55345
Analysis Report for Preparation of 2009 Culebra Potentiometric Surface

Contour Map

Revision 1

Task Number: 1.4.2.3

Report Date: 5/24/2010

Author:

Kfistopher R{ihiman, 6712 Date
Repository Performance Department

/C&jfwmm (ﬁ I\ ST-ZLHD

7 R“t’hard L'\‘/auhelm ?712 Date

Technical Review:

Repository’Perform ayice Department
QA Review: W\ O W S/} S[//O
Enario J. Chavez, 6710 V Date
arlsbad Programs Group
Management Review: /-\’_\/&/\ 7/9 <. Le '7 A s/2 V//o
#" Christi Leigh, 6712 Date

Manager, Repository Performance Department

WIPP:1.4.2.3:TD:QA-L:RECERT:549085

|nformation Only

Culebra Contour Map

Page 2 of 45

Table of Contents
1 INEFOAUCHION. ...ttt ettt st ees s ts et s e e se st s s es s esss s e s s sase s es e sens 3
2 SCIBNLIFIC APPIOACN.........covemeecieteeteet et eseeeessess e s s s eeeass e s s s e st e s e e ee e 4
2.1 OVEIVIBW ...ttt sa s s s ass st sss st s s s een et s s s s sss s st et esoe 4
2.2 Creating Ensemble Average MODFLOW SIMUIGLIONveeerereeereereresresessessesessessessossessseessesenns 6
2.3 BOUNDAIY CONGIHIONSu.eoeeceerecrrr ettt eessesess e res s eee e s s st 6
2.4 PEST Calibration of Averaged MODFLOW Model to ObseNations ... 7
2.5 Figures Generated from Calibrated MODFLOW MOGE!ueueueeeerreereeeeeeeeeeeseseees e 9
3 ROSUIS ettt sttt st s s e et e e e 10
3.1 FreShwater Head CONOUTSc.c.ovvvueueeceeeetcscesesess s sesessessessessssesssesessse s ssossesses s esens 10
3.2 PAFLICIE TTACK......ucvirectcitiieicticretetesiestnt s se b bes s s tre s essesesasssssasesese s ssssssasesees e sessens 12
33 Measured vs. MOdEled Fil..............ccoueueururereencrestesscsceescsecscesseseseesssassassssssssessesesssossssssenns 13
B REFEIBNCES ...ttt bt ss e s sas s es s e s s st e s et ee e eeeee e eean 17
S RUNCONIOINGITALIVEcooveerencereneseine ettt ete oo sesssesssessassssessessesssse s ses e s 18
A RUN CONEIOI APPENGIXcevueeimrrrrcrerecterenteiseeceseseseensesessssesssessessssesssesesessseess s et s e seeeseeneeesesesesnesn 24
AL INPUL FIlES...cueeeectctttscecscesctesetss e ess e ssesssesseensesesasseseseas s eassessass s e e eeas 24
A2 OULPUL FIlES........coettieecectnet sttt st sesssssseseneeasesesase s s sassassssss s e s s s s e esee oo e sene e eese 25
A-3 DIFECLONY LISHINGS ...ouvverreriieccsiiissiesicecuniees st es st ssssesessenasesessesssssssesssesssessessessees oo 26
A-4 SCIIPE SOUNCE LISHINESouvvecerrmienisiretesseeseeeess s escssessesseseeseessssesssssassassessesseesersesssseesess e e s eens 28

|nformation Only

Culebra Contour Map
Page 3 of 45

1 Introduction

This report documents the preparation of a potentiometric contour map and particle track for the
Culebra Member of the Rustler Formation in the vicinity of the Waste Isolation Pilot Plant (WIPP), for
inclusion in the 2010 Annual Site Environmental Report (ASER). The driver for this analysis is the draft of
the Stipulated Final Order sent to the New Mexico Environment Department (NMED) on May 28, 2009
(Moody, 2009). This Analysis Report follows the procedure laid out in SP 09-09 (Kuhlman, 2009b), which
is based upon this NMED driver. This report is a revision of Kuhiman (2009a), where the same analysis is
being performed on June 2009 data, rather than September, 2008 data.

Beginning with the ensemble of 100 calibrated MODFLOW transmissivity (T), horizontal anisotropy (A),
and areal recharge (R) fields (Hart et al., 2009) used in WIPP performance assessment (PA), 3 average
parameter fields are used as input to MODFLOW to simulate freshwater heads within and around the
WIPP land withdrawal boundary (LWB). PEST is used to adjust a subset of the boundary conditions in
the ensemble-average model to obtain the best-fit match between the observed freshwater heads from
June 2009 and the model-predicted heads. The output of the averaged, PEST-calibrated MODFLOW
model is both contoured and used to compute an advective particle track forward from the WIPP waste
handling shaft.

|nfor mation Only

Culebra Contour Map
Page 4 of 45

2 Scientific Approach

2.1 Overview
Steady-state groundwater flow simulations are carried out using much the same software and approach
used in the analysis report for AP-114 Task 7 (Hart et al., 2009) to create the calibrated fields used as
inputs — see Table 1 for a summary of all software used in this analysis. The MODFLOW parameter fields
(including transmissivity (T), anisotropy (A), and recharge (R}) used here are an ensemble average of the
Culebra parameter fields used for WIPP PA in the CRA-2009 performance assessment baseline
calculations (PABC). To clearly distinguish between the two MODFLOW models, the original MODFLOW
model, which consists of 100 realizations of calibrated parameter fields (Hart et al., 2009), will be
referred to as the “PA MODFLOW model”. The model derived here from the PA MODFLOW model, used
to construct the resulting contour map and particle track, is referred to as the “averaged MODFLOW
model”. The calibrated model T, A and R input fields, model boundary conditions, and other model
input files are appropriately averaged across all 100 calibrated realizations to produce a single averaged
steady-state MODFLOW flow model that can be used to predict regional Culebra groundwater flow
across the WIPP site.

The calibration process that resulted in the 100 model realizations of the PA MODFLOW model used
PEST to adjust spatially variable model parameters, while assuming fixed MODFLOW boundary
conditions. The calibration targets for the PA MODFLOW model were both snapshots of undisturbed
heads across the site and transient head responses to large-scale pumping tests. Hart et al. (2009)
describe the forward model setup and PEST calibration effort for the CRA-2009 PABC. An analogous but
much simpler process is used in the averaged MODFLOW model; here PEST is used to modify a subset of
the MODFLOW boundary conditions (see boundaries marked in red on Figure 1). The calibration targets
for PEST associated with the average MODFLOW model are the observed June 2009 freshwater heads at
Culebra monitoring wells. Boundary conditions are modified while holding spatially variable model
parameters (T, A, and R) constant; in the calibration of the PA MODFLOW model, the boundary
conditions were fixed, while adjusting the spatially variable parameters.

|nfor mation Only

| nfor mation Only

Culebra Contour Map
Page 6 of 45

dispersive and non-reactive) particle released from the waste handling shaft to the WIPP land
withdrawal boundary is computed from the resulting flow field in MODFLOW using DTRKMF, and also
plotted with Surfer. Scatter plot statistics summarizing the fit of the PEST-calibrated model to the
observed freshwater head at Culebra monitoring wells are created in Gnuplot and Excel. MODFLOW,
PEST, DTRKMF, and the Bash and Python scripts written for this work were executed on the PA Linux
cluster (alice. sandia.gov), while the commercial-off-the-shelf software Surfer, Gnuplot and Excel
were executed on a Windows XP desktop computer with an Intel Xeon CPU.

2.2 Creating Ensemble Average MODFLOW Simulation
An ensemble-average MODFLOW model is used to compute both the freshwater head and flow vectors
across the model domain; the heads are then contoured and the cell-by-cell flow vectors are used to
compute particle tracks. The ensemble-averaged inputs are used to create a single average simulation
that produces a single output, rather than averaging the 100 individual outputs of the Culebra flow
model used for WIPP PA.

The MODFLOW model grid is a single layer, comprised of 307 rows and 284 columns, each model cell
being 100 meters square. The modeling area spans 601,700 to 630,000 meters in the east-west
direction, and 3,566,500 to 3,597,100 meters in the north-south direction, both in UTM NAD27
coordinates (zone 13).

The calibrated T, A, and R parameter fields from the PA MODFLOW model were checked out of the CVS
repository using the checkout _average run modflow.sh script (all scripts are listed completely
in the Appendix; input files are available on the attached media). The model inputs can be divided into
two groups. The first group is the model inputs that are the same across all 100 calibrated realizations;
these include the model grid definition, the boundary conditions, and the model solver parameters. The
second group is the model inputs that are different for each realization; these include transmissivity (T),
horizontal anisotropy (A), and vertical recharge (R). The constant model inputs in the first group are
used directly in the averaged MODFLOW model (checked out from the CVS repository), while the inputs
in the second group were averaged across all 100 calibrated model realizations using the Python script
average realizations.py. All three averaged parameters were log transformed before being
averaged, since they vary over multiple orders of magnitude.

2.3 Boundary Conditions \
The boundary conditions taken from the PA MODFLOW modei are used as the baseline condition from
which PEST calibration proceeds. There are two types of boundary conditions in both MODFLOW
models. The first type of condition includes geologic or hydrologic boundaries, which correspond to
known physical features in the flow domain. The no-flow boundary along the axis of Nash Draw is a
hydrologic boundary (i.e., the boundary along the dark gray region in Figure 1). Also, the constant-head
boundary along the halite margin corresponds to a geologic boundary (i.e., the eastern irregular
boundary adjoining the light gray region in Figure 1).

|nformation Only

Culebra Contour Map
Page 7 of 45

Physical boundaries are believed to be well known, and are not adjusted in the PEST calibration. The
second type of boundary condition includes the constant-head cells along the rest of the model domain;
the linear southern, southwestern, and northern boundaries that coincide with the rectangular frame
surrounding the model domain are all of this type (shown as a heavy red line in Figure 1). The value of
specified head used along this second boundary type is adjusted in the PEST calibration process.

The Python script boundary types.py is used to distinguish between the two different types of
specified head boundary conditions based on the specified head value used in the PA MODFLOW model.
All constant-head cells (specified by a value of -1 in the MODFLOW IBOUND array from the PA
MODFLOW model) that have a starting head value greater than 1000 m (corresponding to the land
surface) are left fixed and not adjusted in the PEST optimization. The remaining constant-head cells are
distinguished by setting their IBOUND array value to -2 (which is still interpreted as a constant-head
value by MODFLOW, but allows simpler discrimination between boundary conditions in scripts
elsewhere).

Using the output from boundary types.py, the Python script sur face 02_extrapolate.py
computes the heads at active (IBOUND=1) and adjustable constant-head boundary condition cells
(IBOUND=-2), given parameter values for the surface to extrapolate.

2.4 PEST Calibration of Averaged MODFLOW Model to Observations
There are three major types of inputs to PEST. The first type of input includes the set of observed June
2009 freshwater head values used as targets for the PEST calibration. The second class of inputs
includes the entire MODFLOW model setup derived from the PA MODFLOW model and described in the
previous section, along with any pre- or post-processing scripts or programs needed; this comprises the
forward model that PEST runs repeatedly to estimate sensitivities of model outputs to model inputs.
The third type of input includes the PEST configuration files, which include parameter and observation
groups, indicating which parameters in the MODFLOW model will be adjusted in the inverse simulation.

Freshwater head values used as targets for the PEST calibration were collected in June 2009 (Waterson,
2010) and are summarized in Table 2.

|nfor mation Only

Table 2. Calibration targets used in PEST, from Watterson (2010).

Culebra Contour Map
Page 8 of 45

Adjusted Adjusted Density Used
Well I.D. Date Freshwater Head Freshwater Head (g/cmg)
(ft amsl) (m amsl)

AEC-7 06/09/09 3064.59 934.09 1.078
C-2737 (PIP) 06/11/09 3023.32 921.51 1.029
ERDA-9 06/11/09 3033.59 924.64 1.067
H-2b2 06/10/09 3043.09 927.53 1.000
H-3b2 06/11/09 3013.69 918.57 1.038
H-4b 06/09/09 3005.97 916.22 1.013
H-5b 06/09/09 3081.40 939.21 1.093
H-6bR 06/08/09 3070.79 935.98 1.033
H-7b1 06/08/09 2998.35 913.90 1.000
H-9c (PIP) 06/09/09 2996.27 913.26 1.003
H-10c 06/09/09 3024.23 921.78 1.001
H-11b4 06/09/09 3006.94 916.52 1.062
H-12 06/09/09 3007.34 916.64 1.096
H-15R 06/10/09 3022.22 921.17 1.130
H-16 06/11/09 3050.00 929.64 1.039
H-17 06/09/09 3003.56 915.48 1.120
H-19b0 06/11/09 3017.73 919.80 1.075
IMC-461 06/08/09 3047.07 928.75 1.019
SNL-1 06/08/09 3084.61 940.19 1.032
SNL-2 06/08/09 3074.36 937.07 1.015
SNL-3 06/08/09 3082.29 939.48 1.029
SNL-5 06/08/09 3077.12 937.91 1.012
SNL-6 06/10/09 2971.33 905.66 1.253
SNL-8 06/09/09 3055.63 931.36 1.104
SNL-9 06/08/09 3057.38 931.89 1.026
SNL-10 06/08/09 3056.29 931.56 1.013
SNL-12 06/09/09 3004.22 915.69 1.011
SNL-13 06/08/09 3012.75 918.29 1.028
SNL-14 06/09/09 3005.56 916.09 1.048
SNL-15 06/09/09 2937.74 895.42 1.232
SNL-16 06/08/09 3010.83 917.70 1.023
SNL-17A 06/09/09 3006.87 916.49 1.007
SNL-18 06/08/09 3077.16 937.92 1.011
SNL-19 06/08/09 3073.30 936.74 1.008
WIPP-11 06/10/09 3082.30 939.49 1.035
WIPP-13 06/10/09 3081.40 939.21 1.055
WIPP-19 06/09/09 3063.24 933.68 1.046
WIPP-25 (PIP) 06/11/09 3068.52 935.29 1.010
wQsP-1 06/10/09 3077.17 937.92 1.048
WQSP-2 06/10/09 3085.57 940.48 1.048
WQSP-3 06/09/09 3073.79 936.89 1.144
WQsP-4 06/10/09 3015.58 919.15 1.074
WQSP-5 06/10/09 3013.46 918.50 1.025
WQSP-6 06/10/09 3025.61 922.21 1.015

To minimize the number of estimable parameters, and to ensure a degree of smoothness in the
constant-head boundary condition values, a parametric surface is used to extrapolate the heads to the

|nformation Only

Culebra Contour Map
Page 9 of 45

estimable boundary conditions. The surface is of the same form described in the analysis report for AP-
114 Task 7. The parametric surface is given by the following equation:

hyy = A+ B *(y+ D * sign(y) = abs(y)®*Ponenty + C(E * x3 + F x x2 - x)

where sign(y) is the function returning 1 for y>0, -1 for y<0 and 0 for y=0 and x and y are coordinates
scaled to the range -1<{x,y}<1. In Hart et al. (2009), the values A=928.0, B=8.0, C=1.2, D=1.0,
exponent=0.5, £=1.0, and F=-1.0 are used with the above equation.

PEST was then used to estimate the values of parameters A,B,C,D,E,F, and exponent given the observed
heads in Table 2. The Python script surface 02 extrapolate.py was used to compute the
MODFLOW starting head input file (which is also used to specify the constant-head values) from the
parameters A-F and exponent. Each forward run of the forward model corresponded to a call to the
Bash script run_02_model. This script called the surface 02 extrapolate.py script, the
MODFLOW-2000 v1.6 executable, and the qualified PEST utility mod2obs . exe, which is used to extract
and interpolate model-predicted heads from the MODFLOW output files at observation well locations.

The PEST-specific input files (the third type of input) were generated from the observed heads using the
Python script create_pest 02 input.py. The PEST input files include the instruction file (how to
read the model output), the template files (how to write the model input files), and the PEST control file
(listing the ranges and initial values for the estimable parameters and the weights associated with
observations).

2.5 Figures Generated from Calibrated MODFLOW Model
The MODFLOW model is run predictively using the ensemble-averaged model parameters, along with
the PEST-calibrated boundary conditions. The resulting cell-by-cell flow budget is then used by DTRKMF
to compute a particle track from the waste handling shaft to at least the edge of the WIPP land
withdrawal boundary. The Python script convert dtrkmf output_ for surfer.py converts
the IJK cell-based results of DTRKMF into a UTM x and y coordinate system, saving the results in the
Surfer blanking file format to facilitate plotting with Surfer. The heads in the binary MODFLOW output
file are converted to an ASCII Surfer grid format using the Python script head _bin2ascii.py.

The resulting particle track and contours of the model-predicted head are plotted using Surfer 9 for an
area including the WIPP land withdrawal boundary, similar to the region shown in previous versions of
the ASER (e.g., see Figure 6.11 in DOE (2008)), see green outline in Figure 1. The modeled heads
extracted from the MODFLOW output by mod2obs . exe are then merged into a common file for
plotting using the Python script merge_observed modeled heads.py.

|nfor mation Only

Culebra Contour Map
Page 10 of 45

3 Results

3.1 Freshwater Head Contours
The model-generated freshwater head contours in Figure 2 and Figure 3 show the known characteristics
of groundwater flow in the Culebra at the WIPP site. There is a roughly east-west trending band of
steeper gradients, corresponding to known lower transmissivities. The uncontoured region in the
eastern part of the figure corresponds to the portion of the Culebra that is located stratigraphically
between halite in other members of the Rustler Formation (Tamarisk Member above and Los Medafios
Member below). This region east of the “halite margin” is represented as having high head but
extremely low permeability, essentially serving as a no-flow boundary in this area.

|nformation Only

Culebra Contour Map
Page 11 of 45

HGBR \

505000

500000

©
3
()]
g =
£
) =
2
o 2040 H3B2
o Q ISP @ QSP4
E §_ / i 9188 H19932-e S b -
o v 0
P ,5()'5 P5
©
2 o
5 c
28
Z 8+ H11B4 L
g 9165
-3070
H4B
S o2
o
8— SNL13
§ 98.3 '5006
/ %
-
C (=)
: ‘ : , ; , | . :
660000 665000 670000 675000 680000

NAD27 State Plane Easting (feet)

Figure 2. Model-generated June 2009 freshwater head contours with observed head listed at each well (5-foot contour
interval) with blue water particle track from waste handling shaft to WIPP LWB

|nfor mation Only

Culebra Contour Map
Page 12 of 45

S
I SNL1) L
o ®
<
w
S SNL18
8- % ® -
I52] (%4
w
N E
o SNL19 SNL3)
o ® ®
o | -
S
S SNLs
SNL2 WIPP11
]
S S
HEBR
S BB—3080. \& =
S
w

ww:epzs WIPP13$ wong W 3064
3060 WasP1_ 1 ®

H16 0
3040 \s/yg_g\ 282 q B

500000
g
T8/

490000
i |
[+
w
of
(=]
PN

NAD27 State Plane Northing (ft)

480000
1 :

470000
{

— 3000

460000

3000
H9C
3]

450000

T t T f T t T t T t T + T f T f T t T
630000 640000 650000 660000 670000 680000 690000 700000 710000 720000
NAD27 State Plane Easting (ft)

Figure 3. MODFLOW-modeled heads for entire model domain (10-foot contour interval). Green rectangle indicates region
contoured in Figure 2, black square is WIPP LWB.

3.2 Particle Track
The heavy blue line in Figure 2 shows the DTRKMF-predicted path a water particle would take through
the Culebra from the coordinates corresponding to the WiIPP waste handling shaft to the land
withdrawal boundary (a computed path length of 4.089 km). Assuming a thickness of 4 m for the
transmissive portion of the Culebra and a constant porosity of 16%, the travel time to the WIPP LWB is

|nformation Only

Culebra Contour Map
Page 13 of 45

5,900 years (output from DTRKMF is adjusted from a 7.75-m Culebra thickness), for an average velocity
of 0.69 m/yr.

3.3 Measured vs. Modeled Fit
The scatter plot in Figure 4 shows measured and modeled freshwater heads at the observation locations
used in the PEST calibration. The observations are divided into three groups, based on proximity to the
WIPP site. Wells within the LWB are represented by red crosses, wells outside but within 3 km of the
LWB are represented with green “x”s, and other wells within the MODFLOW model domain but distant
from the WIPP site are given by a blue asterisk. These groupings were utilized in the PEST calibration;
higher weights (2.5) were given to wells inside the LWB, and lower weights (0.4) were given to wells
distant to the WIPP site, while wells in the middle received an intermediate weight (1.0). Additional
observations representing the average heads north of the LWB and south of the LWB were used to help
prevent over-smoothing of the estimated results across the LWB. This allowed PEST to improve the fit
of the model to observed heads inside the area contoured in Figure 2, at the expense of fitting wells
closer to the boundary conditions (i.e., wells not shown in Figure 2).

|nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

Culebra Contour Map
Page 17 of 45

4 References

DOE (Department of Energy). 2008. Waste Isolation Pilot Plant Annual Site Environmental Report for
2007. DOE/WIPP-08-2225.

Doherty, J. 2002. PEST: Model Independent Parameter Estimation. Watermark Numerical Computing,
Brisbane, Australia.

Harbaugh, A.W., E.R. Banta, M.C. Hill, and M.G. McDonald. 2000. MODFLOW-2000, the U.S. Geological
Survey modular ground-water model -- User guide to modularization concepts and the Ground-
Water Flow Process. U.S. Geological Survey Open-File Report 00-92.

Hart, D.B., S.A. McKenna, and R.L. Beauheim. 2009. Analysis Report for Task 7 of AP-114: Calibration of
Culebra Transmissivity Fields. Carlsbad, NM, Sandia National Laboratories, ERMS 552391.

Kuhlman, K.L.. 2009a. Analysis Report for Prepartation of 2008 Culebra Potentiometric Surface Contour
Map, Rev 0, Sandia National Laboratories, Carlsbad, NM, ERMS 552005.

Kuhiman, K.L. 2009b. Procedure SP 9-9, revision 0, Preparation of Culebra potentiometric surface
contour maps. Carlsbad, NM, Sandia National Laboratories, ERMS 552306.

Moody, D.C. 2009. Stipulated Final Order for Notice of Violation for Detection Monitoring Program,
Sandia National Laboratories, Carlsbad, NM. WIPP Records Center, ERMS 551713.

Watterson, D. 2010. June 2009 Culebra ASER map data, Washington TRU Solutions, Carlsbad, NM.
WIPP Records Center, ERMS XXXXXX.

|nfor mation Only

| nfor mation Only

Culebra Contour Map
Page 19 of 45

this script first exports the 4 parameter fields (transmissivity (T), anisotropy (A), recharge (R), and
storativity (S)) from CVS for each of the 100 realizations of MODFLOW, listed in the file keepers (see
lines 17-26 of script). Some of the realizations are inside the Update or Update2 subdirectories in
CVS, which complicates the directory structure. An equivalent list keepers_short is made from
keepers, and the directories are moved to match the flat directory structure (lines 31-53). At this
point, the directory structure has been modified but the MODFLOW input files checked out from CVS
are unchanged.

The Python script average realizations.py (§A-4.2) is called, which first reads in the
keepers_short list, then reads in each of the 400 input files and computes the arithmetic average of
the base-10 logarithm of the value at each cell across the 100 realizations. The 400 input files are saved
as a flattened 2D matrix, in row-major order. The exponentiated result is saved in 4 parameter fields,
each with the extension . avg instead of .mod. A single value from each file, corresponding to either
the cell in the southeast corner of the domain (input file row 87188 = model row 307, model column 284
for Kand A) or on the west edge of the domain (input file row 45157 = model row 161, model column 1
for Rand S) is saved in the text file parameter representative values.txt to allow checking
the calculation in Excel, comparing the results to the value given at the same row of the . avg file. The
value in the right column of Table 3 can be found by taking the geometric average of the values in the
text file, which are the values from the indicated line of each of the 100 realizations.

Table 3. Averaged values for representative model cells

Field Input file row Model row Model column Geometric average
K 87188 307 284 9.2583577E-09
A 87188 307 284 9.6317478E-01
R 45157 161 1 1.4970689E-19
S 45157 161 1 4.0388352E-03

Figure 8 shows plots of the average log10 parameters, which compare with similar figures in Hart et al.
(2009); inactive regions <1.0E-15 were reset to 1.0 to improve the plotted color scale. The rest of the
calculations are done with these averaged fields.

|nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

Culebra Contour Map
Page 23 of 45

(surface_par_params.ptf), which shows PEST how to write the input file for the surface
extrapolation script; 3) the PEST parameter file (surface par_ params.par), which lists the
starting parameter values to use when checking the PEST input; 4) the PEST control file
(bc_adjust_2009ASER.pst), which has PEST-related parameters, definitions of extrapolation
surface parameters, and the observations and weights that PEST is adjusting the model inputs to fit. The
observed heads are read as an input file in the PEST borehole sample file format

(meas_head 2009ASER. smp), and the weights are read in from the input file

(obs_loc 2009ASER.dat).

PEST runs the “forward model” many times, adjusting inputs and reading the resulting outputs using the
instruction and template files created above. The forward model actually consists of a Bash shell script
(run_02_model) that simply calls a pre-processing Python script surface 02 extrapolate.py
(§A-4.5), the MODFLOW-2000 executable, the Python script

create_average NS residuals.py, and the PEST utility mod2obs . exe as a post-processing
step. The script redirects the output of each step to /dev/null to minimize screen output while
running PEST, since PEST will run the forward model many dozens of times.

The Python script create_average NS_residuals.py takes the output from the PEST utility
mod2Zobs . exe and creates a meta-observation that consists of the average residual between
measured and model-prediction, only averaged across the northern or southern WIPP wells (the wells in
the center of the WIPP site are not included in either group). This was done to minimize cancelation of
the errors north (where the model tended to underestimate heads) and south (where the model tended
to overestimate heads) of the WIPP. The results of this script are read directly by PEST and incorporated
as four additional observations (mean and median errors, both north and south of WIPP).

The pre-processing Python script surface 02 extrapolate.py reads the new IBOUND array
created in a previous step (with -2 now indicating which constant-head boundaries should be modified),
the initial head file used in AP-114 Task 7 (init_head orig.mod), two files listing the relative X and
Y coordinates of the model cells (rel {x,y} coord.dat), and an input file listing the coefficients of
the parametric equation used to define the initial head surface. This script then cycles over the
elements in the domain, writing the original starting head value if the IBOUND value is -1 or 0, and
writing the value corresponding to the parametric equation if the IBOUND value is -2 or 1. Using the
parameters corresponding to those used in AP-114 Task 7, the output starting head file should be
identical to that used in AP-114 Task 7.

After PEST has converged to the optimum solution for the given observed heads and weights, it runs the
forward model one more time with the optimum parameters. The post-processing Python scripts for
creating the Surfer ASCII grid file and Surfer blanking file from the MODFLOW and DTRKMF output are
run and the results are plotted in Surfer. The figures in State Plane coordinates are converted from UTM
using the US Army Corps of Engineers CorpsCon6 conversion software.

|nfor mation Only

A-1 Input Files

input file name

file type

description

average realizations.py

Python script

average 100 realizations

boundary_types.py

Python script

distinguish different BC types

checkout_average run modflow.sh

Bash script

main routine: checkout files, run
MODFLOW and PEST, call Python scripts

convert_dtrkmf_output_for_surfer.py

Python script

convert DTRKMF' 1J output
to Surfer X,Y blanking format

create_pest_02_input.py

Python script

create PEST input files from observed data

dtrkmf.in

input listing

responses to DTRKMF prompts

head_bin2ascii.py

Python script

convert MODFLOW binary
output to Surfer ASCII grid format

keepers

input

listing of 100 realizations from CVS

meas_head_2008ASER. smp

input

observed June 2009 heads
in mod2obs.exe bore sample file format

merge_observed_modeled_heads.py

Python script

paste observed head and model-generated
heads into one file

mod2obs_files.dat

file listing

files needed to run mod2obs.exe

mod2obs_head.in

input listing

responses to mod2obs.exe prompts

modflow_files.dat

file listing

files needed to run MODFLOW

obs_loc_2008ASER.dat input listing of wells and geographic groupings
pest_02_files.dat file listing files needed to run PEST
rel_x_coord.dat input relative coordinate 1 < x <1
rel_y_coord.dat input relative coordinate 1 <y <1

run_02_model

Bash script

PEST model: execute MODFLOW and
do pre- and post-processing

settings.fig input mod2obs. exe input file
spec_domain. spc input mod2obs. exe input file
spec_wells.crd input mod2obs . exe input file

surface_02_extrapolate.py

Python script

compute starting head from
parameter and coordinate inputs

wippctrl.inp

input

DTRKMEF input file

create_average NS_residuals.py

Python script

create meta-observations of northern
and southern average heads

Table A-1: Input Files

| nfor mation Only

A-2 Output Files

output file name

file type

description

ASER_boundary_StP1l.bln

Surfer
blanking file

coordinates defining contouring area
in state plane coordinates

ASER_area_only_state_plane.srf

Surfer Plot file

plot of local contours

ASER_area_only_state_plane.emf

enhanced metafile

plot of local contours

regional_plot_state_plane.srf

Surfer Plot file

plot of regional contours

regional plot_state_plane.emf

enhanced metafile

plot of regional contours

dtrk_output_pest_02_StPl.bln

Surfer
blanking file

coords defining particle track: output from
convert_dtrkmf_output_for_surfer.py
in state plane (converted via CorpsCon6)

modeled head pest_02_StPl.grd

Surfer grid file

model-generated heads:
output from head bin2ascii.py

modeled_vs_observed_head pest02.xlsx

Excel spreadsheet

modeled_vs_observed_head_pest_02.txt
plotted for histograms & regression R? values

plot_scatter_plots.gnu

gnuplot input

input for plotting scatter_pest_02_feet.emf

scatter_pest_02_feet.emf

enhanced metafile

output from gnuplot

wipp-boundary_StP1l.bln

Surfer
blanking file

coordinates defining WIPP LWB
in state plane coordinates

well_data_with_names_and_observed.dat

coords/names

well coordinates and names for plotting

Table A-2: Output Files

| nfor mation Only

A-3 Directory Listings

C:\>dir input
Volume in drive C is DriveC
Volume Serial Number is 542A-10F7

Directory of C:\input

05/06/2010 12:48 PM <DIR>
05/06/2010 12:48 PM <DIR>

08/28/2009 03:06 PM 2,057 average_realizations.py
08/25/2009 01:00 PM 2,088 boundary_types.py
08/25/2009 12:58 PM 6,650 checkout_average_run_modflow.sh
08/25/2009 01:04 PM 630 convert_dtrkmf_output_for_surfer.py
04/21/2010 05:13 PM 1,801 create_average_NS_residuals.py
04/21/2010 05:47 PM 2,980 create_pest_02_input.py
04/02/2010 02:37 PM 48 dtrkmf.in
08/25/2009 01:03 PM 3,862 head_bin2ascii.py
04/02/2010 02:37 PM 1,091 keepers
05/03/2010 03:11 PM 968 merge_observed_modeled_heads.py
04/02/2010 02:37 PM 76 mod2obs_files.dat
04/02/2010 04:19 PM 138 mod2obs_head.in
04/02/2010 02:37 PM 372 modflow_files.dat
04/02/2010 02:33 PM 400 obs_loc_2009ASER.dat
04/21/2010 05:31 PM 215 pest_02_files.dat
04/02/2010 02:37 PM 2,397,670 rel_x_coord.dat
04/02/2010 02:37 PM 2,397,528 rel_y_coord.dat
04/21/2010 05:31 PM 389 run_02_model
04/02/2010 02:37 PM 26 settings.fig
04/02/2010 02:37 PM 47 spec_domain.spc
04/02/2010 02:55 PM 1,705 spec_wells.crd
08/25/2009 01:02 PM 2,463 surface_02_extrapolate.py
04/02/2010 02:37 PM 506 wippctrl.inp

23 File(s) 4,823,710 bytes

2 Dir(s) 149,809,336,320 bytes free

| nfor mation Only

C:\>dir output
Volume in drive C is DriveC
Volume Serial Number is 542A-10F7

Directory of C:\output

05/06/2010 01:01 PM <DIR>
05/06/2010 01:01 PM <DIR>

05/04/2010 04:32 PM 217,848 ASER_area_only_state_plane.emf
05/04/2010 04:30 PM 938,326 ASER_area_only_state_plane.srf
05/04/2010 04:08 PM 120 ASER_boundary_StPl.bln
05/04/2010 04:22 PM 5,059 dtrk_output_pest_02_StPl.bln
05/04/2010 03:50 PM 697,604 modeled_head_XYZ_StPl.grd
05/04/2010 01:32 PM 2,099 modeled_vs_observed_head_pest_02.txt
05/06/2010 12:51 PM 34,444 modeled_vs_observed_head_pest_02.xlsx
05/03/2010 03:44 PM 2,203 plot_scatter_plots.gnu
05/05/2010 07:23 AM 217,104 regional_plot_state_plane.emf
05/05/2010 07:22 AM 915,546 regional_plot_state_plane.srf
05/03/2010 03:44 PM 33,352 scatter_pest_02_feet.emf
05/04/2010 04:04 PM 120 wipp_boundary_StPl.bln

12 File(s) 3,063,825 bytes

2 Dir(s) 149,808,885,760 bytes free

| nfor mation Only

© W N e Uk W N e

@ g oo oo ot ooc g gr ot g A A R R R A A R R A W W W W W W W W W W NN NN NN NN NN B R e e e E e e e
S © ® N o o kA @ N B O ©® ® N O A W N = O © ® 9 O a A WL R~ O © 0 N 0 A ® N = O © ©0 N O o k& W N = O

61

A-4 Script Source Listing
A-4.1 Bash shell script checkout_average run modflow.sh

#1/bin/bash

this script makes the following directory substructure

#

current_dir \———— Outputs (calibrated parameter fields — INPUTS)

\——— Inputs (other modflow files — INPUTS)

\—— original_-average (foward sim wusing average fields)
\—— bin (MODFLOW and DIRKMF binaries)

\— pest_0? (pest—adjusted results)

echo " """~ " rcsscsssaaaaan "

echo " checking out T fields"

echo " """ """t oosssssssaas n

these will checkout the calibrated parameter—field data into subdirectories
checkout things that are different for each of the 100 realiztaions
for d in ‘cat keepers®
do
cvs —d /nfs/data/CVSLIB/ Tfields checkout Outputs/${d}/modeled_{K,A,R,S} _field .mod
done

checkout MODFLOW input files that are constant for across all realizations

cvs —d /nfs/data/CVSLIB/ Tfields checkout Inputs/data/elev_{top,bot}.mod

cvs —d /nfs/data/CVSLIB/ Tfields checkout Inputs/data/init_{bnds.inf head.mod}

cvs —d /nfs/data/CVSLIB/ Tfields checkout Inputs/modflow/mf2k_culebra.{lmg, Ipf}

cvs —d /nfs/data/CVSLIB/ Tfields checkout Inputs/modflow/mf2k_head.{ba6 ,nam,oc,dis,rch}

modify the path of "updated” T—fields , so they are all at the
same level in the directory structure (simplifying scripts elsewhere)

if | —a keepers_short]
then
rm keepers_short
fi
touch keepers_short

for d in ‘cat keepers®
do
bn=‘basename ${d}*
test whether it is a compount path
if [${d} != ${bn}]
then
dn=‘dirname ${d}*
mv ./Outputs/${d} ./Outputs/

put an empty file in the directory to indicate
what the directory was previously named
touch ./Outputs/${bn}/${dn}

fi

create a keepers list without directories
echo ${bn} >> keepers_short
done
echo " """ """ " fofccssccsscsssssscsssssssssssn n
echo " perform averaging across all realizations
echo " """ """ """t ofscssccsscssscsscsssssSsSsSsS n

python average_realizations.py

checkout MODFLOW / DIRKMF executables

| nfor mation Only

cvs —d /nfs/data/CVSLIB/MODFLOW2K checkout bin/mf2k/mf2k_1.6.release
cvs —d /nfs/data/CVSLIB/MODFLOW2K checkout bin/dtrkmf/dtrkmf_v0100

check out pest and obsZmod binaries

cd bin

cvs —d /nfs/data/CVSLIB/PEST checkout Builds/Linux/pest.exe
cvs —d /nfs/data/CVSLIB/PEST checkout Builds/Linux/mod2obs.exe
cd ..

FYe) 1o N aiaialalolaialalakaliokalohaliahalialalalalialalalakaliokaliakalialalialolalolaliokalokalohalokolalalalalalolalalalale n
echo " setup copies of files constant between all realizations
echo "

directory for putting original base—case results 1in
od=original _average

if [—d ${od}]

then
echo ${od}" directory exists: removing and re-creating"
rm —rf ${od}

fi

mkdir ${od}
cd ${od}
echo ‘pwd‘

link to unchanged input files
for file in ‘cat ../ modflow_files.dat*
do

In —sf ${file}

done

link to averaged files computed in previous step
for f in {A,R.,K,S}
do

In —sf ../ modeled_${f}_field .avg ./modeled-${f} _field .mod
done

In —sf elev_top.mod fort.33
In —sf elev_bot.mod fort.34

echo HASAAAAAAA~AA~AA~AA~AA~AA~AA~AA~AA~AAA~AAAAAAAA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AAA~AAAAA~AAA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AAAAA~NA~A~A n
echo " run original MODFLOW and DTRKMF and export results for plotting"
[2Yed s Vo T "

run MODFLOW, producing average head and CCF
../ bin/mf2k/mf2k_1.6.release mf2k_head.nam

run DIRKMF, producing particle track (from ccf)
../ bin/dtrkmf/dtrkmf v0100 <dtrkmf.in

convert binary MODFLOW head output to Surfer ascii grid file format
In —sf ../ head_bin2ascii.py

python head_bin2ascii.py

mv modeled_head_asciihed.grd modeled_head_${od}.grd

convert DIRKMF output from cells to X,Y and
save in Surfer blanking file format

In —sf ../ convert_dtrkmf_output_for_surfer.py
python convert_dtrkmf_output_for_surfer.py
mv dtrk_output.bln dtrk_output_${od}.bln

extract head results at well locations and merge with observed
head file for easy scatter plotting in FExzcel (tab delimited)

| nfor mation Only

for file in ‘cat ../ mod2obs_files.dat®

do
In
done

—sf ${file}

In —sf ../meas_head_2008ASER .smp

In —sf ../obs_loc.2008ASER.dat .

../ bin/Builds/Linux/mod2obs. exe <mod2obs_head.in

In —sf ../ merge_observed_modeled_heads.py

python merge_observed_modeled_heads.py

mv both_heads.smp modeled_vs_observed_head_${od}.txt

go
cd
echo

echo
echo
echo

back down into root directory

for p in pest_02

do

if

fi

[—d ${p}]

then
echo ${p}" directory exists: removing and re-creating"

m —rf ${p}

mkdir ${p}

cd $

{p}

echo ‘pwd‘

link to wunchanged input files
for file in ‘cat ../ modflow_files.dat‘
do

n —sf ${file}

done

link to averaged files computed in previous step

for f in {AR,K,S}

do
In —sf ../modeled_${f}_field.avg ./modeled_${f} _field .mod

done

link to mod20bs files (needed for pest)
for file in ‘cat ../mod2obs_files.dat®

do
In —sf ${file}

done

link to pest files
for file in ‘cat ../${p}_files.dat"®

do
In —s ${file}

done

rename ’original ’ wversions of files to be modified by pest

rm
In
rm
In

init_head .mod
—sf ../Inputs/data/init_head .mod ./init_-head_orig.mod
init_bnds.inf
—sf ../Inputs/data/init_bnds.inf ./init_bnds_orig.inf

create new ibound array for easier modification during PEST

| nfor mation Only

190 # optimization iterations
191 python boundary_types.py

193 # create the mecessary input files from observations
104 python create_${p}_input.py

196 # run pest
197 ../ bin/Builds/Linux/pest.exe bc_adjust_-2008ASER

199 # last output files should be best run
200 # extract all the stuff from that output

203 In —sf elev_top.mod fort.33
204 In —sf elev_bot.mod fort .34

206 ../ bin/dtrkmf/dtrkmf_v0100 <dtrkmf.in

208 In —sf ../ head_bin2ascii.py
209 python head_bin2ascii.py
210 mv modeled_head_asciihed.grd modeled_head_${p}.grd

212 In —sf ../ convert_dtrkmf_output_for_surfer.py
213 python convert_dtrkmf_output_for_surfer.py
214 mv dtrk_output.bln dtrk_output_${p}.bln

216 for file in ‘cat ../ mod2obs_files.dat®

217 do

218 In —sf ${f11€}

219 done

220

221 ../ bin/Builds/Linux/mod2obs. exe <mod2obs_head.in

222 In —sf ../ merge_observed_modeled_heads.py
223 python merge_observed_modeled_heads.py
224 mv both_heads.smp modeled_vs_observed_head_${p}.txt

226 cd
227 done

| nfor mation Only

© X N e oA W N R

o @ o g o oog gl or ot g o ot R R A A R R R A A R W W W W W W W W W W N NN N NN NN NN =R R R e e e e e e
N Rk O © ® 9 0o o kb W N K O © ® N O A W N = O © ® 9 6 @ A WL = O © O N 0 A& ®WN~ O © ©® N 0 0k ® N = O

o
@

A-4.2 Python script average realizations.py

from math import loglO ,pow

nrow = 307
ncol = 284
nel = nrowsncol

nfr = 100 # number of fields (realizations)
nft = 4 # number of field types

debug = True # set to True to get output described in RunControl narrative

def floatload (filename):
"""Reads file (a list of strings, one per row) into a list of strings."""

f = open(filename ,’r’)

m = [float (line.rstrip()) for line in f]
f.close ()

return m

types — [’K’,’A’,’R’,’S’]

get list of 100 best calibrated fields
flist = open(’keepers_short’,6’r’)

runs = flist.read ().strip ().split(’\n”’)
flist .close ()

initialize to help speed lists up a bit
nfr (100) realizations of each
fields = []
for i in xrange(nft):
fields .append ([None|x nfr)
for i in xrange(nfr):
each realization being nel (87188) elements
fields[—1][i] = [None]*nel

read in all realizations
print ’reading ...’
for i,run in enumerate(runs):
print i,run
for j,t in enumerate(types):
fields[j][1][0:nel] = floatload (’0Outputs/’4run+’/modeled_’+t+’_field.mod’)

save file with one cell from each realization for checking in FEzxcel
if debug:
print ’writing debugging output for checking’
fd = open(’parameter_representative_values.txt’,’w’)
td . write (’%s %18s %18s %18s %18s\n’%
(’rzn’ ,types[0],types[1],types[2], types[3]))
for i,run in enumerate(runs):
fd.write(’%s %.14e %.14e %.14e ¥%.14e\n’ %
(run, fields [0][1][—1], fields [1]]

fields [2][1][159%284], fields [3][1

11159%284]))
fd.close ()

open up files for writing
fh = []
for t in types:
fh .append (open(’modeled_’+ t +’_field.avg’,’w’))

transpose fields to allow slicing across realizations , rather than across cells
for j in range(len (types)):
fields [j] = zip (x(fields[j]))

print ’writing ...’
do averaging across 100 gealizations

| nfor mation Only

70

for i in xrange(mnel):
if i%10000 = O:

print

i

for h,d in zip(fh,fields):
h.write(’%18.11e\n’ % pow (10.0,sum(map(logl0 ,d[i]))/ nfr))

for h in fh:
h.close ()

| nfor mation Only

© ® N e oA W N R

AR A W oW W W W W W W oW W NN N NNN NN NN R R E R e e e e e
N O © ® 9 & G A ® R = O © O N 0 G A& ®W N = O © ® N O O A~ ® N = O

43

A-4.3 Python script boundary_types.py

from itertools import chain

nx = 284 # number columns in model grid
ny = 307 # number rows
nel = nxx*xny

def intload (filename):
"""Reads file (a 2D integer array) as a list of lists.
OQuter list is rows, inner lists are columns."""

f = open(filename ,’r?)

m = [[int(v) for v in line.rstrip ().split ()] for line in f]
f.close ()

return m

def intsave(filename ,m):

"""Writes file as a list of lists as a 2D integer array, format °’%3i’.

Outer list is rows, inner lists are columns."""
f = open(filename ,’w’)
for row in m:
f.write(? ’.join ([’%2i’> % col for col in row]) + ’\n’)
f.close ()

def floatload (filename):
"""Reads file (a list of real numbers, one number each row)
into a list of floats."""
f = open(filename ,’r’)
m = [float (line.rstrip()) for line in f]
f.close ()
return m

def reshapev2m(v):
"""Reshape a vector that was previously reshaped in C-major order
from a matrix, back into a matrix (here a list of lists)."""
m = [None|*ny

for i,(lo,hi) in enumerate(zip (xrange(0,nel-nx+1,nx), xrange(nx,nel+1,nx))):

m[i] = v[lo:hi]
return m

read in original MODFLOW IBOUND array (only 0,1, and —1)
ibound = intload (’init_bnds_orig.inf’)

read in initial heads
h = reshapev2m (floatload (’init_head_orig.mod’))

discriminate between two types of constant head boundaries
—1) CH, where value > 1000 (area east of halite margin)

—2) CH, where value < 1000 (single row/column of cells along domain edge

for i,row in enumerate(ibound):
for j,val in enumerate(row):
is this constant head and is starting head less than 1000m ¢
if ibound[i][j] = -1 and h[i][j] < 1000.0:
ibound[1][j] = -2

save mnew IBOUND array that allows easy discrimination between types
in python script during PEST optimization runs, and is still handled
the same by MODFLOW since all ibound values < 0 are constant head.
intsave (’init_bnds.inf’ ,ibound)

| nfor mation Only

A-4.4 Python script create_pest_02_input.py

1 prefix = 2009ASER’

2

3

4 ## pest instruction file reads output from mod2o0bs
5 fin = open(’meas_head_%s.smp’ % prefix , 6 ’r?)

6

v # each well is a [name,head] pair

s wells = [[line.split ()[0],line.split ()[3]] for line in fin]
o fin.close ()

10

11 fout = open(’modeled_head.ins’,’w’)

12 fout.write(’pif @\n’)

13 for i,well in enumerate(wells):

14 fout.write("11 [%s139:46\n" % well[0])

15 fout.close ()

16

17 # exponential surface used to set initial head everywhere

18 # except east of the halite margins, where the land surface is wused.
19 # initial guesses come from AP—114 Task report

20 params = [928.0, 8.0, 1.2, 1.0, 1.0, —1.0, 0.5]

21 pnames = [’a’, ’b?, e’y ’d?, ’e’, ’f’, ’exp’]
22
23 fout = open(’avg_NS_res.ins’,’w’)

2« fout.write("""pif @
25 11 [medianN]1:16

26 11 [medianS]1:16

27 11 [meanN]1:16

28 11 [meanS]1:16

29 nnn

so fout.close ()

31

32

33
s3a ## pest template file

ss ftmp = open(’surface_par_params.ptf’, ’w’)
ss ftmp.write (’ptf @\n’)

37 for n in pnames:

38 ftmp . write (’@ hs e\n’ % n)
30 ftmp.close ()

40

41

42

a3 ## pest parameter file

44

s fpar = open(’surface_par_params.par’,’w’)

s fpar.write(’double point\n’)

av for n,p in zip (pnames, params):

18 fpar.write(’%s %.2f 1.0 0.0\n’ % (n,p))
1 fpar.close ()

50

51

52

s3 ## pest control file

54

55 f = open(’bc_adjust_%s.pst’ % prefix,’w’)

56

s7 f.write("""pct

s5s * control data

5o restart estimation

60 Hhi %i 1 0 2

61 1 2 double point 1 0 O

62 5.0 2.0 0.4 0.001 10
3.0

" Information Only

0.1

30 0.001 6 6 0.0001 4

111

* parameter groups

bc relative 0.005 0.0001 switch 2.0 parabolic
mn % (len (params),len (wells)+4))

f.write(’* parameter data\n’)
for n,p in zip (pnames,params):

if p> 0:
f.write(’%s mnone relative %.3f %.3f %.3f bc 1.0
(Il, p, _2'0*p7 3O*p))
else:
f.write(’%s none relative %.3f %.3f %.3f bc 1.0
(n, p, 3.0xp, —2.0%p))
f.write("""* observation groups
ss_head
avg_head

* observation data

)

read in observation weighting group definitions
fin = open(’obs_loc_%s.dat’ % prefix,’r’)

location = [line.rstrip ().split ()[1] for line in fin]
fin . close ()

weights = []

for 1 in location:

inside LWB

if 1 = 07:
weights.append (2.5)

near LWB

if 1 710
weights.append (1.0)

distant to LWB

if 1 = 2
weights.append (0.4)

for name,head,w in zip (zip (*xwells)[0],zip(xwells)[1], weights):
f.write(’%s %s %.3f ss_head\n’ % (name,head ,w))

there are 13 N observations in the average and 11 S, therefore
split the weight between the mean and median
f.write("""medianN 0.0 13.0 avg_head

medianS 0.0 13.0 avg_head

meanN 0.0 11.0 avg_head

meanS 0.0 11.0 avg_head

nnn)

f.write("""* model command line

./run_02_model

* model input/output

surface_par_params.ptf surface_par_params.in
modeled_head.ins modeled_head.smp
avg_NS_res.ins avg_NS_res.smp

]
f.close ()

| nfor mation Only

0.

0.

0

0

1\n’ %

1\n’ %

© X N e oA W N R

AR A W oW W W W W W W oW W NN N NNN NN NN R R E R e e e e e
N O O © ®® 94 & O A ® KR = O © O N 0 G A& ®W N = O © ©® N O O A~ ® N = O

IS
@

44

A-4.5 Python script surface 02_extrapolate.py

from itertools import chain
from math import sqrt

def matload (filename):
"""Reads file (a 2D string array) as a list of lists.
OQuter list is rows, inner lists are columns."""

f = open(filename ,’r’)

m = [line.rstrip ().split() for line in f]
f.close ()

return m

def floatload (filename):
"""Reads file (a list of real numbers, one number each row)
into a list of floats."""
f = open(filename ,’r’)
m = [float (line.rstrip()) for line in f]
f.close ()
return m

def reshapem2v(m):
"""Reshapes a rectangular matrix into a vector in same fashion
as numpy.reshape(), which is C-major order"""
return list (chain (xm))

def sign(x):

""" sign function
if x<O0:

return —1
elif x>0:

return +1
else:

return 0

read in modified IBOUND array, with the cells to modify set to —2
ibound = reshapem2v(matload(’init_bnds.inf’))

h = floatload (’init_head_orig.mod’)

these are relative coordinates, —1 <= x,y < +1
x = floatload (’rel_x_coord.dat’)
y = floatload (’rel_y_coord.dat’)

unpack surface parameters (one per line)
2 =A + Bx(y + Dxsign(y)xsqrt(abs(y)))+Cx(Exzxx3 — Fxxxx2 — z)

finput = open(’surface_par_params.in’,’r’)
try:
a,b,c,d,e,f,exp = [float (line.rstrip()) for line in finput]
except ValueError:
python doesn’t like °D’ in 1.2D—4 notation used by PEST sometimes.
finput .seek (0)
lines = [line.rstrip() for line in finput]
for i in range(len(lines)):
lines[i] = lines[i].replace(’D’,’E?)
a,b,c,d,e,f,exp = [float(line) for line in lines]|

finput.close ()
file to output initial/boundary head for MODFLOW model

fout = open(’init_head.mod’,’w’
for i in xrange(leniiboun

nformation Only

64
65
66
67
68
69
70
71
T2
73
T4
75
76
7

if ibound[i] = ’-2’ or ibound[i] = ’1’:
apply surface to active cells (ibound=1) —> starting guess
and non—geologic boundary conditions (ibound=—2) —> constant head
if y[i] = 0:
fout.write(’%.7e \n’ % (a + cx(exx[i]**3 + f*x[i]*%x2 — x[i])))

else:

fout.write(’%.7e \n> % (a 4+ bx(y[i] + dxsign(y[i])+abs(y[i])**xexp) +
)

else:

use

ck(exx[1]*x3 + frx[i]**2 — x[i])))

land surface at constant head east of halite boundary

ibound=0 doesn’t matter (inactive)
fout.write(’%.7e\n’ % h[i])

fout . close ()

| nfor mation Only

© X N e oA W N R

o @ o g o o og gl or ot o o ot R R A A R R R A A R W W W W W W W W W W N NNN NN NN NN = R R R e e e e e e
N Rk O © ® 9 0o o b W N K O © ® N O A ®W N = O © O 9 6 @ A ® R = O © W 9 0 A& ®WN =~ O © ©® N 0 0k ® N = O

o
@

A-4.6 Python script create_average NS residuals.py

this python script computes some summary re
based on the concept of "north of WIPP” and
to get PEST to honor the areas outside the
across the site.

def median(x):
"""return median of a list of floats"""

y = x[:]
y.sort ()
ly = len(y)

if 1ly%2 = 0:

return (y[ly/2-1] + y[ly/2])/2.0
else:

return y[(ly —1)/2]

stduals
"south of WIPP”
steep gradient

north = [’H6bR’,’WQSP1’ ,’WIPP13’ ,’WQSP2’ ,’WIPP11’ *SNL2’, 6 ’SNL5’,

’WIPP25’ ,?SNL19°’ ,?SNL3’ ,’SNL18’ ,’SNL

south = [’SNL16°,’SNL13’,’H4b’ ,’H11b4’ ,’SNL14
"H12° ,’H7b1’ ,’SNL12’ ,’H9c’]

north = [x.upper() for x in north]
south = [x.upper() for x in south]

17 7H5b’ |

» PH17,’SNL17 7,

make a dictionary of wells with heads as values

wells = {}

read in measured heads
fhsmp = open(’meas_head_2009ASER.smp’,’r’)
for line in fhsmp:
name,jl,j2 ,meas = line.strip ().split ()
wells [name. upper ()] = {’meas’:float (meas)
fhsmp . close ()

read in modeled heads
fhmod = open(’modeled_head.smp’,’r’)
for line in fhmod:
name, jl,j2 ;mod = line.strip ().split ()
wells [name. upper ()][’mod’] = float (mod)
fhmod. close ()

#for well in wells.keys ():
print well ,wells [well]

compute residuals mnorth and south of WIPP
resN = []
#print ‘north’
for w in north:
resN.append (wells [w][’meas’] — wells [w]]

print w, wells [w]["meas '], wells [w]["mod],

#print ’south’
resS = []
for w in south:

}

‘mod”’ |)

wells [w]["meas '] — wells [w]['mod ’]

resS.append(wells [w][’meas’] — wells [w][’mod’])

print w, wells [w]["meas '], wells [w]["mod],

fhout = open(’avg_NS_res.smp’,’w’)
fhout . write(’%.7e \n’ % median(resN))
fhout . write(’%.7e \n’ % median(resS))
fhout . write(’%.7e \n’ % (sum(resN)/len(resN)
fhout . write (’%.7e \n’ % (resS)/len(resS)

nfor ma’f

|on Only

wells [w]["meas '] — wells [w][mod’]

¢« fhout.close

| nfor mation Only

© X N e oA W N R

[T~ S S S
o o A W N = O

-
3

A-4.7 Bash shell script run_02 model

#1/bin/bash
#set —o ztrace

#echo ’step 1: surface extrapolate’
python surface_02_extrapolate.py

run modflow
#echo ’step 2: run modflow’

../ bin/mf2k/mf2k_1.6.release mf2k_head.nam >/dev/null

run mod2obs
#echo ’step 3: extract observations
../ bin/Builds/Linux/mod2obs.exe < mod2obs_head.in >/dev/null

)

create meta—observations of N vs. S
python create_average_NS_residuals.py

| nfor mation Only

57
58
59
60
61

62

A-4.8 Python script head_bin2ascii.py

import struct

class FortranFile(file):

modified from May 2007 Enthought-dev mailing 1list

post by Neil Martinsen-Burrell"""

def

def

def

def

__init__(self ,fname, mode=’r’, buf=0):
file.__init__(self, fname, mode, buf)

self .ENDIAN = ><’> # [little endian

self .di =4 # default integer (could be 8 on 6/—1bit)

readReals (self , prec="f’):
"""Read in an array of reals (default single precision)
with error checking"""
read header (length of record)
1 = struct.unpack(self .ENDIAN+’1i’ self.read(self.di))[0]
data_str = self.read (1)
len_real = struct.calcsize (prec)
if 1 % len_real != 0:
raise IOError(’Error reading array of reals from data file’)
num = 1/len_real
reals = struct.unpack(self .ENDIAN+str (num)+prec,data_str)
check footer
if struct.unpack(self .ENDIAN+’i’ self.read(self.di))[0] != 1:
raise IOError(’Error reading array of reals from data file’)
return list (reals)

readInts (self):
"""Read in an array of integers with error checking"""
1 = struct.unpack(’i’,self.read(self.di))[0]
data_str = self.read(1)
len_int = struct.calcsize(’1”)
if 1 % len_int != 0:
raise IOError(’Error reading array of integers from data file’)

num = 1/len_int
ints = struct.unpack(str (num)+’i’,data_str)
if struct.unpack(self ENDIAN+’i’, self.read(self.di))[0] != 1:

raise IOError(’Error reading array of integers from data file’)
return list (ints)

readRecord (self):
"""Read a single fortran record (potentially mixed reals and ints)"""
dat = self.read(self.di)
if len(dat) = 0:
raise IOError(’Empy record header’)
1 = struct.unpack(self . ENDIAN+’i’ dat)[0]
data_str = self.read(1)
if len(data_str) != 1:
raise IOError(’Didn’’t read enough data’)
check = self.read(self.di)
if len(check) != 4:
raise IOError(’Didn’’t read enough data’)
if struct.unpack(self . ENDIAN+-’i’ , check)[0] != 1:
raise IOError(’Error reading record from data file’)
return data_str

def reshapev2m (v,nx,ny):
"""Reshape a vector that was previously reshaped in C-major order
from a matrix, back into a C-major order matrix (here a list of lists)."""

m =
n =
for

[None] *ny
nx*ny

i,(lo,hi) in enumerate(zip (xrange(0,n—nx+1,nx), xrange(nx,n+1,nx))):
m[i] = v[lo:hi]

nformation Only

return m

def floatmatsave(filehandle ,m):
"""Writes array to open filehandle, format ’568%el12.5°.
Outer list is rows, inner lists are columns."""

for row in m:
f.write(’’.join ([’ %12.5e¢’ % col for col in row]) + ’\n’)

open file and set endian—ness
ft = FortranFile(’modeled_head.bin’)

currently this assumes a single—layer MODFLOW model
(or at least only one layer of output)

format of MODFLOW header in binary layer array
fmt = <2i2f16s3i’
little endian, 2 integers, 2 floats,

16— character string (4 element array of Jj—byte strings), 3 integers

while True:
try:
read in header

h = ff.readRecord ()

except [OError:
exit while loop
break

else:
unpack header

kstp ,kper ,pertim , totim , text ,ncol ,nrow,ilay = struct.unpack(fmt, h)

print status/confirmation to terminal
print kstp ,kper,pertim ,totim ,text ,ncol ,nrow,ilay

h = ff.readReals ()

ff.close ()

(601700.0,630000.0)
(3566500.0,3597100.0)

xmin, xmax
ymin, ymax =
hmin = min(h)
hmax = max(h)

write output in Surfer ASCII grid format

f = open(’modeled_head_asciihed.grd’,’w’)
f.write("""DSAA

%hi hi

%hotf %.1f

%ho1f Y%.1f

%.8e %.8e

mrr % (ncol nrow , xmin , xmax , ymin , ymax , hmin , hmax))
hmat = reshapev2m (h,ncol ,nrow)

MODFLOW starts data in upper—left corner
Surfer expects data starting in lower—left corner
flip array in row direction

floatmatsave (f ,hmat[:: —1])
f.close ()

| nfor mation Only

© X N e oA W N R

NN NN NN N NN R R e R e e e e e
0 N & U A W N = O © 0 N O Ok W N = O

N
©

A-4.9 Python script merge observed modeled_heads.py

fobs
fmod
fwgt

= open(’meas_head_2009ASER.smp’,’r’) # measured head
= open(’modeled_head.smp’,’r’) # modeled head
= open(’obs_loc_2009ASER.dat’,’r’) # weights
fdb = open(’spec_wells.crd’,’r’) # x/y coordinates
fout = open(’both_heads.smp’,’w’) # resulting file

read in

wells = {}

for

fdb

lis

t of x©/y coordinates, key by well name

line in fdb:

well ;x,y = line.split ()]
wells [well .upper ()] = [x,¥y]
.close ()

0:3] # ignore last column

fout . write (’\t’.join ([’#NAME’ ,’UTM-NAD27-X’ ,>UTM-NAD27-Y’ ,

»OBSERVED’ , > MODELED’ ,>0BS-MOD’ , > WEIGHT’])+’\n’)

for sobs,smod,w in zip (fobs ,fmod, fwgt):

fobs .
fmod.
fwgt .
fout .

obs = float (sobs.split ()[3])

mod = float (smod.split ()[3])

name = sobs.split ()[0].upper()

fout.write(’\t’.join ([name, wells [name][0] , wells [name][1] ,

str(obs),str(mod),str (obs—mod),
w.rstrip ().split ()[1]])+’\n")

| nfor mation Only

© ® N e oA W N R

MORONON NN NN R R R R R R R e e
N % oA W N R O oW N O R W N R O

)
0

A-4.10 Python script convert_dtrkmf_output_for_surfer.py

grid origin for ditrkmf cell —> z,y conversion

x0 = 601700.0
y0 = 3597100.0
dx = 100.0
dy = 100.0

fout = open(’dtrk_output.bln’,’w’)

read in all results for saving particle tracks
fin = open(’dtrk.out’,’r’)
results = [1.split() for 1 in fin.readlines ()[1:]]

fin.close ()

npts = len(results)

write Surfer blanking file header

fout.write (’%i,1\n’

write x,y locatio
for pt in results:

x = float (pt[1]
y = y0 — float(
t =

% npts)
n and time

)xdx 4+ x0
pt [2])xdy

float (pt[0])/7.75%x4.0 # convert 7.75m to Jm Cuelbra thickness

fout.write (’%.1f,%.1£,%.8e\n’> % (x,y,t))

fout . close ()

| nfor mation Only

