WIPP PA

User's Manual

for

GENII-A, Version 2.10

--

_

Document Version 1.00

WPO # 27751

November 13, 1995

.

Table of Contents

List of Figures	3
1.0 INTRODUCTION	4
1.1 DOCUMENT PURPOSE 1.2 SOFTWARE IDENTIFIER 1.3 POINTS OF CONTACT. 1.3.1 Code Sponsor. 1.3.2 Code Consultant.	
2.0 FUNCTIONAL REQUIREMENTS	
3.0 REQUIRED USER TRAINING AND/OR BACKGROUND	6
4.0 DESCRIPTION OF THE MODELS AND METHODS	6
4.1 PROGRAM MODULES	
5.0 CAPABILITIES AND LIMITATIONS OF THE SOFTWARE	12
5.1 CAPABILITIES	13
6.2 Execution via Command File	14
7.0 DESCRIPTION OF INPUT FILES	17
7.1 ASCII INPUT CONTROL (.INP) FILE	18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19 20 20 20 21
7.1.7.5 Terrestrial Food Ingestion	
7.2 INPUT FILENAMES FILE	
8.0 ERROR MESSAGES	

9.0 DESCRIPTION OF OUTPUT FILES	
9.1 OUTPUT DOSE FILE	23
9.1 OUTPUT DOSE FILE	
10.0 REFERENCES	
11.0 APPENDICES	25
APPENDIX A: ANNOTATED SAMPLE GENII-A INPUT CONTROL (.INP) FILE	
A.1 Line-by-Line Annotation A.2 Sample Listing APPENDIX B: INPUT FILENAMES FILE	26
A.2 Sample Listing	33
APPENDIX B: INPUT FILENAMES FILE	
APPENDIX C: SAMPLE OUTPUT DOSE FILE	37
APPENDIX D: SAMPLE OUTPUT INPUT ECHO FILE	
APPENDIX E: SAMPLE DIAGNOSTICS/DEBUG FILE	

List of Figures

	• -	
FIGURE 1.	GENII-A IMPLEMENTATION OF GENII. (FADED PORTIONS OF FIGURE NOT USED BY GENII-A.)	8
FIGURE 2.	COMMITTED DOSE FROM 1-YEAR INTERNAL AND EXTERNAL EXPOSURE PLUS EXTENDED INTERNAL DOS	Έ
(FRC	M FIGURE 3.2 OF VOLUME 1 OF NAPIER ET AL., 1988)	11
FIGURE 3.	SAMPLE COMPUTATIONAL FLOW DIAGRAM FOR GENII-A.	15

1.0 INTRODUCTION

1.1 Document Purpose

This document serves as a user's manual for GENII-A, as used in the 1996 WIPP PA calculation. As such, it describes the code's purpose and function, the user's interaction with the code, and the models and methods employed by the code. Examples of user-accessible input and output files are included for the user's convenience.

The GENII-A code, which runs on a DEC Alpha platform, duplicates a subset of the executables from the original GENII program (Radiation Shielding Information Center, 1995). Because a published conceptual representation and user's manuals for GENII already exist (Napier et al., 1988 [Volumes 1 and 2]), an important purpose of this user's manual (WPO # 27751) is to point the user to the discussions in Napier et al. pertinent to the 1996 WIPP PA calculation. It is recommended that the user have a copy of Napier et al., available from the Sandia WIPP Central Files, while reading this user's manual (WPO # 27751).

1.2 Software Identifier

Code Name:GENII-A, a DEC Alpha-platform implementation of GENII, the second
generation of the Hanford environmental dosimetry computer codes compiled
in the Hanford Environmental Dosimetry System.WIPP Prefix:GI2Version Number:2.10, 1/16/96Platforms:FORTRAN 77 for OpenVMS AXP, version 6.1, on DEC Alpha

1.3 Points of Contact

1.3.1 Code Sponsor

Leo J. Rahal Geo-Centers, Inc. 2201 Buena Vista Drive, S.E. Albuquerque, NM 87106 Voice: (505) 766-9629 Fax: (505) 766-9125

1.3.2 Code Consultant

Leo J. Rahal Geo-Centers, Inc. 2201 Buena Vista Drive, S.E. Albuquerque, NM 87106 Voice: (505) 766-9629 Fax: (505) 766-9125

2.0 FUNCTIONAL REQUIREMENTS

The functional requirements for GENII-A are listed below:

- R.1 GENII-A reads pathway and nuclide inventory input data.
- R.2 GENII-A calculates doses for acute releases.
- R.3 GENII-A calculates doses for chronic releases.
- R.4 GENII-A calculates doses for air transport of radionuclides with or without meteorological input data.
- R.5 GENII-A calculates doses for finite plume air immersion.
- R.6 GENII-A calculates doses for infinite plume air immersion.
- R.7 GENII-A calculates doses for external gound exposure.
- R.8 GENII-A calculates doses for animal product ingestion with or without irrigation option.
- R.9 GENII-A calculates doses for terrestrial food ingestion with or without irrigation option.
- R.10 GENII-A calculates doses from dairy product ingestion with or without irrigation option.
- R.11 GENII-A calculates doses from aquatic food ingestion.
- R.12 GENII-A calculates doses from drinking water ingestion.
- R.13 GENII-A calculates doses for far-field release.
- R.14 GENII-A calculates doses for near-field release.
- R.15 GENII-A calculates doses for lake or river surface water transport.
- R.16 GENII-A calculates doses from external recreational exposure including boating, swimming, and external shoreline exposure.
- R.17 GENII-A calculates doses from handling radioactive samples.
- R.18 GENII-A calculates individual dose.
- R.19 GENII-A calculates population dose using population distribution data.
- R.20 GENII-A calculates doses from inhalation of airborne radionuclides.

3.0 REQUIRED USER TRAINING AND/OR BACKGROUND

In order to run the GENII-A code successfully, the user will need a basic knowledge of

- Open VMS
- Digital Command Language
- Sandia's CAMDAT database.

To understand the theoretical portions of this manual (and the theoretical portions of the user manual by Napier et al. [1988]) and understand and interpret the results of GENII-A, the user should have a working knowledge of

- scenario development
- biosphere transport of radionuclides
- some knowledge of radionuclide decay processes and
 - radionuclide/organ interactions
 - radiation interactions with organic matter

An undergraduate degree in science or engineering is also recommended. The user should also have some knowledge of the original GENII program and its user manuals (Napier et al., 1988; Radiation Shielding Information Center, 1995). (The original GENII program, because it can run on an IBM PC platform, is sometimes called PC-GENII.).

4.0 **DESCRIPTION OF THE MODELS AND METHODS**

4.1 **Program Modules**

While GENII is composed of seven linked computer codes and their associated data libraries, GENII-A makes use of only five of them, as Figure 1 shows. Note that the ENVIN module has been renamed GENII¹ and that GENII calls ENV and DOSE.

Aside from the above name and hierarchy changes, a minor modification was made to the GENII code allowing a combined dose calculation from a spherical radioactive source (hand-held by the driller) and the ground surface exposure dose from a nearby source of radionuclides spread over a

¹ This program module should not be confused with GENII, GENII-A's predecessor. To prevent confusion, this program module (and all program modules) are written in a Courier font: GENII.

specified surface area. This capability is an option and can be selected through appropriate input data.

The following should also be noted:

- Only static outputs from EXTDF and INTDF are used by GENII-A; in other words, the boxes labeled EXTDF and INTDF in Figure 1 represent static data files, not program modules that are exercised when GENII-A is run. (EXTDF and INTDF are described in Sections 3.5 and 3.6 of Volume 1 of Napier et al., 1988 and Sections 3.3 and 3.4 of Volume 2 of Napier et al., 1988.) These modules are discussed below.
- Some modification to input formatting was made along with the deletion of unused parameters and the addition of new parameters for the sample exposure option mentioned above.
- Another addition was the inclusion of the requirement to indicate the number of nuclides in the GENII-A input file.

4.1.1 GENII

The ENVIN portion of GENII

- controls the reading of the input control text (.INP) file prepared by PREGENII (see computational flow discussion in Section 6.0 and input control file discussion in Section 7.2)
- organizes the input for the environmental transport and exposure module, ENV
- prepares the data transfer files that are used as input by ENV
- outputs the run input parameters report (i.e., the output input echo file) (Section 9.3).

Details on ENVIN are provided in Volume 1 of Napier et al. (Section 3.2).

Figure 1. GENII-A implementation of GENII. (Faded portions of figure not used by GENII-A.)

4.1.2 ENV

ENV calculates environmental transfer, uptake, and human exposure to radionuclides that result from the chosen pathway for the defined source terms, as described in Volume 1 of Napier et al. (1988) (Section 3.3). The intermediate information that ENV calculates on annual media concentrations and intake rates are written to data transfer files that are input to DOSE.

4.1.3 DOSE

GENII-A uses DOSE to compute concentrations and intake through the following six principal exposure routes or pathways through the biosphere:

- 1. **Contaminated stockpond, water-stock cattle, man (rancher).** Contaminated brine from an exploratory drillhole leaks into an aquifer and its groundwater is pumped into a stockpond. Livestock drink exclusively from this pond and ranchers consume the livestock.
- 2. **Contaminated cuttings, man (driller).** Individuals operating the exploratory drill that penetrates the WIPP repository are, because of their proximity to drilling operations, exposed externally to (1) contaminated soil from the drilling mud pit and (2) drilling samples that they examine.²
- 3. **Contaminated stockpond, dust-air transport, man (farm family).** Contaminants from a dried stockpond (contaminated with radionuclides migrating through the groundwater, as explained in pathway 1) are suspended in an air plume that deposits the contamination onto a nearby farm. The contaminated crops and livestock from this farm are consumed by humans.
- 4. **Contaminated drilling-mud pit, dust-air transport, man (farm family).** Contaminants from a dried drilling-mud pit are suspended in an air plume that deposits the contamination onto a nearby farm. The contaminated crops and livestock from this farm are consumed by humans.
- 5. Contaminated lake (drinking water, aquatic activities, fishing, irrigation). Contaminated water from an exploratory drillhole leaks into an aquifer and its groundwater reaches a lake. Humans are contaminated by drinking water from the lake, fishing from the lake, aquatic activities in the lake, and by consuming crops irrigated by contaminated lake water.

² It is to be noted that this option will not be exercised for the WIPP PA calculations since it was not included in the test cases for the QA series. The exposure of the driller will be determined from two separate calculations, one involving exposure from a ground plane source (mud pit) and the second from handling the spherical source. In this way each contribution can be examined separately. These test cases have been included in the QA series.

6. **Contaminated well water (drinking water, irrigation).** Contaminated water from an exploratory drillhole leaks into an aquifer and its groundwater reaches a well. Humans are contaminated by drinking desalinated water from the well and consuming crops irrigated by contaminated well water.

The 1996 WIPP PA calculation is limited to the above six principal exposure routes.

DOSE reads the annual intake and exposure rates defined by ENV and converts them to radiation dose. The calculation of external dose is done with precalculated factors from EXTDF, and the calculation of internal dose is done with precalculated factors from INTDF.

GENII-A uses DOSE to calculate the following for each radionuclide:

- inhalation effective dose equivalent
- ingestion effective dose equivalent
- external dose.
- internal effective dose equivalent
- annual effective dose equivalent.

All values are reported in dose equivalent units of rem. A 50-year dose commitment is assumed. The effective dose equivalent (EDE) combines the 1-year external dose and the internal dose over a 50-year period with an assumed 1-year intake period, as shown in Figure 2, multiplied by appropriate weighting factors for nuclides and organs. The internal effective dose equivalent equals the sum of the ingestion and inhalation dose. Further details on DOSE are provided in Volume 1 of Napier et al., 1988 (Section 3.4).

Note that an additional dose calculation capability has been added to GENII-A: the spherical source exposure calculation, which utilizes the external exposure algorithm provided in DOSE with the appropriate dose convergence factors. See Section 7.1.5 for details.

4.2 Mathematical Representations

The mathematical models and algorithms used by GENII are discussed in detail in Chapter 4.0 of Volume 1 of Napier et al. (1988). To understand the theory upon which GENII-A is based, the reader should read the following portions of Chapter 4.0 of Napier et al.:

- Section 4.1, Internal Dosimetry
- Section 4.2, External Dosimetry
- Section 4.3, Atmospheric Dispersion
- Section 4.4, Air Submersion
- Section 4.5, Surface Water Transport Models
- Section 4.6, Soil Contamination Model
- The following subsections in Section 4.7, Terrestrial Exposure Pathways:
 - Subsection 4.7.1, Inhalation
 - Subsection 4.7.2, Drinking Water Ingestion
 - Subsection 4.7.4, Crop Ingestion Chronic Exposures
 - Subsection 4.7.5, Animal Product Ingestion --- Chronic Exposures
 - Subsection 4.7.7, External Exposure

4.3 Solution Techniques

.....

The GENII package of computer codes is written in standard FORTRAN 77 using a Lahey compiler. Most routines are simple algebraic solutions, and no special logic is employed. One exception is the set of Bateman differential equations used by DOSE to calculate radioactive decay and generation of daughter products; the Bateman equations are solved in subroutine CHAIN using a chain decay solver. Another exception is INTDF, which is not run when GENII-A is exercised. (The same static output from INTDF is used for all GENII-A runs; see Section 4.1.)

5.0 CAPABILITIES AND LIMITATIONS OF THE SOFTWARE

5.1 Capabilities

GENII-A, as used for the 1996 WIPP PA calculation,

- calculates radiation doses for chronic releases
- evaluates the following exposure pathways—soil (surface source), air (semi-infinite cloud and finite cloud geometries), inhalation pathways, and ingestion pathways
- inputs measured concentrations of the source term in specified environmental media
- provides an interface for external calculation of atmospheric dispersion
- identifies target populations by distance and direction for individuals and populations.

5.2 Limitations

The following limitations and assumptions are discussed in the noted parts of Napier et al., 1988:

- The internal dosimetry model does not account for elimination of material leaving a target organ (Volume 1, Subsection 4.1.1).
- All iodine decay products (isotopes of the noble gas xenon) are assumed to be stable or to escape the body before decaying (Volume 1, Subsections 4.1.3 and 4.1.4).
- Tritiated water is assumed to be uniformly distributed among the soft tissues at any time following intake, where it is retained with a biological half time of 10 days (Volume 1, Subsection 4.1.6).
- All intakes of carbon-14 are assumed to be completely and instantaneously absorbed (Volume 1, Subsection 4.1.6).
- For chains with daughters with very short half-lives, the decay energy is assigned to the parent (Volume 1, Subsection 4.1.7).
- Simple atmospheric dispersion modeling is used (Volume 1, Section 4.3 and Subsection 4.3.7).
- The derivation of the atmospheric dispersion models explicitly includes the assumptions that the release is from a point source and that the effluent travels in a straight line once it is released (Volume 1, Subsection 4.3.7).
- The surface water models make the following limiting assumptions: constant flow depth; constant downstream or longshore velocity; straight river channel; constant lateral dispersion coefficient; continuous point discharge release of effluents; constant river width (Volume 1, Section 4.5).
- The quantity of activity from contaminated soil brought to the surface by animals is assumed to be uniformly distributed in the surface soil and available for entry into plant and animal product pathways in subsequent years (Volume 1, Section 4.6.3).

- There is no measurable decrease in the the Anspaugh resuspension factor (used for calculating inhalation exposure) after about 17 years (Volume 1, Subsection 4.7.1).
- Inadvertent ingestion of water during bathing is neglected (Volume 1, Subsection 4.7.2).
- Because interception of materials in irrigation water (i.e., the fraction of radionuclides deposited within a unit area that ends up on vegetation surfaces) is not well understood, a default value of 0.25 is used (Volume 1, Subsection 4.7.4).
 - The concentrations of tritium or carbon-14 in environmental media (soil, plants, and animal products) are assumed to have the same specific activity as the contaminating medium (Volume 1, Subsection 4.7.9).

6.0 USER INTERACTIONS WITH THE SOFTWARE

GENII-A is run for each input control file generated by PREGENII corresponding to a *n*-vector sample space. As the computational flow diagram (Figure 3) shows, radionuclide concentration processed by PREGENII can originate from WIPP PA codes that simulate the direct route to the accessible environment (CUTTINGS code sequence), or from the WIPP PA codes that simulate the indirect route to the accessible environment (BRAGFLO, NUTS/PANEL, SECOFL, and SECOTP code sequence; pathways 2 and 4 listed in Subsection 4.1.3 use output from the CUTTINGS code sequence; pathways 1 and 3 listed in Subsection 4.1.3 use output from the BRAGFLO, NUTS/PANEL, SECOFL, and SECOTP code sequence; pathways 1 and 3 listed in Subsection 4.1.3 use output from the BRAGFLO, NUTS/PANEL, SECOFL, and SECOTP code sequence.)

6.1 Interactive Execution

The user can execute GENII-A interactively by typing the following two lines (each followed by a carriage return) at the VMS "\$" prompt:

DEFINE GI2_DFL\$DEF WP\$TESTROOT:[GI2.DAT] RUN WP\$PRODROOT:[GI.EXE]GENII-A.EXE

A banner scrolls down the screen and then the following information describing the file definitions is printed on the screen:

```
GENII-A expects the following files:

1) Input Text File

2) Input Filenames File

3) Output dose file

4) Output input echo file

5) Output Diagnostics/Debug File (optional)
```

्रज्ञ

Figure 3. Sample computational flow diagram for GENII-A.

Subsequent questions in the procedure file request names for the above five files, described briefly below:

- 1. **Input text (.INP) file.** This is the ASCII input control file output by PREGENII (Figure 3) to run GENII-A for the sampled vector. See Section 7.1 for more information on this file.
- 2. **Input filenames (.DAT) file.** This file contains the names of the data files, input files, output files, and buffers required to run GENII-A. See Section 7.2 for more information on this file.
- 3. **Output dose (.OUT) file.** This file contains the results of the GENII-A calculation for the sampled vector; it is read by POSTGENII (see Figure 3). See Section 9.1 for more information on this file.
- 4. **Output input echo (.OUT) file.** This file, referred to in Napier et al. (1988) as the run input parameters report, contains a listing of parameters input to GENII-A for the sampled vector. See Section 9.2 for more information on this file.
- 5. **Output diagnostics/debug (.OUT) file.** This output file contains information about the GENII-A run for the sampled vector. It is an optional file, but it must be specified if the user wants to take advantage of error reporting. See Section 9.3 for more information on this file.

6.2 Execution via Command File

Alternatively, the user may use a command file to execute GENII-A. A sample command file (SAMPLE.COM) follows:

```
1 ----

      MODULE:
      SAMPLE.COM

      PURPOSE:
      RUN A CASE THROUGH GENII-A USING A COM FILE

      PURPOSE:
      PEC 1995

! DATE:
                    22-DEC-1995
                USER NAME
! AUTHOR:
! ----
  SET NOON
  START DIR = F$ENVIRONMENT("DEFAULT")
  EXE_SRC :== $WP$PRODROOT: [GI.EXE]GENII-A.EXE
  DEFINE GI2_DFL$DEF WP$TESTROOT: [GI2.DAT]
  DEFINE GI2_FND$INP GI2_DFL$DEF:GI2_FILENAME.DAT
  SET DEFAULT WP$TESTROOT: [GI2.TEST]
! ----
  DEFINE GI2_TRN$INP GI2_TEST1_TRN.INP
  DEFINE GI2_TRN$OUT GI2_TEST1_TRN.OUT
  DEFINE GI2_ECOSOUT GI2_TEST1_ECO.OUT
  DEFINE GI2_DBG$OUT GI2_TEST1_DEG.OUT
  EXE_SRC GI2_TRN$INP GI2_FND$INP GI2_TRN$OUT GI2_ECO$OUT GI2_DBG$OUT
) ____
  SET DEFAULT 'START_DIR
```

WPO # 27751 November 13, 1995 Page 17

EXIT

Note that the the above command file specifies the names of Files 1 through 5 as GI2_TEST1_TRN.INP, GI2_FILENAME.DAT, GI2_TEST1_TRN.OUT, GI2_TEST1_ECO.OUT, and GI2_TEST1_DBG.OUT, respectively. (For user's convenience, these filenames appear in bold type in the above sample command file.) Once the command file is written and stored, the user simply types an "@" followed by the name of the command file, which in this case would be:

@SAMPLE.COM

7.0 DESCRIPTION OF INPUT FILES

7.1 ASCII Input Control (.INP) File

The GENII-A ASCII input control file (File 1 introduced in Section 6.1) contains the input specifications required to exercise GENII-A. This input file is referred to as GENII.IN by Napier et al. (1988) and is described line by line in Volume 2 (Section 3.2) of that publication.

A higher-level description of the GENII-A ASCII input control file, as used for the 1996 WIPP PA calculation, follows. In addition, a sample input control file, along with a detailed line-by-line description of the sample file, is provided in Appendix A.

By examining the sample input control file in Appendix A, one can see that the GENII-A input control file consists of seven major fields:

- options
- inventory
- time
- far-field scenarios
- near-field scenarios
- transport
- exposure.

A description of these fields follows. The sample input control file provided in Appendix A can be used as a guide while reading this description. This sample input control file is not necessarily indicative of one which will be used for the 1996 WIPP PA calculation.

WPO # 27751 November 13, 1995 Page 18

7.1.1 Options

7.1.1.1 General

GENII-A allows for either near- or far-field scenarios. Far-field scenarios are for processes involving release of radioactive material into a wide environment. Near-field scenarios focus on possible doses to an individual at a particular location. For the 1996 WIPP PA calculation, the contaminated cuttings, man (driller) exposure pathway (described in Subsection 4.1.3 of this user's manual) is near-field; the remaining five pathways (also described in Subsection 4.1.3) are far-field.

GENII-A can be commanded to calculate either individual doses (for representative members of a critical group) or population doses (collective doses to regional populations or subpopulations). For the 1996 WIPP PA calculation, individual doses are calculated for all pathways.

For the 1996 WIPP PA calculation, GENII-A is limited to chronic releases; acute releases are not modeled.

"Maximum Individual data set used" indicates a conservative approach to selection of individual dose calculation parameters used for inhalation, ingestion, and external exposure. These conservative parameters are in line with the "critical group" requirement.

7.1.1.2 Transport

For the 1996 WIPP PA calculation, only one of the four transport options is ever invoked: the air transport option, which is used for the two dust-air transport pathways. As Figure 3 shows, groundwater transport for the stockpond pathway is handled by the SECO family of WIPP PA codes, and transport up the borehole to the drilling site is handled by the CUTTINGS family of WIPP PA codes. Sources from these calculations are deposited at the location of the scenario as basic concentrations.

7.1.1.3 Report

For all pathways considered for the 1996 WIPP PA calculation, the following report options are used:

- Dose is reported as committed dose equivalent (CDE), the committed dose from one year of exposure over a 50-year period (see Figure 2), appropriately weighted for each organ.
- Dose is reported for each radionuclide.
- Dose is reported by exposure pathway.
- The debug report is not printed on the screen.

7.1.1.4 Exposure Pathway

The following exposure pathways are exercised for the 1996 WIPP PA calculation:

- finite plume, external
- infinite plume, external
- ground, external
- inhalation uptake
- terrestrial foods ingestion
- animal product ingestion
- sample exposure.

7.1.2 Inventory

The inventory field specifies the input activity units, surface soil units, and the number of nuclides in the source term.

The inventory field also requires specification of the source term as a release term, basic concentration, or derived concentration. Release terms are sources to air or water or concentrations in buried wastes. The WIPP dust-air transport pathways specify an air release term. Basic concentrations can be entered when the transport steps are calculated outside of GENII-A. Basic concentrations are used for the WIPP groundwater and drilling cuttings pathways.

7.1.3 Time

Values provided to the time field allow specification of length of exposure, period for which dose commitment is calculated, length of time during which release occurs, and the time of air or irrigation water deposition prior to the intake period. For the 1996 WIPP PA calculation, the intake and release times are typically assumed to be one year, the dose calculation covers a 50-year period, and no air or irrigation water deposition is assumed to occur before the intake period.

7.1.4 Far-Field Scenarios

For the 1996 WIPP PA calculation, the dust-air pathways are considered far-field scenarios. Only individual doses are calculated.

7.1.5 Near-Field Scenarios

For the 1996 WIPP PA calculation, values can be provided for the following parameters in the near-field scenarios input field:

- "Manual redistribution: deep soil/surface soil dilution factor." A value is specified for the drilling cuttings pathway because drilling a borehole involves physical disruption that mixes deeply buried waste.
- "Source area for external dose modification factor." The value corresponding to this parameter is the area of the contaminated surface; a value is required for the dust-air transport pathways.
- "Source area for close examination dose factor." The GENII-A code has the capability to calculate exposure from a spherical hand-held source and a ground plane. The user has the option to implement either or both of these capabilities:
 - In order to implement the spherical source exposure option, the following input parameters are needed: The "Source area for close examination dose factor" should be set equal to 1250 square meters, and the soil overburden depth should be set to 0.15 meters in the "External Exposure" input field in order to flag within the code the appropriate area modification factor and dose calculation factor, respectively. Additionally, a value must be set for the "Examined soil contamination duration" (hours).
 - The input for the ground plane exposure consists of the area over which the radionuclides are spread in addition to the exposure time to the ground plane area and the distance from that source.

The exposure times may not necessarily be equal for the two sources (spherical source and ground plane). When the selection is made to calculate exposure from a ground plane together with that from the spherical source, the program combines the two exposures into one and outputs the result as the external dose. If only one pathway is selected (spherical or ground plane), then the external exposure for that pathway will appear as the external dose. When the combined calculation is made, the basic concentration is input in the "Deep Soil" column under "Basic Concentrations."

7.1.6 Transport

۰....

7.1.6.1 Air Transport

The 1996 WIPP PA calculation requires that the plume model be calculated by PREGENII, meaning that the "0=Calculate PM" model is selected. When the pathway is dust-air, PREGENII can provide either

- a grid of precalculated χ/Q values and a matching grid of population that GENII-A cross-multiplies to create a population-weighted χ/Q
- joint frequency distribution in place of the χ/Q grid.

7.1.6.2 Surface Water Transport

Surface water transport is not a pathway used for the 1996 WIPP PA calculation.

7.1.7 Exposure

7.1.7.1 External Exposure

For the 1996 WIPP PA calculation, PREGENII can provide values for the following parameters:

- Plume exposure time length of exposure per year to chronic atmospheric plumes. Plume exposure time is specified for the dust-air pathway. If the pathway is not dust-air, any value assigned to this parameter is neglected.
- Examined soil contamination duration length of time the driller inspects the contaminated sample. A value is provided for this parameter for the drilling pathway. This parameter specifies the exposure time to the examined sample.
- Soil overburden depth This parameter is used as a flag when set to 0.15 m to obtain the dose conversion factor for sample exposure. Other values can be used for scenarios not including sample exposure.

7.1.7.2 Inhalation

In the WIPP PA dust-air pathways, PREGENII must provide the following:

- the number of hours of exposure to contamination per year
- the type of resuspension model (none, mass loading, or Anspaugh)

The mass loading and Anspaugh models are explained in Volume 1 of Napier et al., 1988 (Subsection 4.7.1).

7.1.7.3 Ingestion Population

PREGENII specifies one of two options dealing with plant and animal food production:

- Option 1, use same χ/Q value distribution as used for the population (Section 7.1.6.1), essentially assuming the source of food and the people are co-located (used for the dust-air pathways)
- Option 2, assume that the food is produced uniformly throughout an 80-km grid (used for the stockpond pathway)

. .

7.1.7.4 Aquatic Foods/Drinking Water Ingestion

While aquatic foods are not considered for the 1996 WIPP PA calculation, drinking water ingestion may be. If it is exercised, the source would be ground water (Option 1), it would have to be treated, and holdup/transit and consumption parameters would be specified.

7.1.7.5 Terrestrial Food Ingestion

PREGENII provides values for terrestrial food ingestion parameters here. See page 3.25 of Volume 2 of Napier et al. (1988) for details.

7.1.7.6 Animal Production/Consumption

PREGENII provides values for animal production and consumption parameters here. See pages 3.25 and 3.26 of Volume 2 of Napier et al. (1988) for details.

7.2 Input Filenames File

A sample input filenames file is provided in Appendix B. The input filenames file contains the names of the external data, input, and output files and their corresponding unique logical unit numbers (left column of Appendix B). Further information on this file is provided in Volume 2 of Napier et al. (1988) on pages 2.34 through 2.36.

8.0 ERROR MESSAGES

GENII-A generates an alphabetical list of error messages that are written to the diagnostics/debug file (Section 9.3). There are five error types:

- 1. Warnings. These messages are informational only; no action is necessary.
- 2. Scenarios errors. These errors often occur when there is a problem with an input file. The code attempts to identify scenario incompatibilities and stop execution of the program so that the user may make corrections before exposure and dose calculations are performed. The user should carefully check and correct any inconsistencies in the input file.
- 3. **Program errors.** The sponsor should be notified if a program error message is displayed.
- 4. **Scenario/file errors.** These errors indicate a problem with auxiliary input files.Users should refer to Sections 2.2.1 through 2.2.12 of Napier et al. (1988), Volume 2 for assistance in determining the cause of scenario/file errors.
- 5. **Program/file errors.** The sponsor should be notified if a program/file error message is displayed. Program/file errors usually indicate that the user, in attempting to expand the application of GENII-A for research purposes, has made incorrect changes to data files

used by the code. The user should check file format and usage as presented in Section 2.3 of Napier et al. (1988), Volume 2.

Error outputting by GENII is thoroughly documented in Appendix B of Napier et al. (1988), Volume 2. Especially useful is the alphabetical list of messages contained in Table B.1 in Appendix B of Napier et al. (1988), Volume 2. The user should follow the specific guidance provided in that table when recovering from errors.

9.0 DESCRIPTION OF OUTPUT FILES

9.1 Output Dose File

The output dose file contains the actual dose calculation results. The sample output dose file provided in Appendix C, a representative GENII-A output dose file, consists of

- the effective dose equivalent summary calculation, from which individual organ doses may be obtained, and a summary table of the dominant organ, dominant exposure pathway³, and dominant radionuclide (see listing in Appendix C titled Page C.4)
- the dose assembly matrix (defined in Figure 3.6 of Volume 1 of Napier et al., 1988), from which the annual dose, effective dose equivalent, cumulative dose, and maximum annual dose may be obtained (see listing in Appendix C titled Page C.5)
- the dose contribution by exposure pathway (see listing in Appendix C titled Page C.6)
- the dose contribution by radionuclide (see listing in Appendix C titled Page C.7 through Page C.10)
- the dose contribution by radionuclide as a function of ingestion, inhalation, and external exposure (see listing in Appendix C titled Page C.11 and Page C.12)

9.2 Output Input Echo File

The output input echo file (see Appendix D for a sample listing) is the quality assurance output portion. The input values and scenario description flags are repeated to allow checking of the calculation assumptions.

9.3 Output Diagnostics/Debug File

The output diagnostics/debug file (see Appendix E for a sample listing) contains the file assignments and any error messages generated during the run.

³ Here "exposure pathway" refers to mechanisms within the the five exposure pathways described in Section 4.1.2.

10.0 REFERENCES

Napier, B.A., R.A. Peloquin, D.L. Strenge, and J.V. Ramsdell. 1988. GENII - The Hanford Environmental Radiation Dosimetry Software System, Volume 1: Conceptual Representation and Volume 2: Users' Manual. PNL-6584, Richland, Washington: Pacific Northwest Laboratory.

Radiation Shielding Information Center. 1995. GENII 1.485 Environmental Radiation Dosimetry Software System, March 1995. Oak Ridge, Tennessee: Oak Ridge National

Laboratory.

ş

11.0 APPENDICES

Note The sample files and displays provided in Appendices A through E are examples *only*. They *are not necessarily* the files used for the 1996 WIPP PA regulatory calculation.

• . • . • . . .

Appendix A: Annotated Sample GENII-A Input Control (.INP) File

A.1 Line-by-Line Annotation

An example of the GENII-A file is presented in Section A.2. A line-by-line description of the parameters and options that are defined in GENII-A, along with the code variable names, is provided below.

Line 1:	File identifier line for the GENII-A file. See B. Napier et al. Vol. 2 page 3.7 for more detail.	
Line 2:	Title line for the specific input case. (Name of the specific input file copied into GENII-A.)	
Line 3:	Creation date.	
Line 4:	OPTIONS header line.	
Line 5:	Near-field or far-field scenario option flag. See B. Napier et al. Vol. 2 pp. 3.7 to 3.9 for more detail.	
Line 6:	Population or individual dose calculation flag, POPDOS. See B. Napier et al. Vol. 2 pg. 3.9 for more detail.	
Line 7:	Acute or chronic release flag, ACUTE. See B. Napier et al. Vol. 2 pg. 3.9 for more detail.	
Line 8:	This line contains a reminder of the type of individual exposure parameters used for inhalation, ingestion, and external exposure. See B. Napier et al. Vol. 2 pg. 3.9 for more detail.	
Lines 9 to 10:	Header line for transport pathway options.	
Line 11:	Atmospheric transport flag, AIR. See B. Napier et al. Vol 2. pg. 3.10 for more detail.	
Line 12:	Surface water transport flag, SWAT.	
Line 13:	Biotic transport flag (only activated for near-field scenarios with subsurface contamination), BIOT. Inoperative in GENII-A version.	
Line 14:	Waste form degradation flag (only activated for near field scenarios with buried wastes), BURWAS. Inoperative in GENII-A version.	
Line 15 to 16:	Report Options header.	

_

Line 17:	Flag for type of dose calculation, OUTEDE. See B. Napier et al. Vol 2. pg. 3.10 for more detail.
Line 18:	Flag to provide report of exposure by radionuclide, OUTRAD.
Line 19:	Flag to provide report of exposure pathway, OUTPTH.
Line 20:	Flag to provide debugging output, DEBUG. See B. Napier et al. Vol 2. pg. 3.11 for more detail.
Lines 21 to 22:	Header line for exposure pathway options.
Line 23:	Flag to activate finite plume external exposure pathway, FINITE. See B. Napier et. al Vol. 2 pg. 3.11 for more detail.
Line 24:	Infinite plume external exposure flag, AIREXT.
Line 25:	Soil exposure external exposure flag, GROUND.
Line 26:	Aquatic recreation (swimming, boating, shoreline) exposure flag, RECRE.
Line 27:	Inhalation exposure flag, INHAL.
Line 28:	Drinking water ingestion exposure flag, DRINK.
Line 29:	Aquatic foods ingestion exposure flag, AQFOOD.
Line 30:	Terrestrial foods (crops) ingestion exposure flag, TFOOD.
Line 31:	Animal product (meat, milk, eggs) ingestion exposure flag, ANFOOD.
Line 32:	Inadvertent soil ingestion model exposure flag, SLING.
Lines 33 to 35:	Inventory editing header.
Line 36:	Selection of radionuclide inventory activity units, IUNIT. See B. Napier et al. Vol. 2 pg. 3.12 for more detail.
Line 37:	Selection of surface soil inventory units- the source may be entered in terms of area, volume, or mass, SOLUNT.
Line 38: .	Number of nuclides in source term.
Lines 39 to 46:	Inventory editing headers. See B. Napier et al. Vol. 2 pg. 3.12 for more detail.

Lines 47 to 54:	Inventories of radionuclides may be entered here for release or basic concentrations. See B. Napier et al. Vol. 2 pg. 3.12 for more detail.
Lines 55 to 60:	Derived concentration editing header. Inventories of derived concentrations of radionuclides may be entered following this header. See B. Napier et al. Vol. 2 pgs. 3.12 and 3.13 for more detail (not listed in sample listing shown in Section A.2).
Lines 61 to 63:	Time editing header. See B. Napier et al. Vol. 2 pg. 3.13 for more detail.
Line 64:	Length of time over which the intake occurs (time from "Intake Begins" to "Intake Ends." See B. Napier et al. Vol. 2 pg. 3.13 for more detail.
Line 65:	Dose commitment.
Line 66:	Length of time over which release occurs during exposure (time from " Intake Begins" to "Release Stops"), RELEND. If the AEDE ONLY options has been selected for the reports, only one year will be used.
Line 67:	Length of time prior to time "Intake Begins" that inventory atmospheric release was initiated (the early portion of the "Release Period"), BEFAIR, yr.
Line 68:	Length of time prior to time "Intake Begins" that inventory surface water release and irrigation were initiated (the early portion of the "Release Period"), BEFIRR, yr.
Line 69 to 71:	Far-field scenario parameter editing header.
Line 72:	To calculate population doses, you will be asked to input consumption/ exposure parameters for an average individual in the population. See B. Napier et al. Vol. 2 pg. 3.14 for more detail. In this sample file, the number "1" corresponds to the case where the number of people will be read from POP.IN.
Line 73:	If only the total population is being used, enter it on this line, POPIN, persons. In this sample file, the number "2" on Line 72 corresponds to this selected option.
Lines 74 to 77:	Near-field scenario editing header. B. Napier et al. Vol. 2 pg. 3.14 for more detail.
Line 78:	The length of time prior to the time "Intake Begins" that the inventory "Disposal" was initiated, BEFORE, yr.

ł

1

-

Line 79:	The length of time prior to the time that "Intake Begins" that Loss of Institutional Control (LOIC) occurred, allowing biotic transport to begin, LOIC, yr. Inoperative in GENII-A version.
Line 80:	A two-compartment model of plant roots is allowed. Root fractions are used in regular plant concentration model. The upper soil fraction is entered on this line, RF1. See B. Napier et al. Vol. 2 pg. 3.15 for more detail.
Line 81:	The deep soil root fraction is entered on this line, RF2.
Line 82:	For scenarios involving physical disruption that mixes deeply buried waste with surface soil, a "Manual Redistribution" factor is available, MANULR. See B. Napier et al. Vol. 2 pg. 3.15 for more detail.
Line 83:	A simple geometric model of dose rate reduction for small surface areas is provided. Enter the area of the contaminated surface on this line in square meters, FRSIZ.
Line 84:	The flag used to initiate the spherical sample calculation is set to 1250.
Line 85:	Transport editing header.
Line 86:	Air transport editing header.
Lines 87 to 90:	A number of options are available to determine air concentration from releases. The option is selected by specifiying a parameter XOQOPT on line 88 of this field. See B. Napier et. al. Vol.2 pgs. 3.15 to 3.18 for more detail.
Line 91:	Input chi/Q or population-weighted chi/Q, if used, goes on this line, XOQI, sec $/m^3$ or person-sec/m ³ .
Line 92:	Sector index for the location of the Maximum Individual, MIDIR. See B. Napier et al. Vol. 2 pg. 3.18 for more detail.
Line 93:	Distance of Maximum Individual from the release point, meters, MIDIST. See B. Napier et al. Vol. 2 pg. 3.18 for more detail.
Line 94:	Stack height or effective stack height, SHITE, m.
Line 95:	Flag for use of joint frequency data, as defined by XOQOPT, JFIN.
Lines 96 to 97:	Surface Water Transport editing header. See Napier et al. Vol. 2 pg. 3.19 for more detail.
Line 98:	Indicator for which mixing ratiio model to use. MIXFLG. See Napier et al. Vol. 2 pg. 3.19 for more detail.

.

Line 99:	Input mixing ratio MIXFLG=0, MIXR.
Line 100:	Average river flow rate, SWFLOW. For MIXFLG=0, the units are m^3/s ; for MIXFLG=1 or 2, the units are m/s.
Line 101:	Transit time to irrigation withdrawal location, SWTT, h.
Line 103:	Exposure editing header.
Line 104:	External exposure editing header.
Line 105:	Header for the exposure time for plume.
Line 106:	Length of external exposure (per year) to chronic atmospheric plumes, HRPLUM, h.
Line 107:	Length of external exposure per year to soil contamination, HRGRD, h.
Line 108:	Length of external exposure to spherical sample (hours).
Line 109:	Depth of soil over source. This parameter is also used when spherical sample calculation is implemented, in which case 0.15 m is specified.
Line 110:	Length of time spent per year swimming in contaminated water, HRSWIM, h.
Line 111:	Length of time spent by individuals (per year) boating, HRBOAT, h.
Line 112:	Length of time spent by individuals exposed in shoreline activities, HRSHOR, h.
Line 113:	Index for type of shoreline at the exposure location, SHRTYP. See B. Napier et al. Vol.2, pg. 3.22 for more detail.
Line 114:	Travel time of water from the release point to the recreational exposure point, RECTT, h.
Line 115:	For the acute air submersion model, the fraction ot total plume travel time that the individual spends in the plume, FRCLOD.
Lines 116 to 117:	Irrigation header.
Line 118:	Irrigation flag, RESIRR (T or F).
Lines 119 to 120:	Irrigation source selection, IRRSR (1=groundwater, 2=surface water).

- Line 121: Irrigation application rate, RIRR (in/yr).
- Line 122: Irrigation time in months/year, IRTIMR.
- Line 123: Inhalation editing header. See B. Napier et al. Vol.2, pg. 3.22 for more detail.
- Line 124: Hours per year an individual spends exposed to contaminated air from either chronic plumes or from resuspension. HRINH, h.
- Line 125: Flag for activating resuspension models, IRES. See B. Napier et al. Vol.2, pg. 3.22 for more detail.
- Line 126: If IRES =1, the mass loading factor XMLF, g/m^3 . If IRES =2, the depth of the top layer of soil that is available for resuspension AVALSL, cm.
- Lines 127 to 128: Ingestion Population editing header. See B. Napier et al. Vol.2, pp. 3.22 to 3.23 for more detail.
- Line 129: Option selection for food production, FOQOPT. (Called "Atmospheric production" option because air transport of particulates is involved through the chi/Q factor.)
- Line 130: If FOQOPT =0, then the food-weighted chi/Q is entered on this line, FOQ, kg-sec/m³.
- Lines 131 to 133: Editing information.
- Line 134: The number of people ingesting the aquatic food harvest, AQUPOP, persons, if different than the total population. See B. Napier et al. Vol.2, pg. 3.23 for more detail.
- Line 135: The number of people drinking water from the contaminated source, DWPOP, persons, if different than the total population. See B. Napier et al. Vol.2, pg. 3.24 for more detail.
- Line 136: An option is available to consider the total population of foods in the assessment area. The flag for this option is on this line, EXPORT. See B. Napier et al. Vol.2, pg. 3.24 for more detail.
- Lines 137 to 139: Aquatic Food/Drinking Water editing header.
- Line 140: Flag for consideration of freshwater or marine bioaccumulation factors for the aquatic food pathways, ISALT.
- Lines 141 to 142: Drinking Water editing header.

Line 143:	Because GENII-A allows simultnaeous consideration of several sources of contamination (surface water and ground water), you need to indicate which source is to be used for drinking, DWSRC. See Napier et al. Vol.2, pp. 3.24 and 3.25 for more detail.
Line 144:	Flag to indicate whether drinking water is treated through a water treatment facility, DWTRET.
Line 145:	Holdup /transit time for drinking water before use (decay), HOLDDW; days.
Line 146:	Drinking water consumption rate, DWUSAG; liters/year.
Lines 147 to 155:	For each of the aquatic food types you select with the flag in the first column (AQF), several parameters must be entered. See B. Napier et al. Vol.2, pg. 3.24 for more detail.
Lines 156 to 161:	Terrestrial food ingestion editing header.
Line 162 to 165:	Input of terrestrial food parameters. See B. Napier et al. Vol.2, pg. 3.25 for more detail.
Line 166 to 173:	Animal production consumption editing header.
Line 174 to 180:	For each of the animal products you may select (flag ANF), several parameters must be entered to define the conditions under which the products are produced. See B. Napier et al. Vol.2, pp. 3.25 to 3.26 for more detail.

, **1** , , 1.

A.2 Sample Listing

```
test file sample3 genii alpha
2
3
                  Created on 12 Oct-95
5 F Near-field scenario?
     Population dose?
6 T
     Acute release?
Maximum Individual data set used
7 T
8
9
                         Complete
10 TRANSPORT OPTIONS===========Section
11 T
                   Air Transport
12 F
           Surface Water Transport
     Biotic Transport (near-field)
13 F
14 F
      Waste Form Degradation (near)
15
17 T
     Report AEDE only
18 T
         Report by radionuclide
19 T
         Report by pathway
20 F
         Debug Report
21
                       Complete
22 EXPOSURE PATHWAY OPTIONS===== Section
23 F Finite plume, external
24 Т
25 Т
          Infinite plume, external
              Ground, external
26 F
           Recreation, external
27 T
            Inhalation uptake
     Drinking water ingestion
Aquatic foods ingestion
28 F
29 F
30 T Terrestrial foods ingestion
31 т
      Animal product ingestion
32 F
       Inadvertent soil ingestion
33
35
36 4
      Inventory input activity units: (1-pCi 2-uCi 3-mCi 4-Ci 5-Bq)
37 0 Surface soil source units (1-m2 2-m3 3-kg)2
38 8 Number of nuclides in source term
39
      -----Basic Concentrations------
40
41
     Use when | transport selected | near-field scenario, optionally
42
      ReleaseSurface BuriedSurface DeepGround SurfaceRadio-AirWaterWaterNoNuclide/yr/yr/m3/L/unit
43
44
45
      46
     SM153 2.8E-04
47
           6.8E-06
48
     EU154
49
     EU155
            7.0E-06
50
     EU156 7.8E-04
           1.2E-06
    CO60
51
           2.9E-06
52
    CR51
    FE59
     FE59 2.5E-06
FE55 3.0E-05
53
54
55 -----Derived Concentrations-----
    Use when | measured values are known |
56
     Release | Terres. Animal Drink Aquatic |
57
58 Radio- |Plant Product Water Food |
59 nuclide |/kg /kg /l /kg |
     60
```

12

```
61
63
64
     1. Intake ends after (yr)
    50. Dose calc. ends after (yr)
65
66
     1. Release ends after (yr)
     0 No. of years of air deposition prior to the intake period
67
68
     0 No. of years of irrigation water deposition prior to the intake period
69
71
72 2
            Definition option: 1-Use population grid in filePOP.IN
73 l
                      2-Use total entered on this line
74
76
77
           Prior to the beginning of the intake period: (yr)
78 0
             When was the inventory disposed? (Package degradation starts)
79 0
             When was LOIC? (Biotic transport starts)
           Fraction of roots in upper soil (top 15 cm)
80 0.0000
81 0.0000
          Fraction of roots in deep soil
82 0.0
           Manual redistribution: deep soil/surface soil dilution factor
83 0.0
           Source area for external dose modification factor (m2)
84 0.0
           Source area for close examination dose factor (m2)
86
      ,
87
                 0-Calculate PM
38 1
           Option: 1-Use chi/Q or PM value
89
                 2-Select MI dist & dir
90
                  3-Specify MI dist & dir
91 6.8E-03
         Chi/Q or PM value
92 0
          MI sector index (1=S)
93 .000E+00 MI distance from release point (m)
94 1.0
          Release height (m)
95 F
          Use jf data, (T/F) else chi/Q grid
96
97
            98 0
           Mixing ratio model: 0-use value, 1-river, 2-lake
99
   0
           Mixing ratio, dimensionless
           Average river flow rate for: MIXFLG=0 (m3/s) MIXFLG=1,2 (m/s)
100
   0.00
101
            Transit time to irrigation withdrawl location (hr)
   0.0
102
           If mixing ratio model > 0:
104
            105
           Exposure time (hours):
106
   Ο.
          Plume (hr)
107 2920.0
          Surrounding soil contamination duration (hr)
108 0.0
           Examined soil contamination duration (hr)
109
   0.0
           Soil overburden depth (m)
110
   0.0
           Swimming (hr)
111
   0.0
          Boating (hr)
112
   0.0
           Shoreline activities (hr)
113 0.0
            Shoreline type: (1-river, 2-lake, 3-ocean, 4-tidal basin
114 0.0
             Transit time for release to reach aquatic recreation (hr)
115 1.0
           Average fraction of time submersed in acute cloud (hr/person hr)
116
           Residential irrigation;
117
118 т
         Consider: (T/F)
119 0
         Source: 1-ground water
120
                2-surface water
121 0.0
         Application rate (in/yr)
122 0.0
         Duration (mo/yr)
123
```

124 2920.0Hours of exposure to contamination per year125 0.00-No resus- 1-Use Mass Loading 0-No resus- 1-Use Mass Loading 2-Use Anspaugh model 126 0.0 pension Mass loading factor (g/m³) Top soil available (cm) 127 128 129 1 Atmospheric production option 130 .000E+00 0-Use food-weighted chi/Q, (kg-sec/m^3), enter value on this line 131 1-Use population-weighted chi/Q 132 2-Use uniform production 133 3-Use chi/Q and production gridss (PRODUCTION will be overridden) 134 0 Population ingesting aquatic foods, 0 defaults to total (person) 135 0 Population ingesting drinking water, 0 defaults to total (person) 136 F Consider dose from food exported out of region (default=F) 137 Note below: S* or Source: 0-none, 1-ground water, 2-surface water 138 3-Derived concentration entered above ==== AQUATIC FOODS / DRINKING WATER INGESTION========SECTION 8==== 139 140 F Salt water? (default is fresh) 141 DRINKING WATER (Humans) 142 -----143 2 SOURCE (see above) 144 т TREATMENT? T/F 145 1.0 HOLDUP/TRANSIT(da) 146 730.0 CONSUMPTION (L/yr) 147 TRAN- PROD- -CONSUMPTION-148 USĒ 149 ? FOOD SIT UCTION HOLDUP RATE 150 T/F TYPE hr kg/yr da kg/yr 151
 F
 FISH
 0.0
 1.5E+04
 1.00
 40.0

 F
 MOLLUS
 1.0
 0.0E+00
 0.00
 0.0

 F
 CRUSTA
 1.0
 0.0E+00
 0.00
 0.0
 152 153 154 F 1.0 0.0E+00 CRUSTA 0.00 0.0 F PLANTS 1.0 0.0E+00 0.00 155 0.0 157 158 USE GROW --IRRIGATION--PROD---CONSUMPTION--159 ? FOOD TIME S RATE TIME YIELD UCTION HOLDUP RATE 160 T/F TYPE da * in/yr mo/yr kg/m2 kg/yr da ka/vr 161
 T
 LEAF V 90.00
 0
 0.0
 1.5
 0.0E+0
 14.0

 T
 ROOT V 90.00
 0
 0.0
 0.0
 4.0
 0.0E+0
 14.0

 T
 FRUIT 90.00
 0
 0.00
 0.0
 2.0
 0.0E+00
 14.0

 T
 FRUIT 90.00
 0
 0.00
 0.0
 2.0
 0.0E+00
 14.0

 T
 GRAIN 90.00
 0
 0.0
 0.0
 0.0
 2.0
 0.0E+00
 14.0
 162 15.0 0.0E+0 14.0 0.0E+00 14.0 0.0E+0 180.0 140.0 163 164 64.0 165 72.0 166 167 168 169 ---HUMAN---- TOTAL DRINK -----STORED FEED------170 USE CONSUMPTION PROD- WATER DIET GROW -IRRIGATION-- STOR-171 ? FOOD RATE HOLDUP UCTION CONTAM FRAC- TIME S RATE TIME YIELD AGE kg/yr da kg/yr FRACT. TION da * in/yr mo/yr kg/m3 da 172 T/F TYPE 173 --- -----_____ ____ 0.0 90.00 0 0.0 0.0 BEEF 70.0 34.0 0.00 0.0 0.80 0.0 174 т POULTRY 8.5 34.0 0.00 0.0 175 т 176 T MILK 230.0 4.0 0.00 0.0 0.0 45.00 0 0.0 0.0 2.00 0.0 177 T EGG 20.0 18.0 0.00 0.0 0.0 90.00 0 0.0 0.0 0.80 0.0 178 -----FRESH FORAGE------0.00 45.00 2 0.0 0.0 2.00 100.0 179 BEEF 180 MILK 0.00 30.00 2 0.0 0.0 1.50 0.0 181

Appendix B: Input Filenames File

FILENAME	.DAT:18

FILENAM	
2	HOMESROOT: [GENIL.FILES] RMDLIB.DAT
3	HOME\$ROOT: [GENII.FILES]METADATA.DAT
4	HOMESROOT: [GENIL.FILES] RMDBYELE.DAT
8	HOME\$ROOT: [GENII.FILES]FTRANS.DAT
9	HOMESROOT: [GENIL.FILES] BIOACL.DAT
10	HOME\$ROOT: [GENII.FILES]GRDF.DAT
11	HOME\$ROOT: [GENII.FILES]ENV.IN
12	HOMESROOT: [GENIL.FILES] DOSSUM.DAT
13	HOME\$ROOT: [GENII.FILES]ENV.OUT
14	HOMESROOT: [GENII.FILES]DOSE.OUT
15	HOMESROOT: [GENIL.FILES] INTDF.OUT
16	HOME\$ROOT: [GENII.FILES]CDEINC.OUT
17	HOME\$ROOT: [GENII.FILES]DITTY.OUT
18	HOME\$ROOT: [GENII.FILES] INTDF. IN
19	HOMESROOT: [GENII.FILES] DITTYQA.OUT
20	HOME\$ROOT: [GENIL.FILES]CDE.OUT
21	HOME\$ROOT: [GENIL.FILES]MEDIA.OUT
22	HOMESROOT: [GENII.FILES] DEFAULT. IN
23	HOMESROOT: [GENII.FILES] JOINTFRE. IN
24	HOMESROOT: [GENII.FILES]CHIQ. IN
25	HOMESROOT: [GENII.FILES] PLUMDRF.DAT
26	HOMESROOT: [GENII.FILES] ENERGY.DAT
27	HOMESROOT: [GENII.FILES] POP. IN
28	HOMESROOT: (GENIL FILES)GENIL2.00T
30	HOMPSROOT: [GENII.FILES]DSFCT30.DAT
31	HOMESROOT: (GENII. FILES) WATREL. IN
32	HOMESROOT: [GENII.FILES]AIRREL, IN HOMESROOT: [GENII.FILES]DITTY, IN
33	HOMESROOT: [GENIL.FILES] DIFTLIN HOMESROOT: [GENIL.FILES] ISOLIB.DAT
34 35	NOMESROOT: [GENIL FILES] ISOHIS . DAT
	HOMESROOT: [GENII FILES] EXTDF. OUT
36	HOMESROOT: [GENII.FILES] DOSINC.OUT
37	HOMESROOT: [GENII.FILES] BOSING. OUT
38 39	HOMESROOT: [GENII.FILES] DOSEQA.OUT
40	HOMESROOT: [GENIL.FILES] DOSINC.DAT
41	HOMESROOT: [GENII . FILES] SEE. IN
42	HOMESROOT: [GENIL FILES] FOODPROD. IN
44	HOMESROOT: [GENIL.FILES] SEERPT.OUT
45	HOMESROOT: [GENTI.FILES] SEEL.DAT
46	HOMESROOT: [GENTI.FILES] SEE2.DAT
47	HOMESROOT : [GENII . FILES] SEE3 . DAT
48	HOMESROOT: [GENII.FILES]WORK.BUF
49	HOMESROOT: [GENII . FILES]WORK2 . BUF
50	HOMESROOT: [GENII.FILES]WORK3.BUF
[End of	
	-

•

Appendix C: Sample Output Dose File

GENII-A Dose Calculation Program (Version 2.10 15-Dec-95)	
Case title:	Demonstration of CAMCON PREGENII/GENII interface

Executed on: 01/19/96 at 12:22:33 Page C. 4

Release period:	1.0
Uptake/exposure period:	1.0
Dose commitment period:	50.0
Dose units:	Person rem

Organ	Committed Dose Equivalent	Weighting Factors	Weighted Dose Equivalent
Gonads	1.2E-01	2.5E-01	3.0E-02
Breast	1.1E-01	1.5E-01	1.6E-02
R Marrow	2.8E-01	1.2E-01	3.4E+02
Lung	2.0E-01	1.2E-01	2.4E-02
Thyroid	2.0E+02	3.0E-02	6.1E+00
Bone Sur	2.3E+00	3.0E-02	6.8E-02
Liver	3.7E-01	6.0E-02	2.2E-02
LL Int.	9.9E-02	6.0E-02	5.9E-03
Stomach	9.7E-02	6.0E-02	5.8E-03
UL Int.	9.3E+02	6.0E-02	5.6E-03
S Int.	9.0E-02	6.0E-02	5.4E-03
**			
Internal Effect	ive Dose Equ	ivalent	6,3E+00
External Dose			3.3E-02
Annual Effectiv	7e Dose Equiv	alent	6.3E+00

Controlling Organ:	Thyroid
Controlling Pathway:	Ing
Controlling Radionuclide:	I 129
*****-	
Total Inhalation EDE:	1.6E-01
Total Ingestion EDE:	6.1E+00

GENII-A Dose Calculation Program (Version 2.10 15-Dec-95)

Person rem

Demonstration of CAMCON PREGENII/GENII interface Case title:

Executed on:	01/19/96 at 12:22:33	Page C. S
Release perio	d:	1.0
Uptake/exposu	re period:	1.0
Dose commitme	nt period:	50.0

Dose commitment period: Dose units:

Dose Commitment Year 1 2 3 ... Internal : Intake 3 0.0E+00 ... Year: 2 1 0.0E+00 0.0E+00 ... Internal Effective 1 5.5E+00 + 6.0E-01 + 6.8E-02 + ... = 6.3E+00 Dose Equivalent Н 11 Cumulative Internal 5.5E+00 + 6.0E-01 + 6.8E-02 + ... = 6.3E+00 Internal Annual Dose Dose + + + * External

. ...

.

· ...

Annual Dose	3.3E-02 0.0E+00 0.0E+00 3.3E-02					
Annual	Cumulative					
Dose	5.6E+00 + 6.0E-01 + 6.8E-02 + = 5.3E+00 Dose					
	Maximum 5.62+00 Annual Dose Occurred In Year 1					
	GENII-A Dose Calculation Program					
(Version 2.10 15-Dec-95)						
Case title:	Demonstration of CAMCON PRECENII/GENII interface					
Executed on: 01/19/96 at 12:22:33 Page C. 6						
Release period	d: - 1.0					
Uptake/exposur Dose commitmer Dose units:						
	Computed Dose Equivalent by Exposure Pathway					
	Lung Stomach S Int. UL Int. LL Int. Bone Su R Marro Testes					
Inhale	1.1E-01 4.9E-03 5.0E-03 5.7E-03 6.6E-03 2.1E+00 1.7E-01 3.3E-02					
Leaf Veg Oth. Veg	2.2E-03 2.5E-03 2.1E-03 2.5E-03 3.5E-03 1.4E-02 3.6E-03 2.2E-03 1.4E-02 1.4E-02 1.4E-02 1.4E-02 1.6E-02 3.6E-02 1.9E-02 1.4E-02					
Pruit	6.0E-03 6.2E-03 5.9E-03 6.2E-03 6.8E-03 1.4E-02 7.9E-03 5.9E-03					
Cereals	2.1E-02 2.2E-02.2.1E-02 2.2E-02 2.2E-02 3.7E-02 2.7E-02 2.1E+02					
feat	1.4E-02 1.4E-02 1.4E-02 1.4E-02 1.5E-02 1.7E-02 1.7E-02 1.4E-02					
Poultry Cow Milk	1.4E-03 1.4E-03 1.4E-03 1.4E-03 1.4E-03 1.7E-03 1.7E-03 1.4E-03 2.6E-02 2.9E-02 2.5E-02 2.5E-02 2.5E-02 3.1E-02 3.2E-02 2.4E-02					
low milk Eggs	2.6E-02 2.7E-03 2.6E-03 2.6E-03 2.6E-03 3.2E-03 3.3E-03 2.6E-03					
fotal	2.0E-01 9.7E-02 9.08-02 9.3E-02 9.9E-02 2.3E+00 2.8E-01 1.2E-01					
	Ovaries Muscle Thyroid Kidneys Liver Spleen					
Inhale	3.3E-02 4.9E-03 1.1E+00 1.5E-02 3.6E-01 1.0E-08					
Leaf Veg	2.2E-03 3.0E-03 1.2E+01 2.0E-06 2.0E-03 6.5E-10					
Oth, Veg	1.4E-02 1.5E-02 2.4E+01 3.4E-06 3.4E-03 1.1E-09					
Fruit	6.0E-03 6.5E-03 7.6E+00 1.1E-06 1.1E-03 3.6E-10					
Cereals	2.1E-02 2.2E-02 1.2E+01 1.8E-06 1.9E-03 2.2E-11					
Meat Poultry	1.4E-02 1.5E-02 1.1E+01 1.7E-07 4.8E-06 7.3E-15 1.4E-03 1.4E-03 4.5E-03 3.1E-08 4.2E-09 4.9E-17					
Cow Milk	2.5E-02 3.5E-02 1.3E+02 1.0E-06 4.2E-07 3.1E-13					
Eggs	2.5E-03 2.7E-03 1.2E+00 6.1E-08 5.0E-07 6.9E-16					
Total	1.2E-01 1.1E-01 2.08+02 1.5E-02 3.7E-01 1.2E-08					
	External Dose by Exposure Pathway					
Plume	3.3E-02					
Plume Sur Soil	3.3E-02 1.3E-04					
Plume Sur Soil	3.3E-02 1.3E-04					
Plume Sur Soil Fotal	3.3E-02 1.3E-04 3.3E-02					
Plume Sur Soil Fotal	3.3E-02 1.3E-04 					
Plume Sur Soil Total	3.3E-02 1.3E-04 3.3E-02 GENII-A Dose Calculation Program					
Plume Sur Soil Total Case title: Executed on:	3.3E-02 1.3E-04 3.3E-02 GENTI-A Dose Calculation Program (Version 2.10 15-Dec-95)					
Plume Sur Soil Total Case Citle: Executed on: Release period	3.3E-02 1.3E-04 3.3E-02 GENII-A Dose Calculation Program (Version 2.10 15-Dec-95) Demonstration of CAMCON PREGENTI/GENTI interface 01/19/96 at 12:22:33 Page C. 7 d: 1.0					
Plume Sur Soil Total Case title: Executed on: Release perioc Uptake/exposur	3.3E-02 1.3E-04 3.3E-02 GENII-A Dose Calculation Program (Version 2.10 15-Dec-95) Demonstration of CAMCON PREGENTI/GENTI interface 01/19/96 at 12:22:33 Page C. 7 d: 1.0 re period: 1.0					
Plume Sur Soil Total Case title: Executed on: Release period Uptake/exposur Dose commitmer	3.3E-02 1.3E-04 3.3E-02 GENII-A Dose Calculation Program (Version 2.10 15-Dec-95) Demonstration of CAMCON PREGENTI/GENTI interface 01/19/96 at 12:22:33 Page C. 7 d: 1.0 re period: 1.0					
Plume Sur Soil Total Case title: Executed on: Release period Uptake/exposur Dose commitmer	3.3E-02 1.3E-04 3.3E-02 GENTI-A Dose Calculation Program (Version 2.10 15-Dec-95) Demonstration of CAMCON PREGENII/GENII interface 01/19/96 at 12:22:33 Page C. 7 d: 1.0 te period: 1.0 th period: 50.0					
Plume Plume Sur Soil Total Case title: Executed on: Release period Optake/exposur Dose commitmer Dose units: Radionuclide	3.3E-02 1.3E-04 3.3E-02 GENTI-A Dose Calculation Program (Version 2.10 15-Dec-95) Demonstration of CAMCON PREGENTI/GENTI interface 01/19/96 at 12:22:33 Page C. 7 A: 1.0 re period: 1.0 re period: 50.0 Person rem Committed Dose Equivalent by Radionuclide Lung Stomach S Int. UL Int. LL Int. Bone Su R Marro Testes					
Plume Sur Soil Total Case title: Executed on: Release period Uptake/exposur Dose commitmer Dose units: Radionuclide	3.3E-02 1.3E-04 3.3E-02 GENTI-A Dose Calculation Program (Version 2.10 15-Dec-95) Demonstration of CAMCON PREGENII/GENII interface 01/19/96 at 12:22:33 Page C. 7 d: 1.0 te period: 1.0 te period: 50.0 Person rem Committed Dose Equivalent by Radionuclide Lung Stomach S Int. UL Int. LL Int. Bone Su R Marro Testes					
Plume Sur Soil Total Case Citle: Executed on: Executed on: Melease perior Uptake/exposur Dose commitmer Dose units: Radionuclide H 3	3.3E-02 1.3E-04 3.3E-02 GENTI-A Dose Calculation Program (Version 2.10 15-Dec-95) Demonstration of CAMCON PREGENTI/GENII interface 01/19/96 at 12:22:33 Page C. 7 d: 1.0 re period: 1.0 nt period: 50.0 Person rem Committed Dose Equivalent by Radionuclide Lung Stomach S Int. UL Int. LL Int. Bone Su R Marro Testes 1.8E-02 1.8E-02 1.8E-02 1.8E-02 2.2E-02 2.3E-02 1.8E-02					
Case Citle: Executed on: Release period Uptake/exposur Dose commitmer Dose units: Radionuclide	3.3E-02 1.3E-04 3.3E-02 GENTI-A Dose Calculation Program (Version 2.10 15-Dec-95) Demonstration of CAMCON PREGENII/GENII interface 01/19/96 at 12:22:33 Page C. 7 d: 1.0 te period: 1.0 te period: 50.0 Person rem Committed Dose Equivalent by Radionuclide Lung Stomach S Int. UL Int. LL Int. Bone Su R Marro Testes					

					0 00 05				0 0 0 -12
Y			1.9E-06						
NB	+ -		1.6E-08						
-	103		3.0E-07						
	103M		1.2E-08						
	106		3.9E-04						
-	125		2.7E-06						
			3.0E-07						
	129		1.9E-02						
	131		2.5E-06						
	131M		0.0E+00						
	134		4.8E-06						
	137		1.5E-05						
PM	147		5.1E-07						
	147		5.9E-18						
	212		9.62-04						
	212		9.3E-05						
PU	238		2.5E-07						
υ	234		4.9E-08						
Ũ	238		4.5E-08						
ТН	234		8.0E-09						
PA	234		1.0E-11						
PU	241		2.6E-07						
Ω,	237		9.3E-11						
AM	241		1.2E-06						
PU	237		0.0E+00						
NP	237	3.2E-13	7.8E-14	1.8E-13	9.9E-13	2.9E-12	1.8E-09	1.5E-10	1.3E-11
PA	233		1.1E-14						
50	239		3.1E-06						
Ų	235		2.1E-09						
îΉ	231		7.0E-11						
PA	231	1.2E-15	3.2E-15	7.7E-15	4.2E-14	1.3E-13	1.8E-10	1.4E-11	1.9E-16
AC	227		2.5E-18						
TH	227		1.4E-17						
	223		4.0E-19						

GENII-A Dose Calculation Program (Version 2.10 15-Dec-95)

Case title: Demonstration of CAMCON PREGENII/GENII interface

Executed on:	01/19/96 at 12:22:33	Page C.	8	

Release period: Uptake/exposure period: Dose commitment period: Dose units:

Committed Dose Equivalent by Radionuclide

1.0 1.0 50.0 Person rem

	001				2,	
Radionuclide	Ovaries M	uscle	Thyroid	Kidneys	Liver	Spleen
н 3	1.8E-02 1	85-02	1.8F-02	0.0E+00	0.02+00	0.05+00
C 14	5.82-02 5					
	0.0E+00 0					
	4.9E-07 4					
Y 90	3.1E-11 2	.8E-11	2.82-11	0.0E+00	8.2E-10	0.0E+00
ND 95	2.3E-08 8	.7E-09	6.0E-09	8.3E-09	0.0E+00	1.26-08
RU 103	3. 4E-07 1	.5E-07	1_1E-07	0.0E+00	0.02+00	0.0E+00
RH 103M	4.32-11 2	.8E-11	2.5E-11	0.0E+00	0.0E+00	0.0E+00
RU 106	2.0E-04 1	.9E-04	1.9E-04	0.02+00	0.0E+00	0.0E+00
SB 125	3.52-06 1	.22-06	7.6E-07	0.0E+00	2.7E-06	0.0E+00
	2.2E-07 7					
I 129	1.22-02 2					
I 131	3.3E-07 1					
XE 131M	0.012+00 0					
CS 134	4.2E-06 4					
	1.4E-05 1					
PM 147	2.3E-10 2	.4E-10	2.0E-10	0.0E+00	8.92-05	0.0E+00
	1.3£-20 1	.3E-20	1.3E-20	0.02+00	3. 1E-1 5	0.0 E+ 00
PB 212	9.1E-04 9					
BI 212	4.3E-05 4					
PU 238	1.3g-03 4					
U 234	3.6E-08 3					
	3.2E-08 3					
	2.3E-10 2					
PA 234	4.5E-12 6					
PU 241	3.1E-03 2					
U 237	6.3E-11 6					
	4.9E-03 4					
	0.05+00 0					
	1.3E-11 1 9.2E-15 9					
PA 233	9.2E-15 9 1.9E-02 6					
PU 239	1.3E-02 6					
U 235	1.3E-09 1 7.7E-12 5					
	4.08-16 3					
AC 227	9.5E-15 1	87-19	9 75-19	0.05+00	1 85-13	0.05+00
TH 227	2.5E-18 1	75-18	1 05-18	0.05+00	4.05-13	0.05+00
10 44/	* 01-2C.4		1.00-10	0.00.00	1.55-10	0.00+00

۰.

•

FR 223	3.9E-19 3.7E-19 3.7E-19 0.0E+00 0.0E+00 0.0E+00						
GENII-A Dose Calculation Program (Version 2.10 15-Dec-95)							
Case title:	Demonstration of CAMCON PREGENII/GENII interface						
	01/19/96 at 12:22:33 Page C. 9						
Release peri Uptake/expos Dose commitm Dose units:	od: 1.0 ure period: 1.0 ent period: 50.0 Person rem						
	Committed Dose Equivalent by Radionuclide						
	Lung Stomach S Int. UL Int. LL Int. Bone Su R Marro Testes						
RA 223	9.0E-17 1.4E-16 1.9E-16 6.9E-16 1.9E-15 8.2E-15 5.7E-16 9.0E-17						
Total	2.0E-01 9.7E-02 9.0E-02 9.3E-02 9.9E-02 2.3E+00 2.8E-01 1.2E-01						
GENII-A Dose Calculation Program (Version 2.10 15-Dec-95) Case title: Demonstration of CAMCON FREGENII/GENII interface Executed on: 01/19/96 at 12:22:33 Page C. 10							
Executed on:	01/19/96 at 12:22:33 Page C. 10						
Executed on: Release peri	01/19/96 at 12:22:33 Page C. 10 od: 1.0 ure period: 1.0						
Executed on: Release peri Uptake/expos	01/19/96 at 12:22:33 Page C. 10 od: 1.0 ure period: 1.0 ent period: 50.0						
Executed on: Release peri Uptake/expos Dose commitm Dose units: Radionuclide	01/19/96 at 12:22:33 Page C. 10 od: 1.0 ure period: 1.0 ent period: 50.0 Person rem Committed Dose Equivalent by Radionuclide Ovaries Muscle Thyroid Kidneys Liver Spleen						
Executed on: Release peri Uptake/expos Dose comitm Dose units: Radionuclide	01/19/96 at 12:22:33 od: ure period: ent period: Committed Dose Equivalent by Radionuclide Ovaries Muscle Thyroid Kidneys Liver Spleen 9.0E-17 9.0E-17 8.2E-17 0.0E+00 0.0E+00 0.0E+00						
Executed on: Release peri Uptake/expos Dose commitm Dose units: Radionuclide RA 223 Total	01/19/96 at 12:22:33 od: ure period: ent period: Committed Dose Equivalent by Radionuclide Ovaries Muscle Thyroid Kidneys Liver Spleen 9.0E-17 9.0E-17 8.2E-17 0.0E+00 0.0E+00 0.0E+00 1.2E-01 1.1E-01 2.0E+02 1.5E-02 3.7E-01 1.2E-08						
Executed on: Release peri Uptake/expos Dose commitm Dose units: Radionuclide RA 223 Total	01/19/96 at 12:22:33 Page C. 10 od:						
Executed on: Release peri Uptake/expos Dose commitm Dose units: Radionuclide RA 223 Total	01/19/96 at 12:22:33 od: ure period: ent period: committed Dose Equivalent by Radionuclide Ovaries Muscle Thyroid Kidneys Liver Spleen 9.0E-17 9.0E-17 8.2E-17 0.0E+00 0.0E+00 0.0E+00 1.2E-01 1.1E-01 2.0E+02 1.5E-02 3.7E-01 1.2E-08 GENII-A Dose Calculation Program (Version 2.10 15-Dec-95)						
Executed on: Release peri Uptake/expos Dose commitm Dose units: Radionuclide RA 223 Total Case title: Executed on:	01/19/96 at 12:22:33 od: ure period: ent period: Committed Dose Equivalent by Radionuclide Ovaries Muscle Thyroid Kidneys Liver Spleen 9.0E-17 9.0E-17 8.2E-17 0.0E+00 0.0E+00 0.0E+00 1.2E-01 1.1E-01 2.0E+02 1.5E-02 3.7E-01 1.2E-08 GENII-A Dose Calculation Program (Version 2.10 15-Dec-95)						

		Inhalation	Ingestion		Internal	Annual
		Effective	Effective		Effective	Effective
	dio-	Dose	Dose	External	Dose	Dose
nuo	clid e	Equivalent	Equivalent	Dose	Equivalent	Equivalent
Ħ	-	2.7E-03				1.8E-02
С		8.9E-04	\$.6E-02	0.0E+00	5.7E-02	
KR		0.0E+00	0.02+00	3.3E-02		
SR	90	1.7É-05	5.8E-05	2.9E-10	7.6E-05	7.6E-05
Y	90	2.6E-08	4.9E-06	1.5E-08	4.9E-06	4.9E-06
NB	95	2.4E-08	1.4E-08	1.6E-08	3.8E-08	5.4E-08
RU	103	7.7E-07	3.5E-07	2.3E-07	1.1E-06	1.4E-06
RH	103M	4.0E-10	1.4E-09	1.0E-10	1.8E-09	1.9E-09
RŬ	106	4.0E-03	7.22-04	4.4E-05	4.8E-03	4.82-03
SB	125	5.58-06	4.3E-06	5.3E-06	9.7E-06	1.5E-05
TE	125M	1.1E-09	1.7E-06	4.8E-09	1.7E-06	1.7E-06
I	129	3.3E-02	6.1E+00	7.6E-05	6.1E+00	5.1E+00
r	131	2.6E-06	1.1E-04	3.1E-07	1.1E-04	1.1E-04
ХE	131M	0.0E+00	0.0E+00	2.1E-11	0.0E+00	2.1E-11
ÇŞ	134	1.8E-07	4.3E-06	1.8E-07	4.5E-06	4.7E-06
ÇŞ	137	5.1E-07	1.3E-0\$	3.0E-07	1.4E-05	1.4E-05
PM	147	1.7E-05	1.8E-06	9.4E-11	1.92-05	1.9E-05
SM	147	7.5E-17	5.7E-16	0.02+00	6.5 E-16	6.5E-16
PB	212	1.22-02	4.7E-09	5.92-06	1.2E-02	1.2E-02
BI	212	1.5E-03	1.1E-10	5.1E-05	1.5E-03	1.6E-03
PU	238	5.1E-03	1.2E-04	1.8E-11	5.2E-03	5.2E-03
υ	234	1.1E-04	8.0E-07	2.2E-12	1.2E-04	1.2E-04
υ	238	1.0E-04	7.3E-07	1.2E-12	1.0E-04	1.02-04
TH	234	1.2E~10	2.9E-08	4.6E-10	3.0E+08	3.0E-08

.

PA 234	9.3E-16	7.7E-12	7.0E-11	7.7E-12	7.8E-11
PU 241	1.1E-02	2.5E-04	1.4E-15	1.1E-02	1.1É-02
U 237	1.6E-12	2.9E-10	3.2E-14	2.9E-10	2.9E-10
AM 241	1.9E-02	4.5E-04	6.3E-09	1.9E-02	1.9E-02
PU 237	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NP 237	3.3E-12	7.8E-11	8.8E-20	8.1E-11	8.1E+11
PA 233	1.2E-19	3.5E-14	3.7E-14	3.5E-14	7.2E-14
PU 239	7.4E-02	1.8E-03	2.7E+10	7.6E-02	7.6E-02
ΰ 235	3.7E-06	2.7E-08	6.7E-11	3.7E-06	3.7E-06
TH 231	2.2E-12	1.3E-10	4.0E-12	1.3E-10	1.4E-10
PA 231	1.8E-14	7.1E-12	2.7E-16	7.2E-12	7.2E-12
AC 227	0.0E+00	4.5E-14	7.7E-21	4.5E-14	4.5E-14
TH 227	0.0E+00	8.7E-17	6.7E-18	8.7E-17	9.4E-17
	(SENII-A Dose (Version)	Calculation 2.10 15-Dec-:	-	
Case title:	Demon:	stration of (CAMCON PREGE	NII/GENII in	terface
	01/19/96 a				Page C. 12
	Release per:	iod:		1.0	
		sure period:		1.0	
		ment period:			
	Dose units:	-	Person		

Radio~ nuclide	Inhalation Effective Dose Equivalent	Ingestion Effective Dose Equivalent	External Dose	Internal Effective Dose Equivalent	Annual Effective Dose Equivalent	
FR 223	0.0E+00	4.8E-19	4.0E-20	4.8E-19	5.2E-19	
RA 223	0.0E+00	5.4E-16	1.8E-17	5.4E-16	5.6E~16	
·						

.

.

Appendix D: Sample Output Input Echo File

		GEI		se Calcul n 2.10 15		jram -		
.							f	
Case titl	e :	Demonst	ration o	E CAMCON	FREGENII/	GENII interi	ace	
	on: 01/1						Page	
	Release :	is chron:	ic			ultiple site	e) scenario	•
	Dose to a	exposed 1	populari.	on or 3.	409E+05			
	THE FOLLA Air		NSPORT !	MODES ARE	CONSIDER	ED 、		
					CONSIDERE	D:		
		ite plum und, ext		nal				
		alation 1						
		restrial mal produ						
	THE FOLL	OWING TH ake ends				1.0		
	Dos	e calcula	ations e	nds after	(yr):	50.0		
	Rele	ease end:	s after	(72):		1.0		
	FILENAME	S AND TI	TLES OF	FILES/LIE	RARIES US	ED ======33		2===
	-	e11		a of cm.m				
	name: ult Paramet							
adionucli o	ie Master I	Library -	Long Tim	es (23-Ju				
	ransfer Factors							
	Solubiliti							
extigam - G	anna Energi	ies by Gro	mp for F	inite Plus	e (13-May-)	90 RAP)		
	Population							
200 AREA	- 89 M - 1	Pasquiit	M - t (1902 - 13	o/ Averag	e)		
				22222233				===0
		Rele	ease Ter	ms	=========	£39223232¥3		===0
.2		Rele	ease Ter	ms		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	====#819==	==30
.22\$\$2==2;	Release Radio- nuclide	Rele Air Ci/yr	ease Ter Surface Water Ci/yr	ms Buried Source Ci/m3			=#8%%	==30
	Release Radio- nuclide	Air Ci/yr	ase Ter Surface Water Ci/yr	Buried Source Ci/m3			*=**	
	Release Radio- nuclide	Air Ci/yr	ase Ter Surface Water Ci/yr	Buried Source Ci/m3			= <u></u> ¥ 2 1755	==30
	Release Radio- nuclide	Air Ci/yr	ase Ter Surface Water Ci/yr	Buried Source Ci/m3			*****	==30
	Release Radio- nuclide H 3 C 14 KR85 SR90	Air Cl/yr 7.0E+01 1.0E+00 7.0E+04 2.0E-04	ease Terr Surface Water Ci/yr 0.0E+00 0.0E+00 0.0E+00 0.0E+00	Buried Source Ci/m3 0.0E+00 0.0E+00 0.0E+00 0.0E+00				==30
	Release Radio- nuclide H 3 C 14 KR85 SR90 NE95	Air Cl/yr 7.02+01 1.02+00 7.02+04 2.02-04 1.02-05	ease Terr Surface Water Ci/yr 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	Buried Source Ci/m3 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00		<u>.</u>		==30
	Release Radio- nuclide H 3 C 14 KR85 SR90 NB95 RU103 RU103	Air C1/yr 7.0E+01 1.0E+00 7.0E+04 2.0E-04 1.0E-05 2.0E-04 2.0E-04	ease Ter Surface Water Ci/yr 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	Buried Source Ci/m3 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00		********		==30
	Release Radio- nuclide H 3 C 14 KR85 SR90 NB95 RU103 RU103 RU106 SB125	Rele Air C1/yr 7.0E+01 1.0E+00 7.0E+04 2.0E-04 1.0E-05 2.0E-04 2.0E-02 1.0E-03	ase Ter Surface Water Ci/yr 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	Buried Source Ci/m3 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00		********		==30
	Release Radio- nuclide H 3 C 14 KR85 SR90 NB95 RU103 RU103 RU103 RU103 RU103 RU104 SB125 OE-01 0.1	Rele Air Cl/yr 7.0E+01 1.0E+00 2.0E-04 2.0E-04 2.0E-02 1.0E-03 0E+00 0.0	ase Ter Surface Water Ci/yr 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	Buried Source Ci/m3 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00		********		==30
	Release Radio- nuclide 	Rele Air C1/yr 7.0E+01 1.0E+00 2.0E-04 2.0E-04 2.0E-02 1.0E-03 0E+00 0.1 2.0E-03 0E+00 0.1	Asse Terr Surface Ci/yr 0 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	Buried Source Ci/m3 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00		********		== 30
	Release Radio- nuclide 	Rele Air C1/yr 7.0E+01 1.0E+00 2.0E-04 2.0E-04 2.0E-02 1.0E-03 0E+00 0.1 2.0E-03 0E+00 0.1	Asse Terr Surface Ci/yr 0 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	Buried Source Ci/m3 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00		********		== 3 U
	Release Radio- nuclide 	Rele Air C1/yr 7.0E+01 1.0E+00 2.0E-04 2.0E-04 2.0E-02 1.0E-03 0E+00 0.1 2.0E-03 0E+00 0.1	Asse Terr Surface Ci/yr 0 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	Buried Source Ci/m3 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00				== 3 U
	Release Radio- nuclide 	Reld Air Cl/yr 7.0E+01 1.0E+00 7.0E+04 2.0E-04 1.0E-05 2.0E-04 1.0E-05 4.0E-05 1.0E-03 2.0E-04 1.0E-05 1.0E-03 2.0E-04	Surface Water Ci/yr 0.02+00 0.02+00 0.02+00 0.02+00 0.02+00 0.02+00 0.02+00 0.02+00 0.02+00 0.02+00 0.02+00 0.02+00 0.02+00 0.02+00	m5 Source Ci/m3 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00				== 3 5
	Release Radio- nuclide 	Air Cl/yr 7.0E+01 1.0E+01 1.0E+01 2.0E-04 1.0E-05 2.0E-02 1.0E-03 0E+00 0.4 2.0E-04 1.0E-05 4.0E-05 4.0E-05 1.0E-01 2.0E-04 2.0E-04	Surface Water Ci/yr 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	mS Buried Source Ci/m3 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00				
	Release Radio- nuclide H 3 C 14 KR85 SR90 NB95 RU103 RU103 RU106 SB125 .0E-01 0.1 I 131 CS134 CS134 CS134 CS137 PM147 PB212 BI712 U 234 U 235	Rele Air Cl/yr 7.0E+01 1.0E+01 7.0E+04 1.0E-05 2.0E-04 2.0E-04 1.0E-03 0E+00 0.1 2.0E-04 1.0E-03 0E+00 0.1 2.0E-04 1.0E-05 4.0E-05 1.0E-03 2.0E-04 1.0E-05 4.0E-05 1.0E-05 1.0E-03 2.0E-04 1.0E-05 4.0E-05 1.0E	Surface Water Ci/yr 	ms Source Ci/m3 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00		********		
	Release Radio- nuclide 	Rela Air Cl/yr 7.0E+01 1.0E+01 1.0E+02 2.0E-04 1.0E-05 2.0E-02 1.0E-03 0E+00 0.4 2.0E-04 1.0E-05 4.0E-05 4.0E-05 2.0E-04 1.0E-01 2.0E-04 2.0E-04 2.0E-04 3.0E-05 7.0E+01 1.0E+02 1.0E+01 1.0E+02 1.0E+01 1.0E+02 1.0E+02 1.0E+01 1.0E+01 1.0E+02 1.0E+02 1.0E+01 1.0E+02 1.0E+01 1.0E+03 1.0E+03 1.0E+01 1.0E+03 1.0E+0	Surface Water Ci/yr 0.0E+00	mS Buried Source Ci/m3 0.0E+00		********		
	Release Radio- nuclide H 3 C 14 KR85 SR90 NB95 RU103 RU103 SB125 .0E-01 0.1 I 131 CS134 CS134 CS134 CS137 PM147 PB212 BI712 U 234 U 235 U 238 PU231	Rele Air Cl/yr 7.0E+01 1.0E+01 7.0E+04 1.0E-05 2.0E-04 2.0E-04 1.0E-03 00E+00 0.1 2.0E-04 1.0E-03 2.0E-04 1.0E-03 2.0E-04 1.0E-03 2.0E-04 1.0E-05 4.0E-05 4.0E-05 4.0E-05 3.0E-06 3.0E-06 3.0E-05 3.0E-	Surface Water Ci/yr 	ms Buried Source Ci/m3 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00		********		
	Release Radio- nuclide 	Rele Air Cl/yr 7.0E+01 1.0E+00 7.0E+04 1.0E+05 2.0E-04 2.0E-04 2.0E-04 1.0E-03 0E+00 0.4 2.0E-04 1.0E-05 1.0E-03 1.0E-05 1.0E-01 2.0E-04 2.0E-04 3.0E+03 3.0E+05 3.0E+0	Surface Water Ci/yr 0.0E+00	mS Buried Source Ci/m3 0.0E+00		********		
129 5	Release Radio- nuclide H 3 C 14 KR85 SR90 NB95 RU103 RU106 SB125 .0E-01 0.1 I 131 CS134 CS137 PM147 P8212 BI212 U 234 U 235 U 238 PU238 PU241 AM241 PU239	Rele Air Cl/yr 7.0E+01 1.0E+01 2.0E-04 1.0E-05 2.0E-04 1.0E-03 0E+00 0.1 2.0E-04 1.0E-03 2.0E-04 1.0E-03 2.0E-04 1.0E-05 4.0E-04 2.0E-04 3.0E-03 1.0E-03 1.0E-03 1.0E-04 4.0E-04	Surface Water Ci/yr 	ms Buried Source Ci/m3 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00				
129 5	Release Radio- nuclide 	Rela Air Cl/yr 7.0E+01 1.0E+01 7.0E+04 2.0E-04 2.0E-04 2.0E-04 2.0E-04 1.0E-05 1.0E-03 2.0E-04 1.0E-01 2.0E-06 7.0E-08 2.0E-04 3.0E-03 1.0E-03 1.0E-04 4.0E-05 4.0E-05 4.0E-04 4.0E-05	Surface Water Ci/yr 	ms Buried Source Ci/m3 0.0E+00				
129 5 	Release Radio- nuclide 	Rele Air Cl/yr 7.0E+01 1.0E+01 7.0E+04 2.0E-04 2.0E-04 2.0E-04 2.0E-04 1.0E-03 0E+00 0.1 2.0E-04 1.0E-03 2.0E-04 1.0E-03 2.0E-04 1.0E-03 2.0E-04 3.0E-05 3.0E-0	Surface Water Ci/yr -0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	ms Buried Source Ci/m3 0.0E+00				
129 5 	Release Radio- nuclide 	Rele Air Cl/yr 7.0E+01 1.0E+00 7.0E+04 1.0E-05 2.0E-04 1.0E-03 0E+00 0.1 2.0E-02 1.0E-03 0E+00 0.1 2.0E-04 1.0E-05 1.0E-03 2.0E-04 1.0E-05 1.0E-03 1.0E-03 1.0E-03 1.0E-03 1.0E-04 4.0E-04 SPORT ** equency * ight (m) ow (m3/5)	Surface Water Ci/yr -0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	ms Buried Source Ci/m3 0.0E+00				
129 5 .9E+01 .0E+00 .0E+00	Release Radio- nuclide H 3 C 14 KR85 SR90 NB95 RU103 RV106 SB125 .0E-01 0.1 I 131 CS134 CS134 CS134 CS134 CS134 CS134 CS134 CS134 U 235 U 236 FV236 FV236 FV236 FV236 FV236 FV237 AIR TRAN Joint fr Stack he Stack fl	Rela Air Cl/yr 7.0E+01 1.0E+01 7.0E+04 2.0E-04 2.0E-04 2.0E-04 2.0E-04 1.0E-05 1.0E-03 0E+00 -0, 2.0E-04 1.0E-01 2.0E-06 7.0E-08 3.0E-03 1.0E-03 1.0E-04 4.0E-05 3.0E-04 4.0E-05 3.0E-04 4.0E-05 3.0E-04 4.0E-05 3.0E-04 4.0E-05 3.0E-04 4.0E-05 3.0E-04 4.0E-05 3.0E-04 4.0E-05 3.0E-04 4.0E-05 3.0E-04 4.0E-05 3.0E-04 4.0E-05 3.0E-04 4.0E-05 3.0E-04 4.0E-05 3.0E-04 4.0E-05 3.0E-04 4.0E-05 3.0E-04 4.0E-05 3.0E-04 4.0E-05 4.0E-05 3.0E-04 4.0E-05 3.0E-04 4.0E-05 3.0E-04 4.0E-05 3.0E-04 4.0E-05 3.0E-04 4.0E-05 3.0E-04 3.0E-04 3.0E-04 3.0E-04 3.0E-04 3.0E-04 3.0E-04 3.0E-05 3.0E-04 3.0E-04 3.0E-04 3.0E-04 3.0E-05 3.0E-04 3.0E-05 3.0E-04 3.0E-05 3.0E-0	Surface Water Ci/yr 0.0E+0000000000	mS Buried Source Ci/m3 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00				
129 5 .9E+01 .0E+00 .0E+00 .0E+00	Release Radio- nuclide 	Rela Air Cl/yr 7.0E+01 1.0E+01 7.0E+04 2.0E-04 2.0E-04 2.0E-04 2.0E-04 1.0E-05 1.0E-03 2.0E-04 1.0E-01 2.0E-04 3.0E-05 1.0E-04 3.0E-04 4.0E-05 3.0E-04 4.0E-05 3.0E-04 4.0E-05 4.0E-05 3.0E-04 4.0E-05	Surface Water Ci/yr 0.0E+0000000000	mS Buried Source Ci/m3 0.0E+0000000000				
129 5 .9E+01 .0E+00 .0E+00 .0E+00 .8.8E+03	Release Radio- nuclide 	Rele Air Cl/yr 7.0E+01 1.0E+01 7.0E+04 2.0E-04 2.0E-04 2.0E-04 2.0E-04 1.0E-03 0E+00 0.1 2.0E-04 1.0E-03 2.0E-04 1.0E-03 2.0E-04 1.0E-03 2.0E-04 1.0E-03 2.0E-04 3.0E-05 3.0E-05 3.0E-05 3.0E-05 3.0E-05 3.0E-04 4.0E-04 SPORT *** equency ight (m) sequences EXPOSUR exposure	Surface Water Ci/yr -0.0E+00 0.0E+0000000000	ms Buried Source Ci/m3 0.0E+0000000000				
129 5 .9£+01 .0E+00 .0E+00 .0E+00 .0E+00	Release Radio- nuclide 	Rele Air Cl/yr 7.0E+01 1.0E+01 7.0E+04 2.0E-04 2.0E-04 2.0E-04 2.0E-04 1.0E-03 0E+00 0.1 2.0E-04 1.0E-03 2.0E-04 1.0E-03 2.0E-04 1.0E-03 2.0E-04 1.0E-03 2.0E-04 3.0E-05 3.0E-05 3.0E-05 3.0E-05 3.0E-05 3.0E-04 4.0E-04 SPORT *** equency ight (m) sequences EXPOSUR exposure	Surface Water Ci/yr -0.0E+00 0.0E+0000000000	ms Buried Source Ci/m3 0.0E+0000000000				
129 5 .9£+01 .0£+00 .0£+00 .0£+00 .0£+00 .0£+00 .0£+00 .0£+00 .0£+00	Release Radio- nuclide 	Rele Air Cl/yr 7.0E+01 1.0E+01 7.0E+04 2.0E-04 2.0E-04 2.0E-04 2.0E-04 1.0E-03 0E+00 0.1 2.0E-04 1.0E-03 2.0E-04 1.0E-03 2.0E-04 1.0E-03 2.0E-04 1.0E-03 2.0E-04 3.0E-05 3.0E-05 3.0E-05 3.0E-05 3.0E-05 3.0E-05 3.0E-04 4.0E-04 SPORT *** equency ight (m) SCORT *** exposur SCORT *** exposur SCORT *** exposur SCORT *** exposur SCORT *** SCORT ** SCORT ** SCO	Surface Water Ci/yr -0.0E+00 0.0E+0000000000	ms Buried Source Ci/m3 0.0E+0000000000				

1 Atmospheric production definition: 1 - Use population-weighted chi/Q Food production in region assumed to equal consumption.

SUBSECTION SUBSECTION

	GROW	IRRIGATION				PROD-	CONSUMPTION		
FOOD	TIME	s	RATE	TIME	VIELD	UCTION	HOLDUP	RATE	
TYPE	d	*	in/yr	mo/yr	kg/m2	kg/yr	d	kg/yr	
		-							
Leaf Veg	90.0	0	0.0	0.0	1.5		14.0	1.5E+01	
Oth. Veg	90.0	0	0.0	0.0	4.0		14.0	1.4E+02	
Fruit	90.0	0	0.0	0.0	2.0		14.0	5.4E+01	
Cereals	90.0	0	0,0	0.0	0.8		180.0	7.2E+01	

ANIMAL FOOD INGESTION ADDRESSION ADDRESSION

FOOD TYPE	HUMA CONSUMP RATE H kg/yt		TOTAL PROD- UCTION kg/yr	DRINK WATER CONTAM FRACT	DIET FRAC- TION	GROW TIME d	- s	STORED IRRIGA RATE in/yr	TIME	YIELD kg/m3	STOR- AGE
Meat	7.0E+01	34.0		0.00		90.00	0	0.0	0.0	0.80	180.0
Poultry	8.5E+00	34.0		0.00	1.0	90.00	0	0.0	0.0	0.80	180.0
Cow Milk	2.3E+02	4.0		0.00	0.3	45.00	0	0.0	0.0	2.00	100.0
Eggs	2.0E+01	18.0		0.00	1.0	90.00	0	0.0	0.0	0.80	180.0
	FRESH	FORA	æ								
Meat					0.75	45.0	0	0.0	0.0	2.00	100.0
Cow Milk					0.75	30.0	0	0.0	0.0	1.50	0.0

Appendix E: Sample Diagnostics/Debug File

EE:22:21 96/6T/10

GEMII-Y C-5'TO 580D 5936 01/16/36

44	AA AA		IIII	IIII	N	NIN	3333333	595	1 00
AA.	ΑA		II	II	NN	NN	33	99	99
44	ΑA		II	II	NINN	NN	33	999	99
AAAA	444		II	II	NN I	NNN	33333		99
AA	¥۲		II	II	NN	NININ	33		99
AA.	ΥY		II	II	NN	NN	EE	୦୦	55
AAA	£.6		IIII	IIII	NN	N	3333333	595	භා

A program for generating doses, GENII

Sponsored by Leo Rahal WILLER DY BILLE Napler et al S6-SI-ZI POSTADA GENIL-A Version C-2.10

V.3V ZWYR-OD ITABE SXA AHALA no AWA 96/31/10 Jiind 36A9 ROOF 70, ALA 10, 11/16/96 Run on 01/19/96 at 12:22:33

for the United States Department of Energy Albuquerque, New Mexico 87185-5800 Sandia Mational Laboratories repared for

----remistorio

of the United States Government, any agency thereof or any of their contractors or subcontractors. expressed herein do not necessarily state or reflect those product, process, or service by trade none, trademark, or imply tic endorsement, recommendation, or favoring by the United States Government, any searcy thereof or any of their contractors or subcontractors. The viswa and opintons owned rights. Reference herein to any specific commercial of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately. responsibility for the accuracy, completeness, or usefulness πος any of their employees, πος any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or This computer program was prepared as an account of work sponsored by an agency of the United States Government. Weither the United States Government nor any agency thereof.

TUO.003_TT2ST_510[T23T.510]:TOOAT23T29W output dose file: 61:29:91 \$6/61/01 to Laistaw WPSTESTROOT: (GIZ. DAT)GIZ_FILEWAME.DAT; 1 :siit semensiit Juqui ZT:ST: \$5 S6/TZ/TT UO UBARTAM WPSTESTROOT: [GI2.TEST] GI2_TESTL_TRN.INP.1 isits fext file: SINGNADISSY 3713

CHECK: SEACK release not set, stack height set to 89.0 REDSET: Internal dose factors not found for XELJIM WESTERTOOT: [GI2.TEST]GI2_TEST1_D86.00T WPSTESTROOT: [GI2.TEST]GI2_TEST_TRN.OUT OUCDUC LIDUC CCHO LLIC:

Appendix F: Review Forms

•

.

This appendix contains review forms for the GENII-A User's Manual.

NOTE: Copies of the User's Manual Reviewer's Forms are available in the Sandia WIPP Central Files.

- --

