5570

Analysis Report for Preparation of 2000-2004 Culebra Potentiometric Surface
Contour Maps

Task Number: 1.4.2.3

Report Date: 5/24/2012

uthor Z /%(., §/ 2 /[12-

l(ristopber L. Kuhiman, 6212 Date
Repository Performance Department

Technical Review: %ﬁ /‘,\AJf 5/2‘//|Z
Kevin S. Barnhart 6212 Date

Repository Performance Department

S 2 53012

Shelly R. Niefséh, 6210 Date
Carlsbad P¢gframs Group

Management Review: Q%\/ 5/?‘7//'2

Christi D. Leigh, 6212 Date
Manager, Repository Performance Department

WIPP:1.4.2.3:TD:QA-L: REC-FT :549085

ormation Only

Culebra Contour Map

Page 2 of 127

Table of Contents
O 1114 Yo [Tt 4 o3 RSOOSR 3
Yol 1101) 1ol o o] o - ol « OO OO OTON 4
2.1 2000-2004 Freshwater Head and Density Data Review........ccccccvevierrinreiiniinninniinniineiiieenenen 4
2.2 MOAEIING QVEIVIEW ...ccviiiiiiiiiiieiiiirititierteeeereieresiesireraneeeeeasasaassneneenneeseseseasarsassosassnnsntsssrssssensaressses 7
2.3 Creating Average MODFLOW Simulation........ccccviiieciieiniireenircireeen e sneretes e sntesesesnnnnnns 8
2.4 Boundary CONILIONS . ..c.ciiiiiiiiiiiiiiciiiiiiitte e ireisceererrirreeeeesesesmsreneraneesessseeseessessesssennsnsnratssrrartereasses 9
2.5 PEST Calibration of Averaged MODFLOW Model to Observations..........ccccceevvrivieiinninineneeiiennnns 10
2.6 Figures Generated from Averaged MODFLOW Model..........cccoovoirrirrevceiririciiiiienininiieneesnennns 11
3 2000 RESUIESeveeieeiirreririereeereersreeessinnentrrereeeresersianssnsaesteeesessassssrsrsesesssssessessssssnsnnsssassmteernereetensereses 12
3.1 2000 Freshwater Head CONTOUScovvvriiiieiriiiinnierrreeseeeeeernerereeeeseee s s s e san s essarrarans e e seesanenes 12
3.2 2000 PArtiCle TrACK........vvuiiieieeieiersceiiiiiiittte e e e s s eeseseerare s eeese s sosansmseeasaaeesaesaessesssassosssrsssassnssnnanee 13
3.3 2000 Measured vs. Modeled Fit.......ccc.ociiiiiiiciiiees et ceeeee e e seerees e s s neeres s sssssansnesesenesvasens 13
A 2000 RESUILS ... eiiiiiee e iite e st s ettt e e s e st e e e sestaeeese b bsaeae s ane s s e seaeessssbeeeeaesassraraeseaeransbesasesossrnsnes 17
4.1 2001 Freshwater Head CONtOUTScouiiiiiiiiiieir e ceccinrere e s eee e s cesnenerererseseaesessessaessassosasnsensransans 17
4.2 2001 PartiCle TraCKceeieeiceeeteie ettt eeecee e e cte e e e eete e e senteae s sesette e s ssanrtenessssearenaeees sossbasnsssosann 18
4.3 2001 Measured vs. Modeled Fit.........cccooiciiiiiiiiiiii et seeree e e rsreree s sesinsaeesesaens 18
5 2002 RESUIS ..uuvreriieiierierreieieisieceieiirrieeeeeeeseeseesnaerestnrerseeseeesasastsraaeeessesasersasstnnsaraeseesaaeseessssosiossonsersrsnsnns 21
5.1 2002 Freshwater Head CONOUTScccicoiiiiiiiiiiiieiciiereeecrieseensreressesereraesessseninseess sosnssanssssissssnnns 21
5.2 2002 PartiCle TraCK....miievrieveeie e cciciriirrcerer s sisierrvees s e ereseessiavesneseesseassssssnssnssnessersetsesesrersstssnessasans 22
5.3 2002 Measured vs. MOdeled Fit.......cccieeiiiiiiiiieccicece et seserree s e neeess e sanasan e s esansnens 22
B 2003 RESUIESeueeereieriiiei i eeiece e e ettt ie e e s e s eerasieerrearaeseeseeaesbartaneeaessesassssssnnenraaerresteseestssasiossensorssrarnas 26
6.1 2003 Freshwater Head CONOUTScoiiiiiiriiiciiirirccreeceresserrer e s s sreeresse e rresssssssnarnaesssssnnnnes 26
6.2 2003 Particle TracK.......cccevvuerriuerrreeeeereseneesessesensenans ettt e ettt nre e 27
6.3 2003 Measured vs. MOAEled Fit............oeiiieiiioiiireiiirereseceniniarreereeeee s e ess s eserr st s ae s esaeae e s 27
T 2004 RESUIES ...t iiee e s e cecsecreeecieee e e aes e e st e e ne e e s s saeeseseebvbeebaeassaessssssssrnasseesemrasetasassettsenssissnsaes 30
7.1 2004 Freshwater Head CONTOUTScooiiciiiiiiiciiie et ctee e e seeee s e s ee e s e ares s s essssanessesseannnnes 30
7.2 2004 Particle TraCK. .. ccciieiiieieie ettt ettt e s rer e e s sevte e e e serseae e s snenaee s e s s enetsss e s nratnssessnrnnens 31
7.3 2004 Measured vs. Modeled Fit.........ccooooiiiiiciiiiiiieee e ceeetee s reerees e smersss s srsane s s e saasnens 31
I VT4 1T 1 1 T- 1 oV PR O OO RS 34
O REFEIENCES ettt e e s e e ete e s e et e e s b s e ss e e seeea b e eee e shaesbee s be sage et e e re s er e e e e e s s srb e b aes 35
10 RUN CONLIOL NAITAtiVE ..o ittt et s et e e s e e san e e e s s e meenas s s ssabansssesbnanns 36
11 Appendix: Water Level and Density Data Listingccccccceveiiieniininiee e cnenicenscnnieessosnnnnnes 46
11.1 Input files for plotting water levels and densitiescccciervverrivreernnee e s 46
11.2 Listing of Water Level PIOtEING SCIIPL ..coocviiiiiececeecrne e ner et csesnr e eaee e 48
11.3 Figures Generated by Python Water Level SCript.....ccccvvevvrierecciirrrecreenccennnn e 63
12 Appendix: MODFLOW and Pest Files and Script Source LiStingscccccccivviiiinininniineensinnienen, 105
12,0 INPUL FIlE LiSTiNg...ccoiiieiieeiiiiretier e re s e v e st e s et s e e e s e reeseres st enteereetseasssenaesansnnsan 105
12.2 OULPUL File LIStING....coooe ittt s s e e e s erer e e e s e s e s s s et ses s esre e s eas et aseesesesaessanans 106
12.3 Individual MODFLOW and Pest Script LiStings..........couevummrieininiiiciiinn e 107

|nformation Only

Culebra Contour Map
Page 3 of 127

1 Introduction

This report documents the preparation of five historic potentiometric contour maps and associated
particle tracks for the Culebra Member of the Rustler Formation in the vicinity of the Waste Isolation
Pilot Plant (WIPP), for submittal to the New Mexico Environment Department (NMED). The driver for
this analysis is the draft of the Stipulated Final Order sent to NMED on May 28, 2009 (Moody, 2009).
This Analysis Report follows the procedure laid out in procedure SP 9-9 (Kuhlman, 2009), which is based
upon this NMED driver. This report is the second half of Kuhiman (2012), the same analysis is
performed on data from 2000-2004, rather than 2005-2007 data.

Historic data were taken from the Annual Site Environmental Reports (ASERs) to plot freshwater head
and density" at Culebra wells through time; see (DOE, 2005) through (DOE, 2011) in references. This
additional step of plotting time series at each well was done to pick an appropriate month with
relatively undisturbed conditions and to assign consistent density data for 2000-2004.

Beginning with the ensemble of 100 calibrated MODFLOW transmissivity (T), horizontal anisotropy (A),
and areal recharge (R) fields (Hart et al., 2009) used in WIPP performance assessment (PA), three
average parameter fields are used as input to MODFLOW to simulate freshwater heads within and
around the WIPP land withdrawal boundary (LWB). For each year (2000-2004) PEST is used to adjust a
subset of the boundary conditions in the averaged MODFLOW model to obtain the best-fit match
between the observed freshwater heads and the model-predicted heads. The output of the averaged,
PEST-calibrated MODFLOW model is both contoured and used to compute each year’s advective particie
track forward from the WIPP waste-handling shaft.

! Density in units of g/cm? is numerically equivalent to specific gravity, the ratio of the density of
any water to that of fresh water, since fresh water approximately has a density of 1 g/cm®.

Information Only

Culebra Contour Map
Page 4 of 127

2 Scientific Approach

2.1 2000-2004 Freshwater Head and Density Data Review
As in Kuhlman (2012), data reported in past ASERs are plotted to ensure consistency and explain
anomalies. Python scripts and resulting data plots at each well are listed in Sections 11.2 and 11.3.
Table 1 summarizes freshwater heads, measurement dates, and Culebra groundwater densities for all
five years included in the current analysis.

Water level and freshwater head values (and measurement dates) were obtained from Table F-8 in the
2001-2004 ASERs. Water level data were not reported in the 2000 ASER, but were instead obtained
directly from WIPP personnel (Watterson, 2012). Culebra densities were estimated from historic Troll
data for 2003 (Johnson, 2012a) and 2004 (Johnson, 2012b). No Troll data were available for the years
2000-2002. Culebra midpoint elevations were obtained from Johnson (2008) and SAND89-7068
(Cauffman et al., 1990). Historic events {pumping tests, purging events, drilling and plugging &
abandonment) were tabulated from ASERs. All of these data were plotted together through time as part
of the data review to determine two things. First, were there significant events in a well that warrant
assigning a sudden change in fluid density? If there was a noticeable change in observed depth-to-water
that occurred at the same time as a documented event, a different density is assigned to the periods
before and after this event. Secondly, one or more representative densities were chosen for the well,
and a start and end time was assigned to each density. If only one density is assigned, then the selected
beginning time is prior to the beginning of this analysis and the chosen end time is in the future. There
is some variability in the measurements of density in wells. Especially with older data, the variability can
become large, due to inaccuracies in recorded Troll installation depths. In January 2007 (beginning with
the 2007 ASER) more accurate reference point elevations were used to compute water level and
freshwater head elevations. To increase consistency across years, all pre-2007 water level elevations
were adjusted to use the newer reference point elevation.

The set of wells used for calibration targets in this report is different from the wells used in the 2005-
2007 report (Kuhlman, 2012) because of the evolution of the Culebra groundwater monitoring network
through time. AEC-7 was re-perforated at the Culebra in 2004 and did not have representative water
levels until it was again re-perforated in 2008. Only one of the SNL-series wells (SNL-12) existed and had
representative water levels during the 2000-2004 timeframe. Several wells were converted from
Culebra to Magenta using bridge plugs in 2001 (with a permanent plugback in 2003}, including H-14, H-
15, H-18, and WIPP-18. DOE-1, WIPP-12, WIPP-21, WIPP-25, WIPP-26 and P-15 were plugged and
abandoned without replacement wells. C-2737, IMC-461, and SNL-12 were drilled during the 2000-2004
timeframe and therefore do not have water levels for each year. On the H-07, H-09, and H-10 wellpads
there were redundant Culebra monitoring wells, and the primary Culebra monitoring well was changed
affecting the 2000-2004 timeframe. H-07b1 was a redundant well (quarterly measurements), but
became the primary H-07 Culebra observation well (monthly measurements) in 2005 when H-07b2 was
plugged and abandoned. H-09¢c was a redundant Culebra well on the H-09 pad, but became the primary
Culebra well when H-09a and H-09b were plugged in 2002. H-10c was converted to a Culebra

| nformation Only

Culebra Contour Map
Page 5 of 127

monitoring well by perforating the casing, to replace H-10b, which was plugged and abandoned at the
same time in early 2002. At both the H-07 and H-09 well pads we used the same Culebra monitoring
well through time, despite the historic shift in primary Culebra observation well at each pad. This was
done to maintain as much consistency as possible (although earlier water level observations are only
quarterly).

The data review revealed August to be the best contour month in 2004 because water levels were
impacted in many wells due to a series of large precipitation events in September 2004. Wells in Nash
Draw (e.g., WIPP-25 and WIPP-26) rose significantly due to this event. At AEC-7 we used a March water
level because the well was re-perforated in April 2004, which resulted in abnormal water levels until
2008. At H-07bl1 we used a September water level because prior to 2005 the water level in this well was
only measured quarterly (H-07b2 was the primary well on the H-07 well pad until it was plugged and
abandoned in May 2005). AtIMC-461 and SNL-12 we used December water levels because they were
both drilled new in late 2003, requiring several months to stabilize after drilling and well development
activities. At WQSP-2 we used a July water level because of an anomalous water level, which might be
due to sampling activities.

The data review revealed September to be a good month for contouring in 2003. At C-2737 we used a
March water level because the well was configured for testing in the Magenta the remainder of 2003.

The data review revealed December 2002 to be the best contouring month in 2002 (the 2002 ASER also
used December). At WQSP-2 and WQSP-3 we used September water levels because of drawdown due
to sampling activities in October 2002.

The data review revealed December 2001 to be the best contouring month in 2001 (the 2001 ASER also
used December). At WQSP-5, WQSP-6, WQSP-2 and WQSP-3 we again used later water levels because
of drawdown due to sampling activities later in 2001.

The data review found December 2000 to be the best contouring month in 2000 (the 2000 ASER also
used December). At ERDA-9 we used a September water level because of anomalously low water levels
near the end of 2000. At H-09¢ we used a June water level because before 2002 only quarterly water
levels were measured in this well (H-09B was the primary Culebra well on this pad until it was plugged in
February 2002 during pressure-grouting activities in H-09a). At H-14 we used a September water level
because. At P-15 we used a January water level because December was an anomalously low water level.
At WIPP-30 we used a June water level because of low water levels following well-maintenance
activities in October. At WQSP-2, WQSP-3, WQSP-5, and WQSP-6 we used water levels earlier in the
year to avoid periods with residual drawdown from sampling events.

|nformation Only

Culebra Contour Map
Page 6 of 127

Table 1. Fresh Water Head (FWH) elevation {meters AMSL) and specific gravities {SG) used to compute FWH from depth to
water observations. Depth to water in each well was measured on the FWH date. Missing data summarized below.

2004 2003 2002 2001 2000
date FWH | SG date FWH | SG date FWH [SG date FWH | 5G date FWH | SG

AEC-7 03/09/04 | 933.1 | 1.08] 09/10/03 | 9334 | 1.08 § 12/03/02 | 932.8 | 1.08 J 12/04/01 | 932.9 | 1.08 | 12/07/00 | 932.9 | 1.08_
C-2737 08/11/04 | 91941 1.011 0312/03 | 920.1 | 1.00) 12/04/02 | 920.0 | 1.00

DOEA1 09/10/03 | 917.0 | 1.08 § 12/04/02 | 916.9 | 1.08 12/05/01 9165 1;08 12/05/00

ERDA-9 ‘0’8/‘11/04 9238 106 09/10/03 | 9239 | 1.06 | 12/02/02 | 923.8 | 1.06 | 12/05/01 | 9234 | 1.06 § 09/11/00

H-02b2 08/11/04 | 9266 | 1.00 | 09/09/03 | 926.9 | 1.00 § 12/04/02 | 926.8 | 1.00 | 12/05/01 | 9264 | 1.00 § 12/06/00

H-03b2 08/11/04 | 918.0 [1.04 § 09/10/03 | 918.2 | 1.04 | 12/02/02 | 918.1 | 1.04 | 12/05/01 | 917.8 | 1.04 | 12/06/00

H-04b 08/11/04 | 9157 | 1.01 4 09/09/03 | 9154 | 1.01 | 12/02/02 | 915.7 | 1.01] 12/05/01 | 9155 | 1.01] 12/06/00
H-05b 08/10/04 | 937.3 | 1.10 | 09/10/03 | 9374 | 1.10 § 12/03/02 | 937.1 | 1.10 | 12/04/01 | 937.0 | 1.10 § 12/07/00
H-06b 08/10/04 | 933.9 | 1.04 § 09/08/03 | 9344 | 1.04 | 12/02/02 | 934.6 | 1.04] 12/05/01 | 9341 | 1.04 | 12/07/00
H-07b1 09/13/04 | 913.7 [1.00 § 09/08/03 | 9136 | 1.00

913.6 | 1.00 § 12/03/01 | 9136 | 1.00 § 12/05/00
N 12/04/01 | 912.0 [1.00 § 06/06/00

1.00

H-09¢ 08/10/04 | 9129 | 100§ 09/08/03 | 9117

H-100 U U i T T tojoa01 [9224 | 1.04 | 12/08/00
H-10c 9221 | 1.00 | 09/09/03 | 922.1 [1.00 | 12/03/002 | 922.3 | 1.00 T 7
H-11b4 | 08/11/04 | 916.3 | 1.07 | 09/10/03 | 915.9 | 1.07 | 12/04/02 | 916.1 | 1.07 | 12/03/01 12105/00
H-12 ' 09/09/03 | 916.7 | 1.09 | 12/03/02 | 9165 | 1.09 | 12/04/01 | 916.2 | 1.09 | 12/05/00
H-14 ; ~ ‘ 1 oor11i00
H-15 i B ~ | 1200600
HA7 08/11/04 | 9154 | 113 | 09/10/03 | 9149 | 1.13 | 12/04/02 | 915.2 | 1.13 | 12/04/01 | 914.8 [1.13 | 12/05/00
H-18 S el B T . "I 12007100
H1900 | 08/11/04 1.06 | 09/10/03 12/04/02 12/05/01 12106/00
IMC461__ | 12/06/04 1000 ‘ ' B
P-15 T j 01/19/00
P17 08/11/04 09/10/03 12/04/02

12105100

SNL-12 12/07/04 1.00 ¢

WIPP-12 08/11/04 | 935.7 | 1.10 J 09/09/03 | 936.3 12/02/02 936.4’ 140 ‘\1k2/05/01’ 9360 | 1.10 | 12/06/00

WIPP-13 08/10/04 | 937.2 | 1.05§ 09/08/03 | 937.8 12/02/02 | 938.0 | 1.05 | 12/05/01 | 937.7 | 1.05 | 12/07/00

WIPP-19 0.8/'11/04 933.2 | 1.05] 09/09/03 9337 1.05 | 12/02/02 | 933.7 \1.‘05‘ 12/05/01 933;2 1.05) 12/06/00

WIPP-21 08/11/04 | 926.8 | 1.07 | 09/09/03 | 927.0 | 1.07 | 12/02/02 | 927.0 | 1.07 } 12/05/01 | 926.6 | 1.07 § 12/06/00

WIPP-22 08/11/04 | 933.0 | 1.08 } 09/09/03 | 9334 | 1.08 | 12/02/02 | 933.4 | 1.08 § 12/05/01 | 933.0 | 1.08 § 12/06/00

WIPP-25 08/09/04 | 9334 | 1.01) 09/08/03 | 933.9 | 1.01] 12/03/02 | 934.3 | 1.01 1 12/04/01 | 933.8 | 1.01} 12/07/00

WIPP-26 08/09/04 | 921.2 | 1.00 § 09/08/03 | 921.3 | 1.00 § 12/03/02 | 921.6 | 1.00 | 12/05/01 | 9211 | 1.00 § 12/04/00

WIPP-30 08/10/04 | 9374 | 1.01§ 09/09/03 | 9379 | 1.01) 12/03/02 | 937.8 | 1.01 | 12/03/01 | 937.0 | 1.01 | 06/05/00

WQSP-1 08/11/04 | 935.7 | 1.04 | 09/09/03 | 936.3 | 1.04 § 12/02/02 | 936.3 | 1.04 § 12/05/01 | 935.8 | 1.04 } 12/07/00

WQSP-2 07/08/04 | 938.4 | 1.04 § 09/09/03 | 939.1 | 1.04 § 09/09/02 | 939.1 | 1.04 | 09/06/01 | 938.8 | 1.04 } 09/12/00

WQSP-3 08/11/04 | 9353 | 1.14 § 09/09/03 | 935.8 | 1.14 § 09/09/02 | 935.8 | 1.14 § 09/06/01 | 9354 | 1.14] 09/11/00

WQSP4 08/11/04 | 918.3 | 1.07 § 09/09/03 | 9184 | 1.07 § 12/02/02 | 918.5 | 1.07 § 12/05/01 | 918.1 | 1.07 | 12/05/00

WQSP-5 08/11/04 | 917.5 | 1.02 1 09/09/03 | 917.8 | 1.02 § 12/02/02 | 917.7 | 1.02 § 10/09/01 | 9174 | 1.02§ 10/11/00

WQSP-6 08/11/04 | 921.0 | 1.01 § 09/09/03 | 921.0 | 1.01 | 12/02/02 | 920.6 | 1.01 | 10/10/01 | 920.5 | 1.01§ 11/09/00

C-2737 Drilled new in February 2001

DOE-1 November 2003, denser water began leaking into well (data not reliable)
H-09¢ Culebra not accessible in 2002 due to bridge plug below Magenta for perforating and testing activities.
H-10b Plugged and abandoned in February 2002

H-10¢ Converted to Culebra in February 2002

H-12 Obstruction in well prevented monitoring in 2004

H-14 Bridge plug set below Magenta in March 2001

H-15 Configured for Magenta in February 2001

H-18 Bridge plug set below Magenta in March 2001

IMC-461 Drilled new in October 2003

P-15 Plugged and abandoned in February 2002

SNL-12 Drilled new in June 2003

WIPP-18 Bridge plug set below Magenta in March 2001

|nformation Only

Culebra Contour Map
Page 7 of 127

2.2 Modeling Overview
Steady-state groundwater flow simulations are carried out using similar software as was used in the
analysis report for AP-114 Task 7 (Hart et al., 2009), which was used to create the input calibrated fields.
See Table 2 for a summary of all software used in this analysis. The MODFLOW parameter fields
(transmissivity (T), anisotropy (A), and recharge (R)) used in this analysis are ensemble averages of the
100 sets of Culebra parameter fields used for WIPP PA for the 2009 Compliance Recertification
Application (CRA-2009) PA baseline calculations (PABC). To clearly distinguish between the two
MODFLOW models, the original MODFLOW model, which consists of 100 realizations of calibrated
parameter fields (Hart et al., 2009), will be referred to as the “PA MODFLOW model.” The model we
derive from the PA MODFLOW model, calibrate using PEST, and use to construct the resulting contour
map and particle track, is referred to as the “averaged MODFLOW model.” The PA MODFLOW model T,
A and Rinput fields are appropriately averaged across 100 realizations, producing a single averaged
MODFLOW flow model. This averaged MODFLOW model is used to predict regional Culebra
groundwater flow across the WIPP site.

For CRA 2009 PABC, PEST was used to construct 100 calibrated model realizations of the PA MODFLOW
model by adjusting the spatial distribution of model parameters (T, A, and R); MODFLOW boundary
conditions were fixed. The calibration targets for PEST in the PA MODFLOW model were both May 2007
freshwater heads and transient drawdown to large-scale pumping tests. Hart et al. (2009) describe the
calibration effort and results that went into the CRA-2009 PABC. An analogous but much simpler
process is used here for the averaged MODFLOW model. We use PEST to modify a subset of the
MODFLOW boundary conditions (see red boundaries in Figure 1). The boundary conditions are
modified, rather than the T, A, and R parameter fields for simplicity, because re-calibrating the 100 T, A,
and R parameter fields would be a significant effort (thousands of hours of computer time). The PEST
calibration targets for the averaged MODFLOW model are the 2000-2004 measured annual freshwater
heads at Culebra monitoring wells. In the averaged MODFLOW model, boundary conditions are
modified while holding model parameters T, A, and R constant. In contrast to this, the PA MODFLOW
model used fixed boundary conditions and made adjustments to T, A, and R parameter fields.

Table 2. Software used

Software Version Description Platform Software QA status

MODFLOW- Acquired; qualified under NP 19-1
1. Fl

2000 6 ow model PA cluster (Harbaugh et al., 2000)

Developed; qualified under NP 19-1

PEST 9.11 |
nverse model PA cluster (Doherty, 2002)

DTRKMF 1.00 Particle tracker PA cluster Developed; qualified under NP 19-1

Scripting language

Python 234) . . PA cluster Commercial off the shelf
(file manipulation)
Enthough ipti
nthought 7.2-2 Scrlpt.mg language Mac desktop | Commercial off the shelf
Python (plotting)
Bash 3.00.15 Scripting language PA cluster Commercial off the shelf

{file manipulation)

|nformation Only

| nfor mation Only

Culebra Contour Map
Page 9 of 127

freshwater head contours and faster particle tracks, compared to those predicted by the ensemble of
fields in AP114 Task 7 (Hart et al., 2009).

The MODFLOW model grid is a single layer, comprised of 307 rows and 284 columns, each model cell
being a 100 meter square. The modeling area spans 601,700 to 630,000 meters in the east-west
direction, and 3,566,500 to 3,597,100 meters in the north-south direction, both in Universal Transverse
Mercator (UTM) North American Datum 1927 (NAD27) coordinates, zone 13.

The calibrated T, A, and R parameter fields from the PA MODFLOW model were checked out of the PA
repository using the checkout average run modflow.sh script (scripts are listed completely in
the Appendix; input and output files are available from the WIPP version control system in the
repository SCVSLIB/Analyses/SP9_9). Model inputs can be divided into two groups. The first
group includes model inputs that are the same across all 100 calibrated realizations; these include the
model grid definition, the boundary conditions, and the model solver parameters. The second group
includes the T, A, and R fields, which are different for each realization. The constant model inputs in the
first group are used directly in the averaged MODFLOW model (checked out from the CVS repository),
while the inputs in the second group were averaged across all 100 calibrated model realizations using
the Python script average realizations.py. All three averaged parameters were arithmetically
averaged in log space, since they vary over multiple orders of magnitude.

2.4 Boundary Conditions
The boundary conditions taken from the PA MODFLOW model are used as the initial condition from
which PEST calibration proceeds. There are two types of boundary conditions in both MODFLOW
models. The first type of condition includes geologic or hydrologic boundaries, which correspond to
known physical features in the flow domain. The no-flow boundary along the axis of Nash Draw is a
hydrologic boundary (the boundary along the dark gray region in the upper left of Figure 1). The
constant-head boundary along the halite margin corresponds to a geologic boundary (the eastern
irregular boundary adjoining the light gray region in the right of Figure 1). Physical boundaries are
believed to be well known, and are not adjusted in the PEST calibration.

The second type of boundary condition includes the constant-head cells along the rest of the model
domain. This type of boundary includes the linear southern, southwestern, and northern boundaries
that coincide with the rectangular frame surrounding the model domain (shown as heavy red lines in
Figure 1). The value of specified head used along this second boundary type is adjusted in the PEST
calibration process.

The Python script boundary types.py is used to distinguish between the two different types of
specified head boundary conditions based on the specified head value used in the PA MODFLOW model.
All constant-head cells (specified by a value of -1 in the MODFLOW IBOUND array from the PA
MODFLOW model) that have a starting head value greater than 1000 meters above mean sea level
(AMSL) are left fixed and not adjusted in the PEST optimization, because they correspond to the land
surface. The remaining constant-head cells are distinguished by setting their IBOUND array value to -2

|nfor mation Only

Culebra Contour Map
Page 10 of 127

(which is still interpreted as a constant-head value by MODFLOW, but allows simpler discrimination
between boundary conditions in scripts elsewhere).

Using the output from boundary_ types.py, the Python script surface 02 extrapolate.py
computes the heads at active (IBOUND=1) and adjustable constant-head boundary condition cells
(IBOUND=-2), given parameter values for the surface to extrapolate.

2.5 PEST Calibration of Averaged MODFLOW Model to Observations
There are three major types of inputs to PEST. The first input type includes the observed freshwater
head values, which are used as targets for the PEST calibration. The second input class includes the
entire MODFLOW model setup derived from the PA MODFLOW model and described in the previous
section, along with any pre- or post-processing scripts or programs needed. These files comprise the
forward model that PEST runs repeatedly to estimate sensitivities of model outputs to model inputs.
The third input type includes the PEST configuration files, which list parameter and observation groups,
observation weights, and indicate which parameters in the MODFLOW model will be adjusted in the
inverse simulation. Freshwater head values used as targets for the PEST calibration were taken from
published ASERs (2001-2004) and Waterson (2012) for 2000 data; these water levels are summarized in
Table 1.

To minimize the number of estimable parameters, and to ensure a degree of smoothness in the
constant-head boundary condition values, a parametric surface is used to extrapolate the heads to the
estimable boundary conditions. The surface is of the same form described in the analysis report for AP-
114 Task 7. The parametric surface is given by the following equation:

h(x,y)= A+ B(y+ Dsign(y)abs(y)*) + C(Ex® + Fx* — x) (1)

where abs(y) is absolute value and sign(y) is the function returning 1 for y>0, -1 for y<0 and 0 for y=0
and x and y are coordinates scaled to the range —1 < {x,y} <1. In Hart et al. (2009), the values

A=928.0, B=8.0, C=1.2, D=1.0, @=0.5, E=1.0, and F=-1.0 are used with the above equation to assign the
boundary conditions.

PEST was then used to estimate the values of parameters A, B, C, D, E, F, and a given the observed heads
in Table 1. The Python script surface 02 extrapolate.py was used to compute the MODFLOW
starting head input file (which is also used to specify the constant-head values) from the parameters A-F
and a. Each forward run of the model corresponded to a call to the Bash script run_02 model. This
script called the surface 02 extrapolate.py script, the MODFLOW-2000 executable, and the
PEST utility mod2obs . exe, which is used to extract and interpolate model-predicted heads from the
MODFLOW output files at observation well locations.

The PEST-specific input files (the third type of input) were generated from the observed heads using the
Python script create _pest 02 input.py. The PEST input files include the instruction file (how to
read the model output), the template files (how to write the model input), and the PEST control file
(listing the ranges and initial values for the estimable parameters and the weights associated with

|nformation Only

Culebra Contour Map
Page 11 of 127

observations). The wells used in each year’s PEST calibration were separated into three groups. Higher
weights (2.5) were assigned to wells inside the LWB, and lower weights (0.4) were assigned to wells
distant to the WIPP site, while wells in the middle were assigned an intermediate weight (1.0).
Additional observations representing the average heads north of the LWB and south of the LWB were
used to help prevent over-smoothing of the estimated results across the area of interest, where there is
a steep-sloping piezometric surface. The additional observations and weights were assigned to improve
the fit in the area of interest (inside the WIPP LWB), possibly at the expense of a somewhat poorer fit
closer to the boundary conditions.

In all the contour maps presented in this report (2000-2004), AEC-7 has a large misfit for two reasons.
First, this well has historically had an anomalously low freshwater head elevation, lower than wells
around it in all directions. Secondly, it did not have a May 2007 observation (due to ongoing well
reconfiguration activities) and therefore was not included as a calibration target in the PA MODFLOW
model calibration. The ensemble-average T, A, and R fields used here were not calibrated to
accommodate this observation. This well is situated in a low-transmissivity region, and near the
constant-head boundary associated with the halite margin, therefore PEST will not be able to improve
this fit solely through adjustment of the boundary conditions indicated with red in Figure 1.

2.6 Figures Generated from Averaged MODFLOW Model
The MODFLOW model is run predictively using the averaged MODFLOW model parameters, along with
the PEST-calibrated boundary conditions. The resulting cell-by-cell flow budget is then used by DTRKMF
to compute a particle track from the waste-handling shaft to the WIPP LWB; particle tracking stops
when the particle crosses the WIPP LWB. The Python script
convert_dtrkmf output_for surfer.py converts the MODFLOW cell-indexed results of
DTRKMF into a UTM x and y coordinate system, saving the results in the Surfer blanking file format to
facilitate plotting with Surfer. The heads in the binary MODFLOW output file are converted to an ASCII
matrix file format using the Python script head bin2ascii.py.

The resulting particle track and contours of the model-predicted head are plotted using a matplotlib
Python script for an area including the WIPP LWB, corresponding to the region shown in previous
versions of the ASER (e.g., see Figure 6.11 in DOE (2008)), specifically the green box in Figure 1. The
modeled heads extracted from the MODFLOW output by mod2obs . exe are then merged into a
common file for plotting using the Python script merge observed modeled heads.py.

|nformation Only

Culebra Contour Map
Page 12 of 127

3 2000 Results

3.1 2000 Freshwater Head Contours
The model-generated freshwater head contours are given in Figure 2 and Figure 3. There is a roughly
east-west trending band of steeper gradients, corresponding to lower Culebra transmissivity. The
uncontoured region in the eastern part of the figures corresponds to the portion of the Culebra that is
located stratigraphically between halite in other members of the Rustler Formation (Tamarisk Member
above and Los Medaiios Member below). This region east of the “halite margin” has a high freshwater
head but extremely low transmissivity, essentially serving as a no-flow boundary in this area.

Freshwater Heads WIPP Area 2000

500000 505000

NAD27 NM East State Plane Northing (ft}
495000

490000

485000

660000 665000 670000 675000 880000
NAD27 NM East State Plane Easting (ft}

Figure 2. Model-generated December 2000 freshwater head contours with observed head listed at each well {5-foot contour
interval) with blue water particle track from waste handling shaft to WIPP LWB. Purple curve is halite margin.

| nformation Only

Culebra Contour Map
Page 13 of 127

Freshwater Heads Model Area 2000

530000 540000

520000

510000

500000

NAD27 NM East State Plane Northing (ft)
490000

480000

470000

460000

50000

4

630000 640000 650000 660000 670000 680000 690000 700000 710600 720000
NAD27 NM East State Plane Easting (ft)

Figure 3. MODFLOW-modeled December 2000 heads for entire model domain (10-foot contour interval). Green rectangle
indicates region contoured in Figure 2, black square is WIPP LWB.

3.2 2000 Particle Track
The blue arrow in Figure 2 shows the DTRKMF-calculated path a water particle would take through the
Culebra from the coordinates corresponding to the WIPP waste handling shaft to the LWB (a path length
of 4086 m). Assuming a 4-m thickness for the transmissive portion of the Culebra and a constant
porosity of 16%, the travel time to the WIPP LWB is 5752 years (output from DTRKMF is adjusted from
an original 7.75-m Culebra thickness). This is an average velocity of 0.71 m/yr.

3.3 2000 Measured vs. Modeled Fit
The scatter plot in Figure 4 shows measured and modeled freshwater heads at the observation locations
used in the PEST calibration. The observations are divided into three groups, based on proximity to the
WIPP site. Wells within the LWB are represented by red crosses, wells outside but within 3 km of the
LWB are represented with green ‘x’s, and other wells within the MODFLOW model domain but distant
from the WIPP site are given by a blue star. AEC-7 was given a low weight (0.01), to prevent its large
residual from dominating the optimization. Additional observations representing the average heads
north of the LWB and south of the LWB were used to help prevent over-smoothing of the estimated

|nformation Only

| nfor mation Only

| nfor mation Only

Culebra Contour Map
Page 16 of 127

2000 observations. The results are good considering several wells (H-14, H-15, H-18, P-15, and WIPP-18)
were used in the average model calibration that did not exist as Culebra monitoring wells after 2000,
and therefore were not included in the steady-state T-Field calibration exercise for CRA-2009 PABC.

|nfor mation Only

Culebra Contour Map
Page 17 of 127

4 2001 Results

4.1 2001 Freshwater Head Contours
The model-generated freshwater head contours are given in Figure 7 and Figure 8. There is a roughly
east-west trending band of steeper gradients, corresponding to lower Culebra transmissivity. The
uncontoured region in the eastern part of the figures corresponds to the portion of the Culebra that is
located stratigraphically between halite in other members of the Rustler Formation (Tamarisk Member
above and Los Medafios Member below). This region east of the “halite margin” has high freshwater
head but extremely low transmissivity, essentially serving as a no-flow boundary in this area.

Freshwater Heads WIPP Area 2001

NAD27 NM East State Plane Northing (ft}
495000 500000 505000

490000

485000

4

660000 665000 670000 675000 680000
NAD27 NM East State Plane Easting (ft}

Figure 7. Model-generated December 2001 freshwater head contours with observed head listed at each well (5-foot contour
interval} with blue water particle track from waste handling shaft to WIPP LWB

|nformation Only

Culebra Contour Map
Page 18 of 127

Freshwater Heads Model Area 2001

520000 530000 540000

510000

il
S HPPLY pqepy

500000

490000

NAD27 NM East State Plane Northing (ft)

470000 480000

460000

50000

630000 640000 650000 660000 670000 680000 690000 700000 710000 720000
NADZ7 NM East State Piane Easting (ft)

4

Figure 8. MODFLOW-modeled December 2001 heads for entire model domain {10-foot contour interval). Green rectangle
indicates region contoured in Figure 7, black square is WIPP LWB.

4.2 2001 Particle Track
The blue arrow in Figure 7 shows the DTRKMF-calculated path a water particle would take through the
Culebra from the coordinates corresponding to the WIPP waste handling shaft to the LWB (a path length
of 4080 m). Assuming a 4-m thickness for the transmissive portion of the Culebra and a constant
porosity of 16%, the travel time to the WIPP LWB is 6082 years (output from DTRKMF is adjusted from
an original 7.75-m Culebra thickness). This is an average velocity of 0.67 m/yr.

4.3 2001 Measured vs. Modeled Fit
The scatter plot in Figure 9 shows measured and modeled freshwater heads at the observation locations
used in the PEST calibration. The observations are divided into three groups, based on proximity to the
WIPP site. Wells within the LWB are represented by red crosses, wells outside but within 3 km of the
LWB are represented with green ‘x’s, and other wells within the MODFLOW model domain but distant
from the WIPP site are given by a blue star. AEC-7 was given a low weight (0.01), to prevent its large
residual from dominating the optimization. Additional observations representing the average heads
north of the LWB and south of the LWB were used to help prevent over-smoothing of the estimated

|nformation Only

| nfor mation Only

| nfor mation Only

Culebra Contour Map
Page 21 of 127

5 2002 Results

5.1 2002 Freshwater Head Contours
The model-generated freshwater head contours are given in Figure 12 and Figure 13. There is a roughly
east-west trending band of steeper gradients, corresponding to lower Culebra transmissivity. The
uncontoured region in the eastern part of the figures corresponds to the portion of the Culebra that is
located stratigraphically between halite in other members of the Rustler Formation (Tamarisk Member
above and Los Medafios Member below). This region east of the “halite margin” has high freshwater
head but extremely low transmissivity, essentially serving as a no-flow boundary in this area.

Freshwater Heads WIPP Area 2002

505000

500000

H19BO
R

WQSPSs
[l

109

NAD27 NM East State Plane Northing (ft)
495000

8 o
=3 - 1
=4 y e
4 -
£ 2 I o
O
3
:’P HAB
e .
p o] -
Ve ; N
- ,// \\
s .
o v N
8| A
1 H17 N
g P107 o 5\
997 a2 d ‘\\
’\\
\
3000 — \
T e ___3000 \
660000 665600 670000 675000 680000

NAD27 NM East State Plane Easting {ft)

Figure 12. Model-generated December 2002 freshwater head contours with observed head listed at each well (5-foot
contour interval) with blue water particle track from waste handling shaft to WIPP LWB

Infor mation Only

Culebra Contour Map
Page 22 of 127

Freshwater Heads Model Area 2002

530000 540000

520000

510000

500000

NAD27 NM East State Plane Northing (ft)
490000

480000

470000

460000

50000

4

630000 640000 650000 660000 670000 680000 690000 760000 710000 720000
WADZT NM East State Piane Easting (ft)

Figure 13. MODFLOW-modeled December 2002 heads for entire model domain {10-foot contour interval). Green rectangle
indicates region contoured in Figure 12, black square is WiPP LWB.

5.2 2002 Particle Track
The blue arrow line in Figure 12 shows the DTRKMF-calculated path a water particle would take through
the Culebra from the coordinates corresponding to the WIPP waste handling shaft to the LWB (a path
length of 4086 m). Assuming a 4-m thickness for the transmissive portion of the Culebra and a constant
porosity of 16%, the travel time to the WIPP LWB is 5942 years (output from DTRKMF is adjusted from
an original 7.75-m Culebra thickness). This is an average velocity of 0.69 m/yr.

5.3 2002 Measured vs. Modeled Fit
The scatter plot in Figure 14 shows measured and modeled freshwater heads at the observation
locations used in the PEST calibration. The observations are divided into three groups, based on
proximity to the WIPP site. Wells within the LWB are represented by red crosses, wells outside but
within 3 km of the LWB are represented with green ‘x’s, and other wells within the MODFLOW model
domain but distant from the WIPP site are given by a blue star. AEC-7 was given a low weight (0.01), to
prevent its large residual from dominating the optimization. Additional observations representing the
average heads north of the LWB and south of the LWB were used to help prevent over-smoothing of the

|nformation Only

| nfor mation Only

| nfor mation Only

Culebra Contour Map
Page 25 of 127

Aside from AEC-7, and to a lesser extent WIPP-26 (which is in Nash Draw), the model fit to the
December 2002 observations is very good. The averaged MODFLOW model captures the bulk Culebra
flow behavior, while the PEST calibration improved model fit to the December 2002 observations.

|nformation Only

Culebra Contour Map
Page 26 of 127

6 2003 Results

6.1 2003 Freshwater Head Contours
The model-generated freshwater head contours are given in Figure 17 and Figure 18. There is a roughly
east-west trending band of steeper gradients, corresponding to lower Culebra transmissivity. The
uncontoured region in the eastern part of the figures corresponds to the portion of the Culebra that is
located stratigraphically between halite in other members of the Rustler Formation (Tamarisk Member
above and Los Medafios Member below). This region east of the “halite margin” has high freshwater
head but extremely low transmissivity, essentially serving as a no-flow boundary in this area.

Freshwater Heads WIPP Area 2003

495000 500000 505000

NAD27 NM East State Plane Northing (ft)

490000

1o

1=F Mot

a)
HL7

k- P17 1

T W6 3
P SR |

e 3000 “‘»\ 3

660600 665000 6700600 675000 680000
NAD27 NM East State Plane Easting (ft)

Figure 17. Model-generated September 2003 freshwater head contours with observed head listed at each well (5-foot
contour interval} with blue water particle track from waste handling shaft to WIPP LWB

| nfor mation Only

Culebra Contour Map
Page 27 of 127

Freshwater Heads Model Area 2003

530000 540000

520000

510000

500000

NAD27 NM East State Plane Northing (ft)
490000

470000 480000

460000

50000

630000 640000 650000 660000 670000 680000 690000 700000 710000 720060
NAD27 NM East State Plane Easting (ft)

4

Figure 18. MODFLOW-modeled September 2003 heads for entire model domain (10-foot contour interval). Green rectangle
indicates region contoured in Figure 17, black square is WIPP LWB.

6.2 2003 Particle Track
The blue arrow line in Figure 17 shows the DTRKMF-calculated path a water particle would take through
the Culebra from the coordinates corresponding to the WIPP waste handling shaft to the LWB (a path
length of 4082 m). Assuming a 4-m thickness for the transmissive portion of the Culebra and a constant
porosity of 16%, the travel time to the WIPP LWB is 5984 years (output from DTRKMF is adjusted from
an original 7.75-m Culebra thickness). This is an average velocity of 0.68 m/yr.

6.3 2003 Measured vs. Modeled Fit
The scatter plot in Figure 19 shows measured and modeled freshwater heads at the observation
locations used in the PEST calibration. The observations are divided into three groups, based on
proximity to the WIPP site. Wells within the LWB are represented by red crosses, wells outside but
within 3 km of the LWB are represented with green ‘x’s, and other wells within the MODFLOW model
domain but distant from the WIPP site are given by a blue star. AEC-7 was given a low weight (0.01), to
prevent its large residual from dominating the optimization. Additional observations representing the
average heads north of the LWB and south of the LWB were used to help prevent over-smoothing of the

|nformation Only

| nfor mation Only

| nfor mation Only

Culebra Contour Map
Page 30 of 127

7 2004 Results

7.1 2004 Freshwater Head Contours
The model-generated freshwater head contours are given in Figure 22 and Figure 23. There is a roughly
east-west trending band of steeper gradients, corresponding to lower Culebra transmissivity. The
uncontoured region in the eastern part of the figures corresponds to the portion of the Culebra that is
located stratigraphically between halite in other members of the Rustler Formation (Tamarisk Member
above and Los Medafios Member below). This region east of the “halite margin” has high freshwater
head but extremely low transmissivity, essentially serving as a no-flow boundary in this area.

Freshwater Heads WIPP Area 2004

HER. K
[x \
682 Y
A
,.)L\
: WIPP13
1 (e}
ol 1 hisk WQSP2
o] T K o -
8 N E IR 7
o T~ N
R ““ 5 WiPP12 .
WOQSPL G
. \ o b
.
=3
1.
(=3 TS
S - T e T T
=3 .
n

H19BO _
EURTS

495000

WQSP5

w0 7

NAD27 NM East State Plane Northing {ft}

430000

485000
i

3000 e e

66000 565000 670000 675000 680000
NAD27 NM East State Plane Easting {ft)

Figure 22. Modeli-generated August 2004 freshwater head contours with observed head listed at each well {5-foot contour
interval) with blue water particie track from waste handling shaft to WiPP LWB

|nformation Only

Culebra Contour Map
Page 31 of 127

Freshwater Heads Model Area 2004

540000

530000

520000

510000

500000

NAD27 NM East State Plane Northing {ft)
490000

480000

470000

460000

50000

;|

630000 640000 650000 660000 g?OOOO 680000 690000 700000 710000 720000
NAD27 NM East State Plane Easting {ft)

Figure 23. MODFLOW-modeled August 2004 heads for entire model domain {10-foot contour interval). Green rectangie
indicates region contoured in Figure 22, black square is WIPP LWB.

7.2 2004 Particle Track
The blue arrow line in Figure 22 shows the DTRKMF-calculated path a water particle would take through
the Culebra from the coordinates corresponding to the WIPP waste handling shaft to the LWB (a path
length of 4085 m). Assuming a 4-m thickness for the transmissive portion of the Culebra and a constant
porosity of 16%, the travel time to the WIPP LWB is 6105 years (output from DTRKMF is adjusted from
an original 7.75-m Culebra thickness). This is an average velocity of 0.67 m/yr.

7.3 2004 Measured vs. Modeled Fit
The scatter plot in Figure 24 shows measured and modeled freshwater heads at the observation
locations used in the PEST calibration. The observations are divided into three groups, based on
proximity to the WIPP site. Wells within the LWB are represented by red crosses, wells outside but
within 3 km of the LWB are represented with green ‘x’s, and other wells within the MODFLOW model
domain but distant from the WIPP site are given by a blue star. AEC-7 was given a low weight (0.01), to
prevent its large residual from dominating the optimization. Additional observations representing the
average heads north of the LWB and south of the LWB were used to help prevent over-smoothing of the

|nformation Only

| nfor mation Only

| nfor mation Only

Culebra Contour Map
Page 34 of 127

8 Summary

The development of the 2000-2004 historic Culebra contour maps in general followed quite closely to
the procedure used in the first half of this report (Kuhlman, 2012) that dealt with the 2005-2007 historic
Culebra contour maps.

The average MODFLOW model calibration process resulted in improved model fits to the data selected
for each year. The process of averaging the 100 realizations, and working with a single set of results
from the average MODFLOW model creates a simpler result, which is still based upon the PA MODFLOW
model.

This work began as part of an effort to create consistent Culebra contour maps for historic data already
reported in the ASER. The combination of results of previous work (2005-2007) and this work (2000-
2004) provides consistent maps through time and between regulators. The US Environmental
Protection Agency and The NM Environment Department now receive compatible hydrology products
(PA MODFLOW model and these contour maps) from the WIPP hydrology community.

|nformation Only

Culebra Contour Map
Page 35 of 127

9 References

Cauffman, T.L,, A.M. LaVenue, and J.P. McCord. 1990. Ground-Water Flow Modeling of the Culebra
Dolomite, Volume II: Data Base. Intera Inc., Austin TX. SAND89-7068/2.

Department of Energy. 2001. WIPP Annual Site Environmental Report for 2000. DOE/WIPP-01-2225.
Department of Energy. 2002. WIPP Annual Site Environmental Report for 2001. DOE/WIPP-02-2225.
Department of Energy. 2003. WIPP Annual Site Environmental Report for 2002. DOE/WIPP-03-2225.
Department of Energy. 2004. WIPP Annual Site Environmental Report for 2003. DOE/WIPP-04-2225.
Department of Energy. 2005. WIPP Annual Site Environmental Report for 2004. DOE/WIPP-05-2225.

Doherty, J. 2002. PEST: Model Independent Parameter Estimation. Watermark Numerical Computing,
Brisbane, Australia.

Harbaugh, A.W., E.R. Banta, M.C. Hill, and M.G. McDonald. 2000. MODFLOW-2000, the U.S. Geological
Survey modular ground-water model — User guide to modularization concepts and the Ground-
Water Flow Process. U.S. Geological Survey Open-File Report 00-92.

Hart, D.B., S.A. McKenna, and R.L. Beauheim. 2009. Analysis Report for Task 7 of AP-114: Calibration of
Culebra Transmissivity Fields. Carlsbad, NM, Sandia National Laboratories, ERMS 552391.

Johnson, P.B. 2008. Potentiometric Surface, Adjusted to Equivalent Freshwater Heads, of the Culebra
Dolomite Member of the Rustler Formation near the WIPP Site, May 2007 (AP-114 Task 6).
Carilsabd, NM, Sandia National Laboratories, ERMS 548746.

Johnson, P.B. 2009. Potentiometric Surface, Adjusted to Equivalent Freshwater Heads, of the Culebra
Dolomite Member of the Rustler Formation near the WIPP Site, May 2007, Revision 2 (AP-114
Task 6). Carlsabd, NM, Sandia National Laboratories, ERMS 551116.

Johnson, P.B. 2012a. 2003 Calculated Densities, Sandia National Laboratories, Carisbad, NM, ERMS
557402.

Johnson, P.B. 2012b. 2004 Calculated Densities, Sandia National Laboratories, Carlsbad, NM, ERMS
557405.

Kuhlman, K.L. 2012. Analysis Report for Preparation of 2005-2007 Culebra Potentiometric Surface
Contour Maps, Revision 1, Sandia National Laboratories, Carlsbad, NM, ERMS 556988.

Kuhlman, K.L. 2009. Procedure SP 9-9, revision 0, Preparation of Culebra potentiometric surface contour
maps. Carlsbad, NM, Sandia National Laboratories, ERMS 552306.

Moody, D.C. 2009. Stipulated Final Order for Notice of Violation for Detection Monitoring Program,
Sandia National Laboratories, Carisbad, NM. WIPP Records Center, ERMS 551713.

Watterson, D. 2012. 2000 & 1999 ASER, [Transmittal of 2000 Culebra Water Level Data], Washington
TRU Solutions, Carlsbad, NM. WIPP Records Center, ERMS 557523,

|nformation Only

Culebra Contour Map
Page 36 of 127

10 Run Control Narrative
This section is a narrative describing the calculation process mentioned in the text, which produced the
figures given there.

Figure 27 gives an overview of the driver script checkout _average_run_modflow.sh (§A-4.1);
this script first exports the 3 parameter fields (transmissivity (T), anisotropy (A), and recharge (R), and
storativity (S)) from CVS for each of the 100 realizations of MODFLOW, listed in the file keepers (see
lines 17-26 of script). Some of the realizations are inside the Update or Update2 subdirectories in
CVS, which complicates the directory structure. An equivalent list keepers short is made from
keepers, and the directories are moved to match the flat directory structure (lines 31-53). At this
point, the directory structure has been modified but the MODFLOW input files checked out from CVS
are unchanged.

Python script average realizations.py (§A-4.2)is called, which first reads in the
keepers_short list, then reads in each of the 400 input files and computes the arithmetic average of
the base-10 logarithm of the value at each cell across the 100 realizations. The 400 input files are saved
as a flattened 2D matrix, in row-major order. The exponentiated result is saved in 4 parameter fields,
each with the extension . avg instead of .mod. A single value from each file, corresponding to either
the cell in the southeast corner of the domain (input file row 87188 = model row 307, model column 284
for K and A) or on the west edge of the domain (input file row 45157 = model row 161, model column 1
for Rand S) is saved in the text file parameter representative values.txtto allow checking
the calculation in Excel, comparing the resulits to the value given at the same row of the . avg file. The
value in the right column of Table 8 can be found by taking the geometric average of the values in the
text file, which are the values from the indicated line of each of the 100 realizations.

The input files used by this analysis, the output files from this analysis (including the plotting scripts) are
checked into the WIPP version control system (CVS) under the repository
$CVSLIB/Analyses/SP9 9.

| nformation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

Culebra Contour Map
Page 41 of 127

The required PEST input files are created by the Python script create pest 02 input.py
(§A-4.4). This script writes 1) the PEST instruction file (modeled head. ins), which shows PEST how
to extract the model-predicted heads from the mod2obs . exe output; 2) the PEST template file
(surface_par params.ptf), which shows PEST how to write the input file for the surface
extrapolation script; 3) the PEST parameter file (sur face par params.par), which lists the
starting parameter values to use when checking the PEST input; 4) the PEST control file

(bc_adjust_ XXXXASER.pst, where XXXX is 2000, 2001, 2002, 2003 or 2004), which has PEST-
related parameters, definitions of extrapolation surface parameters, and the observations and weights
that PEST is adjusting the model inputs to fit. The observed heads are read as an input file in the PEST
borehole sample file format (neas head XXXXASER.smp, where XXXX is the year), and the weights
are read in from the input file (obs_loc XXXXASER.dat, where XXXX is the year).

PEST runs the “forward model” many times, adjusting inputs and reading the resulting outputs using the
instruction and template files created above. The forward model actually consists of a Bash shell script
(run_02_ model) that simply calls a pre-processing Python script surface 02 extrapolate.py
(§A-4.5), the MODFLOW-2000 executable, the Python script

Create_average NS residuals.py, and the PEST utility mod2obs.exe as a post-processing
step. The script redirects the output of each step to /dev/null to minimize screen output while
running PEST, since PEST will run the forward model many dozens of times.

The Python script create_average NS _residuals.py takes the output from the PEST utility
modZobs . exe and creates a meta-observation that consists of the average residual between
measured and model-prediction, only averaged across the northern or southern WIPP wells (the wells in
the center of the WIPP site are not included in either group). This was done to minimize cancelation of
the errors north (where the model tended to underestimate heads) and south (where the model tended
to overestimate heads) of the WIPP. The results of this script are read directly by PEST and incorporated
as four additional observations (mean and median errors, both north and south of WIPP).

The pre-processing Python script surface_02 extrapolate.py readsthe new IBOUND array
created in a previous step (with -2 now indicating which constant-head boundaries should be modified),
the initial head file used in AP-114 Task 7 (init_head orig.mod), two files listing the relative X and
Y coordinates of the model cells (rel {x,y} coord.dat), and an input file listing the coefficients of
the parametric equation used to define the initial head surface. This script then cycles over the
elements in the domain, writing the original starting head value if the IBOUND value is -1 or 0, and
writing the value corresponding to the parametric equation if the IBOUND value is -2 or 1. Using the
parameters corresponding to those used in AP-114 Task 7, the output starting head file should be
identical to that used in AP-114 Task 7.

After PEST has converged to the optimum solution for the given observed heads and weights, it runs the
forward model one more time with the optimum parameters. The post-processing Python scripts for
creating the Surfer ASCIl grid file and Surfer blanking file from the MODFLOW and DTRKMF output are
run and the results are plotted using additional Python scripts that utilize the plotting and map
coordinate projection functionality of the matplotlib library.

|nformation Only

Culebra Contour Map
Page 42 of 127

These two plotting scripts (plot-contour-maps.py and plot-results-bar-charts.py)are
included in the appendix for completeness, but only draw the figures included in this report, and passed
on to WRES for the ASER. These two scripts automate the plotting process and take the place of the
Microsoft Excel, USACE Corpscon, and Golden Software Surfer input files that were previously used.

|nformation Only

11 Appendix: Water Level and Density Data Listing

11.1 Input files for plotting water levels and densities

bytes

description

file name

2.3K

Culebra midpoint elevations

culebra-midpoint-elevations.csv

4.8K

UTM X and Y coordinates for wells

well-coordinates.csv

0.9K

reference point change for pre-2007 elevations

reference-point-change-2007.dat

37K

data from Table-F.8 of 1999 ASER

ASER-1999-waterlevel-data.csv

31K

data from Watterson (2012)

ASER-2000-waterlevel-data.csv

40K

data from Table-F.8 of 2001 ASER

ASER-2001-waterlevel-data.csv

37K

data from Table-F.8 of 2002 ASER

ASER-2002-waterlevel-data.csv

44K

data from Table-F.8 of 2003 ASER

ASER-2003-waterlevel-data.csv

42K

data from Table-F.8 of 2004 ASER

ASER-2004-waterlevel-data.csv

40K

data from Table-F.8 of 2005 ASER

ASER-2005-waterlevel-data.csv

41K

data from Table-F.8 of 2006 ASER

ASER-2006-waterlevel-data.csv

42K

data from Table-F.8 of 2007 ASER

ASER-2007-waterlevel-data.csv

43K

data from Table-F.8 of 2008 ASER

ASER-2008-waterlevel-data.csv

43K

data from Table-F.8 of 2009 ASER

ASER-2009-waterlevel-data.csv

42K

data from Table-F.8 of 2010 ASER

ASER-2010-waterlevel-data.csv

15K

summary of events in wells from ASERs

well-events.csv

23K

data from Table-6.3 of ASERs

reported-density-values.csv

2.9K

designated densities to use at wells

densities—-to-use.csv

| nfor mation Only

11.1.1 densities-to-use.csv input file
Missing begin or end dates indicate the date did not fall in the interval 2000-2010.

well begin date end date density | source

AEC-7 04/06/2004 | 1.0890 | PDS-2006ASER

AEC-7 06,/18/2008 1.0780 | TROLL2008

C-2737 02/14/2001 | 05/12/2003 | 1.0000 | ASER

C-2737 11/19/2003 | 02/01/2007 | 1.0190 | TROLL2005

C-2737 02/01/2007 | 06/28/2008 | 1.0100 | JOHNSON2009

C-2737 06,/28/2008 1.0293 | TROLL2008

DOE-1 11/01/2003 | 1.0880 | SANDB89-7068

ERDA-9 1.0670 | JOHNSON2009
H-02B2 04/12/2005 | 1.0060 | SANDS89-7068

H-02B2 04/12/2005 | 02/24/2009 | 1.0000 | SNL notebooks

H-02B2 02/24,/2009 1.0110 | TROLL2010

H-03B2 1.0420 | JOHNSON2009

H-04B 06/14/2009 | 1.0150 | JOHNSON2009

H-05B 06/11/2005 | 1.1040 | ASER

H-05B 06/11,/2005 1.0950 | JOHNSON2009

H-06B 02/19/2008 | 1.0400 | JOHNSON2009
H-07B1 1.0020 | JOHNSON2009
H-07B2 05/10/2005 | 0.9990 | SANDS89-7068

H-09B 02/11/2002 | 1.0010 | ASER

H-09C 1.0010 | JOHNSON2009

H-10B 02/01/2002 | 1.0470 | SANDS89-7068

H-10C 02/19/2002 | 07/12/2009 | 1.0010 | JOHNSON2009

H-10C 07/12/2009 1.0890 | TROLL2009

H-11B4 1.0700 | JOHNSON2009

H-12 12/01/2003 | 1.0950 | SANDS89-7068

H-12 04/12/2005 | 11/24/2008 | 1.0970 | JOHNSON2009

H-12 11,/24/2008 1.0957 | TROLL2008

H-14 04/21/2005 | 1.0100 | SANDS89-7068

H-15 02/01/2001 | 1.1540 | SANDB89-7068

H-15 11/18/2003 | 04/10/2006 | 1.0820 | TROLL2005

H-15 04/10/2006 | 03/05/2008 | 1.0530 | JOHNSON2009

H-17 1.1330 | JOHNSON2009

H-18 03/01/2001 | 1.0450 | ASER

H-19B7 1.0813 | TROLL2007

1-461 10/15/2003 1.0050 | JOHNSON2009

p-14 08/27/1999 | 1.0180 | SANDS89-7068

P-15 02/11/2002 | 1.0150 | SAND89-7068

P-17 06/17/2005 | 1.0695 | PDS-2004-2005-avg
P-17 06/17/2005 | 08/18/2006 | 1.0529 | SGR-2006-SNL-SURVEY
P-18 02/25/2002 | 1.1190 | SANDS89-7068

SNL-12 06,/25/2003 1.0050 | JOHNSON2009
WIPP-11 | 09/07/2004 1.0380 | JOHNSON2009
WIPP-12 07/12/2005 | 1.1000 | SANDS89-7068

WIPP-13 1.0530 | JOHNSON2009
WIPP-18 03/01/2001 | 1.1000 | ASER

WIPP-19 05/29/2005 | 1.0590 | SANDS89-7068
WIPP-19 | 05/29/2005 1.0440 | JOHNSON2009
WIPP-21 05/28/2005 | 1.0710 | ASER

WIPP-22 05/29/2005 | 1.0865 | ASER

WIPP-25 06/12/2009 | 1.0110 | JOHNSON2009
WIPP-26 10/12/2006 | 1.0090 | SANDS9-7068

WIPP-30 06/22/2005 | 1.0180 | SANDS89-7068

WIPP-30 | 06/22/2005 | 03/01/2008 | 1.0000 | JOHNSON2009
WQSP-1 1.0480 | SGR-ROUNDS-23-to-25
WQSP-2 1.0477 | SGR-ROUNDS-23-to-25
WQSP-3 1.1457 | SGR-ROUNDS-23-to-25
WQSP-4 1.0747 | SGR-ROUNDS-23-t0-25
WQSP-5 1.0250 | SGR-ROUNDS-23-to-25
WQSP-6 1.0140 | SGR-ROUNDS-23-to-25

| nfor mation Only

© W N o oA W N e

Gl oor ot ot ar o gt R R A R R R R A A R W oW W W W W W W oW oW NN NN NN NN NN E R R R E e e e
© 9 & g kA ® LK B O ©® ® 9N O Ok W N R O O ® I O K R R O O ® N o0 A W N R O ©® ® N O G A W N R O

o
©

11.2 Listing of Water Level Plotting Script
11.2.1 Python script plot-waterlevels.py

This script is not run on the QA linux cluster, alice.sandia.gov. This script is run on a desktop PC. It is only used to create

figures for the selection of sampling dates and proper density values.

this python script plots water level and density data for WIPP wells
for the purpose of choosing freshwater heads for historic contouring
using data taken from the Annual Site Environmental Reports (ASER).
#

by Kris Kuhlman (6212)

September 2011 through 2012

#

import matplotlib # set plotting backend
matplotlib.use(’Agg’)

import numpy as np # array library
from mpl_toolkits.mplot3d import axes3d

import numpy.core.defchararray as npchar # functions for character arrays

import matplotlib.pyplot as plt # plotting library

import matplotlib.mlab as mlab

from matplotlib.dates import MonthLocator, YearLocator, DateFormatter
from matplotlib. ticker import NullFormatter

from matplotlib.font_manager import FontProperties

import datetime
import re # regular ecxpressions

plot_density_contours = True # also boxzplots of densities
plot_timeseries = False

for making small text in figures

AnnFontP = FontProperties ()

AnnFontP . set_size (’xx-small’) # [or annolalions
LegFontP = FontProperties ()

LegFontP.set_size (’small’) # for legend

read in corrections to pre—2007 data
with open(’reference-point-change-2007.dat’,’r’) as fh:
lines = fh.readlines ()

rpcorr = {}

for line in lines:
well , delta = line.split ()
rpcorr [well] = float (delta)

read in freshwater heads used to create past contour maps
for wyears 2008, 2009 and 2010.
33333388 $$$8855559988555599885555998
aserfwh = {}
for year in [2008,2009,2010]:
with open(’meas_head_%iASER.smp’ % (year,),’r’) as fh:
lines = fh.readlines ()

D o]

aserfwh [year| = {}
for line in lines:
fields = line.rstrip (). split ()

regexp for splitting wellnames up into parts

non—numbers , numbers, and non—numbers (last group is sometimes

m= re. search(r"([‘O 91+) ([0~ 9]+)([‘O 9]*)" fields [0])
w = [m.group (1) ,m.group (2) ,m. group (

| nfor mation Only

empty)

handle mapping between well names used in pest input files
and names used in more complete database
if w[0] = ’SNL’ or w[0] = ’H’:

wstr

*%hs=%2.21i%s’ % (w[0],int (w[1]) ,w[2].upper())

elif w[0] = *IMC’:
wstr = ’I-461"

else:

wstr = *%s-%s%s’ % (VE’[?] w[l],w[2].upper())

aserfwh [year][wstr.strip ()

read in

$55555555855555558

— [fun’:float (fields [3]), name’: fields [0]}

proposed to wuse for contour maps

with open(’densities-to-use.csv’,’r’) as fh:
f = fh.read ()
lines = f.split (’\r?)[1:]

findendtype = np.dtype ([(’well’,’S56°),(’dt0’,’08”),(’dt1’,°08"),

finden = []

for line in lines:
r = [x.strip() for x in line.split(’,’)]

(*den’,’£87),(’src’,’S13")])

handle empty or blank records gracefully
if len(r) = 1:

continue
if r[0] =
continue

J .

when no start time, it is now blank
(was 1/1/1998 previously , which is fragile)

if r[1] =
bogus

J .

ca

rly datetime when none provided

dt0 = datetime.datetime (1941,12,7)

else:

dt0 = datetime.datetime.strptime (v [1],’%m/%d/%Y?)

when no end time, it is now blank
112 previously , which is fragile)
J .

(was 1/1/2
if r[2] ’

bogus future datetime when none provided
dtl = datetime.datetime (2015,9,24)

else:

dtl = datetime.datetime.strptime (r[2],’%m/%d/%hY ")

assemble record datatype

finden .append ((r [0] ,dt0,dt1, float (r[3]),r[4].upper()))

finden = np.array (finden ,dtype=findendtype)
finden = np.sort(finden ,order=(’well’ ’dt0’,’src’))

read in Culebra

developed and checked for

midpoint elevations (mostly from Johnson, 2009
model calibration)

with open(’culebra-midpoint-elevations.csv’,’r’) as fh:
f = fh.read ()
lines = f.split (’\r?)[1:]

midpt = {}

for line in lines:
r = [x.strip () for x in line.split(’,”)]

elevation

15

in feet AMSL, convert to meters

| nfor mation Only

124

midpt [r [0]. upper ()] = float (r[1])x0.3048

read 1

$8$888$8s

Il XY coordinates

§5555555555555555555555558555

n o w

with open(’well-coordinates.csv’,’r’) as fh:

f P—
line

xyz = {}
for line
r =

fh.read ()
s = f.split (’\r?)[1:]

in lines:
[x.strip () for x in line.split(’,’)]

XY is UIM NAD27 ZONE 13 (m)

xyz[r

read i
from

2007—2010 the tables of TROLI—de
395339539339 539539539539539539953353998

[0].upper ()] = {’x?:float(r[2]),’y’:float (r[1])}

n table of published density wvalues from ASER/SAND reports and
iwed densities from SNL.

with open(’reported-density-values.csv’,’r’) as fh:

f =
line

dendtype

den = []
for line
r =

fh.read ()
s = f.split (’\r?)[1:]

= np.dtype ([(’well’,”S56°),(’dt’,’08”),(’dt2’,°08"),
(’den’,’£8),(’src’,’S13?),(type’,?8137)])

in lines:
[x.strip () for x in line.split(’

dt = datetime.datetime.strptime (r[1],’%m/%d/%Y")

only troll densities have a date range

if r

[2] —_ .
dt2 = datetime.datetime (1941,12,7) # bogus datetime

else:

den

dt2 = datetime.datetime.strptime (r[2],’%m/%d/%Y")

[
.append ((r [0].upper(),dt,dt2, float (r [3]) r[4].upper(),r[5]. upper()))

den = np.array(den,dtype=dendtype)
den = np.sort(den,order=("well’ ’dt’,’type’))

typesymb =
r = {’PDS’:’gray’,’SGR’:’black’,”TROLL’:’red’ ,”PITZER’:’orange’ ,’AVG’:’

typecolo

earlie

{’PDS’:’.", >SGR’:’0"’ , >TROLL’:’x’, ’PITZER’:’s’, PAVG :

st date that should be plotted

densities before this date are plotted here as an arrow pointing left

firstplo

read i

with open(’well—events.csv’,’r’) as fh:

f =
line

eventstype = np.dtype ([(’well’ ’S56°),(’dt0’,°08°),(’dt1’,°08"),(’s’,’S50°),(’c

we [l m(unfaznf nc

t = datetime.datetime (1998,3,1)

n well event log: includes drilling , P&A, tests and
activities that might effect WL or densities

fh.read ()
s = f.split (’\r?)[1:]

events = []
for line in lines:
r = [x.strip ().strip(’"’) for x in line.split(’,’)]
if r[0] = *:
empty line at end?
continue
dt0 = datetime.datetime.strptime (v [1],’%mn/%d/%y’)

if len(r [2]) > 0:

dtl = datetime.datetime.strptime (r[2],’%m/%d/%hy

| nfor mation Only

;*:}

)

orange’}

,78107)])

219

else:

dtl = None
try to categorize events based on color
if ’samp’ in r[3]:

water quality sampling

CcC =

Jgray J

elif (’drill’ in r[3] or ’perf’ in r[3] or

(’recomp’ in r[3] and ’ulebra’ in r[3])):
new or replacement well drilling
¢ = ’green’

elif *PIP’ in r[3] or ’packer’ in r[3]:

added ,

cC =
elif ’pl

’blue’
ug’ in

’I‘CYHO’UCd, or reset [)(L(ik(’,’f'b’

r[3] or ’recomp’ in r[3]:

plugged back, plug & abandoned, or recompleted

cC =

‘red”’

elif (’test’ in r[3] and not ’well integrity’ in r[3] and
not ’configured’ in r[3]):

sl

Cc =

ug or
>cyan’

pumping test

elif ’bail’ in r[3] or ’swab’ in r[3]:
bailed o

¢ = ’magenta’

else:

r swabbed well/tubing

something else
¢ = ’black’

events.append ((r [0]. upper(),dt0,dtl,r[3],¢c))

events = np.array (events ,dtype=eventstype)
evwells = list (set(events [:][’well’]))

if plot_ den51ty \contours

usmq XY (oordlnaz‘es (md rc/)()rz‘fd derzszhts,
plot contour map of densities for checking / visualization

scale =

1000.0

datadir = ’wipp-polyline-data/’

subset of wells with a 7chosen” density wvalue
denwells = list (set (finden [:][’well’]))
bestden = []
coordden = []
dennames = |[]
boxlist = []
boxcoord = []
for well in denwells:
finm = finden [:][’well’] = well
allm = den [:][’well’] = well
densest “chosen” wvalue is representative of formation
if not (well = ’WIPP-29’ or well = ’P-18")

bestden . append (max (((finden [finm])[’den’

1) max () 11.0))

]
coordden . append ([xyz[well |[’x’] ,xyz[well [’y]])
boxcoord .append ((xyz [well |[’x?]/scale ,xyz [well 1[’y’]/scale))
boxlist .append(den[allm |[’den’])
dennames . append (well)

create

some

box plots showing the range of densities seen at individual

| nfor mation Only

wells

zip (* boxcoord)[1])

boxdata = zip (boxlist ,dennames, zip (* boxcoord)[0],
1]) # sort densities by well name

[0
sortedboxdata = sorted (boxdata ,key=lambda x: x|

make a series of x— or y—slice box plots with wells

boxplot figure handle
fighox = plt.figure(2,figsize =(24,18))
axl = figbox.add_subplot (311)

ax1.boxplot (zip (xsortedboxdata)[0])
axl.set_xticks (np.arange (len (dennames))+1)
axl.set_xticklabels (zip (xsortedboxdata)[1],rotation=90)
axl.set_ylim ([0.95,1.25])

ax1l.grid ()

axl.set_ylabel (’Culebra specific gravity’)

wx,wy = np.loadtxt (datadir+’wipp_boundary.dat’ ,unpack=True)/scale

projection of wells onto EF-W profile

ax2 = figbox.add_subplot (312)

ax2.boxplot (zip (xsortedboxdata)[0] , positions=zip (xsortedboxdata)[2], widths=0.2)
ax2.set_xticks (np.linspace (604.0,623.0,20))

ax2.grid ()

ax2.axvspan (wx.min () ,wx.max () ,alpha=0.15,color=’gray’)

ax2.set_ylim ([0.95,1.25])

ax2.set_xlabel (’UTM X NAD27 (km)’)

ax2.set_ylabel (’Culebra specific gravity’)

projection of wells on N-S profile

ax3 = figbox.add_subplot (313)

ax3.boxplot (zip (xsortedboxdata)[0] , positions=zip (xsortedboxdata)[3], widths=0.25)
ax3.set_xticks (np.linspace (3565.0,3595.0,6))

ax3.set_xlim ([3567,3595])

ax3.grid ()

ax3.axvspan (wy.min () ,wy.max(),alpha=0.15,color="gray’)

ax3.set_ylim ([0.95,1.25])

ax3.set_xlabel (?UTM Y NAD27 (km)’)

ax3.set_ylabel (’Culebra specific gravity’)

del boxdata ,sortedboxdata ,boxcoord , boxlist

....................... 35559
plo//inq (on/ous ()[(/(nw Yy in map view

bestden = np.array (bestden)

bestden .shape = (—=1,) # remove trailing singleton dimension
coordden = np.array (coordden)/scale

minx = coordden [: ,0].min() — 0.5

miny = coordden [: ,1].min() — 0.5

maxx = coordden [: ,0].max() + 0.5

maxy = coordden [:,1].max() + 0.5

X,Y = np.mgrid [minx : maxx:150j , miny : maxy:100j]

composite H2/H3 halite margin used as eastern boundary in MODFLOW model
h23x ,h23y = np.loadtxt (datadir+’composite_23_margin.dat’ ,unpack=True)/scale

contour both data points and H2/H3 boundary (assign density=1.15 to boundary)

Z = mlab.griddata (np.concatenate ((coordden [: ,O] h23x) axis—O),
np.concatenate ((coordden [:,1],h23y),axis=0

| nfor mation Only

np.concatenate ((bestden [:] ,np.ones (h23x.shape)*1.15), axis=0),

X,Y,interp=’nn’)

WIPP LWB
WIPPx,WIPPy = np.loadtxt (datadir+’wipp_boundary.dat’,unpack=True)/scale

coordinates of middle of WIPP LWB
xmid = WIPPx. mean ()
ymid = WIPPy. mean ()

find index that is closest to middle of WIPP LWB for mgrid output
xidx = np.argmin (np.abs(X[:,0] — xmid))
yidx = np.argmin(np.abs(Y[0,:] — ymid))

profile from contours going through middle of WIPP site
ax3.plot (Y[0,:],Z[xidx ,:],’g-?) # N-5S profile

ax2.plot (X[:,0],Z[:,yidx],’g-?) # EW profile
ax3.set_xlim (3567 ,3595])
plt.savefig(’density_boxplot.eps’)
plt.close (2)

0
[

contour plot figure handle

figcon = plt.figure (1, figsize=(22,17))

axleft = figcon.add_subplot(111)

#azxright = figcon.add_subplot (122, projection="3d’)

contours to plot

levels = [1.00,1.01,1.02,1.04,1.06,1.08,1.1,1.12,1.14,1.16,1.2]

CS = axleft.contour (X,Y,Z, levels)

axleft.clabel (CS,inline=1, fontsize=8, fmt=’%.3g’)

axleft.plot (coordden [:,0] ,coordden [:,1],°k.’) # well locations
axleft .axis(’image’)

axleft .plot (WIPPx,WIPPy, -’ color="black’,linewidth=1.0)
Nash Draw
x,y = np.loadtxt (datadir+’nash-draw.csv’,delimiter=’,’ junpack=True)/scale

axleft.plot(x,y,’--?,color=’black’,linewidth=0.5)

H2 halite margin

x,y = np.loadtxt (datadir+’h2_200711.bln’ ,unpack=True, skiprows=1,delimiter=’,

axleft.plot(x,y,’--’,color=’purple’ ,linewidth =0.5)

H3 halite margin

x,y = np.loadtxt (datadir+’>h3_200711.bln’ ,unpack=True, skiprows=1,delimiter=’,

axleft.plot(x,y,’--’,color="green’ linewidth=0.5)

Hj halite margin

x,y = np.loadtxt (datadir+’h4_200711.bln’ ,unpack=True, skiprows=1,delimiter=",

axleft.plot(x,y,’--’,color="blue’ ,linewidth =0.5)
del x,y

axleft.set_xlabel (’UTM X NAD27 (km)’)
axleft.set_ylabel (?UTM Y NAD27 (km)’)

for x,y,well in zip (coordden[:,0],coordden[:,1],dennames):
add well labels (cluttered and hard to read in places)
plt.annotate (well ,(x+0.1,y),fontproperties=AnnFontP)

axleft.set_title (’"best" Culebra specific gravity used in ASER contour maps’)

plt .savefig(’density-contours.eps’)
plt.close (1
del bestden ,coordden ,dennames

| nfor mation Only

)/ scale

)/ scale

)/ scale

read in water level data from 2001—2010 ASER tables
$$533355933555933555933555933555933558%8

one header row

mostly common column format

A0 : well

Bl : zone (CUL,MAG, etc.)

C2 : date (no time)

D3 : adjusted depth below top of casing ([ft)
FEJ : adjusted depth below top of casing (m)
F5 : water level elevation (ft amsl)

G6 : water level elevation (m amsl)

H7 : adjusted freshwater head (ft amsl)

read in yearly files with csv reader

make all well names uppercase, strip off anything in parenthesis
strip 7/7 out of zone names

convert dates to python date objects
save (E) depth to water (meters)

save (G) water level elevation (meters)
save (H) freshwater head (feet) —> convert to meters

RIS

wldtype = np.dtype ([(’well’,’S56’),(’zone’,’S4’),(’dt’>,’08"),
(’dtwm’ ,’£8’),(’wlem’,’£8%),(’cwlem’,’£f8’),(’fwhm’,’£8°)])
data = []

NB: in 2000 there were no waterlevel data reported in ASER! obtained data from Dan Watterson .
NB: in 1998 there was no freshwater head reported in ASER!

for year in [1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010]:

earliest = datetime.datetime (2100,12,31)
latest = datetime.datetime (1900,1,1)

fn = ’ASER-%i-waterlevel-data.csv’ % year
print fn,
with open(fn,’r’) as fh:

f = fh.read ()

lines = f.split (’\r’) # Mac line endings

print ’# values’, len(lines)
for line in lines [1:]:

r = line.split(’,?)
dt = datetime.datetime.strptime (r[2],’%mn/%hd/%y’)

if dt < earliest:

earliest = dt
elif dt > latest:
latest = dt

clean up and simplify well names to be consistent with HANALYST
well = r[0].upper (). partition(’(’)[0]. partition(’/?)[0]. strip ()
zone = r[1].upper ().replace(’/’,’’).strip ()

if ’SNL’ in well:
some SNL wells are not zero padded some years
therefore they appear as different wells
num = well.split(’-7)[1]

| nfor mation Only

if len (num) = 1:

well = SNL-0’ + num
if zone = ’SRD’:
zone = ’SRDL’
elif °RUSS’ in zone:
zone = ’RS’
if len(r) < 8 or r[7].strip() = "":
fwh = —999.0
else:
fwh = float (r[7])*0.3048
if year = 1998:

fwh = np.NaN

wlem = float (r[6])
if year < 2007 and well in rpcorr:
cwlem = wlem + rpcorr [well]
else:
cwlem = wlem
data.append ((well ,zone ,dt, float (r[4]) ,wlem,cwlem ,fwh))
data
data

np.array (data ,dtype=wldtype)
np.sort (data,order=(’dt’,’zone’,’well’))

wells reported by WRES (doesn’t include Gnome
wells = list (set(data[:][’well’]))

wells . sort ()

can plot all wells reported by WRES
zones = list (set(data[:][’zone’]))
for zone in zones:
zmask = data[’zone’] = zone
zwells = list (set (data[zmask][’well’]))
zwells . sort ()

wells)

months used for creating ASER contour maps (no apparent ranges for 2003 & 2004)

NB: 2003, 2004, 2005 & 2006 are my choice, not necessarily what used in ASER

2000 is just a guess so far

cmonths = {2000:(datetime.datetime (2000,12,1),datetime.datetime (2000,12,31)),
2001:(datetime . datetime (2001,12,1),datetime . datetime (2001,12,31)),
2002:(datetime . datetime (2002,12,1) ,datetime . datetime (2002,12,31)),
2003:(datetime . datetime (2003 ,9,1),datetime . datetime (2003,9,30)),
2004:(datetime . datetime (2004 ,8,1),datetime . datetime (2004 ,8,31)),
2005:(datetime . datetime (2005,6,1),datetime . datetime (2005,6,30)),
2005:(datetime . datetime (2005,6,1) ,datetime . datetime (2005,6,30)),
2006: (datetlme.datetime(2006,11,1),datetime.datetime(ZOOﬁ 11,30)),
2007:(datetime . datetime (2007 ,5,1),datetime . datetime (2007 ,5 31)),
2008:(datetime . datetime (2008 ,9,1),datetime . datetime (2008,9,30)),
2009:(datetime . datetime (2009,6,1),datetime . datetime (2009,6,30)),
2010:(datetime . datetime (2010,2,1),datetime . datetime (2010,2,28))}

exceptions to the above rules, based on looking closer at data
cexceptions = {’AEC-7’:{2004:(datetime.datetime (2004,3,1),
datetime . datetime (2004 ,3,31)),
2005:(None,None) ,2006: (None , None) ,
2007:(None,None) },
’C-2737°:{2003:(datetime . datetime (2003,3,1),
datetime . datetime (2003,3,31))},
’CB-17:{2000:(None,None) ,2001:(None, None) ,
2002:(None,None) ,2003:(None, None) }

| nfor mafion Only

)

"’DOE-1:{2004:(None,None) ,2005:(None, None) }
’DOE-2:{2000:(None,None)},
"ERDA-9°:{2000:(datetime . datetime (2000,9,1)
datetime . datetime (2000,9,30
’H-012:{2000:(None,None) },
"H-02A:{2000:(None,None) ,2001:(None, None) ,
2002:(N0ne,None) 2003:(None,None) ,
2004:(None, None)}
"H-02C’:{2000:(None, None) ,2
2002: (None None)
2004:(None, None)
H-03B3’:{2000:(None, None) 2
2002: (None None)
)
20
)
)

)

001 (None None) ,
,2003 (None None) ,
¥
001:(None, None) ,
2003:(None,None) ,
2004:(None , None
H-054":{2000:(None, None)
2002: (None None
2004:(None, None
’H—O6A’:{2000:(N0ne,None),2
2002:(None,None) ,)
2004:(None,None) },
"H-07B1°:{2004:(datetime . datetime (2004,9,1)
datetime . datetime (2004 ,9,30
"H-07B2’:{2000:(None,None) ,2001:(None, None) ,
2002:(N0ne,None),2003:(None,None),
2004:(None,None) },
"H-09A°:{2000:(None,None) ,2001:(None,None) },
’
)

3
01:(None,None),

,2003 (None None),
}s
001:(None, None) ,

01
2003:(None, None) ,

(
"H-09B”:{2000:(None,None) ,2001:(None, None)
"H-09C’:{2000:(datetime. datet1me(2000,6,1),
datetime . datetime (2000 ,6,30)
’H-10C’:{2006:(datetime . datetime (2006,8,1),
(

"H-11B1’:{2000:(None,None) ,2001:(None , None)

2002:(None,None) ,2003:(None, None)
2004: (None,None)}
"H-11B2°:{2000:(None,None) },
’H-11B37:{2000:(None,None) ,2001:(None, None) }
"H-19B2’:{2000:(None,None) ,2001:(None, None) ,
2002:(None,None) ,2003:(None, None) ,
2004:(None,None) ,2005: (None, None) ,
2006:(None,None) ,2007:(None ,None) ,
2008:(None,None) ,2009:(None, None) ,
2010:(None,None) ,201:(None,None) },
"H-19B3’:{2000:(None,None) ,2001:(None, None) ,
2002:(None,None) ,2003:(None, None) ,
2004:(None,None) ,2005:(None, None) ,
2006:(None,None) ,2007:(None ,None) ,
2008:(None,None) ,2009:(None, None) ,
2010:(None,None) ,201:(None, None) },
"H-19B4°:{2000:(None,None) ,2001:(None, None) ,
2002:(None,None) ,2003:(None, None) ,
2004:(None,None) ,2005: (None, None) ,
2006:(None,None) ,2007:(None ,None) ,
2008:(None,None) ,2009:(None, None) ,
2010:(None,None) ,201:(None, None) },
"H-19B5°:{2000:(None,None) ,2001:(None, None) ,
2002:(None,None) ,2003:(None, None) ,
2004:(None,None) ,2005: (None, None) ,
2006:(None,None) ,2007:(None ,None) ,
2008:(None,None) ,2009:(None, None) ,
2010:(None,None) ,201:(None, None) },
"H-19B6°:{2000:(None,None) ,2001:(None, None) ,
2002:(None,None) ,2003:(None, None) ,
2004:(None,None) ,2005:(None, None) ,
2006:(None,None) ,2007:(None ,None) ,

| nfor maftion Only

}
datetime . datetime (2006 ,8 ,31))}

Ny

DY,

)

)

i

2008:(None, None) ,
2010:(None , None) ,
"H-19B7’:{2000:(None, None) ,
2002:(None, None) ,
2004:(None,None) ,
2006:(None, None) ,

()

2008:(None, None

2009:(None,

None

201:(None, None)

2001:(None,
(None,
2005:(None,
(
(

2003:

2007:
2009:

None ,
None ,

None
None

None
None

2010:(None,None) ,201:(None, None)
"H-147:{2000:(datetime. datetime (2000,9,1),

datetime . datetime (2000,9,30))
’I-461°:{2004:(datetime . datetime (2004,12,1)
datetime . datetime (2004 ,12,31
'P-157:{2000:(datetime . datetime (2000,1,1)
datetime . datetime 1

2001:(None,None) },

(
’P-187:{2000:(None,None) ,2001:(None ,None

’SNL-01:{2004:(None,None)},
?SNL-02’:{2003:(None, None) ,
’SNL-03’:{2003:(None,None) ,
’SNL-057:{2004: (None7None)}
’SNL-09’:{2003:(None,None) ,2
’SNL-12°:{2003:(None, None) ,

(

(

(

(

2004:

datetime . datetime

’SNL-147:{2005:
2007:

None , None) ,

’SNL-16":{2007:

'WIPP-11°:{2006:(datetime. datetime (2006 8
datetime . datetime (2006 ,8,

'WIPP-26:{2005:
"WIPP-277:{2000:
2003:
2005:

None , None) } ,
None , None) ,
None ,None) ,
None , None) }
),20
)20

2003:
2005:

None , None
None , None) },

2004:
2004:

004:(None, None

datetime . datetime (2004,12,1),
(2004,12,31))},

datetime . datetime (2007 ,9,1)
datetime . datetime (2007,9,30
1
3

001:(None,
2004:(None,
L:(

4:(

é
20

2000,1,3

)
}
(None , None)
(None , None)

)

None ,

)
I
)
)
None) ,
)
)
I
}

N,
),
)

9

1
’
}
)
1

datetime . datetime (2007 ,11,1),
datetime . datetime (2007,11,30))},

)
b
)}

None) ,2002:(None, None) ,
None) ,

)
),
1)

2002:(None, None) ,

'WIPP-30°:{2000:

’WQSP-2:{2000:

"WQSP-37:{2000:

"WQSP-57:{2000:

*WQSP-6’:{2000:

(
(
E
"WIPP-29°:{2000:(None, None
(
(
(
(

2005:

2001:
2002:

2004:

datetime

datetime
2002:

2001:
datetime

2001:

| nfor mation Only

datetime . datetime (
datetime . datetime (2000 ,6
datetime . datetime (
datetime . datetime (2005 ,8,
datetime .
datetime .
datetime .
datetime .
datetime .
datetime .
datetime .
datetime .
datetime .

datetime .
datetime .
datetime .
datetime .
datetime . ,
.datetime (2001,10,31))},
datetime .
datetime .
datetime .
datetime .

2000,6

1

.3

2005.8 1),

31))%,

datetime (2000 ,9 1),

datetime (2000,9,30)),
datetime (2001,9,1),
datetime (2001,9,30)),
datetime (2002,9,1),
datetime (2002,9,30)),
datetime (2004 ,7,1),

datetime (2004 ,7,31))},

)

0

)

0

1)

0

datetime (2000,9,1

(
(
((
(
((
(
((
(
(ime (,
.datetime (2000,9,30)),
2001:(datetime. (,
.datetime (2001, 9 30)),
((
(
((
(
((
(
((
(
((
(

datetime (2001,9,1

datetime (2002,
datetime
datetime
datetime
datetime

2002 9 3
2000.10 ,1

)
))
200010 | 3%3
!
)

}
)

2001,10,1

datetime (2000,11,1),
datetime (2000,11,30)),
datetime 2001,10,1)7
datetime (2001,10,31))}}

if plot_timeseries:
computeyears = [2000,2001,2002,2003,2004,2005,2006,2007]

newfwhfh = {}

for year in computeyears:

newfwhfh |

year] = open(’meas_head_%iASER.smp’ % year,’w’)

minimum density range for plot
denmax = 1.100

denmin = 1.000

denrange = denmax — denmin

#a#fhrpchange

= open(’reference—point—change —2007. dat ’, 'w’)

$3333333$$$
cycle over
zone = ’CUL’
zmask = data|

$5555859358558585585955859585555855355859

all Culebra wells, plotting figures for each

’zone’] = zomne

zdat = data [zmask]
for well in wells:

wm = zdat
if wm.sum

[Pwell’] = well
0 = o:

continue # no data for this well

else:
print

fig

ax1

plt
fig

plot re

axl.plot_date (zdat [wm][’dt’],zdat [wm][’dtwm’],

invert
ymin , ymax

’processing’ ,zone , well

.figure (1, figsize=(11,8.5))
.add_subplot (211)

ported (adjusted) WRES depth—to—water measurements (small red circles)

depth—to—water axis (bigger numbers on bottom)
= axl.get_ylim ()

axl.set_ylim ([ymax,ymin])

pmask = zdat [wm][’fwhm’] > 0.0

pdata = (

zdat [wm]) [pmask]

uncomment below and run once on data to generate corrections file
#A#pre200Tmask = pdata [’ dt] < datetime. datetime (2007,1,1)
#Apost200Tmask = np.logical_not (pre2007mask)

#Of# only

compute correction to reference point elevation if data straddles January/1/2

H#a#if pre2007mask.sum () > 0 and post2007mask.sum() > 0:

A oldrpelev = (pdata [pre2007mask][’ dtwm ’] + pdata[pre2007mask][wlem ’]).mean ()
A newrpelev = (pdata[post2007mask][dtwm ’] + pdata[post2007mask][wlem ’]). mean ()

O earlyrpcorr = newrpelev — oldrpelev

H##else :

Qv earlyrpcorr = 0.0
#a#fhrpchange . write ("%s\t%.2f\n’" % (well , earlyrpcorr))

plot freshwater heads on second y—azxis

ax2 = axl

.twinx ()

plot freshwater head data as reported in ASER (small blue stars)

ax2.plot_date(pdata [:][’dt’],pdata[:][’fwhm’], bx’ markersize=3, markeredgecolor="blue’)

correct
fdmask =

FWH for densities chosen as “correct” densities over a given
finden [:][’well’] = well

fdata = finden [fdmask]

for dval

in fdata:

| nfor mation Only

time

’ro’ ,markersize=2,markeredgecolor="red’)

range

axl.
axl].

ax2
ax2
ax2
ax1l

ax2 .

mask off ASER wvalues in the date range associated with this density wvalue
datemask = np.logical_and (pdata[’dt’] >= dval[’dt0’],
pdata[’dt’] <= dval[’dt1’])

newfwhdates = pdata[datemask][’dt’]

compute new fwh wusing consistent density
newfwh = (pdata[datemask][’cwlem’]—midpt[well])*dval[’den’] 4+ midpt[well]

plot consistent freshwater heads (large blue z’s)
ax2.plot_date (newfwhdates ,newfwh , ’bx’ markersize=5)

save 2000—2007 fwh to file for wuse by PEST
for yr in computeyears:
exception = False
skipwell = False
if well in cexceptions:
if yr in cexceptions|[well]:
exception = True
if cexceptions|[well][yr][0] = None:
skip this well this year, even though there is data
skipwell = True
else:
use a different month than the one selected for all other wells
maskyrfwh = np.logical_and (newfwhdates >= cexceptions[well|[yr][0],
newfwhdates <= cexceptions|[well |[yr][1])
if not exception:
use the standard month selected for all other wells
maskyrfwh = np.logical_and (newfwhdates >= cmonths[yr][0],
newfwhdates <= cmonths|[yr]|[1])

if maskyrfwh.sum() > 0 and not skipwell:
use the same mname if this well was used before,
otherwise strip hyphen and go for it
if well.upper() in aserfwh[2010]:

wname = aserfwh [2010][well][’name”’ |
elif well.upper() in aserfwh[2009]:
wname = aserfwh [2009][well][’ name’]

elif well.upper() in aserfwh[2008]:
wname = aserfwh [2008][well][’name’]

else:
wname = well.replace(’-0",-") # remove leading zero
wname = wname. replace (’=’,’") # remove hyphen

if there are more than one fwh during that month, select the first one
newfwhfh [yr]. write (*%s\t%s\t12:00:00\t%.3£\t%.4f\n’ %
(wname, newfwhdates [maskyrfwh | [0]. strftime ("%m/%d/%Y"),
newfwh [maskyrfwh |[0] ,dval[’den’]))

xaxis.set_major_formatter (NullFormatter ())
set_title (’%s water levels and specific gravities’ % well)

.xaxis.set_major_locator (YearLocator ())
.xaxis.set_minor_locator (MonthLocator ())
.xaxis.set_-major_formatter (DateFormatter(’%Y’))

.set_ylabel (?ASER depth to water (m BTOC)’,color=’red’,fontsize=09)

set_ylabel (’freshwater head (ASER=*, this rept=x) (m AMSL)’,
color="blue’ ,fontsize=9)

add date ranges used for contouring

for

yr in cmonths. keys ():
exception = False
if well in cexceptions:

if yr in cexceptions|[well]:

| nfor mation Only

exception = True

if cexceptions|[well][yr][0] = None:
don’t wuse this well this year
continue

else:

use a different month for this well

this

year

ax2.axvspan (cexceptions [well |[yr][0], cexceptions[well][yr][1],

alpha=0.25,color="green’)
if not exception:

use the standard month for this well and year
ax2.axvspan (cmonths [yr][0] , cmonths[yr][1], alpha=0.25,color="blue’)

axd = fig.add_subplot (212)

apparent specific gravity is (fwh_el — midpt_el)/(wl_-el — midpt_el)
by WRERS +

computed from wl elevation and freshwater head reported

Culebra midpoint elevations (small green circles)
specgrav = (((zdat[wm])[pmask][’fwhm’] — midpt[well])/
((zdat [wm])[pmask][’wlem’]| — midpt|[well]))
axd.plot_date ((zdat [wm])[pmask][’dt’],specgrav,’go’,
markersize=2, markeredgecolor=’green’)

fdmask = finden [:][’well’] = well
fdata = finden [fdmask]
for dval in fdata:

plot the 7 final” gravity as a line across the figure
axd.plot_date ([dval[’dt0’],dval[’dt1’]] ,[dval[’den’],dval[’den’]],’g-")

plot reported density wvalues; different symbols
dm = den[’well’] = well

ddat = den [dm]

settype = set(ddat [:][’type’])

densitytypes = list (settype)

types are saner than the "source” field was before,
had the year, and other information in with the type
for dtype in densitytypes:
they are AVG-PDS, AVG-SGR, and AVG-SGR—PDS
just reduce them all to AVG
if ’AVG’ in dtype:
settype.remove (dtype)
settype.add(’AVG?)

densitytypes = list (settype)
for dtype in densitytypes:

densities from this sources (all TROLLYYY just count
mddat = npchar. find (ddat [:][’type’],dtype) >= 0 # find returns —1 if not found

sddat = ddat [mddat]

densities since cutoffdate
msddat = sddat[’dt’] > firstplot
dsddat = sddat [msddat]

nrecent = msddat.sum ()

if dtype = ’TROLL’:
if nrecent > 0:
tmpden = sddat [msddat][’den’]
move any troll—computed densities below
tmpden [tmpden < 1.0] = 1.0
troll densities plot as a date range

axd.plot_date ([sddat [msddat][’dt’],sddat [msddat][’dt2’]] ,[tmpden,tmpden],
typesymb [dtype],linestyle=’solid’, color=typecolor [dtype],

(solid

which

too .

1.0

green line)

as TROLL, etc.)

to fresh

linewidth=2.0,label=dtype , markersize=9)

| nfor mation Only

else:

water (1.0)

if nrecent > 0:
tmpden = sddat [msddat][’den’]
move any densities below 1.0 to fresh water (1.0)
tmpden [tmpden < 1.0] = 1.0
non—troll densities plot as a single date
axd . plot_date (sddat [msddat][>dt’],tmpden, typesymb [dtype],

color=typecolor [dtype],label=dtype , markersize=9)

densities before cutoff date (plot on edge with left—pointing triangle)

msddat = sddat[’dt’] < firstplot
nold = msddat .sum()

if nold > 0:
axd.plot_date ([firstplot |*nold ,sddat [msddat][’den’],’<’,
color=’yellow’ ,label="pre-1999°’ markersize=9)

make range of density plots at least a minimum range
ymin ,ymax = axd.get_ylim ()
if ymax < denmax:

ymax = denmax

if ymin > denmin:
ymin = denmin

axd.set_ylim ((ymin ,ymax))

add pumping, drilling , and plugging events located at the current well

em = events [:][’well’] = well
if em.sum() > 0:
ee = events [em]
ymin ,ymax = axd.get_ylim ()
yann = ymax — (ymax — ymin)/5.0
for ev in ee:
if ev[’dt1’] = None:

no ending date
axd.axvline (ev[’dt0’],alpha=0.5,color=ev[’c’])
axd.annotate(ev[’s’],(ev[’dt0’],yann),
rotation=’vertical’ fontproperties=AnnFontP)
else:
axd.axvspan(ev[’dt0’],ev[’dtl’],alpha=0.25,color=ev |’

axd.annotate (ev[’s’],(ev[’dt0’|+(ev[’dtl’]—ev[’dt0’])//2,yann),

rotation=’vertical’ ,fontproperties=AnnFontP)

add drilling and PEA events for wells within 500 m (i.e., same pad)
for other in evwells:

if not other = well:
em = events [:|[’well’] = other
ee = events [em]
om = np.logical_or(ee[:][’c’] = ’red’,ee[:][’c’] = ’green’)
dist = np.sqrt ((xyz[well][’x’]—xyz[other |[’x’])**x2 +
(xyz[well |[’y’]—xyz[other][’y’])*%x2)
does other well have drilling or p&a activities?

if om.sum() > 0:
if dist < 500:
for ev in ee[om]:
if ev[’dt1’] = None:
no ending date
axd.axvline (ev[’dt0’],alpha=0.5,
linestyle=’dashed’ ,color=ev|[’c’])
else:
axd.axvspan(ev[’dt0’],ev[’dt1’],alpha=0.25,
linestyle=’dashed’ ,color=ev[’c’])
axd.annotate (’%s (%im) %s’ % (ev|[’well’],dist ,ev[’s

| nfor mation Only

1) (ev

[7dt0’],y

rotation=’vertical’ fontproperties=AnnFontP, color=’gra:

nearby pumping tests (not slug tests) within 5.0 km
npchar. find () returns —1 for not found
om = np.logical_and (ee[:][’c’] = ’cyan’,
npchar. find (ee [:][’s’],’slug’) = —1)

if om.sum() > 0:
if dist < 5000:
for ev in eefom]:
if ev[’dt1’] = None:
no ending date
axd.axvline (ev[’dt0’],alpha=0.5,
linestyle=’dashed’ ,color=ev[’c’])
else:
axd.axvspan(ev[’dt0’],ev[’dt1’],alpha=0.25,
linestyle=’dashed’ ,color=ev[’c’])

axd.annotate (’%s (%.1fkm) %s’ % (ev[’well’],dist /1000.0,ev[’s’]),

(ev[’dt0’],yann),rotation=’vertical’,
fontproperties=AnnFontP, color=’gray’)

ax2.set_xlim (left=datetime . datetime (1998 ,3,1))
ax2.set_xlim (right=datetime . datetime (2011,1,1))

force subplots to have same data range
axd.set_xlim (ax2.get_xlim ())
axd.set_ylabel (’specific gravity’)

legend for type of density measurement
while removing duplicate entries from legend
handles ,labels = axd. get_legend_handles_labels ()
newhandles = []
newlabels = []
if len(handles) > 0:
for h,l in zip(handles,labels):
if not 1 in newlabels:
newhandles . append (h)
newlabels.append (1)

leg = axd.legend (newhandles ,newlabels ,loc=0,prop=LegFontP ,numpoints=1,scatterpoints:

axd . xaxis.set_major_locator(YearLocator())
axd.xaxis.set_minor_locator (MonthLocator ())
axd.xaxis.set_major_formatter (DateFormatter (’%Y’))
if well = ’AEC-7":
axl.set_ylim ([195,180])
ax2.set_ylim ([925,940])
plt .savefig (’%s-%s-ASER-waterlevels.png’ % (zone, well),dpi=150)
plt.close (1)

for fh in newfwhfh:
newfwhfh [fh]. close ()

#a#rhrpchange . close ()

| nfor mation Only

11.3 Figures Generated by Python Water Level Script

The following figures were generated by the Python script plot-waterlevels.py and represent the water level, density (aka
specific gravity), and well-event data listed in the 2000-2010 ASERs.

Each page represents the 2000-current ASER data for a given Culebra well. In the water level plots (top), filled red circles are
reported depths to water (meters below top of casing (BTOC)), filled blue stars are ASER-reported freshwater head elevations
(meters above mean sea level (AMSL)), and the blue x’s are the freshwater head elevations (AMSL) computed using the density
values recommended in the file densities-to-use.csv. Adjustments to pre-2007 water level elevations to use better-surveyed
modern reference point elevations are reflected in the re-computed freshwater heads (blue x’s), but not in the ASER-reported
freshwater heads (blue stars). Vertical bands indicate the months that were used for contouring heads.

In the density plots (bottom), horizontal green lines indicate the density/specific gravity values chosen to be used at a given
time (densities-to-use.csv), vertical lines are events in current or nearby wells (nearby wells are gray text and indicate the
distance between the wells, while the current well is in black text). Red x’s with connecting red lines are density values computed
from Troll data (representing the date range used to compute the density), gray circles indicate reported pressure-density surveys
(PDS), large black circles are field specific gravity readings (SGR), and small green dots are densities back-calculated from the
freshwater head elevations and water level elevations reported in the ASERs.

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

12 Appendix: MODFLOW and Pest Files and Script Source Listings
12.1 Input File Listing
The following table lists the input files for the 2000 contour map. The 2001-2004 contour maps have the same files with analogous

names.
bytes | file type description file name
2.1K | Python script | average 100 realizations average_realizations.py
2.3K | Python script | distinguish different BC types boundary_types.py
. main routine: checkout files,run MODFLOW
6.6K | Bash script run PEST, call Python scripts checkout_average _run modflow.sh
. convert DTRKMF' 1J output
809 | Python script to Surfer X,Y blanking format convert_dtrkmf output_for_surfer.py
3.2K | Python script | create PEST input files from observed data create_pest_02_input.py
48 | input listing responses to DTRKMF prompts dtrkmf.in
. convert MODFLOW binary . ..
4.2K | Python script output to Surfer ASCIT grid format head_bin2ascii.py
1.1K | input listing of 100 realizations from CVS keepers
. observed heads
LAK | input in mod2obs.exe bore sample file format meas-head 2000ASER . smp
. paste observed head and model-generated
1.2K | Python script heads into one file merge_observed modeled_heads.py
76 | file listing files needed to run mod2obs.exe mod2obs_files.dat
138 | input listing responses to mod2obs.exe prompts mod2obs_head.in
372 | file listing files needed to run MODFLOW modflow files.dat
401 | input listing of wells and geographic groupings obs_loc_2000ASER.dat
215 | file listing files needed to run PEST pest_02 files.dat
2.3M | input relative coordinate 1 <z <1 rel_x_coord.dat
2.3M | input relative coordinate 1 <y <1 rel_y_coord.dat
339 | Bash script PEST model: execute MODFLOW and run 02 model
do pre- and post-processing
26 | input mod2obs.exe input file settings.fig
47 | input mod2obs . exe input file spec_domain.spc
1.7K | input mod2obs.exe input file spec_wells.crd
. compute starting head from
2.7K | Python script parameter and coordinate inputs surface_02_extrapolate.py
506 | input DTRKMEF input file wippctrl.inp
5.6K | Python script | plot contour map figures plot-contour-maps.py
6.7K | Python script | plot bar and scatter figures plot-results-bar-charts.py
90 | plotting data | UTM coordinates of ASER map area ASER boundary.csv
9.2K | plotting data | UTM coordinates of MODFLOW model area | total boundary.dat
6.7K | plotting data | UTM coordinates of WIPP LWB wipp-boundary.csv

Table 1: Listing of Input Files

| nformation Only

12.2 Output File Listing

The following table lists the input files for the 2000 contour map. The 2001-2004 contour maps have the same files with analogous

names.

bytes | file type description file name
19K | DTRKMEF output | particle track results dtrk.out
16K | DTRKMF output | particle track debug dtrk.dbg
2.0K | script output heads at well locations modeled_vs_observed_head pest_02.txt
1.1M | script output formatted MODFLOW heads modeled head pest_02.grd
5.3K | script output formatted DTRKMF particle dtrk_output_pest_02.bln
16K | PEST output matrix condition numbers bc_adjust_2000ASER. cnd
2.7K | PEST output binary intermediate file bc_adjust_2000ASER.drf
74K | PEST output binary intermediate file bc_adjust_2000ASER. jac
7.5K | PEST output binary intermediate file bc_adjust_2000ASER. jco
9.9K | PEST output binary intermediate file bc_adjust_2000ASER. jst
3.8K | PEST output parameter statistical matrices bc_adjust_2000ASER.mtt
477 | PEST output parameter file bc_adjust_2000ASER. par
62K | PEST output optimization record bc_adjust_2000ASER. rec
4.6K | PEST output model outputs for last iteration | bc_adjust_2000ASER.rei
8.4K | PEST output summary of residuals bc_adjust_2000ASER.res
28 | PEST output binary restart file bc_adjust_2000ASER.rst
24K | PEST output relative parameter sensitivities | bc_adjust_2000ASER.sen
4.0K | PEST output absolute parameter sensitivities | bc_adjust_2000ASER.seo
213K | png image matplotlib plot (Fig. 2) aser-area—contour-map.png
223K | png image matplotlib plot (Fig. 3) large-area-contour-map.png
33K | png image matplotlib plot (Fig. 5) model-error-histogram.png
55K | png image matplotlib plot (Fig. 6) model-error-residuals.png
93K | png image matplotlib plot (Fig. 4) scatter_pest_02.png

Table 2: Listing of Output Files

| nformation Only

© W N e O A W N e

AR R A A W oW W W W W W W W W NN NN NNNNNN e 2R R e e s e e e
A ® M = O © ® 9 & O kK ® K R O © ® N O o Kk W@ N R O © ® N O oA W N R O

'S
<

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61

12.3 Individual MODFLOW and Pest Script Listings

12.3.1 Bash shell script checkout_average run modflow.sh
#1/bin/bash

set —o mnounset # caplode if wsing an un—initialized variable
set —o errexit # exit on non—zero error status of sub—command

prefix =2000ASER

this script makes the following directory substructure

#

current_dir \——— Outputs (calibrated parameter fields — INPUTS)

\——— Inputs (other modflow files — INPUTS)

\—— original_average (foward sim using average fields)
\— bin (MODFLOW and DIRKMF binaries)

\— pest_0¢ (pest—adjusted results)

##sel —o wztrace # loads of verbose debugging info

echo IRl ol Sialalalolalololialioliolaliaiolialioliel n

echo " checking out T fields"

echo [l el olaialaloliolialialialialalialioliolialialied "

these will checkout the calibrated parameter—field data into subdirectories
checkout things that are different for each of the 100 realiztaions
for d in ‘cat keepers®
do
cvs —d /nfs/data/CVSLIB/ Tfields checkout Outputs/${d}/modeled_-{K,A,R,S} _field .mod
done

checkout MODELOW input files that are constant for across all realizations

cvs —d /nfs/data/CVSLIB/ Tfields checkout Inputs/data/elev_{top, bot}.mod

cvs —d /nfs/data/CVSLIB/ Tfields checkout Inputs/data/init_{bnds.inf head.mod}

cvs —d /nfs/data/CVSLIB/ Tfields checkout Inputs/modflow/mf2k_culebra.{lmg,lpf}

cvs —d /nfs/data/CVSLIB/ Tfields checkout Inputs/modflow/mf2k_head.{ba6 ,nam,oc,dis,rch}

modify the path of 7updated” T-fields , so they are all at the
same level in the directory structure (simplifying scripts elsewhere)

if [—a keepers_short |
then
rm keepers_short

fi
touch keepers_short
for d in ‘cat keepers
do

bn=‘basename ${d}*

test whether it 1s a compound path

if [${d} != ${bn}]
then

dn=‘dirname ${d}‘
mv ./ Outputs/${d} ./Outputs/

put an empty file in the directory to indicate
what the directory was previously named
touch ./Outputs/${bn}/${dn}

fi

create a keepers list without directories
echo ${bn} >> keepers_short

| nfor mation Only

63

#

the averaging was a slow step, when done in python

echo "

echo " perform averaging across all realizations
P ging

D e e R "

python average_realizations.py

checkout MODFLOW / DIRKMF executables
cvs —d /nfs/data/CVSLIB/MODFLOWZK checkout bin/mf2k/mf2k_1.6.release
cvs —d /nfs/data/CVSLIB/MODFLOW2K checkout bin/dtrkmf/dtrkmf_v0100

check out pest and obsZ2mod binaries

cd bin

cvs —d /nfs/data/CVSLIB/PEST checkout Builds/Linux/pest.exe
cvs —d /nfs/data/CVSLIB/PEST checkout Builds/Linux/mod2obs.exe
cd

#

echo "
echo " setup copies of files constant between all realizations
P=Yel s T T ANNaNalalakalalakalalakaliokalaliokalalakalalakaliakeialiokalalohalalakaliolalalokalaliohelalakalalakelokalalalal ool n

directory for putting original base—case results in
od=original _average

if [—d ${od} |

then
echo ${od}" directory exists: removing and re-creating"
rm —rf ${od}

fi

mkdir ${od}
cd ${od}
echo ‘pwd‘

link to wunchanged input files
for file in ‘cat ../ modflow_files.dat®
do

In —sf ${file}

done

link to averaged files computed in previous step
for f in {A,R,K,S}
do
In —sf ../ modeled_${f} _field .avg ./modeled_${f} _field .mod
done

In —sf elev_top.mod fort.33
In —sf elev_bot.mod fort.34

echo A~~~ ~A~AAAAAA~AAAA~AA~AA~AA~AAAAAAAAA~AAA~AAA~AA~AA~AAAAAAA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~A~AA~AA~AAA~AA~AA~AA~AA~AA~AA~AA~AAA n
echo " run original MODFLOW and DTRKMF and export results for plottlng"
LYol s Vo T

run MODFLOW, producing average head and CCF
../ bin/mf2k /mf2k_1.6.release mf2k_head .nam

run DIRKMF, producing particle track (from ccf)
../ bin/dtrkmf/dtrkmf_v0100 <dtrkmf.in

convert binary MODFLOW head output to Surfer ascii grid file format

| nfor mation Only

126 In —sf ../ head_bin2ascii.py
127 python head_bin2ascii.py
128 mv modeled_head_asciihed.grd modeled_head_${od}.grd

130 # convert DIRKMF output from cells to X,Y and
131 # save in Surfer blanking file format

w2 In —sf ../ convert_dtrkmf_output_for_surfer.py
133 python convert_dtrkmf_output_for_surfer.py

1se mv dtrk_output.bln dtrk_output_${od}.Dbln

16 # extract head results at well locations and merge with observed
w7 # head file for easy scatter plotting in Exzcel (tab delimited)
s for file in ‘cat ../ mod2obs_files.dat

139 do

140 In —Sf ${f11€}
11 done

142

us In —sf ../ meas_head_${prefix }.smp

ue In —sf ../ obs_loc_${prefix}.dat .

wus ../ bin/Builds/Linux/mod2obs. exe <mod2obs_head.in

us In —sf ../ merge_observed_modeled_heads.py

147 python merge_observed_modeled_heads.py

us mv both_heads.smp modeled_vs_observed_head_${od}. txt

150

151 # go back down into root directory

152 cd

153 echo ‘pwd‘

154

R <Yod ¢ Vo T R "
156 echo " setup and run PEST to optimize parametric surface to set BC "
e O <Te] £ Lo T RS "
158

159 for p in pest_02

160 do

161

162 if [—d ${p}]

163 then

164 echo ${p}" directory exists: removing and re-creating"
165 m —rf ${p}

166 fi

167

168 mkdir ${p}

169 cd ${p}

170 echo ‘de‘

171

172 # link to unchanged input files

173 for file in ‘cat ../ modflow_files.dat

174 do

175 In —sf ${file}

176 done

177

178 # link to averaged files computed in previous step

179 for f in {A,R,K,S}

180 do

181 In —sf ../modeled-${f} _field .avg ./modeled_${f} _field .mod
182 done

183

184 # link to mod20bs files (needed for pest)

185 for file in ‘cat ../ mod2obs_files.dat

186 do

187 In —sf ${file}

188 done

189

| nfor mation Only

190

240

link to pest files

for file in ‘cat ../${p}_-files.dat"®
do
In —s ${file}

done

rename ’original B wversions of files to be modified by pest
rm init_head .mod

In —sf ../Inputs/data/init_head .mod ./init_head_orig.mod

rm init_bnds.inf

In —sf ../Inputs/data/init_bnds.inf ./init_bnds_orig.inf

create new itbound array for easier modification during PEST
optimization iterations
python boundary_types.py

create the mecessary input files from observations
python create_${p}_input.py

run pest
../ bin/Builds/Linux/pest.exe bc_adjust_${prefix}

last output files should be best run
extract all the stuff from that output

In —sf elev_top.mod fort.33
In —sf elev_bot.mod fort.34

../ bin/dtrkmf/dtrkmf_v0100 <dtrkmf.in

In —sf ../ head_bin2ascii.py
python head_bin2ascii.py
mv modeled_head_asciihed.grd modeled_head_${p}.grd

In —sf ../ convert_dtrkmf_output_for_surfer.py
python convert_dtrkmf_output_for_surfer.py
mv dtrk_output.bln dtrk_output_${p}.bln

for file in ‘cat ../ mod2obs_files.dat
do

In —sf ${file}
done

../ bin/Builds/Linux/mod2obs. exe <mod2obs_head.in

In —sf ../ merge_observed_modeled_heads.py

python merge_observed_modeled_heads.py

mv both_heads.smp modeled_vs_observed_head_${p}. txt

cd

done

| nfor mation Only

© 0 N e o oA W W o=

g o g g o g gt R A R R AR R R R A A W W W W oW oW oW oW oW NN N N NN NN NN B R e s s e e
e h A B LR O B & N GO R BN RO O NG h A B R O ® ® N0 AR BN R~ O © ® N0 ;e ® N = O

12.3.2 Python script average realizations.py

from math import loglO ,pow

nrow = 307
ncol = 284
nel = nrowxncol

nfr = 100 # number of fields (realizations)
nft = 4 # number of field types

def floatload (filename):

77?7 Reads file (a list of strings, one per row) into a list of strings.”””
f = open(filename ,’r’)

m = [float (line.rstrip()) for line in f]

f.close ()

return m
types — [’K’,’A’,’R’,’S’]

get list of 100 best calibrated fields
flist = open(’keepers_short’,’r’)

runs = flist.read ().strip ().split(’\n”’)
flist .close ()

initialize to help speed lists up a bit
nfr (100) realizations of each
fields = []
for i in xrange(nft):
fields .append ([None]x nfr)
for i in xrange(nfr):
each realization being nel (87188) elements
fields [—1][i] = [None]x nel

read in all realizations

print ’reading ...’

for i,run in enumerate(runs):
print i, run
for j,t in enumerate(types):

fields [j][1][0:nel] = floatload (’0Outputs/’+ run +’/modeled_’+ t +’_field.mod’)

open up files for writing
fh =[]
for t in types:
fh .append (open (’modeled_’+ t 4+’ _field.avg’,’w’))

transpose fields to allow slicing across realizations , rather than across
for j in range(len(types)):
fields [j] = zip (x(fields[j]))

print ’writing ...’
do averaging across 100 realizations
for i in xrange(mnel):
if 1%10000 = O0:
print i
for h,d in zip(fh, fields):
h.write(’%18.11e\n’ % pow(10.0 ,sum(map(logl0 ,d[i]))/ nfr))

for h in fh:
h.close ()

| nfor mation Only

cells

© 0w N o R W N =

g o g g o g gt R A R R AR R R R A A W W W W oW oW oW oW oW NN NN NN NN NN B R e s s e e
S0 R B R R O B N0 O A ® R = O ©® KN O G R ® R R O © ® N0 AW N RO O O N O O A W N = O

12.3.3 Python script boundary_types.py

nx = 284 # number columns in model grid
ny = 307 # number rows
nel = nxxny

def intload (filename):
"7?Reads file (a 2D integer array) as a list of lists.
Outer list is rows, inner lists are columns.”””
f = open(filename ,’r’)
m= [[int(v) for v in line.rstrip ().split ()] for line in f]
f.close ()
return m

def intsave (filename ,m):

"7 Writes file as a list of lists as a 2D integer array, format '%3i’

Outer list is rows, inner lists are columns.”””
f = open(filename ,’w’)
for row in m:
f.write(’ ?.join ([’%2i’> % col for col in row]) + ’\n’)
f.close ()

def floatload (filename):
777 Reads file (a list of real numbers, one number each row) into a

f = open(filename ,’r’)

m = [float (line.rstrip()) for line in f]
f.close ()

return m

def reshapev2m (v):

list of floats.”””

777 Reshape a wvector that was previously reshaped in GC-major order from a matriz,

back into a matriz (here a list of lists).”””
m = [None|*ny

for i,(lo,hi) in enumerate(zip(xrange(0, nel-nx+1, nx), xrange(nx, nel+1, nx))):

m[i] = v[lo:hi]
return m

read in original MODFLOW IBOUND array (only 0,1, and —1)
ibound = intload (’init_bnds_orig.inf’)

read in initial heads
h = reshapev2m (floatload (’init_head_orig.mod’))

discriminate between two types of constant head boundaries
—1) CH, where wvalue > 1000 (area east of halite margin)
—2) CH, where value < 1000 (single row/column of cells along edge of

for i,row in enumerate(ibound):
for j,val in enumerate(row):
1s this constant head and is starting head less than 1000m ¢
if ibound[i][j] = -1 and h[i][j] < 1000.0:
ibound [1][]j] = -2

save mew IBOUND array that allows easy discrimination between types
PEST optimization runs, and is still handled the same by MODFLOW
since all ibound values < 0 are treated as constant head.

intsave (’init_bnds.inf’ ibound)

| nfor mation Only

domain

in python

script

during

e = L R R

Q@ o @ g o o g oo g oo oo R A R A R A R R A R K W W W oW oW W oW oW oW NN NNNNNNNN S R e s e
B o= O © B U O Gk ® LR O O ®» N4 O A ® N = O O U6 O AL RO & W N O G A BN R O O ® NGO A W N = O

o
@

12.3.4 Python script create_pest_02_input.py

prefix = >2000ASER’

pest instruction file reads output from mod2o0bs

fin = open(’meas_head_%s.smp’ % prefix ,’r’)

each well is a [name, head] pair
wells = [[line.split ()[0],line.split ()[3]]
fin.close ()

fout = open(’modeled_head.ins’, ’w’)
fout . write(’pif @\n’)
for i,well in enumerate(wells):

fout . write ("11 [%s139:46\n" % well [0])

fout . close ()

exponential surface used to set initial
except east of the halite margins, where

initial guesses come from AP—11} Task report
params = [928.0, 8.0, 1.2, 1.0, 1.0, —1.0, 0.5]

pnames = [7a7’)b’, ,C’, ,d’, 7e7’ ’f’7

fout = open(’avg_NS_res.ins’,’w’)
fout . write(""" pif @

l1 [medianN]1:16

11 [medianS]1:16

I1 [meanN]1:16

1 [meanS]1:16

fout . close ()

pest template file

ftmp = open(’surface_par_params.ptf’,’w’)
ftmp . write (’ptf @\n’)

for n in pnames:

ftmp . write (’@ hs e\n’ % n)

ftmp . close ()

pest parameter file

fpar = open(’surface_par_params.par’,’w’)
fpar.write (’double point\n’)
for n,p in zip (pnames, params):

fpar.write(’%s %.2f 1.0 0.0\n’ % (n,p))

fpar.close ()

pest control file

f = open(’bc_adjust_%s.pst’ % prefix ,’w’)
f.write(" "pcf

* control data

restart estimation

%i %i 1 0 2

1 2 double point 1 0 0
5.0 2.0 0.4 0.001 10
3.0 3.0 1.0E-3

| nfor mation Only

for line in fin]

head everywhere

0.1

30 0.001 4 4 0.0001 4

111

x parameter groups

bc relative 0.005 0.0001 switch 2.0 parabolic
777 % (len (params), len (wells)+4))

f.write(’* parameter data\n’)
for n,p in zip (pnames,params):
if p> 0:
f.write(’%s none relative %.3f %.3f
(Il, P, _2'0*p7 30*p))

else:
f.write(’%s none relative %.3f %.3f
(n’ b, 30*1)7 _20*p))
f.write(”777x observation groups

ss_head
avg_head
x observation data

)

read in observation weighting group definitions
fin = open(’obs_loc_%s.dat’ % prefix ,’r’)

lines = fin.readlines ()

fin . close ()

weightidx = []

location = []

for line in lines:
w,l = line.strip ().split ()[1:3]
weightidx . append (w)
location .append (1)

weights = []

for 1 in weightidx:
inside LWB (+H—4, very near the LWB)
if 1 = ’0:
weights.append (2.5)
near (<= Skm from) LWB
if 1 = 1:
weights.append (1.0)
distant to LWB

if 1 = 227:
weights.append (0.4)
if 1 = ’99:

weights.append (0.01) # AEC-7

for name,head ,w in zip (zip (xwells)[0],zip (xwells)[1], weights):

f.write(’%s %s %.3f ss_head\n’ % (name, head ,w))

numnorth = len ([x for x in location if x=’N’])
numsouth = len ([x for x in location if x=’S’])

f.write (7" medianN 0.0 %.1f avg_-head
medianS 0.0 %.1f avg_head

meanN 0.0 %.1f avg_head
meansS 0.0 %.1f avg_-head

7 % (numnorth ,numsouth , numnorth , numsouth))

f.write (777« model command line
./run_02_model

%.3f

%.3f

bc

bc

1.

1.

0

0

| nfor mation Only

0.

0.

0

0

1\n’ %

\n’ %

128
129
130
131
132

133

* model input/outpul
surface_par_params.ptf surface_par_params.in
modeled_head.ins modeled_head.smp

avg-NS_res.ins

20 ”»

f.close ()

avg_NS_res.smp

| nfor mation Only

© 0 N e o oA W W o=

AR A W oW W W W W W W oW oW NN N NN N NN NN R B E e e e e e e e
N B O © ® N & O A ® K = O © ® N & G A ® N = O © 0 N O O A W N = O

43

12.3.5 Python script surface_02_extrapolate.py

from itertools import chain
from math import sqrt

def matload (filename):
77 Reads file (a 2D string array) as a list of lists.
Outer list is rows, inner lists are columns.”””

f = open(filename ,’r?’)

m = [line.rstrip ().split () for line in f]
f.close ()

return m

def floatload (filename):
""Reads file (a list of real numbers, one number each row) into a
f = open(filename ,’r’)
m = [float (line.rstrip()) for line in f]
f.close ()
return m

def reshapem2v():

"Reshapes a 1({/(1/1(]111(11 matriz into a vector in same fashion as numpy.reshape ().

which is C-major order”””
return list (chain (xm))

def 51gn():
777 gign function”””
if x<0:
return —1
elif x>0:
return +1
else:
return 0

read in modified IBOUND array, with the cells to modify set to —2
ibound = reshapem2v (matload(’init_bnds.inf’))

h = floatload (’init_head_orig.mod’)

these are relative coordinates, —1 <= x,y < +1
x = floatload (’rel_x_coord.dat’)
y = floatload (’rel_y_coord.dat’)

unpack surface parameters (one per line)
2 =A + Bx(y + Dxsign(y)xsqrt(abs(y)))+Cx(Exzxx3 — Fxxxx2 — 1)

finput = open(’surface_par_params.in’,’r’)
try:
a,b,c,d,e,f,exp = [float (line.rstrip()) for line in finput]
except ValueError:
python doesn’t like °D’ in 1.2D—4 notation used by PEST sometimes.
finput .seek (0)
lines = [line.rstrip() for line in finput]
for i in range(len(lines)):
lines [i] = lines[i].replace(’D’,’E?)
a,b,c,d,e,f,exp = [float(line) for line in lines]

finput . close ()
file to output initial/boundary head for MODFLOW model

fout = open(’init_head.mod’ ’w’)
for i in Xrange (len (1bound

 nformation Only

of floats.”””

64
65
66
67
68
69
70
71
72
73
T4
75

76

apply exponential surface to active cells (ibound=1) —> starting guess
and non—geologic boundary conditions (ibound=—2) —> constant head value
if y[i] = 0:
fout.write(’%.7e \n’ % (a + cx(exx[i]**x3 + fxx[i1]*%x2 — x[i])))
else:
fout . write(’%.7e \n’ % (a + bx(y[i] + dxsign(y[i])*abs(y[i])**exp) +
cx(exx[i]*x3 + fxx[i]*x2 — x[i])))
else:
use land surface at constant head east of halite boundary
ibound=0 doesn 't matter (inactive)
fout . write(’%.7e\n’> % h[i])

fout . close ()

| nfor mation Only

e = e L e R

[e~ S S S
o kA W N = O

-
J

12.3.6 Bash shell script run_02 model

#!/bin/bash
#set —o ztrace

#echo ’step 1: surface extrapolate’
python surface_02_extrapolate.py

run modflow
#echo ’step 2: run modflow’

../ bin/mf2k /mf2k_1.6. release mf2k_head.nam >/dev/null

run mod2obs
#echo ’step &: extract observations ’
../ bin/Builds/Linux/mod2obs. exe < mod2obs_head.in >/dev/null

create meta—observations of N vs. S
python create_average_NS_residuals.py

| nfor mation Only

© 0 N o o oA W W e

oo o g o g s R A R A R R R A R W oW W W oW oW oW oW oW oW NN NN N NNN NN B R R e e e e
a ok W R R O B WO DR BB R O © KT RE BR RO B BN O G R RN RO © ® 9O 0 A @ N = O

56
57
58
59
60
61
62

63

12.3.7 Python script head bin2ascii.py

import struct
from sys import argv,exit

class FortranFile(file):
77 modified from May 2007 Enthought—dev mailing list post by Neil Martinsen—Burrell”””

def __init__(self ,fname, mode=’r’, buf=0):
file.__init__(self , fname, mode, buf)
self . ENDIAN = ><’> # [ittle endian
self .di =4 # default integer (could be 8 on 64— bit platforms)

def readReals(self , prec=’f’):
777 Read in an array of reals (default single precision) with error checking”””
read header (length of record)
1 = struct.unpack(self . ENDIAN4’i’ self.read(self.di))[0]
data_str = self.read (1)
len_real = struct.calcsize (prec)
if 1 % len_real != 0:
raise IOError (’Error reading array of reals from data file’)
num = 1/len_real
reals = struct.unpack(self . ENDIAN+str (num)+prec ,data_str)
check footer
if struct.unpack(self .ENDIANt->i’ self.read(self.di))[0] != I:
raise IOError (’Error reading array of reals from data file’)
return list (reals)

def readInts(self):
7?7 Read in an array of integers with error checking”””
1 = struct.unpack(’i’,self.read(self.di))[0]
data_str = self.read (1)
len_int = struct.calcsize(’i?)
if 1 % len_int != 0:

raise IOError(’Error reading array of integers from data file’)

num = 1/len_int
ints = struct.unpack(str (num)+’i’,data_str)
if struct.unpack(self . ENDIAN+’i’ self.read(self.di))[0] != 1:

raise IOError (’Error reading array of integers from data file’)
return list (ints)

def readRecord(self):
7?”Read a single fortran record (potentially mized reals and ints)”””
dat = self.read(self.di)
if len(dat) = 0:
raise IOError (’Empy record header’)
1 = struct.unpack(self . ENDIAN+’i’ dat)[0]
data_str = self.read (1)
if len(data_str) != 1:
raise IOError(’Didn’’t read enough data’)
check = self.read(self.di)
if len(check) != 4:
raise IOError(’Didn’’t read enough data’)
if struct.unpack(self .ENDIANt>i’ check)[0] != 1:
raise IOError(’Error reading record from data file’)
return data_str

def reshapev2m (v,nx,ny):
77 Reshape a wvector that was previously reshaped in C-major order from a matriz,
back into a C-major order matriz (here a list of lists).”””
m = [None]*ny
n = nx*ny
for i,(lo,hi) in enumerate(zip(xrange(0, n—nx+1, nx), xrange(nx, n+1, nx))):
m[i] = v[lo:hi]

" Information Only

def floatmatsave (filehandle ,m):
"7 Writes array to open filehandle , format '568%el2.5 .
Outer list 4s rows, inner lists are columns.”””

for row in m:
f.write(’’.join ([’ %12.5e¢’ % col for col in row]) + ’\n’)

open file and set endian—ness

try:
infn ,outfn = argv[1:3]
except:
print ’2 command-line arguments not given, using default in/out filenames’
infn = ’modeled_head.bin’
outfn = ’modeled_head_asciihed.grd’

ff = FortranFile (infn)

currently this assumes a single—layer MODELOW model (or at least only one layer of output)

format of MODFLOW header in binary layer array
fmt = 2<2i2f16s3i”’
little endian, 2 integers, 2 floats

16— character string (4 element array of 4—byte strings), 3 integers

while True:
try:
read in header
h = ff.readRecord ()

except IOError:
exit while loop
break

else:
unpack header

kstp , kper , pertim , totim , text ,ncol ,nrow,ilay = struct.unpack (fmt, h)

print status/confirmation to terminal
print kstp ,kper ,pertim ,totim , text ,ncol ,nrow,ilay

h = ff.readReals ()

ff.close ()

xmin, xmax = (601700.0,630000.0)
ymin, ymax = (3566500.0,3597100.0)
hmin = min (h)
hmax = max(h)

write output in Surfer ASCII grid format

f = open(outfn,’w’)

f.write (77 7DSAA

%.1f %.1f

%.1f %.1f

%.8e %.8e

777 %(ncol ,nrow ,xmin ,xmax , ymin , ymax , hmin , hmax))
hmat = reshapev2m (h,ncol ,nrow)

MODFLOW starts data in upper—left corner

Surfer expects data starting in lower—left corner
flip array in row direction

| nfor mation Only

| nfor mation Only

© ®w N o oA W N R

NN ONONNNN NN R B E e e e s e e e
© N & G A W N =R O © 0 N O O A W N = O

N
©

12.3.8 Python script merge_observed modeled heads.py

fobs = open(’meas_head_2000ASER.smp’,’r’) # measured head
fmod = open(’modeled_head.smp’,’r’) # modeled head
fwgt = open(’obs_loc_2000ASER.dat’,’r’) # weights

fdb = open(’spec_wells.crd’,’r’) # x/y coordinates
fout = open(’both_heads.smp’,’w’) # resulting file
read in list of z/y coordinates, key by well name

wells = {}

for line in fdb:

fdb

well ;x,y = line.split ()]
wells [well .upper ()] = [x,¥]
.close ()

0:3] # ignore last column

fout . write (’\t’.join ([’?#NAME’ ,’UTM-NAD27 -X’ ,’UTM-NAD27-Y" ,

» OBSERVED’ , > MODELED ’ , >0BS-MOD’ , > WEIGHT’])+’\n’)

for sobs ,smod,w in zip (fobs ,fmod,fwgt):

fobs .
fmod.
fwgt .
fout .

close
close
close
close

e Y Ve N
—

obs = float (sobs.split ()[3])

mod = float (smod.split ()[3])

name = sobs.split ()[0]. upper ()

fout . write(’\t’.join ([name, wells [name][0] , wells [name]|[1],

str (obs),str(mod),str (obs—mod) ,
w.rstrip ().split ()[1]])+’\n")

| nfor mation Only

© 0 N o o oA W W e

MO NN NN NN B R R R R R e e
BN R B N e = R N L =)

N
o]

12.3.9 Python script convert_dtrkmf_output_for_surfer.py

grid origin for dtrkmf cell —> z,y conversion

x0 = 601700.0
y0 = 3597100.0
dx = 100.0
dy = 100.0

fout = open(’dtrk_output.bln’,’w’)

read in all results for saving particle tracks
fin = open(’dtrk.out’,’r’)

results = [l.split () for | in fin.readlines ()[1:]]

fin . close ()
npts = len(results)

write Surfer blanking file header
fout.write (’%i,1\n’ % npts)

write x,y location and time
for pt in results:

x = float (pt[1])*xdx + x0
y = y0 — float (pt[2])*dy
t = float (pt[0])/7.75%4.0 # convert to 4m Cuelbra

fout.write(’%.1f,%.1£,%.8e\n’ % (x,y,t))

fout . close ()

thickness

| nfor mation Only

© W N e U A W N e

o o o @ oo oG g gror gt A A R R R AR A A R R W W W W oW W W W W W NNN N NN NN NN R R R e e s e e e e
mF & © ® 9 o o A ® M R O © ® N O O A W N R O O ® 9 O O A ® O R O O 0N 0 O A @ N = O © W0 N O o A W N = O

12.3.10 Python script plot-results-bar-charts.py

This script is not run on the QA linux cluster, alice.sandia.gov. This script is run on a desktop PC, but is only used to create

figures for the analysis report. This script is only included here for completeness.

import numpy as np

#import matplotlid
#matplotlib.use(Agg’)

import matplotlib.pyplot as plt

fprefix = ’pest_02/’
mprefix = ’../wipp-polyline-data/’
fname = fprefix + ’modeled_vs_observed_head_pest_02.txt’

ofname = ’original_average/modeled_vs_observed_head_original_average.txt’
M2FT = 0.3048

year = ’2000’

load in observed , modeled, obs—mod, (all in meters)

res = np.loadtxt (fname, skiprows=1,usecols =(3,4,5))

ores = np.loadtxt (ofname , skiprows=1,usecols =(3,4,5))

load wn weights

weights = np.loadtxt (fname , skiprows=1,usecols=(6,),dtype=’int’)
load in names

names = np.loadtxt (fname, skiprows=1,usecols=(0,),dtype=’1S6")

load in N/S/C/X zones

zones = np.loadtxt (’obs_loc_%sASER.dat’ % year ,usecols=(2,),dtype=’[S1")

(/1((/,1/1(/ /()('(if[()/zs' / zones

AR I I I ™

wipp = np. loadtxt (mprefix+’wipp_boundary.dat 7))

x,y = np.loadtxt (fname , skiprows=1,usecols =(1,2),unpack=True)

fig = plt.figure(2,figsize=(18,12))

axl = fig.add_subplot (121)

axl.plot (x,y, k*’) # wells

axl.plot (wipp[:,0] ,wipp[:,1],’r-?) # WIPP LWB
buff = np.loadtxt (mprefix+’wipp_boundary.dat’)

buff[1:3,0] —= 3000.0
buff[0,0] += 3000.0

buff[3:,0] += 3000.0
buff[2:4,1] —= 3000.0
buff [0:2,1] 4= 3000.0
buff[—1,1] 4= 3000.0

colors = {’N’:’red’,’S’:’blue’,’C’:’green’ ,’X’:’gray’}
axl.plot (buff[:,0],buff[: 1], g-=") 7 WIPP LWB/m
for xv,yv,n,w,z in zip (x,y,names, weights ,zones):
print xv,yv.,n,w,z
plt .annotate (’%s %i’%(n,w),xy=(xv,yv),fontsize=8,color=colors[z])
plt.axis(’image’)
axl.set_xlim ([x.min() —1000,x.max()+1000])
axl.set_ylim ([y.min() —1000,y.max()+1000])
ax2 = fig.add_subplot (122)
ax2.plot (x,y, k*’) # wells
ax2.plot (wipp [:,0] ,wipp [:,1],’x-?) # WIPP LB
ax2.plot (buff[:,0], buff[:,1],’g--?) # WIPP LWB+3km
for xv,yv,n,w,z in zip(x,y,names, weights ,zones):
plt .annotate (*%s %i *%(n,w),xy=(xv,yv),fontsize=8,color=colors[z])
plt.axis(’image’)
ax2.set_xlim ([wipp [: ,0]. min()—lOO wipp [: O] ()+100])
ax2.set_ylim ([wipp[:,1].min() —100,wipp [: ,1].max()+100])

plt.suptitle (’well Welghts check ’+year)

plt.savefig (’check-well- w-efghts—’+year+’ .E

Nnrorma

convert lengths to feet
res /= M2FT
ores /= M2FT

create the histogram of residuals for ASER

FE sk ok sk ok ok ok sk ok kR ok sk kR ok sk kR oK K KR K K KRR K K RO K K KR oK K kR oK

4 —10,-9,...8,9,10
bins = np.arange(—10,11)

rectfi

g = (15,7)

squarefig = (8.5,8.5)

fig =

plt . figure (1,figsize=rectfig)

ax = fig.add_subplot(111)

all

the data, all but distant wells

ax. hist ([res[weights <2,2],res [:,2]], bins=bins ,range=(—-10.0,10.0),

rwidth=0.75,align="mid "’ ,
color=[’red’,’blue’],
label=[’Inside LWB & <3km from WIPP LWB’,’All wells’])

ax.set_xlabel (’Measured-Modeled (ft)’)
ax.set_ylabel (’Frequency’)
ax.set_xticks (bins)

ax.set

_ylim ([0,10])

ax.set_yticks (np.arange (0,10,2))
plt.grid ()

ax.yaxis.grid (True,which="major’)
ax.xaxis.grid (False)

plt.le

gend (loc=’upper left’)

plt.title (’Histogram of Model Residuals ’+year)
plt .annotate (’AEC-7 @ %.1f°%res[0,2],xy=(—-9.75,5.0),xytext=(—-8.5,5.0),

arrowprops={’arrowstyle’:’->’} fontsize=16)

plt.savefig(’model-error-histogram-’+year+’.png’)

plt.cl

ose (1)

create bar chart plot of individual residual for ASER

FEkok sk osk ok ok sk sk kR ok sk kR ok sk kR K sk KR K sk KRR KK KR K K KR oK kKR oK

m0 = weights==0
ml = weights==
m2 = np.logical _or (weights==2,weights==99)

separate wells into groups

resin = res[m0,2]
resnear = res |[ml,2]
resfar = res|[m2,2]
nin = resin.size
nnear = resnear.size
nfar = resfar.size

separate names into groups

namin = names [m0]

namnear = names |ml]

namfar = names|[m2]

print ’in’ namin

print ’near’ namnear

print ’far’ namfar

print ’resfar’ ,resfar

get indices that sort wvectors
ordin = np.argsort (namin)

| nfor mation Only

ordnear = np.argsort (namnear)
ordfar = np.argsort (namfar)

put vectors back together (groups adjacent and sorted inside each group)
resagg = np.concatenate ((resin[ordin],resnear [ordnear], resfar[ordfar]) ,axis=0)
namagg = np.concatenate ((namin|ordin|,namnear[ordnear|,namfar[ordfar]) , axis=0)

fig = plt.figure(1,figsize=rectfig)
ax = fig.add_subplot(111)

wid = 0.6
shift = 0.5 — wid /2.0
ab = np.arange(res.shape[0])

print ab.shape
print ab

ax.bar(left=ab+shift ,height=resagg , width=0.6,bottom=0.0,color=’gray’)
ax.set_ylim ([—-15.0,15.0])
ax.spines|[’bottom’|.set_position (’zero’)
ax.spines|[’top’].set_color (’none’)
ax.xaxis.set_ticks_position (’bottom?)

plt . xticks (ab4+wid ,namagg , rotation =90)

wvertical lines dividing groups

ax.axvline (x=nin , color="black’,linestyle=’dashed’)
ax.axvline (x=nin4nnear , color="black’,linestyle=’dashed’)
ax.axhline (y=0,color="black’,linestyle=’solid’)
ax.axhline (y=—15,color="black’ ,linestyle=’dotted’)
plt.grid ()

ax.yaxis.grid (True,which="major’)

ax.xaxis.grid (False)

ax.set_xlim ([0, res.shape [0]])

plt.annotate(’’ ,xy=(0.0,12.0),xycoords=’data’,
xytext=(nin ,12.0), textcoords=’data’
arrowprops={’arrowstyle’:’<->’})

plt.annotate (’inside WIPP LWB’ ,xy=(mnin/3.0,12.5),xycoords=’data’)

plt.annotate (’’ ,xy=(nin ,12.0) , xycoords=’data’,
xytext=(nin+nnear ,12.0) , textcoords=’data’,
arrowprops={’arrowstyle’:’<->’1})

plt.annotate (’<3km WIPP LWB’ ,xy=(nin+nnear /3.0,12.5),xycoords=’data’)

plt .annotate (’’ ,xy=(nin4nnear ,12.0) , xycoords=’data’
xytext=(nin+nnear+nfar ,12.0) , textcoords=’data’,
arrowprops={’arrowstyle’:’<->’1})

plt.annotate (’>3km WIPP LWB’ ,xy=(nin+nnear+nfar /3.0,12.5),xycoords=’data’)

ax.set_ylabel (’Measured-Modeled (ft)’)
ax.set_title(’individual residuals ’+year)
plt.annotate (?AEC-7 @ %.1f°%res [0,2],xy=(nin+nnear+1.0,—14.5),xycoords=’data’)

plt.savefig (’model-error-residuals-’+year+’.png’)
plt.close (1)

create scatter plot of measured vs. modeled
m= 1.0/M2FT
st = [2980,3120]

print ’modeled-vs-measured correlation coefficients’
print ’all data: %.4f’ % np.corrcoef(res[:,0],res[:,1])[1,0]**2

| nfor mation Only

print ’inside WIPP: %.4f’ % np.corrcoef(res|[m0,0],res[m0,1])[1,0]**2
print ’inside 3km: %.4f’ % np.corrcoef(res|[weights <2,0], res[weights <2,1])[1,0]*%2

print ’uncalibrated model’

print ’all data: %.4f’ % np.corrcoef(ores|[:,0],ores[:,1])[1,0]*%*2

print ’inside WIPP: %.4f ° % np.corrcoef(ores[m0,0],ores [m0,1])[1,0]*=*2

print ’inside 3km: %.4f’ % np.corrcoef(ores|[weights <2,0], ores[weights <2 ,1])[1,0]*%2

fig

ax

ax .

ax .

ax .

ax .
ax .
ax .
ax .
ax .
ax .
ax .

= plt.figure (1, figsize=squarefig)

= fig.add_subplot (111)

plot (res [m0,0] ,res[m0,1], color="red’ ,markersize=10,
marker="+’ linestyle=’none’ ,label=’Inside LWB’)

plot (res[ml,0],res[ml,1],color=’green’ ,markersize=10,
marker:’x’ ,linestyle=’none’,label=’"< 3km From LWB’)

plot (res[m2,0],res [m2,1], color="blue’ ,markersize=10,
marker—’*’ ,linestyle=’none’ ,label=’distant’)

plot (sr ,’k— ,label="$45" {\\degree}$ Perfect Fit’)

plot (

[sr [r[1]],[sr[0]+m,sr[1]+m)] > linewidth=0.5,label="$\\pm$ 1m Misfit’)

I ,
plot ([sr[0],sr[1]],[sr[0] —m, Sr[|-],’ > linewidth=0.5,label=’__nolegend__")
set_ xtlcks(np llnspace(r [0] r[1],8))
set_yticks (np.linspace (sr[0],sr[1],8))

set_xlim (

sT)
set_ylim (sr)

plt . minorticks_on ()

plt.legend (loc=’lower right’,scatterpoints=1,numpoints=1)
plt.grid ()

a =

for j,lab in enumerate(names):

ax .
ax .
ax .

if res[j,2] < —1.5%m:
plot labels to left of walue far above 45—degree line
a.append (plt.annotate (lab ,xy=(res[j,0],res[j,1]),

xytext=(res [j,0] —(2.9xlen (lab)),res[j,1] —=2.0),fontsize=14))

elif res[j,2] > 1.5%m:
plot labels to right of wvalue far below 45—degree line
plt.annotate(lab,xy:(res[J,O] res[j,1]),
xytext=(res [] ,O]—|—2 0,res[j,1]—2.0),fontsize=14)

set_xlabel (’Observed Freshwater Head (ft AMSL)’)
set_ylabel (’Modeled Freshwater Head (ft AMSL)’)
set_title (’modeled vs. measured ’4year)

manually adjust overlapping labels

for lab in a:

lab . draggable ()

plt .show ()
#
plt.savefig(’scatter_pest_02_’+year+’.png’)

| nfor mation Only

© o N o G oA W N e

o o o @ wogn oo gt gror gt A A R R R AR A A R R W W W W oW W W W W oW NNN N NN NN NN R R R e e s e e e e
F & © ® 9 o o A ® B R O © ® N O O A W N R O O ® 9 O O A ® O R O O 0N 0 O KA ® N = O © W0 N O O A W N = O

12.3.11 Python script plot-contour-maps.py

This script is not run on the QA linux cluster, alice.sandia.gov. This script is run on a desktop PC, but is only used to create

figures for the analysis report. This script is only included here for completeness.

import numpy as np

#import matplotlid

#matplotlib . use(Agg’)

import matplotlib.pyplot as plt

from mpl_toolkits.basemap import pyproj

hittp://spatialreference.org/ref/epsqg/26713/
hitp://spatialreference.org/ref/epsqg/31013/

putm = pyproj.Proj(init=’epsg:26713°) # UIM Zone 13N NAD27 (meters)
pstp = pyproj.Proj(init=’epsg:32012°) # NM state plane east NAD27 (meters)

def transform (xin ,yin):
777 does the default conversion from utm —> state plane
then also convert to feet from meters”””
xout ,yout = pyproj.transform (putm, pstp ,xin,yin)
xout /=
yout /= M2FT
return xout , yout

year = ’2000”’

fprefix = ’pest_02/’

mprefix = ’../wipp-polyline-data/’

cfname = fprefix 4+ ’modeled_head_pest_02.grd’

pfname = fprefix + ’dtrk_output_pest_02.bln’

winame = fprefix 4+ ’modeled_vs_observed_head_pest_02.txt’

M2FT = 0.3048

read in well—related things

T e 6 e R e e e 66 e e e e e e e e i e e e % e
load in observed , modeled, obs—mod, (all in meters)
res = np.loadtxt (wfname, skiprows=1,usecols =(3,4,5))

res /= M2FT # convert heads to feet

wellx , welly = transform (xnp.loadtxt (wfname, skiprows=1,usecols =(1,2),unpack=True))
names = np.loadtxt (wfname, skiprows=1,usecols=(0,),dtype=’1S6")

read in head—related things
0006 6 e e e e Ve Ve 6060606

%%

h = np.loadtxt (cfname, skiprows=5) # ASCII matriz of modeled head

h[h<0.0] = np.NaN # no—flow zone in northeast
h[h>1000.0] = np.NaN # constant—head zone in cast
h /= M2FT # convert elevations to feet

surfer grid is implicit in header
create grid from min/max UIM NAD27 coordinates (meters)

utmy ,utmx = np.mgrid [3566500.0:3597100.0:307j, 601700.0:630000.0:284j]

head contour coords
hx,hy = transform (utmx,utmy)
del utmx,utmy

read in particle—related things

px,py = transform (xnp.loadtxt (pfname,skiprows=1,delimiter=",’ ,usecols =(0,1),unpack=True))
part = np.loadtxt (pfname, skiprows=1,delimiter=’,’ usecols=(2,))

read in MODFLOW model, WIPP LWB ¢ ASER contour domain (UIM X & Y)

T

modx , mody = transform (*np.loadtxt (mprefix+’total_boundary.dat’ ,unpack=True))
wippx , wippy = transform (xnp.loadtxt (mprefix4+’wipp_boundary.dat’,

nly

usecols :élp ,1),unpack=True

| nformation O

meters AMSL

aserx ,asery = transform (¥np.loadtxt (mprefix+’ASER_boundary.csv’,
delimiter=’,’ ;usecols =(1,2),unpack=True))

a =1

plot contour map of entire model area
FE sk ok sk ok ok ok sk ok kR ok sk kR ok sk kR oK K KR K K KRR K K RO K K KR oK K kR oK
fig = plt.figure(1,figsize=(12,16))
ax = fig.add_subplot(111)
lev = 3000 + np.arange(17)*10
CS = ax.contour (hx,hy h,levels=lev ,colors=’k’ ,linewidths =0.5)
ax.clabel (CS,lev [::2] ,fmt="%1i")
ax . plot (wippx , wippy , ’k-")
ax.plot (aserx ,asery ,’g-")
ax . plot (modx,mody,’-’,color="purple’,linewidth=2)
ax.plot (wellx ,welly , linestyle=’none’ ,marker="0",
markeredgecolor=>green’ ,markerfacecolor="none’)
ax.set_xticks (630000 + np.arange(10.0)x10000)
ax.set_yticks (450000 + np.arange(10.0)x10000)
labels = ax.get_yticklabels ()
for label in labels:
label.set_rotation (90)
for x,y,n in zip(wellx ,welly ,names):
plot just above
a.append (plt . annotate (n,xy=(x,y),xytext=(0,5),
textcoords=’offset points’,
horizontalalignment=’center’
fontsize =8))
plt.axis(’image’)
ax.set_title (’Freshwater Heads Model Area ’+year)
ax.set_xlabel (’NAD27 NM East State Plane Easting (ft)’)
ax.set_ylabel (’NAD27 NM East State Plane Northing (ft)’)

compute travel time and path length to WIPP LWB

FE ok skokok ok sk skok ok sk skok sk ok skok sk ok skok sk ok skok skok stk sk ok sk skok ok sk skok ok ok

compute incremental distance between times

pd = M2FTxsnp. sqrt ((px[1:] —px[: —1])**2 + (py[l:] —py[: —1])*%2)

print ’particle length:’,pd.sum(),’ (meters); travel time:’,part[—1],’> (years); ’
print > avg speed:’,pd.sum()/part[—1],’ (m/yr)’

)

HHHE >>S>>S>>>manually fix labels >>>>
for lab in a:

lab . draggable ()
plt .show ()
A << <LLLLLL L Ll

plt.savefig(’large-area-contour -map’+year+’.png’)
plt.close (1)

del lev ,CS
mask = np.logical_and (np.logical_and (hx>aserx.min () ,hx<aserx .max())

np.logical_and (hy>asery .min () ,hy<asery max())5
h[mask] = np.NaN

a =[]

plot contour map of ASER-figure area

K 3K 3K 3Kk osk sk sk sk sk sk sk kR sk kKoK Sk Sk Sk sk sk 3k 3k sk 3k sk sk sk sk Sk sk sk sk ok ok ok ok ok

fig = plt.figure(1,figsize=(12,16))

ax = fig.add_subplot(111)

lev = 3000 + np.arange (17)%5

CS = ax.contour (hx,hy h,levels=lev ,colors=’k’ linewidths =0.5)

| nfor mation Only

ax . plot (wippx , wippy , ’k-")

(
ax . plot (modx,mody, ’
(

ax.plot (wellx , welly

-’ ,color="purple’,linewidth=2)
,linestyle=’none’ ,marker=’0",

markeredgecolor=’green’ ,markerfacecolor="none’)
ax.plot (px,py,linestyle=’s0lid’ ,color="blue’ ,linewidth=4)

plt .arrow (x=px[—3],

Y=py [_3] ,dX:_]-Oady:_E’Oa

linewidth=4,color="blue’ /head_length=500,head_width=500)

plt.axis(’image’)
ax.set_xlim ([aserx.
ax.set_ylim ([asery.
ax.clabel (CS,lev [:

min (), aserx .max()])
min (), asery .max()])

:2] ,fmt="%1i’ ,inline_spacing=2)

ax.set_xticks (660000 + np.arange(5.0)%x5000)
ax.set_yticks (485000 + np.arange(5.0)%x5000)
labels = ax.get_yticklabels ()

for label in labels:

label.set_rotat

ion (90)

for j,(x,y,n) in enumerate (zip (wellx , welly ,names)):
only plot labels of wells inside the figure area
if aserx.min()<x<aserx.max() and asery.min()<y<asery.max/():

name abot

)e

a.append (plt.annotate (n,xy=(x,y),xytext=(0,5),

observed

textcoords=’offset points’,
horizontalalignment=’center’
fontsize =10))

FW head below

a.append(plt.annotate(’%.1£f°%res [j,0] ,xy=(x,y),xytext=(0,—-15),

textcoords=’offset points’,
horizontalalignment=’center’
fontsize =6))

ax.set_title (’Freshwater Heads WIPP Area ’+ year)
ax.set_xlabel (’NAD27 NM East State Plane Easting (ft)’)
ax.set_ylabel (’NAD27 NM East State Plane Northing (ft)’)

A >S>S>>SS>S>manually fix labels >>>>

for lab in a:
lab . draggable ()
plt .show ()

A <<LLLLLLL L L L L

plt.savefig(’aser-area-contour -map’+year+’.png’)

plt.close (1)

| nfor mation Only

