557494

Analysis Report for Preparation of 2005-2007 Culebra Potentiometric Surface
Contour Maps
Revision 1

Task Number: 1.4.2.3

Report Date: 4/26/2012

Author: L L 4/%/20/2

I(ristop er L. Kuhiman, 6212 Date
Repository Performance Department

Technical Review: %éﬁ 4//26/20/2

Kevin S. Barnhart, 6212 Date
Repository Performance Department

QA Review: B /t //ﬂ/%ﬂ [‘I "50—{ Z

” Shelly R. Nielfeh, 6210 ' Date
Carlsbad Prggrams Group

Management Review: /L/ 3// // 2_

Christi D. Leigh, 6212 Date
Manager, Repository Performance Department

WIPP:1.4.2.3:TD:QA-L:RECERT:549085

| nfor mation Only

Culebra Contour Map
Page 2 of 109

Table of Contents

1
2

4

10

INEFOTUCTION Lottt s ettt e st e et et et e e et eneeseeseneenenteseneeeeenis 3
SCIENTIFIC APPIOACK ...ttt ettt ettt et e st eeae e e et eae e e e reereeaneene 4
2.1 2005-2007 Freshwater Head and Density Data REVIEWc.ccvcirieuieuiieerierereeeitereeeee e s |
2.2 MOAEING OVETVIEW ..ottt ettt s ettt ettt e e e st e ree e e eene e e sem e et eeaeesteeseeseearenaen 6
2.3 Creating Average MODFLOW SimMUIGHIONocvioviiieiitieeeieeteeie ettt a e rae e eee e 8
2.4 BOUNAArY CONUITIONSoiotiiieiieietii ettt ettt sttt sttt eteeeeeeneeeenesaaeereereeeeeenereeees 8
2.5 PEST Calibration of Averaged MODFLOW Model to Observationsccceeeeueevecireeceereeeeeennas 9
2.6 Figures Generated from Averaged MODFLOW MOEl........coeeuiuieueriiriiietieteeeeeeeeeve e 10
2005 RESUIES ...ttt ettt e ettt ea e esees e ene e s e s essastssassas st eesessenseaessteanseae e e s eenneen 11
3.1 2005 Freshwater Head CONTOUTSc.ooviiiiiiiieeeeteeeeeee ettt st sas ettt srs e e 11
3.2 2005 PAtICIE TraCKoiciiiieieiree ettt ettt ettt e s e s e s s e ereeneneeeanens 12
3.3 2005 Measured vs. MOdeled Fit......ccoceoeiiiuieiiciiciictieieetectetest ettt ere e enseaens 12
2006 RESUIS ...ttt ettt ettt eeae et e et e eaeeteeteereertensensententente s en e et e e etaseas 15
4.1 2006 Freshwater Head CONTOUTSc.coiiuiiuiiiiiiiicieeeceteee ettt e sanan 15
4.2 2006 PArtiCle TracKcovove ittt ettt ettt st sas st sts st tstaeaesrn e 16
4.3 2006 Measured vs. MOdeled Fit........cccecuiriiiuiiiiceiciiceececteete ettt erere s 16
2007 RESUILS ..ottt ettt ettt ettt eaeeteeeeeaeeteeaeeseessereesteasentente s ensete s enseseas 19
5.1 2007 Freshwater Head CONTOUTSc.cuiuiviiriiricieiceeeetieeie ettt evenee e svesesssseaeenenenneneniens 19 550
5.2 2007 Particle TracKcoccuerreiiicie ittt ettt ete et enees e seennesnesnneresessnesnessenensd 200
5.3 2007 Measured vs. MOAeled Fit..........cooueiuiiuiiii ettt 20
SUMIMIATY oottt ettt et e et e e teetes s e e et e eeeseeeenestseneeeneeraeaneeestseeeaseseeeseneeseenaseeseanerneane e 23
REFEIEICES ...ttt ettt s et ettt et et s et e senseean s s eaeeneneaenes 24
RUN CONEFOE NBITATIVE ...ttt ettt ettt et te e et et r et et esasansestesessseaesasanseseons 25
Appendix: Water Level and Density Data LiSHINGcoooeeieiiieeiccee ettt 32
9.1 Input files for plotting water levels and densities...........cccccveveviieveuiieceeeeeceeee e 32
9.2 Listing of Water Level PIOTHING SCriPtoveviieiiciieicceieceee ettt erea 34
9.3 Figures Generated by Python Water Level SCript.........c.ooveiiuieuiiiiieicieeee e 44
Appendix: MODFLOW and Pest Files and Script SOUrce ListiNgsccoovvvemeeieoeeemeeeeeeeeeeeeeeenen. 86
10.1 INPUL FIlE LISTING .cceectiii ettt ettt sttt st soee s e e e eeeeensesesenneeneen 86
10.2 OULPUL File LISTINGetiiiieieeecie ettt ettt et e e te e e eea et eeeeneneenneneens 87
10.3 Individual MODFLOW and Pest SCript LIStINGS.........oveveeevriireriiietieseiereeiesereeeveae vt eaeas s 88

|nformation Only

Culebra Contour Map
Page 3 of 109

1 Introduction

This report documents the preparation of three historic potentiometric contour maps and associated
particle tracks for the Culebra Member of the Rustler Formation in the vicinity of the Waste Isolation
Pilot Plant (WIPP), for submittal to the New Mexico Environment Department (NMED). The driver for
this analysis is the draft of the Stipulated Final Order sent to NMED on May 28, 2009 (Moody, 2009).
This Analysis Report follows the procedure laid out in procedure SP 9-9 (Kuhiman, 2009), which is based
upon this NMED driver. This report is a similar to Kuhiman (2011), the same analysis is performed on
data from 2005, 2006 and 2007, rather than 2010 data.

Historic data were taken from the Annual Site Environmental Reports (ASERs) to plot freshwater head
and density’ at Culebra wells through time; see (DOE, 2005) through (DOE, 2011) in references. This
additional step of plotting time series at each well was done to pick an appropriate month with
relatively undisturbed conditions and to assign consistent density data for 2005-2007. This revision
includes this additional step because the current procedures related to Culebra densities and contour
map creation (SP 9-9 and SP 9-11) were not in place when the historic potentiometric surface contour
maps were created.

Beginning with the ensemble of 100 calibrated MODFLOW transmissivity (T), horizontal anisotropy (A),
and areal recharge (R) fields (Hart et al., 2009) used in WIPP performance assessment (PA), three
average parameter fields are used as input to MODFLOW to simulate freshwater heads within and
around the WIPP land withdrawal boundary (LWB). For each year (2005-2007) PEST is used to adjust a
subset of the boundary conditions in the averaged MODFLOW model to obtain the best-fit match
between the observed freshwater heads and the model-predicted heads. The output of the averaged,
PEST-calibrated MODFLOW model is both contoured and used to compute each year’s advective particle
track forward from the WIPP waste-handling shaft.

This revision (1) fixes an error in the 2007 contour map generation. WQSP-1 was incorrectly included as
a well in the group >3 km from the WIPP LWB (zone 2), when it is actually inside the WIPP LWB. WQSP-
1 incorrectly had a small weight (0.4), when it should have had a large weight (2.5). After fixing this, the
calculations were re-run and the figures for 2007 were all regenerated. The tables of results and
predictions of particle path lengths were revised. In general the resulting changes were very small
compared to the initial report (revision 0, February 20, 2012). A second minor fix was a correction of the
statements regarding boundary conditions that were impacted most by which x- or y-direction related
variables. The results were correct, but the text discussion of the results was incorrect.

! Density in units of grams/cm? is numerically equivalent to specific gravity, the ratio of the
density of any water to that of fresh water.

| nformation Only

Culebra Contour Map
Page 4 of 109

2 Scientific Approach

2.1 2005-2007 Freshwater Head and Density Data Review
In previous analysis reports based on the SP 9-9 procedure, recent data from the current ASER were
used; plotting of the data was not done independently. Data reported in historic ASERs are being
plotted to ensure consistency and explain anomalies. Python scripts and resulting data plots at each weli
are listed in Section 8.3. Table 1 summarizes freshwater heads, measurement dates, and Culebra
groundwater densities for all three years.

Water level and freshwater head values (and measurement dates) were obtained from Table F-8 in the
2004-2010 ASERs. Estimates of Culebra densities from historic Troll data were done for 2005 (Johnson,
2012a) and 2006 (Johnson, 2012b). Culebra midpoint elevations were obtained from Johnson (2008).
Historic events (pumping tests, purging events, drilling and plugging & abandonment) were tabulated
from ASERs. All of these data were plotted together through time as part of the data review to
determine two things. First, were there significant events in a well that warrant assigning a sudden
change in fluid density? For example, H-10c was baled to remove fresh water in 2009 (see H-10c plot in
Section 8.3). If there was a noticeable change in observed depth-to-water that occurred at the same
time as a documented event, a different density is assigned to the periods before and after this event.
Secondly, one or more representative densities were chosen for the well, and a start and end time was
assigned to each density. If only one density is assigned, then the beginning time is just before the
beginning of this analysis (1999), and the end is the current date. There is some variability in the
measurements of density in wells. Especially with older data, the variability can become large, due to
inaccuracies in recorded Troll installation depths. In January 2007 (beginning with the 2007 ASER) more
accurate reference point elevations were used to compute water level and freshwater head elevations.
For consistency across years, pre-2007 water level elevations were adjusted to use the newer reference
point elevation.

The data review revealed June to be the best month in 2005 to contour (the 2005 ASER used December
water levels), because water levels were impacted in many wells due to the large-scale SNL-14 pumping
test in the summer of 2005. Some wells took several months to recover from the drawdown caused by
this pumping test. June data are more representative of non-testing conditions. WIPP-30 used an
August water level, because there was no water level reported in June 2005 at that well.

|nformation Only

Culebra Contour Map
Page 5 of 109

Table 1. Fresh Water Head (FWH) elevation AMSL and specific gravities used to compute FWH from depth to water
observations. Depth to water in each well was measured on the FWH date.

2005 2006 2007

FWH date| FWH sg;:::::': FWH date| FWH ?:::::I; FWH date| FWH ?::3:27
C-2737 | 6/21/05 | 920.04 1.019 11/9/06 | 920.48 1.019 5/9/07 | 920.71 1.010
ERDA-9 | 6/20/05 | 924.18 1.067 | 11/9/06 | 924.78 1.067 5/9/07 | 924.68 1.067
H-02b2 | 6/20/05 | 927.24 1.000 | 11/9/06 | 928.24 1.000 5/9/07 | 928.34 1.000
H-03b2 | 6/21/05 | 918.53 1.042 11/9/06 | 918.31 1.042 5/9/07 | 918.65 1.042
H-04b | 6/20/05 | 916.53 1.015 | 11/8/06 | 916.42 1.015 5/9/07 | 916.35 1.015
H-05b | 6/16/05 | 938.30 1.095 11/6/06 | 938.96 1.095 5/10/07 | 939.15 1.095
H-06b | 6/13/05 | 935.43 1.040 | 11/6/06 | 936.75 1.040 5/7/07 | 936.45 1.040
H-07b1 | 6/13/05 | 914.63 1.002 11/8/06 | 914.60 1.002 5/7/07 | 914.58 1.002
H-09¢ | 6/20/05 | 913.53 1.001 11/8/06 | 912.58 1.001 5/8/07 | 912.78 1.001
H-10c | 6/20/05 | 921.94 1.001 | 8/14/06 | 921.93 1.001 5/8/07 | 922.07 1.001
H-11b4 | 6/20/05 | 917.13 1.070 | 11/9/06 | 917.07 1.070 5/7/07 | 917.05 1.070
H-12 6/20/05 | 916.28 1.097 11/9/06 | 916.62 | 1.097 5/8/07 | 916.54 1.097
H-15 6/20/05 | 920.82 1.082] sy9/07 | 920.08 1.053
H-17 6/20/05 | 916.29 1.133 11/9/06 | 916.29 1.133 5/7/07 | 916.29 1.133
H-19b0 | 6/20/05 | 918.79 1.068 | 11/8/06 | 918.80 1.068 5/9/07 | 918.83 1.068
1-461 6/13/05 | 928.57 1.005 11/6/06 | 929.34 1.005 5/7/07 | 928.94 1.005
P-17 6/20/05 | 915.44 1.053 Ao i

SNL-01 | 6/16/05 | 939.24 1.033 11/6/06 | 941.47 1.033 5/8/07 | 941.85 1.033
SNL-02 | 6/13/05 | 937.02 1.012 11/6/06 | 938.35 1.012 5/7/07 | 937.66 1.012
SNL-03 | 6/16/05 | 937.85 1.023 11/6/06 | 939.47 1.023 5/8/07 | 939.77 1.023
SNL-05 | 6/13/05 | 937.01 1.010 | 11/6/06 | 938.61 1.010 5/7/07 | 938.59 1.010
SNL-08 o G - 11/6/06 | 930.52 1.052 5/7/07 930.01 1.052
SNL-09 | 6/13/05 | 931.48 1.024 11/6/06 | 932.50 1.024 5/7/07 | 932.03 1.024
SNL-10 | i « 5/7/07 | 931.57 1.011
SNL-12 | 6/20/05 | 915.52 1.005 11/6/06 | 915.22 1.005 5/7/07 | 915.24 1.005
SNL-13 | 6/21/05 | 917.55 1.027 | 11/6/06 | 918.00 1.027 5/7/07 | 918.20 1.027

SNL-14 , S 11/14/07 | 916.37 1.048
SNL-16 g _ | 11/8/06 | 918.43 1.010 9/17/07 | 918.17 1.010
SNL-17 ’ , 11/6/06 | 916.75 1.006 5/7/07 916.78 1.006
SNL-18 11/6/06 | 939.86 1.028 5/8/07 939.90 1.028
SNL-19 e 11/6/06 | 937.92 1.003 5/7/07 937.58 1.003

wipPp-11 | 6/13/05 | 938.87 1.038 | 8/14/06 | 939.87 1.038 5/9/07 | 940.65 1.038
WIPP-13 | 6/13/05 | 938.33 1.053 | 11/8/06 | 939.86 1.053 5/9/07 | 939.84 1.053
WIPP-19 | 6/20/05 | 932.01 1.044 | 11/8/06 | 933.51 1.044 5/9/07 | 933.70 1.044
WIPP-25 | 6/13/05 [935.73 1.011 S b e

WIPP-30 | 8/17/05 | 938.35 1.000 | 11/6/06 | 939.29 1.000 5/8/07 | 939.06 1.000
WQSP-1 | 6/20/05 | 936.94 1.048 | 11/8/06 | 938.58 1.048 5/9/07 | 938.61 1.048
waQsP-2 | 6/20/05 | 939.45 1.048 | 11/8/06 | 941.14 1.048 5/9/07 | 941.20 1.048
wasP-3 | 6/20/05 | 935.46 1.146 | 11/8/06 | 936.98 1.146 5/9/07 | 936.81 1.146
wasP-4 | 6/20/05 | 918.90 1.075 | 11/8/06 | 918.97 1.075 5/9/07 | 918.96 1.075
wasP-5 | 6/20/05 | 918.04 1.025 | 11/8/06 | 918.12 1.025 5/9/07 | 918.18 1.025
wWasP-6 | 6/20/05 | 921.54 1.014 | 11/8/06 | 921.95 1.014 5/9/07 | 921.88 1.014

|nformation Only

Culebra Contour Map
Page 6 of 109

The data review revealed November to be a good month in 2006 to contour (which was also used by the
2006 ASER). WIPP-11 used an August 2006 water level because anomalously high water levels were
reported October-December, 2006. Similarly, H-10c used an August 2006 water level because of high
water levels reported later in the year.

The data review revealed May 2007 to be the best month in 2007 to contour (the 2007 ASER used
December). This month also coincides with the month used to pick data for the calibration of the
Performance Assessment (PA) Culebra groundwater model. SNL-14 used a November 2007 water level
because now water levels were measured January-October 2007 due to pumping and sampling activities
in the well. SNL-16 used a September 2007 water level, because there was no May 2007 water recorded
and previous to September, the well had anomalously high water levels.

2.2 Modeling Overview
Steady-state groundwater flow simulations are carried out using similar software as was used in the
analysis report for AP-114 Task 7 (Hart et al., 2009), which was used to create the input calibrated fields.
See Table 2 for a summary of all software used in this analysis. The MODFLOW parameter fields
(transmissivity (T), anisotropy (A), and recharge (R)) used in this analysis are ensemble averages of the
100 sets of Culebra parameter fields used for WIPP PA for the 2009 Compliance Recertification
Application (CRA-2009) PA baseline calculations (PABC). To clearly distinguish between the two
MODFLOW models, the original MODFLOW model, which consists of 100 realizations of calibrated
parameter fields (Hart et al., 2009), will be referred to as the “PA MODFLOW model.” The model we
derive from the PA MODFLOW model, calibrate using PEST, and use to construct the resulting contour
map and particle track, is referred to as the “averaged MODFLOW model.” The PA MODFLOW model T,
A and R input fields are appropriately averaged across 100 realizations, producing a single averaged
MODFLOW flow model. This averaged MODFLOW model is used to predict regional Culebra
groundwater flow across the WIPP site.

For CRA 2009 PABC, PEST was used to construct 100 calibrated model realizations of the PA MODFLOW
model by adjusting the spatial distribution of model parameters (T, A, and R); MODFLOW boundary
conditions were fixed. The calibration targets for PEST in the PA MODFLOW model were both May 2007
freshwater heads and transient drawdown to large-scale pumping tests. Hart et al. (2009) describe the
calibration effort and results that went into the CRA-2009 PABC. An analogous but much simpler
process is used here for the averaged MODFLOW model. We use PEST to modify a subset of the
MODFLOW boundary conditions (see red boundaries in Figure 1). The boundary conditions are
modified, rather than the T, A, and R parameter fields for simplicity, because re-calibrating the 100 T, A,
and R parameter fields would be a significant effort (thousands of hours of computer time). The PEST
calibration targets for the averaged MODFLOW model are the 2005-2007 measured annual freshwater
heads at Culebra monitoring wells. In the averaged MODFLOW model, boundary conditions are
modified while holding model parameters T, A, and R constant. In contrast to this, the PA MODFLOW
model used fixed boundary conditions and made adjustments to T, A, and R parameter fields.

|nfor mation Only

| nfor mation Only

Culebra Contour Map
Page 8 of 109

(alice.sandia.gov), while the plotting and creation of figures was done using Python scripts on an
Intel-Xeon-equipped desktop computer running Mac OS X, version 10.6.8.

2.3 Creating Average MODFLOW Simulation
An averaged MODFLOW model is used to compute the freshwater head and cell-by-cell flow vectors.
The heads are contoured and the flow vectors are used to compute particle tracks. The ensemble-
averaged inputs are used to create a single average simulation that produces a single averaged output,
rather than averaging the 100 individual outputs of the Culebra flow model used for WiPP PA. This
approach was taken to simplify the contouring process, and create a single contour map that exhibits
physically realistic patterns (i.e., its behavior is constrained by the groundwater flow equation). The
alternative approach would be to averaging outputs from 100 models to produce a single average result,
but the result may be physically unrealistic. The choice to average inputs, rather than outputs, is a
simplification (only one model must be calibrated using PEST, rather than 100) that results in smoother
freshwater head contours and faster particle tracks, compared to those predicted by the ensemble of
fields in AP114 Task 7 (Hart et al., 2009).

The MODFLOW model grid is a single layer, comprised of 307 rows and 284 columns, each model cell
being a 100 meter square. The modeling area spans 601,700 to 630,000 meters in the east-west
direction, and 3,566,500 to 3,597,100 meters in the north-south direction, both in Universal Transverse
Mercator (UTM) North American Datum 1927 (NAD27) coordinates, zone 13.

The calibrated T, A, and R parameter fields from the PA MODFLOW model were checked out of the PA
repository using the checkout_average run modflow. sh script (scripts are listed completely in
the Appendix; input and output files are available from the WIPP version control system in the
repository SCVSLIB/Analyses/SP9 9). Model inputs can be divided into two groups. The first
group includes model inputs that are the same across all 100 calibrated realizations; these include the
model grid definition, the boundary conditions, and the model solver parameters. The second group
includes the T, A, and R fields, which are different for each realization. The constant model inputs in the
first group are used directly in the averaged MODFLOW model (checked out from the CVS repository),
while the inputs in the second group were averaged across all 100 calibrated model realizations using
the Python script average realizations.py. All three averaged parameters were arithmetically
averaged in logo space, since they vary over multiple orders of magnitude.

2.4 Boundary Conditions
The boundary conditions taken from the PA MODFLOW model are used as the initial condition from
which PEST calibration proceeds. There are two types of boundary conditions in both MODFLOW
models. The first type of condition includes geologic or hydrologic boundaries, which correspond to
known physical features in the flow domain. The no-flow boundary along the axis of Nash Draw is a
hydrologic boundary (the boundary along the dark gray region in the upper left of Figure 1). The
constant-head boundary along the halite margin corresponds to a geologic boundary (the eastern
irregular boundary adjoining the light gray region in the right of Figure 1). Physical boundaries are
believed to be well known, and are not adjusted in the PEST calibration.

|nformation Only

Culebra Contour Map
Page 9 of 109

The second type of boundary condition includes the constant-head cells along the rest of the model
domain. This type of boundary includes the linear southern, southwestern, and northern boundaries
that coincide with the rectangular frame surrounding the model domain (shown as heavy red lines in
Figure 1). The value of specified head used along this second boundary type is adjusted in the PEST
calibration process.

The Python script boundary types.py is used to distinguish between the two different types of
specified head boundary conditions based on the specified head value used in the PA MODFLOW model.
All constant-head cells (specified by a value of -1 in the MODFLOW IBOUND array from the PA
MODFLOW model) that have a starting head value greater than 1000 meters above mean sea level
(AMSL) are left fixed and not adjusted in the PEST optimization, because they correspond to the land
surface. The remaining constant-head cells are distinguished by setting their IBOUND array value to -2
(which is still interpreted as a constant-head value by MODFLOW, but allows simpler discrimination
between boundary conditions in scripts elsewhere).

Using the output from boundary_types.py, the Python script surface 02 extrapolate.py
computes the heads at active (IBOUND=1) and adjustable constant-head boundary condition cells
(IBOUND=-2), given parameter values for the surface to extrapolate.

2.5 PEST Calibration of Averaged MODFLOW Model to Observations
There are three major types of inputs to PEST. The first input type includes the observed freshwater
head values, which are used as targets for the PEST calibration. The second input class includes the
entire MODFLOW model setup derived from the PA MODFLOW model and described in the previous
section, along with any pre- or post-processing scripts or programs needed. These files comprise the
forward model that PEST runs repeatedly to estimate sensitivities of model outputs to model inputs.
The third input type includes the PEST configuration files, which list parameter and observation groups,
observation weights, and indicate which parameters in the MODFLOW model will be adjusted in the
inverse simulation. Freshwater head values used as targets for the PEST calibration were taken from
published ASERs (2005-2007) and are summarized in Table 1.

To minimize the number of estimable parameters, and to ensure a degree of smoothness in the
constant-head boundary condition values, a parametric surface is used to extrapolate the heads to the
estimable boundary conditions. The surface is of the same form described in the analysis report for AP-
114 Task 7. The parametric surface is given by the following equation:

h(x,y)= A+ B(y+ Dsign(y)abs(y)*) + C(Ex® + Fx* — x) (1)

where abs(y) is absolute value and sign(y) is the function returning 1 for y>0, -1 for y<0 and 0 for y=0
and x and y are coordinates scaled to the range —1 < {x,y} <1. In Hart et al. (2009), the values

A=928.0, B=8.0, C=1.2, D=1.0, a=0.5, F=1.0, and F=-1.0 are used with the above equation to assign the
boundary conditions.

|nformation Only

Culebra Contour Map
Page 10 of 109

PEST was then used to estimate the values of parameters A, B, C, D, E, F, and a given the observed heads
in Table 1. The Python script surface 02 extrapolate.py was used to compute the MODFLOW
starting head input file (which is also used to specify the constant-head values) from the parameters A-F
and a. Each forward run of the model corresponded to a call to the Bash script run_02 model. This
script called the surface 02 extrapolate.py script, the MODFLOW-2000 executable, and the
PEST utility mod2obs . exe, which is used to extract and interpolate model-predicted heads from the
MODFLOW output files at observation well locations.

The PEST-specific input files (the third type of input) were generated from the observed heads using the
Python script create pest 02 input.py. The PEST input files include the instruction file (how to
read the model output), the template files (how to write the model input), and the PEST control file
(listing the ranges and initial values for the estimable parameters and the weights associated with
observations). The wells used in each year’s PEST calibration were separated into three groups. Higher
weights (2.5) were assigned to wells inside the LWB, and lower weights (0.4) were assigned to wells
distant to the WIPP site, while wells in the middle were assigned an intermediate weight (1.0).
Additional observations representing the average heads north of the LWB and south of the LWB were
used to help prevent over-smoothing of the estimated results across the LWB. The additional
observations and weights were assigned to improve the fit in the area of interest (inside the WIPP LWB),
possibly at the expense of a somewhat poorer fit closer to the boundary conditions.

2.6 Figures Generated from Averaged MODFLOW Model
The MODFLOW model is run predictively using the averaged MODFLOW model parameters, along with
the PEST-calibrated boundary conditions. The resulting cell-by-cell flow budget is then used by DTRKMF
to compute a particle track from the waste-handling shaft to the WIPP LWB; particle tracking stops
when the particle crosses the WIPP LWB. The Python script
convert dtrkmf output for surfer.py converts the MODFLOW cell-indexed results of
DTRKMF into a UTM x and y coordinate system, saving the results in the Surfer blanking file format to
facilitate plotting with Surfer. The heads in the binary MODFLOW output file are converted to an ASCII
matrix file format using the Python script head bin2ascii.py.

The resulting particle track and contours of the model-predicted head are plotted using a matplotlib
Python script for an area including the WIPP LWB, corresponding to the region shown in previous
versions of the ASER (e.g., see Figure 6.11 in DOE (2008)), specifically the green box in Figure 1. The
modeled heads extracted from the MODFLOW output by mod2obs . exe are then merged into a
common file for plotting using the Python script merge observed modeled heads.py.

|nformation Only

Culebra Contour Map
Page 11 of 109

3 2005 Results

3.1 2005 Freshwater Head Contours
The model-generated freshwater head contours are given in Figure 2 and Figure 3. There is a roughly
east-west trending band of steeper gradients, corresponding to lower Culebra transmissivity. The
uncontoured region in the eastern part of the figures corresponds to the portion of the Culebra that is
located stratigraphically between halite in other members of the Rustler Formation (Tamarisk Member
above and Los Medafios Member below). This region east of the “halite margin” has a high freshwater
head but extremely low transmissivity, essentially serving as a no-flow boundary in this area.

Freshwater Heads WIPP Area 2005

' .
poe \
o
(=1
(=
"al
(=]
3]
ol ™
(=]
o
o
g%
e ~
L= B € v S N
L
£
=] -
F
@
o -
2 o
L
o o
£g
he
I
L e (U UG = SR
uw o
=
F3
~ e
N 4
g y
=S| . .
[3 et \
St p H11B4
@ g AN
// A “
e = ol v
”)0”& o '
7 mra
gl . .
S| s .
[- E
~ R H17
S w o PL — 1 \
T s 4 T el 1
. 3
\\ 8
AN ¢
x\ \\
N\ \
by Y
660000 665000 670000 675000 680000

NAD27 NM East State Plane Easting (ft}

Figure 2. Model-generated June 2005 freshwater head contours with observed head listed at each well {5-foot contour
interval) with blue water particle track from waste handling shaft to WIPP LWB

|nfor mation Only

Culebra Contour Map
Page 12 of 109

Freshwater Heads Model Area 2005

530000 540000

520000

510000

500000

490000

NADZ7 NM East State Plane Northing (ft)

480000

470000

“
2,
%

460000

50000

4

630000 640000 650000 660000 670000 680000 690000 700000 710000 720000
NAD27 NM East State Plane Easting (ft)

Figure 3. MODFLOW-modeled June 2005 heads for entire model domain {10-foot contour interval). Green rectangle
indicates region contoured in Figure 2, black square is WIPP LWB.

3.2 2005 Particle Track
The blue arrow in Figure 2 shows the DTRKMF-calculated path a water particle would take through the
Culebra from the coordinates corresponding to the WIPP waste handling shaft to the LWB (a path length
of 4083 m). Assuming a 4-m thickness for the transmissive portion of the Culebra and a constant
porosity of 16%, the travel time to the WIPP LWB is 6170 years (output from DTRKMF is adjusted from
an original 7.75-m Culebra thickness). This is an average velocity of 0.66 m/yr.

3.3 2005 Measured vs. Modeled Fit
The scatter plot in Figure 4 shows measured and modeled freshwater heads at the observation locations
used in the PEST calibration. The observations are divided into three groups, based on proximity to the
WIPP site. Wells within the LWB are represented by red crosses, wells outside but within 3 km of the
LWB are represented with green ‘x’s, and other wells within the MODFLOW model domain but distant
from the WIPP site are given by a blue star. IMC-461 was given a high weight (2.5), treating it as if it was
inside the WIPP LWB, to compensate the lack of SNL-16 in the 2005 network. The area at the north end

|nformation Only

| nfor mation Only

Table 3. 2005 Measured vs. Modeled correlation coefficients

Culebra Contour Map
Page 14 of 109

dataset measured vs. modeled R?
wells inside WIPP LWB 0.988
Uncalibrated wells <3km from WIPP LWB 0.990
all wells 0.982
wells inside WIPP LWB 0.989
Calibrated wells <3km from WIPP LWB 0.990
all wells 0.982
i} , ﬂistogram qr Model Residua|§ 2005
B Inside LWB & <3km from WIPP LWB
B AH wells
8
6 -
H
al
2 .
05§ =8 =7 =6 5 -2 3T, 2 3 7 8 9 10

0 1
Measured-Modeled (ft)

Figure 5. Histogram of Measured-Modeled errors for 2005

15 individual residuais 2005
i

inside WIPP (WB ' <3km WIPP LWB

>3km WIPP LWB

10

Measured-Modeled {ft)

-15

Figure 6. Measured-Modeled errors at each well location for 2005

The model fit to the June 2005 observations is very good. The averaged MODFLOW model captures the
bulk Culebra flow behavior, while the PEST calibration improved the model fit to the specific June 2005

observations.

|nfor mation Only

Culebra Contour Map
Page 15 of 109

4 2006 Results

4.1 2006 Freshwater Head Contours
The model-generated freshwater head contours are given in Figure 7 and Figure 8. There is a roughly
east-west trending band of steeper gradients, corresponding to lower Culebra transmissivity. The
uncontoured region in the eastern part of the figures corresponds to the portion of the Culebra that is
located stratigraphically between halite in other members of the Rustler Formation (Tamarisk Member
above and Los Medafios Member below). This region east of the “halite margin” has high freshwater
head but extremely low transmissivity, essentially serving as a no-flow boundary in this area.

Freshwater Heads WIPP Area 2006

495000 500000 505000

NAD27 NM East State Plane Northing (ft}

490000

485000

GﬁobOO 665000 670b00 675000 680000
NAD27 NM East State Piane Easting (ft)

Figure 7. Model-generated November 2006 freshwater head contours with observed head listed at each well (5-foot contour
interval) with blue water particle track from waste handling shaft to WiPP LWB

|nformation Only

Culebra Contour Map
Page 16 of 109

Freshwater Heads Model Area 2006

510000 520000 530000 540000

500000

NAD27 NM East State Plane Northing (ft)
490000

480000

470000

460000

50000

4

630000 640000 650000 660000 670000 680000 690000 700000 710000 720000
NAD27 NM East State Plane Easting (ft}

Figure 8. MODFLOW-modeled November 2006 heads for entire model domain {10-foot contour interval). Green rectangle
indicates region contoured in Figure 7, black square is WIPP LWB.

4.2 2006 Particle Track
The blue arrow in Figure 7 shows the DTRKMF-calculated path a water particle would take through the
Culebra from the coordinates corresponding to the WIPP waste handling shaft to the LWB (a path length
of 4097 m). Assuming a 4-m thickness for the transmissive portion of the Culebra and a constant
porosity of 16%, the travel time to the WIPP LWB is 5642 years (output from DTRKMF is adjusted from
an original 7.75-m Culebra thickness). This is an average velocity of 0.73 m/yr.

4.3 2006 Measured vs. Modeled Fit
The scatter plot in Figure 9 shows measured and modeled freshwater heads at the observation locations
used in the PEST calibration. The observations are divided into three groups, based on proximity to the
WIPP site. Wells within the LWB are represented by red crosses, wells outside but within 3 km of the
LWB are represented with green ‘x’s, and other wells within the MODFLOW model domain but distant
from the WIPP site are given by a blue star.

|nformation Only

| nfor mation Only

| nfor mation Only

Culebra Contour Map
Page 19 of 109

5 2007 Results

5.1 2007 Freshwater Head Contours
The model-generated freshwater head contours are given in Figure 12 and Figure 13. There is a roughly
east-west trending band of steeper gradients, corresponding to lower Culebra transmissivity. The
uncontoured region in the eastern part of the figures corresponds to the portion of the Culebra that is
located stratigraphically between halite in other members of the Rustler Formation (Tamarisk Member
above and Los Medafios Member below). This region east of the “halite margin” has high freshwater
head but extremely low transmissivity, essentially serving as a no-flow boundary in this area.

Freshwater Heads WIPP Area 2007

T
b
HER H
i

w023

|
1
\ !

\\ L WIPP13

\ | S
[wasP2
ral
wes q/r i 3030

505000
-

NAD27 NM East State Plane Northing (ft)
495000 500000

490000

485000

hY
660000 65600 670000 675000 680000
NAD27 NM East State Plane Easting (ft)

Figure 12, Modei-generated May 2007 freshwater head contours with observed head listed at each well {(5-foot contour
interval) with blue water particle track from waste handling shaft to WIPP LWB

|nfor mation Only

Culebra Contour Map
Page 20 of 109

Freshwater Heads Model Area 2007

540000

530000

520000

510000

500000

NAD27 NM East State Plane Northing (ft}
490000

470000 480000

460000

50000

4

630000 640000 650000 660000 670000 680000 620000 700000 710000 720000
NAD27 NM East State Plane Easting (ft}

Figure 13. MODFLOW-modeled May 2007 heads for entire model domain {10-foot contour interval). Green rectangie
indicates region contoured in Figure 12, black square is WIPP LWB.

5.2 - 2007 Particle Track
The blue arrow line in Figure 12 shows the DTRKMF-calculated path a water particle would take through
the Culebra from the coordinates corresponding to the WIPP waste handling shaft to the LWB (a path
length of 4084 m). Assuming a 4-m thickness for the transmissive portion of the Culebra and a constant
porosity of 16%, the travel time to the WIPP LWB is 5845 years (output from DTRKMF is adjusted from
an original 7.75-m Culebra thickness). This is an average velocity of 0.70 m/yr.

5.3 2007 Measured vs. Modeled Fit
The scatter plot in Figure 14 shows measured and modeled freshwater heads at the observation
locations used in the PEST calibration. The observations are divided into three groups, based on
proximity to the WIPP site. Wells within the LWB are represented by red crosses, wells outside but
within 3 km of the LWB are represented with green ‘x’s, and other wells within the MODFLOW model
domain but distant from the WIPP site are given by a blue star.

|nformation Only

| nfor mation Only

| nfor mation Only

Culebra Contour Map
Page 23 of 109

6 Summary

The development of the 2005-2007 historic Culebra contour maps in general followed quite closely to
the procedure used in previous revisions of this report. The main deviations included additional work to
gather, plot, and select appropriate freshwater head data for these years. The results of this additional
work is presented in Section 8, and gives a unique view of the results presented in previous ASER
reports, which is continuous across calendar years.

The average MODFLOW model calibration process resulted in similar (2006) or improved (2005 & 2007)
model fits to the data selected for each year. The process of averaging the 100 realizations, and working
with a single set of results from the average MODFLOW model creates a simpler result, which is still
based upon the PA MODFLOW model.

This work began as part of an effort to create consistent Culebra contour maps for historic data already
reported in the ASER. The results of this work (2005-2007) and upcoming work (pre-2005) will be
consistency in maps across years and between regulators. The US Environmental Protection Agency and
The NM Environment Department now receive compatible hydrology products (PA MODFLOW model
and these contour maps) from the WIPP hydrology community.

|nfor mation Only

Culebra Contour Map
Page 24 of 109

7 References
Department of Energy. 2005. WIPP Annual Site Environmental Report for 2004. DOE/WIPP-05-2225.

Department of Energy. 2006. WIPP Annual Site Environmental Report for 2005. DOE/WIPP-06-2225.
Department of Energy. 2007. WIPP Annual Site Environmental Report for 2006. DOE/WIPP-07-2225.
Department of Energy. 2008. WIPP Annual Site Environmental Report for 2007. DOE/WIPP-08-2225.
Department of Energy. 2009. WIPP Annual Site Environmental Report for 2008. DOE/WIPP-09-2225.
Department of Energy. 2010. WIPP Annual Site Environmental Report for 2009. DOE/WIPP-10-2225.
Department of Energy. 2011. WIPP Annual Site Environmental Report for 2010. DOE/WIPP-11-2225.

Doherty, J. 2002. PEST: Model Independent Parameter Estimation. Watermark Numerical Computing,
Brisbane, Australia.

Harbaugh, A.W., E.R. Banta, M.C. Hill, and M.G. McDonald. 2000. MODFLOW-2000, the U.S. Geological
Survey modular ground-water model — User guide to modularization concepts and the Ground-
Water Flow Process. U.S. Geological Survey Open-File Report 00-92.

Hart, D.B., S.A. McKenna, and R.L. Beauheim. 2009. Analysis Report for Task 7 of AP-114: Calibration of
Culebra Transmissivity Fields. Carlsbad, NM, Sandia National Laboratories, ERMS 552391.

Johnson, P.B. 2008. Potentiometric Surface, Adjusted to Equivalent Freshwater Heads, of the Culebra
Dolomite Member of the Rustler Formation near the WIPP Site, May 2007 (AP-114 Task 6).
Carlsabd, NM, Sandia National Laboratories, ERMS 548746.

Johnson, P.B. 2009. Potentiometric Surface, Adjusted to Equivalent Freshwater Heads, of the Culebra
Dolomite Member of the Rustler Formation near the WIPP Site, May 2007, Revision 2 (AP-114
Task 6). Carlsabd, NM, Sandia National Laboratories, ERMS 551116.

Johnson, P.B. 2012a. 2005 Calculated Densities, Sandia National Laboratories, Carlsbad, NM, ERMS
556883.

Johnson, P.B. 2012b. 2006 Calculated Densities, Sandia National Laboratories, Carlsbad, NM, ERMS
556887.

Kuhlman, K.L. 2011. Analysis Report for Preparation of 2010 Culebra Potentiometric Surface Contour
Map, Rev 2, Sandia National Laboratories, Carlsbad, NM, ERMS 555318.

Kuhlman, K.L. 2009. Procedure SP 9-9, revision 0, Preparation of Culebra potentiometric surface
contour maps. Carlsbad, NM, Sandia National Laboratories, ERMS 552306.

Moody, D.C. 2009. Stipulated Final Order for Notice of Violation for Detection Monitoring Program,
Sandia National Laboratories, Carlsbad, NM. WIPP Records Center, ERMS 551713.

I|nformation Only

Culebra Contour Map
Page 25 of 109

8 Run Control Narrative

This section is a narrative describing the calculation process mentioned in the text, which produced the
figures given there.

Figure 17 gives an overview of the driver script checkout _average run modflow.sh (§A-4.1);
this script first exports the 3 parameter fields (transmissivity (T), anisotropy (A), and recharge (R), and
storativity (S)) from CVS for each of the 100 realizations of MODFLOW, listed in the file keepers (see
lines 17-26 of script). Some of the realizations are inside the Update or Update?2 subdirectories in
CVS, which complicates the directory structure. An equivalent list keepers short is made from
keepers, and the directories are moved to match the flat directory structure (lines 31-53). At this
point, the directory structure has been modified but the MODFLOW input files checked out from CVS
are unchanged.

Python script average realizations.py (§A-4.2) is called, which first reads in the
keepers_short list, then reads in each of the 400 input files and computes the arithmetic average of
the base-10 logarithm of the value at each cell across the 100 realizations. The 400 input files are saved
as a flattened 2D matrix, in row-major order. The exponentiated result is saved in 4 parameter fields,
each with the extension . avg instead of .mod. A single value from each file, corresponding to either
the cell in the southeast corner of the domain (input file row 87188 = model row 307, model column 284
for Kand A) or on the west edge of the domain (input file row 45157 = model row 161, model column 1
for Rand S) is saved in the text file parameter representative values.txt to allow checking
the calculation in Excel, comparing the results to the value given at the same row of the . avg file. The
value in the right column of Table 6 can be found by taking the geometric average of the values in the
text file, which are the values from the indicated line of each of the 100 realizations.

The input files used by this analysis, the output files from this analysis (including the plotting scripts) are
checked into the WIPP version control system (CVS) under the repository
$CVSLIB/Analyses/SP9 9.

|nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

Culebra Contour Map
Page 30 of 109

cells as constant head which have an IBOUND entry < 0, so both -2 and -1 are the same to MODFLOW,
but allow distinguishing between them in the Python script which extrapolates the heads to the
boundaries.

The required PEST input files are created by the Python script create _pest 02 input.py
(§A-4.4). This script writes 1) the PEST instruction file (modeled head. ins), which shows PEST how
to extract the model-predicted heads from the mod2obs . exe output; 2) the PEST template file
(surface par params.ptf), which shows PEST how to write the input file for the surface
extrapolation script; 3) the PEST parameter file (surface par params.par), which lists the
starting parameter values to use when checking the PEST input; 4) the PEST control file
(bc_adjust 2009ASER.pst), which has PEST-related parameters, definitions of extrapolation
surface parameters, and the observations and weights that PEST is adjusting the model inputs to fit. The
observed heads are read as an input file in the PEST borehole sample file format

(meas head 2009ASER.smp), and the weights are read in from the input file

(obs loc 2009ASER.dat).

PEST runs the “forward model” many times, adjusting inputs and reading the resulting outputs using the
instruction and template files created above. The forward model actually consists of a Bash shell script
(run_02 model) that simply calls a pre-processing Python script surface_02_extrapolate.py
(§A-4.5), the MODFLOW-2000 executable, the Python script

create_average NS residuals.py, and the PEST utility mod2obs.exeasa post-processing
step. The script redirects the output of each step to /dev/null to minimize screen output while
running PEST, since PEST will run the forward model many dozens of times.

The Python script create average NS residuals.py takes the output from the PEST utility
mod2obs . exe and creates a meta-observation that consists of the average residual between
measured and model-prediction, only averaged across the northern or southern WIPP wells (the wells in
the center of the WIPP site are not included in either group). This was done to minimize cancelation of
the errors north (where the model tended to underestimate heads) and south (where the model tended
to overestimate heads) of the WIPP. The results of this script are read directly by PEST and incorporated
as four additional observations (mean and median errors, both north and south of WIPP).

The pre-processing Python script surface 02 extrapolate.py reads the new IBOUND array
created in a previous step (with -2 now indicating which constant-head boundaries should be modified),
the initial head file used in AP-114 Task 7 (init_head_orig.mod), two files listing the relative X and
Y coordinates of the model cells (rel {x,y} coord.dat), and an input file listing the coefficients of
the parametric equation used to define the initial head surface. This script then cycles over the
elements in the domain, writing the original starting head value if the IBOUND value is -1 or 0, and
writing the value corresponding to the parametric equation if the IBOUND value is -2 or 1. Using the
parameters corresponding to those used in AP-114 Task 7, the output starting head file should be
identical to that used in AP-114 Task 7.

|nformation Only

Culebra Contour Map
Page 31 of 109

After PEST has converged to the optimum solution for the given observed heads and weights, it runs the
forward model one more time with the optimum parameters. The post-processing Python scripts for
creating the Surfer ASCII grid file and Surfer blanking file from the MODFLOW and DTRKMF output are
run and the results are plotted using additional Python scripts that utilize the plotting and map
coordinate projection functionality of the matplotlib library.

These two plotting scripts (plot-contour-maps.py and plot-results-bar-charts. py) are
included in the appendix for completeness, but only draw the figures included in this report, and passed
on to WRES for the ASER. These two scripts automate the plotting process and take the place of the
Microsoft Excel, USACE Corpscon, and Golden Software Surfer input files that were previously used.

|nformation Only

9 Appendix: Water Level and Density Data Listing

9.1 Input files for plotting water levels and densities

bytes

description

file name

2.3K

Culebra midpoint elevations

culebra-midpoint-elevations.csv

4.8K

UTM X and Y coordinates for wells

well-coordinates.csv

0.9K

reference point change for pre-2007 elevations

reference-point-change-2007.dat

43K

data from Table-F.8 of 2004 ASER

ASER-2004-waterlevel-data.csv

40K

data from Table-F.8 of 2005 ASER

ASER-2005-waterlevel-data.csv

41K

data from Table-F.8 of 2006 ASER

ASER-2006-waterlevel-data.csv

42K

data from Table-F.8 of 2007 ASER

ASER-2007-waterlevel-data.csv

43K

data from Table-F.8 of 2008 ASER

ASER-2008-waterlevel-data.csv

43K

data from Table-F.8 of 2009 ASER

ASER-2009-waterlevel-data.csv

42K

data from Table-F.8 of 2010 ASER

ASER-2010-waterlevel-data.csv

16K

summary of events in wells from ASERs

well-events.csv

23K

data from Table-6.3 of ASERs

reported-density-values.csv

29K

designated densities to use at wells

densities-to-use.csv

| nfor mation Only

9.1.1 densities-to-use.csv input file

well begin date end date density | source
1/1/1998 5/12/2003 | 1.000 ASER
11/19/2003 | 2/1/2007 | 1.019 | TROLL2005
2/1/2007 6/28/2008 | 1.010 JOHNSON2009
6/28/2008 1/1/2012 1.029 TROLL2008
ERDA-9 | 1/1/1998 | 1/1/2012 | 1.067 | JOHNSON2009
1/1/1998 4/12/2005 | 1.014 JOHNSON2009
H-02B2 4/12/2005 2/24/2009 | 1.000 SNL notebooks
2/24/2009 | 1/1/2012 | 1.011 | TROLL2010
H-03B2 1/1/1998 1/1/2012 1.042 JOHNSON2009
H-04B 1/1/1998 | 6/14/2009 | 1.015 | JOHNSON2009
1/1/1998 6/11/2005 | 1.104 ASER

C-2737

H-05B 1 6/11/2005 | 1/1/2012 | 1.095 | JOHNSON2009
068 1/1/1098 | 2/19/2008 | 1.040 | JOHNSON2000
F-07BT | 1/1/1998 | 1/1/2012 | 1.002 | JOHNSON2009
F-000 1/1/1908 | 1/1/2012 | L.00I | JOHNSON2000
wioc | 2/1972002 | 7/12/2009 | LOOL | JOHNSON2009

7/12/2000 | 1/1/2012 | 1.089 | TROLL2009
H-11B4 1/1/1998 1/1/2012 1.070 JOHNSON2009
1/1/1998 12/1/2003 | 1.083 SNL notebooks
H-12 4/12/2005 | 11/24/2008 | 1.097 | JOHNSON2009
11/24,/2008 1/1/2012 1.096 TROLL2008
1/1/1998 | 2/1/2001 | 1.154 | SANDSO-7068/2

H-15 11/18/2003 | 4/10/2006 | 1.082 | TROLLZ2005
4/10/2006 | 3/5/2008 | 1.053 | JOHNSON2009
H-17 1/1/1998 | 1/1/2012 | 1.133 | JOHNSON2009
H-19B0 1/1/1998 | 1/1/2012 | 1.068 | JOHNSON2009
461 10/15/2003 | 1/1/2012 | 1.005 | JOHNSON2009

b7 1/1/1998 | 6/17/2005 | 1.070 | PDS 2004 2005 avg
6/17/2005 | 8/18/2006 | 1.053 | SGR 2006 SNL SURVEY

SNL-01 | 3/25/2004 | 1/1/2012 | 1.033 | JOHNSON2009

SNL-02 | 4/28/2003 | 1/1/2012 | 1.012 | JOHNSON2009

SNL-03 | 8/14/2003 | 1/1/2012 | 1.023 | JOHNSON2009

SNL-05 | 4/26/2004 | 1/1/2012 | 1.010 | JOHNSON2009

SNL.os | 0/14/2005 | 8/28/2007 | 1.052 | JOHNSON2009
8/28/2007 | 1/1/2012 | 1.103 | TROLL2007

SNI-00 | 5/17/2003 | 1/1/2012 | 1.024 | JOHNSON2009

SNL-10 | 5/31/2006 | 1/1/2012 | 1.011 | JOHNSON2009

SNL-12 | 6/25/2003 | 1/1/2012 | 1.005 | JOHNSON2009

SNI-13 | 4/11/2005 | 1/1/2012 | 1.027 | JOHNSONZ2009

SNL-14 5/3/2006 | 1/1/2012 | 1.0480 | JOHNSON2009

SNL-16 | 4/11/2006 | 1/1/2012 | 1.010 | JOHNSON2009

SNL-17 | 4/25/2006 | 1/1/2012 | 1.006 | JOHNSON2009

SNL-18 | 6/20/2006 | 1/1/2012 | 1.028 | JOHNSON2009

SNIL-19 5/5/2006 | 1/1/2012 | 1.003 | JOHNSON2009

WIPP-11 | 9/7/2004 | 1/1/2012 | 1.038 | JOHNSON2009

WIPP-13 | 1/1/1998 | 1/1/2012 | 1.053 | JOHNSON2009

WIPP-19 | 1/1/1998 | 1/1/2012 | 1.044 | JOHNSON2009

WIPP-21 | 1/1/1998 | 1/1/2012 | 1.071 | ASER

WIPP-22 | 1/1/1998 | 1/1/2012 | 1.087 | ASER

WIPP-25 | 1/1/1998 | 6/12/2009 | 1.011 | JOHNSON2009

WIPP-29 | 1/1/1998 | 1/1/2012 | 1180 | ASER

WIPP.30 | 1/1/1998 | 6/22/2005 | L.OI8 | SANDB)-7068/2
6/22/2005 | 3/1/2008 | 1.000 | JOHNSON2009

WQSP-T | 1/1/1998 | 1/1/2012 | 1.048 | SGR ROUNDS 23 to 25

WQSP-2 | 1/1/1998 | 1/1/2012 | 1.048 | SGR ROUNDS 23 to 25

WQSP-3 | 1/1/1998 | 1/1/2012 | 1.146 | SGR ROUNDS 23 to 25

WQSP-4 | 1/1/1998 | 1/1/2012 | 1.075 | SGR ROUNDS 23 to 25

WQSP-5 | 1/1/1998 | 1/1/2012 | 1.025 | SGR ROUNDS 23 to 25

WQSP-6 | 1/1/1998 | 1/1/2012 | 1.014 | SGR ROUNDS 23 to 25

| nfor mation Only

© W N o oA W N e

Gl @t oor ot ot g o gt R A A R R R R A A R W oW W W W W oW W oW oW NN RN NN NN NN E R R R E e e e
© 9 & o kA ® LK B O ©® ® 9 O Ok W N R O O ® I O K R R O O ® N o0 A W N R O © ® N O G A W N R O

o
©

9.2 Listing of Water Level Plotting Script
9.2.1 Python script plot-waterlevels.py

This script is not run on the QA linux cluster, alice.sandia.gov. This script is run on a desktop PC. It is only used to create

figures for the selection of sampling dates and proper density values.

this python script plots water level and density data for WIPP wells
for the purpose of choosing freshwater heads for historic contouring
using data taken from the Annual Site Environmental Reports (ASER).
#

by Kris Kuhlman (6212)

September 2011 through January 2012

#

import matplotlib # set ploiting backend
matplotlib.use(’Agg’)

import numpy as np # array library

import numpy.core.defchararray as npchar # functions for character arrays

import matplotlib.pyplot as plt # plotting library

import matplotlib.mlab as mlab

from matplotlib.dates import MonthLocator, YearLocator, DateFormatter
from matplotlib. ticker import NullFormatter

from matplotlib.font_manager import FontProperties

import datetime
import re # regular cxpressions

for making small text in figures

AnnFontP = FontProperties ()

AnnFontP. set_size (’xx-small’) # for annotations
LegFontP = FontProperties ()

LegFontP . set_size (’small’) # for legend

read in corrections to pre—2007 data
with open(’reference-point-change-2007.dat’,’r’) as fh:
lines = fh.readlines ()

rpcorr = {}

for line in lines:
well ;delta = line.split ()
rpcorr [well] = float (delta)

read in freshwater heads used to create past contour maps
for years 2008, 2009 and 2010.
aserfwh = {}
for year in [2008,2009,2010]:
with open(’meas_head_%iASER.smp’ % (year,),’r’) as fh:
lines = fh.readlines ()

aserfwh [year| = {}
for line in lines:

fields = line.rstrip ().split ()

regexrp for splitting wellnames up into parts

non—numbers, numbers, and non—numbers (last group is sometimes emply)

m = re.search(r" ([70-91+) ([0-9]+) (["0-91*)", fields [0])
w = [m.group (1) ,m.group (2),m. group (3)]

handle mapping between well names used in pest input files

and names used in m()r(({)mp/m‘(database
if w[0] = ’SNL’ or w[0] = ’H’:

| nfor mation Only

60 wstr = *%s-%2.2i%s’ % (w[0],int (w[1]) ,w[2].upper())

61 elif W[O] = ’IMC’:

62 wstr = ’I-461"

63 else:

64 wstr = *%s-%s¥%s’ % (w[0],w[1] ,w[2]. upper())

65 aserfwh [year][wstr.strip ()] = {’fwh’:float (fields [3]), ’name’: fields [0]}
66

67

es 7 read in "best” densities proposed to wuse for contour maps
7o with open(’densities-to-use.csv’,’r’) as fh:

7 f = fh.read ()

72 lines = f.split (’\r’)[1:]

73

7+ findendtype = np.dtype ([(’well’,”S567),(°dt0’,’08”),(’dt1’,’08"),
75 (’den’,’£87),(’src’,’S137)])

7 finden = H

7w for line in lines:

78 r = [x.strip() for x in line.split(’,’

79 dt0 = datetime.datetime.strptime (r [1] 2 hm/hA/KY)

80 dtl = datetime.datetime.strptime (r[2],’%m/%d/%Y")

81 finden .append ((r[0] ,dt0,dtl, float (r[3]),r[4]. upper()))
82

ss finden
sa finden

85

= np.array (finden ,dtype=findendtype)

= np.sort (finden ,order=(’well’ >dt0’,’src’))

86

s # read in Culebra midpoint elevations (mostly from Johnson, 2009
ss # developed and checked for model calibration)

90 with open(’culebra-midpoint-elevations.csv’,’r’) as fh:

01 f = fh.read ()
92 lines = f.split (’\r’)[1:]
93

94 midpt = {}
os for line in lines:

96 r = [x.strip() for x in line.split(’,’)]

o7 # elevation is in feet AMSL, convert to meters
98 midpt [r [0]. upper ()] = float (r[1])%0.3048

99

100

w1 # read in well XY coordinates

103 with open(’well-coordinates.csv’,’r’) as fh:

104 f = fh.read()
105 lines = f.split(’\r’)[1:]
106

107 XY7Z = {}
10s for line in lines:

109 r = [x.strip () for x in line.split(’,’)]

110 # XY is UIM NAD27 ZONE 18 (m)

11 xyz[r[0].upper ()] = {’x’:float(r[2]),’y’:float(r[1])}
112

113

us # read in table of published density values from ASER/SAND reports and
us # from 2007—2010 the tables of TROLL—deri *(d densities from SNL.

116 # $3399553399553399553399553399553399553385553%¢

ur with open(’reported-density-values.csv’,’r’) as fh:

118 f = fh.read()

119 lines = f.split (’\r’)[1:]

120

121 dendtype = np.dtype ([(’well’,”S567),(’dt’,’08”),(’dt2’,’08"),
122 (’den’,’f8’),(’src’,’813’)])

123 den = []

| nfor mation Only

for line in lines:
r = [x.strip () for x in line.split(’,’)]
dt = datetime.datetime.strptime (r[1],’%m/%d/%Y"’)

only troll densities have a date range
if r[2] = "":

dt2 = datetime.datetime (1941,12,7) # bogus datetime
else:

dt2 = datetime.datetime.strptime (

r[2],%m/%hd/hY?)
den.append ((r [0].upper(),dt,dt2, float (r

2]

[3]) ,x [4]. upper ()))

den = np.array (den,dtype=dendtype)

den = np.sort(den,order=(’well’ ’dt’,’src’))

srcsymb = {’PDS’:’.’, "SGR’:’0’,’TROLL’:’x’,’SAND89-7068/2":°<’}

srccolor = {’PDS’:’gray’,’SGR’:’black’,’TROLL’:’red’,’ SAND89-7068/2": orange’}

earliest date that should be plotted
densities before this date are plotted here as an arrow pointing left
firstplot = datetime.datetime (2004,12,1)

read in well event log: includes drilling , PEA, tests and
well maintainence activiti that might effect WL or densities
55333595933355533555933 $33555833599
with open(’well-events.csv’,’r’) as fh:
f = fh.read ()
lines = f.split (’\r’)[1:]

eventstype = np.dtype ([(’well’,>S56°),(’dt0’,’08”),(’dt1’,°08’),(’s’,’S50”),(’c?,?S10”)])
events = |
for line in lines:
r = [x.strip () for x in line.split(’,’)]
if r[0] = ’:
empty line at end?
continue
dt0 = datetime.datetime.strptime (v [1],’%mn/%d/%y’)
if len(r[2]) > 0:
dt1 = datetime.datetime.strptime (r[2],’%m/%d/%hy’)
else:
dtl = None

try to categorize events based on color
if ’samp’ in r[3]:
water quality sampling
c = ’gray’
elif (’drill’ in r[3] or ’perf’ in r[3] or
(’recomp’ in r[3] and ’ulebra’ in r[3])):
new or replacement well drilling
¢ = ’green’
elif °PIP’ in r[3] or ’packer’ in r[3]:
added, removed, or reset packers
¢ = ’blue’
elif ’plug’ in r[3] or ’recomp’ in r[3]:
plugged back, plug & abandoned, or recompleted
¢ = ’red’
elif (’test’ in r[3] and not ’well integrity’ in r[3] and
not ’configured’ in r[3]):
slug or pumping test
¢ = ’cyan’
elif ’bail’ in r[3] or ’swab’ in r[3]:
bailed or swabbed well/tubing
¢ = ’magenta’
else:
something else

| nfor mation Only

¢ = ’black’
events.append ((r [0]. upper (),dt0,dtl,r[3],¢c))

events = np.array (events ,dtype=eventstype)
evwells = list (set(events [:][’well’]))

read in water level data from 2001—2010 ASER tables
$$9333599335559335559335559335955933558%8

one header row

mostly common column format

A0 : well

Bl : zone (CUL,MAG, etc.)

C2 : date (no time)

D3 : adjusted depth below top of casing ([ft)
FEJ : adjusted depth below top of casing (m)
F5 : water level elevation (ft amsl)

G6 : water level elevation (m amsl)

H7 : adjusted freshwater head (ft amsl)

read in yearly files with csv reader

make all well names uppercase, strip off anything in parenthesis
strip 7/7 out of zone names

convert dates to python date objects
save (E) depth to water (meters)

save (G) water level elevation (meters)
save (H) freshwater head (feet) —> convert to meters

FHHHK K

wldtype = np.dtype ([(’well’,’S56’),(’zone’,’S4’),(’dt’>,’08"),
(’dtwm’ ,’£8’) ,(’wlem’,’£f8’),(’cwlem’,’£8’) ,(’fwhm’
data = []

for year in range(2001,2010+41):

earliest = datetime.datetime (2100,12,31)
latest = datetime.datetime (1900,1,1)

fn = ’ASER-%i-waterlevel -data.csv’ % year
print fn,
with open(fn,’r’) as fh:

tf = fh.read ()

lines = f.split(’\r’) # Mac line endings

print ’# values’ , len(lines)
for line in lines [1:]:

r = line.split(’,”)
dt = datetime.datetime.strptime (v [2],’%m/%d/%y’)

if dt < earliest:

carliest = dt
elif dt > latest:
latest = dt

;7 187)1])

clean up and simplify well names to be consistent with HANALYST
well = r[0].upper (). partition(’(’)[0]. partition(’/?)[0].strip ()

zone = 1 [1].upper ().replace(’/’,’’).strip ()

if °SNL’ in well:

| nfor mation Only

306

some SNL wells are not zero padded some years
therefore they appear as different wells
num = well.split (’-?)[1]
if len(num) = 1:
well = SNL-0’ + num

if zone — ’SRD’:
zone = ’SRDL’

elif ’RUSS’ in zone:
zone = ’RS’

if len(r) < 8 or r[7].strip() = "":
fwh = —999.0

else:
fwh = float (r[7])*0.3048

wlem = float (r[6])
if year < 2007 and well in rpcorr:
cwlem = wlem + rpcorr [well]
else:
cwlem = wlem

data.append ((well ,zone ,dt, float (r[4]) ,wlem,cwlem ,fwh))

data
data

np.array (data ,dtype=wldtype)
np.sort (data,order=(’dt’,’zone’,’well’))

wells reported by WRES (doesn’t include Gnome wells)
wells = list (set(data[:][’well’]))
wells . sort ()

can plot all wells reported by WRES

zones = list (set(data[:][’zone’]))
for zone in zones:
zmask = data[’zone’] = zone

zwells = list (set (data[zmask][’well’]))
zwells . sort ()

months used for creating ASER contour maps (no apparent ranges for 2003 & 2004)
NB: 2003, 2004, 2005 & 2006 are my choice, not necessarily what used in ASER
cmonths = {2001:(datetime.datetime (2001,12,1),datetime.datetime (2001,12,31)),

(
2002:(datetime . datetime (2002,12,1),datetime . datetime (2002,12,31)),
2003:(datetime . datetime (2003 ,9,1),datetime . datetime (2003,9,30)),
2004:(datetime . datetime (2004 ,9,1),datetime . datetime (2004,9,30)),
2005:(datetime . datetime (2005 ,6 ,1) ,datetime . datetime (2005,6,30)),
2005:(datetime . datetime (2005,6,1),datetime . datetime (2005 ,6,30)),
2006:(datetime . datetime (2006,11,1) ,datetime.datetime(QOOG 11 ,30)),
2007:(datetime . datetime (2007,5,1),datetime . datetime (2007 ,5 31)),
2008:(datetime . datetime (2008 ,9,1),datetime . datetime (2008,9,30)),
2009:(datetime . datetime (2009,6,1),datetime . datetime (2009,6,30)),
2010:(datetime . datetime (2010,2,1),datetime . datetime (2010,2,28))}

exceptions to the above rules, based on looking closer at data
cexceptions = {’WIPP-11’:{2006:(datetime.datetime (2006,8,1),
datetime . datetime (2006 ,8,31))},
"H-10C’:{2006:(datetime . datetime (2006,8,1),
datetime . datetime (2006 ,8,31))},
’SNL-14°:{2005:(None, None) ,
2007:(datetime . datetime (2007,11,1),
datetime.datetime (2007,11,30))},
’SNL-16’:{2007:(datetime . datetime (2007 ,9,1)

datetime . datetime(2007 9.30))},
"WIPP-26:{2005:(None, None)}

| nfor mation Only

"WIPP-30’:{2005:(datetime . datetime (2005,8,1),
datetime.datetime (2005,8,31))}}

newfwhfh = {}

newfwhfh [2005] = open(’meas_head_2005ASER.smp’ ,’
newfwhfh [2006] = open(’meas_head_2006ASER.smp’,’
newfwhfh [2007] = open(’meas_head_2007ASER.smp’,’

W)
W)
W’

)

minimum density range for plot
denmax = 1.100

denmin = 1.000

denrange = denmax — denmin

#a4fhrpchange = open(’reference—point—change —2007. dat ’, 'w’)

3333355555555 999553333333555555555599533333333555$

cycle over all Culebra wells, plotting figures for each
zone = ’CUL’

zmask = data[’zone’]| = zone

zdat = data [zmask]

for well in wells:

wm = zdat [’well’] = well
if wm.sum() = 0:

continue # no data for this well
else:

print ’processing’,zone, well

fig plt.figure (1, figsize=(11,8.5))
axl = fig.add_subplot (211)

plot reported (adjusted) WRES depth—to—water measurements (small red circles)
axl.plot_date (zdat [wm][’dt’],zdat [wm][’dtwm’], ’ro’ ,markersize=2, markeredgecolor="red’)

invert depth—to—water axis (bigger numbers on bottom)
ymin ,ymax = axl.get_ylim ()
axl.set_ylim ([ymax,ymin])

pmask = zdat [wm][’fwhm’] > 0.0
pdata = (zdat [wm])[pmask]

uncomment below and run once on data to generate corrections file

#atpre200Tmask = pdata [’ dt '] < datetime. datetime (2007,1,1)

#a#post200Tmask = np.logical_not (pre2007mask)

H#atE only compute correction to reference point elevation if data straddles January/1/2007
Aa#if pre200Tmask.sum () > 0 and post2007mask.sum() > 0:

A oldrpelev = (pdata[pre2007mask][dtwm ’] + pdata [pre2007mask][wlem ’]).mean ()
A newrpelev = (pdata[post2007Tmask [dtwm ’] + pdata[post2007mask][wlem ’]). mean ()
Hat earlyrpcorr = newrpelev — oldrpelev

Hatelse :

Ot earlyrpcorr = 0.0

H#a#fhrpchange . write ("%s\t%.2f\n’" % (well , earlyrpcorr))

plot freshwater heads on second y—azxis
ax2 = axl.twinx ()

plot freshwater head data as reported in ASER (small blue stars)
ax2.plot_date (pdata [:]][’dt’],pdata [:][’fwhm’], b*’ ,markersize=3,markeredgecolor="blue’)

correct FWH for densities chosen as “correct” densities over a given time range

fdmask = finden [:][’well’] = well
fdata = finden [fdmask]

| nfor mation Only

for dval

ax] .
axl.

ax2
ax2
ax2

axl.

ax2.

in fdata:

mask off ASER wvalues in the date range associated with this density

datemask = np.logical_and (pdata[’dt’] >=

dval[’dt0”]

pdata[’dt’] <= dval[’dtl’])7

newfwhdates = pdata[datemask|[’dt’]

compute new fwh wusing

onsistent density

value

c
newfwh = (pdata[datemask][’cwlem’]—midpt|[well])xdval[’den’] 4+ midpt[well]

plot consistent freshwater heads (large blue z’s)
ax2.plot_date (newfwhdates ,newfwh , ’bx’ ,markersize=5)

save 2005, 2006, and 2007 fwh to file for wuse by PEST

for

yr in [2005,2006,2007]:
exception = False
skipwell = False
if well in cexceptions:
if yr in cexceptions|[well]:

exception = True

if cexceptions[well][yr][0] = None:
skip this well this year, even
skipwell = True

else:

use a different month than the

maskyrfwh = np.logical_and (newfwhdates >=
newfwhdates <=

if not exception:
use the standard month selected for all
maskyrfwh = np.logical_and (newfwhdates >=
newfwhdates <=

if maskyrfwh.sum() > 0 and not skipwell:

though there is data

one selected for all
cexceptions [well
cexceptions [well

other wells
cmonths [yr][0],
cmonths [yr|[1])

use the same mame if this well was used before,
otherwise strip hyphen and go for it
if well.upper() in aserfwh[2010]:
wname = aserfwh [2010][well][’name”’ |
elif well.upper() in aserfwh[2009]:
wname = aserfwh [2009][well][’name’ |
elif well.upper() in aserfwh[2008]:
wname = aserfwh [2008][well][name”’ |
else:
wname = well.replace(’-07,-") # remove leading zero

wname = wname.replace (’=?,°?) # remove hyphen

if there are more than one fwh during that month, select the

newfwhfh [yr]. write (*%s\t%s\t12:00:00\t%.3£\t%.4f\n’ %

(wname, newfwhdates [maskyrfwh] [0].

newfwh [maskyrfwh |[0] ,dval[’den’]))

xaxis.set_major_formatter (NullFormatter ())
set_title (’%s water levels and specific gravities’ % well)

.xaxis.set_major_locator (YearLocator ())
.xaxis.set_minor_locator (MonthLocator ())
.xaxis.set_major_formatter (DateFormatter (’%Y’))

set_ylabel (’ASER depth to water (m BTOC)’,color=’red’, fontsize=9)

set_ylabel (’freshwater head (ASER=*, this rept=x) (m AMSL)’,

color="blue’ ,fontsize=9)

add date ranges used for contouring
for yr in cmonths.keys ():

exception = False

if well in cexceptions:

| nfor mation Only

other

]
]

first

stritime ("%m/%d/%Y"),

axd =

if yr in cexceptions|[well]:

exception = True

if cexceptions|[well][yr][0] = None:
don’t use this well this year
continue

else:

use a different month for this well this year
ax2.axvspan (cexceptions [well |[yr][0], cexceptions[well][yr][1],
alpha=0.25,color="green’)
if not exception:
use the standard month for this well and year
ax2.axvspan (cmonths [yr][0] , cmonths[yr][1], alpha=0.25,color="blue’)
fig .add_subplot (212)

aparent specific gravity is (fwh_el — midpt_el)/(wl_el — midpt_el)
computed from wl elevation and freshwater head reported by WRERS +
Culebra midpoint elevations (small green circles)

specgrav = (((zdat[wm])[pmask][’fwhm’] — midpt[well])/

((zdat [wm]) [pmask][’wlem’] — midpt[well]))

axd.plot_date ((zdat [wm])[pmask][’dt’],specgrav,’go’,
markersize=2,markeredgecolor=’green’)
fdmask = finden [:][’well’] = well

fdata = finden [fdmask]

for

dval in fdata:
plot the 7final” gravity as a line across the figure (solid green line)
axd.plot_date ([dval[’dt0’],dval[’dt1’]] ,[dval[’den’],dval[’den’]],’g-")

plot reported density wvalues; different symbols
dm = den[’well’] = well

ddat = den [dm]
setsrc = set(ddat [:][’src’])
sources = list (setsrc)

change TROLLYYYY to just TROLL

for src in sources:
if "TROLL’ in src:
setsrc.remove(src)
setsrc.add(’TROLL”)
if ’PDS’ in src:
setsrc.remove(src)
setsrc.add(’PDS’)
if "SGR’ in src:
setsrc.remove(src)
setsrc.add(’SGR”)
sources = list (setsrc)
for src in sources:

densities from this sources (all TROLLYYY just count as TROLL, etc.)
mddat = npchar. find (ddat [:][’src’],src) >= 0 # find returns —1 if not found
sddat = ddat [mddat]

densities since cutoffdate
msddat = sddat[’dt’] > firstplot
dsddat = sddat [msddat |

nrecent = msddat.sum ()

if sr¢ =— ’TROLL’:
if nrecent > 0:
tmpden = sddat [msddat][’den’]
move any troll—computed densities below 1.0 to fresh water (1.0)
tmpden [tmpden < 1.0] = 1.0
troll densities plot as a dn/(range
axd.plot_date ([sddat [msddat][’dt’],sddat [msddat][’dt2’]],[tmpden,tmpden],

| nfor mation Only

sresymb [src], linestyle=’solid’,color=srccolor [src],
linewidth=2.0,label=src , markersize=9)

else:
if nrecent > 0:
tmpden = sddat[msddat][’den’]
move any densities below 1.0 to fresh water (1.0)
tmpden [tmpden < 1.0] = 1.0
non—troll densities plot as a single date
axd.plot_date (sddat [msddat][’dt’],tmpden, srcsymb [src],
color=srccolor [src],label=src , markersize=9)

densities before cutoff date (plot on edge with left—pointing triangle)
msddat = sddat[’dt’] < firstplot
nold = msddat.sum()

if nold > 0:
axd.plot_date ([firstplot |*nold ,sddat [msddat][’den’],’<’,
color="yellow’,label=’pre-2005’ ,markersize=9)

make range of density plots at least a minimum range
ymin ,ymax = axd.get_ylim ()
if ymax < denmax:

ymax = denmax

if ymin > denmin:
ymin = denmin

axd.set_ylim ((ymin,ymax))

add pumping, drilling ,and pluggin events located at the current well

em = events [:][’well’] = well
if em.sum() > 0:
ee = events [em]
ymin ,ymax = axd.get_ylim ()
yann = ymax — (ymax — ymin)/5.0
for ev in ee:
if ev[’dt1’] = None:

no ending date

axd.axvline (ev[’dt0’],alpha=0.5,color=ev[’c’])

axd.annotate (ev[’s’],(ev[’dt0’],yann),
rotation=’vertical’ , fontproperties=AnnFontP)

else:

axd.axvspan(ev[’dt0’],ev[’dtl’],alpha=0.25,color=ev[’c’])

axd.annotate(ev[’s’],(ev[’dt0’]+(ev[’dtl’]—ev[’dt0’])//2,yann),
rotation=’vertical’ fontproperties=AnnFontP)

add drilling and PEA events for wells within 500 m (i.e., same pad)
for other in evwells:

if not other = well:
em = events [:][’well’] = other
ee = events [em]
om = np.logical_or(ee[:][’c’] = ’red’,ee[:][’c’] = ’green’)
dist = np.sqrt ((xyz|[well |[’x’]—xyz[other |[’x’])**x2 +
(xyz|well |[’y’]—xyz[other |[’y’])*%2)
does other well have drilling or p&a activities?

if om.sum() > 0:
if dist < 500:
for ev in ee[om]:
if ev[’dt1’] = None:
no ending date
axd.axvline (ev[’dt0’],alpha=0.5,
11nestyle—’dashed’ color= ev][’c’])

| nfor mation Only

572 else:

573 axd.axvspan(ev[’dt0’],ev[’dtl1’],alpha=0.25,

574 linestyle=’dashed’,color=ev[’c’]
575 axd.annotate (’%s (%im) %s’ % (ev[’well’],dist ,ev[’s’]),(ev[’dt0’],yann)
576 rotation=’vertical’ fontproperties=AnnFontP, color=’gray’)
577

578 # nearby pumping tests (not slug tests) within 5.0 km

579 # npchar. find () returns —1 for mnot found

580 om = np.logical_and (ee[:][’c’] = ’cyan’,

581 npchar. find (ee [:][’s’], slug’) = —1)

582 if om.sum() > 0:

583 if dist < 5000:

584 for ev in ee[om]:

585 if ev[’dt1’] = None:

586 # no ending date

587 axd.axvline (ev[’dt0’],alpha=0.5,

588 linestyle=’dashed’,color=ev[’c’])
589 else:

590 axd.axvspan (ev[’dt0’],ev[’dtl’],alpha=0.25,

591 linestyle=’dashed’ ,color=ev|[’c’])
592 axd.annotate (’%s (%.1fkm) %s’ % (ev[’well’],dist /1000.0,ev[’s’]),
593 (ev[’dt0’],yann),rotation=’vertical’,
594 fontproperties=AnnFontP, color=’gray’)
595

596

597 ax2.set_xlim (left=datetime.datetime (2004,11,1))

598 ax2.set_xlim (right=datetime . datetime (2011,1,1))

599

600 # force subplots to have same data range

601 axd.set_xlim (ax2. get_xlim ())

602 axd.set_ylabel (’specific gravity’)

603

604 # legend for type of demnsity measurement

605 # while removing duplicate entries from legend

606 handles , labels = axd.get_legend_handles_labels ()

607 newhandles = []

608 newlabels = []

609 if len(handles) > 0:

610 for h,l in zip (handles,labels):

611 if not | in newlabels:

612 newhandles . append (h)

613 newlabels.append (1)

614

615 leg = axd.legend (newhandles ,newlabels ,loc=0,prop=LegFontP ,numpoints=1,scatterpoints=1)
616

617 axd . xaxis.set_major_locator (YearLocator ())

618 axd . xaxis.set_minor_locator (MonthLocator ())

619 axd . xaxis.set_major_formatter (DateFormatter (’%Y’))

620 plt.savefig (’%s-%s-ASER-waterlevels.png’ % (zone, well), 6 dpi=150)

621 plt.close (1)

622

622 newfwhfh [2005]. close ()
622 newfwhfh [2006]. close ()
625 #A#rhrpchange. close ()

| nfor mation Only

9.3 Figures Generated by Python Water Level Script

The following figures were generated by the Python script plot-waterlevels.py and represent the water level, density (aka
specific gravity), and well-event data listed in the 2004-2010 ASERs.

Each page represents the 2005-current ASER data for a given Culebra well. In the water level plots (top), filled red circles are
reported depths to water (meters below top of casing (BTOC)), filled blue stars are ASER-reported freshwater head elevations
(meters above mean sea level (AMSL)), and the blue x’s are the freshwater head elevations (AMSL) computed using the density
values recommended in the file densities-to-use.csv. Adjustments to pre-2007 water level elevations to use better-surveyed
modern reference point elevations are reflected in the re-computed freshwater heads (blue x’s), but not in the ASER-reported
freshwater heads (blue stars). Vertical bands indicate the months that were used for contouring heads.

In the density plots (bottom), horizontal green lines indicate the density/specific gravity values chosen to be used at a given
time (densities-to-use.csv), vertical lines are events in current or nearby wells (nearby wells are gray text and indicate the
distance between the wells, while the current well is in black text). Red x’s with connecting red lines are density values computed
from Troll data (representing the date range used to compute the density), gray circles indicate reported pressure-density surveys
(PDS), large black circles are field specific gravity readings (SGR), and small green dots are densities back-calculated from the
freshwater head elevations and water level elevations reported in the ASERs.

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

| nfor mation Only

10 Appendix: MODFLOW and Pest Files and Script Source Listings
10.1 Input File Listing

The following table lists the input files for the 2005 contour map. The 2006 and 2007 contour maps have the same files with
analogous names.

bytes | file type description file name
2.1K | Python script | average 100 realizations average_realizations.py
2.3K | Python script | distinguish different BC types boundary_types.py
6.6K | Bash script ﬁ?%gg%?ﬁaﬂc%}i{ggi f:(l:ilsl;tn MODFLOW checkout_average _run modflow.sh
809 | Python script Egrgsﬁe?;g{%iﬁ E‘lin‘IlgOl%(t)?rfat convert_dtrkmf_output_for_surfer.py
3.2K | Python script | create PEST input files from observed data create_pest_02_input.py
48 | input listing responses to DTRKMF prompts dtrkmf.in
. convert MODFLOW binar . -
4.2K | Python script output to Surfer ASCIT griﬁ format head_bin2ascii.py
1.1K | input listing of 100 realizations from CVS keepers
. observed heads
14K input in mod2obs.exe bore sample file format meas-head 2010ASER . smp
1.2K | Python script E?eiztles, ?Essrgﬁ(ei i}ilﬁe ad and model-generated merge_observed_modeled_heads.py
76 | file listing files needed to run mod2obs.exe mod2obs_files.dat
138 | input listing responses to mod2obs.exe prompts mod2obs_head.in
372 | file listing files needed to run MODFLOW modflow files.dat
401 | input listing of wells and geographic groupings obs_loc_2010ASER.dat
215 | file listing files needed to run PEST pest_02_files.dat
2.3M | input relative coordinate 1 <z <1 rel _x_coord.dat
2.3M | input relative coordinate 1 <y <1 rel_y_coord.dat
389 | Bash script dPEST model: execute MODFLOW and run. 02 model
o pre- and post-processing
26 | input mod2obs.exe input file settings.fig
47 | input mod2obs . exe input file spec_domain.spc
1.7K | input mod2obs.exe input file spec_wells.crd
2.7K | Python script ;Zr;:izllgseit:;gnfogf;iigrﬁlpu ts surface_02_extrapolate.py
506 | input DTRKMEF input file wippctrl.inp
5.6K | Python script | plot contour map figures plot-contour-maps.py
6.7K | Python script | plot bar and scatter figures plot-results-bar-charts.py
90 | plotting data | UTM coordinates of ASER map area ASER boundary.csv
9.2K | plotting data | UTM coordinates of MODFLOW model area | total_boundary.dat
6.7K | plotting data | UTM coordinates of WIPP LWB wipp-boundary.csv

Table 1: Listing of Input Files

| nfor mation Only

10.2 Output File Listing

The following table lists the input files for the 2005 contour map. The 2006 and 2007 contour maps have the same files with

analogous names.

bytes | file type description file name
19K | DTRKMEF output | particle track results dtrk.out
16K | DTRKMF output | particle track debug dtrk.dbg
2.0K | script output heads at well locations modeled_vs_observed_head pest_02.txt
1.1M | script output formatted MODFLOW heads modeled head pest_02.grd
5.3K | script output formatted DTRKMF particle dtrk_output_pest_02.bln
16K | PEST output matrix condition numbers bc_adjust_2010ASER. cnd
2.7K | PEST output binary intermediate file bc_adjust_2010ASER.drf
74K | PEST output binary intermediate file bc_adjust_2010ASER. jac
7.5K | PEST output binary intermediate file bc_adjust_2010ASER. jco
9.9K | PEST output binary intermediate file bc_adjust_2010ASER. jst
3.8K | PEST output parameter statistical matrices bc_adjust_2010ASER.mtt
477 | PEST output parameter file bc_adjust_2010ASER. par
62K | PEST output optimization record bc_adjust_2010ASER.rec
4.6K | PEST output model outputs for last iteration | bc_adjust_2010ASER.rei
8.4K | PEST output summary of residuals bc_adjust_2010ASER.res
28 | PEST output binary restart file bc_adjust_2010ASER.rst
24K | PEST output relative parameter sensitivities | bc_adjust_2010ASER.sen
4.0K | PEST output absolute parameter sensitivities | bc_adjust_2010ASER.seo
213K | png image matplotlib plot (Fig. 2) aser—area-contour-map.png
223K | png image matplotlib plot (Fig. 3) large-area-contour-map.png
33K | png image matplotlib plot (Fig. 5) model-error-histogram.png
55K | png image matplotlib plot (Fig. 6) model-error-residuals.png
93K | png image matplotlib plot (Fig. 4) scatter_pest_02.png

Table 2: Listing of Output Files

| nfor mation Only

© W N e U A W N e

AR R W oW W W W W oW oW W W NN N NN NN NN R R R e e s e e e e
N B O © ®» I O Gk ® K R O O ® N O A W N R O © ® N A W N = O

IS
@

44
45
46
47
48
49
50
51
52
53
54
55
56

58
59
60

61

10.3 Individual MODFLOW and Pest Script Listings

10.3.1 Bash shell script checkout_average run modflow.sh
#1/bin/bash

set —o mnounset # caplode if wsing an un—initialized variable
set —o errexit # exit on non—zero error status of sub—command

this script makes the following directory substructure

#

current_dir \———— Outputs (calibrated parameter fields — INPUTS)

\——— Inputs (other modflow files — INPUTS)

\—— original_average (foward sim wusing average fields)
\— bin (MODFLOW and DIRKMF binaries)

\— pest_0? (pest—adjusted results)

##set —o xtrace # loads of wverbose debugging info

echo N ~sssssasasasasasasasaasassasasss n

echo " checking out T fields"

echo N ~asssssasasasaasassasasasasasasnasns n

these will checkout the calibrated parameter—field data into subdirectories

checkout things that are different for each of the 100 realiztaions
for d in ‘cat keepers®
do
cvs —d /nfs/data/CVSLIB/ Tfields checkout Outputs/${d}/modeled_{K,A,R,S} _field .mod
done

checkout MODFLOW input files that are constant for across all realizations

cvs —d /nfs/data/CVSLIB/ Tfields checkout Inputs/data/elev_{top,bot}.mod

cvs —d /nfs/data/CVSLIB/ Tfields checkout Inputs/data/init_{bnds.inf , head.mod}

cvs —d /nfs/data/CVSLIB/ Tfields checkout Inputs/modflow/mf2k_culebra.{lmg, lpf}

cvs —d /nfs/data/CVSLIB/ Tfields checkout Inputs/modflow/mf2k_head.{ba6 ,nam,oc,dis ,rch}

modify the path of 7updated” T-fields , so they are all at the
same level in the directory structure (simplifying scripts elsewhere)

if | —a keepers_short |
then
rm keepers_short

fi
touch keepers_short
for d in ‘cat keepers®
do

bn=‘basename ${d}*

test whether it 1s a compound path

if [${d} != ${bn}]
then

dn=‘dirname ${d}°
mv ./ Outputs/${d} ./Outputs/

put an empty file in the directory to indicate
what the directory was previously named
touch ./Outputs/${bn}/${dn}

fi

create a keepers list without directories

echo ${bn} >> keepers_short
done

7#

the averaging was a slow step, when done in python

| nfor mation Only

echo " "~ """ "7 7SS SoSSSSSSSsssssAAAAAS S S A A "
echo " perform averaging across all realizations "
echo "

python average_realizations.py

checkout MODFLOW / DIRKMF exzecutables
cvs —d /nfs/data/CVSLIB/MODFLOWZK checkout bin/mf2k/mf2k_1.6.release
cvs —d /nfs/data/CVSLIB/MODFLOW2K checkout bin/dtrkmf/dtrkmf_v0100

check out pest and obs2mod binaries

cd bin

cvs —d /nfs/data/CVSLIB/PEST checkout Builds/Linux/pest.exe
cvs —d /nfs/data/CVSLIB/PEST checkout Builds/Linux/mod2obs.exe
cd

#

P=Yel s To L ANNaNalalakaliolakelolokeliakalaliokalialahelalakaliakalaliakaliolalololakeliolalalokelialiakelalahelolahelokal el ol ool n
echo " setup copies of files constant between all realizations "
echo "

directory for putting original base—case results in
od=original_average

if [—d ${od}]

then
echo ${od}" directory exists: removing and re-creating"
rm —rf ${od}

fi

mkdir ${od}
cd ${od}
echo ‘pwd‘

link to unchanged input files
for file in ‘cat ../ modflow_files.dat*
do
In —sf ${file}
done

link to averaged files computed in previous step
for f in {A,R,K,S}
do
In —sf ../ modeled_${f} _field.avg ./modeled_${f} _field .mod
done

In —sf elev_top.mod fort.33
In —sf elev_bot.mod fort.34

run MODFLOW, producing average head and CCF
../ bin/mf2k /mf2k_1.6. release mf2k_head.nam

run DIRKMF, producing particle track (from ccf)
../ bin/dtrkmf/dtrkmf_v0100 <dtrkmf.in

convert binary MODFLOW head output to Surfer ascii grid file format

In —sf ../ head_bin2ascii.py
python head_bin2ascii.py

| nfor mation Only

161

mv modeled_head_asciihed.grd modeled_head_${od}.grd

convert DIRKMF output from cells to X,Y and
save in Surfer blanking file format

In —sf ../ convert_dtrkmf_output_for_surfer.py
python convert_dtrkmf_output_for_surfer.py
mv dtrk_output.bln dtrk_output_-${od}.bln

extract head results at well locations and merge with observed
head file for easy scatter plotting in Ezcel (tab delimited)
for file in ‘cat ../ mod2obs_files.dat*
do

In —sf ${file}

done

In —sf ../meas_head_2005ASER .smp

In —sf ../obs_loc.2005ASER . dat .

../ bin/Builds /Linux/mod2obs. exe <mod2obs_head.in

In —sf ../ merge_observed_modeled_heads.py

python merge_observed_modeled_heads.py

mv both_heads.smp modeled_vs_observed_head_${od}.txt

go back down into root directory

cd

echo ‘pwd‘

echo AR A~ A A A A A A A A~ A A A A A~~~ n
echo " setup and run PEST to optimize parametric surface to set BC "
P=Ye] s To TELLalalalalokalolokalialokaliakalaliokalaloalolokalialakalialalalioakalokalaliokalalakalolalalolalalokalolohalalakelaalalolalalle n

for p in pest_02
do

if [—d ${p} |
then
echo ${p}" directory exists: removing and re-creating"
rm —rf ${p}

fi

mkdir ${p}

cd ${p}
echo ‘pwd‘

link to wunchanged input files

for file in ‘cat ../ modflow_files.dat "
do
In —sf ${file}

done

link to averaged files computed in previous step
for f in {A,R,K,S}

do

In —sf ../ modeled-${f} _field .avg ./modeled_${f} _field .mod
done

link to mod20bs files (needed for pest)
for file in ‘cat ../ mod2obs_files.dat "

do

In —sf ${file}

done

link to pest files
for file in ‘cat ../${p} _files .dat"®

| nfor mation Only

238

do
In —s ${file}
done

rename origina
rm init_head .mod
In —sf ../Inputs/
rm init_bnds.inf
In —sf ../Inputs/

[7 wversions of files to be modified by pest
data/init_head .mod ./init_head_orig.mod

data/init_bnds.inf ./init_bnds_orig.inf

create new ibound array for easier modification during PEST
optimization iterations
python boundary_types.py

create the mecessary input files from observations

python create_${p}_input.py

run pest

../ bin/Builds/Linux/pest.exe bc_adjust_-2005ASER

last output files should be best run

extract all the

stuff from that output

In —sf elev_top.mod fort.33
In —sf elev_bot.mod fort.34

../ bin/dtrkmf/dtrkmf_v0100 <dtrkmf.in

In —sf ../ head_bin2ascii.py
python head_bin2ascii.py
mv modeled_head_asciihed .grd modeled_head_${p}.grd

In —sf ../ convert_dtrkmf_output_for_surfer.py
python convert_dtrkmf_output_for_surfer.py
mv dtrk_output.bln dtrk_output_-${p}.bln

for file in ‘cat
do

In —sf ${file}
done

../ mod2obs_files.dat °

../ bin/Builds/Linux/mod2obs. exe <mod2obs_head.in

In —sf ../ merge_observed_modeled_heads.py

python merge_observed_modeled_heads.py

mv both_heads.smp modeled_vs_observed_head_${p}.txt

cd
done

| nfor mation Only

© 0 N e o oA W W o=

g o g g o g gt R A R R AR R R R A A W W W W oW oW oW oW oW NN N N NN NN NN B R e s s e e
e h A B LR O B & N GO R BN RO O NG h A B R O ® ® N0 AR BN R~ O © ® N0 ;e ® N = O

10.3.2 Python script average realizations.py

from math import loglO ,pow

nrow = 307
ncol = 284
nel = nrowxncol

nfr = 100 # number of fields (realizations)
nft = 4 # number of field types

def floatload (filename):

77?7 Reads file (a list of strings, one per row) into a list of strings.”””
f = open(filename ,’r’)

m = [float (line.rstrip()) for line in f]

f.close ()

return m
types — [’K’,’A’,’R’,’S’]

get list of 100 best calibrated fields
flist = open(’keepers_short’,’r’)

runs = flist.read ().strip ().split(’\n”’)
flist .close ()

initialize to help speed lists up a bit
nfr (100) realizations of each
fields = []
for i in xrange(nft):
fields .append ([None]x nfr)
for i in xrange(nfr):
each realization being nel (87188) elements
fields [—1][i] = [None]x nel

read in all realizations

print ’reading ...’

for i,run in enumerate(runs):
print i, run
for j,t in enumerate(types):

fields [j][1][0:nel] = floatload (’0Outputs/’+ run +’/modeled_’+ t +’_field.mod’)

open up files for writing
fh =[]
for t in types:
fh .append (open (’modeled_’+ t 4+’ _field.avg’,’w’))

transpose fields to allow slicing across realizations , rather than across
for j in range(len(types)):
fields [j] = zip (x(fields[j]))

print ’writing ...’
do averaging across 100 realizations
for i in xrange(mnel):
if 1%10000 = O0:
print i
for h,d in zip(fh, fields):
h.write(’%18.11e\n’ % pow(10.0 ,sum(map(logl0 ,d[i]))/ nfr))

for h in fh:
h.close ()

| nfor mation Only

cells

© 0w N o R W N =

g o g g o g gt R A R R AR R R R A A W W W W oW oW oW oW oW NN NN NN NN NN B R e s s e e
S0 R B R R O B N0 O A ® R = O ©® KN O G R ® R R O © ® N0 AW N RO O O N O O A W N = O

10.3.3 Python script boundary_types.py

nx = 284 # number columns in model grid
ny = 307 # number rows
nel = nxxny

def intload (filename):
"7?Reads file (a 2D integer array) as a list of lists.
Outer list is rows, inner lists are columns.”””
f = open(filename ,’r’)
m= [[int(v) for v in line.rstrip ().split ()] for line in f]
f.close ()
return m

def intsave (filename ,m):

"7 Writes file as a list of lists as a 2D integer array, format '%3i’

Outer list is rows, inner lists are columns.”””
f = open(filename ,’w’)
for row in m:
f.write(’ ?.join ([’%2i’> % col for col in row]) + ’\n’)
f.close ()

def floatload (filename):
777 Reads file (a list of real numbers, one number each row) into a

f = open(filename ,’r’)

m = [float (line.rstrip()) for line in f]
f.close ()

return m

def reshapev2m (v):

list of floats.”””

777 Reshape a wvector that was previously reshaped in GC-major order from a matriz,

back into a matriz (here a list of lists).”””
m = [None|*ny

for i,(lo,hi) in enumerate(zip(xrange(0, nel-nx+1, nx), xrange(nx, nel+1, nx))):

m[i] = v[lo:hi]
return m

read in original MODFLOW IBOUND array (only 0,1, and —1)
ibound = intload (’init_bnds_orig.inf’)

read in initial heads
h = reshapev2m (floatload (’init_head_orig.mod’))

discriminate between two types of constant head boundaries
—1) CH, where wvalue > 1000 (area east of halite margin)
—2) CH, where value < 1000 (single row/column of cells along edge of

for i,row in enumerate(ibound):
for j,val in enumerate(row):
1s this constant head and is starting head less than 1000m ¢
if ibound[i][j] = -1 and h[i][j] < 1000.0:
ibound [1][]j] = -2

save mew IBOUND array that allows easy discrimination between types
PEST optimization runs, and is still handled the same by MODFLOW
since all ibound values < 0 are treated as constant head.

intsave (’init_bnds.inf’ ibound)

| nfor mation Only

domain

in python

script

during

e = L R R

Q@ o @ g o o g oo g oo oo R A R A R A R R A R K W W W oW oW W oW oW oW NN NNNNNNNN S R e s e
B o= O © B U O Gk ® LR O O ®» N4 O A ® N = O O U6 O AL RO & W N O G A BN R O O ® NGO A W N = O

o
@

10.3.4 Python script create_pest_02_input.py

prefix = >2005ASER’

pest instruction file reads output from mod2o0bs

fin = open(’meas_head_%s.smp’ % prefix ,’r’)

each well is a [name, head] pair
wells = [[line.split ()[0],line.split ()[3]]
fin.close ()

fout = open(’modeled_head.ins’, ’w’)
fout . write(’pif @\n’)
for i,well in enumerate(wells):

fout . write ("11 [%s139:46\n" % well [0])

fout . close ()

exponential surface used to set initial
except east of the halite margins, where

initial guesses come from AP—11} Task report
params = [928.0, 8.0, 1.2, 1.0, 1.0, —1.0, 0.5]

pnames = [7a7’)b’, ,C’, ,d’, 7e7’ ’f’7

fout = open(’avg_NS_res.ins’,’w’)
fout . write(""" pif @

l1 [medianN]1:16

11 [medianS]1:16

I1 [meanN]1:16

1 [meanS]1:16

fout . close ()

pest template file

ftmp = open(’surface_par_params.ptf’,’w’)
ftmp . write (’ptf @\n’)

for n in pnames:

ftmp . write (’@ hs e\n’ % n)

ftmp . close ()

pest parameter file

fpar = open(’surface_par_params.par’,’w’)
fpar.write (’double point\n’)
for n,p in zip (pnames, params):

fpar.write(’%s %.2f 1.0 0.0\n’ % (n,p))

fpar.close ()

pest control file

f = open(’bc_adjust_%s.pst’ % prefix ,’w’)
f.write(" "pcf

* control data

restart estimation

%i %i 1 0 2

1 2 double point 1 0 0
5.0 2.0 0.4 0.001 10
3.0 3.0 1.0E-3

| nfor mation Only

for line in fin]

head everywhere

0.1

30 0.001 4 4 0.0001 }

11 1

x parameter groups

be relative 0.005 0.0001 switch 2.0 parabolic
777 % (len (params), len (wells)+4))

f.write(’* parameter datal\n’)
for n,p in zip (pnames,params):
if p> 0:
f.write(’%s none relative %.3f %.3f %.3f ©bc
(1’1, P, _2'0*p7 SO*p))

f.write(’%s none relative %.3f %.3f %.3f bc
(n7 P, 30*p7 _20*1)))

else:

f.write(777 observation groups
ss_head

avg_head

* observation data

)

read in observation weighting group definitions
fin = open(’obs_loc_%s.dat’ % prefix ,’r’)

location = [line.rstrip ().split ()[1] for line in fin]
fin . close ()

weights = []

for 1 in location:

inside LWB

if 1 = 20
weights.append (2.5)

near LWB

if 1 = 217
weights.append (1.0)

distant to LWB

if 1 = 2
weights.append (0.4)
if 1 = ’997:

weights.append (0.01) # AEC-7

for name,head ,w in zip (zip (xwells)[0],zip (xwells)[1], weights):
f.write(’%s ‘s %.3f ss_head\n’ % (name,head ,w))

one fewer N observation (WIPP—25 removed), there were 13

there are 12 N observations in the average and 11 S, therefore
split the weight between the mean and median
f.write(”””medianN 0.0 18.0 avg_head

medianS 0.0 16.5 avg_head
meanN 0.0 18.0 avg_head
meansS 0.0 16.5 avg_head

20 »)

f.write (777« model command line

./run_02_model

x model input/output

surface_par_params. ptf surface_par_params.in
modeled_head.ins modeled_head.smp
avg_-NS_res.ins avg_-NS_res.smp

)
f.close ()

1.

1.

0

0

| nfor mation Only

0.

0.

0

0

1\n’ %

\n’ %

© 0 N e o oA W W o=

AR A W oW W W W W W W oW oW NN N NN N NN NN R B E e e e e e e e
N B O © ® N & O A ® K = O © ® N & G A ® N = O © 0 N O O A W N = O

43

10.3.5 Python script surface_02_extrapolate.py

from itertools import chain
from math import sqrt

def matload (filename):
77 Reads file (a 2D string array) as a list of lists.
Outer list is rows, inner lists are columns.”””

f = open(filename ,’r?’)

m = [line.rstrip ().split () for line in f]
f.close ()

return m

def floatload (filename):
""Reads file (a list of real numbers, one number each row) into a
f = open(filename ,’r’)
m = [float (line.rstrip()) for line in f]
f.close ()
return m

def reshapem2v():

"Reshapes a 1({/(1/1(]111(11 matriz into a vector in same fashion as numpy.reshape ().

which is C-major order”””
return list (chain (xm))

def 51gn():
777 gign function”””
if x<0:
return —1
elif x>0:
return +1
else:
return 0

read in modified IBOUND array, with the cells to modify set to —2
ibound = reshapem2v (matload(’init_bnds.inf’))

h = floatload (’init_head_orig.mod’)

these are relative coordinates, —1 <= x,y < +1
x = floatload (’rel_x_coord.dat’)
y = floatload (’rel_y_coord.dat’)

unpack surface parameters (one per line)
2 =A + Bx(y + Dxsign(y)xsqrt(abs(y)))+Cx(Exzxx3 — Fxxxx2 — 1)

finput = open(’surface_par_params.in’,’r’)
try:
a,b,c,d,e,f,exp = [float (line.rstrip()) for line in finput]
except ValueError:
python doesn’t like °D’ in 1.2D—4 notation used by PEST sometimes.
finput .seek (0)
lines = [line.rstrip() for line in finput]
for i in range(len(lines)):
lines [i] = lines[i].replace(’D’,’E?)
a,b,c,d,e,f,exp = [float(line) for line in lines]

finput . close ()
file to output initial/boundary head for MODFLOW model

fout = open(’init_head.mod’ ’w’)
for i in Xrange (len (1bound

M nformation Only

of floats.”””

64
65
66
67
68
69
70
71
72
73
T4
75

76

apply exponential surface to active cells (ibound=1) —> starting guess
and non—geologic boundary conditions (ibound=—2) —> constant head value
if y[i] = 0:
fout.write(’%.7e \n’ % (a + cx(exx[i]**x3 + fxx[i1]*%x2 — x[i])))
else:
fout . write(’%.7e \n’ % (a + bx(y[i] + dxsign(y[i])*abs(y[i])**exp) +
cx(exx[i]*x3 + fxx[i]*x2 — x[i])))
else:
use land surface at constant head east of halite boundary
ibound=0 doesn 't matter (inactive)
fout . write(’%.7e\n’> % h[i])

fout . close ()

| nfor mation Only

e = e L e R

[e~ S S S
o kA W N = O

-
J

10.3.6 Bash shell script run_02 model

#!/bin/bash
#set —o ztrace

#echo ’step 1: surface extrapolate’
python surface_02_extrapolate.py

run modflow
#echo ’step 2: run modflow’

../ bin/mf2k /mf2k_1.6. release mf2k_head.nam >/dev/null

run mod2obs
#echo ’step &: extract observations ’
../ bin/Builds/Linux/mod2obs. exe < mod2obs_head.in >/dev/null

create meta—observations of N vs. S
python create_average_NS_residuals.py

| nfor mation Only

© 0 N o o oA W W e

oo o g o g s R A R A R R R A R W oW W W oW oW oW oW oW oW NN NN N NNN NN B R R e e e e
a ok W R R O B WO DR BB R O © KT RE BR RO B BN O G R RN RO © ® 9O 0 A @ N = O

56
57
58
59
60
61
62

63

10.3.7 Python script head bin2ascii.py

import struct
from sys import argv,exit

class FortranFile(file):
77 modified from May 2007 Enthought—dev mailing list post by Neil Martinsen—Burrell”””

def __init__(self ,fname, mode=’r’, buf=0):
file.__init__(self , fname, mode, buf)
self . ENDIAN = ><’> # [ittle endian
self .di =4 # default integer (could be 8 on 64— bit platforms)

def readReals(self , prec=’f’):
777 Read in an array of reals (default single precision) with error checking”””
read header (length of record)
1 = struct.unpack(self . ENDIAN4’i’ self.read(self.di))[0]
data_str = self.read (1)
len_real = struct.calcsize (prec)
if 1 % len_real != 0:
raise IOError (’Error reading array of reals from data file’)
num = 1/len_real
reals = struct.unpack(self . ENDIAN+str (num)+prec ,data_str)
check footer
if struct.unpack(self .ENDIANt->i’ self.read(self.di))[0] != I:
raise IOError (’Error reading array of reals from data file’)
return list (reals)

def readInts(self):
7?7 Read in an array of integers with error checking”””
1 = struct.unpack(’i’,self.read(self.di))[0]
data_str = self.read (1)
len_int = struct.calcsize(’i?)
if 1 % len_int != 0:

raise IOError(’Error reading array of integers from data file’)

num = 1/len_int
ints = struct.unpack(str (num)+’i’,data_str)
if struct.unpack(self . ENDIAN+’i’ self.read(self.di))[0] != 1:

raise IOError (’Error reading array of integers from data file’)
return list (ints)

def readRecord(self):
7?”Read a single fortran record (potentially mized reals and ints)”””
dat = self.read(self.di)
if len(dat) = 0:
raise IOError (’Empy record header’)
1 = struct.unpack(self . ENDIAN+’i’ dat)[0]
data_str = self.read (1)
if len(data_str) != 1:
raise IOError(’Didn’’t read enough data’)
check = self.read(self.di)
if len(check) != 4:
raise IOError(’Didn’’t read enough data’)
if struct.unpack(self .ENDIANt>i’ check)[0] != 1:
raise IOError(’Error reading record from data file’)
return data_str

def reshapev2m (v,nx,ny):
77 Reshape a wvector that was previously reshaped in C-major order from a matriz,
back into a C-major order matriz (here a list of lists).”””
m = [None]*ny
n = nx*ny
for i,(lo,hi) in enumerate(zip(xrange(0, n—nx+1, nx), xrange(nx, n+1, nx))):
m[i] = v[lo:hi]

" Information Only

def floatmatsave (filehandle ,m):
"7 Writes array to open filehandle , format '568%el2.5’
Outer list 4s rows, inner lists are columns.”””

for row in m:
f.write(’’.join ([’ %12.5e¢’ % col for col in row]) + ’\n’)

open file and set endian—ness

try:
infn ,outfn = argv[1:3]
except:
print ’2 command-line arguments not given, using default in/out filenames’
infn = ’modeled_head.bin’
outfn = ’modeled_head_asciihed.grd’

ff = FortranFile (infn)

currently this assumes a single—layer MODELOW model (or at least only one layer of output)

format of MODFLOW header in binary layer array
fmt = 2<2i2f16s3i”’
little endian, 2 integers, 2 floats

16— character string (4 element array of 4—byte strings), 3 integers

while True:
try:
read in header
h = ff.readRecord ()

except IOError:
exit while loop
break

else:
unpack header

kstp , kper , pertim , totim , text ,ncol ,nrow,ilay = struct.unpack (fmt, h)

print status/confirmation to terminal
print kstp ,kper ,pertim ,totim , text ,ncol ,nrow,ilay

h = ff.readReals ()

ff.close ()

xmin, xmax = (601700.0,630000.0)
ymin, ymax = (3566500.0,3597100.0)
hmin = min (h)
hmax = max(h)

write output in Surfer ASCII grid format

f = open(outfn,’w’)

f.write("DSAA\n%i %i\n%.1f %.1f\n%.1f %.1f\n%.8e %.8e" %
(ncol ,nrow ,xmin ,xmax , ymin , ymax , hmin , hmax))

hmat = reshapev2m (h, ncol ,nrow)

MODFLOW starts data in upper—left corner
Surfer expects data starting in lower—left corner
flip array in row direction

floatmatsave (f ,hmat[:: —1])
f.close ()

| nfor mation Only

© ®w N o oA W N R

NN ONONNNN NN R B E e e e s e e e
© N & G A W N =R O © 0 N O O A W N = O

N
©

10.3.8 Python script merge_observed modeled heads.py

fobs = open(’meas_head_2005ASER.smp’,’r’) # measured head
fmod = open(’modeled_head.smp’,’r’) # modeled head
fwgt = open(’obs_loc_2005ASER.dat’,’r’) # weights

fdb = open(’spec_wells.crd’,’r’) # x/y coordinates
fout = open(’both_heads.smp’,’w’) # resulting file
read in list of z/y coordinates, key by well name

wells = {}

for line in fdb:

fdb

well ;x,y = line.split ()]
wells [well .upper ()] = [x,¥]
.close ()

0:3] # ignore last column

fout . write (’\t’.join ([’?#NAME’ ,’UTM-NAD27 -X’ ,’UTM-NAD27-Y" ,

» OBSERVED’ , > MODELED ’ , >0BS-MOD’ , > WEIGHT’])+’\n’)

for sobs ,smod,w in zip (fobs ,fmod,fwgt):

fobs .
fmod.
fwgt .
fout .

close
close
close
close

e Y Ve N
—

obs = float (sobs.split ()[3])

mod = float (smod.split ()[3])

name = sobs.split ()[0]. upper ()

fout . write(’\t’.join ([name, wells [name][0] , wells [name]|[1],

str (obs),str(mod),str (obs—mod) ,
w.rstrip ().split ()[1]])+’\n")

| nfor mation Only

© 0 N o o oA W W e

MO NN NN NN B R R R R R e e
BN R B N e = R N L =)

N
o]

10.3.9 Python script convert_dtrkmf_output_for_surfer.py

grid origin for dtrkmf cell —> z,y conversion

x0 = 601700.0
y0 = 3597100.0
dx = 100.0
dy = 100.0

fout = open(’dtrk_output.bln’,’w’)

read in all results for saving particle tracks
fin = open(’dtrk.out’,’r’)

results = [l.split () for | in fin.readlines ()[1:]]

fin . close ()
npts = len(results)

write Surfer blanking file header
fout.write (’%i,1\n’ % npts)

write x,y location and time
for pt in results:

x = float (pt[1])*xdx + x0
y = y0 — float (pt[2])*dy
t = float (pt[0])/7.75%4.0 # convert to 4m Cuelbra

fout.write(’%.1f,%.1£,%.8e\n’ % (x,y,t))

fout . close ()

thickness

| nfor mation Only

© W N e U A W N e

o o o @ Gogr ot c g gl or gt A A R R R AR A A R R W W W W oW W W W W W NNN N NN NN NN R R R e e s e e e e
F & © ® N o o A ® B R O © ® N O O A W N R O O ® I O O A ® O R O O 0N 0 O A @ N = O © W0 N O o A W N = O

10.3.10 Python script plot-results-bar-charts.py

This script is not run on the QA linux cluster, alice.sandia.gov. This script is run on a desktop PC, but is only used to create
figures for the analysis report. This script is only included here for completeness.

import numpy as np

import matplotlib
matplotlib.use(’Agg’)

import matplotlib.pyplot as plt

fprefix = ’pest_02/’
mprefix = ’../../wipp-polyline-data/’
fname = fprefix + ’modeled_vs_observed_head_pest_02.txt’

ofname = ’original_average/modeled_vs_observed_head_original_average.txt’
M2FT = 0.3048

year = ’2005’

load in observed , modeled, obs—mod, (all in meters)

res = np.loadtxt (fname, skiprows=1,usecols =(3,4,5)

) 75)
ores = np.loadtxt (ofname , skiprows=1,usecols =(3,4,5))

load wn weights

weights = np.loadtxt (fname , skiprows=1,usecols=(6,),dtype=’int’)
load in names

names = np.loadtxt (fname, skiprows=1,usecols=(0,),dtype=’1S6")

checking locations / zones

sk sk 3k sk ok sk ok

wipp = np.loadtxt (mprefix+’wipp_boundary.dat’)

x,y = np.loadtxt (fname, skiprows=1,usecols =(1,2),unpack=True)

fig = plt.figure(2,figsize=(18,12))

axl = fig.add_subplot (121)

axl.plot (x,y,’k*’) # wells

ax1.plot (wipp[:,0] ,wipp[:,1],’x=") # WIPP LWB
buff = np.loadtxt (mprefix+’wipp_boundary.dat’)
buff[1:3,0] —= 3000.0

buff[0,0] += 3000.0

buff [3:,0] += 3000.0

buff[2:4,1] —= 3000.0

buff [0:2,1] += 3000.0

buff[—1,1] 4= 3000.0

axl.plot (buff[:,0],buff[:,1],’g--?) # WIPP LWB+3km
for xv,yv,n,w in zip(x,y,names, weights):

plt .annotate (’%s %i’%(n,w),xy=(xv,yv),fontsize=8)
plt.axis(’image’)
axl.set_xlim ([x.min() —1000,x.max()+1000])
axl.set_ylim ([y.min() —1000,y .max()+1000])
ax2 = fig.add_subplot (122)
ax2.plot (x,y,’k*’) # wells
ax2.plot (wipp [:,0] ,wipp [:,1],’x-?) # WIPP LIWB
ax2.plot (buff[:,0], buff[:,1],’g--?) # WIPP LWB+3km
for xv,yv,n,w in zip(x,y,names, weights):

plt .annotate (’%s %i’%(n,w),xy=(xv,yv),fontsize=8)
plt . axis(’image’)
ax2.set_xlim ([wipp[: ,0].min() —100,wipp [: ,0].max()+100])
ax2.set_ylim ([wipp[:,1].min() —100,wipp [: ,1].max()+100])
plt.suptitle (’well weights check ’+4year)
plt.savefig(’check-well -weights-’+year+’.png’)

convert lengths to feet
res /= M2FT
ores /= M2FT

| nfor mation Only

create the histogram of residuals for ASER

—10,-9,...8,9,10

bins = np.arange(—10,11)
rectfig = (15,7)
squarefig = (8.5,8.5)

fig = plt.figure(1l,figsize=rectfig)
ax = fig.add_subplot(111)
all the data, all but distant wells
ax. hist ([res[weights <2,2],res [:,2]], bins=bins ,range=(—-10.0,10.0),
rwidth=0.75,align="mid "’ ,
color=[’red’,’blue’],
label=[’Inside LWB & <3km from WIPP LWB’,’All wells’])
ax.set_xlabel (’Measured-Modeled (ft)’)
ax.set_ylabel (’Frequency’)
ax.set_xticks (bins)
ax.set_ylim ([0,10])
ax.set_yticks (np.arange (0,10,2))
plt.grid ()
ax.yaxis.grid (True,which="major”)
ax.xaxis.grid (False)
plt.legend (loc=’upper left’)
plt.title (’Histogram of Model Residuals ’+year)
plt.savefig(’model-error-histogram-’+year+’.png’)
plt.close (1)

create bar chart plot of individual residual for ASER

FE koK sk ok ok ok ok ok kR ok Kk R oK sk kR oK K KR K K KR K K KRR K KK R K Kk R K

separate wells into groups

resin = res[weights==0,2]
resnear = res|weights==1,2]
resfar = res[weights==2,2]
nin = resin. size

nnear = resnear.size

nfar = resfar.size

separate names into groups

namin = names | weights==0]
namnear = names | weights==1]
namfar = names|weights==2]

get indices that sort wectors

ordin = np. argsort (namin)
ordnear = np.argsort (namnear)
ordfar = np.argsort (namfar)

put vectors back together (groups adjacent and sorted inside each group)
resagg = np.concatenate ((resin[ordin],resnear [ordnear], resfar [ordfar]) ,axis=0)
namagg = np.concatenate ((namin|ordin|,namnear|[ordnear|,namfar|[ordfar]) , axis=0)

fig = plt.figure(1,figsize=rectfig)
ax = fig.add_subplot(111)

wid = 0.6
shift = 0.5 — wid /2.0
ab = np.arange(res.shape[0])

ax.bar (left=ab+shift , height=resagg , width=0.6,bottom=0.0,color="gray’)

ax.set_ylim ([—-15.0,15.0])
ax.spines[’bottom’|. set_position (’zero’)

| nfor mation Only

ax.spines|’top’].

set_color (’none’)

ax.xaxis.set_ticks_position (’bottom’)

plt . xticks (ab4wid ,

wvertical lines
ax.axvline (x=nin
ax.axvline

namagg , rotation =90)
dividing groups

,color="black’,linestyle=’dashed’)
x=nin+nnear , color="black’,linestyle=’dashed’)

(
(

ax.axhline (y=0,color="black’,linestyle=’so0lid’)
(

ax.axhline (y=-15,
plt . grid ()

color="black’,linestyle=’dotted”)

ax.yaxis.grid (True,which="major’)
ax.xaxis.grid (False)
ax.set_xlim ([0, res.shape[0]])

plt . annotate (>’

=(0.0,12.0) ,xycoords=’data’,

xytext=(nin ,12.0) , textcoords=’data’,
arrowprops={’arrowstyle’:’<->’1})
plt.annotate (’inside WIPP LWB’ ,xy=(nin/3.0,12.5),xycoords=’data’)

plt.annotate(’’,

xy=(nin ,12.0) , xycoords=’data’

xytext=(nin+nnear ,12.0) , textcoords=’data’,
arrowprops={’arrowstyle’:’<->’})
plt.annotate (’<3km WIPP LWB’ ,xy=(nin+nnear/3.0,12.5), xycoords=’data’)

plt.annotate(’’,

xy=(nin+nnear ,12.0) ,xycoords=’data’

xytext=(nin+nnear+nfar ;12.0) , textcoords=’data’
arrowprops={’arrowstyle’:’<->’1})
plt.annotate (’>3km WIPP LWB’ ,xy=(nin+nnear+nfar /3.0,12.5), xycoords=’data’)

ax.set_ylabel (’Measured-Modeled (ft)’)

ax.set_title (’ind

ividual residuals ’+year)

plt.savefig (’model-error-residuals-’+year+’.png’)

plt.close (1)

create scatter
m = 1.0/M2FT
st = [2980,3120]

print ’modeled-vs-

%.4f> % np.corrcoef(res[:,0],res[:,1
print ’inside WIPP: %.4f’ % np.corrcoef(res|[weights==
print ’inside 3km:

print ’all data:

p/m‘ of measured vs. modeled

measured correlation coefficients’

J)[1,0]*x%2

0,0],res [weights==0,1
[

1]
%h.4f? % np.corrcoef (res[weights <2,0], res[weights <2,1])[1

print ’uncalibrated model’

print ’all data:

print ’inside WIPP:
print ’inside 3km:

fig = plt.figure(

%.4f> % np.corrcoef (ores[:,0] ,ores[:,1])[1,0]*%2
%.4f > % np.corrcoef (ores [weights==0,0],ores [weights==0,1])[1,0]*x%2
%.4f> % np.corrcoef (ores [weights <2,0], ores|[weights <2,1])[1,0]*x2

1,figsize=squarefig)

ax = fig.add_subplot (111)
ax.plot (res[weights==0,0],res [weights==0,1],color="red’ ,markersize=10,

marker=’+

>, linestyle=’none’ ,label=’Inside LWB?)

ax.plot (res[weights==1,0],res [weights==1,1],color=’green’ ,markersize=10,

> linestyle=’none’ ,label=’< 3km From LWB?’)

ax.plot(res [WelghtS——2 0],res [weights==2,1],color="blue’ ,markersize=10,

(
marker=’x
(
marker="*
ax.plot (sr,sr, k-’
ax.plot ([sr [0

I
ax.plot ([sr[0],

ax.set_ xtlcks(np
ax.set_yticks (np.
ax.set_xlim (sr)

>, linestyle=’none’ ,label=’distant’)
labe1=’$45‘{\\degree}$ Perfect Fit’)

r[1]],[sr[0]+m,sr[l]4+m],’g-’,linewidth=0.5,label="$\\pn$ 1im
r[1]],[sr[0] —m, Sr[|-]7’ >, linewidth=0.5,label=’__nolegend__
llnspace([0] r[1],8))

linspace (sr[0],sr[1],8))

| nfor mation Only

)[1,0]%x2
,0] %% 2

Misfit’)

?)

ax.set_ylim (sr)
plt . minorticks_on ()
plt.legend (loc=’lower right’,6scatterpoints=1,numpoints=1)
plt.grid ()
for j,lab in enumerate(names):
if res[j,2] < —1.5%m:
plot labels to left of wvalue far above 45—degree line
plt .annotate (lab ,xy=(res[j,0],res[j,1]),
xytext=(res [j,0] —(2.9xlen (lab)),res[j,1] —2.0), fontsize=14)
elif res[j,2] > 1.5%m:
plot labels to right of wvalue far below 45—degree line
plt.annotate (lab ,xy=(res[j,0] ,res[j,1]),
xytext=(res[j,0]+2.0,res[j,1]—2.0), fontsize=14)
ax.set_xlabel (’0bserved Freshwater Head (ft AMSL)’)
ax.set_ylabel (’Modeled Freshwater Head (ft AMSL)’)
ax.set_title (’modeled vs. measured ’+year)
plt.savefig(’scatter_pest_02_’+year+’.png’)

| nfor mation Only

10.3.11 Python script plot-contour-maps.py

This script is not run on the QA linux cluster, alice.sandia.gov. This script is run on a desktop PC, but is only used to create
figures for the analysis report. This script is only included here for completeness.

1 import numpy as np

2 #import matplotlib

3 #matplotlib.use(Agg’)

4+ import matplotlib.pyplot as plt

5 from mpl_toolkits.basemap import pyproj

6

v # http://spatialreference.org/ref/epsqg/26713/

s # http://spatialreference.org/ref/epsg/31013/

o putm = pyproj.Proj(init=’epsg:26713’) # UIM Zone 13N NAD27 (metlers)
10 pstp = pyproj.Proj(init=’epsg:32012°) # NM state plane east NAD27 (meters)
11

12 def transform(xin,yin):

13 77 does the default conversion from utm —> state plane
14 then also convert to feet from meters”””

15 xout ,yout = pyproj.transform (putm, pstp ,xin,yin)

16 xout /=

17 yout /= M2FT

18 return xout , yout

19

20 year = 22005’

n fprefix = ’pest_02/’

22 mprefix = ?../../wipp-polyline-data/’

23 cfname = fprefix + ’modeled_head_pest_02.grd’

22 pfname = fprefix + ’dtrk_output_pest_02.bln’

25 wfname = fprefix + ’modeled_vs_observed_head_pest_02.txt’
26

v M2FT = 0.3048

28

20 # 7((1(1 in 1(27177(](1/((1 things

30 76065 % %% 660 R 660 R R e e 6% % %%

a1 A 7()(1 (] in observed, modeled, obs—mod, (all in meters)

22 res = np.loadtxt (winame, skiprows=1,usecols =(3,4,5))

s3 res /= M2FT # convert heads to feet

sr wellx , welly = transform (xnp.loadtxt (winame, skiprows=1,usecols =(1,2),unpack=True))
35 names = np.loadtxt (wfname, skiprows=1,usecols=(0,),dtype=’1S6")
36

a7 # read in head—related things

38 # T8 8 %

s h = np.loadtxt (cfname , skiprows=5) # ASCII matriz of modeled head in meters AMSL
w0 h[h<0.0] = np.NaN # no—flow zone in northeast

2 h[h>1000.0] = np.NaN # constant—head zone in east

2 h /= M2FT # convert elevations to feel

43

aa # surfer grid is implicit in header

s # create grid from min/max UIM NAD27 coordinates (meters)

16 utmy,utmx = np.mgrid [3566500.0:3597100.0:307j, 601700.0:630000.0:284j]

47

a8 # head contour coords

1 hx hy = transform (utmx,utmy)

50 del utmx,utmy

51

s2 # read in particle—related things

53 # V/////‘/7/////%”/V/////W/V/////%VV///

sa px,py = transform (xnp.loadtxt (pfname, skiprows=1,delimiter=",",

55 usecols:([),l),unpack:True))

s part = np.loadtxt (pfname,skiprows=1,delimiter=’,’ usecols=(2,))

57

ss # read in MODFLOW model, WIPP LWB & ASER contour domain (UIM X & Y)
60 modx,mody = transform (xnp.loadtxt (mprefix+’ total_boundary .dat’
61 unpack= Tr

|nformation Only

wippx , wippy = transform (snp.loadtxt (mprefix+’wipp_boundary.dat’,

usecols =(0,1),unpack=True))

aserx ,asery = transform (xnp.loadtxt(mprefix+’ASER_boundary.csv’,

a =]

delimiter=’,’ ;usecols =(1,2),unpack=True))

plot contour map of entire model area
FE ok sk ok ok ok ok ok R KR KR KO kK KK KoK KKK KR K K K K K K R KOk Ok K

fig = plt.figure(1,figsize=(12,16))
ax = fig.add_subplot (111)
lev = 3000 + np.arange(17)*10

CS = ax.contour (hx,hy,h,levels=lev ,colors=’k’,linewidths=0.5)

ax.clabel (CS,lev [::2] , fmt="7%1i")
ax . plot (wippx , wippy , k=)
ax.plot (aserx ,asery ,’g-")

(
ax . plot (modx,mody,’-’,color=’purple’,linewidth=2)
ax.plot (wellx ,welly , linestyle=’none’ ,marker="0",

= n =’non
markeredgecolor="green’ ,markerfacecolor="none’

ax.set_xticks (630000 + np.arange (10.0)x10000)
ax.set_yticks (450000 + np.arange (10.0)x10000)

labels = ax.get_yticklabels ()

for label in labels:
label.set_rotation (90)

for x,y,n in zip (wellx , welly ,names):
plot just abowve

a.append (plt.annotate (n,xy=(x,y),xytext=(0,5),
textcoords=’offset points’,
horizontalalignment=’center’

fontsize =8))
plt.axis(’image’)

ax.set_title (’Freshwater Heads Model Area ’+year)
ax.set_xlabel (’NAD27 NM East State Plane Easting (ft)’)
ax.set_ylabel (’NAD27 NM East State Plane Northing (ft)’)

compute travel time and path length to WIPP LWB

FEkok sk osk ok ok sk sk kR ok sk kR ok sk kR oK sk KR K sk KRR KK SRR K K KR oK kKR oK

compute incremental distance between times

pd = M2FTxsnp. sqrt ((px[1:] —px[: —1])**2 + (py[l:] —py[: —1])*%2)

print ’particle length:’ pd.sum(),’
print part[—1],’ (years); ’

(meters); travel time:’,

print ° avg speed:’,pd.sum()/part[—1],’ (m/yr)’

A >S>S>>SS>S>manually fix labels >>>>
##for lab in a:
HH lab.draggable ()

H#Hplt . show ()
HHH << <LLLLL L L Ll

plt.savefig(’large-area-contour -map’+year+’.png’)

plt.close (1)

del lev ,CS

mask = np.logical_and (np.logical_and (hx>aserx.min (), hx<aserx.max()),
np.logical _and (hy>asery .min () ,hy<asery.max()))

h[”mask] = np.NaN

a =[]

plot contour map of ASER-figure area

| nfor mation Only

fig = plt.figure(1l,figsize=(12,16))
ax = fig.add_subplot(111)
lev = 3000 + np.arange (17)%5
CS = ax.contour (hx,hy,h,levels=lev, colors=’k’,linewidths =0.5)
ax.plot (wippx , wippy , ’k-")
ax . plot (modx,mody, ’-’,color=’purple’,linewidth=2)
(

ax.plot

wellx , welly ,linestyle=’none’ ,marker=’0",

markeredgecolor=’green’ ,markerfacecolor="none’)
ax.plot (px,py,linestyle=’solid’,color=’blue’,linewidth=4)
plt.arrow (x=px[—3],y=py[—3],dx=-10,dy=-50,
linewidth=4,color="blue’ ;head_length=>500,head_width=500)

plt.axis(’image’)

ax.set_xlim ([aserx.min(),aserx.max()])
ax.set_ylim ([asery.min(),asery .max()])

ax.clabel (CS,lev [:

:2] ,fmt="%1i’,inline_spacing=2)

ax.set_xticks (660000 + np.arange (5.0)*5000)
ax.set_yticks (485000 + np.arange (5.0)x5000)
labels = ax.get_yticklabels ()
for label in labels:
label.set_rotation (90)
for j,(x,y,n) in enumerate(zip (wellx ,welly ,names)):
only plot labels of wells inside the figure area
if aserx.min()<x<aserx.max() and asery.min()<y<asery.max():
mame above
a.append (plt.annotate (n,xy=(x,y),xytext=(0,5),

textcoords=’offset points’,
horizontalalignment=’center’
fontsize =10))

observed FW head below
a.append (plt.annotate (’%.1f " %res [j,0],xy=(x,y),xytext=(0,—15),

textcoords=’offset points’,
horizontalalignment=’center’,
fontsize =6))

ax.set_title (’Freshwater Heads WIPP Area ’+ year)
ax.set_xlabel (’NAD27 NM East State Plane Easting (ft)’)
ax.set_ylabel (’NAD27 NM East State Plane Northing (ft)’)

A >S>SSSSS>Smanually fix labels >>>>

##for lab in a:

H# lab.draggable ()

##plt . show ()

HHH <<<LLLLL L L L L <<

plt.savefig(’aser-area-contour -map’+year+’.png’)

plt.close (1)

| nfor mation Only

