Title 40 CFR Part 191 Subparts B and C Compliance Recertification Application 2014 for the Waste Isolation Pilot Plant

Appendix DATA-2014 Monitoring Data and Reports

United States Department of Energy Waste Isolation Pilot Plant

Carlsbad Field Office Carlsbad, New Mexico

Compliance Recertification Application 2014 Appendix DATA-2014

Table of Contents

DATA-1.0 Introduction	1
DATA-1.1 Reported Data	1
DATA-2.0 Delaware Basin Drilling Surveillance Program	2
DATA-2.1 Program Overview	2
DATA-2.2 Reported Data	2
DATA-3.0 Subsidence Monitoring Program	4
DATA-3.1 Program Overview.	4
DATA-3.2 Reported Data	4
DATA-4.0 Geotechnical Monitoring Program	5
DATA-4.1 Program Overview	5
DATA-4.2 Reported Data	6
DATA-5.0 Groundwater Monitoring Program	7
DATA-5.1 Program Overview	7
DATA-5.2 Reported Data	7
DATA-6.0 Meteorological Monitoring Program	8
DATA-6.1 Program Description	8
DATA-6.2 Reported Data	8
DATA-7.0 Waste Information	9
DATA-7.1 Program Overview	9
DATA-7.2 Reported Data	9
DATA-8.0 WIPP Boreholes	11
DATA-8.1 Program Overview	. 11
DATA-8.2 Reported Data	. 11
DATA-9.0 Repository Investigations Program	12
DATA-9.1 Program Overview	. 12
DATA-9.2 Reported Data	. 12
DATA-10.0 Compliance Monitoring Program	19
DATA-10.1 Program Overview	. 19
DATA-10.2 Reported Data	. 19
DATA-11.0 Hydrological Investigation	20
DATA-11.1 Program Overview	. 20
DATA-11.1.1 Shallow Subsurface Water Investigation	. 20
DATA-11.1.2 Culebra Water-Level Rise Investigation	. 20
DATA-11.2 Reported Data	. 20
DATA-11.2.1 Shallow Subsurface Water Investigation	. 20
DATA-11.2.2 Culebra Water-Level Rise Investigation	. 21
DATA-12.0 Waste Containers and Emplacement	23
DATA-12.1 Program Overview	. 23
DATA-12.2 Reported Data	. 23
DATA-13.0 References	24

Attachments

Attachment A: WIPP Borehole Update Attachment B: WIPP Waste Containers and Emplacement

Acronyms and Abbreviations

CCA	Compliance Certification Application	
CFR	Code of Federal Regulations	
CH-TRU	contact-handled transuranic	
CMP	Compliance Monitoring Program	
COMP	compliance monitoring parameter	
CRA	Compliance Recertification Application	
DBDSP	Delaware Basin Drilling Surveillance Program	
DOE	U.S. Department of Energy	
EPA	U.S. Environmental Protection Agency	
ft	foot	
GMP	Geotechnical Monitoring Program	
GWMP	Groundwater Monitoring Program	
m	meter	
PA	performance assessment	
PABC	performance assessment baseline calculation	
RH-TRU	remote-handled transuranic	
SMP	Subsidence Monitoring Program	
WDS	Waste Data System	
WIPP	Waste Isolation Pilot Plant	

This page intentionally left blank.

1 DATA-1.0 Introduction

- 2 Appendix DATA-2014 provides references to the data used to develop the Compliance
- 3 Recertification Application (CRA) of 2014 (CRA-2014). Interpretation and analysis of those
- 4 data are provided in the appropriate sections of the CRA-2014.
- 5 Title 40 CFR § 194.15(a)(1), (2), (3), and (5) (U.S. EPA 1996), Content of Recertification
- 6 Applications, require that the U.S. Department of Energy (DOE) provide information obtained
- 7 since the Compliance Certification Application (CCA) (U.S. DOE 1996) related to site geology,
- 8 hydrology, and meteorology. Additional monitoring results and the results of laboratory
- 9 investigations completed after the CRA-2009 (U.S. DOE 2009a) must also be provided, as well
- 10 as information regarding the waste emplaced in the disposal system.
- 11 The DOE uses various programs to capture and analyze relevant information. These programs
- 12 and the resulting information are discussed in the appropriate sections of this appendix.

13 DATA-1.1 Reported Data

- 14 In the initial U.S. Environmental Protection Agency (EPA) certification of compliance for the
- 15 Waste Isolation Pilot Plant (WIPP) (U.S. EPA 1998), the EPA agreed that 10 compliance
- 16 monitoring parameters (COMPs) would be monitored during the operational period of the
- 17 project. Monitoring is performed to detect substantial deviations from expected conditions in the
- 18 WIPP performance assessment (PA). The locations of the data for the COMPs in this appendix
- 19 are listed below:

СОМР	Location in Appendix DATA-2014
Change in the Culebra groundwater flow	Section DATA-5.0, Section DATA-10.0, and Section DATA-11.0
Creep closure and stresses	Section DATA-4.0 and Section DATA-10.0
Culebra groundwater composition	Section DATA-5.0, Section DATA-10.0, and Section DATA-11.0
Displacement of deformation features	Section DATA-4.0 and Section DATA-10.0
Drilling rate	Section DATA-2.0 and Section DATA-10.0
Extent of brittle deformation	Section DATA-4.0, Section DATA-9.0, and Section DATA-10.0
Initiation of brittle deformation	Section DATA-4.0 and Section DATA-10.0
Probability of encountering a Castile brine reservoir	Section DATA-2.0 and Section DATA-10.0
Subsidence measurement	Section DATA-3.0 and Section DATA-10.0
Waste activity	Section DATA-7.0 and Section DATA-10.0

20

1 DATA-2.0 Delaware Basin Drilling Surveillance Program

2 The Delaware Basin Drilling Surveillance Program (DBDSP) monitors drilling activities in the

- 3 Delaware Basin. This section provides a brief discussion of the program and identifies the
- 4 relevant data reports.

5 **DATA-2.1 Program Overview**

6 The EPA requires the DOE to demonstrate the expected containment performance of the disposal

7 system using a PA. The PAs documented in the CCA, CRA-2004 (U.S. DOE 2004), CRA-2009,

8 and CRA-2014 demonstrated that the DOE complies with the EPA's containment standards for

- 9 undisturbed and human intrusion scenarios.
- 10 The criteria in 40 CFR § 194.33 (U.S. EPA 1996) require the use of historic drilling information

11 to derive the drilling rate for PA intrusion scenarios. The DBDSP continues to monitor drilling-

12 related activities, providing data used to determine whether the assumptions and scenarios used

13 in PA remain valid, and uses the monitoring data to determine the drilling rate. These

14 monitoring activities will continue until the DOE and the EPA agree that no additional benefit

15 can be gained by further monitoring.

16 DATA-2.2 Reported Data

17 The two COMP parameters monitored by the DBDSP are the drilling rate (67.3 boreholes per

18 square kilometer) (U.S. DOE 2012a) and the probability of encountering a Castile brine reservoir

- 19 (4.5%) (Callicoat 2013a), which are discussed in the annual reports for this program and also in
- 20 the COMPs assessments described in Section DATA-10.0. Other information collected by this
- 21 program include drilling-related data, mining information, and seismic information.

Relevant data generated through the Delaware Basin Monitoring Program are provided in the following reports published since the CRA-2009:

- Delaware Basin Monitoring Annual Report, DOE/WIPP-08-2308, September 2008 (U.S. DOE 2008a).
- Delaware Basin Monitoring Annual Report, DOE/WIPP-09-2308, September 2009 (U.S. DOE 2009b).
- Delaware Basin Monitoring Annual Report, DOE/WIPP-10-2308, September 2010 (U.S. DOE 2010a).
- Delaware Basin Monitoring Annual Report, DOE/WIPP-11-2308, September 2011 (U.S.
 DOE 2011a).
- Delaware Basin Monitoring Annual Report, DOE/WIPP-12-2308, September 2012 (U.S. DOE 2012a).

- Callicoat, J. 2013. "Castile Brine Encounters 2012." Memo to File, Regulatory
 Environmental Services, Carlsbad, NM; RES:13:106 (Callicoat 2013a).
- Callicoat, J. 2013. "Seismic Activity within the Delaware Basin 2012." Memo to File,
 Regulatory Environmental Services, Carlsbad, NM; RES:13:107 (Callicoat 2013b).

1 DATA-3.0 Subsidence Monitoring Program

2 Subsidence monitoring measures vertical movement of the land surface relative to a reference

- 3 location. This section provides a brief discussion of the Subsidence Monitoring Program (SMP)
- 4 and identifies the relevant data reports.

5 **DATA-3.1 Program Overview**

6 The SMP uses a leveling survey to measure the relative vertical height differences between
7 benchmarks. A level survey consists of using one benchmark's elevation as a constant elevation
8 and determining the elevation of all other benchmarks relative to it. Comparison between level
9 surveys allows vertical movement patterns to be established over time. These comparative
10 surveys allow substantial deviation of actual subsidence from expected subsidence to be

11 detected.

12 DATA-3.2 Reported Data

Each year approximately 15 miles of leveling surveying is completed utilizing nine vertical
 control loops consisting of 48 subsidence monuments and 14 National Geodetic Survey vertical

15 control points. Subsidence rates are small and are approximately at the resolution level of the

16 survey accuracy. The benchmarks with the highest rates are seen above the mined panels. All

subsidence rates fall within the predicted values. Data generated through the SMP are provided

in the following reports published since the CRA-2009. Each report includes previous years'

- 19 data.
- WIPP Subsidence Monument Leveling Survey 2008, DOE/WIPP 09-2293, December 2008
 (U.S. DOE 2008b).
- WIPP Subsidence Monument Leveling Survey 2009, DOE/WIPP 10-2293, December 2009
 (U.S. DOE 2009c).
- WIPP Subsidence Monument Leveling Survey 2010, DOE/WIPP 11-2293, December 2010
 (U.S. DOE 2010b).
- WIPP Subsidence Monument Leveling Survey 2011, DOE/WIPP 12-2293, December 2011
 (U.S. DOE 2011b).
- WIPP Subsidence Monument Leveling Survey 2012, DOE/WIPP 12-3497, December 2012
 (U.S. DOE 2012b).
- 30

1 DATA-4.0 Geotechnical Monitoring Program

2 The Geotechnical Monitoring Program (GMP) measures in situ geotechnical data in the WIPP

3 repository. This section provides a brief discussion of the GMP and identifies the relevant data4 reports.

5 **DATA-4.1 Program Overview**

6 The GMP obtains in situ data to support the continuous assessment of underground facilities. A

7 detailed description of the geotechnical programs and procedures is presented in WP 07-1, WIPP

8 Geotechnical Engineering Program Plan (Nuclear Waste Partnership 2012). Specifically, the

- 9 program provides for
- Early detection of conditions that could affect operational safety
- 11 Guidance for design modifications and remedial actions
- Data for interpreting the behavior of underground openings compared to established design criteria
- 14 The GMP collects data through instrumentation and observation. These data are used to confirm
- 15 the understanding of geomechanical characteristics and aid in assessing the stability and
- 16 performance of the underground facility. Constituent programs, described below, include the
- 17 Geosciences Program, the Geomechanical Monitoring Program, and the Rock Mechanics
- 18 Program.
- 19 The Geosciences Program includes the collection of underground data used to assess the
- 20 repository by documenting the existing geologic conditions and characteristics and monitoring
- 21 excavation response. Activities associated with this program include geologic and fracture
- 22 mapping of the excavation surface, core logging, and borehole observations.
- 23 The Geomechanical Monitoring Program includes monitoring the geomechanical response of the
- 24 underground openings after mining using instrumentation installed in the shafts and drifts of the
- 25 facility. Geotechnical instrumentation installed underground in the shafts and drifts includes
- 26 tape extensometer points, convergence meters, borehole extensometers, piezometers, strain
- 27 gauges, load cells, and crack meters. The instrumentation is sensitive enough to detect small
- 28 changes in rock displacements and stresses.
- 29 To determine significant deviations from expected conditions, the Management and Operating
- 30 Contractor uses the Rock Mechanics Program to assess the performance of the underground
- 31 excavation for safety and stability during the operational phase. The results from these
- 32 assessments allow the identification of potentially unstable areas and the application of remedial
- 33 actions, if necessary. Field data are used to compare the actual mechanical performance of the
- 34 excavations to expected results. Analytical methods, such as numerical modeling, determine the
- 35 potential effects of mining new excavations, excavation sequence, and long-term behavior of the
- 36 repository. Extensive experimental work and observations have established an understanding of
- 37 time-dependent geomechanical properties of the salt that are used to predict its in situ mechanical

- 1 performance. These assessments rely heavily on the in situ instrumentation data and field
- 2 observations from the Geoscience and Geomechanical Monitoring Programs.

3 DATA-4.2 Reported Data

- 4 Data generated through the GMP are reported annually in the Geotechnical Analysis Report.
- 5 References for reports prepared since the development of the CRA-2009 are provided below.
- 6 Each report includes previous years' data. Four parameters, relating to information collected by
- 7 the GMP, are required to be monitored by the DOE. These are creep closure, extent of
- 8 deformation, initiation of brittle deformation, and displacement of deformation features. Creep
- 9 closure and displacement of deformation features are quantitative. Extent of deformation and
- 10 initiation of brittle deformation are qualitative. These four parameters are discussed and
- analyzed in the COMPs reports listed in Section DATA-10.2.
- Washington TRU Solutions, LLC, 2009, Geotechnical Analysis Report for July 2007–June
 2008, DOE/WIPP 09-3177, Carlsbad, NM (U.S. DOE 2009d).
- Washington TRU Solutions, LLC, 2010, Geotechnical Analysis Report for July 2008–June
 2009, DOE/WIPP 10-3177, Carlsbad, NM (U.S. DOE 2010c).
- Washington TRU Solutions, LLC, 2011, Geotechnical Analysis Report for July 2009–June
 2010, DOE/WIPP 11-3177, Carlsbad, NM (U.S. DOE 2011c).
- Washington TRU Solutions, LLC, 2012, Geotechnical Analysis Report for July 2010–June
 2011, DOE/WIPP 12-3484, Carlsbad, NM (U.S. DOE 2012c).
- The Geotechnical Analysis Report for July 2011–June 2012 was issued after the February 2013
 CRA-2014 publication cutoff date.

DATA-5.0 Groundwater Monitoring Program 1

2 The Groundwater Monitoring Program (GWMP) collects and analyzes data for various wells at 3 or near the WIPP site. This section briefly describes the GWMP and identifies relevant reports.

4 **DATA-5.1** Program Overview

5 One function of the GWMP is the collection of groundwater data from the Culebra Dolomite

6 Member of the Rustler Formation (hereafter referred to as the Culebra), such as water levels and

7 water quality, from numerous wells located at and near the facility. The Culebra was selected as

8 the focus of the GWMP. It has been extensively studied during past hydrologic characterization 9

programs and was found to be the most likely hydrologic pathway to the accessible environment

10 for any potential human-intrusion-caused release scenario. Data obtained through this program 11 are used to generate the Culebra groundwater composition and the Culebra groundwater flow

12 COMPs. Details on how the program is implemented are provided in Appendix MON-2014.

DATA-5.2 Reported Data 13

14 The water quality data collected by the GWMP are discussed and analyzed in the reports listed

15 below and also in the COMPs reports listed in Section DATA-10.2. This analysis provides

16 validation of the various Culebra hydrological models for CRA-2014. Appendix HYDRO-2014

17 and the COMPs reports provide analyses of the water levels and the fluid density of the water

18 columns in the various wells used in gathering data for the WIPP hydrological model. The

19 following reports have been published since the CRA-2009:

- 20 U.S. Department of Energy, 2008, Waste Isolation Pilot Plant Annual Site Environmental • Report for 2007, DOE/WIPP 08-2225, Carlsbad, NM (U.S. DOE 2008c). 21
- 22 U.S. Department of Energy, 2009, Waste Isolation Pilot Plant Annual Site Environmental • Report for 2008, DOE/WIPP 09-2225, Carlsbad, NM (U.S. DOE 2009e). 23
- 24 U.S. Department of Energy, 2010, Waste Isolation Pilot Plant Annual Site Environmental ٠ 25 Report for 2009, DOE/WIPP 10-2225, Carlsbad, NM (U.S. DOE 2010d).
- 26 U.S. Department of Energy, 2011, Waste Isolation Pilot Plant Annual Site Environmental • Report for 2010, DOE/WIPP 11-2225, Carlsbad, NM (U.S. DOE 2011d). 27
- 28 U.S. Department of Energy, 2012, Waste Isolation Pilot Plant Annual Site Environmental 29 Report for 2011, DOE/WIPP 12-3489, Carlsbad, NM (U.S. DOE 2012d).

1 DATA-6.0 Meteorological Monitoring Program

- 2 The Meteorological Monitoring Program measures atmospheric data for the WIPP site. This
- 3 section provides a brief description of the program and relevant reports.

4 DATA-6.1 Program Description

- 5 The primary WIPP meteorological station is located 600.5 meters (m) (1,970 feet (ft)) northeast
- 6 of the Waste Handling Building. The main function of the station is to provide data for
- 7 atmospheric modeling. The station measures and records wind speed, wind direction, and
- 8 temperature at elevations of 2, 10, and 50 m (6.5, 33, and 165 ft). The station records ground-
- 9 level measurements of barometric pressure, relative humidity, precipitation, and solar radiation.

10 DATA-6.2 Reported Data

- 11 The annual site environmental reports listed in Section DATA-5.2 provide data relevant to the
- 12 Meteorological Monitoring Program. The CCA, Appendix CLI provides information on past
- 13 (long-term) climatic conditions and predicted future conditions at the WIPP site. A discussion of
- 14 the wind, rainfall, and temperature variation can be found in CRA-2014, Section 15.

1 DATA-7.0 Waste Information

- 2 Two types of information related to waste characteristics are collected: (1) information
- 3 regarding waste that has been emplaced in the WIPP underground repository, and (2)
- 4 information regarding future inventory that will be emplaced in the WIPP underground
- 5 repository during the entire lifetime of the project. This section provides a brief description of
- 6 the programs and a list of relevant reports.

7 **DATA-7.1 Program Overview**

- 8 Information concerning waste that has been emplaced in the repository is tracked and recorded
- 9 using the Waste Data System (WDS), formerly the WIPP Waste Information System.
- 10 Information concerning future wastes to be emplaced in the WIPP is developed through periodic
- 11 updates of the Annual Transuranic Waste Inventory Reports. The inventory for the CRA-2014
- 12 PA is from the Performance Assessment Inventory Report -2012 (Van Soest 2012) based on the
- 13 Annual Transuranic Waste Inventory Report-2012 (U.S. DOE 2012e), that provides updated
- 14 inventory information. The DOE anticipates that these inventory updates will have only a small
- 15 impact on normalized releases relative to the CRA-2014 PA, and therefore have no significant
- 16 impact on compliance.

17 DATA-7.2 Reported Data

- 18 Summary information generated by the WDS on emplaced waste and radionuclides is provided
- 19 in the following reports published since the CRA-2009. See page 21 of the Annual Change
- 20 Report 2011/2012, DOE/WIPP-12-3496 (U.S. DOE 2012f) for a detailed listing of the emplaced
- 21 waste in the repository.
- U.S. Department of Energy, Annual Change Report 2007/2008, DOE/WIPP 08-3317,
 November 15, 2008 (U.S. DOE 2008d).
- U.S. Department of Energy, Annual Change Report 2008/2009, DOE/WIPP 09-0335,
 November 13, 2009 (U.S. DOE 2009f).
- U.S. Department of Energy, Annual Change Report 2009/2010, DOE/WIPP 10-1660, November 15, 2010 (U.S. DOE 2010e).
- U.S. Department of Energy, Annual Change Report 2010/2011, DOE/WIPP 11-3479, August 30, 2011 (U.S. DOE 2011e).
- U.S. Department of Energy, Annual Change Report 2011/2012, DOE/WIPP 12-3496,
 October 2012 (U.S. DOE 2012f).
- Information regarding current and future inventories stored at generator sites and in the WIPP isprovided in the following reports published since the CRA-2009:
- U.S. Department of Energy, Annual Transuranic Waste Inventory Report–2008, DOE/TRU-08-3425, Revision 0 (U.S. DOE 2008e).

- U.S. Department of Energy, Annual Transuranic Waste Inventory Report–2009, DOE/TRU 09-3425, Revision 0 (U.S. DOE 2009g).
- U.S. Department of Energy, Annual Transuranic Waste Inventory Report–2010, DOE/TRU 10-3425, Revision 0 (U.S. DOE 2010f).
- U.S. Department of Energy, Annual Transuranic Waste Inventory Report–2011, DOE/TRU 11-3425, Revision 0 (U.S. DOE 2011f).
- U.S. Department of Energy, Annual Transuranic Waste Inventory Report–2012, DOE/TRU 12-3425, Revision 0 (U.S. DOE 2012e).

1 DATA-8.0 WIPP Boreholes

2 Information regarding WIPP monitoring wells is identified in this section, and relevant data are3 provided.

4 DATA-8.1 Program Overview

- 5 Information provided in this section was reported in DOE/WIPP 95-2092, Revision 1, Waste
- 6 Isolation Pilot Plant Borehole Data Report (the CCA, Appendix BH). The CCA, Appendix BH
- 7 serves as a central document providing data on boreholes. The report contains a comprehensive
- 8 database of wells drilled in support of the WIPP Project and boreholes that were located within
- 9 the 16-section land withdrawal area.

10 DATA-8.2 Reported Data

- 11 Attachment A to this appendix provides updates on all of the monitoring wells used in the CCA,
- 12 Appendix BH, and the new monitoring wells drilled since the initial certification. The
- 13 attachment also adds wells that were in use, but inadvertently omitted from the CCA, Appendix
- 14 BH. There were 6 wells drilled and 7 wells plugged during the CRA-2014 monitoring period
- 15 from October 1, 2007, through December 31, 2012.

1 DATA-9.0 Repository Investigations Program

- 2 The WIPP Repository Investigations Program conducts research activities to confirm
- 3 assumptions, reduce uncertainty, and resolve issues regarding the conceptual models and

4 parameters used in PA. The program is briefly described in this section and references to

5 relevant reports are provided.

6 **DATA-9.1 Program Overview**

The DOE has implemented and/or continued several experimental activities designed to address
specific issues and needs of the WIPP repository. In addition, other investigations have been
initiated to examine impacts of planned changes. The general areas covered under these

- 10 investigations include
- 11 Geochemistry
- 12 Actinide chemistry
- 13 Engineered barriers
- 14 Rock mechanics (Sandia National Laboratories)

15 **DATA-9.2 Reported Data**

- 16 Data acquired by the DOE from the repository investigations are available in the following
- 17 reports, publications, and technical memoranda published since the CRA-2009. Abstracts,
- 18 posters, presentations, test plans, and analysis plans are not included because they typically
- 19 contain preliminary data.
- 20

Geochemistry

- Proceedings of the International Workshops ABC-Salt (II) and HiTAC 2011" (Altmaier et al. 2012).
- "Numerical Values for Graphs Presented in Report LCO-ACP-17, Rev. 0, Entitled:
 "Solubility of An(UIV) in WIPP Brine: Thorium Analog Studies in WIPP Simulated Brine"
 (Borkowski 2012).
- "Actinide (III) Solubility in WIPP Brine: Data Summary and Recommendations"
 (Borkowski, Lucchini, Richmann, and Reed 2010).
- "Solubility of An(IV) in WIPP Brine: Thorium Analog Studies in WIPP Simulated Brine"
 (Borkowski, Richmann, and Lucchini 2012).
- "Complexation of Nd(III) with Tetraborate Ion and Its Effect on Actinide(III) Solubility in
 WIPP Brine" (Borkowski, Richmann, Reed, and Xiong 2010).

- "Predictions of the Compositions of Standard WIPP Brines as a Function of pcH for
 Laboratory Studies of the Speciation and Solubilities of Actinides" (Brush, Domski, and
 Xiong 2011).
- "Revised Predictions of WIPP Baseline Actinide Solubilities as a Function of the Volume of Standard Brines" (Brush, Domski, and Xiong 2012).
- 6 "Predictions of Actinide Solubilities as a Function of the Volume of Standard WIPP Brines"
 7 (Brush, Domski, Xiong, and Long 2011).
- 8 "Sensitivity of the Long-Term Performance of the WIPP to EDTA" (Brush, Xiong, Garner,
 9 Kirchner, and Long 2008).
- "Results of the Calculations of Actinide Solubilities for the CRA-2009 PABC" (Brush, Xiong, and Long 2009).
- "Solubility and Speciation of Cm(III) and Nd(III) in Borate Rich NaCl and CaCl₂ Solutions" (Hinz et al. 2012).
- Memorandum to Records Center (Subject: Derivation of Pitzer ion interaction parameters for the pair Na⁺ and FeEDTA²⁻) (Jang 2012a).
- Memorandum to Records Center (Subject: Derivation of the solubility product for ferrous iron oxalate dihydrate in NaCl solutions and related Pitzer ion interaction parameter) (Jang 2012b).
- "Iron, Lead, Sulfide, and EDTA Solubilities" (Jang, Xiong, Kim, and Nemer 2011).
- "Iron, Lead, Sulfide, and EDTA Solubilities" (Jang, Xiong, Kim, and Nemer 2012).
- "Uranium Solubility in Carbonate-Free ERDA-6 Brine" (Lucchini, Khaing, and Reed 2010).
- "Actinide (VI) Solubility in Carbonate-free WIPP Brine: Data Summary and
 Recommendations" (Lucchini, Khaing, Borkowski, Richmann, and Reed 2010).
- "WIPP Actinide-Relevant Brine Chemistry" (Lucchini et al. 2013).
- "Uranium(VI) Solubility in WIPP Brine" (Lucchini, Richmann, and Borkowski 2013).
- "Influence of Carbonate on Uranium Solubility in Brine" (Lucchini, Ballard, and Khaing 2012).
- * "Solubility of Fe₂(OH)₃Cl (pure-iron end-member of hibbingite) in NaCl and Na₂SO₄ brines"
 (Nemer, Xiong, Ismail, and Jang 2010).
- "Determination of ferrous and ferric iron in aqueous biological samples" (Pepper,
 Borkowski, Richmann, and Reed 2010).

- "Using Thermodynamic Models: Saline Systems" (Reed 2011).
- "Intrinsic, Mineral, and Microbial Colloid Enhancement Parameters for the WIPP Actinide
 Source Term" (Reed, Swanson, Lucchini, and Richmann 2013).
- "Redox-Controlling Processes for Multivalent Metals and Actinides in the WIPP" (Reed et al. 2012).
- 6 "Subsurface Interactions of Actinide Species and Microorganisms" (Reed, Deo, and 7 Rittmann 2010).
- * "Comparison of the Calculated Thorium Solubility (Concentration) Using the Constants from the TMT_050405 Database with the Experimental Data Published in Altmaier, M., Neck, V., Muller, R. and Fanghanel, T. *Radiochimica Acta*, 93(2), 83-92 (2005)" (Richmann 2010).
- "Iron and Lead Corrosion in WIPP-Relevant Conditions: 12 Month Results" (Roselle 2010).
- 12 "Determination of pC_{H+} Correction Factors in Brines" (Roselle 2011a).
- "Iron and Lead Corrosion in WIPP-Relevant Conditions: 18 Month Results" (Roselle 2011b).
- "Iron and Lead Corrosion in WIPP-Relevant Conditions: 24 Month Results" (Roselle 2011c).
- "Determination of Corrosion Rates from Iron/Lead Corrosion Experiments to be used for Gas
 Generation Calculations" (Roselle 2013).
- "Thermodynamic Modeling of Trivalent Am, Cm, and Eu-Citrate Complexation in Concentrated NaClO₄ Media" (Thakur, Xiong, Borkowski, and Choppin 2012).
- "Thermodynamic Properties of Brucite Determined by Solubility Studies and Their
 Significance to Nuclear Waste Isolation" (Xiong 2008a).
- "Experimental Determination of Solubility Constant of Hydromagnesite (5424) in NaCl
 Solutions up to 4.4 M at Room Temperature" (Xiong 2010a).
- Memorandum to Record Center (Subject: Calculations of Thermodynamic Parameters for
 Experimental Data Generated at Los Alamos National Laboratory Carlsbad Operation
 (LANL-CO)) (Xiong 2010b).
- Memorandum to Record Center (Subject: Summary Report for Migration of the WIPP Thermodynamic Code from FMT to EQ3/6 Version 8.0a) (Xiong 2010c).
- "Experimental Study of Thermodynamic Parameters of Borate in WIPP Relevant Brines at Sandia National Laboratories Carlsbad Facility" (Xiong 2011a).
- "Organic Species of Lanthanum in Natural Environments: Implications to Mobility of Rare
 Earth Elements in Low Temperature Environments" (Xiong 2011b).

- "WIPP Verification and Validation Plan/Validation Document for EQ3/6 Version 8.0a for
 Actinide Chemistry, Revision 1. Supersedes ERMS 550239" (Xiong 2011c).
- "Experimental Determination of Solubility Constant of Di-Calcium
 Ethylenediaminetetraacetic Acid (Ca₂EDTA), Ca₂C₁₀H₁₂N₂O₈(S), in the NaCl-H₂O System"
 (Xiong 2012a).
- "Thermodynamic Model for the Na-B(OH)₃-Cl-SO₄ System" (Xiong 2012b).
- "Thermodynamic Model for the Na-B(OH)₃-Cl-SO₄ System, Revision 1, Superseding ERMS 558111" (Xiong 2012c).
- "Experimental Investigations of the Reaction Path in the MgO-CO₂-H₂O System in Solutions with Various Ionic Strengths, and Their Applications to Nuclear Waste Isolation" (Xiong and Lord 2008).
- "Experimental determination of the solubility constant for magnesium chloride hydroxide
 hydrate (Mg₃Cl(OH)₅•4H₂O, Phase 5) at room temperature, and its importance to nuclear
 waste isolation in geological repositories in salt formations" (Xiong, Deng, Nemer, and
 Johnsen 2009a).
- Memorandum to Larry Brush (Subject: Thermodynamic Data for phase 5 (Mg₃Cl(OH)₅·4H₂O) Determined from Solubility Experiments.) (Xiong, Deng, Nemer, and Johnsen 2009b).
- "Responses to Three EPA Comments Pertaining to Comparisons of Measured and Predicted
 Dissolved and Colloidal Th(IV) and Am(III) Concentrations" (Xiong, Brush, Garner, and
 Long 2010a).
- "Responses to Three EPA Comments Pertaining to Comparisons of Measured and Predicted
 Dissolved and Colloidal Th(IV) and Am(III) Concentrations, Revision 1. Supersedes ERMS
 553409" (Xiong, Brush, Garner, and Long 2010b).
- "Uncertainty Analysis of Actinide Solubilities for the WIPP CRA-2009 PABC, Rev. 1, Supersedes ERMS 552500" (Xiong, Brush, Domski, and Long 2011).
- "Experimental Determination of Solubilities of Lead Oxalate (PbC₂O₄(cr)) in a NaCl
 Medium to High Ionic Strengths, and the Im_portanc_e of Lead Oxalate in Low Temperature
 Environments" (Xiong, Kirkes, Westfall, Olivas, and Roselle 2011).
- 30

Microbiology

- "The Effect of High Ionic Strength on Neptunium (V) Adsorption to a Halophilic Bacterium"
 (Ams et al. 2013).
- "Update on Microbial Characterization of WIPP Groundwaters" (Swanson and Simmons 2013).

- "Degradation of Organic Complexing Agents by Halophilic Microorganisms in Brines"
 (Swanson, Norden, Khaing, and Reed 2012).
- Status Report on the Microbial Characterization of Halite and Groundwater Samples from the WIPP" (Swanson, Reed, Ams, Norden, and Simmons 2012).
- Biodegradation of Organic Complexing Agents by WIPP-indigenous Halophilic
 Microorganisms in Brines" (Swanson, Simmons, Norden, and Khaing 2013).
- 7

Performance Assessment

- 6 "Calculation of Organic-Ligand Concentrations for the WIPP CRA-2014 PA" (Brush and Domski 2013a).
- "Prediction of Baseline Actinide Solubilities for the WIPP CRA-2014 PA" (Brush and Domski 2013b).
- "Uncertainty Analysis of Actinide Solubilities for the WIPP CRA-2014 PA" (Brush and Domski 2013c).
- "Calculation of Organic-Ligand Concentrations for the WIPP CRA-2009 PABC" (Brush and Xiong 2009).
- "Summary Report for the AP-151 (PC3R) Performance Assessment, Revision 1"
 (Camphouse, Clayton, Kicker, and Pasch 2011).
- Memorandum to WIPP Records Center (Subject: Recommendations and Justifications of Parameter Values for the Run-of-Mine Salt Panel Closure System Design Modeled in the PCS-2012 PA) (Camphouse, Gross, Herrick, Kicker, and Thompson 2012).
- "Summary Report and Run Control for the 2012 WIPP Panel Closure System Performance
 Assessment, Rev. 0" (Camphouse et al. 2012).
- Memorandum to the SNL WIPP Records Center Defense Waste Management Programs
 (Subject: Memo AP-154, Task 10 EQ3/6 Database Update) (Domski 2012).
- Memorandum to the WIPP Records Center (Subject: Calculations Performed in Support of Reconsolidation of Crushed Salt in Panel Closures) (Herrick 2012a).
- Memorandum to the WIPP Records Center (Subject: JAS3D Calculations Performed in Support of the PCS-2012 PA Parameters Selections) (Herrick 2012b).
- "Estimating the Extent of the Disturbed Rock Zone around a WIPP Disposal Room"
 (Herrick, Park, Lee, and Holcomb 2009).

- "Determining the Hydrodynamic Shear Strength of Surrogate Degraded TRU Waste
 Materials as an Estimate for the Lower Limit of the Performance Assessment Parameter
 TAUFAIL, Revision 0" (Herrick, Schuhen, Chapin, and Kicker 2012).
- Memorandum to Records (Subject: Verification of FMT database and conversion to EQ3/6 format) (Ismail, Deng, Jang, and Wolery 2009).
- Email to Tom Peake (Subject: Response to EPA Questions on Two-Phase Flow and ROM
 Permeability) (U.S. DOE 2012g).
- Letter to Mr. Jonathan Edwards (Subject: Response to EPA Letter Dated December 22, 2011) (U.S. DOE 2012h).
- "Verification and Validation Plan/Validation Document for EQ3/6 Version 8.0a for Actinide
 Chemistry, Document Version 8.10" (Wolery, Xiong, and Long 2010).
- Memorandum to Larry Brush (Subject: HMI–an EQ3/6 Database with Iron Species) (Xiong 2008b).
- Email to Jennifer Long (Subject: Release of FMT_090720.CHEMDAT) (Xiong 2009).
- Email to Jennifer Long (Subject: Release of EQ3/6 Database DATA0.FM1) (Xiong 2011d).
- "Experimental Study of Thermodynamic Parameters of Borate in WIPP Relevant Brines at Sandia National Laboratories Carlsbad Facility" (Xiong 2012d).
- Memorandum to The WIPP Record Center (Subject: Memo of Corrections for 'Second Milestone Report on Test Plan TP 08-02, "Iron, Lead, Sulfide, and EDTA Solubilities"
 (ERMS 557198)') (Xiong 2012e).
- "Establishment of Uncertainty Ranges and Probability Distributions of Actinide Solubilities
 for Performance Assessment in the Waste Isolation Pilot Plant" (Xiong, Nowak, Brush,
 Ismail, and Long 2010).
- "Uncertainty Analysis of Actinide Solubilities for the WIPP CRA-2009 PABC" (Xiong, Brush, Ismail, and Long 2009).
- 26

Engineered Barriers

- "Improvements in Our Understanding of How MgO Will Control pH in WIPP Disposal
 Rooms" (Brush 2008).
- "Experimental Work Conducted on MgO Long-Term Hydration" (Deng, Xiong, Nemer, and Johnsen 2009).

Rock Mechanics

- Memorandum to Chris Camphouse (Subject: Follow-up to questions concerning TAUFAIL
 flume testing raised during the November 14-15, 2012 technical exchange between the DOE
 and EPA) (Herrick and Kirchner 2013).
- 5 "Data Report for Analysis Plan for Demonstration Test Process: Soil Flume Sixnet Data
 6 Acquisition System" (Schuhen 2011).

7

1 DATA-10.0 Compliance Monitoring Program

- 2 Annually, the Compliance Monitoring Program (CMP) extracts data from the repository
- 3 investigations and five of the monitoring programs described above (DBDSP, SMP, GMP,
- 4 GWMP, and WDS) to derive values for the 10 COMPs described in Section DATA-1.0 and to
- 5 evaluate whether significant changes in the parameters have occurred. The CMP activities are
- 6 briefly described in this section. Data generated under the CMP are also identified.

7 **DATA-10.1 Program Overview**

- 8 The objective of the CMP is to provide assurance that any deviations from the expected long-
- 9 term performance of the repository are identified at the earliest possible time. The CMP is
- 10 implemented in accordance with DOE/WIPP 99-3119, Compliance Monitoring Implementation
- 11 Plan for 40 CFR §191.14(b), Assurance Requirement (U.S. DOE 2012i). Annual evaluations of
- 12 the compliance parameters follow the requirements found in Sandia National Laboratories SP 9-
- 13 8, Monitoring Parameter Assessment Per 40 CFR 194.42, Revision 1 (Wagner 2011).

14 DATA-10.2 Reported Data

- 15 The data and the results of the annual COMPs assessments performed in accordance with the
- 16 requirements of the CMP are provided in the following reports published since the CRA-2009.
- 17 There are no COMPs data or results that indicate a reportable event or condition adverse to
- 18 predicted performance.
- Sandia National Laboratories, "Sandia National Laboratories Compliance Monitoring
 Parameter Assessment for 2008, WBS 1.3.1, January 2009," Carlsbad, NM (Sandia National
 Laboratories 2009).
- Sandia National Laboratories, "Sandia National Laboratories Compliance Monitoring
 Parameter Assessment for 2009, WBS 1.3.1, January 2010," Carlsbad, NM (Sandia National
 Laboratories 2010a).
- Sandia National Laboratories, "Sandia National Laboratories Compliance Monitoring
 Parameter Assessment for 2010, WBS 1.3.1, November 2010," Carlsbad, NM (Sandia
 National Laboratories 2010b).
- Sandia National Laboratories, "Sandia National Laboratories Compliance Monitoring
 Parameter Assessment for 2011, WBS 1.3.1, December 2011," Carlsbad, NM (Sandia
 National Laboratories 2011).
- Sandia National Laboratories, "Sandia National Laboratories Compliance Monitoring
 Parameter Assessment for 2012, WBS 1.3.1, November 2012," Carlsbad, NM (Sandia
 National Laboratories 2012).
- 34 A reassessment of the Trigger Values used to support the annual COMPs assessment is provided
- 35 in "Sandia National Laboratories Trigger Value Derivation Report, Revision 2, WBS 1.3.1,
- 36 December 2010," Carlsbad, NM (Sandia National Laboratories 2010c).

1 DATA-11.0 Hydrological Investigation

2 The Exhaust Shaft Hydraulic Assessment, now the Shallow Subsurface Water Investigation, was

3 initiated in September 1996 to investigate the source and extent of water seepage into the exhaust

4 shaft at the WIPP. An investigation of rising water levels in the Culebra was initiated in 1999.

5 These hydrologic investigations are briefly described in this section. Sources of data generated

6 from the investigations are also identified.

7 **DATA-11.1 Program Overview**

8 DATA-11.1.1 Shallow Subsurface Water Investigation

- 9 Investigations of water entering the exhaust shaft led to the observation of a shallow perched
- 10 groundwater horizon in a saturated layer within the lower Santa Rosa Formation and the upper

11 Dewey Lake Redbeds Formation, about 15 m (49 ft) below ground surface. During the original

12 drilling and geological mapping of the shaft, no water was encountered at that horizon, indicating

13 that the presence of water may be related to site activities subsequent to shaft drilling. Three

14 wells and 12 piezometers were installed over an 80-acre area between September 1996 and July

15 1997 (INTERA 1997). In 2007, three more piezometers were installed. No new piezometers

16 have been installed since 2007. Water-level and water-quality parameters continue to be

17 monitored and reported on a regular basis.

18 DATA-11.1.2 Culebra Water-Level Rise Investigation

19 During the 1999 annual COMPs assessment, Culebra water levels in many of the WIPP

20 monitoring wells exceeded the CCA ranges of uncertainty established for equilibrium freshwater

21 heads to calibrate transmissivity fields needed for Culebra flow and transport calculations.

22 Culebra water-level rises had also been observed at the time of the CCA submittal in 1996 but

23 were attributed to natural recovery of water levels following years of hydraulic well testing at the

24 WIPP site and grouting of the WIPP shafts. Subsequent to the 1999 COMPs assessment,

- 25 Culebra water levels showed a continued rise even though water levels at the WIPP site were
- thought to have fully recovered from hydraulic testing and shaft grouting. In response to this

27 observation, the DOE initiated an investigation into the cause of the water-level rise and the

28 impact of the rise on the long-term performance of the WIPP, which is discussed in Appendix

29 HYDRO-2009 and Appendix HYDRO-2014. Culebra water-level rises peaked around 2008 and

30 have shown a continuing gradual decline since that time.

31 DATA-11.2 Reported Data

32 Data acquired from the two hydrologic investigations are provided in the reports cited below for

33 the Shallow Subsurface Water Investigation and the Culebra water-level rise investigation.

34 DATA-11.2.1 Shallow Subsurface Water Investigation

- 35 The Geotechnical Analysis Reports listed in Section DATA-4.2 provide data relevant to the
- 36 Shallow Subsurface Water Investigation. Additional detailed information on this subject is
- 37 contained in "Hydrologic Assessment of Shallow Subsurface Water" (Daniel B. Stephens &

- 1 Associates, Inc. 2008), and "Assessment of Lead in PZ-13 Near the Site and Preliminary Design
- 2 Validation (SPDV) Pile at Waste Isolation Pilot Plant" (Daniel B. Stephens & Associates, Inc.
- 3 2010).

4 DATA-11.2.2 Culebra Water-Level Rise Investigation

- 5 The following reports are related to Culebra water-level investigations:
- Letter to Rick Beauheim (Subject: WIPP/SNL-6 (C)) (Hall Environmental Analysis
 Laboratory 2008a).
- Letter to Rick Beauheim (Subject: WIPP/H-15 (M)) (Hall Environmental Analysis
 Laboratory 2008b).
- Letter to Rick Beauheim (Subject: WIPP/LRL-7) (Hall Environmental Analysis Laboratory 2008c).
- Letter to Rick Beauheim (Subject: WIPP/USGS-4) (Hall Environmental Analysis Laboratory 2008d).
- Letter to Rick Beauheim (Subject: WIPP/USGS-8) (Hall Environmental Analysis Laboratory 2008e).
- Letter to Rick Beauheim (Subject: WIPP/H-6bR) (Hall Environmental Analysis Laboratory 2009a).
- Letter to Rick Beauheim (Subject: WIPP/H-15R) (Hall Environmental Analysis Laboratory 2009b).
- Letter to Rick Beauheim (Subject: WIPP/H-18 (M)) (Hall Environmental Analysis
 Laboratory 2009c).
- Letter to Rick Beauheim (Subject: WIPP/H-3b1 (M)) (Hall Environmental Analysis
 Laboratory 2009d).
- Letter to Rick Beauheim (Subject: WIPP/H-4bR) (Hall Environmental Analysis Laboratory 2009e).
- Letter to Rick Beauheim (Subject: WIPP/WIPP-18 (M)) (Hall Environmental Analysis
 Laboratory 2010a).
- Letter to Rick Beauheim (Subject: WIPP/H-6c (M)) (Hall Environmental Analysis
 Laboratory 2010b).
- Letter to Rick Beauheim (Subject: WIPP/H-8a (M)) (Hall Environmental Analysis
 Laboratory 2010c).

- Letter to Rick Beauheim (Subject: WIPP/H-2b1 (M)) (Hall Environmental Analysis
 Laboratory 2011a).
- Letter to Mike Schuhen (Subject: WIPP/H-4c (M)) (Hall Environmental Analysis Laboratory 2011b).
- Letter to Mike Schuhen (Subject: WIPP/H-9c (M)) (Hall Environmental Analysis Laboratory 2011c).
- Letter to Mike Schuhen (Subject: WIPP/H-9c (M)) (Hall Environmental Analysis
 Laboratory 2011d)
- 9 Letter to Mike Schuhen (Subject: WIPP/H-9bR (C)) (Hall Environmental Analysis
 10 Laboratory 2011e).
- Letter to Mike Schuhen (Subject: WIPP/H-11b4R (C)) (Hall Environmental Analysis
 Laboratory 2012a).
- Letter to Mike Schuhen (Subject: WIPP/H-9bR (C)) (Hall Environmental Analysis
 Laboratory 2012b).
- Letter to Mike Schuhen (Subject: WIPP/H-9bR (C)) (Hall Environmental Analysis
 Laboratory 2012c).
- "2007 Calculated Densities for Use in Deriving Equivalent Freshwater Heads of the Culebra
 Dolomite Member of the Rustler Formation near the WIPP Site" (Johnson 2008).
- "2008 Calculated Densities for Use in Deriving Equivalent Freshwater Heads of the Culebra
 Dolomite Member of the Rustler Formation near the WIPP Site" (Johnson 2009).
- Memorandum to Records Center (Subject: 2009 Calculated Densities) (Johnson 2010).
- Memorandum to Records Center (Subject: Memo of Correction 2010 Calculated Densities)
 (Johnson 2011).
- Memorandum to Records Center (Subject: 2003 Calculated Densities) (Johnson 2012a).
- Memorandum to Records Center (Subject: 2004 Calculated Densities) (Johnson 2012b).
- Memorandum to Records Center (Subject: 2005 Calculated Densities) (Johnson 2012c).
- Memorandum to Records Center (Subject: 2006 Calculated Densities) (Johnson 2012d).
- Memorandum to Records Center (Subject: 2011 Calculated Densities) (Johnson 2012e).
- Memorandum to Records Center (Subject: 2012 Calculated Densities) (Johnson 2012f).
- 30 "Culebra Water Level Monitoring Network Design" (Kuhlman 2010).

1 DATA-12.0 Waste Containers and Emplacement

- 2 Information regarding WIPP waste emplacement containers and underground waste
- 3 emplacement layouts are provided in this section. Approved containers that are inside other
- 4 containers, such as pipe overpacks, are not discussed.

5 **DATA-12.1 Program Overview**

- 6 Information provided in this section was compiled from several sources to serve as a central
- 7 document describing both waste emplacement containers and waste emplacement layouts. Both
- 8 contact-handled transuranic (CH-TRU) and remote-handled transuranic (RH-TRU) waste
- 9 containers are described along with CH-TRU and RH-TRU waste emplacement layouts in a
- 10 typical panel in the repository. Only containers approved for disposal in the repository are
- 11 discussed.

12 DATA-12.2 Reported Data

- 13 Attachment B to this appendix provides detailed information on the various waste containers and
- 14 their emplacement in the underground repository.

1 DATA-13.0 References

- 2 (*Indicates a reference that has not been previously submitted.)
- 3 Altmaier, M., C. Bube, B. Kienzler, V. Metz, and D.T. Reed (eds.). 2012. Proceedings of the
- 4 International Workshops ABC-Salt (II) and HiTAC 2011. KIT Scientific Reports 7625.
- 5 Karlsruhe, Germany.*
- 6 Ams, D.A., J.S. Swanson, J. Szymanowski, J.B. Fein, M. Richmann, and D.T. Reed. 2013.
- 7 "The Effect of High Ionic Strength on Neptunium (V) Adsorption to a Halophilic Bacterium,"
- 8 Geochimica et Cosmochimica Acta, 110 (2013) 45057.*
- 9 Borkowski, M. 2012. Numerical Values for Graphs Presented in Report LCO-ACP-17, Rev. 0,
- 10 Entitled: Solubility of An(UIV) in WIPP Brine: Thorium Analog Studies in WIPP Simulated
- 11 Brine and for Graphs Published in Borkowski, M., et al. Radiochimica Acta 98, (9-11) 577–582
- 12 (2010)." LA-UR 12-26640. Carlsbad, NM: Los Alamos National Laboratory.*
- 13 Borkowski, M. J-F. Lucchini, M.K. Richmann, and D.T. Reed. 2010. Actinide (III) Solubility in
- WIPP Brine: Data Summary and Recommendations. Report LA-14360. Los Alamos, NM: Los
- 15 Alamos National Laboratory.*
- 16 Borkowski, M., M.K. Richmann, and J-F. Lucchini. 2012. Solubility of An(IV) in WIPP Brine:
- 17 Thorium Analog Studies in WIPP Simulated Brine. Report LCO-ACP-17, LA-UR 12-24417.
- 18 Carlsbad, NM: Los Alamos National Laboratory.*
- 19 Borkowski, M., M.K. Richmann, D.T. Reed, and Y.-L. Xiong. 2010. "Complexation of Nd(III)
- 20 with Tetraborate Ion and Its Effect on Actinide(III) Solubility in WIPP Brine," *Radiochimica*
- 21 Acta 98.9-11 (2010): 577–582.*
- 22 Brush, L.H. 2008. Improvements in Our Understanding of How MgO Will Control pH in WIPP
- 23 Disposal Rooms. Write-up for inclusion in CRA-2009 Appendix SOTERM, April 9, 2008.
- 24 ERMS 548629. Carlsbad, NM: Sandia National Laboratories.*
- 25 Brush, L.H., and P.S. Domski. 2013a. Calculation of Organic-Ligand Concentrations for the
- 26 WIPP CRA-2014 PA. Analysis report, January 14, 2013. ERMS 559005. Carlsbad, NM: Sandia
- 27 National Laboratories.*
- 28 Brush, L.H., and P.S. Domski. 2013b. *Prediction of Baseline Actinide Solubilities for the WIPP*
- *CRA-2014 PA*. Analysis report, January 21, 2013. ERMS 559138. Carlsbad, NM: Sandia
 National Laboratories.*
- 31 Brush, L.H., and P.S. Domski. 2013c. Uncertainty Analysis of Actinide Solubilities for the
- 32 WIPP CRA-2014 PA. Analysis report, February 22, 2013. ERMS 559278. Carlsbad, NM:
- 33 Sandia National Laboratories.*
- 34 Brush, L.H., and Y.-L. Xiong. 2009. *Calculation of Organic-Ligand Concentrations for the*
- 35 *WIPP CRA-2009 PABC*. Analysis report, June 16, 2009. ERMS 551481. Carlsbad, NM: Sandia 36 National Laboratories.*

- 1 Brush, L.H., P.S. Domski, and Y.-L. Xiong. 2011. Predictions of the Compositions of Standard
- 2 WIPP Brines as a Function of pcH for Laboratory Studies of the Speciation and Solubilities of
- 3 *Actinides*. Analysis report, June 24, 2011. ERMS 555727. Carlsbad, NM: Sandia National
- 4 Laboratories.*
- 5 Brush, L.H., P.S. Domski, and Y.-L. Xiong. 2012. *Revised Predictions of WIPP Baseline*
- 6 Actinide Solubilities as a Function of the Volume of Standard Brines. Analysis report, May 17,
- 7 2012. ERMS 557524. Carlsbad, NM: Sandia National Laboratories.*
- 8 Brush, L.H., P.S. Domski, Y.-L. Xiong, and J.J. Long. 2011. *Predictions of Actinide Solubilities*
- 9 as a Function of the Volume of Standard WIPP Brines. Analysis Report, September 8, 2011.
- 10 ERMS 556140. Carlsbad, NM: Sandia National Laboratories.*
- 11 Brush, L.H., Y.-L. Xiong, and J.J. Long. 2009. *Results of the Calculations of Actinide*
- 12 Solubilities for the CRA-2009 PABC. Analysis Report, October 7, 2009. ERMS 552201.
- 13 Carlsbad, NM: Sandia National Laboratories.*
- 14 Brush, L.H., Y.-L. Xiong, J.W. Garner, T.B Kirchner, and J.J. Long. 2008. Sensitivity of the
- 15 Long-Term Performance of the WIPP to EDTA. Analysis report, March 20, 2008. ERMS
- 16 548398. Carlsbad, NM: Sandia National Laboratories.*
- Callicoat, J. 2013a. Memorandum to File (Subject: *Castile Brine Encounters 2012*). February
 12, 2013. RES:13:106. Carlsbad, NM: Regulatory Environmental Services.*
- 19 Callicoat, J. 2013b. Memorandum to File (Subject: *Seismic Activity within the Delaware Basin* 20 2012). February 13, 2013. RES:13:107. Carlsbad, NM: Regulatory Environmental Services.*
- 21 Camphouse, R.C., D.J. Clayton, D.C. Kicker, and J.J. Pasch. 2011. Summary Report for the AP-
- 22 151 (PC3R) Performance Assessment, Revision 1. ERMS 555489. Carlsbad, NM: Sandia
- 23 National Laboratories.*
- 24 Camphouse, R.C., M. Gross, C.G. Herrick, D.C. Kicker, and B. Thompson. 2012.
- 25 Memorandum to WIPP Records Center (Subject: *Recommendations and Justifications of*
- 26 Parameter Values for the Run-of-Mine Salt Panel Closure System Design Modeled in the PCS-
- 27 2012 PA). May 3, 2012. ERMS 557396. Carlsbad, NM: Sandia National Laboratories.*
- 28 Camphouse, R.C., D.C. Kicker, T.B. Kirchner, J.J. Long, B. Malama, T.R. Zeitler. 2012.
- 29 Summary Report and Run Control for the 2012 WIPP Panel Closure System Performance
- 30 Assessment, Rev. 0. ERMS 558365. Carlsbad, NM: Sandia National Laboratories.*
- Daniel B. Stephens & Associates, Inc. 2008. *Hydrologic Assessment of Shallow Subsurface Water*. December 18, 2008. Carlsbad, NM.*
- 33 Daniel B. Stephens & Associates, Inc. 2010. Assessment of Lead in PZ-13 Near the Site and
- 34 *Preliminary Design Validation (SPDV) Pile at Waste Isolation Pilot Plant.* June 11, 2010.
- 35 Carlsbad, NM.*

- 1 Deng, H., Y.-L. Xiong, M.B. Nemer, and S.R. Johnsen. 2009. Experimental Work Conducted
- 2 on MgO Long-Term Hydration. 2008 Milestone Report. May 27, 2009. ERMS 551421.
- 3 Carlsbad, NM: Sandia National Laboratories.*
- 4 Domski, P. 2012. Memorandum to the SNL WIPP Records Center Defense Waste Management
- 5 Programs (Subject: *Memo AP-154, Task 10 EQ3/6 Database Update*). October 31, 2012.
- 6 ERMS 558579. Carlsbad, NM: Sandia National Laboratories.*
- Hall Environmental Analysis Laboratory. 2008a. Letter to Rick Beauheim (Subject: WIPP/SNL 6 (C)). February 5, 2008. Order No. 0801223.*
- 9 Hall Environmental Analysis Laboratory. 2008b. Letter to Rick Beauheim (Subject: WIPP/H-
- 10 15 (M)). April 2, 2008. Order No. 0803246.*
- Hall Environmental Analysis Laboratory. 2008c. Letter to Rick Beauheim (Subject: *WIPP/LRL*7). August 26, 2008. Order No. 0807449.*
- 13 Hall Environmental Analysis Laboratory. 2008d. Letter to Rick Beauheim (Subject:
- 14 WIPP/USGS-4). August 26, 2008. Order No. 0807447.*
- Hall Environmental Analysis Laboratory. 2008e. Letter to Rick Beauheim (Subject:
 WIPP/USGS-8). August 26, 2008. Order No. 0807446.*
- Hall Environmental Analysis Laboratory. 2009a. Letter to Rick Beauheim (Subject: WIPP/H-*6bR*). January 21, 2009. Order No. 0812250.*
- Hall Environmental Analysis Laboratory. 2009b. Letter to Rick Beauheim (Subject: WIPP/H *15R*). February 10, 2009. Order No. 0901317.*
- Hall Environmental Analysis Laboratory. 2009c. Letter to Rick Beauheim (Subject: WIPP/H-18
 (M)). May 20, 2009. Order No. 0904340.*
- Hall Environmental Analysis Laboratory. 2009d. Letter to Rick Beauheim (Subject: WIPP/H 3b1 (M)). August 13, 2009. Order No. 0907569.*
- Hall Environmental Analysis Laboratory. 2009e. Letter to Rick Beauheim (Subject: WIPP/H4bR). August 25, 2009. Order No. 0908237.*
- Hall Environmental Analysis Laboratory. 2010a. Letter to Rick Beauheim (Subject: *WIPP/WIPP-18 (M)*). April 6, 2010. Order No. 1003482.*
- Hall Environmental Analysis Laboratory. 2010b. Letter to Rick Beauheim (Subject: WIPP/H-6c
 (M)). May 12, 2010. Order No. 1004666.*
- Hall Environmental Analysis Laboratory. 2010c. Letter to Rick Beauheim (Subject: WIPP/H-8a
 (M)). May 26, 2010. Order No. 1004462.*

- 1 Hall Environmental Analysis Laboratory. 2011a. Letter to Rick Beauheim (Subject: WIPP/H-
- 2 2b1 (M)). February 22, 2011. Order No. 1102238.*
- Hall Environmental Analysis Laboratory. 2011b. Letter to Mike Schuhen (Subject: WIPP/H-4c
 (M)). March 16, 2011. Order No. 1103085.*
- Hall Environmental Analysis Laboratory. 2011c. Letter to Mike Schuhen (Subject: WIPP/H-9c
 (M)). May 3, 2011. Order No. 1104715.*
- Hall Environmental Analysis Laboratory. 2011d. Letter to Mike Schuhen (Subject: WIPP/H-9c
 (M)). May 3, 2011. Order No. 1104933.*
- Hall Environmental Analysis Laboratory. 2011e. Letter to Mike Schuhen (Subject: WIPP/H9bR (C)). February July 15, 2011. Order No. 1106C12.*
- Hall Environmental Analysis Laboratory. 2012a. Letter to Mike Schuhen (Subject: *WIPP/H-*12 11b4R(C)). July 25, 2012. Order No. 1206571.*
- Hall Environmental Analysis Laboratory. 2012b. Letter to Mike Schuhen (Subject: WIPP/H 9bR (C)). September 7, 2012. Order No. 1208942.*
- Hall Environmental Analysis Laboratory. 2012c. Letter to Mike Schuhen (Subject: WIPP/H9bR (C)). October 15, 2012. Order No. 1208471.*
- 17 Herrick, C.G. 2012a. Memorandum to the WIPP Records Center (Subject: Calculations
- 18 Performed in Support of Reconsolidation of Crushed Salt in Panel Closures). March 29, 2012.
- 19 ERMS 557150. Carlsbad, NM: Sandia National Laboratories.*
- 20 Herrick, C.G. 2012b. Memorandum to the WIPP Records Center (Subject: JAS3D Calculations
- 21 Performed in Support of the PCS-2012 PA Parameters Selections). April 30, 2012. ERMS
- 22 557354. Carlsbad, NM: Sandia National Laboratories.*
- 23 Herrick, C.G. and T. Kirchner. 2013. Memorandum to Chris Camphouse (Subject: Follow-up to
- 24 questions concerning TAUFAIL flume testing raised during the November 14-15, 2012 technical
- *exchange between the DOE and EPA*). January 24, 2013. ERMS 559081. Carlsbad, NM:
- 26 Sandia National Laboratories.*
- 27 Herrick, C.G., B.Y Park, M.Y. Lee, and D.J. Holcomb. 2009. Estimating the Extent of the
- 28 Disturbed Rock Zone around a WIPP Disposal Room. Paper ARMA 09-82 presented at 43th
- 29 U.S. Rock Mechanics Symposium/4th U.S.-Canada Rock Mechanics Symposium. June 28–July
- 30 1. Asheville, NC.*
- 31 Herrick, C.G., M.D. Schuhen, D.M. Chapin, and D.C. Kicker. 2012. *Determining the*
- 32 Hydrodynamic Shear Strength of Surrogate Degraded TRU Waste Materials as an Estimate for
- 33 the Lower Limit of the Performance Assessment Parameter TAUFAIL, Revision 0. ERMS
- 34 558479. Carlsbad, NM: Sandia National Laboratories.*

- 1 Hinz, K., M. Altmaier, Th. Rabung, M.K. Richmann, M. Borkowski, D.T. Reed, and H. Geckeis.
- 2 2012. Solubility and Speciation of Cm(III) and Nd(III) in Borate Rich NaCl and CaCl₂
- 3 *Solutions*. Poster (joint INE-LANL) presented at Plutonium Futures 2012, July 15–20.
- 4 Cambridge, United Kingdom.*
- 5 INTERA. 1997. Exhaust Shaft Hydraulic Assessment Data Report. DOE/WIPP 97-2219.
- 6 Carlsbad, NM: Waste Isolation Pilot Plant.
- 7 Ismail, A.E., H. Deng, J.-H. Jang, and T.J. Wolery. 2009. Memorandum to Records (Subject:
- 8 *Verification of FMT database and conversion to EQ3/6 format*). ERMS 550689. Carlsbad, NM:
- 9 Sandia National Laboratories.*
- 10 Jang, J.-H. 2012a. Memorandum to Records Center (Subject: Derivation of Pitzer ion
- 11 *interaction parameters for the pair Na*⁺ *and FeEDTA*²⁻). October 31, 2012. ERMS 558578. 12 Carlshad NM: Sandia National Laboratories *
- 12 Carlsbad, NM: Sandia National Laboratories.*
- 13 Jang, J.-H. 2012b. Memorandum to Records Center (Subject: Derivation of the solubility
- 14 product for ferrous iron oxalate dihydrate in NaCl solutions and related Pitzer ion interaction
- 15 parameter). ERMS 558084. Carlsbad, NM: Sandia National Laboratories.*
- 16 Jang, J.-H., Y.-L. Xiong, S. Kim, and M.B. Nemer. 2011. Iron, Lead, Sulfide, and EDTA
- 17 Solubilities. Milestone Report on Test Plan TP 08-02. ERMS 555601. Carlsbad, NM: Sandia
- 18 National Laboratories.*
- 19 Jang, J.-H., Y.-L. Xiong, S. Kim, and M.B. Nemer. 2012. Iron, Lead, Sulfide, and EDTA
- Solubilities. Second Milestone Report on Test Plan TP 08-02. ERMS 557198. Carlsbad, NM:
 Sandia National Laboratories.*
- 22 Johnson, P.B. 2008. 2007 Calculated Densities for Use in Deriving Equivalent Freshwater
- 23 Heads of the Culebra Dolomite Member of the Rustler Formation near the WIPP Site. Routine
- 24 Calculations Report in Support of Task 6 of AP-114, May 2007. ERMS 537208. Carlsbad, NM:
- 25 Sandia National Laboratories.*
- 26 Johnson, P.B. 2009. 2008 Calculated Densities for Use in Deriving Equivalent Freshwater
- 27 Heads of the Culebra Dolomite Member of the Rustler Formation near the WIPP Site. Routine
- 28 Calculations Report in Support of Task 6 of AP-114, January 27, 2009. ERMS 537960.
- 29 Carlsbad, NM: Sandia National Laboratories.*
- 30 Johnson, P.B. 2010. Memorandum to Records Center (Subject: 2009 Calculated Densities).
- 31 January 13, 2010. ERMS 552839. Carlsbad, NM: Sandia National Laboratories.*
- Johnson, P.B. 2011. Memorandum to Records Center (Subject: *Memo of Correction 2010*
- 33 *Calculated Densities*). ERMS 554805. Carlsbad, NM: Sandia National Laboratories.*
- Johnson, P.B. 2012a. Memorandum to Records Center (Subject: 2003 Calculated Densities).
- 35 ERMS 557402. Carlsbad, NM: Sandia National Laboratories.*

- 1 Johnson, P.B. 2012b. Memorandum to Records Center (Subject: 2004 Calculated Densities).
- 2 ERMS 557405. Carlsbad, NM: Sandia National Laboratories.*
- Johnson, P.B. 2012c. Memorandum to Records Center (Subject: 2005 Calculated Densities).
 4 ERMS 556883. Carlsbad, NM: Sandia National Laboratories.*
- Johnson, P.B. 2012d. Memorandum to Records Center (Subject: 2006 Calculated Densities).
 ERMS 556887. Carlsbad, NM: Sandia National Laboratories.*
- Johnson, P.B. 2012e. Memorandum to Records Center (Subject: 2011 Calculated Densities).
 8 ERMS 556866. Carlsbad, NM: Sandia National Laboratories.*
- 9 Johnson, P.B. 2012f. Memorandum to Records Center (Subject: 2012 Calculated Densities).
- 10 ERMS 559277. Carlsbad, NM: Sandia National Laboratories.*
- 11 Kuhlman, K.L. 2010. Culebra Water Level Monitoring Network Design. Analysis Report, AP-
- 12 111, Rev. 1. ERMS 554054. Carlsbad, NM: Sandia National Laboratories.*
- Lucchini, J-F., H. Khaing, and D.T. Reed. 2010. Uranium Solubility in Carbonate-Free ERDA 6 Brine. Materials Research Society Symposium Proceedings, Vol. 1265, 21-26.*
- 15 Lucchini, J-F., H. Khaing, M. Borkowski, M.K. Richmann, and D.T. Reed. 2010. Actinide (VI)
- 16 Solubility in Carbonate-free WIPP Brine: Data Summary and Recommendations. Report LCO-
- 17 ACP-10, LA-UR 10-00497. Carlsbad, NM: Los Alamos National Laboratory.
- 18 Lucchini, J-F., M. Borkowski, H. Khaing, M.K. Richmann, J.S. Swanson, K.A. Simmons, and
- 19 D.T. Reed. 2013. WIPP Actinide-Relevant Brine Chemistry. Report LCO-ACP-15, LA-UR 13-
- 20 20620. Carlsbad, NM: Los Alamos National Laboratory.*
- 21 Lucchini, J-F., M.K. Richmann, and M. Borkowski. 2013. Uranium(VI) Solubility in WIPP
- Brine. Report LCO-ACP-14, LA-UR 13-20786. Carlsbad, NM: Los Alamos National
 Laboratory.*
- 24 Lucchini, J-F., S. Ballard, and H. Khaing. 2012. Influence of Carbonate on Uranium Solubility
- 25 *in Brine*. Actinides and Nuclear Energy Materials, Material Research Society Symposium
- 26 Proceedings, Vol. 1444, 217-222. LA-UR 12-20323.*
- Nemer, M.B., Y.-L. Xiong, A.E. Ismail, and J.-H. Jang. 2010. "Solubility of Fe₂(OH)₃Cl (pureiron end-member of hibbingite) in NaCl and Na₂SO₄ brines," *Chemical Geology* 280 (2010): 2632. SAND 2010-6500J. ERMS 555524.*
- Nuclear Waste Partnership LLC. 2012. *WIPP Geotechnical Engineering Program Plan* (Rev. 7,
 November 19, 2012). WP 07-1. Carlsbad, NM: Carlsbad Field Office.*
- Pepper, S.E., M. Borkowski, M.K. Richmann, and D.T. Reed. 2010. "Determination of ferrous and ferric iron in aqueous biological samples." *Analytica Chimica Acta* 663 (2010) 172-177.

- 1 Reed, D.T. 2011. Using Thermodynamic Models: Saline Systems. From Thermodynamics to
- 2 the Safety Case, TDB and Sorption projects Symposium Proceedings, Nuclear Energy Agency,
- 3 pp. 41.*
- 4 Reed, D.T., J.S. Swanson, J-F. Lucchini, and M.K. Richmann. 2013. Intrinsic, Mineral, and
- 5 Microbial Colloid Enhancement Parameters for the WIPP Actinide Source Term. Report LCO-
- 6 ACP-18, LA-UR 13-20858. Carlsbad, NM: Los Alamos National Laboratory.*
- 7 Reed, D.T., M. Borkowski, J.S. Swanson, M.K. Richmann, H. Khaing, J-F. Lucchini, and D.A.
- 8 Ams. 2012. *Redox-Controlling Processes for Multivalent Metals and Actinides in the WIPP*.
- 9 3rd Annual Workshop Proceedings of the Collaborative Project Redox Phenomena Controlling
- 10 Systems, p. 251-263.*
- 11 Reed, D.T., R. Deo, and B.E. Rittmann. 2010. "Subsurface Interactions of Actinide Species and
- 12 Microorganisms," In The Chemistry of the Actinide and Transactinide Elements by L.R. Morss,
- 13 N.M. Edelstein and J. Fuger, eds., Chapter 33. Netherlands: Springer Press, 2010.*
- 14 Richmann, M.K. 2010. *Comparison of the Calculated Thorium Solubility (Concentration)*
- 15 Using the Constants from the TMT_050405 Database with the Experimental Data Published in
- 16 Altmaier, M., Neck, V., Muller, R. and Fanghanel, T. Radiochemistry Acta, 93(2), 83-92 (2005).
- 17 LA-UR 10-01545. Carlsbad, NM: Los Alamos National Laboratory.*
- 18 Roselle, G.T. 2010. Iron and Lead Corrosion in WIPP-Relevant Conditions: 12 Month Results.
- 19 Milestone report, October 14, 2010. ERMS 5548383. Carlsbad, NM: Sandia National
- 20 Laboratories.*
- 21 Roselle, G.T. 2011a. Determination of pC_{H+} Correction Factors in Brines. Analysis report,
- AP-157, Rev. 0, December 1, 2011. ERMS 556699. Carlsbad, NM: Sandia National
- 23 Laboratories.*
- 24 Roselle, G.T. 2011b. Iron and Lead Corrosion in WIPP-Relevant Conditions: 18 Month
- *Results.* Milestone report, January 5, 2011. ERMS 554715. Carlsbad, NM: Sandia National
 Laboratories.*
- 27 Roselle, G.T. 2011c. Iron and Lead Corrosion in WIPP-Relevant Conditions: 24 Month
- Rosene, G.1. 2011C. *Hon and Leda Corrosion in WHT-Relevant Conditions*. 24 Month
 Results. Milestone report, May 3, 2011. ERMS 555426. Carlsbad, NM: Sandia National
 Laboratories.*
- 30 Roselle, G.T. 2013. Determination of Corrosion Rates from Iron/Lead Corrosion Experiments
- 31 to be used for Gas Generation Calculations. Analysis report, AP-159, Rev. 1. ERMS 559077.
- 32 Carlsbad, NM: Sandia National Laboratories.*
- 33 Sandia National Laboratories (SNL). 2009. Sandia National Laboratories Compliance
- 34 Monitoring Parameter Assessment for 2008 (January 2009). ERMS 550744. Carlsbad, NM:
- 35 Sandia National Laboratories.*

- 1 Sandia National Laboratories (SNL). 2010a. Sandia National Laboratories Compliance
- 2 Monitoring Parameter Assessment for 2009 (January 2010). ERMS 552883. Carlsbad, NM:
- 3 Sandia National Laboratories.*
- 4 Sandia National Laboratories (SNL). 2010b. Sandia National Laboratories Compliance
- *Monitoring Parameter Assessment for 2010 (November 2010).* ERMS 554585. Carlsbad, NM:
 Sandia National Laboratories.*
- 7 Sandia National Laboratories (SNL). 2010c. Sandia National Laboratories Trigger Value
- 8 Derivation Report (Revision 2, December 2010). ERMS 554605. Carlsbad, NM: Sandia
- 9 National Laboratories.*
- 10 Sandia National Laboratories (SNL). 2011. Sandia National Laboratories Compliance
- Monitoring Parameter Assessment for 2011 (December 2011). ERMS 556779. Carlsbad, NM:
 Sandia National Laboratories.*
- 13 Sandia National Laboratories (SNL). 2012. Sandia National Laboratories Compliance
- 14 Monitoring Parameter Assessment for 2012 (November 2012). ERMS 558589. Carlsbad, NM:
- 15 Sandia National Laboratories.*
- 16 Schuhen, M. 2011. Data Report for Analysis Plan for Demonstration Test Process: Soil Flume
- 17 Sixnet Data Acquisition System. Analysis report, AP-148, Rev. 0. ERMS 555892. Carlsbad, 18 NM: Sandia National Laboratorias *
- 18 NM: Sandia National Laboratories.*
- 19 Swanson, J.S., and K.A. Simmons. 2013. Update on Microbial Characterization of WIPP
- *Groundwaters*. Report LCO-ACP-20, LA-UR 13-20623. Carlsbad, NM: Los Alamos National
 Laboratory.*
- 22 Swanson, J.S., D.M. Norden, H. Khaing, and D.T. Reed. 2012. "Degradation of Organic
- 23 Complexing Agents by Halophilic Microorganisms in Brines." *GeoMicrobiology Journal*, 30:
- 24 189-98.*
- 25 Swanson, J.S., D.T. Reed, D.A. Ams, D.M. Norden, and K.A. Simmons. 2012. Status Report on
- 26 the Microbial Characterization of Halite and Groundwater Samples from the WIPP. Report
- 27 LCO-ACP-12, LA-UR 12-22824. Carlsbad, NM: Los Alamos National Laboratory.*
- 28 Swanson, J.S., K.A. Simmons, D.M. Norden, and H. Khaing. 2013. *Biodegradation of Organic*
- 29 Complexing Agents by WIPP-indigenous Halophilic Microorganisms in Brines. Report LCO-
- 30 ACP-19, LA-UR 13-20616. Carlsbad, NM: Los Alamos National Laboratory.*
- 31 Thakur, P., Y.-L. Xiong, M. Borkowski, and G.R. Choppin. 2012. "Thermodynamic Modeling
- 32 of Trivalent Am, Cm, and Eu-Citrate Complexation in Concentrated NaClO₄ Media,"
- 33 Radiochimica Acta 100.3 (2012): 165–172.*
- 34 U.S. Department of Energy (DOE). 1996. *Title 40 CFR Part 191 Compliance Certification*
- 35 Application for the Waste Isolation Pilot Plant (October). 21 vols. DOE/CAO 1996-2184.
- 36 Carlsbad, NM: Carlsbad Area Office.
- 1 U.S. Department of Energy (DOE). 2004. Title 40 CFR Part 191 Compliance Recertification
- 2 Application for the Waste Isolation Pilot Plant (March). 10 vols. DOE/WIPP 2004-3231.
- 3 Carlsbad, NM: Carlsbad Field Office.
- U.S. Department of Energy (DOE). 2008a. *Delaware Basin Monitoring Annual Report (September 2008)*. DOE/WIPP-08-2308. Carlsbad, NM: Carlsbad Field Office.*
- U.S. Department of Energy (DOE). 2008b. WIPP Subsidence Monument Leveling Survey 2008
 (December 2008). DOE/WIPP 09-2293. Carlsbad, NM: Carlsbad Field Office.*
- 8 U.S. Department of Energy (DOE). 2008c. *Waste Isolation Pilot Plant Annual Site*
- 9 Environmental Report for 2007 (September 2008). DOE/WIPP 08-2225. Carlsbad, NM:
- 10 Carlsbad Field Office.*
- U.S. Department of Energy (DOE). 2008d. Annual Change Report 2007/2008 (November 15, 2008). DOE/WIPP 08-3317. Carlsbad, NM: Carlsbad Field Office.*
- U.S. Department of Energy (DOE). 2008e. Annual Transuranic Waste Inventory Report–2008
 (*Revision 0*). DOE/TRU-08-3425. Carlsbad, NM: Carlsbad Field Office.*
- 15 U.S. Department of Energy (DOE). 2009a. *Title 40 CFR Part 191 Compliance Recertification*
- 16 Application for the Waste Isolation Pilot Plant (March). DOE/WIPP 2009-3424. Carlsbad, NM:
- 17 Carlsbad Field Office.*
- U.S. Department of Energy (DOE). 2009b. *Delaware Basin Monitoring Annual Report* (*September 2009*). DOE/WIPP-09-2308. Carlsbad, NM: Carlsbad Field Office.*
- U.S. Department of Energy (DOE). 2009c. WIPP Subsidence Monument Leveling Survey 2009
 (December 2009). DOE/WIPP 10-2293. Carlsbad, NM: Carlsbad Field Office.*
- U.S. Department of Energy (DOE). 2009d. *Geotechnical Analysis Report for July 2007–June*2008 (*March 2009*). DOE/WIPP 09-3177. Carlsbad, NM: Carlsbad Field Office.*
- 24 U.S. Department of Energy (DOE). 2009e. *Waste Isolation Pilot Plant Annual Site*
- 25 Environmental Report for 2008 (September 2009). DOE/WIPP 09-2225. Carlsbad, NM:
- 26 Carlsbad Field Office.*
- U.S. Department of Energy (DOE). 2009f. Annual Change Report 2008/2009 (November 13, 2009). DOE/WIPP 09-0335. Carlsbad, NM: Carlsbad Field Office.*
- U.S. Department of Energy (DOE). 2009g. Annual Transuranic Waste Inventory Report–2009
 (*Revision 0*). DOE/TRU-09-3425. Carlsbad, NM: Carlsbad Field Office.*
- 31 U.S. Department of Energy (DOE). 2010a. Delaware Basin Monitoring Annual Report
- 32 (September 2010). DOE/WIPP-10-2308. Carlsbad, NM: Carlsbad Field Office.*
- U.S. Department of Energy (DOE). 2010b. WIPP Subsidence Monument Leveling Survey 2010
 (December 2010). DOE/WIPP 11-2293. Carlsbad, NM: Carlsbad Field Office.*

- U.S. Department of Energy (DOE). 2010c. *Geotechnical Analysis Report for July 2008–June* 2009 (April 2010). DOE/WIPP 10-3177. Carlsbad, NM: Carlsbad Field Office.*
- 3 U.S. Department of Energy (DOE). 2010d. *Waste Isolation Pilot Plant Annual Site*
- 4 Environmental Report for 2009 Errata (September 2010). DOE/WIPP 10-2225. Carlsbad, NM:
- 5 Carlsbad Field Office.*
- U.S. Department of Energy (DOE). 2010e. Annual Change Report 2009/2010 (November 15, 2010). DOE/WIPP 10-1660. Carlsbad, NM: Carlsbad Field Office.*
- 8 U.S. Department of Energy (DOE). 2010f. Annual Transuranic Waste Inventory Report-2010
 9 (Revision 0, November 2010). DOE/TRU-10-3425. Carlsbad, NM: Carlsbad Field Office.*
- 10 U.S. Department of Energy (DOE). 2011a. Delaware Basin Monitoring Annual Report
- 11 (September 2011). DOE/WIPP-11-2308. Carlsbad, NM: Carlsbad Field Office.*
- U.S. Department of Energy (DOE). 2011b. WIPP Subsidence Monument Leveling Survey 2011
 (December 2011). DOE/WIPP 12-2293. Carlsbad, NM: Carlsbad Field Office.*
- U.S. Department of Energy (DOE). 2011c. *Geotechnical Analysis Report for July 2009–June*2010 (March 2011). DOE/WIPP 11-3177. Carlsbad, NM: Carlsbad Field Office.*
- U.S. Department of Energy (DOE). 2011d. Waste Isolation Pilot Plant Annual Site
 Environmental Report for 2010 (September 2011). DOE/WIPP 11-2225. Carlsbad, NM:
- 18 Carlsbad Field Office.*
- U.S. Department of Energy (DOE). 2011e. Annual Change Report 2010/2011 (August 30,2011). DOE/WIPP 11-3479. Carlsbad, NM: Carlsbad Field Office.*
- U.S. Department of Energy (DOE). 2011f. Annual Transuranic Waste Inventory Report-2011
 (Revision 0, November 2011). DOE/TRU-11-3425. Carlsbad, NM: Carlsbad Field Office.*
- U.S. Department of Energy (DOE). 2012a. *Delaware Basin Monitoring Annual Report* (*September 2012*). DOE/WIPP-12-2308. Carlsbad, NM: Carlsbad Field Office.*
- U.S. Department of Energy (DOE). 2012b. WIPP Subsidence Monument Leveling Survey 2012
 (December 2012). DOE/WIPP 12-3497. Carlsbad, NM: Carlsbad Field Office.*
- U.S. Department of Energy (DOE). 2012c. *Geotechnical Analysis Report for July 2010–June*2011 (May 2012). DOE/WIPP 12-3484. Carlsbad, NM: Carlsbad Field Office.*
- 29 U.S. Department of Energy (DOE). 2012d. Waste Isolation Pilot Plant Annual Site
- 30 Environmental Report for 2011 (Revision 0, September 2012). DOE/WIPP 12-3489. Carlsbad,
- 31 NM: Carlsbad Field Office.*
- 32 U.S. Department of Energy (DOE). 2012e. Annual Transuranic Waste Inventory Report–2012
- 33 (Revision 0, October 2012). DOE/TRU-12-3425. Carlsbad, NM: Carlsbad Field Office.*

- U.S. Department of Energy (DOE). 2012f. Annual Change Report 2011/2012 (October 2012).
 DOE/WIPP 12-3496. Carlsbad, NM: Carlsbad Field Office.*
- U.S. Department of Energy (DOE). 2012g. Email to Tom Peake (Subject: *Response to EPA Questions on Two-Phase Flow and ROM Permeability*) June 15, 2012.*
- 5 U.S. Department of Energy (DOE). 2012h. Letter to Mr. Jonathan Edwards (Subject: *Response*6 *to EPA Letter Dated December 22, 2011*) April 17, 2012.*
- 7 U.S. Department of Energy (DOE). 2012i. *Compliance Monitoring Implementation Plan for 40*
- *CFR §191.14(b), Assurance Requirement, Revision 7.* DOE/WIPP 99-3119. Carlsbad, NM:
 Carlsbad Field Office.*
- 10 U.S. Environmental Protection Agency (EPA). 1996. 40 CFR Part 194: Criteria for the
- 11 Certification and Recertification of the Waste Isolation Pilot Plant's Compliance with the 40
- 12 *CFR Part 191 Disposal Regulations; Final Rule.* Federal Register, vol. 61 (February 9, 1996):
- 13 52234–45.
- 14 U.S. Environmental Protection Agency (EPA). 1998. 40 CFR Part 194: Criteria for the
- 15 Certification and Recertification of the Waste Isolation Pilot Plant's Compliance with the
- 16 Disposal Regulations: Certification Decision; Final Rule. Federal Register, vol. 63 (May 18, 1008): 27352, 406
- 17 1998): 27353–406.
- 18 Van Soest, G.D. 2012. Performance Assessment Inventory Report 2012. Report INV-PA-12,
- 19 Revision 0, INV-1211-05-01-01. Carlsbad, NM: Los Alamos National Laboratory.*
- 20 Wagner, S.W. 2011. Monitoring Parameter Assessment Per 40 CFR 194.42. SP 9-8, Rev. 1,
- 21 May 26, 2011. Carlsbad, NM: Sandia National Laboratories.*
- 22 Wolery, T.J., Y.-L. Xiong, and J.J. Long. 2010. Verification and Validation Plan/Validation
- Document for EQ3/6 Version 8.0a for Actinide Chemistry, Document Version 8.10. ERMS
 550239. Carlsbad, NM: Sandia National Laboratories.*
- Xiong, Y.-L. 2008a. "Thermodynamic Properties of Brucite Determined by Solubility Studies
 and Their Significance to Nuclear Waste Isolation," *Aquatic Geochemistry* 14.3 (2008): 223–
 27 238. ERMS 546279. SAND2007-3373J.*
- Xiong, Y.-L. 2008b. Memorandum to Larry Brush (Subject: *HMI–an EQ3/6 Database with Iron Species.*) April 14, 2008. ERMS 548633. Carlsbad, NM: Sandia National Laboratories.*
- 30 Xiong, Y.-L. 2009. Email to Jennifer Long (Subject: Release of FMT_090720.CHEMDAT.)
- 31 July 22, 2009. ERMS 551706. Carlsbad, NM: Sandia National Laboratories.*
- 32 Xiong, Y.-L. 2010a. "Experimental Determination of Solubility Constant of Hydromagnesite
- 33 (5424) in NaCl Solutions up to 4.4 M at Room Temperature," *Chemical Geology* 284.3-4 (2010):
- 34 262–269. October 12, 2010. ERMS 556406. SAND2010-7132J. Carlsbad, NM: Sandia
- 35 National Laboratories.*

- 1 Xiong, Y.-L. 2010b. Memorandum to Record Center (Subject: Calculations of Thermodynamic
- 2 Parameters for Experimental Data Generated at Los Alamos National Laboratory Carlsbad
- 3 *Operation (LANL-CO)*). January 20, 2010. ERMS 552873. Carlsbad, NM: Sandia National
- 4 Laboratories.*
- 5 Xiong, Y.-L. 2010c. Memorandum to Record Center (Subject: Summary Report for Migration
- 6 of the WIPP Thermodynamic Code from FMT to EQ3/6 Version 8.0a.) December 9, 2010.
- 7 ERMS 554632. Carlsbad, NM: Sandia National Laboratories.*
- 8 Xiong, Y.-L. 2011a. Experimental Study of Thermodynamic Parameters of Borate in WIPP
- 9 Relevant Brines at Sandia National Laboratories Carlsbad Facility. Milestone Report on Test
- 10 Plan TP 10-01. August 4, 2011. ERMS 556026. Carlsbad, NM: Sandia National
- 11 Laboratories.*
- 12 Xiong, Y.-L. 2011b. "Organic Species of Lanthanum in Natural Environments: Implications to
- Mobility of Rare Earth Elements in Low Temperature Environments." *Applied Geochemistry*26.7 (2011): 1130–1137.*
- 15 Xiong, Y.-L. 2011c. WIPP Verification and Validation Plan/Validation Document for EQ3/6
- 16 Version 8.0a for Actinide Chemistry, Revision 1. Supersedes ERMS 550239. May 12, 2011.
- 17 ERMS 555358. Carlsbad, NM: Sandia National Laboratories.*
- 18 Xiong, Y.-L. 2011d. Email to Jennifer Long (Subject: Release of EQ3/6 Database
- 19 DATA0.FM1) March 9, 2011. ERMS 555152. Carlsbad, NM: Sandia National Laboratories.*
- 20 Xiong, Y.-L. 2012a. Experimental Determination of Solubility Constant of Di-Calcium
- 21 Ethylenediaminetetraacetic Acid (Ca₂EDTA), Ca₂C₁₀ $H_{12}N_2O_8(S)$, in the NaCl-H₂O System.
- 22 November 12, 2012. ERMS 558669. Carlsbad, NM: Sandia National Laboratories.*
- Xiong, Y.-L. 2012b. *Thermodynamic Model for the Na-B(OH)*₃-*Cl-SO*₄ *System*. August 20,
 2012. ERMS 558111. Carlsbad, NM: Sandia National Laboratories.*
- 25 Xiong, Y.-L. 2012c. Thermodynamic Model for the Na-B(OH)₃-Cl-SO₄ System, Revision 1,
- Superseding ERMS 558111. October 30, 2012. ERMS 558556. Carlsbad, NM: Sandia National
 Laboratories.*
- 28 Xiong, Y.-L. 2012d. Experimental Study of Thermodynamic Parameters of Borate in WIPP
- 29 Relevant Brines at Sandia National Laboratories Carlsbad Facility. Second Milestone Report
- 30 on Test Plan TP 10-01. April 23, 2012. ERMS 557333. Carlsbad, NM: Sandia National
- 31 Laboratories.*
- 32 Xiong, Y.-L. 2012e. Memorandum to The WIPP Record Center (Subject: Memo of Corrections
- 33 for 'Second Milestone Report on Test Plan TP 08-02, "Iron, Lead, Sulfide, and EDTA
- 34 Solubilities" (ERMS 557198)'). October 30, 2012. ERMS 558553. Carlsbad, NM: Sandia
- 35 National Laboratories.*

- 1 Xiong, Y.-L., and A.S. Lord. 2008. "Experimental Investigations of the Reaction Path in the
- 2 MgO-CO₂-H₂O System in Solutions with Various Ionic Strengths, and Their Applications to
- 3 Nuclear Waste Isolation," Applied Geochemistry 23.6 (2008): 1634–1659 ERMS 544728.*
- 4 Xiong, Y.-L., E.J. Nowak, L.H. Brush, A.E. Ismail, and J.J. Long. 2010. *Establishment of*
- 5 Uncertainty Ranges and Probability Distributions of Actinide Solubilities for Performance
- 6 Assessment in the Waste Isolation Pilot Plant. Materials Research Society Spring Meeting, April
- 7 5-9, 2010. San Francisco, CA. ERMS 555764. SAND2010-2013C.*
- 8 Xiong, Y.-L., H. Deng, M.B. Nemer, and S.R. Johnsen. 2009a. "Experimental determination of
- 9 the solubility constant for magnesium chloride hydroxide hydrate ($Mg_3Cl(OH)_5 \cdot 4H_2O$, Phase 5)
- 10 at room temperature, and its importance to nuclear waste isolation in geological repositories in
- salt formations," *Geochimica et Cosmochimica Acta* 74.16 (2009): 4605–4611. ERMS 552782.
- 12 SAND2009-7912J. Carlsbad, NM: Sandia National Laboratories.*
- 13 Xiong, Y.-L., H. Deng, M.B. Nemer, and S.R. Johnsen. 2009b. Memorandum to Larry Brush
- 14 (Subject: *Thermodynamic Data for phase 5* ($Mg_3Cl(OH)_5 \cdot 4H_2O$) Determined from Solubility
- 15 Experiments.) May 18, 2009. ERMS 551294. Carlsbad, NM: Sandia National Laboratories.*
- 16 Xiong, Y.-L., L.H. Brush, A.E. Ismail, and J.J. Long. 2009. Uncertainty Analysis of Actinide
- *Solubilities for the WIPP CRA-2009 PABC*. Analysis report, December 1, 2009. ERMS 552500.
- 18 Carlsbad, NM: Sandia National Laboratories.*
- 19 Xiong, Y.-L., L.H. Brush, J.W. Garner, and J.J. Long. 2010a. *Responses to Three EPA*
- 20 Comments Pertaining to Comparisons of Measured and Predicted Dissolved and Colloidal
- 21 Th(IV) and Am(III) Concentrations. Analysis report, May 4, 2010. ERMS 553409. Carlsbad,
- 22 NM: Sandia National Laboratories.*
- 23 Xiong, Y.-L., L.H. Brush, J.W. Garner, and J.J. Long. 2010b. *Responses to Three EPA*
- 24 Comments Pertaining to Comparisons of Measured and Predicted Dissolved and Colloidal
- 25 Th(IV) and Am(III) Concentrations, Revision 1. Supersedes ERMS 553409. Analysis report,
- 26 May 19, 2010. ERMS 553595. Carlsbad, NM: Sandia National Laboratories.*
- 27 Xiong, Y.-L., L.H. Brush, P.S. Domski, and J.J. Long. 2011. Uncertainty Analysis of Actinide
- 28 Solubilities for the WIPP CRA-2009 PABC, Rev. 1, Supersedes ERMS 552500. Analysis report,
- 29 January 24, 2011. ERMS 554875. Carlsbad, NM: Sandia National Laboratories.*
- 30 Xiong, Y.-L., L. Kirkes, T. Westfall, T. Olivas, and R.A. Roselle. 2011. Experimental
- 31 Determination of Solubilities of Lead Oxalate (PbC₂O₄(cr)) in a NaCl Medium to High Ionic
- 32 Strengths, and the Importance of Lead Oxalate in Low Temperature Environments. ERMS
- 33 556753. SAND2011-9321J. Albuquerque, NM: Sandia National Laboratories.*

Title 40 CFR Part 191 Subparts B and C Compliance Recertification Application 2014 for the Waste Isolation Pilot Plant

Appendix DATA-2014 Attachment A: WIPP Borehole Update

United States Department of Energy Waste Isolation Pilot Plant

Carlsbad Field Office Carlsbad, New Mexico

Appendix DATA-2014 Attachment A: WIPP Borehole Update

Table of Contents

DATA-A-1.0 WIPP Boreholes	1
DATA-A-2.0 Individual Well Reports	10
DATA-A-2.1 New Wells Drilled Since the CRA-2009	10
DATA-A-2.2 Plugged Wells	11
DATA-A-3.0 References	12

List of Tables

Table DATA-A-1. Status of WIPP Borenoles December 2012 WIPP

This page intentionally left blank.

Acronyms and Abbreviations

- BLM Bureau of Land Management
- CCA Compliance Certification Application
- CRA Compliance Recertification Application
- DOE Department of Energy
- WIPP Waste Isolation Pilot Plant

This page intentionally left blank.

1 DATA-A-1.0 WIPP Boreholes

- 2 The U.S. Department of Energy (DOE) prepared DOE/WIPP 95-2092, Revision 1, Waste
- 3 Isolation Pilot Plant (WIPP) Borehole Data Report (the Compliance Certification Application
- 4 [CCA], Appendix BH) (U.S. DOE 1996) to serve as a central document, providing data on
- 5 boreholes used in characterizing the site. The report contains a comprehensive database on wells
- 6 drilled in support of the Waste Isolation Pilot Plant (WIPP) Project and boreholes located within
- 7 the 16-section land withdrawal area.
- 8 The CCA, Appendix BH (U.S. DOE 1996) describes seven groups of boreholes: commercially
- 9 drilled boreholes, DOE wells, geologic exploration boreholes, hydrologic test boreholes, potash
- 10 boreholes, subsurface exploration boreholes, and Water Quality Sampling Program boreholes.
- 11 There are 179 boreholes listed in the report. At the time of the CCA, 80 of those boreholes were
- 12 being used as monitoring wells. The rest of the boreholes were plugged and abandoned after
- 13 being drilled for their specific purpose, i.e., potash information, hydrocarbon information, or
- 14 WIPP site characterization information.
- 15 The Appendix DATA-2004, Attachment G, WIPP Borehole Update (U.S. DOE 2004), was
- 16 provided to add the new monitoring wells drilled since the initial certification and wells that
- 17 were in use but omitted from the CCA, Appendix BH. The Appendix DATA-2004, Attachment
- 18 G provided information on 112 boreholes.
- 19 The Appendix DATA-2009, Attachment A, WIPP Borehole Update (U.S. DOE 2009), was
- 20 provided to add the new monitoring wells. The Appendix DATA-2009, Attachment A provided
- 21 information on 215 boreholes.
- 22 For the 2014 Compliance Recertification Application (CRA-2014), a thorough search was
- 23 performed to define the number of boreholes associated with WIPP site characterization and
- 24 monitoring. Currently, there are 221 boreholes that were either specifically drilled to support the
- 25 WIPP site characterization process or obtained for monitoring purposes. This update provides the
- status for those boreholes.
- 27 Table DATA-A-1 provides the status of all 221 boreholes, including the name of the formation
- 28 being monitored, whether the borehole is currently configured as a water or observation well,
- 29 and whether it has been plugged and abandoned. A status of "N/A" means the borehole was not
- 30 being used or had not yet been drilled at the time of the status report. "Observation" means the
- 31 borehole was drilled for site characterization, but left unplugged for future monitoring purposes.
- 32

Table DATA-A-1. Status of WIPP Boreholes December 2012 WIPP

Well Name	CCA Status	CRA-2004 Status	CRA-2009 Status	CRA-2014 Status	Original Depth	Year Drilled
AEC-7	Culebra	Culebra	Culebra	Culebra	4,734 ft	1974
AEC-8	Bell Canyon	Bell Canyon	Plugged	Plugged	4,922 ft	1974
B-1	Observation	Observation	Observation	Observation	58 ft	1978

Well Name	CCA Status	CRA-2004 Status	CRA-2009 Status	CRA-2014 Status	Original Depth	Year Drilled
B-1A	Observation	Observation	Observation	Observation	13 ft	1978
B-2	Plugged	Plugged	Plugged	Plugged	34 ft	1978
B-3	Plugged	Plugged	Plugged	Plugged	29 ft	1978
B-4	Observation	Observation	Observation	Observation	39 ft	1978
B-4A	Observation	Observation	Observation	Observation	14 ft	1978
B-5	Plugged	Plugged	Plugged	Plugged	32 ft	1978
B-6	Plugged	Plugged	Plugged	Plugged	26 ft	1978
B-7	Plugged	Plugged	Plugged	Plugged	35 ft	1978
B-8	Plugged	Plugged	Plugged	Plugged	100 ft	1979
B-9	Plugged	Plugged	Plugged	Plugged	38 ft	1978
B-10	Plugged	Plugged	Plugged	Plugged	32 ft	1978
B-11	Plugged	Plugged	Plugged	Plugged	30 ft	1978
B-12	Plugged	Plugged	Plugged	Plugged	41 ft	1978
B-13	Observation	Observation	Observation	Observation	28 ft	1978
B-14	Plugged	Plugged	Plugged	Plugged	25 ft	1978
B-15	Plugged	Plugged	Plugged	Plugged	57 ft	1978
B-16	Observation	Observation	Observation	Observation	31 ft	1978
B-17	Plugged	Plugged	Plugged	Plugged	26 ft	1978
B-18	Observation	Observation	Observation	Observation	33 ft	1978
B-19	Plugged	Plugged	Plugged	Plugged	39 ft	1978
B-20	Observation	Observation	Observation	Observation	14 ft	1978
B-20A	Observation	Observation	Observation	Observation	34 ft	1978
B-21	Plugged	Plugged	Plugged	Plugged	40 ft	1978
B-22	Plugged	Plugged	Plugged	Plugged	28 ft	1978
B-23	Plugged	Plugged	Plugged	Plugged	41 ft	1978
B-24	Plugged	Plugged	Plugged	Plugged	29 ft	1978
B-25	Plugged	Plugged	Plugged	Plugged	902 ft	1978
B-26	Plugged	Plugged	Plugged	Plugged	28 ft	1979
B-27	Plugged	Plugged	Plugged	Plugged	26 ft	1979
B-28	Plugged	Plugged	Plugged	Plugged	27 ft	1979
B-29	Plugged	Plugged	Plugged	Plugged	29 ft	1978
B-30	Plugged	Plugged	Plugged	Plugged	28 ft	1978
B-31	Plugged	Plugged	Plugged	Plugged	31 ft	1978
B-32	Plugged	Plugged	Plugged	Plugged	100 ft	1979
B-33	Plugged	Plugged	Plugged	Plugged	31 ft	1978

Well Name	CCA Status	CRA-2004 Status	CRA-2009 Status	CRA-2014 Status	Original Depth	Year Drilled
B-34	Plugged	Plugged	Plugged	Plugged	100 ft	1979
B-35	Plugged	Plugged	Plugged	Plugged	32 ft	1979
B-36	Plugged	Plugged	Plugged	Plugged	28 ft	1979
B-37	Plugged	Plugged	Plugged	Plugged	28 ft	1979
B-37A	Plugged	Plugged	Plugged	Plugged	22 ft	1979
B-38	Observation	Observation	Observation	Observation	50 ft	1979
B-39	Plugged	Plugged	Plugged	Plugged	28 ft	1979
B-40	Plugged	Plugged	Plugged	Plugged	28 ft	1979
B-41	Plugged	Plugged	Plugged	Plugged	100 ft	1979
B-42	Plugged	Plugged	Plugged	Plugged	100 ft	1979
B-43	Plugged	Plugged	Plugged	Plugged	100 ft	1979
B-44	Plugged	Plugged	Plugged	Plugged	100 ft	1979
B-45	Plugged	Plugged	Plugged	Plugged	100 ft	1979
B-46	Plugged	Plugged	Plugged	Plugged	100 ft	1979
B-47	Plugged	Plugged	Plugged	Plugged	18 ft	1979
B-48	Plugged	Plugged	Plugged	Plugged	16 ft	1979
B-49	Plugged	Plugged	Plugged	Plugged	19 ft	1979
B-50	Plugged	Plugged	Plugged	Plugged	24 ft	1979
B-51	Plugged	Plugged	Plugged	Plugged	15 ft	1979
B-52	Plugged	Plugged	Plugged	Plugged	30 ft	1979
B-53	Plugged	Plugged	Plugged	Plugged	30 ft	1979
B-54	Observation	Observation	Observation	Observation	210 ft	1979
B-301	Plugged	Plugged	Plugged	Plugged	40 ft	1979
B-302	Plugged	Plugged	Plugged	Plugged	39 ft	1979
B-303	Plugged	Plugged	Plugged	Plugged	39 ft	1979
B-304	Plugged	Plugged	Plugged	Plugged	42 ft	1979
B-305	Plugged	Plugged	Plugged	Plugged	41 ft	1979
B-306	Plugged	Plugged	Plugged	Plugged	38 ft	1979
B-307	Plugged	Plugged	Plugged	Plugged	40 ft	1979
B-308	Plugged	Plugged	Plugged	Plugged	40 ft	1979
B-309	Plugged	Plugged	Plugged	Plugged	39 ft	1979
C-2505	N/A	Santa Rosa/Dewey Lake	Santa Rosa/Dewey Lake	Santa Rosa/Dewey Lake	97 ft	1996
C-2506	N/A	Santa Rosa/Dewey	Santa Rosa/Dewey	Santa Rosa/Dewey	69 ft	1996

Well Name	CCA Status	CRA-2004 Status	CRA-2009 Status	CRA-2014 Status	Original Depth	Year Drilled
		Lake	Lake	Lake		
C-2507	N/A	Santa Rosa/Dewey Lake	Santa Rosa/Dewey Lake	Santa Rosa/Dewey Lake	73 ft	1996
C-2737	N/A	Culebra/Magenta	Culebra/Magenta	Culebra/Magenta	800 ft	2001
C-2811	N/A	Santa Rosa/Dewey Lake	Santa Rosa/Dewey Lake	Santa Rosa/Dewey Lake	80 ft	2001
CB-1	Culebra	Culebra/Bell Canyon	Bell Canyon	Culebra	4,299 ft	1974
D-268	Culebra	Rancher's Water Well	Rancher's Water Well	Rancher's Water Well	1,411 ft	1984
DOE-1	Culebra	Culebra	Plugged	Plugged	4,057 ft	1982
DOE-2	Culebra	Magenta	Bell Canyon	Magenta	4,325 ft	1984
ERDA-6	Plugged	Plugged	Plugged	Plugged	2,775 f	1975
ERDA-9	Culebra	Culebra	Culebra	Culebra	2,886 ft	1976
ERDA- 10	Plugged	Plugged	Plugged	Plugged	4,430 ft	1977
ERDA- 11	Plugged	Plugged	Plugged	Plugged	40 ft	1977
ES-001	N/A	Plugged	Plugged	Plugged	54 ft	1996
ES-002	N/A	Plugged	Plugged	Plugged	19 ft	1996
H-1	Culebra/Magenta	Plugged	Plugged	Plugged	856 ft	1976
H-2A	Culebra	Culebra	Plugged	Plugged	672 ft	1977
H-2B1	Magenta	Magenta	Magenta	Magenta	661 ft	1977
H-2B2	Culebra	Culebra	Culebra	Culebra	660 ft	1983
H-2C	Magenta	Culebra	Plugged	Plugged	795 ft	1977
H-3B1	Magenta	Magenta	Magenta	Magenta	902 ft	1976
H-3B2	Culebra	Culebra	Culebra	Culebra	725 ft	1983
H-3B3	Magenta	Culebra	Plugged	Plugged	730 ft	1983
H-3D	Dewey Lake	Dewey Lake/Forty-niner	Santa Rosa/Dewey Lake	Santa Rosa/Dewey Lake	554 ft	1987
H-4A	N/A	Plugged	Plugged	Plugged	532 ft	1978
H-4B	Culebra	Culebra	Culebra	Plugged	529 ft	1978
H-4BR	N/A	N/A	N/A	Culebra	529 ft	2009
H-4C	Magenta	Magenta	Magenta	Magenta	661 ft	1978
H-5A	Culebra	Culebra	Plugged	Plugged	930 ft	1978

Well Name	CCA Status	CRA-2004 Status	CRA-2009 Status	CRA-2014 Status	Original Depth	Year Drilled
H-5B	Culebra	Culebra	Culebra	Culebra	925 ft	1978
H-5C	Magenta	Magenta	Not in Use	Magenta	1,076 ft	1978
H-6A	Culebra	Culebra	Plugged	Plugged	637 ft	1978
H-6B	Culebra	Culebra	Culebra	Plugged	640 ft	1978
H-6BR	N/A	N/A	N/A	Culebra	640 ft	2008
H-6C	Culebra	Culebra	Magenta	Magenta	741 ft	1978
H-7A	N/A	Plugged	Plugged	Plugged	154 ft	1979
H-7B1	Culebra	Culebra	Culebra	Culebra	286 ft	1979
H-7B2	Culebra	Culebra	Plugged	Plugged	295 ft	1983
H-7C	N/A	N/A	Rancher's Water Well	Rancher's Water Well	420 ft	1979
H-8A	Magenta	Magenta	Magenta	Magenta	505 ft	1979
H-8B	N/A	Rancher's Water Well	Rancher's Water Well	Rancher's Water Well	624 ft	1979
H-8C	Rustler	Rustler	Rancher's Water Well	Rancher's Water Well	808 ft	1979
H-9A	Culebra	Plugged	Plugged	Plugged	692 ft	1979
H-9B	Culebra	Culebra	Not in Use	Plugged	708 ft	1979
H-9BR	N/A	N/A	N/A	Culebra	686 ft	2010
H-9C	Culebra	Magenta	Culebra/Magenta	Magenta	816 ft	1979
H-10A	Magenta	Magenta	Magenta	Magenta	1,318 ft	1979
H-10B	Magenta	Plugged	Plugged	Plugged	1,398 ft	1979
H-10C	N/A	Culebra	Culebra	Culebra	1,550 ft	1979
H-11B1	Culebra	Culebra	Plugged	Plugged	785 ft	1983
H-11B2	Culebra	Magenta	Magenta	Magenta	776 ft	1983
H-11B3	Culebra	Plugged	Plugged	Plugged	789 ft	1983
H-11B4	N/A	Culebra	Culebra	Plugged	765 ft	1988
H-11B4R	N/A	N/A	N/A	Culebra	755 ft	2011
H- 11B4RA	N/A	N/A	N/A	Plugged	774 ft	2011
H-12	Culebra	Culebra	Culebra	Culebra	1,001 ft	1983
H-14	Culebra	Magenta	Magenta	Magenta	589 ft	1986
H-15	Culebra	Magenta	Culebra/Magenta	Magenta	900 ft	1986
H-15R	N/A	N/A	N/A	Culebra	924 ft	2009
H-16	Dewey Lake	N/A	Rustler	Rustler	851 ft	1987
H-17	Culebra	Culebra	Culebra	Culebra	880 ft	1987

Well Name	CCA Status	CRA-2004 Status	CRA-2009 Status	CRA-2014 Status	Original Depth	Year Drilled
H-18	Culebra	Magenta	Magenta	Magenta	840 ft	1987
H-19B	N/A	N/A	N/A	N/A	40 ft	1995
H-19B0	N/A	Culebra	Culebra	Culebra	779 ft	1995
H-19B1	N/A	Plugged	Plugged	Plugged	733 ft	1995
H-19B2	N/A	Culebra	Culebra	Culebra	785 ft	1995
H-19B3	N/A	Culebra	Culebra	Culebra	785 ft	1995
H-19B4	N/A	Culebra	Culebra	Culebra	782 ft	1995
H-19B5	N/A	Culebra	Culebra	Culebra	786 ft	1995
H-19B6	N/A	Culebra	Culebra	Culebra	788 ft	1995
H-19B7	N/A	Culebra	Culebra	Culebra	785 ft	1995
IMC-461	N/A	N/A	Culebra	Culebra	1,316 ft	2004
P-1	Plugged	Plugged	Plugged	Plugged	1,591 ft	1976
P-2	Plugged	Plugged	Plugged	Plugged	1,895 ft	1976
P-3	Plugged	Plugged	Plugged	Plugged	1,676 ft	1976
P-4	Plugged	Plugged	Plugged	Plugged	1,857 ft	1976
P-5	Plugged	Plugged	Plugged	Plugged	1,830 ft	1976
P-6	Plugged	Plugged	Plugged	Plugged	1,573 ft	1976
P-7	Plugged	Plugged	Plugged	Plugged	1,574 ft	1976
P-8	Plugged	Plugged	Plugged	Plugged	1,660 ft	1976
P-9	Plugged	Plugged	Plugged	Plugged	1,796 ft	1976
P-10	Plugged	Plugged	Plugged	Plugged	2,009 ft	1976
P-11	Plugged	Plugged	Plugged	Plugged	1,940 ft	1976
P-12	Plugged	Plugged	Plugged	Plugged	1,598 ft	1976
P-13	Plugged	Plugged	Plugged	Plugged	1,576 ft	1976
P-14	Culebra	Plugged	Plugged	Plugged	1,545 ft	1976
P-15	Culebra	Plugged	Plugged	Plugged	1,465 ft	1976
P-16	Plugged	Plugged	Plugged	Plugged	1,585 ft	1976
P-17	Culebra	Culebra	Plugged	Plugged	1,660 ft	1976
P-18	Culebra	Plugged	Plugged	Plugged	1,998 ft	1976
P-19	Plugged	Plugged	Plugged	Plugged	2,000 ft	1976
P-20	Plugged	Plugged	Plugged	Plugged	1,995 ft	1976
P-21	Plugged	Plugged	Plugged	Plugged	1,915 ft	1976
PZ-1	N/A	Santa Rosa	Santa Rosa/Dewey Lake	Santa Rosa/Dewey Lake	68 ft	1997

Well Name	CCA Status	CRA-2004 Status	CRA-2009 Status	CRA-2014 Status	Original Depth	Year Drilled
			Santa	Santa		
PZ-2	N/A	Santa Rosa	Lake	Lake	65 ft	1997
PZ-3	N/A	Santa Rosa	Santa Rosa/Dewey Lake	Santa Rosa/Dewey Lake	71 ft	1997
PZ-4	N/A	Santa Rosa	Santa Rosa/Dewey Lake	Santa Rosa/Dewey Lake	65 ft	1997
PZ-5	N/A	Santa Rosa	Santa Rosa/Dewey Lake	Santa Rosa/Dewey Lake	72 ft	1997
PZ-6	N/A	Santa Rosa	Santa Rosa/Dewey Lake	Santa Rosa/Dewey Lake	66 ft	1997
PZ-7	N/A	Santa Rosa	Santa Rosa/Dewey Lake	Santa Rosa/Dewey Lake	72 ft	1997
PZ-8	N/A	Santa Rosa	Santa Rosa/Dewey Lake	Santa Rosa/Dewey Lake	68 ft	1997
PZ-9	N/A	Santa Rosa	Santa Rosa/Dewey Lake	Santa Rosa/Dewey Lake	82 ft	1997
PZ-10	N/A	Santa Rosa	Santa Rosa/Dewey Lake	Santa Rosa/Dewey Lake	57 ft	1997
PZ-11	N/A	Santa Rosa	Santa Rosa/Dewey Lake	Santa Rosa/Dewey Lake	82 ft	1997
PZ-12	N/A	Santa Rosa	Santa Rosa/Dewey Lake	Santa Rosa/Dewey Lake	72 ft	1997
PZ-13	N/A	N/A	Santa Rosa/Dewey Lake	Santa Rosa/Dewey Lake	77 ft	2007
PZ-14	N/A	N/A	Santa Rosa/Dewey Lake	Santa Rosa/Dewey Lake	73 ft	2007
PZ-15	N/A	N/A	Gatuña/Santa Rosa	Gatuña/Santa Rosa	56 ft	2007
SNL-1	N/A	N/A	Culebra	Culebra	644 ft	2004
SNL-2	N/A	N/A	Culebra	Culebra	614 ft	2003

Well Name	CCA Status	CRA-2004 Status	CRA-2009 Status	CRA-2014 Status	Original Depth	Year Drilled
SNL-3	N/A	N/A	Culebra	Culebra	970 ft	2003
SNL-5	N/A	N/A	Culebra	Culebra	687 ft	2004
SNL-6	N/A	N/A	Culebra	Culebra	1,360 ft	2005
SNL-8	N/A	N/A	Culebra	Culebra	981 ft	2005
SNL-9	N/A	N/A	Culebra	Culebra	845 ft	2003
SNL-10	N/A	N/A	Culebra	Culebra	651 ft	2006
SNL-12	N/A	N/A	Culebra	Culebra	905 ft	2003
SNL-13	N/A	N/A	Culebra	Culebra	480 ft	2005
SNL-14	N/A	N/A	Culebra	Culebra	719 ft	2005
SNL-15	N/A	N/A	Culebra	Culebra	950 ft	2005
SNL-16	N/A	N/A	Culebra	Culebra	224 ft	2006
SNL-17A	N/A	N/A	Culebra	Culebra	375 ft	2006
SNL-17	N/A	N/A	Plugged	Plugged	365 ft	2006
SNL-18	N/A	N/A	Culebra	Culebra	566 ft	2006
SNL-19	N/A	N/A	Culebra	Culebra	381 ft	2006
WIPP-11	N/A	N/A	Culebra	Culebra	3,580 ft	1978
WIPP-12	Culebra	Culebra	Plugged	Plugged	3,928 ft	1978
WIPP-13	Culebra	Culebra	Culebra	Culebra	3,856 ft	1978
WIPP-14	Plugged	Plugged	Plugged	Plugged	1,000 ft	1981
WIPP-15	Water Well	Rancher's Water Well	Rancher's Water Well	Rancher's Water Well	810 ft	1978
WIPP-16	Plugged	Plugged	Plugged	Plugged	1,300 ft	1980
WIPP-18	Culebra	Magenta	Magenta	Magenta	1,060 ft	1978
WIPP-19	Culebra	Culebra	Culebra	Culebra	1,038 ft	1978
WIPP-21	Culebra	Culebra	Plugged	Plugged	1,045 ft	1978
WIPP-22	Culebra	Culebra	Plugged	Plugged	1,450 ft	1978
WIPP-25	Culebra/Magenta	Culebra/Magenta	Culebra/Magenta	Plugged	655 ft	1978
WIPP-26	Culebra	Culebra	Plugged	Plugged	503 ft	1978
WIPP-27	Culebra/Magenta	Culebra	Plugged	Plugged	592 ft	1978
WIPP-28	Rustler	Plugged	Plugged	Plugged	801 ft	1978
WIPP-29	Culebra	Culebra	Plugged	Plugged	377 ft	1978
WIPP-30	Culebra/Magenta	Culebra/Magenta	Culebra/Magenta	Plugged	912 ft	1978
WIPP-31	Plugged	Plugged	Plugged	Plugged	1,982 ft	1980
WIPP-32	Plugged	Plugged	Plugged	Plugged	390 ft	1979
WIPP-33	Plugged	Plugged	Plugged	Plugged	840 ft	1979

Well Name	CCA Status	CRA-2004 Status	CRA-2009 Status	CRA-2014 Status	Original Depth	Year Drilled
WIPP-34	Plugged	Plugged	Plugged	Plugged	1,820 ft	1979
WQSP-1	Culebra	Culebra	Culebra	Culebra	737 ft	1994
WQSP-2	Culebra	Culebra	Culebra	Culebra	846 ft	1994
WQSP-3	Culebra	Culebra	Culebra	Culebra	879 ft	1994
WQSP-4	Culebra	Culebra	Culebra	Culebra	800 ft	1994
WQSP-5	Culebra	Culebra	Culebra	Culebra	681 ft	1994
WQSP-6	Culebra	Culebra	Culebra	Culebra	617 ft	1994
WQSP- 6A	Dewey Lake	Dewey Lake	Dewey Lake	Dewey Lake	225 ft	1994

1 DATA-A-2.0 Individual Well Reports

2 This section provides basic data on the new wells drilled (6) and the wells plugged (7) during the

- 3 CRA-2014 monitoring period (October 2007 through December 2012).
- 4 All WIPP monitoring wells have been drilled in New Mexico within the vicinity of the WIPP
- 5 site. The Bureau of Land Management (BLM) controls the drilling, operation, and abandonment
- 6 of hydrocarbon wells on federal land in New Mexico. The New Mexico Oil Conservation
- 7 Division controls the drilling, operation, and abandonment of hydrocarbon wells on state and
- 8 patented lands in New Mexico. The New Mexico Office of the State Engineer regulates the
- 9 drilling, operation, and abandonment of groundwater wells (this includes mineral exploration,
- 10 monitoring, and observation wells) in the State of New Mexico. This agency has regulatory
- 11 oversight of wells in the WIPP land withdrawal area. All WIPP monitoring wells have been
- 12 permitted through this agency and drilled according to the regulations in place at the time of
- 13 drilling. Right-of-way permits have been acquired from the BLM when monitoring wells are
- 14 located on federal lands outside the WIPP land withdrawal area.

15 DATA-A-2.1 New Wells Drilled Since the CRA-2009

16 <u>H-4BR</u> 17 Location: 7

17 18	Location: T22S-R31E-05 Status: Culebra Monitoring Well	Year Drilled: 2009	Total Depth: 518 ft (158 m) Elevation: 3332 ft (1016 m)
19 20 21	<u>H-6BR</u> Location: T22S-R31E-18 Status: Culebra Monitoring Well	Year Drilled: 2008	Total Depth: 640 ft (195 m) Elevation: 3347 ft (1020 m)
22 23 24	<u>H-9BR</u> Location: T24S-R31E-04 Status: Culebra Monitoring Well	Year Drilled: 2010	Total Depth: 686 ft (209 m) Elevation: 3405 ft (1038 m)
25 26 27	H-11B4R Location: T22S-R31E-33 Status: Culebra Monitoring Well	Year Drilled: 2011	Total Depth: 755 ft (230 m) Elevation: 3409 ft (1039 m)
28 29 30	<u>H-11B4RA</u> Location: T22S-R31E-33 Status: Culebra Monitoring Well	Year Drilled: 2011	Total Depth: 774 ft (236 m) Elevation: 3410 ft (1039 m)
31 32 33	H-15R Location: T22S-R31E-28 Status: Culebra Monitoring Well	Year Drilled: 2009	Total Depth: 924 ft (282 m) Elevation: 3480 ft (1061 m)

DATA-A-2.2 Plugged Wells 1 2 H-4B 3 Location: T23S-R31E-05 Year Drilled: 1978 Total Depth: 529 ft (161 m) 4 Status: Plugged in 2009 Elevation: 3333 ft (1016 m) 5 Notes: The well was cemented to the surface using Class C neat cement. 6 H-6B 7 Location: T22S-R31E-18 Year Drilled: 1978 Total Depth: 640 ft (195 m) Elevation: 3348 ft (1020 m) 8 Status: Plugged in 2008 9 Notes: The well was cemented to the surface using Class C neat cement. 10 H-9B 11 Location: T24S-R31E-04 Year Drilled: 1979 Total Depth: 708 ft (216 m) 12 Status: Plugged in 2010 Elevation: 3406 ft (1038 m) Notes: In 2002, the open-hole portion of the well was inadvertently plugged during pressure 13 14 grouting of well H-9A. The well was cemented to the surface using Class C neat cement. 15 H-11B4 Location: T22S-R31E-33 16 Year Drilled: 1988 Total Depth: 765 ft (233 m) 17 Status: Plugged in 2011 Elevation: 3409 ft (1039 m) 18 Notes: The well was cemented to the surface using Class C neat cement. 19 H-11B4RA 20 Location: T22S-R31E-15 Year Drilled: 2011 Total Depth: 774 ft (236 m) Elevation: 3409 ft (1039 m) 21 Status: Plugged in 2011 22 Notes: Plugged due to improper screen depth by driller. The well was cemented to the surface 23 using Class C neat cement. WIPP-25 24 25 Location: T22S-R30E-15 Year Drilled: 1978 Total Depth: 655 ft (200 m) 26 Status: Plugged in 2009 Elevation: 3212 ft (979 m) 27 Notes: The well was cemented to the surface using Class C neat cement. 28 WIPP-30 29 Location: T21S-R31E-33 Year Drilled: 1978 Total Depth: 912 ft (278 m) 30 Status: Plugged in 2008 Elevation: 3428 ft (1045 m)

31 Notes: The well was cemented to the surface using Class C neat cement.

1 DATA-A-3.0 References

- 2 (*Indicates a reference that has not been previously submitted.)
- 3 U.S. Department of Energy (DOE). 1996. Title 40 CFR Part 191 Compliance Certification
- 4 Application for the Waste Isolation Pilot Plant (October). 21 vols. DOE/CAO 1996-2184.
- 5 Carlsbad, NM: Carlsbad Area Office.
- 6 U.S. Department of Energy (DOE). 2004. Title 40 CFR Part 191 Compliance Recertification
- 7 Application for the Waste Isolation Pilot Plant (March). 10 vols. DOE/WIPP 2004-3231.
- 8 Carlsbad, NM: Carlsbad Field Office.
- 9 U.S. Department of Energy (DOE). 2009. Title 40 CFR Part 191 Compliance Recertification
- 10 *Application for the Waste Isolation Pilot Plant* (March). DOE/WIPP 2009-3424. Carlsbad, NM: 11 Carlsbad Field Office *
- 11 Carlsbad Field Office.*

Title 40 CFR Part 191 Subparts B and C Compliance Recertification Application 2014 for the Waste Isolation Pilot Plant

Appendix DATA-2014 Attachment B: WIPP Waste Containers and Emplacement

United States Department of Energy Waste Isolation Pilot Plant

Carlsbad Field Office Carlsbad, New Mexico

Appendix DATA-2014 Attachment B: WIPP Waste Containers and Emplacement

Table of Contents

DATA-B-1.0 Authorized Waste Emplacement Containers	1
DATA-B-1.1 Container Descriptions	1
DATA-B-1.2 Dunnage Containers	1
DATA-B-1.3 Payload Descriptions	1
DATA-B-1.4 Emplacement Configurations	11
DATA-B-2.0 References	15

List of Figures

Figure DATA-B-1. 55-gal Drum Components and Emplacement Configuration	2
Figure DATA-B-2. 85-gal Drum (Short) Components and Emplacement	
Configuration	3
Figure DATA-B-3. 85-gal Drum (Tall) Components and Emplacement	
Configuration	4
Figure DATA-B-4. 100-gal Drum Components and Emplacement Configuration	5
Figure DATA-B-5. Illustration of a Shielded Container	6
Figure DATA-B-6. Illustration of a SLB2	7
Figure DATA-B-7. Illustration of a SWB	8
Figure DATA-B-8. TDOP Components	9
Figure DATA-B-9. RH-TRU Waste Canister Components	10
Figure DATA-B-10. CH-TRU Waste Emplacement Layout	12
Figure DATA-B-11. CH-TRU Waste Emplacement	13
Figure DATA-B-12. RH-TRU Waste Emplacement	14

List of Tables

Table DATA-B-1. 55-gal Drum Specifications	2
Table DATA-B-2. 85-gal Drum (Short) Specifications	3
Table DATA-B-3. 85-gal Drum (Tall) Specifications	4
Table DATA-B-4. 100-gal Drum Specifications	5
Table DATA-B-5. Shielded Container Specifications	6
Table DATA-B-6. SLB2 Specifications	7
Table DATA-B-7. SWB Specifications	8
Table DATA-B-8. TDOP Specifications	9
Table DATA-B-9. RH-TRU Waste Canister Specifications	10

This page intentionally left blank.

Acronyms and Abbreviations

СН	contact-handled
CH-TRU	contact-handled transuranic
EPA	U.S. Environmental Protection Agency
gal	gallon
mm	millimeter
RH	remote-handled
RH-TRU	remote-handled transuranic
SLB2	Standard Large Box 2
SWB	Standard Waste Box
TDOP	10-Drum Overpack
TRU	transuranic

This page intentionally left blank.

1 DATA-B-1.0 Authorized Waste Emplacement Containers

2 DATA-B-1.1 Container Descriptions

- 3 The following containers are identified as outer containment vessels for waste emplacement in4 the repository:
- 5 55-gallon (gal) Drum
- 6 85-gal Drum (Short)
- 7 85-gal Drum (Tall)
- 8 100-gal Drum
- 9 Shielded Container
- 10 Standard Large Box 2 (SLB2)
- 11 Standard Waste Box (SWB)
- 12 Ten-Drum Overpack (TDOP)
- 13 Remote-handled transuranic (RH-TRU) 72B Canister (RH-TRU Waste Canister)

14 DATA-B-1.2 Dunnage Containers

15 Dunnage containers are empty containers used to complete a shipping configuration, such as the

16 seven-pack, if too few containers that meet transportation requirements are available. Dunnage

17 containers are clearly marked "Empty." The TDOP and the RH-TRU Waste Canister are not

used as dunnage containers for shipping purposes. For emplacement purposes in the repository,
the 55-, 85-, and 100-gal drums can be used as dunnage containers only if they arrive in a shrink-

20 wrapped package assembly, such as the seven-pack, four-pack, or three-pack. To date, 55-gal

21 drums and several SWBs have been emplaced in the repository as dunnage containers.

22 DATA-B-1.3 Payload Descriptions

- 23 This section gives a brief description of each payload container and its configuration for
- 24 emplacement. This description also includes a figure and a table for each container.

- 1 The 55-gal drum is shipped in a seven-pack configuration and is normally emplaced in the
- 2 repository in the same configuration but can be emplaced as an individual unit should the need
- 3 arise. A single drum can be used for collecting and storing derived waste. An illustration of the
- 4 55-gal drum components and emplacement configuration is provided in Figure DATA-B-1. The
- 5 drum specifications are provided in Table DATA-B-1.

6

Figure DATA-B-1. 55-gal Drum Components and Emplacement Configuration

Table DATA-B-1. 55-gal Drum Specifications

	Approximate Measurement			
Dimension	Inside Dimension (inches)	Outside Dimension (inches)	Inside Dimension (mm)	Outside Dimension (mm)
Height	33 ¼	35	845	889
Diameter	22 1/2	24	572	610

9

- 1 The 85-gal drum (short) is shipped in a four-pack configuration and will be emplaced in the
- 2 repository in the same configuration but can be emplaced as an individual unit should the need
- 3 arise. A single drum can be used for collecting and storing derived waste or for overpacking a
- 4 55-gal drum. An illustration of the 85-gal drum (short) components and emplacement
- configuration is provided in Figure DATA-B-2. The drum specifications are provided in TableDATA-B-2.

Figure DATA-B-2. 85-gal Drum (Short) Components and Emplacement Configuration

9

8

Table DATA-B-2. 85-gal Drum (Short) Specifications

	Approximate Measurement			
Dimension	Inside Dimension (inches)	Outside Dimension (inches)	Inside Dimension (mm)	Outside Dimension (mm)
Height	33 ¼	35	845	889
Diameter	27 1/8	29 ¾	689	756

10

- The 85-gal drum (tall) is shipped in a four-pack configuration and will be emplaced in the 1
- repository in the same configuration. It is also used for overpacking 55-gal drums that are 2
- individually emplaced in the repository. A single drum can be used for collecting and storing 3
- 4 derived waste. An illustration of the 85-gal drum (tall) components and emplacement
- configuration is provided in Figure DATA-B-3. The drum specifications are provided in Table 5
- 6 DATA-B-3.

8

- Figure DATA-B-3. 85-gal Drum (Tall) Components and Emplacement Configuration
- 9

	Approximate Measurement			
Dimension	Inside Dimension (inches)	Outside Dimension (inches)	Inside Dimension (mm)	Outside Dimension (mm)
Height	38 ¼	40 ¼	972	1,022
Diameter	26	28 5/8	660	728

- 1 The 100-gal drum is shipped in a three-pack configuration and will be emplaced in the repository
- 2 in the same configuration. The 100-gal drum can be emplaced as an individual unit should the
- 3 need arise. An illustration of the 100-gal drum components and emplacement configuration is
- 4 provided in Figure DATA-B-4. The drum specifications are provided in Table DATA-B-4.

- Figure DATA-B-4. 100-gal Drum Components and Emplacement Configuration
 - Table DATA-B-4. 100-gal Drum Specifications

	Approximate Measurement			
Dimension	Inside Dimension (inches)	Outside Dimension (inches)	Inside Dimension (mm)	Outside Dimension (mm)
Height	33	35	838	889
Diameter	30	32	762	813

8 9

5

6

- 1 The shielded container is shipped in a three-pack configuration and will be emplaced in the
- 2 repository in the same configuration. The shielded container assemblies will be used to dispose
- 3 of RH-TRU waste but will be managed and disposed of as contact-handled transuranic (CH-
- 4 TRU) waste. An illustration of the shielded container components is provided in Figure DATA-
- 5 B-5. The container specifications are provided in Table DATA-B-5.

Figure DATA-B-5. Illustration of a Shielded Container

8

Table DATA-B-5. Shielded Container Specifications

	Approximate Measurement			
Dimension	Inside Dimension (inches)	Outside Dimension (inches)	Inside Dimension (mm)	Outside Dimension (mm)
Height	29 3/4	35 ³ / ₄	756	908
Diameter	20 3/8	23	518	584

- 1 The SLB2 is shipped and emplaced as an individual unit. An illustration of the SLB2 is
- 2 provided in Figure DATA-B-6. The box specifications are provided in Table DATA-B-6.

3

5

Figure DATA-B-6. Illustration of a SLB2

Table DATA-B-6. SLB2 Specifications

	Approximate Measurement			
Dimension	Inside Dimension (inches)	Outside Dimension (inches)	Inside Dimension (mm)	Outside Dimension (mm)
Height	66	73	1,676	1,854
Length	102	108	2,591	2,743
Width	63	69	1,600	1,753
- 1 The SWB is shipped and emplaced as an individual unit. An SWB can be used as an overpack or
- 2 to collect derived waste in the Waste Handling Building CH Bay. An illustration of the SWB is
- 3 provided in Figure DATA-B-7. The box specifications are provided in Table DATA-B-7.

6

Figure DATA-B-7. Illustration of a SWB

Table DATA-B-7. SWB Specifications

Dimension	Approximate Measurement				
	Inside Dimension (inches)	Outside Dimension (inches)	Inside Dimension (mm)	Outside Dimension (mm)	
Height	36 %	36 1/8	929	937	
Length	68 ³ ⁄ ₄	71	1,746	1,803	
Width	52	54 1/2	1,321	1,384	

- 1 The TDOP is shipped as an individual unit and emplaced as an individual unit. An illustration of
- 2 TDOP components is provided in Figure DATA-B-8. The TDOP specifications are provided in 3 Table DATA-B-8.

Table DATA-B-8. TDOP Specifications

Dimension	Approximate Measurement				
	Inside Dimension (inches)	Outside Dimension (inches)	Inside Dimension (mm)	Outside Dimension (mm)	
Height	72 5/8	73 1/8	1,845	1,858	
Diameter	68 ³ ⁄ ₄	71 ¼	1,746	1,810	

- The RH-TRU Waste Canister is shipped as a single unit and emplaced as a single unit. 1
- 2 Illustrations of canister components are provided in Figure DATA-B-9. The canister
- 3 specifications are provided in Table DATA-B-9.

5

Dimension	Approximate Measurement				
	Inside Dimension (inches)	Outside Dimension (inches)	Inside Dimension (mm)	Outside Dimension (mm)	
Height	108	120 1/2	2,743	3,061	
Diameter	25 1/2	26	648	660	

Table DATA-B-9. RH-TRU Waste Canister Specifications

7

1 DATA-B-1.4 Emplacement Configurations

- 2 Shown in Figure DATA-B-10 is the typical position for waste emplacement containers randomly
- 3 emplaced in the room of a panel. TDOPs and SLB2s are only emplaced on the bottom position,
- 4 with another assembly stacked on top. Most other assemblies can be stacked three high before
- 5 the magnesium oxide (MgO) supersack is emplaced on the top of the stack, with the exception of
- 6 shielded containers. The EPA has agreed with the DOE's recommendation to not place MgO
- 7 supersacks on top of shielded container assemblies (Moody 2010). The CH-TRU waste
- 8 emplacement within the repository panels is shown in Figure DATA-B-11. The planned RH-
- 9 TRU waste emplacement is shown in Figure DATA-B-12.

2

Figure DATA-B-10. CH-TRU Waste Emplacement Layout

Figure DATA-B-12. RH-TRU Waste Emplacement

1 DATA-B-2.0 References

- 2 (*Indicates a reference that has not been previously submitted.)
- 3 Moody, D.C. 2010. Letter to M. Flynn (Subject: Additional information regarding Shielded
- 4 Containers). September 8, 2010. Carlsbad, NM: Carlsbad Field Office.*