A FORTRAN 77 Program and User's Guide for the Calculation of Partial Correlation and Standardized Regression Coefficients

Ronald L. Iman, Michael J. Shortencarier, Jay D. Johnson

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.
Available from
GPO Sales Program
Division of Technical Information and Document Control
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555
and
National Technical Information Service
Springfield, Virginia 22161

NUREG/CR-4122

SAND85-0044
RG

A FORTRAN 77 PROGRAM AND USER'S GUIDE FOR THE
 CALCULATION OF PARTIAL CORRELATION AND STANDARDIZED REGRESSION COEFFICIENTS

Ronald L. Iman

Michael J. Shortencarier
Jay D. Johnson*

June 1985

Sandia National Laboratories Albuquerque, NM 87185
 Operated by
 Sandia Corporation for the U.S. Department of Energy

Prepared for
Division of Risk Analysis and Operations Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555
Under Memorandum of Understanding DOE 40-550-75
NRC FIN NO. A1339

[^0]ABSTRACT

This document is for users of a computer program developed by the authors at Sandia National Laboratories. The computer program is designed to be used in conjunction with sensitivity analyses of complex computer models. In particular, this program is most useful in analyzing input-output relationships when the input has been selected using the Latin hypercube sampling program developed at Sandia (Iman and Shortencarier, 1984). The present computer program calculates the partial correlation coefficients andor the standardized regression coefficients from the multivariate input to. and output from, a computer model. These coefficients can be calculated on either the original observations or on the ranks of the original observations. The coefficients provide alternative measures of the relative contribution (importance) of each of the various inputs to the observed output variations. Relationships between the coefficients and differences in their interpretations are identified. If the computer model output has an associated time or spatial history then the computer program will generate a graph of the coefficients over time or space for each input-variable, output-variable combination of interest, thus indicating the importance of each input over time or space. The computer program is user-friendly and written in FORTRAN 77 to facilitate portability.

TABLE OF CONTENTS

Section Page

1. Partial Correlation and Standardized 1 Regression Coefficients
Introduction 1
Standardized Regression Coefficients 2
Adequacy of the Regression Model 3
Partial Correlation Coefficients 3
Rank Transformation 4
Matrix Formulation 4
Example 7
2. Input Parameters 9
TITLE 10
NIV 10
NDV 10
NOBS 10
STEPS 11
PCC 11
PRCC 11
SRC 11
SRRC 12
FILE TYPE 12
IND VARS 13
DEP VARS 13
XLABEL 14
YLABEL 14
TABLE CUTOFF 14
PLOT CUTOFF 14
PLOT TITLE 15
PLOT XLABEL 15
XLOG 15
YLIMITS 15
3. Modifying the Computer Program 16
Use of Subroutine USRINP for Nonstandard 16 Input Files
Redimensioning 17
Graphics Output 17
4. References 18
Appendix - Example of Program Output 19

ACKNOWLEDGMENT

The authors would like to express their sincere appreciation to F. Eric Haskin and Jon C. Helton of Sandia National Laboratories for their review of earlier drafts of this report. Their comments added greatly to the clarification of the report.

1. PARTIAL CORRELATION AND STANDARDIZED REGRESSION COEFFICIENTS

Introduction

Sensitivity studies associated with computer models are frequently accomplished by making computer runs with the model on the basis of input selected in one of several different ways. One of these ways is a simple parametric approach that proceeds by varying only one input at a time while holding all other inputs fixed at some nominal value. Such an approach frequently is not cost effective and the results are conditional on the choice of the nominal values.

Another approach is to select the input on the basis of an experimental design. A design frequently selected for use with computer models is a fractional factorial where each input is represented by fixed levels such as "high" or "low" and the inputs are paired orthogonal to one another. i.e. all pairwise correlations among the inputs are zero. Such designs produce reliable sensitivity results if the output behaves in a linear fashion with respect to the input. If the behavior is nonlinear then it is necessary to use more levels with each input such as "high". "medium" and "low" or to alter the design in some manner that includes a denser selection of each of the inputs. As the number of levels increases it becomes necessary to make more computer runs. If runs are costly this can inhibit the use of such an approach to selecting the values of the inputs. Other questions that may contribute to the analyst's decision as to whether or not to use an experimental design include: (1) Are the inputs known to be correlated with one another? (2) Are estimates of means, variances, quantiles and cumulative distribution functions of the output desired as part of the analysis? (3) Are scatterplots of each input versus each output desired to aid in discovering relationships such as discontinuities between input and output that might not otherwise be easily detected?

An alternative approach to selecting input is simple Monte Carlo or restricted Monte Carlo. Such an approach has the advantage that it can easily be structured to address the three previous questions. A detailed comparison of the advantages and disadvantages of various methods of selecting input can be found in Iman and Helton (1985).

When using a Monte Carlo type approach, the analyst must be willing to give up the orthogonality of fractional factorial designs. However, if the input has been selected in an orthogonal manner then there is little need for the use of the program described in this report. That is, the program described in this report is most useful in conjunction with a Monte Carlo study. Such would be the case with input generated by the Latin hypercube sampling program at Sandia (Iman and Shortencarier, 1984).

Once the input has been selected and computer runs completed in a Monte Carlo study, it is necessary to quantify the sensitivity of the output to each of the inputs. This report describes how to use a computer program (PCC/SRC) developed at Sandia National Laboratories for measuring these sensitivities. Two closely related, but different, measures are presented. These are partial correlation coefficients (PCC) and standardized regression coefficients (SRC) computed on either the original observations or on the ranks of the original observations. This program is particularly useful when there are a large number of inputs and several outputs having an associated time history. Both coefficients are succinctly summarized for each output with respect to each input measured over time.

Standardized Regression Coefficients

Sensitivity analysis in conjunction with Monte Carlo sampling is closely related to the construction of regression models which approximate the behavior calculated by the computer model. Suppose a computer model has inputs $X_{1} \ldots X_{k}$ and output Y. After making n runs of the computer model, the multivariate observations $\left(X_{1 i} \ldots X_{k i}, Y_{i}\right): i=1 \ldots . .$. construct an approximate regression model of the form

$$
\hat{Y}=b_{o}+\sum_{j=1}^{k} b_{j} X_{j} .
$$

The constant b_{o} and the ordinary regression coefficients b_{j} are obtained by the usual methods of least squares. The ordinary regression coefficients are the partial derivatives of the regression model with respect to the input variables. However. these ordinary regression coefficients are easily influenced by the units in which the variables are measured, i.e.. inches, feet, yards, miles, etc. Therefore, they do not provide a very reliable measure of the relative importance of the input variables.

The problem arising with different variables being measured in different units can be eliminated by standardizing all variables used in the regression model as $X^{*}=(X-\bar{X}) / s_{x}$ where \bar{x} and s_{x} are the usual sample mean and standard deviation, respectively. The previous regression model can be rewritten in the following standardized form.

$$
Y^{\star}=\sum_{j=1}^{k} b_{j}^{\star} X_{j}^{\star}
$$

The coefficients in this standardized model are called standardized regression coefficients. Such coefficients are useful since they can be used to provide a direct measure of the relative importance of the input variables. Of course, the reliability of these results is conditional on the degree to which the relationship between Y and $X_{1}, \ldots X_{k}$ is adequately described by the regression model.

Adequacy of the Regression Model

An important property of least-squares regression is that

$$
\sum_{i}\left(Y_{i}-\bar{Y}\right)^{2}=\sum_{i}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}+\sum_{i}\left(Y_{i}-\hat{Y}_{i}\right)^{2} .
$$

Simply put, this means that the total variation in Y can be represented as the sum of the variation due to regression on the X's and the variation due to lack of fit by the regression model. This expression provides for a convenient way to measure the adequacy of the regression model as

$$
R_{Y}^{2}=\sum_{i}\left(\hat{Y}_{1}-\bar{Y}\right)^{2}, \sum_{i}\left(Y_{1}-\bar{Y}\right)^{2} .
$$

R \% 2 varies between 0 and 1 and is called the coefficient of determination. Thus, RZ provides a measure of the percent of the variation in Y explained by regression on the X's. Regression analysis is often performed in a stepwise fashion in which a sequence of regression models is constructed by adding one input variable at each step until all significant input variables have been included in the model. The order in which the input variables are added to the regression model is determined by the magnitude of the partial correlation coefficients. More details on stepwise regression can be found in the user's guide for the stepwise regression program in use at Sandia (Iman. Davenport, Frost and Shortencarier, 1980).

Partial Correlation Coefficients

The sample correlation coefficient provides a measure of the linear relationship between Y and X_{j}. If this correlation coefficient is denoted by $r_{y j}$. then $\max \left|r_{y j}\right|$ can be used to idenj
tify the input variable having the strongest linear relationship with Y. This variable would be used as a starting point to build a linear model which expresses Y as a function of the input variables. However, the identification of additional input variables to add to the linear model is not as easy since such additions are dependent on the variables already in the model.

The partial correlation coefficient is a measure that explains the unique relation between two variables that cannot be explained in terms of the relations of these two variables with any other variables. Thus, it provides a means of identifying which additional variables could be added to the existing model.

As an example, consider a linear model having only one input variable.

$$
\hat{Y}=b_{0}+b_{1} x_{j}
$$

The residuals from this model are denoted by $Y_{i}-\hat{Y}_{i}$. The partial correlation for any remaining variable not in the model is found by computing the sample correlation coefficient between the residuals and that variable. Thus, a measure of linearity between any remaining variable and Y is obtained, given that an adjustment has been made for the variable(s) already in the model. Later in this section, a mathematical relationship is established between the partial correlation coefficient and the standardized regression coefficient.

Rank Transformation

When nonlinear relationships are involved, it is often more revealing to calculate standardized regression coefficients and partial correlation coefficients on variable ranks than on the actual values for the variables: such coefficients are known as standardized rank regression coefficients (SRRC) and partial rank correlation coefficients (PRCC). Specifically, the smallest value of each variable is assigned the rank 1 , the next smallest value is assigned rank 2, and so on up to the largest value which is assigned the rank n, where n denotes the number of observations. The standardized regression coefficients and/or partial correlation coefficients are then calculated on these ranks.

Matrix Formulation

Suppose a computer model has inputs $X_{1} \ldots X_{k}$ and output Y. After making n runs of the model with varying input, a correlation matrix between the input and output is computed for a given point in the output time history (assuming that the output produces a time history). Let the correlation matrix be represented as follows.

$$
C=\left[\begin{array}{llll:c}
1 & r_{12} & \cdots & r_{1 k} & r_{1 y} \\
r_{21} & l & \cdots & r_{2 k} & r_{2 y} \\
\cdots & \cdots & & \cdots & \cdots \\
r_{k 1} & r_{k 2} & \cdots & 1 & r_{k y} \\
\hdashline r_{Y l} & r_{Y 2} & \cdots & r_{Y k} & 1
\end{array}\right]
$$

where $r_{i j}, l \leq i, j \leq k$ is the sample correlation coefficient between inputs X_{i} and X_{j} while $r_{Y j}$ is the sample correlation coefficient between Y and X_{j}. The value of r_{y} is computed by the following equation.

$$
r_{y j}=\frac{\sum_{i=1}^{n} X_{i j} Y_{i}-\sum_{i=1}^{n} X_{i j} \sum_{i=1}^{n} Y_{i} / n}{\left\{\left[\sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2} / n\right]\left[\sum_{i=1}^{n} Y_{i}^{2}-\left(\sum_{i=1}^{n} Y_{i}\right)^{2} / n\right]\right\}^{1 / 2}}
$$

Further, let the symmetric matrix C be partitioned into summatrices as indicated by the dashed lines within the c matrix. That is.

$$
c=\left[\begin{array}{ll}
\mathrm{c}_{11} & \mathrm{c}_{12} \\
\mathrm{c}_{21} & 1
\end{array}\right]
$$

where C_{11} is $k \times k, C_{12}$ is $k \times 1$ and $C_{21}=C^{\prime} 12$ since C is symmetric. From Theorem 8.2.1 in Graybill (1969), the inverse of the symmetric matrix C can be written as

$$
c^{-1}=\left[\begin{array}{ll}
{\left[c_{11}-c_{12} c_{21}\right]^{-1}} & -c_{11}^{-1} c_{12}\left[1-c_{21} c_{11}^{-1} c_{12}\right]^{-1} \\
-\left[c_{11}^{-1} c_{12}\left[1-c_{21} c_{11}^{-1} c_{12}\right]^{-1}\right], & {\left[1-c_{21} c_{11}^{-1} c_{12}\right]^{-1}}
\end{array}\right]
$$

Both the SACs and the PCCs can be derived directly from C^{-1}. The The $k \times 1$ vector of sRCs is found as $B=C_{11}^{-1} C_{12}$. Furthermore, if
Y is regressed on X_{1}, \ldots, X_{k}, the model coefficient of determinaLion, R_{y}^{2} is found as $C_{21} C_{11}^{-1} C_{12}$. This information allows C^{-1} to be written as follows.

$$
C^{-1}=\left[\begin{array}{cc}
{\left[C_{11}-C_{12} C_{21}\right]^{-1}} & -B /\left(1-R_{Y}^{2}\right) \\
-B^{\prime} /\left(1-R_{Y}^{2}\right) & 1 /\left(1-R_{Y}^{2}\right)
\end{array}\right]
$$

The diagonal elements of $\left[C_{11}-C_{12} C_{21}\right]^{-1}$ contain the coefficients of determination, R^{2}. corresponding to regressing X on Y and the \mathbf{x}_{j} remaining X 's. Specifically, the diagonal elements are $1 /\left(1-R_{x_{j}}^{2}\right)$. Therefore, C can be written in expanded form as follows.

$$
C^{-1}=\left[\begin{array}{cccc:c}
1 /\left(1-R_{x_{1}}^{2}\right) & c_{12} & \cdots & c_{1 k} & -B_{1} /\left(1-R_{y}^{2}\right) \\
c_{21} & 1 /\left(1-R_{x_{2}}^{2}\right) & \cdots & c_{2 k} & -B_{2} /\left(1-R_{y}^{2}\right) \\
\cdots & \cdots & & \cdots & \cdots \\
c_{k 1} & c_{k 2} & \cdots & 1 /\left(1-R_{x_{k}}^{2}\right) & -B_{k} /\left(1-R_{y}^{2}\right) \\
\hdashline-B_{1} /\left(1-R_{Y}^{2}\right) & -B_{2} /\left(1-R_{y}^{2}\right) & \cdots & -B_{k} /\left(1-R_{y}^{2}\right) & 1 /\left(1-R_{y}^{2}\right)
\end{array}\right]
$$

where B_{j} is the SRC for X_{j}.
The PCC for X_{j} and Y is obtained directly from C^{-1} as

$$
P_{x_{j}} y=-c_{j y} /\left(c_{j j} c_{Y Y}\right)^{1 / 2}
$$

Therefore, the PCC can be written as

$$
\begin{equation*}
P_{x_{j}}=\frac{B_{j} /\left(1-R_{y}^{2}\right)}{\sqrt{\left[1 /\left(1-R_{x_{j}}^{2}\right)\right]\left[1 /\left(1-R_{y}^{2}\right)\right]}}=B_{j} \sqrt{\frac{1-R_{x_{j}}^{2}}{1-R_{Y}^{2}}} \tag{1}
\end{equation*}
$$

Equation (l) shows the close relationship between $\mathrm{P}_{\mathrm{x}_{\mathrm{j}} \mathrm{Y}}$ and B_{j}. This formula holds as long as $R_{y}^{2}<1$. If the X 's and Y 's have been standardized, then equation (1) can be written in another form by noting that $l-R_{X_{j}}^{2}$ is the variance of X_{j} conditional on Y and the remaining $X ' s . A l s o, 1-R^{2}$ is the variance of Y conditional on the X's. This allows (l) to be rewritten in the alternate form

$$
\begin{equation*}
\frac{P_{x_{j} y}}{B_{j}}=\frac{{ }^{\sigma} x_{i} \mid y, x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots x_{k}}{\sigma_{y \mid x_{1}}, \ldots x_{k}} \tag{2}
\end{equation*}
$$

Example

As an example to illustrate the preceding discussion, consider a model with four inputs $X_{1} \ldots \ldots X_{4}$ and output Y which produces the following correlation matrix C.

$$
C=\left[\begin{array}{rrrr:r}
1.0000 & .2286 & -.8241 & -.2454 & .7307 \\
.2286 & 1.0000 & -.1392 & -.9730 & .8163 \\
-.8241 & -.1392 & 1.0000 & .0295 & -.5347 \\
-.2454 & -.9730 & .0295 & 1.0000 & -.8213 \\
\hdashline .730 \% & .8163 & -.534 \% & .8213 & 1.0000
\end{array}\right]
$$

The corresponding inverse is

$$
C^{-1}=\left[\begin{array}{rrrr:r}
59.5004 & 112.8185 & 43.5726 & 94.8764 & -34.3504 \\
112.8185 & 272.0920 & 107.1087 & 264.8053 & -29.7896 \\
43.5726 & 107.1087 & 47.2565 & 111.5646 & -2.3752 \\
94.8764 & 264.8053 & 111.5646 & 286.2671 & 9.2780 \\
\hdashline-34.3504 & -29.7896 & -2.3752 & 9.2780 & 56.7671
\end{array}\right]
$$

The value $1-R_{y}^{2}$ is found as the reciprocal of C^{-1} (5.5) or $1 / 56.7671=$.0176. The SRCs are found by multiplying the first four elements in the last column of C^{-1} by $-\left(1-R_{Y}^{2}\right)$ to get

$$
B^{\prime}=\left[\begin{array}{llll}
.6051 & .5248 & .0418 & -.1634
\end{array}\right]
$$

The values $1-R_{x_{j}}^{2}$ are obtained from the reciprocals of the first diagonal elements of C^{-1}. Thus. from equation (l) the partial correlations are found as .5910. .2397, . 0459 and -.0728.

Note that the output Y is most sensitive to X_{l} and the least sensitive to X_{3} as determined from both the SRCs and the PCCs. Although the rankings of the inputs by their sensitivity on the output are the same in this case and in most cases, it is important to recognize that they yield different types of information. SRCs are derived from a conditional univariate distribution, while PCCs come from a conditional bivariate distribution. PCCs allow one to judge the unique contribution that an explanatory variable can make. SRCs are equivalent to the partial derivatives of the standardized regression model. In order to illustrate the difference, consider two cases for a linear model with three inputs.

CASE I.

	Correlation Matrix	i	PCC and X_{i}	SRC and	
X_{2}	.8			1	.320256

CASE II.

	Correlation Matrix			i	$\begin{aligned} & \text { PCC } \\ & \mathrm{Y} \text { and } \mathrm{X}_{\mathrm{i}} \end{aligned}$	$\begin{aligned} & \mathrm{SRC} \\ & \mathrm{Y} \text { and } X_{i} \end{aligned}$
X_{2}	. 8			1	. 585038	. 665556
X_{3}	0	0		2	. 000602	. 000556
Y	. 666	. 533	. 5	3	. 670285	. 500
	x_{1}	x_{2}	x_{3}			

The difference between Cases I and II is small shifts in the correlation between Y and X_{1} and between Y and X_{2}. While the ordering of the X 's based on the size of the absolute values of the PCCs and SRCs are the same in Case I, they differ in Case II. The difference is that the PCCs are measuring the unique or unshared contribution of each variable. The SRCs, on the other hand, parcel out the non-unique or shared contribution in a manner that is consistent with maximizing the explanatory ability of the chosen model. This allocation of shared explanatory power is model dependent. In Case II, the SRCs correctly indicate that, in the fitted model, the partial derivative with respect to X_{1} is larger than that of either X_{2} or X_{3}. The PCCs correctly indicate that the removal of X_{3} from the model would cause the greatest decrease in the explanatory power of the model. This is seen by noting that the coefficient of determination, R^{2}, falls from . 693 to .443 when X_{3} is removed from the model, while it falls to .534 when X_{1} is deleted. Thus, both measures are useful in diagnosing the importance of the variables.

2. INPUT PARAMETERS

The PCC/SRC program recognizes 20 keywords (no abbreviations allowed) which dictate the characteristics of the problem. These keywords are used to describe the type of analysis desired, to describe the structure of the input file and to control the output. If the keyword requires accompanying numerical values or alphanumeric values, these values are input using list-directed read statements.

The only restrictions on the keywords are that there can be no leading blanks and at least one blank must follow each keyword. Information required with any keyword may be continued from one record to the next as long as the continuation record begins with a blank.

There are a number of internal checks built into the program to ensure that the input parameters have been correctly specified. In the event an improper specification is detected, an appropriate message is printed and the execution of the program is terminated.

The role of each keyword will now be explained. For purposes of illustration, Table l gives an example setup that uses 17 of the 20 keywords.

Table l. Sample Setup Using 17 Keywords

1. TITLE SAMPLE SETUP FOR USING THE PCC/SRC PROGRAM
2. NIV 6
3. NDV 5
4. NOBS 50
5. STEPS $1 \begin{array}{lllllllllllllll} & 5 & 1 & 5 & 15 & 2 & 15 & 30 & 5 & 30 & 50 & 10 & 50 & 100 & 50\end{array}$
6. PRCC
7. SRCC

8 FILE TYPE 2
9. IND VARS 1405

10 DEP VARS 4
11. XLABEL HEAT DELAY DECON LD50 PROPERTY MAGNITUD
12. YLABEL EFAT EINJ DCST WBSOM CANCE
13. TABLE CUTOFF . 7
14. PLOT CUTOFF . 8
15. PLOT TITLE PRCC AND SRRC FOR CRAC2
16. PLOT XLABEL TIME(MINUTES)
17. XLOG

TITLE
This keyword can be followed with alphanumeric data to help describe the application (see line 1 of Table l). This information will be printed as a one-line header on each page of the output. This keyword is optional. If it is omitted, a blank header is generated at the top of each page of output.

NIV
***This keyword is required. ${ }^{* * *}$
This keyword must be followed by a positive integer that specifies the number of independent variables (model inputs) on the input file. Line 2 of Table 1 indicates six independent variables. The maximum number of independent variables. curcently 50, is easily changed (see Section 3).

```
***This keyword is required***
```

This keyword must be followed by a positive integer that specifies the number of dependent variables (model outputs) on the input file. Line 3 of Table 1 indicates five dependent variables. The maximum number of dependent variables, currently 20, is easily changed (see Section 3).

NOBS

```
***This keyword is required***
```

This keyword must be followed by a positive integer that specifies the number of observations on the input file. Line 4 of Table 1 indicates 50 observations. The maximum number of observations, currently 100, is easily changed (see Section 3).

This keyword must be followed by k ordered triples that specify the interval (usually time steps) between successive readings of a particular dependent variable. Line 5 in Table 1 indicates 5 ordered triples. The first ordered triple means that readings were made on each dependent variable from step 1 to step 5 in increments of size 1 . The remaining ordered triples indicate the next set of readings go from 5 to 15 in increments of size 2; from 15 to 30 in increments of size 5; from 30 to 50 in increments of size 10; and finally, from 50 to 100 in an increment of size 50. This information serves two purposes within the program. First. it identifies the number of steps (usually time steps) associated with each dependent variable which in turn is used in reading the data. The second use is to determine the proper spacing on the horizontal axis of the plot of the PCC or SRC. If this keyword is omitted, it is assumed that there is only one step in which case no plots would be generated. The maximum number of ordered triples, currently 10 , and the maximum number of steps, currently loo, are easily changed (see Section 3).
At least one of the next four keywords is required
PCC
The partial correlation coefficients are computed on the original observations when this keyword is used. This keyword can be used in conjunction with the keyword SRC in which case both the PCC's and SRC's are computed and appear jointly in the plots generated by the program. This keyword cannot be used in conjunction with the keywords PRCC and SRRC.

SRC
The standardized regression coefficients are computed on the original observations when this keyword is used. This keyword can be used in conjunction with the keyword PCC in which case both the PCC's and SRC's are computed and appear jointly in the plots generated by the program. This keyword cannot be used in conjunction with the keywords PRCC and SRRC.

PRCC

The partial correlation coefficients are computed on the ranks of the original observations when this keyword is used. This keyword can be used in conjunction with the keyword SRRC in which case both the PRCC's and SRRC's are computed and appear jointly in the plots generated by the program. This keyword cannot be used in conjunction with the keywords PCC and SRC. This keyword is shown on line 6 of Table 1.

The standardized regression coefficients are computed on the ranks of the original observations when this keyword is used. This keyword can be used in conjunction with the keyword PRCC in which case both the PRCC's and SRRC's are computed and appear jointly in the plots generated by the program. This keyword cannot be used in conjunction with the keywords PCC and SRC. This keyword is shown on line 7 of Table 1.

FILE TYPE ***This Keyword is required***
This keyword must be followed by a positive integer that specifies one of the filetypes listed below for the input of the independent and dependent variables. All files are assumed to reside on disk and be written using list-directed write statements. If both independent and dependent variables reside on a single file, that file must be assigned to logical unit 1. If the independent and dependent variables are on separate files, then the independent variable file should be assigned to logical unit 1 and the dependent to logical unit $\underline{2}$.

1 - The input file contains both the independent (X) and dependent (Y) variables. The file has NOBS records and each record has NIV + NDV variables written on it with all NIV variables occurring first. followed by all NDV dependent variables. Each dependent variable may have more than value (step) associated with it. Thus. the y portion under this option would contain all Y values for step 1 . all y values at step 2 are concatenated after step 1, and so on until all steps are included. The file can be represented as follows:

2 - The input structure differs from option 1 in that all steps for the first dependent variable (Y_{1}) are followed by all steps for Y_{2} and so on for all steps for $Y_{N D V}$. The file can be represented as follows:

3 - Same as option 1 except that X and Y are assumed to reside on two separate files with X assigned to logical input unit l and Y to logical input unit 2.

4 - Same as option 2 with X and Y on two separate files (see option 3).

5 - User must supply coding to read input into arrays X and Y that are dimensioned as follows: $X(N O B S, N I V)$ and Y(NOBS,NDV, NSTEPS) where NOBS, NIV and NDV have been defined previously and NSTEPS is the number of steps as ascertained from the keyword STEPS. See Section 3 of this report for current dimensions on these arrays and instructions on how to modify these dimensions. Section 3 also contains an example of a user-supplied subroutine to read in a file under this option.

* - An asterisk attached to any of the options lo 4 as l^{*} to 4^{*} is used to designate two leading integers on each record associated with the independent variables. Such would be the case if the independent variables were generated from the Latin hypercube sampling program (Iman and Shortencarier. 1984).

IND VARS
This keyword must be followed by a subset of the positive integers 1, 2..... NIV that serves to identify which of the independent variables are to be included in the analysis. Line 9 of Table 1 shows that independent variables $1,4,5$, and 6 are included in the analysis and hence. variables 2 and 3 are excluded from the analysis. If this keyword is omitted, all NIV independent variables are included in the analysis.

DEP VARS

This keyword must be followed by a subset of the positive integers $1,2, \ldots$ NDV that serves to identify which of the dependent variables are to be included in the analysis. Line 10 of Table 1 shows that dependent variables 4 and 5 are included in the analysis and hence, variables 1,2 and 3 are excluded from the analysis. If this keyword is omitted all NDV dependent variables are included in the analysis.

This keyword must be followed by identification labels for the NIV independent variables included in the analysis. The labels can each contain up to eight alphanumeric characters and are assumed to be in the order l, 2..... NIV. If this keyword is omitted, the generic labels Xl, X2,.... XNIV are used. Line 11 of Table 1 shows the use of this keyboard.

YLABEL

This keyword must be followed by identification labels for the NDV independent variables included in the analysis. The labels can each contain up to eight alphanumeric characters and are assumed to be in the order 1, 2,.... NDV. If this keyword is omitted, the generic labels Y1, Y2..... YNDV are used. Line 12 of Table 1 shows the use of this keyboard.

TABLE CUTOFF

This keyword must be followed by a real number p, $0 \leq p \leq 1$. which is activated when the keyword STEPS indicates more than one step. When more than one step is indicated under the PCC or PRCC options, a summary table is automatically generated that shows the largest partial correlation for each independent variable-dependent variable combination over all steps. provided that the absolute value of the partial correlation is \geq p. Otherwise, a blank entry appears for the combination. Similar statements hold for the options SRC and SRRC. In the case of the pair PCC and SRC (or PRCC and SRRC) the table cutoff applies to the PCC (or the PRCC). Line 13 of Table 1 shows that the partial rank correlation (since both PRCC and SRCC are requested) must be greater than or equal to . 7 in absolute value to appear in the table. If the value of p is set to 1 , no table will be generated. If this keyword does not appear, the default value is set equal to .6.

PLOT CUTOFF

This keyword must be followed by a real number $p, 0 \leq p \leq 1$. which is activated when the keyword STEPS indicates more than one step. In such cases a plot of either the partial correlation coefficient or the standardized regression coefficient (or both jointly) versus step number (usually time step) can be generated for each independent-dependent variable combination. Since it is unlikely that all NIV x NDV plots would be desired, this keyword allows for some control over the number of plots created by generating plots only for those combinations for which the absolute value of the partial correlation coefficient or standardized regression coefficient is $\geq p$ for at least one step. In case of the joint selection of PCC and SRC (or PRCC and SRCC). the cutoff applies to the PCC (or the PRCC) as with the keyword TABLE CUTOFF. Line 14 of Table 1 shows the value of p to be . 8 . If the value of p is set to 1. no plots will be generated. If this keyword is omitted, the default value is . 6 .

PLOT TITLE

This keyword must be followed by an alphanumeric string of up to 24 alphanumeric characters that serve as a title on each plot of the PCC or SRC. If this keyword is omitted, no title will appear. Use of this keyword is illustrated on line 15 of Table 1.

PLOT XLABEL

This keyword must be followed by an alphanumeric string of up to 24 alphanumeric characters that serve as a label for the x-axis on each plot of the PCC or SRC. If this keyword is omitted, no label will appear. Use of this keyword is illustrated on line 16 of Table 1.

XLOG

When this keyword is present the x-axis will appear with a log lo scaling. If this keyword is missing, the scale on the x-axis will be linear with respect to the information supplied with the keyword STEPS.

YLIMITS

The default limits for the vertical axis of the graphs generated by this program are -1 and 1 . This keyword allows the user to change the default limits by following the keyword with two values that the program will use respectively as a new lower limit and a new upper limit.

Table 2 provides a summary of the required keywords and default values for the optional keywords.

TABLE 2. Keyword Summary
Required Keywords:
NIV
NDV
NOBS
FILETYPE
At least one of the pair PCC and SRC, or one of the pair PRCC and SRCC.

Defaults for Optional Keywords:

Keyword
TITLE
STEPS
IND VARS
DEP VARS
XLABEL
YLABEL
TABLE CUTOFF
Plot Cutoff
PLOT TITLE
PLOT XLABEL
XLOG
YLIMITS

Default

Blank
1
All NIV independent variables are used in the analysis.
All NDV dependent variables are used in the analysis.
Generic labels used: X1. X2..... XNIV Generic labels used: Y1, Y2.....YNDV . 6
.6
Blank
Blank
Linear scale used on x-axis.
Vertical axis in graphs goes from -1 to 1
3. MODIFYING THE COMPUTER PROGRAM

Use of Subroutine USRINP for Nonstandard Input Files

Occasionally, the user may want to analyze data files that do not match any of the formats specified in Section 2 under the keyword FILE TYPE. In this case, the user must provide a subroutine, called USRINP, which will read the data files into the X and Y arrays. The data files must be read so that the data are stored into the appropriate locations in the X and Y arrays which are dimensioned as X (NOBS. NIV) and Y(NOBS, NDV, NSTEPS) where NOBS is the number of observations. NIV is the number of independent variables, NDV is the number of dependent variables and NSTEPS is the number of steps. In the example below, the independent and dependent variable data are on separate files and are stored one observation per record for each independent variable. The dependent variables are stored one observation per record and in addition are sorted by step.

SUBROUTINE USRINP(X, Y)
C*****SUBROUTINE USRINP IS PROVIDED BY THE USER TO INPUT DATA FILES C*****OF INDEPENDENT AND DEPENDENT VARIABLES THAT ARE OF DIFFERENT C*****FORMS THAN THOSE DESCRIBED IN THE USER MANUAL C*****THE COMMON AND DIMENSION STATEMENTS ARE REQUIRED

COMMON /MAXDIM/ LENC, LENTC. LLAB, MXNDV, MXNINT, MXNIV,
1 MXNOBS, MXNSTP
COMMON/PARAM/LLN, LPCC, LPRCC, LSRC, LSRRC, LRAW, NDV, NIV. NINT, NOBS. NPLOTS, NSDV, NSIV, NSIVP1, NSTEPS. 2 PC, TC, YMIN, YMAX
DIMENSION X(MXNOBS.MXNIV). Y(MXNOBS.MXNDV.MXNSTP)

```
C******READ IN THE INDEPENDENT VARIABLES
    DO 100 J=l.NIV
    DO 100 I=1, NOBS
100 READ(1,*) X(I,J)
C*****READ IN THE DEPENDENT VARIABLES
    DO 200 K=l.NSTEPS
    DO 200 J=l.NDV
    DO 300 I=l.NOBS
200 READ(2.*) Y(I,J,K)
    RETURN
    END
```

Redimensioning
Section 2 indicated upper limits on the values of certain parameters. These were:

1. the maximum number of observations, $M X N O B S=100$
2. the maximum number of independent variables, MXNIV=50
3. the maximum number of dependent variables, MXNDV=20
4. the maximum number of ordered triples on the STEPS parameter card. MXNINT=10
5. the maximum number of steps, $\operatorname{MXNSTP}=100$

These upper limits should be satisfactory for most situations. However, if any or all of these upper limits need to be adjusted. the new value(s) may be replaced in the PARAMETER statement found at the beginning of the main program.

Graphics Output

The plots generated by the program are produced using the DISSPLA graphics package (version 9.0, proprietary software package of ISSCO. San Diego, California). This package should be available on most machines. If DISSPLA is not available on the user's choice of machine or if, for for any reason, the user decides not to use DISSPLA, it will be the user's responsibility to change the graphics subroutine calls to reflect their choice of graphics package. The majority of these calls may be found in SUBROUTINE PLOT.

4. REFERENCES

Graybill. F. A. (1969). Introduction to Matrices with Applications in Statistics, Wadsworth Publishing Co., Inc., Belmont, California.

Iman, R. L., Davenport, J. M., Frost. E. L., and Shortencarier, M. J. (1980). "Stepwise Regression with PRESS and Rank Regression (Program User's Guide)." Technical Report SAND79-1472, Sandia National Laboratories, Albuquerque, NM 87185.

Iman. R. L. and Helton. J. C. (1985). "A Comparison of Uncertainty and Sensitivity Analysis Techniques for Computer Models." Sandia National Laboratories, Albuquerque. NM 87185. NUREG/CR-3904. SAND84-1461.

Iman. R. L. and Shortencarier, M. J.. (1984). "A FORTRAN 77 Program and User's Guide for the Generation of Latin Hypercube and Random Samples for Use with Computer Models." Sandia National Laboratories. Albuquerque, NM 87185. NUREG/CR-3624, SAND83-2365.

APPENDIX

Example of Program Output

This appendix presents output from the computer program. The parameter selection for this example is given in Table Al. The first line in Table Al gives the title that will appear at the top of each page of output. Lines 2 through 4 indicate that the data set contains 20 independent variables, four dependent variables, and a total of 60 observations on these variables. Lines 5 and 6 indicate that both the PCCs and the SRCs will be computed on the ranks of the original observations. Lines 7 and 8 show that only dependent variables 1 and 3 along with independent variables 1 . 2, 3,13 and 20 will be used in this analysis. Line 9 shows a time history with these observations, scaled from 5 to 50 in steps of 5. from 50 to 200 in steps of 10 . and from 200 to 400 in steps of 20. The input file is identified as type 2 on line lo. Joint plots of the partial rank correlation coefficients and the standardized rank regression coefficients versus time step will be generated for each combination of independent variable and dependent variable whose PRCC over all time steps is at least . 85 in absolute value as indicated on line ll. Likewise, a table will be generated whose entries are the maximum value over time (positive or nega- tive) of the PRCC for each combination of independent and depen- dent variable, provided that such value is at least .60 in absolute value as shown on line 12. A similar table will be constructed for the SRRCs. Note that . 60 is also the default value for the TABLE CUTOFF parameter as summarized in Table 2 of this report. Thus, the output in this example would be the same, with or without line 12. Lines 13 and 14 give labels for the plots while lines 15.16 and 17 contain the labels for all variables.

Table Al. Parameter Selections for Example Problem

1. TITLE TURCISS SENSITIVITY ANALYSIS
2. NIV 20
3. NDV 4
4. NOBS 60
5. PRCC
6. SRCC
7. DEP VARS 13
8. IND VARS 1231320
9. STEPS $5 \quad 50 \quad 5 \quad 50 \quad 200 \quad 10 \quad 200 \quad 400 \quad 20$
10. FILE TYPE 2
11. PLOT CUTOFF . 85
12. TABLE CUTOFF . 60
13. PLOT TITLE TURCISS SA
14. PLOT XLABEL TIME (SECS)
15. YLABEL POOLTEMP LOCATION HXFER DELTAX
16. XLABEL TMALL TMFE GAMMAO HFAL HFFE CKA CKB CKC PCCA BWATER
17. EWATER SPONC MTCONC HFCONC MGOA MGOB MGOC DMGO GRIDL VBUB

This page echoes the values of the parameters associated with the keywords in Table Al.

TURCISS SENSITIVITY ANALYSIS

NUMBER OF	NUMBER OF IND	NUMBER OF	NUMBER OF DEP
IND VARS	VARS SELECTED	DEP VARS	VARS SELECTED
20	5	4	2

NUMBER OF	NUMBER OF	CUTOFF FOR	CUTOFF FOR	DATA FILE
OBSERVATIONS	STEPS	TABLE	PLOTS	TYPE
60	35	0.600	0.850	2

PARTIAL CORRELATION AND STANDARDIZED REGRESSION COEFFICIENTS WILL BE CALCULATED USING THE RANKS OF THE OBSERVATIONS

INDEPENDENT VARIABLES
SELECTED FOR ANALYSIS
1 TMALL
2 TMFE
3 GAMMAO
13 MTCONC
20 VBUB

DEPENDENT VARIABLES
SELECTED FOR ANALYSIS

This page lists the actual values of the partial rank correlation coefficient. Table entries are listed by time step for each of the five independent variables selected for this analysis for the dependent variable POOLTEMP. Thus, this page contains the coordinates used in making a plot of PRCC versus time for each independent and dependent variable combination. The last column contains the value of the model R-square for Y as discussed in section 1 .

			INDEPENDENT						VARIABLES
STEPS	UNITS	TMALL	TMFE	GAMMAO	MTCONC	VBUB	R-SQUARE		
1	5.00	0.29	-0.01	-0.63	0.34	-0.49	0.54		
2	10.0	0.19	-0.07	-0.74	0.45	-0.68	0.70		
3	15.0	0.12	-0.05	-0.78	0.48	-0.78	0.77		
4	20.0	0.07	-0.06	-0.79	0.50	-0.82	0.80		
5	25.0	0.11	-0.03	-0.78	0.51	-0.84	0.81		
6	30.0	0.11	-0.03	-0.78	0.51	-0.84	0.81		
7	35.0	0.10	-0.04	-0.78	0.53	-0.85	0.82		
8	40.0	0.11	-0.05	-0.78	0.55	-0.86	0.82		
9	45.0	0.10	-0.04	-0.77	0.56	-0.86	0.82		
10	50.0	0.07	-0.02	-0.77	0.59	-0.86	0.83		
11	60.0	0.06	0.00	-0.78	0.59	-0.86	0.83		
12	70.0	0.05	-0.01	-0.78	0.59	-0.86	0.83		
13	80.0	0.05	0.02	-0.78	0.59	-0.86	0.83		
14	90.0	0.04	0.12	-0.77	0.58	-0.86	0.82		
15	100.	0.02	0.24	-0.76	0.55	-0.84	0.81		
16	110.	0.04	0.36	-0.74	0.52	-0.83	0.79		
17	120.	0.01	0.53	-0.70	0.48	-0.81	0.77		
18	130.	0.00	0.60	-0.66	0.38	-0.76	0.73		
19	140.	-0.01	0.66	-0.61	0.34	-0.70	0.70		
20	150.	-0.03	0.70	-0.58	0.31	-0.66	0.69		
21	160.	-0.05	0.70	-0.54	0.23	-0.61	0.67		
22	170.	-0.08	0.71	-0.49	0.19	-0.55	0.64		
23	180.	-0.12	0.74	-0.47	0.14	-0.54	0.65		
24	190.	-0.12	0.78	-0.45	0.12	-0.53	0.69		
25	200.	-0.13	0.82	-0.44	0.09	-0.51	0.72		
26	220.	-0.11	0.84	-0.44	0.05	-0.48	0.75		
27	240.	-0.08	0.86	-0.44	0.03	-0.42	0.77		
28	260.	-0.06	0.89	-0.44	0.01	-0.38	0.81		
29	280.	-0.07	0.91	-0.42	0.02	-0.35	0.84		
30	300.	-0.08	0.93	-0.38	-0.01	-0.32	0.86		
31	320.	-0.12	0.93	-0.31	-0.04	-0.28	0.88		
32	340.	-0.12	0.94	-0.29	-0.06	-0.28	0.89		
33	360.	-0.12	0.95	-0.25	-0.09	-0.26	0.91		
34	380.	-0.12	0.96	-0.22	-0.10	-0.27	0.93		
35	400.	-0.12	0.97	-0.21	-0.09	-0.25	0.94		

PAGE 3 OF THE COMPUTER OUTPUT

This page ranks from 1 to 5 the absolute values of the PRCC at each time step listed on page 2 of the computer output. This table allows one to quickly compare the relative importance of the five independent variables over time steps. Thus, it can be seen that independent variable TMFE is least important (rank 5) at early time steps but is most important (rank 1) at later time steps.

TURCISS SENSITIVITY ANALYSIS
RANKS OF PARTIAL RANK CORRELATION COEFFICIENTS VS STEPS DEPENDENT VARIABLE -POOLTEMP-

UNITS = TIME (SEC)
INDEPENDENT VARIABLES

STEPS	UNITS	TMALL	TMFE	GAMMAO	MTCONC	VBUB
1	5.00	4	5	1	3	2
2	10.0	4	5	1	3	2
3	15.0	4	5	1	3	2
4	20.0	4	5	2	3	1
5	25.0	4	5	2	3	1
6	30.0	4	5	2	3	1
7	35.0	4	5	2	3	1
8	40.0	4	5	2	3	1
9	45.0	4	5	2	3	1
10	50.0	4	5	2	3	1
11	60.0	4	5	2	3	1
12	70.0	4	5	2	3	1
13	80.0	4	5	2	3	1
14	90.0	5	4	2	3	1
15	100.	5	4	2	3	1
16	110.	5	4	2	3	1
17	120.	5	3	2	4	1
18	130.	5	3	2	4	1
19	140.	5	2	3	4	1
20	150.	5	1	3	4	2
21	160.	5	1	3	4	2
22	170.	5	1	3	4	2
23	180.	5	1	3	4	2
24	190.	5	1	3	4	2
25	200.	4	1	3	5	2
26	220.	4	1	3	5	2
27	240.	4	1	2	5	3
28	260.	4	1	2	5	3
29	280.	4	1	2	5	3
30	300.	4	1	2	5	3
31	320.	4	1	2	5	3
32	340.	4	1	2	5	3
33	360.	4	1	3	5	2
34	380.	4	1	3	5	2
35	400.	4	1	3	5	2

This page lists the actual values of the standardized rank regression coefficient. Table entries are listed by time step for each of the five independent variables selected for this analysis for the dependent variable POOLTEMP. Thus, this page contains the coordinates used in making a plot of SRRC versus time for each independent and dependent variable combination. The last column contains the value of the model R-square for Y as discussed in section 1.

TURCISS SENSITIVITY ANALYSIS
STANDARDIZED RANK REGRESSION COEFFICIENTS VS STEPS DEPENDENT VARIABLE -POOLTEMPUNITS = TIME (SEC)

			INDEPENDENT						VARIABLES
STEPS	UNITS	TMALL	TMFE	GAMMAO	MTCONC	VBUB	R-SQUARE		
1	5.00	0.20	-0.01	-0.55	0.25	-0.38	0.54		
2	10.0	0.10	-0.04	-0.61	0.28	-0.50	0.70		
3	15.0	0.06	-0.03	-0.60	0.26	-0.59	0.77		
4	20.0	0.03	-0.03	-0.58	0.26	-0.64	0.80		
5	25.0	0.05	-0.01	-0.55	0.26	-0.67	0.81		
6	30.0	0.05	-0.01	-0.53	0.26	-0.69	0.81		
7	35.0	0.04	-0.02	-0.53	0.27	-0.69	0.82		
8	40.0	0.04	-0.02	-0.52	0.28	-0.70	0.82		
9	45.0	0.04	-0.02	-0.51	0.28	-0.70	0.82		
10	50.0	0.03	-0.01	-0.50	0.30	-0.71	0.83		
11	60.0	0.02	0.00	-0.51	0.30	-0.70	0.83		
12	70.0	0.02	0.00	-0.51	0.30	-0.70	0.83		
13	80.0	0.02	0.01	-0.51	0.31	-0.69	0.83		
14	90.0	0.02	0.05	-0.51	0.30	-0.70	0.82		
15	100.	0.01	0.11	-0.51	0.29	-0.68	0.81		
16	110.	0.02	0.17	-0.50	0.28	-0.68	0.79		
17	120.	0.00	0.30	-0.46	0.26	-0.65	0.77		
18	130.	0.00	0.38	-0.45	0.21	-0.60	0.73		
19	140.	-0.01	0.48	-0.42	0.20	-0.53	0.70		
20	150.	-0.02	0.54	-0.40	0.18	-0.48	0.69		
21	160.	-0.03	0.57	-0.37	0.14	-0.44	0.67		
22	170.	-0.05	0.60	-0.34	0.12	-0.40	0.64		
23	180.	-0.07	0.64	-0.31	0.08	-0.38	0.65		
24	190.	-0.07	0.70	-0.29	0.07	-0.35	0.69		
25	200.	-0.07	0.75	-0.26	0.05	-0.31	0.72		
26	220.	-0.06	0.79	-0.25	0.03	-0.27	0.75		
27	240.	-0.04	0.82	-0.23	0.01	-0.22	0.77		
28	260.	-0.02	0.86	-0.22	0.00	-0.18	0.81		
29	280.	-0.03	0.89	-0.18	0.01	-0.15	0.84		
30	300.	-0.03	0.91	-0.15	0.00	-0.12	0.86		
31	320.	-0.04	0.92	-0.12	-0.01	-0.10	0.88		
32	340.	-0.04	0.93	-0.10	-0.02	-0.10	0.89		
33	360.	-0.04	0.95	-0.08	-0.03	-0.08	0.91		
34	380.	-0.03	0.96	-0.06	-0.03	-0.08	0.93		
35	400.	-0.03	0.97	-0.05	-0.02	-0.06	0.94		

This page ranks from 1 to 5 the absolute values of the SRRC at each time step listed on page 4 of the computer output. This table allows one to quickly compare the relative importance of the five independent variables over time steps. Thus, it can be seen that independent variable TMFE is least important (rank 5) at early time steps but is most important (rank l) at later time steps.

This page supplies the same information as page 2 of the computer output, except that this time the dependent variable is HXFER.

TURCISS SENSITIVITY ANALYSIS
PARTIAL RANK CORRELATION COEFFICIENTS VS STEPS DEPENDENT VARIABLE -HXFER -

UNITS = TIME (SEC)
INDEPENDENT VARIABLES

STEPS	UNITS	TMALL	TMFE	GAMMAO	MTCONC	VBUB	R-SQUARE
1	5.00	-0.14	0.01	0.33	0.23	0.84	0.73
2	10.0	0.08	-0.07	0.70	0.48	0.90	0.84
3	15.0	-0.05	-0.01	0.79	0.39	0.90	0.86
4	20.0	-0.01	-0.05	0.81	0.39	0.91	0.87
5	25.0	-0.01	-0.08	0.80	0.41	0.91	0.88
6	30.0	0.00	-0.03	0.80	0.38	0.89	0.86
7	35.0	-0.06	0.03	0.79	0.35	0.90	0.86
8	40.0	0.00	0.08	0.69	0.40	0.85	0.79
9	45.0	-0.01	0.06	0.77	0.41	0.87	0.83
10	50.0	-0.03	-0.10	0.79	0.40	0.89	0.85
11	60.0	0.00	-0.11	0.60	0.43	0.75	0.68
12	70.0	-0.01	-0.16	0.51	0.48	0.56	0.54
13	80.0	-0.08	-0.13	0.46	0.53	0.50	0.50
14	90.0	-0.10	-0.12	0.37	0.60	0.38	0.48
15	100.	0.01	-0.20	0.31	0.70	0.23	0.54
16	110.	0.08	-0.34	0.22	0.73	0.02	0.57
17	120.	0.05	-0.45	0.03	0.71	-0.18	0.57
18	130.	0.08	-0.53	-0.15	0.71	-0.34	0.61
19	140.	0.03	-0.58	-0.23	0.75	-0.48	0.68
20	150.	0.02	-0.58	-0.27	0.76	-0.51	0.70
21	160.	0.07	-0.60	-0.29	0.73	-0.56	0.70
22	170.	0.05	-0.64	-0.33	0.72	-0.60	0.71
23	180.	0.02	-0.64	-0.33	0.71	-0.61	0.71
24	190.	-0.01	-0.62	-0.35	0.71	-0.63	0.71
25	200.	0.00	-0.60	-0.35	0.71	-0.65	0.71
26	220.	-0.03	-0.61	-0.34	0.70	-0.67	0.71
27	240.	-0.01	-0.58	-0.40	0.65	-0.66	0.69
28	260.	-0.01	-0.59	-0.43	0.63	-0.66	0.69
29	280.	-0.06	-0.61	-0.40	0.54	-0.64	0.66
30	300.	-0.08	-0.58	-0.41	0.46	-0.63	0.62
31	320.	-0.07	-0.49	-0.40	0.33	-0.56	0.53
32	340.	0.01	-0.42	-0.40	0.16	-0.53	0.45
33	360.	0.08	-0.31	-0.40	0.06	-0.45	0.36
34	380.	0.03	-0.14	-0.37	0.04	-0.41	0.28
35	400.	0.04	-0.11	-0.34	0.05	-0.36	0.23

PAGE 7 OF THE COMPUTER OUTPUT

This page supplies the same information for dependent variable HXFER as page 3 of the computer output did for POOLTEMP.

TURCISS SENSITIVITY ANALYSIS RANKS OF PARTIAL RANK CORRELATION COEFFICIENTS VS STEPS
DEPENDENT VARIABLE -HXFER -
UNITS $=$ TIME (SEC)

INDEPENDENT VARIABLES

STEPS	UNITS	TMALL	TMFE	GAMMAO	MTCONC	VBUB
1	5.00	4	5	2	3	1
2	10.0	4	5	2	3	1
3	15.0	4	5	2	3	1
4	20.0	5	4	2	3	1
5	25.0	5	4	2	3	1
6	30.0	5	4	2	3	1
7	35.0	4	5	2	3	1
8	40.0	5	4	2	3	1
9	45.0	5	4	2	3	1
10	50.0	5	4	2	3	1
11	60.0	5	4	2	3	1
12	70.0	5	4	2	3	1
13	80.0	5	4	3	1	2
14	90.0	5	4	3	1	2
15	100.	5	4	2	1	3
16	110.	4	2	3	1	5
17	120.	4	2	5	1	3
18	130.	5	2	4	1	3
19	140.	5	2	4	1	3
20	150.	5	2	4	1	3
21	160.	5	2	4	1	3
22	170.	5	2	4	1	3
23	180.	5	2	4	1	3
24	190.	5	3	4	1	2
25	200.	5	3	4	1	2
26	220.	5	3	4	1	2
27	240.	5	3	4	2	1
28	260.	5	3	4	2	1
29	280.	5	5	2	4	3

This page supplies the same information as page 4 of the computer output, except that this time the dependent variable is HXFER.

TURCISS SENSITIVITY ANALYSIS STANDARDIZED RANK REGRESSION COEFFICIENTS VS STEPS DEPENDENT VARIABLE -HXFER UNITS = TIME (SEC)

		INDEPENDENT					
STEPS	UNITS	TMALL	TMFE	GAMMAO	MTCONC	VBUB	R-SQUARE
1	5.00	-0.07	0.01	0.19	0.13	0.82	0.73
2	10.0	0.03	-0.03	0.39	0.22	0.80	0.84
3	15.0	-0.02	0.00	0.48	0.16	0.77	0.86
4	20.0	0.00	-0.02	0.49	0.15	0.78	0.87
5	25.0	0.00	-0.03	0.47	0.16	0.79	0.88
6	30.0	0.00	-0.01	0.51	0.16	0.76	0.86
7	35.0	-0.02	0.01	0.48	0.14	0.78	0.86
8	40.0	0.00	0.04	0.44	0.20	0.74	0.79
9	45.0	0.00	0.02	0.50	0.18	0.74	0.83
10	50.0	-0.01	-0.04	0.49	0.17	0.76	0.85
11	60.0	0.00	-0.06	0.43	0.27	0.65	0.68
12	70.0	0.00	-0.11	0.41	0.38	0.46	0.54
13	80.0	-0.06	-0.09	0.36	0.44	0.40	0.50
14	90.0	-0.07	-0.08	0.29	0.54	0.30	0.48
15	100.	0.01	-0.14	0.22	0.66	0.16	0.54
16	110.	0.05	-0.23	0.15	0.69	0.01	0.57
17	120.	0.03	-0.33	0.02	0.66	-0.12	0.57
18	130.	0.05	-0.39	-0.10	0.63	-0.23	0.61
19	140.	0.02	-0.40	-0.14	0.64	-0.31	0.68
20	150.	0.01	-0.39	-0.15	0.65	-0.32	0.70
21	160.	0.04	-0.42	-0.17	0.59	-0.38	0.70
22	170.	0.03	-0.45	-0.19	0.55	-0.41	0.71
23	180.	0.01	-0.45	-0.19	0.54	-0.42	0.71
24	190.	0.00	-0.43	-0.20	0.54	-0.44	0.71
25	200.	0.00	-0.41	-0.20	0.54	-0.45	0.71
26	220.	-0.01	-0.42	-0.20	0.52	-0.48	0.71
27	240.	-0.01	-0.40	-0.24	0.48	-0.49	0.69
28	260.	-0.01	-0.41	-0.27	0.45	-0.49	0.69
29	280.	-0.03	-0.45	-0.26	0.37	-0.49	0.66
30	300.	-0.05	-0.43	-0.28	0.32	-0.49	0.62
31	320.	-0.05	-0.39	-0.30	0.24	-0.47	0.53
32	340.	0.00	-0.34	-0.32	0.12	-0.47	0.45
33	360.	0.06	-0.26	-0.35	0.05	-0.41	0.36
34	380.	0.02	-0.12	-0.34	0.03	-0.38	0.28
35	400.	0.03	-0.10	-0.32	0.05	-0.34	0.23

PAGE 9 OF THE COMPUTER OUTPUT

This page supplies the same information for dependent variable HXFER as page 5 of the computer output did for POOLTEMP.

PAGE 10 OF THE COMPUTER OUTPUT

This page presents a table of the maximum value (positive or negative) of the PRCC for each combination of independent and dependent variable provided that the absolute value of the maximum PRCC exceeds . 60 as specified on line 12 of Table Al.

TURCISS SENSITIVITY ANALYSIS
TABLE ENTRIES REPRESENT THE MAXIMUM VALUE OF THE PARTIAL RANK CORRELATION COEFFICIENT OVER ALL STEPS FOR EACH COMBINATION OF SELECTED INDEPENDENT VARIABLE AND SELECTED DEPENDENT VARIABLE, PROVIDED THAT THE ABSOLUTE VALUE OF THIS COEFFICIENT IS GREATER THAN 0.600

POOLTEMP HXFER

TMALL		
TMFE	.97	-.64
GAMMAO	-.79	.81
MTCONC		.76
VBUB	-.86	.91

PAGE 11 OF THE COMPUTER OUTPUT
This page presents a table of the maximum value (positive or negative) of the SRRC for each combination of independent and dependent variable given in the previous table.

TURCISS SENSITIVITY ANALYSIS
TABLE ENTRIES REPRESENT THE MAXIMUM VALUE OF THE STANDARDIZED RANK REGRESSION COEFFICIENT OVER ALL STEPS FOR EACH COMBINATION OF SELECTED INDEPENDENT VARIABLE AND SELECTED DEPENDENT VARIABLE, GIVEN IN THE PREVIOUS TABLE

POOLTEMP HXFER

TMALL		
TMFE	.97	-.45
GAMMAO	-.61	.51
MTCONC		.69
VBUB	-.71	.82

TURCISS SA $\quad \mathrm{N}=$ TMFE $\quad \mathrm{DV}=P O O L T E M P$

OUTPUT PLOT 1. This plot shows the values of the partial rank correlation coefficient and standardized rank regression coefficient versus time step (as identified by line 9 of Table Al) for the combination of independent variable TMFE and dependent variable POOLTEMP. This plot shows TMFE to have no effect (PRCC and SRRC near zero) through the first 80 seconds and then to rapidly increase in importance. The positive values of PRCC and SRRC means that TMFE and POOLTEMP increase together.

OUTPUT PLOT 2. This plot shows the sensitivity of the dependent variable POOLTEMP to the independent variable VBUB. The variable POOLTEMP is most sensitive to the value of VBUB at early time steps when the variable TMFE from Plot 1 played an insignificant role. However, the magnitudes of the PRCC and SRCC are not as large in absolute value as they were for the variable TMFE.

OUTPUT PLOT 3. This plot shows the value of the model R-square versus time step when the dependent variable POOLTEMP is fit as a function of the independent variables TMALL, TMFE, GAMMAO MTCONC and VBUB as identified in line 8 of Table Al.

OUTPUT PLOT 4. This plot shows the values of the partial rank correlation coefficient and standardized rank regression coefficient versus time step (as identified by line 9 of Table Al) for the combination of independent variable VBUB and dependent variable HXFER. This plot shows the independent variable VBUB having a moderately strong positive relationship with the dependent variable HXFER at early time steps and then changing to a weaker negative relationship at later time steps.

OUTPUT PLOT 5. This plot shows the value of the model R-square versus time step when the dependent variable HXFER is fit as a function of the independent variables TMALL, TMFE, GAMMAO MTCONC and VBUB as identified in line 8 of Table Al.

```
U.S. Government Printing Office
Receiving Branch (Attn: NRC Stock)
8610 Cherry Lane
Laurel. MD 20707
    250 copies for RG
US NRC (50 copies total)
Division of Risk Analysis and Operations
Washington, DC 20555
    M. Cunningham (30)
    J. Johnson (5)
    L. Lancaster (5)
    T. Margulies (5)
    D. Rasmuson (5)
```

Los Alamos National Laboratories (5)
Group Sl. MS 606
Los Alamos. NM 87545
Attn: H. F. Martz
R. J. Beckman
M. E. Johnson
M. D. McKay
R. A. Waller
Ioannis G. Bartzis
Greek Atomic Energy Commission
Nuclear Research Center Demokritos
Aghia Paraskevi
Attikis
GREECE
A. Bayer
INR-Kernforschungszentrum Karlsruhe
D-7500 Karlsruhe 1
Postfach 3640
WEST GERMANY

Nicholas Birkett
Department of Clinical Epidemiology
\& Biostatistics
McMaster University
1200 Main Street
Hamilton, Ontario, L8N 3Z5
CANADA

Thomas A. Bishop
Battelle Columbus Laboratories
505 King Avenue
Columbus. OH 43201
Carla Brofferio
Comitato Nazionale per l'Energia Nucleare
Viale Regina Margherita, 125
Casella Postale N. 2358
I-00100 Roma A.D.
ITALY
Robert Budnitz
Future Resources Associates
2000 Center Street
Suite 418
Berkeley, CA 94707
Klaus Burkart
Institut fur Neutronenphysik and
Reaktortechnik (INR)
Kernforschungszentrum Karlsruhe G.m.b.H.
Postfach 3640
D-7500 Karlsruhe 1
WEST GERMANY
Pietro Cagnetti
PAS
Comitato Nazionale per l'Energia Nucleare
Centro di Studi Nucleari della Casaccia
Via Anguillarese km $1+300$
I-00060 Roma
ITALY
James E. Campbell (2)
Intera Environmental Consultants Inc.
11999 Katy Freeway
Houston, TX 77079
S. Chakraborty
Abtielung fur die Sicherheit der Kernanlagen Eidgenossisches Amt fur Energiewirtschaft Wurenlingen
SWITZERLAND
Michael L. Corradini
University of Wisconsin-Madison
Nuclear Engineering Dept.
145 Engr. Res. Building
1500 Johnson Drive
Madison, WI 53706
Alistair D. Christie
Deputy Director. Air Quality and
Inter-Environmental Research Branch
Environment Canada
Atmospheric Environment Service
4905 Dufferin Street
City of North York. Downsview
Ontario. M3H 5T4
CANADA
W. J. Conover (10)
College of Business Administration
Texas Tech University
Lubbock, TX 79409
Malcolm Crick
National Radiological Protection Board
Chilton
Didcot
Oxon. OXllorQ
United Kingdom
J. M. Davenport
Department of Mathematics
Texas Tech University
Lubbock. TX 79409
Pamela Doctor
Battelle Northwest
P. O. Box 999
Richland, WA 99352
Darryl Downing (2)
Computer Sciences
Building 2029. P. O. Box X
ORNL
Oak Ridge, TN 37830
Ove Edlund
Studsvik Energiteknik AB
Studsvik
Fack
S-6ll 82 Nykoping 1
SWEDEN
Bert Th. Eendebak
KEMA Laboratories
Utrechtseweg. 310
Postbus 9035
NL-6800 ET ArnhemNETHERLANDS

```
Daniel Egan
Office of Radiation Programs (ANR-460)
U.S. Environmental Protection Agency
Washington, DC 20460
Friedmar Fischer
Kernforschungszentrum Karlsruhe G.m.b.H.
Postfach 3640
D-7500 Karlsruhe 1. WEST GERMANY
Brenda Ganheart
Minerals Management Service
P. O. Box 7944
Metairie, LA 70010-7944
R. H. Gardner
Environmental Sciences Division
ORNL
Oak Ridge. TN 37830
Dave G. Gosslee (6)
P. O. Box Y. Bldg. 9704-1
ORNL
Oak Ridge, TN 37830
William Schucany (5)
Department of Statistics
Southern Methodist University
Dallas. TX 75275
Allan Gutjahr
Department of Mathematics
NMIMT
Socorro, NM 87801
William V. Harper (2)
Performance Analysis Department
Battelle Columbus Laboratories
505 King Avenue
Columbus, OH 43201
Michael Haynes
United Kingdom Atomic Energy Authority
Safety & Reliability Directorate
Wigshaw Lane
Culcheth
Warrington WA3 4NE
UNITED KINGDOM
Vahe Hayrikian
Bechtel Power Corporation
12400 E. Imperial Highway
Norwalk, CA 90650
```

F. O. Hoffman
Health and Safety Research DivisionORNL
Oak Ridge, TN 37830
Stephen C. Hora (10)
College of Business Administration
Texas Tech University
Lubbock, TX 79409
Frank W. Horsch
Kernforschungszentrum Karlsruhe G.m.b.H.
Postfach 3640
D-7500 Karlsruhe
WEST GERMANY
Toshinori Iijima
Division of Reactor Safety Evaluation
Reactor safety Research Center
Japan Atomic Energy Research Institute
Tokai Research Establishment
Tokai-mura
Naka-gun
Ibaraki-ken 319-11
JAPAN
Janeen Judah
Department of Petroleum Engineering
Texas A\&M University
College Station, TX 77843
Geoffrey D. Kaiser
Consulting Division
NUS Corporation
910 Clopper Road
Gaithersburg. MD 20878
Samuel C. Kao (2)
Applied Mathematics, 515
Brookhaven National Laboratory
Upton, NY 11973
Dean C. Kaul
Science Applications, Inc.
Suite 819
1701 East Woodfield Road
Schaumburg, IL 60195
K. E. Kemp
Department of Statistics
Kansas State University
Manhattan, KS 66502

```
Jan G. Kretzschmar
Studiecentrum voor Kernenergie (SCK/CEN)
Boeretang, 200
B-2400 Mol
BELGIUM
Daniel Manesse
Institut de Protection et de
    Surete Nucleaire (IPSN)
Commissariat a l'Energie Atomique
Centre d'Etudes Nucleaires de
    Fontenay-aux-Roses
Boite Postale 6
F-92260 Fontenay-aux-Roses
FRANCE
Michael Marchlik
Ebasco Services, Inc.
160 Chubb Avenue
Lyndhurst. NJ 07071
David S. Margoles
Mathematics and Statistics Division
Lawrence Livermore Laboratory
P. O. Box 808 (L-316)
Livermore, CA }9455
Scott Mathews
EG&G Idaho
M.S. TSB
P. O. Box 1625
Idaho Falls, ID 83415
Marise Mikulis
Arthur D. Little. Inc.
Alcorn Park
Cambridge, MA 02140
Shan Nair
Research Division
Central Electricity Generating Board
Berkeley Nuclear Laboratories
Berkeley
Gloucestershire GLIl3 9PB
UNITED KINGDOM
William Nixon
United Kingdom Atomic Energy Authority
Safety & Reliability Directorate
Wigshaw Lane
Culcheth
Warrington WA3 4NE
UNITED KINGDOM
```

```
Don Paddleford
Westinghouse
P. O. Box 355
Pittsburgh. PA 15230
Norman C. Rasmussen
Department of Nuclear Engineering
Massachusetts Institute of Technology
77 Mass Avenue
Cambridge, MA 02139
Mark Reeves
Intera Environmental Consultants
11999 Katy Freeway
Suite 6l0
Houston. TX 77079
Ilkka Savolainen
Technical Research Centre of Finland
Nuclear Engineering Laboratory
P. O. Box 169
SF-00181 Helsinki 18
FINLAND
Sebastiano Serra
ENEL-DCO
Ente Nazionale per l'Energia Elettrica
Via G.B. Martini. 3
Casella Postale N. 386
I-00186 Roma
ITALY
Juan Bagues Somonte
Junta de Energia Nuclear
Ciudad Universitaria
Avenida Complutense, 22
Madrid-3
SPAIN
David A. Stanners
Commission on European Communities
Joint Research Center
Ispra Establishment
2l020 Ispra (Varese)
ITALY
John R. D. Stoute
Health Physics Division
Energieonderzoek Centrum Nederland (ECN)
Westerduinweg. }
Postbus 1
NL-1755 Petten ZG
NETHERLANDS
```

```
Marian Stubna
Nuclear Power Plants
Research Institute
VUJE
919 31 Jaslovske Bohunice
orkes Trnava
CZECHOSLOVAKIA
Soren Thykier-Nielsen
Health Physics Department
Risø National Laboratory
Postbox 49
DK-4000 Roskilde
DENMARK
Alfred Torri
Pickard, Lowe and Garrick. Inc.
2260 University Drive
Newport Beach. CA 92660
Ulf Tveten
Institute for Energy Technology
Postboks 40
N-2007 Kjeller
NORWAY
I. B. Wall
Electric Power Research Institute
3412 Hillview Avenue
P. O. Box 10412
Palo Alto, CA 94303
Keith Woodard
Pickard. Lowe & Garrick. Inc.
1200 18th Street. NW
Suite 6l2
Washington, DC 20036
John R. Yearsley
U.S. EPA, Region X
1200 Sixth Avenue
seattle. WA 98101
Jon Young
Energy Incorporated
515 West Harrison
Suite 220
Kent. WA 98031
```

Eric R. Ziegel
Standard Oil Company (Indiana)
Amoco Research Center
P. O. Box 400
Naperville, IL 60566
Auguste Zurkinden
Abteilung fur die Sicherheitder Kernanlagen
Bundesamt fur Energiewirtschaft
$\mathrm{CH}-5303$ Wurenlingen
SWITZERLAND
Lai K. Chan
Department of Statistics
The University of Manitoba
Winnipeg, Manitoba
CANADA R3T 2N2
Hue McCoy
TRASANA
White Sands Missile Range
White Sands, NM 88002
2561 G. W. Smith
3141 C. M. Ostrander (5)
3151 W. L. Garner
6246 H. P. Stephens
6312 R. R. Peters
6400 A. W. Snyder
6410 J. W. Hickman
6411 A. S. Benjamin
6412 M. P. Bohn
6414 D. M. Ericson
6415 F. E. Haskin
6415 D. J. Alpert
6415 D. E. Bennett
6415 J. M. Griesmeyer
6415 J. C. Helton
6415 R. L. Iman (20)
6415 J. D. Johnson
6415 C. D. Leigh
6415 L. T. Ritchie
6415 M. J. Shortencarier
6415 J. L. Sprung
6422 J. E. Brockman
6422 J. E. Gronager
6425 D. R. Bradley6430 N. R. Ortiz
6431 R. M. Cranwell
8024 M. A. Pound


```
<><\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle
    PARTIAL CORRELATION COEFFICIENT AND STANDARDIZED REGRESSION
C<\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle
```

```
ISSUED BY SANDIA NATIONAL LABORATORIES,
```

ISSUED BY SANDIA NATIONAL LABORATORIES,
A PRIME CONTRACTOR TO THE
A PRIME CONTRACTOR TO THE
UNITED STATES DEPARTMENT OF ENERGY
UNITED STATES DEPARTMENT OF ENERGY
C<\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangleN N T I G E <><\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle\langle\rangle
THIS CODE WAS PREPARED IN THE COURSE OF WORK SPONSORED G
THE UNITED STATES GOVERNMENT. NEITHER THE UNITED STATES NOR
THE UNITED STATES DEPARTMENT OF ENERGY. THE UNITED STATES
NUCLEAR REGULATORY COMMISSION, NOR ANY OF THEIR EMPLOYEES,
NOR ANY OF THEIR CONTRACTORS, SUBCONTRACTORS, OR THEIR
EMPLOYEES. MAKES AMY WARRARTY, EXPRESS OR IMPLIED. OR
ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE
ACCURACY, COMPLETENESS OR USEFULNESS OF ANY INFORMATION
APPARATUS, PRODUCT OR PROCESS DISCLOSED. OR REPRESENTS THAT
ITS USE HOULD NOT INFRINGE PRIVATELY OWNED RIGHTS.
C\langle\rangle
C THIS REPORT WAS PREPARED AS AN ACCOUNT OF WORK SPONSORED BY THE
C UNITED STATES GCVERNMENT. NEITHER THE UNITED STATES NOR THE
C UMILED SIATES DEPARTMENT OF ENERGY
C NOR ANY OF THEIR EMPLOYEES, NOR ANY OF THEIR CONTRACTORS,
C SUBCONTRACTORS, OR THEIR EMPLOYEES, MAKES ANY WARRANTY, EXPRESS
C OR IMPLIED. OR ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY
C FOR THE ACCURACY, COMPLETENESS OR USEFLILNESS OF ANY INFORMATION,
C FOR THE ACCURACY, COMPLETENESS OR USEFIUNESS OF ANY INFORMATION,
C APPARATUS, PRODUCT OR PROCESS DISCLOSED, OR REPRESENTS THAT ITS
C USE HOLLDNOT INFRINGE PRJVATELY QNNED RIGHTS.

```

```

C AUIMCRS SANDIA NATIONAL LABORATORIES, ALBUQUERQUE, NM }8718
C Re L. IHAN PHONE (505)844-8834 ORGO. 6415
C M. J. SHORTENCARIER SHONE (505)846-5445 % ORG.6475
C\langle\rangle
PROGRAM PCCSRC
PARAMETER (LENC=80, LENTC=10, LLAB=8, MXNDV=20, MXNINT=10
1 MXNIV=50, MXNOBS=100. MXNSTP=100)
DIMENSION CORINV((MXNIV+1)*(MXNIV+2)/Z), DX(MXNINT),
IRNK(MXNSTP, MXNIV), ITMP(MXNIV), INK(HXNOBS),
IWKDV(MXNDV) IWKIV(MXNIV+1), LSDV(MXNDV)
LSIV(MXNIV+1), RK(MXNOES), RS(MXNSTP,MXNIV+1),
RSPLT(MXNSTP), RSRC(MXNSTP,MXNIV+1),
RXCORR(MXNIV (MXNIV+1)/2) STEPS(MXNSTP)
X(MXNOBS,MXNIV) XB(MXNINT), XE(MXNINT)
TMP1(MXNIV), TMPZ(MXNIV),Y(MXNOBS,MXNDV, MXNSTP)
CHARACTER CARD* (LENC) CX(MXNIV)* (LLAB) CY(MXNDV)* (LLAB).
CARD*(LENC) CX(MXNIV)*(LLAB), CY(MXNDV)*(L
PTITLE*(LENC-11), PXLAB*(LENC-12), PYLAB*(LENC-12),
TABLE(MXNIV+1,MXNDV)* (LLAB)
TABLE1(MXNIV+1,MXNDV)*(LLAB), TITLE*(LENC-6),
TMPCRD*(MAX(3*MXNINT*LENTC,MXNDV*LENTC,MXNIV*LENTC))
COMMON /MAXDIM/ ITEMP(8)
COMMON /PARAM/ LLN, LPCC, LPRCC, LSRC, LSRRC, LRAW, NDV, NIV,
1
LLN, LPCC, LPRCC, LSRC, LSRRG, LRAN, NDV, NIV,
NINT, NOBS, NPLOTS,
COMMON /SPRC/ SPRCT, SPRC2, SPRC3
CHARACTER PCLAB*20,'PRCLAB*25,SRLAB*24, SRRLAE*29
OATA PCLAB, PRCLAB, SRLAB, SRRLAB//

```
```

READ(CARD(13:LENC),9001) EK:AE

```

60 TO 8

\section*{C**}

ELSE IF(CRDTYP(1:5) EQ. PXLOG) THEN
LLN=1
60 TO 10
C*2xt*YLIMITS RECORD
ELSE IF(CRDTYP(1:8) EEQ. PYLIM) THEN
READ (TMPCRD,FRMTR,ERR=7000) YMIN, YMAX
GO TO 10
C \(\because * * * *\) UNDEFINED KEYWORD RECORD
——LSE WRITE(6,9007) CRDTYP
WRITE (6,9007) CRD
INPERR=INPERR +
ENDIF
60 TO 10
7000 CONTINUE
HRITE \((6.9027)\) CRDTYP
INPERR=INPERR * 1
C\#\#*** CHECK FOR INPUT ERRORS
8000 CONTINUE
I STP \(=0\)
IF(NOBS .EQ. -9999) THEN
HRITE 6.9008 ) PNOBS
INPERR=I \(A P E R R+1\)
ENDIF
IF(NIV eER. -9999) THEN WRITE(6,9008) PNIV
INPERR=INPERR + 1
ENDIF
IF(NDV.EQ. -9999) THEN
WRITE(6,9008) PNDV
INPERR \(=\) INPERR +1
ENDIF
IF(IFT.EQ. -9999) THEN
WRITE(6.9008) PFT
ENOIF
IF (NSIV ER. O) NSIV=NIV
IF (NSIV .GT. NIV) THEN
WRITE(6,9051) NSIV, NIV
INPERR=INPERR +1
ENDIF
IF (NSDV.EQ. D) NSDV=NDV
IFSNSDV, GT. NDV) THEN
WRITE(6,9053) NSDV, NDV
INPERR = INPERR + 1
ENDIF
IF(INPERR NE. D) STOP 'INPUT'
LABIV (NIV+1)=RSOUAR
\(C * * * * * P R O C E S S\) SELECTED INDEPENDENT VARIABLE PARAMETERS
CALL SELVAR(MXNIV, NIV, NSIV, IWKIV, LSIV, INPERR)
C*****PROCESS SELECTED DEPENDENT VARIABLE PARAMETERS
CALL SELVAR (MXNDV, NDV, NSDV, IWKOV, LSDV, INPERR)
C*****VERIFY NON=DUPLICATE SELECTED VARIABLES
DO 8100 ISIV=1, NSIV-1
IF(IWKIV(ISIV) E EO. IWKIV(ISIV+1)) THEN
WRITE(6,9052) IWKIV(ISIV)
INPERR=INPERR + 1
ENDIF
```

8100 CONTINUE
C*****VERIFY FULL RANK CASE
MSIVP1=NSIV + 1
NSIVP1=NSIV +

```
```

 7000 CONTINUE CORINV(LOC(I,J))=RXCORR(LOC(I,J))
 7500
 CONTINUE
 CONTINUE
 DO 8000 I=1,NSIV
 CORINV(LOC(NSIVP1,I))=RS(ISTEPS,I)
 8000 COMTINUE
 CORINV(LOC(NSIVP1,NSIVP1))=1.0
 C**********INVERT CORRELATION MATRIX, CALCUIATE PARTIAL CORRELATION
 IP=0
 CALL DSINV(CORINV, NSIVP1, IP)
 OO 8500 I=1,NSIV
 c****************CALLCULATE ANO STORE PARTIAL CORRELATION COEFFIC:TNTS
 *****CALCULATE ANO STORE PARTIAL CORRELATIO
 RS(ISTEPS,I)=-CORINV(LOC(NSIVPI,I))
 *)
 C****************「ALCULATE AND STORE STANDARDIZED REGRESSION COEFFICIENTS
 RSRC(ISTEPS,I)=-CORINV(LOÉ(NSIVP1,I)) /
 CORINV(LOC(NSIVP1,NSIVP1))
 8500 F.ONTINUE
 C***タ#***** STORE COEFFICIENT OF DETERMINATION (R-SQUARE)
 RSQUAR=-(1.0/CORINV(LOC(NSIVP1,NSIVP1)) - 1.0)
 RS(ISTEPS,NSIVP1)=RSQUAR
 RSRC(ISTEPS,NSIVP1)=RSQUAR
    ```

\section*{ooo cuntinue}

\section*{SUBROUTINE DSINV( \(A, N\), IPARM)}

C*****INVERT A SYMMETRICALLY STORED MATRIX In PLACE
OIMENSION A(1)
\(c\)
LPARM=0
C*****CALL DMFSD TO PERFORM ERROR CHECKING ON MATRIX TO BE INVERTED
CALL DMFSD (A, N, IPARM)
LF (IPARM \(A_{1}\) T. O) RETURN
IPIV=N *
IND=IPIV
DQ \(4000 \quad 1=1, \mathrm{~N}\)
\(D I N=1.0 / A(I P E V)\)
\(A(I P I V)=D I N\)
MXN=N
KEND \(=1-1\)
LANF:N - KEND
LF (KEND, , EE O) GO TO 3000
\(J=I N D\)
DO \(2000 \mathrm{~K}=1\), KEND
NORK \(=0,0\)
MIN=MIN -
LHOR=IPIV
DO \(1000 \mathrm{~L}=\mathrm{LANF,NIN}\)
\(L V E R=L V E R+1\)
\(H O R=L H O R+L\)
\(H O R K=H O R K+A(L V E R) * A(L H O R)\)
1000
CONTINUE
\(A(J)=-\) HORK * OIN
\(J=J-M I N\)
CONTINUE
CONTINUE
IPIV=IPIV - MIN
IND = IND - 1
4000 CONTINUE
DO \(7000 \mathrm{I}=1, \mathrm{~N}\)
\(I P I V=I P I V+I\)
DO \(\mathrm{EOOO} \mathrm{K}=\mathrm{I}\), N
WORK=0.0
LHOR= \(J\)
DO 5000 L=K, \(N\)
LVER \(=\) LHOR + K - I
ORK \(=\) NORK + \(A(L H O R) \approx A(L V E R)\)
LHOR \(=\) LHOR + L
CONTINUE
\(A(J)=\) WORK
\(J=J+K\)
6000 CONTINUE
7000 CONTINUE
RETURN
END


\section*{TITLE TURCISS SENSITIVITY AhALYSIS}

NIV 20
NDV 4
NOBS 60
PRCC
SRR
DEP VARS 1
\(\begin{array}{llllll}\text { DEP VARS } & 1 & 2 & 3 & 13 & 20\end{array}\)
\(\begin{array}{lllllllllll} \\ \text { STERS } 5 & 50 & 5 & 50 & 200 & 10 & 200 & 400 \quad 20\end{array}\)
FILE TYPE?
PLOT CUTOFF 85
IABLE CUTOFF 60
PLOT TITLE TURCTSS SA
PLOT XLABEL TIME (SECS)
YLAAEL POOLTEMP LOCATION HXFER DELTAX
EWATER SPONC MTCONC HFCONC MGOA MGOB MGOC DMGO GRIDL VBUB

```

 STANDARDIZED REGRESSION , STANDARDIZED RANK REGRESSION '
 DATA NPLOTS / 0/
 C
C**\#**LOAD VARIABLE PARAMETER DIMENSIONS INTO COMMON BLOCK
ITEMP(1)=LENC
ITEMP(2)=LENTC
ITEMP (3) = LLAB
ITEMP(4)= MXNDV
ITEMP(5)=MXNINT
ITEMP (6) = MXNIV
ITEMP(7)=MXNOBS
ITEAP(8) = MXNSTP
C*****SET DEFAULT LABELS FOR DEPENDENT AND INDEPENDENT VARIABLES
DO 100 r=1, MXNDY
MRITE(CY(I), 101)
OO CONTIMUE
DO 200 :=1, MXNIV
HRITE(CX(I),102) I
200 CONTINUE
G*****MAIN LOOP OVER INPUTH DATA SETS STARTS HERE
1000 CONTINUE
C*****CALL INPUT TO READ INPUT DATA SET
GALL INPUTCGARD. EXe CY. DÃ. IWKOV, IHKIV, LABDV, LABIV,
2 X,XB, XE, Y)
C*****ENCODE Y PLOT
IF(LRAU EQ O) THEN
IF((LPRCC.EQ. 1) .ANO. (LSRRC.EQ. 1)) THEN
HRITE(PYLAB, 1001)
ELSE IF(LPRCC .EQ. 1) THEN
WRITE(PYLAB,1002)
ELSE.
WRITE(PYLAQ,1003)
ENDIF
ELSE
IF((LPCC.EQ. 1) AND. (LSRC .EQ. 1)) THEN
WRITE(PYLAB,1004)
ELSE IF(LPCC,EQ. 1) THEN
WRITE(PYLAB, 1005)
ELSE
URITE(FYLAB,1006)
ENDIF
ENDIF
C***** CALL MATRIX TO BUILD CORRELATION MATRIX FOR SELECTED
C*****INDEPENDENT VARIABLES
CALL MATRIX(IWK, IWKIV, RK, RXCORR, X)
C*****CALL CORREL TO CALCULATE CORRELATIONS BETNEEN SELECTED
C*****CALL CORREL TO CALCULATE CORRELATION
CALL CORREL(CORINV, IRNK, ITMP, IWK, IWKDV, INKIV, LABDV, LABIV,
1 LSDV, LSIV, PTITLE, PXLAB, PYLAB, RK, RS, RSPLT,
3 RSRC, RXCORR, STEPS, TABLE, TABLE1, TITLE,
C*\#\#\#\#CALL PRINT TO PRINT TABLE OF MAXIMUM PARTIAL
C*****CORRELATION COEFFICIENTS
IPS=0
IF((NSTEPS.GT. 1).AND. (TC.LT. 1.0)) THEN
IF(LPCC.EQ. 1) CALL PRINT(IPS, IWKDV, IWKIV, PCLAB
LABDV, LARIV, TABLE, TITLE)
IF(LPRCC,EQ. 1) CALL PRINT(IPS, IHKDV, IWKIV, PRCLAB,
BLE, TITLEE
PS, IWKDV, IWKIV, SRLAB
LABDV, LABIV, YABLET, TITLE)

```
IF(NOBS .LE. NSIVP1) THEN
    WRITE(6,9009) NOBS, NSIVP1
        INPERR=INPERR + 1
ENDIF
C*****VERIFY NON-DJPLICATE SEIECTED UARIABLES
OO830N ISDV=1.NSDV-1
    IF(IWKDV(ISDV) .EQ. IWKDV(ISDV+\)) THEN
            NRITE(6,9054) IWKDV(ISDV)
            INPERR=INPERR + 1
        ENDI
8300 CONTINUE
    &FIMPCC,EQ, 0), SND. (LPRCC,EQ. O) . AND
        (LSRC .FQ. 0).AND. (LSRRC -EQ. D)) THEN
        (RITE(5,9017) PPCC, PPRCC, PSRC, PSRRC
        MPERR=INPERR + &
    ENDIF
    IF'((LPCC.NE, 0) .OR. (LSRC .NE, O)) . AND.
    1 (SLPRCF,NE, 0) OR, (LSRRC,NE, 0))) THEN
        INRI:E(6,9012) + I
    ENDIF
    IF((LPEC .EQ. 1) .OR. (LSRC .EQ. 1)) LRAW=1
    IF(YMIN .GE. YMAX) THEN
        YHLN=-1.0
    Enmif
C*****PRCCESS STEPS PARMMETER
    IF(NINT GT. D) THEN
        IPRV=0
        00 100 [NT =1, NINT
            XBEG=XB(INT)
            XEND=XE(INT)
            IF(XPEG GE, XEND) THEN
                    WRITE(6,9017) DELX, XBEG, XEND
                    INPERR=INPERR + 1
            ENDIF
            DELX=DX(INT)
            IF(INT,GT, 1) THEN
                If(XB(INT).NE. XE(INT-1)) THEN
                    WRITE(6,9029) XB(INT), XE(INT-1)
                    INPERR=INPERR + {
                    GO TO }11
                        ENDIF
                        NSTEPS=NSTEPS + }
                        STEPS(NSTEPS) =̌BEG + DELX
            ElSE
                    ENDIF
                    GO TO 90
                    CONTINUE
            NSTEPS=NSTEPS + 1
            STEPS(NSTEPS) = STEPS(NSTEPS-1) + DELX
                    CONTINUE
                            IF(STEPS(NSTEPS) .LT. XEND) G0 TO 80
                            IF(STEPS(NSTEPS).NE, XEND) STEPS(:`TEPS) =XEND
                        IPRV=NSTEPS
        CONTINUE
        CONTINUE
        IF(HSTEPS,GT. MXNSTP) THEN
            WRITE(6,9004) PSTEPS, MXNSTP
            INPERR=INPERR + 1
            ENDIF
EN
```



```
    SUBROUTINE HEEPA(X, Y, N)
C*****PERFORM ASCENDING SORT ON ARRAY X CARRYING CORPESPONDING VALUES
6*****EROM ARRAY Y
    DIMENSION X(N),Y(N)
c
    L=N/2 + 1
    IR=N
1000 CONTINUE
    IF (L .LE. 1) G0 TO 7000
    L=L - 1
    XHOLD=X(L)
    YHOLD=Y(L)
    2000 CONTINUE
J=L
    CONTINUE
    I= J
    IF2 * J - IR) 4000, 5000, 6000
    O00 CONTINUE
    If (x(v) . LTe }x(j+1)) j=\jmath +
5000 CONTINUE
    IF (XHOLD .GE. X(J)) GO TO 6000
    X(Y)=x(J)
    X(0)=X(J)
    Y(I)=Y(J)
    GO TO 3000
O000 GONTO 3000
    X(I)=XHOLD
    Y(I)=YHOLD
    G0 To 1000
    7000 CONTINUE
    XHOLD=X(IR)
    YHOLD=Y(IR)
    Y(IR)=X(1)
    x(IR)=x(1)
    Y(IR)=Y(1)
    IR=IR - 1
    IF (IR .GT. 1) 60 !G रूल
    x(1)=XHOLD
    Y(1)=YHOLD
    RETURN
    END
```

| ```SUBROUTINE PRINT1(IPS, IYC, IRNK, ITMP, LABDV, LABIV, IWKDV, 1 INKIV, NPRNT, PXLABT, RS, STEPS, TITLE, 2 TMP1, TMP2)``` |
| :---: |
| C万力***PRINT INTERMEDIATE TABLE OF COEFFICIENTS AND RANKS VS STEPS COMMON /MAXDIM/ LENC, LENTC, LLAB, MXNDV, MXNINT, MXNIV, MXNOBS, MXNSTP |
| COMMON /PARAM/ LLN, LPCC, LPRCC, LSRC, LSRRC, LRAW, NDV, NIV,
 1 NINT, NOBS, NPLOTS, NSDV, NSIV, NSIVP1, NSTEPS,
 2 PC. TC. YMIN, YMAX |
| DIMENSION IRNK(MXNSTP, MXNIV), ITMP(MXNIV),
 1 IWKIV(MXNIV), IHKDV(MXNDV), RS(MXNSTP, MXNIV),
 2 STEPS(MXNSTP), TMP1(MXNIV), TMP2(MXNIV) |
| CHARACTER*(*) LABDV(MXNDV), LABIV(MXNIV), PXLABT, TITLE CHARACTER PCLAB*20, PRCLAB*25, SRLAB*24, SRRLAB*29 DATA PCLAB, PRCLAB, SRLAB, SRRLAB / |
| 1 'PARTIAI. CORRELATION ''
 2 'STANDARDIZED REGRESSION ', 'PARTIAL RANK CORRELATION 'STANDAROIZED RANK REGRESSION ', |
| | |
| |
| ELSE
 WRITE(6, 1002)
 ENDIF |
| C*****PRINT COEFFICIENTS VS STEPS 002000 IPRNT=1, NPRNT
 ISTRT $=(I P R N T-1) * 10+1$ |
| $\begin{aligned} & \text { IEND=MIN(ISTRT+9, NSIVP1) } \\ & \text { IF(LRAW EQ. O) THEN } \\ & \text { IF(IPS.EQ. 0) THEN } \end{aligned}$ |
| \qquad |
| | |
| |
| ENDIE |
| ```ELSE IF(IPS .EQ. 0) THEN WRITE(6,2001) TITLE, PCLAB,``` |
| | |
| |
| |
| 1 ENDIF LAEDV(IWKOV(IYC)), PXLABT |
| | |
| |
| 1000^{\prime} CONTINUE (RS(ISTEPS, J), J=ISTRT, IEND) $2000^{\text {CONTINUE }}$ |
| $\text { DO } 3000 \mathrm{~J}=1 \text {, NSIV }$ |
| 3000 TMPT(J) $\operatorname{CONTINUE}$ ABS(RS(ISTEPS,J)) |
| C**********RANK INDEPENDENT VARIABLES FOR CURRENT TIMESTEP |
| CAL! KGTIKER(TMP1, TMP2, ITMP, NSIV) $D O \& 000 \quad J=1, \text { NSIV }$
 C***************REVERSE RANKING ORDER |
| $\text { RNK (ISTEPS, J) }=\text { NSIV - IFIX }(\text { TMP } 2(J)+0.0001)+1$ |
| 5000 CONTINUE |
| IFCNSTEFS . 6 (. 15 THEN |

TURC1SS SENSITIVITY ANALYSIS

| NUMBER OF IND VARS 20 | NUMBER OF IND
 vars jelected
 5 | $\begin{gathered} \text { NUMERR OF } \\ \text { DEP VARS } \\ 4 \end{gathered}$ | NUMBER OF DEP VARS SELECTED | NUMBER OF OBSERVATIONS 60 | $\begin{aligned} & \text { NUMBER OF } \\ & \text { STEPS } \\ & 35 \end{aligned}$ | CUTOFF FOR TABLE 0.600 | CUTOFF FOR PLOTS 0.850 | DATA FILE TYPE 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

PARTIAL CORRELATION AND STANDARDIZED REGRESSION COEFFIC:ENTS WILL BE CALCULATED USING
THE RANKS OF THE OBSERVATIONS

INDEPENDENT VARIABLES DEPENDENT VARIABLES
 SELECTED FOR ANALYSIS SELECTED GOR ANALYSIS

| 1 | TMALL | 1 | POOLTEMP |
| :--- | :--- | :--- | :--- |
| 2 | TMFE | 3 | HXFER |
| 3 | GAMMAO | | |
| 13 | MTCONC | | |
| 20 | VEUB | | |

TURCISS SENSITIVITY ANALYSIS
TANDARDIZED RANK REGRESSION COEFFICIENTS VS STEPS
DEPENDENT VARIARLE -HXFER -
UNITS $=$ TIME $(S E C)$

| STEPS | UNITS | TMALL | TMFE | GAMMAO | GTCONC | INDEPEN VBUB | NT VARIABLES R-SQUARE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.00 | -0.07 | 0.01 | 0.19 | 0.13 | 0.82 | 0.73 |
| 2 | 10.0 | 0.03 | -0.03 | 0.39 | 0.22 | 0.80 | 0.84 |
| 3 | 15.0 | -0,02 | 0.00 | 0.48 | 0.16 | 0.77 | 0.86 |
| 4 | 20.0 | 0.00 | -0.02 | 0.49 | 0.15 | 0.78 | 0.87 |
| 5 | 25.0 | 0.00 | -0.03 | 0.47 | 0.16 | 0.79 | 0.88 |
| 6 | 30.0 | 0.00 | -0,01 | 0.51 | 0.16 | 0.76 | 0.86 |
| 7 | 35.0 | -0.02 | 0.01 | 0.48 | 0.14 | 0.78 | 0.86 |
| 8 | 40.0 | 0.00 | 0.04 | 0.44 | 0.20 | 0.74 | 0.79 |
| 9 | 45.0 | 0.00 | 0.02 | 0.50 | 0.18 | 0.74 | 0.83 |
| 10 | 50.0 | -0.01 | -0.04 | 0.49 | 0.17 | 0.76 | 0.85 |
| 11 | 60.0 | 0.00 | -0.06 | 0.43 | 0.27 | 0.65 | 0.68 |
| 12 | 70.0 | 0.00 | -0.11 | 0.41 | 0.38 | 0.46 | 0.54 |
| 13 | 80.0 | -0.06 | -0.09 | 0.36 | 0.44 | 0.40 | 0.50 |
| 14 | 90.0 | -0.07 | -0.08 | 0.29 | 0.54 | 0.30 | 0.48 |
| 15 | 100. | 0.02 | -0. 14 | 0.22 | 0.66 | 0.16 | 0.54 |
| 16 | 110. | 0.05 | -0.23 | 0.15 | 0.69 | 0.01 | 0.57 |
| 17 | 120. | 0.03 | -0.33 | 0.02 | 0.66 | -0.12 | 0.57 |
| 18 | 130. | 0.05 | -0.39 | -0.10 | 0.63 | -0.23 | 0.61 |
| 19 | 140. | 0.02 | -0.40 | -0.14 | 0.64 | -0.31 | 0.68 |
| 20 | 150. | 0.01 | -0.39 | -0.15 | 0.65 | -0.32 | 0.70 |
| 21 | 160. | 0.04 | -0.42 | -0.17 | 0.59 | -0.38 | 0.70 |
| 22 | 170. | 0.03 | -0.45 | -0.19 | 0.55 | -0.41 | 0.71 |
| 23 | 180. | 0.01 | -0.45 | -0.19 | 0.54 | -0.42 | 0.71 |
| 24 | 190. | 0.00 | -0.43 | -0. 20 | 0.54 | -0.44 | 0.71 |
| 25 | 200. | 0.00 | -0.41 | -0.20 | 0.54 | -0.45 | 0.77 |
| 26 | 220. | -0.01 | -0.42 | -0.20 | 0.52 | -0.48 | 0.71 |
| -27 | 240. | -0.01 | -0,40 | -0.24 | 0.48 | -0.49 | 0.69 |
| -28 | 260. | -0.01 | -0.41 | -0.27 | 0.45 | -0.49 | 0.69 |
| 29 | 280. | -0.03 | -0.45 | -0.26 | 0.37 | -0.49 | 0.66 |
| 30 | 300. | -0,05 | -0.43 | -0.28 | 0.32 | -0.49 | 0.62 |
| 31 | 320. | -0.05 | -0.39 | -0.30 | 0.24 | -0.47 | 0.53 |
| 32 | 340. | 0.00 | -0.34 | -0.32 | 0.12 | -0.47 | 0.45 |
| 33 | 360. | 0.06 | -0.26 | -0.35 | 0.05 | -0.41 | 0.36 |
| 34 | 380. | 0.02 | -0.12 | -0.34 | 0.03 | -0.38 | 0.28 |
| 35 | 400. | 0.03 | -0.10 | -0.32 | 0.05 | -0.34 | 0.23 |

1 IF(LSRRC. .ea. 1) CALL PRINT(LPSÓV, LABIV, TABLE1, TITLE

ENDIF
WRITE(6,122)
IF (NPLOTS.GT. 0) THEN
CALL ENDPL(0)
CALL DONEPL
ENDIF
9999 CONTTNUE
STOP
C****FORMAT STATEMENTS
101 FORMAT('Y', I2)
102 FORMAT('X',I2)
122 FORMAT (' ${ }^{\prime}{ }^{*}$)
1001 FORMAT('PRCC ($*$) SRRC (- - -)')
1002 FORMAT ('PARTIAL RANK CORRELATION COEFFICIENT')
1003 FORMAT ('STANDARDIZED RANK REGRESSIOM COEFFICIENT')
1004 FORMAL('PCC (*). SRC (- - -)')
1005 FORMAT('PARTIAL CORRELATION COEFFICIENT')
1006 FORMAT('STANDARDIZED REGRESSION GOEFFICIENT')

END

```
C*####READ DATA FROM FILE(S)
    IFTT=IFT + 5*LSTR
    DO 120 I= 1,NDBS
        G0 TO(101,102,103,104,105,106,107,108,109) IFTT
        CONTINUE
        READ(1,*,ERR=130) (X(I, J),J=1,NIV)
    ((Y(I,J,K),J=ף,NDV),K=1,NSTEPS)
        GO TO 120
-102 CONTINUE
    READ(1,*,ERR=130) (X(I,J),J=1,NIV).
    1 GO TO 120
    CONTINUE
    READ(1,*,ERR=130) (X(I,J),J=1,NIV)
    READ(>, FRP=130) (S(I J,K) J=1,NDV),K=1 NSTEPS)
    GO TO 120
    CONTINUE
    READ(1,*,ERR=130) (X(I,J),J=1,NIV)
        READ(2,*,ERR=130) ((Y(I,J,K),K=1,NSTEPS),J=1,NDV)
        60 TO 120
105 CONTINUE
    CALL USRINP(MXNDV, MXNIV, MXNOBS, MXNSTP)
    RETURN
    READ(1,*,ERR=130) II, JJ, (X(I,J),J=1,NIV)
    1 ((Y(I,J,K),J=1,NDV),K=1,NSTEPS)
    107 GOTO 120
    READ(1,*,ERR=130) II, JJ, (X(I,J),J=1,NIV),
    L ((Y(I_d,K),K=1,NSTEPS), }J=1,N,NDV
    120
    READ(1,*,ERR=130) IT J. ( }X(1,J),J=1,NIV
    READ(2,*,ERR=130) ( (Y(I,J,K),J=1,NDV),K=1,NSTEPS)
    GO TO 120
    CONTSNUE
    READ(1,*,ERR=130) II, JJ, (X(I,J),J=1,NIV)
    READ(2,*,ERR=130) ((Y(I,J,K),K=1,NSTEPS),J=1,NDV)
    120 CONTINUE
    GO TO 140
    130 CONTINUE
C*****ERROR. ENCOUNTERED IN READIE:G DATA FILE(S)
    HRITE(6,9028)
    INPERR=INPERR + 1
140 CONTSNUE
    IF(INPERR .EQ. O) THEN
        WRITE(6,9010) TITLE, NIV, NSIV, NDV, NSOV, NOES, NSTEPS,
                TC. PC, IFT, STAR(LSTR+1)
C**********ECHO RAW OR RANK CORRELATION PARAMETER
    C**********ECHO RAW OR RANK CORRELATION PARAMEIERR
        (LSRC EQ. 1) OR (LSRRC EQ 1))) THEN
        WRITE(6,9013)
            ELSE IF((LPCC.EQ. 1) .OR. (LPRCC.EQ. 1)) THEN
                WRITE(B,9014)
            ELSE
            WRITE(6,9015)
            ENOIF
            IF(LRAW .EQ. O) THEN
            NRITE(6,9018)
            ELSE
            ENDIF WRITE (6,9019)
            ENDIF
    ECHO SELECTEO VARIABLE DATA
    WRITE(6,9031)
```



```
    SURROUTINE MATRIX(IWK, IWKIV, RK, RXCORR, X)
C**\dot{***日UILD CORRELATION MATRIX}
    COMMON /MAXDIM/. LENC, LENTC, LLAB, MXNOV, MXK.NT, MXNIV,
    1 MXNOBS, MXNSTP
    DIMENSION IWK(MXNOBS), IWKIV(MXNIV), RK(MXNOBS)
    RXCORR(MXNIV* (MXNIV+1)/2), X(MXNOES,MXNIV)
    COMMON /PARAM/ LLN, LPCC, LPRCC, LSRC, LSRRC, LRAW, NOV, NIV,
    1
    2 PIN, TC, YMIN, YMAX
    COMMON /SPRC/ SPRC1, SPRC2, SPRC3
C*****STATEMENT FUNCTION
C
******IF REOUESTED. RANK INDEPENDENT VARIABLE VALUES AND CALCULAT
C*****CORRELATION CONSTANTS
    ROBS=FLOAT (NOBS)
    IF (LRAM,EQ. O) THEN
        SPRCi=-(ROBS * (((ROBS + 1.0) / 2.0)*&2))
        SPRC 2=SPRC1
        SPRC3=SPRC
            OO 2000 J=1,NIV
                CALL RANKER(X(1,J), RK, IWK, NOBS)
                10 1000 I=1.NOBS
                    X(I,J)=RK(I)
    1000 CG.TINUE
2000 CONLINUE
C*\An**LOOP TO BUILD CORRELATION MATRIX FOR SELECTED INDEPENDENT
C*****VMARNARILES
    00 6000 IX=2,NSIV
        I1=IX - ?
        I=IHKIV(IX)
            00 5000 JX=1,I1
                            J=IHKIV'(JX)
C****************IF RAH YALUES ARE USED, FIND MEANS OF SELECTED
C***************INDEPENDENT VARIABLES AND CALCULATE CORRELATION
C*************** CONSTANTS
    IF (GRAN,NE, 0) THEN
        SX=0.0
            SY=0.0
            00 3000 IOBS=1,NOBS
                    SX=SX + X(10BS,I)
    CONTIY=SY + X(IOBS,J)
    CONTINUE
    SPRC1=-SX * SX / ROBS
    SPRC2=-SY * SY / ROBS
    SPRC3=-SX * SY/RROBS
    ENDIF
C*************** CALCULATE SUMS OF SQUARES AND CROSS PRODUCTS
    SXY=0.0
    Sx2=0.0
    SY2=0.0
    DO 4000 IOBS=1 NOBS
        SXY=SXY + X(IOBS,I) * X(IOBS,J)
            SX2=SX2 + X(IOBS,I) ** 2
            SXZ=SX2 + X(IOBS,I) ** 2
    4000 CONTINUE
C*************** CHECK FOR CONSTANT INDEPENDENT VARIABLE IN INPUT VALUES
    V=SXY + SPRC3
    V1=SX2 + SPRCT
    IF((V1 NE O.0) .ANO. (V2 NE, 0.0)) THEN
C####****************CALCULATE SPEARMANS RHO AND STORE IT IN


\section*{TURCISS SENSITIVITY ANALYSIS \\ PARTIAL RANK CORRELATION COEFFICIENTS VS STEPS DEPENDENT VARIABLE -POOLTEMP-} UNJTS = TIME (SEC)


IURC1SS SENSITIVITY ANALYSIS
RANKS OF STANDARDIZED RANK REGRESSION COEFFICIENTS VS STEPS DEPENDENT VARIABLE -HXFER UNITS = TIME (SEC)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline STEPS & UNITS & TMALL & TMFE & GAMMAO & MTCONC & independent variables VBU日 \\
\hline 1 & 5.00 & 4 & 5 & 2 & 3 & 1 \\
\hline 2 & 10.0 & 4 & 5 & 2 & 3 & 1 \\
\hline 3 & 15.0 & 4 & 5 & 2 & 3 & 1 \\
\hline 4 & 20.0 & 5 & 4 & 2 & 3 & 1 \\
\hline 5 & 25.9 & 5 & 4 & 2 & 3 & 1 \\
\hline 6 & 30.0 & 5 & 4 & 2 & 3 & 1 \\
\hline 7 & 35.0 & 4 & 5 & 2 & 3 & 1 \\
\hline 8 & 40.0 & 5 & 4 & 2 & 3 & 1 \\
\hline 9 & 45.0 & 5 & 4 & 2 & 3 & 1 \\
\hline 10 & 50.0 & 5 & 4 & 2 & 3 & 1 \\
\hline 11 & 60.0 & 5 & 4 & 2 & 3 & , \\
\hline 12 & 70.0 & 5 & 4 & 2 & 3 & 1 \\
\hline 13 & 80.0 & 5 & 4 & 3 & 1 & 2 \\
\hline 14 & 90.0 & 5 & 4 & 3 & 1 & 2 \\
\hline 15 & 100. & 5 & 4 & 2 & 1 & 3 \\
\hline 16 & 110. & 4 & 2 & 3 & 1 & 5 \\
\hline 17 & 120. & 4 & 2 & 5 & 1 & 3 \\
\hline 18 & 130. & 5 & 2 & 4 & 1 & 3 \\
\hline 19 & 140. & 5 & 2 & 4 & 1 & 3 \\
\hline 20 & 150. & 5 & 2 & 4 & 1 & 3 \\
\hline 21 & 160. & 5 & 2 & 4 & 1 & 3 \\
\hline 22 & 170. & 5 & 2 & 4 & 1 & 3 \\
\hline 23 & 180. & 5 & 2 & 4 & 1 & 3 \\
\hline \(\underline{24}\) & 190. & 5 & 3 & 4 & 1 & 2 \\
\hline 25 & 200. & 5 & 3 & 4 & & 2 \\
\hline 26 & 220. & 5 & 3 & 4 & 1 & 2 \\
\hline 27 & 240. & 5 & 3 & 4 & 2 & 1 \\
\hline 28 & 260. & 5 & 3 & 4 & 2 & 1 \\
\hline 29 & 280. & 5 & 2 & 4 & 3 & 1 \\
\hline 30 & 300. & 5 & 2 & 4 & 3 & 1 \\
\hline 31 & 320. & 5 & 2 & 3 & 4 & 1 \\
\hline 32 & 340. & 5 & 2 & 3 & 4 & 1 \\
\hline 33 & 360. & 4 & 3 & 2 & 5 & 1 \\
\hline 34 & 380. & 5 & 3 & 2 & 4 & 1 \\
\hline 35 & 400. & 5 & 3 & 2 & 4 & 1 \\
\hline
\end{tabular}
```

 SUBROUTINE INPUT(CARD, CX, CY, DX, IWKDV, IWKIV, LABDV, LAEIV,
 LSDV, LSIV, PTITLE, PXLAB, STEPS, TITLE, TMPCRD,
 X, XB, XE,Y)
 C*****PROCESS THE INPUT KEYNORD RECORDS
COMMON /MAXDIM/ LENC, LENTC, LLAB, MXNDV, MXNINT, MXNIV,
MXNOBS, MXNSTP
DIMENSION DX(MXNINT),IWKDV(MXNDV), IWKIV(MXNIV)
|IMENSION DX(MXNINNO, LSDV(MXNDV), LSIV(MXNIV), STEPS(MXNSTP),
2 X(MXMOBS,MXNIV) XB(HXNINT), XE(MXNINT),
X(MXNOBS,MXNIV), XB(\#X
*) CARD, CX(MXNIV), CY(MXNDV), LABOV(MXNDV),
LABIV(MXNIV). PTITLE, PXLAE, TITLE, TMPCRD
LLN, LPCC, LPRCC, LSRC, LSRRC, LRAN, NDV, NIV,
NINT, NOBS, NPLOTS, NSDV, NSIV, NSIVP1, NSTEPS,
PC, TC. YMIM. YMAX
CHARACTER*1 BLANK, DUM, STAR(2)
CHARACTER*20 CRDTYP, FRMTA, FRMTAR, FRMTI, FRMTAI, FRMTR, RSQUAR
CHARACTER*20 CRDTYP, FRHTA, FRMTAR, FRMTI, FRNTAI, FRMTR, RSQU

```

```

 2 PPCC*4, PPRCC*S, PSRC*4, PSRRC*5, PTC*13,
 PPC*12, PPT*11, PPXL*12, PXLOG*5, PYLIM*&
 PNAMETER (PT='TITLE," PNOV='NDV.",
 PNDV='NDV',
 PIV='IND VARS ', PXL='XLABEL ',
 PDV='DEP VARS ", PYL='YLABEL ',
 PPCC='PCC , PM, PPRCC='PRCC ,
 PSRC='SRC*, PPRCC='PRCC
 PTC='TABLE CUTOFF ', PPC='PLOT CUTOFF ',
 PTC='TRBLE CUTOFF, PPC='PLOT, PPXL='PLOT XLABEL:
 PXLOG='XLOG ', PYLIM='YLIMITS'.
 BLANK=' ')
 DATA.RSOUAR / 'R-SOLUARE'
 c
REWIND
REWIND 2
OO 1000 I=1,MXNDV
LSOV(I)=0
LABDV (I) = CY(I)
1000 CONTINUE
00 2000 i=1,MXNIV
LSIV(I)=0
LABIV(I)=CX(I)
2000 CONTINUE
C*****INITIALLIZE PARAMETERS
TITLE=BLANK
INPERR=0
I END=0
NI V=-9999
NSIVP1=0
NSIV=0
NSV=-9999
NSDV=0
NSDV =0
NOBS=-9
NINT=0
NSTEPS=
LPRCC=0
LSRC=0
LSRRC=0
IFT=-9999
LLN=0

| $\begin{aligned} & Y \text { MAXT }=Y \text { MAX } \\ & Y M I A=0.0 \\ & Y M A X=1.0 \end{aligned}$ | |
| :---: | :---: |
| WRITE!PTITLE(25:50),1006) LABDV(IWKDV(IYC)) | |
| ENDIf
 CALL PLJT(LLEN, 10, D1, D2, 12, $10,11, ~ P T I T L E$, | |
| 1 P 1 | |
| IF(CLPCC .EQ. 1) .OR. (LPRCC .EQ. 1)) THEN DQ 2000 I STEPS $=1$, NSTEPS | |
| RSPLT (ISTEPS) $=$ RS (ISTEPS, ${ }^{\text {(}}$) | |
| 2000 CONTINSE | |
| ¢世*******************PLOT PARIIAL CORRELATION COEFFICIENTS | |
| CALL PLOT(LLN, 10, STEPS, RSPLT, NSTEPS, | |
| I1, IO, PTITLE, PXLAE, PYLAE, | |
| 2 D1(1). D1(2)) | |
| ENDIF | |
| IF((LSRC.EQ. 1) OR. (LSRRC .EQ. 1)) THEN | |
| RSPLT (ISTEPS) = RSRC(ISTEPS, J) | |
| 2500 CONTINUE | |
| 6********************PLOT STANDARD REGRESSION COEFFICIENTS | |
| CALL PLOT(LLN, IO, STEPS, RSPLT, NSTEPS, | |
| 1 I2, 10, PTITLE, PXLAB, PYLAB, | |
| 2 D1(1). D1(2)) | |
| ENDIF | |
| IF (J.E日. NSIVPi) THEN | |
| | |
| PYLAB=PYLABT | |
| YMIN=YMINT | |
| YMAX $=$ YMAXT | |
| ENDIF | |
| ENDIF | |
| 3000 continue | |
| | |
| IPS $=0$ der | |
| | |
| C**********PARTIAL CORRELATION COEFFICIENTS AND RANKS VS STEPS | |
| CALL PRINTI(IPS, IYC, IRNK, ITMP, LABDV, LABIV, IWKDV, 1 IWKIV, NPRNT, PXLAET, RS, STEPS, TITLE, | |
| 2 TMP1, TMP2) | |
| ENDIF | |
| IFS(LSRC, EQ, 1) OR, (LSRRC ER, 1)) THEN | |
| IPS $=1$ | |
| C**********CALL PRINT1 TO PRINT INTERMEDIATE TABLE OF | |
| C**********STANDARDI2ED REGRESSION COEFFICIENTS AND RANKS VS STEPS | |
| CALL PRINT1 (IPS, IYC, IRMK, ITMP, LABDV, LABIV, IWKDV, | |
| IWKIV, NPRNT, PXLAET, RSRC, STEPS, TITLE, | |
| 2 TMP1, TMP2) | |
| ENDIF | |
| | |
| | |
| 1001 FORMAT(F5.2,3X) | |
| 1002 FORMAT ($2 \mathrm{X}, \mathrm{F3} .2$) | |
| 1003 FORMAT ($1 \times, F 4.2)$ | |
| 1004 FORMAT (8 X) | |
| 1005 FORMAT(' IV ${ }^{\prime}$ ', A8,' \quad DV $=$ ', A8) | |
| 1006 FORMAT (' DVE ${ }^{\prime}$, A8) | |
| 1007 FORMAT('MODEL , A8) | |
| 2001 format ('1') | |
| END | |
| | |
| | |
| | |

SUEROUTINE RANKER（X，RANK，IHORK，N）

DIMENSION IWORK（N），RANK（N），X（N）
C
C
DQ $1000 \quad I=1, N$
RANK（I）＝FLOAT（I）
1000 CONTINUE
C＊＊＊＊＊CALh SORT ROUTINE HEEPA
CALL HEEPA（X，RANK，N）
DO $2000 \mathrm{I}=1 \mathrm{~N}$
IWORK（I）$=I F I X(R A N K(I))$
RANK（I）＝FLOAT（I）
2000 CONTINUE
C＊＊＊＊＊FIND TIE
$\mathrm{I}=0$
3000 CONTINUE
$I=I+1$
IF（I ．GE．N）GO TO 8000
IF（X（I）．NE．$X(I+1)$ ）GO TO 3000
Cネ＊\＃＊＊COUNT TIES
NTIES＝2
4000 CONTINUE
III＋NTIES
IF（II ．GT．N）GO TO 5000
IF（X（I）．NE．X（II））GO TO 5000
NTIES＝NTIES＋ 1
GO TO 4000

AVERAGE TIED RANKS

5000 cont iu
$A V G=0.0$
DO $6000 \mathrm{~J}=1$ ，NTIES
$A V G=A V G+R A N K(I+J-1)$
6000 CONTINUE
AVG＝AVG／FLOAT（NTIES）
$I=1-1$
DO $7000 \mathrm{~J}=1$ ，NTIES
$I=I+1$
RANK（I）＝AVG
7000 CONTINUE
GO IO 3000
8000 CONTINU
C文を\＃t＊REORDER
$\mathrm{I}=1$
9000 CONTINUE
K＝IWORK（I）
IF（K ．NE．I）GO TO 1100
$\mathrm{I}=\mathrm{I}+1$
IF（I－LT．N） 60 T0 9000
GO TO 9999
1100 CONTINUE
$X H O L D=X(I)$
RHOLD＝RANK（I）
$X(I)=X(K)$
RANK（I）＝RANK（K）
$X(K)=X H O L O$
RANK $(K)=$ RHOLD
IWORK（I）＝IWORK（K）
THORK $(K)=K$
GO TO 9000
9999 CONTINUE
RETURN
END

table entries represent the maximum value of the partial rank correlation coefficient over all steps FOR EACH COMAINATION OF SELECTED INDEPENDENT VARIAQLE AND SELECTED DEPENDENT VARIABLE, PROVIDED THAT THE ABSOLUTE VALUE OF THIS COEFFICIENT IS GREATER THAN 0.600

POOLTEMP HXFER
--2-~ー-
TMALL
TMFE
GAMMAO
.97
.97
$-.64$
MTCONC
veue $-.86$.

```
    LRAW=0
    TC=0.60
    PC=0.60
        PTITLE=BLANK
        PXLAB=BLANK
        YMIN=0.0
        YMAX=0.0
        NWRDS=MAX(3#MXNINT, MXNDV, MXNIV)
C**###EMCODE REAL FORMAT
    WRITE(FRMTR,9041) NWRDS, LENTC
    WRITE(FRMTAR,9042) LENTC, NWRDS, LENTC
C*****ENCODE IMTEGER FORMAT
    WRITE(FRMTI,9043) NWRDS, LENTC
    URITE(FRMTAI,9044) LENTC, NWRDS, LENTC
C*****ENCODE CHARACTER FORMAT
    WRITE(FRMTA,9045) NWRDS, LENTC
    8 CONTINUE
        IFCLENP,EG, 1) GO TO }800
C*****READ KEYWORD RECORD
        READ(5,9001, END=14) CARD
    10 cONTYNUE
        IF(IEND .EQ. 1) GO TO 8000
        IF((CARD(1:6) EQ. PT) OR (CARD(1:10) EQ, PFT) OR
        1 (CARD(1:11) EO. PPT).OR. (CARD(1:12).EQ, PPXL)) THEN
            CRDTYP=CARD
            60 TO 30
            ENDLF
            CALL DAYSQZ(CARD, CRDTYP, TMPCRD, IT, 0)
    12 CONTINUE
C*****READ KEYHORD RECORD
    READ(5,9001, END=14) CARD
    IF(CARD(1:1).EQ. ELANK) THEN
        CALL DATSQZ (CARD, CRDTYP, TMPCRD, IT, 1)
            GO TO 12
        ENDIF
        GO ro 30
    14 CONTINUE
C*****SET END-Of-FILE FLAG
    IENO=1
    30 CONTINUE
C*****TITLE RECORD
    F(CROTYP(1:6) EQ PT) THEN
        I=6
    17 CONTINUE
        I=I + 1
        IF(CARD(I:I) .EQ. BLANK) GO T0 17
        READ(CARD(I:LENC),9001) TITLE
        GO TO 8
C*****NIV RECORD
    ELSE IF(CRDTYP(1:4) .EQ. PNIV) THEN
    READ(TMPCRD,FRMTI,ERR=7000) NIV
    IF(NIV .LE. O) THEN
        WRITE (6,9003) PNIV
            INPERR=INPERR + 1
            LSE IF(NIV .GT. MXNIV) THEN
                    WRITE(6,9004) PNIV, MXNIV
                    INPERR=INPERR + 1
            ENDIF
            G0 TO 10
C*****NOV RECORD
    ELSE IF(CRDTYP(1:4) .EQ. PNDV) THEN
        READ(TMPCRD,FRMTI,ERR=7000) NDV
        IF(NDV LE, 0) THEN
        URITE(6,9003) PNDV
```

```
    2 /1X,}\mp@subsup{}{}{\prime}>>>>>>IS GREATER THAN OR EQUAL TO THE UPPER LIMIT ',
    3 1PE10.3)
9018 FORMAT(1X, 'THE RANKS OF THE OBSERVATIONS')
9019 FORHAT(1X, 'THE ORIGINAL OESERVATIONS')
9027 FORMAT('O>>>>>EITHER THE FOLLOHING KEYWORD RECORD OR THE ONE ',
1 'IMMEDIATELY FOLLOWING IT ',
            IM TO THE FORMAT SPECIFIED IN I
    2 /1X,'>>>>>DOES NOT
4 /1x, '>>>>>', A)
9028 FORMAT('0>>>>> THE DATA FILE(S) HAVE NOT BEEN DESCRIBED ',
    1 - CORRECTLY,
    2 /1X, >>>>>PLEASE CHECK THE NOBS, NIV, NDV, STEPS, AND '',
    4 /iXILE TYPE PARAMETERS' \>>>CONSULT THE USER MANUAL FOR DETAILS')
9029 FORMAT(' O>>>>> THE BEGINNING POINT FOR. THE CURRENT STEP - 
    1 'SIZE ,1PE10.3,
    2 /1x,'>>>>>AND THE ENDING POINT FOR THE PREVIOUS STEP ',
    3 -SITE , TPE1O 3
    /1x, '>>>>>ARE NOT EQUAL BUT SHOUID BE')
    9030 FORMAT( / '' O>>>>>A TOTAL OF ',I2,' ERRORS FOUND IN INPUT ',
    1 FORMAT('OATA.EILE')
9031 FORMAT (/'0', 'INDEPENDENT VARIABLES',T30, 'DEPENDENT VARIABLES'
    1 11X,'SELECTED FOR ANALYSIS',T29,'SELECTEO FOR ANALYSIS',',)
2032 FORHAI( }1X,16,2X,A,T30,I6,2X,A
    9033 FORMAT(1X,T30,I6, 2X,A)
    9041 FORHAT('(',I3,'F',I2,'0)')
9042 FORMAT('(A',12, 'i,I3,'F',I2,'0)')
9043 FORMAT('(', 13,'I', I2,',')
9044 FORMAT('(A',I2,',',I3,'I', I 2,')')
9045 EORHAT('(i,I3,'A',i2,')',)
9051 FORMAT('0>>>>> THE NUMBER OF SELECTED INDEPENDENT VARIABLES (',
    1 I3,') IS GREATER THAN ',
    2 /11\mp@subsup{x}{}{\prime}>>>>>THE TOTAL NUMBER OF INDEPENDENT .,
    3 'VARIABLES (',I3,')')
    9052 FORMAT('O>>>>>DUPLICATE SELECTED INDEPENDENT VARIABLE --', I5)
9053 FORMAT(' O>>>>> THE NUMBER OF SELECTED DEPENDENT VARIABLES (',
    1 I3,') IS GREATER THAN '
    /1x,}\mp@subsup{}{}{\prime}>>>>>>THE TOTAL NUMBER OF DEPENDENT ' 
3 'VARIABLES (',I3,')')
    9054 FORMAT('O>>>>>DUPLICATE SELECTED DEPENDENT VARIABLES --',I5)
    END
```

```
    SUBROUTINE CORREL(CORINV, IRNK, ITMP, IWK, IWKDV,
            IWKIV, LABDV, LABIV, LSDV, LSIV,
            PTITLE, PXLAB, PYLAB, RK, RS, RSPLT, RSRC,
            RXCORR, STEPS, TABLE, TABLE1, TITLE,
    TMP1, TMP2, }X,Y
C*****CALCULATE CORRELATIONS BETWEEN SELECTED INDEPENDENT ANO DEPENDENT
C*#***VARI ABLES
    COMMON /MAXDIM/ LENC, LENTC, LLAB, MXNDV, MXNINT, MXNIV,
    1 MONOBS, MXNSTP
    COMMON /PARAM/ LLN, LPCC, LPRCC, LSRC, LSRRC, LRAN, NDV, NIV,
        NINT, NOBS, NPLOTS, NSOV, NSIV, NSIVP1, NSTEPS,
    2 PC, TC, YMIN, YMAX
    DIMENSION CORINV((MXNIV+1)*(MXNIV+2)/2), IRNK(MXNSTP,MXNIV),
    1 ITMP(MXNIV),IWK(MXNOBS),IWKOV(MXNDV),IWKIV(MXNIV),
    2 LSDV(MXNDV), LSIV(MXNIV), RK(MXNOBS), RS(MXNSTP,MXNIV),
        RSPLT(MXNSTP), RSRC(MXNSTP,MXNIV),
        RSPLT(MXNSTP), RSRC(MXNSTP,MXNIV),
                            RXCORR(MXNIV*(MXNIV +1)/2),STEPS(MXNSTP), TMP1(MXNIV)
                        TMPZ(MXNIV), X(MXNOBS,MXNIV), Y(MXNOBS,MXNDV,MXNSTP)
    TMP2(MXNIV) X(MXNOBS,MXNIV) Y(MXNOBS,MXNDV,MXNSTP)
                TABLE(MXNIV,MXNDV), TABLE1(MXNIV,MXNDV), TITLE
c
Є*****LOOP OVER DEPENDENT VARIABLES
    IYC=0
    DO 4000 IY=1,NDV
C**********CHECK FOR SELECTED DEPENDENT VARIABLE
            IF (LSDV(IY) EQ. 0) GO TO 4000
            IYC=IYC + ?
C*****#*****IF REQUESTED, RANK DEPENDENT VARIABLE VALUES
            IF (LRAW, EP, 0) THEN
                    DO 3000 ISTEPS=1,NSTEPS
                                    CALL RANKER(Y(1, IY,ISTEPS), RK, IWK, NOBS)
                                    DO 2000 I=1,NOBS
                    Y(I,IY,ISTEPS)=RK(I)
2000
                    CONTINU
3000 CONTINUE
    ENDIF
C#*########CALL CORCAL TO CALCULATE CORRELATIONS BETWEEN SELECTED
C**********INDEPENDENT YARIABLES AND CURRENT DEPENDENT VARIABLE
            CALL CORCAL(IY, CORINV, IWKIV, RS, RSRC, RXCORR, X, Y)
C**#*******CALL CORMAX TO BUILD TABLE OF MAXIMUM PARTIAL CORRELATION
C************COEFFICIENTS AND PLOT PARTIAL CORRELATION COEFFICIENTS VS
&**###*****STEPS
    CALL CORMAXCIY, IYC, IRNK, ITMP, IWKDV, IWKIV,
```



```
    OO CONTINUE TITLE, TMP1, TMP2)
    RETURN
    END
```

```
    SUGROUTINE PLOT(LLLX, LLY, X, Y, NPTS, IMARK, IADVNC
    1 LABELT, LABELX, LABELY, XMIN, XMAX)
```

C*****PLOT X VS Y ARRAYS USING DISSPLA PLOT ROUTINES
COMMON /MAXDIM/ LENC, LENTC, LLAB, MXNDV, MXNINT, MXNIV,
$1^{\text {CO }}$
LENC, LENTC, L
MXNOBS, MXNSTP
COMMON PPARAM/ LLN LPCC LPRCC LSRC LSRRC LRAW NDV NIV
COMMON /PARAM/ LLN, LPCC, LPRCC, LSRC, LSRRC, LRAW, NDV, NIV,
2 NINT, NOBS, NPLOTS
CHARACTER* (*) LABELT, LABELX, LABELY
CHARACTER*30 FMT
DIMENSION LABT(15), LABX(15), LABY(15)
DIMEMSION X (NPTS). Y (NPTS)
DATA BLANK / 1 !
DATA PAGEX, PAGEY / $14.0,14.0$
DATA PAGEX, PAGEY
DETA XAX, YAX $10,0,10,0,1$
c
IF (NPLOTS, EQ. C) THEN
C***品 INITIALLIZE PLOT DEVICE (SYSTEM DEPENDENT)
CALL VSTART(0.0, 0)
C立部立立SEI NO GLANK PAGES BETHEEN PLOTS (SYSTEM DEPENDEMT:
CALL VDESCP $900,0,0.0)$

CALL CENTER (LABELT, 25)
CALL CENTER (LABELX, 26)
CALL CENTER (LABELY, 26)
ENOEF
C***** TERMINATE PREVIOUS PLOT (DISSPLA)
IF((IADVNC.EQ. 1) .AND. (NPLOTS .GT. 0)) CALL ENDPL(0)
Cヵ\#\#\#*INCREMENT NUMBER OF PLOTS
NPLOTS=NPLOTS + 1
C****\#INITIALLIZE PLOT FRAME (DISSPLA)
CALL BGNPL (-1)
CALL BGNPL (-1)
CALL PAGE(PAGEX, PAGEY)
$C * * * * * S U P P R E S S$ PAGE BORDER (DISSPLA)
CALL NOBRDR
*****SUPPRESS PRINTING OF OUT-OF-RANGE POINTS (DISSPLA)
CALL NOCHEK
Cだれ**SET FONT FOR LABELS (OISSPLA)
CALL SIMPLX
C $\# \pi=\pi *$ DEFINE SUBPLOT AREA (DISSPLA
CALL AREAZD (XAX, YAX)
C*****ENCLOSE PLOT AREA (DISSPLA)
CALL FRAME
C*****SET CHARACTER HEIGHT IN INCHES (DISSPLA)
HITE=0.30
CALL HEIGHT (HITE)
C*****CONVERT CHARACTER LABELS TO INTEGER HOLLERITH LABELS FOR DISSPLA
NCHAR $=50$
READ (LABELT, 1001) LABT
READ (LABELX, 1001) LABX
READ (LABELY, 1001) LABY
C*****
HTMULT=1.0
NLINES=1
CALL HEADIN(LABT, NCHAR, HTMULT, NLINES)
C*****REVERSE TICK MARKS ON X AND Y AXES (DISSPLA)
CALL XREVTK
CALL YREVTK
C***** प्रRITE X-AXIS LABEL (DISSPLA)
CALL XNAME (LABX, NCHAR)
C*出出却ROTATE Y-AXIS NUMBERING TO HORIZONTAL (DISSPIA)
CALL YAXANG(0.0)
IF (NSV, LT. NV) THEN
G*ネネ***れネ**PROCESS SELECTED VARIABLE NUMBERS A.D FLAG VARI ABLE NUMBERS

$\frac{001000 I=1, N S V}{I F(I W K V(I)}$
IF(IWKV(I) \quad LE. NV)
LSV(IWKV(I)) $=1$
ELSE INPERR =INPERR +
WRITE (6,9001) IWKV(I), NV
ENOI
CALL SIFT(NSV, IWKV)
ELSE
ALL VARIABLES ARE SELECTED (DEFAULT)
$002000 \mathrm{I}=1$, NV
LHKV(I) =1
2000
CONTINUE
endif
RETURN
C*****FORMAT STATEMENTS
وOO1 FORMAT ' 0 ' $5 \times$, 'VARIABLE NUMBER ' 15 ,' HAS BEEN SELECTED'
1 /6X, 'HOWEVER ONLY ',I5,' VARIABLES WERE REQUESTED')
END

TURC1SS SENSITIVITY ANALYSIS

STANDARDIZED RANK REGRESSION COEFFICIENTS VS STEPS
DEPENDENT VARIARLE-POOLTEMP-
UNITS = TIME (SEC)


```
        INPERR=INPERR + 1
    ELSE IF(NDV .GT. MXNDV) THEN
        WRITE(6,9004) PNOV, MXNOV
        INPERR=INPERR + 1
    ENDIF
    GO TO 10
C*****NOBS RECORD
    ELSE IF(CRDTYP(1:5) .EQ. PNOBS) THEN
        READ (TMPCRD,FRMTI, ERR=7000) NOBS
        READ(TMPCRD, FRMTI,ER
            WRITE(6,9003) PNOBS
            INPERR=INPERR + 1
        EtSE IF(NOBS .GT. MXNOBS) THEN
            WRITE(6,9004) PNOBS, MXNOBS
            INPERR=INPERR + 
        ENDIF
        G0 TO 10
C##&**STEPS RECORD
    ELSE IF(CRDTYP(1:6) .EQ. PSTEPS) THEN
    NINT=IT / (3*LENTC)
    READ(TMPCRD,FRMTR,ERR=7000) (XB(I), XE(I), OX(I),I=1,NINT)
    GO TO }1
C*****FILE TYPE RECORD
    ELSE IF(GRDTYP(1;10) ,EQ. PFT) THEN
    DO 19 I=LENC,11,-
            IF(CARD(I:I) .EQ. STAR(2)) THEN
                    CARD(I:I)=QLANK
                    LSTR=1
            ENDLF
    CONTINUE
    LSTR=0
    CONTINUE
    CALL DATSQZ(CARD, CRDTYP, TMPCRD, IT, O)
    READ(TMPCRD,FRMTAI, ERR=7000) DUM, IFT
    IF((IFT,&LE, 0),OR, (IFT_,GT, 5)) THEN
            WRITE(6,9005) IFT
            INPERR=INPERR + 1
    ENDIF
    GO TO 8
C*****IND VARS RECORD
    ELSE IF(GRDTYP(1:9), EQ, PIV) THEN
        NSIV=IT/LENTC - 
        READ(TMPCRD,FRMTAI,ERR=7000) DUM, (IWKIV(I),I=1,NSIV)
        IF(NSIV,LE, 0) THEN
            WRITE(S,9003) PIV
            ELSE IF(NSIV GT, MXNIV) THEN
            IF(NSIV,GT, MXNIV) THEN
            NRITER='9004) PIV,
            ENDIF
            GO TO 10
C*****IV LABELS RECORD
    ELSE IF(CRDTYP(1:7) .EQ. PXL) THEN
    NVAR=IT / LENTC
    READ(TMPCRD FRMTA, ERR=7000) (LABIV(I),I=1,NVAR)
    DO 50 IVAR=1 NVAR
            DO 40 IL=1,LLA
                IF(LABIV(IVAR) (IL:IL) .NE. BLANK) THEN
                    LABIV(IVAR)= LABIV(IVAR) (IL:LLAB)
                    GO TO 45
                    ENDIF
40
    \square
    CONTINUE


SUBROUTINE DATSQZiCARD，CRDTYP，TMPCRD，IT，ICONT）
C＊＊＊＊＊PROCESS KEYHORD RECORDS HHICH REQUIRE CONVERSION OF


COMMON／MAXDIM／LENC，LENTC，LLAB，MXNDV，MXNINT，MXNIV，
1 MXNOBS，MXNSTP
CHARACTER＊（＊）CARD．CRDTYP，TMPCRD
CHARACTER＊ 1 BLANK，MINUS，PERIOD
PARAMETER（BLANK＝＇＇，MINUS＝＇－＇，PERIOD＝＇．＇）
C
I \(\mathrm{C}=0\)
IFCICONT，ER，0）THEN
I T＝0
TMPCRD＝BLANK
\(-\quad\) CRDTYP \(=\) CARD
CONTINUE
IC \(=I C+1\)
IF（CARD（IC：IC），NE．BLANK）THEN
GO TO 500
ENDIF
ENDIF
Cれネッネ＊SEARCH FOR BEGINNING OF NON－8LANK CHARACTER STRING
1000 CONTINUE
\(16=1 C+\)
IF（IC ．GT．LENC） 60 TO 9999
IF（CARD（IC：IC）．EQ．BLANK）GO TO 1000
IAEGEIC．

\section*{}

2000 CONTINUE
\(I C=I C+1\)
IF（（CARD（IC：IC）．NE．BLANK）．AND．（IC．LE．LENC））GO TO 2000
C \(\& \neq A \neq M O V E\) NON－BLANK CHARACTER STRING INTO TMPCRD RIGHT－JUSTIFIED
3000 CONTINUE
IEND＝IC－
ILEN＝IEND－IBEG＋ 1
IF（ILEN GT，LENTC）THEN
WRITE（6，9001）CRDTYP，ILEN，LENTC
STOP＇DATSQZ＇
ENDIF
IT＝IT＋LENTC－ILEN
DO \(4000 \mathrm{I}=\mathrm{IBEG}\) ，IEND
\(I T=I T+1\)
TMPCRD（IT：IT）＝CARD（I：I）
4000 CONTINUE
GO TO 1000
9999 CONTINUE
RETURN

\section*{}

9001 FORMAY（＇0＇， \(5\left({ }^{\prime}>^{\prime}\right)\), ＇THE DATA ON KEYWORD RECORD＇，A，CONTAINS＇。
1 I2，＇CHARACTERS＇
2 （6X，THE MAXIMUM NUMEER OF CHARACTERS ALLOWED：S＇I2）
```

C**方**WRITE Y-AXIS LABEL (DISSPLA)
CALL YNAME (LABY, NCHAR)
C*****SET UP IINEAR AOXES (DISSPLA)
IF (LLX .EQ. O) THEN
XSTEP=(XMAX - XMIN) / 5.0
YSTEP = (YMAX - YMIN) / YAX
CALL GRAF(XMIN, XSTEP, XMAX, YMIN, YSTEP, YMAX)
C:%********DRAW SECONDARY TICK MARKS (DISSPLA)
CALL XNONUM
CALL YNONUM
CALL XGRAXS\XMIN, XSTEP, XMAX, XAX, BLANK, -1, 0.0, YAX)
CALL YGRAXSCYMIN, YSTEP, YMAX, YAX, BLANK, -1, XAX, 0.0)
ELSE
C*名云准SET UP LOGX, LINY AXES (DISSPLA)
XCYCLE=XAX / AJNT(ALOG10(XMAX/XMIN) %0.99)
YSTEP= (YMAX - YMIN) / YAX
CALL XLOG(XMIN, XCYCLE, YMIN, YSYEP)
C\&*\#\#\#\#\#\#\#\#\# DRAN SECONDARY TICK MARKS (DISSPLA)
CALL XNONUM
CALL YHONUM
CALL XLGAXS (XMJN, XCYCLE, XAX, BLANK, -1, 0.0, YAX)
CALL YGRAXS(YMIN, YSTEP, YMAX, YAX, BLANK, -1, XAX, 0.D)
ENDIF
C*****SFT PLOI SYMBOL (OISSPIA)
IF (IMAAK .NE. O) CALL MARKER(8)
MARX=MIN(IMARK, 1)
IF (IGARK EO. 22 THEN
CALL DASH
MARK=0
ENDIF
C*****PLOT POINTS (DISSPLA)
CALL CURVE(X, Y, NPTS, MARK)

```

```

 CALL ENDGR(O)
 RETURN
 C*****FORMAT STATEMENTS
1001 FORMAT(15A)
END

```

SUGROUTINE SIFT(N, IXV)
\(C \Rightarrow * \Rightarrow *\) PERFORM ASCENDING SORT ON ARRAY IXV
DIMENSION IXV(N)
```

$M=N$
1000 CONTINUE

```
\(M=M / 2\)
\(\begin{array}{llll}M=M & 2 \\ I F & \text { M }\end{array} 3000 \quad 9000 \quad 3000\)
3000 CONTINUE
\(K=N-M\)
\(j=1\)
4000 CONTINUE
\(\mathrm{I}=\mathrm{J}\)
5000 CONTINUE

6000 CONTINUF
\(A=I X V(I)\)
\(I \times V(I)=I \times V(L)\)
\(I \times V(1)=A\)
\(I=I-M\)
IF (I) 7000, 7000, 5000
7000 CONTINUE
\(\begin{aligned} & \mathrm{J}=\mathrm{J}+1 \\ & \text { IF }(\mathrm{J}-\mathrm{K}) \\ & \mathrm{J}\end{aligned} \mathrm{4000} 44000,1000\)
9000 CONTINUE
RETURN
END

TURC1SS SENSITIVITY ANALYSIS
RANKS OF STANDARDIZED KANK REGRESSION COEFFICIENTS VS STEPS DEPENDEAT VARIAELE -POOLTEMPUNITS = TIME (SEC)


```

 50
 CONTINUE
 C*****DEP VARS RECORD
ELSE IF(CRDTYP(1:9) ,EQ. PDV) THEN
NSDV=IT/LENTC - 1
READ(TMPCRD,FRMTAI,ERR=7000) DUM, (IWKDV(I),I=1,NSDV)
IF (NSDV,LE, O) THEN
WRITE(6,9003) PDV
NPERR=INPERP +
ELSE IF(NSDV,GT, MXNDV) THEN
HRITE(6,9004) PDV, MXNDV
INPERR=INPERR + \&
ENDIF
GO TO 10
C\#\#\#\#\#DV LABELS RECORD
ELSE IF(CRDTYP(1;7) ,EQ. PYL) THEN
NVAR=IT / LENTC
READ(TMPCRD,FRMTA,ERR=7000) (LABDV(I),I=1,NVAR)
DO }70\mathrm{ IVAR=9, NVAR
00 60 IL=9,LLAB
IF(LABDV (IVAR) (IL:IL) .NE. BLANK) THEN
LABDV (IVAR)=LABOV (IVAR) (IL:LLAB)
60 T0 65
ENDIF
6 0 ~ C O N T I N U E ~
65 CONTINUE
70 CONTINUE
C*****PCC CONTIN
ELSE IF(CRDTYP(1:4) ,EQ. PPCC) THEN
LPCC=1
GO TO }1
C*****PRCC RECORD
ELSE IF(CRDTYP(1:5) .EQ. PPRCC) THEN
LPRCC=1
GO TO 10
C*****SRC RECORO
ELSE IF(CRDTYP(1:4).EG, PSRC) THEN
LSRC=1
GO TO 10
C*****SRRC RECORD
ELSE IF(CROTYP(1:5) .EQ. PSRRC) THEN
LSRRC=1
C乡山あ\&\&TABLE CUTOFF RECORD
ELSE IF(CROTYP(1:13) .EQ. PTC) THEN
READ(TMPCRD,FRMTAR,ERR=7000) DUM, TC
WRITE(6,9006) PYC, TC
INPERR=INPERR + 1
ENDIF
GO TO 10
C*****PLOT CUTOFF RECOR
ELSE IF(CRDTYP(1:12) .EQ. PPC) THEN
READ(, MPCRD,FRMTAR,ERR=7000) DUM, PC
IF((PC.LT. 0.0) .OR. (PC.GT. 1.0)) THEN
WRITE(6,9006) PPC, PC
INPERR=INPERR + 1
ENOIF
GO TO 10
C\#\#\#\#\#PLOT TITLE RECORD
ELSE IF(CRDTYP(1:11) .EQ. PPT) THEN
REAO(CARD(TZ:LENC),9001) PTITLE
GO TO 8
C**OOPLOT XLABEL RECORO
ELSE IF(GRDVP(V:\ट).FO. किस!) पHEN

```
```

 SUBROUTINE CORCAL(IY, CORINV, IWKIV, RS, RSRC, RXCORR, X, Y)
 C*\#\#** CALCULATE CORRELATIONS BETWEEN SELECTED INDEPENDENT VARIABLES
C*\#***AND CURRENT DEPENDENT VARIABLE
COMMON /MAXDIM/ LENC, LENTC, LLAB, MXNDV, MXNINT, MXNIV,
1 MXNOBS, MXNSTP
COMMON /PARAM/ LLN, LPCC, LPRCC, LSRC, LSRRC, LRAW, NDV,NIV,
NINT, NOBS, NPLOTS, NSDV, NSIV, NSIVP1, NSTEPS,
COMMOM /SPRC/ SPRC1 SMON, YMAX
DIMENSION CORINV((MXNIV+1)*(MXNIV+2)/2), IWKIV(MXNIV)
1 RINENSIONS(MXNSTP,MXNIV), RSRC(MXNSTP,MXNIV),
2 S OXCORR(MXNIV\# (MXNIV+1)/2), X(MXNOBS,MXNIV),
Y(MXNOBS,MXNDV,MXNSTP)
C*****STATEMENT FUNCTION
C
ROBS=FLOAT (NOBS)
C\star\#***LOOP TO CALCULATE CORRELATIONS gETWEEN SELECTED INDEPENDENT
C*\#***VARIABLES AND CURRENT DEPENDENT VARIABLE
OQ GOOL I=1,NSIY
IX= IWKIV (I)
00 3000 ISTEPS=?,NSTEPS
S***\#\#\#\#\#\#\#\#\#\#\#\#\#*的F RAH YALUES ARE USED FIND MEANS OF SELECTED DEPENDENT
C***************VARIABLE AND CALCULATE CORRELATION CONSTANTS
IF (LRAH NNE 0) THEN
SX=0.0
SY=0.0
DO 1000 IOBS =1, NOBS
SX=SX + X(IOBS,IX)
SY=SY + Y(IOBS,IY,ISTEPS)
1000
CONTINUE
SPRC1=-SX * SX / ROBS
SPRC2=-SY * SY/ ROBS
SPRC3=-SX * SY / ROBS
ENDIF

```

```

SXY=0.0
SX2=0.0
SY2=0.0
DO 2000 IOBS=1,NOBS
SXY= SXY + X(IOBS,IX)*Y(IOBS,IY, ISTEPS)
SX2=SX2 + X(IOBS,IX) ** 2
SY2= \$Y2 + Y(IOBS,IY,ISTEPS) ** 2
2000

```

```

C*****************IN INPUT DATA
V=SXY + SPRC3
V1=SX2 + SPRC1
V2=SY2 + SPRC2
IF (<V1 .NE. O.0) . AND. (V2 ,NE. O.0)) THEN
C|\#CALCULATE SPEARMANS RHO AND STORE IT TEMPORARILY

```

```

 RS(ISTEPS,I)=V / SQRT(V1 *V2)
 ELSE
 RS(ISTEPS,I)=0.0
 ENOIF
 3000 CONTINUE
 4000 CONTINUE
 C*\#\#**LOOP TO CALCULATE PARTIAL CORRELATION COEFFICIENTS
00 9000 ISTEPS* 1,NSTEPS
C**********COPY CORRELATIONS INTO MATRIX TO BE INVERTEO
0O 7SOO I=1,NSIV
007000 }\textrm{j}=9

```

SUBROUTINE DMFSD(A, N, IPARM)

DIMENSLON A(1)
C
KPIV \(=0\)
\(008000 \mathrm{~K}=1, \mathrm{~N}\)
\(K P I V=K P I V+K\)
\(I N P=K P I V\)
LEND=K - 1
TOL \(=A B S(0.01 *(A(K P I V)))\)
DO \(7000 \mathrm{I}=\mathrm{K}, \mathrm{N}\)
DSUM \(=0.0\)
IF (LEND.EQ.O) GO TO 2000
DO \(1000 \quad \mathrm{~L}=1, L E N D\)
LANF=KPIV - L
LIND=IND - L
\(D S U M=O S U M+A(L A N F) \star A(\) LIND \()\)
1000
CONTINUE
2000
CONTINUE
DSUM \(=A(I N D)\) - DSUM
IF (I .NE. K) GO TO 5000
IF (DSUM - TOL) 3000, 3000, 4000
3000
IF (DSUM .LE. 0.0 ) GO TO 9000
\(K T=K-1\)
HRITE \((6.80) \mathrm{KT}\)
4000 CONTINUE
OPIV= SQRT (DSUM)
\(A(K P I V)=D P I V\)
DPIV=1.0 \(/\) DPIV
GO TO 6000
5000
CONTINUE
\(A(I N D)=D S U M * D P I V\)
CONTINUE

\section*{\(I N D=I N D+I\) \\ 6000} CONTINUE
8000 CONTINUE
RETURN
9000 CONTINUE
WRITE (6,90) K
IPARM \(=-K\)
STOP 'DMFSD'
C*****FORMAT STATEMENTS
80 FORMAT (20X.'ROUNDING ERROR IN ROU ', I2)
90 FORMAT (20X,'MATRIX IS SINGULAR AT ROW', I2)
END

SUBROUTINE PRINT(IPS, IWKDV, IWKIV, LAB, LABDV, LABIV, TABLE,
1
TITLE)

COMMON /MAXDIM/ LENC, LENTC, LLAB, MXNDV, MXNINT, MXNIV,
1 MXNOBS, MXNSTP
COMMON /PARAM/ LLN, LPCC, LPRCC, LSRC, LSRRC, LRAW, NDV, NIV,
2 PC, TC, YMIN, YMAX
- DTMENSION IWKIV(MXNIV), IWKDV(MXNDV)
, CHARACTER* (*) LAB,
CHARACTER* 10 IDATE, ITIME
DATA IfIRST/ \(1 /\)
C
IF(TFIRST .EQ. O) THEN
CALL DATE(IDATE)
CALL TIME (ITIME)
IFIRST=1
ENDIF

\(J E N D=(N S D V-1) / 10+1\)
DO \(3002 \mathrm{JY}=1\), JEND
\(\frac{1}{} \theta=((j Y-1) * 20)+1\)
\(J E=J B+9\)
IF (JE -GT. NSDV) JE=NSDV
\(I B=1\)
IE=40
If (IE GT. NSIV) IE=NSIV
.200
CONIINUE
IPAGE=IPAGE + 1
IF (IPS.EQ. O) THEN
ELSE
HTE 0,1001 ) TITLE, IDAYE, ITIME, IPAGE, LAB, TC
ENDIF \({ }^{\text {WR }}\)
WRITE (6, 1002) (LABOV (IWKDV(J)), J=j8, JE)
WRITE \((6,1003)\)
DO \(2000^{\prime}\) I \(X=I B\). IE
WRITE( 6,1004 ) LABIV(IWKIV(IX)), (TABLE(IX,J),J=JB, JE)
IF (MOD (IX,5) .EQ. O) WRITE(6,1003)
? \(2000-\frac{\text { CONTINUE }}{\text { IF (IE } \cdot G E}\)
18=41
\(I E=N S I V\)
3000 CONTINUE
RETURN
C*****FORMAT STATEMENTS
1001 FORMAT ('1', \(/ / \delta X, A, 5 X, A, 5 X, A, 5 X\), 'PAGE', I 3 ,
1 1/6X, 'TABLE ENTRIES REPRESENT THE MAXIMUM VALUE OF THE '.
A,' COEFFICIENT OVER ALL STEPS '
16X,' FOR EACH COMEINATION OF SELECTED INDEPENDENT
'VARIABLE AND SELECTED DEPENDENT VARIABLE, PROVIDED',
/6X, 'THAT THE ABSOLUTE VALUE OF THIS COEFFICIENT IS
6 'GREATER THAN ',F5.3,1)
\(1002 \operatorname{FORMAT}(16 x, 10(A, 2 x))\)
1003 FORMAY( \(6 x, 110\left(^{\prime}-1\right)\) )
1004 FORMAT ( \(6 X, 11\) (A, 2X))
1005 FORMAT \({ }^{\prime} 1 ; 1 / 6 X, A, 5 X, A, 5 X, A, 5 X\), 'PAGE', I 3 ,
1 T/GX, TAQLE ENT IES REPRESENT THE MAXIMUM VALUE OF THET,
A, 'COEFFICIENT OVER ALL STEPS
3 16x FOR EACH COMEINATION OF SELECTED INOEPENDENT
TVARIABLE AND SELECYED DEPENDENT VARIABLE, GIVEN TN'

SUEROUTINE USRINP(LSDV, LSIV, STEPS, \(X, Y\) )
C\#\#\#\#\#SUBROUTINE USRINP IS PROVIDED GY THE USER TO INPUT DATA FILES
C****OF INDEPENDENT AND DEPENDENT VARIABLES THAT ARE OF DIFFERENT
C******FORMS THAN THOSE DESCRIBED IN THE USER MANUAL
C*****THE COMMON AND DIMENSION STATEMENTS ARE REQUIRED
COMMON /MAXOIM/ LENC, LENTC, LLABE, MXNDV, MXNINT, MXNIVe,
MXNOBS, MXNSTP
DIMENSION LSDV(MXNDV), LSIV(MXNIV), STEPS(MXNSTP),
\(-1\)
X MXNO
RETURN
END

\title{
TURC1SS SENSITIVITY ANALYSIS
}

PARTIAL RANK CORRELATION COEFFICIENTS VS STEPS DEPENDENT VARIABLE -HXFER -

UNITS = TIME (SEC)
```


[^0]: *Science Applications International Corporation

