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MEMORANDUM
To: M.G. Marietta
From: T.W. Thompson, F.D. Hansen
Date; July 24, 1996
Subject: _Long-term Performance of Panel Closures
1. INTRODUCTION

 After waste has been emplaced in a panel, closures will be built to restrict flow from the panel
during the remainder of the operational phase. These closures will include a length of concrete
placed in the panel entries. Although it is not the intent of these closures to restrict flow over the
regulatory period of 10,000 years, values for their long-term performance characteristics are
required to successfully determine their contribution to overall system performance.

Flow of fluids into or out of the panels will be controlled by the conductance of the panel
closure, and of the surrounding disturbed rock zone (DRZ). Performance Assessment (PA)
-_ calculations use a constant value for DRZ permeability of 10"° m?, a value which is
substantiated in the records package for the waste rooms (reference). Consideration of the
current panel closure designs indicates that they will maintain their structural integrity for the
regulatory period. If this is the case, then the concrete element of the closure system will
continue to provide resistance to inward deformation of the surrounding salt, and will prohibit
the growth of the DRZ from its initia) state. Since the DRZ will not increase during the
regulatory period, and may decrease, the assumption of a constant DRZ permeability is
reasonable.

The panel closures have been designed to limit the flow of brine and gas between panels during
the operational phase, and current designs call for these operationa) closures 10 include concrete
elements (Figure 1). Although these closures are designed for an operational use, it is expected
that they will continue to provide fluid flow restriction during the post-closure phase. The
remainder of this memorandurmn establishes the permeability expectations of the closures, with
emphasis on the potential for concrete degradation and increase in permeability. For the
purposes of these analyses the concrete elements are taken to have a length of nominally 26 f
(7.9 m) (USDOE, 1996a,b). and to be made of a material chosen so as 1o be compatible with the
cnvironment, such as Salado Mass Concrete (SMC: Sandia, 1996) or a similar mix. Degradation
of the concrete may occur by interaction with brine flowing through the plug, or with brines
flowing along the plug/salt interface or in the DRZ.

2. CONCRETE PROPERTIES

RESPONSK TO CONCEFTUAL
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— The initial permeability expected for the concrete panel closures are documented in the materials
specification appendix of the Compliance Submitwal Design Report (CSDR) (Sandia, 1996)
developed for the shaft seal system. In addition to conventional engineering properties, the SMC
has well documented permeability characteristics, permeabilities having been determined from
field tests (Knowles and Howard, 1996) and laboratory studies (Pfeifle et al., 1996). Figure 2,
taken from the CSDR, summarizes the available data, and indicates a permeability for as-placed
SMC of between 2x102! and 1.8x10"” m’. For calculations performed in this memorandum a
value of 10”7 m? is used, this being at the high end of the values used by PA for the shaft
concrete components, and consistent with other data. For example, data on generic portland
cement pastes shows that the permeability of oil field concrete plugs is on the order of 1 x10'"
m?, while data from the Bell Canyon Tes! indicate permneabilities for borehole concrete plugs of §
x 10”7 m? (Petersen and Christensen, 1980; Christensen and Hunter, 1980).

For the purposes of calculating degradation of the concrete member an assumption of porosity is
necessary. The expected value is § %, which is higher than the 2% estimated by Petersen and
Christensen (1980) for the Bell Canyon Test plugs, but is generally consistent with practical
experience of field emplaced concrete structures, and is the value for cast in-place SMC given in
the CSDR (Sandia, 1996). An upper limit for porosity is taken as 10%, which is an engineering
estimate for concrete. .

As noted in the introduction, the concrete closure member is expected to be structurally stable for
the regulatory period, and to provide suppont for the surrounding rock and the DRZ. In this
contexi it can be noted that the unconfined compressive strength of SMC is greater than 4500 psi
(30 MPa), and that under the confined state of stress within the closure system the ultimate
strength will be greater than this (Pfeifle et al, 1996). This surength is sufficient to preclud
structural failure of the concrete member in the panel entries.

3. DEGRADATION OF CONCRETE

The solid matrix that makes up concrete is composed almost entirely of amorphous to
cryptocrystalline solid phases. These phases are thermodynamically unsiable, and with time and
exposure to water they alter into more stable and more crystalline assemblages. Thermodynamic
calculations conducted by Alcom et al (1992) have predicted the alteration phases of portland
cement due to exposure to a variety of waters and brines as including tobermorite, quartz,
gypsum, calcite, clays and zeolite, produced at the expense of soluble and unstable materials
such as portlandite. The theoretical alteration assemblage occupies more volume than the
original solids. These calculated results have been verified by subsequent experiments in which
waters and cement were reacted (Onofrei et al., 1992).

A1 free surfaces concrete materials are not physically supported and can spall. Long term
leaching experiments repont that surface diffusion controlled alteration is dependent on the C;A
content of the cement and the Mg and SO, content of leachant (Walton et al., 1990). Creation of

— an alteration rind weakens the concrete and makes it subject 1o spalling (Wakeley et al.. 1994).

The mechanism for spalling is that the alteration phases occypy more volume than the otiginal
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— solids, volumetric expansion increases internal pore pressures until concrete tensile strengths are
exceeded and spaliing occurs. Short-term, empirical studies of ordinary concrete in brine repont
alteration rates in the range of 0.7 to | mm/year (Atkinson and Hearne, 1990) - These rates are
likely 1o be overestimates because diffusion distance varies as the square root of lime. Further
deuails are given in Appendix C of Thompson et ai., 1996.

4. DEGRADATION OF CONCRETE PANEL CLOSURES

The concrete elements of the panel closures may degrade in one of two ways, either by flow o
brines through the mass of the concrete element, or by flow of brines along the interface.

4.1 Flow Through the Copgrete Element

An cstimate of the degradation of a concrete closure element may be made based on data on the
progression of concrete chemical alteration reported by Bemer (1990) for both fresh water and
brine leachants (Figure 3). The progression is charted in terms of the volume of water flow, and
indicates that more than 100 pore volumes of leachants must pass through concrete before there
is chemical evidence that the matrix is being attacked. Based on these results, it has been
assurned (conservatively) that the concrete closure eiements will degrade significantly after 100
pore volumes of water have passed through them. A more detailed discussion of these results is
— given in Thompson et. al. (1996). '

This volume can be converted to performance life by using Darcy’s Law and considering the
flow of fluids though the plug and the surrounding DRZ. If there is a pressure difference
between the panel and the rest of the repository, fiow will occur through the panel closure and
the surrounding DRZ, with the two elements acting as flow resistors in parallel (Figure 4). 1f the
pressure in the panel is P, (Pa) and in the rest of repository is P, (Pa). then under brine sarurated
conditions, the sieady state flow rate out of the panels will be Q, where:

Q = A*(K7u)*(P, - P,)/L. m’/sec, (1)

where: A is the total flow area of the pane] closure plus DRZ (m?)
L is the flow length (m)
p is the fluid viscosity (Pa.s)
k' is the composite permeability of the panel closure plus DRZ (m?).

The composite permeability, k', is given by:

k' = (ded + krAc){(Ad + Ac)! (2)
where: k. k; are the permeabilities of the DRZ and plug closure respectively (m?)
o A"z A are the flow cross-sectional arcas of the DRZ and plug closure respectively
(m").
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The flow through the panel closure, g, will be:

q/Q = kA/(ksAq + KAL), (3)

The pore volume of the panel closure (V) is:
V,=AL¢m’,

where ¢ is the porosity. The number of pore volumes (N,) flowing through the closure in unit
time will be:

N, = q/V, pore volumes/sec,

and the time for 100 pore volumes to flow through the closure will be:

tigo = 100/(N,*3.154x10 ) years

The current design (USDOE, 1996a,b) calls for a length of 7.9 m (26 ft) for the concrete closure,
and a cross-sectional area of 39.6 m® (10 m wide by 3.96 m high). As noted in Section 2 an
undegraded concrete permeability of 10" m? and a porosity ranging from 5% to 10% may be
assumed. The DRZ around the closure is assumed to have a permeability of 10 m®. Based on
the BRAGFLO grid (reference) the DRZ may be assumed to have a height of 11.95 m above the
closure and 2.23 m below. It is assumed that the DRZ in the pillars at either side of the closure
heals due to creep closure onto the rigid concrete. The DRZ flow area may therefore be taken as
141.8 m? (11.95 + 2.23 m high by 10 m wide).

Given these values, the effective permeability of the closure and the DRZ, from equation (2), is
7.84x107'6 m?, with an effective flow area of 181.4 m”>. When brine flows between the panel and
the rest of the repository, from equation (3), only 0.28 % will flow through the closure, the
remainder (99.72 %) will be through the DRZ.

An analysis of calculations made with BRAGFLO (reference) using a range of parameters, and
assuming permeabilities for the closures and DRZ of 10" m2, indicates that the maximum
cumulative flow between the panel and the rest of the repository for any likely E1 or E2 scenario
will be of the order of 10* m’ (Figure 5). With these flows, and the slit in flows indicated above,
only 28 m?> of brine will flow through the concrete closure in 10,000 years. For a porosity range
of 5 % to 10 % the maximum cumulative flow through the concrete closure in 10,000 years will
therefore be between 0.6 and 1.2 pore volumes. The same point is made in Figure 6, which
shows the cumulative flow with closure permeabilities of 10" to 1077 m?. Degradation will be
minimal with these flow volumes.
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Flow along the interface may be more rapid due to the higher permeabilities in the DRZ. A
maximum effect of this flow might be estimated to be equivalent to the free surface spall rate of
0.5 to 1 mm/yr. Such a degradation rate is unrealistically high, since the degradation will be
controlled by the rate of fluid flow, and total Joss of material will not occur in a physically
constrained region. However this rate of spall is much less than the expected closure rates
(measured at the order of 0.1 to 0.2 ft/yr. or 30 to 60 mm/yr in Panel 1: USDOE, 1996b) so even
such a rapid spall rate would be more than compensated for by creep of the salt on the closure. It
is therefore concluded that the effect of flow along the interface will be minimal. At most it will
lead to an insignificant increase in the DRZ flow area.

5. CONCLUSIONS

. It is concluded that the potential flow through the concrete closure is nearly two orders of
magnitude too small to cause any significant degradation. Degradation caused by flow in the
DRZ adjacent to the concrete will be taken up by creep closure. It is therefore concluded that the
panel closures will retain their initial permeability in the post-closure phase. If this permeability
is 107 m?, then the effective permeability of the DRZ and the closure together will be about
8x10"° m?. An assumption of a permeability of 10" m’ for the closure and the DRZ is

reasonable.

It is aiso conciuded that since no significant degradation is expected for the concrete members,
these will maintain their structural integrity and will provide a rigid support to prevent growth of
the DRZ during the regulatory period.
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From: Kozt W. Larson

To1 melocd, pvaughn, msyshu
Dats: "1724796 B:dtam
Sublsor: Fracturs modsl ideas

A couple of ideas a3 the frac. modal parameters are datermined. X will be away next
week, 55 Palmar you will Lave to sse thit the memo for Project office to coneider gets
weitten.

Froa brine-cutflow meeting 1/21/9G.

Wolfgang Wawsrsik thinks each interbed hes a zona about 10em thick which dilstes.
rach zone Ailates identically. This means a diffarent set of fracture parasetecs
would be applied to sach intexbed. Ma and Noim Warpinski think the LEFY model is
appropriate analogua. LEFN prediots shout 1 cor dilation max with tremendous
parneability ehange for pressuras somswhot above lithostatie.

For ¥B I3f snd 139, 1 cx dilstion ~ 1V porosity changs over antire thickness
For ach.A+R%, 1 com 2ilation ~ 3-5% porosity changs over eutire thickness (scameons who
knows modeled thickness can figure cut mors mcenrstely)

g‘;htianf:rn:mr&nv oepine {3 a continyous procass, »b initiaticnh pressure should ba
ow.

Additionally, Norm thinks presmures above 17-1% MFa ars not raalistic, and irdicate
too constrictive fracture nmodel conditions. Thus, frasture model must e able to open
up better than rsceant glenentations (FTEPs) which allowad pressuras up to 23 Mea.

This leads me to the following recommendstion:

Iniviatisn prapsurc
about 0.2 MPa abwwe. initial prassure of cell

I ‘

rinal Fressure, Final Porssity, Pinal Permeability

1 augg.;: uging thess as £it pasanstors ¢ that the following condition is
attaine

At about 2.5 MPa sbove initial pressure in ¢all, fracture poro:itgemd parmanbility
begin stsep rize (commensursis with ocnset of real fraciuring | « below this pressure
shallower rices indicata intersonneation/dilation of existing fractures

a. AL about 3 MPa above initial pressuze in cell, fracture porosity resches :B_ for MB
139, M= 138; th for Anba+b.

b. AL about 3 MPa Above inizial prewsurs in cell. frasture parmabiltiy reaches 87 oM
grestar than initiel. - ;

a+d abeve make a fractuxe that is yelatively long due to high parmeability and asrzow
dus to moderats increase in porosity. condiciem of avh is ideal max pressurs for
modal, and commensurate with LEFM model.

Abova about 3 MPa ircrsass, frssturs porvsiiy and permeadivy centinue steep rise so
that increasef pressures have A mechanism for blowing off steam rapidly.

If the modal iz met 2o that there is nc increased PUTOsity or Pearmeability abova about

;0, Kx;?;. ther I think some vestors will result in pressures significantly in sxcess of
a.

1 look forwezd to haaring vhat the final values chomen are

Eare '
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Date: 1729/96
To: Margaret Chu, Dept. 6801, M§-1325
From: Michael Lord, Dept. 6749, MS-1328

Subject: Parameters describing the variable porosity and permeability within
sphydrite material.

1have considersd ways of honoring the porosity/permeability response 1o pressure
within the antydrite marker beds es suggested it the enclosed memo from Kort Larson of
1124/96 and discussions with Palmer Vaughn, The foliowing values typical of the
performance Bsscssment data wese assigned:

pressure at fracture initiaticn =127MPa
pressure &t full fracture condition = 16.5 MPa
parosity st reference condition = Q011 (1.1%)
bermesbility of intact anhydrite =2.5E-19 m’
permesbility at full fracture condition = 1.0E-09 m*

The porosity at full fractur= condition was thea adjusted in order to produce a
change in porosity of about 1% at 2.5 MPs above fracture initiation pressure or a pressure
of 15.2 MPa. This was obtxined with & maximum porosity of 0.05(5%). In the artached |
Fig. 1 the resulting porosity response is shown. The corresponding permeability response
is shows in Fig. 2. At 2.5 MPa above fracture initiation pressure, the permeability is
between 3 and 4 orders of magpitude latger than ths intact velue, This would represent
the desired response in marker beds 138 and 139. A similar analysis was done for marker
bed #+b where the fell fracture porosity was takea to be 0.235 (25%). For this value of
maximnm porosity the porosity &t 2.5 MPa above fracture initiation pressure js ‘
approximately 3% sbove the porosify at fracture initiation pressure. This is shown in Fig
3 and the result is in line with the proposed regponse. ¥ig, 4 shows the permeability at 2.5
MPa ahove fracture initiation pxmure as approximately 4 orders of magninude above the

intact permeability.

Based on this srdy I wonld recommend assigning the fracture parameters as
follows, The fracture initiation pressure should be 5ot as done in the FEPs calculations
where it is assigned a value of 0.2 MPa sbove the grid block initial pressure. Therefore,
there could be some small variance in the fracture inltiation pressure if the reference
initial pressure in the Salado {s sarnpled. Also, there will be some small veriance due to
the dip in the Salado formation. However, the fracture initiation pressures should be near
the 12.7 MPa value. The pressure at the full fracture condition should be an mcrement of
3.8 MPa above the fracture initiation pressure. This would resuit in a full fracture
pressure of approximately 16.5 MPa. The full mcumpmnbmty can be any large
sampled or assigned value such as the 1.0E-09 m® used in this study. The full fracturs
portosity for the marker beds 138 and 139 will have value 0.05 and the full fracture
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porosity for the marker bed a+b wilt have value 0.25, With these values the p cssure
dependent porosity and permeability should closely approximaie the LEFM predicted
values,
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Comparison of Effects of Brine Pocket Size

Daniel M. Stoelzel, Palmer Yaughn
Sandia National Laboratories, org 6848, 6849

Darien G. O’Brien, PE
Solutions Engineering

July 19, 1996
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BACKGROUND

The existence and size of a Castile Brine Pocket below the WIPP repository is
uncertain. Brine pockets have been found in the northem Delaware Basin but there is
little information on their size. The producibility of brine from these pockets is believed
to be related to the interconnectedness of a fracture system. Analysis of WIPP-12 data
have led to estimates for the areal extent of several hundred meters (drainage radius as
small as 230 m - dimension smaller than the WIPP waste-area footprint) to several
kilometers (drainage radius as large as 19,000 m - dimension larger than the land
withdrawal boundary)., DOE does not consider the 19 km radius brine pocket a realistic
size, never the less it is included for comparison to other sizes. Because of the
interconnectedness of the fracture system, the thickness of the brine pocket has been
estimated to be from 7 m to 24 m with a maximum possible of 133.6 m (recent estimate
based upon the total thickness of the Castile formation and NOT considered in the 1996
CCA calculations).

Each time a well penetrates the brine pocket, the pressure in the surrounding drainage
area depletes. This pressure depletion will extend to those portions of the brine pocket
which are interconnected. Passive Institutional Controls shield a region of the Castile
from exploratory drilling directly under the waste panels. The 1996 CCA calcuiations
assums that the Castile Brine Pocket under the waste panels is weakly interconnected
hydraulically (with vertical and areal extents similar to the lower estimates from WIPP-
12, i.e. total brine volume between 32,000 and 160,000 m® [Larson & Freeze, 1996]),
and is not much affected by penetrations occuring outside the waste-area foolprint.
Therefore, the pressure undemeath the waste panels in the brine pocket is assumed to
not deplete until penetrated by a borehole drilled within the panel area. if the brine
pocket has an extensive fracture system (and hence is strongly interconnected), the
area beneath the waste panels can be depleted by penetrations outside the waste-area
footprint. i
This study looks at the consequences of assuming that the brine pocket is hydraulically
interconnected such that borehole penetration depletion impacts are felt throughout a
larger drainage area. The total brine volume which migrates from the Castile Brine
Pocket to the Culebra aquifer with depletion impacts (large drainage area) is compared
against the brine volume migration without depletion (small drainage area).
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THEORETICAL CONSIDERATIONS

For the 1996 CCA calculations, an abnormally pressured Castile Brine Pocket is
assumed (i.e. the brine pocket pressure exceeds the anticipated hydrostatic pressure).
The brine pocket is assumed to be bounded (i.e. of limited thickness and areal extent)
rather than infinite acting (such as the Culebra aquifer). Consistent with DOE regulatory
criteria regarding the rate of future drilling activity, it is assumed that 47 boreholes wili
be drilled per square kilometer over the next 10,000 years (or 0.47/100 yrs/km®). Each
penetration of the abnormally pressured brine pocket will result in flows according to the
following time horizons:

1) Time of intrusion to 72 hours - brine flows from the brine pocket, past the Culebra
all the way to the surface during active drilling through an open borehole (assuming
steady-state flow conditions). A computation to determine the length of time during
which steady-state is valid (i.e. infinite acting period when the pressure sink caused by
flow into the borehole has reached the extent of the drainage area) as computed by the
following [Lee, 1982]:

At
< ﬁp-c—’l:—ﬂ- [Equation 1]
where:
t = Time (for a bounded cylindrical system is infinite acting) (sec)
¢ = Porosity (fraction)
u = Viscosity (Pa-sec)
c, = Total compressibility (Pa")
A = Drainage area (defined as the land withdrawal boundary area/avg. no. of

boreholes/200 years where 19.5 boreholes is taken as the average in 200 years)

(m%)
Dimensionless time (which for a bounded cylindrical system = 0.10, [Lee, 1882])

Brine pocket permeability (m®)

Ipa
k

The solution to Equation 1 is approximately 7 hours. Although the steady-state flow
assumption is valid only within 7 hours after penetration, a flow period of 72 hours was
used. This is consistent with the 1996 CCA blowout time period to obtain direct brine
releases from the WIPP repository. For the purposes of this investigation, pressure
depletion during the 72 hour open flow period was not taken into account.
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During the 72 hour flow period, flowrate is computed from the following (see
nomengclature section for definition of variables):

r

ky b
0, = 22— P, = P — PEL,) [Equation 2]

p{ln{fﬁi) - 0.5]
(L \n )

2) 72 hours to 200 years - no brine flows from the brine pocket since the 1996 CCA
calculations assume a 200 year time period immediately following intrusion during
which the borehole is piugged at the Rustler and Castile. formations.

3) From 200 years to 1200 years - cement plugs are no longer active. Flow occurs
between the Castile Brine Pocket and the Culebra aquifer via “silty sand” abandoned
boreholes with median permeabilities of 3.16E-13 m’.

4) 1200 years to 10000 years - median abandoned borehole permeabiiities are
reduced one order of magnitude (3.16E-14 m®) due to salt creep.
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Abandoned Borehole Connection Between Castile Brine Pocket and Culebra
Aquifer

Consider the flow rate necessary o achieve flow from the Castile Brine Pocket to the
Culebra Aquifer through an abandoned borehole as depicted in Figure 1:

Culebra #
L
>l *r,
T Tegn
=T h
Castle - | = P he
Brine Pocket 2 p  BF Mol
= W 8P

Figure 1: Representation of assumed
flow path for Castile Brine Pocket to Culebra Aquifer
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NOMENCLATURE
Define the following variables by:

Flowrate (m®/sec)

Permeability (m?)

Thickness (m)

Brine viscosity {Pa-sec)

Brine density (kg/m’)

Acceleration due to gravity (m/sec?)
Borehole length (m)

Radius {m)

Cross sectional area (m°)

Pressure (Pa)

Average pressure between r, and r, (Pa)
Compressibility (Pa™)

Porosity (fraction)

Bulk volume (m®)

AN = Brine volume producted between time 1 and 2 {m®)

T I I | B |

]

H

uwn nunan

OO YyYR YR O R TR

Define the following subscripts by:

cul = Culebra

bh = Borehole

bp = Brine pocket :

e = Extemal drainage per borehole (brine pocket area divided by number of
boreholes) |

w = Wellbore

wf = Abandoned wellbore flowing

am = Atmospheric

b = Rock bulk

f = Pore volume

br = Brine

t = Total

R = Castile Brine Pocket or Culebra Aquifer
1,2 = Time 1, time 2
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Refer to Figure 1, assuming steady-state flow is positive between the Castile Brine
Pocket and the Culebra Aguifer, the following Darcy L.aw equations are used to obtain
the flowrates out of the brine pocket (Q,), through the borehole (Q,) and into the

aquifer (Q_), based upon the pressures, rock and fluid properties and brine
pocket/abandoned borehole/aquifer geometries:

]
ot =1 k:dhm ’(P Mo ‘Pcnf) [Equation 3]
u{ ln(—‘lJ—O.S:I
L L "o ]
k, A (P, —P, —pgL
Qi =[ (P L o P8 )} [Equation 4]
kb o
0, =4 __pr_}_’!;__., >(P,,, - P,.,._) . ' [Equation 5]
,u[ln[—‘l]— 0.5] ‘
L T )

The flowrates through each of these systems are assumed to be equal (i.e. no fluid
leaves the system), therefore:

0,, =0 =0 {Equation 6] .

This results in four equations (Equaiions 3-6) and two unknowns (P, and P_) which
can be algebraically soived for Q,, as follows:

3

ks,
Te
Az
r-
Qp =77 e

{205
NS e
i “[m(f—)'o's]

-

»(P,,-ng—P,,)

[Equation 7]

-
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Equation 7 is the steady-state solution for flow through the brine pocket/abandoned

borehole/aquifer system. To account for bounded brine pocket/aquifer sizes, pressure

drawdown can be estimated by redefining the brine pocket and aquifer pressures over
a series of discrete time intervals by the following:

The pore volume compressibility (c) as a function of rock bulk compressibility (c) may
be defined by:

_ 5

¢

c [Equation 8}

The total compressibility (c) is the sum of the brine compressibility (c,) and pore volume
compressibility (¢)) as follows:
€, =€y +C, [Equation 9]

The bulk volume of the bounded brine pocket is a function of the volume of brine
removed, average pressure drop, compressibility and porosity as follows:

AN,
V. =A k= e l2 [Equation 10]
CY (B-R)e

Equation 10 can be used to solve for the average pressure at the end of a given time
interval by:

— — AN
P =F-—-4

V.Rcr¢

(Equation 11}

METHODOLOGY AND RESULTS
Since the size of the brine pocket is unknown, comparisons were made for various
areal size and thickness as shown in the following table (consistent with interpreted
results from WIPP-12 data [Larson & Freeze, 1996]):

Table 1 - Constant Brine Volumes by Varying Thickness and Areal Extent

Thickness (m) Areal Extent 1 (m?) | Areal Extent 2 (m®) | Areal Extent 3 (m?)
133.6 6.0E+07 3.0E+06 3.0E+04
66.8 12.0E+07 6.0E+06 6.0E+04
24.0 33.4E+07 16.7E+06 16.7E+04

For the Culebra aquifer, the areal extent was assumed to be 100 times the LWB for all
cases (4144 km®). All other properties were median values obtained from the 1996
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CCA database. The combination of three thicknesses and three areas for the Castile
Brine Pocket resulted in 9 cases for comparison. Initial brine pocket pressure was
assumed to be 12.7 E+07 Pa for all cases.

Table 2 shows an example spreadsheet calculation assuming an area of 6.0 E+07 m"2
and 133.6 m brine pocket thickness.

Table 2 - Example Spreadsheet Calculation
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Figure 2 is a semilog plot comparing the number of borehole penetrations for different
brine pocket areal sizes based upon the DOE criterion of 0.47/100 year/km® drilling
rate. The same number of penetrations apply to each respective areal size regardless
of thickness.

Figure 2

Comparison of Drilling Penetrations to Castile Brine Pocket for Ditterent Areas
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Figure 3 is a semilog plot comparing the amount of Castile brine volume which can be
released. This was determined by subtracting the cumuiative brine released at a given
time from the total cumulative brine released at 10,000 years. The 24 m thickness
cases again demonstrate faster depletion than the corresponding 133.6 m thickness
cases of equivalent area. For a given thickness, the differences in remaining available
flow is caused by differences in the number of depletion boreholes which is a function
of the area.

Figure 3

Comparison of Remaining Castiie Brine Available for Flow
(Initial Pbp = 12.7 MPa, 72 hour open tlow period)
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CONCLUSIONS

The 1996 CCA calculziions varied the brine pocket volume from 32,000 m’tc 160,000
m’. From Figure 3, the only cases which show more brine available for flow for an
extended period of time (~2000 to ~7000 years) are the maximum area cases. DOE
does not consider the 19 km radius brine pocket {0 b¢ a reailistic estimate of the areal
extent, rather an artifact of the unreasonably low rock compressibility (SX10™ pa”) used
for that estimate. |n addition, the DOE does not include the depressurization or volume
reduction to the brine pocket that would resuit in numerous borehole penetrations that
would statistically “miss” a WIPP panel but penetrate the brine pocket, prior to the first
“E1” borehole through a panel. In the CCA calculations for E1 scenarios, the DOE
assurnes brine pockets of 32,000 m’ to 160,000 m® pore volume at virgin (undepleted)
pressures in determining potentiai releases to the accessible environment, which
bounds the range of consequences associated with penetrating a larger but partialty
depleted brine pocket.
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Subject: Estimate of the Tensile Strength of Degraded Waste for use in Solids Blowout ,

A valuve of 1 psi {6895 Pa ) was chosen 1o represent the tensile strength of decomposed
waste for the purpose of computing blowout spall releases resulting from a drillbit intrusion
into a pressurized waste panel. Such spall releases occur only if the gas pressure exceeds
the hydrostatic drilling mud pressure of approximately § MPa. A chemical reaction
between the waste and brine from the surroundings is necessary to generate the gas to raise
the waste pore pressure o these jevels. Without brine inflow, fitrle g gas will be generated
and waste decomposition will be negligible. Thus the phenomenon of blowout spall
requires both brine inflow and waste decomposition.

The fuwre state of decomposed waste is both time dependent and unknowable. Therefore a
- decomposed state consisting of graded granular materials is assumed. This is consistent
with the granular nature of decomposed geologic materials and corresponds to an end state
of the decomposmon process. Such materials lack significant composite strength from the
interleaving of components and is the state foung to be most troublesome in oil production
where sand is produced from poorly consolidated sand layers. The value of 1 psi chosen
for cementation strength for the decomposed waste can be reasonably expected to be
conservative, i.e. lower than those data values found for many weak materials that are
naturally occurring or that have beea manufactured. Data to support this value can be
found in the literature for the strengths of soils, laboratory produced mixtures of salt and
clay, and mixtures of various materials with MgQ; the latter added as a backfill material to
the waste. A discussion of these data sources follows.

Soil Data

Tensile strengths for several compacted, cohesive soils e.g. Vicksburg buckshot clay
(CH), Vicksburg lean clay (CL)}, and a sandy clay mixture from De Gray dam (SC) were
measured using hollow ¢ylinder tests and indirect tensile tests in Al-Hussaini (1981). The
samples were prepared to optimum water content compacted and tested. Results for the
hollow cylinder tests are shown in Table 1. All exceed 1 psi by factors of approximately 3
to 8 imes. Similar results were obtained from the indirect tensile tests.




Table 1 Hollow Cylinder Tests

Material type Tensile Strength (psi)
CL-1 2.95
CL-2 3.90
CL-3 - 3.93
CH-1 / [ 2 7.93
CH-2 by &9 7.41
CH-3 N 7.99
SC-1 Wopy i 5.90
SC-2 NE, 5.38
SC-3 ’ 4.49
CH-4 6.46
CH-5 6.12
CH-6 6.52

Direct tensile tests on simulated waste materials were also conducted by Berglund and
Lenke, 1995, p13-14. Various mixtures of partially saturated silica sand and kaolin clay
were used to represent the waste. The clay represented a natural material that was chosen
to be a close surrogate to partially decomposed cellulosics and plastics. The sand
represented the particulate structure expected of magnetite or other products of the iron
corrosion reaction. The mixture was 85% sand and 15% clay, a ratio similar to the ratio of -
.decomposition products anticipated for some waste conditions. - The tensile strength
measured in these experiments was 2.9 & 1.4 psi. A second indirect method of measuring
wfnsﬂ; strength in the Berglund, Lenke study implied an even higher tensile strength value
of 43 £ 1 psi.

The tensile strength of the above materials (Al-Hussalm 1981, Berglund and Lenke 1995)
occurred in the absence of any additional cementauon process which would tend to increase
these measured tensile strengths.

Salt Mixture Data

Some brine is expected to exist within the waste panels after closure of the facility. The
most likely source is brine of Permian age that was trapped in the Salado formation at the
time of evaporite deposition. Limited brine occurrences in the WIPP underground have
been extensively sampled and analyzed, and the composition of Salado brine is well
understood. These bnines contain approximately 374 grams of dissolved constituents per
lite;éng are in chemical equilibrium with halite (NaCl) anhydrite (CaS0O,), and magnesite
(MgCO,).

The removal of even a small amount of water from this brine by evaporation or chemical
reaction will result in the precipitation of salts which will act as a cementation agent. One
such chemical reaction that is anticipated to occur is the anoxic corrosion of iron and
ferrous ailoys, which constitute a significant percentage of the waste inventory in the form
of steel drums and boxes, contaminated tools and sheet metal, etc.

The reaction of brine with metal will consume H,O and generate hydrogen and some
corrosion product. A typical anoxic reaction might be

Fe + 2H,0 - Fe(OH), + H,
Consumption of H,O by corrosion reactions will cause the mass of dissolved solids in the
brine to precipitate as a series of evaporite minerals in close proximity to the surface of the



corroding metals forming encrustations which tend to cement the waste. Simulation of the
removal of H,O from one kg of Salado brine using the EQ6 code (Wolery T.J., and S.A.
Daveler, 1992) yielded 534 grams of precipitates (anhydrite, bischofite, carnallite, halite,
kieserite, and magnesite). The mass is greater than the mass of dissolved solids because of
the hydrous nature of some of the precipitates.

Evidence for this process in the WIPP underground could be seen at the close of heated
brine inflow experiments performed by SNL a number of years ago. In these experiments,
a metal canister containing an electrical heater was placed in a vertical hole excavated in the
floor of a room in the northern experimental area. The top of the hole was sealed, and
anhydrous nitrogen was circulated within the annulus between the canister and the hole.
Small amounts of brine flowed toward the hole in response to the pressure and temperature
gradients surrounding the heated hole, and evaporated as it approached the canister. The
nitrogen acted as a carrier gas for water vapor and was allowed to exit the hole where it
flowed into an apparatus where the water vapor was extracted and quantified.

It was found at the close of the experiment that the canister has become firmly cemented in
the hole by the precipitation of salts from the evaporating brine within the annulus. A
work-over rig had to be employed to extract the canister from the hole. The removal of
water from brine by any process, be it evaporation or corrosion reactions, will produce the
same cementation effect by the precipitation of minerals at the site of water removal. This
cementation will act to increase the strength of the waste.

A number of strength tests were done for consolidated crushed WIPP salt and mixtures of
WIPP salt and bentonite (70 and 30% respectively) (Finley, 1996). Finley's memorandum
presents estimates of tensile strengths of clay/salt mixtures based on experimental
observations of unconfined compressive strengths and the extended Griffith criterion for
tensile failure (Jaeger and Cook, 1976). These estimates are for 30/70 percent
bentonite/salt mixtures at fractional densities of 0.83 to 0.88. Finley estimates tensile
strengths between 10 and 100 psi.

The WIPP waste stream upon creep closure and subsequent brine saturation will consist of
approximately 1350 kg of waste solids (assumed average solid density of the waste was
taken as 2700 kg/m’) and 188 kg of precipitated salt (based on dissolved salt solids of
374 granv/liter cited above) per cubic meter of repository. These numbers are based on a
typical closure porosity of 0.5 (final room height of 1.2 m). The gravimetric ratio of salt
precipitate to solid waste for these conditions is 0.14. This is a factor of 5 less than the
ratio cited by Finley. Using this factor, it is not unreasonable to expect tensile strengths
between 2 and 20 psi.

Effects of MgO on Strength

An additonal process affecting the strength of the waste/backfill composite material is the
chemical interactions that will occur between Salado brine and the MgO backfill. These
interactions were simulated using the EQ3/6 code (Wolery, 1992; and Wolery T.J., and .
Daveler, 1992 ) with the Pitzer activity coefficient option and Harvie-Moller-Weare
database. Five moles of MgO were reacted with one kilogram of Salado brine in a series of
small steps. The dissolution of the five moles (202 grams) of MgO into the brine resulied
in the precipitation of a total of 507 grams of minerals and the incorporation of 20 percent
of the original kg of brine as water of hydration within the precipitates. These precipitates
include Mg-oxychloride (63% by mass) and brucite (31% by mass), with minor amounts
of anhydrite, halite, and magnesite. Similar results were found by Wang, 1996.




The two dominant precipitates (Mg-oxychloride and brucite) are the key phases in Sorel
cement In fact, Sorel cement is commercially prepared by mixing a magnesium-chloride
brine (quite similar to Salado brine) with MgQ. Sorel cement is known to have uniaxial
compressive strengths in the range of 7,000 to 10,000 psi (Sax and Lewis, 1987). This
range is equivalent to tensile strengths of from 490 to 700 psi (Dunham C.W_, 1966).
Thus the use of an MgO backfill will result in the cementation and strengthening of the
waste/backfill composite material as long as sufficient brine is available for the chemical
reactions 10 OCCUI.

Conclusions

While tests to actually measure the binding forces between particles of simulated waste
have not been performed, there are data available from several independent sources that
suggest that the selection of 1 psi is well below the actual value of tensile strength that can
be reasonably expected for decomposed waste. The tensile data presented for several soils
without chemically generated salt precipitates exceed 1 psi by factors generally greater than o,
3. Estimated tensile strengths of consolidated halite-bentonite mixtures exceed 1 psi by
factors of ten or more. The role of precipitated salts from anoxic reactions of brine with
waste metals is expected to be similar though perhaps not as intense. MgO is added to the
waste as a backfill material in large volumes. The reaction products of MgO plus brine are
the principal components of Sorel cement which attains high compressive strengths and
predicted tensile strengths of 490 to 700 psi.
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An Evaluation of Heat Generation Processes for the WIPP

1.0 Introduction

Nuclear criticality, exothermic reactions, and radioactive decay are possible sources of heat
in the WIPP repository. Nuclear criticality has been eliminated from performance
assessment calculations on the basis of low probability (see SNL Summary Memo of
Record RNT-1). This memo discusses possible heat generating processes at the WIPP and
the potential magnitude of the temperature increases they might induce. Heat from
exothermic reactions is discussed in Section 2 and heat from radioactive decay is discussed
in Section 3.

Conclusions are provided in Section 4. In summary, soon after disposal concrete hydration
in the panel closures and shaft seals will give rise to temperature increases lasting a few
decades. Heat from radioactive decay will generate a maximum temperature increase of
less than 2°C above the ambient temperature {about 27°C) within 100 years after disposal.
A number of potential exothermic reactions other than concrete hydration have been
identified. These reactions are brine limited and will cause only minor perturbations to the
temperature distribution within the disposal system. The maximum calculated rate of brine
inflow to a waste disposal panel, and thus, the maximum exothermic reaction rates, occur
for the S2 scenario involving an E1 drilling event at 350 years after disposal. By the time
such a drilling event takes place heat generation from concrete seal hydrationand
radioactive decay will have decreased substantially, and the temperatures in the disposal
rooms will have reduced to close to initial values. Note that active institutional controls are
expected to prevent drilling within the controlled area for 100 years after disposal. Thus,
exothermnic reactions following a drilling intrusion into a waste disposal panel will be the
only potentially significant heat generating processes at the time of a drilling intrusion.
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The maximum temperature that could be achieved in the panel following a drilling
intrusion at 350 years occurs as a result of aluminum corrosion; this reaction could result in
a maximum temperature increase of about 6°C two years after the drilling event. This
predicted value of temperature increasé is based on several conservative assumptions. For
example, it is assumed that no aluminum corrosion has occurred prior to the drilling event
and that all the brine introduced to the waste panel is available for aluminum corrosion. In
reality some aluminum corrosion is likely to have occurred prior to the drilling event,
reducing the volume of aluminum available for the reaction, and other reactions with lower
reaction enthalpies (such as backfill hydration) or lower reaction rates (such as microbial
degradation) will compete with aluminum corrosion to consume brine resulting in a smaller
temperature increase. Based on similar conservative assumptions, backfill hydration could
result in a maximum temperature increase of less than 5°C. These maximum heat
generation rates resulting from aluminum corrosion and backfill hydration could not occur
simultaneously because they are limited by brine availability. Thus, the temperature rise of
6°C represents the maximum that could occur as a result of any combination of exothermic
reactions occwrTing simultaneously.
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2.0 Heat From Exothermic Reactions

Exothermic reactions in the repository will liberate heat resulting in elevated temperatures.
The magnitude and duration of this tefiiperature increase will depend on the amount and
rate of energy release, the geometry of the heat source, the thermal conductivities of the
surrounding rocks, and any influence of groundwater or brine flow on heat transport.

In the WIPP a range of different types of reactions will occur, including corrosion,
microbial degradation, waste dissolution, and concrete and backfill hydration, and these
will liberate different amounts of heat at different times. The amount of heat liberated by
the different reactions will depend on the extent of reaction that occurs (for example, how
much gas generation or concrete hydration takes place), and the enthalpy of the reactions.
The former will depend on the inventory of materials emplaced in the WIPP, and the
subsequent chemical evolution of the repository system. The latter can be assessed by
considering typical enthalpies for the reaction types of interest.

Enthalpies of reaction, a H®, for example reactions representing processes that may take
place in the repository are given in Table 1 (from SNL Summary Memo of Record GG-7,
SP-7). The reactions shown are based on the chemical conditions expected in the WIPP.
Note that negative values for a H® indicate that the reactions liberate heat as they progress
from left to right. ‘

Exceptional Service in the National Interest



4

Table 1. Enthalgigf of rea_ctioniff, for the WIPP

. Data Source

RS T

BaCk.ﬁll MgO(,) + HQ_O([) Mg(OH)z(s) KIaUSkopf,
hydration a° -601.7  -2858 -925.5 1982, 561
Backfill Mg(OH), + COy(g) = MgCO, + H,0 -77 Drever, 1982,
carbonation | aH® 9254 -393.1 11103 2858 351-256
Microbial CH,00s + H,0 = 3CH, + 3CO, -312 Lide, 1994,
degradation | sd° -805.5  -285.8 3 x(-74.4) 3x(-393.5) 5-16 10 5-37
Aluminum Al+3H,0 = AKOH),+ 1.5H, 434 Drever, 1982,
Corrosion adfe 0 3x(-2858) 12919 0 351-256
Anoxic Fe, + 2H,04 = Fe(OH),, + Hz(g) +2.7 Wagman et
corrosion of {asH° 0 2x(-285.8) -569.0 al., 1982,
steel Table 41
Waste UOysen + 2H;0p = U(OH) 4y +0.9 Grenthe et al.,
dissolution jaH° -10850  2x(-285.8) -1655.38 1992, Table
HI-1
Concrete Ca0y; + H;04 = Ca(OH),, -65.2 Wagman et
hydration aH*® -635.1  -2858  -986.1 al., 1982,2-26 ||

Even though there is uncertainty surrounding the extent of reactions that will occur, the
reaction enthalpies indicate that the thermal effects of anoxic corrosion of steel and the
waste dissolution reaction will be endothermic and will be of low consequence to the
performance of the disposal system. However, the other reactions shown in Table 1 have
the potential to evolve significant amounts of heat. The potential effects of these processes

on the temperature within the disposal system are discussed below.

2.1 Backfill Hydration

Potential temperature increases in the repository as a result of exothermic backfill hydration
reactions have been evaluated by Wang (1996, attachment to this memo). In his analysis,
Wang (1996) made the following assumptions:

. The reaction will proceed rapidly so that the rate of heat generation will be
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controlled by brine availability.

. All brine entering a waste disposal panel will contact and react with the
backfill in the panel uniformly.

. All of the emplaced backfill will undergo hydration.

The maximum calculated rate of brine inflow into a panel (about 200 m*/year) occurs for
the S2 scenario involving an El drilling event at 350 years after disposal. The molar
density of water is 5.56x10* moles/m?, and thus, the reaction rate of backfill hydration in
the panel will be 1.1x107 moles/year. Based on the reaction enthalpy shown in Table 1,
backfill hydration will generate a thermal load of about 13 kW. There will be about 2x108
moles MgO emplaced per panel and thus the reaction could continue for about 20 years if
sufficient brine was available.

Wang (1996) estimated the maximum temperature that could be generated by backfill
hydration within a panel. Assuming heat loss will occur by conduction through the salt
forming the roof and floor of the panel and that heat losses through the side walls are
negligible, Wang (1996) calculated that the maximum temperature rise in a panel, as a
consequence of backfill hydration following a borehole intrusion and subsequent brine
inflow, would be about 4.5°C.

2.2 Backfill Carbonation

Wang (1996) also estimated the potential temperature rise that could occur as a result of
backfill carbonation, Wang (1996) assumed that the reaction will be limited by microbial
CO, production; the maximum rate of CO, production is 2.9x10° moles/year. Based on the
reaction enthalpy shown in Table 1, backfill carbonation will generate a thermal load of
about 0.7 kW. About 3.6x107 moles CO, could be produced in a single panel (see Wang,
1996) and thus the reaction could continue for about 125 years. Wang (1996) estimated the
maximum temperature that could be generated by backfill carbonation within a panel to be
about 0.6°C.

2.3 Microbial Degradation

Wang (1996) estimated the maximum reaction rate for microbial degradation in a panel to
be about 1x10° moles/year and the inventory to be about 1.2x10” moles CH,,O;5 per panel.
Thus, the reaction could continue for about 120 years. Based on the reaction enthalpy
shown in Table 1, microbial degradation will generate a thermal load of about 1 kW. Wang
{1996) estimated the maximum temperature that could be generated by microbial
degradation within a panel to be about 0.8°C.
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2.4 Aluminum Corrosion

Wang (1996) determined that the rate of corrosion of aluminum will be controlled by brine
availability. From Table 1, the reaction rate of aluminum corrosion in the panel will be
about 0.4x10” moles/year, assuming a brine inflow rate of 200 m*/year (1.1x107
moles/year). About 8x10° moles of aluminum will be emplaced in each panel and thus
aluminum corrosion could continue for 2 years. Based on the reaction enthalpy shown in
Table 1, aluminum corrosion will generate a thermal load of about 51 kW. Wang (1996)
estimated the maximum temperature that could be generated by aluminum corrosion within
a panel to be about 6°C.

2.5 Concrete Hydration
Concrete hydration reactions will occur in the seals and panel closures and in the waste.
2.5.1 Seals and panel closures

Concrete hydration reactions are known to proceed for extended periods (perhaps
thousands of years). However, the rates of these reactions decrease with time and, within
the WIPP, the greatest evolution of heat will occur during the short periods following
emplacement of panel closures during the operational phase and following shaft seal
emplacement and repository closure. A quantitative analysis of the thermal effects of
emplacing large concrete seals in salt at the WIPP was made by Loken (1994), Loken and
Chen (1995). Their analysis showed that the energy released by the hydration of the seal
concrete could raise the temperature of the concrete to approximately 53° C and that of the
surrounding salt to approximately 38° C one week after seal emplacement.

2.5.2 Waste

WIPP waste contains cement which is used to solidify liquids, particulates and siudges.
Storz (1996) estimated that all the waste to be emplaced at the WIPP will contain a total of
about 8.5x10° kg of cement. This is equivalent to about 1.5x107 moles of calcium oxide
(CaQ) per waste disposal panel, representing the cement as CaO. Although a substantial
amount of hydration may occur prior to waste disposal, this process will continue at a
slower rate after disposal. Disregarding the hydration that will occur prior to disposal and
assuming a brine inflow rate of 200 m’/year, the reaction rate of concrete hydration in the
panel will be about 1.1x107 moles/year, and the reaction could continue for about 1.4 years.
Based on the reaction enthalpy shown in Table 1, concrete hydration will generate a
thermal load of about 23 kW. Thus, using analyses similar to that used by Wang (1996) the
maximum temperature that could be generated by concrete hydration of the waste within a
panel is about 2°C.
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3.0 Heat From Radioactive Decay

Radioactive decay of the contact handled CH and remote handled RH TRU waste emplaced
in the repository will generate heat. The importance of heat from radioactive decay :-
depends on the effects that the induced temperature changes would have on mechanics,
fluid flow, and geochemical processes. For exampie, temperature increases could resuit in
thermally induced fracturing, regional uplift, or thermally driven flow of gas and brine in
the vicinity of the repository.

According to the Waste Acceptance Criteria (WAC), the design basis for the WIPP requires
that the thermal loading does not exceed 10 kilowatts per acre. The WAC also require that
the thermal power generated by waste in an RH TRU container shall not exceed 300 watts,
but the WAC do not limit the thermal power of CH TRU waste containers.

A numerical study to calculate induced temperature distributions and regional uplift is
reported in DOE (1980, pp.9-149-9-150). This study involved estimation of the thermal
power of CH TRU waste containers. The DOE (1980} analysis assumed:

. All CH TRU waste drums and boxes contain the maximum permissible
quantity of plutonium, According to the WAC, the fissionable radionuclide
content for CH TRU waste containers shall be no greater than 200 grams per
0.21 cubic meter drum and 350 grams per 1.8 cubic meter standard waste box
(in Pu-239 fissile gram equivalents).

. The plutonium in CH TRU waste containers is weapons grade material
producing heat at 0.0024 watts per gram. Thus, the thermal power of a drum
is approximately 0.5 watts and that of a box is approximately 0.8 watts.

. Approximately 3.7x10° cubic meters of CH TRU waste are distributed within
a repository enclosing an area of 7.3x10° square meters. Thisisa
conservative assumption in terms of quantity and density of waste within the
repository, because the maximum capacity of the WIPP is 1.756x10° cubic
meters for all waste (as specified by the Land Withdrawal Act [LWA]) to be
placed in an enclosed area of approximately 5.1x10° square meters.

. Half of the CH TRU waste volume is placed in drums and half in boxes so
that the repository will contain approximately 9x10° drums and 10° boxes.
Thus, a calculated thermal power of 2.8 kilowatts per acre (0.7 watts per
square meter) of heat is generated by the CH TRU waste.
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. Insufficient RH TRU waste is emplaced in the repository to influence the total
thermal load.

Thorne and Rudeen (1980) estimated the long-term temperature response of the disposal
system to waste emplacement. Calculations assumed a uniform initial power density-of 2.8
kilowatts per acre (0.7 watts per square meter) which decreases over time. Thorne and
Rudeen (1980) attributed this thermal load to RH TRU waste, but DOE (1980), more
appropriately, attributed this thermal load to CH TRU waste based on the assumptions
listed above. Thome and Rudeen (1980) estimated the maximum rise in temperature at the
center of a repository to be 1.6°C at 80 years after waste emplacement.

Sanchez and Trellue (1996) estimated the maximum thermal power of an RH TRU waste
container. The Sanchez and Trellue (1996) analysis involved inverse shielding calculations
to evaluate the thermal power of an RH TRU container corresponding to the maximum
permissible surface dose; according to the WAC the maximum allowable surface dose
equivalent for RH TRU containers is 1000 rem/hr. The following calculational steps were
taken in the Sanchez and Trellue (1996) analysis:

. Calculate the absorbed dose rate for gamma-ray radiation corresponding to the
maximum surface dose equivalent rate of 1000 rem/hr. Beta and alpha
radiation are not included in this calculation because such particles will not
penetrate the waste matrix or the container in significant quantities. Neutrons
are not included in the analysis because, according to the WAC, the maximum
dose rate from neutrons is 270 mrem/hr, and the correspondmg neutron
heating rate will be insignificant.

. Calculate the exposure rate for gamma radiation corresponding to the
absorbed dose rate for gamma radiation.

. Calculate the gamma flux density at the surface of a RH TRU container
corresponding to the exposure rate for gamma radiation. Assuming the
gamma energy is 1.0 MeV the maximum allowable gamma flux density at the
surface of a RH TRU container is about 5.8x10® gamma rays per square
centimeter per second.

. Determine the distributed gamma source strength, or gamma activity, in an
RH container from the surface gamma flux density. The source is assumed to
be shielded such that the gamma flux is attenuated by the container and by
absorbing material in the container. The level of shielding depends on the
matrix density. Scattering of the gamma flux, with loss of energy, is also
accounted for in this calculation through inclusion of a gamma buildup factor.
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The distributed gamma source strength is determined assuming a uniform
source in a right cylindrical container. The maximum total gamma source
(gamma curies) is then calculated for a RH TRU container containing 0.89
cubic meters of waste. For the waste of greatest expected density (about 6,000
kilograms per cubic meter) the gamma source is about 2x10* curies per cubic
meter. ‘

Calculate the total cune load of a RH TRU container (including alpha and beta
radiation) from the gamma load. The ratio of the total curie load to the
gamma curie load was estimated through examination of the radionuclide
inventory presented in the WIPP Baseline inventory Report (BIR) (DOE,
1995). The gamma curie load and the total curie load for each radionuclide
listed in the WIPP BIR were summed. Based on these summed loads the ratio
of total curie load to gamma curie load of RH TRU waste was calculated to be
1.01.

. Calculate the thermal load of a RH TRU container from the total curie load.
The ratio of thermal load to curie load was estimated through examination of
the radionuclide inventory presented in the WIPP BIR (DOE, 1995). The
thermal load and the total curie load for each radionuclide listed in the WIPP
BIR were summed. Based on these summed loads the ratio of thermal load to
curie load of RH TRU waste was calculated to be about 0.0037 watts/curie.
For a gamma source of 2x10* curies per cubic meter the maximum permissible
therma! load of a RH TRU container is about 70 watts per cubic meter. Thus,
the maximum thermal load of a RH TRU container is about 60 watts, and the
WAC upper limit of 300 watts will not be achieved.

Note that Sanchez and Trellue (1996) calculated the average thermal load for a RH TRU
container to be less than 1 watt. Also, the total RH TRU heat load is less than 10% of the
total heat load in the WIPP. Thus, the total thermal load of the RH TRU waste will not
significantly affect the average rise in temperature in the repository resulting from decay of
CH TRU waste.

Temperature increases will be greater at locations where the thermal power of a RH TRU
container is 60 watts, if any such containers are emplaced. Sanchez and Trellue (1996)
estimated the temperature increase at the surface of a 60 watt RH TRU waste container.
Their analysis involved solution of a steady-state thermal conduction problem with a
constant heat source termn of 70 watts per cubic meter. These conditions represent
conservative assumptions because the thermal load will decrease with time as the
radioactive waste decays. The temperature increase at the surface of the container was
calculated to be about 3°C.
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In summary, analysis has shown that the average temperature increase in the WIPP
repository due to radioactive decay of the emplaced CH and RH TRU waste will be about
1.6°C, with a maximum rise occurring at the center of the repository at about 80 years after
waste emplacement. Temperature increases of about 3°C may occur in the vicinity of RH
TRU containers with the highest allowable thermal load of about 60 watts (based on the
maximum allowable surface dose equivalent for RH TRU containers).
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4.0 Conclusions

Heat from exothermic reactions and radioactive decay will result in minor temperature
increases in the repository. The potential temperature increases caused by these processes
are summarized in Table 2. _

Table 2. Maximum temperature increases at the WIPP.

Heat Source ] Time of masimnum

Backfill hydration 4.5°C 20 years after a
drilling intrusion
Backfill carbonation 0.6°C 125 years after a
driiling intrusion
Microbial degradation | 0.8°C 120 years after a
drilling intrusion
Aluminum corrosion | 6.0°C 2 years after a
drilling intrusion
Concrete hydration 25°C in the shaft seal 1 week after
(seals) 10°C in the surrounding salt | emplacement
Concrete hydration 2.0°C 1.4 years aftera -
(waste) drilling intrusion
Radioactive decay of | 1.6°C 80 years after
CH TRU waste disposal

Radioactive decay of | 3°C near a few containers Within 100 years
RH TRU waste after disposal

T IEEESEEEN TE -

During the operational phase and soon after disposal concrete hydration in the panel
closures and shaft seals will give rise to temperature increases lasting a few decades. Heat
from radioactive decay will generate a maximum temperature increase of less than 2°C
within 100 years after disposal. A number of potential exothermic reactions have been
identified. These reactions are brine limited and will cause only minor perturbations to the
temperature distribution within the disposal system. The maximum calculated rate of brine
inflow to a waste disposal panel occurs for the S2 scenario involving an E1 drilling event at
350 years after disposal. The maximum temperature that could be achieved in the panel
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occurs as a result of aluminum corrosion; this reaction could result in a maximum
temperature increase of about 6°C two years after the drilling event.. Similarly, rapid
backfill hydration could result in 2 maximum temperature increase of less than 5°C. These
predicted values of temperature increase are based on a number of conservative
assumptions. For example, the caiculated temperature resulting from aluminum corresion
is based on the assumption that no corrosion has occurred prior to the drilling event and
that all the brine introduced to the waste panel is available for aluminum corrosion. In
reality some aluminum corrosion is likely to have occurred prior to the drilling event,
reducing the volume of aluminum available for the reaction, and other reactions with lower
reaction enthalpies or lower reaction rates will consume brine resulting in a smaller
temperature increase.

Temperature increases of the magnitude and duration shown in Table 2 will have no
significant effects on the performance of the disposal system. The effects of such
temperature increases on the performance of the disposal system have been discussed in the
SNL Summary Memos of Record RNT-24 (thermochemical effects), S-10 and GG-4
(thermal convection), S-11, SP-6, RM-1 (thermally-induced stress).
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Albuquerque. New Maxico B7185 1341

date: August 19, 1996

to: Distribution

(pg -
from: Yifeng Wang (Org.6832)

subject: Evaluation of the Thermal Effect of Exothermal Chemical Reactions for WIPP
Performance Assessment: A revised version

Temperature increases caused by exothermal chemucal reactions in the repository have
been evaluated in the memo by Wang (1996). This memo is the revised version of the
prcvious memo. Two revisions have been made: (1) anoxic steel corrosion reaction is no
longer an exothermal reaction; (2) waste panel number is adjusted from eight to ten. All
revisions made here do not change the conclusion that the thermal effect of exothermal
chemical reactions in the repository 1s negligible.

Assumptions:

The following exothermal chemical reactions are considered,~;-

MgO + H,0 — Mg(OH); (D
Mg(OH); + CO2 - MgCOs 7 (2)
CeHi00s + 20 — 3CH, + 3CO, - 3)
Al + 3H,0 — AI(OH); + 1.5 H> . ' ) (4)
Anoxic steel corrosion is a major chemical reaction expected to occur in the repository:
Fe + 2H,0 — Fe(OH); + H,. | (5)

However, this reaction is considered here, because it is not an exothermal reaction. The
enthalpy change of Reaction (5) is estimated to be 0.64 Kcal/mole Fe.

Considering that the vertical dimension of the repository (~ 1 m, B. M. Butcher,
personal comm.) will be much less than the horizontal extension after room closure, we
assume that the heat released from the reactions will be dissipated away mainly from the
ceiling and ground of the repository and the heat loss from the side walls is negligible. We
also assume that all reactions will take place uniformly in a reaction region of interest. We
here restrict the reaction region in a single waste panel, for the following reason: Some of
the above reactions may be limited by brine inflow. BRAGFLO simulations have shown
that, in the human intrusion cases, the rate of brine inflow into a borehole-penetrated waste
panel will be significantly higher than that into the rest of the repository. Choosing a panel
rather than the whole repository as a reaction region will make heat generation rate per unit
of volume higher and the heat dissipating surface area smaller in our calculations, and

Exceptional Service in the National Interest



Distribution - | -2- August 19, 1996

therefore it is conservative, However, this choice will not affect the calculations for the
reactions that are not limited by brine inflow, as you will see below.

Theory:

Based on these assumptions, the thermal effect of an exothermal chemical reaction can
be modeled by a simplified system shown in Figure 1. The temperature distribution (T) can
be described by the following equations:

ar | oT
T(X,0)=T, (7
oT
RAH =28k 8
%], . (8)
T(e0,1) =T, )

where C, is the heat capacity of surrounding rocks (J/mole/K); p is the molar density of
surrounding rocks (moles/m’); t is time (year); X is the spatial coordinate (m); k is the
thermal conductivity of surrounding rocks (J/year/m/K); Ty is the background temperature
(K); R is the reaction rate (moles/year); AH is the enthalpy change of the reaction (J/mole); S
is the horizontal area of a waste panel (m?).

~ Figure 1. A modeling system for heat production and conduction.
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The above equations can be solved for T with a Laplace-transformation method: -

- rPx: C p X Cpp
T, =~ a [ 2Py —‘/-— . 10
T-%="75 Cp {\/— k e'fc[z ke (10)

The temperature increase in the repository (AT) is obtained by setting X = 0 in equation (6):

RAH ’ 3
AT=T0,0)~T = . 11
©.0~1 S nCppk (1)

Equation (7) shows that the repository temperature will increase with t until r = —Ag- when

all the reactant is consumed. Here M is the inventory of the reactant in a waste panel
(moles). Therefore, the maxirmum temperature increase (ATmax) in the repository due to the
exothermal reaction can be calculated by

e = 1(0,0)-T *——

12
nCPpk (12)

Equation (12) shows that, for the reactions not limited by brine inflow, reducing the reaction
region size does not affect ATy, because the parameters S, R, and M will be reduced by the
same factor, which is canceled out in the equation. This is not true for the brine-limited
reactions, the rates of which are no longer dependent on reactant inventory.

Assuming the physical properties of the surrounding rocks can be represented by halite,
we then have:

C, = 50 J/mole/K (Lide, 1994, p. 12-158)
p = 3.7x10° moles/m® (Lide, 1994, p. 4-149)

k = 6 W/m/K = 1.9x10° J/year/m/K (Lide, 1994, p. 12-165)
S = 1.2x10* m? (Sandia WIPP Project, 1992, p. 34).

With these parameter values, we obtain from equation (12):
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AT =2.5x10"2AHVRM . (13)

Results:

(1) Reaction: MgO + H>O — Mg(OH),

We assume that this reaction is instantaneous and thus is limited by brine inflow.
Based on BRAGFLO simulations for E1 scenario (Figure 2), the conservative (maximurm)
estimate of the rate of brine inflow into a borehole penetrated waste panel is about 200
m’/year, equivalent to the reaction rate of 1.1x10’ moles/year. With AH = -3.9x10* J/mole
(Drever, 1982, p. 351-356) and M = 2x108 moles, we estimate AT, =4.5 K.

(2) Reaction: Mg(OH); + COy(g)=MgCO; + H,O

We assume that this reaction is limited by microbial CQ, production. It is estimated
that the maximum rate of CO, production (R) is 2.9x10° moles/year and the total CO; that
can be produced (M) is 3.6x10” moles in a single waste panel (Wang & Brush, 1996;
DOE/CAO, 1996). With AH = -0.8x10° J/mole (Drever, 1982, p. 351-256), ATmax, is
estimated to be 0.6 K. |

(3) Microbial degradation: CgH 1905 + HQ — 3CHy¢ + 3CO;

The maximum reaction rate and the inventory of CgH,¢Os in a single waste panel are
estimated to be 1x10° moles/year and 1.2x10” moles (Wang & Brush, 1996; DOE/CAOQ,
1996). With AH = -3.1x10° J/mole (Lide, 1994, p. 5-16 to 5-37), ATmax, is estimated to be
0.8 K. Because of lack of thermodynamic data for cellulose materials, we here assume that
the enthalpy of CsH;00s is approximately equal to that of CgH,04.

(4) Aluminum corrosion: Al + 3H;0 — Al(OH); + 1.5 H,

The inventory of Al in a single panel is about 8x10° moles (DOE/CAO, 1996).
Aluminum are present as foil in the waste and its thickness is estimated to be 2.54x10 cm.
The total surface area of Al foil is thus estimated to be ~ 2.6x10® m®. With this high surface
area and the measured corrosion rate (2.9 mole Hg/mzlyear, Telander & Westerman, 1996),
Al corrosion reaction is expected to be limited by brine inflow, and the maximum corrosion
rate is ~ 0.4x10” moles/year. With AH = - 4.4x10° I/mole (Drever, 1982, p. 351-356),
AT s, is estimated to be 6 K.
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The two brine-inflow-limited reactions - MgO hydration and Al corrosion - could
possibly bring repository temperature up to 6 K. However, this temperature increase will
not affect the overall repository performance, for two reasons: (1) The maximum
temperature, if it is achieved, will be sustained only over a very short time period. For
example, to achieve this temperature, Al has to be corroded completely within 2.5 years.
After that, the accumulated heat will be dissipated away quickly. Thus, the maximum
temperature, if it is attained, will last perhaps less than a year. (2) More importanty,
because the two reactions are brine-limited, they will consume all free brine in the repository
untl all the reactants are completely consumed. Therefore, the maximum temperature will
occur much earlier than enough free brine accumulates in the repository for the release of
dissolved actinides. Based on the above calculations, the thermal effect of the other
reactions, which are not limited by brine inflow and can last over a significant portion of
10000 year time period, are definitely negligible.

In conclusion, ignoring the thermal effect of chemical reactions (1 - 5) can not affect the
overall repositorv performance assessment.
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