tr>
<tr>
<td>PCDDs and PCDFs by LR/MS</td>
<td>8280</td>
<td>8280</td>
</tr>
<tr>
<td>PCDDs and PCDFs by HR/MS</td>
<td>8290</td>
<td>8290</td>
</tr>
<tr>
<td>N-methyl carbamate pesticides</td>
<td>8318</td>
<td>8318</td>
</tr>
</tbody>
</table>

^a The GC/MS Methods, 8250 and 8270, are also appropriate determinative methods for all analyte groups, unless lower detection limits are required.

^b Cleanup applicable to derivatized phenols.

^c Method 8040 includes a derivatization technique followed by GC/ECD analysis, if interferences are encountered using GC/FID.

^d Methods 8150 and 8151 incorporate an acid-base cleanup step as an integral part of the methods.
7.1 Do solvent extraction

7.2 Analyze analyte by a determinative method from Sec. 4.3

7.2 Are analyses undeterminable due to interference?

Yes

7.3 Use cleanup method specified for the determinative method

No

7.5 Concentrate sample to required volume

Stop
METHOD 3610A

ALUMINA COLUMN CLEANUP

1.0 SCOPE AND APPLICATION

1.1 Scope: Alumina is a highly porous and granular form of aluminum oxide. It is available in three pH ranges (basic, neutral, and acidic) for use in column chromatography. It is used to separate analytes from interfering compounds of a different chemical polarity.

1.2 General Applications (Gordon and Ford):

1.2.1 Basic (B) pH (9-10): USES: Basic and neutral compounds stable to alkali, alcohols, hydrocarbons, steroids, alkaloids, natural pigments. DISADVANTAGES: Can cause polymerization, condensation, and dehydration reactions; cannot use acetone or ethyl acetate as eluants.

1.2.2 Neutral (N): USES: Aldehydes, ketones, quinones, esters, lactones, glycoside. DISADVANTAGES: Considerably less active than the basic form.

1.2.3 Acidic (A) pH (4-5): USES: Acidic pigments (natural and synthetic), strong acids (that otherwise chemisorb to neutral and basic alumina).

1.2.4 Activity grades: Acidic, basic, or neutral alumina can be prepared in various activity grades (I to V), according to the Brockmann scale, by addition of water to Grade 1 (prepared by heating at 400-450°C until no more water is lost). The Brockmann scale (Gordon and Ford, p. 374) is reproduced below:

<table>
<thead>
<tr>
<th>Water added (wt. %)</th>
<th>0</th>
<th>3</th>
<th>6</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity grade:</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
</tr>
<tr>
<td>RF (p-aminoazobenzene)</td>
<td>0.0</td>
<td>0.13</td>
<td>0.25</td>
<td>0.45</td>
<td>0.55</td>
</tr>
</tbody>
</table>

1.3 Specific applications: This method includes guidance for cleanup of sample extracts containing phthalate esters and nitrosamines. For alumina column cleanup of petroleum wastes, see Method 3611, Alumina Column Cleanup of Petroleum Wastes.

2.0 SUMMARY OF METHOD

2.1 The column is packed with the required amount of adsorbent, topped with a water adsorbent, and then loaded with the sample to be analyzed. Elution of the analytes is effected with a suitable solvent(s), leaving the interfering compounds on the column. The eluate is then concentrated (if necessary).
3.0 INTERFERENCES

3.1 A reagent blank should be performed for the compounds of interest prior to the use of this method. The level of interferences must be below the method detection limit before this method is performed on actual samples.

3.2 More extensive procedures than those outlined in this method may be necessary for reagent purification.

4.0 APPARATUS AND MATERIALS

4.1 Chromatography column: 300 mm x 10 mm ID, with Pyrex glass wool at bottom and a Teflon stopcock.

NOTE: Fritted glass discs are difficult to decontaminate after highly contaminated extracts have been passed through. Columns without frits may be purchased. Use a small pad of Pyrex glass wool to retain the adsorbent. Prewash the glass wool pad with 50 mL of acetone followed by 50 mL of elution solvent prior to packing the column with adsorbent.

4.2 Beakers: 500 mL.

4.3 Reagent bottle: 500 mL.

4.4 Muffle furnace.

4.5 Kuderna-Danish (K-D) apparatus:

4.5.1 Concentrator tube: 10 mL, graduated (Kontes K-570050-1025 or equivalent). A ground-glass stopper is used to prevent evaporation of extracts.

4.5.2 Evaporation flask: 500 mL (Kontes K-570001-500 or equivalent). Attach to concentrator tube with springs, clamps, or equivalent.

4.5.3 Snyder column: Three ball macro (Kontes K-503000-0121 or equivalent).

4.5.4 Snyder column: Two ball micro (Kontes K-569001-0219 or equivalent).

4.5.5 Springs - 1/2 inch (Kontes K-662750 or equivalent).

4.6 Boiling chips: Solvent extracted, approximately 10/40 mesh (silicon carbide or equivalent).

4.7 Water bath: Heated, with concentric ring cover, capable of temperature control (±5°C). The bath should be used in a hood.

4.8 Vials: Glass, 2 mL capacity, with Teflon lined screw caps or crimp tops.
4.9 Erlenmeyer flasks: 50 and 250 mL

5.0 REAGENTS

5.1 Organic-free reagent water - All references to water in this method refer to organic-free reagent water, as defined in Chapter One.

5.2 Sodium sulfate: Sodium sulfate (granular, anhydrous), Na₂SO₄. Purify by heating at 400°C for 4 hours in a shallow tray, or by precleaning the sodium sulfate with methylene chloride. If the sodium sulfate is precleaned with methylene chloride, a method blank must be analyzed, demonstrating that there is no interference from the sodium sulfate.

5.3 Eluting solvents:

5.3.1 Diethyl Ether, C₂H₅OC₂H₅. Pesticide quality or equivalent. Must be free of peroxides as indicated by test strips (EM Quant, or equivalent). Procedures for removal of peroxides are provided with the test strips. After cleanup, 20 mL of ethyl alcohol preservative must be added to each liter of ether.

5.3.2 Methanol, CH₃OH - Pesticide quality or equivalent.

5.3.3 Pentane, C₅H₁₂CH₃ - Pesticide quality or equivalent.

5.3.4 Hexane, C₆H₁₄ - Pesticide quality or equivalent.

5.3.5 Methylene chloride, CH₂Cl₂ - Pesticide quality or equivalent.

5.4 Alumina:

5.4.1 For cleanup of phthalate extracts: Alumina-Neutral, activity Super I, W200 series (ICN Life Sciences Group, No. 404583, or equivalent). To prepare for use, place 100 g of alumina into a 500 mL beaker and heat for approximately 16 hr at 400°C. After heating, transfer to a 500 mL reagent bottle. Tightly seal and cool to room temperature. When cool, add 3 mL of organic-free reagent water. Mix thoroughly by shaking or rolling for 10 min and let it stand for at least 2 hr. Keep the bottle sealed tightly.

5.4.2 For cleanup of nitrosamine extracts: Alumina-Basic, activity Super I, W200 series (ICN Life Sciences Group, No. 404571, or equivalent). To prepare for use, place 100 g of alumina into a 500 mL reagent bottle and add 2 mL of organic-free reagent water. Mix the alumina preparation thoroughly by shaking or rolling for 10 min and let it stand for at least 2 hr. The preparation should be homogeneous before use. Keep the bottle sealed tightly to ensure proper activity.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1 See the introductory material to this chapter, Organic Analytes, Section 4.1.
7.0 PROCEDURE

7.1 Phthalate esters:

7.1.1 Reduce the sample extract volume to 2 mL prior to cleanup. The extract solvent must be hexane.

7.1.2 Place approximately 10 g of alumina into a 10 mm ID chromatographic column. Tap the column to settle the alumina and add 1-2 cm of anhydrous sodium sulfate to the top.

7.1.3 Pre-elute the column with 40 mL of hexane. The rate for all elutions should be about 2 mL/min. Discard the eluate and, just prior to exposure of the sodium sulfate layer to the air, quantitatively transfer the 2 mL sample extract onto the column using an additional 2 mL of hexane to complete the transfer. Just prior to exposure of the sodium sulfate layer to the air, add 35 mL of hexane and continue the elution of the column. Discard this hexane eluate.

7.1.4 Next, elute the column with 140 mL of 20% ethyl ether in hexane (v/v) into a 500 mL K-D flask equipped with a 10 mL concentrator tube. Concentrate the collected fraction using the Kuderna-Danish technique. No solvent exchange is necessary. Adjust the volume of the cleaned up extract to whatever volume is required (10.0 mL for Method 8060) and analyze. Compounds that elute in this fraction are as follows:

- Bis(2-ethylhexyl) phthalate
- Butyl benzyl phthalate
- Di-n-butyl phthalate
- Diethyl phthalate
- Dimethyl phthalate
- Di-n-octyl phthalate.

7.2 Nitrosamines:

7.2.1 Reduce the sample extract to 2 mL prior to cleanup.

7.2.2 Diphenylamine, if present in the original sample extract, must be separated from the nitrosamines if N-nitrosodiphenylamine is to be determined by this method.

7.2.3 Place approximately 12 g of the alumina preparation into a 10 mm ID chromatographic column. Tap the column to settle the alumina and add 1-2 cm of anhydrous sodium sulfate to the top.

7.2.4 Pre-elute the column with 10 mL of ethyl ether/pentane (3:7)(v/v). Discard the eluate (about 2 mL) and, just prior to exposure of the sodium sulfate layer to the air, quantitatively transfer the 2 mL sample extract onto the column using an additional 2 mL of pentane to complete the transfer.

7.2.5 Just prior to exposure of the sodium sulfate layer to the air, add 70 mL of ethyl ether/pentane (3:7)(v/v). Discard the first 10 mL of eluate. Collect the remainder of the eluate in a 500 mL K-D flask.
equipped with a 10 mL concentrator tube. This fraction contains N-nitroso-di-n-propylamine.

7.2.6 Next, elute the column with 60 mL of ethyl ether/pentane (1:1) (v/v), collecting the eluate in a second 500 mL K-D flask equipped with a 10 mL concentrator tube. Add 15 mL of methanol to the K-D flask. This fraction will contain N-nitrosodimethylamine, most of the N-nitroso-di-n-propylamine, and any diphenylamine that is present.

7.2.7 Concentrate both fractions using the Kuderna-Danish Technique (if necessary), using pentane to prewet the Snyder column. When the apparatus is cool, remove the Snyder column and rinse the flask and its lower joint into the concentrator tube with 1-2 mL of pentane. Adjust the final volume to whatever is required in the appropriate determinative method (Section 4.3 of this chapter). Analyze the fractions.

8.0 QUALITY CONTROL

8.1 Refer to Chapter One for specific quality control procedures and Method 3600 for cleanup procedures.

8.2 The analyst should demonstrate that the compounds of interest are being quantitatively recovered before applying this method to actual samples.

8.3 For sample extracts that are cleaned up using this method, the associated quality control samples must also be processed through this cleanup method.

9.0 METHOD PERFORMANCE

9.1 Performance data are not available.

10.0 REFERENCES

METHOD 3610A
ALUMINA COLUMN CLEANUP

Start

Phthalate

Nitrosamines

Type of analyte?

7.1.1 Reduce volume of sample extract.

7.1.2 Put alumina in column, add anhydrous sodium sulfate.

7.1.3 Preelute column with hexane.

7.1.4 Elute column with ethyl ether/hexane. Collect eluate in flask.

7.1.4 Concentrate collected fraction, adjust volume.

7.2.1 Reduce volume of sample extract.

7.2.3 Put alumina in column, add anhydrous sodium sulfate.

7.2.4 Preelute column with ethyl ether/pentane. Transfer sample extract to column, add pentane.

7.2.5 Elute column with ethyl ether/pentane. Collect eluate in flask.

7.2.6 Elute column with ethyl ether/pentane. Collect eluate in second flask, add methanol.

7.2.7 Concentrate both fractions; adjust volume.

Analysis by appropriate determinative method.

Revision 1
July 1992
METHOD 3611A
ALUMINA COLUMN CLEANUP AND SEPARATION OF PETROLEUM WASTES

1.0 SCOPE AND APPLICATION

1.1 Method 3611 was formerly Method 3570 in the Second Edition of this manual.

1.2 Specific application: This method includes guidance for separation of petroleum wastes into aliphatic, aromatic, and polar fractions.

2.0 SUMMARY OF METHOD

2.1 The column is packed with the required amount of adsorbent, topped with a water adsorbent, and then loaded with the sample to be analyzed. Elution of the analytes is effected with a suitable solvent(s), leaving the interfering compounds on the column. The eluate is then concentrated (if necessary).

3.0 INTERFERENCES

3.1 A reagent blank should be performed for the compounds of interest prior to the use of this method. The level of interferences must be below the method detection limit before this method is performed on actual samples.

3.2 More extensive procedures than those outlined in this method may be necessary for reagent purification.

3.3 Caution must be taken to prevent overloading of the chromatographic column. As the column loading for any of these types of wastes approaches 0.300 g of extractable organics, separation recoveries will suffer. If overloading is suspected, an aliquot of the base-neutral extract prior to cleanup may be weighed and then evaporated to dryness. A gravimetric determination on the aliquot will indicate the weight of extractable organics in the sample.

3.4 Mixtures of petroleum wastes containing predominantly polar solvents, i.e., chlorinated solvents or oxygenated solvents, are not appropriate for this method.

4.0 APPARATUS AND MATERIALS

4.1 Chromatography column: 300 mm x 10 mm ID, with Pyrex glass wool at bottom and a Teflon stopcock.

NOTE: Fritted glass discs are difficult to decontaminate after highly contaminated extracts have been passed through. Columns without frits may be purchased. Use a small pad of Pyrex glass wool to retain the adsorbent. Prewash the glass wool pad with 50 mL of acetone followed by 50 mL of elution solvent prior to packing the column with adsorbent.
4.2 Beakers: 500 mL.
4.3 Reagent bottle: 500 mL.
4.4 Muffle furnace.
4.5 Kuderna-Dani sh (K-D) apparatus:
 4.5.1 Concentrator tube - 10 mL, graduated (Kontes K-570050-1025 or equivalent). A ground-glass stopper is used to prevent evaporation of extracts.
 4.5.2 Evaporation flask - 500 mL (Kontes K-570001-500 or equivalent). Attach to concentrator tube with springs, clamps, or equivalent.
 4.5.3 Snyder column - Three ball macro (Kontes K-503000-0121 or equivalent).
 4.5.4 Snyder column - Two ball micro (Kontes K-569001-0219 or equivalent).
 4.5.5 Springs - 1/2 inch (Kontes K-662750 or equivalent).
4.6 Boiling chips: Solvent extracted, approximately 10/40 mesh (silicon carbide or equivalent).
4.7 Water bath: Heated with concentric ring cover, capable of temperature control (±5°C). The bath should be used in a hood.
4.8 Erlenmeyer flasks: 50 and 250 mL.

5.0 REAGENTS

5.1 Sodium sulfate: (granular, anhydrous), Na₂SO₄. Purify by heating at 400°C for 4 hours in a shallow tray, or by precleaning the sodium sulfate with methylene chloride. If the sodium sulfate is precleaned with methylene chloride, a method blank must be analyzed, demonstrating that there is no interference from the sodium sulfate.

5.2 Eluting solvents:
 5.2.1 Methanol, CH₃OH - Pesticide quality or equivalent.
 5.2.2 Hexane, C₆H₁₄ - Pesticide quality or equivalent.
 5.2.3 Methylene chloride, CH₂Cl₂ - Pesticide quality or equivalent.

5.3 Alumina: Neutral 80-325 MCB chromatographic grade or equivalent. Dry alumina overnight at 130°C prior to use.
6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1 See the introductory material to this chapter, Organic Analytes, Section 4.1.

7.0 PROCEDURE

7.1 It is suggested that Method 3650, Acid-Base Partition Cleanup, be performed on the sample extract prior to alumina cleanup.

7.2 Place approximately 10 g of alumina into a chromatographic column, tap to settle the alumina, and add 1 cm of anhydrous sodium sulfate to the top.

7.3 Pre-elute the column with 50 mL of hexane. Discard the eluate and, just prior to exposure of the sodium sulfate layer to the air, quantitatively transfer the 1 mL sample extract onto the column using an additional 1 mL of hexane to complete the transfer. To avoid overloading the column, it is suggested that no more than 0.300 g of extractable organics be placed on the column (see Section 3.3).

7.4 Just prior to exposure of the sodium sulfate to the air, elute the column with a total of 15 mL of hexane. If the extract is in 1 mL of hexane, and if 1 mL of hexane was used as a rinse, then 13 mL of additional hexane should be used. Collect the effluent in a 50 mL flask and label this fraction "base/neutral aliphatics." Adjust the flow rate to 2 mL/min.

7.5 Elute the column with 100 mL of methylene chloride and collect the effluent in a 250 mL flask. Label this fraction "base/neutral aromatics."

7.6 Elute the column with 100 mL of methanol and collect the effluent in a 250 mL flask. Label this fraction "base/neutral polars."

7.7 Concentrate the extracts (if necessary) by the standard K-D technique to the volume (1-10 mL) required in the appropriate determinative method (Chapter Four). Analyze the fractions containing the analytes of interest.

8.0 QUALITY CONTROL

8.1 Refer to Chapter One for specific quality control procedures and Method 3600 for cleanup procedures.

8.2 The analyst should demonstrate that the compounds of interest are being quantitatively recovered before applying this method to actual samples.

8.3 For sample extracts that are cleaned up using this method, the associated quality control samples must also be processed through this cleanup method.
9.0 METHOD PERFORMANCE

9.1 The precision and accuracy of the method will depend upon the overall performance of the sample preparation and analysis.

9.2 Rag oil is an emulsion consisting of crude oil, water, and soil particles. It has a density greater than crude oil and less than water. This material forms a layer between the crude oil and water when the crude oil is allowed to gravity separate at the refinery. A rag oil sample was analyzed by a number of laboratories according to the procedure outlined in this method. The results of these analyses by GC/MS for selected components in the rag oil are presented in Table 1. Reconstructed ion chromatograms from the GC/MS analyses are included as Figures 1 and 2.

10.0 REFERENCES

Table 1. RESULTS OF ANALYSIS FOR SELECTED COMPONENTS IN RAG OIL

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Mean Conc. (mg/kg)</th>
<th>Standard Deviation</th>
<th>%RSD<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Naphthalene</td>
<td>216</td>
<td>42</td>
<td>19</td>
</tr>
<tr>
<td>Fluorene</td>
<td>140</td>
<td>66</td>
<td>47</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>614</td>
<td>296</td>
<td>18</td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td>673</td>
<td>120</td>
<td>18</td>
</tr>
<tr>
<td>Dibenzothiophene</td>
<td>1084</td>
<td>286</td>
<td>26</td>
</tr>
<tr>
<td>Methylphenanthrene</td>
<td>2908</td>
<td>2014</td>
<td>69</td>
</tr>
<tr>
<td>Methyldibenzothiophene</td>
<td>2200</td>
<td>1017</td>
<td>46</td>
</tr>
</tbody>
</table>

Average Surrogate Recovery

<table>
<thead>
<tr>
<th>Surrogate</th>
<th>Average Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrobenzene-<sub>d<sub>5</sub></td>
<td>58.6</td>
</tr>
<tr>
<td>Terphenyl-<sub>d<sub>14</sub></td>
<td>83.0</td>
</tr>
<tr>
<td>Phenol-<sub>d<sub>6</sub></td>
<td>80.5</td>
</tr>
<tr>
<td>Naphthalene-<sub>d<sub>8</sub></td>
<td>64.5</td>
</tr>
</tbody>
</table>

^a Based on five determinations from three laboratories.

^b Percent Relative Standard Deviation.
Figure 1. Reconstructed ion chromatogram from GC/MS analysis of the aromatic fraction from Rag Oil.
Figure 2. Reconstructed ion chromatogram from GC/MS analysis of the allphatic fraction from Rag 011.
METHOD 3611A
ALUMINA COLUMN CLEANUP AND SEPARATION OF PETROLEUM WASTES

Start

7.1 Cleanup using Method 3650

7.2 Add alumina chromatographic column

7.2 Add anhydrous sodium sulfate to top of column

7.3 Preelute column with hexane

7.4 Elute "base-neutral aliphatics" fraction with hexane

7.5 Elute "base-neutral aromatics" fraction with CH2CL2

7.6 Elute "base-neutral polar" fraction with methanol

7.7 Concentrate extracts.

7.3 Quantitatively add extract to column

Analyze using appropriate determinative method.
1.0 SCOPE AND APPLICATION

1.1 Florisil, a registered trade name of the Floridin Co., is a magnesium silicate with acidic properties. It is used for general column chromatography as a cleanup procedure prior to sample analysis by gas chromatography.

1.2 General applications: Cleanup of pesticide residues and other chlorinated hydrocarbons; the separation of nitrogen compounds from hydrocarbons; the separation of aromatic compounds from aliphatic-aromatic mixtures; and similar applications for use with fats, oils, and waxes (Floridin). Additionally, Florisil is considered good for separations with steroids, esters, ketones, glycerides, alkaloids, and some carbohydrates (Gordon and Ford).

1.3 Specific applications: This method includes guidance for cleanup of sample extracts containing the following analyte groups: phthalate esters; nitrosamines; organochlorine pesticides; nitroaromatics; haloethers; chlorinated hydrocarbons; and organophosphorus pesticides.

2.0 SUMMARY OF METHOD

2.1 The column is packed with the required adsorbent, topped with a water adsorbent, and then loaded with the sample to be analyzed. Elution is effected with a suitable solvent(s) leaving the interfering compounds on the column. The eluate is then concentrated (if necessary).

3.0 INTERFERENCES

3.1 A reagent blank should be performed for the compounds of interest prior to the use of this method. The level of interferences must be below the method detection limit before this method is performed on actual samples.

3.2 More extensive procedures than those outlined in this method may be necessary for reagent purification.

4.0 APPARATUS AND MATERIALS

4.1 Beaker - 500 mL.

4.2 Chromatographic column - 300 mm long x 10 mm ID or 400 mm long x 20 mm ID, as specified in Section 7.0; with Pyrex glass wool at bottom and a Teflon stopcock.

NOTE: Fritted glass discs are difficult to decontaminate after highly contaminated extracts have been passed through. Columns without frits may be purchased. Use a small pad of Pyrex glass wool to retain the adsorbent. Prewash the glass wool pad with 50 mL of
acetone followed by 50 mL of elution solvent prior to packing the column with adsorbent.

4.3 Kuderna-Danish (K-D) apparatus.

4.3.1 Concentrator tube - 10 mL, graduated (Kontes K-570050-1025 or equivalent). Ground-glass stopper is used to prevent evaporation of extracts.

4.3.2 Evaporation flask - 500 mL (Kontes K-570001-0500 or equivalent). Attach to concentrator tube with springs, clamps, or equivalent.

4.3.3 Snyder column - Three ball macro (Kontes K-503000-0121 or equivalent).

4.3.4 Snyder column - Two ball micro (Kontes K-569001-0219 or equivalent).

4.3.5 Springs - 1/2 inch (Kontes K-662750 or equivalent).

4.4 Muffle furnace.

4.5 Reagent bottle - 500 mL.

4.6 Water bath - Heated, with concentric ring cover, capable of temperature control (\pm5°C). The bath should be used in a hood.

4.7 Boiling chips - Solvent extracted, approximately 10/40 mesh (silicon carbide or equivalent).

4.8 Erlenmeyer flasks - 50 and 250 mL.

4.9 Top-loading balance - 0.01 g.

5.0 REAGENTS

5.1 Organic-free reagent water - All references to water in this method refer to organic-free reagent water, as defined in Chapter One.

5.2 Florisil - Pesticide residue (PR) grade (60/100 mesh); purchase activated at 1250°F (677°C), stored in glass containers with ground-glass stoppers or foil-lined screw caps.

5.2.1 Deactivation of Florisil - for cleanup of phthalate esters. To prepare for use, place 100 g of Florisil into a 500 mL beaker and heat for approximately 16 hr at 40°C. After heating, transfer to a 500 mL reagent bottle. Tightly seal and cool to room temperature. When cool add 3 mL of organic-free reagent water. Mix thoroughly by shaking or rolling for 10 min and let stand for at least 2 hr. Keep the bottle sealed tightly.

5.2.2 Activation of Florisil - for cleanup of nitrosamines,
organochlorine pesticides and PCBs, nitroaromatics, haloethers, chlorinated hydrocarbons, and organophosphorus pesticides. Just before use, activate each batch at least 16 hr at 130°C in a glass container loosely covered with aluminum foil. Alternatively, store the Florisil in an oven at 130°C. Cool the Florisil before use in a desiccator. (Florisil from different batches or sources may vary in adsorptive capacity. To standardize the amount of Florisil which is used, the use of lauric acid value is suggested. The referenced procedure determines the adsorption from hexane solution of lauric acid (mg) per g of Florisil. The amount of Florisil to be used for each column is calculated by dividing 110 by this ratio and multiplying by 20 g (Mills).

5.3 Sodium sulfate (granular, anhydrous), Na₂SO₄ - Purify by heating at 400°C for 4 hours in a shallow tray, or by precleaning the sodium sulfate with methylene chloride. If the sodium sulfate is precleaned with methylene chloride, a method blank must be analyzed, demonstrating that there is no interference from the sodium sulfate.

5.4 Eluting solvents

5.4.1 Diethyl ether, C₆H₅OC₂H₅ - Pesticide quality or equivalent. Must be free of peroxides, as indicated by test strips (EM Quant or equivalent). Procedures recommended for removal of peroxides are provided with the test strips. After cleanup, 20 mL ethyl alcohol preservative must be added to each liter of ether.

5.4.2 Acetone, CH₃COCH₃ - Pesticide quality or equivalent.

5.4.3 Hexane, C₆H₁₄ - Pesticide quality or equivalent.

5.4.4 Methylene chloride, CH₂Cl₂ - Pesticide quality or equivalent.

5.4.5 Pentane, CH₃(CH₂)₃CH₃ - Pesticide quality or equivalent.

5.4.6 Petroleum ether (boiling range 30-60°C) - Pesticide quality or equivalent.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1 See the introductory material to this chapter, Organic Analytes, Section 4.1.

7.0 PROCEDURE

7.1 Phthalate esters

7.1.1 Reduce the sample extract volume to 2 mL prior to cleanup. The extract solvent must be hexane.

7.1.2 Place approximately 10 g of deactivated Florisil (Section 5.1.1) into a 10 mm ID chromatographic column. Tap the column to settle the Florisil and add approximately 1 cm of anhydrous sodium sulfate to the
7.1.3 Preelute the column with 40 mL of hexane. The rate for all elutions should be about 2 mL/min. Discard the eluate and, just prior to exposure of the sodium sulfate layer to the air, quantitatively transfer the 2 mL sample extract onto the column using an additional 2 mL of hexane to complete the transfer. Just prior to exposure of the sodium sulfate layer to the air, add 40 mL of hexane and continue the elution of the column. Discard this hexane eluate.

7.1.4 Next, elute the column with 100 mL of 20% ethyl ether in hexane (v/v) into a 500 mL K-D flask equipped with a 10 mL concentrator tube. Concentrate the collected fraction as needed. No solvent exchange is necessary. Adjust the volume of the cleaned-up extract to whatever volume is required (10 mL for Method 8060) and analyze by gas chromatography. Compounds that elute in this fraction are:

- Bis(2-ethylhexyl) phthalate
- Butyl benzyl phthalate
- Di-n-butyl phthalate
- Diethyl phthalate
- Dimethyl phthalate
- Di-n-octyl phthalate

7.2 Nitrosamines

7.2.1 Reduce the sample extract volume to 2 mL prior to cleanup.

7.2.2 Add a weight of activated Florisil (nominally 22 g) predetermined by calibration (Section 5.1.2) into a 20 mm ID chromatographic column. Tap the column to settle the Florisil and add about 5 mm of anhydrous sodium sulfate to the top.

7.2.3 Pre-elute the column with 40 mL of ethyl ether/pentane (15:85) (v/v). Discard the eluate and, just prior to exposure of the sodium sulfate layer to the air, quantitatively transfer the 2 mL sample extract onto the column using an additional 2 mL of pentane to complete the transfer.

7.2.4 Elute the column with 90 mL of ethyl ether/pentane (15:85) (v/v) and discard the eluate. This fraction will contain the diphenylamine, if it is present in the extract.

7.2.5 Next, elute the column with 100 mL of acetone/ethyl ether (5:95) (v/v) into a 500 mL K-D flask equipped with a 10 mL concentrator tube. This fraction will contain all of the nitrosamines listed in the scope of the method.

7.2.6 Add 15 mL of methanol to the collected fraction, concentrate as needed using pentane to prewet the K-D column and set the water bath at 70 to 75°C. When the apparatus is cool, remove the Snyder column and rinse the flask and its lower joint into the concentrator tube with 1 to 2 mL of pentane.
7.3 Organochlorine pesticides, haloethers, and organophosphorus pesticides (see Tables 1 and 2 for fractionation patterns of compounds tested)

7.3.1 Reduce the sample extract volume to 10 mL prior to cleanup. The extract solvent must be hexane.

7.3.2 Add a weight of activated Florisil (nominally 20 g), predetermined by calibration (Section 5.1.2), to a 20 mm ID chromatographic column. Settle the Florisil by tapping the column. Add anhydrous sodium sulfate to the top of the Florisil to form a layer 1 to 2 cm deep. Add 60 mL of hexane to wet and rinse the sodium sulfate and Florisil. Just prior to exposure of the sodium sulfate to air, stop the elution of the hexane by closing the stopcock on the chromatographic column. Discard the eluate.

7.3.3 Adjust the sample extract volume to 10 mL with hexane and transfer it from the K-D concentrator tube to the Florisil column. Rinse the tube twice with 1-2 mL hexane, adding each rinse to the column.

7.3.4 Place a 500 mL K-D flask and clean concentrator tube under the chromatographic column. Drain the column into the flask until the sodium sulfate layer is nearly exposed. Elute the column with 200 mL of 6% ethyl ether in hexane (v/v) (Fraction 1) using a drip rate of about 5 mL/min. All of the haloethers are in this fraction. Remove the K-D flask and set aside for later concentration. Elute the column again, using 200 mL of 15% ethyl ether in hexane (v/v) (Fraction 2), into a second K-D flask. Perform a third elution using 200 mL of 50% ethyl ether in hexane (v/v) (Fraction 3), and a final elution with 200 mL of 100% ethyl ether (Fraction 4), into separate K-D flasks.

7.3.5 If necessary, concentrate the eluates by standard K-D techniques using the water bath at about 85°C (75°C for Fraction 4). Adjust the final volume to whatever volume is required (1-10 mL).

7.4 Nitroaromatics and isophorone

7.4.1 Reduce the sample extract volume to 2 mL prior to cleanup.

7.4.2 Add a weight of activated Florisil (nominally 10 g) predetermined by calibration (Section 5.1.2) into a 10 mm ID chromatographic column. Tap the column to settle the Florisil and add about 1 cm of anhydrous sodium sulfate to the top.

7.4.3 Pre-elute the column with methylene chloride/hexane (1:9) (v/v) at about 2 mL/min. Discard the eluate and, just prior to exposure of the sodium sulfate layer to the air, quantitatively transfer the sample extract onto the column using an additional 2 mL of hexane to complete the transfer. Just prior to exposure of the sodium sulfate layer to the air, add 30 mL of methylene chloride/hexane (1:9) (v/v) and continue the elution of the column. Discard the eluate.

7.4.4 Elute the column with 90 mL of ethyl ether/pentane (15:85) (v/v) and discard the eluate. This fraction will contain the diphenylamine, if it is present in the extract.

Revision 1
July 1992
7.4.5 Next, elute the column with 100 mL of acetone/ethyl ether (5:95) (v/v) into a 500 mL K-D flask equipped with a 10 mL concentrator tube. This fraction will contain all of the nitrosamines listed in the scope of the method.

7.4.6 Add 15 mL of methanol to the collected fraction, concentrate using pentane to prewet the K-D column, and set the water bath at 70 to 75°C. When the apparatus is cool, remove the Snyder column and rinse the flask and its lower joint into the concentrator tube with 1 to 2 mL of pentane.

7.4.7 Next, elute the column with 30 mL of acetone/methylene chloride (1:9) (v/v) into a 500 mL K-D flask equipped with a 10 mL concentrator tube. Concentrate the collected fraction, while exchanging the solvent to hexane. To exchange the solvent, reduce the elution solvent to about 10 mL. Add 50 mL of hexane, a fresh boiling chip, and return the reassembled K-D apparatus to the hot water bath. Adjust the final volume of the cleaned-up extract to whatever volume is required (1-10 mL). Compounds that elute in this fraction are:

- 2,4-Dinitrotoluene
- 2,6-Dinitrotoluene
- Isophorone
- Nitrobenzene.

7.5 Chlorinated hydrocarbons

7.5.1 Reduce the sample extract volume to 2 mL prior to cleanup. The extract solvent must be hexane.

7.5.2 Add a weight of activated Florisil (nominally 12 g) predetermined by calibration (Section 5.1.2) into a 10 mm ID chromatographic column. Tap the column to settle the Florisil and add about 1 to 2 cm of anhydrous sodium sulfate to the top.

7.5.3 Preelute the column with 100 mL of petroleum ether. Discard the eluate and, just prior to exposure of the sodium sulfate layer to the air, quantitatively transfer the sample extract to the column by decantation and subsequent petroleum ether washings. Discard the eluate. Just prior to exposure of the sodium sulfate layer to the air, begin eluting the column with 200 mL of petroleum ether and collect the eluate in a 500 mL K-D flask equipped with a 10 mL concentrator tube. This fraction should contain all of the chlorinated hydrocarbons:

- 2-Chloronaphthalene
- 1,2-Dichlorobenzene
- 1,3-Dichlorobenzene
- 1,4-Dichlorobenzene
- Hexachlorobenzene
- Hexachlorobutadiene
- Hexachlorocyclopentadiene
- Hexachloroethane
- 1,2,4-Trichlorobenzene.
7.5.4 Concentrate the fraction, using hexane to prewet the column. When the apparatus is cool, remove the Snyder column and rinse the flask and its lower joint into the concentrator tube with hexane. Adjust the final volume of the cleaned-up extract to whatever volume is required (1-10 ml).

8.0 QUALITY CONTROL

8.1 Refer to Chapter One for specific quality control procedures and Method 3600 for cleanup procedures.

8.2 The analyst should demonstrate that the compounds of interest are being quantitatively recovered before applying this method to actual samples.

8.3 For sample extracts that are cleaned up using this method, the associated quality control samples should also be processed through this cleanup method.

9.0 METHOD PERFORMANCE

9.1 Table 1 indicates the distribution of chlorinated pesticides, PCB's, and haloethers in various Florisil column fractions.

9.2 Table 2 indicates the distribution of organophosphorus pesticides in various Florisil column fractions.

10.0 REFERENCES

2. Floridin of ITT System, Florisil: Properties, Application, Bibliography, Pittsburgh, Pennsylvania, 5M381DW.

TABLE 1
DISTRIBUTION OF CHLORINATED PESTICIDES, PCBs, AND HALOETHERS INTO FLORISIL COLUMN FRACTIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Percent Recovery by Fraction<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Aldrin</td>
<td></td>
</tr>
<tr>
<td>α-BHC</td>
<td>100</td>
</tr>
<tr>
<td>β-BHC</td>
<td>97</td>
</tr>
<tr>
<td>γ-BHC</td>
<td>98</td>
</tr>
<tr>
<td>δ-BHC</td>
<td>100</td>
</tr>
<tr>
<td>Chlordane</td>
<td>100</td>
</tr>
<tr>
<td>4,4′-DDD</td>
<td></td>
</tr>
<tr>
<td>4,4′-DDE</td>
<td>98</td>
</tr>
<tr>
<td>4,4′-DDT</td>
<td>100</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>0</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>37</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>0</td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td>0</td>
</tr>
<tr>
<td>Endrin</td>
<td>4</td>
</tr>
<tr>
<td>Endrin aldehyde</td>
<td>0</td>
</tr>
<tr>
<td>Haloethers</td>
<td>R</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>100</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>100</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>96</td>
</tr>
<tr>
<td>PCB-1016</td>
<td>97</td>
</tr>
<tr>
<td>PCB-1221</td>
<td>97</td>
</tr>
<tr>
<td>PCB-1232</td>
<td>95</td>
</tr>
<tr>
<td>PCB-1242</td>
<td>97</td>
</tr>
<tr>
<td>PCB-1248</td>
<td>103</td>
</tr>
<tr>
<td>PCB-1254</td>
<td>90</td>
</tr>
<tr>
<td>PCB-1260</td>
<td>95</td>
</tr>
</tbody>
</table>

^a Eluant composition: Fraction 1 - 6% ethyl ether in hexane
Fraction 2 - 15% ethyl ether in hexane
Fraction 3 - 50% ethyl ether in hexane

R = Recovered (no percent recovery data presented).

SOURCE: U.S. EPA and FDA data.
TABLE 2

DISTRIBUTION OF ORGANOPHOSPHORUS PESTICIDES INTO FLORISIL COLUMN FRACTIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Percent Recovery by Fraction</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azinphos methyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolstar (Sulprofos)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coumaphos</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demeton</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diazinon</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Dichlorvos</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethoate</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disulfoton</td>
<td>25-40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPN</td>
<td>>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethoprop</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fensulfothion</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenthion</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malathion</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>95</td>
</tr>
<tr>
<td>Merphos</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mevinphos</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monochrotophos</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naled</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parathion</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parathion methyl</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phorate</td>
<td>0-62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ronnel</td>
<td>>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stirophos (Tetrachlorvinphos)</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulforotepp</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEPP</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tokuthion (Prothiofos)</td>
<td>>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloronate</td>
<td>>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Eluant composition:

- Fraction 1 - 200 mL of 6% ethyl ether in hexane
- Fraction 2 - 200 mL of 15% ethyl ether in hexane
- Fraction 3 - 200 mL of 50% ethyl ether in hexane
- Fraction 4 - 200 mL of 100% ethyl ether

R = Recovered (no percent recovery information presented) (U.S. FDA).

NR = Not recovered (U.S. FDA).

V = Variable recovery (U.S. FDA).

ND = Not determined.

SOURCE: U.S. EPA and FDA data.
METHOD 3620A
FLORISIL COLUMN CLEANUP

START

7.1.1 Reduce volume of sample extract to 2 mL

7.1.2 Place Florisil into chromatographic column; add anhydrous sodium sulfate

7.1.3 Preelute column with hexane; transfer sample extract; add hexane

7.1.4 Elute column with ethyl ether in hexane

7.1.4 Concentrate fraction; adjust volume; analyze

Phthalate Esters

Type of
analyte

Nitrosamines

A

7.2.1 Reduce volume of sample extract to 2 mL

7.2.2 Place Florisil into chromatographic column; add anhydrous sodium sulfate

7.2.3 Preelute column with ethyl ether/pentane; transfer extract; add pentane

7.2.4 Elute column with ethyl ether/pentane

B

7.2.5 Elute column with acetone/ethyl ether into flask

C

3620A - 10

Revision 1
July 1992
Organochlorine pesticides, haloethers and organophosphorous

Nitrocumulenes and isophorone

7.3.1 Reduce volume of sample extract to 2 mL

7.4.1 Reduce volume of sample extract to 2 mL

7.5.1 Reduce volume of sample extract to 2 mL

7.4.2 Put Florasil slurry in chromatographic column; add anhydrous sodium sulfate then hexane; discard eluate

7.4.3 Transfer sample extract onto column; add anhydrous sodium sulfate

7.4.4 Elute column with methylene chloride/hexane, discard eluate

7.3.2 Add Florasil to chromatographic column; add anhydrous sodium sulfate then hexane; discard eluate

7.5.2 Place Florasil in chromatographic column; add anhydrous sodium sulfate

7.5.3 Preelute column with petroleum ether; transfer sample extract to column; discard eluate

7.5.4 Concentrate fraction; adjust final volume

7.3.3 Adjust sample extract volume; transfer to column rinse with hexane

7.4.5 Concentrate eluates; adjust volume

7.3.4 Drain column, elute column 4 times into separate flasks

7.5.4 Concentrate fraction; adjust final volume

7.4.4 Concentrate fraction; adjust final volume

Analyze by GC
1.0 SCOPE AND APPLICATION

1.1 Silica gel is a regenerative adsorbent of amorphous silica with weakly acidic properties. It is produced from sodium silicate and sulfuric acid. Silica gel can be used in column chromatography for the separation of analytes from interfering compounds of a different chemical polarity. It may be used activated, after heating to 150 - 160°C, or deactivated with up to 10% water.

1.2 This method includes guidance for standard column cleanup of sample extracts containing polynuclear aromatic hydrocarbons, derivatized phenolic compounds, organochlorine pesticides, and PCBs as Aroclors.

1.3 This method also provides cleanup procedures using solid-phase extraction cartridges for pentafluorobenzyl bromide-derivatized phenols, organochlorine pesticides, and PCBs as Aroclors. This technique also provides the best separation of PCBs from most single component organochlorine pesticides. When only PCBs are to be measured, this method can be used in conjunction with sulfuric acid/permanganate cleanup (Method 3665).

1.4 Other analytes may be cleaned up using this method if the analyte recovery meets the criteria specified in Sec. 8.0.

2.0 SUMMARY OF METHOD

2.1 This method provides the option of using either standard column chromatography techniques or solid-phase extraction cartridges. Generally, the standard column chromatography techniques use larger amounts of adsorbent and, therefore, have a greater cleanup capacity.

2.2 In the standard column cleanup protocol, the column is packed with the required amount of adsorbent, topped with a water adsorbent, and then loaded with the sample to be analyzed. Elution of the analytes is accomplished with a suitable solvent(s) that leaves the interfering compounds on the column. The eluate is then concentrated (if necessary).

2.3 The cartridge cleanup protocol uses silica solid-phase extraction cartridges packed with 1 g or 2 g of adsorbent. Each cartridge is solvent washed immediately prior to use. Aliquots of sample extracts are loaded onto the cartridges, which are then eluted with suitable solvent(s). A vacuum manifold is required to obtain reproducible results. The collected fractions may be further concentrated prior to gas chromatographic analysis.

2.4 The appropriate gas chromatographic method is listed at the end of each technique. Analysis may also be performed by gas chromatography/mass spectrometry (Method 8270).
3.0 INTERFENCES

3.1 Solvents, reagents, glassware, and other sample processing hardware may yield discrete artifacts and/or elevated baselines causing misinterpretation of gas chromatograms. All these materials must be demonstrated to be free from interferences under the conditions of the analysis, by analyzing reagent blanks. See Sec. 8 for guidance on a reagent blank check.

3.2 Phthalate ester contamination may be a problem with certain cartridges. The more inert the column and/or cartridge material (i.e., glass or Teflon), the less problem with phthalates. Phthalates create interference problems for all method analytes, not just the phthalate esters themselves.

3.3 More extensive procedures than those outlined in this method may be necessary for reagent purification.

4.0 APPARATUS AND MATERIALS

4.1 Chromatographic column - 250 mm long x 10 mm ID; with Pyrex glass wool at bottom and a Teflon stopcock.

NOTE: Fritted glass discs are difficult to decontaminate after highly contaminated extracts have been passed through. Columns without frits may be purchased. Use a small pad of Pyrex glass wool to retain the adsorbent. Prewash the glass wool pad with 50 mL of acetone followed by 50 mL of elution solvent prior to packing the column with adsorbent.

4.2 Beakers - 500 mL.

4.3 Vials - 2, 10, 25 mL, glass with Teflon lined screw-caps or crimp tops.

4.4 Muffle furnace.

4.5 Reagent bottle - 500 mL.

4.6 Erlenmeyer flasks - 50 and 250 mL.

4.7 Vacuum manifold: VacElute Manifold SPS-24 (Analytichem International), Visiprep (Supelco, Inc.) or equivalent, consisting of glass vacuum basin, collection rack and funnel, collection vials, replaceable stainless steel delivery tips, built-in vacuum bleed valve and gauge. The system is connected to a vacuum pump or water aspirator through a vacuum trap made from a 500 mL sidearm flask fitted with a one-hole stopper and glass tubing.

5.0 REAGENTS

5.1 Reagent grade inorganic chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used,
provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.

5.2 Organic-free reagent water. All references to water in this method refer to organic-free reagent water, as defined in Chapter One.

5.3 Silica gel for chromatography columns.

5.3.1 Silica Gel for Phenols and Polynuclear Aromatic Hydrocarbons: 100/200 mesh desiccant (Davison Chemical grade 923 or equivalent). Before use, activate for at least 16 hr. at 130°C in a shallow glass tray, loosely covered with foil.

5.3.2 Silica Gel for Organochlorine pesticides/PCBs: 100/200 mesh desiccant (Davison Chemical grade 923 or equivalent). Before use, activate for at least 16 hr. at 130°C in a shallow glass tray, loosely covered with foil. Deactivate it to 3.3% with reagent water in a 500 mL glass jar. Mix the contents thoroughly and allow to equilibrate for 6 hours. Store the deactivated silica gel in a sealed glass jar inside a desiccator.

5.4 Silica cartridges: 40 µm particles, 60 A pores. The cartridges with which this method was developed consist of 6 mL serological-grade polypropylene tubes, with the 1 g of silica held between two polyethylene or stainless steel frits with 20 µm pores. 2 g silica cartridges are also used in this method, and 0.5 g cartridges are available. The compound elution patterns must be verified when cartridges other than the specified size are used.

5.5 Sodium sulfate (granular, anhydrous), Na₂SO₄. Purify by heating at 400°C for 4 hours in a shallow tray, or by precleaning the sodium sulfate with methylene chloride. A method blank must be analyzed in order to demonstrate that there is no interference from the sodium sulfate.

5.6 Eluting solvents

5.6.1 Cyclohexane, C₆H₁₂ - Pesticide quality or equivalent.

5.6.2 Hexane, C₆H₁₄ - Pesticide quality or equivalent.

5.6.3 2-Propanol, (CH₃)₂CHOH - Pesticide quality or equivalent.

5.6.4 Toluene, C₆H₅CH₃ - Pesticide quality or equivalent.

5.6.5 Methylene chloride, CH₂Cl₂ - Pesticide quality or equivalent.

5.6.6 Pentane, C₅H₁₂ - Pesticide quality or equivalent.

5.6.7 Acetone, CH₃COCH₃ - Pesticide quality or equivalent.

5.6.8 Diethyl Ether, C₄H₉OC₂H₅. Pesticide quality or equivalent. Must be free of peroxides as indicated by test strips (EM Quant, or equivalent). Procedures for removal of peroxides are provided with the
test strips. After cleanup, 20 mL of ethanol preservative must be added to each liter of ether.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1 See the introductory material to this chapter, Organic Analytes, Sec. 4.1.

7.0 PROCEDURE

7.1 General Guidance

7.1.1 The procedure contains two cleanup options for the derivatized phenols and organochlorine pesticides/Aroclors, but only one technique for the polynuclear aromatic hydrocarbons (PAHs) (standard column chromatography). Cleanup techniques by standard column chromatography for all analytes are found in Sec. 7.2. Cleanup techniques by solid-phase cartridges for derivatized phenols and PAHs are found in Sec. 7.3. The standard column chromatography techniques are packed with a greater amount of silica gel adsorbent and, therefore, have a greater cleanup capacity. A rule of thumb relating to cleanup capacity is that 1 g of sorbent material will remove 10 to 30 mg of total interferences. (However, capacity is also dependent on the sorbent retentiveness of the interferences.) Therefore, samples that exhibit a greater degree of sample interference should be cleaned up by the standard column technique. However, both techniques have limits on the amount of interference that can be removed. If the interference is caused by high boiling material, then Method 3640 should be used prior to this method. If the interference is caused by relatively polar compounds of the same boiling range as the analytes, then multiple column or cartridge cleanups may be required. If crystals of sulfur are noted in the extract, then Method 3660 should be utilized prior to this method. The cartridge cleanup techniques are often faster and use less solvent, however they have less cleanup capacity.

7.1.2 Allow the extract to reach room temperature if it was in cold storage. Inspect the extracts visually to ensure that there are no particulates or phase separations and that the volume is as stated in the accompanying documents. Verify that the solvent is compatible with the cleanup procedures. If crystals of sulfur are visible or if the presence of sulfur is suspected, proceed with Method 3660.

7.1.3 If the extract solvent is methylene chloride, for most cleanup techniques, it must be exchanged to hexane. (For the PAHs, exchange to cyclohexane as per Sec. 7.2.1). Follow the standard Kuderna-Danish concentration technique provided in each extraction method. The volume of methylene chloride should have been reduced to 1 - 2 mL. Add 40 mL of hexane, a fresh boiling chip and repeat the concentration as written. The final volume required for the cleanup techniques is normally 2 mL.
7.2 Standard Column Cleanup Techniques

7.2.1 Polynuclear aromatic hydrocarbons

7.2.1.1 Before the silica gel cleanup technique can be utilized, the extract solvent must be exchanged to cyclohexane. The exchange is performed by adding 4 mL of cyclohexane following reduction of the sample extract to 1-2 mL using the macro Snyder column. Attach the two ball micro Snyder column and reduce the volume to 2 mL.

CAUTION: When the volume of solvent is reduced below 1 mL, semivolatile analytes may be lost. If the extract goes to dryness, the extraction must be repeated.

7.2.1.2 Prepare a slurry of 10 g of activated silica gel (Sec. 5.3.1) in methylene chloride and place this into a 10 mm ID chromatographic column. Tap the column to settle the silica gel and elute the methylene chloride. Add 1 to 2 cm of anhydrous sodium sulfate to the top of the silica gel.

7.2.1.3 Pre-elute the column with 40 mL of pentane. The rate for all elutions should be about 2 mL/min. Discard the eluate and, just prior to exposure of the sodium sulfate layer to the air, transfer the 2 mL cyclohexane sample extract onto the column using an additional 2 mL cyclohexane to complete the transfer. Just prior to exposure of the sodium sulfate layer to the air, add 25 mL of pentane and continue the elution of the column. Discard this pentane eluate.

7.2.1.4 Next, elute the column with 25 mL of methylene chloride/pentane (2:3)(v/v) into a 500 mL K-D flask equipped with a 10 mL concentrator tube. Concentrate the collected fraction to whatever volume is required (1-10 mL). Proceed with HPLC (Method 8310) or GC analysis (Method 8100). Validated components that elute in this fraction are:

- Acenaphthene
- Acenaphthylene
- Anthracene
- Benzo(a)anthracene
- Benzo(a)pyrene
- Benzo(b)fluoranthene
- Benzo(g,h,i)perylene
- Benzo(k)fluoranthene
- Chrysene
- Dibenz(a,h)anthracene
- Fluoranthene
- Fluorene
- Indeno(1,2,3-cd)pyrene
- Naphthalene
- Phenanthrene
- Pyrene

Revision 2
September 1994
7.2.2 Derivatized Phenols

7.2.2.1 This silica gel cleanup procedure is performed on sample extracts that have undergone pentafluorobenzyl bromide derivatization, as described in Method 8040. The sample extract must be in 2 mL of hexane at this point.

7.2.2.2 Place 4.0 g of activated silica gel (Sec. 5.3.1) into a 10 mm ID chromatographic column. Tap the column to settle the silica gel and add about 2 g of anhydrous sodium sulfate to the top of the silica gel.

7.2.2.3 Pre-elute the column with 6 mL of hexane. The rate for all elutions should be about 2 mL/min. Discard the eluate and, just prior to exposure of the sodium sulfate layer to the air, pipet onto the column 2 mL of the hexane solution that contains the derivatized sample or standard. Elute the column with 10.0 mL of hexane and discard the eluate.

7.2.2.4 Elute the column, in order, with 10.0 mL of 15% toluene in hexane (Fraction 1); 10.0 mL of 40% toluene in hexane (Fraction 2); 10.0 mL of 75% toluene in hexane (Fraction 3); and 10.0 mL of 15% 2-propanol in toluene (Fraction 4). All elution mixtures are prepared on a volume:volume basis. Elution patterns for the phenolic derivatives are shown in Table 1. Fractions may be combined, as desired, depending upon the specific phenols of interest or level of interferences. Proceed with GC analysis (Method 8040).

7.2.3 Organochlorine Pesticides and Aroclors

7.2.3.1 Transfer a 3 g portion of deactivated silica gel (Sec. 5.3.2) into a 10 mm ID glass chromatographic column and top it with 2 to 3 cm of anhydrous sodium sulfate.

7.2.3.2 Add 10 mL of hexane to the top of the column to wet and rinse the sodium sulfate and silica gel. Just prior to exposure of the sodium sulfate layer to air, stop the hexane eluate flow by closing the stopcock on the chromatographic column. Discard the eluate.

7.2.3.3 Transfer the sample extract (2 mL in hexane) onto the column. Rinse the extract vial twice with 1 to 2 mL of hexane and add each rinse to the column. Elute the column with 80 mL of hexane (Fraction I) at a rate of about 5 mL/min. Remove the collection flask and set it aside for later concentration. Elute the column with 50 mL of hexane (Fraction II) and collect the eluate. Perform a third elution with 15 mL of methylene chloride (Fraction III). The elution patterns for the organochlorine pesticides, Aroclor-1016, and Aroclor-1260 are shown in Table 2.

7.2.3.4 Prior to gas chromatographic analysis, the extraction solvent must be exchanged to hexane. Fractions may be combined, as desired, depending upon the specific
pesticides/Aroclors of interest or level of interferences. If mixtures of Aroclors and pesticides are expected, it is best to analyze Fraction I separately, since it contains the Aroclors separated from most pesticides. Proceed with GC analysis as per Method 8081.

7.3 Cartridge Cleanup Techniques

7.3.1 Cartridge Set-up and Conditioning

7.3.1.1 Arrange the 1 g silica cartridges (2 g for phenol cleanup) on the manifold in the closed-valve position. Other size cartridges may be used, however the data presented in the Tables are all based on 1 g cartridges for pesticides/Aroclors and 2 g cartridges for phenols. Therefore, supporting recovery data must be developed for other sizes. Larger cartridges will probably require larger volumes of elution solvents.

7.3.1.2 Turn on the vacuum pump and set pump vacuum to 10 inches (254 mm) of Hg. Do not exceed the manufacturer's recommendation for manifold vacuum. Flow rates can be controlled by opening and closing cartridge valves.

7.3.1.3 Condition the cartridges by adding 4 mL of hexane to each cartridge. Slowly open the cartridge valves to allow hexane to pass through the sorbent beds to the lower frits. Allow a few drops per cartridge to pass through the manifold to remove all air bubbles. Close the valves and allow the solvent to soak the entire sorbent bed for 5 minutes. Do not turn off the vacuum.

7.3.1.4 Slowly open cartridge valves to allow the hexane to pass through the cartridges. Close the cartridge valves when there is still at least 1 mm of solvent above the sorbent bed. Do not allow cartridges to become dry. If cartridges go dry, repeat the conditioning step.

7.3.2 Derivatized Phenols

7.3.2.1 Reduce the sample extract volume to 2 mL prior to cleanup. The extract solvent must be hexane and the phenols must have undergone derivatization by pentafluorobenzyl bromide, as per Method 8040.

7.3.2.2 Transfer the extract to the 2 g cartridge that has been conditioned as described in Sec. 7.3.1. Open the cartridge valve to allow the extract to pass through the cartridge bed at approximately 2 mL/minute.

7.3.2.3 When the entire extract has passed through the cartridges, but before the cartridge becomes dry, rinse the sample vials with an additional 0.5 mL of hexane, and add the rinse to the cartridges to complete the quantitative transfer.
7.3.2.4 Close the cartridge valve and turn off the vacuum after the solvent has passed through, ensuring that the cartridge never gets dry.

7.3.2.5 Place a 5 mL vial or volumetric flask into the sample rack corresponding to the cartridge position. Attach a solvent-rinsed stainless steel solvent guide to the manifold cover and align with the collection vial.

7.3.2.6 Add 5 mL of hexane to the cartridge. Turn on the vacuum pump and adjust the pump pressure to 10 inches (254 mm) of Hg. Allow the solvent to soak the sorbent bed for 1 minute or less. Slowly open the cartridge valve, and collect the eluate (this is Fraction 1, and should be discarded).

NOTE: If cartridges smaller than 2 g are used, then Fraction 1 cannot be discarded, since it contains some of the phenols.

7.3.2.7 Close the cartridge valve, replace the collection vial, and add 5 mL of toluene/hexane (25/75, v/v) to the cartridge. Slowly open the cartridge valve and collect the eluate into the collection vial. This is Fraction 2, and should be retained for analysis.

7.3.2.8 Adjust the final volume of the eluant to a known volume which will result in analyte concentrations appropriate for the project requirements (normally 1 - 10 mL). Table 3 shows compound recoveries for 2 g silica cartridges. The cleaned up extracts are ready for analysis by Method 8040.

7.3.3 Organochlorine Pesticides/Aroclors

NOTE: The silica cartridge procedure is appropriate when polychlorinated biphenyls are known to be present.

7.3.3.1 Reduce the sample extract volume to 2 mL prior to cleanup. The extract solvent must be hexane.

7.3.3.2 Use the 1 g cartridges conditioned as described in Sec. 7.3.1.

7.3.3.3 Transfer the extract to the cartridge. Open the cartridge valve to allow the extract to pass through the cartridge bed at approximately 2 mL/minute.

7.3.3.4 When the entire extract has passed through the cartridges, but before the cartridge becomes dry, rinse the sample vials with an additional 0.5 mL of solvent, and add the rinse to the cartridges to complete the quantitative transfer.

7.3.3.5 Close the cartridge valve and turn off the vacuum after the solvent has passed through, ensuring that the cartridge never goes dry.
7.3.3.6 Place a 5 mL vial or volumetric flask into the sample rack corresponding to the cartridge position. Attach a solvent-rinsed stainless steel solvent guide to the manifold cover and align with the collection vial.

7.3.3.7 Add 5 mL of hexane to the cartridge. Turn on the vacuum pump and adjust the pump pressure to 10 inches (254 mm) of Hg. Allow the solvent to soak the sorbent bed for 1 minute or less. Slowly open the cartridge valve and collect the eluate into the collection vial (Fraction 1).

7.3.3.8 Close the cartridge valve, replace the collection vial, and add 5 mL of diethyl ether/hexane (50/50, v/v) to the cartridge. Slowly open the cartridge valve and collect the eluate into the collection vial (Fraction 2).

7.3.3.9 Adjust the final volume of each of the two fractions to a known volume which will result in analyte concentrations appropriate for the project requirements (normally 1 - 10 mL). The fractions may be combined prior to final adjustment of volume, if analyte fractionation is not required. Table 4 shows compound recoveries for 1 g silica cartridges. The cleaned up extracts are ready for analysis by Method 8081.

8.0 QUALITY CONTROL

8.1 Refer to Chapter One for specific quality control procedures and Method 3600 for cleanup procedures.

8.2 A reagent blank (consisting of the elution solvents) must be passed through the column or cartridge and checked for the compounds of interest, prior to the use of this method. This same performance check is required with each new lot of adsorbent or cartridges. The level of interferences must be below the method detection limit before this method is performed on actual samples.

8.3 The analyst must demonstrate that the compounds of interest are being quantitatively recovered before applying this method to actual samples. See the attached Tables for acceptable recovery data. For compounds that have not been tested, recovery must be \(\geq 85\% \).

8.3.1 Before any samples are processed using the solid-phase extraction cartridges, the efficiency of the cartridge must be verified. A recovery check must be performed using standards of the target analytes at known concentration. Only lots of cartridges that meet the recovery criteria for the spiked compounds can be used to process the samples.

8.3.2 A check should also be performed on each individual lot of cartridges and for every 300 cartridges of a particular lot.

8.4 For sample extracts that are cleaned up using this method, the associated quality control samples should also be processed through this cleanup method.
9.0 METHOD PERFORMANCE

9.1 Table 1 provides performance information on the fractionation of phenolic derivatives using standard column chromatography.

9.2 Table 2 provides performance information on the fractionation of organochlorine pesticides/Aroclors using standard column chromatography.

9.3 Table 3 shows recoveries of derivatized phenols obtained using 2 g silica cartridges.

9.4 Table 4 shows recoveries and fractionation of organochlorine pesticides obtained using 1 g silica cartridges.

10.0 REFERENCES

TABLE 1
SILICA GEL FRACTIONATION OF PFBB DERIVATIVES

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Chlorophenol</td>
<td>2-Chlorophenol</td>
<td>90</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Nitrophenol</td>
<td>2-Nitrophenol</td>
<td>90</td>
<td>9</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Phenol</td>
<td>Phenol</td>
<td>90</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4-Dimethylphenol</td>
<td>2,4-Dimethylphenol</td>
<td>95</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4-Dichlorophenol</td>
<td>2,4-Dichlorophenol</td>
<td>95</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4,6-Trichlorophenol</td>
<td>2,4,6-Trichlorophenol</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Chloro-3-methylphenol</td>
<td>4-Chloro-3-methylphenol</td>
<td>84</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>Pentachlorophenol</td>
<td>75</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Nitrophenol</td>
<td>4-Nitrophenol</td>
<td>1</td>
<td>90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Eluant composition:

 - Fraction 1 - 15% toluene in hexane.
 - Fraction 2 - 40% toluene in hexane.
 - Fraction 3 - 75% toluene in hexane.
 - Fraction 4 - 15% 2-propanol in toluene.

Data from Reference 1 (Method 604)
<table>
<thead>
<tr>
<th>Compound</th>
<th>Fraction I</th>
<th>Fraction II</th>
<th>Fraction III</th>
<th>Total Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>alpha-BHC</td>
<td>109(4.1)</td>
<td>118(8.7)</td>
<td></td>
<td>109(4.1)</td>
</tr>
<tr>
<td>beta-BHC</td>
<td>97(5.6)</td>
<td>104(1.6)</td>
<td></td>
<td>97(5.6)</td>
</tr>
<tr>
<td>gamma-BHC</td>
<td>91(3.6)</td>
<td>85(10.7)</td>
<td>92(3.5)</td>
<td>83(10.6)</td>
</tr>
<tr>
<td>delta-BHC</td>
<td>92(3.5)</td>
<td>83(10.6)</td>
<td>92(3.5)</td>
<td>83(10.6)</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>109(4.1)</td>
<td>118(8.7)</td>
<td></td>
<td>109(4.1)</td>
</tr>
<tr>
<td>Aldrin</td>
<td>107(2.1)</td>
<td>98(12.5)</td>
<td>107(2.1)</td>
<td>98(12.5)</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>14(5.5)</td>
<td>22(5.3)</td>
<td>19(6.8)</td>
<td>39(3.6)</td>
</tr>
<tr>
<td>Technical chlordane</td>
<td>29(5.0)</td>
<td>37(5.1)</td>
<td>62(3.3)</td>
<td>98(19.9)</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>95(5.1)</td>
<td>87(10.2)</td>
<td>95(5.1)</td>
<td>87(10.2)</td>
</tr>
<tr>
<td>4,4'-DDE</td>
<td>86(5.4)</td>
<td>94(2.8)</td>
<td></td>
<td>86(5.4)</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>96(6.0)</td>
<td>87(10.6)</td>
<td>96(6.0)</td>
<td>87(10.6)</td>
</tr>
<tr>
<td>Endrin</td>
<td>85(10.5)</td>
<td>71(12.3)</td>
<td>85(10.5)</td>
<td>71(12.3)</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>97(4.4)</td>
<td>86(10.4)</td>
<td>97(4.4)</td>
<td>86(10.4)</td>
</tr>
<tr>
<td>4,4'-DDD'</td>
<td>102(4.6)</td>
<td>92(10.2)</td>
<td>102(4.6)</td>
<td>92(10.2)</td>
</tr>
<tr>
<td>Endrin aldehyde</td>
<td>81(1.9)</td>
<td>76(9.5)</td>
<td>81(1.9)</td>
<td>76(9.5)</td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td>93(4.9)</td>
<td>82(9.2)</td>
<td>93(4.9)</td>
<td>82(9.2)</td>
</tr>
<tr>
<td>4,4'-DDT'</td>
<td>86(13.4)</td>
<td>73(9.1)</td>
<td>15(17.7)</td>
<td>8.7(15.0)</td>
</tr>
<tr>
<td>4,4'-Methoxychlor</td>
<td>99(9.9)</td>
<td>82(10.7)</td>
<td>99(9.9)</td>
<td>82(10.7)</td>
</tr>
<tr>
<td>toxaphene</td>
<td>15(2.4)</td>
<td>17(1.4)</td>
<td>73(9.4)</td>
<td>84(10.7)</td>
</tr>
<tr>
<td>Aroclor-1016</td>
<td>86(4.0)</td>
<td>87(6.1)</td>
<td></td>
<td>86(4.0)</td>
</tr>
<tr>
<td>Aroclor-1260</td>
<td>91(4.1)</td>
<td>95(5.0)</td>
<td></td>
<td>91(4.1)</td>
</tr>
</tbody>
</table>

3630B - 12
Revision 2
September 1994
TABLE 2
(Continued)

* Effluent composition: Fraction I, 80 mL hexane; Fraction II, 50 mL hexane; Fraction III, 15 mL methylene chloride.

b Concentration 1 is 0.5 μg per column for BHCs, Heptachlor, Aldrin, Heptachlor epoxide, and Endosulfan I; 1.0 μg per column for Dieldrin, Endosulfan II, 4,4’-DDD, 4,4’-DDE, 4,4’-DDT, Endrin, Endrin aldehyde, and Endosulfan sulfate; 5 μg per column for 4,4’-Methoxychlor and technical Chlordane; 10 μg per column for Toxaphene, Aroclor-1016, and Aroclor-1260.

c For Concentration 2, the amounts spiked are 10 times as high as those for Concentration 1.

d Values given represent the average recovery of three determinations; numbers in parentheses are the standard deviation; recovery cutoff point is 5 percent.

e Data obtained with standards, as indicated in footnotes b and c, dissolved in 2 mL hexane.

f It has been found that because of batch-to-batch variation in the silica gel material, these compounds cross over in two fractions and the amounts recovered in each fraction are difficult to reproduce.
<table>
<thead>
<tr>
<th>Compound</th>
<th>Fraction 2 Average Recovery</th>
<th>Percent RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenol</td>
<td>74.1</td>
<td>5.2</td>
</tr>
<tr>
<td>2-Methylphenol</td>
<td>84.8</td>
<td>5.2</td>
</tr>
<tr>
<td>3-Methylphenol</td>
<td>86.4</td>
<td>4.4</td>
</tr>
<tr>
<td>4-Methylphenol</td>
<td>82.7</td>
<td>5.0</td>
</tr>
<tr>
<td>2,4-Dimethylphenol</td>
<td>91.8</td>
<td>5.6</td>
</tr>
<tr>
<td>2-Chlorophenol</td>
<td>88.5</td>
<td>5.0</td>
</tr>
<tr>
<td>2,6-Dichlorophenol</td>
<td>90.4</td>
<td>4.4</td>
</tr>
<tr>
<td>4-Chloro-3-methylphenol</td>
<td>94.4</td>
<td>7.1</td>
</tr>
<tr>
<td>2,4-Dichlorophenol</td>
<td>94.5</td>
<td>7.0</td>
</tr>
<tr>
<td>2,4,6-Trichlorophenol</td>
<td>97.8</td>
<td>6.6</td>
</tr>
<tr>
<td>2,3,6-Trichlorophenol</td>
<td>95.6</td>
<td>7.1</td>
</tr>
<tr>
<td>2,4,5-Trichlorophenol</td>
<td>92.3</td>
<td>8.2</td>
</tr>
<tr>
<td>2,3,5-Trichlorophenol</td>
<td>92.3</td>
<td>8.2</td>
</tr>
<tr>
<td>2,3,5,6-Tetrachlorophenol</td>
<td>97.5</td>
<td>5.3</td>
</tr>
<tr>
<td>2,3,4,6-Tetrachlorophenol</td>
<td>97.0</td>
<td>6.1</td>
</tr>
<tr>
<td>2,3,4-Trichlorophenol</td>
<td>72.3</td>
<td>8.7</td>
</tr>
<tr>
<td>2,3,4,5-Tetrachlorophenol</td>
<td>95.1</td>
<td>6.8</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>96.2</td>
<td>8.8</td>
</tr>
</tbody>
</table>

Silica cartridges (Supelco, Inc.) were used; each cartridge was conditioned with 4 mL of hexane prior to use. Each experiment was performed in duplicate at three spiking concentrations (0.05 μg, 0.2 μg, and 0.4 μg per compound per cartridge). Fraction 1 was eluted with 5 mL hexane and was discarded. Fraction 2 was eluted with 5 mL toluene/hexane (25/75, v/v).

Data from Reference 2
Table 4

Percent recoveries and elution patterns for 17 organochlorine pesticides and Aroclors from 1 g silica cartridges

<table>
<thead>
<tr>
<th>Compound</th>
<th>Fraction 1</th>
<th></th>
<th>Fraction 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>Percent RSD</td>
<td>Average</td>
<td>Percent RSD</td>
</tr>
<tr>
<td></td>
<td>Recovery</td>
<td></td>
<td>Recovery</td>
<td></td>
</tr>
<tr>
<td>alpha-BHC</td>
<td>0</td>
<td></td>
<td>98.7</td>
<td>2.3</td>
</tr>
<tr>
<td>gamma-BHC</td>
<td>0</td>
<td></td>
<td>94.8</td>
<td>1.9</td>
</tr>
<tr>
<td>beta-BHC</td>
<td>94.3</td>
<td>3.0</td>
<td>90.8</td>
<td>2.5</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>97.3</td>
<td>1.3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>delta-BHC</td>
<td>0</td>
<td></td>
<td>90.9</td>
<td>2.2</td>
</tr>
<tr>
<td>Aldrin</td>
<td>95.9</td>
<td>1.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>0</td>
<td></td>
<td>97.9</td>
<td>2.1</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>0</td>
<td></td>
<td>102</td>
<td>2.3</td>
</tr>
<tr>
<td>4,4'-DDE</td>
<td>99.9</td>
<td>1.7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Dieldrin</td>
<td>0</td>
<td></td>
<td>92.3</td>
<td>2.0</td>
</tr>
<tr>
<td>Endrin</td>
<td>117</td>
<td>2.6</td>
<td>92.4</td>
<td>3.3</td>
</tr>
<tr>
<td>4,4'-DDD</td>
<td>10.7</td>
<td>41</td>
<td>96.0</td>
<td>2.2</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>0</td>
<td></td>
<td>96.0</td>
<td>2.2</td>
</tr>
<tr>
<td>4,4'-DDT</td>
<td>94.1</td>
<td>2.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Endrin aldehyde</td>
<td>0</td>
<td></td>
<td>59.7</td>
<td>2.6</td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td>0</td>
<td></td>
<td>97.8</td>
<td>2.1</td>
</tr>
<tr>
<td>4,4'-Methoxychlor</td>
<td>0</td>
<td></td>
<td>98.0</td>
<td>2.4</td>
</tr>
<tr>
<td>Aroclor 1016</td>
<td>124</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aroclor 1221</td>
<td>93.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aroclor 1232</td>
<td>118</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aroclor 1242</td>
<td>116</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aroclor 1248</td>
<td>114</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aroclor 1254</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aroclor 1264</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Silica cartridges (Supelco, Inc. lot SP0161) were used; each cartridge was conditioned with 4 mL hexane prior to use. The organochlorine pesticides were tested separately from PCBs. Each organochlorine pesticides experiment was performed in duplicate, at three spiking concentrations (0.2 µg, 1.0 µg, and 2.0 µg per compound per cartridge). Fraction 1 was eluted with 5 mL of hexane, Fraction 2 with 5 mL of diethyl ether/hexane (50/50, v/v). PCBs were spiked at 10 µg per cartridge and were eluted with 3 mL of hexane. The values given for PCBs are the percent recoveries for a single determination.

Data from Reference 2
METHOD 3630B
SILICA GEL CLEANUP

Start

QC Pesticide
PCBs & Phenols

>10-30 mg

Concentration
of
interferences.

<10-30 mg

7.2 Standard
Column Cleanup.

7.1.1 Analyte
Type.

7.2.2.1 Do PFBB
derivation on
sample extract
(8040).

7.2.2.2 Place
activated silica gel
in chromatographic
column; add
anhydrous Na₂SO₄.

7.2.2.3 Pipet
hexane
solution onto column;
elute.

7.2.2.4 Elute column
with
specified
solvents.

7.2.3.1 Deactivate
silica gel, prepare
column.

7.2.3.2 Elute the
gC column
with
hexane.

7.2.3.3 Transfer
eExtract onto column
eand elute with
specified solvents.

7.2.3.4 Exchange the
elution solvent
to hexane (Section
7.1.3).

7.3 Cartridge
Cleanup.

7.3.1 Cartridge
Set-up &
Conditioning.

7.3.2.1 Do PFBB
derivation on
sample extract
(8040).

7.3.2.2 Place
activated silica gel
in chromatographic
column; add
anhydrous Na₂SO₄.

7.3.2.3 Transfer
eExtract onto column and
eeluie with
specified solvents.

7.3.2.4 Exchange the
eelution solvent
to hexane (Section
7.1.3).

7.3.3.1 Exchange
e solvent to
hexane.

7.3.3.2 & 7.3.3.4
Transfer extract
to cartridge.

7.3.3.3 Exchange
carryage extract
to cartridge.

7.3.4 Exchange the
elution solvent
to hexane &
discard.

7.3.5.1 Elute
carryage extract
with hexane.

7.3.5.2 Elute
carryage extract
with ether/hexane as
Fraction II.

7.3.5.3 Elute
carryage extract
with toluene/hexane.

7.3.5.4 Analyze
each fraction
by GC
Method
8081.

Analyze
by
GC
(Method
8040).

Analyze
by
GC
(Method
8081).

Analyze
by
GC
(Method
8040 or
GC/MS
Method
8270).

7.3.1 Analyte
Type.

7.1.1 Analyte
Type.

Analyte
Type.
Column Cleanup.

7.2.1.1 Exchange extract solvent to cyclohexane during K-D procedure.

7.2.1.2 Prepare slurry activated silica gel, prepare column.

7.2.1.3 Preelute column with pentane, transfer extract onto column and elute with pentane.

7.2.1.4 Elute column with CH₂Cl₂/pentane; concentrate collected fraction; adjust volume.

Analyze by GC Method 8100 or GC/MS Method 8270.
1.0 SCOPE AND APPLICATION

1.1 Gel-permeation chromatography (GPC) is a size exclusion cleanup procedure using organic solvents and hydrophobic gels in the separation of synthetic macromolecules (1). The packing gel is porous and is characterized by the range or uniformity (exclusion range) of that pore size. In the choice of gels, the exclusion range must be larger than the molecular size of the molecules to be separated (2). A cross-linked divinylbenzene-styrene copolymer (SX-3 Bio Beads or equivalent) is specified for this method.

1.2 General cleanup application - GPC is recommended for the elimination from the sample of lipids, polymers, copolymers, proteins, natural resins and polymers, cellular components, viruses, steroids, and dispersed high-molecular-weight compounds (2). GPC is appropriate for both polar and non-polar analytes, therefore, it can be effectively used to cleanup extracts containing a broad range of analytes.

1.3 Specific application - This method includes guidance for cleanup of sample extracts containing the following analytes from the RCRA Appendix VIII and Appendix IX lists:

<table>
<thead>
<tr>
<th>Compound Name</th>
<th>CAS No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acenaphthene</td>
<td>83-32-9</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>208-96-8</td>
</tr>
<tr>
<td>Acetophenone</td>
<td>98-86-2</td>
</tr>
<tr>
<td>2-Acetylaminofluorene</td>
<td>53-96-3</td>
</tr>
<tr>
<td>Aldrin</td>
<td>309-00-2</td>
</tr>
<tr>
<td>4-Aminobiphenyl</td>
<td>92-67-1</td>
</tr>
<tr>
<td>Aniline</td>
<td>62-53-3</td>
</tr>
<tr>
<td>Anthracene</td>
<td>120-12-7</td>
</tr>
<tr>
<td>Benomyl</td>
<td>17804-35-2</td>
</tr>
<tr>
<td>Benzenethiol</td>
<td>108-98-5</td>
</tr>
<tr>
<td>Benzidine</td>
<td>92-87-5</td>
</tr>
<tr>
<td>Benz(a)anthracene</td>
<td>56-55-3</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>205-99-2</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>50-32-8</td>
</tr>
<tr>
<td>Benzo(ghi)perylene</td>
<td>191-24-2</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>207-08-9</td>
</tr>
<tr>
<td>Benzoic acid</td>
<td>65-85-0</td>
</tr>
<tr>
<td>Benztetrachloride</td>
<td>98-07-7</td>
</tr>
<tr>
<td>Benzyl alcohol</td>
<td>100-51-6</td>
</tr>
<tr>
<td>Benzyl chloride</td>
<td>100-44-7</td>
</tr>
<tr>
<td>alpha-BHC</td>
<td>319-84-6</td>
</tr>
<tr>
<td>beta-BHC</td>
<td>319-85-7</td>
</tr>
<tr>
<td>Compound Name</td>
<td>CAS No."</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>gamma-BHC</td>
<td>58-89-9</td>
</tr>
<tr>
<td>delta-BHC</td>
<td>319-86-8</td>
</tr>
<tr>
<td>4-Bromophenyl phenyl ether</td>
<td>101-55-3</td>
</tr>
<tr>
<td>Butyl benzyl phthalate</td>
<td>85-68-7</td>
</tr>
<tr>
<td>2-sec-butyl-4,6-dinitrophenol (Dinoseb)</td>
<td>88-85-7</td>
</tr>
<tr>
<td>Carbazole</td>
<td>86-74-8</td>
</tr>
<tr>
<td>Carbendazim</td>
<td>10605-21-7</td>
</tr>
<tr>
<td>alpha-Chlordane</td>
<td>5103-71-9</td>
</tr>
<tr>
<td>gamma-Chlordane</td>
<td>5566-34-7</td>
</tr>
<tr>
<td>4-Chloro-3-methylphenol</td>
<td>59-50-7</td>
</tr>
<tr>
<td>4-Chloroaniline</td>
<td>106-47-8</td>
</tr>
<tr>
<td>Chlorobenzilate</td>
<td>510-15-6</td>
</tr>
<tr>
<td>Bis(2-chloroethoxy)methane</td>
<td>111-91-1</td>
</tr>
<tr>
<td>Bis(2-chloroethyl) ether</td>
<td>111-44-4</td>
</tr>
<tr>
<td>Bis(2-chloroisopropyl) ether</td>
<td>108-60-1</td>
</tr>
<tr>
<td>2-Chloronaphthalene</td>
<td>91-58-7</td>
</tr>
<tr>
<td>2-Chlorophenol</td>
<td>95-57-8</td>
</tr>
<tr>
<td>4-Chlorophenol</td>
<td>106-48-9</td>
</tr>
<tr>
<td>3-Chlorophenol</td>
<td>108-43-0</td>
</tr>
<tr>
<td>4-Chlorophenyl phenyl ether</td>
<td>7005-72-3</td>
</tr>
<tr>
<td>3-Chloropropionitrile</td>
<td>542-76-7</td>
</tr>
<tr>
<td>Chrysene</td>
<td>218-01-9</td>
</tr>
<tr>
<td>2-Cresol</td>
<td>95-48-7</td>
</tr>
<tr>
<td>3-Cresol</td>
<td>108-39-4</td>
</tr>
<tr>
<td>4-Cresol</td>
<td>106-44-5</td>
</tr>
<tr>
<td>Cyclophosphamide</td>
<td>50-18-0</td>
</tr>
<tr>
<td>DDD</td>
<td>72-54-8</td>
</tr>
<tr>
<td>DDE</td>
<td>72-55-9</td>
</tr>
<tr>
<td>DDT</td>
<td>50-29-3</td>
</tr>
<tr>
<td>Di-n-butyl phthalate</td>
<td>84-74-2</td>
</tr>
<tr>
<td>Dielllate</td>
<td>2303-16-4</td>
</tr>
<tr>
<td>Dibenzo(a,e)pyrene</td>
<td>192-65-4</td>
</tr>
<tr>
<td>Dibenzo(a,i)pyrene</td>
<td>189-55-9</td>
</tr>
<tr>
<td>Dibenz(a,j)acridine</td>
<td>224-42-0</td>
</tr>
<tr>
<td>Dibenz(a,h)anthracene</td>
<td>53-70-3</td>
</tr>
<tr>
<td>Dibenzofuran</td>
<td>132-64-9</td>
</tr>
<tr>
<td>Dibenzothiophene</td>
<td>132-65-0</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td>96-12-8</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>106-93-4</td>
</tr>
<tr>
<td>trans-1,4-Dichloro-2-butene</td>
<td>110-57-6</td>
</tr>
<tr>
<td>cis-1,4-Dichloro-2-butene</td>
<td>1476-11-5</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>95-50-1</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>106-46-7</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>541-73-1</td>
</tr>
<tr>
<td>3,3'-Dichlorobenzidine</td>
<td>91-94-1</td>
</tr>
<tr>
<td>2,6-Dichlorophenol</td>
<td>87-65-0</td>
</tr>
<tr>
<td>2,4-Dichlorophenoxyacetic acid (2,4-D)</td>
<td>94-75-7</td>
</tr>
<tr>
<td>2,4-Dichlorophenol</td>
<td>120-83-2</td>
</tr>
</tbody>
</table>

Revision 1
September 1994
<table>
<thead>
<tr>
<th>Compound Name</th>
<th>CAS No.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-Dichlorotoluene</td>
<td>95-73-8</td>
</tr>
<tr>
<td>1,3-Dichloro-2-propanol</td>
<td>96-23-1</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>60-57-1</td>
</tr>
<tr>
<td>Diethyl phthalate</td>
<td>84-66-2</td>
</tr>
<tr>
<td>Dimethoate</td>
<td>60-51-5</td>
</tr>
<tr>
<td>Dimethyl phthalate</td>
<td>131-11-3</td>
</tr>
<tr>
<td>p-Dimethylaminoazobenzene</td>
<td>60-11-7</td>
</tr>
<tr>
<td>7,12-Dimethyl-benz(a)anthracene</td>
<td>57-97-6</td>
</tr>
<tr>
<td>2,4-Dimethylphenol</td>
<td>105-67-9</td>
</tr>
<tr>
<td>3,3-Dimethylbenzidine</td>
<td>119-93-7</td>
</tr>
<tr>
<td>4,6-Dinitro-o-cresol</td>
<td>534-52-1</td>
</tr>
<tr>
<td>1,3-Dinitrobenzene</td>
<td>99-65-0</td>
</tr>
<tr>
<td>2,4-Dinitrophenol</td>
<td>51-28-5</td>
</tr>
<tr>
<td>2,4-Dinitrotoluene</td>
<td>121-14-2</td>
</tr>
<tr>
<td>2,6-Dinitrotoluene</td>
<td>606-20-2</td>
</tr>
<tr>
<td>Diphenylamine</td>
<td>122-39-4</td>
</tr>
<tr>
<td>Diphenyl ether</td>
<td>101-84-8</td>
</tr>
<tr>
<td>1,2-Diphenylydrazine</td>
<td>122-66-7</td>
</tr>
<tr>
<td>Disulfoton</td>
<td>298-04-4</td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td>1031-07-8</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>959-98-8</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>33213-65-9</td>
</tr>
<tr>
<td>Endrin</td>
<td>72-20-8</td>
</tr>
<tr>
<td>Endrin aldehyde</td>
<td>7421-93-4</td>
</tr>
<tr>
<td>Endrin ketone</td>
<td>53494-70-5</td>
</tr>
<tr>
<td>Ethyl methane sulfonate</td>
<td>62-50-0</td>
</tr>
<tr>
<td>Ethyl methacrylate</td>
<td>97-63-2</td>
</tr>
<tr>
<td>Bis(2-ethylhexyl) phthalate</td>
<td>117-81-7</td>
</tr>
<tr>
<td>Famphur</td>
<td>52-85-7</td>
</tr>
<tr>
<td>Fluorene</td>
<td>86-73-7</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>206-44-0</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>76-44-8</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>1024-57-3</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>118-74-1</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>87-68-3</td>
</tr>
<tr>
<td>Hexachlorocyclopentadiene</td>
<td>77-47-4</td>
</tr>
<tr>
<td>Hexachloroethane</td>
<td>67-72-1</td>
</tr>
<tr>
<td>Hexachloropropene</td>
<td>1888-71-7</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>193-39-5</td>
</tr>
<tr>
<td>Isodrin</td>
<td>465-73-6</td>
</tr>
<tr>
<td>Isophorone</td>
<td>78-59-1</td>
</tr>
<tr>
<td>cis-Isosafrole</td>
<td>17627-76-8</td>
</tr>
<tr>
<td>trans-Isosafrole</td>
<td>4043-71-4</td>
</tr>
<tr>
<td>Kepone</td>
<td>143-50-0</td>
</tr>
<tr>
<td>Malononitrile</td>
<td>109-77-3</td>
</tr>
<tr>
<td>Merphos</td>
<td>150-50-5</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>72-43-5</td>
</tr>
<tr>
<td>3-Methylcholanthrene</td>
<td>56-49-5</td>
</tr>
<tr>
<td>Compound Name</td>
<td>CAS No.</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td>91-57-6</td>
</tr>
<tr>
<td>Methyl parathion</td>
<td>298-00-0</td>
</tr>
<tr>
<td>4,4'-Methylene-bis(2-chloroaniline)</td>
<td>101-14-4</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>91-20-3</td>
</tr>
<tr>
<td>1,4-Naphthoquinone</td>
<td>130-15-4</td>
</tr>
<tr>
<td>2-Naphthylamine</td>
<td>91-59-8</td>
</tr>
<tr>
<td>1-Naphthylamine</td>
<td>134-32-7</td>
</tr>
<tr>
<td>5-Nitro-o-toluidine</td>
<td>99-55-8</td>
</tr>
<tr>
<td>2-Nitroaniline</td>
<td>88-74-4</td>
</tr>
<tr>
<td>3-Nitroaniline</td>
<td>99-09-2</td>
</tr>
<tr>
<td>4-Nitroaniline</td>
<td>100-01-6</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>98-95-3</td>
</tr>
<tr>
<td>2-Nitrophenol</td>
<td>79-46-9</td>
</tr>
<tr>
<td>4-Nitrophenol</td>
<td>100-02-7</td>
</tr>
<tr>
<td>N-Nitrosodi-n-butylamine</td>
<td>924-16-3</td>
</tr>
<tr>
<td>N-Nitrosodiethanolamine</td>
<td>1116-54-7</td>
</tr>
<tr>
<td>N-Nitrosodiethylamine</td>
<td>55-18-5</td>
</tr>
<tr>
<td>N-Nitrosodimethylamine</td>
<td>62-75-9</td>
</tr>
<tr>
<td>N-Nitrosodiphenylanine</td>
<td>86-30-6</td>
</tr>
<tr>
<td>N-Nitrosodi-n-propylamine</td>
<td>621-64-7</td>
</tr>
<tr>
<td>N-Nitrosomethylethylamine</td>
<td>10595-95-6</td>
</tr>
<tr>
<td>N-Nitrosomorpholine</td>
<td>59-89-2</td>
</tr>
<tr>
<td>N-Nitrosopiperidine</td>
<td>100-75-4</td>
</tr>
<tr>
<td>N-Nitrosopyrrolidine</td>
<td>930-55-2</td>
</tr>
<tr>
<td>Di-n-octyl phthalate</td>
<td>117-84-0</td>
</tr>
<tr>
<td>Parathion</td>
<td>56-38-2</td>
</tr>
<tr>
<td>Pentachlorobenzene</td>
<td>608-93-5</td>
</tr>
<tr>
<td>Pentachloroethane</td>
<td>76-01-7</td>
</tr>
<tr>
<td>Pentachloronitrobenzene (PCNB)</td>
<td>82-68-8</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>87-86-5</td>
</tr>
<tr>
<td>Phenacetin</td>
<td>62-44-2</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>85-01-8</td>
</tr>
<tr>
<td>Phenol</td>
<td>108-95-2</td>
</tr>
<tr>
<td>1,2-Phenylenediamine</td>
<td>95-54-5</td>
</tr>
<tr>
<td>Phorate</td>
<td>298-02-2</td>
</tr>
<tr>
<td>2-Picoline</td>
<td>109-06-8</td>
</tr>
<tr>
<td>Pronamide</td>
<td>23950-58-5</td>
</tr>
<tr>
<td>Pyrene</td>
<td>129-00-0</td>
</tr>
<tr>
<td>Resorcinol</td>
<td>108-46-3</td>
</tr>
<tr>
<td>Safrole</td>
<td>94-59-7</td>
</tr>
<tr>
<td>1,2,4,5-Tetrachlorobenzene</td>
<td>95-94-3</td>
</tr>
<tr>
<td>2,3,5,6-Tetrachloronitrobenzene</td>
<td>117-18-0</td>
</tr>
<tr>
<td>2,3,5,6-Tetrachlorophenol</td>
<td>935-95-5</td>
</tr>
<tr>
<td>2,3,4,6-Tetrachlorophenol</td>
<td>58-90-2</td>
</tr>
<tr>
<td>Tetraethyl dithiopyrophosphate (Sulfotep)</td>
<td>3689-24-5</td>
</tr>
<tr>
<td>Thiosemicarbazide</td>
<td>79-19-6</td>
</tr>
<tr>
<td>2-Toluidine</td>
<td>106-49-0</td>
</tr>
<tr>
<td>4-Toluidine</td>
<td>95-53-4</td>
</tr>
</tbody>
</table>

Revision 1
September 1994
Table 1: Average percent recovery and percent RSD data for these analytes, as well as the retention volumes of each analyte on a single GPC system. Retention volumes vary from column to column. Figure 1 provides additional information on retention volumes for certain classes of compounds. The data for the semivolatiles were determined by GC/MS, whereas, the pesticide data were determined by GC/ECD or GC/FPD. Compounds not amenable to GC were determined by HPLC. Other analytes may also be appropriate for this cleanup technique, however, recovery through the GPC should be >70%.

1.4 Normally, this method is most efficient for removing high boiling materials that condense in the injection port area of a gas chromatograph (GC) or the front of the GC column. This residue will ultimately reduce the chromatographic separation efficiency or column capacity because of adsorption of the target analytes on the active sites. Pentachlorophenol is especially susceptible to this problem. GPC, operating on the principal of size exclusion, will not usually remove interference peaks that appear in the chromatogram since the molecular size of these compounds is relatively similar to the target analytes. Separation cleanup techniques, based on other molecular characteristics (i.e., polarity), must be used to eliminate this type of interference.

2.0 SUMMARY OF METHOD

2.1 The column is packed with the required amount of preswelled absorbent, and is flushed with solvent for an extended period. The column is calibrated and then loaded with the sample extract to be cleaned up. Elution is effected with a suitable solvent(s) and the product is then concentrated.

3.0 INTERFERENCES

3.1 A reagent blank should be analyzed for the compound of interest prior to the use of this method. The level of interferences must be below the estimated quantitation limits (EQLs) of the analytes of interest before this method is performed on actual samples.
3.2 More extensive procedures than those outlined in this method may be necessary for reagent purification.

4.0 APPARATUS

4.1 Gel-permeation chromatography system - GPC Autoprep Model 1002 A or B, or equivalent, Analytical Biochemical Laboratories, Inc. Systems that perform very satisfactorily have also been assembled from the following components - an HPLC pump, an auto sampler or a valving system with sample loops, and a fraction collector. All systems, whether automated or manual, must meet the calibration requirements of Sec. 7.2.2.

4.1.1 Chromatographic column - 700 mm x 25 mm ID glass column. Flow is upward. (Optional) To simplify switching from the UV detector during calibration to the GPC collection device during extract cleanup, attach a double 3-way valve (Rheodyne Type 50 Teflon Rotary Valve #10-262 or equivalent) so that the column exit flow can be shunted either to the UV flow-through cell or to the GPC collection device.

4.1.2 Guard column - (Optional) 5 cm, with appropriate fittings to connect to the inlet side of the analytical column (Supelco 5-8319 or equivalent).

4.1.3 Bio Beads (S-X3) - 200-400 mesh, 70 g (Bio-Rad Laboratories, Richmond, CA, Catalog 152-2750 or equivalent). An additional 5 g of Bio Beads are required if the optional guard column is employed. The quality of Bio Beads may vary from lot to lot because of excessive fines in some lots. The UV chromatogram of the Calibration solution should be very similar to that in Figure 2, and the backpressure should be within 6-10 psi. Also, the gel swell ratio in methylene chloride should be in the range of 4.4 - 4.8 mL/g. In addition to fines having a detrimental effect on chromatography, they can also pass through the column screens and damage the valve.

4.1.4 Ultraviolet detector - Fixed wavelength (254 nm) with a semi-prep flow-through cell.

4.1.5 Strip chart recorder, recording integrator or laboratory data system.

4.1.6 Syringe - 10 mL with Luerlok fitting.

4.1.7 Syringe filter assembly, disposable - Bio-Rad "Prep Disc" sample filter assembly #343-0005, 25 mm, and 5 micron filter discs or equivalent. Check each batch for contaminants. Rinse each filter assembly (prior to use) with methylene chloride if necessary.

4.2 Analytical balance - 0.0001 g.

4.3 Volumetric flasks, Class A - 10 mL to 1000 mL

4.4 Graduated cylinders
5.0 REAGENTS

5.1 Methylene chloride, CH₂Cl₂. Pesticide quality or equivalent.

5.1.1 Some brands of methylene chloride may contain unacceptably high levels of acid (HCl). Check the pH by shaking equal portions of methylene chloride and water, then check the pH of the water layer.

5.1.1.1 If the pH of the water layer is ≤ 5, filter the entire supply of solvent through a 2 in. x 15 in. glass column containing activated basic alumina. This column should be sufficient for processing approximately 20-30 liters of solvent. Alternatively, find a different supply of methylene chloride.

5.2 Cyclohexane, C₆H₁₂. Pesticide quality or equivalent.

5.3 n-Butyl chloride, CH₃CH₂CH₂CH₂Cl. Pesticide quality or equivalent.

5.4 GPC Calibration Solution. Prepare a calibration solution in methylene chloride containing the following analytes (in elution order):

<table>
<thead>
<tr>
<th>Compound</th>
<th>mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>corn oil</td>
<td>25,000</td>
</tr>
<tr>
<td>bis(2-ethylhexyl) phthalate</td>
<td>1,000</td>
</tr>
<tr>
<td>methoxychlor</td>
<td>200</td>
</tr>
<tr>
<td>perylene</td>
<td>20</td>
</tr>
<tr>
<td>sulfur</td>
<td>80</td>
</tr>
</tbody>
</table>

NOTE: Sulfur is not very soluble in methylene chloride, however, it is soluble in warm corn oil. Therefore, one approach is to weigh out the corn oil, warm it and transfer the weighed amount of sulfur into the warm corn oil. Mix it and then transfer into a volumetric flask with methylene chloride, along with the other calibration compounds.

Store the calibration solution in an amber glass bottle with a Teflon lined screw-cap at 4°C, and protect from light. (Refrigeration may cause the corn oil to precipitate. Before use, allow the calibration solution to stand at room temperature until the corn oil dissolves.) Replace the calibration standard solution every 6 months, or more frequently if necessary.

5.5 Corn Oil Spike for Gravimetric Screen. Prepare a solution of corn oil in methylene chloride (5 g/100 mL).

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1 See the introductory material to this chapter, Organic Analytes, Sec. 4.1.
7.0 PROCEDURE

7.1 It is very important to have consistent laboratory temperatures during an entire GPC run, which could be 24 hours or more. If temperatures are not consistent, retention times will shift, and the dump and collect times determined by the calibration standard will no longer be appropriate. The ideal laboratory temperature to prevent outgassing of the methylene chloride is 72°F.

7.2 GPC Setup and Calibration

7.2.1 Column Preparation

7.2.1.1 Weigh out 70 g of Bio Beads (SX-3). Transfer them to a quart bottle with a Teflon lined cap or a 500 mL separatory funnel with a large bore stopcock, and add approximately 300 mL of methylene chloride. Swirl the container to ensure the wetting of all beads. Allow the beads to swell for a minimum of 2 hours. Maintain enough solvent to sufficiently cover the beads at all times. If a guard column is to be used, repeat the above with 5 g of Bio Beads in a 125 mL bottle or a beaker, using 25 mL of methylene chloride.

7.2.1.2 Turn the column upside down from its normal position, and remove the inlet bed support plunger (the inlet plunger is longer than the outlet plunger). Position and tighten the outlet bed support plunger as near the end as possible, but no closer than 5 cm (measured from the gel packing to the collar).

7.2.1.3 Raise the end of the outlet tube to keep the solvent in the GPC column, or close the column outlet stopcock if one is attached. Place a small amount of solvent in the column to minimize the formation of air bubbles at the base of poured column packing.

7.2.1.4 Swirl the bead/solvent slurry to get a homogeneous mixture and, if the wetting was done in a quart bottle, quickly transfer it to a 500 mL separatory funnel with a large bore stopcock. Drain the excess methylene chloride directly into the waste beaker, and then start draining the slurry into the column by placing the separatory funnel tip against the column wall. This will help to minimize bubble formation. Swirl occasionally to keep the slurry homogeneous. Drain enough to fill the column. Place the tubing from the column outlet into a waste beaker below the column, open the stopcock (if attached) and allow the excess solvent to drain. Raise the tube to stop the flow and close the stopcock when the top of the gel begins to look dry. Add additional methylene chloride to just rewet the gel.

7.2.1.5 Wipe any remaining beads and solvent from the inner walls of the top of the column with a laboratory tissue. Loosen the seal slightly on the other plunger assembly (long plunger) and insert it into the column. Make the seal just tight.
enough so that any beads on the glass surface will be pushed forward, but loose enough so that the plunger can be pushed forward.

CAUTION: Do not tighten the seal if beads are between the seal and the glass surface because this can damage the seal and cause leakage.

7.2.1.6 Compress the column as much as possible without applying excessive force. Loosen the seal and gradually pull out the plunger. Rinse and wipe off the plunger. Slurry any remaining beads and transfer them into the column. Repeat Sec. 7.2.1.5 and reinsert the plunger. If the plunger cannot be inserted and pushed in without allowing beads to escape around the seal, continue compression of the beads without tightening the seal, and loosen and remove the plunger as described. Repeat this procedure until the plunger is successfully inserted.

7.2.1.7 Push the plunger until it meets the gel, then compress the column bed about four centimeters.

7.2.1.8 Pack the optional 5 cm column with approximately 5 g of preswelled beads (different guard columns may require different amounts). Connect the guard column to the inlet of the analytical column.

7.2.1.9 Connect the column inlet to the solvent reservoir (reservoir should be placed higher than the top of the column) and place the column outlet tube in a waste container. Placing a restrictor in the outlet tube will force air out of the column more quickly. A restrictor can be made from a piece of capillary stainless steel tubing of 1/16" OD x 10/1000" ID x 2". Pump methylene chloride through the column at a rate of 5 mL/min for one hour.

7.2.1.10 After washing the column for at least one hour, connect the column outlet tube, without the restrictor, to the inlet side of the UV detector. Connect the system outlet to the outlet side of the UV detector. A restrictor (same size as in Sec. 7.2.1.9) in the outlet tube from the UV detector will prevent bubble formation which causes a noisy UV baseline. The restrictor will not effect flow rate. After pumping methylene chloride through the column for an additional 1-2 hours, adjust the inlet bed support plunger until approximately 6-10 psi backpressure is achieved. Push the plunger in to increase pressure or slowly pull outward to reduce pressure.

7.2.1.11 When the GPC column is not to be used for several days, connect the column outlet line to the column inlet to prevent column drying and/or channeling. If channeling occurs, the gel must be removed from the column, reswelled, and repoured as described above. If drying occurs, methylene chloride should be pumped through the column until the observed column pressure is constant and the column appears wet. Always recalibrate after column drying has occurred to verify retention volumes have not changed.

3640A - 9

Revision 1
September 1994
7.2.2 Calibration of the GPC Column

7.2.2.1 Using a 10 mL syringe, load sample loop #1 with calibration solution (Sec. 5.6). With the ABC automated system, the 5 mL sample loop requires a minimum of 8 mL of the calibration solution. Use a firm, continuous pressure to push the sample onto the loop. Switch the valve so that GPC flow is through the UV flow-through cell.

7.2.2.2 Inject the calibration solution and obtain a UV trace showing a discrete peak for each component. Adjust the detector and/or recorder sensitivity to produce a UV trace similar to Figure 2 that meets the following requirements. Differences between manufacturers' cell volumes and detector sensitivities may require a dilution of the calibration solution to achieve similar results. An analytical flow-through detector cell will require a much less concentrated solution than the semi-prep cell, and therefore the analytical cell is not acceptable for use.

7.2.2.3 Following are criteria for evaluating the UV chromatogram for column condition.

7.2.2.3.1 Peaks must be observed, and should be symmetrical, for all compounds in the calibration solution.

7.2.2.3.2 Corn oil and phthalate peaks must exhibit >85% resolution.

7.2.2.3.3 Phthalate and methoxychlor peaks must exhibit >85% resolution.

7.2.2.3.4 Methoxychlor and perylene peaks must exhibit >85% resolution.

7.2.2.3.5 Perylene and sulfur peaks must not be saturated and must exhibit >90% baseline resolution.

7.2.2.3.6 Nitroaromatic compounds are particularly prone to adsorption. For example, 4-nitrophenol recoveries may be low due to a portion of the analyte being discarded after the end of the collection time. Columns should be tested with the semivolatiles matrix spiking solution. GPC elution should continue until after perylene has eluted, or long enough to recover at least 85% of the analytes, whichever time is longer.

7.2.2.4 Calibration for Semivolatiles - Using the information from the UV trace, establish appropriate collect and dump time periods to ensure collection of all target analytes. Initiate column eluate collection just before elution of bis(2-ethylhexyl) phthalate and after the elution of the corn oil. Stop eluate collection shortly after the elution of perylene. Collection should be stopped before sulfur elutes. Use a "wash" time of 10 minutes after the elution of sulfur. Each laboratory is

3640A - 10
Revision 1
September 1994
required to establish its specific time sequences. See Figure 2 for general guidance on retention time. Figure 1 illustrates retention volumes for different classes of compounds.

7.2.2.5 Calibration for Organochlorine Pesticides/PCBs - Determine the elution times for the phthalate, methoxychlor, perylene, and sulfur. Choose a dump time which removes >85% of the phthalate, but collects >95% of the methoxychlor. Stop collection after the elution of perylene, but before sulfur elutes.

7.2.2.6 Verify the flow rate by collecting column eluate for 10 minutes in a graduated cylinder and measure the volume, which should be 45-55 mL (4.5-5.5 mL/min). If the flow rate is outside of this range, corrective action must be taken, as described above. Once the flow rate is within the range of 4.5-5.5 mL/min, record the column pressure (should be 6-10 psi) and room temperature. Changes in pressure, solvent flow rate, and temperature conditions can affect analyte retention times, and must be monitored. If the flow rate and/or column pressure do not fall within the above ranges, a new column should be prepared. A UV trace that does not meet the criteria in Sec. 7.2.2.3 would also indicate that a new column should be prepared. It may be necessary to obtain a new lot of BioBeads if the column fails all the criteria.

7.2.2.7 Reinject the calibration solution after appropriate collect and dump cycles have been set, and the solvent flow and column pressure have been established.

7.2.2.7.1 Measure and record the volume of collected GPC eluate in a graduated cylinder. The volume of GPC eluate collected for each sample extract processed may be used to indicate problems with the system during sample processing.

7.2.2.7.2 The retention times for bis(2-ethylhexyl) phthalate and perylene must not vary more than ±5% between calibrations. If the retention time shift is >5%, take corrective action. Excessive retention time shifts are caused by:

7.2.2.7.2.1 Poor laboratory temperature control or system leaks.

7.2.2.7.2.2 An unstabilized column that requires pumping methylene chloride through it for several more hours or overnight.

7.2.2.7.2.3 Excessive laboratory temperatures, causing outgassing of the methylene chloride.

7.2.2.8 Analyze a GPC blank by loading 5 mL of methylene chloride into the GPC. Concentrate the methylene chloride that passes through the system during the collect cycle using a Kuderna-Danish (KD) evaporator. Analyze the concentrate by whatever detectors will be used for the analysis of future samples.
the solvent, if necessary. If the blank exceeds the estimated quantitation limit of the analytes, pump additional methylene chloride through the system for 1-2 hours. Analyze another GPC blank to ensure the system is sufficiently clean. Repeat the methylene chloride pumping, if necessary.

7.3 Extract Preparation

7.3.1 Adjust the extract volume to 10.0 mL. The solvent extract must be primarily methylene chloride. All other solvents, e.g. 1:1 methylene chloride/acetone, must be concentrated to 1 mL (or as low as possible if a precipitate forms) and diluted to 10.0 mL with methylene chloride. Thoroughly mix the extract before proceeding.

7.3.2 Filter the extract through a 5 micron filter disc by attaching a syringe filter assembly containing the filter disc to a 10 mL syringe. Draw the sample extract through the filter assembly and into the 10 mL syringe. Disconnect the filter assembly before transferring the sample extract into a small glass container, e.g. a 15 mL culture tube with a Teflon lined screw cap. Alternatively, draw the extract into the syringe without the filter assembly. Attach the filter assembly and force the extract through the filter and into the glass container. The latter is the preferred technique for viscous extracts or extracts with a lot of solids. Particulate larger than 5 microns may scratch the valve, which may result in a system leak and cross-contamination of sample extracts in the sample loops. Repair of the damaged valve is quite expensive.

NOTE: Viscosity of a sample extract should not exceed the viscosity of 1:1 water/glycerol. Dilute samples that exceed this viscosity.

7.4 Screening the Extract

7.4.1 Screen the extract to determine the weight of dissolved residue by evaporating a 100 μL aliquot to dryness and weighing the residue. The weight of dissolved residue loaded on the GPC column cannot exceed 0.500 g. Residues exceeding 0.500 g will very likely result in incomplete extract cleanup and contamination of the GPC switching valve (which results in cross-contamination of sample extracts).

7.4.1.1 Transfer 100 μL of the filtered extract from Sec. 7.3.2 to a tared aluminum weighing dish.

7.4.1.2 A suggested evaporation technique is to use a heat lamp. Set up a 250 watt heat lamp in a hood so that it is 8 ± 0.5 cm from a surface covered with a clean sheet of aluminum foil. Surface temperature should be 80-100°C (check temperature by placing a thermometer on the foil and under the lamp). Place the weighing dish under the lamp using tongs. Allow it to stay under the lamp for 1 min. Transfer the weighing dish to an analytical balance or a micro balance and weigh to the nearest 0.1 mg. If the residue weight is less than 10 mg/100 μL, then further weighings are not necessary. If the residue weight is greater than 10 mg/100 μL,
then determine if constant weight has been achieved by placing the weighing dish and residue back under the heat lamp for 2 or more additional 0.5 min. intervals. Reweigh after each interval. Constant weight is achieved when three weights agree within ±10%.

7.4.1.3 Repeat the above residue analysis on a blank and a spike. Add 100 µL of the same methylene chloride used for the sample extraction to a weighing dish and determine residue as above. Add 100 µL of a corn oil spike (5 g/100 mL) to another weighing dish and repeat the residue determination.

7.4.2 A residue weight of 10 mg/100 µL of extract represents 500 mg in 5 mL of extract. Any sample extracts that exceed the 10 mg/100 µL residue weight must be diluted so that the 5 mL loaded on the GPC column does not exceed 0.500 g. When making the dilution, keep in mind that a minimum volume of 8 mL is required when loading the ABC GPC unit. Following is a calculation that may be used to determine what dilution is necessary if the residue exceeds 10 mg.

\[
\text{Y mL taken} = \frac{10 \text{ mL final} \times \frac{10 \text{ mg maximum}}{X \text{ mg of residue}}}{10 \text{ mg/100 µL}}
\]

Example:

\[
\begin{align*}
\text{Y mL taken for dilution} & = \frac{10 \text{ mL final} \times \frac{10 \text{ mg maximum}}{15 \text{ mg of residue}}}{10 \text{ mg/100 µL}} \\
& = 6.7 \text{ mL}
\end{align*}
\]

Therefore, taking 6.7 mL of sample extract from Sec. 7.3.2, and diluting to 10 mL with methylene chloride, will result in 5 mL of diluted extract loaded on the GPC column that contains 0.500 g of residue.

NOTE: This dilution factor must be included in the final calculation of analyte concentrations. In the above example, the dilution factor is 1.5.

7.5 GPC Cleanup

7.5.1 Calibrate the GPC at least once per week following the procedure outlined in Secs. 7.2.2 through 7.2.2.6. Ensure that UV trace requirements, flow rate and column pressure criteria are acceptable. Also, the retention time shift must be <5% when compared to retention times in the last calibration UV trace.

7.5.1.1 If these criteria are not met, try cleaning the column by loading one or more 5 mL portions of butyl chloride and running it through the column. Butyl chloride or 9:1 (v/v) methylene chloride/methanol removes the discoloration and particulate that may have precipitated out of the methylene chloride extracts. Backflushing (reverse flow) with methylene chloride to dislodge particulates may restore lost resolution. If a guard column is being used, replace it with a new one. This may correct

3640A - 13
Revision 1
September 1994
the problem. If column maintenance does not restore acceptable performance, the column must be repacked with new Bio Beads and calibrated.

7.5.2 Draw a minimum of 8 mL of extract (diluted, if necessary, and filtered) into a 10 mL syringe.

7.5.3 Attach the syringe to the turn lock on the injection port. Use firm, continuous pressure to push the sample onto the 5-mL sample loop. If the sample is difficult to load, some part of the system may be blocked. Take appropriate corrective action. If the back pressure is normal (6-10 psi), the blockage is probably in the valve. Blockage may be flushed out of the valve by reversing the inlet and outlet tubes and pumping solvent through the tubes. (This should be done before sample loading.)

NOTE: Approximately 2 mL of the extract remains in the lines between the injection port and the sample loop; excess sample also passes through the sample loop to waste.

7.5.4 After loading a loop, and before removing the syringe from the injection port, index the GPC to the next loop. This will prevent loss of sample caused by unequal pressure in the loops.

7.5.5 After loading each sample loop, wash the loading port with methylene chloride in a PTFE wash bottle to minimize cross-contamination. Inject approximately 10 mL of methylene chloride to rinse the common tubes.

7.5.6 After loading all the sample loops, index the GPC to the 00 position, switch to the "RUN" mode and start the automated sequence. Process each sample using the collect and dump cycle times established in Sec. 7.2.2.

7.5.7 Collect each sample in a 250 mL Erlenmeyer flask, covered with aluminum foil to reduce solvent evaporation, or directly into a Kuderna-Danish evaporator. Monitor sample volumes collected. Changes in sample volumes collected may indicate one or more of the following problems:

7.5.7.1 Change in solvent flow rate, caused by channeling in the column or changes in column pressure.

7.5.7.2 Increase in column operating pressure due to the absorption of particles or gel fines onto either the guard column or the analytical column gel, if a guard column is not used.

7.5.7.3 Leaks in the system or significant variances in room temperature.

7.6 Concentrate the extract by the standard K-D technique (see any of the extraction methods, Sec. 4.2.1 of this chapter). See the determinative methods (Chapter Four, Sec. 4.3) for the final volume.
7.7 It should be remembered that only half of the sample extract is processed by the GPC (5 mL of the 10 mL extract is loaded onto the GPC column), and thus, a dilution factor of 2 (or 2 multiplied by any dilution factor in Sec. 7.4.2) must be used for quantitation of the sample in the determinative method.

8.0 QUALITY CONTROL

8.1 Refer to Chapter One and Method 3600 for specific quality control procedures.

8.2 The analyst should demonstrate that the compound(s) of interest are being quantitatively recovered before applying this method to actual samples.

8.3 For sample extracts that are cleaned up using this method, the associated quality control samples must also be processed through this cleanup method.

9.0 METHOD PERFORMANCE

9.1 Refer to Table 1 for single laboratory performance data.

10.0 REFERENCES

<table>
<thead>
<tr>
<th>Compound</th>
<th>% Rec</th>
<th>% RSD</th>
<th>Ret. Vol. (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acenaphthene</td>
<td>97</td>
<td>2</td>
<td>196-235</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>72</td>
<td>10</td>
<td>196-235</td>
</tr>
<tr>
<td>Acetophenone</td>
<td>94</td>
<td>7</td>
<td>176-215</td>
</tr>
<tr>
<td>2-Acetylaminofluorene</td>
<td>97</td>
<td>2</td>
<td>156-195</td>
</tr>
<tr>
<td>Aldrin</td>
<td>99</td>
<td>9</td>
<td>196-215</td>
</tr>
<tr>
<td>4-Aminobiphenyl</td>
<td>96</td>
<td>7</td>
<td>176-215</td>
</tr>
<tr>
<td>Aniline</td>
<td>93</td>
<td>4</td>
<td>196-235</td>
</tr>
<tr>
<td>Anthracene</td>
<td>89</td>
<td>2</td>
<td>196-235</td>
</tr>
<tr>
<td>Benomyl</td>
<td>131</td>
<td>8</td>
<td>146-195</td>
</tr>
<tr>
<td>Benzenethiol</td>
<td>92</td>
<td>11</td>
<td>196-235</td>
</tr>
<tr>
<td>Benzidine</td>
<td>95</td>
<td>5</td>
<td>176-215</td>
</tr>
<tr>
<td>Benz(a)anthracene</td>
<td>100</td>
<td>3</td>
<td>196-235</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>93</td>
<td>5</td>
<td>196-235</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>93</td>
<td>3</td>
<td>196-235</td>
</tr>
<tr>
<td>Benzo(ghi)perylene</td>
<td>90</td>
<td>6</td>
<td>196-235</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>91</td>
<td>4</td>
<td>196-235</td>
</tr>
<tr>
<td>Benzoic acid</td>
<td>66</td>
<td>7</td>
<td>176-195</td>
</tr>
<tr>
<td>Benzostrichloride</td>
<td>93</td>
<td>7</td>
<td>176-215</td>
</tr>
<tr>
<td>Benzyl alcohol</td>
<td>95</td>
<td>17</td>
<td>176-215</td>
</tr>
<tr>
<td>Benzyl chloride</td>
<td>99</td>
<td>4</td>
<td>176-215</td>
</tr>
<tr>
<td>alpha-BHC</td>
<td>84</td>
<td>13</td>
<td>196-215</td>
</tr>
<tr>
<td>beta-BHC</td>
<td>94</td>
<td>9</td>
<td>196-215</td>
</tr>
<tr>
<td>gamma-BHC</td>
<td>93</td>
<td>4</td>
<td>196-215</td>
</tr>
<tr>
<td>delta-BHC</td>
<td>102</td>
<td>7</td>
<td>216-255</td>
</tr>
<tr>
<td>4-Bromophenyl phenyl ether</td>
<td>93</td>
<td>1</td>
<td>176-215</td>
</tr>
<tr>
<td>Butyl benzyl phthalate</td>
<td>104</td>
<td>3</td>
<td>136-175</td>
</tr>
<tr>
<td>2-sec-buty1-4,6-dinitrophenol (Dinoseb)</td>
<td>103</td>
<td>18</td>
<td>176-195</td>
</tr>
<tr>
<td>Carbazole</td>
<td>99</td>
<td>5</td>
<td>196-255</td>
</tr>
<tr>
<td>Carbazol1</td>
<td>131</td>
<td>8</td>
<td>146-195</td>
</tr>
<tr>
<td>alpha-Chlordane</td>
<td>97</td>
<td>2</td>
<td>196-235</td>
</tr>
<tr>
<td>gamma-Chlordane</td>
<td>93</td>
<td>2</td>
<td>196-215</td>
</tr>
<tr>
<td>4-Chloro-3-methylphenol</td>
<td>87</td>
<td>1</td>
<td>196-255</td>
</tr>
<tr>
<td>4-Chloroaniline</td>
<td>88</td>
<td>3</td>
<td>196-235</td>
</tr>
<tr>
<td>Chlorobenzilate</td>
<td>92</td>
<td>5</td>
<td>176-215</td>
</tr>
<tr>
<td>Bis(2-chloroethoxy)methane</td>
<td>89</td>
<td>1</td>
<td>156-195</td>
</tr>
<tr>
<td>Bis(2-chloroethyl) ether</td>
<td>76</td>
<td>2</td>
<td>156-215</td>
</tr>
<tr>
<td>Bis(2-chloroisopropyl) ether</td>
<td>83</td>
<td>2</td>
<td>156-195</td>
</tr>
<tr>
<td>2-Chloronaphthalene</td>
<td>89</td>
<td>1</td>
<td>196-235</td>
</tr>
<tr>
<td>2-Chlorophenol</td>
<td>90</td>
<td>1</td>
<td>196-215</td>
</tr>
<tr>
<td>3-Chlorophenol</td>
<td>86</td>
<td>3</td>
<td>196-215</td>
</tr>
<tr>
<td>4-Chlorophenol</td>
<td>87</td>
<td>2</td>
<td>196-215</td>
</tr>
<tr>
<td>4-Chlorophenyl phenyl ether</td>
<td>98</td>
<td>2</td>
<td>176-215</td>
</tr>
<tr>
<td>3-Chloropropionitrile</td>
<td>80</td>
<td>5</td>
<td>176-215</td>
</tr>
<tr>
<td>Chrysene</td>
<td>102</td>
<td>1</td>
<td>196-235</td>
</tr>
<tr>
<td>2-Cresol</td>
<td>91</td>
<td>1</td>
<td>196-215</td>
</tr>
<tr>
<td>Compound</td>
<td>% Rec1</td>
<td>%RSD2</td>
<td>Ret. Vol.3 (mL)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>3-Cresol</td>
<td>70</td>
<td>3</td>
<td>196-215</td>
</tr>
<tr>
<td>4-Cresol</td>
<td>88</td>
<td>2</td>
<td>196-215</td>
</tr>
<tr>
<td>Cyclophosphamide</td>
<td>114</td>
<td>10</td>
<td>146-185</td>
</tr>
<tr>
<td>DDD</td>
<td>94</td>
<td>4</td>
<td>196-235</td>
</tr>
<tr>
<td>DDE</td>
<td>94</td>
<td>2</td>
<td>196-235</td>
</tr>
<tr>
<td>DDT</td>
<td>96</td>
<td>6</td>
<td>176-215</td>
</tr>
<tr>
<td>Di-n-butyl phthalate</td>
<td>104</td>
<td>3</td>
<td>136-175</td>
</tr>
<tr>
<td>Diallate</td>
<td>97</td>
<td>6</td>
<td>156-175</td>
</tr>
<tr>
<td>Dibeno(a,e)pyrene</td>
<td>94</td>
<td>10</td>
<td>216-235</td>
</tr>
<tr>
<td>Dibenzo(a,i)pyrene</td>
<td>99</td>
<td>8</td>
<td>216-235</td>
</tr>
<tr>
<td>Dibenz(a,j)acridine</td>
<td>117</td>
<td>9</td>
<td>176-195</td>
</tr>
<tr>
<td>Dibenz(a,h)anthracene</td>
<td>92</td>
<td>5</td>
<td>196-235</td>
</tr>
<tr>
<td>Dibenzofuran</td>
<td>94</td>
<td>1</td>
<td>176-235</td>
</tr>
<tr>
<td>Dibenzothiophene</td>
<td>94</td>
<td>3</td>
<td>196-235</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td>83</td>
<td>2</td>
<td>176-215</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>121</td>
<td>8</td>
<td>196-215</td>
</tr>
<tr>
<td>trans-1,4-Dichloro-2-butene</td>
<td>107</td>
<td>6</td>
<td>176-195</td>
</tr>
<tr>
<td>cis-1,4-Dichloro-2-butene</td>
<td>106</td>
<td>6</td>
<td>176-215</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>81</td>
<td>1</td>
<td>196-235</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>81</td>
<td>1</td>
<td>196-235</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>81</td>
<td>1</td>
<td>196-235</td>
</tr>
<tr>
<td>3,3'-Dichlorobenzidine</td>
<td>98</td>
<td>3</td>
<td>176-215</td>
</tr>
<tr>
<td>2,6-Dichlorophenol</td>
<td>86</td>
<td>3</td>
<td>196-215</td>
</tr>
<tr>
<td>2,4-Dichlorophenoxyacetic acid (2,4-D)</td>
<td>80</td>
<td>NA</td>
<td>76-215</td>
</tr>
<tr>
<td>2,4-Dichlorophenol</td>
<td>87</td>
<td>2</td>
<td>96-215</td>
</tr>
<tr>
<td>2,4-Dichlorotoluene</td>
<td>70</td>
<td>9</td>
<td>196-235</td>
</tr>
<tr>
<td>1,3-Dichloro-2-propanol</td>
<td>73</td>
<td>13</td>
<td>176-215</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>100</td>
<td>5</td>
<td>196-215</td>
</tr>
<tr>
<td>Diethyl phthalate</td>
<td>103</td>
<td>3</td>
<td>136-195</td>
</tr>
<tr>
<td>Dimethoate</td>
<td>79</td>
<td>15</td>
<td>146-185</td>
</tr>
<tr>
<td>3,3'-Dimethoxybenzidine*</td>
<td>15</td>
<td>11</td>
<td>156-195</td>
</tr>
<tr>
<td>Dimethyl phthalate</td>
<td>100</td>
<td>1</td>
<td>156-195</td>
</tr>
<tr>
<td>p-Dimethylaminoazobenzene</td>
<td>96</td>
<td>1</td>
<td>176-215</td>
</tr>
<tr>
<td>7,12-Dimethyl-benz(a)anthracene</td>
<td>77</td>
<td>1</td>
<td>176-215</td>
</tr>
<tr>
<td>2,4-Dimethylphenol</td>
<td>93</td>
<td>2</td>
<td>176-215</td>
</tr>
<tr>
<td>3,3'-Dimethylbenzidine</td>
<td>93</td>
<td>2</td>
<td>156-215</td>
</tr>
<tr>
<td>4,6-Dinitro-o-cresol</td>
<td>100</td>
<td>1</td>
<td>156-195</td>
</tr>
<tr>
<td>1,3-Dinitrobenzene</td>
<td>99</td>
<td>2</td>
<td>156-195</td>
</tr>
<tr>
<td>2,4-Dinitrophenol</td>
<td>118</td>
<td>7</td>
<td>176-195</td>
</tr>
<tr>
<td>2,4-Dinitrotoluene</td>
<td>93</td>
<td>4</td>
<td>156-195</td>
</tr>
<tr>
<td>2,6-Dinitrotoluene</td>
<td>101</td>
<td>2</td>
<td>156-175</td>
</tr>
<tr>
<td>Diphenylamine</td>
<td>95</td>
<td>6</td>
<td>176-235</td>
</tr>
<tr>
<td>Diphenyl ether</td>
<td>67</td>
<td>12</td>
<td>196-215</td>
</tr>
<tr>
<td>1,2-Diphenylhydrazine</td>
<td>92</td>
<td>1</td>
<td>176-215</td>
</tr>
<tr>
<td>Disulfoton</td>
<td>81</td>
<td>15</td>
<td>146-165</td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td>94</td>
<td>2</td>
<td>176-195</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>99</td>
<td>8</td>
<td>176-215</td>
</tr>
<tr>
<td>Compound</td>
<td>% Rec</td>
<td>%RSD</td>
<td>Ret. Vol. (mL)</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>92</td>
<td>6</td>
<td>196-215</td>
</tr>
<tr>
<td>Endrin</td>
<td>95</td>
<td>6</td>
<td>196-215</td>
</tr>
<tr>
<td>Endrin aldehyde</td>
<td>97</td>
<td>1</td>
<td>176-215</td>
</tr>
<tr>
<td>Endrin ketone</td>
<td>94</td>
<td>4</td>
<td>176-215</td>
</tr>
<tr>
<td>Ethyl methane sulfonate</td>
<td>62</td>
<td>7</td>
<td>176-235</td>
</tr>
<tr>
<td>Ethyl methacrylate</td>
<td>126</td>
<td>7</td>
<td>176-195</td>
</tr>
<tr>
<td>Bis(2-ethylhexyl) phthalate</td>
<td>101</td>
<td>1</td>
<td>120-145</td>
</tr>
<tr>
<td>Famphur</td>
<td>99</td>
<td>NA</td>
<td>126-165</td>
</tr>
<tr>
<td>Fluorene</td>
<td>95</td>
<td>1</td>
<td>176-235</td>
</tr>
<tr>
<td>Fluoranthen</td>
<td>94</td>
<td>1</td>
<td>196-235</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>85</td>
<td>2</td>
<td>195-215</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>91</td>
<td>11</td>
<td>156-195</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>108</td>
<td>2</td>
<td>196-235</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>86</td>
<td>2</td>
<td>176-215</td>
</tr>
<tr>
<td>Hexachlorocyclopentadiene</td>
<td>89</td>
<td>3</td>
<td>176-215</td>
</tr>
<tr>
<td>Hexachloroethane</td>
<td>85</td>
<td>1</td>
<td>196-235</td>
</tr>
<tr>
<td>Hexachloropropene</td>
<td>91</td>
<td>2</td>
<td>196-235</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>79</td>
<td>13</td>
<td>216-255</td>
</tr>
<tr>
<td>Isodrin</td>
<td>98</td>
<td>5</td>
<td>196-235</td>
</tr>
<tr>
<td>Isophorone</td>
<td>68</td>
<td>7</td>
<td>156-195</td>
</tr>
<tr>
<td>cis-Isosafrole</td>
<td>90</td>
<td>4</td>
<td>176-215</td>
</tr>
<tr>
<td>trans-Isosafrole</td>
<td>88</td>
<td>16</td>
<td>156-195</td>
</tr>
<tr>
<td>Kepone</td>
<td>102</td>
<td>NA</td>
<td>196-235</td>
</tr>
<tr>
<td>Malononitrile</td>
<td>111</td>
<td>9</td>
<td>156-195</td>
</tr>
<tr>
<td>Merphos</td>
<td>93</td>
<td>12</td>
<td>126-165</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>94</td>
<td>6</td>
<td>156-195</td>
</tr>
<tr>
<td>3-Methylcholanthrene</td>
<td>74</td>
<td>12</td>
<td>176-195</td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td>67</td>
<td>6</td>
<td>196-215</td>
</tr>
<tr>
<td>Methyl parathion</td>
<td>84</td>
<td>13</td>
<td>146-185</td>
</tr>
<tr>
<td>4,4'-Methylene-bis(2-chloroaniline)</td>
<td>96</td>
<td>1</td>
<td>176-215</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>95</td>
<td>7</td>
<td>196-215</td>
</tr>
<tr>
<td>1,4-Naphthoquinone</td>
<td>73</td>
<td>7</td>
<td>176-215</td>
</tr>
<tr>
<td>2-Naphthylamine</td>
<td>94</td>
<td>8</td>
<td>196-235</td>
</tr>
<tr>
<td>1-Naphthylamine</td>
<td>96</td>
<td>6</td>
<td>196-235</td>
</tr>
<tr>
<td>5-Nitro-o-toluidine</td>
<td>77</td>
<td>2</td>
<td>176-195</td>
</tr>
<tr>
<td>2-Nitroaniline</td>
<td>96</td>
<td>8</td>
<td>176-215</td>
</tr>
<tr>
<td>3-Nitroaniline</td>
<td>96</td>
<td>2</td>
<td>176-215</td>
</tr>
<tr>
<td>4-Nitroaniline</td>
<td>103</td>
<td>8</td>
<td>176-215</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>86</td>
<td>2</td>
<td>176-195</td>
</tr>
<tr>
<td>2-Nitrophenol</td>
<td>95</td>
<td>3</td>
<td>176-195</td>
</tr>
<tr>
<td>4-Nitrophenol</td>
<td>77</td>
<td>3</td>
<td>196-215</td>
</tr>
<tr>
<td>N-Nitroso-di-n-butylamine</td>
<td>89</td>
<td>4</td>
<td>156-175</td>
</tr>
<tr>
<td>N-Nitrosodiethanolamine</td>
<td>104</td>
<td>3</td>
<td>146-185</td>
</tr>
<tr>
<td>N-Nitrosodiethylamine</td>
<td>94</td>
<td>2</td>
<td>156-175</td>
</tr>
<tr>
<td>N-Nitrosodimethylamine</td>
<td>86</td>
<td>13</td>
<td>156-195</td>
</tr>
<tr>
<td>N-Nitrosodiphenylamine</td>
<td>99</td>
<td>2</td>
<td>156-195</td>
</tr>
<tr>
<td>N-Nitrosodi-n-propylamine</td>
<td>85</td>
<td>4</td>
<td>156-175</td>
</tr>
</tbody>
</table>
TABLE 1 (continued)

<table>
<thead>
<tr>
<th>Compound</th>
<th>% Rec</th>
<th>%RSD</th>
<th>Ret. Vol. (^3) (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-Nitrosomethylethylamine</td>
<td>83</td>
<td>7</td>
<td>156-175</td>
</tr>
<tr>
<td>N-Nitrosomorpholine</td>
<td>86</td>
<td>4</td>
<td>156-195</td>
</tr>
<tr>
<td>N-Nitrosopiperidine</td>
<td>84</td>
<td>4</td>
<td>156-195</td>
</tr>
<tr>
<td>N-Nitrosopyrrolidine</td>
<td>92</td>
<td>1</td>
<td>156-175</td>
</tr>
<tr>
<td>Di-n-octyl phthalate</td>
<td>83</td>
<td>4</td>
<td>120-156</td>
</tr>
<tr>
<td>Parathion</td>
<td>109</td>
<td>14</td>
<td>146-170</td>
</tr>
<tr>
<td>Pentachlorobenzene</td>
<td>95</td>
<td>2</td>
<td>196-235</td>
</tr>
<tr>
<td>Pentachloroethane</td>
<td>74</td>
<td>1</td>
<td>196-235</td>
</tr>
<tr>
<td>Pentachloronitrobenzene (PCNB)</td>
<td>91</td>
<td>8</td>
<td>156-195</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>102</td>
<td>1</td>
<td>196-215</td>
</tr>
<tr>
<td>Phenacetin</td>
<td>100</td>
<td>3</td>
<td>156-195</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>94</td>
<td>2</td>
<td>196-235</td>
</tr>
<tr>
<td>Phenol</td>
<td>83</td>
<td>2</td>
<td>156-195</td>
</tr>
<tr>
<td>1,2-Phenylenediamine</td>
<td>91</td>
<td>1</td>
<td>196-215</td>
</tr>
<tr>
<td>Phorate</td>
<td>74</td>
<td>NA</td>
<td>116-135</td>
</tr>
<tr>
<td>2-Picoline</td>
<td>99</td>
<td>14</td>
<td>156-215</td>
</tr>
<tr>
<td>Pronamide</td>
<td>105</td>
<td>15</td>
<td>156-195</td>
</tr>
<tr>
<td>Pyrene</td>
<td>98</td>
<td>2</td>
<td>215-235</td>
</tr>
<tr>
<td>Resorcinol</td>
<td>70</td>
<td>6</td>
<td>196-215</td>
</tr>
<tr>
<td>Safrole</td>
<td>93</td>
<td>1</td>
<td>176-215</td>
</tr>
<tr>
<td>Streptozotocin(^a)</td>
<td>6</td>
<td>48</td>
<td>225-245</td>
</tr>
<tr>
<td>1,2,4,5-Tetrachlorobenzene</td>
<td>96</td>
<td>2</td>
<td>196-235</td>
</tr>
<tr>
<td>2,3,5,6-Tetrachloro-nitrobenzene</td>
<td>85</td>
<td>9</td>
<td>176-215</td>
</tr>
<tr>
<td>2,3,4,6-Tetrachlorophenol</td>
<td>95</td>
<td>1</td>
<td>196-215</td>
</tr>
<tr>
<td>2,3,5,6-Tetrachlorophenol</td>
<td>96</td>
<td>7</td>
<td>196-215</td>
</tr>
<tr>
<td>Tetraethyl dithiopyrophosphate (Sulfotep)</td>
<td>89</td>
<td>14</td>
<td>116-135</td>
</tr>
<tr>
<td>Thiosemicarbazide</td>
<td>74</td>
<td>3</td>
<td>146-185</td>
</tr>
<tr>
<td>2-Toluidine</td>
<td>92</td>
<td>3</td>
<td>176-235</td>
</tr>
<tr>
<td>4-Toluidine</td>
<td>87</td>
<td>8</td>
<td>176-235</td>
</tr>
<tr>
<td>Thiourea, 1-(o-chlorophenyl)</td>
<td>75</td>
<td>11</td>
<td>166-185</td>
</tr>
<tr>
<td>Toluene-2,4-diamine</td>
<td>69</td>
<td>7</td>
<td>176-215</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>87</td>
<td>1</td>
<td>196-235</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>89</td>
<td>1</td>
<td>196-235</td>
</tr>
<tr>
<td>2,4,5-Trichlorophenol</td>
<td>77</td>
<td>1</td>
<td>216-235</td>
</tr>
<tr>
<td>2,4,6-Trichlorophenol</td>
<td>95</td>
<td>1</td>
<td>216-235</td>
</tr>
<tr>
<td>2,4,5-Trichlorophenoxyacetic acid (2,4,5-T)</td>
<td>71</td>
<td>23</td>
<td>156-235</td>
</tr>
<tr>
<td>2,4,5-Trichlorophenoxypropionic acid</td>
<td>67</td>
<td>NA</td>
<td>216-215</td>
</tr>
<tr>
<td>Warfarin</td>
<td>94</td>
<td>2</td>
<td>166-185</td>
</tr>
</tbody>
</table>

\(^a\) Not an appropriate analyte for this method.

\(^1\) The percent recovery is based on an average of three recovery values.

\(^2\) The % relative standard deviation is determined from three recovery values.

\(^3\) These Retention Volumes are for guidance only as they will differ from column to column and from system to system.

NA = Not applicable, recovery presented as the average of two determinations.
Figure 1
GPC RETENTION VOLUME OF CLASSES OF ANALYTES

- PAH's
- CHLOROBENZENES
- NITROSAMINES, NITROAROMATICs
- AROMATIC AMINES
- NITROPHENOLS
- CHLOROPHENOLS
- ORGANOCHLORINE PESTICIDES/PCB's
- HERBICIDES (8150)
- ORGANOPHOSPHATE PESTICIDES
- CORN OIL
- PCP

TIME (minutes)

C - Collect

Revision 1
September 1994
Figure 2
UV CHROMATOGRAM OF THE CALIBRATION SOLUTION

Injection 5 mLs on column

0 minutes

Corn oil 25 mg/mL

15 minutes

Bis(2-ethylhexyl) phthalate 1.0 mg/mL

30 minutes

Methoxychlor 0.2 mg/mL

45 minutes

Perylene 0.02 mg/mL

Sulfur 0.08 mg/mL

700 mm X25 mm column
70 g Bio-Beads SX-3
Bed length = 490 mm
CH₂Cl₂ at 5.0 mL/min
254 nm

60 minutes

3640A - 21
Revision 1
September 1994
7.1 Ensure ambient temp. consistent throughout GPC run.

7.2 GPC Setup and Calibration

7.2.1 Column Preparation

7.2.1.1 Place Bio Beads and MeCl in a container. Swirl and allow beads to swell.

7.2.1.2 Remove column inlet bed support plunger. Position and tighten outlet bed support plunger to column end.

7.2.1.3 Ensure GPC column outlet contains solvent. Place small amount solvent in column to minimize bubble formation.

7.2.1.4 Transfer bead mixture into sep. funnel. Drain excess solvent; drain beads into column. Keep beads wet throughout.

7.2.1.5 Loosen seal on opposite plunger assembly, insert into column.

7.2.1.6 Compress column. Slurry remaining beads and repeat Section 7.2.1.5 and column compression.

7.2.1.7 Compress column bed approximately four cm.

7.2.1.8 Pack option 5 cm. guard column w/ roughly 5 gm. preswelled beads.

7.2.1.9 Connect column inlet to solvent reservoir. Pump MeCl at 5 ml/min. for 1 hr.

7.2.1.10 Connect column outlet to UV-Vis detector. Place restrictor at detector outlet. Run MeCl for additional 1-2 hrs. Compress column bed to provide 6-10 psi backpressure.

7.2.1.11 Connect outlet line to column inlet when column not in use. Repack column when channeling is observed. Assure consistent backpressure when beads are rewetted after drying.
7.2.2 Calibration of the GPC column

7.2.2.1 Load sample loop with calibration solution.

7.2.2.2 Inject calibration soln.; adjust recorder or detector sensitivity to produce similar UV trace as Fig. 2.

7.2.2.3 Evaluation criteria for UV chromatogram.

7.2.2.4 Calibration for Semivolatiles
Use information from UV trace to obtain collect and dump times. Initiate collection before bis(2-ethylhexyl) phthalate, stop after perylene. Stop run before sulfur elutes.

7.2.2.5 Calibration for Organochlorine Pesticides/PCBs
Choose dump time which removes > 85% phthalate, but collects at times > 95% methoxychlor. Stop collection between perylene and sulfur elution.

7.2.2.6 Verify column flow rate and backpressure. Correct inconsistencies when criteria are not met.

7.2.2.7 Reinject calibration soln. when collect and dump cycles are set, and column criteria are met.

7.2.2.7.1 Measure and record volume of GPC eluate.

7.2.2.7.2 Correct for retention time shifts of > +/− 5% for bis(2-ethylhexyl) phthalate and perylene.

7.2.2.8 Inject and analyze GPC blank for column cleanliness. Pump through MeCl as column wash.
7.3 Extract Preparation
- 7.3.1 Adjust extract volume to 10 mL. Primary solvent should be MeCl.
- 7.3.2 Filter extract through 5 micron filter disc/syringe assembly into small glass container.

7.4 Screening the Extract
- 7.4.1 Screen extract by determining residue wt. of 100 μL aliquot.
 - 7.4.1.1 Transfer 100 μL of filtered extract from Section 7.3.2 to tared aluminum weighing dish.
 - 7.4.1.2 Evaporate extract solvent under heating lamp. Weigh residue to nearest 0.1 mg.
 - 7.4.1.3 Repeat residue analysis of Section 7.4.1.2 w/blank and spike sample.
- 7.4.2 Use dilution example to determine necessary dilution when residue wts. > 10mg.

7.5 GPC Cleanup
- 7.5.1 Calibrate GPC weekly. Assure column criteria, UV trace, retention time shift criteria are met.
 - 7.5.1.1 Clean column w/butyl chloride loadings, or replacement of guard column.
 - 7.5.2 Draw 8 mL extract into syringe.
 - 7.5.3 Load sample into injection loop.
 - 7.5.4 Index GPC to next loop to prevent sample loss.
 - 7.5.5 Wash sample port w/MeCl between sample loadings.
 - 7.5.6 At end of loadings, index GPC to 00, switch to "RUN" mode, start automated sequence.
 - 7.5.7 Collect sample into aluminum foil covered Erlenmeyer flask or into Kuderna-Danish evaporator.
- 7.6 Concentrate extract by std. Kuderna-Danish technique.
- 7.7 Note dilution factor of GPC method into final determinations.

Stop
METHOD 3650A

ACID-BASE PARTITION CLEANUP

1.0 SCOPE AND APPLICATION

1.1 Method 3650 was formerly Method 3530 in the second edition of this manual.

1.2 Method 3650 is a liquid-liquid partitioning cleanup method to separate acid analytes, e.g. organic acids and phenols, from base/neutral analytes, e.g. amines, aromatic hydrocarbons, and halogenated organic compounds, using pH adjustment. It may be used for cleanup of petroleum waste prior to analysis or further cleanup (e.g., alumina cleanup). The following compounds can be separated by this method:

<table>
<thead>
<tr>
<th>Compound Name</th>
<th>CAS No.²</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benz(a)anthracene</td>
<td>56-55-3</td>
<td>Base-neutral</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>50-32-8</td>
<td>Base-neutral</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>205-99-2</td>
<td>Base-neutral</td>
</tr>
<tr>
<td>Chlordane</td>
<td>57-74-9</td>
<td>Base-neutral</td>
</tr>
<tr>
<td>Chlorinated dibenzodioxins</td>
<td></td>
<td>Base-neutral</td>
</tr>
<tr>
<td>2-Chlorophenol</td>
<td>95-57-8</td>
<td>Acid</td>
</tr>
<tr>
<td>Chrysene</td>
<td>218-01-9</td>
<td>Base-neutral</td>
</tr>
<tr>
<td>Creosote</td>
<td>8001-58-9</td>
<td>Base-neutral and Acid</td>
</tr>
<tr>
<td>Cresol(s)</td>
<td></td>
<td>Acid</td>
</tr>
<tr>
<td>Dichlorobenzene(s)</td>
<td></td>
<td>Base-neutral</td>
</tr>
<tr>
<td>Dichlorophenoxyacetic acid</td>
<td>94-75-7</td>
<td>Acid</td>
</tr>
<tr>
<td>2,4-Dimethylphenol</td>
<td>105-67-9</td>
<td>Acid</td>
</tr>
<tr>
<td>Dinitrobenzene</td>
<td>25154-54-5</td>
<td>Base-neutral</td>
</tr>
<tr>
<td>4,6-Dinitro-o-cresol</td>
<td>534-52-1</td>
<td>Acid</td>
</tr>
<tr>
<td>2,4-Dinitrotoluene</td>
<td>121-14-2</td>
<td>Base-neutral</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>76-44-8</td>
<td>Base-neutral</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>118-74-1</td>
<td>Base-neutral</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>87-68-3</td>
<td>Base-neutral</td>
</tr>
<tr>
<td>Hexachloroethane</td>
<td>67-72-1</td>
<td>Base-neutral</td>
</tr>
<tr>
<td>Hexachlorocyclopentadiene</td>
<td>77-47-4</td>
<td>Base-neutral</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>91-20-3</td>
<td>Base-neutral</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>98-95-3</td>
<td>Base-neutral</td>
</tr>
<tr>
<td>4-Nitrophenol</td>
<td>100-02-7</td>
<td>Acid</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>87-86-5</td>
<td>Acid</td>
</tr>
<tr>
<td>Phenol</td>
<td>108-95-2</td>
<td>Acid</td>
</tr>
<tr>
<td>Phorate</td>
<td>298-02-2</td>
<td>Base-neutral</td>
</tr>
<tr>
<td>2-Picoline</td>
<td>109-06-8</td>
<td>Base-neutral</td>
</tr>
<tr>
<td>Pyridine</td>
<td>110-86-1</td>
<td>Base-neutral</td>
</tr>
<tr>
<td>Tetrachlorobenzene(s)</td>
<td></td>
<td>Base-neutral</td>
</tr>
<tr>
<td>Tetrachlorophenol(s)</td>
<td></td>
<td>Acid</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>8001-35-2</td>
<td>Base-neutral</td>
</tr>
<tr>
<td>Trichlorophenol(s)</td>
<td></td>
<td>Acid</td>
</tr>
<tr>
<td>2,4,5-TP (Silvex)</td>
<td>93-72-1</td>
<td>Acid</td>
</tr>
</tbody>
</table>

² Chemical Abstract Services Registry Number.

3650A - 1

Revision 1
July 1992
2.0 SUMMARY OF METHOD

2.1 The solvent extract from a prior solvent extraction method is shaken with water that is strongly basic. The acid analytes partition into the aqueous layer, whereas, the basic and neutral compounds stay in the organic solvent. The base/neutral fraction is concentrated and is then ready for further cleanup, if necessary, or analysis. The aqueous layer is acidified and extracted with an organic solvent. This extract is concentrated (if necessary) and is then ready for analysis of the acid analytes.

3.0 INTERFERENCES

3.1 More extensive procedures than those outlined in this method may be necessary for reagent purification.

3.2 A method blank must be run for the compounds of interest prior to use of the method. The interferences must be below the method detection limit before this method is applied to actual samples.

4.0 APPARATUS AND MATERIALS

4.1 Drying column - 20 mm ID Pyrex chromatographic column with Pyrex glass wool at bottom, or equivalent.

NOTE: Fritted glass discs are difficult to clean after highly contaminated extracts have been passed through them. Columns without frits are recommended. Use a small pad of Pyrex glass wool to retain the adsorbent. Prewash the glass wool pad with 50 mL of acetone followed by 50 mL of elution solvent prior to packing the column with adsorbent.

4.2 Kuderna-Danish (K-D) apparatus

4.2.1 Concentrator tube - 10 mL graduated (Kontes K570050-1025 or equivalent). A ground glass stopper is used to prevent evaporation of the extracts.

4.2.2 Evaporation flask - 500 mL (K-570001-0500 or equivalent). Attach to concentrator tube with springs, clamps, or equivalent.

4.2.3 Snyder column - Three ball macro (Kontes K-503000-0121 or equivalent).

4.2.4 Snyder column - Two ball micro (Kontes K569001-0219 or equivalent).

4.2.5 Springs - 1/2 inch (Kontes K-662750 or equivalent).

4.3 Vials - Glass, 2 mL capacity with Teflon lined screw-caps or crimp tops.

4.4 Water bath - Heated, concentric ring cover, temperature control of ± 2°C. Use this bath in a hood.

3650A - 2

Revision 1
July 1992
4.5 Boiling chips - Solvent extracted, approximately 10/40 mesh (silicon carbide or equivalent).

4.6 pH indicator paper - pH range including the desired extraction pH.

4.7 Separatory funnel - 125 mL.

4.8 Erlenmeyer flask - 125 mL.

5.0 REAGENTS

5.1 Reagent grade inorganic chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all inorganic reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.

5.2 Organic-free reagent water - All references to water in this method refer to organic-free reagent water, as defined in Chapter One.

5.3 Sodium hydroxide, NaOH, (ION) - Dissolve 40 g of sodium hydroxide in 100 mL of organic-free reagent water.

5.4 Sulfuric acid, H₂SO₄, (1:1 v/v in water) - Slowly add 50 mL H₂SO₄ to 50 mL of organic-free reagent water.

5.5 Sodium sulfate (granular, anhydrous), Na₂SO₄ - Purify by heating at 400°C for 4 hours in a shallow tray, or by precleaning the sodium sulfate with methylene chloride. If the sodium sulfate is precleaned with methylene chloride, a method blank must be analyzed, demonstrating that there is no interference from the sodium sulfate.

5.6 Solvents:

5.6.1 Methylene chloride, CH₂Cl₂ - Pesticide quality or equivalent.

5.6.2 Acetone, CH₃COCH₃ - Pesticide quality or equivalent.

5.6.3 Methanol, CH₃OH - Pesticide quality or equivalent.

5.6.4 Diethyl Ether, C₂H₅OC₂H₅ - Pesticide quality or equivalent. Must be free of peroxides as indicated by test strips (EM Quant, or equivalent). Procedures for removal of peroxides are provided with the test strips. After cleanup, 20 mL of ethyl alcohol preservative must be added to each liter of ether.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1 See the introductory material to this chapter, Organic Analytes, Section 4.1.

3650A - 3
Revision 1
July 1992
7.0 PROCEDURE

7.1 Place 10 mL of the solvent extract from a prior extraction procedure into a 125 mL separatory funnel.

7.2 Add 20 mL of methylene chloride to the separatory funnel.

7.3 Slowly add 20 mL of prechilled organic-free reagent water which has been previously adjusted to a pH of 12-13 with 10N sodium hydroxide.

7.4 Seal and shake the separatory funnel for at least 2 minutes with periodic venting to release excess pressure.

NOTE: Methylene chloride creates excessive pressure very rapidly; therefore, initial venting should be done immediately after the separatory funnel has been sealed and shaken once. The separatory funnel should be vented into a hood to prevent unnecessary exposure of the analyst to the organic vapor.

7.5 Allow the organic layer to separate from the aqueous phase for a minimum of 10 minutes. If the emulsion interface between layers is more than one-third the size of the solvent layer, the analyst must employ mechanical techniques to complete the phase separation. The optimum technique depends upon the sample, and may include stirring, filtration of the emulsion through glass wool, centrifugation, or other physical methods.

7.6 Separate the aqueous phase and transfer it to a 125 mL Erlenmeyer flask. Repeat the extraction two more times using 20 mL aliquots of dilute sodium hydroxide (pH 12-13). Combine the aqueous extracts.

7.7 Water-soluble organic acids and phenols will be primarily in the aqueous phase. Base/neutral analytes will be in the methylene chloride. If the analytes of interest are only in the aqueous phase, discard the methylene chloride and proceed to Section 7.8. If the analytes of interest are only in the methylene chloride, discard the aqueous phase and proceed to Section 7.10.

7.8 Externally cool the 125 mL Erlenmeyer flask with ice while adjusting the aqueous phase to a pH of 1-2 with sulfuric acid (1:1). Quantitatively transfer the cool aqueous phase to a clean 125 mL separatory funnel. Add 20 mL of methylene chloride to the separatory funnel and shake for at least 2 minutes. Allow the methylene chloride to separate from the aqueous phase and collect the methylene chloride in an Erlenmeyer flask.

7.9 Add 20 mL of methylene chloride to the separatory funnel and extract at pH 1-2 a second time. Perform a third extraction in the same manner combining the extracts in the Erlenmeyer flask.

7.10 Assemble a Kuderna-Danish (K-D) concentrator (if necessary) by attaching a 10 mL concentrator tube to a 500 mL evaporation flask.

7.11 Dry both acid and base/neutral fractions by passing them through a drying column containing about 10 cm of anhydrous sodium sulfate. Collect the dried fractions in K-D concentrators. Rinse the Erlenmeyer flasks which
contained the solvents and the columns with 20 mL of methylene chloride to complete the quantitative transfer.

7.12 Concentrate both acid and base/neutral fractions as follows: Add one or two boiling chips to the flask and attach a three ball macro-Snyder column. Prewet the Snyder column by adding about 1 mL of methylene chloride to the top of the column. Place the K-D apparatus on a hot water bath (80-90°C) so that the concentrator tube is partially immersed in the warm water. Adjust the vertical position of the apparatus and the water temperature as required to complete the concentration in 15-20 minutes. At the proper rate of distillation, the balls of the column will actively chatter but the chambers will not flood. When the apparent volume of liquid reaches 1 mL, remove the K-D apparatus from the water bath and allow it to cool. Remove the Snyder column and rinse the flask and its lower joints into the concentrator tube with 1-2 mL of methylene chloride. Concentrate the extract to the final volume using either the micro-Snyder column technique (7.12.1) or nitrogen blowdown technique (7.12.2).

7.12.1 Micro-Snyder Column Technique

7.12.1.1 Add another one or two boiling chips to the concentrator tube and attach a two ball micro-Snyder column. Prewet the column by adding 0.5 mL of methylene chloride to the top of the column. Place the K-D apparatus in a hot water bath (80-90°C) so that the concentrator tube is partially immersed in the hot water. Adjust the vertical position of the apparatus and the water temperature as required to complete the concentration in 5-10 minutes. At the proper rate of distillation the balls of the column will actively chatter but the chambers will not flood. When the apparent volume of the liquid reaches 0.5 mL, remove the K-D apparatus and allow it to cool. Remove the Snyder column and rinse the flask and its lower joints into the concentrator tube with 0.2 mL of methylene chloride. Adjust the final volume to 1 mL with methylene chloride.

7.12.2 Nitrogen Blowdown Technique

7.12.2.1 Place the concentrator tube in a warm water bath (35°C) and evaporate the solvent volume to 1.0-2.0 mL using a gentle stream of clean, dry nitrogen (filtered through a column of activated carbon).

CAUTION: Do not use plasticized tubing between the carbon trap and the sample.

7.12.2.2 The internal wall of the concentrator tube must be rinsed down several times with the appropriate solvent during the operation. During evaporation, the tube solvent level must be positioned to avoid condensation water. Under normal procedures, the extract must not be allowed to become dry.

CAUTION: When the volume of solvent is reduced below 1 mL, semivolatile analytes may be lost.

7.13 The acid fraction is now ready for analysis. If the base/neutral
fraction requires further cleanup by the alumina column cleanup for petroleum waste (Method 3611), the solvent may have to be changed to hexane. If a solvent exchange is required, momentarily remove the Snyder column, add approximately 5 mL of the exchange solvent and a new boiling chip, and reattach the Snyder column. Concentrate the extract as described in Section 7.12.1.1, raising the temperature of the water bath, if necessary, to maintain proper distillation. When the apparent volume again reaches 1 mL, remove the K-D apparatus from the water bath and allow it to drain and cool for at least 10 minutes. Repeat the exchange 2 more times. If no further cleanup of the base/neutral extract is required, it is also ready for analysis.

8.0 QUALITY CONTROL

8.1 Refer to Chapter One for general quality control procedures and Method 3600 for cleanup procedures.

8.2 The analyst must demonstrate that the compounds of interest are being quantitatively recovered before applying this method to actual samples.

8.3 For samples that are cleaned using this method, the associated quality control samples must be processed through this cleanup method.

9.0 METHOD PERFORMANCE

9.1 Refer to the determinative methods for performance data.

10.0 REFERENCES

METHOD 3650A
(Continued)

7.11 Dry extracts, collect extracts in K-D concentrator, rinse flask with methylene chloride

7.12 Concentrate both fractions

7.13 Is further cleanup needed for base-neutral extract? Yes

7.14 Exchange solvent

No

Analyze fractions by appropriate determinative method.
1.0 SCOPE AND APPLICATION

1.1 Elemental sulfur is encountered in many sediment samples (generally specific to different areas in the country), marine algae, and some industrial wastes. The solubility of sulfur in various solvents is very similar to the organochlorine and organophosphorus pesticides. Therefore, the sulfur interference follows along with the pesticides through the normal extraction and cleanup techniques. In general, sulfur will usually elute entirely in Fraction 1 of the Florisil cleanup (Method 3620).

1.2 Sulfur will be quite evident in gas chromatograms obtained from electron capture detectors, flame photometric detectors operated in the sulfur or phosphorous mode, and Coulson electrolytic conductivity detectors in the sulfur mode. If the gas chromatograph is operated at the normal conditions for pesticide analysis, the sulfur interference can completely mask the region from the solvent peak through Aldrin.

1.3 Three techniques for the elimination of sulfur are detailed within this method: (1) the use of copper powder; (2) the use of mercury; and (3) the use of tetrabutylammonium sulfite. Tetrabutylammonium sulfite causes the least amount of degradation of a broad range of pesticides and organic compounds, while copper and mercury may degrade organophosphorus and some organochlorine pesticides.

2.0 SUMMARY OF METHOD

2.1 The sample to undergo cleanup is mixed with either copper, mercury, or tetrabutylammonium (TBA) sulfite. The mixture is shaken and the extract is removed from the sulfur cleanup reagent.

3.0 INTERFERENCES

3.1 Removal of sulfur using copper:

3.1.1 The copper must be very reactive. Therefore, all oxides of copper must be removed so that the copper has a shiny, bright appearance.

3.1.2 The sample extract must be vigorously agitated with the reactive copper for at least one minute.

4.0 APPARATUS AND MATERIALS

4.1 Mechanical shaker or mixer - Vortex Genie or equivalent.

4.2 Pipets, disposable - Pasteur type.
4.3 Centrifuge tubes, calibrated - 12 mL.

4.4 Glass bottles or vials - 10 mL and 50 mL, with Teflon-lined screw caps or crimp tops.

4.5 Kuderna-Danish (K-D) apparatus.

4.5.1 Concentrator tube - 10 mL graduated (Kontes K-570050-1025 or equivalent). A ground glass stopper is used to prevent evaporation of extracts.

4.5.2 Evaporation flask - 500 mL (Kontes K-570001-500 or equivalent). Attach to concentrator tube with springs, clamps, or equivalent.

4.5.3 Snyder column - Three ball macro (Kontes K-503000-0121 or equivalent).

4.5.4 Snyder column - Two ball micro (Kontes K-569001-0219 or equivalent).

4.5.5 Springs - 1/2 inch (Kontes K-662750 or equivalent).

5.0 REAGENTS

5.1 Reagent grade chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.

5.2 Organic-free reagent water - All references to water in this method refer to organic-free reagent water, as defined in Chapter One.

5.3 Nitric acid, HNO₃, dilute.

5.4 Solvents

5.4.1 Acetone, CH₃COCH₃ - Pesticide quality or equivalent.

5.4.2 Hexane, C₆H₁₄ - Pesticide quality or equivalent.

5.4.3 2-Propanol, CH₃CH(OH)CH₃ - Pesticide quality or equivalent.

5.5 Copper powder - Remove oxides by treating with dilute nitric acid, rinse with organic-free reagent water to remove all traces of acid, rinse with acetone and dry under a stream of nitrogen. (Copper, fine granular Mallinckrodt 4649 or equivalent).

5.6 Mercury, triple distilled.

5.7 Tetrabutylammonium (TBA) sulfite reagent

3660A - 2

Revision 1
July 1992
5.7.1 Tetrabutylammonium hydrogen sulfate, \(\text{[CH}_3\text{(CH}_2\text{)}_3\text{]}_4\text{NH}_2\text{SO}_4\).}

5.7.2 Sodium sulfite, \(\text{Na}_2\text{SO}_3\).

5.7.3 Prepare reagent by dissolving 3.39 g tetrabutylammonium hydrogen sulfate in 100 mL organic-free reagent water. To remove impurities, extract this solution three times with 20 mL portions of hexane. Discard the hexane extracts, and add 25 g sodium sulfite to the water solution. Store the resulting solution, which is saturated with sodium sulfite, in an amber bottle with a Teflon-lined screw cap. This solution can be stored at room temperature for at least one month.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1 See the introductory material to this chapter, Organic Analytes, Section 4.1.

7.0 PROCEDURE

7.1 Removal of sulfur using copper

7.1.1 Concentrate the sample to exactly 1.0 mL or other known volume. Perform concentration using the Kuderna-Danish (K-D) Technique (Method 3510, Sections 7.10.1 through 7.10.4).

CAUTION: When the volume of solvent is reduced below 1 mL, semivolatile analytes may be lost.

7.1.2 If the sulfur concentration is such that crystallization occurs, centrifuge to settle the crystals, and carefully draw off the sample extract with a disposable pipet leaving the excess sulfur in the K-D tube. Transfer 1.0 mL of the extract to a calibrated centrifuge tube.

7.1.3 Add approximately 2 g of cleaned copper powder (to the 0.5 mL mark) to the centrifuge tube. Mix for at least 1 min on the mechanical shaker.

7.1.4 Separate the extract from the copper by drawing off the extract with a disposable pipet and transfer to a clean vial. The volume remaining still represents 1.0 mL of extract.

NOTE: This separation is necessary to prevent further degradation of the pesticides.

7.2 Removal of sulfur using mercury

NOTE: Mercury is a highly toxic metal. All operations involving mercury should be performed in a hood. Prior to using mercury, it is recommended that the analyst become acquainted with proper handling and cleanup techniques associated with this metal.

7.2.1 Concentrate the sample extract to exactly 1.0 mL or other...
known volume. Perform concentration using the Kuderna-Danish (K-D) Technique (Method 3510, Sections 7.10.1 through 7.10.4).

CAUTION: When the volume of solvent is reduced below 1 mL, semivolatile analytes may be lost.

7.2.2 Pipet 1.0 mL of the extract into a clean concentrator tube or Teflon-sealed vial.

7.2.3 Add one to three drops of mercury to the vial and seal. Agitate the contents of the vial for 15-30 sec. Prolonged shaking (2 hr) may be required. If so, use a mechanical shaker.

7.2.4 Separate the sample from the mercury by drawing off the extract with a disposable pipet and transfer to a clean vial.

7.3 Removal of sulfur using TBA sulfite

7.3.1 Concentrate the sample extract to exactly 1.0 mL or other known volume. Perform concentration using the Kuderna-Danish (K-D) Technique (Method 3510, Sections 7.10.1 through 7.10.4).

CAUTION: When the volume of solvent is reduced below 1 mL, semivolatile analytes may be lost.

7.3.2 Transfer 1.0 mL of the extract to a 50 mL clear glass bottle or vial with a Teflon-lined screw-cap. Rinse the concentrator tube with 1 mL of hexane, adding the rinsings to the 50 mL bottle.

7.3.3 Add 1.0 mL TBA sulfite reagent and 2 mL 2-propanol, cap the bottle, and shake for at least 1 min. If the sample is colorless or if the initial color is unchanged, and if clear crystals (precipitated sodium sulfite) are observed, sufficient sodium sulfite is present. If the precipitated sodium sulfite disappears, add more crystalline sodium sulfite in approximately 0.100 g portions until a solid residue remains after repeated shaking.

7.3.4 Add 5 mL organic free reagent water and shake for at least 1 min. Allow the sample to stand for 5-10 min. Transfer the hexane layer (top) to a concentrator tube and concentrate the extract to approximately 1.0 mL with the micro K-D Technique (Section 7.3.5) or the Nitrogen Blowdown Technique (Section 7.3.6). Record the actual volume of the final extract.

7.3.5 Micro-Snyder Column Technique

7.3.5.1 Add another one or two clean boiling chips to the concentrator tube and attach a two ball micro-Snyder column. Prewet the column by adding about 0.5 mL of hexane to the top of the column. Place the K-D apparatus in a hot water bath so that the concentrator tube is partially immersed in the hot water. Adjust the vertical position of the apparatus and the water temperature, as required, to complete the concentration in 5-10 minutes. At the proper rate of distillation the balls of the column will actively
chatter, but the chambers will not flood. When the apparent volume of liquid reaches 0.5 mL, remove the K-D apparatus from the water bath and allow it to drain and cool for at least 10 minutes. Remove the Snyder column and rinse the flask and its lower joints with about 0.2 mL of solvent and add to the concentrator tube. Adjust the final volume to approximately 1.0 mL with hexane.

7.3.6 Nitrogen Blowdown Technique

7.3.6.1 Place the concentrator tube in a warm water bath (approximately 35°C) and evaporate the solvent volume to 1.0-2.0 mL, using a gentle stream of clean, dry nitrogen (filtered through a column of activated carbon).

CAUTION: Do not use plasticized tubing between the carbon trap and the sample.

7.3.6.2 The internal wall of the tube must be rinsed down several times with the appropriate solvent during the operation. During evaporation, the solvent level in the tube must be positioned to prevent water from condensing into the sample (i.e., the solvent level should be below the level of the water bath). Under normal operating conditions, the extract should not be allowed to become dry.

CAUTION: When the volume of solvent is reduced below 1 mL, semivolatile analytes may be lost.

7.4 Analyze the cleaned up extracts by gas chromatography (see the determinative methods, Section 4.3 of this chapter).

8.0 QUALITY CONTROL

8.1 Refer to Chapter One for specific quality control procedures and Method 3600 for cleanup procedures.

8.2 All reagents should be checked prior to use to verify that interferences do not exist.

9.0 METHOD PERFORMANCE

9.1 Table 1 indicates the effect of using copper and mercury to remove sulfur on the recovery of certain pesticides.

10.0 REFERENCES

1. Loy, E.W., private communication.

Table 1.
EFFECT OF MERCURY AND COPPER ON PESTICIDES

<table>
<thead>
<tr>
<th>Pesticide</th>
<th>Percent Recovery(^a) using:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mercury</td>
</tr>
<tr>
<td>Aroclor 1254</td>
<td>97.10</td>
</tr>
<tr>
<td>Lindane</td>
<td>75.73</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>39.84</td>
</tr>
<tr>
<td>Aldrin</td>
<td>95.52</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>69.13</td>
</tr>
<tr>
<td>DDE</td>
<td>92.07</td>
</tr>
<tr>
<td>DDT</td>
<td>78.78</td>
</tr>
<tr>
<td>BHC</td>
<td>81.22</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>79.11</td>
</tr>
<tr>
<td>Endrin</td>
<td>70.83</td>
</tr>
<tr>
<td>Chlorobenzilate</td>
<td>7.14</td>
</tr>
<tr>
<td>Malathion</td>
<td>0.00</td>
</tr>
<tr>
<td>Diazinon</td>
<td>0.00</td>
</tr>
<tr>
<td>Parathion</td>
<td>0.00</td>
</tr>
<tr>
<td>Ethion</td>
<td>0.00</td>
</tr>
<tr>
<td>Trithion</td>
<td>0.00</td>
</tr>
</tbody>
</table>

\(^a\) Percent recoveries cited are averages based on duplicate analyses for all compounds other than for Aldrin and BHC. For Aldrin, four and three determinations were averaged to obtain the result for mercury and copper, respectively. Recovery of BHC using copper is based on one analysis.
Start

7.0 Choose technique

Copper

7.1 Concentrate sample extract.

7.1.1 Concentrate sample extract.

7.1.2 Centrifuge and draw off sample extract.

Yes

7.1.2 Did crystallization occur?

No

7.1.2 Transfer extract to centrifuge tube.

A

7.2 Concentrate sample extract.

7.2.1 Concentrate sample extract.

7.2.2 Pipet extract into concentrator tube or vial.

7.2.3 Add mercury, agitate.

B

7.4 Concentrate sample extract.

7.4.1 Concentrate sample extract.

7.3.2 Transfer extract to centrifuge tube.

7.3.3 Add TBA-sulfite and 2-propanol, agitate.

C

Revision 1
July 1992
Analyze extract using appropriate determinative procedure.

A

7.1.3 Add copper powder, mix.

B

7.2.4 Separate sample from mercury.

C

7.3.3 Is sample colorless and are there clear crystals?

Yes

7.3.4 Add reagent water, shake, concentrate extract.

No

7.3.3 Add more sodium sulfite, shake.

7.1.4 Separate extract from copper.
METHOD 3665
SULFURIC ACID/PERMANGANATE CLEANUP

1.0 SCOPE AND APPLICATION

1.1 This method is suitable for the rigorous cleanup of sample extracts prior to analysis for polychlorinated biphenyls. This method should be used whenever elevated baselines or overly complex chromatograms prevent accurate quantitation of PCBs. This method cannot be used to cleanup extracts for other target analytes, as it will destroy most organic chemicals including the pesticides Aldrin, Dieldrin, Endrin, Endosulfan (I and II), and Endosulfan sulfate.

2.0 SUMMARY OF METHOD

2.1 An extract is solvent exchanged to hexane, then the hexane is sequentially treated with (1) concentrated sulfuric acid and, if necessary, (2) 5% aqueous potassium permanganate. Appropriate caution must be taken with these corrosive reagents.

2.2 Blanks and replicate analysis samples must be subjected to the same cleanup as the samples associated with them.

2.3 It is important that all the extracts be exchanged to hexane before initiating the following treatments.

3.0 INTERFERENCES

3.1 This technique will not destroy chlorinated benzenes, chlorinated naphthalenes (Halowaxes), and a number of chlorinated pesticides.

4.0 APPARATUS

4.1 Syringe or Class A volumetric pipet, glass; 1.0, 2.0 and 5.0 mL.

4.2 Vials - 1, 2 and 10 mL, glass with Teflon lined screw caps or crimp tops.

4.3 Kuderna-Danish (K-D) apparatus.

4.3.1 Concentrator tube - 10 mL graduated (Kontes K-570050-1025 or equivalent). A ground glass stopper is used to prevent evaporation of extracts.

4.3.2 Evaporation flask - 500 mL (Kontes K-570001-500 or equivalent). Attach to concentrator tube with springs, clamps, or equivalent.
4.3.3 Snyder column - Three ball macro (Kontes K-503000-0121 or equivalent).

4.3.4 Snyder column - Two ball micro (Kontes K-569001-0219 or equivalent).

4.3.5 Springs - 1/2 inch (Kontes K-662750 or equivalent).

4.4 Vortex mixer.

5.0 REAGENTS

5.1 Reagent grade inorganic chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.

5.2 Organic-free reagent water. All references to water in this method refer to organic-free reagent water, as defined in Chapter One.

5.3 Sulfuric acid/Water, \(\text{H}_2\text{SO}_4/\text{H}_2\text{O} \), (1:1, v/v).

5.4 Hexane, \(\text{C}_6\text{H}_{14} \) - Pesticide grade or equivalent.

5.5 Potassium permanganate, \(\text{KMnO}_4 \), 5 percent aqueous solution (w/v).

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1 See the introductory material to this chapter, Organic Analytes, Sec. 4.1.

7.0 PROCEDURE

7.1 Sulfuric acid cleanup

7.1.1 Using a syringe or a volumetric pipet, transfer 1.0 or 2.0 mL of the hexane extract to a 10 mL vial and, in a fume hood, carefully add 5 mL of the 1:1 sulfuric acid/water solution.

7.1.2 The volume of hexane extract used depends on the requirements of the GC autosampler used by the laboratory. If the autosampler functions reliably with 1 mL of sample volume, 1.0 mL of extract should be used. If the autosampler requires more than 1 mL of sample volume, 2.0 mL of extract should be used.

CAUTION: Make sure that there is no exothermic reaction nor evolution of gas prior to proceeding.
7.1.3 Cap the vial tightly and vortex for one minute. A vortex must be visible in the vial.

CAUTION: Stop the vortexing immediately if the vial leaks, AVOID SKIN CONTACT, SULFURIC ACID BURNS.

7.1.4 Allow the phases to separate for at least 1 minute. Examine the top (hexane) layer; it should not be highly colored nor should it have a visible emulsion or cloudiness.

7.1.5 If a clean phase separation is achieved, proceed to Sec. 7.1.8.

7.1.6 If the hexane layer is colored or the emulsion persists for several minutes, remove the sulfuric acid layer from the vial and dispose of it properly. Add another 5 mL of the clean 1:1 sulfuric acid/water.

NOTE: Do not remove any hexane at this stage of the procedure.

7.1.7 Vortex the sample for one minute and allow the phases to separate.

7.1.8 Transfer the hexane layer to a clean 10 mL vial.

7.1.9 Add an additional 1 mL of hexane to the sulfuric acid layer, cap and shake. This second extraction is done to ensure quantitative transfer of the PCBs and Toxaphene.

7.1.10 Remove the second hexane layer and combine with the hexane from Sec. 7.1.8.

7.2 Permanganate cleanup

7.2.1 Add 5 mL of the 5 percent aqueous potassium permanganate solution to the combined hexane fractions from 7.1.10.

CAUTION: Make sure that there is no exothermic reaction nor evolution of gas prior to proceeding.

7.2.2 Cap the vial tightly and vortex for 1 minute. A vortex must be visible in the vial.

CAUTION: Stop the vortexing immediately if the vial leaks. AVOID SKIN CONTACT, POTASSIUM PERMANGANATE BURNS.

7.2.3 Allow the phases to separate for at least 1 minute. Examine the top (hexane) layer, it should not be highly colored nor should it have a visible emulsion or cloudiness.

7.2.4 If a clean phase separation is achieved, proceed to Sec. 7.2.7.
7.2.5 If the hexane layer is colored or the emulsion persists for several minutes, remove the permanganate solution from the vial via a glass pipette and dispose of it properly. Add another 5 mL of the clean aqueous permanganate solution.

NOTE: Do not remove any hexane at this stage of the procedure.

7.2.6 Vortex the sample and allow the phases to separate.

7.2.7 Transfer the hexane layer to a clean 10 mL vial.

7.2.8 Add an additional 1 mL of hexane to the permanganate layer, cap the vial securely and shake. This second extraction is done to ensure quantitative transfer of the PCBs and Toxaphene.

7.2.9 Remove the second hexane layer and combine with the hexane from Sec. 7.2.7.

7.3 Final preparation

7.3.1 Reduce the volume of the combined hexane layers to the original volume (1 or 2 mL) using the Kuderna-Danish Technique (Sec. 7.3.1.1).

7.3.1.1 Add one or two clean boiling chips to the flask and attach a three ball Snyder column. Prewet the Snyder column by adding about 1 mL of hexane to the top of the column. Place the K-D apparatus on a hot water bath (15-20°C above the boiling point of the solvent) so that the concentrator tube is partially immersed in the hot water and the entire lower rounded surface of the flask is bathed with hot vapor. Adjust the vertical position of the apparatus and the water temperature, as required, to complete the concentration in 10-20 minutes. At the proper rate of distillation the balls of the column will actively chatter, but the chambers will not flood. When the apparent volume of liquid reaches 1-2 mL, remove the K-D apparatus from the water bath and allow it to drain and cool for at least 10 minutes.

7.3.1.2 Remove the Snyder column and rinse the flask and its lower joints into the concentrator tube with 1-2 mL of hexane. The extract may be further concentrated by using either the micro Snyder column technique (Sec. 7.3.2) or nitrogen blowdown technique (Sec. 7.3.3).

7.3.2 Micro Snyder Column Technique

7.3.2.1 Add another one or two clean boiling chips to the concentrator tube and attach a two ball micro Snyder column. Prewet the column by adding about 0.5 mL of hexane to the top of the column. Place the K-D apparatus in a hot water bath so that the concentrator tube is partially immersed in the hot water. Adjust the vertical position of the apparatus and the water temperature, as required, to complete the concentration in 5-10 minutes. At the
proper rate of distillation the balls of the column will actively chatter, but the chambers will not flood. When the apparent volume of liquid reaches 0.5 mL, remove the K-D apparatus from the water bath and allow it to drain and cool for at least 10 minutes. Remove the Snyder column and rinse the flask and its lower joints with about 0.2 mL of hexane and add to the concentrator tube. Adjust the final volume to 1.0-2.0 mL, as required, with hexane.

7.3.3 Nitrogen Blowdown Technique

7.3.3.1 Place the concentrator tube in a warm water bath (approximately 35°C) and evaporate the solvent volume to the required level using a gentle stream of clean, dry nitrogen (filtered through a column of activated carbon).

CAUTION: Do not use plasticized tubing between the carbon trap and the sample.

7.3.3.2 The internal wall of the tube must be rinsed down several times with the appropriate solvent during the operation. During evaporation, the solvent level in the tube must be positioned to prevent water from condensing into the sample (i.e., the solvent level should be below the level of the water bath). Under normal operating conditions, the extract should not be allowed to become dry.

7.3.4 Remove any remaining organochlorine pesticides from the extracts using Florisil Column Cleanup (Method 3620) or Silica Gel Cleanup (Method 3630).

7.3.5 The extracts obtained may now be analyzed for the target analytes using the appropriate organic technique(s) (see Sec. 4.3 of this Chapter). If analysis of the extract will not be performed immediately, stopper the concentrator tube and store in a refrigerator. If the extract will be stored longer than 2 days, it should be transferred to a vial with a Teflon lined screw cap or crimp top, and labeled appropriately.

8.0 QUALITY CONTROL

8.1 Refer to Chapter One for specific quality control procedures.

9.0 METHOD PERFORMANCE

9.1 No performance data are currently available.

10.0 REFERENCES

None required.
7.1.1 Carefully combine hexene with 1:1 H2SO4/H2O solution.

7.1.2 Transfer the appropriate volume to vial.

7.1.3 - 7.1.4 Cap, vortex and allow phase separation.

7.1.5 Is phase separation clean? No

7.1.6 Remove and dispose H2SO4 solution, add clean H2SO4 solution.

7.1.8 Transfer hexane layer to clean vial.

7.1.9 Add hexane to H2SO4 layer, cap and shake.

7.1.10 Combine two hexane layers.

7.2.1 Add KMnO4 solution.

7.2.2 - 7.2.3 Cap, vortex, and allow phase separation.

7.2.4 Is phase separation clean? No

7.2.5 Remove and dispose KMnO4 solution. Add clean KMnO4 solution.

7.2.6 Cap, vortex and allow phase separation.

7.2.7 Transfer hexane layer to clean vial.

7.2.8 Add hexane to KMnO4 layer, cap and shake.

7.2.9 Combine two hexane layers.

7.2.10 Combine two hexane layers.

7.3.1 - 7.3.3 Reduce volume using K-D and/or nitrogen blowdown tech.

7.3.4 Use Method 3620 or Method 3630 to further remove contaminants.

7.3.5 Stopper and refrigerate for further analysis.

Stop