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- The United States Department of Energy is developing the Waste Isolation 
Pilot Plant (WIPP) in southeastern New Mexico for the disposal of transuranic 
wastes generated by defense programs. Because changes in climate during the 
next 10,000 years (10 ka) may affect performance of the repository, an 
understanding of long-term climate variability is essential for evaluating 
regulatory compliance. 

Fluctuations in global climate corresponding to glaciation and deglaciation 
of the northern hemisphere have been regular in both frequency and amplitude 
for at least 780 ka. Coolest and wettest conditions in the past have 
occurred at the WIPP during glacial maxima, when the North American ice sheet 
reached its southern limit roughly 1200 ?a north of the WIPP and deflected 
the jet stream southward. Average precipitation in southeastern New Mexico 
during the last glacial maximum 22 to 18 ka before present (BP) was 
approximately twice that of the present. Driest conditions (precipitation 
approximately 90% of present) occurred 6 . 5  to 4.5 ka BP, after the ice sheet 
had retreated to its present location. Wet periods of unknown duration have 
occurred since the retreat of the ice sheet, but none have exceeded glacial 
conditions. Global climate models suggest that anthropogenic climate changes 
(i.e., warming caused by an increased greenhouse effect) will not result in 
an increase in precipitation at the WIPP. The climate of the last glacial 
maximum is therefore suitable for use as a cooler and wetter limit for 
variability during the next 10 ka. 

- 
*Also published in Environmental Management, Vol. 17, No. 1, p. 83-97 (1993) 
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1. Introduction 

The Waste Isolation Pilot Plant (WIPP), located 42 km east of Carlsbad, 
New Mexico (Figure 1). is being evaluated by.the United States Department of 
Energy (DOE) for disposal of transuranic wastes generated since 1970 by 
defense programs. The repository is excavated approximately 655 m below the 
ground surface in bedded halite of the Late Permian Salado Formation, 
deposited approximately 255 million years before the present (255 Ma BP). 

Before the WIPP can be used for long-term disposal of transuranic waste, 
the DOE must demonstrate compliance with the United States Environmental 
Protection Agency's (EPA) Environmental Standards for the Management and 
Disposal of Spent Nuclear Fuel, High-Level and Transuranic Waste (40 CFR 191) 
(U.S. EPA, 1985), hereafter referred to as the standard. Although the 
standard was vacated by a Federal Court of Appeals in 1987 and is undergoing 
revision, by agreement with the State of New Mexico, the DOE is continuing to 
evaluate repository performance with respect to the regulation as first 
promulgated until a new version is available (U.S. DOE and the State of New 
Mexico, 1981, as modified in 1984 and 1987). 

The standard requires that the DOE consider "all significant processes 
and events that may affect the disposal system" during the 10,000 years (10 
ka) following decommissioning. The performance assessment being conducted 
for the DOE by Sandia National Laboratories is therefore examining, among 
other things, the likelihood and consequences of long-term changes in 
climate. Climatic changes have the potential to affect repository 
performance directly, by altering groundwater recharge and flow in the 
region, and indirectly, by changing human land-use patterns in the region. 
Increases in precipitation are of primary concern because they may result in 
increased groundwater flow and, in the event of a breach of the repository, 
increased transport of radionuclides to the accessible environment. 

- 

2. Modern Climate at the WIPP 

At present, the climate at the WIPP is arid to semiarid. Mean annual 
precipitation at the WIPP has been estimated to be between 28 and 34 cm/yr 
(Hunter, 1985). At Carlsbad, 100 m lower than the WIPP, 53-yr (1931-1983) 
annual means for precipitation and temperature are 32 cm/yr and 17.1'C 
(University of New Mexico, 1989). Short-term variation about the annual 
means can be considerable, and historic weather data cannot be used to 
predict long-term climatic shifts. For example, the 105-yr (1878 to 1982) 
precipitation record from Roswell, 135 km northwest of the WIPP and 60 m 
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Figure 1. Location of the WlPP (after Bertram-Howery and Hunter, 1989). 



Long-Term Climate Variability at the WIPP 

higher, shows an annual mean of 27 cm/yr with a high of 8 4  cm/yr and a low of 
11 cm/yr (Hunter, 1985). 

The climate of southeastern New Mexico is monsoonal: most of the 
precipitation falls in late summer, when solar warming of the continent 
creates an atmospheric pressure gradient that draws moist air inland from the 
Gulf of Mexico (Cole, 1975). The coincidence of precipitation and 
temperature maxima is typical of a monsoonal climate (Figure 2 ) .  Much of the 
rain falls during localized and often intense summer thunderstorms, and 
winters are cool and generally dry. Both temperature and precipitation are 
dependent on elevation, and local climates vary with topography. At lower 
elevations throughout the region, including the vicinity of the WIPP, 
potential evaporation greatly exceeds precipitation. Freshwater pan 
evaporation in the region is estimated to exceed 2 7 4  cm/yr (Hunter, 1 9 8 5 ) .  
Surface runoff and infiltration of rainwater into the subsurface are limited. 
Hunter (1985) concluded from a literature review that within the vicinity of 
the WIPP an aver'age of 96 percent of precipitation is lost to 
evapotranspiration. Evapotranspiration values may be significantly higher or 
lower locally. 

3. Climatic Change 

Presently available long-term climate models are incapable of resolution 
on the spatial scales required (e.g., Hansen and others, 1988; Mitchell, 
1989; Houghton and others, 1990). and it is not realistic to predict the 
climate of southeastern New Mexico for the next 10 ka. Instead, this report 
reviews evidence of past climatic changes in the region, and establishes 
limits on future precipitation based on known and modeled past extremes. 
Much of the available paleoclimatic data only record long-term average levels 
of precipitation, and these limits do not reflect the high variability 
apparent in the modern short-term data. The precipitation record presented 
here primarily reflects gradual shifts in long-term mean values. 

A fundamental assumption, analogous to that made by Spaulding (1985) in 
a study of climatic variability at the Nevada Test Site, is that climatic ex- 
tremes of the next 10 ka will not exceed those associated with glaciations 
and deglaciations that have recurred repeatedly in the northern hemisphere 
since the late Pliocene ( 2 . 5  Ma BP). The possibility that human-induced 
changes in the composition of the earth's atmosphere may influence future 
climates complicates projections of this cyclic pattern into the future, but, 
as presently modeled (e.g., Mitche.11, 1989; Houghton and others, 1990), such 
changes do not appear likely to have a negative effect on the performance of 
the WIPP. The highest past precipitation levels in southeastern New Mexico, 

- 
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Figure 2. 
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Clirnatograph showing 30-yr (1951 -1980) monthly precipitation and temperature means 
recorded at the Carlsbad, New Mexico airport, approximately 45 km west of the WlPP and 
50 rn lower (data from NOW, 1989). 
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up to twice those of the present, occurred during full-glacial conditions 
associated with global cooling (e.g., Van Devender and others, 1987; other 
sources cited below). Presently available greenhouse models, however, 
predict average equilibrium global warming of 1.8 to 5.2'C for carbon dioxide 
concentrations twice present levels (Mitchell, 1989; Houghton and other, 
1 9 9 0 ) .  a condition that could delay the start of renewed glaciation. 
Published model predictions of precipitation trends accompanying greenhouse 
warming are less consistent and less reliable than temperature predictions, 
but none suggest significantly higher levels of precipitation in southern New 
Mexico than those of the present (Washington and Meehl, 1984;  Wilson and 
Mitchell, 1987; Schlesinger and Mitchell, 1987; Houghton and others, 1990).  
Because long-term increases in recharge are improbable without increases in 
precipitation, the highest-risk climatic change that will be considered here 
is, therefore, a return to the glacial extremes of the past. 

Data that can be used to interpret paleoclimates in southeastern New 
Mexico and the surrounding region come from a variety of sources, and 
indicate an alternation of arid and subarid to subhumid climates throughout 
the Pleistocene. Prior to 18  ka BP, radiometric dates are relatively scarce, 
and the record is incomplete. From 18  ka BP to the present, however, the 
climatic record is relatively complete and temporally well constrained by 
radiocarbon dates. This report cites extensive floral, faunal, and 
lacustrine data from the region that permit reconstructions of precipitation 
and temperature during the late Pleistocene and Holocene. These data span 
the transition from the last full-glacial maximum to the present interglacial 
period, and, given the global consistency of glacial fluctuations as 
described below, they can be taken to be broadly representative of extremes 
for the entire Pleistocene. 

4. Variability in Global Climate Over the Last 2.5 Million Years 

Core samples of datable marine sediments provide a continuous record 
that reveals as many as 50 glaciation/deglaciation events in the last 2.5 Ma. 
Specifically, correlations have been made between major glacial events and 
variables such as the ratio of 180/160 measured in the remains of calcareous 
foraminifera and past sea-surface temperatures determined from planktonic 
assemblages (Ruddiman and Wright, 1987) .  In addition, glacial cycles have 
been observed in the past composition of the earth's atmosphere preserved in 
polar glacial ice (Langway and others, 1985; Jouzel and others, 1987; Barnola 
and others, 1987) and in a 180/160 record from calcite vein fillings in 

I Nevada (Winograd and others, 1988) .  
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c_ Oxygen isotope ratios from oceanic foraminifera provide the most direct 
evidence, because they reflect past volumes of glacial ice (Imbrie and 
others, 1984). Evaporation fractionates 180 and 160 isotopes in water, 
producing a vapor relatively enriched in 160 and residual seawater relatively 
enriched in 180. Glacial ice sheets store large volumes of 160-enriched 
meteoric water, thereby preventing the remixing of the two isotope fractions 
and significantly altering 6180 values in the world’s oceans .* Foraminifera 
preserve samples of past 6180 values when they extract oxygen from seawater 
and incorporate it into calcareous body parts. Abundant fossil remains 
permit the construction of detailed records such as that shown in Figure 3 ,  
covering the last 780 ka. High positive values of 6180 reflect glacial 
maxima, and negative values reflect warm interglacial periods. Because the 
largest volumes of glacial ice were incorporated in the North American sheet, 
6180 fluctuations can be interpreted directly as a first order record of 
North American glaciation and deglaciation (Mix, 1987; Ruddiman and Wright, 
1987). Because the correlation is quantitative, the isotopic record 
indicates that the most recent glacial event was as severe as any within the 
last 780 ka. It also indicates that the present value is at or near that of 
a glacial minimum. 

- Sea-surface temperature records, although not as closely tied to glacial 
events, show the same alternating pattern. Temperatures at the surface of 
northern hemisphere oceans, as determined from the fossil assemblages of 
planktonic foraminifera1 species, were measurably colder during glaciation 
and warmer during interglacial periods (Ruddiman, 1987). 

Samples from the ice sheets of Greenland and Antarctica and calcite vein 
fillings in Nevada provide independent confirmation of the oceanic data 
(Langway and others, 1985; Jouzel and others, 1987; Barnola and others, 1987; 
Winograd and others, 1988). Glacial ice preserves 6180 and 6D values of the 
precipitation that formed the ice, and, because fractionation of the isotopes 
is temperature dependent, fluctuations can be interpreted quantitatively as 
changes in local mean temperature. Bubbles of air trapped within the ice can 
also be sampled to give a measure of past GO2 concentrations in the 
atmosphere, which, because of the importance of GO2 in the earth’s greenhouse 
effect, correlate well with the isotopic temperature record. Figure 4 shows 

f *  r ‘  

i \ ; i  : 

* By convention, 180/160 ratios are reported as: ... . 
(%60s,ple - 180/160reference ) 

A 
6180 - 1000 X 

180/160reference 
Deuterium/hydrogen ratios (D/H) are similarly reported as 6D values 

6 



Long-Term Climate Variability at the WlPP 

-2.2 

0.0 

2.2 
0 100 200 300 400 500 600 700 800 

4 Time 

(Thousands of Years) 
TRl-6342-302-2 

Foraminiferal 6'80 record of the last 780,000 years. Curve reflects 6'80 variations from 
fwe deep-sea core samples. Data have been normalized, stacked, and smoothed with a 
ninepoint Gaussian filter (Imbrie, and others. 1984). 
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c the 160-ka record of CO2 concentration and temperature as determined from the 
D/H ratio at Vostok in East Antarctica. With some minor discrepancies, the 
two curves reveal the same basic glacial chronology visible in the last 160 
ka of the oceanic 6180 record shown in Figure 3 .  The 6180 record from 50 ka 
to 310 ka BP from calcite vein fillings in Devils Hole, Nevada, reflects 
changes in local surface temperature as well as other, less well quantified, 
factors, including groundwater travel time. This record also shows a 
chronology similar to that of Figure 3 ,  although peaks in the calcite curve 
are shifted toward increasingly older times earlier in the record relative to 
the oceanic curve. The reason for this phase shift, which reaches 28 ka at 
272 ka BP, is not known (Winograd and others, 1988). 

5. Stability of Glacial Cycles 

The causes of glaciation and deglaciation are complex and not fully 
understood (Ruddiman and Wright, 1987), but the strong periodicity of the 
isotopic record indicates that climatic alternations have been systematic in 
the past. Spectral analysis of the foraminifera1 6180 curve for the last 
780 ka shows that within that time the primary control on the periodicity of 
glacial events has been variation in global insolation caused by 
irregularities in the earth's orbit (Figure 5 ) .  Observed periods of 19, 2 3 ,  
41, and 100 ka in the oceanic 6l80 curve correspond to calculated periods of 
northern hemisphere summer insolation minima of 19 and 23 ka related to the 
precession of the earth's axis, 41 ka related to the tilt of earth's axis, 
and 94, 125, and 413 ka related to the eccentricity of the earth's orbit 
(Milankovitch, 1941; Hays and others, 1976; Imbrie and others, 1984; Imbrie, 
1985). Calculations based on astronomical observations indicate that orbital 
parameters have not changed significantly in the last 5 Ma (Berger, 1984), 
and geological evidence suggests they may have been stable for as long as 
300 Ma (Anderson, 1984; Heckel, 1986). 

I 

Longer-term global climatic changes, such as the beginning of the 
present pattern of glaciation and deglaciation 2.5 Ma BP, have been 
attributed to changes in the configuration of the earth's continents, which 
in turn controls both the potential distribution of ice sheets and global 
circulation patterns (e.g.. Crowell and Frakes, 1970; Caputo and Crowell, 
1985; Crowley and others, 1986; Hyde and others, 1990). Continental masses 
move at plate-tectonic rates of centimeters per year, several orders of 
magnitude too l o w  to affect glacial processes within the next 10 ka. 
Vertical uplift or subsidence of large continental regions may also affect 
global climate by changing circulation patterns (e.g., Ruddiman and Kutzbach, 
1989), but, again, maximum uplift rates are at least an order of magnitude 
too low to change present circulation patterns within the next 10 ka. 

9 



24 

20 

16 

12 

8 

4 

0 

Long-Term Climate Variabiltty at me WlPP 

-, 

41 

80 40 20 . 

Period (Thousands of YearslCycle) 
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-- 

The long-term pattern of the cycles of glaciation and deglaciation 
provides the basis for concluding that climatic extremes of the next 10 ka 
will remain within past limits. The relative amplitudes of past glacial 
cycles (Figure 3)  imply that future glaciations will be no more severe than 
the last one. The periodicity of the pattern indicates that although glacial 
minima such as that of the present are relatively brief, glacial advances 
are, in general, slow and the next full maximum will not occur for many tens 
of thousands of years. Predictions about the precise timing of future 
glacial events are not straightforward, however. Higher resolution records, 
such as those available from polar ice cores, show that some glacial advances 
can occur relatively rapidly. Modeling of glacial processes is complicated 
by uncertainties about feedback processes involved in the growth of ice 
sheets, but extrapolation of the isotopic curve of Figure 3 using a 
relatively simple model for nonlinear climate response to insolation change 
suggests that, in the absence of anthropogenic effects, the next full glacial 
maximum could occur in approximately 60 ka (Imbrie and Imbrie, 1980). These 
observations, combined with the climatic data discussed below, justify the 
choice of the late Pleistocene full-glacial climate as a conservative upper 
limit for precipitation during the next 10 ka. 

6. Pleistocene and Holocene Climates of Southeastern New Mexico 

Early and middle Pleistocene paleoclimatic data for southeastern New 
Mexico and the surrounding region are incomplete, and permit neither 
continuous reconstructions of paleoclimates nor direct correlations between 
climate and glaciation prior to the last glacial maximum 22 to 18 ka BP. 
Stratigraphic and pedologic data from several locations (Figure 6), however, 
indicate that cyclical alternation of wetter and drier climates in 
southeastern New Mexico had begun by the early Pleistocene. Fluvial gravels 
in the Gatutia Formation exposed in the Pecos River Valley of eastern New 
Mexico suggest relatively wetter conditions 1.4 Ma BP and again 600 ka BP 
(Bachman, 1987). The Mescalero caliche, exposed locally over much of 
Southeastern New Mexico, has been interpreted as indicating relatively drier 
conditions 510 ka BP (Iambert and Carter, 1987), and loosely dated spring 
deposits in Nash Draw west of the WIPP imply wetter conditions again later in 
the Pleistocene (Bachman, 1981, 1987). The Blackwater Draw Formation of the 
southern High Plains of eastern New Mexico and western Texas, time- 
correlative to both the Gatutia Formation and the Mescalero caliche, contains 
alternating soil and eolian sand horizons that show at least six climatic 
cycles beginning more than 1.4 Ma BP and continuing to the present (Holliday, 
1989a). The duration, frequency, and total number of Pleistocene climatic 
cycles in southeastern New Mexico have not been established. 
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Figure 6. Location map for paleoclimate data. Data from Bachman (1981); Markgraf and others 
(1983); Harris (1987); Pierce (1987); Van Devender and others (1987); Waters (1989); 
Bachhuber (1989); Holliday (1989a); Van Devender (1990): Allen (1991); Phillips and 
others (1992). 
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- Data used to construct the more detailed climatic record for the latest 
Pleistocene and Holocene come from multiple lines of evidence dated primarily 
using carbon-14 techniques. Packrat middens examined at sites throughout the 
southwestern United States, including locations in southeastern New Mexico, 
preserve local plant communities and, in some cases, insect remains (Van 
Devender, 1980, 1990; Van Devender and others, 1984, 1987; Elias, 1987; Elias 
and Van Devender, 1990). Pollen assemblages have been analyzed from 
lacustrine deposits in western New Mexico, western Texas, and other locations 
in the southwestern United States (Martin and Mehringer, 1965; Markgraf and 
others, 1984; Bryant and Holloway, 1985; Van Devender and others, 1987). 
Faunal data come from gastropod assemblages from western Texas (Pierce, 
1987), ostracode assemblages from western New Mexico (Markgraf and others, 
1984; Forester, 1987; Phillips and others, 1992), and vertebrate remains from 
caves in southern New Mexico (Harris, 1987, 1988). Stable-isotope data are 
available from ostracodes in western New Mexico (Phillips and others, 1992) 
and groundwater samples in northwestern New Mexico (Phillips and others, 
1986). Paleo-lake level data are available from sites throughout the 
southwestern United States (Reeves, 1973; Smith and Anderson, 1982; Markgraf 
and others, 1983, 1984; Benson and Thompson, 1987; Holliday and Allen, 1987; 
Bachhuber, 1989; Waters, 1989; Wells and others, 1989; Enzel and others, 
1989; Benson and others, 1990; Allen, 1991). Figure 6 shows the locations of 
key sites discussed here and in the references cited. 

Because decreases in temperature and increases in precipitation produce 
similar environmental changes, not all data cited uniquely require the 
paleoclimatic interpretation presented in this report (Figure 7). For 
example, lake-level increases can, in theory, result solely from decreased 
evaporation at lower temperatures. Interpretations drawn individually from 
each of the data sets are consistent with the overall trends shown in Figure 
7, however, and the pattern of change is confirmed by global general 
circulation climate models (Kutzbach and Guetter, 1986; COHMAP Members, 
1988). Furthermore, specific floral and faunal assemblages are sufficiently 
sensitive to precipitation and temperature effects to distinguish between the 
two (e.g., Van Devender and others, 1987; Pierce, 1987; Van Devender; 1990). 
The paleoclimates described here are those that best explain data from all 
sources. 

Prior to the last glacial maximum 22 to 18 ka BP, evidence from mid- 
Wisconsin faunal assemblages in caves in southern New Mexico, including the 
presence of extralimital species such as the desert tortoise that are now 
restricted to warmer climates, suggests warm summers and mild, relatively dry 
winters (Harris, 1987, 1988). Lacustrine evidence confirms the 
interpretation that conditions prior to and during the glacial advance that 

- 
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Figure 7. Late Pleistocene and Holocene climate. southwestern United States. Time scale after Van 
Devender and others (1987). Climate references cited in text. 
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were generally drier than those at the glacial maximum. Permanent water did 
not appear in what was later to be a major lake in the Estancia Valley in 
central New Mexico until sometime before 24 ka BP (Bachhuber, 1989). Late- 
Pleistocene lake levels in the San Agustin Plains in western New Mexico 
remained low until approximately 26.4 ka BP, and the 6180 record from 
ostracode shells suggests that mean annual temperatures at that location did 
not decrease significantly until approximately 22 ka BP (Phillips and others, 
1992). 

Ample floral and lacustrine evidence documents cooler and wetter 
conditions in southeastern New Mexico and the surrounding region during the 
glacial peak (Van Devender and others, 1987; Pierce, 1987; Bachhuber, 1989; 
Allen, 1991; Phillips and others, 1992). These changes were not caused by 
the immediate proximity of glacial ice. None of the Pleistocene continental 
glaciations advanced farther southwest than northeastern Kansas, and the most 
recent, late Wisconsin, ice sheet reached its limit in South Dakota, roughly 
1200 km from the WIEP (Andrews, 1987). Discontinuous alpine glaciers formed 
at the highest elevations throughout the Rocky Mountains, but these isolated 
ice masses were symptoms, rather than causes, of cooler and wetter 
conditions, and had little influence on regional climate at lower elevations. 
The closest such glacier to the WIPP was on the northeast face of Sierra 
Blanca Peak in the Sacramento Mountains, 220 km to the northwest (Richmond, 
1962). 

Global climate models indicate that the dominant glacial effect in 
southeastern New Mexico was the disruption and southward displacement of the 
westerly jet stream by the physical mass of the ice sheet to the north 
(Figure 8) (Manabe and Broccoli, 1985; Kutzbach and Guetter, 1986; COHMAP 
members, 1988). At the glacial peak, climate models show that major Pacific 
storm systems followed the jet stream across New Mexico and the southern 
Rocky Mountains, and winters were wetter and longer than either at the 
present or during the previous interglacial period. 

Field evidence does not support the suggestion (Galloway, 1970, 1983; 
Brakenridge, 1978) that higher lake levels and changed faunal and floral 
assemblages at the glacial maximum could have resulted solely from lowered 
temperatures. Plant communities indicate that, regionally, the decrease in 
mean annual temperatures below present values was significantly less than the 
7 to 12°C required by cold and dry climate models (Van Devender and others, 
1987; Van Devender, 1990). Interpretation of stable-isotope data from 
groundwater samples from northwestern New Mexico suggest mean annual 
temperatures were 5 to 7'C colder than at present at that location (Phillips 
and others, 1986). Isotopic data from ostracode shells in the San Agustin 
Plains suggest mean annual temperatures there may have been 8.3"C colder than 

- 
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Distribution of northern hemisphere ice sheets and modeled position of jet stream at 18 ka 
BP, and ,present (from COHMAP Members, 1988). Ice shown with dark pattern, jet stream 
shown with arrow (broken where disrupted or weak). 
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at present at approximately 21 ka BP, but hydrologic modeling of the basin 
indicates lake levels were controlled by precipitation rather than 
evaporation throughout the glacial advance and retreat (Phillips and others, 
1992). Gastropod assemblages at Lubbock Lake in western Texas suggest mean 
annual temperatures 5'C below present values (Pierce, 1987). High water 
levels in playas in western Texas reflect an increase in runoff best 
explained by substantially higher levels of precipitation (Reeves, 1973). 

,- 

Floral and faunal evidence taken together indicate that mean annual 
precipitation throughout the region at the last glacial maximum was 60 to 100 
percent more than today (Spaulding and Graumlich, 1986; Pierce, 1987; Van 
Devender and others, 1987). Floral evidence also suggests that winters may 
have continued to be relatively mild, perhaps because the glacial mass 
blocked the southward movement of arctic air. Summers at the glacial maximum 
were cooler and drier than at present, without a strongly developed monsoon 
(Van Devender and others, 1987). Pitions, oaks, and junipers grew at lower 
elevations throughout southern New Mexico (Van Devender and others, 1987; Van 
Devender, 1990), probably including the vicinity of the WIPP. 

According to climatic modeling, the jet stream shifted northward 
following the gradual retreat of the ice sheet after 18 ka BP (Figure 8). and - the climate responded accordingly. By the Pleistocene/Holocene boundary 
approximately 11 ka BP, conditions were significantly warmer and drier than 
previously, although still dominated by winter storms and still wetter than 
today (Van Devender and others, 1987). Major decreases in total 
precipitation and the shift toward the modern monsoonal climate did not occur 
until the margins of the ice sheet had retreated into northeastern Canada in 
the early Holocene. 

Evidence for the late Pleistocene and early Holocene drying trend comes 
from several sources. In contrast to the northern Great Basin, where lake 
levels continued to rise until between 15 and 13.5 ka BP (Benson and others, 
1990), lake levels in southern New Mexico and the surrounding region 
decreased following the glacial maximum. Permanent water disappeared from 
late-Pleistocene lakes in the Estancia Valley between 12 and 11 ka BP. 
following a series of fluctuations in lake levels with progressively lower 
high stands at approximately 19, 17, and 13 ka BP (Allen, 1991). Lake 
Cochise (the modern Willcox Playa) in southeastern Arizona was dry after 8.5 
ka BP, following two high stands prior to 14 ka BP and a third between 14 and 
1 3  ka BP (Waters, 1989). Modeling of lake levels in the San Agustin Plains 
shows high stands at progressively lower elevations at approximately 22, 19, 
17, and 14 ka BP (Phillips and others, 1992). Water remained in lakes in the 
San Agustin Plains until 5 ka BP, but ostracode assemblages suggest an 
increase in salinity by 8 ka BP, and the pollen record shows a gradual shift 

- 
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at that location from a spruce-pine forest 18 to 15 ka BP to a juniper-pine - 
forest by 10 ka BP (Markgraf and others, 1984). Packrat middens in Eddy 
County, New Mexico, indicate that desert-grassland and desert-scrub 
communities predominated at lower elevations between 10.5 and 10 ka BP (Van 
Devender, 1980). Soil studies indicate drier conditions at Lubbock Lake 
after 10 ka BP, although marshes and small lakes persisted at the site until 
the construction of a dam and reservoir in 1936 (Holliday and Allen, 1987). 
Based on a decrease in diversity of both terrestrial and aquatic gastropod 
species, Pierce (1987) estimated a drop in annual precipitation at Lubbock 
Lake from a high of 80 cm/yr (nearly twice the modem level at that location 
of 45 cm/yr) at 12 ka BP to 40 cm/yr by 7 ka BP. 

Coincident with this decrease in precipitation, evidence from vole 
remains recovered from caves in southern New Mexico (Harris, 1988) and from 
plant communities throughout the southwestern United States (Van Devender and 
others, 1987) indicates a rise in summer temperatures. Mean annual 
temperatures interpreted from the isotopic composition of groundwater samples 
from northwestern New Mexico also show a sharp rise in the early Holocene 
(Phillips and others, 1986). 

By middle-Holocene time, the climate was similar to that of the present, 
with hot, monsoon-dominated summers and cold, dry winters. The pattern has 
persisted to the present, but not without significant local variations. Soil 
studies show the southern High Plains were drier from 6.5 to 4.5 ,ka BP 
(Holliday, 1989b) than before or since. Gastropod data from Lubbock Lake 
indicate the driest conditions from 7 to 5 ka BP (precipitation approximately 
90 percent of present, mean annual temperature 2.5'C higher than present), 
with a cooler and wetter period at 1 ka BP (precipitation approximately 145 
percent of present, mean annual temperature 2.5'C lower than present) 
(Pierce, 1987). Plant assemblages from southwestern Arizona suggest steadily 
decreasing precipitation from the middle Holocene to the present, except for 
a brief wet period around 990 years ago (Van Devender and others, 1987). 
Stratigraphic work at Lake Cochise shows two mid-Holocene lake stands, one 
near or before 5.4 ka BP and one between or before 3 to 4 ka BP, but both 
were relatively short-lived, and neither reached the maximum depths of the 
late-Pleistocene high stand that existed before 14 ka BP (Waters, 1989). 

- 

Precipitation maxima during these Holocene wet periods were less in both 
magnitude and duration than those of the late Pleistocene. Enzel and others 
(1989) observed comparable Holocene wet periods recorded in playa deposits in 
the Mojave Desert 3620 f 70 and 390 f 90 years ago, and related them to 
short-term changes in global circulation patterns that resulted in increased 
winter storm activity in the region. Historical records over the last 
several hundred years indicate numerous lower intensity climatic 
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- fluctuations, some too short in duration to affect floral and faunal 
assemblages, which may also be the result of temporary changes in global 
circulation (Neilson, 1986). Sunspot cycles and the related changes in the 
amount of energy emitted by the sun have been linked to historical climatic 
changes elsewhere in the world (e.g., Lamb, 1972), but the validity of the 
correlation is uncertain (Robock. 1979; Stuiver, 1980). Correlations also 
have been proposed between volcanic activity and climatic change (Robock, 
1979; Palais and Sigurdsson, 1989; Bryson, 1989). In general, however, 
causes for past short-term changes are unknown, and it is impossible at 
present to predict the amplitude or frequency of recurrence. Despite this 
uncertainty, the past record does support the conclusion that future short- 
term fluctuations in southeastern New Mexico will not be as severe as the 
long-term climatic changes created by major ice sheets in the northern 
hemisphere. Full-glacial conditions remain a conservative upper limit for 
mean annual precipitation at the WIPP during the next 10 ka. 

7. Climatic Implications of Data from WlPP Groundwater Samples 

Isotopic data from groundwater samples collected in the vicinity of the 
WIPP from the Late Permian Rustler and Dewey Lake Formations that overlie the 
Salado Formation are generally consistent with the climatic changes described 
above. Lambert (1986) and Lambert and Harvey (1987) concluded that although 
deuteriumfiydrogen and 180/160 ratios indicate a meteoric origin for water in 
the confined aquifers, they are sufficiently distinct from modern surface 
water values to suggest that the contribution of modern recharge to the 
system is slight. Chapman (1986) disagreed with this interpretation, noting 
similar ratios in the presumably young waters of the Roswell Artesian Basin 
immediately to the north, and she concluded that stable-isotope data from the 
WIPP area do not permit definitive interpretations about the age of the 
groundwater. Tritium data are less ambiguous. Low tritium levels in all 
WIPP-area samples indicate minimal contributions from the atmosphere since 
1950 (Lambert, 1987; Lambert and Harvey, 1987). The four internally 
consistent radiocarbon analyses currently available for water samples from 
the Rustler and Dewey Lake Formations support this interpretation. Modeled 
minimum ages in each case are between 12 and 16 ka, suggesting that both 
units have had little recharge since the period immediately following the 
late Pleistocene glacial maximum (Lambert and Harvey, 1987). Lambert and 
Carter (1987) presented uranium isotope data that also support this 
interpretation: observed high 234U/238U activity ratios require a 
conservative minimum residence time in the Culebra Dolomite of several 
thousands of years and more probably reflect minimum ages of 10 to 30 ka. 
Chapman (1988) questioned the validity of equating isotope residence times 
with groundwater age, but agreed that high 234U/238U activity ratios occur in 

_I 
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regions of low transmissivity, where flow is presumably slower and residence 
times are longer. 

Lambert (1991) used groundwater isotope data, along with supporting 
evidence from 87Sr/86Sr ratios in vein fillings, to argue that the Rustler 
Formation has been essentially a closed hydrologic system for the last 12 ka. 
In his interpretation, significant recharge last occurred during the late 
Pleistocene, and the present flow field reflects the slow draining of the 
aquifer. If this interpretation is correct, recharge may not occur again 
until precipitation levels are substantially higher than at present. 

Other data suggest that, isotopic evidence notwithstanding, some 
recharge may be occurring at the present. Anomalous increases in water 
levels have been observed at seven WIPP-area wells since 1988 (Beauheim, 
1989). Recharge from the surface cannot be ruled out as a cause for these 
rises, although no specific link to precipitation events has been 
demonstrated. Other possible causes include decreases in discharge, changes 
in reservoir volume related to incomplete recovery from the transient 
pressure changes associated with the pumping test itself, changes in 
reservoir volume related to external changes in the regional stress field, or 
undetected recharge from other aquifers or from the surface through existing 
boreholes (Beauheim, 1989). Numerical modeling of groundwater flow in the 
WIPP area indicates that, although it is hydraulically possible for present 
flow to reflect late Pleistocene recharge (Davies, 1989), some component of 
modem vertical recharge is also compatible with observed conditions (Haug 
and others, 1987; Davies, 1989). Major ion chemical analyses of groundwater 
samples support the interpretation of vertical recharge south of the WIPP, 
where low salinities may be the result of mixing with fresh surface water 
(Chapman, 1988). Lambert (1991) suggests instead that water chemistry has 
remained essentially unchanged from the late Pleistocene and is a function of 
host rock composition, noting that groundwater salinity correlates well with 
the distribution of halite in the Rustler Formation. 

- 

Questions about recharge to the Rustler Formation and the true age of 
WIPP-area groundwater remain unanswered. In the absence of definitive data, 
this report makes no assumptions about groundwater age. 

8. Discussion and Conclusions 

Speculation about future climate variability must be based on observed 
past fluctuations. The largest global climatic changes in the last 2.5 Ma 
have been those associated with glaciation and deglaciation in the northern 
hemisphere. The high degree of consistency in both frequency and intensity 
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I 
displayed in the glacial record indicates that an accurate interpretation of 
past climatic cycles does provide a useful guide for estimating future 
changes. 

Geologic data from southeastern New Mexico and the surrounding region 
show repeated alternations of wetter and drier climates throughout the 
Pleistocene. Floral, faunal, and lacustrine data permit detailed and 
quantitative reconstructions of precipitation that can be linked directly to 
glacial events of the late Pleistocene and Holocene. Figure 9 shows 
estimated mean annual precipitation for the WIPP for the last 30 ka. 
interpolated from the composite regional data cited above and based on 
present average precipitation at the site of 30 cm/yr (Brinster, 1991). This 
plot should be interpreted with caution, because its resolution and accuracy 
are limited by the nature of the data used to construct it. Floral and 
faunal assemblages may change gradually and show only a limited response to 
climatic fluctuations that occur at frequencies higher than the typical life 
span of the organisms in question. For long-lived species such as trees, 
resolution may be limited to hundreds or even thousands of years (Neilson, 
1986). Sedimentation in lakes and playas has the potential to record higher 
frequency fluctuations, including single-storm events, but only under a 
limited range of circumstances. Once water levels reach a spill point, for - example, lakes show only a limited response to further increases in 
precipitation. Dry playas generally show little response to decreases in 
precipitation. A more complete record of precipitation would almost 
certainly show far more variability than that implied by the plot presented 
here. Specifically, Figure 9 may fail to record abnormal precipitation lows 
during the Holocene, it may underestimate the number of high-precipitation 
peaks during the same period, and it may underestimate the magnitude of 
relatively brief precipitation maxkma during the late Pleistocene. Although 
the magnitude of the long-term shift in precipitation is adequately 
documented by the data reviewed here, the amplitude of the higher-frequency 
fluctuations in both the late Pleistocene and the Holocene is not well 
constrained, and the climate may have been wetter or drier than shown for 
some intervals. 

With these observations in mind, three significant conclusions can be 
drawn from the climatic record of southeastern New Mexico and the surrounding 
region. First, maximum precipitation in southeastern New Mexico in the past 
coincided with the maximum advance of the North American ice sheet. Minimum 
precipitation occurred after the ice sheet had retreated to its present 
limits. Second, past maximum long-term average precipitation levels were 
roughly twice present levels. Minimum levels may have been 90 percent of 
present levels. Third, short-term fluctuations in precipitation have 
occurred during both the glacial maximum and the present, relatively dry, 
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interglacial period, but fluctuations during the present interglacial period 
have not exceeded the upper limits of the glacial maximum. 

It would be unrealistic to attempt a direct extrapolation of the 
precipitation curve of Figure 9 into the future. Too little is known about 
the relatively short-term behavior of global circulation patterns, and it is 
at present impossible to predict the probability of a recurrence of a wetter 
climate such as that of approximately 1000 years ago. The long-term 
stability of patterns of glaciation and deglaciation, however, do permit the 
conclusion that future climatic extremes are unlikely to exceed those of the 
late Pleistocene. Furthermore, the periodicity of glacial events suggests 
that a return to full glacial conditions is highly unlikely within the next 
10,000 years. 
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Figure 9. Estimated mean annual precipitation at the WlPP during the late Pleistocene and 
Holocene. AmplPudes of relatively high-frequency fluctuations are less well constrained 
than the amplitude of the shift from glacial conditions of the Pleistocene to interglacial 
conditions of the Holocene. Data from Van Devender and others (1987); Pierce (1987); 
Waters (1989); Allen (1991); Phillips and others (1992); and other sources cited in text. 
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